WorldWideScience

Sample records for cell level contributions

  1. Dimethyl sulfoxide-caused changes in pro- and anti-angiogenic factor levels could contribute to an anti-angiogenic response in HeLa cells.

    Science.gov (United States)

    Şimşek, Ece; Aydemir, Esra Arslan; İmir, Nilüfer; Koçak, Orhan; Kuruoğlu, Aykut; Fışkın, Kayahan

    2015-10-01

    Dimethyl sulfoxide (DMSO) is widely used in biological research as a general solvent. While it has been previously demonstrated that DMSO possesses a wide range of pharmacological effects, there is no published work regarding the effects of DMSO on pro-angiogenic factor levels. This study was designed to investigate the possible effects of DMSO on the levels of three pro-angiogenic factors released from HeLa cells in vitro. Cells were treated with two different and previously determined concentrations of DMSO. The cytotoxic effects of DMSO concentrations on HeLa cells were determined via MTT. Survival rates of DMSO-treated cells were determined by Invitrogen live/dead viability/cytotoxicity kit and trypan blue exclusion assay. Changes in the pro-angiogenic levels in media were evaluated by Cayman's Substance P Enzyme Immunoassay ELISA kit. Vascular endothelial growth factor ELISA kit and interferon gamma ELISA kit for substance P, VEGF and IFNγ respectively. Changes in substance P levels were corrected by standard western blotting. Changes in VEGF and IFNγ levels were corrected both by western blot and real time PCR. Treatment with 1.4 μM DMSO caused a time-dependent inhibition of cell proliferation at 24, 48 and 72 h. 1.4 μM DMSO caused a significant reduction in VEGF levels at 72 h of incubation and sharp increases in IFNγ levels at both 48 and 72 h of incubation. According to real time PCR analyses, DMSO (1.4 μM) exhibited an inhibitory effect on VEGF but acted as an augmenter of IFNγ release on HeLa cells in vitro. This is the first report showing that the general solvent DMSO suppressed HeLa cell proliferation, decreased the levels of two pro-angiogenic factors (substance P and VEGF) and increased the release of an anti-angiogenic factor IFNγ in vitro. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Deep Ocean Contribution to Sea Level Rise

    Science.gov (United States)

    Chang, L.; Sun, W.; Tang, H.; Wang, Q.

    2017-12-01

    The ocean temperature and salinity change in the upper 2000m can be detected by Argo floats, so we can know the steric height change of the ocean. But the ocean layers above 2000m represent only 50% of the total ocean volume. Although the temperature and salinity change are small compared to the upper ocean, the deep ocean contribution to sea level might be significant because of its large volume. There has been some research on the deep ocean rely on the very sparse situ observation and are limited to decadal and longer-term rates of change. The available observational data in the deep ocean are too spares to determine the temporal variability, and the long-term changes may have a bias. We will use the Argo date and combine the situ data and topographic data to estimate the temperature and salinity of the sea water below 2000m, so we can obtain a monthly data. We will analyze the seasonal and annual change of the steric height change due to the deep ocean between 2005 and 2016. And we will evaluate the result combination the present-day satellite and in situ observing systems. The deep ocean contribution can be inferred indirectly as the difference between the altimetry minus GRACE and Argo-based steric sea level.

  3. Pervasive satellite cell contribution to uninjured adult muscle fibers.

    Science.gov (United States)

    Pawlikowski, Bradley; Pulliam, Crystal; Betta, Nicole Dalla; Kardon, Gabrielle; Olwin, Bradley B

    2015-01-01

    Adult skeletal muscle adapts to functional needs, maintaining consistent numbers of myonuclei and stem cells. Although resident muscle stem cells or satellite cells are required for muscle growth and repair, in uninjured muscle, these cells appear quiescent and metabolically inactive. To investigate the satellite cell contribution to myofibers in adult uninjured skeletal muscle, we labeled satellite cells by inducing a recombination of LSL-tdTomato in Pax7(CreER) mice and scoring tdTomato+ myofibers as an indicator of satellite cell fusion. Satellite cell fusion into myofibers plateaus postnatally between 8 and 12 weeks of age, reaching a steady state in hindlimb muscles, but in extra ocular or diaphragm muscles, satellite cell fusion is maintained at postnatal levels irrespective of the age assayed. Upon recombination and following a 2-week chase in 6-month-old mice, tdTomato-labeled satellite cells fused into myofibers as 20, 50, and 80 % of hindlimb, extra ocular, and diaphragm myofibers, respectively, were tdTomato+. Satellite cells contribute to uninjured myofibers either following a cell division or directly without an intervening cell division. The frequency of satellite cell fusion into the skeletal muscle fibers is greater than previously estimated, suggesting an important functional role for satellite cell fusion into adult myofibers and a requirement for active maintenance of satellite cell numbers in uninjured skeletal muscle.

  4. Increased levels of CCR7(lo)PD-1(hi) CXCR5+ CD4+ T cells, and associated factors Bcl-6, CXCR5, IL-21 and IL-6 contribute to repeated implantation failure.

    Science.gov (United States)

    Gong, Qiaoqiao; Zhu, Yuejie; Pang, Nannan; Ai, Haiquan; Gong, Xiaoyun; La, Xiaolin; Ding, Jianbing

    2017-12-01

    In vitro fertilization-embryo transfer (IVF-ET) can be used by infertile couples to assist with reproduction; however, failure of the embryo to implant into the endometrial lining results in failure of the IVF treatment. The present study investigated the expression of chemokine receptor 7 (CCR7)(lo) programmed death-1(PD-1)(hi) chemokine receptor type 5 (CXCR5) + cluster of differentiation 4 (CD4) + T cells and associated factors in patients with repeated implantation failure (RIF). A total of 30 females with RIF and 30 healthy females were enrolled in the current study. Flow cytometry was used to detect the proportion of CCR7(lo)PD-1(hi) CXCR5 + CD4 + T cells in the peripheral blood. Cytokine bead arrays were performed to detect the levels of interleukin (IL)-6, -4 and -2 in the serum. ELISAs were used to detect the level of IL-21 in the serum. Quantitative real time polymerase chain reaction analysis and immunohistochemistry were used to investigate the expression of B-cell lymphoma 6 (Bcl-6), chemokine receptor type 5 (CXCR5) and IL-21 in the endometrium. The results revealed that the percentage of CCR7(lo)PD-1(hi) CXCR5 + CD4 + T cells was increased in the RIF group compared with the control group during the mid luteal phase. The mRNA and protein levels of Bcl-6, IL-21 and CXCR5 in the endometrium and the concentrations of IL-21 and IL-6 in the serum were significantly increased in the RIF group; however, no significant difference was observed between the two groups in regards to the expression of IL-4 and IL-2. Furthermore, a significant positive correlation was identified between the percentage of CCR7(lo)PD-1(hi) CXCR5 + CD4 + T cells and IL-21 and IL-6 levels. The expression of IL-21 also had a positive correlation with Bcl-6 and CXCR5 expression in the RIF group. These results suggest that increased levels of CCR7(lo)PD-1(hi) CXCR5 + CD4 + T cells and associated factors contribute to RIF and could therefore be a potential therapeutic target.

  5. A Better Insight Into IT Contribution by Process Level Structure

    DEFF Research Database (Denmark)

    Shahim, Nazli; Møller, Charles

    2013-01-01

    . The discussion is supported by an introduction to the case of study in Royal Greenland. The contribution of this paper is the results of the discussions and the case study reaching to the point that IT supporting influences are better understood and observed at process levels rather than firm output level.......Creation of IT business value through its impact on value chain processes made the objective of this research to compare and differentiate IT role at both process and firm levels. A discussion about IT’s impact at both levels are made through previous theoretical and empirical studies...

  6. Low sound level source path contribution on a HVAC

    NARCIS (Netherlands)

    Bree, H.E. de; Basten, T.G.H.

    2008-01-01

    For compliance test purposes, the noise level of a HVAC is usually measured with a pressure microphone positioned at a certain distance. This measurement is normally performed in an anechoic room. However, this method doesn't provide the engineer any insight on what noise sources do contribute to

  7. Reconciling projections of the Antarctic contribution to sea level rise

    Science.gov (United States)

    Edwards, Tamsin; Holden, Philip; Edwards, Neil; Wernecke, Andreas

    2017-04-01

    Two recent studies of the Antarctic contribution to sea level rise this century had best estimates that differed by an order of magnitude (around 10 cm and 1 m by 2100). The first, Ritz et al. (2015), used a model calibrated with satellite data, giving a 5% probability of exceeding 30cm by 2100 for sea level rise due to Antarctic instability. The second, DeConto and Pollard (2016), used a model evaluated with reconstructions of palaeo-sea level. They did not estimate probabilities, but using a simple assumption here about the distribution shape gives up to a 5% chance of Antarctic contribution exceeding 2.3 m this century with total sea level rise approaching 3 m. If robust, this would have very substantial implications for global adaptation to climate change. How are we to make sense of this apparent inconsistency? How much is down to the data - does the past tell us we will face widespread and rapid Antarctic ice losses in the future? How much is due to the mechanism of rapid ice loss ('cliff failure') proposed in the latter paper, or other parameterisation choices in these low resolution models (GRISLI and PISM, respectively)? How much is due to choices made in the ensemble design and calibration? How do these projections compare with high resolution, grounding line resolving models such as BISICLES? Could we reduce the huge uncertainties in the palaeo-study? Emulation provides a powerful tool for understanding these questions and reconciling the projections. By describing the three numerical ice sheet models with statistical models, we can re-analyse the ensembles and re-do the calibrations under a common statistical framework. This reduces uncertainty in the PISM study because it allows massive sampling of the parameter space, which reduces the sensitivity to reconstructed palaeo-sea level values and also narrows the probability intervals because the simple assumption about distribution shape above is no longer needed. We present reconciled probabilistic

  8. Cell Type-Specific Contributions to the TSC Neuropathology

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-16-1-0415 TITLE: Cell Type-Specific Contributions to the TSC Neuropathology PRINCIPAL INVESTIGATOR: Gabriella D’Arcangelo...AND SUBTITLE Cell Type-Specific Contributions to the TSC Neuropathology 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0415 5c. PROGRAM...how heterozygous and homozygous Tsc2 mutations affect the development of mutant excitatory neurons as well as other surrounding brain cells , in vivo

  9. Constraining the Antarctic contribution to interglacial sea-level rise

    Science.gov (United States)

    Naish, T.; Mckay, R. M.; Barrett, P. J.; Levy, R. H.; Golledge, N. R.; Deconto, R. M.; Horgan, H. J.; Dunbar, G. B.

    2015-12-01

    Observations, models and paleoclimate reconstructions suggest that Antarctica's marine-based ice sheets behave in an unstable manner with episodes of rapid retreat in response to warming climate. Understanding the processes involved in this "marine ice sheet instability" is key for improving estimates of Antarctic ice sheet contribution to future sea-level rise. Another motivating factor is that far-field sea-level reconstructions and ice sheet models imply global mean sea level (GMSL) was up to 20m and 10m higher, respectively, compared with present day, during the interglacials of the warm Pliocene (~4-3Ma) and Late Pleistocene (at ~400ka and 125ka). This was when atmospheric CO2 was between 280 and 400ppm and global average surface temperatures were 1- 3°C warmer, suggesting polar ice sheets are highly sensitive to relatively modest increases in climate forcing. Such magnitudes of GMSL rise not only require near complete melt of the Greenland Ice Sheet and the West Antarctic Ice Sheet, but a substantial retreat of marine-based sectors of East Antarctic Ice Sheet. Recent geological drilling initiatives on the continental margin of Antarctica from both ship- (e.g. IODP; International Ocean Discovery Program) and ice-based (e.g. ANDRILL/Antarctic Geological Drilling) platforms have provided evidence supporting retreat of marine-based ice. However, without direct access through the ice sheet to archives preserved within sub-glacial sedimentary basins, the volume and extent of ice sheet retreat during past interglacials cannot be directly constrained. Sediment cores have been successfully recovered from beneath ice shelves by the ANDRILL Program and ice streams by the WISSARD (Whillans Ice Stream Sub-glacial Access Research Drilling) Project. Together with the potential of the new RAID (Rapid Access Ice Drill) initiative, these demonstrate the technological feasibility of accessing the subglacial bed and deeper sedimentary archives. In this talk I will outline the

  10. Autophagy induction contributes to GDC-0349 resistance in head and neck squamous cell carcinoma (HNSCC) cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yajuan; Peng, Yi [Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan (China); Tang, Hao [Department of Pathology, Hubei Cancer Hospital, Wuhan 430071 (China); He, Xiaojun; Wang, Zhaohua [Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan (China); Hu, Desheng, E-mail: hudeshengvvip@sina.com [Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan (China); Zhou, Xiaoyi, E-mail: zhouxy1218@126.com [Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan (China)

    2016-08-19

    Dysregulation of mammalian target of rapamycin (mTOR) signaling contributes to head and neck squamous cell carcinoma (HNSCC) tumorigenesis and progression. In the current study, we tested the anti-HNSCC cell activity by GDC-0349, a selective ATP-competitive inhibitor of mTOR. We showed that GDC-0349 inhibited proliferation of established and primary human HNSCC cells bearing high-level of p-AKT/p-S6K. Further, it induced caspase-dependent apoptosis in the HNSCC cells. GDC-0349 blocked mTORC1 and mTORC2 activation, yet it simultaneously induced autophagy activation in HNSCC cells. The latter was evidenced by induction of LC3B-II, Beclin-1 and Autophagy-related (ATG)-7, as well as downregulation of p62. Autophagy inhibitors (3-methyladenine and bafilomycin A1) or ATG-7 siRNA dramatically potentiated GDC-0349’s cytotoxicity against HNSCC cells. Intriguingly, we showed that ceramide (C14), a pro-apoptotic sphingolipid, also induced ATG-7 degradation, and sensitized HNSCC cells to GDC-0349. Collectively, the preclinical study provided evidences to support GDC-0349 as a promising anti-HNSCC agent. GDC-0349 sensitization may be achieved via autophagy inhibition. - Highlights: • GDC-0349 inhibits proliferation of HNSCC cells bearing high-level of p-AKT/p-S6K. • GDC-0349 activates caspase-dependent apoptosis in HNSCC cells. • Simultaneous blockage of mTORC1/2 by GDC-0349 induces autophagy activation. • Autophagy inhibitor or ATG-7 siRNA potentiates GDC-0349’s cytotoxicity. • C14 ceramide downregulates ATG-7 and sensitizes HNSCC cells to GDC-0349.

  11. Contributions of 3D Cell Cultures for Cancer Research.

    Science.gov (United States)

    Ravi, Maddaly; Ramesh, Aarthi; Pattabhi, Aishwarya

    2017-10-01

    Cancer cell lines have contributed immensely in understanding the complex physiology of cancers. They are excellent material for studies as they offer homogenous samples without individual variations and can be utilised with ease and flexibility. Also, the number of assays and end-points one can study is almost limitless; with the advantage of improvising, modifying or altering several variables and methods. Literally, a new dimension to cancer research has been achieved by the advent of 3Dimensional (3D) cell culture techniques. This approach increased many folds the ways in which cancer cell lines can be utilised for understanding complex cancer biology. 3D cell culture techniques are now the preferred way of using cancer cell lines to bridge the gap between the 'absolute in vitro' and 'true in vivo'. The aspects of cancer biology that 3D cell culture systems have contributed include morphology, microenvironment, gene and protein expression, invasion/migration/metastasis, angiogenesis, tumour metabolism and drug discovery, testing chemotherapeutic agents, adaptive responses and cancer stem cells. We present here, a comprehensive review on the applications of 3D cell culture systems for these aspects of cancers. J. Cell. Physiol. 232: 2679-2697, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. The Contribution of Lexical Diversity to College-Level Writing

    Science.gov (United States)

    González, Melanie C.

    2017-01-01

    This article reports on a study that investigated the extent to which lexical frequency and lexical diversity contribute to writing proficiency scores on monolingual English-speaking writers' and advanced multilingual writers' academic compositions. The data consist of essays composed by 104 multilingual English learners enrolled in advanced…

  13. Mast cell-neural interactions contribute to pain and itch.

    Science.gov (United States)

    Gupta, Kalpna; Harvima, Ilkka T

    2018-03-01

    Mast cells are best recognized for their role in allergy and anaphylaxis, but increasing evidence supports their role in neurogenic inflammation leading to pain and itch. Mast cells act as a "power house" by releasing algogenic and pruritogenic mediators, which initiate a reciprocal communication with specific nociceptors on sensory nerve fibers. Consequently, nerve fibers release inflammatory and vasoactive neuropeptides, which in turn activate mast cells in a feedback mechanism, thus promoting a vicious cycle of mast cell and nociceptor activation leading to neurogenic inflammation and pain/pruritus. Mechanisms underlying mast cell differentiation, activation, and intercellular interactions with inflammatory, vascular, and neural systems are deeply influenced by their microenvironment, imparting enormous heterogeneity and complexity in understanding their contribution to pain and pruritus. Neurogenic inflammation is central to both pain and pruritus, but specific mediators released by mast cells to promote this process may vary depending upon their location, stimuli, underlying pathology, gender, and species. Therefore, in this review, we present the contribution of mast cells in pathological conditions, including distressing pruritus exacerbated by psychologic stress and experienced by the majority of patients with psoriasis and atopic dermatitis and in different pain syndromes due to mastocytosis, sickle cell disease, and cancer. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Differential cytokine contributions of perivascular haematopoietic stem cell niches.

    Science.gov (United States)

    Asada, Noboru; Kunisaki, Yuya; Pierce, Halley; Wang, Zichen; Fernandez, Nicolas F; Birbrair, Alexander; Ma'ayan, Avi; Frenette, Paul S

    2017-03-01

    Arterioles and sinusoids of the bone marrow (BM) are accompanied by stromal cells that express nerve/glial antigen 2 (NG2) and leptin receptor (LepR), and constitute specialized niches that regulate quiescence and proliferation of haematopoietic stem cells (HSCs). However, how niche cells differentially regulate HSC functions remains unknown. Here, we show that the effects of cytokines regulating HSC functions are dependent on the producing cell sources. Deletion of chemokine C-X-C motif ligand 12 (Cxcl12) or stem cell factor (Scf) from all perivascular cells marked by nestin-GFP dramatically depleted BM HSCs. Selective Cxcl12 deletion from arteriolar NG2 + cells, but not from sinusoidal LepR + cells, caused HSC reductions and altered HSC localization in BM. By contrast, deletion of Scf in LepR + cells, but not NG2 + cells, led to reductions in BM HSC numbers. These results uncover distinct contributions of cytokines derived from perivascular cells in separate vascular niches to HSC maintenance.

  15. Transitional-2 B cells acquire regulatory function during tolerance induction and contribute to allograft survival.

    Science.gov (United States)

    Moreau, Aurélie; Blair, Paul A; Chai, Jian-Guo; Ratnasothy, Kulachelvy; Stolarczyk, Emilie; Alhabbab, Rowa; Rackham, Chloe L; Jones, Peter M; Smyth, Lesley; Elgueta, Raul; Howard, Jane K; Lechler, Robert I; Lombardi, Giovanna

    2015-03-01

    In humans, tolerance to renal transplants has been associated with alterations in B-cell gene transcription and maintenance of the numbers of circulating transitional B cells. Here, we use a mouse model of transplantation tolerance to investigate the contribution of B cells to allograft survival. We demonstrate that transfer of B cells from mice rendered tolerant to MHC class I mismatched skin grafts can prolong graft survival in a dose-dependent and antigen-specific manner to a degree similar to that afforded by graft-specific regulatory T (Treg) cells. Tolerance in this model was associated with an increase in transitional-2 (T2) B cells. Only T2 B cells from tolerized mice, not naïve T2 nor alloantigen experienced T2, were capable of prolonging skin allograft survival, and suppressing T-cell activation. Tolerized T2 B cells expressed lower levels of CD86, increased TIM-1, and demonstrated a preferential survival in vivo. Furthermore, we demonstrate a synergistic effect between tolerized B cells and graft-specific Treg cells. IL-10 production by T2 B cells did not contribute to tolerance, as shown by transfer of B cells from IL-10(-/-) mice. These results suggest that T2 B cells in tolerant patients may include a population of regulatory B cells that directly inhibit graft rejection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Math Anxiety--Contributing School and Individual Level Factors

    Science.gov (United States)

    Radišic, Jelena; Videnovic, Marina; Baucal, Aleksander

    2015-01-01

    PISA 2003 survey data indicate high levels of mathematics anxiety among students in Serbia. More than a half of Serbian students are concerned with whether they will have difficulties in a mathematics class or earn poor marks. At the same time, the achievement on the mathematical literacy scale is very poor. Building on control-value theory, the…

  17. CONTRIBUTION TO INDOOR OZONE LEVELS OF AN OZONE GENERATOR

    Science.gov (United States)

    This report gives results of a study of a commonly used commercially available ozone generator, undertaken to determine its impact on indoor ozone levels. xperiment were conducted in a typical mechanically ventilated office and in a test house. he generated ozone and the in-room ...

  18. Contribution of engineered nanomaterials physicochemical properties to mast cell degranulation

    Science.gov (United States)

    Johnson, Monica M.; Mendoza, Ryan; Raghavendra, Achyut J.; Podila, Ramakrishna; Brown, Jared M.

    2017-03-01

    The rapid development of engineered nanomaterials (ENMs) has grown dramatically in the last decade, with increased use in consumer products, industrial materials, and nanomedicines. However, due to increased manufacturing, there is concern that human and environmental exposures may lead to adverse immune outcomes. Mast cells, central to the innate immune response, are one of the earliest sensors of environmental insult and have been shown to play a role in ENM-mediated immune responses. Our laboratory previously determined that mast cells are activated via a non-FcɛRI mediated response following silver nanoparticle (Ag NP) exposure, which was dependent upon key physicochemical properties. Using bone marrow-derived mast cells (BMMCs), we tested the hypothesis that ENM physicochemical properties influence mast cell degranulation. Exposure to 13 physicochemically distinct ENMs caused a range of mast degranulation responses, with smaller sized Ag NPs (5 nm and 20 nm) causing the most dramatic response. Mast cell responses were dependent on ENMs physicochemical properties such as size, apparent surface area, and zeta potential. Surprisingly, minimal ENM cellular association by mast cells was not correlated with mast cell degranulation. This study suggests that a subset of ENMs may elicit an allergic response and contribute to the exacerbation of allergic diseases.

  19. CEA contribution to power plant operation with high burnup level

    International Nuclear Information System (INIS)

    1981-03-01

    High level burnup in PWR leads to investigate again the choices carried out in the field of fuel management. French CEA has studied the economic importance of reshuffling technique, cycle length, discharge burnup, and non-operation period between two cycles. Power plants operators wish to work with increased length cycles of 18 months instead of 12. That leads to control problems because the core reactivity cannot be controlled with the only soluble boron: moderator temperature coefficient must be negative. With such cycles, it is necessary to use burnable poisons and for economic reasons with a low penalty in end of cycle. CEA has studied the use of Gd 2 O 3 mixed with fuel or with inert element like Al 2 O 3 . Parametric studies of specific weights, efficacities relatively to the fuel burnup and the fuel enrichment have been carried out. Particular studies of 1 month cycles with Gd 2 O 3 have shown the possibility to control power distribution with a very low reactivity penalty in EOC. In the same time, in the 100 MW PWR-CAP, control reactivity has been made with large use of gadolinia in parallel with soluble boron for the two first cycles

  20. Nuclear Reprogramming in Mouse Primordial Germ Cells: Epigenetic Contribution

    Directory of Open Access Journals (Sweden)

    Massimo De Felici

    2011-01-01

    Full Text Available The unique capability of germ cells to give rise to a new organism, allowing the transmission of primary genetic information from generation to generation, depends on their epigenetic reprogramming ability and underlying genomic totipotency. Recent studies have shown that genome-wide epigenetic modifications, referred to as “epigenetic reprogramming”, occur during the development of the gamete precursors termed primordial germ cells (PGCs in the embryo. This reprogramming is likely to be critical for the germ line development itself and necessary to erase the parental imprinting and setting the base for totipotency intrinsic to this cell lineage. The status of genome acquired during reprogramming and the associated expression of key pluripotency genes render PGCs susceptible to transform into pluripotent stem cells. This may occur in vivo under still undefined condition, and it is likely at the origin of the formation of germ cell tumors. The phenomenon appears to be reproduced under partly defined in vitro culture conditions, when PGCs are transformed into embryonic germ (EG cells. In the present paper, I will try to summarize the contribution that epigenetic modifications give to nuclear reprogramming in mouse PGCs.

  1. Defective TFH Cell Function and Increased TFR Cells Contribute to Defective Antibody Production in Aging.

    Science.gov (United States)

    Sage, Peter T; Tan, Catherine L; Freeman, Gordon J; Haigis, Marcia; Sharpe, Arlene H

    2015-07-14

    Defective antibody production in aging is broadly attributed to immunosenescence. However, the precise immunological mechanisms remain unclear. Here, we demonstrate an increase in the ratio of inhibitory T follicular regulatory (TFR) cells to stimulatory T follicular helper (TFH) cells in aged mice. Aged TFH and TFR cells are phenotypically distinct from those in young mice, exhibiting increased programmed cell death protein-1 expression but decreased ICOS expression. Aged TFH cells exhibit defective antigen-specific responses, and programmed cell death protein-ligand 1 blockade can partially rescue TFH cell function. In contrast, young and aged TFR cells have similar suppressive capacity on a per-cell basis in vitro and in vivo. Together, these studies reveal mechanisms contributing to defective humoral immunity in aging: an increase in suppressive TFR cells combined with impaired function of aged TFH cells results in reduced T-cell-dependent antibody responses in aged mice. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. System level modeling and component level control of fuel cells

    Science.gov (United States)

    Xue, Xingjian

    This dissertation investigates the fuel cell systems and the related technologies in three aspects: (1) system-level dynamic modeling of both PEM fuel cell (PEMFC) and solid oxide fuel cell (SOFC); (2) condition monitoring scheme development of PEM fuel cell system using model-based statistical method; and (3) strategy and algorithm development of precision control with potential application in energy systems. The dissertation first presents a system level dynamic modeling strategy for PEM fuel cells. It is well known that water plays a critical role in PEM fuel cell operations. It makes the membrane function appropriately and improves the durability. The low temperature operating conditions, however, impose modeling difficulties in characterizing the liquid-vapor two phase change phenomenon, which becomes even more complex under dynamic operating conditions. This dissertation proposes an innovative method to characterize this phenomenon, and builds a comprehensive model for PEM fuel cell at the system level. The model features the complete characterization of multi-physics dynamic coupling effects with the inclusion of dynamic phase change. The model is validated using Ballard stack experimental result from open literature. The system behavior and the internal coupling effects are also investigated using this model under various operating conditions. Anode-supported tubular SOFC is also investigated in the dissertation. While the Nernst potential plays a central role in characterizing the electrochemical performance, the traditional Nernst equation may lead to incorrect analysis results under dynamic operating conditions due to the current reverse flow phenomenon. This dissertation presents a systematic study in this regard to incorporate a modified Nernst potential expression and the heat/mass transfer into the analysis. The model is used to investigate the limitations and optimal results of various operating conditions; it can also be utilized to perform the

  3. Doxorubicin-induced mitophagy contributes to drug resistance in cancer stem cells from HCT8 human colorectal cancer cells.

    Science.gov (United States)

    Yan, Chen; Luo, Lan; Guo, Chang-Ying; Goto, Shinji; Urata, Yoshishige; Shao, Jiang-Hua; Li, Tao-Sheng

    2017-03-01

    Cancer stem cells (CSCs) are known to be drug resistant. Mitophagy selectively degrades unnecessary or damaged mitochondria by autophagy during cellular stress. To investigate the potential role of mitophagy in drug resistance in CSCs, we purified CD133 + /CD44 + CSCs from HCT8 human colorectal cancer cells and then exposed to doxorubicin (DXR). Compared with parental cells, CSCs were more resistant to DXR treatment. Although DXR treatment enhanced autophagy levels in both cell types, the inhibition of autophagy by ATG7 silencing significantly increased the toxicity of DXR only in parental cells, not in CSCs. Interestingly, the level of mitochondrial superoxide was detected to be significantly lower in CSCs than in parental cells after DXR treatment. Furthermore, the mitophagy level and expression of BNIP3L, a mitophagy regulator, were significantly higher in CSCs than in parental cells after DXR treatment. Silencing BNIP3L significantly halted mitophagy and enhanced the sensitivity to DXR in CSCs. Our data suggested that mitophagy, but not non-selective autophagy, likely contributes to drug resistance in CSCs isolated from HCT8 cells. Further studies in other cancer cell lines will be needed to confirm our findings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. ABCF2, an Nrf2 target gene, contributes to cisplatin resistance in ovarian cancer cells.

    Science.gov (United States)

    Bao, Lingjie; Wu, Jianfa; Dodson, Matthew; Rojo de la Vega, Elisa Montserrat; Ning, Yan; Zhang, Zhenbo; Yao, Ming; Zhang, Donna D; Xu, Congjian; Yi, Xiaofang

    2017-06-01

    Previously, we have demonstrated that NRF2 plays a key role in mediating cisplatin resistance in ovarian cancer. To further explore the mechanism underlying NRF2-dependent cisplatin resistance, we stably overexpressed or knocked down NRF2 in parental and cisplatin-resistant human ovarian cancer cells, respectively. These two pairs of stable cell lines were then subjected to microarray analysis, where we identified 18 putative NRF2 target genes. Among these genes, ABCF2, a cytosolic member of the ABC superfamily of transporters, has previously been reported to contribute to chemoresistance in clear cell ovarian cancer. A detailed analysis on ABCF2 revealed a functional antioxidant response element (ARE) in its promoter region, establishing ABCF2 as an NRF2 target gene. Next, we investigated the contribution of ABCF2 in NRF2-mediated cisplatin resistance using our stable ovarian cancer cell lines. The NRF2-overexpressing cell line, containing high levels of ABCF2, was more resistant to cisplatin-induced apoptosis compared to its control cell line; whereas the NRF2 knockdown cell line with low levels of ABCF2, was more sensitive to cisplatin treatment than its control cell line. Furthermore, transient overexpression of ABCF2 in the parental cells decreased apoptosis and increased cell viability following cisplatin treatment. Conversely, knockdown of ABCF2 using specific siRNA notably increased apoptosis and decreased cell viability in cisplatin-resistant cells treated with cisplatin. This data indicate that the novel NRF2 target gene, ABCF2, plays a critical role in cisplatin resistance in ovarian cancer, and that targeting ABCF2 may be a new strategy to improve chemotherapeutic efficiency. © 2017 Wiley Periodicals, Inc.

  5. Elevated endothelin-1 (ET-1) levels may contribute to hypoadiponectinemia in childhood obesity.

    Science.gov (United States)

    Nacci, Carmela; Leo, Valentina; De Benedictis, Leonarda; Carratù, Maria Rosaria; Bartolomeo, Nicola; Altomare, Maria; Giordano, Paola; Faienza, Maria Felicia; Montagnani, Monica

    2013-04-01

    Pediatric obesity is associated with endothelial dysfunction and hypoadiponectinemia, but the relationship between these two conditions remains to be fully clarified. Whether enhanced release of endothelin-1 (ET-1) may directly impair adiponectin (Ad) production in obese children is not known. The aim of the study was to explore whether and how high circulating levels of ET-1 may contribute to impair Ad production, release, and vascular activity. Sixty children were included into obese (Ob; n = 30), overweight (OW; n = 11), and lean (n = 19) groups. Total and high-molecular-weight Ad, ET-1, vascular cell adhesion molecule-1, and von Willebrand factor levels were measured in serum samples. Adipocytes were stimulated with exogenous ET-1 or with sera from lean, OW, and Ob, and Ad production and release measured in the absence or in the presence of ETA (BQ-123) and ETB (BQ-788) receptor blockers, p42/44 MAPK inhibitor PD-98059, or c-Jun NH2-terminal protein kinase inhibitor SP-600125. Vasodilation to Ad was evaluated in rat isolated arteries in the absence or in the presence of BQ-123/788. Total and high-molecular-weight Ad was significantly decreased and ET-1 levels significantly increased in OW (P ET-1. Exposure of adipocytes to exogenous ET-1 or serum from OW and Ob significantly decreased Ad mRNA and protein levels (P ET-1 on Ad was reverted by BQ-123/788 or PD-98059 but not SP-600125. Ad-mediated vasodilation was further increased in arteries pretreated with BQ-123/788. ET-1-mediated inhibition of Ad synthesis via p42/44 MAPK signaling may provide a possible explanation for hypoadiponectinemia in pediatric obesity and contribute to the development of cardiovascular complications.

  6. Contribution of a non-β-cell source to β-cell mass during pregnancy.

    Directory of Open Access Journals (Sweden)

    Chiara Toselli

    Full Text Available β-cell mass in the pancreas increases significantly during pregnancy as an adaptation to maternal insulin resistance. Lineage tracing studies in rodents have presented conflicting evidence on the role of cell duplication in the formation of new β-cells during gestation, while recent human data suggest that new islets are a major contributor to increased β-cell mass in pregnancy. Here, we aim to: 1 determine whether a non-β-cell source contributes to the appearance of new β-cells during pregnancy and 2 investigate whether recapitulation of the embryonic developmental pathway involving high expression of neurogenin 3 (Ngn3 plays a role in the up-regulation of β-cell mass during pregnancy. Using a mouse β-cell lineage-tracing model, which labels insulin-producing β-cells with red fluorescent protein (RFP, we found that the percentage of labeled β-cells dropped from 97% prior to pregnancy to 87% at mid-pregnancy. This suggests contribution of a non-β-cell source to the increase in total β-cell numbers during pregnancy. In addition, we observed a population of hormone-negative, Ngn3-positive cells in islets of both non-pregnant and pregnant mice, and this population dropped from 12% of all islets cells in the non-pregnant mice to 5% by day 8 of pregnancy. Concomitantly, a decrease in expression of Ngn3 and changes in its upstream regulatory network (Sox9 and Hes-1 as well as downstream targets (NeuroD, Nkx2.2, Rfx6 and IA1 were also observed during pregnancy. Our results show that duplication of pre-existing β-cells is not the sole source of new β-cells during pregnancy and that Ngn3 may be involved in this process.

  7. Autophagy contributes to apoptosis in A20 and EL4 lymphoma cells treated with fluvastatin.

    Science.gov (United States)

    Qi, Xu-Feng; Kim, Dong-Heui; Lee, Kyu-Jae; Kim, Cheol-Su; Song, Soon-Bong; Cai, Dong-Qing; Kim, Soo-Ki

    2013-11-08

    Convincing evidence indicates that statins stimulate apoptotic cell death in several types of proliferating tumor cells in a cholesterol-lowering-independent manner. However, the relationship between apoptosis and autophagy in lymphoma cells exposed to statins remains unclear. The objective of this study was to elucidate the potential involvement of autophagy in fluvastatin-induced cell death of lymphoma cells. We found that fluvastatin treatment enhanced the activation of pro-apoptotic members such as caspase-3 and Bax, but suppressed the activation of anti-apoptotic molecule Bcl-2 in lymphoma cells including A20 and EL4 cells. The process was accompanied by increases in numbers of annexin V alone or annexin V/PI double positive cells. Furthermore, both autophagosomes and increases in levels of LC3-II were also observed in fluvastatin-treated lymphoma cells. However, apoptosis in fluvastatin-treated lymphoma cells could be blocked by the addition of 3-methyladenine (3-MA), the specific inhibitor of autophagy. Fluvastatin-induced activation of caspase-3, DNA fragmentation, and activation of LC3-II were blocked by metabolic products of the HMG-CoA reductase reaction, such as mevalonate, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). These results suggest that autophagy contributes to fluvastatin-induced apoptosis in lymphoma cells, and that these regulating processes require inhibition of metabolic products of the HMG-CoA reductase reaction including mevalonate, FPP and GGPP.

  8. Fuel cell serves as oxygen level detector

    Science.gov (United States)

    1965-01-01

    Monitoring the oxygen level in the air is accomplished by a fuel cell detector whose voltage output is proportional to the partial pressure of oxygen in the sampled gas. The relationship between output voltage and partial pressure of oxygen can be calibrated.

  9. Leptin Levels Are Higher in Whole Compared to Skim Human Milk, Supporting a Cellular Contribution.

    Science.gov (United States)

    Kugananthan, Sambavi; Lai, Ching Tat; Gridneva, Zoya; Mark, Peter J; Geddes, Donna T; Kakulas, Foteini

    2016-11-08

    Human milk (HM) contains a plethora of metabolic hormones, including leptin, which is thought to participate in the regulation of the appetite of the developing infant. Leptin in HM is derived from a combination of de novo mammary synthesis and transfer from the maternal serum. Moreover, leptin is partially lipophilic and is also present in HM cells. However, leptin has predominately been measured in skim HM, which contains neither fat nor cells. We optimised an enzyme-linked immunosorbent assay for leptin measurement in both whole and skim HM and compared leptin levels between both HM preparations collected from 61 lactating mothers. Whole HM leptin ranged from 0.2 to 1.47 ng/mL, whilst skim HM leptin ranged from 0.19 to 0.9 ng/mL. Whole HM contained, on average, 0.24 ± 0.01 ng/mL more leptin than skim HM ( p < 0.0001, n = 287). No association was found between whole HM leptin and fat content ( p = 0.17, n = 287), supporting a cellular contribution to HM leptin. No difference was found between pre- and post-feed samples (whole HM: p = 0.29, skim HM: p = 0.89). These findings highlight the importance of optimising HM leptin measurement and assaying it in whole HM to accurately examine the amount of leptin received by the infant during breastfeeding.

  10. Leptin Levels Are Higher in Whole Compared to Skim Human Milk, Supporting a Cellular Contribution

    Directory of Open Access Journals (Sweden)

    Sambavi Kugananthan

    2016-11-01

    Full Text Available Human milk (HM contains a plethora of metabolic hormones, including leptin, which is thought to participate in the regulation of the appetite of the developing infant. Leptin in HM is derived from a combination of de novo mammary synthesis and transfer from the maternal serum. Moreover, leptin is partially lipophilic and is also present in HM cells. However, leptin has predominately been measured in skim HM, which contains neither fat nor cells. We optimised an enzyme-linked immunosorbent assay for leptin measurement in both whole and skim HM and compared leptin levels between both HM preparations collected from 61 lactating mothers. Whole HM leptin ranged from 0.2 to 1.47 ng/mL, whilst skim HM leptin ranged from 0.19 to 0.9 ng/mL. Whole HM contained, on average, 0.24 ± 0.01 ng/mL more leptin than skim HM (p < 0.0001, n = 287. No association was found between whole HM leptin and fat content (p = 0.17, n = 287, supporting a cellular contribution to HM leptin. No difference was found between pre- and post-feed samples (whole HM: p = 0.29, skim HM: p = 0.89. These findings highlight the importance of optimising HM leptin measurement and assaying it in whole HM to accurately examine the amount of leptin received by the infant during breastfeeding.

  11. Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level

    OpenAIRE

    Derbyshire, Paul; McCann, Maureen C; Roberts, Keith

    2007-01-01

    Abstract Background Cell elongation is mainly limited by the extensibility of the cell wall. Dicotyledonous primary (growing) cell walls contain cellulose, xyloglucan, pectin and proteins, but little is known about how each polymer class contributes to the cell wall mechanical properties that control extensibility. Results We present evidence that the degree of pectin methyl-esterification (DE%) limits cell growth, and that a minimum level of about 60% DE is required for normal cell elongatio...

  12. Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells

    DEFF Research Database (Denmark)

    Zub, Kamila Anna; Sousa, Mirta Mittelstedt Leal de; Sarno, Antonio

    2015-01-01

    of the AKR1C family involved in prostaglandin synthesis contribute to the resistant phenotype. Finally, selected metabolic and oxidative stress response enzymes were targeted by inhibitors, several of which displayed a selective cytotoxicity against the melphalan-resistant cells and should be further...... and pathways not previously associated with melphalan resistance in multiple myeloma cells, including a metabolic switch conforming to the Warburg effect (aerobic glycolysis), and an elevated oxidative stress response mediated by VEGF/IL8-signaling. In addition, up-regulated aldo-keto reductase levels...

  13. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chiaro, Christopher, E-mail: cchiaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Lazarova, Darina L., E-mail: dlazarova@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that

  14. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    International Nuclear Information System (INIS)

    Chiaro, Christopher; Lazarova, Darina L.; Bordonaro, Michael

    2012-01-01

    Highlights: ► We investigate mechanisms responsible for butyrate resistance in colon cancer cells. ► Tcf3 modulates butyrate’s effects on Wnt activity and cell growth in resistant cells. ► Tcf3 modulation of butyrate’s effects differ by cell context. ► Cell cycle factors are overexpressed in the resistant cells. ► Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G 1 to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that prevent or reverse butyrate resistance.

  15. Contribution of Nanostructures in High Performance Solar Cells

    Science.gov (United States)

    Aly, Abouelmaaty M.; Ebrahim, Essamudin A.; Sweelem, Emad

    2017-11-01

    Nanotechnology has great contributions in various fields, especially in solar energy conversion through solar cells (SCs). Nanostructured SCs can provide high performance with lower fabrication costs. The transition from fossil fuel energy to renewable sustainable energy represents a major technological challenge for the world. In the last years, the industry of SCs has grown rapidly due to strong attention in renewable energy in order to handle the problem of global climate change that is now believed to occur due to use of the fossil fuels. Cost is an influential factor in the eventual success of any solar technology, since inexpensive SCs are needed to produce electricity, especially for rural areas and for third world countries. Therefore, new developments in nanotechnology may open the door for the production of inexpensive and more efficient SCs by reducing the manufacturing costs of SCs. Utilizing nanotechnology in cheaper SCs will help maintain the environment. This article covers a review of the progress that has been made to-date to enhance efficiencies of various nanostructures used in SCs, including utilizations of all the wavelengths present in of the solar spectrum.

  16. Contribution of Mouse Embryonic Stem Cells and Induced Pluripotent Stem Cells to Chimeras through Injection and Coculture of Embryos

    OpenAIRE

    Guo, Jitong; Wu, Baojiang; Li, Shuyu; Bao, Siqin; Zhao, Lixia; Hu, Shuxiang; Sun, Wei; Su, Jie; Dai, Yanfeng; Li, Xihe

    2014-01-01

    Blastocyst injection and morula aggregation are commonly used to evaluate stem cell pluripotency based on chimeric contribution of the stem cells. To assess the protocols for generating chimeras from stem cells, 8-cell mouse embryos were either injected or cocultured with mouse embryonic stem cells and induced pluripotent stem cells, respectively. Although a significantly higher chimera rate resulted from blastocyst injection, the highest germline contribution resulted from injection of 8-cel...

  17. Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture.

    Science.gov (United States)

    Kim, Euiseok J; Battiste, James; Nakagawa, Yasushi; Johnson, Jane E

    2008-08-01

    Ascl1 (previously Mash1) is a bHLH transcription factor essential for neuronal differentiation and specification in the nervous system. Although it has been studied for its role in several neural lineages, the full complement of lineages arising from Ascl1 progenitor cells remains unknown. Using an inducible Cre-flox genetic fate-mapping strategy, Ascl1 lineages were determined throughout the brain. Ascl1 is present in proliferating progenitor cells but these cells are actively differentiating as evidenced by rapid migration out of germinal zones. Ascl1 lineage cells contribute to distinct cell types in each major brain division: the forebrain including the cerebral cortex, olfactory bulb, hippocampus, striatum, hypothalamus, and thalamic nuclei, the midbrain including superior and inferior colliculi, and the hindbrain including Purkinje and deep cerebellar nuclei cells and cells in the trigeminal sensory system. Ascl1 progenitor cells at early stages in each CNS region preferentially become neurons, and at late stages they become oligodendrocytes. In conclusion, Ascl1-expressing progenitor cells in the brain give rise to multiple, but not all, neuronal subtypes and oligodendrocytes depending on the temporal and spatial context, consistent with a broad role in neural differentiation with some subtype specification.

  18. Fate of water pumped from underground and contributions to sea-level rise

    Science.gov (United States)

    Wada, Yoshihide; Lo, Min-Hui; Yeh, Pat J.-F.; Reager, John T.; Famiglietti, James S.; Wu, Ren-Jie; Tseng, Yu-Heng

    2016-08-01

    The contributions from terrestrial water sources to sea-level rise, other than ice caps and glaciers, are highly uncertain and heavily debated. Recent assessments indicate that groundwater depletion (GWD) may become the most important positive terrestrial contribution over the next 50 years, probably equal in magnitude to the current contributions from glaciers and ice caps. However, the existing estimates assume that nearly 100% of groundwater extracted eventually ends up in the oceans. Owing to limited knowledge of the pathways and mechanisms governing the ultimate fate of pumped groundwater, the relative fraction of global GWD that contributes to sea-level rise remains unknown. Here, using a coupled climate-hydrological model simulation, we show that only 80% of GWD ends up in the ocean. An increase in runoff to the ocean accounts for roughly two-thirds, whereas the remainder results from the enhanced net flux of precipitation minus evaporation over the ocean, due to increased atmospheric vapour transport from the land to the ocean. The contribution of GWD to global sea-level rise amounted to 0.02 (+/-0.004) mm yr-1 in 1900 and increased to 0.27 (+/-0.04) mm yr-1 in 2000. This indicates that existing studies have substantially overestimated the contribution of GWD to global sea-level rise by a cumulative amount of at least 10 mm during the twentieth century and early twenty-first century. With other terrestrial water contributions included, we estimate the net terrestrial water contribution during the period 1993-2010 to be +0.12 (+/-0.04) mm yr-1, suggesting that the net terrestrial water contribution reported in the IPCC Fifth Assessment Report report is probably overestimated by a factor of three.

  19. Relative Contributions of B Cells and Dendritic Cells from Lupus-Prone Mice to CD4+ T Cell Polarization.

    Science.gov (United States)

    Choi, Seung-Chul; Xu, Zhiwei; Li, Wei; Yang, Hong; Roopenian, Derry C; Morse, Herbert C; Morel, Laurence

    2018-05-01

    Mouse models of lupus have shown that multiple immune cell types contribute to autoimmune disease. This study sought to investigate the involvement of B cells and dendritic cells in supporting the expansion of inflammatory and regulatory CD4 + T cells that are critical for lupus pathogenesis. We used lupus-prone B6.NZM2410.Sle1.Sle2.Sle3 (TC) and congenic C57BL/6J (B6) control mice to investigate how the genetic predisposition of these two cell types controls the activity of normal B6 T cells. Using an allogeneic in vitro assay, we showed that TC B1-a and conventional B cells expanded Th17 cells significantly more than their B6 counterparts. This expansion was dependent on CD86 and IL-6 expression and mapped to the Sle1 lupus-susceptibility locus. In vivo, TC B cells promoted greater differentiation of CD4 + T cells into Th1 and follicular helper T cells than did B6 B cells, but they limited the expansion of Foxp3 regulatory CD4 + T cells to a greater extent than did B6 B cells. Finally, when normal B6 CD4 + T cells were introduced into Rag1 -/- mice, TC myeloid/stromal cells caused their heightened activation, decreased Foxp3 regulatory CD4 + T cell differentiation, and increased renal infiltration of Th1 and Th17 cells in comparison with B6 myeloid/stromal cells. The results show that B cells from lupus mice amplify inflammatory CD4 + T cells in a nonredundant manner with myeloid/stromal cells. Copyright © 2018 by The American Association of Immunologists, Inc.

  20. Epidermal stem cells: location, potential and contribution to cancer.

    Science.gov (United States)

    Ambler, C A; Määttä, A

    2009-01-01

    Epidermal stem cells have been classically characterized as slow-cycling, long-lived cells that reside in discrete niches in the skin. Gene expression studies of niche-resident cells have revealed a number of stem cell markers and regulators, including the Wnt/beta-catenin, Notch, p63, c-Myc and Hedgehog pathways. A new study challenges the traditional developmental paradigm of slow-cycling stem cells and rapid-cycling transit amplifying cells in some epidermal regions, and there is mounting evidence to suggest that multi-lineage epidermal progenitors can be isolated from highly proliferative, non-niche regions. Whether there is a unique microenvironment surrounding these progenitors remains to be determined. Interestingly, cancer stem cells derived from epidermal tumours exist independent of the classic skin stem cell niche, yet also have stem cell properties, including multi-lineage differentiation. This review summarizes recent studies identifying the location and regulators of mouse and human epidermal stem cells and highlights the strategies used to identify cancer stem cells, including expression of normal epidermal stem cell markers, expression of cancer stem cell markers identified in other epidermal tumours and characterization of side-population tumour cells.

  1. Thermosteric contribution of warming oceans to the global sea level variations

    OpenAIRE

    Bâki Iz H.

    2016-01-01

    Thermosteric contribution of warming oceans to the global sea level variations during the last century was evaluated at globally distributed 27 tide gauge stations with records over 80 years. The assessment was made using a recently proposed lagged model inclusive of a sea level trend, long and decadal periodicities, and lagged sea surface temperature measurements. The new model solutions revealed that almost all the long period periodic sea level changes experienced a...

  2. The mechanisms involved at the cell level

    International Nuclear Information System (INIS)

    Leblanc, G.; Pourcher, Th.; Perron, B.; Guillain, F.; Quemeneur, E.; Fritsch, P.

    2003-01-01

    The mechanisms responsible at the cell level for inducing toxic reactions after contamination are as yet only imperfectly known. Work still needs to be done for both contaminants that have a biological role, such as iodine, and those that do not, such as cadmium, uranium and plutonium. In particular, these mechanisms bring into play, in biological membranes, carriers which are the physiological partners responsible for material exchange with the environment or inside the body. As they lack absolute selectivity, these carriers, which are involved in the assimilation and accumulation of vital mineral elements, also have the ability to transport toxic elements and isotopes. (authors)

  3. Evolution of global contribution in multi-level threshold public goods games with insurance compensation

    Science.gov (United States)

    Du, Jinming; Tang, Lixin

    2018-01-01

    Understanding voluntary contribution in threshold public goods games has important practical implications. To improve contributions and provision frequency, free-rider problem and assurance problem should be solved. Insurance could play a significant, but largely unrecognized, role in facilitating a contribution to provision of public goods through providing insurance compensation against the losses. In this paper, we study how insurance compensation mechanism affects individuals’ decision-making under risk environments. We propose a multi-level threshold public goods game model where two kinds of public goods games (local and global) are considered. Particularly, the global public goods game involves a threshold, which is related to the safety of all the players. We theoretically probe the evolution of contributions of different levels and free-riders, and focus on the influence of the insurance on the global contribution. We explore, in both the cases, the scenarios that only global contributors could buy insurance and all the players could. It is found that with greater insurance compensation, especially under high collective risks, players are more likely to contribute globally when only global contributors are insured. On the other hand, global contribution could be promoted if a premium discount is given to global contributors when everyone buys insurance.

  4. Vinculin contributes to Cell Invasion by Regulating Contractile Activation

    Science.gov (United States)

    Mierke, Claudia Tanja

    2008-07-01

    Vinculin is a component of the focal adhesion complex and is described as a mechano-coupling protein connecting the integrin receptor and the actin cytoskeleton. Vinculin knock-out (k.o.) cells (vin-/-) displayed increased migration on a 2-D collagen- or fibronectin-coated substrate compared to wildtype cells, but the role of vinculin in cell migration through a 3-D connective tissue is unknown. We determined the invasiveness of established tumor cell lines using a 3-D collagen invasion assay. Gene expression analysis of 4 invasive and 4 non-invasive tumor cell lines revealed that vinculin expression was significantly increased in invasive tumor cell lines. To analyze the mechanisms by which vinculin increased cell invasion in a 3-D gel, we studied mouse embryonic fibroblasts wildtype and vin-/- cells. Wildtype cells were 3-fold more invasive compared vin-/- cells. We hypothesized that the ability to generate sufficient traction forces is a prerequisite for tumor cell migration in a 3-D connective tissue matrix. Using traction microscopy, we found that wildtype exerted 3-fold higher tractions on fibronectin-coated polyacrylamide gels compared to vin-/- cells. These results show that vinculin controls two fundamental functions that lead to opposite effects on cell migration in a 2-D vs. a 3-D environment: On the one hand, vinculin stabilizes the focal adhesions (mechano-coupling function) and thereby reduces motility in 2-D. On the other hand, vinculin is also a potent activator of traction generation (mechano-regulating function) that is important for cell invasion in a 3-D environment.

  5. Autophagy contributes to resistance of tumor cells to ionizing radiation.

    Science.gov (United States)

    Chaachouay, Hassan; Ohneseit, Petra; Toulany, Mahmoud; Kehlbach, Rainer; Multhoff, Gabriele; Rodemann, H Peter

    2011-06-01

    Autophagy signaling is a novel important target to improve anticancer therapy. To study the role of autophagy on resistance of tumor cells to ionizing radiation (IR), breast cancer cell lines differing in their intrinsic radiosensitivity were used. Breast cancer cell lines MDA-MB-231 and HBL-100 were examined with respect to clonogenic cell survival and induction of autophagy after radiation exposure and pharmacological interference of the autophagic process. As marker for autophagy the appearance of LC3-I and LC3-II proteins was analyzed by SDS-PAGE and Western blotting. Formation of autophagic vacuoles was monitored by immunofluorescence staining of LC3. LC3-I and LC3-II formation differs markedly in radioresistant MDA-MB-231 versus radiosensitive HBL-100 cells. Western blot analyses of LC3-II/LC3-I ratio indicated marked induction of autophagy by IR in radioresistant MDA-MB-231 cells, but not in radiosensitive HBL-100 cells. Indirect immunofluorescence analysis of LC3-II positive vacuoles confirmed this differential effect. Pre-treatment with 3-methyladenine (3-MA) antagonized IR-induced autophagy. Likewise, pretreatment of radioresistant MDA-231 cells with autophagy inhibitors 3-MA or chloroquine (CQ) significantly reduced clonogenic survival of irradiated cells. Our data clearly indicate that radioresistant breast tumor cells show a strong post-irradiation induction of autophagy, which thus serves as a protective and pro-survival mechanism in radioresistance. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Epigenetic silencing of MAL, a putative tumor suppressor gene, can contribute to human epithelium cell carcinoma

    Directory of Open Access Journals (Sweden)

    Zhang Jun

    2010-11-01

    Full Text Available Abstract Background To identify new and useful candidate biomarkers in head and neck squamous cell carcinoma (HNSCC, we performed a genome-wide survey and found that Myelin and lymphocyte-associated protein (MAL was a gene that was markedly down-regulated in HNSCC. Hence, we investigated the mechanism of MAL silencing and the effects of MAL on the proliferation, invasion, and apoptotic potential in HNSCC. Results MAL was significantly down-regulated in 91.7% of HNSCC specimens at the mRNA level as compared with adjacent normal tissues (P = 0.0004. Moreover, the relative transcript levels of the MAL gene were remarkably decreased by five-fold in nine HNSCC cell lines as compared with normal head and neck epithelium cells. MAL gene expression was restored in 44%, 67%, and 89% in HNSCC cell lines treated with TSA, 5-Aza-dC, and TSA plus 5-Aza-dC, respectively. Furthermore, bisulfate-treated DNA sequencing demonstrated that the two CpG islands (that is, M1 and M2 located in MAL promoter region were completely methylated in the HNSCC cell lines (CpG methylated ratio was more than 90%, and only one CpG island (that is, M1 was partially methylated in HNSCC tissues (CpG methylated ratio between 20% and 90%. A significant reduction in cell proliferation and a change in the cell cycle profile were also observed in MAL transfectants. Matrigel assay demonstrated that the invasiveness of HNSCC cells significantly decreased. A significant increase in the population of apoptotic cells was observed in MAL transfected cells. The exogenous expression of the MAL gene suppressed malignant phenotypes, while the cell death induced by MAL gene transfer was a result of apoptosis as demonstrated by the induction of cleavage of the poly (that is, ADP-ribose polymerase. Additionally, tumor growth was suppressed in cells expressing MAL as compared with cells not expressing MAL. Conclusion Our data suggest that the epigenetic inactivation of MAL, as a candidate tumor

  7. Total Water Level Fun Facts: The Relative Contribution of Extreme Total Water Levels Along the US West Coast

    Science.gov (United States)

    Serafin, K.; Ruggiero, P.; Stockdon, H. F.

    2016-02-01

    In the fall of 2014, parts of the US West Coast endured some of the highest monthly mean sea level anomalies on record, likely due to the presence of "the blob" (Bond et al., 2015), an anomalously warm water mass in the NE Pacific. However, despite the significantly above average water levels, the coastline experienced only marginal coastal flooding and erosion hazards because the ensuing winter lacked significant storms, underscoring the fact that extreme total water levels (TWLs) are compound events. To better understand how several individual processes combine to cause devastating coastal hazards, we investigate the relative contribution that each component (waves, tides, and non-tidal residuals) has on extreme TWLs on sandy beaches. Water level records along the US West Coast are decomposed into mean sea level, astronomical tide, and non-tidal residuals (NTRs). The NTR is further split into an intra-annual seasonal signal, monthly mean sea level anomalies (inter-annual variability), and meteorological surge. TWL time series are then generated by combining water levels with wave runup, computed using wave data and beach morphology. We use this data-driven, structural function approach to investigate the spatial variability of the relative contribution of each component to the maximum TWL event on record. We also use a probabilistic, full simulation TWL model (Serafin and Ruggiero, 2014) to generate multiple, synthetic TWL records, to explore the relative contribution of each component to extreme TWL return levels. We assess the sensitivity to local beach morphology by computing TWLs for a range of observed beach slopes. Extreme TWLs are higher in Oregon and Washington than in California. Wave runup typically comprises > 50% of the TWL signal, while NTRs often compose < 5%, illustrating the importance wave climate has on the potential for extreme TWLs. While waves are typically larger in the North, California experiences greater contributions to extreme TWLs from

  8. Cystic fibrosis transmembrane conductance regulator contributes to reacidification of alkalinized lysosomes in RPE cells.

    Science.gov (United States)

    Liu, Ji; Lu, Wennan; Guha, Sonia; Baltazar, Gabriel C; Coffey, Erin E; Laties, Alan M; Rubenstein, Ronald C; Reenstra, William W; Mitchell, Claire H

    2012-07-15

    The role of the cystic fibrosis transmembrane conductance regulator (CFTR) in lysosomal acidification has been difficult to determine. We demonstrate here that CFTR contributes more to the reacidification of lysosomes from an elevated pH than to baseline pH maintenance. Lysosomal alkalinization is increasingly recognized as a factor in diseases of accumulation, and we previously showed that cAMP reacidified alkalinized lysosomes in retinal pigmented epithelial (RPE) cells. As the influx of anions to electrically balance proton accumulation may enhance lysosomal acidification, the contribution of the cAMP-activated anion channel CFTR to lysosomal reacidification was probed. The antagonist CFTR(inh)-172 had little effect on baseline levels of lysosomal pH in cultured human RPE cells but substantially reduced the reacidification of compromised lysosomes by cAMP. Likewise, CFTR activators had a bigger impact on cells whose lysosomes had been alkalinized. Knockdown of CFTR with small interfering RNA had a larger effect on alkalinized lysosomes than on baseline levels. Inhibition of CFTR in isolated lysosomes altered pH. While CFTR and Lamp1 were colocalized, treatment with cAMP did not increase targeting of CFTR to the lysosome. The inhibition of CFTR slowed lysosomal degradation of photoreceptor outer segments while activation of CFTR enhanced their clearance from compromised lysosomes. Activation of CFTR acidified RPE lysosomes from the ABCA4(-/-) mouse model of recessive Stargardt's disease, whose lysosomes are considerably alkalinized. In summary, CFTR contributes more to reducing lysosomal pH from alkalinized levels than to maintaining baseline pH. Treatment to activate CFTR may thus be of benefit in disorders of accumulation associated with lysosomal alkalinization.

  9. Recent Changes in Land Water Storage and Its Contribution to Sea Level Variations

    Science.gov (United States)

    Wada, Yoshihide; Reager, John T.; Chao, Benjamin F.; Wang, Jida; Lo, Min-Hui; Song, Chunqiao; Li, Yuwen; Gardner, Alex S.

    2016-01-01

    Sea level rise is generally attributed to increased ocean heat content and increased rates glacier and ice melt. However, human transformations of Earth's surface have impacted water exchange between land, atmosphere, and ocean, ultimately affecting global sea level variations. Impoundment of water in reservoirs and artificial lakes has reduced the outflow of water to the sea, while river runoff has increased due to groundwater mining, wetland and endorheic lake storage losses, and deforestation. In addition, climate-driven changes in land water stores can have a large impact on global sea level variations over decadal timescales. Here, we review each component of negative and positive land water contribution separately in order to highlight and understand recent changes in land water contribution to sea level variations.

  10. A contribution of glutathione to interphase death of dividing cells

    International Nuclear Information System (INIS)

    Rybina, V.V.; Korystov, Yu.N.; Degtyareva, O.V.; Dobrovinskaya, O.R.; Ehjdus, L.Kh.

    1988-01-01

    A study was made of a change in the content of reduced glutathionine (GSH) in Ehrlich ascites tumor (EAT) cells after irradiation with doses evoking their interphase death (ID). GSH content was determined in a suspension of EAT cells fixed by hot ethanol. The postirradiation decrease in the GSH content of the suspension was due to its oxidation by hydrogen peroxide resulting from radiochemical reactions after releasing thereof from cells upon fixation. In the absence of an irradiated medium no changes occurred in the GSH content of EAT cells. It is concluded that ID of EAT cells is not associated with the radiation-induced decrease in the content of GSH, an endogenous antioxidant

  11. Contribution of bacterial cell nitrogen to soil humic fractions

    International Nuclear Information System (INIS)

    Knowles, R.; Barro, L.

    1981-01-01

    Living cells of Serratia marcescens, uniformly labelled with 15 N, were added to samples of maple (Acer saccharum) and black spruce (Picea mariana) forest soils. After different periods of incubation from zero time to 100 days, the soils were subjected to alkali-acid and phenol extraction to provide humic acid, fulvic acid, humin and 'humoprotein' fractions. Significant amounts of the cell nitrogen were recovered in the humic and fulvic acids immediately after addition. After incubation, less cell nitrogen appeared in the humic acid and more in the fulvic acid. The amount of cell nitrogen recovered in the humin fraction increased with incubation. Roughly 5 to 10 per cent of the added cell nitrogen was found as amino acid nitrogen from humoprotein in a phenol extract of the humic acid. The data are consistent with the occurrence of co-precipitation of biologically labile biomass nitrogen compounds with humic polymers during the alkaline extraction procedure involved in the humic-fulvic fractionation. (orig.)

  12. Endotoxin levels and contribution factors of endotoxins in resident, school, and office environments - A review

    OpenAIRE

    Salonen, Heidi; Duchaine, Caroline; Letourneau, Valerie; Mazaheri, Mandana; Laitinen, Sirpa; Clifford, Sam; Mikkola, Raimo; Lappalainen, Sanna; Reijula, Kari; Morawska, Lidia

    2016-01-01

    As endotoxin exposure has known effects on human health, it is important to know the generally existing levels of endotoxins as well as their contributing factors. This work reviews current knowledge on the endotoxin loads in settled floor dust, concentrations of endotoxins in indoor air, and different environmental factors potentially affecting endotoxin levels. The literature review consists of peer-reviewed manuscripts located using Google and PubMed, with search terms based on individual ...

  13. Endothelial Progenitor Cell Dysfunction in Myelodysplastic Syndromes: Possible Contribution of a Defective Vascular Niche to Myelodysplasia

    Directory of Open Access Journals (Sweden)

    Luciana Teofili

    2015-05-01

    Full Text Available We set a model to replicate the vascular bone marrow niche by using endothelial colony forming cells (ECFCs, and we used it to explore the vascular niche function in patients with low-risk myelodysplastic syndromes (MDS. Overall, we investigated 56 patients and we observed higher levels of ECFCs in MDS than in healthy controls; moreover, MDS ECFCs were found variably hypermethylated for p15INK4b DAPK1, CDH1, or SOCS1. MDS ECFCs exhibited a marked adhesive capacity to normal mononuclear cells. When normal CD34+ cells were co-cultured with MDS ECFCs, they generated significant lower amounts of CD11b+ and CD41+ cells than in co-culture with normal ECFCs. At gene expression profile, several genes involved in cell adhesion were upregulated in MDS ECFCs, while several members of the Wingless and int (Wnt pathways were underexpressed. Furthermore, at miRNA expression profile, MDS ECFCs hypo-expressed various miRNAs involved in Wnt pathway regulation. The addition of Wnt3A reduced the expression of intercellular cell adhesion molecule-1 on MDS ECFCs and restored the defective expression of markers of differentiation. Overall, our data demonstrate that in low-risk MDS, ECFCs exhibit various primary abnormalities, including putative MDS signatures, and suggest the possible contribution of the vascular niche dysfunction to myelodysplasia.

  14. Deciphering the contribution of human meningothelial cells to the inflammatory and antimicrobial response at the meninges.

    Science.gov (United States)

    Royer, Pierre-Joseph; Rogers, Andrew J; Wooldridge, Karl G; Tighe, Patrick; Mahdavi, Jafar; Rittig, Michael G; Ala'Aldeen, Dlawer

    2013-11-01

    We have investigated the response of primary human meningothelial cells to Neisseria meningitidis. Through a transcriptome analysis, we provide a comprehensive examination of the response of meningothelial cells to bacterial infection. A wide range of chemokines are elicited which act to attract and activate the main players of innate and adaptive immunity. We showed that meningothelial cells expressed a high level of Toll-like receptor 4 (TLR4), and, using a gene silencing strategy, we demonstrated the contribution of this pathogen recognition receptor in meningothelial cell activation. Secretion of interleukin-6 (IL-6), CXCL10, and CCL5 was almost exclusively TLR4 dependent and relied on MyD88 and TRIF adaptor cooperation. In contrast, IL-8 induction was independent of the presence of TLR4, MyD88, and TRIF. Transcription factors NF-κB p65, p38 mitogen-activated protein kinase (MAPK), Jun N-terminal protein kinase (JNK1), IRF3, and IRF7 were activated after contact with bacteria. Interestingly, the protein kinase IRAK4 was found to play a minor role in the meningothelial cell response to Neisseria infection. Our work highlights the role of meningothelial cells in the development of an immune response and inflammation in the central nervous system (CNS) in response to meningococcal infection. It also sheds light on the complexity of intracellular signaling after TLR triggering.

  15. Past and future contribution of global groundwater depletion to sea-level rise

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; Sperna Weiland, F.C.; Chao, B.; Wu, Y.-H.; Bierkens, M.F.P.

    2012-01-01

    Recent studies suggest the increasing contribution of groundwater depletion to global sea-level rise. Groundwater depletion has more than doubled during the last decades, primarily due to increase in water demand, while the increase in water impoundments behind dams has been tapering off since

  16. Contribution of glacier melt to sea-level rise since AD 1865: a regionally differentiated calculation

    NARCIS (Netherlands)

    Zuo, Z.; Oerlemans, J.

    1997-01-01

    The contribution of glacier melt, including the Greenland ice-sheet, to sea-level change since AD 1865 is estimated on the basis of modelled sensitivity of glacier mass balance to climate change and historical temperature data. Calculations are done in a regionally differentiated manner to overcome

  17. Autophagic components contribute to hypersensitive cell death in Arabidopsis

    DEFF Research Database (Denmark)

    Hofius, Daniel; Schultz-Larsen, Torsten; Joensen, Jan

    2009-01-01

    Autophagy has been implicated as a prosurvival mechanism to restrict programmed cell death (PCD) associated with the pathogen-triggered hypersensitive response (HR) during plant innate immunity. This model is based on the observation that HR lesions spread in plants with reduced autophagy gene...... expression. Here, we examined receptor-mediated HR PCD responses in autophagy-deficient Arabidopsis knockout mutants (atg), and show that infection-induced lesions are contained in atg mutants. We also provide evidence that HR cell death initiated via Toll/Interleukin-1 (TIR)-type immune receptors through...... the defense regulator EDS1 is suppressed in atg mutants. Furthermore, we demonstrate that PCD triggered by coiled-coil (CC)-type immune receptors via NDR1 is either autophagy-independent or engages autophagic components with cathepsins and other unidentified cell death mediators. Thus, autophagic cell death...

  18. Updating the results of glacier contribution to the sea level change

    Science.gov (United States)

    Dyurgerov, Mark B.; Abdalati, Waleed Dr. (Technical Monitor)

    2005-01-01

    I have completed an update of global glacier volume change. All data of glacier annual mass balances, surface area over the period 1945/46 till 2004, outside the Greenland and Antarctic ice sheets were included in this update. As the result global glacier volume change have been calculated, also in terms of glacier contribution to sea level change. These results were sent to Working Group 1 and 2 of IPCC-4 as the basis for modeling of sea level towards the end of 2100. In this study I have concentrated on studying glacier systems of different scales, from primary (e.g. Devon ice cap) to regional (e.g. Canadian Arctic), continental scale (e,g., entire Arctic), and global (e.g., change in glacier volume and contribution to sea level rise).

  19. Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework.

    Science.gov (United States)

    Zammit-Mangion, Andrew; Rougier, Jonathan; Bamber, Jonathan; Schön, Nana

    2014-06-01

    Determining the Antarctic contribution to sea-level rise from observational data is a complex problem. The number of physical processes involved (such as ice dynamics and surface climate) exceeds the number of observables, some of which have very poor spatial definition. This has led, in general, to solutions that utilise strong prior assumptions or physically based deterministic models to simplify the problem. Here, we present a new approach for estimating the Antarctic contribution, which only incorporates descriptive aspects of the physically based models in the analysis and in a statistical manner. By combining physical insights with modern spatial statistical modelling techniques, we are able to provide probability distributions on all processes deemed to play a role in both the observed data and the contribution to sea-level rise. Specifically, we use stochastic partial differential equations and their relation to geostatistical fields to capture our physical understanding and employ a Gaussian Markov random field approach for efficient computation. The method, an instantiation of Bayesian hierarchical modelling, naturally incorporates uncertainty in order to reveal credible intervals on all estimated quantities. The estimated sea-level rise contribution using this approach corroborates those found using a statistically independent method. © 2013 The Authors. Environmetrics Published by John Wiley & Sons, Ltd.

  20. Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework†

    Science.gov (United States)

    Zammit-Mangion, Andrew; Rougier, Jonathan; Bamber, Jonathan; Schön, Nana

    2014-01-01

    Determining the Antarctic contribution to sea-level rise from observational data is a complex problem. The number of physical processes involved (such as ice dynamics and surface climate) exceeds the number of observables, some of which have very poor spatial definition. This has led, in general, to solutions that utilise strong prior assumptions or physically based deterministic models to simplify the problem. Here, we present a new approach for estimating the Antarctic contribution, which only incorporates descriptive aspects of the physically based models in the analysis and in a statistical manner. By combining physical insights with modern spatial statistical modelling techniques, we are able to provide probability distributions on all processes deemed to play a role in both the observed data and the contribution to sea-level rise. Specifically, we use stochastic partial differential equations and their relation to geostatistical fields to capture our physical understanding and employ a Gaussian Markov random field approach for efficient computation. The method, an instantiation of Bayesian hierarchical modelling, naturally incorporates uncertainty in order to reveal credible intervals on all estimated quantities. The estimated sea-level rise contribution using this approach corroborates those found using a statistically independent method. © 2013 The Authors. Environmetrics Published by John Wiley & Sons, Ltd. PMID:25505370

  1. ROS accumulation and IGF-IR inhibition contribute to fenofibrate/PPARα -mediated inhibition of Glioma cell motility in vitro

    Directory of Open Access Journals (Sweden)

    Del Valle Luis

    2010-06-01

    Full Text Available Abstract Background Glioblastomas are characterized by rapid cell growth, aggressive CNS infiltration, and are resistant to all known anticancer regimens. Recent studies indicate that fibrates and statins possess anticancer potential. Fenofibrate is a potent agonist of peroxisome proliferator activated receptor alpha (PPARα that can switch energy metabolism from glycolysis to fatty acid β-oxidation, and has low systemic toxicity. Fenofibrate also attenuates IGF-I-mediated cellular responses, which could be relevant in the process of glioblastoma cell dispersal. Methods The effects of fenofibrate on Glioma cell motility, IGF-I receptor (IGF-IR signaling, PPARα activity, reactive oxygen species (ROS metabolism, mitochondrial potential, and ATP production were analyzed in human glioma cell lines. Results Fenofibrate treatment attenuated IGF-I signaling responses and repressed cell motility of LN-229 and T98G Glioma cell lines. In the absence of fenofibrate, specific inhibition of the IGF-IR had only modest effects on Glioma cell motility. Further experiments revealed that PPARα-dependent accumulation of ROS is a strong contributing factor in Glioma cell lines responses to fenofibrate. The ROS scavenger, N-acetyl-cysteine (NAC, restored cell motility, improved mitochondrial potential, and increased ATP levels in fenofibrate treated Glioma cell lines. Conclusions Our results indicate that although fenofibrate-mediated inhibition of the IGF-IR may not be sufficient in counteracting Glioma cell dispersal, PPARα-dependent metabolic switch and the resulting ROS accumulation strongly contribute to the inhibition of these devastating brain tumor cells.

  2. Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level.

    Science.gov (United States)

    Derbyshire, Paul; McCann, Maureen C; Roberts, Keith

    2007-06-17

    Cell elongation is mainly limited by the extensibility of the cell wall. Dicotyledonous primary (growing) cell walls contain cellulose, xyloglucan, pectin and proteins, but little is known about how each polymer class contributes to the cell wall mechanical properties that control extensibility. We present evidence that the degree of pectin methyl-esterification (DE%) limits cell growth, and that a minimum level of about 60% DE is required for normal cell elongation in Arabidopsis hypocotyls. When the average DE% falls below this level, as in two gibberellic acid (GA) mutants ga1-3 and gai, and plants expressing pectin methyl-esterase (PME1) from Aspergillus aculeatus, then hypocotyl elongation is reduced. Low average levels of pectin DE% are associated with reduced cell elongation, implicating PMEs, the enzymes that regulate DE%, in the cell elongation process and in responses to GA. At high average DE% other components of the cell wall limit GA-induced growth.

  3. Skeletal stem cells and their contribution to skeletal fragility

    DEFF Research Database (Denmark)

    Aldahmash, A.

    2016-01-01

    Age-related osteoporotic fractures are major health care problem worldwide and are the result of impaired bone formation, decreased bone mass and bone fragility. Bone formation is accomplished by skeletal stem cells (SSC) that are recruited to bone surfaces from bone marrow microenvironment....... This review discusses targeting SSC to enhance bone formation and to abolish age-related bone fragility in the context of using stem cells for treatment of age-related disorders. Recent studies are presented that have demonstrated that SSC exhibit impaired functions during aging due to intrinsic senescence...

  4. Biology at a single cell level

    CSIR Research Space (South Africa)

    Mthunzi, P

    2012-10-01

    Full Text Available ://www.regenexx.com/wp-content/uploads/2011/05/IPS-cell-problems.jpg Induced pluripotent stem cells differentiated in culture http://www.youtube.com/watch?v=ECllrIzTKbA&feature=related Transfecting neuroblastomas Neuroblastoma ? Brain cells ? 80 ? 120 billion neurons in human... brain ? Non- renewing cell type ? Neurons difficult to transfect with established protocols ? Susceptible to degenerative disorders: - Parkinson?s disease - Multiple sclerosis - Alzheimer's disease http...

  5. The contribution of the programmed cell death machinery in innate immune cells to lupus nephritis.

    Science.gov (United States)

    Tsai, FuNien; Perlman, Harris; Cuda, Carla M

    2017-12-01

    Systemic lupus erythematosus (SLE) is a chronic multi-factorial autoimmune disease initiated by genetic and environmental factors, which in combination trigger disease onset in susceptible individuals. Damage to the kidney as a consequence of lupus nephritis (LN) is one of the most prevalent and severe outcomes, as LN affects up to 60% of SLE patients and accounts for much of SLE-associated morbidity and mortality. As remarkable strides have been made in unlocking new inflammatory mechanisms associated with signaling molecules of programmed cell death pathways, this review explores the available evidence implicating the action of these pathways specifically within dendritic cells and macrophages in the control of kidney disease. Although advancements into the underlying mechanisms responsible for inducing cell death inflammatory pathways have been made, there still exist areas of unmet need. By understanding the molecular mechanisms by which dendritic cells and macrophages contribute to LN pathogenesis, we can improve their viability as potential therapeutic targets to promote remission. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Tissue-Level Mechanical Properties of Bone Contributing to Fracture Risk.

    Science.gov (United States)

    Nyman, Jeffry S; Granke, Mathilde; Singleton, Robert C; Pharr, George M

    2016-08-01

    Tissue-level mechanical properties characterize mechanical behavior independently of microscopic porosity. Specifically, quasi-static nanoindentation provides measurements of modulus (stiffness) and hardness (resistance to yielding) of tissue at the length scale of the lamella, while dynamic nanoindentation assesses time-dependent behavior in the form of storage modulus (stiffness), loss modulus (dampening), and loss factor (ratio of the two). While these properties are useful in establishing how a gene, signaling pathway, or disease of interest affects bone tissue, they generally do not vary with aging after skeletal maturation or with osteoporosis. Heterogeneity in tissue-level mechanical properties or in compositional properties may contribute to fracture risk, but a consensus on whether the contribution is negative or positive has not emerged. In vivo indentation of bone tissue is now possible, and the mechanical resistance to microindentation has the potential for improving fracture risk assessment, though determinants are currently unknown.

  7. Rad9 contribution to radiosensitivity and the G2 checkpoint in a DT40 cell line

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Tomoyasu [Kanazawa Univ. (Japan). Graduate School of Medical Science

    2002-12-01

    In fission yeast, the rad9 (radiation sensitive) gene was cloned from a mutant that is sensitive to ionizing radiation, ultraviolet and hydroxyurea. This gene has also been shown to be required for a DNA damage checkpoint. Orthologues of the rad9 gene have recently been identified in higher eukaryote cells including human. Here we generated Rad9 knockout (Rad9-/-) cells from the chicken B lymphocyte line DT40 to examine the role of Rad9 in higher eukaryotes. First we isolated a part of the chicken Rad9 gene which was 54% identical with human Rad9 at the amino acid sequence level. Next we isolated genomic clones, determined exons and introns, and constructed targeting vectors designed to disrupt exon 1-3 of the chicken Rad9 gene by replacement with a drug-resistant gene. Successful targeted integration was verified by Southern blot analysis and the disruption of the Rad9 gene was confirmed by reverse transcription polymerase chain reaction (RT-PCR). To analyze the radiosensitivity of these Rad9-/- cells, we monitored the clonogenic survival after various degrees of X-ray irradiation. Rad9-/- cells were more sensitive to X-rays than wild type cells at all dosages. However, these cells were less sensitive than ATM knockout (ATM-/-) cells that are known to be X-ray sensitive and that showed a defective checkpoint control. In contrast, Rad9-/- cells were markedly more sensitive to ultraviolet and hydroxyruea. In addition, we assessed the G2 checkpoint by measurement of the mitotic index that is the fraction of the accumulating number of cells in mitosis at various times after X-ray irradiation. While the number of mitotic wild type cells did not increase until 2 hrs after X-ray irradiation, the number of mitotic Rad9-/- cells showed an increase similar to that of ATM-/- cells. These results suggest that just as in fission yeast, in higher eukaryotes Rad9 also contributes to X-ray, ultraviolet and hydroxyurea sensitivity, and plays an important role in the G2 checkpoint

  8. Rad9 contribution to radiosensitivity and the G2 checkpoint in a DT40 cell line

    International Nuclear Information System (INIS)

    Kumano, Tomoyasu

    2002-01-01

    In fission yeast, the rad9 (radiation sensitive) gene was cloned from a mutant that is sensitive to ionizing radiation, ultraviolet and hydroxyurea. This gene has also been shown to be required for a DNA damage checkpoint. Orthologues of the rad9 gene have recently been identified in higher eukaryote cells including human. Here we generated Rad9 knockout (Rad9-/-) cells from the chicken B lymphocyte line DT40 to examine the role of Rad9 in higher eukaryotes. First we isolated a part of the chicken Rad9 gene which was 54% identical with human Rad9 at the amino acid sequence level. Next we isolated genomic clones, determined exons and introns, and constructed targeting vectors designed to disrupt exon 1-3 of the chicken Rad9 gene by replacement with a drug-resistant gene. Successful targeted integration was verified by Southern blot analysis and the disruption of the Rad9 gene was confirmed by reverse transcription polymerase chain reaction (RT-PCR). To analyze the radiosensitivity of these Rad9-/- cells, we monitored the clonogenic survival after various degrees of X-ray irradiation. Rad9-/- cells were more sensitive to X-rays than wild type cells at all dosages. However, these cells were less sensitive than ATM knockout (ATM-/-) cells that are known to be X-ray sensitive and that showed a defective checkpoint control. In contrast, Rad9-/- cells were markedly more sensitive to ultraviolet and hydroxyruea. In addition, we assessed the G2 checkpoint by measurement of the mitotic index that is the fraction of the accumulating number of cells in mitosis at various times after X-ray irradiation. While the number of mitotic wild type cells did not increase until 2 hrs after X-ray irradiation, the number of mitotic Rad9-/- cells showed an increase similar to that of ATM-/- cells. These results suggest that just as in fission yeast, in higher eukaryotes Rad9 also contributes to X-ray, ultraviolet and hydroxyurea sensitivity, and plays an important role in the G2 checkpoint

  9. Origin of Matrix-Producing Cells That Contribute to Aortic Fibrosis in Hypertension.

    Science.gov (United States)

    Wu, Jing; Montaniel, Kim Ramil C; Saleh, Mohamed A; Xiao, Liang; Chen, Wei; Owens, Gary K; Humphrey, Jay D; Majesky, Mark W; Paik, David T; Hatzopoulos, Antonis K; Madhur, Meena S; Harrison, David G

    2016-02-01

    Various hypertensive stimuli lead to exuberant adventitial collagen deposition in large arteries, exacerbating blood pressure elevation and end-organ damage. Collagen production is generally attributed to resident fibroblasts; however, other cells, including resident and bone marrow-derived stem cell antigen positive (Sca-1(+)) cells and endothelial and vascular smooth muscle cells, can produce collagen and contribute to vascular stiffening. Using flow cytometry and immunofluorescence, we found that adventitial Sca-1(+) progenitor cells begin to produce collagen and acquire a fibroblast-like phenotype in hypertension. We also found that bone marrow-derived cells represent more than half of the matrix-producing cells in hypertension, and that one-third of these are Sca-1(+). Cell sorting and lineage-tracing studies showed that cells of endothelial origin contribute to no more than one fourth of adventitial collagen I(+) cells, whereas those of vascular smooth muscle lineage do not contribute. Our findings indicate that Sca-1(+) progenitor cells and bone marrow-derived infiltrating fibrocytes are major sources of arterial fibrosis in hypertension. Endothelial to mesenchymal transition likely also contributes, albeit to a lesser extent and pre-existing resident fibroblasts represent a minority of aortic collagen-producing cells in hypertension. This study shows that vascular stiffening represents a complex process involving recruitment and transformation of multiple cells types that ultimately elaborate adventitial extracellular matrix. © 2015 American Heart Association, Inc.

  10. Osteocalcin expressing cells from tendon sheaths in mice contribute to tendon repair by activating Hedgehog signaling

    OpenAIRE

    Wang, Yi; Zhang, Xu; Huang, Huihui; Xia, Yin; Yao, YiFei; Mak, Arthur Fuk-Tat; Yung, Patrick Shu-Hang; Chan, Kai-Ming; Wang, Li; Zhang, Chenglin; Huang, Yu; Mak, Kingston King-Lun

    2017-01-01

    Both extrinsic and intrinsic tissues contribute to tendon repair, but the origin and molecular functions of extrinsic tissues in tendon repair are not fully understood. Here we show that tendon sheath cells harbor stem/progenitor cell properties and contribute to tendon repair by activating Hedgehog signaling. We found that Osteocalcin (Bglap) can be used as an adult tendon-sheath-specific marker in mice. Lineage tracing experiments show that Bglap-expressing cells in adult sheath tissues pos...

  11. Circulating CD4+CXCR5+ T cells contribute to proinflammatory responses in multiple ways in coronary artery disease.

    Science.gov (United States)

    Ding, Ru; Gao, Wenwu; He, Zhiqing; Wu, Feng; Chu, Yang; Wu, Jie; Ma, Lan; Liang, Chun

    2017-11-01

    Coronary artery disease (CAD) is a common subtype of cardiovascular disease. The major contributing event is atherosclerosis, which is a progressive inflammatory condition resulting in the thickening of the arterial wall and the formation of atheromatous plaques. Recent evidence suggests that circulating CD4 + CXCR5 + T cells can contribute to inflammatory reactions. In this study, the frequency, phenotype, and function of circulating CD4 + CXCR5 + T cells in CAD patients were examined. Data showed that circulating CD4 + CXCR5 + T cells in CAD patients were enriched with a PD-1 + CCR7 - subset, which was previously identified as the most potent in B cell help. The CD4 + CXCR5 + T cells in CAD patients also secreted significantly higher levels of IFN-γ, IL-17A, and IL-21 than those from healthy controls. Depleting the PD-1 + population significantly reduced the cytokine secretion. Interestingly, the CD4 + CXCR5 + PD-1 - T cells significantly upregulated PD-1 following anti-CD3/CD28 or SEB stimulation. CD4 + CXCR5 + T cells from CAD patients also demonstrated more potent capacity to stimulate B cell inflammation than those from healthy individuals. The phosphorylation of STAT1 and STAT3 were significantly higher in B cells incubated with CD4 + CXCR5 + T cells from CAD than controls. The IL-6 and IFN-γ expression were also significantly higher in B cells incubated with CD4 + CXCR5 + T cells from CAD. Together, this study demonstrated that CAD patients presented a highly activated CD4 + CXCR5 + T cell subset that could contribute to proinflammatory responses in multiple ways. The possibility of using CD4 + CXCR5 + T cells as a therapeutic target should therefore be examined in CAD patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The future sea-level rise contribution of Greenland’s glaciers and ice caps

    DEFF Research Database (Denmark)

    Machguth, H.; Rastner, P.; Bolch, T.

    2013-01-01

    We calculate the future sea-level rise contribution from the surface mass balance of all of Greenland's glaciers and ice caps (GICs, ~90 000 km2) using a simplified energy balance model which is driven by three future climate scenarios from the regional climate models HIRHAM5, RACMO2 and MAR...... experiments suggest that mass loss could be higher by 20–30% if a strong lowering of the surface albedo were to take place in the future. It is shown that the sea-level rise contribution from the north-easterly regions of Greenland is reduced by increasing precipitation while mass loss in the southern half...... feedback mechanisms are considered. The mass loss of all GICs by 2098 is calculated to be 2016 ± 129 Gt (HIRHAM5 forcing), 2584 ± 109 Gt (RACMO2) and 3907 ± 108 Gt (MAR). This corresponds to a total contribution to sea-level rise of 5.8 ± 0.4, 7.4 ± 0.3 and 11.2 ± 0.3 mm, respectively. Sensitivity...

  13. MicroRNA-122 mimic transfection contributes to apoptosis in HepG2 cells.

    Science.gov (United States)

    Huang, Hongyan; Zhu, Yueyong; Li, Shaoyang

    2015-11-01

    There is currently a requirement for effective treatment strategies for human hepatocellular carcinoma (HCC), a leading cause of cancer‑associated mortality. MicroRNA-122 (miR-122), a repressor of the endogenous apoptosis regulator Bcl‑w, is frequently downregulated in HCC. Thus, it is hypothesized that the activation of miR‑122 may induce selective hepatocellular apoptosis via caspase activation in a model of HCC. In the present study, an miR‑122 mimic transfection was performed in HepG2 cells, and used to investigate the role and therapeutic potential of miR‑122 in the regulation of HCC‑derived cell lines. The apoptotic rates of HepG2 cells were significantly increased following miR‑122 mimic transfection. Reverse transcription‑polymerase chain reaction analysis revealed that Bcl‑w mRNA was significantly reduced, while the mRNA levels of caspase‑9 and caspase‑3 were markedly increased. The immunocytochemistry results supported the mRNA trends. Collectively, the present results suggest that endogenous miR‑122 contributes to HepG2 apoptosis and that transfection of mimic miR‑122 normalizes apoptotic levels in a model of HCC.

  14. Do cells contribute to tendon and ligament biomechanics?

    Directory of Open Access Journals (Sweden)

    Niels Hammer

    Full Text Available Acellular scaffolds are increasingly used for the surgical repair of tendon injury and ligament tears. Despite this increased use, very little data exist directly comparing acellular scaffolds and their native counterparts. Such a comparison would help establish the effectiveness of the acellularization procedure of human tissues. Furthermore, such a comparison would help estimate the influence of cells in ligament and tendon stability and give insight into the effects of acellularization on collagen.Eighteen human iliotibial tract samples were obtained from nine body donors. Nine samples were acellularized with sodium dodecyl sulphate (SDS, while nine counterparts from the same donors remained in the native condition. The ends of all samples were plastinated to minimize material slippage. Their water content was adjusted to 69%, using the osmotic stress technique to exclude water content-related alterations of the mechanical properties. Uniaxial tensile testing was performed to obtain the elastic modulus, ultimate stress and maximum strain. The effectiveness of the acellularization procedure was histologically verified by means of a DNA assay.The histology samples showed a complete removal of the cells, an extensive, yet incomplete removal of the DNA content and alterations to the extracellular collagen. Tensile properties of the tract samples such as elastic modulus and ultimate stress were unaffected by acellularization with the exception of maximum strain.The data indicate that cells influence the mechanical properties of ligaments and tendons in vitro to a negligible extent. Moreover, acellularization with SDS alters material properties to a minor extent, indicating that this method provides a biomechanical match in ligament and tendon reconstruction. However, the given protocol insufficiently removes DNA. This may increase the potential for transplant rejection when acellular tract scaffolds are used in soft tissue repair. Further research

  15. Tumor and Stromal-Based Contributions to Head and Neck Squamous Cell Carcinoma Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Markwell, Steven M.; Weed, Scott A., E-mail: scweed@hsc.wvu.edu [Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506 (United States)

    2015-02-27

    Head and neck squamous cell carcinoma (HNSCC) is typically diagnosed at advanced stages with evident loco-regional and/or distal metastases. The prevalence of metastatic lesions directly correlates with poor patient outcome, resulting in high patient mortality rates following metastatic development. The progression to metastatic disease requires changes not only in the carcinoma cells, but also in the surrounding stromal cells and tumor microenvironment. Within the microenvironment, acellular contributions from the surrounding extracellular matrix, along with contributions from various infiltrating immune cells, tumor associated fibroblasts, and endothelial cells facilitate the spread of tumor cells from the primary site to the rest of the body. Thus far, most attempts to limit metastatic spread through therapeutic intervention have failed to show patient benefit in clinic trails. The goal of this review is highlight the complexity of invasion-promoting interactions in the HNSCC tumor microenvironment, focusing on contributions from tumor and stromal cells in order to assist future therapeutic development and patient treatment.

  16. Drosophila's contribution to stem cell research [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Gyanesh Singh

    2016-08-01

    Full Text Available The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. Recent developments in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub. Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila.

  17. How do glial cells contribute to motor control?

    DEFF Research Database (Denmark)

    Christensen, Rasmus Kordt; Petersen, Anders Victor; Perrier, Jean-Francois Marie

    2013-01-01

    that glia play an active role in several physiological functions. The discovery that a bidirectional communication takes place between astrocytes (the star shaped glial cell of the brain) and neurons, was a major breakthrough in the field of synaptic physiology. Astrocytes express receptors that get...... activated by neurotransmitters during synaptic transmission. In turn they release other transmitters - called gliotransmitters - that bind to neuronal receptors and modulate synaptic transmission. This feedback, which led to the concept of the tripartite synapse, has been reported with various transmitters...... including glutamate, ATP, GABA or serine. In the present review we will focus on astrocytes and review the evidence suggesting and demonstrating their role in motor control. Rhythmic motor behaviors such as locomotion, swimming or chewing are generated by networks of neurons termed central pattern...

  18. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  19. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    International Nuclear Information System (INIS)

    Chang, Cheng-Yi; Kuan, Yu-Hsiang; Ou, Yen-Chuan; Li, Jian-Ri; Wu, Chih-Cheng; Pan, Pin-Ho; Chen, Wen-Ying; Huang, Hsuan-Yi; Chen, Chun-Jung

    2014-01-01

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK

  20. Deregulation of epidermal stem cell niche contributes to pathogenesis of non-healing venous ulcers

    Science.gov (United States)

    Nusbaum, Aron G.; Vukelic, Sasa; Krzyzanowska, Agata; Tomic-Canic, Marjana

    2014-01-01

    The epidermis is maintained by epidermal stem cells (ESC) that reside in distinct niches and contribute to homeostasis and wound closure. Keratinocytes at the non-healing edges of venous ulcers (VUs) are healing-incompetent, hyper-proliferative and non-migratory suggesting deregulation of ESCs. To date genes which regulate ESC niches have been studied in mice only. Utilizing microarray analysis of VU non-healing edges, we identified changes in expression of genes harboring regulation of ESCs and their fate. In a prospective clinical study of ten VUs, we confirmed suppression of the bone morphogenetic protein receptor and GATA binding protein3 as well as inhibitors of DNA-binding proteins 2 and 4. We also found decreased levels of phosphorylated glycogen synthase kinase 3, nuclear presence of ß-catenin and overexpression of its transcriptional target, c-myc indicating activation of the Wnt pathway. Additionally, we found down-regulation of leucine-rich repeats and immunoglobulin-like domains protein 1, a gene important for maintaining ESCs in a quiescent state, and absence of keratin 15, a marker of the basal stem cell compartment suggesting local depletion of ESCs. Our study shows that loss of genes important for regulation of ESCs and their fate along with activation of ß-catenin and c-myc in the VU may contribute to ESC deprivation and a hyper-proliferative, non-migratory, healing incapable wound edge. PMID:24635172

  1. The future sea-level rise contribution of Greenland’s glaciers and ice caps

    International Nuclear Information System (INIS)

    Machguth, H; Rastner, P; Bolch, T; Mölg, N; Sørensen, L Sandberg; Aðalgeirsdottir, G; Van Angelen, J H; Van den Broeke, M R; Fettweis, X

    2013-01-01

    We calculate the future sea-level rise contribution from the surface mass balance of all of Greenland’s glaciers and ice caps (GICs, ∼90 000 km 2 ) using a simplified energy balance model which is driven by three future climate scenarios from the regional climate models HIRHAM5, RACMO2 and MAR. Glacier extent and surface elevation are modified during the mass balance model runs according to a glacier retreat parameterization. Mass balance and glacier surface change are both calculated on a 250 m resolution digital elevation model yielding a high level of detail and ensuring that important feedback mechanisms are considered. The mass loss of all GICs by 2098 is calculated to be 2016 ± 129 Gt (HIRHAM5 forcing), 2584 ± 109 Gt (RACMO2) and 3907 ± 108 Gt (MAR). This corresponds to a total contribution to sea-level rise of 5.8 ± 0.4, 7.4 ± 0.3 and 11.2 ± 0.3 mm, respectively. Sensitivity experiments suggest that mass loss could be higher by 20–30% if a strong lowering of the surface albedo were to take place in the future. It is shown that the sea-level rise contribution from the north-easterly regions of Greenland is reduced by increasing precipitation while mass loss in the southern half of Greenland is dominated by steadily decreasing summer mass balances. In addition we observe glaciers in the north-eastern part of Greenland changing their characteristics towards greater activity and mass turnover. (letter)

  2. The land-ice contribution to 21st-century dynamic sea level rise

    Science.gov (United States)

    Howard, T.; Ridley, J.; Pardaens, A. K.; Hurkmans, R. T. W. L.; Payne, A. J.; Giesen, R. H.; Lowe, J. A.; Bamber, J. L.; Edwards, T. L.; Oerlemans, J.

    2014-06-01

    Climate change has the potential to influence global mean sea level through a number of processes including (but not limited to) thermal expansion of the oceans and enhanced land ice melt. In addition to their contribution to global mean sea level change, these two processes (among others) lead to local departures from the global mean sea level change, through a number of mechanisms including the effect on spatial variations in the change of water density and transport, usually termed dynamic sea level changes. In this study, we focus on the component of dynamic sea level change that might be given by additional freshwater inflow to the ocean under scenarios of 21st-century land-based ice melt. We present regional patterns of dynamic sea level change given by a global-coupled atmosphere-ocean climate model forced by spatially and temporally varying projected ice-melt fluxes from three sources: the Antarctic ice sheet, the Greenland Ice Sheet and small glaciers and ice caps. The largest ice melt flux we consider is equivalent to almost 0.7 m of global mean sea level rise over the 21st century. The temporal evolution of the dynamic sea level changes, in the presence of considerable variations in the ice melt flux, is also analysed. We find that the dynamic sea level change associated with the ice melt is small, with the largest changes occurring in the North Atlantic amounting to 3 cm above the global mean rise. Furthermore, the dynamic sea level change associated with the ice melt is similar regardless of whether the simulated ice fluxes are applied to a simulation with fixed CO2 or under a business-as-usual greenhouse gas warming scenario of increasing CO2.

  3. Kidney fibroblast growth factor 23 does not contribute to elevation of its circulating levels in uremia.

    Science.gov (United States)

    Mace, Maria L; Gravesen, Eva; Nordholm, Anders; Hofman-Bang, Jacob; Secher, Thomas; Olgaard, Klaus; Lewin, Ewa

    2017-07-01

    Fibroblast growth factor 23 (FGF23) secreted by osteocytes is a circulating factor essential for phosphate homeostasis. High plasma FGF23 levels are associated with cardiovascular complications and mortality. Increases of plasma FGF23 in uremia antedate high levels of phosphate, suggesting a disrupted feedback regulatory loop or an extra-skeletal source of this phosphatonin. Since induction of FGF23 expression in injured organs has been reported we decided to examine the regulation of FGF23 gene and protein expressions in the kidney and whether kidney-derived FGF23 contributes to the high plasma levels of FGF23 in uremia. FGF23 mRNA was not detected in normal kidneys, but was clearly demonstrated in injured kidneys, already after four hours in obstructive nephropathy and at 8 weeks in the remnant kidney of 5/6 nephrectomized rats. No renal extraction was found in uremic rats in contrast to normal rats. Removal of the remnant kidney had no effect on plasma FGF23 levels. Well-known regulators of FGF23 expression in bone, such as parathyroid hormone, calcitriol, and inhibition of the FGF receptor by PD173074, had no impact on kidney expression of FGF23. Thus, the only direct contribution of the injured kidney to circulating FGF23 levels in uremia appears to be reduced renal extraction of bone-derived FGF23. Kidney-derived FGF23 does not generate high plasma FGF23 levels in uremia and is regulated differently than the corresponding regulation of FGF23 gene expression in bone. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  4. The Contribution of Tissue Level Organization to Genomic Stability Following Low Dose/Low Dose Rate Gamma and Proton Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cheryl G. Burrell, Ph.D.

    2012-05-14

    The formation of functional tissue units is necessary in maintaining homeostasis within living systems, with individual cells contributing to these functional units through their three-dimensional organization with integrin and adhesion proteins to form a complex extra-cellular matrix (ECM). This is of particular importance in those tissues susceptible to radiation-induced tumor formation, such as epithelial glands. The assembly of epithelial cells of the thyroid is critical to their normal receipt of, and response to, incoming signals. Traditional tissue culture and live animals present significant challenges to radiation exposure and continuous sampling, however, the production of bioreactor-engineered tissues aims to bridge this gap by improve capabilities in continuous sampling from the same functional tissue, thereby increasing the ability to extrapolate changes induced by radiation to animals and humans in vivo. Our study proposes that the level of tissue organization will affect the induction and persistence of low dose radiation-induced genomic instability. Rat thyroid cells, grown in vitro as 3D tissue analogs in bioreactors and as 2D flask grown cultures were exposed to acute low dose (1, 5, 10 and 200 cGy) gamma rays. To assess immediate (6 hours) and delayed (up to 30 days) responses post-irradiation, various biological endpoints were studied including cytogenetic analyses, apoptosis analysis and cell viability/cytotoxicity analyses. Data assessing caspase 3/7 activity levels show that, this activity varies with time post radiation and that, overall, 3D cultures display more genomic instability (as shown by the lower levels of apoptosis over time) when compared to the 2D cultures. Variation in cell viability levels were only observed at the intermediate and late time points post radiation. Extensive analysis of chromosomal aberrations will give further insight on the whether the level of tissue organization influences genomic instability patterns after

  5. MIS 5e relative sea-level changes in the Mediterranean Sea: Contribution of isostatic disequilibrium

    Science.gov (United States)

    Stocchi, Paolo; Vacchi, Matteo; Lorscheid, Thomas; de Boer, Bas; Simms, Alexander R.; van de Wal, Roderik S. W.; Vermeersen, Bert L. A.; Pappalardo, Marta; Rovere, Alessio

    2018-04-01

    Sea-level indicators dated to the Last Interglacial, or Marine Isotope Stage (MIS) 5e, have a twofold value. First, they can be used to constrain the melting of Greenland and Antarctic Ice Sheets in response to global warming scenarios. Second, they can be used to calculate the vertical crustal rates at active margins. For both applications, the contribution of glacio- and hydro-isostatic adjustment (GIA) to vertical displacement of sea-level indicators must be calculated. In this paper, we re-assess MIS 5e sea-level indicators at 11 Mediterranean sites that have been generally considered tectonically stable or affected by mild tectonics. These are found within a range of elevations of 2-10 m above modern mean sea level. Four sites are characterized by two separate sea-level stands, which suggest a two-step sea-level highstand during MIS 5e. Comparing field data with numerical modeling we show that (i) GIA is an important contributor to the spatial and temporal variability of the sea-level highstand during MIS 5e, (ii) the isostatic imbalance from the melting of the MIS 6 ice sheet can produce a >2.0 m sea-level highstand, and (iii) a two-step melting phase for the Greenland and Antarctic Ice Sheets reduces the differences between observations and predictions. Our results show that assumptions of tectonic stability on the basis of the MIS 5e records carry intrinsically large uncertainties, stemming either from uncertainties in field data and GIA models. The latter are propagated to either Holocene or Pleistocene sea-level reconstructions if tectonic rates are considered linear through time.

  6. Saharan dust contribution to PM levels: The EC LIFE+ DIAPASON project

    Science.gov (United States)

    Gobbi, G. P.; Wille, H.; Sozzi, R.; Angelini, F.; Barnaba, F.; Costabile, F.; Frey, S.; Bolignano, A.; Di Giosa, A.

    2012-04-01

    The contribution of Saharan-dust advections to both daily and annual PM average values can be significant all over Southern Europe. The most important effects of dust on the number of PM exceedances are mostly observed in polluted areas and large cities. While a wide literature exists documenting episodes of Saharan dust transport towards the Euro-Mediterranean region and Europe in general, a limited number of studies are still available providing statistically significant results on the impact of Saharan dust on the particulate matter loads over the continent. A four-year (2001-2004) study performed in Rome (Italy) found these events to contribute to the average ground PM10 with about 15±10 µg/m3 on about 17% of the days in a year. Since the PM10 yearly average of many traffic stations in Rome is close to 40 μg/m3, these events can cause the PM10 concentration to exceed air quality limit values (50 μg/m3 as daily average) set by the EU Air Quality Directive 2008/50/EC. Although the European legislation allows Member States to subtract the contribution of natural sources before counting PM10 exceedances, definition of an optimal methodology to quantitatively assess such contribution is still in progress. On the basis of the current European Guidelines on the assessment of natural contributions to PM, the DIAPASON project ("Desert-dust Impact on Air quality through model-Predictions and Advanced Sensors ObservatioNs", recently funded under the EC LIFE+ program) has been formulated to provide a robust, user-oriented methodology to assess the presence of desert dust and its contribution to PM levels. To this end, in addition to satellite-based data and model forecasts, the DIAPASON methodology will employ innovative and affordable technologies, partly prototyped within the project itself, as an operational Polarization Lidar-Ceilometer (laser radar) capable of detecting and profiling dust clouds from the ground up to 10 km altitude. The DIAPASON Project (2011

  7. Modulation of TRAIL resistance in colon carcinoma cells: Different contributions of DR4 and DR5

    International Nuclear Information System (INIS)

    Geelen, Caroline MM van; Pennarun, Bodvael; Le, Phuong TK; Vries, Elisabeth GE de; Jong, Steven de

    2011-01-01

    rhTRAIL is a therapeutic agent, derived from the TRAIL cytokine, which induces apoptosis in cancer cells by activating the membrane death receptors 4 and 5 (DR4 and DR5). Here, we investigated each receptor's contribution to rhTRAIL sensitivity and rhTRAIL resistance. We assessed whether agonistic DR4 or DR5 antibodies could be used to circumvent rhTRAIL resistance, alone or in combination with various chemotherapies. Our study was performed in an isogenic model comprised of the SW948 human colon carcinoma cell line and its rhTRAIL resistant sub-line SW948-TR. Effects of rhTRAIL and agonistic DR4/DR5 antibodies on cell viability were measured using MTT assays and identification of morphological changes characteristic of apoptosis, after acridine orange staining. Sensitivity to the different death receptor ligands was stimulated using pretreatment with the cytokine IFN-gamma and the proteasome inhibitor MG-132. To investigate the mechanisms underlying the changes in rhTRAIL sensitivity, alterations in expression levels of targets of interest were measured by Western blot analysis. Co-immunoprecipitation was used to determine the composition of the death-inducing signalling complex at the cell membrane. SW948 cells were sensitive to all three of the DR-targeting agents tested, although the agonistic DR5 antibody induced only weak caspase 8 cleavage and limited apoptosis. Surprisingly, agonistic DR4 and DR5 antibodies induced equivalent DISC formation and caspase 8 cleavage at the level of their individual receptors, suggesting impairment of further caspase 8 processing upon DR5 stimulation. SW948-TR cells were cross-resistant to all DR-targeting agents as a result of decreased caspase 8 expression levels. Caspase 8 protein expression was restored by MG-132 and IFN-gamma pretreatment, which also re-established sensitivity to rhTRAIL and agonistic DR4 antibody in SW948-TR. Surprisingly, MG-132 but not IFN-gamma could also increase DR5-mediated apoptosis in SW948

  8. Modulation of TRAIL resistance in colon carcinoma cells: Different contributions of DR4 and DR5

    Directory of Open Access Journals (Sweden)

    de Vries Elisabeth GE

    2011-01-01

    Full Text Available Abstract Background rhTRAIL is a therapeutic agent, derived from the TRAIL cytokine, which induces apoptosis in cancer cells by activating the membrane death receptors 4 and 5 (DR4 and DR5. Here, we investigated each receptor's contribution to rhTRAIL sensitivity and rhTRAIL resistance. We assessed whether agonistic DR4 or DR5 antibodies could be used to circumvent rhTRAIL resistance, alone or in combination with various chemotherapies. Methods Our study was performed in an isogenic model comprised of the SW948 human colon carcinoma cell line and its rhTRAIL resistant sub-line SW948-TR. Effects of rhTRAIL and agonistic DR4/DR5 antibodies on cell viability were measured using MTT assays and identification of morphological changes characteristic of apoptosis, after acridine orange staining. Sensitivity to the different death receptor ligands was stimulated using pretreatment with the cytokine IFN-gamma and the proteasome inhibitor MG-132. To investigate the mechanisms underlying the changes in rhTRAIL sensitivity, alterations in expression levels of targets of interest were measured by Western blot analysis. Co-immunoprecipitation was used to determine the composition of the death-inducing signalling complex at the cell membrane. Results SW948 cells were sensitive to all three of the DR-targeting agents tested, although the agonistic DR5 antibody induced only weak caspase 8 cleavage and limited apoptosis. Surprisingly, agonistic DR4 and DR5 antibodies induced equivalent DISC formation and caspase 8 cleavage at the level of their individual receptors, suggesting impairment of further caspase 8 processing upon DR5 stimulation. SW948-TR cells were cross-resistant to all DR-targeting agents as a result of decreased caspase 8 expression levels. Caspase 8 protein expression was restored by MG-132 and IFN-gamma pretreatment, which also re-established sensitivity to rhTRAIL and agonistic DR4 antibody in SW948-TR. Surprisingly, MG-132 but not IFN

  9. Depletion of NAD pool contributes to impairment of endothelial progenitor cell mobilization in diabetes.

    Science.gov (United States)

    Wang, Pei; Yang, Xi; Zhang, Zheng; Song, Jie; Guan, Yun-Feng; Zou, Da-Jin; Miao, Chao-Yu

    2016-06-01

    The impaired mobilization of endothelial progenitor cells (EPCs) from bone marrow (BM) critically contributes to the diabetes-associated vascular complications. Here, we investigated the relationship between the nicotinamide phosphoribosyltransferase (NAMPT)-controlled nicotinamide adenine dinucleotide (NAD) metabolism and the impaired mobilization of BM-derived EPCs in diabetic condition. The NAMPT-NAD pool in BM and BM-derived EPCs in wild-type (WT) and diabetic db/db mice was determined. Nicotinamide, a natural substrate for NAD biosynthesis, was administrated for 2weeks in db/db mice to examine the influence of enhancing NAD pool on BM and blood EPCs number. The modulations of stromal cell-derived factor-1α (SDF-1α) and endothelial nitric oxide synthase (eNOS) protein in BM were measured using immunoblotting. The EPCs intracellular NAMPT level and NAD concentration, as well as the blood EPCs number, were compared between 9 healthy people and 16 patients with type 2 diabetes mellitus (T2DM). The T2DM patients were treated with nicotinamide for two weeks and then the blood EPCs number was determined. Moreover, the association between blood EPCs numbers and EPCs intracellular NAD(+)/NAMPT protein levels in 21 healthy individuals was determined. We found that NAD concentration and NAMPT expression in BM and BM-derived EPCs of db/db mice were significantly lower than those in WT mice BM. Enhancing NAD pool not only increased the EPCs intracellular NAD concentration and blood EPCs number, but also improved post-ischemic wound healing and blood reperfusion in db/db mice with hind-limb ischemia model. Enhancing NAD pool rescued the impaired modulations of stromal cell-derived factor-1α (SDF-1α) and endothelial nitric oxide synthase (eNOS) protein levels in db/db mice BM upon hind-limb ischemia. In addition, enhancing NAD pool significantly inhibited PARP and caspase-3 activates in db/db mice BM. The intracellular NAMPT-NAD pool was positively associated with blood

  10. BMI1 is expressed in canine osteosarcoma and contributes to cell growth and chemotherapy resistance.

    Directory of Open Access Journals (Sweden)

    Mehdi Hayat Shahi

    Full Text Available BMI1, a stem cell factor and member of the polycomb group of genes, has been shown to contribute to growth and chemoresistance of several human malignancies including primary osteosarcoma (OSA. Naturally occurring OSA in the dog represents a large animal model of human OSA, however the potential role of BMI1 in canine primary and metastatic OSA has not been examined. Immunohistochemical staining of canine primary and metastatic OSA tumors revealed strong nuclear expression of BMI1. An identical staining pattern was found in both primary and metastatic human OSA tissues. Canine OSA cell lines (Abrams, Moresco, and D17 expressed high levels of BMI1 compared with canine osteoblasts and knockdown or inhibition of BMI1 by siRNA or by small molecule BMI1-inhibitor PTC-209 demonstrated a role for BMI1 in canine OSA cell growth and resistance to carboplatin and doxorubicin chemotherapy. These findings suggest that inhibition of BMI1 in primary or metastatic OSA may improve response to chemotherapy and that the dog may serve as a large animal model to evaluate such therapy.

  11. BMI1 is expressed in canine osteosarcoma and contributes to cell growth and chemotherapy resistance.

    Science.gov (United States)

    Shahi, Mehdi Hayat; York, Daniel; Gandour-Edwards, Regina; Withers, Sita S; Holt, Roseline; Rebhun, Robert B

    2015-01-01

    BMI1, a stem cell factor and member of the polycomb group of genes, has been shown to contribute to growth and chemoresistance of several human malignancies including primary osteosarcoma (OSA). Naturally occurring OSA in the dog represents a large animal model of human OSA, however the potential role of BMI1 in canine primary and metastatic OSA has not been examined. Immunohistochemical staining of canine primary and metastatic OSA tumors revealed strong nuclear expression of BMI1. An identical staining pattern was found in both primary and metastatic human OSA tissues. Canine OSA cell lines (Abrams, Moresco, and D17) expressed high levels of BMI1 compared with canine osteoblasts and knockdown or inhibition of BMI1 by siRNA or by small molecule BMI1-inhibitor PTC-209 demonstrated a role for BMI1 in canine OSA cell growth and resistance to carboplatin and doxorubicin chemotherapy. These findings suggest that inhibition of BMI1 in primary or metastatic OSA may improve response to chemotherapy and that the dog may serve as a large animal model to evaluate such therapy.

  12. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009.

    Science.gov (United States)

    Gardner, Alex S; Moholdt, Geir; Cogley, J Graham; Wouters, Bert; Arendt, Anthony A; Wahr, John; Berthier, Etienne; Hock, Regine; Pfeffer, W Tad; Kaser, Georg; Ligtenberg, Stefan R M; Bolch, Tobias; Sharp, Martin J; Hagen, Jon Ove; van den Broeke, Michiel R; Paul, Frank

    2013-05-17

    Glaciers distinct from the Greenland and Antarctic Ice Sheets are losing large amounts of water to the world's oceans. However, estimates of their contribution to sea level rise disagree. We provide a consensus estimate by standardizing existing, and creating new, mass-budget estimates from satellite gravimetry and altimetry and from local glaciological records. In many regions, local measurements are more negative than satellite-based estimates. All regions lost mass during 2003-2009, with the largest losses from Arctic Canada, Alaska, coastal Greenland, the southern Andes, and high-mountain Asia, but there was little loss from glaciers in Antarctica. Over this period, the global mass budget was -259 ± 28 gigatons per year, equivalent to the combined loss from both ice sheets and accounting for 29 ± 13% of the observed sea level rise.

  13. Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level

    Science.gov (United States)

    Karagulian, Federico; Belis, Claudio A.; Dora, Carlos Francisco C.; Prüss-Ustün, Annette M.; Bonjour, Sophie; Adair-Rohani, Heather; Amann, Markus

    2015-11-01

    For reducing health impacts from air pollution, it is important to know the sources contributing to human exposure. This study systematically reviewed and analysed available source apportionment studies on particulate matter (of diameter of 10 and 2.5 microns, PM10 and PM2.5) performed in cities to estimate typical shares of the sources of pollution by country and by region. A database with city source apportionment records, estimated with the use of receptor models, was also developed and available at the website of the World Health Organization. Systematic Scopus and Google searches were performed to retrieve city studies of source apportionment for particulate matter. Six source categories were defined. Country and regional averages of source apportionment were estimated based on city population weighting. A total of 419 source apportionment records from studies conducted in cities of 51 countries were used to calculate regional averages of sources of ambient particulate matter. Based on the available information, globally 25% of urban ambient air pollution from PM2.5 is contributed by traffic, 15% by industrial activities, 20% by domestic fuel burning, 22% from unspecified sources of human origin, and 18% from natural dust and salt. The available source apportionment records exhibit, however, important heterogeneities in assessed source categories and incompleteness in certain countries/regions. Traffic is one important contributor to ambient PM in cities. To reduce air pollution in cities and the substantial disease burden it causes, solutions to sustainably reduce ambient PM from traffic, industrial activities and biomass burning should urgently be sought. However, further efforts are required to improve data availability and evaluation, and possibly to combine with other types of information in view of increasing usefulness for policy making.

  14. Serum uric acid levels contribute to new renal damage in systemic lupus erythematosus patients.

    Science.gov (United States)

    Reátegui-Sokolova, C; Ugarte-Gil, Manuel F; Gamboa-Cárdenas, Rocío V; Zevallos, Francisco; Cucho-Venegas, Jorge M; Alfaro-Lozano, José L; Medina, Mariela; Rodriguez-Bellido, Zoila; Pastor-Asurza, Cesar A; Alarcón, Graciela S; Perich-Campos, Risto A

    2017-04-01

    This study aims to determine whether uric acid levels contribute to new renal damage in systemic lupus erythematosus (SLE) patients. This prospective study was conducted in consecutive patients seen since 2012. Patients had a baseline visit and follow-up visits every 6 months. Patients with ≥2 visits were included; those with end-stage renal disease (regardless of dialysis or transplantation) were excluded. Renal damage was ascertained using the SLICC/ACR damage index (SDI). Univariable and multivariable Cox-regression models were performed to determine the risk of new renal damage. Uric acid was included as a continuous and dichotomous (per receiving operating characteristic curve) variable. Multivariable models were adjusted for age at diagnosis, disease duration, socioeconomic status, SLEDAI, SDI, serum creatinine, baseline use of prednisone, antimalarials, and immunosuppressive drugs. One hundred and eighty-six patients were evaluated; their mean (SD) age at diagnosis was 36.8 (13.7) years; nearly all patients were mestizo. Disease duration was 7.7 (6.8) years. Follow-up time was 2.3 (1.1) years. The SLEDAI was 5.2 (4.3) and the SDI 0.8 (1.1). Uric acid levels were 4.5 (1.3) mg/dl. During follow-up, 16 (8.6%) patients developed at least one new point in the renal domain of the SDI. In multivariable analyses, uric acid levels (continuous and dichotomous) at baseline predicted the development of new renal damage (HR 3.21 (1.39-7.42), p 0.006; HR 18.28 (2.80-119.48), p 0.002; respectively). Higher uric acid levels contribute to the development of new renal damage in SLE patients independent of other well-known risk factors for such occurrence.

  15. Assessing the role of internal climate variability in Antarctica's contribution to future sea-level rise

    Science.gov (United States)

    Tsai, C. Y.; Forest, C. E.; Pollard, D.

    2017-12-01

    The Antarctic ice sheet (AIS) has the potential to be a major contributor to future sea-level rise (SLR). Current projections of SLR due to AIS mass loss remain highly uncertain. Better understanding of how ice sheets respond to future climate forcing and variability is essential for assessing the long-term risk of SLR. However, the predictability of future climate is limited by uncertainties from emission scenarios, model structural differences, and the internal variability that is inherently generated within the fully coupled climate system. Among those uncertainties, the impact of internal variability on the AIS changes has not been explicitly assessed. In this study, we quantify the effect of internal variability on the AIS evolutions by using climate fields from two large-ensemble experiments using the Community Earth System Model to force a three-dimensional ice sheet model. We find that internal variability of climate fields, particularly atmospheric fields, among ensemble members leads to significantly different AIS responses. Our results show that the internal variability can cause about 80 mm differences of AIS contribution to SLR by 2100 compared to the ensemble-mean contribution of 380-450 mm. Moreover, using ensemble-mean climate fields as the forcing in the ice sheet model does not produce realistic simulations of the ice loss. Instead, it significantly delays the onset of retreat of the West Antarctic Ice Sheet for up to 20 years and significantly underestimates the AIS contribution to SLR by 0.07-0.11 m in 2100 and up to 0.34 m in the 2250's. Therefore, because the uncertainty caused by internal variability is irreducible, we seek to highlight a critical need to assess the role of internal variability in projecting the AIS loss over the next few centuries. By quantifying the impact of internal variability on AIS contribution to SLR, policy makers can obtain more robust estimates of SLR and implement suitable adaptation strategies.

  16. Blood selenium levels and contribution of food groups to selenium intake in adolescent girls in Iceland.

    Science.gov (United States)

    Gudmundsdottir, Edda Y; Gunnarsdottir, Ingibjorg; Thorlacius, Arngrimur; Reykdal, Olafur; Gunnlaugsdottir, Helga; Thorsdottir, Inga; Steingrimsdottir, Laufey

    2012-01-01

    Significant changes have been reported in dietary habits and food availability in Iceland that would be expected to compromise selenium intake and status, especially among young people. These include substantial decreases in the consumption of fish and milk, as well as the selenium content of imported wheat. The aim of this study was to assess selenium in the diet and whole blood of adolescent girls, as well as define the most important foods contributing to intake and blood concentrations of selenium. The subjects were 96 randomly selected girls, aged 16-20, who answered a validated food frequency questionnaire (FFQ) for dietary assessment. Selenium intake from each food group was calculated in µg/day. Blood samples were collected for measurement of whole blood selenium. Mean dietary selenium was 51±25 µg/day. Milk/dairy products, including cheese, contributed 36±14% of total dietary selenium; fish 18±12%; and bread/cereal products 13±6%. Mean whole blood selenium was 117±12 µg/l (range 90-208); nearly 90% of subjects were above the optimal level of 100 µg/l. Fish and bread/cereal products were the only foods significantly correlated with selenium in blood (r=0.32; P=0.002 and r=0.22; P=0.04, respectively) while no correlation was found with milk and dairy products in spite of their greater contribution to total selenium intake. In this population of Icelandic adolescent girls, selenium intake and status seem acceptable. Judging from associations between intake and blood levels, fish and cereals may be the most important contributors to blood selenium.

  17. Blood selenium levels and contribution of food groups to selenium intake in adolescent girls in Iceland

    Directory of Open Access Journals (Sweden)

    Ingibjorg Gunnarsdottir

    2012-08-01

    Full Text Available Background/objectives: Significant changes have been reported in dietary habits and food availability in Iceland that would be expected to compromise selenium intake and status, especially among young people. These include substantial decreases in the consumption of fish and milk, as well as the selenium content of imported wheat. The aim of this study was to assess selenium in the diet and whole blood of adolescent girls, as well as define the most important foods contributing to intake and blood concentrations of selenium. Design: The subjects were 96 randomly selected girls, aged 16–20, who answered a validated food frequency questionnaire (FFQ for dietary assessment. Selenium intake from each food group was calculated in µg/day. Blood samples were collected for measurement of whole blood selenium. Results: Mean dietary selenium was 51±25 µg/day. Milk/dairy products, including cheese, contributed 36±14% of total dietary selenium; fish 18±12%; and bread/cereal products 13±6%. Mean whole blood selenium was 117±12 µg/l (range 90–208; nearly 90% of subjects were above the optimal level of 100 µg/l. Fish and bread/cereal products were the only foods significantly correlated with selenium in blood (r=0.32; P = 0.002 and r=0.22; P = 0.04, respectively while no correlation was found with milk and dairy products in spite of their greater contribution to total selenium intake. Conclusion: In this population of Icelandic adolescent girls, selenium intake and status seem acceptable. Judging from associations between intake and blood levels, fish and cereals may be the most important contributors to blood selenium.

  18. Contribution to the study of samarium-151 excited levels; Contribution a l'etude des niveaux excites du samarium-151

    Energy Technology Data Exchange (ETDEWEB)

    Locard, P [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Grenoble, 38 (France)

    1967-07-01

    The nucleus of {sup 151}Sm, which has 89 neutrons, happens to be on the lower edge of the deformed nuclei of region II. Therefore, the study of its levels is very interesting for the verification of the goodness of the collective models for deformed nuclei when the deformation is small (we introduce these models in the first chapter). {sup 151}Sm has often been studied, but the direct gamma spectrum measured with a lithium drift-germanium detector (chapter 3) shows many high energy transitions which did not appear in the previous level schemes. In order to settle these transitions, we have undertaken gamma-gamma coincidence spectra (as well as sum-coincidence spectra) experiments with a scintillation spectrometer designed in our laboratory (chapter 2). The investigation of the intensities of these coincidences leads us to modify the last proposed level schemes: we suppress the levels at 405,5 and 650 keV, we add levels at 245,6 - 306,6 - 522 - 952 and 962 keV. We have also verified the multipolarities of the main transitions and measured the half-lives of a few levels (chapter 3) (we find a half-life of 1.1 {+-} 0.5 nanosecond for the level at 167,7 keV). In chapter 4, we compare our results to the predictions of the models described in chapter 1. (author) [French] Le noyau de {sup 151}Sm, qui possede 89 neutrons, se trouve a la limite inferieure des noyaux deformes de la region II. L'etude de ses niveaux excites est donc d'un interet tout particulier pour la verification de la validite des differents modeles collectifs pour les noyaux deformes, lorsque la deformation est petite (nous introduisons ces modeles dans un premier chapitre). Le {sup 151}Sm a deja fait l'objet de nombreuses etudes, mais le spectre gamma direct fait avec une jonction de germanium compense au lithium (chapitre 3), nous a montre l'existence d'un grand nombre de transitions de hautes energies qui ne sont pas placees dans les schemas proposes jusqu'a ce jour. Pour preciser la place de ces

  19. Understanding the Relative Contributions of Lower-Level Word Processes, Higher-Level Processes, and Working Memory to Reading Comprehension Performance in Proficient Adult Readers

    Science.gov (United States)

    Hannon, Brenda

    2012-01-01

    Although a considerable amount of evidence has been amassed regarding the contributions of lower-level word processes, higher-level processes, and working memory to reading comprehension, little is known about the relationships among these sources of individual differences or their relative contributions to reading comprehension performance. This…

  20. Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn.

    Science.gov (United States)

    Harper, J; Humphrey, N; Pfeffer, W T; Brown, J; Fettweis, X

    2012-11-08

    Surface melt on the Greenland ice sheet has shown increasing trends in areal extent and duration since the beginning of the satellite era. Records for melt were broken in 2005, 2007, 2010 and 2012. Much of the increased surface melt is occurring in the percolation zone, a region of the accumulation area that is perennially covered by snow and firn (partly compacted snow). The fate of melt water in the percolation zone is poorly constrained: some may travel away from its point of origin and eventually influence the ice sheet's flow dynamics and mass balance and the global sea level, whereas some may simply infiltrate into cold snow or firn and refreeze with none of these effects. Here we quantify the existing water storage capacity of the percolation zone of the Greenland ice sheet and show the potential for hundreds of gigatonnes of meltwater storage. We collected in situ observations of firn structure and meltwater retention along a roughly 85-kilometre-long transect of the melting accumulation area. Our data show that repeated infiltration events in which melt water penetrates deeply (more than 10 metres) eventually fill all pore space with water. As future surface melt intensifies under Arctic warming, a fraction of melt water that would otherwise contribute to sea-level rise will fill existing pore space of the percolation zone. We estimate the lower and upper bounds of this storage sink to be 322 ± 44 gigatonnes and  1,289(+388)(-252) gigatonnes, respectively. Furthermore, we find that decades are required to fill this pore space under a range of plausible future climate conditions. Hence, routing of surface melt water into filling the pore space of the firn column will delay expansion of the area contributing to sea-level rise, although once the pore space is filled it cannot quickly be regenerated.

  1. Assessing T cell differentiation at the single-cell level

    NARCIS (Netherlands)

    Gerlach, Carmen

    2012-01-01

    This thesis describes the development and use of a novel technology for single-cell fate mapping, called cellular barcoding. With this technology, unique and heritable genetic tags (barcodes) are introduced into naïve T cells. Using cellular barcoding, we investigated I) how different

  2. Anthropogenic contributions to mercury levels in present-day Arctic animals-A review

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, Rune, E-mail: rdi@dmu.dk [National Environmental Research Institute, Department of Arctic Environment, Aarhus University, Roskilde (Denmark); Outridge, Peter M. [Geological Survey of Canada, Ottawa (Canada); Hobson, Keith A. [Environment Canada, Saskatoon (Canada)

    2009-12-01

    Background: Because of concern about the recently increasing levels of biological Hg in some areas of the Arctic, we examined the literature concerning the long-term changes of Hg in humans and selected Arctic marine mammals and birds of prey since pre-industrial times (i.e. before 1800 A.D.), to determine the anthropogenic contribution to present-day Hg concentrations and the historical timing of any changes. Methods: Mercury data from published articles were extracted on historical and pre-industrial concentrations as percentages of the recent maximum, as well as the man-made contribution was calculated and depicted in a uniform manner to provide an overview of the development over time. Results and discussion: Trends of [Hg] in hard tissues such as teeth, hair and feathers consistently showed that there had been an order-of-magnitude increase of [Hg] in Arctic marine foodweb-based animals that began in the mid- to late-19th Century and accelerated in the 20th Century. The median man-made contribution to present-day Hg concentrations was 92.4% ranging from 74.2 to 94.4%. Confidence in our data was increased by accompanying data in some studies on stable isotopes ({delta}{sup 13}C, {delta}{sup 15}N), which allowed us to normalize where necessary for changes in animal trophic position and feeding location over time, and by careful attention to the possibility of sample chemical diagenesis (Hg contamination or loss) which can alter the Hg content of ancient hard tissues. Conclusions: Wildlife hard tissue matrices provide consistent information with respect to the steep onset of Hg exposure of Arctic wildlife beginning in the latter half of the 19th Century. Today the man-made contribution was found to be above 92%. Stable isotope analyses provide important information to normalize for possible changes in diet over time, and are highly relevant to include when interpreting temporal trends, baseline concentrations as well as man-made anthropogenic contribution of Hg.

  3. Prostate Cancer Stem-like Cells Contribute to the Development of Castration-Resistant Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Diane Ojo

    2015-11-01

    Full Text Available Androgen deprivation therapy (ADT has been the standard care for patients with advanced prostate cancer (PC since the 1940s. Although ADT shows clear benefits for many patients, castration-resistant prostate cancer (CRPC inevitably occurs. In fact, with the two recent FDA-approved second-generation anti-androgens abiraterone and enzalutamide, resistance develops rapidly in patients with CRPC, despite their initial effectiveness. The lack of effective therapeutic solutions towards CRPC largely reflects our limited understanding of the underlying mechanisms responsible for CRPC development. While persistent androgen receptor (AR signaling under castration levels of serum testosterone (<50 ng/mL contributes to resistance to ADT, it is also clear that CRPC evolves via complex mechanisms. Nevertheless, the physiological impact of individual mechanisms and whether these mechanisms function in a cohesive manner in promoting CRPC are elusive. In spite of these uncertainties, emerging evidence supports a critical role of prostate cancer stem-like cells (PCSLCs in stimulating CRPC evolution and resistance to abiraterone and enzalutamide. In this review, we will discuss the recent evidence supporting the involvement of PCSLC in CRPC acquisition as well as the pathways and factors contributing to PCSLC expansion in response to ADT.

  4. Contributions of cell growth and biochemical reactions to nongenetic variability of cells.

    NARCIS (Netherlands)

    Schwabe, A.; Bruggeman, F.J.

    2014-01-01

    Cell-to-cell variability in the molecular composition of isogenic, steady-state growing cells arises spontaneously from the inherent stochasticity of intracellular biochemical reactions and cell growth. Here, we present a general decomposition of the total variance in the copy number per cell of a

  5. (Pre-) calibration of a Reduced Complexity Model of the Antarctic Contribution to Sea-level Changes

    Science.gov (United States)

    Ruckert, K. L.; Guan, Y.; Shaffer, G.; Forest, C. E.; Keller, K.

    2015-12-01

    (Pre-) calibration of a Reduced Complexity Model of the Antarctic Contribution to Sea-level ChangesKelsey L. Ruckert1*, Yawen Guan2, Chris E. Forest1,3,7, Gary Shaffer 4,5,6, and Klaus Keller1,7,81 Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania, USA 2 Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania, USA 3 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, USA 4 GAIA_Antarctica, University of Magallanes, Punta Arenas, Chile 5 Center for Advanced Studies in Arid Zones, La Serena, Chile 6 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark 7 Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, Pennsylvania, USA 8 Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA * Corresponding author. E-mail klr324@psu.eduUnderstanding and projecting future sea-level changes poses nontrivial challenges. Sea-level changes are driven primarily by changes in the density of seawater as well as changes in the size of glaciers and ice sheets. Previous studies have demonstrated that a key source of uncertainties surrounding sea-level projections is the response of the Antarctic ice sheet to warming temperatures. Here we calibrate a previously published and relatively simple model of the Antarctic ice sheet over a hindcast period from the last interglacial period to the present. We apply and compare a range of (pre-) calibration methods, including a Bayesian approach that accounts for heteroskedasticity. We compare the model hindcasts and projections for different levels of model complexity and calibration methods. We compare the projections with the upper bounds from previous studies and find our projections have a narrower range in 2100. Furthermore we discuss the implications for the design of climate risk management strategies.

  6. Contribution of climate-driven change in continental water storage to recent sea-level rise

    Science.gov (United States)

    Milly, P. C. D.; Cazenave, A.; Gennero, C.

    2003-01-01

    Using a global model of continental water balance, forced by interannual variations in precipitation and near-surface atmospheric temperature for the period 1981–1998, we estimate the sea-level changes associated with climate-driven changes in storage of water as snowpack, soil water, and ground water; storage in ice sheets and large lakes is not considered. The 1981–1998 trend is estimated to be 0.12 mm/yr, and substantial interannual fluctuations are inferred; for 1993–1998, the trend is 0.25 mm/yr. At the decadal time scale, the terrestrial contribution to eustatic (i.e., induced by mass exchange) sea-level rise is significantly smaller than the estimated steric (i.e., induced by density changes) trend for the same period, but is not negligibly small. In the model the sea-level rise is driven mainly by a downtrend in continental precipitation during the study period, which we believe was generated by natural variability in the climate system. PMID:14576277

  7. Can exergaming contribute to improving physical activity levels and health outcomes in children?

    Science.gov (United States)

    Daley, Amanda J

    2009-08-01

    Physical inactivity among children is a serious public health problem. It has been suggested that high levels of screen time are contributory factors that encourage sedentary lifestyles in young people. As physical inactivity and obesity levels continue to rise in young people, it has been proposed that new-generation active computer- and video-console games (otherwise known as "exergaming") may offer the opportunity to contribute to young people's energy expenditure during their free time. Although studies have produced some encouraging results regarding the energy costs involved in playing active video-console games, the energy costs of playing the authentic versions of activity-based video games are substantially larger, highlighting that active gaming is no substitute for real sports and activities. A small number of exergaming activities engage children in moderate-intensity activity, but most do not. Only 3 very small trials have considered the effects of exergaming on physical activity levels and/or other health outcomes in children. Evidence from these trials has been mixed; positive trends for improvements in some health outcomes in the intervention groups were noted in 2 trials. No adequately powered randomized, controlled trial has been published to date, and no trial has assessed the long-term impact of exergaming on children's health. We now need high-quality randomized, controlled trials to evaluate the effectiveness and sustainability of exergaming, as well as its clinical relevance; until such studies take place, we should remain cautious about its ability to positively affect children's health.

  8. Increased diacylglycerol kinase ζ expression in human metastatic colon cancer cells augments Rho GTPase activity and contributes to enhanced invasion

    International Nuclear Information System (INIS)

    Cai, Kun; Mulatz, Kirk; Ard, Ryan; Nguyen, Thanh; Gee, Stephen H

    2014-01-01

    Unraveling the signaling pathways responsible for the establishment of a metastatic phenotype in carcinoma cells is critically important for understanding the pathology of cancer. The acquisition of cell motility is a key property of metastatic tumor cells and is a prerequisite for invasion. Rho GTPases regulate actin cytoskeleton reorganization and the cellular responses required for cell motility and invasion. Diacylglycerol kinase ζ (DGKζ), an enzyme that phosphorylates diacylglycerol to yield phosphatidic acid, regulates the activity of the Rho GTPases Rac1 and RhoA. DGKζ mRNA is highly expressed in several different colon cancer cell lines, as well as in colon cancer tissue relative to normal colonic epithelium, and thus may contribute to the metastatic process. To investigate potential roles of DGKζ in cancer metastasis, a cellular, isogenic model of human colorectal cancer metastatic transition was used. DGKζ protein levels, Rac1 and RhoA activity, and PAK phosphorylation were measured in the non-metastatic SW480 adenocarcinoma cell line and its highly metastatic variant, the SW620 line. The effect of DGKζ silencing on Rho GTPase activity and invasion through Matrigel-coated Transwell inserts was studied in SW620 cells. Invasiveness was also measured in PC-3 prostate cancer and MDA-MB-231 breast cancer cells depleted of DGKζ. DGKζ protein levels were elevated approximately 3-fold in SW620 cells compared to SW480 cells. There was a concomitant increase in active Rac1 in SW620 cells, as well as substantial increases in the expression and phosphorylation of the Rac1 effector PAK1. Similarly, RhoA activity and expression were increased in SW620 cells. Knockdown of DGKζ expression in SW620 cells by shRNA-mediated silencing significantly reduced Rac1 and RhoA activity and attenuated the invasiveness of SW620 cells in vitro. DGKζ silencing in highly metastatic MDA-MB-231 breast cancer cells and PC-3 prostate cancer cells also significantly attenuated

  9. Actin and microtubule networks contribute differently to cell response for small and large strains

    Science.gov (United States)

    Kubitschke, H.; Schnauss, J.; Nnetu, K. D.; Warmt, E.; Stange, R.; Kaes, J.

    2017-09-01

    Cytoskeletal filaments provide cells with mechanical stability and organization. The main key players are actin filaments and microtubules governing a cell’s response to mechanical stimuli. We investigated the specific influences of these crucial components by deforming MCF-7 epithelial cells at small (≤5% deformation) and large strains (>5% deformation). To understand specific contributions of actin filaments and microtubules, we systematically studied cellular responses after treatment with cytoskeleton influencing drugs. Quantification with the microfluidic optical stretcher allowed capturing the relative deformation and relaxation of cells under different conditions. We separated distinctive deformational and relaxational contributions to cell mechanics for actin and microtubule networks for two orders of magnitude of drug dosages. Disrupting actin filaments via latrunculin A, for instance, revealed a strain-independent softening. Stabilizing these filaments by treatment with jasplakinolide yielded cell softening for small strains but showed no significant change at large strains. In contrast, cells treated with nocodazole to disrupt microtubules displayed a softening at large strains but remained unchanged at small strains. Stabilizing microtubules within the cells via paclitaxel revealed no significant changes for deformations at small strains, but concentration-dependent impact at large strains. This suggests that for suspended cells, the actin cortex is probed at small strains, while at larger strains; the whole cell is probed with a significant contribution from the microtubules.

  10. Measurement of Heme Synthesis Levels in Mammalian Cells.

    Science.gov (United States)

    Hooda, Jagmohan; Alam, Maksudul; Zhang, Li

    2015-07-09

    Heme serves as the prosthetic group for a wide variety of proteins known as hemoproteins, such as hemoglobin, myoglobin and cytochromes. It is involved in various molecular and cellular processes such as gene transcription, translation, cell differentiation and cell proliferation. The biosynthesis levels of heme vary across different tissues and cell types and is altered in diseased conditions such as anemia, neuropathy and cancer. This technique uses [4-(14)C] 5-aminolevulinic acid ([(14)C] 5-ALA), one of the early precursors in the heme biosynthesis pathway to measure the levels of heme synthesis in mammalian cells. This assay involves incubation of cells with [(14)C] 5-ALA followed by extraction of heme and measurement of the radioactivity incorporated into heme. This procedure is accurate and quick. This method measures the relative levels of heme biosynthesis rather than the total heme content. To demonstrate the use of this technique the levels of heme biosynthesis were measured in several mammalian cell lines.

  11. Pluripotent hybrid cells contribute to extraembryonic as well as embryonic tissues.

    Science.gov (United States)

    Do, Jeong Tae; Choi, Hyun Woo; Choi, Youngsok; Schöler, Hans R

    2011-06-01

    The restricted gene expression of a differentiated cell can be reversed by forming hybrid with embryonic stem cells (ESCs). The resulting hybrid cells showed not only an ESC-specific marker expression but also a differentiation potential similar to the pluripotent fusion partner. Here, we evaluated whether the tetraploid fusion hybrid cells have a unique differentiation potential compared with diploid pluripotent cells. The first Oct4-GFP-positive cells were observed at day 2 following fusion between ESCs and neurosphere cells (OG2(+/-)/ROSA26(+/-)). Reprogramming efficiency was as high as 94.5% at passage 5 and 96.4% at passage 13. We have found that the tetraploid hybrid cells could form chimera with contribution to placenta after blastocyst injection. This result indicates that the tetraploid pluripotent fusion hybrid cells have wide range of differentiation potential. Therefore, we suggest that once the somatic cells are reprogrammed by fusion with ESCs, the tetraploid hybrid cells contributed to the extraembryonic as well as embryonic tissues.

  12. Retinal pigment epithelial cells secrete neurotrophic factors and synthesize dopamine: possible contribution to therapeutic effects of RPE cell transplantation in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Gu Qing

    2009-06-01

    Full Text Available Abstract Background New strategies for the treatment of Parkinson's disease (PD are shifted from dopamine (DA replacement to regeneration or restoration of the nigro-striatal system. A cell therapy using human retinal pigment epithelial (RPE cells as substitution for degenerated dopaminergic (DAergic neurons has been developed and showed promising prospect in clinical treatment of PD, but the exact mechanism underlying this therapy is not fully elucidated. In the present study, we investigated whether the beneficial effects of this therapy are related to the trophic properties of RPE cells and their ability to synthesize DA. Methods We evaluated the protective effects of conditioned medium (CM from cultured RPE cells on the DAergic cells against 6-hydroxydopamine (6-OHDA- and rotenone-induced neurotoxicity and determined the levels of glial cell derived neurotrophic factor (GDNF and brain derived neurotrophic factor (BDNF released by RPE cells. We also measured the DA synthesis and release. Finally we transplanted microcarriers-RPE cells into 6-OHDA lesioned rats and observed the improvement in apomorphine-induced rotations (AIR. Results We report here: (1 CM from RPE cells can secret trophic factors GDNF and BDNF, and protect DAergic neurons against the 6-OHDA- and rotenone-induced cell injury; (2 cultured RPE cells express L-dopa decarboxylase (DDC and synthesize DA; (3 RPE cells attached to microcarriers can survive in the host striatum and improve the AIR in 6-OHDA-lesioned animal model of PD; (4 GDNF and BDNF levels are found significantly higher in the RPE cell-grafted tissues. Conclusion These findings indicate the RPE cells have the ability to secret GDNF and BDNF, and synthesize DA, which probably contribute to the therapeutic effects of RPE cell transplantation in PD.

  13. Levels of 2,3-diphosphoglycerate in Friend leukaemic cells.

    Science.gov (United States)

    Yeoh, G C

    1980-05-08

    Most cells are thought to contain trace amounts of 2,3-diphosphoglycerate (DPG), as it acts as a cofactor in the interconversion of 2-phosphoglycerate and 3-phosphoglycerate by the glycolytic enzyme phosphoglyceromutase. DPG is synthesized from 1,3-diphosphoglycerate by the action of diphosphoglycerate mutase. Lowry et al. reported levels of 29 mumol DPG per kg wet weight brain tissue which is approximately 3 pmol per 10(8) cells, assuming that 1 g of brain tissue contains 10(9) cells. In contrast, erythroid cells contain 50-100 nmol DPG per 10(8) cells, depending on the species and the stage of development. This is of the order of a 1,000-fold more DPG compared with non-erythroid cells. In red cells DPG concentration modulates the binding of oxygen to haemoglobin. I show here that erythroid precurser cells also contain markedly raised levels of DPG.

  14. Educational level and age as contributing factors to road traffic accidents

    Directory of Open Access Journals (Sweden)

    Sami Ashkan

    2013-10-01

    Full Text Available 【Abstract】Objective: This research analyzes data on road traffic accidents (RTA in Fars province, whose roads are among the highly dangerous ones in Iran. It inves- tigates educational level and age involved in RTA in order to discover patterns that can prevent or decrease accidents. Methods: This research made use of data visualization techniques to find hidden patterns. The data included mor- tality rate related to RTA in Fars province and were obtained from Fars Forensic Medicine Registry covering a period of 1 year from March 21, 2010 to March 21, 2011. All data were analyzed using SPSS 11.5. The results were reported as de- scriptive indices such as frequency (percentage. The Chi- square test was applied to the data concerning educational level and age. P value less than 0.05 was considered significant. Results: In the mentioned period, 1 831 people were killed, out of whom un/lowly educated people (69.6% ac- counted for the highest mortality rate. The significant rela- tionship between educational level and mortality rate was found (X2=275.98, P<0.0001. Also three was a significant association between age and mortality rate (X2=371.20, P<0.0001. Young people (age between 20 and 29 years contribute to higher RTA mortality rate compared with other age groups. Conclusion: The educational level and age are signifi- cantly correlated to mortality rate. The youth and un/lowly educated people suffer more fatal RTA. Key words: Accidents, traffic; Mortality; Education; Data mining; Iran

  15. Contribution of individual and environmental factors to physical activity level among Spanish adults.

    Directory of Open Access Journals (Sweden)

    José Antonio Serrano-Sanchez

    Full Text Available BACKGROUND: Lack of physical activity (PA is a major risk for chronic disease and obesity. The main aims of the present study were to identify individual and environmental factors independently associated with PA and examine the relative contribution of these factors to PA level in Spanish adults. METHODOLOGY/PRINCIPAL FINDINGS: A population-based cross-sectional sample of 3,000 adults (18-75 years old from Gran Canaria (Spain was selected using a multistage stratified random sampling method. The participants were interviewed at home using a validated questionnaire to assess PA as well as individual and environmental factors. The data were analyzed using bivariate and multivariate logistic regression. One demographic variable (education, two cognitive (self-efficacy and perceived barriers, and one social environmental (organized format were independently associated with PA in both genders. Odds ratios ranged between 1.76-2.07 in men and 1.35-2.50 in women (both p<0.05. Individual and environmental factors explained about one-third of the variance in PA level. CONCLUSIONS/SIGNIFICANCE: Self-efficacy and perceived barriers were the most significant factors to meet an adequate level of PA. The risk of insufficient PA was twofold greater in men with primary or lesser studies and who are employed. In women, living in rural environments increased the risk of insufficient PA. The promotion of organized PA may be an efficient way to increase the level of PA in the general population. Improvement in the access to sport facilities and places for PA is a prerequisite that may be insufficient and should be combined with strategies to improve self-efficacy and overcome perceived barriers in adulthood.

  16. QUANTIFYING REGIONAL SEA LEVEL RISE CONTRIBUTIONS FROM THE GREENLAND ICE SHEET

    Directory of Open Access Journals (Sweden)

    Diandong Ren

    2013-01-01

    Full Text Available This study projects the sea level contribution from the Greenland ice sheet (GrIS through to 2100, using a recently developed ice dynamics model forced by atmospheric parameters derived from three different climate models (CGCMs. The geographical pattern of the near-surface ice warming imposes a divergent flow field favoring mass loss through enhanced ice flow. The calculated average mass loss rate during the latter half of the 21st century is ~0.64±0.06 mm/year eustatic sea level rise, which is significantly larger than the IPCC AR4 estimate from surface mass balance. The difference is due largely to the positive feedbacks from reduced ice viscosity and the basal sliding mechanism present in the ice dynamics model. This inter-model, inter-scenario spread adds approximately a 20% uncertainty to the IPCC ice model estimates. The sea level rise is geographically non-uniform and reaches 1.69±0.24 mm/year by 2100 for the northeast coastal region of the United States, amplified by the expected weakening of the Atlantic meridional overturning circulation (AMOC. In contrast to previous estimates, which neglected the GrIS fresh water input, both sides of the North Atlantic Gyre are projected to experience sea level rises. The impacts on a selection of major cities on both sides of the Atlantic and in the Pacific and southern oceans also are assessed. The other ocean basins are found to be less affected than the Atlantic Ocean.

  17. A new level set model for cell image segmentation

    Science.gov (United States)

    Ma, Jing-Feng; Hou, Kai; Bao, Shang-Lian; Chen, Chun

    2011-02-01

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing.

  18. Contributions of internal climate variability to mitigation of projected future regional sea level rise

    Science.gov (United States)

    Hu, A.; Bates, S. C.

    2017-12-01

    Observations indicate that the global mean surface temperature is rising, so does the global mean sea level. Sea level rise (SLR) can impose significant impacts on island and coastal communities, especially when SLR is compounded with storm surges. Here, via analyzing results from two sets of ensemble simulations from the Community Earth System Model version 1, we investigate how the potential SLR benefits through mitigating the future emission scenarios from business as usual to a mild-mitigation over the 21st Century would be affected by internal climate variability. Results show that there is almost no SLR benefit in the near term due to the large SLR variability due to the internal ocean dynamics. However, toward the end of the 21st century, the SLR benefit can be as much as a 26±1% reduction of the global mean SLR due to seawater thermal expansion. Regionally, the benefits from this mitigation for both near and long terms are heterogeneous. They vary from just a 11±5% SLR reduction in Melbourne, Australia to a 35±6% reduction in London. The processes contributing to these regional differences are the coupling of the wind-driven ocean circulation with the decadal scale sea surface temperature mode in the Pacific and Southern Oceans, and the changes of the thermohaline circulation and the mid-latitude air-sea coupling in the Atlantic.

  19. Endotoxin levels and contribution factors of endotoxins in resident, school, and office environments - A review

    Science.gov (United States)

    Salonen, Heidi; Duchaine, Caroline; Létourneau, Valérie; Mazaheri, Mandana; Laitinen, Sirpa; Clifford, Sam; Mikkola, Raimo; Lappalainen, Sanna; Reijula, Kari; Morawska, Lidia

    2016-10-01

    As endotoxin exposure has known effects on human health, it is important to know the generally existing levels of endotoxins as well as their contributing factors. This work reviews current knowledge on the endotoxin loads in settled floor dust, concentrations of endotoxins in indoor air, and different environmental factors potentially affecting endotoxin levels. The literature review consists of peer-reviewed manuscripts located using Google and PubMed, with search terms based on individual words and combinations. References from relevant articles have also been searched. Analysis of the data showed that in residential, school, and office environments, the mean endotoxin loads in settled floor dust varied between 660 and 107,000 EU/m2, 2180 and 48,000 EU/m2, and 2700 and 12,890 EU/m2, respectively. Correspondingly, the mean endotoxin concentrations in indoor air varied between 0.04 and 1610 EU/m3 in residences, and 0.07 and 9.30 EU/m3 in schools and offices. There is strong scientific evidence indicating that age of houses (or housing unit year category), cleaning, farm or rural living, flooring materials (the presence of carpets), number of occupants, the presence of dogs or cats indoors, and relative humidity affect endotoxin loads in settled floor dust. The presence of pets (especially dogs) was extremely strongly associated with endotoxin concentrations in indoor air. However, as reviewed articles show inconsistency, additional studies on these and other possible predicting factors are needed.

  20. Probing bacterial adhesion at the single-cell level

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Müller, Torsten; Meyer, Rikke Louise

    be considered. We have developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion by force spectroscopy using atomic force microscopy (AFM). A single-cell probe was readily made by picking up a bacterial cell from a glass surface by approaching a tipless AFM...... cantilever coated with the commercial cell adhesive CellTakTM. We applied the method to study adhesion of living cells to abiotic surfaces at the single-cell level. Immobilisation of single bacterial cells to the cantilever was stable for several hours, and viability was confirmed by Live/Dead staining...... on the adhesion force, we explored the bond formation and adhesive strength of four different bacterial strains towards three abiotic substrates with variable hydrophobicity and surface roughness. The adhesion force and final rupture length were dependent on bacterial strains, surfaces properties, and time...

  1. Low Levels of IGF-1 Contribute to Alveolar Macrophage Dysfunction in Cystic Fibrosis1

    Science.gov (United States)

    Bessich, Jamie L.; Nymon, Amanda B.; Moulton, Lisa A; Dorman, Dana; Ashare, Alix

    2013-01-01

    Alveolar macrophages are major contributors to lung innate immunity. Although alveolar macrophages from CFTR−/− mice have impaired function, no study has investigated primary alveolar macrophages in adults with cystic fibrosis (CF). CF patients have low levels of insulin-like growth factor 1 (IGF-1), and our prior studies demonstrate a relationship between IGF-1 and macrophage function. We hypothesize that reduced IGF-1 in CF leads to impaired alveolar macrophage function and chronic infections. Serum and bronchoalveolar lavage (BAL) samples were obtained from 8 CF subjects and 8 healthy subjects. Macrophages were isolated from BAL fluid. We measured the ability of alveolar macrophages to kill Pseudomonas aeruginosa. Subsequently, macrophages were incubated with IGF-1 prior to inoculation with bacteria to determine the effect of IGF-1 on bacterial killing. We found a significant decrease in bacterial killing by CF alveolar macrophages compared to controls. CF subjects had lower serum and BAL IGF-1 levels compared to healthy controls. Exposure to IGF-1 enhanced alveolar macrophage macrophages in both groups. Finally, exposing healthy alveolar macrophages to CF BAL fluid decreased bacterial killing, and this was reversed by the addition of IGF-1, while IGF-1 blockade worsened bacterial killing. Our studies demonstrate that alveolar macrophage function is impaired in patients with CF. Reductions in IGF-1 levels in CF contribute to the impaired alveolar macrophage function. Exposure to IGF-1 ex vivo, results in improved function of CF alveolar macrophages. Further studies are needed to determine whether alveolar macrophage function can be enhanced in vivo with IGF-1 treatment. PMID:23698746

  2. The contribution of housing renovation to children’s blood lead levels: a cohort study

    Science.gov (United States)

    2013-01-01

    Background Routine renovation of older housing is a risk factor for childhood lead poisoning, but the contribution to children’s blood lead levels is poorly defined for children with lower exposure levels. Methods We examined a prospective cohort of 276 children followed from 6 to 24 months of age. We conducted surveys of renovation activities and residential lead hazards and obtained blood lead level (B-Pb) every six months. We analyzed B-Pb in a repeated measures design using a mixed effects linear model. Results Parent reported interior renovation ranged from 11 to 25% of housing units at the four, 6-month periods. In multivariable analysis, children whose housing underwent interior renovation had a 12% higher mean B-Pb by two years of age compared with children whose housing units were not renovated (p children in non-renovated housing, children whose housing units underwent renovation in the prior month had a 17% higher mean B-Pb at two years of age, whereas children whose housing renovation occurred in the prior 2–6 months had an 8% higher mean B-Pb. We also found an association between higher paint lead loading, measured using an X-ray fluorescence (XRF) based paint lead index, and child B-Pb (p = 0.02); for every 10 mg/cm2 increase in paint lead loading index there was a 7.5% higher mean childhood B-Pb. Conclusions In an analysis of data collected before the recent changes to Environmental Protection Agency’s Lead, Renovation, Repair and Painting Rule, routine interior housing renovation was associated with a modest increase in children’s B-Pb. These results are important for the provision of clinical advice, for housing and public health professionals, and for policymakers. PMID:23981571

  3. Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans.

    Directory of Open Access Journals (Sweden)

    Elena Sandalova

    Full Text Available Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 12 with Dengue, 12 with Influenza, 3 with Adenovirus infection and 3 with fevers of unknown etiology. Virus-specific (EBV, HCMV, Influenza pentamer+ and total CD8 T cells were analyzed for activation (CD38/HLA-DR, proliferation (Ki-67/Bcl-2(low and cytokine production. We observed that all acute viral infections trigger an expansion of activated/proliferating CD8 T cells, which differs in size depending on the infection but is invariably inflated by CD8 T cells specific for persistent herpesviruses (HCMV/EBV. CD8 T cells specific for other non-related non persistent viral infection (i.e. Influenza were not activated. IL-15, which is produced during acute viral infections, is the likely contributing mechanism driving the selective activation of herpesvirus specific CD8 T cells. In addition we were able to show that herpesvirus specific CD8 T cells displayed an increased ability to produce the anti-viral cytokine interferon-gamma during the acute phase of heterologous viral infection. Taken together, these data demonstrated that activated herpesvirus specific CD8 T cells inflate the activated/proliferating CD8 T cells population present during acute viral infections in human and can contribute to the heterologous anti-viral T cell response.

  4. Stem cell potency and the ability to contribute to chimeric organisms.

    Science.gov (United States)

    Polejaeva, Irina; Mitalipov, Shoukhrat

    2013-03-01

    Mouse embryonic chimeras are a well-established tool for studying cell lineage commitment and pluripotency. Experimental chimeras were successfully produced by combining two or more preimplantation embryos or by introducing into host embryo cultured pluripotent embryonic stem cells (ESCs). Chimera production using genetically modified ESCs became the method of choice for the generation of knockout or knockin mice. Although the derivation of ESCs or ESC-like cells has been reported for other species, only mouse and rat pluripotent stem cells have been shown to contribute to germline-competent chimeras, which is the defining feature of ESCs. Herein, we describe different approaches employed for the generation of embryonic chimeras, define chimera-competent cell types, and describe cases of spontaneous chimerism in humans. We also review the current state of derivation of pluripotent stem cells in several species and discuss outcomes of various chimera studies when such cells are used.

  5. Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue

    Science.gov (United States)

    Kopp, Hans-Georg; Ramos, Carlos A.; Rafii, Shahin

    2010-01-01

    Purpose of review During the last several years, a substantial amount of evidence from animal as well as human studies has advanced our knowledge of how bone marrow derived cells contribute to neoangiogenesis. In the light of recent findings, we may have to redefine our thinking of endothelial cells as well as of perivascular mural cells. Recent findings Inflammatory hematopoietic cells, such as macrophages, have been shown to promote neoangiogenesis during tumor growth and wound healing. Dendritic cells, B lymphocytes, monocytes, and other immune cells have also been found to be recruited to neoangiogenic niches and to support neovessel formation. These findings have led to the concept that subsets of hematopoietic cells comprise proangiogenic cells that drive adult revascularization processes. While evidence of the importance of endothelial progenitor cells in adult vasculogenesis increased further, the role of these comobilized hematopoietic cells has been intensely studied in the last few years. Summary Angiogenic factors promote mobilization of vascular endothelial growth factor receptor 1-positive hematopoietic cells through matrix metalloproteinase-9 mediated release of soluble kit-ligand and recruit these proangiogenic cells to areas of hypoxia, where perivascular mural cells present stromal-derived factor 1 (CXCL-12) as an important retention signal. The same factors are possibly involved in mobilization of vascular endothelial growth factor receptor 2-positive endothelial precursors that may participate in neovessel formation. The complete characterization of mechanisms, mediators and signaling pathways involved in these processes will provide novel targets for both anti and proangiogenic therapeutic strategies. PMID:16567962

  6. The contribution of apoptosis and necrosis in freezing injury of sea urchin embryonic cells.

    Science.gov (United States)

    Boroda, Andrey V; Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2016-08-01

    Sea urchins have recently been reported to be a promising tool for investigations of oxidative stress, UV light perturbations and senescence. However, few available data describe the pathway of cell death that occurs in sea urchin embryonic cells after cryopreservation. Our study is focused on the morphological and functional alterations that occur in cells of these animals during the induction of different cell death pathways in response to cold injury. To estimate the effect of cryopreservation on sea urchin cell cultures and identify the involved cell death pathways, we analyzed cell viability (via trypan blue exclusion test, MTT assay and DAPI staining), caspase activity (via flow cytometry and spectrophotometry), the level of apoptosis (via annexin V-FITC staining), and cell ultrastructure alterations (via transmission electron microscopy). Using general caspase detection, we found that the level of caspase activity was low in unfrozen control cells, whereas the number of apoptotic cells with activated caspases rose after freezing-thawing depending on cryoprotectants used, also as the number of dead cells and cells in a late apoptosis. The data using annexin V-binding assay revealed a very high apoptosis level in all tested samples, even in unfrozen cells (about 66%). Thus, annexin V assay appears to be unsuitable for sea urchin embryonic cells. Typical necrotic cells with damaged mitochondria were not detected after freezing in sea urchin cell cultures. Our results assume that physical cell disruption but not freezing-induced apoptosis or necrosis is the predominant reason of cell death in sea urchin cultures after freezing-thawing with any cryoprotectant combination. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Electrophysiological signals associated with fluency of different levels of processing reveal multiple contributions to recognition memory.

    Science.gov (United States)

    Li, Bingbing; Taylor, Jason R; Wang, Wei; Gao, Chuanji; Guo, Chunyan

    2017-08-01

    Processing fluency appears to influence recognition memory judgements, and the manipulation of fluency, if misattributed to an effect of prior exposure, can result in illusory memory. Although it is well established that fluency induced by masked repetition priming leads to increased familiarity, manipulations of conceptual fluency have produced conflicting results, variously affecting familiarity or recollection. Some recent studies have found that masked conceptual priming increases correct recollection (Taylor & Henson, 2012), and the magnitude of this behavioural effect correlates with analogous fMRI BOLD priming effects in brain regions associated with recollection (Taylor, Buratto, & Henson, 2013). However, the neural correlates and time-courses of masked repetition and conceptual priming were not compared directly in previous studies. The present study used event-related potentials (ERPs) to identify and compare the electrophysiological correlates of masked repetition and conceptual priming and investigate how they contribute to recognition memory. Behavioural results were consistent with previous studies: Repetition primes increased familiarity, whereas conceptual primes increased correct recollection. Masked repetition and conceptual priming also decreased the latency of late parietal component (LPC). Masked repetition priming was associated with an early P200 effect and a later parietal maximum N400 effect, whereas masked conceptual priming was only associated with a central-parietal maximum N400 effect. In addition, the topographic distributions of the N400 repetition priming and conceptual priming effects were different. These results suggest that fluency at different levels of processing is associated with different ERP components, and contributes differentially to subjective recognition memory experiences. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The contribution of Chlamydia-specific CD8⁺ T cells to upper genital tract pathology.

    Science.gov (United States)

    Vlcek, Kelly R; Li, Weidang; Manam, Srikanth; Zanotti, Brian; Nicholson, Bruce J; Ramsey, Kyle H; Murthy, Ashlesh K

    2016-02-01

    Genital chlamydial infections lead to severe upper reproductive tract pathology in a subset of untreated women. We demonstrated previously that tumor necrosis factor (TNF)-α-producing CD8(+) T cells contribute significantly to chlamydial upper genital tract pathology in female mice. In addition, we observed that minimal chlamydial oviduct pathology develops in OT-1 transgenic (OT-1) mice, wherein the CD8(+) T-cell repertoire is restricted to recognition of the ovalbumin peptide Ova(257-264), suggesting that non-Chlamydia-specific CD8(+) T cells may not be responsible for chlamydial pathogenesis. In the current study, we evaluated whether antigen-specific CD8(+) T cells mediate chlamydial pathology. Groups of wild-type (WT) C57BL/6J, OT-1 mice, and OT-1 mice replete with WT CD8(+) T cells (1 × 10(6) cells per mouse intravenously) were infected intravaginally with C. muridarum (5 × 10(4) IFU/mouse). Serum total anti-Chlamydia antibody and total splenic anti-Chlamydia interferon (IFN)-γ and TNF-α responses were comparable among the three groups of animals. However, Chlamydia-specific IFN-γ and TNF-α production from purified splenic CD8(+) T cells of OT-1 mice was minimal, whereas responses in OT-1 mice replete with WT CD8(+) T cells were comparable to those in WT animals. Vaginal chlamydial clearance was comparable between the three groups of mice. Importantly, the incidence and severity of oviduct and uterine horn pathology was significantly reduced in OT-1 mice but reverted to WT levels in OT-1 mice replete with WT CD8(+) T cells. Collectively, these results demonstrate that Chlamydia-specific CD8(+) T cells contribute significantly to upper genital tract pathology.

  9. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells

    International Nuclear Information System (INIS)

    Desai, Amar; Webb, Bryan; Gerson, Stanton L.

    2014-01-01

    Background: Radioresistance in human tumors has been linked in part to a subset of cells termed cancer stem cells (CSCs). The prominin 1 (CD133) cell surface protein is proposed to be a marker enriching for CSCs. We explore the importance of DNA repair in contributing to radioresistance in CD133+ lung cancer cells. Materials and methods: A549 and H1299 lung cancer cell lines were used. Sorted CD133+ cells were exposed to either single 4 Gy or 8 Gy doses and clonogenic survival measured. ϒ-H2AX immunofluorescence and quantitative real time PCR was performed on sorted CD133+ cells both in the absence of IR and after two single 4 Gy doses. Lentiviral shRNA was used to silence repair genes. Results: A549 but not H1299 cells expand their CD133+ population after single 4 Gy exposure, and isolated A549 CD133+ cells demonstrate IR resistance. This resistance corresponded with enhanced repair of DNA double strand breaks (DSBs) and upregulated expression of DSB repair genes in A549 cells. Prior IR exposure of two single 4 Gy doses resulted in acquired DNA repair upregulation and improved repair proficiency in both A549 and H1299. Finally Exo1 and Rad51 silencing in A549 cells abrogated the CD133+ IR expansion phenotype and induced IR sensitivity in sorted CD133+ cells. Conclusions: CD133 identifies a population of cells within specific tumor types containing altered expression of DNA repair genes that are inducible upon exposure to chemotherapy. This altered gene expression contributes to enhanced DSB resolution and the radioresistance phenotype of these cells. We also identify DNA repair genes which may serve as promising therapeutic targets to confer radiosensitivity to CSCs

  10. Contribution of Underlying Connective Tissue Cells to Taste Buds in Mouse Tongue and Soft Palate

    Science.gov (United States)

    Mederacke, Ingmar; Komatsu, Yoshihiro; Stice, Steve; Schwabe, Robert F.; Mistretta, Charlotte M.; Mishina, Yuji; Liu, Hong-Xiang

    2016-01-01

    Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC). Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5) and young postnatal (P1-10) mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT) to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1) P0-Cre/R26-tdTomato (RFP) to label NC, NC derived Schwann cells and derivatives; (2) Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3) Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III) of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC. PMID:26741369

  11. Contribution of Underlying Connective Tissue Cells to Taste Buds in Mouse Tongue and Soft Palate.

    Directory of Open Access Journals (Sweden)

    Kristin Boggs

    Full Text Available Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC. Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5 and young postnatal (P1-10 mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1 P0-Cre/R26-tdTomato (RFP to label NC, NC derived Schwann cells and derivatives; (2 Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3 Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC.

  12. Contribution of Underlying Connective Tissue Cells to Taste Buds in Mouse Tongue and Soft Palate.

    Science.gov (United States)

    Boggs, Kristin; Venkatesan, Nandakumar; Mederacke, Ingmar; Komatsu, Yoshihiro; Stice, Steve; Schwabe, Robert F; Mistretta, Charlotte M; Mishina, Yuji; Liu, Hong-Xiang

    2016-01-01

    Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC). Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5) and young postnatal (P1-10) mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT) to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1) P0-Cre/R26-tdTomato (RFP) to label NC, NC derived Schwann cells and derivatives; (2) Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3) Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III) of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC.

  13. Slow-cycling stem cells in hydra contribute to head regeneration

    Directory of Open Access Journals (Sweden)

    Niraimathi Govindasamy

    2014-11-01

    Full Text Available Adult stem cells face the challenge of maintaining tissue homeostasis by self-renewal while maintaining their proliferation potential over the lifetime of an organism. Continuous proliferation can cause genotoxic/metabolic stress that can compromise the genomic integrity of stem cells. To prevent stem cell exhaustion, highly proliferative adult tissues maintain a pool of quiescent stem cells that divide only in response to injury and thus remain protected from genotoxic stress. Hydra is a remarkable organism with highly proliferative stem cells and ability to regenerate at whole animal level. Intriguingly, hydra does not display consequences of high proliferation, such as senescence or tumour formation. In this study, we investigate if hydra harbours a pool of slow-cycling stem cells that could help prevent undesirable consequences of continuous proliferation. Hydra were pulsed with the thymidine analogue 5-ethynyl-2′-deoxyuridine (EdU and then chased in the absence of EdU to monitor the presence of EdU-retaining cells. A significant number of undifferentiated cells of all three lineages in hydra retained EdU for about 8–10 cell cycles, indicating that these cells did not enter cell cycle. These label-retaining cells were resistant to hydroxyurea treatment and were predominantly in the G2 phase of cell cycle. Most significantly, similar to mammalian quiescent stem cells, these cells rapidly entered cell division during head regeneration. This study shows for the first time that, contrary to current beliefs, cells in hydra display heterogeneity in their cell cycle potential and the slow-cycling cells in this population enter cell cycle during head regeneration. These results suggest an early evolution of slow-cycling stem cells in multicellular animals.

  14. Contribution of long-range transport to the ozone levels recorded in the Northeast of Portugal

    Science.gov (United States)

    Gama, C.; Nunes, T.; Marques, M. C.; Ferreira, F.

    2009-04-01

    levels were calculated for each cluster and the differences between the groups were validated using the Kruskal-Wallis statistical test. The results have shown a significant influence of the transport path on ozone concentrations, which is more noticeable when the probability of occurring photochemical pollution phenomena is higher. Air masses from Europe (Spain, France, United Kingdom, etc.) generally originate higher ozone levels than the ones arriving from the Atlantic Ocean. This feature shows the role of photochemical production along long-range transport phenomena, and the input of pollutants into air masses, along their path. A more detailed analysis at local/regional scale, supported mainly by an intensive field campaign performed during spring/summer of 2006 in the vicinity of Alvão Natural Park (FOTONET Project), at different altitudes, together with pollutant measurements from rural air quality stations in the north of Portugal and one from Spain (Peñausende) was carried out in order to evaluate the extension of photochemical pollution in the Northeast of Portugal. Ozone concentrations measurements in the region showed a noticeable decrease with altitude, mainly at night. In resume back trajectories based analysis has demonstrated that other countries, mainly Spain, contribute decisively to the ozone levels registered in the station used for this study. Backed on this knowledge we point out towards the need of considering common international policies when dealing with controlling ozone levels in the environment. References: Monks, P. (2000): A review of the observations and origins of the spring ozone maximum. Atmospheric Environment 34, 3545-3561. Vingarzan, R., Taylor, B. (2003): Trend analysis of ground level ozone in the greater Vancouver / Fraser Valley area of British Columbia. Atmospheric Environment 37, 2159-2171. EMPA (2008): Air mass trajectory clustering. Retrieved 01 November 2008 from: http://www.empa.ch/plugin/template/empa/*/63288/—/l=1

  15. Towards a unified estimate of arctic glaciers contribution to sea level rise since 1972.

    Science.gov (United States)

    Dehecq, A.; Gardner, A. S.; Alexandrov, O.; McMichael, S.

    2017-12-01

    Glaciers retreat contributed to about 1/3 of the observed sea level rise since 1971 (IPCC). However, long term estimates of glaciers volume changes rely on sparse field observations and region-wide satellite observations are available mostly after 2000. The recently declassified images from the reconnaissance satellite series Hexagon (KH9), that acquired 6 m resolution stereoscopic images from 1971 to 1986, open new possibilities for glaciers observation. But the film-printed images represent a processing challenge. Here we present an automatic workflow developed to generate Digital Elevation Models (DEMs) at 24 m resolution from the raw scanned KH9 images. It includes a preprocessing step to detect fiducial marks and to correct distortions of the film caused by the 40-year storage. An estimate of the unknown satellite position is obtained from a crude geolocation of the images. Each stereo image pair/triplet is then processed using the NASA Ames Stereo Pipeline to derive an unscaled DEM using standard photogrammetric techniques. This DEM is finally aligned to a reference topography, to account for errors in translation, rotation and scaling. In a second part, we present DEMs generated over glaciers in the Canadian Arctic and analyze glaciers volume changes from 1970 to the more recent WorldView ArcticDEM.

  16. Contribution of constitutively proliferating precursor cell subtypes to dentate neurogenesis after cortical infarcts

    Directory of Open Access Journals (Sweden)

    Oberland Julia

    2010-11-01

    Full Text Available Abstract Background It is well known that focal ischemia increases neurogenesis in the adult dentate gyrus of the hippocampal formation but the cellular mechanisms underlying this proliferative response are only poorly understood. We here investigated whether precursor cells which constitutively proliferate before the ischemic infarct contribute to post-ischemic neurogenesis. To this purpose, transgenic mice expressing green fluorescent protein (GFP under the control of the nestin promoter received repetitive injections of the proliferation marker bromodeoxyuridine (BrdU prior to induction of cortical infarcts. We then immunocytochemically analyzed the fate of these BrdU-positive precursor cell subtypes from day 4 to day 28 after the lesion. Results Quantification of BrdU-expressing precursor cell populations revealed no alteration in number of radial glia-like type 1 cells but a sequential increase of later precursor cell subtypes in lesioned animals (type 2a cells at day 7, type 3 cells/immature neurons at day 14. These alterations result in an enhanced survival of mature neurons 4 weeks postinfarct. Conclusions Focal cortical infarcts recruit dentate precursor cells generated already before the infarct and significantly contribute to an enhanced neurogenesis. Our findings thereby increase our understanding of the complex cellular mechanisms of postlesional neurogenesis.

  17. 5-Lipoxygenase contributes to PPARγ activation in macrophages in response to apoptotic cells.

    Science.gov (United States)

    von Knethen, Andreas; Sha, Lisa K; Kuchler, Laura; Heeg, Annika K; Fuhrmann, Dominik; Heide, Heinrich; Wittig, Ilka; Maier, Thorsten J; Steinhilber, Dieter; Brüne, Bernhard

    2013-12-01

    Macrophage polarization to an anti-inflammatory phenotype upon contact with apoptotic cells is a contributing hallmark to immune suppression during the late phase of sepsis. Although the peroxisome proliferator-activated receptor γ (PPARγ) supports this macrophage phenotype switch, it remains elusive how apoptotic cells activate PPARγ. Assuming that a molecule causing PPARγ activation in macrophages originates in the cell membrane of apoptotic cells we analyzed lipid rafts from apoptotic, necrotic, and living human Jurkat T cells which showed the presence of 5-lipoxygenase (5-LO) in lipid rafts of apoptotic cells only. Incubating macrophages with lipid rafts of apoptotic, but not necrotic or living cells, induced PPAR responsive element (PPRE)-driven mRuby reporter gene expression in RAW 264.7 macrophages stably transduced with a 4xPPRE containing vector. Experiments with lipid rafts of apoptotic murine EL4 T cells revealed similar results. To verify the involvement of 5-LO in activating PPARγ in macrophages, Jurkat T cells were incubated with the 5-LO inhibitor MK-866 prior to induction of apoptosis, which failed to induce mRuby expression. Similar results were obtained with lipid rafts of apoptotic EL4 T cells preexposed to the 5-LO inhibitors zileuton and CJ-13610. Interestingly, Jurkat T cells overexpressing 5-LO failed to activate PPARγ in macrophages, while their 5-LO overexpressing apoptotic counterparts did. Our results suggest that during apoptosis 5-LO gets associated with lipid rafts and synthesizes ligands that in turn stimulate PPARγ in macrophages. © 2013.

  18. Constraining the Antarctic contribution to global sea-level change: ANDRILL and beyond

    Science.gov (United States)

    Naish, Timothy

    2016-04-01

    Observations, models and paleoclimate reconstructions suggest that Antarctica's marine-based ice sheets behave in an unstable manner with episodes of rapid retreat in response to warming climate. Understanding the processes involved in this "marine ice sheet instability" is key for improving estimates of Antarctic ice sheet contribution to future sea-level rise. Another motivating factor is that far-field sea-level reconstructions and ice sheet models imply global mean sea level (GMSL) was up to 20m and 10m higher, respectively, compared with present day, during the interglacials of the warm Pliocene (~4-3Ma) and Late Pleistocene (at ~400ka and 125ka). This was when atmospheric CO2 was between 280 and 400ppm and global average surface temperatures were 1 to 3°C warmer, suggesting polar ice sheets are highly sensitive to relatively modest increases in climate forcing. Such magnitudes of GMSL rise not only require near complete melt of the Greenland Ice Sheet and the West Antarctic Ice Sheet, but a substantial retreat of marine-based sectors of East Antarctic Ice Sheet. Recent geological drilling initiatives on the continental margin of Antarctica from both ship- (e.g. IODP; International Ocean Discovery Program) and ice-based (e.g. ANDRILL/Antarctic Geological Drilling) platforms have provided evidence supporting retreat of marine-based ice. However, without direct access through the ice sheet to archives preserved within sub-glacial sedimentary basins, the volume and extent of ice sheet retreat during past interglacials cannot be directly constrained. Sediment cores have been successfully recovered from beneath ice shelves by the ANDRILL Program and ice streams by the WISSARD (Whillans Ice Stream Sub-glacial Access Research Drilling) Project. Together with the potential of the new RAID (Rapid Access Ice Drill) initiative, these demonstrate the technological feasibility of accessing the subglacial bed and deeper sedimentary archives. In this talk I will outline the

  19. High levels of circulating triiodothyronine induce plasma cell differentiation.

    Science.gov (United States)

    Bloise, Flavia Fonseca; Oliveira, Felipe Leite de; Nobrega, Alberto Félix; Vasconcellos, Rita; Cordeiro, Aline; Paiva, Luciana Souza de; Taub, Dennis D; Borojevic, Radovan; Pazos-Moura, Carmen Cabanelas; Mello-Coelho, Valéria de

    2014-03-01

    The effects of hyperthyroidism on B-cell physiology are still poorly known. In this study, we evaluated the influence of high-circulating levels of 3,5,3'-triiodothyronine (T3) on bone marrow, blood, and spleen B-cell subsets, more specifically on B-cell differentiation into plasma cells, in C57BL/6 mice receiving daily injections of T3 for 14 days. As analyzed by flow cytometry, T3-treated mice exhibited increased frequencies of pre-B and immature B-cells and decreased percentages of mature B-cells in the bone marrow, accompanied by an increased frequency of blood B-cells, splenic newly formed B-cells, and total CD19(+)B-cells. T3 administration also promoted an increase in the size and cellularity of the spleen as well as in the white pulp areas of the organ, as evidenced by histological analyses. In addition, a decreased frequency of splenic B220(+) cells correlating with an increased percentage of CD138(+) plasma cells was observed in the spleen and bone marrow of T3-treated mice. Using enzyme-linked immunospot assay, an increased number of splenic immunoglobulin-secreting B-cells from T3-treated mice was detected ex vivo. Similar results were observed in mice immunized with hen egg lysozyme and aluminum adjuvant alone or together with treatment with T3. In conclusion, we provide evidence that high-circulating levels of T3 stimulate plasma cytogenesis favoring an increase in plasma cells in the bone marrow, a long-lived plasma cell survival niche. These findings indicate that a stimulatory effect on plasma cell differentiation could occur in untreated patients with Graves' disease.

  20. Serum Antioxidant Vitamins Levels in Children with Sickle Cell ...

    African Journals Online (AJOL)

    Sickle cell anaemia is associated with elevated oxidative stress via increase generation of reactive oxygen species (ROS), and decline in antioxidant defences. Increased oxidative stress is thought to play a role in the development of sickle cell anaemic complications. In the current study, vitamins A, C, and E levels were ...

  1. stg fimbrial operon from S. Typhi STH2370 contributes to association and cell disruption of epithelial and macrophage-like cells.

    Science.gov (United States)

    Berrocal, Liliana; Fuentes, Juan A; Trombert, A Nicole; Jofré, Matías R; Villagra, Nicolás A; Valenzuela, Luis M; Mora, Guido C

    2015-07-07

    Salmonella enterica serovar Typhi (S. Typhi) stg operon, encoding a chaperone/usher fimbria (CU), contributes to an increased adherence to human epithelial cells. However, one report suggests that the presence of the Stg fimbria impairs the monocyte--bacteria association, as deduced by the lower level of invasion to macrophage-like cells observed when the stg fimbrial cluster was overexpressed. Nevertheless, since other CU fimbrial structures increase the entry of S. Typhi into macrophages, and considering that transcriptomic analyses revealed that stg operon is indeed expressed in macrophages, we reassessed the role of the stg operon in the interaction between S. Typhi strain STH2370 and human cells, including macrophage-like cells and mononuclear cells directly taken from human peripheral blood. We compared S. Typhi STH2370 WT, a Chilean clinical strain, and the S. Typhi STH2370 Δstg mutant with respect to association and invasion using epithelial and macrophage-like cells. We observed that deletion of stg operon reduced the association and invasion of S. Typhi, in both cellular types. The presence of the cloned stg operon restored the WT phenotype in all the cases. Moreover, we compared Salmonella enterica sv. Typhimurium 14028s (S. Typhimurium, a serovar lacking stg operon) and S. Typhimurium heterologously expressing S. Typhi stg. We found that the latter presents an increased cell disruption of polarized epithelial cells and an increased association in both epithelial and macrophage-like cells. S. Typhi stg operon encodes a functional adhesin that participates in the interaction bacteria-eukaryotic cells, including epithelial cells and macrophages-like cells. The phenotypes associated to stg operon include increased association and consequent invasion in bacteria-eukaryotic cells, and cell disruption.

  2. Memory-guided sensory comparisons in the prefrontal cortex: contribution of putative pyramidal cells and interneurons.

    Science.gov (United States)

    Hussar, Cory R; Pasternak, Tatiana

    2012-02-22

    Comparing two stimuli that occur at different times demands the coordination of bottom-up and top-down processes. It has been hypothesized that the dorsolateral prefrontal (PFC) cortex, the likely source of top-down cortical influences, plays a key role in such tasks, contributing to both maintenance and sensory comparisons. We examined this hypothesis by recording from the PFC of monkeys comparing directions of two moving stimuli, S1 and S2, separated by a memory delay. We determined the contribution of the two principal cell types to these processes by classifying neurons into broad-spiking (BS) putative pyramidal cells and narrow-spiking (NS) putative local interneurons. During the delay, BS cells were more likely to exhibit anticipatory modulation and represent the remembered direction. While this representation was transient, appearing at different times in different neurons, it weakened when direction was not task relevant, suggesting its utility. During S2, both putative cell types showed comparison-related activity modulations. These modulations were of two types, each carried by different neurons, which either preferred trials with stimuli moving in the same direction or trials with stimuli of different directions. These comparison effects were strongly correlated with choice, suggesting their role in circuitry underlying decision making. These results provide the first demonstration of distinct contributions made by principal cell types to memory-guided perceptual decisions. During sensory stimulation both cell types represent behaviorally relevant stimulus features contributing to comparison and decision-related activity. However in the absence of sensory stimulation, putative pyramidal cells dominated, carrying information about the elapsed time and the preceding direction.

  3. Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture

    OpenAIRE

    Kim, Euiseok J.; Battiste, James; Nakagawa, Yasushi; Johnson, Jane E.

    2008-01-01

    Ascl1 (previously Mash1) is a bHLH transcription factor essential for neuronal differentiation and specification in the nervous system. Although it has been studied for its role in several neural lineages, the full complement of lineages arising from Ascl1 progenitor cells remains unknown. Using an inducible Cre-flox genetic fate mapping strategy, Ascl1 lineages were determined throughout the brain. Ascl1 is present in proliferating progenitor cells but these cells are actively differentiatin...

  4. Goblet cells contribute to ocular surface immune tolerance—implications for dry eye disease

    NARCIS (Netherlands)

    Barbosa, Flavia L.; Xiao, Yangyan; Bian, Fang; Coursey, Terry G.; Ko, Byung Yi; Clevers, Hans; de Paiva, Cintia S.; Pflugfelder, Stephen C.

    2017-01-01

    Conjunctival goblet cell (GC) loss in dry eye is associated with ocular surface inflammation. This study investigated if conjunctival GCs contribute to ocular surface immune tolerance. Antigens applied to the ocular surface, imaged by confocal microscopy, passed into the conjunctival stroma through

  5. Goblet Cells Contribute to Ocular Surface Immune Tolerance-Implications for Dry Eye Disease

    NARCIS (Netherlands)

    Barbosa, Flavia L; Xiao, Yangyan; Bian, Fang; Coursey, Terry G; Ko, Byung Yi; Clevers, Hans; de Paiva, Cintia S; Pflugfelder, Stephen C

    2017-01-01

    Conjunctival goblet cell (GC) loss in dry eye is associated with ocular surface inflammation. This study investigated if conjunctival GCs contribute to ocular surface immune tolerance. Antigens applied to the ocular surface, imaged by confocal microscopy, passed into the conjunctival stroma through

  6. Modulation of TRAIL resistance in colon carcinoma cells : Different contributions of DR4 and DR5

    NARCIS (Netherlands)

    van Geelen, Caroline M. M.; Pennarun, Bodvael; Le, Phuong T. K.; de Vries, Elisabeth G. E.; de Jong, Steven

    2011-01-01

    Background: rhTRAIL is a therapeutic agent, derived from the TRAIL cytokine, which induces apoptosis in cancer cells by activating the membrane death receptors 4 and 5 (DR4 and DR5). Here, we investigated each receptor's contribution to rhTRAIL sensitivity and rhTRAIL resistance. We assessed whether

  7. Contribution of T cell-mediated immunity to the resistance to staphlococcal infection

    International Nuclear Information System (INIS)

    Tsuda, S.; Sasai, Y.; Minami, K.; Nomoto, K.

    1978-01-01

    Abscess formation in nude mice after subcutaneous inoculation of Staphylococcus aureus (S. aureus) was more extensive and prolonged as compared with that in phenotypically normal littermates. Abscess formation in nude mice was augmented markedly by whole-body irradiation. Not only T cell-mediated immunity but also radiosensitive, nonimmune phagocytosis appear to contribute to the resistance against staphylococcal infection

  8. Anode Supported Solid Oxide Fuel Cells - Deconvolution of Degradation into Cathode and Anode Contributions

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus

    2007-01-01

    The degradation of anode supported cells was studied over 1500 h as function of cell polarization either in air or oxygen on the cathode. Based on impedance analysis, contributions of anode and cathode to the increase of total resistance were assigned. Accordingly, the degradation rates...... of the cathode were strongly dependent on the pO(2); they were significantly smaller when testing in oxygen compared to air. Microstructural analysis of the cathode/electrolyte interface of a not-tested reference cell carried out after removal of the cathode showed sharp craters on the electrolyte surface where...

  9. Interallelic class switch recombination contributes significantly to class switching in mouse B cells.

    Science.gov (United States)

    Reynaud, Stéphane; Delpy, Laurent; Fleury, Laurence; Dougier, Hei-Lanne; Sirac, Christophe; Cogné, Michel

    2005-05-15

    Except for the expression of IgM and IgD, DNA recombination is constantly needed for the expression of other Ig classes and subclasses. The predominant path of class switch recombination (CSR) is intrachromosomal, and the looping-out and deletion model has been abundantly documented. However, switch regions also occasionally constitute convenient substrates for interchromosomal recombination, since it is noticeably the case in a number of chromosomal translocations causing oncogene deregulation in the course of lymphoma and myeloma. Although asymmetric accessibility of Ig alleles should theoretically limit its occurrence, interallelic CSR was shown to occur at low levels during IgA switching in rabbit, where the definition of allotypes within both V and C regions helped identify interchromosomally derived Ig. Thus, we wished to evaluate precisely interallelic CSR frequency in mouse B cells, by using a system in which only one allele (of b allotype) could express a functional VDJ region, whereas only interallelic CSR could restore expression of an excluded (a allotype) allele. In our study, we show that interchromosomal recombination of V(H) and Cgamma or Calpha occurs in vivo in B cells at a frequency that makes a significant contribution to physiological class switching: trans-association of V(H) and C(H) genes accounted for 7% of all alpha mRNA, and this frequency was about twice higher for the gamma3 transcripts, despite the much shorter distance between the J(H) region and the Cgamma3 gene, thus confirming that this phenomenon corresponded to site-specific switching and not to random recombination between long homologous loci.

  10. Polyploidization and cell fusion contribute to wound healing in the adult Drosophila epithelium.

    Science.gov (United States)

    Losick, Vicki P; Fox, Donald T; Spradling, Allan C

    2013-11-18

    Reestablishing epithelial integrity and biosynthetic capacity is critically important following tissue damage. The adult Drosophila abdominal epithelium provides an attractive new system to address how postmitotic diploid cells contribute to repair. Puncture wounds to the adult Drosophila epidermis close initially by forming a melanized scab. We found that epithelial cells near the wound site fuse to form a giant syncytium, which sends lamellae under the scab to re-epithelialize the damaged site. Other large cells arise more peripherally by initiating endocycles and becoming polyploid, or by cell fusion. Rac GTPase activity is needed for syncytium formation, while the Hippo signaling effector Yorkie modulates both polyploidization and cell fusion. Large cell formation is functionally important because when both polyploidization and fusion are blocked, wounds do not re-epithelialize. Our observations indicate that cell mass lost upon wounding can be replaced by polyploidization instead of mitotic proliferation. We propose that large cells generated by polyploidization or cell fusion are essential because they are better able than diploid cells to mechanically stabilize wounds, especially those containing permanent acellular structures, such as scar tissue. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Dietary fat and corticosterone levels are contributing factors to meal anticipation.

    Science.gov (United States)

    Namvar, Sara; Gyte, Amy; Denn, Mark; Leighton, Brendan; Piggins, Hugh D

    2016-04-15

    Daily restricted access to food leads to the development of food anticipatory activity and metabolism, which depends upon an as yet unidentified food-entrainable oscillator(s). A premeal anticipatory peak in circulating hormones, including corticosterone is also elicited by daily restricted feeding. High-fat feeding is associated with elevated levels of corticosterone with disrupted circadian rhythms and a failure to develop robust meal anticipation. It is not clear whether the disrupted corticosterone rhythm, resulting from high-fat feeding contributes to attenuated meal anticipation in high-fat fed rats. Our aim was to better characterize meal anticipation in rats fed a low- or high-fat diet, and to better understand the role of corticosterone in this process. To this end, we utilized behavioral observations, hypothalamic c-Fos expression, and indirect calorimetry to assess meal entrainment. We also used the glucocorticoid receptor antagonist, RU486, to dissect out the role of corticosterone in meal anticipation in rats given daily access to a meal with different fat content. Restricted access to a low-fat diet led to robust meal anticipation, as well as entrainment of hypothalamic c-Fos expression, metabolism, and circulating corticosterone. These measures were significantly attenuated in response to a high-fat diet, and animals on this diet exhibited a postanticipatory rise in corticosterone. Interestingly, antagonism of glucocorticoid activity using RU486 attenuated meal anticipation in low-fat fed rats, but promoted meal anticipation in high-fat-fed rats. These findings suggest an important role for corticosterone in the regulation of meal anticipation in a manner dependent upon dietary fat content. Copyright © 2016 the American Physiological Society.

  12. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction

    Science.gov (United States)

    Ivins, Erik R.; James, Thomas S.; Wahr, John; Schrama, Ernst J. O.; Landerer, Felix W.; Simon, Karen M.

    2013-06-01

    Antarctic volume changes during the past 21 thousand years are smaller than previously thought, and here we construct an ice sheet history that drives a forward model prediction of the glacial isostatic adjustment (GIA) gravity signal. The new model, in turn, should give predictions that are constrained with recent uplift data. The impact of the GIA signal on a Gravity Recovery and Climate Experiment (GRACE) Antarctic mass balance estimate depends on the specific GRACE analysis method used. For the method described in this paper, the GIA contribution to the apparent surface mass change is re-evaluated to be +55±13 Gt/yr by considering a revised ice history model and a parameter search for vertical motion predictions that best fit the GPS observations at 18 high-quality stations. Although the GIA model spans a range of possible Earth rheological structure values, the data are not yet sufficient for solving for a preferred value of upper and lower mantle viscosity nor for a preferred lithospheric thickness. GRACE monthly solutions from the Center for Space Research Release 04 (CSR-RL04) release time series from January 2003 to the beginning of January 2012, uncorrected for GIA, yield an ice mass rate of +2.9± 29 Gt/yr. The new GIA correction increases the solved-for ice mass imbalance of Antarctica to -57±34 Gt/yr. The revised GIA correction is smaller than past GRACE estimates by about 50 to 90 Gt/yr. The new upper bound to the sea level rise from the Antarctic ice sheet, averaged over the time span 2003.0-2012.0, is about 0.16±0.09 mm/yr.

  13. Variation in APOL1 Contributes to Ancestry-Level Differences in HDLc-Kidney Function Association

    Directory of Open Access Journals (Sweden)

    Amy Rebecca Bentley

    2012-01-01

    Full Text Available Low levels of high-density cholesterol (HDLc accompany chronic kidney disease, but the association between HDLc and the estimated glomerular filtration rate (eGFR in the general population is unclear. We investigated the HDLc-eGFR association in nondiabetic Han Chinese (HC, n=1100, West Africans (WA, n=1497, and African Americans (AA, n=1539. There were significant differences by ancestry: HDLc was positively associated with eGFR in HC (β=0.13, P<0.0001, but negatively associated among African ancestry populations (WA: −0.19, P<0.0001; AA: −0.09, P=0.02. These differences were also seen in nationally-representative NHANES data (among European Americans: 0.09, P=0.005; among African Americans −0.14, P=0.03. To further explore the findings in African ancestry populations, we investigated the role of an African ancestry-specific nephropathy risk variant, rs73885319, in the gene encoding HDL-associated APOL1. Among AA, an inverse HDLc-eGFR association was observed only with the risk genotype (−0.38 versus 0.001; P=0.03. This interaction was not seen in WA. In summary, counter to expectation, an inverse HDLc-eGFR association was observed among those of African ancestry. Given the APOL1 × HDLc interaction among AA, genetic factors may contribute to this paradoxical association. Notably, these findings suggest that the unexplained mechanism by which APOL1 affects kidney-disease risk may involve HDLc.

  14. Elevated level of polysaccharides in a high level UV-B tolerant cell ...

    African Journals Online (AJOL)

    Jane

    2011-04-26

    Apr 26, 2011 ... A cell line of Bupleurum scorzonerifolium Willd with high level ... mechanisms to repair UV-induced damages via repairing ... for treatment or prevention of solar radiation. ..... working as both UV-B absorbing compounds and.

  15. Elevated β-catenin activity contributes to carboplatin resistance in A2780cp ovarian cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Barghout, Samir H. [Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB (Canada); Zepeda, Nubia; Xu, Zhihua [Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB (Canada); Steed, Helen [Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB (Canada); Lee, Cheng-Han [Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB (Canada); Fu, YangXin, E-mail: yangxin@ualberta.ca [Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB (Canada); Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB (Canada)

    2015-12-04

    Ovarian cancer is the fifth leading cause of cancer-related mortalities in women. Epithelial ovarian cancer (EOC) represents approximately 90% of all ovarian malignancies. Most EOC patients are diagnosed at advanced stages and current chemotherapy regimens are ineffective against advanced EOC due to the development of chemoresistance. It is important to better understand the molecular mechanisms underlying acquired resistance to effectively manage this disease. In this study, we examined the expression of the Wnt/β-catenin signaling components in the paired cisplatin-sensitive (A2780s) and cisplatin-resistant (A2780cp) EOC cell lines. Our results showed that several negative regulators of Wnt signaling are downregulated, whereas a few Wnt ligands and known Wnt/β-catenin target genes are upregulated in A2780cp cells compared to A2780s cells, suggesting that Wnt/β-catenin signaling is more active in A2780cp cells. Further analysis revealed nuclear localization of β-catenin and higher β-catenin transcriptional activity in A2780cp cells compared to A2780s cells. Finally, we demonstrated that chemical inhibition of β-catenin transcriptional activity by its inhibitor CCT036477 sensitized A2780cp cells to carboplatin, supporting a role for β-catenin in carboplatin resistance in A2780cp cells. In conclusion, our data suggest that increased Wnt/β-catenin signaling activity contributes to carboplatin resistance in A2780cp cells. - Highlights: • Wnt ligands and target genes are upregulated in cisplatin resistant A2780cp cells. • Negative regulators of Wnt signaling are down-regulated in A2780cp cells. • β-catenin transcriptional activity is higher in A2780cp cells compared to A2780s cells. • Inhibition of β-catenin activity increases carboplatin cytotoxicity in A2780cp cells.

  16. Elevated β-catenin activity contributes to carboplatin resistance in A2780cp ovarian cancer cells

    International Nuclear Information System (INIS)

    Barghout, Samir H.; Zepeda, Nubia; Xu, Zhihua; Steed, Helen; Lee, Cheng-Han; Fu, YangXin

    2015-01-01

    Ovarian cancer is the fifth leading cause of cancer-related mortalities in women. Epithelial ovarian cancer (EOC) represents approximately 90% of all ovarian malignancies. Most EOC patients are diagnosed at advanced stages and current chemotherapy regimens are ineffective against advanced EOC due to the development of chemoresistance. It is important to better understand the molecular mechanisms underlying acquired resistance to effectively manage this disease. In this study, we examined the expression of the Wnt/β-catenin signaling components in the paired cisplatin-sensitive (A2780s) and cisplatin-resistant (A2780cp) EOC cell lines. Our results showed that several negative regulators of Wnt signaling are downregulated, whereas a few Wnt ligands and known Wnt/β-catenin target genes are upregulated in A2780cp cells compared to A2780s cells, suggesting that Wnt/β-catenin signaling is more active in A2780cp cells. Further analysis revealed nuclear localization of β-catenin and higher β-catenin transcriptional activity in A2780cp cells compared to A2780s cells. Finally, we demonstrated that chemical inhibition of β-catenin transcriptional activity by its inhibitor CCT036477 sensitized A2780cp cells to carboplatin, supporting a role for β-catenin in carboplatin resistance in A2780cp cells. In conclusion, our data suggest that increased Wnt/β-catenin signaling activity contributes to carboplatin resistance in A2780cp cells. - Highlights: • Wnt ligands and target genes are upregulated in cisplatin resistant A2780cp cells. • Negative regulators of Wnt signaling are down-regulated in A2780cp cells. • β-catenin transcriptional activity is higher in A2780cp cells compared to A2780s cells. • Inhibition of β-catenin activity increases carboplatin cytotoxicity in A2780cp cells.

  17. Cisplatin-induced mesenchymal stromal cells-mediated mechanism contributing to decreased antitumor effect in breast cancer cells.

    Science.gov (United States)

    Skolekova, Svetlana; Matuskova, Miroslava; Bohac, Martin; Toro, Lenka; Durinikova, Erika; Tyciakova, Silvia; Demkova, Lucia; Gursky, Jan; Kucerova, Lucia

    2016-01-12

    Cells of the tumor microenvironment are recognized as important determinants of the tumor biology. The adjacent non-malignant cells can regulate drug responses of the cancer cells by secreted paracrine factors and direct interactions with tumor cells. Human mesenchymal stromal cells (MSC) actively contribute to tumor microenvironment. Here we focused on their response to chemotherapy as during the treatment these cells become affected. We have shown that the secretory phenotype and behavior of mesenchymal stromal cells influenced by cisplatin differs from the naïve MSC. MSC were more resistant to the concentrations of cisplatin, which was cytotoxic for tumor cells. They did not undergo apoptosis, but a part of MSC population underwent senescence. However, MSC pretreatment with cisplatin led to changes in phosphorylation profiles of many kinases and also increased secretion of IL-6 and IL-8 cytokines. These changes in cytokine and phosphorylation profile of MSC led to increased chemoresistance and stemness of breast cancer cells. Taken together here we suggest that the exposure of the chemoresistant cells in the tumor microenvironment leads to substantial alterations and might lead to promotion of acquired microenvironment-mediated chemoresistance and stemness.

  18. Hematopoietic stem cell mobilization therapy accelerates recovery of renal function independent of stem cell contribution

    NARCIS (Netherlands)

    Stokman, Geurt; Leemans, Jaklien C.; Claessen, Nike; Weening, Jan J.; Florquin, Sandrine

    2005-01-01

    Acute renal failure and tubular cell loss as a result of ischemia constitute major challenges in renal pathophysiology. Increasing evidence suggests important roles for bone marrow stem cells in the regeneration of renal tissue after injury. This study investigated whether the enhanced availability

  19. Lymphotoxin organizes contributions to host defense and metabolic illness from innate lymphoid cells.

    Science.gov (United States)

    Upadhyay, Vaibhav; Fu, Yang-Xin

    2014-04-01

    The lymphotoxin (LT)-pathway is a unique constituent branch of the Tumor Necrosis Superfamily (TNFSF). Use of LT is a critical mechanism by which fetal innate lymphoid cells regulate lymphoid organogenesis. Within recent years, adult innate lymphoid cells have been discovered to utilize this same pathway to regulate IL-22 and IL-23 production for host defense. Notably, genetic studies have linked polymorphisms in the genes encoding LTα to several phenotypes contributing to metabolic syndrome. The role of the LT-pathway may lay the foundation for a bridge between host immune response, microbiota, and metabolic syndrome. The contribution of the LT-pathway to innate lymphoid cell function and metabolic syndrome will be visited in this review. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. An inverse switch in DNA base excision and strand break repair contributes to melphalan resistance in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Mirta M L Sousa

    Full Text Available Alterations in checkpoint and DNA repair pathways may provide adaptive mechanisms contributing to acquired drug resistance. Here, we investigated the levels of proteins mediating DNA damage signaling and -repair in RPMI8226 multiple myeloma cells and its Melphalan-resistant derivative 8226-LR5. We observed markedly reduced steady-state levels of DNA glycosylases UNG2, NEIL1 and MPG in the resistant cells and cross-resistance to agents inducing their respective DNA base lesions. Conversely, repair of alkali-labile sites was apparently enhanced in the resistant cells, as substantiated by alkaline comet assay, autoribosylation of PARP-1, and increased sensitivity to PARP-1 inhibition by 4-AN or KU58684. Reduced base-excision and enhanced single-strand break repair would both contribute to the observed reduction in genomic alkali-labile sites, which could jeopardize productive processing of the more cytotoxic Melphalan-induced interstrand DNA crosslinks (ICLs. Furthermore, we found a marked upregulation of proteins in the non-homologous end-joining (NHEJ pathway of double-strand break (DSB repair, likely contributing to the observed increase in DSB repair kinetics in the resistant cells. Finally, we observed apparent upregulation of ATR-signaling and downregulation of ATM-signaling in the resistant cells. This was accompanied by markedly increased sensitivity towards Melphalan in the presence of ATR-, DNA-PK, or CHK1/2 inhibitors whereas no sensitizing effect was observed subsequent to ATM inhibition, suggesting that replication blocking lesions are primary triggers of the DNA damage response in the Melphalan resistant cells. In conclusion, Melphalan resistance is apparently contributed by modulation of the DNA damage response at multiple levels, including downregulation of specific repair pathways to avoid repair intermediates that could impair efficient processing of cytotoxic ICLs and ICL-induced DSBs. This study has revealed several novel

  1. Dermal exposure to jet fuel JP-8 significantly contributes to the production of urinary naphthols in fuel-cell maintenance workers.

    Science.gov (United States)

    Chao, Yi-Chun E; Kupper, Lawrence L; Serdar, Berrin; Egeghy, Peter P; Rappaport, Stephen M; Nylander-French, Leena A

    2006-02-01

    Jet propulsion fuel 8 (JP-8) is the major jet fuel used worldwide and has been recognized as a major source of chemical exposure, both inhalation and dermal, for fuel-cell maintenance workers. We investigated the contributions of dermal and inhalation exposure to JP-8 to the total body dose of U.S. Air Force fuel-cell maintenance workers using naphthalene as a surrogate for JP-8 exposure. Dermal, breathing zone, and exhaled breath measurements of naphthalene were obtained using tape-strip sampling, passive monitoring, and glass bulbs, respectively. Levels of urinary 1- and 2-naphthols were determined in urine samples and used as biomarkers of JP-8 exposure. Multiple linear regression analyses were conducted to investigate the relative contributions of dermal and inhalation exposure to JP-8, and demographic and work-related covariates, to the levels of urinary naphthols. Our results show that both inhalation exposure and smoking significantly contributed to urinary 1-naphthol levels. The contribution of dermal exposure was significantly associated with levels of urinary 2-naphthol but not with urinary 1-naphthol among fuel-cell maintenance workers who wore supplied-air respirators. We conclude that dermal exposure to JP-8 significantly contributes to the systemic dose and affects the levels of urinary naphthalene metabolites. Future work on dermal xenobiotic metabolism and toxicokinetic studies are warranted in order to gain additional knowledge on naphthalene metabolism in the skin and the contribution to systemic exposure.

  2. A new level set model for cell image segmentation

    International Nuclear Information System (INIS)

    Ma Jing-Feng; Chen Chun; Hou Kai; Bao Shang-Lian

    2011-01-01

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing. (cross-disciplinary physics and related areas of science and technology)

  3. [Investigation of neural stem cell-derived donor contribution in the inner ear following blastocyst injection].

    Science.gov (United States)

    Volkenstein, S; Brors, D; Hansen, S; Mlynski, R; Dinger, T C; Müller, A M; Dazert, S

    2008-03-01

    Utilising the enormous proliferation and multi-lineage differentiation potentials of somatic stem cells represents a possible therapeutical strategy for diseases of non-regenerative tissues like the inner ear. In the current study, the possibility of murine neural stem cells to contribute to the developing inner ear following blastocyst injection was investigated. Fetal brain-derived neural stem cells from the embryonic day 14 cortex of male mice were isolated and expanded for four weeks in neurobasal media supplemented with bFGF and EGF. Neural stem cells of male animals were harvested, injected into blastocysts and the blastocysts were transferred into pseudo-pregnant foster animals. Each blastocyst was injected with 5-15 microspheres growing from single cell suspension from neurospheres dissociated the day before. The resulting mice were investigated six months POST PARTUM for the presence of donor cells. Brainstem evoked response audiometry (BERA) was performed in six animals. To visualize donor cells Lac-Z staining was performed on sliced cochleas of two animals. In addition, the cochleas of four female animals were isolated and genomic DNA of the entire cochlea was analyzed for donor contribution by Y-chromosome-specific PCR. All animals had normal thresholds in brainstem evoked response audiometry. The male-specific PCR product indicating the presence of male donor cells were detected in the cochleas of three of the four female animals investigated. In two animals, male donor cells were detected unilateral, in one animal bilateral. The results suggest that descendants of neural stem cells are detectable in the inner ear after injection into blastocysts and possess the ability to integrate into the developing inner ear without obvious loss in hearing function.

  4. Pericytes and endothelial precursor cells: cellular interactions and contributions to malignancy.

    Science.gov (United States)

    Bagley, Rebecca G; Weber, William; Rouleau, Cecile; Teicher, Beverly A

    2005-11-01

    Tumor vasculature is irregular, abnormal, and essential for tumor growth. Pericytes and endothelial precursor cells (EPC) contribute to the formation of blood vessels under angiogenic conditions. As primary cells in culture, pericytes and EPC share many properties such as tube/network formation and response to kinase inhibitors selective for angiogenic pathways. Expression of cell surface proteins including platelet-derived growth factor receptor, vascular cell adhesion molecule, intercellular adhesion molecule, CD105, desmin, and neural growth proteoglycan 2 was similar between pericytes and EPC, whereas expression of P1H12 and lymphocyte function-associated antigen-1 clearly differentiates the cell types. Further distinction was observed in the molecular profiles for expression of angiogenic genes. Pericytes or EPC enhanced the invasion of MDA-MB-231 breast cancer cells in a coculture assay system. The s.c. coinjection of live pericytes or EPC along with MDA-MB-231 cells resulted in an increased rate of tumor growth compared with coinjection of irradiated pericytes or EPC. Microvessel density analysis indicated there was no difference in MDA-MB-231 tumors with or without EPC or pericytes. However, immunohistochemical staining of vasculature suggested that EPC and pericytes may stabilize or normalize vasculature rather than initiate vasculogenesis. In addition, tumors arising from the coinjection of EPC and cancer cells were more likely to develop lymphatic vessels. These results support the notion that pericytes and EPC contribute to malignancy and that these cell types can be useful as cell-based models for tumor vascular development and selection of agents that may provide therapeutic benefit.

  5. Integrin and glycocalyx mediated contributions to cell adhesion identified by single cell force spectroscopy

    International Nuclear Information System (INIS)

    Boettiger, D; Wehrle-Haller, B

    2010-01-01

    The measurement of cell adhesion using single cell force spectroscopy methods was compared with earlier methods for measuring cell adhesion. This comparison provided a means and rationale for separating components of the measurement retract curve that were due to interactions between the substrate and the glycocalyx, and interactions that were due to cell surface integrins binding to a substrate-bound ligand. The glycocalyx adhesion was characterized by multiple jumps with dispersed jump sizes that extended from 5 to 30 μm from the origin. The integrin mediated adhesion was represented by the F max (maximum detachment force), was generally within the first 5 μm and commonly detached with a single rupture cascade. The integrin peak (F max ) increases with time and the rate of increase shows large cell to cell variability with a peak ∼ 50 nN s -1 and an average rate of increase of 75 pN s -1 . This is a measure of the rate of increase in the number of adhesive integrin-ligand bonds/cell as a function of contact time.

  6. The relative contribution of mannose salvage pathways to glycosylation in PMI-deficient mouse embryonic fibroblast cells.

    Science.gov (United States)

    Fujita, Naonobu; Tamura, Ayako; Higashidani, Aya; Tonozuka, Takashi; Freeze, Hudson H; Nishikawa, Atsushi

    2008-02-01

    Mannose for mammalian glycan biosynthesis can be imported directly from the medium, derived from glucose or salvaged from endogenous or external glycans. All pathways must generate mannose 6-phosphate, the activated form of mannose. Imported or salvaged mannose is directly phosphorylated by hexokinase, whereas fructose 6-phosphate from glucose is converted to mannose 6-phosphate by phosphomannose isomerase (PMI). Normally, PMI provides the majority of mannose for glycan synthesis. To assess the contribution of PMI-independent pathways, we used PMI-null fibroblasts to study N-glycosylation of DNase I, a highly sensitive indicator protein. In PMI-null cells, imported mannose and salvaged mannose make a significant contribution to N-glycosylation. When these cells were grown in mannose-free medium along with the mannosidase inhibitor, swainsonine, to block the salvage pathways, N-glycosylation of DNase I was almost completely eliminated. Adding approximately 13 microm mannose to the medium completely restored normal glycosylation. Treatment with bafilomycin A(1), an inhibitor of lysosomal acidification, also markedly reduced N-glycosylation of DNase I, but in this case only 8 microm mannose was required to restore full glycosylation, indicating that a nonlysosomal source of mannose made a significant contribution. Glycosylation levels were greatly also reduced in glycoconjugate-free medium, when endosomal membrane trafficking was blocked by expression of a mutant SKD1. From these data, we conclude that PMI-null cells can salvage mannose from both endogenous and external glycoconjugates via lysosomal and nonlysosomal degradation pathways.

  7. High epitope expression levels increase competition between T cells.

    Directory of Open Access Journals (Sweden)

    Almut Scherer

    2006-08-01

    Full Text Available Both theoretical predictions and experimental findings suggest that T cell populations can compete with each other. There is some debate on whether T cells compete for aspecific stimuli, such as access to the surface on antigen-presenting cells (APCs or for specific stimuli, such as their cognate epitope ligand. We have developed an individual-based computer simulation model to study T cell competition. Our model shows that the expression level of foreign epitopes per APC determines whether T cell competition is mainly for specific or aspecific stimuli. Under low epitope expression, competition is mainly for the specific epitope stimuli, and, hence, different epitope-specific T cell populations coexist readily. However, if epitope expression levels are high, aspecific competition becomes more important. Such between-specificity competition can lead to competitive exclusion between different epitope-specific T cell populations. Our model allows us to delineate the circumstances that facilitate coexistence of T cells of different epitope specificity. Understanding mechanisms of T cell coexistence has important practical implications for immune therapies that require a broad immune response.

  8. Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level

    Directory of Open Access Journals (Sweden)

    Derbyshire Paul

    2007-06-01

    Full Text Available Abstract Background Cell elongation is mainly limited by the extensibility of the cell wall. Dicotyledonous primary (growing cell walls contain cellulose, xyloglucan, pectin and proteins, but little is known about how each polymer class contributes to the cell wall mechanical properties that control extensibility. Results We present evidence that the degree of pectin methyl-esterification (DE% limits cell growth, and that a minimum level of about 60% DE is required for normal cell elongation in Arabidopsis hypocotyls. When the average DE% falls below this level, as in two gibberellic acid (GA mutants ga1-3 and gai, and plants expressing pectin methyl-esterase (PME1 from Aspergillus aculeatus, then hypocotyl elongation is reduced. Conclusion Low average levels of pectin DE% are associated with reduced cell elongation, implicating PMEs, the enzymes that regulate DE%, in the cell elongation process and in responses to GA. At high average DE% other components of the cell wall limit GA-induced growth.

  9. Intrinsic MYH7 expression regulation contributes to tissue level allelic imbalance in hypertrophic cardiomyopathy.

    Science.gov (United States)

    Montag, Judith; Syring, Mandy; Rose, Julia; Weber, Anna-Lena; Ernstberger, Pia; Mayer, Anne-Kathrin; Becker, Edgar; Keyser, Britta; Dos Remedios, Cristobal; Perrot, Andreas; van der Velden, Jolanda; Francino, Antonio; Navarro-Lopez, Francesco; Ho, Carolyn Yung; Brenner, Bernhard; Kraft, Theresia

    2017-08-01

    HCM, the most common inherited cardiac disease, is mainly caused by mutations in sarcomeric genes. More than a third of the patients are heterozygous for mutations in the MYH7 gene encoding for the β-myosin heavy chain. In HCM-patients, expression of the mutant and the wildtype allele can be unequal, thus leading to fractions of mutant and wildtype mRNA and protein which deviate from 1:1. This so-called allelic imbalance was detected in whole tissue samples but also in individual cells. There is evidence that the severity of HCM not only depends on the functional effect of the mutation itself, but also on the fraction of mutant protein in the myocardial tissue. Allelic imbalance has been shown to occur in a broad range of genes. Therefore, we aimed to examine whether the MYH7-alleles are intrinsically expressed imbalanced or whether the allelic imbalance is solely associated with the disease. We compared the expression of MYH7-alleles in non-HCM donors and in HCM-patients with different MYH7-missense mutations. In the HCM-patients, we identified imbalanced as well as equal expression of both alleles. Also at the protein level, allelic imbalance was determined. Most interestingly, we also discovered allelic imbalance and balance in non-HCM donors. Our findings therefore strongly indicate that apart from mutation-specific mechanisms, also non-HCM associated allelic-mRNA expression regulation may account for the allelic imbalance of the MYH7 gene in HCM-patients. Since the relative amount of mutant mRNA and protein or the extent of allelic imbalance has been associated with the severity of HCM, individual analysis of the MYH7-allelic expression may provide valuable information for the prognosis of each patient.

  10. High glucose contributes to the proliferation and migration of non-small cell lung cancer cells via GAS5-TRIB3 axis.

    Science.gov (United States)

    Ding, Cheng-Zhi; Guo, Xu-Feng; Wang, Guo-Lei; Wang, Hong-Tao; Xu, Guang-Hui; Liu, Yuan-Yuan; Wu, Zhen-Jiang; Chen, Yu-Hang; Wang, Jiao; Wang, Wen-Guang

    2018-01-24

    Despite the growing number of studies exhibited an association of diabetes mellitus (DM) and lung cancer progression, the concrete mechanism of DM aggravating lung cancer has not been elucidated. This study was to investigate whether and how high glucose (HG) contribute to the proliferation and migration of non-small cell lung cancer (NSCLC) cells in vitro. In the present study, we confirmed that HG promoted the proliferation and migration of NSCLC cells, and also induced an anti-apoptosis effect on NSCLC cells. Moreover, HG inhibited the expression of GAS5 in NSCLC cells but elevated the protein level of TRIB3. GAS5 overexpression promoted the degradation of TRIB3 protein by ubiquitination and inhibited the HG induced-proliferation, anti-apoptosis and migration of NSCLC cells. Importantly, TRIB3 overexpression reversed the effects of GAS5 on the HG-treated NSCLC cells. Taken together, down-regulated GAS5 by HG significantly enhanced the proliferation, anti-apoptosis and migration in NSCLC cells through TRIB3, thus promoting the carcinogenesis of NSCLC. ©2018 The Author(s).

  11. Psoriatic T cells reduce epidermal turnover time and affect cell proliferation contributed from differential gene expression.

    Science.gov (United States)

    Li, Junqin; Li, Xinhua; Hou, Ruixia; Liu, Ruifeng; Zhao, Xincheng; Dong, Feng; Wang, Chunfang; Yin, Guohua; Zhang, Kaiming

    2015-09-01

    Psoriasis is mediated primarily by T cells, which reduce epidermal turnover time and affect keratinocyte proliferation. We aimed to identify differentially expressed genes (DEG) in T cells from normal, five pairs of monozygotic twins concordant or discordant for psoriasis, to determine whether these DEG may account for the influence to epidermal turnover time and keratinocyte proliferation. The impact of T cells on keratinocyte proliferation and epidermal turnover time were investigated separately by immunohistochemistry and cultured with (3) H-TdR. mRNA expression patterns were investigated by RNA sequencing and verified by real-time reverse transcription polymerase chain reaction. After co-culture with psoriatic T cells, the expression of Ki-67, c-Myc and p53 increased, while expression of Bcl-2 and epidermal turnover time decreased. There were 14 DEG which were found to participate in the regulation of cell proliferation or differentiation. Psoriatic T cells exhibited the ability to decrease epidermal turnover time and affect keratinocyte proliferation because of the differential expression of PPIL1, HSPH1, SENP3, NUP54, FABP5, PLEKHG3, SLC9A9 and CHCHD4. © 2015 Japanese Dermatological Association.

  12. Complex T Cell Interactions Contribute to Helicobacter pylori Gastritis in Mice

    Science.gov (United States)

    Gray, Brian M.; Fontaine, Clinton A.; Poe, Sara A.

    2013-01-01

    Disease due to the gastric pathogen Helicobacter pylori varies in severity from asymptomatic to peptic ulcer disease and cancer. Accumulating evidence suggests that one source of this variation is an abnormal host response. The goal of this study was to use a mouse model of H. pylori gastritis to investigate the roles of regulatory T cells (Treg) as well as proinflammatory T cells (Th1 and Th17) in gastritis, gastric T cell engraftment, and gastric cytokine production. Our results support published data indicating that severe gastritis in T cell recipient mice is due to failure of Treg engraftment, that Treg ameliorate gastritis, and that the proinflammatory response is attributable to interactions between several cell subsets and cytokines. We confirmed that gamma interferon (IFN-γ) is essential for induction of gastritis but showed that IFN-γ-producing CD4 T cells are not necessary. Interleukin 17A (IL-17A) also contributed to gastritis, but to a lesser extent than IFN-γ. Tumor necrosis factor alpha (TNF-α) and IL-17F were also elevated in association with disease. These results indicate that while H. pylori-specific CD4+ T cells and IFN-γ are both essential for induction of gastritis due to H. pylori, IFN-γ production by T cells is not essential. It is likely that other proinflammatory cytokines, such as IL-17F and TNF-α, shown to be elevated in this model, also contribute to the induction of disease. We suggest that gastritis due to H. pylori is associated with loss of immunoregulation and alteration of several cytokines and cell subsets and cannot be attributed to a single immune pathway. PMID:23264048

  13. EGFR is not a major driver for osteosarcoma cell growth in vitro but contributes to starvation and chemotherapy resistance.

    Science.gov (United States)

    Sevelda, Florian; Mayr, Lisa; Kubista, Bernd; Lötsch, Daniela; van Schoonhoven, Sushilla; Windhager, Reinhard; Pirker, Christine; Micksche, Michael; Berger, Walter

    2015-11-02

    Enhanced signalling via the epidermal growth factor receptor (EGFR) is a hallmark of multiple human carcinomas. However, in recent years data have accumulated that EGFR might also be hyperactivated in human sarcomas. Aim of this study was to investigate the influence of EGFR inhibition on cell viability and its interaction with chemotherapy response in osteosarcoma cell lines. We have investigated a panel of human osteosarcoma cell lines regarding EGFR expression and downstream signalling. To test its potential applicability as therapeutic target, inhibition of EGFR by gefitinib was combined with osteosarcoma chemotherapeutics and cell viability, migration, and cell death assays were performed. Osteosarcoma cells expressed distinctly differing levels of functional EGFR reaching in some cases high amounts. Functionality of EGFR in osteosarcoma cells was proven by EGF-mediated activation of both MAPK and PI3K/AKT pathway (determined by phosphorylation of ERK1/2, AKT, S6, and GSK3β). The EGFR-specific inhibitor gefitinib blocked EGF-mediated downstream signal activation. At standard in vitro culture conditions, clinically achievable gefitinib doses demonstrated only limited cytotoxic activity, however, significantly reduced long-term colony formation and cell migration. In contrast, under serum-starvation conditions active gefitinib doses were distinctly reduced while EGF promoted starvation survival. Importantly, gefitinib significantly supported the anti-osteosarcoma activities of doxorubicin and methotrexate regarding cell survival and migratory potential. Our data suggest that EGFR is not a major driver for osteosarcoma cell growth but contributes to starvation- and chemotherapy-induced stress survival. Consequently, combination approaches including EGFR inhibitors should be evaluated for treatment of high-grade osteosarcoma patients.

  14. Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility.

    LENUS (Irish Health Repository)

    O'Dushlaine, C

    2011-03-01

    Susceptibility to schizophrenia and bipolar disorder may involve a substantial, shared contribution from thousands of common genetic variants, each of small effect. Identifying whether risk variants map to specific molecular pathways is potentially biologically informative. We report a molecular pathway analysis using the single-nucleotide polymorphism (SNP) ratio test, which compares the ratio of nominally significant (P<0.05) to nonsignificant SNPs in a given pathway to identify the \\'enrichment\\' for association signals. We applied this approach to the discovery (the International Schizophrenia Consortium (n=6909)) and validation (Genetic Association Information Network (n=2729)) of schizophrenia genome-wide association study (GWAS) data sets. We investigated each of the 212 experimentally validated pathways described in the Kyoto Encyclopaedia of Genes and Genomes in the discovery sample. Nominally significant pathways were tested in the validation sample, and five pathways were found to be significant (P=0.03-0.001); only the cell adhesion molecule (CAM) pathway withstood conservative correction for multiple testing. Interestingly, this pathway was also significantly associated with bipolar disorder (Wellcome Trust Case Control Consortium (n=4847)) (P=0.01). At a gene level, CAM genes associated in all three samples (NRXN1 and CNTNAP2), which were previously implicated in specific language disorder, autism and schizophrenia. The CAM pathway functions in neuronal cell adhesion, which is critical for synaptic formation and normal cell signaling. Similar pathways have also emerged from a pathway analysis of autism, suggesting that mechanisms involved in neuronal cell adhesion may contribute broadly to neurodevelopmental psychiatric phenotypes.

  15. Hepatic stellate cells secreted hepatocyte growth factor contributes to the chemoresistance of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Guofeng Yu

    Full Text Available As the main source of extracellular matrix proteins in tumor stroma, hepatic stellate cells (HSCs have a great impact on biological behaviors of hepatocellular carcinoma (HCC. In the present study, we have investigated a mechanism whereby HSCs modulate the chemoresistance of hepatoma cells. We used human HSC line lx-2 and chemotherapeutic agent cisplatin to investigate their effects on human HCC cell line Hep3B. The results showed that cisplatin resistance in Hep3B cells was enhanced with LX-2 CM (cultured medium exposure in vitro as well as co-injection with LX-2 cells in null mice. Meanwhile, in presence of LX-2 CM, Hep3B cells underwent epithelial to mesenchymal transition (EMT and upregulation of cancer stem cell (CSC -like properties. Besides, LX-2 cells synthesized and secreted hepatic growth factor (HGF into the CM. HGF receptor tyrosine kinase mesenchymal-epithelial transition factor (Met was activated in Hep3B cells after LX-2 CM exposure. The HGF level of LX-2 CM could be effectively reduced by using HGF neutralizing antibody. Furthermore, depletion of HGF in LX-2 CM abolished its effects on activation of Met as well as promotion of the EMT, CSC-like features and cisplatin resistance in Hep3B cells. Collectively, secreting HGF into tumor milieu, HSCs may decrease hepatoma cells sensitization to chemotherapeutic agents by promoting EMT and CSC-like features via HGF/Met signaling.

  16. Ezrin dephosphorylation/downregulation contributes to ursolic acid-mediated cell death in human leukemia cells

    International Nuclear Information System (INIS)

    Li, G; Zhou, T; Liu, L; Chen, J; Zhao, Z; Peng, Y; Li, P; Gao, N

    2013-01-01

    Ezrin links the actin filaments with the cell membrane and has a functional role in the apoptotic process. It appears clear that ezrin is directly associated with Fas, leading to activation of caspase cascade and cell death. However, the exact role of ezrin in ursolic acid (UA)-induced apoptosis remains unclear. In this study, we show for the first time that UA induces apoptosis in both transformed and primary leukemia cells through dephosphorylation/downregulation of ezrin, association and polarized colocalization of Fas and ezrin, as well as formation of death-inducing signaling complex. These events are dependent on Rho-ROCK1 signaling pathway. Knockdown of ezrin enhanced cell death mediated by UA, whereas overexpression of ezrin attenuated UA-induced apoptosis. Our in vivo study also showed that UA-mediated inhibition of tumor growth of mouse leukemia xenograft model is in association with the dephosphorylation/downregulation of ezrin. Such findings suggest that the cytoskeletal protein ezrin may represent an attractive target for UA-mediated lethality in human leukemia cells

  17. Stromal cell contributions to the homeostasis and functionality of the immune system.

    Science.gov (United States)

    Mueller, Scott N; Germain, Ronald N

    2009-09-01

    A defining characteristic of the immune system is the constant movement of many of its constituent cells through the secondary lymphoid tissues, mainly the spleen and lymph nodes, where crucial interactions that underlie homeostatic regulation, peripheral tolerance and the effective development of adaptive immune responses take place. What has only recently been recognized is the role that non-haematopoietic stromal elements have in many aspects of immune cell migration, activation and survival. In this Review, we summarize our current understanding of lymphoid compartment stromal cells, examine their possible heterogeneity, discuss how these cells contribute to immune homeostasis and the efficient initiation of adaptive immune responses, and highlight how targeting of these elements by some pathogens can influence the host immune response.

  18. Deformation-driven, lethal damage to cancer cells. Its contribution to metastatic inefficiency.

    Science.gov (United States)

    Weiss, L

    1991-04-01

    Direct and indirect, in vivo and in vitro observations are in accord with the hypothesis that as a consequence of their deformation within capillaries, cancer cells undergo sphere-to-cylinder shape-transformations that create a demand for increased surface area. When this demand cannot be met by apparent increases in surface area accomplished by nonlethal, surface "unfolding," the cell surface membrane is stretched; if expansion results in more than a 4% increase in true surface area, the membrane ruptures, resulting in cancer cell death. It is suggested that this deformation-driven process is an important factor in accounting for the rapid death of circulating cancer cells that have been trapped in the microvasculature. Therefore, this mechanism is thought to make a significant contribution to metastatic inefficiency by acting as a potent rate-regulator for hematogenous metastasis.

  19. Towards Deciphering the Hidden Mechanisms That Contribute to the Antigenic Activation Process of Human Vγ9Vδ2 T Cells

    Directory of Open Access Journals (Sweden)

    Lola Boutin

    2018-04-01

    Full Text Available Vγ9Vδ2 T cells represent a major unconventional γδ T cell subset located in the peripheral blood of adults in humans and several non-human primates. Lymphocytes that constitute this transitional subset can sense subtle level changes of intracellular phosphorylated intermediates of the isoprenoid biosynthesis pathway (phosphoantigens, pAg, such as isopentenyl pyrophosphate, during cell stress events. This unique antigenic activation process operates in a rigorous framework that requires the expression of butyrophilin 3A1 (BTN3A1/CD277 molecules, which are type I glycoproteins that belong to the B7 family. Several studies have further shown that pAg specifically bind to the intracellular B30.2 domain of BTN3A1 linked to the antigenic activation of Vγ9Vδ2 T cells. Here, we highlight the recent advances in BTN3A1 dynamics induced upon the binding of pAg and the contribution of the different subunits to this activation process. Recent reports support that conformational modifications of BTN3A1 might represent a key step in the detection of infection or tumorigenesis by Vγ9Vδ2 T cells. A better understanding of this mechanism will help optimize novel immunotherapeutical approaches that target defined functions of this unique γδ T cell subset.

  20. The contribution of cell-cell signaling and motility to bacterial biofilm formation

    DEFF Research Database (Denmark)

    Shrout, Joshua D; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    Many bacteria grow attached to a surface as biofilms. Several factors dictate biofilm formation, including responses by the colonizing bacteria to their environment. Here we review how bacteria use cell-cell signaling (also called quorum sensing) and motility during biofilm formation. Specifically...... gene expression important to the production of polysaccharides, rhamnolipid, and other virulence factors. Surface motility affects the assembly and architecture of biofilms, and some aspects of motility are also influenced by quorum sensing. While some genes and their function are specific to P....... aeruginosa, many aspects of biofilm development can be used as a model system to understand how bacteria differentially colonize surfaces....

  1. How to Draw Energy Level Diagrams in Excitonic Solar Cells.

    Science.gov (United States)

    Zhu, X-Y

    2014-07-03

    Emerging photovoltaic devices based on molecular and nanomaterials are mostly excitonic in nature. The initial absorption of a photon in these materials creates an exciton that can subsequently dissociate in each material or at their interfaces to give charge carriers. Any attempt at mechanistic understanding of excitonic solar cells must start with drawing energy level diagrams. This seemingly elementary exercise, which is described in textbooks for inorganic solar cells, has turned out to be a difficult subject in the literature. The problem stems from conceptual confusion of single-particle energy with quasi-particle energy and the misleading practice of mixing the two on the same energy level diagram. Here, I discuss how to draw physically accurate energy diagrams in excitonic solar cells using only single-particle energies (ionization potentials and electron affinities) of both ground and optically excited states. I will briefly discuss current understanding on the electronic energy landscape responsible for efficient charge separation in excitonic solar cells.

  2. The contribution to distribution network fault levels from the connection of distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This report summarises the findings of a study investigating the potential impact of distributed generation (DG) on the UK distribution network fault levels up to the year 2010, and examining ways of managing the fault levels so that they do not become a barrier to increased penetration of DG. The project focuses on the circumstances and scenarios that give rise to the fault levels. The background to the study is traced, and a technical review is presented covering the relationship between DG and fault levels, and the likely impact in the period to 2010. Options for managing increased fault levels, and fault level management and costs are outlined, and a case study is given. The measurement and calculation of fault level values are described along with constraints to DG penetration due to fault level limitations, characteristics of DG machines, and long term perspectives to 2020-2030.

  3. Sea-level changes on multiple spatial scales: estimates and contributing processes

    NARCIS (Netherlands)

    Frederikse, T.

    2018-01-01

    Being one of the major consequences of anthropogenic climate change, sea level rise forms a threat for many coastal areas and their inhabitants. Because all processes that cause sea-level changes have a spatially-varying fingerprint, local sea-level changes deviate substantially from the global

  4. Mast cell repopulation of the peritoneal cavity: contribution of mast cell progenitors versus bone marrow derived committed mast cell precursors

    Directory of Open Access Journals (Sweden)

    Pastor Maria

    2010-06-01

    Full Text Available Abstract Background Mast cells have recently gained new importance as immunoregulatory cells that are involved in numerous pathological processes. One result of these processes is an increase in mast cell numbers at peripheral sites. This study was undertaken to determine the mast cell response in the peritoneal cavity and bone marrow during repopulation of the peritoneal cavity in rats. Results Two mast cell specific antibodies, mAb AA4 and mAb BGD6, were used to distinguish the committed mast cell precursor from more mature mast cells. The peritoneal cavity was depleted of mast cells using distilled water. Twelve hours after distilled water injection, very immature mast cells could be isolated from the blood and by 48 hours were present in the peritoneal cavity. At this same time the percentage of mast cells in mitosis increased fourfold. Mast cell depletion of the peritoneal cavity also reduced the total number of mast cells in the bone marrow, but increased the number of mast cell committed precursors. Conclusions In response to mast cell depletion of the peritoneal cavity, a mast cell progenitor is released into the circulation and participates in repopulation of the peritoneal cavity, while the committed mast cell precursor is retained in the bone marrow.

  5. Postnatal Sonic hedgehog (Shh) responsive cells give rise to oligodendrocyte lineage cells during myelination and in adulthood contribute to remyelination.

    Science.gov (United States)

    Sanchez, Maria A; Armstrong, Regina C

    2018-01-01

    Sonic hedgehog (Shh) regulates a wave of oligodendrocyte production for extensive myelination during postnatal development. During this postnatal period of oligodendrogenesis, we fate-labeled cells exhibiting active Shh signaling to examine their contribution to the regenerative response during remyelination. Bitransgenic mouse lines were generated for induced genetic fate-labeling of cells actively transcribing Shh or Gli1. Gli1 transcription is an effective readout for canonical Shh signaling. Shh CreERT2 mice and Gli1 CreERT2 mice were crossed to either R26 tdTomato mice to label cells with red fluorescence, or, R26 IAP mice to label membranes with alkaline phosphatase. When tamoxifen (TMX) was given on postnatal days 6-9 (P6-9), Shh ligand synthesis was prevalent in neurons of Shh CreERT2 ; R26 tdTomato mice and Shh CreERT2 ;R26 IAP mice. In Gli1 CreERT2 crosses, TMX from P6-9 detected Gli1 transcription in cells that populated the corpus callosum (CC) during postnatal myelination. Delaying TMX to P14-17, after the peak of oligodendrogenesis, significantly reduced labeling of Shh synthesizing neurons and Gli1 expressing cells in the CC. Importantly, Gli1 CreERT2 ;R26 tdTomato mice given TMX from P6-9 showed Gli1 fate-labeled cells in the adult (P56) CC, including cycling progenitor cells identified by EdU incorporation and NG2 immunolabeling. Furthermore, after cuprizone demyelination of the adult CC, Gli1 fate-labeled cells incorporated EdU and were immunolabeled by NG2 early during remyelination while forming myelin-like membranes after longer periods for remyelination to progress. These studies reveal a postnatal cell population with transient Shh signaling that contributes to oligodendrogenesis during CC myelination, and gives rise to cells that continue to proliferate in adulthood and contribute to CC remyelination. Published by Elsevier Inc.

  6. Observations on the contributions of environmental restraints and innate stem cell ability to hematopoietic regeneration

    International Nuclear Information System (INIS)

    Duke-Cohan, J.S.

    1988-01-01

    A competitive repopulation assay utilizing chromosome markers was used to assay the reconstituting potential of hematopoietic populations. The test populations consisted of tibial murine marrow locally irradiated with doses ranging from 1.5 Gy to 8.5 Gy and of marrow generated from either murine splenic or marrow stem cells. The purpose of this assay was to assess the innate proliferative potential and microenvironmental influences on the ability to repopulate. Regardless of origin, spleen repopulating ability consistently agreed with spleen colony-forming unit (CFU-s) content. Doses of radiation from 5 Gy to 8.5 Gy diminished, by a factor of 2, the ability to repopulate marrow despite maintenance of CFU-s levels. Marrow generated from splenic stem cells had one-fifth the repopulating ability of marrow derived from marrow stem cells, even though CFU-s levels were equivalent. The results imply that the splenic environment can only maintain stem cells at the level of the CFU-s, even if the stem cells were originally of higher quality, and that their original potential cannot be regained in a marrow environment. Nevertheless, the marrow can maintain more primitive stem cells, but this reserve is drained to support CFU-s levels

  7. Cyclic mechanical stretch contributes to network development of osteocyte-like cells with morphological change and autophagy promotion but without preferential cell alignment in rat.

    Science.gov (United States)

    Inaba, Nao; Kuroshima, Shinichiro; Uto, Yusuke; Sasaki, Muneteru; Sawase, Takashi

    2017-09-01

    Osteocytes play important roles in controlling bone quality as well as preferential alignment of biological apatite c -axis/collagen fibers. However, the relationship between osteocytes and mechanical stress remains unclear due to the difficulty of three-dimensional (3D) culture of osteocytes in vitro . The aim of this study was to investigate the effect of cyclic mechanical stretch on 3D-cultured osteocyte-like cells. Osteocyte-like cells were established using rat calvarial osteoblasts cultured in a 3D culture system. Cyclic mechanical stretch (8% amplitude at a rate of 2 cycles min -1 ) was applied for 24, 48 and 96 consecutive hours. Morphology, cell number and preferential cell alignment were evaluated. Apoptosis- and autophagy-related gene expression levels were measured using quantitative PCR. 3D-cultured osteoblasts became osteocyte-like cells that expressed osteocyte-specific genes such as Dmp1 , Cx43 , Sost , Fgf23 and RANKL , with morphological changes similar to osteocytes. Cell number was significantly decreased in a time-dependent manner under non-loaded conditions, whereas cyclic mechanical stretch significantly prevented decreased cell numbers with increased expression of anti-apoptosis-related genes. Moreover, cyclic mechanical stretch significantly decreased cell size and ellipticity with increased expression of autophagy-related genes, LC3b and atg7 . Interestingly, preferential cell alignment did not occur, irrespective of mechanical stretch. These findings suggest that an anti-apoptotic effect contributes to network development of osteocyte-like cells under loaded condition. Spherical change of osteocyte-like cells induced by mechanical stretch may be associated with autophagy upregulation. Preferential alignment of osteocytes induced by mechanical load in vivo may be partially predetermined before osteoblasts differentiate into osteocytes and embed into bone matrix.

  8. Transgenic cells with increased plastoquinone levels and methods of use

    Energy Technology Data Exchange (ETDEWEB)

    Sayre, Richard T.; Subramanian, Sowmya; Cahoon, Edgar

    2016-12-27

    Disclosed herein are transgenic cells expressing a heterologous nucleic acid encoding a prephenate dehydrogenase (PDH) protein, a heterologous nucleic acid encoding a homogentisate solanesyl transferase (HST) protein, a heterologous nucleic acid encoding a deoxyxylulose phosphate synthase (DXS) protein, or a combination of two or more thereof. In particular examples, the disclosed transgenic cells have increased plastoquinone levels. Also disclosed are methods of increasing cell growth rates or production of biomass by cultivating transgenic cells expressing a heterologous nucleic acid encoding a PDH protein, a heterologous nucleic acid encoding an HST protein, a heterologous nucleic acid encoding a DXS protein, or a combination of two or more thereof under conditions sufficient to produce cell growth or biomass.

  9. Inflammatory cytokines and hypoxia contribute to 18F-FDG uptake by cells involved in pannus formation in rheumatoid arthritis.

    Science.gov (United States)

    Matsui, Tamiko; Nakata, Norihito; Nagai, Shigenori; Nakatani, Akira; Takahashi, Miwako; Momose, Toshimitsu; Ohtomo, Kuni; Koyasu, Shigeo

    2009-06-01

    Assessment of the activity of rheumatoid arthritis (RA) is important for the prediction of future articular destruction. (18)F-FDG PET is known to represent the metabolic activity of inflammatory disease, which correlates with the pannus volume measured by MRI or ultrasonography. To evaluate the correlation between (18)F-FDG accumulation and RA pathology, we assessed (18)F-FDG accumulation in vivo using collagen-induced arthritis (CIA) animal models and (3)H-FDG uptake in vitro using various cells involved in arthritis. (18)F-FDG PET images of rats with CIA were acquired on days 10, 14, and 17 after arthritis induction. The specimens were subsequently subjected to macroautoradiography, and the (18)F-FDG accumulation was compared with the histologic findings. (3)H-FDG uptake in vitro in inflammatory cells (neutrophils, macrophages, T cells, and fibroblasts) was measured to evaluate the contributions of these cells to (18)F-FDG accumulation. In addition, the influence on (3)H-FDG uptake of inflammatory factors, such as cytokines (tumor necrosis factor alpha [TNFalpha], interleukin 1 [IL-1], and IL-6), and hypoxia was examined. (18)F-FDG PET depicted swollen joints, and (18)F-FDG accumulation increased with the progression of arthritis. Histologically, a higher level of (18)F-FDG accumulation correlated with the pannus rather than the infiltration of inflammatory cells around the joints. In the in vitro (3)H-FDG uptake assay, fibroblasts showed the highest (3)H-FDG uptake, followed by neutrophils. Although only a small amount of (3)H-FDG was incorporated by resting macrophages, a dramatic increase in (3)H-FDG uptake in both fibroblasts and macrophages was observed when these cells were exposed to inflammatory cytokines, such as TNFalpha and IL-1, and hypoxia. Although neutrophils showed relatively high (3)H-FDG uptake without activation, no increase in (3)H-FDG uptake was observed in response to inflammatory cytokines. (3)H-FDG uptake by T cells was much lower than

  10. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Atsushi [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Kurisaki, Tomohiro [Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Sato, Satoshi B. [Research Center for Low Temperature and Material Sciences, Kyoto University, Yoshida-honmachi, Kyoto 606-8501 (Japan); Kobayashi, Toshihide [Lipid Biology Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Kondoh, Gen [Laboratory of Animal Experiments for Regeneration, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Hashimoto, Naohiro, E-mail: nao@nils.go.jp [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan)

    2009-10-15

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, {beta}-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  11. EEVD motif of heat shock cognate protein 70 contributes to bacterial uptake by trophoblast giant cells

    Directory of Open Access Journals (Sweden)

    Kim Suk

    2009-12-01

    Full Text Available Abstract Background The uptake of abortion-inducing pathogens by trophoblast giant (TG cells is a key event in infectious abortion. However, little is known about phagocytic functions of TG cells against the pathogens. Here we show that heat shock cognate protein 70 (Hsc70 contributes to bacterial uptake by TG cells and the EEVD motif of Hsc70 plays an important role in this. Methods Brucella abortus and Listeria monocytogenes were used as the bacterial antigen in this study. Recombinant proteins containing tetratricopeptide repeat (TPR domains were constructed and confirmation of the binding capacity to Hsc70 was assessed by ELISA. The recombinant TPR proteins were used for investigation of the effect of TPR proteins on bacterial uptake by TG cells and on pregnancy in mice. Results The monoclonal antibody that inhibits bacterial uptake by TG cells reacted with the EEVD motif of Hsc70. Bacterial TPR proteins bound to the C-terminal of Hsc70 through its EEVD motif and this binding inhibited bacterial uptake by TG cells. Infectious abortion was also prevented by blocking the EEVD motif of Hsc70. Conclusions Our results demonstrate that surface located Hsc70 on TG cells mediates the uptake of pathogenic bacteria and proteins containing the TPR domain inhibit the function of Hsc70 by binding to its EEVD motif. These molecules may be useful in the development of methods for preventing infectious abortion.

  12. HIF1 Contributes to Hypoxia-Induced Pancreatic Cancer Cells Invasion via Promoting QSOX1 Expression

    Directory of Open Access Journals (Sweden)

    Chen-Ye Shi

    2013-08-01

    Full Text Available Background: Quiescin sulfhydryl oxidase 1 (QSOX1, which oxidizes sulfhydryl groups to form disulfide bonds in proteins, is found to be over-expressed in various pancreatic cancer cell lines and patients. QSOX1 promotes invasion of pancreatic cancer cells by activating MMP-2 and MMP-9. However, its regulatory mechanism remains largely undefined. Methods: Real-time PCR and Western blot were employed to detect the expression of QSOX1 in human pancreatic cancer cell lines under hypoxic condition. Luciferase reporter and ChIP assays were used to assess the regulation of QSOX1 by hypoxia-inducible factor 1 (HIF-1. Small interfering RNA (siRNA was applied to knock down endogenous expression of QSOX1. Matrigel-coated invasion chamber essays were conducted to detect the invasion capacity of QSOX1-depleted cells. Results: Both hypoxia and hypoxia mimicking reagent up-regulated the expression of QSOX1 in human pancreatic cancer cell lines. Knockdown of HIF-1α eliminated hypoxia induced QSOX1 expression. HIF-1α was found directly bound to two hypoxia-response elements (HRE of QSOX1 gene, both of which were required for HIF-1 induced QSOX1 expression. Moreover, QSOX1 silencing blocked hypoxia-induced pancreatic cancer cells invasion. Conclusion: QSOX1 is a direct target of HIF-1 and may contribute to hypoxia-induced pancreatic cancer cells invasion.

  13. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    International Nuclear Information System (INIS)

    Mukai, Atsushi; Kurisaki, Tomohiro; Sato, Satoshi B.; Kobayashi, Toshihide; Kondoh, Gen; Hashimoto, Naohiro

    2009-01-01

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, β-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  14. Localized decrease of β-catenin contributes to the differentiation of human embryonic stem cells

    International Nuclear Information System (INIS)

    Lam, Hayley; Patel, Shyam; Wong, Janelle; Chu, Julia; Li, Adrian; Li, Song

    2008-01-01

    Human embryonic stem cells (hESC) are pluripotent, and can be directed to differentiate into different cell types for therapeutic applications. To expand hESCs, it is desirable to maintain hESC growth without differentiation. As hESC colonies grow, differentiated cells are often found at the periphery of the colonies, but the underlying mechanism is not well understood. Here, we utilized micropatterning techniques to pattern circular islands or strips of matrix proteins, and examined the spatial pattern of hESC renewal and differentiation. We found that micropatterned matrix restricted hESC differentiation at colony periphery but allowed hESC growth into multiple layers in the central region, which decreased hESC proliferation and induced hESC differentiation. In undifferentiated hESCs, β-catenin primarily localized at cell-cell junctions but not in the nucleus. The amount of β-catenin in differentiating hESCs at the periphery of colonies or in multiple layers decreased significantly at cell-cell junctions. Consistently, knocking down β-catenin decreased Oct-4 expression in hESCs. These results indicate that localized decrease of β-catenin contributes to the spatial pattern of differentiation in hESC colonies

  15. Calvarial Suture-Derived Stem Cells and Their Contribution to Cranial Bone Repair

    Directory of Open Access Journals (Sweden)

    Daniel H. Doro

    2017-11-01

    Full Text Available In addition to the natural turnover during life, the bones in the skeleton possess the ability to self-repair in response to injury or disease-related bone loss. Based on studies of bone defect models, both processes are largely supported by resident stem cells. In the long bones, the source of skeletal stem cells has been widely investigated over the years, where the major stem cell population is thought to reside in the perivascular niche of the bone marrow. In contrast, we have very limited knowledge about the stem cells contributing to the repair of calvarial bones. In fact, until recently, the presence of specific stem cells in adult craniofacial bones was uncertain. These flat bones are mainly formed via intramembranous rather than endochondral ossification and thus contain minimal bone marrow space. It has been previously proposed that the overlying periosteum and underlying dura mater provide osteoprogenitors for calvarial bone repair. Nonetheless, recent studies have identified a major stem cell population within the suture mesenchyme with multiple differentiation abilities and intrinsic reparative potential. Here we provide an updated review of calvarial stem cells and potential mechanisms of regulation in the context of skull injury repair.

  16. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity.

    Science.gov (United States)

    Chaillou, Thomas; Lanner, Johanna T

    2016-12-01

    Reduced oxygen (O 2 ) levels (hypoxia) are present during embryogenesis and exposure to altitude and in pathologic conditions. During embryogenesis, myogenic progenitor cells reside in a hypoxic microenvironment, which may regulate their activity. Satellite cells are myogenic progenitor cells localized in a local environment, suggesting that the O 2 level could affect their activity during muscle regeneration. In this review, we present the idea that O 2 levels regulate myogenesis and muscle regeneration, we elucidate the molecular mechanisms underlying myogenesis and muscle regeneration in hypoxia and depict therapeutic strategies using changes in O 2 levels to promote muscle regeneration. Severe hypoxia (≤1% O 2 ) appears detrimental for myogenic differentiation in vitro, whereas a 3-6% O 2 level could promote myogenesis. Hypoxia impairs the regenerative capacity of injured muscles. Although it remains to be explored, hypoxia may contribute to the muscle damage observed in patients with pathologies associated with hypoxia (chronic obstructive pulmonary disease, and peripheral arterial disease). Hypoxia affects satellite cell activity and myogenesis through mechanisms dependent and independent of hypoxia-inducible factor-1α. Finally, hyperbaric oxygen therapy and transplantation of hypoxia-conditioned myoblasts are beneficial procedures to enhance muscle regeneration in animals. These therapies may be clinically relevant to treatment of patients with severe muscle damage.-Chaillou, T. Lanner, J. T. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. © FASEB.

  17. A descriptive study of noise in the neonatal intensive care unit: ambient levels and perceptions of contributing factors.

    Science.gov (United States)

    Darcy, Ashley E; Hancock, Lauren E; Ware, Emily J

    2008-10-01

    To examine the baseline acoustic environment in several mid-Atlantic region neonatal intensive care units (NICUs) and investigate the perceived factors contributing to noise levels in these NICUs. Quantitative data were collected from 3 urban, mid-Atlantic level IIIB and level IIIC NICUs. Qualitative data were collected via interview from 2 RNs employed in each of the study NICUs. This was an exploratory descriptive study utilizing a mixed-methods approach. A quantitative method was used for sound-level data collection, and a qualitative method was utilized during interviews with nurses to examine perceptions of factors contributing to noise. Ambient sound levels, measured in decibels, were taken at 5-minute intervals over a 2-hour period during both day and night shifts in a central location at each NICU. In addition, nurses were interviewed using a standardized interview questionnaire, and these interviews were then reviewed to determine themes regarding perceived factors contributing to sound levels. Hourly mean sound levels in each NICU ranged from 53.9 dB to 60.6 dB, with no statistically significant difference between noise levels recorded on day shift versus night shift, and no statistically significant difference among sites. Qualitative data showed that nurses' believed day shift to be louder than night shift and many perceived their own NICU as "pretty quiet." Key contributing factors to increased sound levels were stated as monitors or alarms, performing invasive procedures, presence of family, nurses or doctors giving report or rounds, and ringing phones. Noise levels were found to be above the American Academy of Pediatrics-recommended 45-dB level and often louder than the 50-dB level, which should not be exceeded more than 10% of the time. The recommended impulse maximum of 65 dB was also exceeded. Environmental Protection Agency recommendations for hospitals include sound levels no louder than 35 dB on night shift; this standard was also violated

  18. A descriptive study of noise in the neonatal intensive care unit. Ambient levels and perceptions of contributing factors.

    Science.gov (United States)

    Darcy, Ashley E; Hancock, Lauren E; Ware, Emily J

    2008-06-01

    To examine the baseline acoustic environment in several mid-Atlantic region neonatal intensive care units (NICUs) and investigate the perceived factors contributing to noise levels in these NICUs. Quantitative data were collected from 3 urban, mid-Atlantic level IIIB and level IIIC NICUs. Qualitative data were collected via interview from 2 RNs employed in each of the study NICUs. This was an exploratory descriptive study utilizing a mixed-methods approach. A quantitative method was used for sound-level data collection, and a qualitative method was utilized during interviews with nurses to examine perceptions of factors contributing to noise. Ambient sound levels, measured in decibels, were taken at 5-minute intervals over a 2-hour period during both day and night shifts in a central location at each NICU. In addition, nurses were interviewed using a standardized interview questionnaire, and these interviews were then reviewed to determine themes regarding perceived factors contributing to sound levels. Hourly mean sound levels in each NICU ranged from 53.9 dB to 60.6 dB, with no statistically significant difference between noise levels recorded on day shift versus night shift, and no statistically significant difference among sites. Qualitative data showed that nurses' believed day shift to be louder than night shift and many perceived their own NICU as "pretty quiet." Key contributing factors to increased sound levels were stated as monitors or alarms, performing invasive procedures, presence of family, nurses or doctors giving report or rounds, and ringing phones. Noise levels were found to be above the American Academy of Pediatrics--recommended 45-dB level and often louder than the 50-dB level, which should not be exceeded more than 10% of the time. The recommended impulse maximum of 65 dB was also exceeded. Environmental Protection Agency recommendations for hospitals include sound levels no louder than 35 dB on night shift; this standard was also violated

  19. Investigation of Plant Cell Wall Properties: A Study of Contributions from the Nanoscale to the Macroscale Impacting Cell Wall Recalcitrance

    Science.gov (United States)

    Crowe, Jacob Dillon

    Biochemical conversion of lignocellulosic biomass to fuel ethanol is one of a few challenging, yet opportune technologies that can reduce the consumption of petroleum-derived transportation fuels, while providing parallel reductions in greenhouse gas emissions. Biomass recalcitrance, or resistance to deconstruction, is a major technical challenge that limits effective conversion of biomass to fermentable sugars, often requiring a costly thermochemical pretreatment step to improve biomass deconstruction. Biomass recalcitrance is imparted largely by the secondary cell wall, a complex polymeric matrix of cell wall polysaccharides and aromatic heteropolymers, that provides structural stability to cells and enables plant upright growth. Polymers within the cell wall can vary both compositionally and structurally depending upon plant species and anatomical fraction, and have varied responses to thermochemical pretreatments. Cell wall properties impacting recalcitrance are still not well understood, and as a result, the goal of this dissertation is to investigate structural features of the cell wall contributing to recalcitrance (1) in diverse anatomical fractions of a single species, (2) in response to diverse pretreatments, and (3) resulting from genetic modification. In the first study, feedstock cell wall heterogeneity was investigated in anatomical (stem, leaf sheaths, and leaf blades) and internode fractions of switchgrass at varying tissue maturities. Lignin content was observed as the key contributor to recalcitrance in maturing stem tissues only, with non-cellulosic substituted glucuronoarabinoxylans and pectic polysaccharides contributing to cell wall recalcitrance in leaf sheath and leaf blades. Hydroxycinnamate (i.e., saponifiable p-coumarate and ferulate) content along with xylan and pectin extractability decreased with tissue maturity, suggesting lignification is only one component imparting maturity specific cell wall recalcitrance. In the second study

  20. Contribution of Hfe expression in macrophages to the regulation of hepatic hepcidin levels and iron loading

    OpenAIRE

    Makui, Hortence; Soares, Ricardo J.; Jiang, Wenlei; Constante, Marco; Santos, Manuela M.

    2005-01-01

    Hereditary hemochromatosis (HH), an iron overload disease associated with mutations in the HFE gene, is characterized by increased intestinal iron absorption and consequent deposition of excess iron, primarily in the liver. Patients with HH and Hfe-deficient (Hfe−/−) mice manifest inappropriate expression of the iron absorption regulator hepcidin, a peptide hormone produced by the liver in response to iron loading. In this study, we investigated the contribution of Hfe expression in macrophag...

  1. Supplier Contribution to Profit Calculation and Supplier’s Expense Levels

    Directory of Open Access Journals (Sweden)

    Danilo Dorović

    2015-05-01

    Full Text Available Suppliers of goods present a very important cost object for trading companiessuch as retail. There is, however, no theoretical explanation as to how to calculate a contribution to profits generated from an individual supplier. This calculation is the subject of the paper. There is no calculation that shows how goods, provided from the supplier, create profit through gross margin and how the supplier`s behavior influences the costs (like delivery terms, costs of keeping specific goods fresh…. The final costs further decrease the profit generated by suppliers. As they have long found it illogical to calculate contribution to profit from suppliers in a production company, trading companies have long ignored it, as well. The Activity Based Costing (ABC, as the up-to-date system, still does not possess the cost hierarchy for suppliers as the cost object. The aim of the paper is to present a proposal for creating the cost hierarchy for suppliers in a trade company through creating a theoretical financial model as a method. The model also offers a theoretical explanation of how to calculate the contribution from a supplier or a group of suppliers. It is based on empirically evident activities in any supermarket or hypermarket, which makes it possible to create explanatory theoretical research.

  2. Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity.

    Science.gov (United States)

    Feyerabend, Thorsten B; Weiser, Anne; Tietz, Annette; Stassen, Michael; Harris, Nicola; Kopf, Manfred; Radermacher, Peter; Möller, Peter; Benoist, Christophe; Mathis, Diane; Fehling, Hans Jörg; Rodewald, Hans-Reimer

    2011-11-23

    Immunological functions of mast cells remain poorly understood. Studies in Kit mutant mice suggest key roles for mast cells in certain antibody- and T cell-mediated autoimmune diseases. However, Kit mutations affect multiple cell types of both immune and nonimmune origin. Here, we show that targeted insertion of Cre-recombinase into the mast cell carboxypeptidase A3 locus deleted mast cells in connective and mucosal tissues by a genotoxic Trp53-dependent mechanism. Cre-mediated mast cell eradication (Cre-Master) mice had, with the exception of a lack of mast cells and reduced basophils, a normal immune system. Cre-Master mice were refractory to IgE-mediated anaphylaxis, and this defect was rescued by mast cell reconstitution. This mast cell-deficient strain was fully susceptible to antibody-induced autoimmune arthritis and to experimental autoimmune encephalomyelitis. Differences comparing Kit mutant mast cell deficiency models to selectively mast cell-deficient mice call for a systematic re-evaluation of immunological functions of mast cells beyond allergy. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Kidney fibroblast growth factor 23 does not contribute to elevation of its circulating levels in uremia

    DEFF Research Database (Denmark)

    Mace, Maria L.; Gravesen, Eva; Nordholm, Anders

    2017-01-01

    Fibroblast growth factor 23 (FGF23) secreted by osteocytes is a circulating factor essential for phosphate homeostasis. High plasma FGF23 levels are associated with cardiovascular complications and mortality. Increases of plasma FGF23 in uremia antedate high levels of phosphate, suggesting a disr...

  4. The Contribution of High Levels of Somatic Symptom Severity to Sickness Absence Duration, Disability and Discharge

    NARCIS (Netherlands)

    Hoedeman, Rob; Blankenstein, Annette H.; Krol, Boudien; Koopmans, Petra C.; Groothoff, Johan W.

    Introduction: The primary objectives were to compare the duration of sickness absence in employees with high levels of somatic symptom severity (HLSSS) with employees with lower levels of somatic symptom severity, and to establish the long-term outcomes concerning return to work (RTW), disability

  5. Epithelial architectural destruction is necessary for bone marrow derived cell contribution to regenerating prostate epithelium.

    Science.gov (United States)

    Palapattu, Ganesh S; Meeker, Alan; Harris, Timothy; Collector, Michael I; Sharkis, Saul J; DeMarzo, Angelo M; Warlick, Christopher; Drake, Charles G; Nelson, William G

    2006-08-01

    Using various nonphysiological tissue injury/repair models numerous studies have demonstrated the capacity of bone marrow derived cells to contribute to the repopulation of epithelial tissues following damage. To investigate whether this phenomenon might also occur during periods of physiological tissue degeneration/regeneration we compared the ability of bone marrow derived cells to rejuvenate the prostate gland in mice that were castrated and then later treated with dihydrotestosterone vs mice with prostate epithelium that had been damaged by lytic virus infection. Using allogenic bone marrow grafts from female donor transgenic mice expressing green fluorescent protein transplanted into lethally irradiated males we were able to assess the contributions of bone marrow derived cells to recovery of the prostatic epithelium in 2 distinct systems, including 1) surgical castration followed 1 week later by dihydrotestosterone replacement and 2) intraprostatic viral injection. Eight to 10-week-old male C57/Bl6 mice were distributed among bone marrow donor-->recipient/prostate injury groups, including 5 with C57/Bl6-->C57/Bl6/no injury, 3 with green fluorescent protein-->C57/Bl6/no injury, 3 with green fluorescent protein-->C57/Bl6/vehicle injection, 4 with green fluorescent protein-->C57/Bl6/virus injection and 3 each with green fluorescent protein-->C57/Bl6/castration without and with dihydrotestosterone, respectively. Prostate tissues were harvested 3 weeks after dihydrotestosterone replacement or 14 days following intraprostatic viral injection. Prostate tissue immunofluorescence was performed with antibodies against the epithelial marker cytokeratin 5/8, the hematopoietic marker CD45 and green fluorescent protein. Mice that sustained prostate injury from vaccinia virus infection with concomitant severe inflammation and glandular disruption showed evidence of bone marrow derived cell reconstitution of prostate epithelium, that is approximately 4% of all green

  6. Restoration of Mitochondrial NAD+ Levels Delays Stem Cell Senescence and Facilitates Reprogramming of Aged Somatic Cells.

    Science.gov (United States)

    Son, Myung Jin; Kwon, Youjeong; Son, Taekwon; Cho, Yee Sook

    2016-12-01

    The fundamental tenet that aging is irreversible has been challenged by the development of reprogramming technology that can restore molecular and cellular age by reversing the progression of aging. The use of cells from aged individuals as sources for reprogramming or transplantation creates a major barrier in stem cell therapy with respect to cell quality and quantity. Here, we investigated the molecular features underlying senescence and rejuvenation during aged cell reprogramming and identified novel factors that can overcome age-associated barriers. Enzymes, such as nicotinamide nucleotide transhydrogenase (NNT) and nicotinamide mononucleotide adenylyltransferase 3 (NMNAT3), that control mitochondrial NAD + levels appear to be susceptible to aging. In aged cells, mitochondrial NAD + levels decrease, accompanied by reduced SIRT3 activity; these changes severely impede cell fate transition. However, in cells collected from aged p16 knockout mice, which exhibit delayed cellular senescence, no changes in NNT or NMNAT3 expression were found. Importantly, restoring mitochondrial NAD + levels by overexpressing NNT and NMNAT3 enhanced reprogramming efficiency of aged somatic cells and extended the lifespan of human mesenchymal stem cells by delaying replicative senescence. These results demonstrate that maintenance of mitochondrial NAD + levels is critical for reversing the mechanisms of aging and ensuring that cells collected from aged individuals are of high quality. Stem Cells 2016;34:2840-2851. © 2016 AlphaMed Press.

  7. Porcine Pluripotent Stem Cells Derived from IVF Embryos Contribute to Chimeric Development In Vivo.

    Directory of Open Access Journals (Sweden)

    Binghua Xue

    Full Text Available Although the pig is considered an important model of human disease and an ideal animal for the preclinical testing of cell transplantation, the utility of this model has been hampered by a lack of genuine porcine embryonic stem cells. Here, we derived a porcine pluripotent stem cell (pPSC line from day 5.5 blastocysts in a newly developed culture system based on MXV medium and a 5% oxygen atmosphere. The pPSCs had been passaged more than 75 times over two years, and the morphology of the colony was similar to that of human embryonic stem cells. Characterization and assessment showed that the pPSCs were alkaline phosphatase (AKP positive, possessed normal karyotypes and expressed classic pluripotent markers, including OCT4, SOX2 and NANOG. In vitro differentiation through embryonic body formation and in vivo differentiation via teratoma formation in nude mice demonstrated that the pPSCs could differentiate into cells of the three germ layers. The pPSCs transfected with fuw-DsRed (pPSC-FDs could be passaged with a stable expression of both DsRed and pluripotent markers. Notably, when pPSC-FDs were used as donor cells for somatic nuclear transfer, 11.52% of the reconstructed embryos developed into blastocysts, which was not significantly different from that of the reconstructed embryos derived from porcine embryonic fibroblasts. When pPSC-FDs were injected into day 4.5 blastocysts, they became involved in the in vitro embryonic development and contributed to the viscera of foetuses at day 50 of pregnancy as well as the developed placenta after the chimeric blastocysts were transferred into recipients. These findings indicated that the pPSCs were porcine pluripotent cells; that this would be a useful cell line for porcine genetic engineering and a valuable cell line for clarifying the molecular mechanism of pluripotency regulation in pigs.

  8. Assessment of the cathode contribution to the degradation of anode-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus

    2008-01-01

    The degradation of anode-supported cells was studied over 1500 h as a function of cell polarization either in air or oxygen on the cathode side. Based on impedance analysis, contributions of the anode and cathode to the increase of total resistance were assigned. Accordingly, the degradation rates...... of the cathode were strongly dependent on the pO(2). Microstructural analysis of the cathode/electrolyte interface carried out after removal of the cathode showed craters on the electrolyte surface where the lanthanum strontium manganite (LSM) particles had been located. The changes of shape and size...... of these craters observed after testing correlated with the cell voltage degradation rates. The results can be interpreted in terms of element redistribution at the cathode/electrolyte interface and formation of foreign phases giving rise to a weakening of local contact points of the LSM cathode and yttria...

  9. Voltage Losses in Organic Solar Cells: Understanding the Contributions of Intramolecular Vibrations to Nonradiative Recombinations

    KAUST Repository

    Chen, Xiankai

    2017-12-18

    The large voltage losses usually encountered in organic solar cells significantly limit the power conversion efficiencies (PCEs) of these devices, with the result that the current highest PCE values in single-junction organic photovoltaic remain smaller than for other solar cell technologies, such as crystalline silicon or perovskite solar cells. In particular, the nonradiative recombinations to the electronic ground state from the lowest-energy charge-transfer (CT) states at the donor-acceptor interfaces in the active layer of organic devices, are responsible for a significant part of the voltage losses. Here, to better comprehend the nonradiative voltage loss mechanisms, a fully quantum-mechanical rate formula is employed within the framework of time-dependent perturbation theory, combined with density functional theory. The objective is to uncover the specific contributions of intramolecular vibrations to the CT-state nonradiative recombinations in several model systems, which include small-molecule and polymer donors as well as fullerene and nonfullerene acceptors.

  10. Contribution of autophagy inhibitor to radiation sensitization in nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Zhou Zhirui; Zhu Xiaodong; Zhao Wei; Qu song; Pan Wenyan; Guo Ya; Su Fang; Li Xiaoyu

    2012-01-01

    Objective: To investigate the role of autophagy in radiation-induced death response of human nasopharyngeal carcinoma cells. Methods: MTT method was used to detect cell viability of CNE-2 cells in different time after irradiation. Clonogenic survival assay was used to evaluate the effect of autophagy inhibitor (chloroquine phosphate) and autophagy inductor (rapamycin) on radiosensitivity of nasopharyngeal carcinoma cells.Cell apoptosis was assessed by flow cytometry. The expressions of LC3 and P62 were measured with Western blot. Cell ultrastructural analysis was performed under an electron microscope.Results Irradiation with 10 Gy induced a massive accumulation of autophagosomes accompanied with up-regulation of LC3-Ⅱ expression in CNE-2 cells. Compared with radiation alone, chloroquine phosphate (CDP) enhanced radiosensitivity significantly by decreasing cell viability (F=25.88, P<0.05), autophagic ratio (F=105.15, P<0.05), and LC3-Ⅱ protein level (F=231.68, P<0.05), while up-regulating the expression of P62 (F=117.52, P<0.05). Inhibition of autophagy increased radiation-induced apoptosis (F=143.72, P<0.05). Rapamycin (RAPA) also significantly decreased cell viability, but increased autophagic ratio and LC3-Ⅱ protein level while down-regulated the expression of P62. Induction of autophagy increased radiation-induced apoptosis (F=167.32, P<0.05). Conclusions: Blockage of autophagy with CDP could enhance radiosensitivity in human nasopharyngeal carcinoma cells, suggesting that inhibition of autophagy could be used as an adjuvant treatment to nasopharyngeal carcinoma. (authors)

  11. BCORL1 is an independent prognostic marker and contributes to cell migration and invasion in human hepatocellular carcinoma.

    Science.gov (United States)

    Yin, Guozhi; Liu, Zhikui; Wang, Yufeng; Dou, Changwei; Li, Chao; Yang, Wei; Yao, Yingmin; Liu, Qingguang; Tu, Kangsheng

    2016-02-15

    The deregulation of E-cadherin has been considered as a leading cause of hepatocellular carcinoma (HCC) metastasis. BCL6 corepressor-like 1 (BCORL1) is a transcriptional corepressor and contributes to the repression of E-cadherin. However, the clinical significance of BCORL1 and its role in the metastasis of HCC remain unknown. Differentially expressed BCORL1 between HCC and matched tumor-adjacent tissues, HCC cell lines and normal hepatic cell line were detected by Western blot. The expression of BCORL1 was altered by siRNAs or lentivirus-mediated vectors. Transwell assays were performed to determine HCC cell invasion and migration. Increased expression of BCORL1 protein was detected in HCC specimens and cell lines. Clinical association analysis showed that BCORL1 protein was expressed at significant higher levels in HCC patients with multiple tumor nodes, venous infiltration and advanced TNM tumor stage. Survival analysis indicated that high expression of BCORL1 protein conferred shorter overall survival (OS) and recurrence-free survival (RFS) of HCC patients. Multivariate Cox regression analysis disclosed that BCORL1 expression was an independent prognostic marker for predicting survival of HCC patients. Our in vitro studies demonstrated that BCORL1 prominently promoted HCC cell migration and invasion. Otherwise, an inverse correlation between BCORL1 and E-cadherin expression was observed in HCC tissues. BCORL1 inversely regulated E-cadherin abundance and subsequently facilitated epithelial-mesenchymal transition (EMT) in HCC cells. Notably, the effect of BCORL1 knockdown on HCC cells was abrogated by E-cadherin silencing. BCORL1 may be a novel prognostic factor and promotes cell migration and invasion through E-cadherin repression-induced EMT in HCC.

  12. Lgr5+ve Stem/Progenitor Cells Contribute to Nephron Formation during Kidney Development

    Directory of Open Access Journals (Sweden)

    Nick Barker

    2012-09-01

    Full Text Available Multipotent stem cells and their lineage-restricted progeny drive nephron formation within the developing kidney. Here, we document expression of the adult stem cell marker Lgr5 in the developing kidney and assess the stem/progenitor identity of Lgr5+ve cells via in vivo lineage tracing. The appearance and localization of Lgr5+ve cells coincided with that of the S-shaped body around embryonic day 14. Lgr5 expression remained restricted to cell clusters within developing nephrons in the cortex until postnatal day 7, when expression was permanently silenced. In vivo lineage tracing identified Lgr5 as a marker of a stem/progenitor population within nascent nephrons dedicated to generating the thick ascending limb of Henle’s loop and distal convoluted tubule. The Lgr5 surface marker and experimental models described here will be invaluable for deciphering the contribution of early nephron stem cells to developmental defects and for isolating human nephron progenitors as a prerequisite to evaluating their therapeutic potential.

  13. Sepsis Induces Hematopoietic Stem Cell Exhaustion and Myelosuppression through Distinct Contributions of TRIF and MYD88

    Directory of Open Access Journals (Sweden)

    Huajia Zhang

    2016-06-01

    Full Text Available Toll-like receptor 4 (TLR4 plays a central role in host responses to bacterial infection, but the precise mechanism(s by which its downstream signaling components coordinate the bone marrow response to sepsis is poorly understood. Using mice deficient in TLR4 downstream adapters MYD88 or TRIF, we demonstrate that both cell-autonomous and non-cell-autonomous MYD88 activation are major causes of myelosuppression during sepsis, while having a modest impact on hematopoietic stem cell (HSC functions. In contrast, cell-intrinsic TRIF activation severely compromises HSC self-renewal without directly affecting myeloid cells. Lipopolysaccharide-induced activation of MYD88 or TRIF contributes to cell-cycle activation of HSC and induces rapid and permanent changes in transcriptional programs, as indicated by persistent downregulation of Spi1 and CebpA expression after transplantation. Thus, distinct mechanisms downstream of TLR4 signaling mediate myelosuppression and HSC exhaustion during sepsis through unique effects of MyD88 and TRIF.

  14. miR-1297 mediates PTEN expression and contributes to cell progression in LSCC

    International Nuclear Information System (INIS)

    Li, Xin; Wang, Hong-liang; Peng, Xin; Zhou, Hui-fang; Wang, Xin

    2012-01-01

    Highlights: ► miR-1297 was found to be overexpressed in LSCC and contribute to the cell progression. ► PTEN was confirmed to be a target gene of miR-1297. ► Downregulation of PTEN can rescue the proliferation and invasion ability of miR-1297 downregulated Hep-2 cells. ► Downregulation of miR-1297 inhibits tumor growth in vivo. -- Abstract: MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression after transcription, and are involved in cancer development. Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant neoplasms with increasing incidence in recent years. In this paper, we report the overexpression of miR-1297 in LSCC and Hep-2 cells. In addition, PTEN was identified to be directly regulated by miR-1297 through western blot and luciferase activity assay. Furthermore, downregulation of miR-1297 in Hep-2 cells was shown to inhibit cancer cell proliferation, migration, and tumor genesis. Our results document a new epigenetic mechanism for PTEN regulation in LSCC, which is crucial for the development of these tumors.

  15. Does cell lineage in the developing cerebral cortex contribute to its columnar organization?

    Directory of Open Access Journals (Sweden)

    Marcos R Costa

    2010-06-01

    Full Text Available Since the pioneer work of Lorente de Nó, Ramón y Cajal, Brodmann, Mountcastle, Hubel and Wiesel and others, the cerebral cortex has been seen as a jigsaw of anatomic and functional modules involved in the processing of different sets of information. In fact, a columnar distribution of neurons displaying similar functional properties throughout the cerebral cortex has been observed by many researchers. Although it has been suggested that much of the anatomical substrate for such organization would be already specified at early developmental stages, before activity-dependent mechanisms could take place, it is still unclear whether gene expression in the ventricular zone could play a role in the development of discrete functional units, such as minicolumns or columns. Cell lineage experiments using replication-incompetent retroviral vectors have shown that the progeny of a single neuroepithelial/radial glial cell in the dorsal telencephalon is organized into discrete radial clusters of sibling excitatory neurons, which have a higher propensity for developing chemical synapses with each other rather than with neighbouring non-siblings. Here, we will discuss the possibility that the cell lineage of single neuroepithelial/radial glia cells could contribute for the columnar organization of the neocortex by generating radial columns of sibling, interconnected neurons. Borrowing some concepts from the studies on cell-cell recognition and transcription factor networks, we will also touch upon the potential molecular mechanisms involved in the establishment of sibling-neuron circuits.

  16. Protein phosphatase 2A inhibition and subsequent cytoskeleton reorganization contributes to cell migration caused by microcystin-LR in human laryngeal epithelial cells (Hep-2).

    Science.gov (United States)

    Wang, Beilei; Liu, Jinghui; Huang, Pu; Xu, Kailun; Wang, Hanying; Wang, Xiaofeng; Guo, Zonglou; Xu, Lihong

    2017-03-01

    The major toxic mechanism of Microcystin-LR is inhibition of the activity of protein phosphatase 2A (PP2A), resulting in a series of cytotoxic effects. Our previous studies have demonstrated that microcystin-LR (MCLR) induced very different molecular effects in normal cells and the tumor cell line SMMC7721. To further explore the MCLR toxicity mechanism in tumor cells, human laryngeal epithelial cells (Hep-2) was examined in this study. Western blot, immunofluorescence, immunoprecipitation, and transwell migration assay were used to detect the effects of MCLR on PP2A activity, PP2A substrates, cytoskeleton, and cell migration. The results showed that the protein level of PP2A subunits and the posttranslational modification of the catalytic subunit were altered and that the binding of the AC core enzyme as well as the binding of PP2A/C and α4, was also affected. As PP2A substrates, the phosphorylation of MAPK pathway members, p38, ERK1/2, and the cytoskeleton-associated proteins, Hsp27, VASP, Tau, and Ezrin were increased. Furthermore, MCLR induced reorganization of the cytoskeleton and promoted cell migration. Taken together, direct covalent binding to PP2A/C, alteration of the protein levels and posttranslational modification, as well as the binding of subunits, are the main pattern for the effects of MCLR on PP2A in Hep-2. A dose-dependent change in p-Tau and p-Ezrin due to PP2A inhibition may contribute to the changes in the cytoskeleton and be related to the cell migration in Hep-2. Our data provide a comprehensive exposition of the MCLR mechanism on tumor cells. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 890-903, 2017. © 2016 Wiley Periodicals, Inc.

  17. Predicting cell types and genetic variations contributing to disease by combining GWAS and epigenetic data.

    Directory of Open Access Journals (Sweden)

    Anna Gerasimova

    Full Text Available Genome-wide association studies (GWASs identify single nucleotide polymorphisms (SNPs that are enriched in individuals suffering from a given disease. Most disease-associated SNPs fall into non-coding regions, so that it is not straightforward to infer phenotype or function; moreover, many SNPs are in tight genetic linkage, so that a SNP identified as associated with a particular disease may not itself be causal, but rather signify the presence of a linked SNP that is functionally relevant to disease pathogenesis. Here, we present an analysis method that takes advantage of the recent rapid accumulation of epigenomics data to address these problems for some SNPs. Using asthma as a prototypic example; we show that non-coding disease-associated SNPs are enriched in genomic regions that function as regulators of transcription, such as enhancers and promoters. Identifying enhancers based on the presence of the histone modification marks such as H3K4me1 in different cell types, we show that the location of enhancers is highly cell-type specific. We use these findings to predict which SNPs are likely to be directly contributing to disease based on their presence in regulatory regions, and in which cell types their effect is expected to be detectable. Moreover, we can also predict which cell types contribute to a disease based on overlap of the disease-associated SNPs with the locations of enhancers present in a given cell type. Finally, we suggest that it will be possible to re-analyze GWAS studies with much higher power by limiting the SNPs considered to those in coding or regulatory regions of cell types relevant to a given disease.

  18. Soluble CD163 levels in children with sickle cell disease

    DEFF Research Database (Denmark)

    Møller, Holger Jon; Nielsen, Marianne Jensby; Bartram, Jack

    2011-01-01

    Sickle cell disease (SCD) is characterized by vasculopathy, which has been causally linked to intravascular haemolysis and high levels of free plasma haemoglobin. Soluble CD163 (sCD163) is implicated in the clearance of free plasma haemoglobin and high plasma concentrations have been linked to ar...

  19. Levels of immune cells in transcendental meditation practitioners

    Directory of Open Access Journals (Sweden)

    Jose R Infante

    2014-01-01

    Conclusions: The technique of meditation studied seems to have a significant effect on immune cells, manifesting in the different circulating levels of lymphocyte subsets analyzed. The significant effect of TM on the neuroendocrine axis and its relationship with the immune system may partly explain our results.

  20. Understanding job satisfaction amongst mid-level cadres in Malawi: the contribution of organisational justice.

    Science.gov (United States)

    McAuliffe, Eilish; Manafa, Ogenna; Maseko, Fresier; Bowie, Cameron; White, Emma

    2009-05-01

    The migration of doctors and nurses from low- to high-income countries has left many countries relying on mid-level cadres as the mainstay of their health delivery system, Malawi being an example. Although an extremely important resource, little attention has been paid to the management and further development of these cadres. In this paper we use the concept of organisational justice - fairness of treatment, procedures and communication on the part of managers - to explore through a questionnaire how mid-level cadres in jobs traditionally done by higher-level cadres self-assessed their level of job satisfaction. All mid-level health workers present on the day of data collection in 34 health facilities in three health districts of Malawi, one district each from the three geographical regions, were invited to participate; 126 agreed. Perceptions of justice correlated strongly with level of job satisfaction, and in particular perceptions of how well they were treated by their managers and the extent to which they were informed about decisions and changes. Pay was not the only important element in job satisfaction; promotion opportunities and satisfaction with current work assignments were also significant. These findings highlight the important role that managers can play in the motivation, career development and performance of mid-level health workers.

  1. Sorting of cells of the same size, shape, and cell cycle stage for a single cell level assay without staining

    Directory of Open Access Journals (Sweden)

    Yomo Tetsuya

    2006-06-01

    Full Text Available Abstract Background Single-cell level studies are being used increasingly to measure cell properties not directly observable in a cell population. High-performance data acquisition systems for such studies have, by necessity, developed in synchrony. However, improvements in sample purification techniques are also required to reveal new phenomena. Here we assessed a cell sorter as a sample-pretreatment tool for a single-cell level assay. A cell sorter is routinely used for selecting one type of cells from a heterogeneous mixture of cells using specific fluorescence labels. In this case, we wanted to select cells of exactly the same size, shape, and cell-cycle stage from a population, without using a specific fluorescence label. Results We used four light scatter parameters: the peak height and area of the forward scatter (FSheight and FSarea and side scatter (SSheight and SSarea. The rat pheochromocytoma PC12 cell line, a neuronal cell line, was used for all experiments. The living cells concentrated in the high FSarea and middle SSheight/SSarea fractions. Single cells without cell clumps were concentrated in the low SS and middle FS fractions, and in the higher FSheight/FSarea and SSheight/SSarea fractions. The cell populations from these viable, single-cell-rich fractions were divided into twelve subfractions based on their FSarea-SSarea profiles, for more detailed analysis. We found that SSarea was proportional to the cell volume and the FSarea correlated with cell roundness and elongation, as well as with the level of DNA in the cell. To test the method and to characterize the basic properties of the isolated single cells, sorted cells were cultured in separate wells. The cells in all subfractions survived, proliferated and differentiated normally, suggesting that there was no serious damage. The smallest, roundest, and smoothest cells had the highest viability. There was no correlation between proliferation and differentiation. NGF increases

  2. How Does Skype, as an Online Communication Software Tool, Contribute to K-12 Administrators' Level of Self-Efficacy?

    Science.gov (United States)

    Kiriakidis, Peter

    2012-01-01

    How does Skype, as an online communication tool, contribute to school and district administrators' reported level of self-efficacy? A sample of n = 39 participants of which 22 were school administrators and 17 were district administrators was purposefully selected to use Skype in their offices with a webcam and microphone to communicate with other…

  3. Plant Systems Biology at the Single-Cell Level.

    Science.gov (United States)

    Libault, Marc; Pingault, Lise; Zogli, Prince; Schiefelbein, John

    2017-11-01

    Our understanding of plant biology is increasingly being built upon studies using 'omics and system biology approaches performed at the level of the entire plant, organ, or tissue. Although these approaches open new avenues to better understand plant biology, they suffer from the cellular complexity of the analyzed sample. Recent methodological advances now allow plant scientists to overcome this limitation and enable biological analyses of single-cells or single-cell-types. Coupled with the development of bioinformatics and functional genomics resources, these studies provide opportunities for high-resolution systems analyses of plant phenomena. In this review, we describe the recent advances, current challenges, and future directions in exploring the biology of single-cells and single-cell-types to enhance our understanding of plant biology as a system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Gauging leaf-level contributions to landscape-level water loss within a Western US dryland fores

    Science.gov (United States)

    Murphy, P.; Potts, D. L.; Minor, R. L.; Hamerlynck, E. P.; Sutter, L., Jr.; Barron-Gafford, G.

    2017-12-01

    Western US forests represent a large constituent of the North American water and carbon cycles, yet the primary controls on water loss from these ecosystems remains unknown. In dryland forests, such as those found in the Southwestern US, water availability is key to ecosystem function, and the timing and magnitude of water loss can have lasting effects on the health of these communities. One poorly defined part of the water balance in these forests is the partitioning of evapotranspiration (ET) into evaporation (E; blue flow) to transpiration (T; green flow). A study of water fluxes at multiple scales in a semiarid montane forest in Southern Arizona speaks to the partitioning of these two water flows. Within the footprint of an eddy covariance system, which estimates ecosystem ET, we have examined the impacts of variation in climate, species makeup, and topographic position on E and T. This was done using leaf-level measures of T, pedon-scale measures of E, and whole-tree water loss by way of sap flux sensors. Where available, we have examined E, T, and ET fluxes across multiple seasons and years of highly variable precipitation records. Understanding the partitioning of ET is crucial, considering that projected changes to dryland ecosystems include longer periods of drought separated by heavier precipitation events. At a moment when potential impacts of changing climate on dryland structure and function are poorly understood, a stronger comprehension of these blue and green water flows is necessary to forecast the productivity of Western US forests into the future.

  5. Fluctuations in sedation levels may contribute to delirium in ICU patients

    DEFF Research Database (Denmark)

    Svenningsen, Helle; Egerod, I; Videbech, Poul

    2013-01-01

    Delirium in patients admitted to the intensive care unit (ICU) is a serious complication potentially increasing morbidity and mortality. The aim of this study was to investigate the impact of fluctuating sedation levels on the incidence of delirium in ICU.......Delirium in patients admitted to the intensive care unit (ICU) is a serious complication potentially increasing morbidity and mortality. The aim of this study was to investigate the impact of fluctuating sedation levels on the incidence of delirium in ICU....

  6. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    International Nuclear Information System (INIS)

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho; Kim, Hyung Jung; Yoo, Young Do

    2013-01-01

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H 2 O 2 ) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H 2 O 2 treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells

  7. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ar [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Chung, Jin Sil [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Sang-Ho [Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do (Korea, Republic of); Kim, Hyung Jung, E-mail: khj57@yuhs.ac.kr [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Yoo, Young Do, E-mail: ydy1130@korea.ac.kr [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  8. Contribution of Human Oral Cells to Astringency by Binding Salivary Protein/Tannin Complexes.

    Science.gov (United States)

    Soares, Susana; Ferrer-Galego, Raúl; Brandão, Elsa; Silva, Mafalda; Mateus, Nuno; Freitas, Victor de

    2016-10-10

    The most widely accepted mechanism to explain astringency is the interaction and precipitation of salivary proteins by food tannins, in particular proline-rich proteins. However, other mechanisms have been arising to explain astringency, such as binding of tannins to oral cells. In this work, an experimental method was adapted to study the possible contribution of both salivary proteins and oral cells to astringency induced by grape seed procyanidin fractions. Overall, in the absence of salivary proteins, the extent of procyanidin complexation with oral cells increased with increasing procyanidin degree of polymerization (mDP). Procyanidin fractions rich in monomers were the ones with the lowest ability to bind to oral cells. In the presence of salivary proteins and for procyanidins with mDP 2 the highest concentrations (1.5 and 2.0 mM) resulted in an increased binding of procyanidins to oral cells. This was even more evident for fractions III and IV at 1.0 mM and upper concentrations. Regarding the salivary proteins affected, it was possible to observe a decrease of P-B peptide and aPRP proteins for fractions II and III. This decrease is greater as the procyanidins' mDP increases. In fact, for fraction IV an almost total depletion of all salivary proteins was observed. This decrease is due to the formation of insoluble salivary protein/procyanidin complexes. Altogether, these data suggest that some procyanidins are able to bind to oral cells and that the salivary proteins interact with procyanidins forming salivary protein/procyanidin complexes that are also able to link to oral cells. The procyanidins that remain unbound to oral cells are able to bind to salivary proteins forming a large network of salivary protein/procyanidin complexes. Overall, the results presented herein provide one more step to understand food oral astringency onset.

  9. Connexin43 hemichannels contributes to the disassembly of cell junctions through modulation of intracellular oxidative status

    Directory of Open Access Journals (Sweden)

    Yuan Chi

    2016-10-01

    Full Text Available Connexin (Cx hemichannels regulate many cellular processes with little information available regarding their mechanisms. Given that many pathological factors that activate hemichannels also disrupts the integrity of cellular junctions, we speculated a potential participation of hemichannels in the regulation of cell junctions. Here we tested this hypothesis. Exposure of renal tubular epithelial cells to Ca2+-free medium led to disassembly of tight and adherens junctions, as indicated by the reduced level of ZO-1 and cadherin, disorganization of F-actin, and severe drop in transepithelial electric resistance. These changes were preceded by an activation of Cx43 hemichannels, as revealed by extracellular efflux of ATP and intracellular influx of Lucifer Yellow. Inhibition of hemichannels with chemical inhibitors or Cx43 siRNA greatly attenuated the disassembly of cell junctions. Further analysis using fetal fibroblasts derived from Cx43 wide-type (Cx43+/+, heterozygous (Cx43+/- and knockout (Cx43-/- littermates showed that Cx43-positive cells (Cx43+/+ exhibited more dramatic changes in cell shape, F-actin, and cadherin in response to Ca2+ depletion, as compared to Cx43-null cells (Cx43-/-. Consistently, these cells had higher level of protein carbonyl modification and phosphorylation, and much stronger activation of P38 and JNK. Hemichannel opening led to extracellular loss of the major antioxidant glutathione (GSH. Supplement of cells with exogenous GSH or inhibition of oxidative sensitive kinases largely prevented the above-mentioned changes. Taken together, our study indicates that Cx43 hemichannels promote the disassembly of cell junctions through regulation of intracellular oxidative status.

  10. Projected contributions of future wind farm development to community noise and annoyance levels in Ontario, Canada

    International Nuclear Information System (INIS)

    Whitfield Aslund, Melissa L.; Ollson, Christopher A.; Knopper, Loren D.

    2013-01-01

    Wind turbines produce sound during their operation; therefore, jurisdictions around the world have developed regulations regarding the placement of electricity generating wind farms with the intent of preventing unacceptable levels of ‘community noise’ in their vicinity. However, as survey results indicate that the relationship between wind turbine noise and annoyance may differ from noise-annoyance relationships for other common noise sources (e.g., rail, traffic), there are concerns that the application of general noise guidelines for wind turbines may lead to unacceptably high levels of annoyance in communities. In this study, previously published survey results that quantified wind turbine noise and self-reported annoyance were applied to the predicted noise levels (from turbines and transformers) for over 8000 receptors in the vicinity of 13 planned wind power developments in the province of Ontario, Canada. The results of this analysis indicate that the current wind turbine noise restrictions in Ontario will limit community exposure to wind turbine related noise such that levels of annoyance are unlikely to exceed previously established background levels of noise-related annoyance from other common noise sources. This provides valuable context that should be considered by policy-makers when evaluating the potential impacts of wind turbine noise on the community. -- highlights: •Wind turbine noise-annoyance relationship used to predict annoyance in Ontario. •Noise annoyance predicted to be <8% for non-participants <1 km from turbines. •Predicted levels of wind turbine noise annoyance similar to that from traffic noise. •Wind turbine noise annoyance not expected to exceed existing background levels

  11. Contribution of piezometric measurement on knowledge and management of low water levels

    Science.gov (United States)

    Bessiere, Hélène; Stollsteiner, Philippe; Allier, Delphine; Nicolas, Jérôme; Gourcy, Laurence

    2014-05-01

    This article is based on a BRGM study on piezometric indicators, threshold values of discharges and groundwater levels for the assessment of potentially pumpable volumes of chalky watersheds. A method for estimating low water levels from groundwater levels is presented from three examples of chalk aquifer; the first one is located in Picardy and the two other in the Champagne Ardennes region. Piezometers with "annual" cycles, used in these examples, are supposed to be representative of the aquifer hydrodynamics. The analysis leads to relatively precise and satisfactory relationships between groundwater levels and observed discharges for this chalky context. These relationships may be useful for monitoring, validation, extension or reconstruction of the low water flow. On the one hand, they allow defining the piezometric levels corresponding to the different alert thresholds of river discharges. On the other hand, they clarify the distribution of low water flow from runoff or the draining of the aquifer. Finally, these correlations give an assessment of the minimum flow for the coming weeks using of the rate of draining of the aquifer. Nevertheless the use of these correlations does not allow to optimize the value of pumpable volumes because it seems to be difficult to integrate the amount of the effective rainfall that may occur during the draining period. In addition, these relationships cannot be exploited for multi-annual cycle systems. In these cases, the solution seems to lie on the realization of a rainfall-runoff-piezometric level model. Therefore, two possibilities are possible. The first one is to achieve each year, on a given date, a forecast for the days or months to come with various frequential distributions rainfalls. However, the forecast must be reiterated each year depending on climatic conditions. The principle of the second method is to simulate forecasts for different rainfall intensities and following different initial conditions. The results

  12. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes.

    Science.gov (United States)

    Li, Xingfu; Duan, Li; Liang, Yujie; Zhu, Weimin; Xiong, Jianyi; Wang, Daping

    2016-01-01

    Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) have been shown as the most potential stem cell source for articular cartilage repair. In this study, we aimed to develop a method for long-term coculture of human articular chondrocytes (hACs) and hUCB-MSCs at low density in vitro to determine if the low density of hACs could enhance the hUCB-MSC chondrogenic differentiation as well as to determine the optimal ratio of the two cell types. Also, we compared the difference between direct coculture and indirect coculture at low density. Monolayer cultures of hUCB-MSCs and hACs were investigated at different ratios, at direct cell-cell contact groups for 21 days. Compared to direct coculture, hUCB-MSCs and hACs indirect contact culture significantly increased type II collagen (COL2) and decreased type I collagen (COL1) protein expression levels. SRY-box 9 (SOX9) mRNA levels and protein expression were highest in indirect coculture. Overall, these results indicate that low density direct coculture induces fibrocartilage. However, indirect coculture in conditioned chondrocyte cell culture medium can increase expression of chondrogenic markers and induce hUCB-MSCs differentiation into mature chondrocytes. This work demonstrates that it is possible to promote chondrogenesis of hUCB-MSCs in combination with hACs, further supporting the concept of novel coculture strategies for tissue engineering.

  13. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes

    Directory of Open Access Journals (Sweden)

    Xingfu Li

    2016-01-01

    Full Text Available Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs have been shown as the most potential stem cell source for articular cartilage repair. In this study, we aimed to develop a method for long-term coculture of human articular chondrocytes (hACs and hUCB-MSCs at low density in vitro to determine if the low density of hACs could enhance the hUCB-MSC chondrogenic differentiation as well as to determine the optimal ratio of the two cell types. Also, we compared the difference between direct coculture and indirect coculture at low density. Monolayer cultures of hUCB-MSCs and hACs were investigated at different ratios, at direct cell-cell contact groups for 21 days. Compared to direct coculture, hUCB-MSCs and hACs indirect contact culture significantly increased type II collagen (COL2 and decreased type I collagen (COL1 protein expression levels. SRY-box 9 (SOX9 mRNA levels and protein expression were highest in indirect coculture. Overall, these results indicate that low density direct coculture induces fibrocartilage. However, indirect coculture in conditioned chondrocyte cell culture medium can increase expression of chondrogenic markers and induce hUCB-MSCs differentiation into mature chondrocytes. This work demonstrates that it is possible to promote chondrogenesis of hUCB-MSCs in combination with hACs, further supporting the concept of novel coculture strategies for tissue engineering.

  14. Acquisition of glial cells missing 2 enhancers contributes to a diversity of ionocytes in zebrafish.

    Directory of Open Access Journals (Sweden)

    Takanori Shono

    Full Text Available Glial cells missing 2 (gcm2 encoding a GCM-motif transcription factor is expressed in the parathyroid in amniotes. In contrast, gcm2 is expressed in pharyngeal pouches (a homologous site of the parathyroid, gills, and H(+-ATPase-rich cells (HRCs, a subset of ionocytes on the skin surface of the teleost fish zebrafish. Ionocytes are specialized cells that are involved in osmotic homeostasis in aquatic vertebrates. Here, we showed that gcm2 is essential for the development of HRCs and Na(+-Cl(- co-transporter-rich cells (NCCCs, another subset of ionocytes in zebrafish. We also identified gcm2 enhancer regions that control gcm2 expression in ionocytes of zebrafish. Comparisons of the gcm2 locus with its neighboring regions revealed no conserved elements between zebrafish and tetrapods. Furthermore, We observed gcm2 expression patterns in embryos of the teleost fishes Medaka (Oryzias latipes and fugu (Fugu niphobles, the extant primitive ray-finned fishes Polypterus (Polypterus senegalus and sturgeon (a hybrid of Huso huso × Acipenser ruhenus, and the amphibian Xenopus (Xenopus laevis. Although gcm2-expressing cells were observed on the skin surface of Medaka and fugu, they were not found in Polypterus, sturgeon, or Xenopus. Our results suggest that an acquisition of enhancers for the expression of gcm2 contributes to a diversity of ionocytes in zebrafish during evolution.

  15. HIF-1 and NDRG2 contribute to hypoxia-induced radioresistance of cervical cancer Hela cells

    International Nuclear Information System (INIS)

    Liu, Junye; Zhang, Jing; Wang, Xiaowu; Li, Yan; Chen, Yongbin; Li, Kangchu; Zhang, Jian; Yao, Libo; Guo, Guozhen

    2010-01-01

    Hypoxia inducible factor 1 (HIF-1), the key mediator of hypoxia signaling pathways, has been shown involved in hypoxia-induced radioresistance. However, the underlying mechanisms are unclear. The present study demonstrated that both hypoxia and hypoxia mimetic cobalt chloride could increase the radioresistance of human cervical cancer Hela cells. Meanwhile, ectopic expression of HIF-1 could enhance the resistance of Hela cells to radiation, whereas knocking-down of HIF-1 could increase the sensitivity of Hela cells to radiation in the presence of hypoxia. N-Myc downstream-regulated gene 2 (NDRG2), a new HIF-1 target gene identified in our lab, was found to be upregulated by hypoxia and radiation in a HIF-1-dependent manner. Overexpression of NDRG2 resulted in decreased sensitivity of Hela cells to radiation while silencing NDRG2 led to radiosensitization. Moreover, NDRG2 was proved to protect Hela cells from radiation-induced apoptosis and abolish radiation-induced upregulation of Bax. Taken together, these data suggest that both HIF-1 and NDRG2 contribute to hypoxia-induced tumor radioresistance and that NDRG2 acts downstream of HIF-1 to promote radioresistance through suppressing radiation-induced Bax expression. It would be meaningful to further explore the clinical application potential of HIF-1 and NDRG2 blockade as radiosensitizer for tumor therapy.

  16. A T4SS Effector Targets Host Cell Alpha-Enolase Contributing to Brucella abortus Intracellular Lifestyle.

    Science.gov (United States)

    Marchesini, María I; Morrone Seijo, Susana M; Guaimas, Francisco F; Comerci, Diego J

    2016-01-01

    Brucella abortus , the causative agent of bovine brucellosis, invades and replicates within cells inside a membrane-bound compartment known as the Brucella containing vacuole (BCV). After trafficking along the endocytic and secretory pathways, BCVs mature into endoplasmic reticulum-derived compartments permissive for bacterial replication. Brucella Type IV Secretion System (VirB) is a major virulence factor essential for the biogenesis of the replicative organelle. Upon infection, Brucella uses the VirB system to translocate effector proteins from the BCV into the host cell cytoplasm. Although the functions of many translocated proteins remain unknown, some of them have been demonstrated to modulate host cell signaling pathways to favor intracellular survival and replication. BPE123 (BAB2_0123) is a B. abortus VirB-translocated effector protein recently identified by our group whose function is yet unknown. In an attempt to identify host cell proteins interacting with BPE123, a pull-down assay was performed and human alpha-enolase (ENO-1) was identified by LC/MS-MS as a potential interaction partner of BPE123. These results were confirmed by immunoprecipitation assays. In bone-marrow derived macrophages infected with B. abortus , ENO-1 associates to BCVs in a BPE123-dependent manner, indicating that interaction with translocated BPE123 is also occurring during the intracellular phase of the bacterium. Furthermore, ENO-1 depletion by siRNA impaired B. abortus intracellular replication in HeLa cells, confirming a role for α-enolase during the infection process. Indeed, ENO-1 activity levels were enhanced upon B. abortus infection of THP-1 macrophagic cells, and this activation is highly dependent on BPE123. Taken together, these results suggest that interaction between BPE123 and host cell ENO-1 contributes to the intracellular lifestyle of B. abortus .

  17. The notch and TGF-β signaling pathways contribute to the aggressiveness of clear cell renal cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Jonas Sjölund

    Full Text Available BACKGROUND: Despite recent progress, therapy for metastatic clear cell renal cell carcinoma (CCRCC is still inadequate. Dysregulated Notch signaling in CCRCC contributes to tumor growth, but the full spectrum of downstream processes regulated by Notch in this tumor form is unknown. METHODOLOGY/PRINCIPAL FINDINGS: We show that inhibition of endogenous Notch signaling modulates TGF-β dependent gene regulation in CCRCC cells. Analysis of gene expression data representing 176 CCRCCs showed that elevated TGF-β pathway activity correlated significantly with shortened disease specific survival (log-rank test, p = 0.006 and patients with metastatic disease showed a significantly elevated TGF-β signaling activity (two-sided Student's t-test, p = 0.044. Inhibition of Notch signaling led to attenuation of both basal and TGF-β1 induced TGF-β signaling in CCRCC cells, including an extensive set of genes known to be involved in migration and invasion. Functional analyses revealed that Notch inhibition decreased the migratory and invasive capacity of CCRCC cells. CONCLUSION: An extensive cross-talk between the Notch and TGF-β signaling cascades is present in CCRCC and the functional properties of these two pathways are associated with the aggressiveness of this disease.

  18. Littoral zones in shallow lakes. Contribution to water quality in relation to water level regime

    NARCIS (Netherlands)

    Sollie, S.

    2007-01-01

    Littoral zones with emergent vegetation are very narrow or even lacking in Dutch shallow lakes due to a combination of changed water level regime and unfavorable shore morphometry. These zones are important as a habitat for plants and animals, increasing species diversity. It has also been

  19. Flicker Adaptation of Low-Level Cortical Visual Neurons Contributes to Temporal Dilation

    Science.gov (United States)

    Ortega, Laura; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    Several seconds of adaptation to a flickered stimulus causes a subsequent brief static stimulus to appear longer in duration. Nonsensory factors, such as increased arousal and attention, have been thought to mediate this flicker-based temporal-dilation aftereffect. In this study, we provide evidence that adaptation of low-level cortical visual…

  20. NKT cells contribute to basal IL-4 production but are not required to induce experimental asthma.

    Science.gov (United States)

    McKnight, Christopher G; Morris, Suzanne C; Perkins, Charles; Zhu, Zhenqi; Hildeman, David A; Bendelac, Albert; Finkelman, Fred D

    2017-01-01

    CD1d-deficiency results in a selective deletion of NKT cells in mice that is reported to prevent murine allergic airway disease (AAD). Because we find 2-3 fold lower basal IL-4 production in CD1d- mice than in wild-type (WT) mice, we hypothesized that the contribution made by NKT cells to AAD would depend on the strength of the stimulus used to induce the disease. Consequently, we compared CD1d-deficient mice to WT mice in the development of AAD, using several models of disease induction that differed in the type and dose of allergen, the site of sensitization and the duration of immunization. Surprisingly we found equivalent allergic inflammation and airway disease in WT and CD1d- mice in all models investigated. Consistent with this, NKT cells constituted only ~2% of CD4+ T cells in the lungs of mice with AAD, and IL-4-transcribing NKT cells did not expand with disease induction. Concerned that the congenital absence of NKT cells might have caused a compensatory shift within the immune response, we administered an anti-CD1d monoclonal Ab (mAb) to block NKT function before airway treatments, before or after systemic sensitization to antigen. Such Ab treatment did not affect disease severity. We suggest that the differences reported in the literature regarding the significance of NKT cells in the induction of allergic airway disease may have less to do with the methods used to study the disease and more to do with the animals themselves and/or the facilities used to house them.

  1. NKT cells contribute to basal IL-4 production but are not required to induce experimental asthma.

    Directory of Open Access Journals (Sweden)

    Christopher G McKnight

    Full Text Available CD1d-deficiency results in a selective deletion of NKT cells in mice that is reported to prevent murine allergic airway disease (AAD. Because we find 2-3 fold lower basal IL-4 production in CD1d- mice than in wild-type (WT mice, we hypothesized that the contribution made by NKT cells to AAD would depend on the strength of the stimulus used to induce the disease. Consequently, we compared CD1d-deficient mice to WT mice in the development of AAD, using several models of disease induction that differed in the type and dose of allergen, the site of sensitization and the duration of immunization. Surprisingly we found equivalent allergic inflammation and airway disease in WT and CD1d- mice in all models investigated. Consistent with this, NKT cells constituted only ~2% of CD4+ T cells in the lungs of mice with AAD, and IL-4-transcribing NKT cells did not expand with disease induction. Concerned that the congenital absence of NKT cells might have caused a compensatory shift within the immune response, we administered an anti-CD1d monoclonal Ab (mAb to block NKT function before airway treatments, before or after systemic sensitization to antigen. Such Ab treatment did not affect disease severity. We suggest that the differences reported in the literature regarding the significance of NKT cells in the induction of allergic airway disease may have less to do with the methods used to study the disease and more to do with the animals themselves and/or the facilities used to house them.

  2. The relative contribution of provider and ED-level factors to variation among the top 15 reasons for ED admission.

    Science.gov (United States)

    Khojah, Imad; Li, Suhui; Luo, Qian; Davis, Griffin; Galarraga, Jessica E; Granovsky, Michael; Litvak, Ori; Davis, Samuel; Shesser, Robert; Pines, Jesse M

    2017-09-01

    We examine adult emergency department (ED) admission rates for the top 15 most frequently admitted conditions, and assess the relative contribution in admission rate variation attributable to the provider and hospital. This was a retrospective, cross-sectional study of ED encounters (≥18years) from 19 EDs and 603 providers (January 2012-December 2013), linked to the Area Health Resources File for county-level information on healthcare resources. "Hospital admission" was the outcome, a composite of inpatient, observation, or intra-hospital transfer. We studied the 15 most commonly admitted conditions, and calculated condition-specific risk-standardized hospital admission rates (RSARs) using multi-level hierarchical generalized linear models. We then decomposed the relative contribution of provider-level and hospital-level variation for each condition. The top 15 conditions made up 34% of encounters and 49% of admissions. After adjustment, the eight conditions with the highest hospital-level variation were: 1) injuries, 2) extremity fracture (except hip fracture), 3) skin infection, 4) lower respiratory disease, 5) asthma/chronic obstructive pulmonary disease (A&C), 6) abdominal pain, 7) fluid/electrolyte disorders, and 8) chest pain. Hospital-level intra-class correlation coefficients (ICC) ranged from 0.042 for A&C to 0.167 for extremity fractures. Provider-level ICCs ranged from 0.026 for abdominal pain to 0.104 for chest pain. Several patient, hospital, and community factors were associated with admission rates, but these varied across conditions. For different conditions, there were different contributions to variation at the hospital- and provider-level. These findings deserve consideration when designing interventions to optimize admission decisions and in value-based payment programs. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. System-level modeling and simulation of the cell culture microfluidic biochip ProCell

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2010-01-01

    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory. There are two technologies for the microfluidic biochips: droplet-based and flow-based. In this paper we are interested in flow-based microfluidic biochips, where the liquid flows continuously through pre......-defined micro-channels using valves and pumps. We present an approach to the system-level modeling and simulation of a cell culture microfluidic biochip called ProCell, Programmable Cell Culture Chip. ProCell contains a cell culture chamber, which is envisioned to run 256 simultaneous experiments (viewed...

  4. Minimum and Maximum Potential Contributions to Future Sea Level Rise from Polar Ice Sheets

    Science.gov (United States)

    Deconto, R. M.; Pollard, D.

    2017-12-01

    New climate and ice-sheet modeling, calibrated to past changes in sea-level, is painting a stark picture of the future fate of the great polar ice sheets if greenhouse gas emissions continue unabated. This is especially true for Antarctica, where a substantial fraction of the ice sheet rests on bedrock more than 500-meters below sea level. Here, we explore the sensitivity of the polar ice sheets to a warming atmosphere and ocean under a range of future greenhouse gas emissions scenarios. The ice sheet-climate-ocean model used here considers time-evolving changes in surface mass balance and sub-ice oceanic melting, ice deformation, grounding line retreat on reverse-sloped bedrock (Marine Ice Sheet Instability), and newly added processes including hydrofracturing of ice shelves in response to surface meltwater and rain, and structural collapse of thick, marine-terminating ice margins with tall ice-cliff faces (Marine Ice Cliff Instability). The simulations improve on previous work by using 1) improved atmospheric forcing from a Regional Climate Model and 2) a much wider range of model physical parameters within the bounds of modern observations of ice dynamical processes (particularly calving rates) and paleo constraints on past ice-sheet response to warming. Approaches to more precisely define the climatic thresholds capable of triggering rapid and potentially irreversible ice-sheet retreat are also discussed, as is the potential for aggressive mitigation strategies like those discussed at the 2015 Paris Climate Conference (COP21) to substantially reduce the risk of extreme sea-level rise. These results, including physics that consider both ice deformation (creep) and calving (mechanical failure of marine terminating ice) expand on previously estimated limits of maximum rates of future sea level rise based solely on kinematic constraints of glacier flow. At the high end, the new results show the potential for more than 2m of global mean sea level rise by 2100

  5. Tumor Cells Express FcγRl Which Contributes to Tumor Cell Growth and a Metastatic Phenotype

    Directory of Open Access Journals (Sweden)

    M. Bud Nelson

    2001-01-01

    Full Text Available High levels of circulating immune complexes containing tumor-associated antigens are associated with a poor prognosis for individuals with cancer. The ability of B cells, previously exposed to tumor-associated antigens, to promote both in vitro and in vivo tumor growth formed the rationale to evaluate the mechanism by which immune complexes may promote tumor growth. In elucidating this mechanism, FcγRl expression by tumor cells was characterized by flow cytometry, polymerase chain reaction, and sequence analysis. Immune complexes containing shed tumor antigen and anti-shed tumor antigen Ab cross-linked FcγRl-expressing tumor cells, which resulted in an induction of tumor cell proliferation and of shed tumor antigen production. Use of selective tyrosine kinase inhibitors demonstrated that tumor cell proliferation induced by immune complex cross-linking of FcγRl is dependent on the tyrosine kinase signal transduction pathway. A selective inhibitor of phosphatidylinositol-3 kinase also inhibited this induction of tumor cell proliferation. These findings support a role for immune complexes and FcγRl expression by tumor cells in augmentation of tumor growth and a metastatic phenotype.

  6. Contribution to the elaboration and implementation of LEP-L3 second level microcoded Trigger

    International Nuclear Information System (INIS)

    Chollet, F.

    1988-03-01

    This thesis is devoted to the elaboration of the L3 second level trigger which is based on the dedicated programmable XOP processor. This system will reduce the trigger rate by a factor of ten and will ensure that the hardwired level-one processors function correctly. The present document describes all developments that L.A.P.P. is engaged in from the system design up to the complete experimental set up, especially: - The hardware development of the fast input memories as well as the FASTBUS interface unit which allows the microprocessor XOP to run as a performant FASTBUS Master, - the associated software developments, - the implementation of a VME test system dedicated to all control tasks [fr

  7. INTERIM ANALYSIS OF THE CONTRIBUTION OF HIGH-LEVEL EVIDENCE FOR DENGUE VECTOR CONTROL.

    Science.gov (United States)

    Horstick, Olaf; Ranzinger, Silvia Runge

    2015-01-01

    This interim analysis reviews the available systematic literature for dengue vector control on three levels: 1) single and combined vector control methods, with existing work on peridomestic space spraying and on Bacillus thuringiensis israelensis; further work is available soon on the use of Temephos, Copepods and larvivorous fish; 2) or for a specific purpose, like outbreak control, and 3) on a strategic level, as for example decentralization vs centralization, with a systematic review on vector control organization. Clear best practice guidelines for methodology of entomological studies are needed. There is a need to include measuring dengue transmission data. The following recommendations emerge: Although vector control can be effective, implementation remains an issue; Single interventions are probably not useful; Combinations of interventions have mixed results; Careful implementation of vector control measures may be most important; Outbreak interventions are often applied with questionable effectiveness.

  8. Low Levels of IGF-1 Contribute to Alveolar Macrophage Dysfunction in Cystic Fibrosis1

    OpenAIRE

    Bessich, Jamie L.; Nymon, Amanda B.; Moulton, Lisa A; Dorman, Dana; Ashare, Alix

    2013-01-01

    Alveolar macrophages are major contributors to lung innate immunity. Although alveolar macrophages from CFTR−/− mice have impaired function, no study has investigated primary alveolar macrophages in adults with cystic fibrosis (CF). CF patients have low levels of insulin-like growth factor 1 (IGF-1), and our prior studies demonstrate a relationship between IGF-1 and macrophage function. We hypothesize that reduced IGF-1 in CF leads to impaired alveolar macrophage function and chronic infectio...

  9. Haemophilus ducreyi Hfq contributes to virulence gene regulation as cells enter stationary phase.

    Science.gov (United States)

    Gangaiah, Dharanesh; Labandeira-Rey, Maria; Zhang, Xinjun; Fortney, Kate R; Ellinger, Sheila; Zwickl, Beth; Baker, Beth; Liu, Yunlong; Janowicz, Diane M; Katz, Barry P; Brautigam, Chad A; Munson, Robert S; Hansen, Eric J; Spinola, Stanley M

    2014-02-11

    To adapt to stresses encountered in stationary phase, Gram-negative bacteria utilize the alternative sigma factor RpoS. However, some species lack RpoS; thus, it is unclear how stationary-phase adaptation is regulated in these organisms. Here we defined the growth-phase-dependent transcriptomes of Haemophilus ducreyi, which lacks an RpoS homolog. Compared to mid-log-phase organisms, cells harvested from the stationary phase upregulated genes encoding several virulence determinants and a homolog of hfq. Insertional inactivation of hfq altered the expression of ~16% of the H. ducreyi genes. Importantly, there were a significant overlap and an inverse correlation in the transcript levels of genes differentially expressed in the hfq inactivation mutant relative to its parent and the genes differentially expressed in stationary phase relative to mid-log phase in the parent. Inactivation of hfq downregulated genes in the flp-tad and lspB-lspA2 operons, which encode several virulence determinants. To comply with FDA guidelines for human inoculation experiments, an unmarked hfq deletion mutant was constructed and was fully attenuated for virulence in humans. Inactivation or deletion of hfq downregulated Flp1 and impaired the ability of H. ducreyi to form microcolonies, downregulated DsrA and rendered H. ducreyi serum susceptible, and downregulated LspB and LspA2, which allow H. ducreyi to resist phagocytosis. We propose that, in the absence of an RpoS homolog, Hfq serves as a major contributor of H. ducreyi stationary-phase and virulence gene regulation. The contribution of Hfq to stationary-phase gene regulation may have broad implications for other organisms that lack an RpoS homolog. Pathogenic bacteria encounter a wide range of stresses in their hosts, including nutrient limitation; the ability to sense and respond to such stresses is crucial for bacterial pathogens to successfully establish an infection. Gram-negative bacteria frequently utilize the alternative sigma

  10. The water channel aquaporin-1 contributes to renin cell recruitment during chronic stimulation of renin production

    DEFF Research Database (Denmark)

    Tinning, Anne Robdrup; Jensen, Boye L; Schweda, Frank

    2014-01-01

    Processing and release of secretory granules involve water movement across granule membranes. It was hypothesized that the water channel aquaporin-1 (AQP-1) contributes directly to recruitment of renin-positive cells in the afferent arteriole. AQP1(-/-) and (+/+) mice were fed a low NaCl diet (LS...... to baseline with no difference between genotypes. Plasma nitrite/nitrate concentration was unaffected by genotype and LS-ACEI. In AQP1(-/-) mice, the number of afferent arterioles with recruitment was significantly lower compared to (+/+) after LS-ACEI. It is concluded that aquaporin-1 is not necessary...... for acutely stimulated renin secretion in vivo and from isolated perfused kidney, whereas recruitment of renin-positive cells in response to chronic stimulation is attenuated or delayed in AQP1(-/-) mice....

  11. Road traffic emissions - predictions of future contributions to regional ozone levels in Europe

    International Nuclear Information System (INIS)

    Reis, S.; Friedrich, R.; Obermeier, A.; Unger, S.

    2000-01-01

    As part of the European Commission research project 'Assessment of policy instruments for efficient ozone abatement strategies in Europe,' detailed emission projections have been developed for the year 2010 based upon currently adopted measures, and feasible reductions. For road-traffic emissions this projection considers passenger cars, light- and heavy-duty vehicles, mopeds and motorcycles. Here we present model calculations made with the EMEP 3-D Eulerian model to illustrate the relative contribution of each of these road-traffic sectors to ozone concentrations across Europe. The model is run for a six-month period, April-September 1996. The model results clearly suggest that further reduction in road-traffic emissions beyond currently planned measures would be beneficial in reducing ozone over Europe, particularly in the case of heavy-duty vehicles and evaporative emissions. These results do of course depend on the estimated emissions in each sector for the year 2010, and we show that this is a major source of uncertainty in such scenario calculations. (author)

  12. NO and H2O2 contribute to SO2 toxicity via Ca2+ signaling in Vicia faba guard cells.

    Science.gov (United States)

    Yi, Min; Bai, Heli; Xue, Meizhao; Yi, Huilan

    2017-04-01

    NO and H 2 O 2 have been implicated as important signals in biotic and abiotic stress responses of plants to the environment. Previously, we have shown that SO 2 exposure increased the levels of NO and H 2 O 2 in plant cells. We hypothesize that, as signaling molecules, NO and H 2 O 2 mediate SO 2 -caused toxicity. In this paper, we show that SO 2 hydrates caused guard cell death in a concentration-dependent manner in the concentration range of 0.25 to 6 mmol L -1 , which was associated with elevation of intracellular NO, H 2 O 2 , and Ca 2+ levels in Vicia faba guard cells. NO donor SNP enhanced SO 2 toxicity, while NO scavenger c-PTIO and NO synthesis inhibitors L-NAME and tungstate significantly prevented SO 2 toxicity. ROS scavenger ascorbic acid (AsA) and catalase (CAT), Ca 2+ chelating agent EGTA, and Ca 2+ channel inhibitor LaCl 3 also markedly blocked SO 2 toxicity. In addition, both c-PTIO and AsA could completely block SO 2 -induced elevation of intracellular Ca 2+ level. Moreover, c-PTIO efficiently blocked SO 2 -induced H 2 O 2 elevation, and AsA significantly blocked SO 2 -induced NO elevation. These results indicate that extra NO and H 2 O 2 are produced and accumulated in SO 2 -treated guard cells, which further activate Ca 2+ signaling to mediate SO 2 toxicity. Our findings suggest that both NO and H 2 O 2 contribute to SO 2 toxicity via Ca 2+ signaling.

  13. Protein Expression Analyses at the Single Cell Level

    Directory of Open Access Journals (Sweden)

    Masae Ohno

    2014-09-01

    Full Text Available The central dogma of molecular biology explains how genetic information is converted into its end product, proteins, which are responsible for the phenotypic state of the cell. Along with the protein type, the phenotypic state depends on the protein copy number. Therefore, quantification of the protein expression in a single cell is critical for quantitative characterization of the phenotypic states. Protein expression is typically a dynamic and stochastic phenomenon that cannot be well described by standard experimental methods. As an alternative, fluorescence imaging is being explored for the study of protein expression, because of its high sensitivity and high throughput. Here we review key recent progresses in fluorescence imaging-based methods and discuss their application to proteome analysis at the single cell level.

  14. Putrescine importer PlaP contributes to swarming motility and urothelial cell invasion in Proteus mirabilis.

    Science.gov (United States)

    Kurihara, Shin; Sakai, Yumi; Suzuki, Hideyuki; Muth, Aaron; Phanstiel, Otto; Rather, Philip N

    2013-05-31

    Previously, we reported that the speA gene, encoding arginine decarboxylase, is required for swarming in the urinary tract pathogen Proteus mirabilis. In addition, this previous study suggested that putrescine may act as a cell-to-cell signaling molecule (Sturgill, G., and Rather, P. N. (2004) Mol. Microbiol. 51, 437-446). In this new study, PlaP, a putative putrescine importer, was characterized in P. mirabilis. In a wild-type background, a plaP null mutation resulted in a modest swarming defect and slightly decreased levels of intracellular putrescine. In a P. mirabilis speA mutant with greatly reduced levels of intracellular putrescine, plaP was required for the putrescine-dependent rescue of swarming motility. When a speA/plaP double mutant was grown in the presence of extracellular putrescine, the intracellular levels of putrescine were greatly reduced compared with the speA mutant alone, indicating that PlaP functioned as the primary putrescine importer. In urothelial cell invasion assays, a speA mutant exhibited a 50% reduction in invasion when compared with wild type, and this defect could be restored by putrescine in a PlaP-dependent manner. The putrescine analog Triamide-44 partially inhibited the uptake of putrescine by PlaP and decreased both putrescine stimulated swarming and urothelial cell invasion in a speA mutant.

  15. High αv Integrin Level of Cancer Cells Is Associated with Development of Brain Metastasis in Athymic Rats.

    Science.gov (United States)

    Wu, Yingjen Jeffrey; Pagel, Michael A; Muldoon, Leslie L; Fu, Rongwei; Neuwelt, Edward A

    2017-08-01

    Brain metastases commonly occur in patients with malignant skin, lung and breast cancers resulting in high morbidity and poor prognosis. Integrins containing an αv subunit are cell adhesion proteins that contribute to cancer cell migration and cancer progression. We hypothesized that high expression of αv integrin cell adhesion protein promoted metastatic phenotypes in cancer cells. Cancer cells from different origins were used and studied regarding their metastatic ability and intetumumab, anti-αv integrin mAb, sensitivity using in vitro cell migration assay and in vivo brain metastases animal models. The number of brain metastases and the rate of occurrence were positively correlated with cancer cell αv integrin levels. High αv integrin-expressing cancer cells showed significantly faster cell migration rate in vitro than low αv integrin-expressing cells. Intetumumab significantly inhibited cancer cell migration in vitro regardless of αv integrin expression level. Overexpression of αv integrin in cancer cells with low αv integrin level accelerated cell migration in vitro and increased the occurrence of brain metastases in vivo. αv integrin promotes brain metastases in cancer cells and may mediate early steps in the metastatic cascade, such as adhesion to brain vasculature. Targeting αv integrin with intetumumab could provide clinical benefit in treating cancer patients who develop metastases. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain

    Science.gov (United States)

    Rodríguez, S.; Querol, X.; Alastuey, A.; Kallos, G.; Kakaliagou, O.

    The analysis of PM10 and TSP levels recorded in rural areas from Southern and Eastern Spain (1996-1999) shows that most of the PM10 and TSP peak events are simultaneously recorded at monitoring stations up to 1000 km apart. The study of the atmospheric dynamics by back-trajectory analysis and simulations with the SKIRON Forecast System show that these high PM10 and TSP events occur when high-dust Saharan air masses are transported over the Iberian Peninsula. In the January-June period, this dust transport is mainly caused by cyclonic activity over the West or South of Portugal, whereas in the summer period this is induced by anticyclonic activity over the East or Southeast Iberian Peninsula. Most of the Saharan intrusions which exert a major influence on the particulate levels occur from May to September (63%) and in January and October. In rural areas in Northeast Spain, where the PM10 annual mean is around 18 μg PM10 m -3, the Saharan dust accounts for 4-7 annual daily exceedances of the forthcoming PM10-EU limit value (50 μg PM10 m -3 daily mean). Higher PM10 background levels are recorded in Southern Spain (30 μg PM10 m -3 as annual mean for rural areas) and very similar values are recorded in industrial and urban areas. In rural areas in Southern Spain, the Saharan dust events accounts for 10-23 annual daily exceedances of the PM10 limit value, a high number when compared with the forthcoming EU standard, which states that the limit value cannot be exceeded more than 7 days per year. The proportion of Sahara-induced exceedances with respect to the total annual exceedances is discussed for rural, urban and industrial sites in Southern Spain.

  17. Monaural and binaural contributions to interaural-level-difference sensitivity in human auditory cortex.

    Science.gov (United States)

    Stecker, G Christopher; McLaughlin, Susan A; Higgins, Nathan C

    2015-10-15

    Whole-brain functional magnetic resonance imaging was used to measure blood-oxygenation-level-dependent (BOLD) responses in human auditory cortex (AC) to sounds with intensity varying independently in the left and right ears. Echoplanar images were acquired at 3 Tesla with sparse image acquisition once per 12-second block of sound stimulation. Combinations of binaural intensity and stimulus presentation rate were varied between blocks, and selected to allow measurement of response-intensity functions in three configurations: monaural 55-85 dB SPL, binaural 55-85 dB SPL with intensity equal in both ears, and binaural with average binaural level of 70 dB SPL and interaural level differences (ILD) ranging ±30 dB (i.e., favoring the left or right ear). Comparison of response functions equated for contralateral intensity revealed that BOLD-response magnitudes (1) generally increased with contralateral intensity, consistent with positive drive of the BOLD response by the contralateral ear, (2) were larger for contralateral monaural stimulation than for binaural stimulation, consistent with negative effects (e.g., inhibition) of ipsilateral input, which were strongest in the left hemisphere, and (3) also increased with ipsilateral intensity when contralateral input was weak, consistent with additional, positive, effects of ipsilateral stimulation. Hemispheric asymmetries in the spatial extent and overall magnitude of BOLD responses were generally consistent with previous studies demonstrating greater bilaterality of responses in the right hemisphere and stricter contralaterality in the left hemisphere. Finally, comparison of responses to fast (40/s) and slow (5/s) stimulus presentation rates revealed significant rate-dependent adaptation of the BOLD response that varied across ILD values. Copyright © 2015. Published by Elsevier Inc.

  18. Radiation Dose Contribution To The Worker Health Level At Serpong Area

    International Nuclear Information System (INIS)

    Yuwono, Indro

    2000-01-01

    Analysis of internal and external radiation doses received for radiation and non-radiation workers of P2TBDU have been done. In the period of 1997/1998 and 1998/1999 there were no significant increasing level of radiation doses received that was 0.55 mSv and highest received radiation dose was 2.66% from dose limit value. Increasing of healthy difference on the same period was 5.76%. Increasing of healthy difference no cause by increasing of radiation dose received but maybe the food consumption design

  19. Renal progenitor cells contribute to hyperplastic lesions of podocytopathies and crescentic glomerulonephritis.

    Science.gov (United States)

    Smeets, Bart; Angelotti, Maria Lucia; Rizzo, Paola; Dijkman, Henry; Lazzeri, Elena; Mooren, Fieke; Ballerini, Lara; Parente, Eliana; Sagrinati, Costanza; Mazzinghi, Benedetta; Ronconi, Elisa; Becherucci, Francesca; Benigni, Ariela; Steenbergen, Eric; Lasagni, Laura; Remuzzi, Giuseppe; Wetzels, Jack; Romagnani, Paola

    2009-12-01

    Glomerular injury can involve excessive proliferation of glomerular epithelial cells, resulting in crescent formation and obliteration of Bowman's space. The origin of these hyperplastic epithelial cells in different glomerular disorders is controversial. Renal progenitors localized to the inner surface of Bowman's capsule can regenerate podocytes, but whether dysregulated proliferation of these progenitors contributes to crescent formation is unknown. In this study, we used confocal microscopy, laser capture microdissection, and real-time quantitative reverse transcriptase-PCR to demonstrate that hypercellular lesions of different podocytopathies and crescentic glomerulonephritis consist of three distinct populations: CD133(+)CD24(+)podocalyxin (PDX)(-)nestin(-) renal progenitors, CD133(+)CD24(+)PDX(+)nestin(+) transitional cells, and CD133(-)CD24(-)PDX(+)nestin(+) differentiated podocytes. In addition, TGF-beta induced CD133(+)CD24(+) progenitors to produce extracellular matrix, and these were the only cells to express the proliferation marker Ki67. Taken together, these results suggest that glomerular hyperplastic lesions derive from the proliferation of renal progenitors at different stages of their differentiation toward mature podocytes, providing an explanation for the pathogenesis of hyperplastic lesions in podocytopathies and crescentic glomerulonephritis.

  20. Contributions of the Higher Vibrational Levels of Nitric Oxide to the Radiative Cooling of the Thermosphere

    Science.gov (United States)

    Venkataramani, K.; Yonker, J. D.; Bailey, S. M.

    2014-12-01

    The 5.3μm emission from the vibrational levels of nitric oxide (NO) and the 15μm emission from CO2 are known to be the dominant sources of cooling in the thermosphere above 100 km. The 5.3μm emission is primarily produced by the radiative de-excitation of NO from its first vibrational level, which in turn is mainly populated by the collisions of NO with atomic oxygen. However, the reaction of atomic nitrogen (N(4S) and N(2D)) with O2 yields vibrationally excited NO with v>1, resulting in a radiative cascade which produces more than one 5.3μm photon per vibrationally excited NO molecule. This chemiluminescence is approximately 20% in magnitude of the emission produced by thermal collisions. These additional sources of the 5.3μm emission are introduced into a one dimensional photochemical model and the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) to assess their variability with latitude and solar activity, and to also understand their effect on the thermospheric energy budget. The results from the models are compared with data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment on-board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite, which has been making measurements of the infrared radiative response of the mesosphere and thermosphere to solar inputs since 2002.

  1. Contributing factors to potential turnover in a sample of South African management-level employees

    Directory of Open Access Journals (Sweden)

    Rudolph Muteswa

    2011-12-01

    Full Text Available Purpose: The overall purpose of this study was to explore the extent to which a number of key organisational variables influence the potential decision to leave the organisation in a sample of managerial-level employees. Organisational variables focused on included: career path strategies, management style, intrinsic and extrinsic rewards, team dynamics, training and development opportunities, and work / life balance. Methodology: An exploratory and descriptive research design was adopted. A questionnaire was developed by the researchers based on the related literature. 106 MBA students based in KwaZulu-Natal participated in the study. Findings: The three aspects of internal organisational functioning found to have a significant influence on the participant's potential turnover considerations were: management / leadership style, career path strategies and rewards. Value of the research: According to the Department of Labour (2008:5 there is need for an additional 22 600 managers in various professions in South Africa. As a result of the skills shortages, South African organisations find themselves competing with international organisations for managerial-level employees, resulting in a 'war for talent'. This research is of significant value to organisations as it provides information relevant to the design and support of talent management and retention strategies in South African organisations.

  2. Contributing factors in foliar uptake of dissolved inorganic nitrogen at leaf level

    Energy Technology Data Exchange (ETDEWEB)

    Wuyts, Karen, E-mail: karen.wuyts@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Forest and Nature Lab (ForNaLab), Dept. Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode-Melle (Belgium); Adriaenssens, Sandy, E-mail: adriaenssens@irceline.be [Belgian Interregional Environment Agency (IRCEL-CELINE), Kunstlaan 10–11, B-1210 Brussels (Belgium); Staelens, Jeroen, E-mail: jeroen_staelens@yahoo.com [Flemish Environment Agency (VMM), Kronenburgstraat 45, B-2000 Antwerp (Belgium); Wuytack, Tatiana, E-mail: tatiana.wuytack@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van Wittenberghe, Shari, E-mail: shari.vanwittenberghe@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Boeckx, Pascal, E-mail: pascal.boeckx@ugent.be [Isotope Bioscience Laboratory (ISOFYS), Dept. Applied Analytical and Physical Chemistry, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Samson, Roeland, E-mail: roeland.samson@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Verheyen, Kris, E-mail: kris.verheyen@ugent.be [Forest and Nature Lab (ForNaLab), Dept. Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode-Melle (Belgium)

    2015-02-01

    We investigated the influence of leaf traits, rainwater chemistry, and pedospheric nitrogen (N) fertilisation on the aqueous uptake of inorganic N by physiologically active tree leaves. Leaves of juvenile silver birch and European beech trees, supplied with NH{sub 4}NO{sub 3} to the soil at rates from 0 to 200 kg N ha{sup −1} y{sup −1}, were individually exposed to 100 μl of artificial rainwater containing {sup 15}NH{sub 4}{sup +} or {sup 15}NO{sub 3}{sup −} at two concentration levels for one hour. In the next vegetative period, the experiment was repeated with NH{sub 4}{sup +} at the highest concentration only. The N form and the N concentration in the applied rainwater and, to a lesser extent, the pedospheric N treatment and the leaf traits affected the aqueous foliar N uptake. The foliar uptake of NH{sub 4}{sup +} by birch increased when leaves were more wettable. High leaf N concentration and leaf mass per area enhanced the foliar N uptake, and NO{sub 3}{sup −} uptake in particular, by birch. Variation in the foliar N uptake by the beech trees could not be explained by the leaf traits considered. In the first experiment, N fertilisation stimulated the foliar N uptake in both species, which was on average 1.42–1.78 times higher at the highest soil N dose than at the zero dose. However, data variability was high and the effect was not appreciable in the second experiment. Our data suggest that next to rainwater chemistry (N form and concentration) also forest N status could play a role in the partitioning of N entering the ecosystem through the soil and the canopy. Models of canopy uptake of aqueous N at the leaf level should take account of leaf traits such as wettability and N concentration. - Highlights: • Foliar uptake of dissolved inorganic nitrogen (N) by potted trees was studied. • Leaves were individually exposed to rainwater drops containing {sup 15}NH{sub 4}{sup +} or {sup 15}NO{sub 3}{sup −}. • Foliar N uptake efficiency depended on

  3. Naked Mole Rat Induced Pluripotent Stem Cells and Their Contribution to Interspecific Chimera

    Directory of Open Access Journals (Sweden)

    Sang-Goo Lee

    2017-11-01

    Full Text Available Naked mole rats (NMRs are exceptionally long-lived, cancer-resistant rodents. Identifying the defining characteristics of these traits may shed light on aging and cancer mechanisms. Here, we report the generation of induced pluripotent stem cells (iPSCs from NMR fibroblasts and their contribution to mouse-NMR chimeric embryos. Efficient reprogramming could be observed under N2B27+2i conditions. The iPSCs displayed a characteristic morphology, expressed pluripotent markers, formed embryoid bodies, and showed typical differentiation patterns. Interestingly, NMR embryonic fibroblasts and the derived iPSCs had propensity for a tetraploid karyotype and were resistant to forming teratomas, but within mouse blastocysts they contributed to both interspecific placenta and fetus. Gene expression patterns of NMR iPSCs were more similar to those of human than mouse iPSCs. Overall, we uncovered unique features of NMR iPSCs and report a mouse-NMR chimeric model. The iPSCs and associated cell culture systems can be used for a variety of biological and biomedical applications.

  4. Contribution of brain atrophy on CT and aging to intelligence level

    International Nuclear Information System (INIS)

    Kawai, Makoto

    1984-01-01

    Decrased intellectual functions due to senility have been much discussed in connection with aging or brain atophy alternatively. But this change should be analysed under multifactorial basis. Furthermore, variations between individuals should be taken into account in dealing with an advanced age group. In these regards, the author performed multivariate analysis on intellectual changes, aging and brain arophy demonstrated on brain CT. Clonological study was also performed to reveal the individual variations. The objects were consisted of 72 people, including the patients of more than 65 years of age who were hospitalized to a geriatrics hospital because of senile dementia, and, as a control group residents in a home for the aged nearby the hospital. Average age was 75.4 years old. Intellectual level was measured through Hasegawa's dementia rating scale. Ventricular enlargement was measured on brain CT to determine the severity of brain atrophy. These two factors and age were processed with multivariate analysis. And clonological study was made to the deviation of intellectual level vs. the change of ventricular enlargement. As the result, firstly, this simple analysing model was able to reveal some aspcts of the deteriolating phenomena of intellectual leve through double factorial basis, i.e. brain atrophy on CT and age. Secondly, the group showing greater changes in the brain atrophy on CT, which included one case with rapid deteriolation in dementia scale of more than 10 points, was distributed mainly around full marks or zero point in dementia scale. This result postulates that the range of the dementia scale should be expanded upwrds as well as downwards for the better explanation of the relation between intellectual deteriolation and above mentioned two factors. (author)

  5. Cardiac Bmi1(+) cells contribute to myocardial renewal in the murine adult heart.

    Science.gov (United States)

    Valiente-Alandi, Iñigo; Albo-Castellanos, Carmen; Herrero, Diego; Arza, Elvira; Garcia-Gomez, Maria; Segovia, José C; Capecchi, Mario; Bernad, Antonio

    2015-10-26

    The mammalian adult heart maintains a continuous, low cardiomyocyte turnover rate throughout life. Although many cardiac stem cell populations have been studied, the natural source for homeostatic repair has not yet been defined. The Polycomb protein BMI1 is the most representative marker of mouse adult stem cell systems. We have evaluated the relevance and role of cardiac Bmi1 (+) cells in cardiac physiological homeostasis. Bmi1 (CreER/+);Rosa26 (YFP/+) (Bmi1-YFP) mice were used for lineage tracing strategy. After tamoxifen (TM) induction, yellow fluorescent protein (YFP) is expressed under the control of Rosa26 regulatory sequences in Bmi1 (+) cells. These cells and their progeny were tracked by FACS, immunofluorescence and RT-qPCR techniques from 5 days to 1 year. FACS analysis of non-cardiomyocyte compartment from TM-induced Bmi1-YFP mice showed a Bmi1 (+)-expressing cardiac progenitor cell (Bmi1-CPC: B-CPC) population, SCA-1 antigen-positive (95.9 ± 0.4 %) that expresses some stemness-associated genes. B-CPC were also able to differentiate in vitro to the three main cardiac lineages. Pulse-chase analysis showed that B-CPC remained quite stable for extended periods (up to 1 year), which suggests that this Bmi1 (+) population contains cardiac progenitors with substantial self-maintenance potential. Specific immunostaining of Bmi1-YFP hearts serial sections 5 days post-TM induction indicated broad distribution of B-CPC, which were detected in variably sized clusters, although no YFP(+) cardiomyocytes (CM) were detected at this time. Between 2 to 12 months after TM induction, YFP(+) CM were clearly identified (3 ± 0.6 % to 6.7 ± 1.3 %) by immunohistochemistry of serial sections and by flow cytometry of total freshly isolated CM. B-CPC also contributed to endothelial and smooth muscle (SM) lineages in vivo. High Bmi1 expression identifies a non-cardiomyocyte resident cardiac population (B-CPC) that contributes to the main lineages of the heart in

  6. Conventional alpha beta (αβ) T cells do not contribute to acute intestinal ischemia-reperfusion injury in mice.

    Science.gov (United States)

    Yu, Yi; Feng, Xiaoyan; Vieten, Gertrud; Dippel, Stephanie; Imvised, Tawan; Gueler, Faikah; Ure, Benno M; Kuebler, Jochen F; Klemann, Christian

    2017-01-01

    Ischemia-reperfusion injury (IRI) is associated with significant patient mortality and morbidity. The complex cascade of IRI is incompletely understood, but inflammation is known to be a key mediator. In addition to the predominant innate immune responses, previous research has also indicated that αβ T cells contribute to IRI in various organ models. The aim of this study was to clarify the role αβ T cells play in IRI to the gut. Adult wild-type (WT) and αβ T cell-deficient mice were subjected to acute intestinal IRI with 30min ischemia followed by 4h reperfusion. The gene expression of pro-inflammatory cytokines was measured by qPCR, and the influx of leukocyte subpopulations in the gut was assessed via flow cytometry and histology. Pro-inflammatory cytokines in the serum were measured, and transaminases were assessed as an indicator of distant organ IRI. Intestinal IRI led to an increased expression of pro-inflammatory cytokines in the gut tissue and an influx of leukocytes that predominantly consisted of neutrophils and macrophages. Furthermore, intestinal IRI increased serum IL-6, TNF-α, and ALT/AST levels. The αβ T cell-deficient mice did not exhibit a more significant increase in pro-inflammatory cytokines in the gut or serum following IR than the WT mice. There was also no difference between WT- and αβ T cell-deficient mice in terms of neutrophil infiltration or macrophage activation. Furthermore, the increase in transaminases was equal in both groups indicating that the level of distant organ injury was comparable. An increasing body of evidence demonstrates that αβ T cells play a key role in IRI. In the gut, however, αβ T cells are not pivotal in the first hours following acute IRI as deficiency does not impact cytokine production, neutrophil recruitment, macrophage activation, or distant organ injury. Thus, αβ T cells may be considered innocent bystanders during the acute phase of intestinal IRI.

  7. Conventional alpha beta (αβ T cells do not contribute to acute intestinal ischemia-reperfusion injury in mice.

    Directory of Open Access Journals (Sweden)

    Yi Yu

    Full Text Available Ischemia-reperfusion injury (IRI is associated with significant patient mortality and morbidity. The complex cascade of IRI is incompletely understood, but inflammation is known to be a key mediator. In addition to the predominant innate immune responses, previous research has also indicated that αβ T cells contribute to IRI in various organ models. The aim of this study was to clarify the role αβ T cells play in IRI to the gut.Adult wild-type (WT and αβ T cell-deficient mice were subjected to acute intestinal IRI with 30min ischemia followed by 4h reperfusion. The gene expression of pro-inflammatory cytokines was measured by qPCR, and the influx of leukocyte subpopulations in the gut was assessed via flow cytometry and histology. Pro-inflammatory cytokines in the serum were measured, and transaminases were assessed as an indicator of distant organ IRI.Intestinal IRI led to an increased expression of pro-inflammatory cytokines in the gut tissue and an influx of leukocytes that predominantly consisted of neutrophils and macrophages. Furthermore, intestinal IRI increased serum IL-6, TNF-α, and ALT/AST levels. The αβ T cell-deficient mice did not exhibit a more significant increase in pro-inflammatory cytokines in the gut or serum following IR than the WT mice. There was also no difference between WT- and αβ T cell-deficient mice in terms of neutrophil infiltration or macrophage activation. Furthermore, the increase in transaminases was equal in both groups indicating that the level of distant organ injury was comparable.An increasing body of evidence demonstrates that αβ T cells play a key role in IRI. In the gut, however, αβ T cells are not pivotal in the first hours following acute IRI as deficiency does not impact cytokine production, neutrophil recruitment, macrophage activation, or distant organ injury. Thus, αβ T cells may be considered innocent bystanders during the acute phase of intestinal IRI.

  8. Serotonin Activated Hepatic Stellate Cells Contribute to Sex Disparity in Hepatocellular CarcinomaSummary

    Directory of Open Access Journals (Sweden)

    Qiqi Yang

    2017-05-01

    Full Text Available Background & Aims: Hepatocellular carcinoma (HCC occurs more frequently and aggressively in men than in women. Although sex hormones are believed to play a critical role in this disparity, the possible contribution of other factors largely is unknown. We aimed to investigate the role of serotonin on its contribution of sex discrepancy during HCC. Methods: By using an inducible zebrafish HCC model through hepatocyte-specific transgenic krasV12 expression, differential rates of HCC in male and female fish were characterized by both pharmaceutical and genetic interventions. The findings were validated further in human liver disease samples. Results: Accelerated HCC progression was observed in krasV12-expressing male zebrafish and male fish liver tumors were found to have higher hepatic stellate cell (HSC density and activation. Serotonin, which is essential for HSC survival and activation, similarly were found to be synthesized and accumulated more robustly in males than in females. Serotonin-activated HSCs could promote HCC carcinogenesis and concurrently increase serotonin synthesis via transforming growth factor (Tgfb1 expression, hence contributing to sex disparity in HCC. Analysis of liver disease patient samples showed similar male predominant serotonin accumulation and Tgfb1 expression. Conclusions: In both zebrafish HCC models and human liver disease samples, a predominant serotonin synthesis and accumulation in males resulted in higher HSC density and activation as well as Tgfb1 expression, thus accelerating HCC carcinogenesis in males. Keywords: Liver Cancer, TGFB1, Kras, Zebrafish

  9. Epidemiological studies in high-background radiation areas its potential contribution to evaluating risk of low-level radiation

    International Nuclear Information System (INIS)

    Akiba, Suminori; Nair, R.K.; Nakamura, Seiichi; Mizuno, Shoich

    2008-01-01

    The health effect of low-level ionizing radiation is yet unclear. As pointed out by Upton in his review (Upton, 1989), low-level ionizing radiation seems to have different biological effects from what high-level radiation has. Its evaluation requires epidemiological studies of scale-large cohorts (ICRP 99, 2005) such of atomic bomb survivors and nuclear workers. Epidemiological studies in high-background radiation (HBR) areas are also expected to make a significant contribution toward this end. Among several HBR areas in the world, Yangjiang, Guangdong Province in China, Karunagappally in Kerala State of India, Manawalakurichi and Koodankulam in Tamil Nadu of India, and Ramsar in Iran are important areas where epidemiological studies are possible, because of their relatively high background radiation levels and large population sizes. (author)

  10. Clostridium Bacteria and Autism Spectrum Conditions: A Systematic Review and Hypothetical Contribution of Environmental Glyphosate Levels

    Directory of Open Access Journals (Sweden)

    Isadora Argou-Cardozo

    2018-04-01

    Full Text Available Nowadays, there seems to be a consensus about the multifactorial nature of autism spectrum disorders (ASD. The literature provides hypotheses dealing with numerous environmental factors and genes accounting for the apparently higher prevalence of this condition. Researchers have shown evidence regarding the impact of gut bacteria on neurological outcomes, altering behavior and potentially affecting the onset and/or severity of psychiatric disorders. Pesticides and agrotoxics are also included among this long list of ASD-related environmental stressors. Of note, ingestion of glyphosate (GLY, a broad-spectrum systemic herbicide, can reduce beneficial bacteria in the gastrointestinal tract microbiota without exerting any effects on the Clostridium population, which is highly resistant to this herbicide. In the present study, (i we performed a systematic review to evaluate the relationship between Clostridium bacteria and the probability of developing and/or aggravating autism among children. For that purpose, electronic searches were performed on Medline/PubMed and Scielo databases for identification of relevant studies published in English up to December 2017. Two independent researches selected the studies and analyzed the data. The results of the present systematic review demonstrate an interrelation between Clostridium bacteria colonization of the intestinal tract and autism. Finally, (ii we also hypothesize about how environmental GLY levels may deleteriously influence the gut–brain axis by boosting the growth of Clostridium bacteria in autistic toddlers.

  11. Contributions of Observed Parent Socialization of Coping and Skin Conductance Level Reactivity to Childhood Adjustment.

    Science.gov (United States)

    Stanger, Sarah; Abaied, Jamie; Wagner, Caitlin; Sanders, Wesley

    2018-03-01

    This research examined the longitudinal association between parent socialization of coping and child adjustment, as well as the moderating role of children's skin conductance level reactivity (SCLR). Participants were a community sample of children (n = 64, M age = 9.02, 54.5% females, 93.2% Caucasian) and their parent(s). Parent coping suggestions were observed while their child engaged in a stressful challenge task, during which the child's SCLR, a measure of children's physiological reactivity to stress, was also measured. Parent(s) completed the Child Behavior Checklist (Achenbach & Rescorla, 2001) at baseline and a 6-month follow-up to assess internalizing and externalizing problems. Results revealed that secondary control engagement suggestions predicted fewer internalizing problems over time. In addition, disengagement suggestions predicted fewer externalizing problems over time among children with high SCLR. This study provides evidence that parent coping suggestions serve as a resource that protects youth from developing adjustment problems. © 2016 Family Process Institute.

  12. Expectations contribute to reduced pain levels during prayer in highly religious participants.

    Science.gov (United States)

    Jegindø, Else-Marie Elmholdt; Vase, Lene; Skewes, Joshua Charles; Terkelsen, Astrid Juhl; Hansen, John; Geertz, Armin W; Roepstorff, Andreas; Jensen, Troels Staehelin

    2013-08-01

    Although the use of prayer as a religious coping strategy is widespread and often claimed to have positive effects on physical disorders including pain, it has never been tested in a controlled experimental setting whether prayer has a pain relieving effect. Religious beliefs and practices are complex phenomena and the use of prayer may be mediated by general psychological factors known to be related to the pain experience, such as expectations, desire for pain relief, and anxiety. Twenty religious and twenty non-religious healthy volunteers were exposed to painful electrical stimulation during internal prayer to God, a secular contrast condition, and a pain-only control condition. Subjects rated expected pain intensity levels, desire for pain relief, and anxiety before each trial and pain intensity and pain unpleasantness immediately after on mechanical visual analogue scales. Autonomic and cardiovascular measures provided continuous non-invasive objective means for assessing the potential analgesic effects of prayer. Prayer reduced pain intensity by 34 % and pain unpleasantness by 38 % for religious participants, but not for non-religious participants. For religious participants, expectancy and desire predicted 56-64 % of the variance in pain intensity scores, but for non-religious participants, only expectancy was significantly predictive of pain intensity (65-73 %). Conversely, prayer-induced reduction in pain intensity and pain unpleasantness were not followed by autonomic and cardiovascular changes.

  13. Clostridium Bacteria and Autism Spectrum Conditions: A Systematic Review and Hypothetical Contribution of Environmental Glyphosate Levels.

    Science.gov (United States)

    Argou-Cardozo, Isadora; Zeidán-Chuliá, Fares

    2018-04-04

    Nowadays, there seems to be a consensus about the multifactorial nature of autism spectrum disorders (ASD). The literature provides hypotheses dealing with numerous environmental factors and genes accounting for the apparently higher prevalence of this condition. Researchers have shown evidence regarding the impact of gut bacteria on neurological outcomes, altering behavior and potentially affecting the onset and/or severity of psychiatric disorders. Pesticides and agrotoxics are also included among this long list of ASD-related environmental stressors. Of note, ingestion of glyphosate (GLY), a broad-spectrum systemic herbicide, can reduce beneficial bacteria in the gastrointestinal tract microbiota without exerting any effects on the Clostridium population, which is highly resistant to this herbicide. In the present study, (i) we performed a systematic review to evaluate the relationship between Clostridium bacteria and the probability of developing and/or aggravating autism among children. For that purpose, electronic searches were performed on Medline/PubMed and Scielo databases for identification of relevant studies published in English up to December 2017. Two independent researches selected the studies and analyzed the data. The results of the present systematic review demonstrate an interrelation between Clostridium bacteria colonization of the intestinal tract and autism. Finally, (ii) we also hypothesize about how environmental GLY levels may deleteriously influence the gut-brain axis by boosting the growth of Clostridium bacteria in autistic toddlers.

  14. Comparison of different statistical methods for estimation of extreme sea levels with wave set-up contribution

    Science.gov (United States)

    Kergadallan, Xavier; Bernardara, Pietro; Benoit, Michel; Andreewsky, Marc; Weiss, Jérôme

    2013-04-01

    Estimating the probability of occurrence of extreme sea levels is a central issue for the protection of the coast. Return periods of sea level with wave set-up contribution are estimated here in one site : Cherbourg in France in the English Channel. The methodology follows two steps : the first one is computation of joint probability of simultaneous wave height and still sea level, the second one is interpretation of that joint probabilities to assess a sea level for a given return period. Two different approaches were evaluated to compute joint probability of simultaneous wave height and still sea level : the first one is multivariate extreme values distributions of logistic type in which all components of the variables become large simultaneously, the second one is conditional approach for multivariate extreme values in which only one component of the variables have to be large. Two different methods were applied to estimate sea level with wave set-up contribution for a given return period : Monte-Carlo simulation in which estimation is more accurate but needs higher calculation time and classical ocean engineering design contours of type inverse-FORM in which the method is simpler and allows more complex estimation of wave setup part (wave propagation to the coast for example). We compare results from the two different approaches with the two different methods. To be able to use both Monte-Carlo simulation and design contours methods, wave setup is estimated with an simple empirical formula. We show advantages of the conditional approach compared to the multivariate extreme values approach when extreme sea-level occurs when either surge or wave height is large. We discuss the validity of the ocean engineering design contours method which is an alternative when computation of sea levels is too complex to use Monte-Carlo simulation method.

  15. Caveolin-1 contributes to realgar nanoparticle therapy in human chronic myelogenous leukemia K562 cells

    Directory of Open Access Journals (Sweden)

    Shi D

    2016-11-01

    Full Text Available Dan Shi,1,* Yan Liu,1,* Ronggang Xi,1 Wei Zou,2 Lijun Wu,3 Zhiran Zhang,1 Zhongyang Liu,1 Chao Qu,1 Baoli Xu,1 Xiaobo Wang1 1Department of Pharmacy, The 210th Hospital of People’s Liberation Army, 2College of Life Science, Liaoning Normal University, Dalian, Liaoning, 3Department of Pharmaceutics, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China *These authors contributed equally to this work Abstract: Chronic myelogenous leukemia (CML is characterized by the t(9;22 (q34;q11-associated Bcr-Abl fusion gene, which is an essential element of clinical diagnosis. As a traditional Chinese medicine, realgar has been widely used for the treatment of various diseases for >1,500 years. Inspired by nano-drug, realgar nanoparticles (NPs have been prepared with an average particle size of <100 nm in a previous work. Compared with coarse realgar, the realgar NPs have higher bioavailability. As a principal constituent protein of caveolae, caveolin-1 (Cav-1 participates in regulating various cellular physiological and pathological processes including tumorigenesis and tumor development. In previous studies, it was found that realgar NPs can inhibit several types of tumor cell proliferation. However, the therapeutic effect of realgar NPs on CML has not been fully elucidated. In the present paper, it was demonstrated that realgar NPs can inhibit the proliferation of K562 cells and degrade Bcr-Abl fusion protein effectively. Both apoptosis and autophagy were activated in a dose-dependent manner in realgar NPs treated cells, and the induction of autophagy was associated with class I phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathway. Morphological analysis indicated that realgar NPs induced differentiation effectively in CML cells. Furthermore, it was identified that Cav-1 might play a crucial role in realgar NP therapy. In order to study the effects of Cav-1 on K562 cells during

  16. Phosphatidylserine-exposing blood and endothelial cells contribute to the hypercoagulable state in essential thrombocythemia patients.

    Science.gov (United States)

    Tong, Dongxia; Yu, Muxin; Guo, Li; Li, Tao; Li, Jihe; Novakovic, Valerie A; Dong, Zengxiang; Tian, Ye; Kou, Junjie; Bi, Yayan; Wang, Jinghua; Zhou, Jin; Shi, Jialan

    2018-04-01

    The mechanisms of thrombogenicity in essential thrombocythemia (ET) are complex and not well defined. Our objective was to explore whether phosphatidylserine (PS) exposure on blood cells and endothelial cells (ECs) can account for the increased thrombosis and distinct thrombotic risks among mutational subtypes in ET. Using flow cytometry and confocal microscopy, we found that the levels of PS-exposing erythrocytes, platelets, leukocytes, and serum-cultured ECs were significantly higher in each ET group [JAK2, CALR, and triple-negative (TN) (all P cells and serum-cultured ECs led to markedly shortened coagulation time and dramatically increased levels of FXa, thrombin, and fibrin production. This procoagulant activity could be largely blocked by addition of lactadherin (approx. 70% inhibition). Confocal microscopy showed that the FVa/FXa complex and fibrin fibrils colocalized with PS on ET serum-cultured ECs. Additionally, we found a relationship between D-dimer, prothrombin fragment F1 + 2, and PS exposure. Our study reveals a previously unrecognized link between hypercoagulability and exposed PS on cells, which might also be associated with distinct thrombotic risks among mutational subtypes in ET. Thus, blocking PS-binding sites may represent a new therapeutic target for preventing thrombosis in ET.

  17. Serum Endostatin Levels in Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Maryam Mardani

    2018-05-01

    Full Text Available Introduction: Endostatin is a C-­terminal proteolytic fragment of collagen XVIII and, as with angiostatin and thrombospondin, is known as an anti­angiogenic agent. The aim of this study was to assess the level of serum endostatin in patients with oral squamous cell carcinoma (SCC, and its association with the clinicopathological characteristics of the tumor.   Materials and Methods:  Using an enzyme-linked immunosorbent assay (ELISA kit, we investigated the circulating levels of endostatin in the blood serum of 45 patients with oral SCC and 45 healthy controls.   Results: The mean level of serum endostatin in patients was significantly lower (68.8±85 ng/ml than in healthy controls (175.6±73 ng/ml (P

  18. Investigation of multiple factors which may contribute to vitamin D levels of bedridden pregnant women and their preterm neonates.

    Science.gov (United States)

    Skouroliakou, Maria; Ntountaniotis, Dimitrios; Massara, Paraskevi; Koutri, Katerina

    2016-01-01

    25-Hydroxyvitamin D (25-OH-D) is the marker, which indicates vitamin D levels. The aim of this study was to investigate the possible factors, which contribute to serum 25-OH-D levels in bedridden mothers and their preterm neonates. Twenty-six preterm neonates born during the period of 24-33 weeks of gestational age and 20 mothers (who experienced pregnancy complications) were recruited to the study. Five major results were obtained. (i) The 25-OH-D serum levels for preterm neonates and their mothers were found to possess strong correlation (ii) and both differed significantly in comparison with the optimal levels. (iii) An increase of mothers' 25-OH-D serum levels was associated with an increased possibility that the neonates would be measured to have normal 25-OH-D levels. (iv) Sex was not a key factor to neonates' 25-OH-D levels. (v) No correlation was found between mothers' 25-OH-D levels and their vitamin D3 supplement (400 IU/d during pregnancy). Due to insufficient exposure to sunlight and a diet not enriched with vitamin D, bedridden pregnant women suffer from vitamin D deficiency and pregnancy complications lead often to birth of preterm neonates with the same deficiency. Mothers should increase the total amount of vitamin D intake (food and supplement).

  19. Polyclonal type II natural killer T cells require PLZF and SAP for their development and contribute to CpG-mediated antitumor response

    Science.gov (United States)

    Zhao, Jie; Weng, Xiufang; Bagchi, Sreya; Wang, Chyung-Ru

    2014-01-01

    CD1d-restricted natural killer T (NKT) cells are innate-like T cells with potent immunomodulatory function via rapid production of both Th1 and Th2 cytokines. NKT cells comprise well-characterized type I NKT cells, which can be detected by α-galactosylceramide-loaded CD1d tetramers, and less-studied type II NKT cells, which do not recognize α-galactosylceramide. Here we characterized type II NKT cells on a polyclonal level by using a Jα18-deficient IL-4 reporter mouse model. This model allows us to track type II NTK cells by the GFP+TCRβ+ phenotype in the thymus and liver. We found type II NKT cells, like type I NKT cells, exhibit an activated phenotype and are dependent on the transcriptional regulator promyelocytic leukemia zinc finger (PLZF) and the adaptor molecule signaling lymphocyte activation molecule-associated protein (SAP) for their development. Type II NKT cells are potently activated by β-D-glucopyranosylceramide (β-GlcCer) but not sulfatide or phospholipids in a CD1d-dependent manner, with the stimulatory capacity of β-GlcCer influenced by acyl chain length. Compared with type I NKT cells, type II NKT cells produce lower levels of IFN-γ but comparable amounts of IL-13 in response to polyclonal T-cell receptor stimulation, suggesting they may play different roles in regulating immune responses. Furthermore, type II NKT cells can be activated by CpG oligodeoxynucletides to produce IFN-γ, but not IL-4 or IL-13. Importantly, CpG-activated type II NKT cells contribute to the antitumor effect of CpG in the B16 melanoma model. Taken together, our data reveal the characteristics of polyclonal type II NKT cells and their potential role in antitumor immunotherapy. PMID:24550295

  20. Contribution to growth and increment analysis on the Italian CONECOFOR Level II Network

    Directory of Open Access Journals (Sweden)

    Emilio AMORINI

    2002-09-01

    Full Text Available The paper deals with the "Estimation of growth and yield" included in the National Programme on Intensive Monitoring of Forest Ecosystems CONECOFOR Aims of the paper are: i to outline the composition and design of Level II PMPs network, also examining the structural characteristics of forest stands; ii to describe the contents of mensurational surveys carried out in winter 1996/97 and 1999/00; iii to analyse the growth rates in progress at each PMP using selected descriptors. Stand origin (11 high forests and 13 stored coppices and transitory crops and the number of forest types tested are focused as the main discriminants of the PMPs network. This composition, together with irregular forestry practice, results in a number of consequences (prevailing age classes, tree densities and related stand structures, growth patterns which cause a high in-and-between variability of all growth parameters. For the purposes of this analysis, the network of the plots was divided into three main sets: broadleaved high forest (i.e. beech stands, 6 PMPs; coniferous forest (i.e. Norway spruce stands, 5 PMPs; coppice forest (i.e. deciduous and evergreen oaks, beech and hardbeam stands, 13 PMPs. The measurement of basic growth variables (dbh and tree height was used to describe the tree populations in each PMP; the calculation of basal area, mean and top dbh, mean and top height, provided the reference dataset at each inventory. The assessment of social class according to Kraft gave information on vertical stand structure and made it possible to analyse growth according to tree layers. Data comparison provided increments in the interval 1997-2000. The occurrence of natural mortality and ingrowth was also assessed to take into account their combined effect on tree population dynamics. No trend was found, due to limited data availability, but it was possible to have a detailed overview of the stand situation and growth rates in PMPs.

  1. Low oxygen level increases proliferation and metabolic changes in bovine granulosa cells.

    Science.gov (United States)

    Shiratsuki, Shogo; Hara, Tomotaka; Munakata, Yasuhisa; Shirasuna, Koumei; Kuwayama, Takehito; Iwata, Hisataka

    2016-12-05

    The present study addresses molecular backgrounds underlying low oxygen induced metabolic changes and 1.2-fold change in bovine granulosa cell (GCs) proliferation. RNA-seq revealed that low oxygen (5%) upregulated genes associated with HIF-1 and glycolysis and downregulated genes associated with mitochondrial respiration than that in high oxygen level (21%). Low oxygen level induced high glycolytic activity and low mitochondrial function and biogenesis. Low oxygen level enhanced GC proliferation with high expression levels of HIF-1, VEGF, AKT, mTOR, and S6RP, whereas addition of anti-VEGF antibody decreased cellular proliferation with low phosphorylated AKT and mTOR expression levels. Low oxygen level reduced SIRT1, whereas activation of SIRT1 by resveratrol increased mitochondrial replication and decreased cellular proliferation with reduction of phosphorylated mTOR. These results suggest that low oxygen level stimulates the HIF1-VEGF-AKT-mTOR pathway and up-regulates glycolysis, which contributes to GC proliferation, and downregulation of SIRT1 contributes to hypoxia-associated reduction of mitochondria and cellular proliferation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Genes Contributing to Porphyromonas gingivalis Fitness in Abscess and Epithelial Cell Colonization Environments.

    Science.gov (United States)

    Miller, Daniel P; Hutcherson, Justin A; Wang, Yan; Nowakowska, Zuzanna M; Potempa, Jan; Yoder-Himes, Deborah R; Scott, David A; Whiteley, Marvin; Lamont, Richard J

    2017-01-01

    Porphyromonas gingivalis is an important cause of serious periodontal diseases, and is emerging as a pathogen in several systemic conditions including some forms of cancer. Initial colonization by P. gingivalis involves interaction with gingival epithelial cells, and the organism can also access host tissues and spread haematogenously. To better understand the mechanisms underlying these properties, we utilized a highly saturated transposon insertion library of P. gingivalis , and assessed the fitness of mutants during epithelial cell colonization and survival in a murine abscess model by high-throughput sequencing (Tn-Seq). Transposon insertions in many genes previously suspected as contributing to virulence showed significant fitness defects in both screening assays. In addition, a number of genes not previously associated with P. gingivalis virulence were identified as important for fitness. We further examined fitness defects of four such genes by generating defined mutations. Genes encoding a carbamoyl phosphate synthetase, a replication-associated recombination protein, a nitrosative stress responsive HcpR transcription regulator, and RNase Z, a zinc phosphodiesterase, showed a fitness phenotype in epithelial cell colonization and in a competitive abscess infection. This study verifies the importance of several well-characterized putative virulence factors of P. gingivalis and identifies novel fitness determinants of the organism.

  3. Helicobacter pylori-induced premature senescence of extragastric cells may contribute to chronic skin diseases.

    Science.gov (United States)

    Lewinska, Anna; Wnuk, Maciej

    2017-04-01

    Helicobacter pylori, one of the most frequently observed bacterium in the human intestinal flora, has been widely studied since Marshall and Warren documented a link between the presence of H. pylori in the gastrointestinal tract and gastritis and gastric ulcers. Interestingly, H. pylori has also been found in several other epithelial tissues, including the eyes, ears, nose and skin that may have direct or indirect effects on host physiology and may contribute to extragastric diseases, e.g. chronic skin diseases. More recently, it has been shown that H. pylori cytotoxin CagA expression induces cellular senescence of human gastric nonpolarized epithelial cells that may lead to gastrointestinal disorders and systemic inflammation. Here, we hypothesize that also chronic skin diseases may be promoted by stress-induced premature senescence (SIPS) of skin cells, namely fibroblasts and keratinocytes, stimulated with H. pylori cytotoxins. Future studies involving cell culture models and clinical specimens are needed to verify the involvement of H. pylori in SIPS-based chronic skin diseases.

  4. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia.

    Directory of Open Access Journals (Sweden)

    Manuel Martinez-Garcia

    Full Text Available Microbial hydrolysis of polysaccharides is critical to ecosystem functioning and is of great interest in diverse biotechnological applications, such as biofuel production and bioremediation. Here we demonstrate the use of a new, efficient approach to recover genomes of active polysaccharide degraders from natural, complex microbial assemblages, using a combination of fluorescently labeled substrates, fluorescence-activated cell sorting, and single cell genomics. We employed this approach to analyze freshwater and coastal bacterioplankton for degraders of laminarin and xylan, two of the most abundant storage and structural polysaccharides in nature. Our results suggest that a few phylotypes of Verrucomicrobia make a considerable contribution to polysaccharide degradation, although they constituted only a minor fraction of the total microbial community. Genomic sequencing of five cells, representing the most predominant, polysaccharide-active Verrucomicrobia phylotype, revealed significant enrichment in genes encoding a wide spectrum of glycoside hydrolases, sulfatases, peptidases, carbohydrate lyases and esterases, confirming that these organisms were well equipped for the hydrolysis of diverse polysaccharides. Remarkably, this enrichment was on average higher than in the sequenced representatives of Bacteroidetes, which are frequently regarded as highly efficient biopolymer degraders. These findings shed light on the ecological roles of uncultured Verrucomicrobia and suggest specific taxa as promising bioprospecting targets. The employed method offers a powerful tool to rapidly identify and recover discrete genomes of active players in polysaccharide degradation, without the need for cultivation.

  5. Genes Contributing to Porphyromonas gingivalis Fitness in Abscess and Epithelial Cell Colonization Environments

    Science.gov (United States)

    Miller, Daniel P.; Hutcherson, Justin A.; Wang, Yan; Nowakowska, Zuzanna M.; Potempa, Jan; Yoder-Himes, Deborah R.; Scott, David A.; Whiteley, Marvin; Lamont, Richard J.

    2017-01-01

    Porphyromonas gingivalis is an important cause of serious periodontal diseases, and is emerging as a pathogen in several systemic conditions including some forms of cancer. Initial colonization by P. gingivalis involves interaction with gingival epithelial cells, and the organism can also access host tissues and spread haematogenously. To better understand the mechanisms underlying these properties, we utilized a highly saturated transposon insertion library of P. gingivalis, and assessed the fitness of mutants during epithelial cell colonization and survival in a murine abscess model by high-throughput sequencing (Tn-Seq). Transposon insertions in many genes previously suspected as contributing to virulence showed significant fitness defects in both screening assays. In addition, a number of genes not previously associated with P. gingivalis virulence were identified as important for fitness. We further examined fitness defects of four such genes by generating defined mutations. Genes encoding a carbamoyl phosphate synthetase, a replication-associated recombination protein, a nitrosative stress responsive HcpR transcription regulator, and RNase Z, a zinc phosphodiesterase, showed a fitness phenotype in epithelial cell colonization and in a competitive abscess infection. This study verifies the importance of several well-characterized putative virulence factors of P. gingivalis and identifies novel fitness determinants of the organism. PMID:28900609

  6. Genes Contributing to Porphyromonas gingivalis Fitness in Abscess and Epithelial Cell Colonization Environments

    Directory of Open Access Journals (Sweden)

    Daniel P. Miller

    2017-08-01

    Full Text Available Porphyromonas gingivalis is an important cause of serious periodontal diseases, and is emerging as a pathogen in several systemic conditions including some forms of cancer. Initial colonization by P. gingivalis involves interaction with gingival epithelial cells, and the organism can also access host tissues and spread haematogenously. To better understand the mechanisms underlying these properties, we utilized a highly saturated transposon insertion library of P. gingivalis, and assessed the fitness of mutants during epithelial cell colonization and survival in a murine abscess model by high-throughput sequencing (Tn-Seq. Transposon insertions in many genes previously suspected as contributing to virulence showed significant fitness defects in both screening assays. In addition, a number of genes not previously associated with P. gingivalis virulence were identified as important for fitness. We further examined fitness defects of four such genes by generating defined mutations. Genes encoding a carbamoyl phosphate synthetase, a replication-associated recombination protein, a nitrosative stress responsive HcpR transcription regulator, and RNase Z, a zinc phosphodiesterase, showed a fitness phenotype in epithelial cell colonization and in a competitive abscess infection. This study verifies the importance of several well-characterized putative virulence factors of P. gingivalis and identifies novel fitness determinants of the organism.

  7. Myosin 1g Contributes to CD44 Adhesion Protein and Lipid Rafts Recycling and Controls CD44 Capping and Cell Migration in B Lymphocytes

    Directory of Open Access Journals (Sweden)

    Orestes López-Ortega

    2017-12-01

    Full Text Available Cell migration and adhesion are critical for immune system function and involve many proteins, which must be continuously transported and recycled in the cell. Recycling of adhesion molecules requires the participation of several proteins, including actin, tubulin, and GTPases, and of membrane components such as sphingolipids and cholesterol. However, roles of actin motor proteins in adhesion molecule recycling are poorly understood. In this study, we identified myosin 1g as one of the important motor proteins that drives recycling of the adhesion protein CD44 in B lymphocytes. We demonstrate that the lack of Myo1g decreases the cell-surface levels of CD44 and of the lipid raft surrogate GM1. In cells depleted of Myo1g, the recycling of CD44 was delayed, the delay seems to be caused at the level of formation of recycling complex and entry into recycling endosomes. Moreover, a defective lipid raft recycling in Myo1g-deficient cells had an impact both on the capping of CD44 and on cell migration. Both processes required the transportation of lipid rafts to the cell surface to deliver signaling components. Furthermore, the extramembrane was essential for cell expansion and remodeling of the plasma membrane topology. Therefore, Myo1g is important during the recycling of lipid rafts to the membrane and to the accompanied proteins that regulate plasma membrane plasticity. Thus, Myosin 1g contributes to cell adhesion and cell migration through CD44 recycling in B lymphocytes.

  8. Toll-Like Receptor 4 in Bone Marrow-Derived Cells Contributes to the Progression of Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2014-01-01

    Full Text Available Diabetic retinopathy (DR is a major microvascular complication in diabetics, and its mechanism is not fully understood. Toll-like receptor 4 (TLR4 plays a pivotal role in the maintenance of the inflammatory state during DR, and the deletion of TLR4 eventually alleviates the diabetic inflammatory state. To further elucidate the mechanism of DR, we used bone marrow transplantation to establish reciprocal chimeric animals of TLR4 mutant mice and TLR4 WT mice combined with diabetes mellitus (DM induction by streptozotocin (STZ treatment to identify the role of TLR4 in different cell types in the development of the proinflammatory state during DR. TLR4 mutation did not block the occurrence of high blood glucose after STZ injection compared with WT mice but did alleviate the progression of DR and alter the expression of the small vessel proliferation-related genes, vascular endothelial growth factor (VEGF, and hypoxia inducible factor-1α (HIF-1α. Grafting bone marrow-derived cells from TLR4 WT mice into TLR4 mutant mice increased the levels of TNF-α, IL-1β, and MIP-2 and increased the damage to the retina. Similarly, VEGF and HIF-1α expression were restored by the bone marrow transplantation. These findings identify an essential role for TLR4 in bone marrow-derived cells contributing to the progression of DR.

  9. Contribution to the modelling of reversible electrolyser and hydrogen fuel cell for coupling to the photovoltaic generators

    International Nuclear Information System (INIS)

    Rabih, S.

    2008-10-01

    A response to concerns raised by an energy mix which mainly consists of exhaustible fossil fuels harmful to the environment is to gradually substitute them by renewable energy sources, including solar or wind power. However, these intermittent flow energies set a recovery problem. They are often the source of electricity which inherits their fluctuations, which requires a transport network and which is an energy carrier not easy to store. In this context hydrogen synthesized from this renewable electricity, storing, it is considered as a stock carrier promising for the future. Various components and electrochemical processes are associated with this perspective: electrolysers, fuel cells, associations of these two functions combined in the system or integrated into a unitised reversible component. Our work is set in this perspective. It contributed to the development of advanced models of electrochemical components of electrolyser or fuel cells type, integrating reversibility for the study of their coupling to the photovoltaic generators. The models developed following a unified energetic approach use bond graph representation. After an analysis of the energy context, a state of the art of electrochemical components coupling hydrogen and electricity is presented, particularly on electrolysers and regenerative or unitised reversible fuel cells. Then, after a reminder of the principles of the Bond Graph representation, we exploit this formalism to develop an energetic model of a reversible component 'electrolyser and / or fuel cell' representative at macroscopic level of conversion reaction and dissipation phenomena, coupled in chemical, thermodynamic, electrical, thermal and fluid fields. Tests for characterization and validation conducted on small experimental devices are then described. They can illustrate the influence of operating parameters on the performance of these components. Finally, the Bond Graph model is used to study the modularity of components

  10. Rising cyclin-CDK levels order cell cycle events.

    Directory of Open Access Journals (Sweden)

    Catherine Oikonomou

    Full Text Available Diverse mitotic events can be triggered in the correct order and time by a single cyclin-CDK. A single regulator could confer order and timing on multiple events if later events require higher cyclin-CDK than earlier events, so that gradually rising cyclin-CDK levels can sequentially trigger responsive events: the "quantitative model" of ordering.This 'quantitative model' makes predictions for the effect of locking cyclin at fixed levels for a protracted period: at low cyclin levels, early events should occur rapidly, while late events should be slow, defective, or highly variable (depending on threshold mechanism. We titrated the budding yeast mitotic cyclin Clb2 within its endogenous expression range to a stable, fixed level and measured time to occurrence of three mitotic events: growth depolarization, spindle formation, and spindle elongation, as a function of fixed Clb2 level. These events require increasingly more Clb2 according to their normal order of occurrence. Events occur efficiently and with low variability at fixed Clb2 levels similar to those observed when the events normally occur. A second prediction of the model is that increasing the rate of cyclin accumulation should globally advance timing of all events. Moderate (<2-fold overexpression of Clb2 accelerates all events of mitosis, resulting in consistently rapid sequential cell cycles. However, this moderate overexpression also causes a significant frequency of premature mitoses leading to inviability, suggesting that Clb2 expression level is optimized to balance the fitness costs of variability and catastrophe.We conclude that mitotic events are regulated by discrete cyclin-CDK thresholds. These thresholds are sequentially triggered as cyclin increases, yielding reliable order and timing. In many biological processes a graded input must be translated into discrete outputs. In such systems, expression of the central regulator is likely to be tuned to an optimum level, as we

  11. Cell cycle progression, but not genotoxic activity, mainly contributes to citrinin-induced renal carcinogenesis

    International Nuclear Information System (INIS)

    Kuroda, Ken; Ishii, Yuji; Takasu, Shinji; Kijima, Aki; Matsushita, Kohei; Watanabe, Maiko; Takahashi, Haruo; Sugita-Konishi, Yoshiko; Sakai, Hiroki; Yanai, Tokuma; Nohmi, Takehiko; Ogawa, Kumiko; Umemura, Takashi

    2013-01-01

    Citrinin (CTN) is a food-contaminating mycotoxin that efficiently induces renal tumors in rats. However, the modes of carcinogenic action are still unknown, preventing assessment of the risks of CTN in humans. In the present study, the proliferative effects of CTN and its causal factors were investigated in the kidneys of gpt delta rats. In addition, three in vivo genotoxicity assays (reporter gene mutation using gpt delta rats and comet and micronucleus assays using F344 rats) were performed to clarify whether CTN was genotoxic in vivo. CTN was administrated at 20 and 40 mg/kg/day, the higher dose being the maximal tolerated dose and a nearly carcinogenic dose. In the kidney cortex of gpt delta rats, significant increases in the labeling indices of proliferating cell nuclear antigen (PCNA)-positive cells were observed at all doses of CTN. Increases in the mRNA expression levels of Ccna2, Ccnb1, Ccne1, and its transcription factor E2f1 were also detected, suggesting induction of cell cycle progression at all tested doses of CTN. However, histopathological changes were found only in rats treated with the higher dose of CTN, which was consistent with increases in the mRNA expression levels of mitogenic factors associated with tissue damage/regeneration, such as Hgf and Lcn2, at the same dose. Thus, the proliferative effects of CTN may result not only from compensatory reactions, but also from direct mitogenic action. Western blot analysis showed that ERK phosphorylation was increased at all doses, implying that cell cycle progression may be mediated by activation of the ERK pathway. On the other hand, in vivo genotoxicity analyses were negative, implying that CTN did not have the potential for inducing DNA damage, gene mutations, or chromosomal aberrations. The overall data clearly demonstrated the molecular events underlying CTN-induced cell cycle progression, which could be helpful to understand CTN-induced renal carcinogenesis

  12. Human Peripheral Blood Mononuclear Cells Exhibit Heterogeneous CD52 Expression Levels and Show Differential Sensitivity to Alemtuzumab Mediated Cytolysis

    Science.gov (United States)

    Rao, Sambasiva P.; Sancho, Jose; Campos-Rivera, Juanita; Boutin, Paula M.; Severy, Peter B.; Weeden, Timothy; Shankara, Srinivas; Roberts, Bruce L.; Kaplan, Johanne M.

    2012-01-01

    Alemtuzumab is a monoclonal antibody that targets cell surface CD52 and is effective in depleting lymphocytes by cytolytic effects in vivo. Although the cytolytic effects of alemtuzumab are dependent on the density of CD52 antigen on cells, there is scant information regarding the expression levels of CD52 on different cell types. In this study, CD52 expression was assessed on phenotypically distinct subsets of lymphoid and myeloid cells in peripheral blood mononuclear cells (PBMCs) from normal donors. Results demonstrate that subsets of PBMCs express differing levels of CD52. Quantitative analysis showed that memory B cells and myeloid dendritic cells (mDCs) display the highest number while natural killer (NK) cells, plasmacytoid dendritic cells (pDCs) and basophils have the lowest number of CD52 molecules per cell amongst lymphoid and myeloid cell populations respectively. Results of complement dependent cytolysis (CDC) studies indicated that alemtuzumab mediated profound cytolytic effects on B and T cells with minimal effect on NK cells, basophils and pDCs, correlating with the density of CD52 on these cells. Interestingly, despite high CD52 levels, mDCs and monocytes were less susceptible to alemtuzumab-mediated CDC indicating that antigen density alone does not define susceptibility. Additional studies indicated that higher expression levels of complement inhibitory proteins (CIPs) on these cells partially contributes to their resistance to alemtuzumab mediated CDC. These results indicate that alemtuzumab is most effective in depleting cells of the adaptive immune system while leaving innate immune cells relatively intact. PMID:22761788

  13. Human peripheral blood mononuclear cells exhibit heterogeneous CD52 expression levels and show differential sensitivity to alemtuzumab mediated cytolysis.

    Directory of Open Access Journals (Sweden)

    Sambasiva P Rao

    Full Text Available Alemtuzumab is a monoclonal antibody that targets cell surface CD52 and is effective in depleting lymphocytes by cytolytic effects in vivo. Although the cytolytic effects of alemtuzumab are dependent on the density of CD52 antigen on cells, there is scant information regarding the expression levels of CD52 on different cell types. In this study, CD52 expression was assessed on phenotypically distinct subsets of lymphoid and myeloid cells in peripheral blood mononuclear cells (PBMCs from normal donors. Results demonstrate that subsets of PBMCs express differing levels of CD52. Quantitative analysis showed that memory B cells and myeloid dendritic cells (mDCs display the highest number while natural killer (NK cells, plasmacytoid dendritic cells (pDCs and basophils have the lowest number of CD52 molecules per cell amongst lymphoid and myeloid cell populations respectively. Results of complement dependent cytolysis (CDC studies indicated that alemtuzumab mediated profound cytolytic effects on B and T cells with minimal effect on NK cells, basophils and pDCs, correlating with the density of CD52 on these cells. Interestingly, despite high CD52 levels, mDCs and monocytes were less susceptible to alemtuzumab-mediated CDC indicating that antigen density alone does not define susceptibility. Additional studies indicated that higher expression levels of complement inhibitory proteins (CIPs on these cells partially contributes to their resistance to alemtuzumab mediated CDC. These results indicate that alemtuzumab is most effective in depleting cells of the adaptive immune system while leaving innate immune cells relatively intact.

  14. Evidence that CFTR is expressed in rat tracheal smooth muscle cells and contributes to bronchodilation

    Directory of Open Access Journals (Sweden)

    Mettey Yvette

    2006-08-01

    Full Text Available Abstract Background The airway functions are profoundly affected in many diseases including asthma, chronic obstructive pulmonary disease (COPD and cystic fibrosis (CF. CF the most common lethal autosomal recessive genetic disease is caused by mutations of the CFTR gene, which normally encodes a multifunctional and integral membrane protein, the CF transmembrane conductance regulator (CFTR expressed in airway epithelial cells. Methods To demonstrate that CFTR is also expressed in tracheal smooth muscle cells (TSMC, we used iodide efflux assay to analyse the chloride transports in organ culture of rat TSMC, immunofluorescence study to localize CFTR proteins and isometric contraction measurement on isolated tracheal rings to observe the implication of CFTR in the bronchodilation. Results We characterized three different pathways stimulated by the cAMP agonist forskolin and the isoflavone agent genistein, by the calcium ionophore A23187 and by hypo-osmotic challenge. The pharmacology of the cAMP-dependent iodide efflux was investigated in detail. We demonstrated in rat TSMC that it is remarkably similar to that of the epithelial CFTR, both for activation (using three benzo [c]quinolizinium derivatives and for inhibition (glibenclamide, DPC and CFTRinh-172. Using rat tracheal rings, we observed that the activation of CFTR by benzoquinolizinium derivatives in TSMC leads to CFTRinh-172-sensitive bronchodilation after constriction with carbachol. An immunolocalisation study confirmed expression of CFTR in tracheal myocytes. Conclusion Altogether, these observations revealed that CFTR in the airways of rat is expressed not only in the epithelial cells but also in tracheal smooth muscle cells leading to the hypothesis that this ionic channel could contribute to bronchodilation.

  15. Bone Marrow Stromal Cells Contribute to Bone Formation Following Infusion into Femoral Cavities of a Mouse Model of Osteogenesis Imperfecta

    Science.gov (United States)

    Li, Feng; Wang, Xujun; Niyibizi, Christopher

    2010-01-01

    Currently, there are conflicting data in literature regarding contribution of bone marrow stromal cells (BMSCs) to bone formation when the cells are systemically delivered in recipient animals. To understand if BMSCs contribute to bone cell phenotype and bone formation in osteogenesis imperfecta bones (OI), MSCs marked with GFP were directly infused into the femurs of a mouse model of OI (oim). The contribution of the cells to the cell phenotype and bone formation was assessed by histology, immunohistochemistry and biomechanical loading of recipient bones. Two weeks following infusion of BMSCs, histological examination of the recipient femurs demonstrated presence of new bone when compared to femurs injected with saline which showed little or no bone formation. The new bone contained few donor cells as demonstrated by GFP fluorescence. At six weeks following cell injection, new bone was still detectable in the recipient femurs but was enhanced by injection of the cells suspended in pepsin solublized type I collagen. Immunofluorescence and immunohistochemical staining showed that donor GFP positive cells in the new bone were localized with osteocalcin expressing cells suggesting that the cells differentiated into osteoblasts in vivo. Biomechanical loading to failure in thee point bending, revealed that, femurs infused with BMSCs in PBS or in soluble type I collagen were biomechanically stronger than those injected with PBS or type I collagen alone. Taken together, the results indicate that transplanted cells differentiated into osteoblasts in vivo and contributed to bone formation in vivo; we also speculate that donor cells induced differentiation or recruitment of endogenous cells to initiate reparative process at early stages following transplantation. PMID:20570757

  16. Decreased IL-33 Production Contributes to Trophoblast Cell Dysfunction in Pregnancies with Preeclampsia

    Directory of Open Access Journals (Sweden)

    Hong Chen

    2018-01-01

    Full Text Available Preeclampsia (PE is a life-threatening pregnancy complication which is related to aggradation of risk regarding fetal and maternal morbidity and mortality. Dysregulation of systemic inflammatory response and dysfunction of trophoblast cells have been proposed to be involved in the development and progression of PE. Some studies have demonstrated that interleukin-33 (IL-33 is an immunomodulatory cytokine that is associated with the immune regulation of tumor cells. However, little is known whether IL-33 and its receptor ST2/IL-1 R4 could regulate trophoblast cells, which are associated with the pathogenesis of PE. In this study, our target is to explore the impact of IL-33 on trophoblast cells and elucidate its underlying pathophysiological mechanisms. Placental tissues from the severe PE group (n=11 and the normotensive pregnant women’s group (n=11 were collected for the protein expression and distribution of IL-33 along with its receptor ST2/IL-1 R4 via Western blot analysis and immunohistochemistry, respectively. We discovered that the level of IL-33 was decreased in placental tissues of pregnant women with PE, while no distinction was observed in the expression of ST2/IL-1 R4. These results were further verified in villous explants which were treated with sodium nitroprusside with different concentrations, to simulate the pathological environment of PE. To investigate IL-33 effects on trophoblast cells separately, IL-33 shRNA was introduced into HTR8/SVneo cells and villi. IL-33 shRNA weakened the proliferation, migration, and invasion capacity of HTR8/SVneo cells. The migration distance of villous explants was also markedly decreased. The reduced invasion of trophoblast cells is a result of IL-33 knockdown which could be related to the decline of MMP2/9 activity and the increased utterance of TIMP1/2. Overall, our findings demonstrated that the reduction of IL-33 production was connected with the reduced functional capability of

  17. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Frost, Jarvist M.; Butler, Keith T.; Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2014-08-01

    We report a model describing the molecular orientation disorder in CH{sub 3}NH{sub 3}PbI{sub 3}, solving a classical Hamiltonian parametrised with electronic structure calculations, with the nature of the motions informed by ab initio molecular dynamics. We investigate the temperature and static electric field dependence of the equilibrium ferroelectric (molecular) domain structure and resulting polarisability. A rich domain structure of twinned molecular dipoles is observed, strongly varying as a function of temperature and applied electric field. We propose that the internal electrical fields associated with microscopic polarisation domains contribute to hysteretic anomalies in the current-voltage response of hybrid organic-inorganic perovskite solar cells due to variations in electron-hole recombination in the bulk.

  18. Adropin Contributes to Anti-Atherosclerosis by Suppressing Monocyte-Endothelial Cell Adhesion and Smooth Muscle Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Kengo Sato

    2018-04-01

    Full Text Available Adropin, a peptide hormone expressed in liver and brain, is known to improve insulin resistance and endothelial dysfunction. Serum levels of adropin are negatively associated with the severity of coronary artery disease. However, it remains unknown whether adropin could modulate atherogenesis. We assessed the effects of adropin on inflammatory molecule expression and human THP1 monocyte adhesion in human umbilical vein endothelial cells (HUVECs, foam cell formation in THP1 monocyte-derived macrophages, and the migration and proliferation of human aortic smooth muscle cells (HASMCs in vitro and atherogenesis in Apoe−/− mice in vivo. Adropin was expressed in THP1 monocytes, their derived macrophages, HASMCs, and HUVECs. Adropin suppressed tumor necrosis factor α-induced THP1 monocyte adhesion to HUVECs, which was associated with vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 downregulation in HUVECs. Adropin shifted the phenotype to anti-inflammatory M2 rather than pro-inflammatory M1 via peroxisome proliferator-activated receptor γ upregulation during monocyte differentiation into macrophages. Adropin had no significant effects on oxidized low-density lipoprotein-induced foam cell formation in macrophages. In HASMCs, adropin suppressed the migration and proliferation without inducing apoptosis via ERK1/2 and Bax downregulation and phosphoinositide 3-kinase/Akt/Bcl2 upregulation. Chronic administration of adropin to Apoe−/− mice attenuated the development of atherosclerotic lesions in the aorta, with reduced the intra-plaque monocyte/macrophage infiltration and smooth muscle cell content. Thus, adropin could serve as a novel therapeutic target in atherosclerosis and related diseases.

  19. Marginal Contribution-Based Distributed Subchannel Allocation in Small Cell Networks.

    Science.gov (United States)

    Shah, Shashi; Kittipiyakul, Somsak; Lim, Yuto; Tan, Yasuo

    2018-05-10

    The paper presents a game theoretic solution for distributed subchannel allocation problem in small cell networks (SCNs) analyzed under the physical interference model. The objective is to find a distributed solution that maximizes the welfare of the SCNs, defined as the total system capacity. Although the problem can be addressed through best-response (BR) dynamics, the existence of a steady-state solution, i.e., a pure strategy Nash equilibrium (NE), cannot be guaranteed. Potential games (PGs) ensure convergence to a pure strategy NE when players rationally play according to some specified learning rules. However, such a performance guarantee comes at the expense of complete knowledge of the SCNs. To overcome such requirements, properties of PGs are exploited for scalable implementations, where we utilize the concept of marginal contribution (MC) as a tool to design learning rules of players’ utility and propose the marginal contribution-based best-response (MCBR) algorithm of low computational complexity for the distributed subchannel allocation problem. Finally, we validate and evaluate the proposed scheme through simulations for various performance metrics.

  20. Marginal Contribution-Based Distributed Subchannel Allocation in Small Cell Networks

    Directory of Open Access Journals (Sweden)

    Shashi Shah

    2018-05-01

    Full Text Available The paper presents a game theoretic solution for distributed subchannel allocation problem in small cell networks (SCNs analyzed under the physical interference model. The objective is to find a distributed solution that maximizes the welfare of the SCNs, defined as the total system capacity. Although the problem can be addressed through best-response (BR dynamics, the existence of a steady-state solution, i.e., a pure strategy Nash equilibrium (NE, cannot be guaranteed. Potential games (PGs ensure convergence to a pure strategy NE when players rationally play according to some specified learning rules. However, such a performance guarantee comes at the expense of complete knowledge of the SCNs. To overcome such requirements, properties of PGs are exploited for scalable implementations, where we utilize the concept of marginal contribution (MC as a tool to design learning rules of players’ utility and propose the marginal contribution-based best-response (MCBR algorithm of low computational complexity for the distributed subchannel allocation problem. Finally, we validate and evaluate the proposed scheme through simulations for various performance metrics.

  1. Contribution of ketone bodies to cholesterogenesis in Morris hepatoma 7777 cells

    International Nuclear Information System (INIS)

    Hilderbrandt, L.; Elson, C.; Shrago, E.

    1990-01-01

    Cholesterol synthesis in neoplastic tissues is typically measured in incubations of minced tissue or tissue slices with 10 mM concentrations of individual substrates. Carbon incorporation into cholesterol from [ 14 C] labelled substrates by freshly isolated hepatoma cells was measured after one hour incubation with 10 mm single substrates. These observations were extended by measuring cholesterol synthesis supported by [ 14 C] substrates in a media containing a mixture of substrates at physiological concentrations: 5.0 mM glucose, 1.3 mM D(-)-3-hydroxybutyrate, 0.5 mM acetoacetate, 0.3 mM acetate, 0.3 mM oleate, 0.3 mM palmitate, 0.65 mM glutamine, 1.4 mM lactate and 0.1 mM pyruvate in Eagle's modified essential medium. Under single substrate conditions, the ketone bodies contribute substantially to cholesterogenesis. Estimates of the quantitative contribution of each substrate to total cholesterol synthesis are reported

  2. Chasing the precursor of functional hematopoietic stem cells at the single cell levels in mouse embryos.

    Science.gov (United States)

    Wang, Xiaochen; Gong, Yuemin; Ema, Hideo

    2016-07-22

    Adult hematopoietic stem cells (HSCs), the ideal system for regenerative research, were isolated at single cell levels decades ago, whereas studies on embryonic HSCs are much more difficult. Zhou et al identified a new pre-HSC cell surface marker, CD201, by which they isolated pre-HSCs at single cell levels for further analyses. The novel expression pattern of HSC development is revealed, including the fundamental role of mammalian targets of rapamycin (mTOR) signaling pathway in HSCs emergence, and the repopulation potential of S/G2/M phase pre-HSCs. Deeper understandings of the cellular origin and developmental regulatory network of HSCs are essential to develop new strategies of generating HSCs in vitro for clinical application.

  3. Children's high-level writing skills: development of planning and revising and their contribution to writing quality.

    Science.gov (United States)

    Limpo, Teresa; Alves, Rui A; Fidalgo, Raquel

    2014-06-01

    It is well established that the activity of producing a text is a complex one involving three main cognitive processes: Planning, translating, and revising. Although these processes are crucial in skilled writing, beginning and developing writers seem to struggle with them, mainly with planning and revising. To trace the development of the high-level writing processes of planning and revising, from Grades 4 to 9, and to examine whether these skills predict writing quality in younger and older students (Grades 4-6 vs. 7-9), after controlling for gender, school achievement, age, handwriting fluency, spelling, and text structure. Participants were 381 students from Grades 4 to 9 (age 9-15). Students were asked to plan and write a story and to revise another story by detecting and correcting mechanical and substantive errors. From Grades 4 to 9, we found a growing trend in students' ability to plan and revise despite the observed decreases and stationary periods from Grades 4 to 5 and 6 to 7. Moreover, whereas younger students' planning and revising skills made no contribution to the quality of their writing, in older students, these high-level skills contributed to writing quality above and beyond control predictors. The findings of this study seem to indicate that besides the increase in planning and revising, these skills are not fully operational in school-age children. Indeed, given the contribution of these high-level skills to older students' writing, supplementary instruction and practice should be provided from early on. © 2013 The British Psychological Society.

  4. The contribution of school-level factors to contraceptive use among adolescents in New York city public high schools

    Science.gov (United States)

    Kaplan, Deborah L.

    Every year approximately 17,000 adolescents ages 15-19 become pregnant in New York City. Most of these pregnancies are unintended and only a small percent of adolescents use effective contraception, with wide disparities by race/ethnicity and poverty level. While many studies have identified factors associated with contraceptive use, most research has focused on individual level factors, with little attention to the contribution of the school environment to sexual risk behavior and contraceptive use. This study investigates the effect of school-level factors on contraceptive use among adolescents in NYC public high schools before and after controlling for individual-level factors, and whether this effect varies with race/ethnicity. Using a cross-sectional design, the NYC Youth Risk Behavior Survey (YRBS) individual-level datasets for 2007, 2009 and 2011 were linked to a school-level dataset. Variables were selected based on empirical findings on factors associated with sexual behaviors, including contraceptive use, by adolescents. The analytic sample included all YRBS respondents aged 14 or older who reported having sexual intercourse in the past three months and had complete responses to the YRBS questions on contraceptive use at last sex (N=8,054). The chi square test of significance was used to evaluate significant associations between independent variables and contraceptive use in bivariate analyses; variables with a p value < 0.1 were included in the multivariable analyses. Binary and multinomial logistic regression analyses were conducted to estimate the strength of the associations of school-level factors with contraceptive use among sexually active adolescents. Findings included that use of any contraception and/or hormonal contraception at last sexual intercourse was associated with attending schools with a higher six-year graduation rate, higher percent of students strongly agreeing they were safe in their classrooms, higher percent of teachers at the

  5. Contribution of neural cell death to depressive phenotypes of streptozotocin-induced diabetic mice

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2014-06-01

    Full Text Available Major depression disorder (MDD or depression is highly prevalent in individuals with diabetes, and the depressive symptoms are more severe and less responsive to antidepressant therapies in these patients. The underlying mechanism is little understood. We hypothesized that the pathophysiology of comorbid depression was more complex than that proposed for MDD and that neural cell death played a role in the disease severity. To test this hypothesis, we generated streptozotocin (STZ-induced diabetic mice. These mice had blood glucose levels threefold above controls and exhibited depressive phenotypes as judged by a battery of behavioral tests, thus confirming the comorbidity in mice. Immunohistological studies showed markedly increased TUNEL-positive cells in the frontal cortex and hippocampus of the comorbid mice, indicating apoptosis. This finding was supported by increased caspase-3 and decreased Bcl-2 proteins in these brain regions. In addition, the serum brain-derived neurotrophic factor (BDNF level of comorbid mice was reduced compared with controls, further supporting the neurodegenerative change. Mechanistic analyses showed an increased expression of mitochondrial fission genes fission protein 1 (Fis1 and dynamin-related protein 1 (Drp1, and a decreased expression of mitochondrial fusion genes mitofusin 1 (Mfn1, mitofusin 2 (Mfn2 and optical atrophy 1 (Opa1. Representative assessment of the proteins Drp1 and Mfn2 mirrored the mRNA changes. The data demonstrated that neural cell death was associated with the depressive phenotype of comorbid mice and that a fission-dominant expression of genes and proteins mediating mitochondrial dynamics played a role in the hyperglycemia-induced cell death. The study provides new insight into the disease mechanism and could aid the development of novel therapeutics aimed at providing neuroprotection by modulating mitochondrial dynamics to treat comorbid depression with diabetes.

  6. Dose levels in the hot cells area ININ

    International Nuclear Information System (INIS)

    Torre, J. De la; Ramirez, J.M.; Solis, M.L.

    2004-01-01

    The Laboratory of Hot Cells (LCC) located in the National Institute of Nuclear Research (ININ) is an institution, it is an area where radioactive material is managed with different activity values, in function of its original design for 10,000 curies of Co-60. Managing this materials in the installation, it implies to measure and to analyze the dose levels that the POE will receive as well as the implementation of appropriate measures of radiological protection and radiological safety, so that that is completed settled down by the concept ALARA. In this work they are carried out mensurations of the levels of the dose to receive for the POE when managing radionuclides with maximum activities that can be allowed in function of the current conditions of the cells and an evaluation of the obtained results is made comparing them with the effective international norms as well as the application of the program of surveillance and radiological protection implemented for the development of the works that are carry out in the installation. (Author)

  7. Apoptosis of Endothelial Cells by 13-HPODE Contributes to Impairment of Endothelial Barrier Integrity

    Directory of Open Access Journals (Sweden)

    Valerie E. Ryman

    2016-01-01

    Full Text Available Inflammation is an essential host response during bacterial infections such as bovine mastitis. Endothelial cells are critical for an appropriate inflammatory response and loss of vascular barrier integrity is implicated in the pathogenesis of Streptococcus uberis-induced mastitis. Previous studies suggested that accumulation of linoleic acid (LA oxygenation products derived from 15-lipoxygenase-1 (15-LOX-1 metabolism could regulate vascular functions. The initial LA derivative from the 15-LOX-1 pathway, 13-hydroperoxyoctadecadienoic acid (HPODE, can induce endothelial death, whereas the reduced hydroxyl product, 13-hydroxyoctadecadienoic acid (HODE, is abundantly produced during vascular activation. However, the relative contribution of specific LA-derived metabolites on impairment of mammary endothelial integrity is unknown. Our hypothesis was that S. uberis-induced LA-derived 15-LOX-1 oxygenation products impair mammary endothelial barrier integrity by apoptosis. Exposure of bovine mammary endothelial cells (BMEC to S. uberis did not increase 15-LOX-1 LA metabolism. However, S. uberis challenge of bovine monocytes demonstrated that monocytes may be a significant source of both 13-HPODE and 13-HODE during mastitis. Exposure of BMEC to 13-HPODE, but not 13-HODE, significantly reduced endothelial barrier integrity and increased apoptosis. Changing oxidant status by coexposure to an antioxidant during 13-HPODE treatment prevented adverse effects of 13-HPODE, including amelioration of apoptosis. A better understanding of how the oxidant status of the vascular microenvironment impacts endothelial barrier properties could lead to more efficacious treatments for S. uberis mastitis.

  8. Cytochrome P450 levels are altered in patients with esophageal squamous-cell carcinoma

    DEFF Research Database (Denmark)

    Bergheim, I.; Wolfgarten, E.; Bollschweiler, E.

    2007-01-01

    AIM: To investigate the role of cytochrome P450 (CYP) in the carcinogenesis of squamous-cell carcinoma (SCC) in human esophagus by determining expression patterns and protein levels of representative CYPs in esophageal tissue of patients with SCC and controls. METHODS: mRNA expression of CYP2E1...... tissue (e.g. CYP2C8, CYP3A4, CYP3A5, and CYP2E1) between SCC patients and healthy subjects and may contribute to the development of SCC in the esophagus....

  9. Low ATP level is sufficient to maintain the uncommitted state of multipotent mesenchymal stem cells.

    Science.gov (United States)

    Buravkova, L B; Rylova, Y V; Andreeva, E R; Kulikov, A V; Pogodina, M V; Zhivotovsky, B; Gogvadze, V

    2013-10-01

    Multipotent mesenchymal stromal cells (MMSCs) are minimally differentiated precursors with great potential to transdifferentiate. These cells are quite resistant to oxygen limitation, suggesting that a hypoxic milieu can be physiological for MMSCs. Human MMSCs isolated from adipose tissue were grown at various oxygen concentrations. Alteration in cell immunophenotype was determined by flow cytometry after staining with specific antibodies. Concentrations of glucose and lactate were determined using the Biocon colorimetric test. Cellular respiration was assessed using oxygen electrode. The modes of cell death were analyzed by flow cytometry after staining with Annexin V and propidium iodide. We found that permanent oxygen deprivation attenuated cellular ATP levels in these cells, diminishing mitochondrial ATP production but stimulating glycolytic ATP production. At the same time, permanent hypoxia did not affect MMSCs' viability, stimulated their proliferation and reduced their capacity to differentiate. Further, permanent hypoxia decreased spontaneous cell death by MMSCs. Under hypoxic conditions glycolysis provides sufficient energy to maintain MMSCs in an uncommitted state. These findings are of interest not only for scientific reasons, but also in practical terms. Oxygen concentration makes an essential contribution to MMSC physiology and should be taken into account in the setting of protocols for cellular therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Postotic and preotic cranial neural crest cells differently contribute to thyroid development.

    Science.gov (United States)

    Maeda, Kazuhiro; Asai, Rieko; Maruyama, Kazuaki; Kurihara, Yukiko; Nakanishi, Toshio; Kurihara, Hiroki; Miyagawa-Tomita, Sachiko

    2016-01-01

    Thyroid development and formation vary among species, but in most species the thyroid morphogenesis consists of five stages: specification, budding, descent, bilobation and folliculogenesis. The detailed mechanisms of these stages have not been fully clarified. During early development, the cranial neural crest (CNC) contributes to the thyroid gland. The removal of the postotic CNC (corresponding to rhombomeres 6, 7 and 8, also known as the cardiac neural crest) results in abnormalities of the cardiovascular system, thymus, parathyroid glands, and thyroid gland. To investigate the influence of the CNC on thyroid bilobation process, we divided the CNC into two regions, the postotic CNC and the preotic CNC (from the mesencephalon to rhombomere 5) regions and examined. We found that preotic CNC-ablated embryos had a unilateral thyroid lobe, and confirmed the presence of a single lobe or the absence of lobes in postotic CNC-ablated chick embryos. The thyroid anlage in each region-ablated embryos was of a normal size at the descent stage, but at a later stage, the thyroid in preotic CNC-ablated embryos was of a normal size, conflicting with a previous report in which the thyroid was reduced in size in the postotic CNC-ablated embryos. The postotic CNC cells differentiated into connective tissues of the thyroid in quail-to-chick chimeras. In contrast, the preotic CNC cells did not differentiate into connective tissues of the thyroid. We found that preotic CNC cells encompassed the thyroid anlage from the specification stage to the descent stage. Finally, we found that endothelin-1 and endothelin type A receptor-knockout mice and bosentan (endothelin receptor antagonist)-treated chick embryos showed bilobation anomalies that included single-lobe formation. Therefore, not only the postotic CNC, but also the preotic CNC plays an important role in thyroid morphogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Reactive oxygen species contribute to arsenic-induced EZH2 phosphorylation in human bronchial epithelial cells and lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lingzhi; Qiu, Ping; Chen, Bailing; Lu, Yongju; Wu, Kai; Thakur, Chitra; Chang, Qingshan; Sun, Jiaying; Chen, Fei, E-mail: fchen@wayne.edu

    2014-05-01

    Our previous studies suggested that arsenic is able to induce serine 21 phosphorylation of the EZH2 protein through activation of JNK, STAT3, and Akt signaling pathways in the bronchial epithelial cell line, BEAS-2B. In the present report, we further demonstrated that reactive oxygen species (ROS) were involved in the arsenic-induced protein kinase activation that leads to EZH2 phosphorylation. Several lines of evidence supported this notion. First, the pretreatment of the cells with N-acetyl-L-cysteine (NAC), a potent antioxidant, abolishes arsenic-induced EZH2 phosphorylation along with the inhibition of JNK, STAT3, and Akt. Second, H{sub 2}O{sub 2}, the most important form of ROS in the cells in response to extracellular stress signals, can induce phosphorylation of the EZH2 protein and the activation of JNK, STAT3, and Akt. By ectopic expression of the myc-tagged EZH2, we additionally identified direct interaction and phosphorylation of the EZH2 protein by Akt in response to arsenic and H{sub 2}O{sub 2}. Furthermore, both arsenic and H{sub 2}O{sub 2} were able to induce the translocation of ectopically expressed or endogenous EZH2 from nucleus to cytoplasm. In summary, the data presented in this report indicate that oxidative stress due to ROS generation plays an important role in the arsenic-induced EZH2 phosphorylation. - Highlights:: • Arsenic (As{sup 3+}) induces EZH phosphorylation. • JNK, STAT3, and Akt contribute to EZH2 phosphorylation. • Oxidative stress is involved in As{sup 3+}-induced EZH2 phosphorylation. • As{sup 3+} induces direct interaction of Akt and EZH2. • Phosphorylated EZH2 localized in cytoplasm.

  12. [Circulating endothelial progenitor cell levels in treated hypertensive patients].

    Science.gov (United States)

    Maroun-Eid, C; Ortega-Hernández, A; Abad, M; García-Donaire, J A; Barbero, A; Reinares, L; Martell-Claros, N; Gómez-Garre, D

    2015-01-01

    Most optimally treated hypertensive patients still have an around 50% increased risk of any cardiovascular event, suggesting the possible existence of unidentified risk factors. In the last years there has been evidence of the essential role of circulating endothelial progenitor cells (EPCs) in the maintenance of endothelial integrity and function, increasing the interest in their involvement in cardiovascular disease. In this study, the circulating levels of EPCs and vascular endothelial growth factor (VEGF) are investigated in treated hypertensive patients with adequate control of blood pressure (BP). Blood samples were collected from treated hypertensive patients with controlled BP. Plasma levels of EPCs CD34+/KDR+ and CD34+/VE-cadherin+ were quantified by flow cytometry. Plasma concentration of VEGF was determined by ELISA. A group of healthy subjects without cardiovascular risk factors was included as controls. A total of 108 hypertensive patients were included (61±12 years, 47.2% men) of which 82.4% showed BP<140/90 mmHg, 91.7% and 81.5% controlled diabetes (HbA1c <7%) and cLDL (<130 or 100 mg/dL), respectively, and 85.2% were non-smokers. Around 45% of them were obese. Although patients had cardiovascular parameters within normal ranges, they showed significantly lower levels of CD34+/KDR+ and CD34+/VE-cadherin+ compared with healthy control group, although plasma VEGF concentration was higher in patients than in controls. Despite an optimal treatment, hypertensive patients show a decreased number of circulating EPCs that could be, at least in part, responsible for their residual cardiovascular risk, suggesting that these cells could be a therapeutic target. Copyright © 2015 SEHLELHA. Published by Elsevier España, S.L.U. All rights reserved.

  13. Contribution of aquaporin 9 and multidrug resistance-associated protein 2 to differential sensitivity to arsenite between primary cultured chorion and amnion cells prepared from human fetal membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Yuta [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Yuan, Bo, E-mail: yuanbo@toyaku.ac.jp [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th St, RH584E Box 2911 San Francisco, CA 94158-2911 (United States); Kaise, Toshikazu [Laboratory of Environmental Chemodynamics, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Takeichi, Makoto [Yoneyama Maternity Hospital, 2-12 Shin-machi, Hachioji, Tokyo 192-0065 (Japan); Tanaka, Sachiko; Hirano, Toshihiko [Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Kroetz, Deanna L. [Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th St, RH584E Box 2911 San Francisco, CA 94158-2911 (United States); Toyoda, Hiroo [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan)

    2011-12-15

    Arsenic trioxide (arsenite, As{sup III}) has shown a remarkable clinical efficacy, whereas its side effects are still a serious concern. Therefore, it is critical to understand the effects of As{sup III} on human-derived normal cells for revealing the mechanisms underlying these side effects. We examined the effects of As{sup III} on primary cultured chorion (C) and amnion (A) cells prepared from human fetal membranes. A significant dose-dependent As{sup III}-mediated cytotoxicity was observed in the C-cells accompanied with an increase of lactate dehydrogenase (LDH) release. Higher concentrations of As{sup III} were required for the A-cells to show cytotoxicity and LDH release, suggesting that the C-cells were more sensitive to As{sup III} than the A-cells. The expression levels of aquaporin 9 (AQP9) were approximately 2 times higher in the C-cells than those in the A-cells. Both intracellular arsenic accumulation and its cytotoxicity in the C-cells were significantly abrogated by sorbitol, a competitive AQP9 inhibitor, in a dose-dependent manner. The protein expression levels of multidrug resistance-associated protein (MRP) 2 were downregulated by As{sup III} in the C-cells, but not in the A-cells. No significant differences in the expression levels of MRP1 were observed between C- and A-cells. The protein expression of P-glycoprotein (P-gp) was hardly detected in both cells, although a detectable amount of its mRNA was observed. Cyclosporine A, a broad-spectrum inhibitor for ABC transporters, and MK571, a MRP inhibitor, but not PGP-4008, a P-gp specific inhibitor, potently sensitized both cells to As{sup III}-mediated cytotoxicity. These results suggest that AQP9 and MRP2 are involved in controlling arsenic accumulation in these normal cells, which then contribute to differential sensitivity to As{sup III} cytotoxicity between these cells. -- Highlights: Black-Right-Pointing-Pointer Examination of effect of As{sup III} on primary cultured chorion (C) and amnion

  14. Contribution of aquaporin 9 and multidrug resistance-associated protein 2 to differential sensitivity to arsenite between primary cultured chorion and amnion cells prepared from human fetal membranes

    International Nuclear Information System (INIS)

    Yoshino, Yuta; Yuan, Bo; Kaise, Toshikazu; Takeichi, Makoto; Tanaka, Sachiko; Hirano, Toshihiko; Kroetz, Deanna L.; Toyoda, Hiroo

    2011-01-01

    Arsenic trioxide (arsenite, As III ) has shown a remarkable clinical efficacy, whereas its side effects are still a serious concern. Therefore, it is critical to understand the effects of As III on human-derived normal cells for revealing the mechanisms underlying these side effects. We examined the effects of As III on primary cultured chorion (C) and amnion (A) cells prepared from human fetal membranes. A significant dose-dependent As III -mediated cytotoxicity was observed in the C-cells accompanied with an increase of lactate dehydrogenase (LDH) release. Higher concentrations of As III were required for the A-cells to show cytotoxicity and LDH release, suggesting that the C-cells were more sensitive to As III than the A-cells. The expression levels of aquaporin 9 (AQP9) were approximately 2 times higher in the C-cells than those in the A-cells. Both intracellular arsenic accumulation and its cytotoxicity in the C-cells were significantly abrogated by sorbitol, a competitive AQP9 inhibitor, in a dose-dependent manner. The protein expression levels of multidrug resistance-associated protein (MRP) 2 were downregulated by As III in the C-cells, but not in the A-cells. No significant differences in the expression levels of MRP1 were observed between C- and A-cells. The protein expression of P-glycoprotein (P-gp) was hardly detected in both cells, although a detectable amount of its mRNA was observed. Cyclosporine A, a broad-spectrum inhibitor for ABC transporters, and MK571, a MRP inhibitor, but not PGP-4008, a P-gp specific inhibitor, potently sensitized both cells to As III -mediated cytotoxicity. These results suggest that AQP9 and MRP2 are involved in controlling arsenic accumulation in these normal cells, which then contribute to differential sensitivity to As III cytotoxicity between these cells. -- Highlights: ► Examination of effect of As III on primary cultured chorion (C) and amnion (A) cells. ► Dose-dependent As III -mediated cytotoxicity in C-cells

  15. Amyloid β levels in human red blood cells.

    Directory of Open Access Journals (Sweden)

    Takehiro Kiko

    Full Text Available UNLABELLED: Amyloid β-peptide (Aβ is hypothesized to play a key role by oxidatively impairing the capacity of red blood cells (RBCs to deliver oxygen to the brain. These processes are implicated in the pathogenesis of Alzheimer's disease (AD. Although plasma Aβ has been investigated thoroughly, the presence and distribution of Aβ in human RBCs are still unclear. In this study, we quantitated Aβ40 and Aβ42 in human RBCs with ELISA assays, and provided evidence that significant amounts of Aβ could be detected in RBCs and that the RBC Aβ levels increased with aging. The RBC Aβ levels increased with aging. On the other hand, providing an antioxidant supplement (astaxanthin, a polar carotenoid to humans was found to decrease RBC Aβ as well as oxidative stress marker levels. These results suggest that plasma Aβ40 and Aβ42 bind to RBCs (possibly with aging, implying a pathogenic role of RBC Aβ. Moreover, the data indicate that RBC Aβ40 and Aβ42 may constitute biomarkers of AD. As a preventive strategy, therapeutic application of astaxanthin as an Aβ-lowering agent in RBCs could be considered as a possible anti-dementia agent. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN42483402.

  16. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California

    International Nuclear Information System (INIS)

    Preisler, Haiganoush K.; Zhong Shiyuan; Esperanza, Annie; Brown, Timothy J.; Bytnerowicz, Andrzej; Tarnay, Leland

    2010-01-01

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an important source of pollution in these National Parks. Comparisons of forecasted and observed values demonstrated that accurate forecasts of next-day hourly ozone levels may be achieved by using a time series model with historic averages, expected local weather and modeled PM values as explanatory variables. Results on fire smoke influence indicated occurrence of significant increases in average ozone levels with increasing fire activity. The overall effect on diurnal ozone values, however, was small when compared with the amount of variability attributed to sources other than fire. - We have demonstrated that it is possible to produce accurate forecasts of next-day hourly ozone levels in the Sierra Nevada, CA, during fire season.

  17. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California

    Energy Technology Data Exchange (ETDEWEB)

    Preisler, Haiganoush K., E-mail: hpreisler@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 800 Buchanan St, Albany, CA 94710 (United States); Zhong Shiyuan, E-mail: zhongs@msu.ed [Department of Geography, Michigan State University, 116 Geography Building, East Lansing, MI 48824-1117 (United States); Esperanza, Annie, E-mail: annie_esperanza@nps.go [Sequoia and Kings Canyon National Parks, 47050 Generals Highway Three Rivers, CA 93271 (United States); Brown, Timothy J., E-mail: tim.brown@dri.ed [Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89521-10095 (United States); Bytnerowicz, Andrzej, E-mail: abytnerowicz@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States); Tarnay, Leland, E-mail: Leland_Tarnay@nps.go [Yosemite National Park, El Portal, CA 95318 (United States)

    2010-03-15

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an important source of pollution in these National Parks. Comparisons of forecasted and observed values demonstrated that accurate forecasts of next-day hourly ozone levels may be achieved by using a time series model with historic averages, expected local weather and modeled PM values as explanatory variables. Results on fire smoke influence indicated occurrence of significant increases in average ozone levels with increasing fire activity. The overall effect on diurnal ozone values, however, was small when compared with the amount of variability attributed to sources other than fire. - We have demonstrated that it is possible to produce accurate forecasts of next-day hourly ozone levels in the Sierra Nevada, CA, during fire season.

  18. Innate lymphoid cells contribute to allergic airway disease exacerbation by obesity.

    Science.gov (United States)

    Everaere, Laetitia; Ait-Yahia, Saliha; Molendi-Coste, Olivier; Vorng, Han; Quemener, Sandrine; LeVu, Pauline; Fleury, Sebastien; Bouchaert, Emmanuel; Fan, Ying; Duez, Catherine; de Nadai, Patricia; Staels, Bart; Dombrowicz, David; Tsicopoulos, Anne

    2016-11-01

    Epidemiologic and clinical observations identify obesity as an important risk factor for asthma exacerbation, but the underlying mechanisms remain poorly understood. Type 2 innate lymphoid cells (ILC2s) and type 3 innate lymphoid cells (ILC3s) have been implicated, respectively, in asthma and adipose tissue homeostasis and in obesity-associated airway hyperresponsiveness (AHR). We sought to determine the potential involvement of innate lymphoid cells (ILCs) in allergic airway disease exacerbation caused by high-fat diet (HFD)-induced obesity. Obesity was induced by means of HFD feeding, and allergic airway inflammation was subsequently induced by means of intranasal administration of house dust mite (HDM) extract. AHR, lung and visceral adipose tissue inflammation, humoral response, cytokines, and innate and adaptive lymphoid populations were analyzed in the presence or absence of ILCs. HFD feeding exacerbated allergic airway disease features, including humoral response, airway and tissue eosinophilia, AHR, and T H 2 and T H 17 pulmonary profiles. Notably, nonsensitized obese mice already exhibited increased lung ILC counts and tissue eosinophil infiltration compared with values in lean mice in the absence of AHR. The numbers of total and cytokine-expressing lung ILC2s and ILC3s further increased in HDM-challenged obese mice compared with those in HDM-challenged lean mice, and this was accompanied by high IL-33 and IL-1β levels and decreased ILC markers in visceral adipose tissue. Furthermore, depletion of ILCs with an anti-CD90 antibody, followed by T-cell reconstitution, led to a profound decrease in allergic airway inflammatory features in obese mice, including T H 2 and T H 17 infiltration. These results indicate that HFD-induced obesity might exacerbate allergic airway inflammation through mechanisms involving ILC2s and ILC3s. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  19. Insect cell transformation vectors that support high level expression and promoter assessment in insect cell culture

    Science.gov (United States)

    A somatic transformation vector, pDP9, was constructed that provides a simplified means of producing permanently transformed cultured insect cells that support high levels of protein expression of foreign genes. The pDP9 plasmid vector incorporates DNA sequences from the Junonia coenia densovirus th...

  20. Non-tumor cell IDO1 predominantly contributes to enzyme activity and response to CTLA-4/PD-L1 inhibition in mouse glioblastoma.

    Science.gov (United States)

    Zhai, Lijie; Ladomersky, Erik; Dostal, Carlos R; Lauing, Kristen L; Swoap, Kathleen; Billingham, Leah K; Gritsina, Galina; Wu, Meijing; McCusker, Robert H; Binder, David C; Wainwright, Derek A

    2017-05-01

    Glioblastoma (GBM) is the most common malignant brain tumor in adults with a median survival of 14.6months. A contributing factor to GBM aggressiveness is the intratumoral expression of the potently immunosuppressive enzyme, indoleamine 2,3 dioxygenase 1 (IDO1). The enzymatic activity of IDO1 is associated with the conversion of tryptophan into downstream kynurenine (Kyn), which has previously been hypothesized to contribute toward the suppression of tumor immunity. Utilizing the syngeneic, immunocompetent, intracranial GL261 cell GBM model, we previously demonstrated that tumor cell, but not non-tumor cell IDO1, suppresses T cell-mediated brain tumor regression in mice. Paradoxically, we also showed that the survival advantage mediated by immune checkpoint blockade is abrogated by non-tumor cell IDO1 deficiency. Here, we have built on our past observations and confirm the maladaptive role of tumor cell IDO1 in a novel mouse GBM model. We also demonstrate that, non-tumor cells, rather than mouse GBM cells, are the dominant contributor to IDO1-mediated enzyme activity. Finally, we show the novel associations between maximally-effective immune-checkpoint blockade-mediated survival, non-tumor cell IDO1 and intra-GBM Kyn levels. These data suggest for the first time that, GBM cell-mediated immunosuppression is IDO1 enzyme independent, while the survival benefits of immune checkpoint blockade require non-tumor cell IDO1 enzyme activity. Given that current clinical inhibitors vary in their mechanism of action, in terms of targeting IDO1 enzyme activity versus enzyme-independent effects, this work suggests that choosing an appropriate IDO1 pharmacologic will maximize the effectiveness of future immune checkpoint blockade approaches. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Application of low level laser on skin cell lines

    CSIR Research Space (South Africa)

    Ndhundhuma, IM

    2010-01-01

    Full Text Available Lasers have emerged as powerful tools for tissue engineering. To examine cellular growth, and cell to cell interactions, in vitro skin models have been developed combining two major cell types of skin, keratinocytes and fibroblasts. The main...

  2. Effect of oxygen levels on the physiology of dendritic cells: implications for adoptive cell therapy.

    Science.gov (United States)

    Futalan, Diahnn; Huang, Chien-Tze; Schmidt-Wolf, Ingo G H; Larsson, Marie; Messmer, Davorka

    2011-01-01

    Dendritic cell (DC)-based adoptive tumor immunotherapy approaches have shown promising results, but the incidence of tumor regression is low and there is an evident call for identifying culture conditions that produce DCs with a more potent Th1 potential. Routinely, DCs are differentiated in CO(2) incubators under atmospheric oxygen conditions (21% O(2)), which differ from physiological oxygen levels of only 3-5% in tissue, where most DCs reside. We investigated whether differentiation and maturation of DCs under physiological oxygen levels could produce more potent T-cell stimulatory DCs for use in adoptive immunotherapy. We found that immature DCs differentiated under physiological oxygen levels showed a small but significant reduction in their endocytic capacity. The different oxygen levels did not influence their stimuli-induced upregulation of cluster of differentiation 54 (CD54), CD40, CD83, CD86, C-C chemokine receptor type 7 (CCR7), C-X-C chemokine receptor type 4 (CXCR4) and human leukocyte antigen (HLA)-DR or the secretion of interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-10 in response to lipopolysaccharide (LPS) or a cytokine cocktail. However, DCs differentiated under physiological oxygen level secreted higher levels of IL-12(p70) after exposure to LPS or CD40 ligand. Immature DCs differentiated at physiological oxygen levels caused increased T-cell proliferation, but no differences were observed for mature DCs with regard to T-cell activation. In conclusion, we show that although DCs generated under atmospheric or physiological oxygen conditions are mostly similar in function and phenotype, DCs differentiated under physiological oxygen secrete larger amounts of IL-12(p70). This result could have implications for the use of ex vivo-generated DCs for clinical studies, since DCs differentiated at physiological oxygen could induce increased Th1 responses in vivo.

  3. Krox20 defines a subpopulation of cardiac neural crest cells contributing to arterial valves and bicuspid aortic valve.

    Science.gov (United States)

    Odelin, Gaëlle; Faure, Emilie; Coulpier, Fanny; Di Bonito, Maria; Bajolle, Fanny; Studer, Michèle; Avierinos, Jean-François; Charnay, Patrick; Topilko, Piotr; Zaffran, Stéphane

    2018-01-03

    Although cardiac neural crest cells are required at early stages of arterial valve development, their contribution during valvular leaflet maturation remains poorly understood. Here, we show in mouse that neural crest cells from pre-otic and post-otic regions make distinct contributions to the arterial valve leaflets. Genetic fate-mapping analysis of Krox20-expressing neural crest cells shows a large contribution to the borders and the interleaflet triangles of the arterial valves. Loss of Krox20 function results in hyperplastic aortic valve and partially penetrant bicuspid aortic valve formation. Similar defects are observed in neural crest Krox20 -deficient embryos. Genetic lineage tracing in Krox20 -/- mutant mice shows that endothelial-derived cells are normal, whereas neural crest-derived cells are abnormally increased in number and misplaced in the valve leaflets. In contrast, genetic ablation of Krox20 -expressing cells is not sufficient to cause an aortic valve defect, suggesting that adjacent cells can compensate this depletion. Our findings demonstrate a crucial role for Krox20 in arterial valve development and reveal that an excess of neural crest cells may be associated with bicuspid aortic valve. © 2018. Published by The Company of Biologists Ltd.

  4. Live fate-mapping of joint-associated fibroblasts visualizes expansion of cell contributions during zebrafish fin regeneration.

    Science.gov (United States)

    Tornini, Valerie A; Thompson, John D; Allen, Raymond L; Poss, Kenneth D

    2017-08-15

    The blastema is a mass of progenitor cells responsible for regeneration of amputated salamander limbs and fish fins. Previous studies have indicated that resident cell sources producing the blastema contribute lineage-restricted progeny to regenerating tissue. However, these studies have labeled general cell types rather than granular cell subpopulations, and they do not explain the developmental transitions that must occur for distal structures to arise from cells with proximal identities in the appendage stump. Here, we find that regulatory sequences of tph1b , which encodes an enzyme that synthesizes serotonin, mark a subpopulation of fibroblast-like cells restricted to the joints of uninjured adult zebrafish fins. Amputation stimulates serotonin production in regenerating fin fibroblasts, yet targeted tph1b mutations abrogating this response do not disrupt fin regeneration. In uninjured animals, tph1b -expressing cells contribute fibroblast progeny that remain restricted to joints throughout life. By contrast, upon amputation, tph1b + joint cells give rise to fibroblasts that distribute across the entire lengths of regenerating fin rays. Our experiments visualize and quantify how incorporation into an appendage blastema broadens the progeny contributions of a cellular subpopulation that normally has proximodistal restrictions. © 2017. Published by The Company of Biologists Ltd.

  5. Accelerated contributions of Canada's Baffin and Bylot Island glaciers to sea level rise over the past half century

    Directory of Open Access Journals (Sweden)

    A. Gardner

    2012-10-01

    Full Text Available Canadian Arctic glaciers have recently contributed large volumes of meltwater to the world's oceans. To place recently observed glacier wastage into a historical perspective and to determine the region's longer-term (~50 years contribution to sea level, we estimate mass and volume changes for the glaciers of Baffin and Bylot Islands using digital elevation models generated from airborne and satellite stereoscopic imagery and elevation postings from repeat airborne and satellite laser altimetry. In addition, we update existing glacier mass change records from GRACE satellite gravimetry to cover the period from 2003 to 2011. Using this integrated approach, we find that the rate of mass loss from the region's glaciers increased from 11.1 ± 3.4 Gt a−1 (271 ± 84 kg m−2 a−1 for the period 1963–2006 to 23.8 ± 6.1 Gt a−1 (581 ± 149 kg m−2 a−1 for the period 2003–2011. The doubling of the rate of mass loss is attributed to higher temperatures in summer with little change in annual precipitation. Through both direct and indirect effects, changes in summer temperatures accounted for 70–98% of the variance in the rate of mass loss, to which the Barnes Ice Cap was found to be 1.7 times more sensitive than either the Penny Ice Cap or the region's glaciers as a whole. This heightened sensitivity is the result of a glacier hypsometry that is skewed to lower elevations, which are shown to have a higher mass change sensitive to temperature compared to glacier surfaces at higher elevations. Between 2003 and 2011 the glaciers of Baffin and Bylot Islands contributed 0.07 ± 0.02 mm a−1 to sea level rise accounting for 16% of the total contribution from glaciers outside of Greenland and Antarctica, a rate much higher than the longer-term average of 0.03 ± 0.01 mm a−1 (1963 to 2006.

  6. Endothelin B receptors contribute to retinal ganglion cell loss in a rat model of glaucoma.

    Directory of Open Access Journals (Sweden)

    Alena Z Minton

    Full Text Available Glaucoma is an optic neuropathy, commonly associated with elevated intraocular pressure (IOP characterized by optic nerve degeneration, cupping of the optic disc, and loss of retinal ganglion cells which could lead to loss of vision. Endothelin-1 (ET-1 is a 21-amino acid vasoactive peptide that plays a key role in the pathogenesis of glaucoma; however, the receptors mediating these effects have not been defined. In the current study, endothelin B (ET(B receptor expression was assessed in vivo, in the Morrison's ocular hypertension model of glaucoma in rats. Elevation of IOP in Brown Norway rats produced increased expression of ET(B receptors in the retina, mainly in retinal ganglion cells (RGCs, nerve fiber layer (NFL, and also in the inner plexiform layer (IPL and inner nuclear layer (INL. To determine the role of ET(B receptors in neurodegeneration, Wistar-Kyoto wild type (WT and ET(B receptor-deficient (KO rats were subjected to retrograde labeling with Fluoro-Gold (FG, following which IOP was elevated in one eye while the contralateral eye served as control. IOP elevation for 4 weeks in WT rats caused an appreciable loss of RGCs, which was significantly attenuated in KO rats. In addition, degenerative changes in the optic nerve were greatly reduced in KO rats compared to those in WT rats. Taken together, elevated intraocular pressure mediated increase in ET(B receptor expression and its activation may contribute to a decrease in RGC survival as seen in glaucoma. These findings raise the possibility of using endothelin receptor antagonists as neuroprotective agents for the treatment of glaucoma.

  7. Overexpression of HOXA4 and HOXA9 genes promotes self-renewal and contributes to colon cancer stem cell overpopulation.

    Science.gov (United States)

    Bhatlekar, Seema; Viswanathan, Vignesh; Fields, Jeremy Z; Boman, Bruce M

    2018-02-01

    Because HOX genes encode master regulatory transcription factors that regulate stem cells (SCs) during development and aberrant expression of HOX genes occurs in various cancers, our goal was to determine if dysregulation of HOX genes is involved in the SC origin of colorectal cancer (CRC). We previously reported that HOXA4 and HOXD10 are expressed in the colonic SC niche and are overexpressed in CRC. HOX gene expression was studied in SCs from human colon tissue and CRC cells (CSCs) using qPCR and immunostaining. siRNA-mediated knockdown of HOX expression was used to evaluate the role of HOX genes in modulating cancer SC (CSC) phenotype at the level of proliferation, SC marker expression, and sphere formation. All-trans-retinoic-acid (ATRA), a differentiation-inducing agent was evaluated for its effects on HOX expression and CSC growth. We found that HOXA4 and HOXA9 are up-regulated in CRC SCs. siRNA knockdown of HOXA4 and HOXA9 reduced: (i) proliferation and sphere-formation and (ii) gene expression of known SC markers (ALDH1, CD166, LGR5). These results indicate that proliferation and self-renewal ability of CRC SCs are reduced in HOXA4 and HOXA9 knockdown cells. ATRA decreased HOXA4, HOXA9, and HOXD10 expression in parallel with reduction in ALDH1 expression, self-renewal, and proliferation. Overall, our findings indicate that overexpression of HOXA4 and HOXA9 contributes to self-renewal and overpopulation of SCs in CRC. Strategies designed to modulate HOX expression may provide ways to target malignant SCs and to develop more effective therapies for CRC. © 2017 Wiley Periodicals, Inc.

  8. Impaired oxidative capacity due to decreased CPT1b levels as a contributing factor to fat accumulation in obesity

    DEFF Research Database (Denmark)

    Ratner, Cecilia; Madsen, Andreas Nygaard; Kristensen, Line Vildbrad

    2015-01-01

    In order to characterize mechanisms responsible for fat accumulation we used a selectively bred obesity-prone (OP) and obesity-resistant (OR) rat model, where the rats were fed a Western diet for 76 days. Body composition was assessed by MRI scans and as expected the OP rats developed a higher...... likewise had higher RER values indicating that this trait may be a primary and contributing factor to their obese phenotype. When the adult obese rats were exposed to the orexigenic and adipogenic hormone ghrelin, we observed increased RER values in both OP and OR rats, while OR rats were more sensitive...... to ghrelin's orexigenic effects as well as ghrelin-induced attenuation of activity and energy expenditure. Thus, increased fat accumulation characterizing obesity may be caused by impaired oxidative capacity due to decreased carnitine palmitoyltransferase 1b levels in the white adipose tissue, while ghrelin...

  9. Dysregulated Homeostasis of Acetylcholine Levels in Immune Cells of RR-Multiple Sclerosis Patients

    Directory of Open Access Journals (Sweden)

    Maria Di Bari

    2016-11-01

    Full Text Available Multiple sclerosis (MS is characterized by pro-inflammatory cytokine production. Acetylcholine (ACh contributes to the modulation of central and peripheral inflammation. We studied the homeostasis of the cholinergic system in relation to cytokine levels in immune cells and sera of relapsing remitting-MS (RR-MS patients. We demonstrated that lower ACh levels in serum of RR-MS patients were inversely correlated with the increased activity of the hydrolyzing enzymes acetylcholinesterase (AChE and butyrylcholinesterase (BuChE. Interestingly, the expression of the ACh biosynthetic enzyme and the protein carriers involved in non-vesicular ACh release were found overexpressed in peripheral blood mononuclear cells of MS patients. The inflammatory state of the MS patients was confirmed by increased levels of TNFα, IL-12/IL-23p40, IL-18. The lower circulating ACh levels in sera of MS patients are dependent on the higher activity of cholinergic hydrolyzing enzymes. The smaller ratio of ACh to TNFα, IL-12/IL-23p40 and IL-18 in MS patients, with respect to healthy donors (HD, is indicative of an inflammatory environment probably related to the alteration of cholinergic system homeostasis.

  10. Beta1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance

    DEFF Research Database (Denmark)

    Campos, Lia S; Leone, Dino P; Relvas, Joao B

    2004-01-01

    , signalling is required for neural stem cell maintenance, as assessed by neurosphere formation, and inhibition or genetic ablation of beta1 integrin using cre/lox technology reduces the level of MAPK activity. We conclude that integrins are therefore an important part of the signalling mechanisms that control......The emerging evidence that stem cells develop in specialised niches highlights the potential role of environmental factors in their regulation. Here we examine the role of beta1 integrin/extracellular matrix interactions in neural stem cells. We find high levels of beta1 integrin expression...... in the stem-cell containing regions of the embryonic CNS, with associated expression of the laminin alpha2 chain. Expression levels of laminin alpha2 are reduced in the postnatal CNS, but a population of cells expressing high levels of beta1 remains. Using neurospheres - aggregate cultures, derived from...

  11. BCORL1 is an independent prognostic marker and contributes to cell migration and invasion in human hepatocellular carcinoma

    OpenAIRE

    Yin, Guozhi; Liu, Zhikui; Wang, Yufeng; Dou, Changwei; Li, Chao; Yang, Wei; Yao, Yingmin; Liu, Qingguang; Tu, Kangsheng

    2016-01-01

    Background The deregulation of E-cadherin has been considered as a leading cause of hepatocellular carcinoma (HCC) metastasis. BCL6 corepressor-like 1 (BCORL1) is a transcriptional corepressor and contributes to the repression of E-cadherin. However, the clinical significance of BCORL1 and its role in the metastasis of HCC remain unknown. Methods Differentially expressed BCORL1 between HCC and matched tumor-adjacent tissues, HCC cell lines and normal hepatic cell line were detected by Western...

  12. CD8+ T Cells Contribute to the Development of Coronary Arteritis in the Lactobacillus casei Cell Wall Extract-Induced Murine Model of Kawasaki Disease.

    Science.gov (United States)

    Noval Rivas, Magali; Lee, Youngho; Wakita, Daiko; Chiba, Norika; Dagvadorj, Jargalsaikhan; Shimada, Kenichi; Chen, Shuang; Fishbein, Michael C; Lehman, Thomas J A; Crother, Timothy R; Arditi, Moshe

    2017-02-01

    Kawasaki disease (KD) is the leading cause of acquired heart disease among children in developed countries. Coronary lesions in KD in humans are characterized by an increased presence of infiltrating CD3+ T cells; however, the specific contributions of the different T cell subpopulations in coronary arteritis development remain unknown. Therefore, we sought to investigate the function of CD4+ and CD8+ T cells, Treg cells, and natural killer (NK) T cells in the pathogenesis of KD. We addressed the function of T cell subsets in KD development by using a well-established murine model of Lactobacillus casei cell wall extract (LCWE)-induced KD vasculitis. We determined which T cell subsets were required for development of KD vasculitis by using several knockout murine strains and depleting monoclonal antibodies. LCWE-injected mice developed coronary lesions characterized by the presence of inflammatory cell infiltrates. Frequently, this chronic inflammation resulted in complete occlusion of the coronary arteries due to luminal myofibroblast proliferation (LMP) as well as the development of coronary arteritis and aortitis. We found that CD8+ T cells, but not CD4+ T cells, NK T cells, or Treg cells, were required for development of KD vasculitis. The LCWE-induced murine model of KD vasculitis mimics many histologic features of the disease in humans, such as the presence of CD8+ T cells and LMP in coronary artery lesions as well as epicardial coronary arteritis. Moreover, CD8+ T cells functionally contribute to the development of KD vasculitis in this murine model. Therapeutic strategies targeting infiltrating CD8+ T cells might be useful in the management of KD in humans. © 2016, American College of Rheumatology.

  13. Contribution of estradiol levels and hormonal contraceptives to sex differences within the fear network during fear conditioning and extinction.

    Science.gov (United States)

    Hwang, Moon Jung; Zsido, Rachel G; Song, Huijin; Pace-Schott, Edward F; Miller, Karen Klahr; Lebron-Milad, Kelimer; Marin, Marie-France; Milad, Mohammed R

    2015-11-18

    Findings about sex differences in the field of fear conditioning and fear extinction have been mixed. At the psychophysiological level, sex differences emerge only when taking estradiol levels of women into consideration. This suggests that this hormone may also influence sex differences with regards to activations of brain regions involved in fear conditioning and its extinction. Importantly, the neurobiological correlates associated with the use of hormonal oral contraceptives in women have not been fully contrasted against men and against naturally cycling women with different levels of estradiol. In this study, we begin to fill these scientific gaps. We recruited 37 healthy men and 48 healthy women. Of these women, 16 were using oral contraceptives (OC) and 32 were naturally cycling. For these naturally cycling women, a median split was performed on their serum estradiol levels to create a high estradiol (HE) group (n = 16) and a low estradiol (LE) group (n = 16). All participants underwent a 2-day fear conditioning and extinction paradigm in a 3 T MR scanner. Using the 4 groups (men, HE women, LE women, and OC users) and controlling for age and coil type, one-way ANCOVAs were performed to look at significant activations within the nodes of the fear circuit. Using post-hoc analyses, beta-weights were extracted in brain regions showing significant effects in order to unveil the differences based on hormonal status (men, HE, LE, OC). Significant main effect of hormonal status group was found across the different phases of the experiment and in different sub-regions of the insular and cingulate cortices, amygdala, hippocampus, and hypothalamus. During conditioning, extinction and recall, most of the observed differences suggested higher activations among HE women relative to men. During the unconditioned response, however, a different pattern was observed with men showing significantly higher brain activations. Our data further support the important contribution

  14. Decreased SAP expression in T cells from patients with SLE contributes to early signaling abnormalities and reduced IL-2 production

    Science.gov (United States)

    Karampetsou, Maria P.; Comte, Denis; Kis-Toth, Katalin; Terhorst, Cox; Kyttaris, Vasileios C.; Tsokos, George C.

    2016-01-01

    T cells from patients with systemic lupus erythematosus (SLE) display a number of functions including increased early signaling events following engagement of the T cell receptor (TCR). Signaling lymphocytic activation molecule family (SLAMF) cell surface receptors and the X-chromosome-defined signaling lymphocytic activation molecule-associated protein (SAP) adaptor are important in the development of several immunocyte lineages and modulating immune response. Here we present evidence that SAP protein levels are decreased in T cells and in their main subsets isolated from 32 women and 3 men with SLE independently of disease activity. In SLE T cells the SAP protein is also subject to increased degradation by a caspase-3. Forced expression of SAP in SLE T cells simultaneously heightened IL-2 production, calcium (Ca2+) responses and tyrosine phosphorylation of a number of proteins. Exposure of normal T cells to SLE serum IgG, known to contain anti-CD3/TCR antibodies, resulted in SAP downregulation. We conclude that SLE T cells display reduced levels of the adaptor protein SAP probably as a result of continuous T cell activation and degradation by caspase-3. Restoration of SAP levels in SLE T cells corrects the overexcitable lupus T cell phenotype. PMID:27183584

  15. Modeling the contributions of emission, meteorology, and chemistry to high PM2.5 levels over China

    Science.gov (United States)

    Wang, Y.; Zhang, Q.; Jia, B.; Jiang, J.; Zhou, W.; Wang, B.

    2014-12-01

    PM2.5 is known to harm health and public welfare. In recent years, regional haze with PM2.5 levels exceeding ten folds of WHO's air quality guideline has become the largest air quality concern in China. To better protect the health of millions of people, the key question is whether we understand the formation mechanism of high PM2.5 episodes well enough to guide the formation of effective control strategies. Here we present a modeling analysis in conjunction of observational constraints to estimate the contribution of emissions, meteorology, and secondary chemical formation to changes in PM2.5 levels over China. Certain meteorological conditions are found particularly conducive to trigger fast increases of secondary PM under current emissions mixtures in China. While the nested-grid GEOS-Chem model reproduces the distribution of PM2.5 and simulates up to ~400 μg/m3 of daily maximum PM2.5, it fails to capture the large sulfate enhancement during haze. We propose heterogeneous oxidation of SO2 on deliquesced aerosols as an additional source of sulfate under high relative humidity conditions. Parameterizing this process in the model improves the simulated spatial distribution and results in significant increases of sulfate enhancement ratio and sulfate fraction in PM2.5 during haze episodes. Implications of our modeling analysis for PM2.5 pollution control policies will also be discussed.

  16. A Potential Epigenetic Marker Mediating Serum Folate and Vitamin B12 Levels Contributes to the Risk of Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Loo Keat Wei

    2015-01-01

    Full Text Available Stroke is a multifactorial disease that may be associated with aberrant DNA methylation profiles. We investigated epigenetic dysregulation for the methylenetetrahydrofolate reductase (MTHFR gene among ischemic stroke patients. Cases and controls were recruited after obtaining signed written informed consents following a screening process against the inclusion/exclusion criteria. Serum vitamin profiles (folate, vitamin B12, and homocysteine were determined using immunoassays. Methylation profiles for CpGs A and B in the MTHFR gene were determined using a bisulfite-pyrosequencing method. Methylation of MTHFR significantly increased the susceptibility risk for ischemic stroke. In particular, CpG A outperformed CpG B in mediating serum folate and vitamin B12 levels to increase ischemic stroke susceptibility risks by 4.73-fold. However, both CpGs A and B were not associated with serum homocysteine levels or ischemic stroke severity. CpG A is a potential epigenetic marker in mediating serum folate and vitamin B12 to contribute to ischemic stroke.

  17. Protein C and Antithrombin Levels in Patients with Sickle Cell ...

    African Journals Online (AJOL)

    function, the procoagulant, anticoagulant, and the fibrinolytic systems, are observed in sickle cell anemia (SCA) and are in favor of a procoagulant ... Abnormal exposure of phosphatidylserine (PS) in sickle .... Sickle cell disease and pulmonary.

  18. Platelet-Rich Plasma Derived Growth Factors Contribute to Stem Cell Differentiation in Musculoskeletal Regeneration

    OpenAIRE

    Yun Qian; Yun Qian; Qixin Han; Wei Chen; Wei Chen; Jialin Song; Jialin Song; Xiaotian Zhao; Yuanming Ouyang; Yuanming Ouyang; Weien Yuan; Cunyi Fan

    2017-01-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of differen...

  19. Interleukin-6 from subchondral bone mesenchymal stem cells contributes to the pathological phenotypes of experimental osteoarthritis

    Science.gov (United States)

    Wu, Xiaofeng; Cao, Lei; Li, Fan; Ma, Chao; Liu, Guangwang; Wang, Qiugen

    2018-01-01

    As a main cause of morbidity in the aged population, osteoarthritis (OA) is characterized by cartilage destruction, synovium inflammation, osteophytes, and subchondral bone sclerosis. To date its etiology remains elusive. Recent data highlight an important role of subchondral bone in the onset and progression of OA. Therefore, elucidating the mechanisms underlying abnormal subchondral bone could be of importance in the treatment of OA. Interleukin-6 is a proinflammatory cytokine involved in many physiological and pathological processes. Although in vitro and in vivo studies have indicated that IL-6 is an important cytokine in the physiopathogenesis of OA, its effects on subchondral bone have not been studied in OA animal models. In this study, we aimed to i) investigate the role of IL-6 in the pathological phenotypes of OA subchondral bone MSCs including increase in cell numbers, mineralization disorder and abnormal type I collagen production; ii) explore whether the systemic blockade of IL-6 signaling could alleviate the pathological phenotypes of experimental OA. We found that IL-6 was over-secreted by OA subchondral bone MSCs compared with normal MSCs and IL-6/STAT3 signaling was over-activated in subchondral bone MSCs, which contributed to the pathological phenotypes of OA subchondral bone MSCs. More importantly, systemic inhibition of IL-6/STAT3 signaling with IL-6 antibody or STAT3 inhibitor AG490 decreased the severity of pathological phenotypes of OA subchondral bone MSCs and cartilage lesions in OA. Our findings provide strong evidence for a pivotal role for IL-6 signaling in OA and open up new therapeutic perspectives. PMID:29736207

  20. Patient Choice of Nonsurgical Treatment Contributes to Disparities in Head and Neck Squamous Cell Carcinoma.

    Science.gov (United States)

    Parhar, Harman S; Anderson, Donald W; Janjua, Arif S; Durham, J Scott; Prisman, Eitan

    2018-06-01

    Objectives There are well-established outcome disparities among different demographic groups with head and neck squamous cell carcinoma (HNSCC). We aimed to investigate the potential contribution of patient choice of nonsurgical treatment to these disparities by estimating the rate of this phenomenon, identifying its predictors, and estimating the effect on cancer-specific survival. Study Design Retrospective nationwide analysis. Settings Surveillance, Epidemiology, and End Results Database (2004-2014). Subjects and Methods Patients with HNSCC, who were recommended for primary surgery, were included. Multivariable logistic regression was used to identify demographic and clinical factors associated with patient choice of nonsurgical treatment, and Kaplan Meier/Cox regression was used to analyze survival. Results Of 114,506 patients with HNSCC, 58,816 (51.4%) were recommended for primary surgery, and of those, 1550 (2.7%) chose nonsurgical treatment. Those who chose nonsurgical treatment were more likely to be older (67.1 ± 12.6 vs 63.6 ± 13.1, P unmarried (OR married, 0.50; 95% CI, 0.44-0.58), had an advanced tumor, and had a hypopharyngeal or laryngeal primary. Choice of nonsurgical treatment imparted a 2.16-fold (95% CI, 2.02-2.30) increased risk of cancer-specific death. Conclusion Of the patients, 2.7% chose nonsurgical treatment despite a provider recommendation that impairs survival. Choice of nonsurgical treatment is associated with older age, having Black or Asian ethnicity, being unmarried, having an advanced stage tumor, and having a primary site in the hypopharynx or larynx. Knowledge of these disparities may help providers counsel patients and help patients make informed decisions.

  1. Dynamic expression of the translational machinery during Bacillus subtilis life cycle at a single cell level.

    Directory of Open Access Journals (Sweden)

    Alex Rosenberg

    Full Text Available The ability of bacteria to responsively regulate the expression of translation components is crucial for rapid adaptation to fluctuating environments. Utilizing Bacillus subtilis (B. subtilis as a model organism, we followed the dynamics of the translational machinery at a single cell resolution during growth and differentiation. By comprehensive monitoring the activity of the major rrn promoters and ribosomal protein production, we revealed diverse dynamics between cells grown in rich and poor medium, with the most prominent dissimilarities exhibited during deep stationary phase. Further, the variability pattern of translational activity varied among the cells, being affected by nutrient availability. We have monitored for the first time translational dynamics during the developmental process of sporulation within the two distinct cellular compartments of forespore and mother-cell. Our study uncovers a transient forespore specific increase in expression of translational components. Finally, the contribution of each rrn promoter throughout the bacterium life cycle was found to be relatively constant, implying that differential expression is not the main purpose for the existence of multiple rrn genes. Instead, we propose that coordination of the rrn operons serves as a strategy to rapidly fine tune translational activities in a synchronized fashion to achieve an optimal translation level for a given condition.

  2. Photovoltaic reciprocity and quasi-Fermi level splitting in nanostructure-based solar cells (Conference Presentation)

    Science.gov (United States)

    Aeberhard, Urs

    2017-04-01

    The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions [1]. So far, the theory has been verified for a wide range of devices and material systems and forms the basis of a growing number of luminesecence imaging techniques used in the characterization of photovoltaic materials, cells and modules [2-5]. However, there are also some examples where the theory fails, such as in the case of amorphous silicon. In our contribution, we critically assess the assumptions made in the derivation of the theory and compare its predictions with rigorous formal relations as well as numerical computations in the framework of a comprehensive quantum-kinetic theory of photovoltaics [6] as applied to ultra-thin absorber architectures [7]. One of the main applications of the photovoltaic reciprocity relation is the determination of quasi-Fermi level splittings (QFLS) in solar cells from the measurement of luminescence. In nanostructure-based photovoltaic architectures, the determination of QFLS is challenging, but instrumental to assess the performance potential of the concepts. Here, we use our quasi-Fermi level-free theory to investigate existence and size of QFLS in quantum well and quantum dot solar cells. [1] Uwe Rau. Reciprocity relation between photovoltaic quantum efficiency and electrolumines- cent emission of solar cells. Phys. Rev. B, 76(8):085303, 2007. [2] Thomas Kirchartz and Uwe Rau. Electroluminescence analysis of high efficiency cu(in,ga)se2 solar cells. J. Appl. Phys., 102(10), 2007. [3] Thomas Kirchartz, Uwe Rau, Martin Hermle, Andreas W. Bett, Anke Helbig, and Jrgen H. Werner. Internal voltages in GaInP-GaInAs-Ge multijunction solar cells determined by electro- luminescence measurements. Appl. Phys. Lett., 92(12), 2008. [4] Thomas Kirchartz, Anke Helbig, Wilfried Reetz, Michael Reuter, Jürgen H. Werner, and

  3. Polybrominated Diphenyl Ethers (PBDEs) in Surface Soils across Five Asian Countries: Levels, Spatial Distribution, and Source Contribution.

    Science.gov (United States)

    Li, Wen-Long; Ma, Wan-Li; Jia, Hong-Liang; Hong, Wen-Jun; Moon, Hyo-Bang; Nakata, Haruhiko; Minh, Nguyen Hung; Sinha, Ravindra Kumar; Chi, Kai Hsien; Kannan, Kurunthachalam; Sverko, Ed; Li, Yi-Fan

    2016-12-06

    A total of 23 polybrominated diphenyl ether (PBDE) congeners were measured in soil samples collected in areas with no known point source [urban/rural/background (U/R/B) sites] and in areas with known point source [brominated flame retardant (BFR)-related industrial sites (F sites) and e-waste recycling sites (E sites)] across five Asian countries. The highest PBDE concentrations were found in BFR-related industrial and e-waste recycling sites. The concentrations of PBDEs in U/R/B sites decreased in the following order: urban > rural > background sites. Total PBDE concentrations were dominated by BDE-209, while BDE-17, -85, -138, -191, -204, and -205 were the least abundant compounds. In both urban sites and rural sites, the mean concentrations of total PBDEs (∑ 23 BDEs) in soils decreased in the following order: Japan > China > South Korea > India > Vietnam. The concentrations of PBDEs in soils were comparable with those reported in other studies. Among the three commercial PBDE mixtures, relatively large contributions of commercial penta-BDE were observed in Vietnam, whereas deca-BDE was the dominant form in mixtures contributing from 55.8 ± 2.5 to 100.0 ± 1.2% of the total PBDEs in soils collected from other four countries. Regression analysis suggested that local population density (PD) is a good indicator of PBDEs in soils of each country. Significant and positive correlation between soil organic content and PBDE level was observed in Chinese soil for most nondeca-BDE homologues with their usage stopped 10 years ago, indicating its important role in controlling the revolatilization of PBDEs from soil and changing the spatial trend of PBDE in soil from the primary distribution pattern to the secondary distribution pattern, especially when primary emission is ceased.

  4. Genotoxic damage in non-irradiated cells: contribution from the bystander effect

    International Nuclear Information System (INIS)

    Zhou, H.; Randers-Pherson, G.; Suzuki, M.; Waldren, C.A.; Hei, T.K.

    2002-01-01

    It has always been accepted dogma that the deleterious effects of ionising radiation such as mutagenesis and carcinogenesis are due mainly to direct damage to DNA. Using the Columbia University charged-particle microbeam and the highly sensitive A L cell mutagenic assay, it is shown here that non-irradiated cells acquire the mutagenic phenotype through direct contact with cells whose nuclei are traversed with 2 alpha particles each. Pre-treatment of cells with lindane, a gap junction inhibitor, significantly decreased the mutant yield. Furthermore, when irradiated cells were mixed with control cells in a similar ration as the in situ studies, no enhancement in bystander mutagenesis was detected. Our studies provide clear evidence that genotoxic damage can be induced in non-irradiated cells, and that gap junction mediated cell-cell communication plays a critical role in the bystander phenomenon. (author)

  5. Melanogenesis stimulation in B16-F10 melanoma cells induces cell cycle alterations, increased ROS levels and a differential expression of proteins as revealed by proteomic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Elizabeth S.; Kawahara, Rebeca [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil); Kadowaki, Marina K. [Universidade Estadual do Oeste do Parana, Cascavel, PR (Brazil); Amstalden, Hudson G.; Noleto, Guilhermina R.; Cadena, Silvia Maria S.C.; Winnischofer, Sheila M.B. [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil); Martinez, Glaucia R., E-mail: grmartinez@ufpr.br [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil)

    2012-09-10

    Considering that stimulation of melanogenesis may lead to alterations of cellular responses, besides melanin production, our main goal was to study the cellular effects of melanogenesis stimulation of B16-F10 melanoma cells. Our results show increased levels of the reactive oxygen species after 15 h of melanogenesis stimulation. Following 48 h of melanogenesis stimulation, proliferation was inhibited (by induction of cell cycle arrest in the G1 phase) and the expression levels of p21 mRNA were increased. In addition, melanogenesis stimulation did not induce cellular senescence. Proteomic analysis demonstrated the involvement of proteins from other pathways besides those related to the cell cycle, including protein disulfide isomerase A3, heat-shock protein 70, and fructose biphosphate aldolase A (all up-regulated), and lactate dehydrogenase (down-regulated). In RT-qPCR experiments, the levels of pyruvate kinase M2 mRNA dropped, whereas the levels of ATP synthase (beta-F1) mRNA increased. These data indicate that melanogenesis stimulation of B16-F10 cells leads to alterations in metabolism and cell cycle progression that may contribute to an induction of cell quiescence, which may provide a mechanism of resistance against cellular injury promoted by melanin synthesis. -- Highlights: Black-Right-Pointing-Pointer Melanogenesis stimulation by L-tyrosine+NH{sub 4}Cl in B16-F10 melanoma cells increases ROS levels. Black-Right-Pointing-Pointer Melanogenesis inhibits cell proliferation, and induced cell cycle arrest in the G1 phase. Black-Right-Pointing-Pointer Proteomic analysis showed alterations in proteins of the cell cycle and glucose metabolism. Black-Right-Pointing-Pointer RT-qPCR analysis confirmed alterations of metabolic targets after melanogenesis stimulation.

  6. Contributions of chaperone/usher systems to cell binding, biofilm formation and Yersinia pestis virulence.

    Science.gov (United States)

    Felek, Suleyman; Jeong, Jenny J; Runco, Lisa M; Murray, Susan; Thanassi, David G; Krukonis, Eric S

    2011-03-01

    Yersinia pestis genome sequencing projects have revealed six intact uncharacterized chaperone/usher systems with the potential to play roles in plague pathogenesis. We cloned each locus and expressed them in the Δfim Escherichia coli strain AAEC185 to test the assembled Y. pestis surface structures for various activities. Expression of each chaperone/usher locus gave rise to specific novel fibrillar structures on the surface of E. coli. One locus, y0561-0563, was able to mediate attachment to human epithelial cells (HEp-2) and human macrophages (THP-1) but not mouse macrophages (RAW264.7), while several loci were able to facilitate E. coli biofilm formation. When each chaperone/usher locus was deleted in Y. pestis, only deletion of the previously described pH 6 antigen (Psa) chaperone/usher system resulted in decreased adhesion and biofilm formation. Quantitative RT-PCR (qRT-PCR) revealed low expression levels for each novel chaperone/usher system in vitro as well as in mouse tissues following intravenous infection. However, a Y. pestis mutant in the chaperone/usher locus y1858-1862 was attenuated for virulence in mice via the intravenous route of infection, suggesting that expression of this locus is, at some stage, sufficient to affect the outcome of a plague infection. qRT-PCR experiments also indicated that expression of the chaperone/usher-dependent capsule locus, caf1, was influenced by oxygen availability and that the well-described chaperone/usher-dependent pilus, Psa, was strongly induced in minimal medium even at 28 °C rather than 37 °C, a temperature previously believed to be required for Psa expression. These data indicate several potential roles for the novel chaperone/usher systems of Y. pestis in pathogenesis and infection-related functions such as cell adhesion and biofilm formation.

  7. A myogenic precursor cell that could contribute to regeneration in zebrafish and its similarity to the satellite cell.

    Science.gov (United States)

    Siegel, Ashley L; Gurevich, David B; Currie, Peter D

    2013-09-01

    The cellular basis for mammalian muscle regeneration has been an area of intense investigation over recent decades. The consensus is that a specialized self-renewing stem cell, termed the satellite cell, plays a major role during the process of regeneration in amniotes. How broadly this mechanism is deployed within the vertebrate phylogeny remains an open question. A lack of information on the role of cells analogous to the satellite cell in other vertebrate systems is even more unexpected given the fact that satellite cells were first designated in frogs. An intriguing aspect of this debate is that a number of amphibia and many fish species exhibit epimorphic regenerative processes in specific tissues, whereby regeneration occurs by the dedifferentiation of the damaged tissue, without deploying specialized stem cell populations analogous to satellite cells. Hence, it is feasible that a cellular process completely distinct from that deployed during mammalian muscle regeneration could operate in species capable of epimorphic regeneration. In this minireview, we examine the evidence for the broad phylogenetic distribution of satellite cells. We conclude that, in the vertebrates examined so far, epimorphosis does not appear to be deployed during muscle regeneration, and that analogous cells expressing similar marker genes to satellite cells appear to be deployed during the regenerative process. However, the functional definition of these cells as self-renewing muscle stem cells remains a final hurdle to the definition of the satellite cell as a generic vertebrate cell type. © 2013 FEBS.

  8. Identification of islet-enriched long non-coding RNAs contributing to β-cell failure in type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Anna Motterle

    2017-11-01

    Conclusions: Taken together, the data show that lncRNAs are modulated in a model of obesity-associated type 2 diabetes and that variations in the expression of some of them may contribute to β-cell failure during the development of the disease.

  9. CD133(+)/CD44(+)/Oct4(+)/Nestin(+) stem-like cells isolated from Panc-1 cell line may contribute to multi-resistance and metastasis of pancreatic cancer.

    Science.gov (United States)

    Wang, Dongqing; Zhu, Haitao; Zhu, Ying; Liu, Yanfang; Shen, Huiling; Yin, Ruigen; Zhang, Zhijian; Su, Zhaoliang

    2013-05-01

    Pancreatic cancer is an aggressive malignant disease. Owing to the lack of early symptoms, accompanied by extensive metastasis and high resistance to chemotherapy, pancreatic adenocarcinoma becomes the fourth leading cause of cancer-related deaths. In this study, we identified a subpopulation of cells isolated from the Panc-1 cell line and named pancreatic cancer stem-like cells. These Panc-1 stem-like cells expressed high levels of CD133/CD44/Oct4/Nestin. Compared to Panc-1 cells, Panc-1 stem-like cells were resistant to gemcitabine and expressed high levels of MDR1; furthermore, Panc-1 stem-like cells have high anti-apoptotic, but weak proliferative potential. These results indicated that Panc-1 stem-like cells, as a novel group, may be a potential major cause of pancreatic cancer multidrug resistance and extensive metastasis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  10. R&D on fuel cells in Japan and possible contributions of fuel cells to the Global Reduction of CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, Hiroyasu [Government Industrial Research Inst., Osaka (Japan)

    1993-12-31

    Fuel cells can generate electricity equivalent to 40-60% of the energy contained In the fuel consumed, and an overall efficiency as high as 80% is not impossible to achieve through utilization of the exhaust heat. In addition, emissions of pollutants such as NOx and SOx from fuel cells are low. Since various reformed gases derived from natural gas, methanol and coal can be used as fuel for fuel cells, the wide range of applications for fuel cells is expected to contribute to the reduction of petroleum dependence in Japan.

  11. Putative contribution of CD56 positive cells in cetuximab treatment efficacy in first-line metastatic colorectal cancer patients

    International Nuclear Information System (INIS)

    Maréchal, Raphaël; De Schutter, Jef; Nagy, Nathalie; Demetter, Pieter; Lemmers, Arnaud; Devière, Jacques; Salmon, Isabelle; Tejpar, Sabine; Van Laethem, Jean-Luc

    2010-01-01

    Activity of cetuximab, a chimeric monoclonal antibody targeting the epidermal growth factor receptor, is largely attributed to its direct antiproliferative and proapoptotic effects. Antibody-dependent cell-mediated cytotoxicity (ADCC) could be another possible mechanism of cetuximab antitumor effects and its specific contribution on the clinical activity of cetuximab is unknown. We assessed immune cells infiltrate (CD56, CD68, CD3, CD4, CD8, Foxp3) in the primary tumor of metastatic colorectal cancer (mCRC) patients treated with a first-line cetuximab-based chemotherapy in the framework of prospective trials (treatment group) and in a matched group of mCRC patients who received the same chemotherapy regimen without cetuximab (control group). The relationship between intra-tumoral immune effector cells, the K-ras status and the efficacy of the treatment were investigated. We also evaluated in vitro, the ADCC activity in healthy donors and chemonaive mCRC patients and the specific contribution of CD56 + cells. ADCC activity against DLD1 CRC cell line is maintained in cancer patients and significantly declined after CD56 + cells depletion. In multivariate analysis, K-ras wild-type (HR: 4.7 (95% CI 1.8-12.3), p = 0.001) and tumor infiltrating CD56 + cells (HR: 2.6, (95%CI:1.14-6.0), p = 0.019) were independent favourable prognostic factors for PFS and response only in the cetuximab treatment group. By contrast CD56 + cells failed to predict PFS and response in the control group. CD56 + cells, mainly NK cells, may be the major effector of ADCC related-cetuximab activity. Assessment of CD56 + cells infiltrate in primary colorectal adenocarcinoma may provide additional information to K-ras status in predicting response and PFS in mCRC patients treated with first-line cetuximab-based chemotherapy

  12. Study of the Contributions of Donor and Acceptor Photoexcitations to Open Circuit Voltage in Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Douglas Yeboah

    2017-10-01

    Full Text Available One of the key parameters in determining the power conversion efficiency (PCE of bulk heterojunction (BHJ organic solar cells (OSCs is the open circuit voltage . The processes of exciting the donor and acceptor materials individually in a BHJ OSC are investigated and are found to produce two different expressions for . Using the contributions of electron and hole quasi-Fermi levels and charge carrier concentrations, the two different expressions are derived as functions of the energetics of the donor and acceptor materials and the photo-generated charge carrier concentrations, and calculated for a set of donor-acceptor blends. The simultaneous excitation of both the donor and acceptor materials is also considered and the corresponding , which is different from the above two, is derived. The calculated from the photoexcitation of the donor is found to be somewhat comparable with that obtained from the photoexcitation of the acceptor in most combinations of the donor and acceptor materials considered here. It is also found that the calculated from the simultaneous excitations of donor and acceptor in BHJ OSCs is also comparable with the other two . All three thus derived produce similar results and agree reasonably well with the measured values. All three depend linearly on the concentration of the photoexcited charge carriers and hence incident light intensity, which agrees with experimental results. The outcomes of this study are expected to help in finding materials that may produce higher and hence enhanced PCE in BHJ OSCs.

  13. Regional up-regulation of NOX2 contributes to the differential vulnerability of outer hair cells to neomycin.

    Science.gov (United States)

    Qi, Meihao; Qiu, Yang; Zhou, Xueying; Tian, Keyong; Zhou, Ke; Sun, Fei; Yue, Bo; Chen, Fuquan; Zha, Dingjun; Qiu, Jianhua

    2018-06-02

    In hearing loss induced by aminoglycoside antibiotics, the outer hair cells (OHCs) in the basal turn are always more susceptible than OHCs in the apical turn, while the underlying mechanisms remain unknown. In this study, we reported that NAPDH oxidase 2 (NOX2) played an important role in the OHCs damage preferentially in the basal turn. Normally, NOX2 was evenly expressed in OHCs among different turns, at a relatively low level. However, after neomycin treatment, NOX2 was dominantly induced in OHCs in the basal turn. In vivo and in vitro studies demonstrated that inhibition of NOX2 significantly alleviated neomycin-induced OHCs damages, as seen from both the cleaved caspase-3 and TUNEL staining. Moreover, gp91 ds-tat delivery and DHE staining results showed that NOX2-derived ROS was responsible for neomycin ototoxicity. Taken together, our study shows that regional up-expression of NOX2 and subsequent increase of ROS in OHCs of the basal turn is an important factor contributing to the vulnerability of OHCs there, which should shed light on the prevention of hearing loss induced by aminoglycoside antibiotics. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Mib1 contributes to persistent directional cell migration by regulating the Ctnnd1-Rac1 pathway.

    Science.gov (United States)

    Mizoguchi, Takamasa; Ikeda, Shoko; Watanabe, Saori; Sugawara, Michiko; Itoh, Motoyuki

    2017-10-31

    Persistent directional cell migration is involved in animal development and diseases. The small GTPase Rac1 is involved in F-actin and focal adhesion dynamics. Local Rac1 activity is required for persistent directional migration, whereas global, hyperactivated Rac1 enhances random cell migration. Therefore, precise control of Rac1 activity is important for proper directional cell migration. However, the molecular mechanism underlying the regulation of Rac1 activity in persistent directional cell migration is not fully understood. Here, we show that the ubiquitin ligase mind bomb 1 (Mib1) is involved in persistent directional cell migration. We found that knockdown of MIB1 led to an increase in random cell migration in HeLa cells in a wound-closure assay. Furthermore, we explored novel Mib1 substrates for cell migration and found that Mib1 ubiquitinates Ctnnd1. Mib1-mediated ubiquitination of Ctnnd1 K547 attenuated Rac1 activation in cultured cells. In addition, we found that posterior lateral line primordium cells in the zebrafish mib1 ta52b mutant showed increased random migration and loss of directional F-actin-based protrusion formation. Knockdown of Ctnnd1 partially rescued posterior lateral line primordium cell migration defects in the mib1 ta52b mutant. Taken together, our data suggest that Mib1 plays an important role in cell migration and that persistent directional cell migration is regulated, at least in part, by the Mib1-Ctnnd1-Rac1 pathway. Published under the PNAS license.

  15. Influences of lamin A levels on induction of pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Bingfeng Zuo

    2012-09-01

    Lamin A is an inner nuclear membrane protein that maintains nuclear structure integrity, is involved in transcription, DNA damage response and genomic stability, and also links to cell differentiation, senescence, premature aging and associated diseases. Induced pluripotent stem (iPS cells have been successfully generated from various types of cells and used to model human diseases. It remains unclear whether levels of lamin A influence reprogramming of somatic cells to pluripotent states during iPS induction. Consistently, lamin A is expressed more in differentiated than in relatively undifferentiated somatic cells, and increases in expression levels with age. Somatic cells with various expression levels of lamin A differ in their dynamics and efficiency during iPS cell induction. Cells with higher levels of lamin A show slower reprogramming and decreased efficiency to iPS cells. Furthermore, depletion of lamin A by transient shRNA accelerates iPS cell induction from fibroblasts. Reduced levels of lamin A are associated with increased expression of pluripotent genes Oct4 and Nanog, and telomerase genes Tert and Terc. On the contrary, overexpression of lamin A retards somatic cell reprogramming to iPS-like colony formation. Our data suggest that levels of lamin A influence reprogramming of somatic cells to pluripotent stem cells and that artificial silencing of lamin A facilitates iPS cell induction. These findings may have implications in enhancing rejuvenation of senescent or older cells by iPS technology and manipulating lamin A levels.

  16. Identifying long-term memory B-cells in vaccinated children despite waning antibody levels specific for Bordetella pertussis proteins.

    Science.gov (United States)

    Hendrikx, Lotte H; Oztürk, Kemal; de Rond, Lia G H; Veenhoven, Reinier H; Sanders, Elisabeth A M; Berbers, Guy A M; Buisman, Anne-Marie

    2011-02-04

    Whooping cough is a respiratory disease caused by Bordetella pertussis. Since the 1950s in developed countries pertussis vaccinations are included in the national immunization program. However, antibody levels rapidly wane after both whole cell and acellular pertussis vaccination. Therefore protection against pertussis may depend largely on long-term B- and T-cell immunities. We investigated long-term pertussis-specific memory B-cell responses in children who were primed at infant age with the Dutch wP-vaccine (ISRCTN65428640). Purified B-cells were characterized by FACS-analysis and after polyclonal stimulation memory B-cells were detected by ELISPOT-assays specific for pertussis toxin, filamentous haemagglutinin, pertactin and tetanus. In addition, plasma IgG levels directed to the same antigens were measured by a fluorescent bead-based multiplex immunoassay. Two and 3 years after wP priming as well as 2 and 5 years after the aP booster at the age of 4, low plasma IgG levels to the pertussis proteins were found. At the same time, however pertussis protein-specific memory B-cells could be detected and their number increased with age. The number of tetanus-specific memory B-cells was similar in all age groups, whereas IgG-tetanus levels were high 2 years after tetanus booster compared to pre- and 5 years post-booster levels. This study shows the presence of long-term pertussis protein-specific memory B-cells in children despite waning antibody levels after vaccination, which suggests that memory B-cells in addition to antibodies may contribute to protection against pertussis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Tension and Elasticity Contribute to Fibroblast Cell Shape in Three Dimensions.

    Science.gov (United States)

    Brand, Christoph A; Linke, Marco; Weißenbruch, Kai; Richter, Benjamin; Bastmeyer, Martin; Schwarz, Ulrich S

    2017-08-22

    The shape of animal cells is an important regulator for many essential processes such as cell migration or division. It is strongly determined by the organization of the actin cytoskeleton, which is also the main regulator of cell forces. Quantitative analysis of cell shape helps to reveal the physical processes underlying cell shape and forces, but it is notoriously difficult to conduct it in three dimensions. Here we use direct laser writing to create 3D open scaffolds for adhesion of connective tissue cells through well-defined adhesion platforms. Due to actomyosin contractility in the cell contour, characteristic invaginations lined by actin bundles form between adjacent adhesion sites. Using quantitative image processing and mathematical modeling, we demonstrate that the resulting shapes are determined not only by contractility, but also by elastic stress in the peripheral actin bundles. In this way, cells can generate higher forces than through contractility alone. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Platelet-Rich Plasma Derived Growth Factors Contribute to Stem Cell Differentiation in Musculoskeletal Regeneration

    Directory of Open Access Journals (Sweden)

    Yun Qian

    2017-10-01

    Full Text Available Stem cell treatment and platelet-rich plasma (PRP therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of PRP derived GFs with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.

  19. Renal progenitor cells contribute to hyperplastic lesions of podocytopathies and crescentic glomerulonephritis.

    NARCIS (Netherlands)

    Smeets, B.; Angelotti, M.L.; Rizzo, P.; Dijkman, H.; Lazzeri, E.; Mooren, F.; Ballerini, L.; Parente, E.; Sagrinati, C.; Mazzinghi, B.; Ronconi, E.; Becherucci, F.; Benigni, A.; Steenbergen, E.; Lasagni, L.; Remuzzi, G.; Wetzels, J.F.M.; Romagnani, P.

    2009-01-01

    Glomerular injury can involve excessive proliferation of glomerular epithelial cells, resulting in crescent formation and obliteration of Bowman's space. The origin of these hyperplastic epithelial cells in different glomerular disorders is controversial. Renal progenitors localized to the inner

  20. Platelet-rich plasma derived growth factors contribute to stem cell differentiation in musculoskeletal regeneration

    Science.gov (United States)

    Qian, Yun; Han, Qixin; Chen, Wei; Song, Jialin; Zhao, Xiaotian; Ouyang, Yuanming; Yuan, Weien; Fan, Cunyi

    2017-10-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of platelet-rich plasma derived growth factors with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.

  1. Evaluation of Serum IgA level in nontreated and treated oral squamous cell carcinoma patients

    Directory of Open Access Journals (Sweden)

    Richa Mishra

    2018-01-01

    Full Text Available Introduction: Research in early cancer detection has led to discovery of many immunological tumor markers that contribute considerably to supplement the method of diagnosis. High serum immunoglobulin A (IgA values in patients with cancer have been used as tumor markers. Aims and Objectives: To evaluate and compare the serum IgA levels in nontreated, treated oral squamous cell carcinoma (SCC patients, and control group. Materials and Methods: A total of 60 patients were included in the study. 20 biopsy confirmed oral SCC patients, who have received no medical treatment, 20 oral SCC patients treated with surgery and/or radiotherapy and 20 normal healthy individuals. Venous blood samples were collected from anterior cubital vein and were delivered to the biochemistry laboratory for the estimation of serum IgA level by nephelometry method. Statistical Analysis Used: Statistical method employed were the Pearson's Chi-square test and One-way analysis of variance (Welch followed by Games-Howell post-hoc test. Results: We observed significant difference for serum IgA between study subjects in control, nontreated and treated oral SCC patients (P < 0.001. Serum IgA level in nontreated group was significantly higher than treated group and there was an approximately two-fold increase in serum IgA level in nontreated oral SCC patients when compared to that of the normal healthy individuals. Conclusion: Serum level of IgA might be employed as diagnostic and prognostic indicators in oral cancer.

  2. Macrophages contribute to the cyclic activation of adult hair follicle stem cells

    DEFF Research Database (Denmark)

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-01-01

    Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in...

  3. Decoding Signal Processing at the Single-Cell Level

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, H. Steven

    2017-12-01

    The ability of cells to detect and decode information about their extracellular environment is critical to generating an appropriate response. In multicellular organisms, cells must decode dozens of signals from their neighbors and extracellular matrix to maintain tissue homeostasis while still responding to environmental stressors. How cells detect and process information from their surroundings through a surprisingly limited number of signal transduction pathways is one of the most important question in biology. Despite many decades of research, many of the fundamental principles that underlie cell signal processing remain obscure. However, in this issue of Cell Systems, Gillies et al present compelling evidence that the early response gene circuit can act as a linear signal integrator, thus providing significant insight into how cells handle fluctuating signals and noise in their environment.

  4. Quantitative determination of the contribution of indirect and direct radiation action to the production of lethal lesions in mammalian cells

    International Nuclear Information System (INIS)

    Pohlit, W.; Drenkard, S.

    1985-01-01

    For quantitative models of radiation action in living cells it is necessary to know what fraction of the absorbed dose affects the target molecule by direct radiation action and what fraction by indirect radiation action. Mammalian cells were irradiated in suspension, saturated with N 2 O or CO 2 . With these gases the production of OH-radicals is changed by a factor of two in aqueous solutions and a corresponding change in cell survival would be expected, if only indirect radiation action is involved in the production of lethal lesions in the living cell. No difference could be detected, however, and it is concluded that indirect radiation action does not contribute to radiation lethality in mammalian cells. (author)

  5. Towards Deciphering the Hidden Mechanisms That Contribute to the Antigenic Activation Process of Human Vγ9Vδ2 T Cells

    OpenAIRE

    Lola Boutin; Lola Boutin; Emmanuel Scotet; Emmanuel Scotet

    2018-01-01

    Vγ9Vδ2 T cells represent a major unconventional γδ T cell subset located in the peripheral blood of adults in humans and several non-human primates. Lymphocytes that constitute this transitional subset can sense subtle level changes of intracellular phosphorylated intermediates of the isoprenoid biosynthesis pathway (phosphoantigens, pAg), such as isopentenyl pyrophosphate, during cell stress events. This unique antigenic activation process operates in a rigorous framework that requires the e...

  6. Cell surface N-glycans influence the level of functional E-cadherin at the cell–cell border

    Directory of Open Access Journals (Sweden)

    M. Kristen Hall

    2014-01-01

    Full Text Available E-cadherin is crucial for adhesion of cells to each other and thereby development and maintenance of tissue. While it is has been established that N-glycans inside the cell impact the level of E-cadherin at the cell surface of epithelial-derived cells, it is unclear whether N-glycans outside the cell control the clustering of E-cadherin at the cell–cell border. Here, we demonstrate reduction of N-glycans at the cell surface weakened the recruitment and retention of E-cadherin at the cell–cell border, and consequently reduced the strength of cell–cell interactions. We conclude that N-glycans at the cell surface are tightly linked to the placement of E-cadherin at the cell–cell border and thereby control E-cadherin mediated cell–cell adhesion.

  7. Neighborhood Disadvantage and Physical Function: The Contributions of Neighborhood-Level Perceptions of Safety From Crime and Walking for Recreation.

    Science.gov (United States)

    Loh, Venurs H Y; Rachele, Jerome N; Brown, Wendy J; Ghani, Fatima; Turrell, Gavin

    2018-04-20

    Residents of more socioeconomically disadvantaged neighborhoods are more likely to report poorer physical function, although the reasons for this remain unknown. It is possible that neighborhood-level perceptions of safety from crime contribute to this relationship through its association with walking for recreation. Data were obtained from the fourth wave (collected in 2013) of the HABITAT (How Areas in Brisbane Influence HealTh and AcTivity) multilevel longitudinal study of middle- to older-aged adults (46-74 y) residing in 200 neighborhoods in Brisbane, Australia. The data were analyzed separately for men (n = 2190) and women (n = 2977) using multilevel models. Residents of the most disadvantaged neighborhoods had poorer physical function, perceived their neighborhoods to be less safe from crime, and do less walking for recreation. These factors accounted for differences in physical function between disadvantaged and advantaged neighborhoods (24% for men and 25% for women). This study highlights the importance of contextual characteristics, through their associations with behaviors, that can have in explaining the relationship between neighborhood disadvantage and physical function. Interventions aimed at improving neighborhood safety integrated with supportive environments for physical activity may have positive impact on physical function among all socioeconomic groups.

  8. Contribution of Schwann Cells to Remyelination in a Naturally Occurring Canine Model of CNS Neuroinflammation.

    Directory of Open Access Journals (Sweden)

    Kristel Kegler

    Full Text Available Gliogenesis under pathophysiological conditions is of particular clinical relevance since it may provide evidence for regeneration promoting cells recruitable for therapeutic purposes. There is evidence that neurotrophin receptor p75 (p75NTR-expressing cells emerge in the lesioned CNS. However, the phenotype and identity of these cells, and signals triggering their in situ generation under normal conditions and certain pathological situations has remained enigmatic. In the present study, we used a spontaneous, idiopathic and inflammatory CNS condition in dogs with prominent lympho-histiocytic infiltration as a model to study the phenotype of Schwann cells and their relation to Schwann cell remyelination within the CNS. Furthermore, the phenotype of p75NTR-expressing cells within the injured CNS was compared to their counter-part in control sciatic nerve and after peripheral nerve injury. In addition, organotypic slice cultures were used to further elucidate the origin of p75NTR-positive cells. In cerebral and cerebellar white and grey matter lesions as well as in the brain stem, p75NTR-positive cells co-expressed the transcription factor Sox2, but not GAP-43, GFAP, Egr2/Krox20, periaxin and PDGFR-α. Interestingly, and contrary to the findings in control sciatic nerves, p75NTR-expressing cells only co-localized with Sox2 in degenerative neuropathy, thus suggesting that such cells might represent dedifferentiated Schwann cells both in the injured CNS and PNS. Moreover, effective Schwann cell remyelination represented by periaxin- and P0-positive mature myelinating Schwann cells, was strikingly associated with the presence of p75NTR/Sox2-expressing Schwann cells. Intriguingly, the emergence of dedifferentiated Schwann cells was not affected by astrocytes, and a macrophage-dominated inflammatory response provided an adequate environment for Schwann cells plasticity within the injured CNS. Furthermore, axonal damage was reduced in brain stem areas

  9. Mir-130a-Mediated Downregulation of SMAD4 Contributes to Reduced Sensitivity to TGE beta Stimulation in Promyelocytic Cells

    DEFF Research Database (Denmark)

    Hager, Mattias; Pedersen, Corinna Cavan; Larsen, Maria Torp

    2011-01-01

    mature, the expression of miR-130a decreases dramatically whereas the level of Smad4 protein expression increases demonstrating inverse correlation between miR-130a and Smad4 protein. The level of Stnad4 mRNA is comparable at all stages of granulopoiesis. High miR-130a levels and low or no expression...... by point mutations in the miRNA-binding site. In agreement, we observed that stable overexpression of miR-130a in a granulocytic cell line reduces the level of Smad4 protein, and render the cells less sensitive to TGF-beta-induced growth inhibition. This was also confirmed with cell cycles analysis...... of Smad4 was found in primary cells from patients with acute myeloid leukemia and in a cell line (Kasumi-1) with the t(8:21)(q22;q22) chromosomal translocation. The level of Smad4 increased in Kasumi-1 cells when the endogenous level of miR-130a was inhibited by anti-miR-130a LNA. Our data indicate...

  10. Transplantation of dedifferentiated fat cell-derived micromass pellets contributed to cartilage repair in the rat osteochondral defect model.

    Science.gov (United States)

    Shimizu, Manabu; Matsumoto, Taro; Kikuta, Shinsuke; Ohtaki, Munenori; Kano, Koichiro; Taniguchi, Hiroaki; Saito, Shu; Nagaoka, Masahiro; Tokuhashi, Yasuaki

    2018-03-20

    Mature adipocyte-derived dedifferentiated fat (DFAT) cells possesses the ability to proliferate effectively and the potential to differentiate into multiple linages of mesenchymal tissue; similar to adipose-derived stem cells (ASCs). The purpose of this study is to examine the effects of DFAT cell transplantation on cartilage repair in a rat model of osteochondral defects. Full-thickness osteochondral defects were created in the knees of Sprague-Dawley rats bilaterally. Cartilage-like micromass pellets were prepared from green fluorescent protein (GFP)-labeled rat DFAT cells and subsequently transplanted into the affected right knee of these rats. Defects in the left knee were used as a control. Macroscopic and microscopic changes of treated and control defects were evaluated up to 12 weeks post-treatment with DFAT cells. To observe the transplanted cells, sectioned femurs were immunostained for GFP and type II collagen. DFAT cells formed micromass pellets expressing characteristics of immature cartilage in vitro. In the DFAT cell-transplanted limbs, the defects were completely filled with white micromass pellets as early as 2 weeks post-treatment. These limbs became smooth at 4 weeks. Conversely, the defects in the control limbs were still not repaired by 4 weeks. Macroscopic ICRS scores at 2 and 4 weeks were significantly higher in the DFAT cells-transplanted limbs compared to those of the control limbs. The modified O'Driscol histological scores for the DFAT cell-transplanted limbs were significantly higher than those of the control limbs at corresponding time points. GFP-positive DAFT cells were detected in the transplanted area at 2 weeks but hardly visible at 12 weeks post-operation. Transplantation of DFAT cell-derived micromass pellets contribute to cartilage repair in a rat osteochondral defect model. DFAT cell transplantation may be a viable therapeutic strategy for the repair of osteochondral injuries. Copyright © 2018 The Authors. Published by

  11. Pancreatic alpha-cell dysfunction contributes to the disruption of glucose homeostasis and compensatory insulin hypersecretion in glucocorticoid-treated rats.

    Directory of Open Access Journals (Sweden)

    Alex Rafacho

    Full Text Available Glucocorticoid (GC-based therapies can cause insulin resistance (IR, glucose intolerance, hyperglycemia and, occasionally, overt diabetes. Understanding the mechanisms behind these metabolic disorders could improve the management of glucose homeostasis in patients undergoing GC treatment. For this purpose, adult rats were treated with a daily injection of dexamethasone (1 mg/kg b.w., i.p. (DEX or saline as a control for 5 consecutive days. The DEX rats developed IR, augmented glycemia, hyperinsulinemia and hyperglucagonemia. Treatment of the DEX rats with a glucagon receptor antagonist normalized their blood glucose level. The characteristic inhibitory effect of glucose on glucagon secretion was impaired in the islets of the DEX rats, while no direct effects were found on α-cells in islets that were incubated with DEX in vitro. A higher proportion of docked secretory granules was found in the DEX α-cells as well as a trend towards increased α-cell mass. Additionally, insulin secretion in the presence of glucagon was augmented in the islets of the DEX rats, which was most likely due to their higher glucagon receptor content. We also found that the enzyme 11βHSD-1, which participates in GC metabolism, contributed to the insulin hypersecretion in the DEX rats under basal glucose conditions. Altogether, we showed that GC treatment induces hyperglucagonemia, which contributes to an imbalance in glucose homeostasis and compensatory β-cell hypersecretion. This hyperglucagonemia may result from altered α-cell function and, likely, α-cell mass. Additionally, blockage of the glucagon receptor seems to be effective in preventing the elevation in blood glucose levels induced by GC administration.

  12. Decreased Intracellular pH Induced by Cariporide Differentially Contributes to Human Umbilical Cord-Derived Mesenchymal Stem Cells Differentiation

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2014-01-01

    Full Text Available Background/Aims: Na+/H+ exchanger 1 (NHE1 is an important regulator of intracellular pH (pHi. High pHi is required for cell proliferation and differentiation. Our previous study has proven that the pHi of mesenchymal stem cells is higher than that of normal differentiated cells and similar to tumor cells. NHE1 is highly expressed in both mesenchymal stem cells and tumor cells. Targeted inhibition of NHE1 could induce differentiation of K562 leukemia cells. In the present paper we explored whether inhibition of NHE1 could induce differentiation of mesenchymal stem cells. Methods: MSCs were obtained from human umbilical cord and both the surface phenotype and functional characteristics were analyzed. Selective NHE1 inhibitor cariporide was used to treat human umbilical cord-derived mesenchymal stem cells (hUC-MSCs. The pHi and the differentiation of hUC-MSCs were compared upon cariporide treatment. The putative signaling pathway involved was also explored. Results: The pHi of hUC-MSCs was decreased upon cariporide treatment. Cariporide up-regulated the osteogenic differentiation of hUC-MSCs while the adipogenic differentiation was not affected. For osteogenic differentiation, β-catenin expression was up-regulated upon cariporide treatment. Conclusion: Decreased pHi induced by cariporide differentially contributes to hUC-MSCs differentiation.

  13. Chronic Myelogenous Leukemia Cells Contribute to the Stromal Myofibroblasts in Leukemic NOD/SCID Mouse In Vivo

    Directory of Open Access Journals (Sweden)

    Ryosuke Shirasaki

    2012-01-01

    Full Text Available We recently reported that chronic myelogenous leukemia (CML cells converted into myofibroblasts to create a microenvironment for proliferation of CML cells in vitro. To analyze a biological contribution of CML-derived myofibroblasts in vivo, we observed the characters of leukemic nonobese diabetes/severe combined immunodeficiency (NOD/SCID mouse. Bone marrow nonadherent mononuclear cells as well as human CD45-positive cells obtained from CML patients were injected to the irradiated NOD/SCID mice. When the chimeric BCR-ABL transcript was demonstrated in blood, human CML cells were detected in NOD/SCID murine bone marrow. And CML-derived myofibroblasts composed with the bone marrow-stroma, which produced significant amounts of human vascular endothelial growth factor A. When the parental CML cells were cultured with myofibroblasts separated from CML cell-engrafted NOD/SCID murine bone marrow, CML cells proliferated significantly. These observations indicate that CML cells make an adequate microenvironment for their own proliferation in vivo.

  14. Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice.

    Science.gov (United States)

    Jiang, Shu-Heng; Li, Jun; Dong, Fang-Yuan; Yang, Jian-Yu; Liu, De-Jun; Yang, Xiao-Mei; Wang, Ya-Hui; Yang, Min-Wei; Fu, Xue-Liang; Zhang, Xiao-Xin; Li, Qing; Pang, Xiu-Feng; Huo, Yan-Miao; Li, Jiao; Zhang, Jun-Feng; Lee, Ho-Young; Lee, Su-Jae; Qin, Wen-Xin; Gu, Jian-Ren; Sun, Yong-Wei; Zhang, Zhi-Gang

    2017-07-01

    Desmoplasia and poor vascularity cause severe metabolic stress in pancreatic ductal adenocarcinomas (PDACs). Serotonin (5-HT) is a neuromodulator with neurotransmitter and neuroendocrine functions that contributes to tumorigenesis. We investigated the role of 5-HT signaling in the growth of pancreatic tumors. We measured the levels of proteins that regulate 5-HT synthesis, packaging, and degradation in pancreata from Kras G12D/+ /Trp53 R172H/+ /Pdx1-Cre (KPC) mice, which develop pancreatic tumors, as well as in PDAC cell lines and a tissue microarray containing 81 human PDAC samples. We also analyzed expression levels of proteins involved in 5-HT synthesis and degradation by immunohistochemical analysis of a tissue microarray containing 311 PDAC specimens, and associated expression levels with patient survival times. 5-HT level in 14 matched PDAC tumor and non-tumor tissues were analyzed by ELISA. PDAC cell lines were incubated with 5-HT and cell survival and apoptosis were measured. We analyzed expression of the 5-HT receptor HTR2B in PDAC cells and effects of receptor agonists and antagonists, as well as HTR2B knockdown with small hairpin RNAs. We determined the effects of 5-HT stimulation on gene expression profiles of BxPC-3 cells. Regulation of glycolysis by 5-HT signaling via HTR2B was assessed by immunofluorescence and immunoprecipitation analyses, as well as by determination of the extracellular acid ratio, glucose consumption, and lactate production. Primary PDACs, with or without exposure to SB204741 (a selective antagonist of HTR2B), were grown as xenograft tumors in mice, and SB204741 was administered to tumor-bearing KPC mice; tumor growth and metabolism were measured by imaging analyses. In immunohistochemical analysis of a tissue microarray of PDAC specimens, increased levels of TPH1 and decreased level of MAOA, which regulate 5-HT synthesis and degradation, correlated with stage and size of PDACs and shorter patient survival time. We found levels

  15. F4/80+ Macrophages Contribute to Clearance of Senescent Cells in the Mouse Postpartum Uterus.

    Science.gov (United States)

    Egashira, Mahiro; Hirota, Yasushi; Shimizu-Hirota, Ryoko; Saito-Fujita, Tomoko; Haraguchi, Hirofumi; Matsumoto, Leona; Matsuo, Mitsunori; Hiraoka, Takehiro; Tanaka, Tomoki; Akaeda, Shun; Takehisa, Chiaki; Saito-Kanatani, Mayuko; Maeda, Kei-Ichiro; Fujii, Tomoyuki; Osuga, Yutaka

    2017-07-01

    Cellular senescence, defined as an irreversible cell cycle arrest, exacerbates the tissue microenvironment. Our previous study demonstrated that mouse uterine senescent cells were physiologically increased according to gestational days and that their abnormal accumulation was linked to the onset of preterm delivery. We hypothesized that there is a mechanism for removal of senescent cells after parturition to maintain uterine function. In the current study, we noted abundant uterine senescent cells and their gradual disappearance in wild-type postpartum mice. F4/80+ macrophages were present specifically around the area rich in senescent cells. Depletion of macrophages in the postpartum mice using anti-F4/80 antibody enlarged the area of senescent cells in the uterus. We also found excessive uterine senescent cells and decreased second pregnancy success rate in a preterm birth model using uterine p53-deleted mice. Furthermore, a decrease in F4/80+ cells and an increase in CD11b+ cells with a senescence-associated inflammatory microenvironment were observed in the p53-deleted uterus, suggesting that uterine p53 deficiency affects distribution of the macrophage subpopulation, interferes with senescence clearance, and promotes senescence-induced inflammation. These findings indicate that the macrophage is a key player in the clearance of uterine senescent cells to maintain postpartum uterine function. Copyright © 2017 Endocrine Society.

  16. Intrinsic Contribution of Perforin to NK-Cell Homeostasis during Mouse Cytomegalovirus Infection

    Directory of Open Access Journals (Sweden)

    Maja eArapovic

    2016-04-01

    Full Text Available In addition to their role as effector cells in virus control, natural killer (NK cells have an immunoregulatory function in shaping the antiviral T-cell response. This function is further pronounced in perforin-deficient mice that show the enhanced NK-cell proliferation and cytokine secretion upon mouse cytomegalovirus (MCMV infection. Here we confirmed that stronger activation and maturation of NK cells in perforin-deficient mice correlates with higher MCMV load. To further characterize the immunoregulatory potential of perforin, we compared the response of NK cells that express or do not express perforin using bone-marrow chimeras. Our results demonstrated that the enhanced proliferation and maturation of NK cells in MCMV-infected bone-marrow chimeras is an intrinsic property of perforin-deficient NK cells. Thus, in addition to confirming that NK-cell proliferation is virus load dependent, our data extend this notion demonstrating that perforin plays an intrinsic role as a feedback mechanism in regulation of NK-cell proliferation during viral infections.

  17. Interaction of Leptospira interrogans with Human Proteolytic Systems Enhances Dissemination through Endothelial Cells and Protease Levels

    Science.gov (United States)

    Vieira, Monica L.; Alvarez-Flores, Miryam P.; Kirchgatter, Karin; Romero, Eliete C.; Alves, Ivy J.; de Morais, Zenaide M.; Vasconcellos, Silvio A.; Chudzinski-Tavassi, Ana M.

    2013-01-01

    We have recently reported the ability of Leptospira to capture plasminogen (PLG) and generate plasmin (PLA) bound on the microbial surface in the presence of exogenous activators. In this work, we examined the effects of leptospiral PLG binding for active penetration through the endothelial cell barrier and activation. The results indicate that leptospires with PLG association or PLA activation have enhanced migration activity through human umbilical vein endothelial cell (HUVEC) monolayers compared with untreated bacteria. Leptospira cells coated with PLG were capable of stimulating the expression of PLG activators by HUVECs. Moreover, leptospires endowed with PLG or PLA promoted transcriptional upregulation matrix metalloprotease 9 (MMP-9). Serum samples from patients with confirmed leptospirosis showed higher levels of PLG activators and total MMP-9 than serum samples from normal (healthy) subjects. The highest level of PLG activators and total MMP-9 was detected with microscopic agglutination test (MAT)-negative serum samples, suggesting that this proteolytic activity stimulation occurs at the early stage of the disease. Furthermore, a gelatin zymography profile obtained for MMPs with serum samples from patients with leptospirosis appears to be specific to leptospiral infection because serum samples from patients with unrelated infectious diseases produced no similar degradation bands. Altogether, the data suggest that the Leptospira-associated PLG or PLA might represent a mechanism that contributes to bacterial penetration of endothelial cells through an activation cascade of events that enhances the proteolytic capability of the organism. To our knowledge, this is the first proteolytic activity associated with leptospiral pathogenesis described to date. PMID:23478319

  18. EX4 stabilizes and activates Nrf2 via PKCδ, contributing to the prevention of oxidative stress-induced pancreatic beta cell damage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi-Hwi; Kim, Eung-Hwi [College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-ku, Incheon (Korea, Republic of); Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Yeonsu-ku, Incheon (Korea, Republic of); Jung, Hye Seung [Department of Internal Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Yang, Dongki [Department of Physiology, Gachon University College of Medicine, Incheon (Korea, Republic of); Park, Eun-Young, E-mail: parkey@mokpo.ac.kr [College of Pharmacy, Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam (Korea, Republic of); Jun, Hee-Sook, E-mail: hsjun@gachon.ac.kr [College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-ku, Incheon (Korea, Republic of); Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Yeonsu-ku, Incheon (Korea, Republic of); Gachon Medical Research Institute, Gil Hospital, Incheon (Korea, Republic of)

    2017-01-15

    Oxidative stress in pancreatic beta cells can inhibit insulin secretion and promote apoptotic cell death. Exendin-4 (EX4), a glucagon-like peptide-1 receptor agonist, can suppress beta cell apoptosis, improve beta cell function and protect against oxidative damage. In this study, we investigated the molecular mechanisms for antioxidative effects of EX4 in pancreatic beta cells. INS-1 cells, a rat insulinoma cell line, were pretreated with EX4 and exposed to palmitate or H{sub 2}O{sub 2}. Reactive oxygen species (ROS) production, and glutathione and insulin secretion were measured. The mRNA and protein expression levels of antioxidant genes were examined. The level of nuclear factor erythroid 2-related factor 2 (Nrf2), its binding to antioxidant response element (ARE), and its ubiquination in the presence of EX4 were determined. The Nrf2 signaling pathway was determined using rottlerin (protein kinase [PK]Cδ inhibitor), H89 (PKA inhibitor) and LY294002 (phosphatidylinositide 3-kinase [PI3K] inhibitor). EX4 treatment decreased ROS production, recovered cellular glutathione levels and insulin secretion in the presence of oxidative stress in INS-1 cells. The expression levels of glutamate-cysteine ligase catalytic subunit and heme oxygenase-1 were increased by EX4 treatment. EX4 promoted Nrf2 translocation, ARE binding activity and enhanced stabilization of Nrf2 by inhibition of ubiquitination. Knockdown of Nrf2 abolished the effect of EX4 on increased insulin secretion. Inhibition of PKCδ attenuated Nrf2 translocation and antioxidative gene expression by EX4 treatment. We suggest that EX4 activates and stabilizes Nrf2 through PKCδ activation, contributing to the increase of antioxidant gene expression and consequently improving beta cell function in the presence of oxidative stress. - Highlights: • EX4 protects against oxidative stress-induced pancreatic beta cell dysfunction. • EX4 increases antioxidant gene expression. • Antioxidative effect of EX4 is

  19. EX4 stabilizes and activates Nrf2 via PKCδ, contributing to the prevention of oxidative stress-induced pancreatic beta cell damage

    International Nuclear Information System (INIS)

    Kim, Mi-Hwi; Kim, Eung-Hwi; Jung, Hye Seung; Yang, Dongki; Park, Eun-Young; Jun, Hee-Sook

    2017-01-01

    Oxidative stress in pancreatic beta cells can inhibit insulin secretion and promote apoptotic cell death. Exendin-4 (EX4), a glucagon-like peptide-1 receptor agonist, can suppress beta cell apoptosis, improve beta cell function and protect against oxidative damage. In this study, we investigated the molecular mechanisms for antioxidative effects of EX4 in pancreatic beta cells. INS-1 cells, a rat insulinoma cell line, were pretreated with EX4 and exposed to palmitate or H 2 O 2 . Reactive oxygen species (ROS) production, and glutathione and insulin secretion were measured. The mRNA and protein expression levels of antioxidant genes were examined. The level of nuclear factor erythroid 2-related factor 2 (Nrf2), its binding to antioxidant response element (ARE), and its ubiquination in the presence of EX4 were determined. The Nrf2 signaling pathway was determined using rottlerin (protein kinase [PK]Cδ inhibitor), H89 (PKA inhibitor) and LY294002 (phosphatidylinositide 3-kinase [PI3K] inhibitor). EX4 treatment decreased ROS production, recovered cellular glutathione levels and insulin secretion in the presence of oxidative stress in INS-1 cells. The expression levels of glutamate-cysteine ligase catalytic subunit and heme oxygenase-1 were increased by EX4 treatment. EX4 promoted Nrf2 translocation, ARE binding activity and enhanced stabilization of Nrf2 by inhibition of ubiquitination. Knockdown of Nrf2 abolished the effect of EX4 on increased insulin secretion. Inhibition of PKCδ attenuated Nrf2 translocation and antioxidative gene expression by EX4 treatment. We suggest that EX4 activates and stabilizes Nrf2 through PKCδ activation, contributing to the increase of antioxidant gene expression and consequently improving beta cell function in the presence of oxidative stress. - Highlights: • EX4 protects against oxidative stress-induced pancreatic beta cell dysfunction. • EX4 increases antioxidant gene expression. • Antioxidative effect of EX4 is mediated by

  20. Targeting poly (ADP-ribose polymerase partially contributes to bufalin-induced cell death in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    He Huang

    Full Text Available Despite recent pharmaceutical advancements in therapeutic drugs, multiple myeloma (MM remains an incurable disease. Recently, ploy(ADP-ribose polymerase 1 (PARP1 has been shown as a potentially promising target for MM therapy. A previous report suggested bufalin, a component of traditional Chinese medicine ("Chan Su", might target PARP1. However, this hypothesis has not been verified. We here showed that bufalin could inhibit PARP1 activity in vitro and reduce DNA-damage-induced poly(ADP-ribosylation in MM cells. Molecular docking analysis revealed that the active site of bufalin interaction is within the catalytic domain of PAPR1. Thus, PARP1 is a putative target of bufalin. Furthermore, we showed, for the first time that the proliferation of MM cell lines (NCI-H929, U266, RPMI8226 and MM.1S and primary CD138(+ MM cells could be inhibited by bufalin, mainly via apoptosis and G2-M phase cell cycle arrest. MM cell apoptosis was confirmed by apoptotic cell morphology, Annexin-V positive cells, and the caspase3 activation. We further evaluated the role of PARP1 in bufalin-induced apoptosis, discovering that PARP1 overexpression partially suppressed bufalin-induced cell death. Moreover, bufalin can act as chemosensitizer to enhance the cell growth-inhibitory effects of topotecan, camptothecin, etoposide and vorinostat in MM cells. Collectively, our data suggest that bufalin is a novel PARP1 inhibitor and a potentially promising therapeutic agent against MM alone or in combination with other drugs.

  1. Daple Coordinates Planar Polarized Microtubule Dynamics in Ependymal Cells and Contributes to Hydrocephalus

    Directory of Open Access Journals (Sweden)

    Maki Takagishi

    2017-07-01

    Full Text Available Motile cilia in ependymal cells, which line the cerebral ventricles, exhibit a coordinated beating motion that drives directional cerebrospinal fluid (CSF flow and guides neuroblast migration. At the apical cortex of these multi-ciliated cells, asymmetric localization of planar cell polarity (PCP proteins is required for the planar polarization of microtubule dynamics, which coordinates cilia orientation. Daple is a disheveled-associating protein that controls the non-canonical Wnt signaling pathway and cell motility. Here, we show that Daple-deficient mice present hydrocephalus and their ependymal cilia lack coordinated orientation. Daple regulates microtubule dynamics at the anterior side of ependymal cells, which in turn orients the cilial basal bodies required for the directional cerebrospinal fluid flow. These results demonstrate an important role for Daple in planar polarity in motile cilia and provide a framework for understanding the mechanisms and functions of planar polarization in the ependymal cells.

  2. The contribution of cell blocks in the diagnosis of mediastinal masses and hilar adenopathy samples from echobronchoscopy.

    Science.gov (United States)

    Lourido-Cebreiro, Tamara; Leiro-Fernández, Virginia; Tardio-Baiges, Antoni; Botana-Rial, Maribel; Núñez-Delgado, Manuel; Álvarez-Martín, M Jesús; Fernández-Villar, Alberto

    2014-07-01

    Cell block material from puncture can be obtained with endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) in many cases. The aim of this study was to analyse the value of additional information from cell blocks obtained with EBUS-TBNA samples from mediastinal and hilar lymph nodes and masses. Review of pathology reports with a specific diagnosis obtained from EBUS-TBNA samples of mediastinal or hilar lesions, prospectively obtained over a two-year period. The generation of cell blocks from cytology needle samples, the contribution to morphological diagnosis, and the possible use of samples for immunohistochemistry were analysed. One hundred and twenty-nine samples corresponding to 110 patients were reviewed. The diagnosis was lung cancer in 81% of cases, extrapulmonary carcinoma in 10%, sarcoidosis in 4%, lymphoma in 2.7%, and tuberculosis in 0.9%. Cell blocks could be obtained in 72% of cases. Immunohistochemistry studies on the cell blocks were significantly easier to perform than on conventional smears (52.6% vs. 14%, P<.0001). In 4cases, the cell block provided an exclusive morphological diagnosis (3sarcoidosis and one metastasis from prostatic carcinoma) and in 3carcinomas, subtype and origin could be identified. Exclusive diagnoses from the cell block were significantly more frequent in benign disease than in malignant disease (25% vs 0.9%, P=.002). Cell blocks were obtained from 72% of EBUS-TBNA diagnostic procedures. The main contributions of cell blocks to pathology examinations were the possibility of carrying out immunohistochemical staining for the better classification of neoplasms, especially extrapulmonary metastatic tumours, and the improved diagnosis of benign lesions. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  3. Less contribution of mast cells to the progression of renal fibrosis in Rat kidneys with chronic renal failure.

    Science.gov (United States)

    Baba, Asuka; Tachi, Masahiro; Ejima, Yutaka; Endo, Yasuhiro; Toyama, Hiroaki; Saito, Kazutomo; Abe, Nozomu; Yamauchi, Masanori; Miura, Chieko; Kazama, Itsuro

    2017-02-01

    Chronic renal failure (CRF) is histopathologically characterized by tubulointerstitial fibrosis in addition to glomerulosclerosis. Although mast cells are known to infiltrate into the kidneys with chronic inflammation, we know little about their contribution to the pathogenesis of renal fibrosis associated with CRF. The aim of this study was to reveal the involvement of mast cells in the progression of renal fibrosis in CRF. Using a rat model with CRF resulting from 5/6 nephrectomy, we examined the histopathological features of the kidneys and the infiltration of mast cells into the renal interstitium. By treating the rats with a potent mast cell stabilizer, tranilast, we also examined the involvement of mast cells in the progression of renal fibrosis associated with CRF. The CRF rat kidneys were characterized by the wide staining of collagen III and increased number of myofibroblasts, indicating the progression of renal fibrosis. Compared to T-lymphocytes or macrophages, the number of tryptase-positive mast cells was much smaller within the fibrotic kidneys and they did not proliferate in situ. The mRNA expression of mast cell-derived fibroblast-activating factors was not increased in the renal cortex isolated from CRF rat kidneys. Treatment with tranilast did not suppress the progression of renal fibrosis, nor did it ameliorate the progression of glomerulosclerosis and the interstitial proliferation of inflammatory leukocytes. This study demonstrated for the first time that mast cells are neither increased nor activated in the fibrotic kidneys of CRF rats. Compared to T-lymphocytes or macrophages that proliferate in situ within the fibrotic kidneys, mast cells were less likely to contribute to the progression of renal fibrosis associated with CRF. © 2016 Asian Pacific Society of Nephrology.

  4. Regulation of the Contribution of Integrin to Cell Attachment on Poly(2-Methoxyethyl Acrylate (PMEA Analogous Polymers for Attachment-Based Cell Enrichment.

    Directory of Open Access Journals (Sweden)

    Takashi Hoshiba

    Full Text Available Cell enrichment is currently in high demand in medical engineering. We have reported that non-blood cells can attach to a blood-compatible poly(2-methoxyethyl acrylate (PMEA substrate through integrin-dependent and integrin-independent mechanisms because the PMEA substrate suppresses protein adsorption. Therefore, we assumed that PMEA analogous polymers can change the contribution of integrin to cell attachment through the regulation of protein adsorption. In the present study, we investigated protein adsorption, cell attachment profiles, and attachment mechanisms on PMEA analogous polymer substrates. Additionally, we demonstrated the possibility of attachment-based cell enrichment on PMEA analogous polymer substrates. HT-1080 and MDA-MB-231 cells started to attach to poly(butyl acrylate (PBA and poly(tetrahydrofurfuryl acrylate (PTHFA, on which proteins could adsorb well, within 1 h. HepG2 cells started to attach after 1 h. HT-1080, MDA-MB-231, and HepG2 cells started to attach within 30 min to PMEA, poly(2-(2-methoxyethoxy ethyl acrylate-co-butyl acrylate (30:70 mol%, PMe2A and poly(2-(2-methoxyethoxy ethoxy ethyl acrylate-co-butyl acrylate (30:70 mol%, PMe3A, which suppress protein adsorption. Moreover, the ratio of attached cells from a cell mixture can be changed on PMEA analogous polymers. These findings suggested that PMEA analogous polymers can be used for attachment-based cell enrichment.

  5. Inverse associations between obesity indicators and thymic T-cell production levels in aging atomic-bomb survivors.

    Directory of Open Access Journals (Sweden)

    Kengo Yoshida

    Full Text Available Reduction of the naive T-cell population represents a deteriorating state in the immune system that occurs with advancing age. In animal model studies, obesity compromises the T-cell immune system as a result of enhanced adipogenesis in primary lymphoid organs and systemic inflammation. In this study, to test the hypothesis that obesity may contribute to the aging of human T-cell immunity, a thousand atomic-bomb survivors were examined for obesity status and ability to produce naive T cells, i.e., T-cell receptor excision circle (TREC numbers in CD4 and CD8 T cells. The number of TRECs showed a strong positive correlation with naive T cell numbers, and lower TREC numbers were associated with higher age. We found that the TREC number was inversely associated with levels of obesity indicators (BMI, hemoglobin A1c and serum CRP levels. Development of type-2 diabetes and fatty liver was also associated with lower TREC numbers. This population study suggests that obesity with enhanced inflammation is involved in aging of the human T-cell immune system. Given the fact that obesity increases the risk of numerous age-related diseases, attenuated immune competence is a possible mechanistic link between obesity and disease development among the elderly.

  6. Inverse associations between obesity indicators and thymic T-cell production levels in aging atomic-bomb survivors.

    Science.gov (United States)

    Yoshida, Kengo; Nakashima, Eiji; Kubo, Yoshiko; Yamaoka, Mika; Kajimura, Junko; Kyoizumi, Seishi; Hayashi, Tomonori; Ohishi, Waka; Kusunoki, Yoichiro

    2014-01-01

    Reduction of the naive T-cell population represents a deteriorating state in the immune system that occurs with advancing age. In animal model studies, obesity compromises the T-cell immune system as a result of enhanced adipogenesis in primary lymphoid organs and systemic inflammation. In this study, to test the hypothesis that obesity may contribute to the aging of human T-cell immunity, a thousand atomic-bomb survivors were examined for obesity status and ability to produce naive T cells, i.e., T-cell receptor excision circle (TREC) numbers in CD4 and CD8 T cells. The number of TRECs showed a strong positive correlation with naive T cell numbers, and lower TREC numbers were associated with higher age. We found that the TREC number was inversely associated with levels of obesity indicators (BMI, hemoglobin A1c) and serum CRP levels. Development of type-2 diabetes and fatty liver was also associated with lower TREC numbers. This population study suggests that obesity with enhanced inflammation is involved in aging of the human T-cell immune system. Given the fact that obesity increases the risk of numerous age-related diseases, attenuated immune competence is a possible mechanistic link between obesity and disease development among the elderly.

  7. Cyclophilins contribute to Stat3 signaling and survival of multiple myeloma cells.

    Science.gov (United States)

    Bauer, K; Kretzschmar, A K; Cvijic, H; Blumert, C; Löffler, D; Brocke-Heidrich, K; Schiene-Fischer, C; Fischer, G; Sinz, A; Clevenger, C V; Horn, F

    2009-08-06

    Signal transducer and activator of transcription 3 (Stat3) is the major mediator of interleukin-6 (IL-6) family cytokines. In addition, Stat3 is known to be involved in the pathophysiology of many malignancies. Here, we show that the cis-trans peptidyl-prolyl isomerase cyclophilin (Cyp) B specifically interacts with Stat3, whereas the highly related CypA does not. CypB knockdown inhibited the IL-6-induced transactivation potential but not the tyrosine phosphorylation of Stat3. Binding of CypB to Stat3 target promoters and alteration of the intranuclear localization of Stat3 on CypB depletion suggested a nuclear function of Stat3/CypB interaction. By contrast, CypA knockdown inhibited Stat3 IL-6-induced tyrosine phosphorylation and nuclear translocation. The Cyp inhibitor cyclosporine A (CsA) caused similar effects. However, Stat1 activation in response to IL-6 or interferon-gamma was not affected by Cyp silencing or CsA treatment. As a result, Cyp knockdown shifted IL-6 signaling to a Stat1-dominated pathway. Furthermore, Cyp depletion or treatment with CsA induced apoptosis in IL-6-dependent multiple myeloma cells, whereas an IL-6-independent line was not affected. Thus, Cyps support the anti-apoptotic action of Stat3. Taken together, CypA and CypB both play pivotal roles, yet at different signaling levels, for Stat3 activation and function. These data also suggest a novel mechanism of CsA action.

  8. The nanostructure of myoendothelial junctions contributes to signal rectification between endothelial and vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Jacobsen, Jens Christian Brings; von Holstein-Rathlou, Niels-Henrik

    2012-01-01

    Micro-anatomical structures in tissues have potential physiological effects. In arteries and arterioles smooth muscle cells and endothelial cells are separated by the internal elastic lamina, but the two cell layers often make contact through micro protrusions called myoendothelial junctions. Cross...... types and the myoendothelial junction. The model is implemented as a 2D axi-symmetrical model and solved using the finite element method. We have simulated diffusion of Ca(2+) and IP(3) between the two cell types and we show that the micro-anatomical structure of the myoendothelial junction in itself...

  9. Transcriptional Repressor HIC1 Contributes to Suppressive Function of Human Induced Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Ubaid Ullah

    2018-02-01

    Full Text Available Regulatory T (Treg cells are critical in regulating the immune response. In vitro induced Treg (iTreg cells have significant potential in clinical medicine. However, applying iTreg cells as therapeutics is complicated by the poor stability of human iTreg cells and their variable suppressive activity. Therefore, it is important to understand the molecular mechanisms of human iTreg cell specification. We identified hypermethylated in cancer 1 (HIC1 as a transcription factor upregulated early during the differentiation of human iTreg cells. Although FOXP3 expression was unaffected, HIC1 deficiency led to a considerable loss of suppression by iTreg cells with a concomitant increase in the expression of effector T cell associated genes. SNPs linked to several immune-mediated disorders were enriched around HIC1 binding sites, and in vitro binding assays indicated that these SNPs may alter the binding of HIC1. Our results suggest that HIC1 is an important contributor to iTreg cell development and function.

  10. CD147-mediated chemotaxis of CD4+CD161+ T cells may contribute to local inflammation in rheumatoid arthritis.

    Science.gov (United States)

    Lv, Minghua; Miao, Jinlin; Zhao, Peng; Luo, Xing; Han, Qing; Wu, Zhenbiao; Zhang, Kui; Zhu, Ping

    2018-01-01

    CD161 is used as a surrogate marker for Th17 cells, which are implicated in the pathogenesis of rheumatoid arthritis (RA). In this study, we evaluated the percentage, clinical significance, and CD98 and CD147 expression of CD4 + CD161 + T cells. The potential role of CD147 and CD98 in cyclophilin A-induced chemotaxis of CD4 + CD161 + T cells was analyzed. Thirty-seven RA patients, 15 paired synovial fluid (SF) of RA, and 22 healthy controls were recruited. The cell populations and surface expression of CD98 and CD147 were analyzed by flow cytometry. Spearman's rank correlation coefficient and multiple linear regression were applied to calculate the correlations. Chemotaxis assay was used to investigate CD4 + CD161 + T cell migration. We found that the percentage of CD4 + CD161 + T cells and their expression of CD147 and CD98 in SF were higher than in the peripheral blood of RA patients. Percentage of SF CD4 + CD161 + T cells was positively correlated with 28-Joint Disease Activity Score (DAS28). CD147 monoclonal antibody (HAb18) attenuated the chemotactic ability of CD4 + CD161 + T cells. An increased CD4 + CD161 + T cell percentage and expression of CD147 and CD98 were shown in RA SF. Percentage of SF CD4 + CD161 + T cells can be used as a predictive marker of disease activity in RA. CD147 block significantly decreased the chemotactic index of CD4 + CD161 + cells induced by cyclophilin A (CypA). These results imply that the accumulation of CD4 + CD161 + T cells in SF and their high expression of CD147 may be associated with CypA-mediated chemotaxis and contribute to local inflammation in RA.

  11. Determination of Electromagnetic Radiation Levels from Cell Phones

    African Journals Online (AJOL)

    DELL

    associated with the technology, as well as enable epidemiologists in .... max,av battery level, signal reception level, and phone ... across the world against the continued adoption of ICNIRP's .... important factor in our safe exploitation of EM.

  12. Single-Cell RNA Sequencing Reveals T Helper Cells Synthesizing Steroids De Novo to Contribute to Immune Homeostasis

    Directory of Open Access Journals (Sweden)

    Bidesh Mahata

    2014-05-01

    Full Text Available T helper 2 (Th2 cells regulate helminth infections, allergic disorders, tumor immunity, and pregnancy by secreting various cytokines. It is likely that there are undiscovered Th2 signaling molecules. Although steroids are known to be immunoregulators, de novo steroid production from immune cells has not been previously characterized. Here, we demonstrate production of the steroid pregnenolone by Th2 cells in vitro and in vivo in a helminth infection model. Single-cell RNA sequencing and quantitative PCR analysis suggest that pregnenolone synthesis in Th2 cells is related to immunosuppression. In support of this, we show that pregnenolone inhibits Th cell proliferation and B cell immunoglobulin class switching. We also show that steroidogenic Th2 cells inhibit Th cell proliferation in a Cyp11a1 enzyme-dependent manner. We propose pregnenolone as a “lymphosteroid,” a steroid produced by lymphocytes. We speculate that this de novo steroid production may be an intrinsic phenomenon of Th2-mediated immune responses to actively restore immune homeostasis.

  13. How the charge-neutrality level of interface states controls energy level alignment in cathode contacts of organic bulk-heterojunction solar cells.

    Science.gov (United States)

    Guerrero, Antonio; Marchesi, Luís F; Boix, Pablo P; Ruiz-Raga, Sonia; Ripolles-Sanchis, Teresa; Garcia-Belmonte, Germà; Bisquert, Juan

    2012-04-24

    Electronic equilibration at the metal-organic interface, leading to equalization of the Fermi levels, is a key process in organic optoelectronic devices. How the energy levels are set across the interface determines carrier extraction at the contact and also limits the achievable open-circuit voltage under illumination. Here, we report an extensive investigation of the cathode energy equilibration of organic bulk-heterojunction solar cells. We show that the potential to balance the mismatch between the cathode metal and the organic layer Fermi levels is divided into two contributions: spatially extended band bending in the organic bulk and voltage drop at the interface dipole layer caused by a net charge transfer. We scan the operation of the cathode under a varied set of conditions, using metals of different work functions in the range of ∼2 eV, different fullerene acceptors, and several cathode interlayers. The measurements allow us to locate the charge-neutrality level within the interface density of sates and calculate the corresponding dipole layer strength. The dipole layer withstands a large part of the total Fermi level mismatch when the polymer:fullerene blend ratio approaches ∼1:1, producing the practical alignment between the metal Fermi level and the charge-neutrality level. Origin of the interface states is linked with fullerene reduced molecules covering the metal contact. The dipole contribution, and consequently the band bending, is highly sensitive to the nature and amount of fullerene molecules forming the interface density of states. Our analysis provides a detailed picture of the evolution of the potentials in the bulk and the interface of the solar cell when forward voltage is applied or when photogeneration takes place.

  14. Giardia lamblia: identification of molecules that contribute to direct mast cell activation.

    Science.gov (United States)

    Muñoz-Cruz, Samira; Gomez-García, Argelia; Matadamas-Martínez, Félix; Alvarado-Torres, Juan A; Meza-Cervantez, Patricia; Arriaga-Pizano, Lourdes; Yépez-Mulia, Lilián

    2018-06-02

    Mast cells play a central role in the early clearance of the intestinal parasite Giardia lamblia. In a previous study, we reported that G. lamblia live trophozoites or trophozoite-derived total soluble extract induced direct activation (IgE-independent) of mast cells and release of IL-6 and TNF-α. To identify the Giardia molecules and the mast cell receptors involved in this activation, trophozoite-derived total soluble proteins separated into three fractions (F1-F3) were evaluated for its ability to activate mast cells in vitro. F2 activated mast cells in a greater extent than F1 and F3. Furthermore, F2 induced the release of IL-6 and TNF-α by mast cells. TLR2 and TLR4 expression increased slightly after mast cell stimulation with either F2 or total soluble extract; however, these receptors were not involved in F2 or total soluble extract-induced proinflammatory cytokine production. Proteins present in F2 as unique and high-intensity bands identified by liquid chromatography coupled with tandem mass spectrometry, include molecules with important biological activities such as enolase and arginine deiminase (ADI). Recombinant ADI and enolase were tested for their ability to activate mast cells, but only ADI induced a significant release of IL-6 and TNF-α. ADI product, citrulline but not ammonium, also induced mast cell release of TNF-α. Interestingly, recombinant ADI still stimulated the secretion of TNF-α by mast cells in a arginine-free medium, although in a lower extend that in the presence of arginine, indicating that either ADI itself can stimulate mast cells or through its metabolic product, citrulline.

  15. Ozone effects on radish (Raphanus sativus L. cv. Cherry Belle): foliar sensitivity as related to metabolite levels and cell architecture

    Energy Technology Data Exchange (ETDEWEB)

    Athanassious, R.

    1980-01-01

    The development of the first four leaves of radish (Raphanus sativus L. cv. Cherry Belle) was followed to determine the relationship between foliar sensitivity to ozone as related to selected soluble metabolites and leaf-cell arrangement. Although relatively high metabolite (protein, sugars, phenols) levels and compact cell arrangement may be advanced as factors contributing to the resistance of young leaves (L/sub 3,4/ of 21-day old plants) these same parameters do not explain the resistance of old leaves (L/sub 1,2/ of 30-day old plants). 16 references, 4 figures, 1 table.

  16. Low-level radiation effects on immune cells

    International Nuclear Information System (INIS)

    Makinodan, T.

    1995-01-01

    The purpose of this study was to characterize the effects of chronic low-dose ionizing radiation (LDR) on murine immune cells. Previously, it had been reported that LDR enhances the proliferative activity of T cells in vitro and delays the growth of transplantable immunogenic tumors in vivo. This suggests that LDR eliminates immune suppressor cells, which downregulates immune response and/or adoptively upregulates the responsiveness of immune effector cells. It had also been reported that human lymphocytes become refractive to high dose radiation-induced chromosomal aberrations by pretreating mitotically active lymphocytes in vitro with very low doses of ionizing radiation, and the adaptive effect can be abrogated by cycloheximide. This suggests that protein synthesis is required for lymphocytes to respond adoptively to LDR

  17. Contribution to Tumor Angiogenesis From Innate Immune Cells Within the Tumor Microenvironment: Implications for Immunotherapy

    Directory of Open Access Journals (Sweden)

    Adriana Albini

    2018-04-01

    Full Text Available The critical role of angiogenesis in promoting tumor growth and metastasis is strongly established. However, tumors show considerable variation in angiogenic characteristics and in their sensitivity to antiangiogenic therapy. Tumor angiogenesis involves not only cancer cells but also various tumor-associated leukocytes (TALs and stromal cells. TALs produce chemokines, cytokines, proteases, structural proteins, and microvescicles. Vascular endothelial growth factor (VEGF and inflammatory chemokines are not only major proangiogenic factors but are also immune modulators, which increase angiogenesis and lead to immune suppression. In our review, we discuss the regulation of angiogenesis by innate immune cells in the tumor microenvironment, specific features, and roles of major players: macrophages, neutrophils, myeloid-derived suppressor and dendritic cells, mast cells, γδT cells, innate lymphoid cells, and natural killer cells. Anti-VEGF or anti-inflammatory drugs could balance an immunosuppressive microenvironment to an immune permissive one. Anti-VEGF as well as anti-inflammatory drugs could therefore represent partners for combinations with immune checkpoint inhibitors, enhancing the effects of immune therapy.

  18. Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss

    DEFF Research Database (Denmark)

    Bellantuono, Ilaria; Aldahmash, Abdullah; Kassem, Moustapha

    2009-01-01

    Marrow stromal cells (MSC) are thought to be stem cells with osteogenic potential and therefore responsible for the repair and maintenance of the skeleton. Age related bone loss is one of the most prevalent diseases in the elder population. It is controversial whether MSC undergo a process of agi...

  19. Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis

    NARCIS (Netherlands)

    Noordenbos, Troy; Yeremenko, Nataliya; Gofita, Ioana; van de Sande, Marleen; Tak, Paul P.; Caňete, Juan D.; Baeten, Dominique

    2012-01-01

    Objective Studies comparing spondylarthritis (SpA) to rheumatoid arthritis (RA) synovitis suggest that innate immune cells may play a predominant role in the pathogenesis of SpA. Recent observations have indicated a marked synovial mast cell infiltration in psoriatic SpA. We therefore undertook the

  20. Resident Arterial Cells and Circulating Bone Marrow-Derived Cells both Contribute to Intimal Hyperplasia in a Rat Allograft Carotid Transplantation Model

    Directory of Open Access Journals (Sweden)

    Yi He

    2017-07-01

    Full Text Available Background/Aims: Neointimal formation following vascular injury remains a major mechanism of restenosis, whereas the precise sources of neointimal cells are still uncertain. We tested the hypothesis that both injured arterial cells and non-arterial cells contribute to intimal hyperplasia. Methods: Following allograft transplantation of the balloon-injured carotid common artery (n = 3-6, the cellular composition of the transplant grafts and the origins of neointimal cells were measured by immunohistochemistry and immunofluorescence staining. Results: Smooth muscle actin (SMA-positive and CD68-positive cells were clearly observed 14 days later in the neointima after allograft transplantation of the balloon-injured carotid common artery, where re-endothelialization was not yet complete. Green fluorescent protein (GFP and wild-type (WT allograft transplantation revealed that the majority of the neointima cells were apparently from the recipient (≈85% versus the donor (≈15%. Both monocyte chemotactic protein-1 (MCP-1/CCR2 and stromal cell-derived factor-1 (SDF-1/CXCR4 signaling were involved in intimal hyperplasia, with bone marrow-derived cells also playing a role. Conclusion: These data support the hypothesis that intimal hyperplasia could develop in our novel rat allograft transplantation model of arterial injury, where neointima is attributable not only to local arterial cells but also non-arterial cells including the bone marrow.

  1. Parvalbumin-expressing ependymal cells in rostral lateral ventricle wall adhesions contribute to aging-related ventricle stenosis in mice.

    Science.gov (United States)

    Filice, Federica; Celio, Marco R; Babalian, Alexandre; Blum, Walter; Szabolcsi, Viktoria

    2017-10-15

    Aging-associated ependymal-cell pathologies can manifest as ventricular gliosis, ventricle enlargement, or ventricle stenosis. Ventricle stenosis and fusion of the lateral ventricle (LV) walls is associated with a massive decline of the proliferative capacities of the stem cell niche in the affected subventricular zone (SVZ) in aging mice. We examined the brains of adult C57BL/6 mice and found that ependymal cells located in the adhesions of the medial and lateral walls of the rostral LVs upregulated parvalbumin (PV) and displayed reactive phenotype, similarly to injury-reactive ependymal cells. However, PV+ ependymal cells in the LV-wall adhesions, unlike injury-reactive ones, did not express glial fibrillary acidic protein. S100B+/PV+ ependymal cells found in younger mice diminished in the LV-wall adhesions throughout aging. We found that periventricular PV-immunofluorescence showed positive correlation to the grade of LV stenosis in nonaged mice (wall adhesions and LV stenosis was significantly lower in mid-aged (>10-month-old) PV-knock out (PV-KO) mice. This suggests an involvement of PV+ ependymal cells in aging-associated ventricle stenosis. Additionally, we observed a time-shift in microglial activation in the LV-wall adhesions between age-grouped PV-KO and wild-type mice, suggesting a delay in microglial activation when PV is absent from ependymal cells. Our findings implicate that compromised ependymal cells of the adhering ependymal layers upregulate PV and display phenotype shift to "reactive" ependymal cells in aging-related ventricle stenosis; moreover, they also contribute to the progression of LV-wall fusion associated with a decline of the affected SVZ-stem cell niche in aged mice. © 2017 Wiley Periodicals, Inc.

  2. Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang-Yuan; Wang, Zhen [Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Li, Bei [Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Zhang, Ying-Jian, E-mail: yjzhang111@aliyun.com [Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Li, Ying-Yi, E-mail: liyingyi@fudan.edu.cn [Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China)

    2016-04-22

    Resistance of cancer cells to chemoradiotherapy is a major clinical problem in pancreatic cancer treatment. Therefore, understanding the molecular basis of cellular resistance and identifying novel targets are essential for improving treatment efficacy for pancreatic cancer patients. Previous studies have demonstrated a significant role for Pim-3 in pancreatic cancer survival against gemcitabine-induced genotoxic stress. Here, we observed that radiation treatment enhanced Pim-3 expression in human pancreatic cancer cells in vitro. Stable overexpression of Pim-3 in pancreatic cancer cells significantly protected cells against radiation treatment by attenuating G2/M phase cell cycle arrest and DNA damage response. Silencing of Pim-3 expression significantly elevated the phosphorylation of histone variant H2AX, a marker of DNA double strand breaks, and decreased the activation of ataxia-telangiectasia-mutated (ATM) kinase, along with its downstream targets, eventually enhancing the radiosensitivity of human pancreatic cancer cells in vitro and in vivo. Hence, we demonstrated a novel function for Pim-3 in human pancreatic cancer cell survival against radiation. Targeting Pim-3 may be a promising way to improve treatment efficacy in combination with radiotherapy in human pancreatic cancer. - Highlights: • This is first study to demonstrate that Pim-3 is endogenously induced by ionizing radiation in pancreatic cancer cells, and Pim-3 overexpression enhanced radioresistance of pancreatic cancer cells both in vitro and in vivo. • This is first study to provide evidence that radioresistance induced by Pim-3 is mainly attributed to Pim-3 induces activation of ATM, which subsequently activates checkpoint 1, leading to amplification of DNA repair through cell cycle arrest and DNA repair pathways. • This is first study to indicate that targeting Pim-3 may be a promising strategy to provide better treatment efficacy in combination with radiotherapy in human pancreatic

  3. Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Chen, Xiang-Yuan; Wang, Zhen; Li, Bei; Zhang, Ying-Jian; Li, Ying-Yi

    2016-01-01

    Resistance of cancer cells to chemoradiotherapy is a major clinical problem in pancreatic cancer treatment. Therefore, understanding the molecular basis of cellular resistance and identifying novel targets are essential for improving treatment efficacy for pancreatic cancer patients. Previous studies have demonstrated a significant role for Pim-3 in pancreatic cancer survival against gemcitabine-induced genotoxic stress. Here, we observed that radiation treatment enhanced Pim-3 expression in human pancreatic cancer cells in vitro. Stable overexpression of Pim-3 in pancreatic cancer cells significantly protected cells against radiation treatment by attenuating G2/M phase cell cycle arrest and DNA damage response. Silencing of Pim-3 expression significantly elevated the phosphorylation of histone variant H2AX, a marker of DNA double strand breaks, and decreased the activation of ataxia-telangiectasia-mutated (ATM) kinase, along with its downstream targets, eventually enhancing the radiosensitivity of human pancreatic cancer cells in vitro and in vivo. Hence, we demonstrated a novel function for Pim-3 in human pancreatic cancer cell survival against radiation. Targeting Pim-3 may be a promising way to improve treatment efficacy in combination with radiotherapy in human pancreatic cancer. - Highlights: • This is first study to demonstrate that Pim-3 is endogenously induced by ionizing radiation in pancreatic cancer cells, and Pim-3 overexpression enhanced radioresistance of pancreatic cancer cells both in vitro and in vivo. • This is first study to provide evidence that radioresistance induced by Pim-3 is mainly attributed to Pim-3 induces activation of ATM, which subsequently activates checkpoint 1, leading to amplification of DNA repair through cell cycle arrest and DNA repair pathways. • This is first study to indicate that targeting Pim-3 may be a promising strategy to provide better treatment efficacy in combination with radiotherapy in human pancreatic

  4. Brain derived neurotrophic factor contributes to the cardiogenic potential of adult resident progenitor cells in failing murine heart.

    Directory of Open Access Journals (Sweden)

    Rasmita Samal

    Full Text Available Resident cardiac progenitor cells show homing properties when injected into the injured but not to the healthy myocardium. The molecular background behind this difference in behavior needs to be studied to elucidate how adult progenitor cells can restore cardiac function of the damaged myocardium. Since the brain derived neurotrophic factor (BDNF moderates cardioprotection in injured hearts, we focused on delineating its regulatory role in the damaged myocardium.Comparative gene expression profiling of freshly isolated undifferentiated Sca-1 progenitor cells derived either from heart failure transgenic αMHC-CyclinT1/Gαq overexpressing mice or wildtype littermates revealed transcriptional variations. Bdnf expression was up regulated 5-fold during heart failure which was verified by qRT-PCR and confirmed at protein level. The migratory capacity of Sca-1 cells from transgenic hearts was improved by 15% in the presence of 25 ng/ml BDNF. Furthermore, BDNF-mediated effects on Sca-1 cells were studied via pulsed Stable Isotope Labeling of Amino acids in Cell Culture (pSILAC proteomics approach. After BDNF treatment significant differences between newly synthesized proteins in Sca-1 cells from control and transgenic hearts were observed for CDK1, SRRT, HDGF, and MAP2K3 which are known to regulate cell cycle, survival and differentiation. Moreover BDNF repressed the proliferation of Sca-1 cells from transgenic hearts.Comparative profiling of resident Sca-1 cells revealed elevated BDNF levels in the failing heart. Exogenous BDNF (i stimulated migration, which might improve the homing ability of Sca-1 cells derived from the failing heart and (ii repressed the cell cycle progression suggesting its potency to ameliorate heart failure.

  5. Differing levels of excision repair in human fetal dermis and brain cells

    International Nuclear Information System (INIS)

    Gibson, R.E.; D'Ambrosio, S.M.; Ohio State Univ., Columbus

    1982-01-01

    The levels of DNA excision repair, as measured by unscheduled DNA synthesis (UDS) and the UV-endonuclease sensitive site assay, were compared in cells derived from human fetal brain and dermal tissues. The level of UDS induced following ultraviolet (UV) irradiation was found to be lower (approx. 60%) in the fetal brain cells than in fetal dermal cells. It was determined, using the UV-endonuclease sensitive site assay to confirm the UDS observation, that 50% of the dimers induced by UV in fetal dermal cells were repaired in 8 h. while only 15% were removed in the fetal brain cells during the same period of time. Even after 24 h. only 44% of the dimers induced by UV in the fetal brain cells were repaired, while 65% were removed in the dermal cells. These data suggest that cultured human fetal brain cells exhibit lower levels of excision repair compared to cultured human fetal dermal cells. (author)

  6. Contributions of Cell Metabolism and H+ Diffusion to the Acidic pH of Tumors

    Directory of Open Access Journals (Sweden)

    Paul A. Schornack

    2003-03-01

    Full Text Available The tumor microenvironment is hypoxic and acidic. These conditions have a significant impact on tumor progression and response to therapies. There is strong evidence that tumor hypoxia results from inefficient perfusion due to a chaotic vasculature. Consequently, some tumor regions are well oxygenated and others are hypoxic. It is commonly believed that hypoxic regions are acidic due to a stimulation of glycolysis through hypoxia, yet this is not yet demonstrated. The current study investigates the causes of tumor acidity by determining acid production rates and the mechanism of diffusion for H+ equivalents through model systems. Two breast cancer cell lines were investigated with divergent metabolic profiles: nonmetastatic MCF-7/s and highly metastatic MDA-mb-435 cells. Glycolysis and acid production are inhibited by oxygen in MCF-7/s cells, but not in MDA-mb-435 cells. Tumors of MDAmb-435 cells are significantly more acidic than are tumors of MCF-7/s cells, suggesting that tumor acidity is primarily caused by endogenous metabolism, not the lack of oxygen. Metabolically produced protons are shown to diffuse in association with mobile buffers, in concordance with previous studies. The metabolic and diffusion data were analyzed using a reaction-diffusion model to demonstrate that the consequent pH profiles conform well to measured pH values for tumors of these two cell lines.

  7. CD44+CD24+ subset of PANC-1 cells exhibits radiation resistance via decreased levels of reactive oxygen species.

    Science.gov (United States)

    Wang, Lei; Li, Pengping; Hu, Wei; Xia, Youyou; Hu, Chenxi; Liu, Liang; Jiang, Xiaodong

    2017-08-01

    Emerging evidence has suggested that pancreatic adenocarcinoma is sustained by pancreatic cancer stem cells. The present study aimed to investigate the expression patterns of the pancreatic cancer stem cell surface markers cluster of differentiation CD44 and CD24 in a pancreatic adenocarcinoma cell line, and to investigate the possible mechanisms for their radiation resistance. Flow cytometry was used to analyze the expression patterns of CD44 and CD24 in the pancreatic adenocarcinoma PANC-1 cell line. In addition, a multi-target click model was used to fit cell survival curves and determine the sensitizer enhancement ratio. The apoptosis and cycle distribution of the four cell subsets was determined using flow cytometry, and the level of reactive oxygen species (ROS) was determined using the 2',7'-dichlorofluorescin diacetate probe. The present results identified that the ratios of CD44 + and CD24 + in the sorted PANC-1 cell line were 92.0 and 4.7%, respectively. Prior to radiation, no statistically significant differences were observed among the four groups. Following treatment with 6 MV of X-rays, the rate of apoptosis was decreased in the CD44 + CD24 + group compared with other subsets. The percentage of G0/G1 cells was highest in the CD44 + CD24 + group compared with the three other groups, which exhibited increased radiosensitivity. In addition, the level of ROS in the CD44 + CD24 + group was reduced compared with the other groups. In summary, the results of the present study indicated that CD44 + CD24 + exhibited stem cell properties. The lower level of ROS and apoptosis in CD44 + CD24 + cells may contribute to their resistance to radiation in pancreatic adenocarcinoma.

  8. Distinct gene expression signatures in human embryonic stem cells differentiated towards definitive endoderm at single-cell level

    DEFF Research Database (Denmark)

    Norrman, Karin; Strömbeck, Anna; Semb, Henrik

    2013-01-01

    for the three activin A based protocols applied. Our data provide novel insights in DE gene expression at the cellular level of in vitro differentiated human embryonic stem cells, and illustrate the power of using single-cell gene expression profiling to study differentiation heterogeneity and to characterize...... of anterior definitive endoderm (DE). Here, we differentiated human embryonic stem cells towards DE using three different activin A based treatments. Differentiation efficiencies were evaluated by gene expression profiling over time at cell population level. A panel of key markers was used to study DE...... formation. Final DE differentiation was also analyzed with immunocytochemistry and single-cell gene expression profiling. We found that cells treated with activin A in combination with sodium butyrate and B27 serum-free supplement medium generated the most mature DE cells. Cell population studies were...

  9. The apoptosis linked gene ALG-2 is dysregulated in tumors of various origin and contributes to cancer cell viability

    DEFF Research Database (Denmark)

    la Cour, Jonas; Høj, Berit Rahbek; Mollerup, Jens

    2008-01-01

    microarrays we analysed the expression of ALG-2 in 7371 tumor tissue samples of various origin as well as in 749 normal tissue samples. Most notably, ALG-2 was upregulated in mesenchymal tumors. No correlation was found between ALG-2 staining intensity and survival of patients with lung, breast or colon...... cancer. siRNA mediated ALG-2 downregulation led to a significant reduction in viability of HeLa cells indicating that ALG-2 may contribute to tumor development and expansion....

  10. Bone marrow-derived osteoblast progenitor cells in circulating blood contribute to ectopic bone formation in mice

    International Nuclear Information System (INIS)

    Otsuru, Satoru; Tamai, Katsuto; Yamazaki, Takehiko; Yoshikawa, Hideki; Kaneda, Yasufumi

    2007-01-01

    Recent studies have suggested the existence of osteoblastic cells in the circulation, but the origin and role of these cells in vivo are not clear. Here, we examined how these cells contribute to osteogenesis in a bone morphogenetic protein (BMP)-induced model of ectopic bone formation. Following lethal dose-irradiation and subsequent green fluorescent protein-transgenic bone marrow cell-transplantation (GFP-BMT) in mice, a BMP-2-containing collagen pellet was implanted into muscle. Three weeks later, a significant number of GFP-positive osteoblastic cells were present in the newly generated ectopic bone. Moreover, peripheral blood mononuclear cells (PBMNCs) from the BMP-2-implanted mouse were then shown to include osteoblast progenitor cells (OPCs) in culture. Passive transfer of the PBMNCs isolated from the BMP-2-implanted GFP-mouse to the BMP-2-implanted nude mouse led to GFP-positive osteoblast accumulation in the ectopic bone. These data provide new insight into the mechanism of ectopic bone formation involving bone marrow-derived OPCs in circulating blood

  11. Changes in human dendritic cell number and function in severe obesity may contribute to increased susceptibility to viral infection.

    LENUS (Irish Health Repository)

    O'Shea, D

    2013-02-26

    Dendritic cells (DCs) are key immune sentinels linking the innate and adaptive immune systems. DCs recognise danger signals and initiate T-cell tolerance, memory and polarisation. They are critical cells in responding to a viral illness. Obese individuals have been shown to have an impaired response to vaccinations against virally mediated conditions and to have an increased susceptibility to multi-organ failure in response to viral illness. We investigated if DCs are altered in an obese cohort (mean body mass index 51.7±7.3 kg m(-2)), ultimately resulting in differential T-cell responses. Circulating DCs were found to be significantly decreased in the obese compared with the lean cohort (0.82% vs 2.53%). Following Toll-like receptor stimulation, compared with lean controls, DCs generated from the obese cohort upregulated significantly less CD83 (40% vs 17% mean fluorescence intensity), a molecule implicated in the elicitation of T-cell responses, particularly viral responses. Obese DCs produced twofold more of the immunosuppressive cytokine interleukin (IL)-10 than lean controls, and in turn stimulated fourfold more IL-4-production from allogenic naive T cells. We conclude that obesity negatively impacts the ability of DCs to mature and elicit appropriate T-cell responses to a general stimulus. This may contribute to the increased susceptibility to viral infection observed in severe obesity.International Journal of Obesity advance online publication, 26 February 2013; doi:10.1038\\/ijo.2013.16.

  12. The contribution of human/non-human animal chimeras to stem cell research

    Directory of Open Access Journals (Sweden)

    Sonya Levine

    2017-10-01

    Full Text Available Chimeric animals are made up of cells from two separate zygotes. Human/non-human animal chimeras have been used for a number of research purposes, including human disease modeling. Pluripotent stem cell (PSC research has relied upon the chimera approach to examine the developmental potential of stem cells, to determine the efficacy of cell replacement therapies, and to establish a means of producing human organs. Based on ethical issues, this work has faced pushback from various sources including funding agencies. We discuss here the essential role these studies have played, from gaining a better understanding of human biology to providing a stepping stone to human disease treatments. We also consider the major ethical issues, as well as the current status of support for this work in the United States.

  13. The contribution of human/non-human animal chimeras to stem cell research.

    Science.gov (United States)

    Levine, Sonya; Grabel, Laura

    2017-10-01

    Chimeric animals are made up of cells from two separate zygotes. Human/non-human animal chimeras have been used for a number of research purposes, including human disease modeling. Pluripotent stem cell (PSC) research has relied upon the chimera approach to examine the developmental potential of stem cells, to determine the efficacy of cell replacement therapies, and to establish a means of producing human organs. Based on ethical issues, this work has faced pushback from various sources including funding agencies. We discuss here the essential role these studies have played, from gaining a better understanding of human biology to providing a stepping stone to human disease treatments. We also consider the major ethical issues, as well as the current status of support for this work in the United States. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. EMMPRIN contributes to the in vitro invasion of human salivary adenoid cystic carcinoma cells

    Science.gov (United States)

    YANG, XINJIE; ZHANG, PU; MA, QIN; KONG, LIANG; LI, YUAN; LIU, BAOLIN; LEI, DELIN

    2012-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is a transmembrane glycoprotein that is involved in tumor invasion by stimulating matrix metalloproteinase (MMP) expression. Our previous immunohistochemical study found that the expression of EMMPRIN in salivary adenoid cystic carcinoma (SACC) was positively correlated with tumor perineural and perivascular invasion. The present study was designed to further investigate the role of EMMPRIN in the invasion of SACC. Western blot results showed that EMMPRIN was upregulated in the highly metastatic SACC cell line SACC-LM, compared to SACC-83, a SACC cell line with low metastatic ability. Blocking of EMMPRIN by its antibody significantly decreased the adhesion, secretion of MMP-2 and MMP-9, and invasion activity of SACC-LM cells in vitro (PEMMPRIN may play an important role in the invasion of SACC by stimulating the expression of MMP-2 and MMP-9 in tumor and stromal cells. PMID:22200897

  15. Voltage Losses in Organic Solar Cells: Understanding the Contributions of Intramolecular Vibrations to Nonradiative Recombinations

    KAUST Repository

    Chen, Xiankai; Bredas, Jean-Luc

    2017-01-01

    The large voltage losses usually encountered in organic solar cells significantly limit the power conversion efficiencies (PCEs) of these devices, with the result that the current highest PCE values in single-junction organic photovoltaic remain

  16. CD4+ Foxp3+ T-cells contribute to myocardial ischemia-reperfusion injury.

    Science.gov (United States)

    Mathes, Denise; Weirather, Johannes; Nordbeck, Peter; Arias-Loza, Anahi-Paula; Burkard, Matthias; Pachel, Christina; Kerkau, Thomas; Beyersdorf, Niklas; Frantz, Stefan; Hofmann, Ulrich

    2016-12-01

    The present study analyzed the effect of CD4 + Forkhead box protein 3 negative (Foxp3 - ) T-cells and Foxp3 + CD4 + T-cells on infarct size in a mouse myocardial ischemia-reperfusion model. We examined the infarct size as a fraction of the area-at-risk as primary study endpoint in mice after 30minutes of coronary ligation followed by 24hours of reperfusion. CD4 + T-cell deficient MHC-II KO mice showed smaller histologically determined infarct size (34.5±4.7% in MHCII KO versus 59.4±4.9% in wildtype (WT)) and better preserved ejection fraction determined by magnetic resonance tomography (56.9±2.8% in MHC II KO versus 39.0±4.2% in WT). MHC-II KO mice also displayed better microvascular perfusion than WT mice after 24hours of reperfusion. Also CD4 + T-cell sufficient OT-II mice, which express an in this context irrelevant T-cell receptor, revealed smaller infarct sizes compared to WT mice. However, MHC-II blocking anti-I-A/I-E antibody treatment was not able to reduce infarct size indicating that autoantigen recognition is not required for the activation of CD4 + T-cells during reperfusion. Flow-cytometric analysis also did not detect CD4 + T-cell activation in heart draining lymph nodes in response to 24hours of ischemia-reperfusion. Adoptive transfer of CD4 + T-cells in CD4 KO mice increased the infarct size only when including the Foxp3 + CD25 + subset. Depletion of CD4 + Foxp3 + T-cells in DEREG mice enabling specific conditional ablation of this subset by treatment with diphtheria toxin attenuated infarct size as compared to diphtheria toxin treated WT mice. CD4 + Foxp3 + T-cells enhance myocardial ischemia-reperfusion injury. CD4 + T-cells exert injurious effects without the need for prior activation by MHC-II restricted autoantigen recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. STAT3/5-dependent IL9 overexpression contributes to neoplastic cell survival in mycosis fungoides

    DEFF Research Database (Denmark)

    Vieyra-Garcia, Pablo A.; Wei, Tianling; Naym, David Gram

    2016-01-01

    preparations. To explore the mechanism of IL9 secretion, we knocked down STAT3/5 and IRF4 by siRNA transfection in CTCL cell lines receiving psoralen+UVA (PUVA) ± anti-IL9 antibody. To further examine the role of IL9 in tumor development, the EL-4 T-cell lymphoma model was used in C57BL/6 mice.  Results...

  18. The contribution of spinal glial cells to chronic pain behaviour in the monosodium iodoacetate model of osteoarthritic pain

    Directory of Open Access Journals (Sweden)

    Sagar Devi

    2011-11-01

    Full Text Available Abstract Background Clinical studies of osteoarthritis (OA suggest central sensitization may contribute to the chronic pain experienced. This preclinical study used the monosodium iodoacetate (MIA model of OA joint pain to investigate the potential contribution of spinal sensitization, in particular spinal glial cell activation, to pain behaviour in this model. Experimental OA was induced in the rat by the intra-articular injection of MIA and pain behaviour (change in weight bearing and distal allodynia was assessed. Spinal cord microglia (Iba1 staining and astrocyte (GFAP immunofluorescence activation were measured at 7, 14 and 28 days post MIA-treatment. The effects of two known inhibitors of glial activation, nimesulide and minocycline, on pain behaviour and activation of microglia and astrocytes were assessed. Results Seven days following intra-articular injection of MIA, microglia in the ipsilateral spinal cord were activated (p Conclusions Here we provide evidence for a contribution of spinal glial cells to pain behaviour, in particular distal allodynia, in this model of osteoarthritic pain. Our data suggest there is a potential role of glial cells in the central sensitization associated with OA, which may provide a novel analgesic target for the treatment of OA pain.

  19. Hydrogen sulfide (H2S)/cystathionine γ-lyase (CSE) pathway contributes to the proliferation of hepatoma cells

    International Nuclear Information System (INIS)

    Pan, Yan; Ye, Shuang; Yuan, Dexiao; Zhang, Jianghong; Bai, Yang; Shao, Chunlin

    2014-01-01

    Highlights: • Inhibition of H 2 S/CSE pathway strongly stimulates cellular apoptosis. • Inhibition of H 2 S/CSE pathway suppresses cell growth by blocking EGFR pathway. • H 2 S/CSE pathway is critical for maintaining the proliferation of hepatoma cells. - Abstract: Hydrogen sulfide (H 2 S)/cystathionine γ-lyase (CSE) pathway has been demonstrated to play vital roles in physiology and pathophysiology. However, its role in tumor cell proliferation remains largely unclear. Here we found that CSE over-expressed in hepatoma HepG2 and PLC/PRF/5 cells. Inhibition of endogenous H 2 S/CSE pathway drastically decreased the proliferation of HepG2 and PLC/PRF/5 cells, and it also enhanced ROS production and mitochondrial disruption, pronounced DNA damage and increased apoptosis. Moreover, this increase of apoptosis was associated with the activation of p53 and p21 accompanied by a decreased ratio of Bcl-2/Bax and up-regulation of phosphorylated c-Jun N-terminal kinase (JNK) and caspase-3 activity. In addition, the negative regulation of cell proliferation by inhibition of H 2 S/CSE system correlated with the blockage of cell mitogenic and survival signal transduction of epidermal growth factor receptor (EGFR) via down-regulating the extracellular-signal-regulated kinase 1/2 (ERK1/2) activation. These results demonstrate that H 2 S/CSE and its downstream pathway contribute to the proliferation of hepatoma cells, and inhibition of this pathway strongly suppress the excessive growth of hepatoma cells by stimulating mitochondrial apoptosis and suppressing cell growth signal transduction

  20. Different roles of prepubertal and postpubertal germ cells and Sertoli cells in the regulation of serum inhibin B levels

    DEFF Research Database (Denmark)

    Andersson, A M; Müller, J; Skakkebaek, N E

    1998-01-01

    testis, intense immunostaining for the betaB-subunit was evident in germ cells from the pachytene spermatocyte to early spermatid stages and to a lesser degree in Leydig cells, but not in Sertoli cells or other stages of germ cells. Thus, surprisingly, in adult men the two subunits constituting inhibin B......-subunit. The correlation in adult men between serum inhibin B levels and spermatogenesis may be due to the fact that inhibin B in adult men is possibly a joint product of Sertoli cells and germ cells, including the stages from pachytene spermatocytes to early spermatids....

  1. Tissue factor expression by myeloid cells contributes to protective immune response against Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Venkatasubramanian, Sambasivan; Tripathi, Deepak; Tucker, Torry; Paidipally, Padmaja; Cheekatla, Satyanarayana; Welch, Elwyn; Raghunath, Anjana; Jeffers, Ann; Tvinnereim, Amy R; Schechter, Melissa E; Andrade, Bruno B; Mackman, Nizel; Idell, Steven; Vankayalapati, Ramakrishna

    2016-02-01

    Tissue factor (TF) is a transmembrane glycoprotein that plays an essential role in hemostasis by activating coagulation. TF is also expressed by monocytes/macrophages as part of the innate immune response to infections. In the current study, we determined the role of TF expressed by myeloid cells during Mycobacterium tuberculosis (M. tb) infection by using mice lacking the TF gene in myeloid cells (TF(Δ) ) and human monocyte derived macrophages (MDMs). We found that during M. tb infection, a deficiency of TF in myeloid cells was associated with reduced inducible nitric oxide synthase (iNOS) expression, enhanced arginase 1 (Arg1) expression, enhanced IL-10 production and reduced apoptosis in infected macrophages, which augmented M. tb growth. Our results demonstrate that a deficiency of TF in myeloid cells promotes M2-like phenotype in M .tb infected macrophages. A deficiency in TF expression by myeloid cells was also associated with reduced fibrin deposition and increased matrix metalloproteases (MMP)-2 and MMP-9 mediated inflammation in M. tb infected lungs. Our studies demonstrate that TF expressed by myeloid cells has newly recognized abilities to polarize macrophages and to regulate M. tb growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. FOXO3-mediated up-regulation of Bim contributes to rhein-induced cancer cell apoptosis.

    Science.gov (United States)

    Wang, Jiao; Liu, Shu; Yin, Yancun; Li, Mingjin; Wang, Bo; Yang, Li; Jiang, Yangfu

    2015-03-01

    The anthraquinone compound rhein is a natural agent in the traditional Chinese medicine rhubarb. Preclinical studies demonstrate that rhein has anticancer activity. Treatment of a variety of cancer cells with rhein may induce apoptosis. Here, we report that rhein induces atypical unfolded protein response in breast cancer MCF-7 cells and hepatoma HepG2 cells. Rhein induces CHOP expression, eIF2α phosphorylation and caspase cleavage, while it does not induce glucose-regulated protein 78 (GRP78) expression in both MCF-7 and HepG2 cells. Meanwhile, rhein inhibits thapsigargin-induced GRP78 expression and X box-binding protein 1 splicing. In addition, rhein inhibits Akt phosphorylation and stimulates FOXO transactivation activity. Rhein induces Bim expression in MCF-7 and HepG2 cells, which can be abrogated by FOXO3a knockdown. Knockdown of FOXO3a or Bim abrogates rhein-induced caspase cleavage and apoptosis. The chemical chaperone 4-phenylbutyrate acid antagonizes the induction of FOXO activation, Bim expression and caspase cleavage by rhein, indicating that protein misfolding may be involved in triggering these deleterious effects. We conclude that FOXO3a-mediated up-regulation of Bim is a key mechanism underlying rhein-induced cancer cells apoptosis.

  3. p53 Activation following Rift Valley fever virus infection contributes to cell death and viral production.

    Directory of Open Access Journals (Sweden)

    Dana Austin

    Full Text Available Rift Valley fever virus (RVFV is an emerging viral zoonosis that is responsible for devastating outbreaks among livestock and is capable of causing potentially fatal disease in humans. Studies have shown that upon infection, certain viruses have the capability of utilizing particular cellular signaling pathways to propagate viral infection. Activation of p53 is important for the DNA damage signaling cascade, initiation of apoptosis, cell cycle arrest and transcriptional regulation of multiple genes. The current study focuses on the role of p53 signaling in RVFV infection and viral replication. These results show an up-regulation of p53 phosphorylation at several serine sites after RVFV MP-12 infection that is highly dependent on the viral protein NSs. qRT-PCR data showed a transcriptional up-regulation of several p53 targeted genes involved in cell cycle and apoptosis regulation following RVFV infection. Cell viability assays demonstrate that loss of p53 results in less RVFV induced cell death. Furthermore, decreased viral titers in p53 null cells indicate that RVFV utilizes p53 to enhance viral production. Collectively, these experiments indicate that the p53 signaling pathway is utilized during RVFV infection to induce cell death and increase viral production.

  4. Periodontal disease level-butyric acid putatively contributes to the ageing blood: A proposed link between periodontal diseases and the ageing process.

    Science.gov (United States)

    Cueno, Marni E; Seki, Keisuke; Ochiai, Kuniyasu; Imai, Kenichi

    2017-03-01

    Periodontal diseases are partly attributable to periodontopathic bacteria found in the host, whereas, butyric acid (BA) is a common secondary metabolite produced by periodontopathic bacterial pathogens. BA has been linked to oxidative stress induction while oxidative stress has long been associated with the ageing process. However, the possible link between BA-induced oxidative stress and the ageing process has never been elucidated. Here, we attempted to show the possible role of periodontal diseaselevel-BA (PDL-BA) in influencing the rat blood ageing process. We injected PDL-BA into the young rat gingiva and, after 24h, heart blood extraction was performed. Blood obtained from PDL-BA-treated young rats was compared to untreated young and middle-aged rats. We found that cytosolic, but not mitochondrial, heme was affected 24h post-injection. In addition, we observed that PDL-BA treatment altered blood NOX activation, NADPH-related oxidative stress components (H 2 O 2 and GR), calcium homeostasis, cell death signals (CASP3 and CASP1), and age-related markers (SIRT1 and mTOR) in young rats, with some components more closely mimicking levels found in middle-aged rats. In this regard, we propose that PDL-BA may play a role in contributing to the rat blood ageing process. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Relative contribution of "determinant selection" and "holes in the T-cell repertoire" to T-cell responses

    DEFF Research Database (Denmark)

    Schaeffer, E B; Sette, A; Johnson, D L

    1989-01-01

    -cell responses. Ia binding and Ia-restricted T-cell immunogenicity could be determined for a total of 54 peptide-MHC combinations. Only 30% of the 54 instances examined involved detectable Ia binding, but they represented almost all (12 of 13) of the immune responses found. However, binding to Ia......Using BALB/c and CBA/J mice, the I-region associated (Ia) binding capacity and T-cell immunogenicity of a panel of 14 overlapping peptides that span the entire sequence of the protein staphylococcal nuclease (Nase) was examined to evaluate major histocompatibility gene complex (MHC) control of T...... was not sufficient to ensure T-cell immunogenicity, since only 70% of the binding events were productive--i.e., were associated with an immune response. Thus, Ia molecules have the expected characteristics of a highly permissive capacity for antigen interaction that allows them to function as restriction elements...

  6. Antibacterial plasma at safe levels for skin cells

    NARCIS (Netherlands)

    Boekema, B.K.H.L.; Hofmann, S.; van Ham, B.T.J.; Bruggeman, P.J.; Middelkoop, E.

    2013-01-01

    Plasmas produce various reactive species, which are known to be very effective in killing bacteria. Plasma conditions, at which efficient bacterial inactivation is observed, are often not compatible with leaving human cells unharmed. The purpose of this study was to determine plasma settings for

  7. Does Ploidy Level Directly Control Cell Size? Counterevidence from Arabidopsis Genetics

    OpenAIRE

    Tsukaya, Hirokazu

    2013-01-01

    Ploidy level affects cell size in many organisms, and ploidy-dependent cell enlargement has been used to breed many useful organisms. However, how polyploidy affects cell size remains unknown. Previous studies have explored changes in transcriptome data caused by polyploidy, but have not been successful. The most naïve theory explaining ploidy-dependent cell enlargement is that increases in gene copy number increase the amount of protein, which in turn increases the cell volume. This hypothes...

  8. Comment on ''Reassessment of space-change and central-cell scattering contributions to GaAs electron mobility''

    Science.gov (United States)

    Stringfellow, G. B.

    1982-07-01

    Walukiewicz et al.1 have recently stated that previously reported contributions to the electron mobility of GaAs from space-charge and/or central-cell scattering are in fact insignificant, and that reports of a T-1/2 term in the mobility2,3 are artifacts due to the assumption of Mathiessen's rule. This conclusion is an overstatement of their results and in fact demonstrably incorrect. First, an analysis of the data reported by Stringfellow2 and Stringfellow and Kuenzel3 as well as others has already been performed by Chattopadhyay et al.4 without assuming Mathiessen's rule. Their conclusion is that central-cell scattering is indeed significant. Second, the particular data analyzed by Walukiewicz et al. are in fact acknowledged in Ref. 2 to have very little T-1/2 scattering. The magnitude of the scattering cross section for T-1/2 scattering, SCA, for other samples is more than an order of magnitude larger, too large to be ascribed to errors inherent in using Mathiessen's rule. Experimental data convincingly demonstrate this. The mobility versus temperature curves are lower, especially at higher temperatures, for C as opposed to Zn- or Ge-doped samples where all have the same values of ND+NA (see Fig. 2 of Ref. 3). In addition, recently published data5 for MBE GaAs grown with different C doping levels show that for constant ND+NA, SCA is three times larger for the more highly C doped samples. This could not be due to errors inherent in the use of Mathiessen's rule. For these samples C clearly introduces an increase in the T-1/2 scattering which is not observed for other acceptors. ufc15xr 1W. Walukiewicz, J. Lagowski, and H. C. Gatos, J. Appl. Phys. 52, 5853 (1981). 2G. B. Stringfellow, J. Appl. Phys. 50, 4178 (1979). 3G. B. Stringfellow and H. Kuenzel, J. Appl. Phys. 51, 3254 (1980). 4D. Chattopadhyay, H. J. Queisser, and G. B. Stringfellow, J. Phys. Soc. Jpn. 49, Suppl. A, 293 (1980). 5G. B. Stringfellow, R. Stall, and W. Koschel, Appl. Phys. Lett. 38, 156 (1981

  9. Cell wall-anchored nuclease of Streptococcus sanguinis contributes to escape from neutrophil extracellular trap-mediated bacteriocidal activity.

    Directory of Open Access Journals (Sweden)

    Chisato Morita

    Full Text Available Streptococcus sanguinis, a member of the commensal mitis group of streptococci, is a primary colonizer of the tooth surface, and has been implicated in infectious complications including bacteremia and infective endocarditis. During disease progression, S. sanguinis may utilize various cell surface molecules to evade the host immune system to survive in blood. In the present study, we discovered a novel cell surface nuclease with a cell-wall anchor domain, termed SWAN (streptococcal wall-anchored nuclease, and investigated its contribution to bacterial resistance against the bacteriocidal activity of neutrophil extracellular traps (NETs. Recombinant SWAN protein (rSWAN digested multiple forms of DNA including NET DNA and human RNA, which required both Mg(2+ and Ca(2+ for optimum activity. Furthermore, DNase activity of S. sanguinis was detected around growing colonies on agar plates containing DNA. In-frame deletion of the swan gene mostly reduced that activity. These findings indicated that SWAN is a major nuclease displayed on the surface, which was further confirmed by immuno-detection of SWAN in the cell wall fraction. The sensitivity of S. sanguinis to NET killing was reduced by swan gene deletion. Moreover, heterologous expression of the swan gene rendered a Lactococcus lactis strain more resistant to NET killing. Our results suggest that the SWAN nuclease on the bacterial surface contributes to survival in the potential situation of S. sanguinis encountering NETs during the course of disease progression.

  10. Cell wall-anchored nuclease of Streptococcus sanguinis contributes to escape from neutrophil extracellular trap-mediated bacteriocidal activity.

    Science.gov (United States)

    Morita, Chisato; Sumioka, Ryuichi; Nakata, Masanobu; Okahashi, Nobuo; Wada, Satoshi; Yamashiro, Takashi; Hayashi, Mikako; Hamada, Shigeyuki; Sumitomo, Tomoko; Kawabata, Shigetada

    2014-01-01

    Streptococcus sanguinis, a member of the commensal mitis group of streptococci, is a primary colonizer of the tooth surface, and has been implicated in infectious complications including bacteremia and infective endocarditis. During disease progression, S. sanguinis may utilize various cell surface molecules to evade the host immune system to survive in blood. In the present study, we discovered a novel cell surface nuclease with a cell-wall anchor domain, termed SWAN (streptococcal wall-anchored nuclease), and investigated its contribution to bacterial resistance against the bacteriocidal activity of neutrophil extracellular traps (NETs). Recombinant SWAN protein (rSWAN) digested multiple forms of DNA including NET DNA and human RNA, which required both Mg(2+) and Ca(2+) for optimum activity. Furthermore, DNase activity of S. sanguinis was detected around growing colonies on agar plates containing DNA. In-frame deletion of the swan gene mostly reduced that activity. These findings indicated that SWAN is a major nuclease displayed on the surface, which was further confirmed by immuno-detection of SWAN in the cell wall fraction. The sensitivity of S. sanguinis to NET killing was reduced by swan gene deletion. Moreover, heterologous expression of the swan gene rendered a Lactococcus lactis strain more resistant to NET killing. Our results suggest that the SWAN nuclease on the bacterial surface contributes to survival in the potential situation of S. sanguinis encountering NETs during the course of disease progression.

  11. ROCK-1 mediates diabetes-induced retinal pigment epithelial and endothelial cell blebbing: Contribution to diabetic retinopathy.

    Science.gov (United States)

    Rothschild, Pierre-Raphaël; Salah, Sawsen; Berdugo, Marianne; Gélizé, Emmanuelle; Delaunay, Kimberley; Naud, Marie-Christine; Klein, Christophe; Moulin, Alexandre; Savoldelli, Michèle; Bergin, Ciara; Jeanny, Jean-Claude; Jonet, Laurent; Arsenijevic, Yvan; Behar-Cohen, Francine; Crisanti, Patricia

    2017-08-18

    In diabetic retinopathy, the exact mechanisms leading to retinal capillary closure and to retinal barriers breakdown remain imperfectly understood. Rho-associated kinase (ROCK), an effector of the small GTPase Rho, involved in cytoskeleton dynamic regulation and cell polarity is activated by hyperglycemia. In one year-old Goto Kakizaki (GK) type 2 diabetic rats retina, ROCK-1 activation was assessed by its cellular distribution and by phosphorylation of its substrates, MYPT1 and MLC. In both GK rat and in human type 2 diabetic retinas, ROCK-1 is activated and associated with non-apoptotic membrane blebbing in retinal vessels and in retinal pigment epithelium (RPE) that respectively form the inner and the outer barriers. Activation of ROCK-1 induces focal vascular constrictions, endoluminal blebbing and subsequent retinal hypoxia. In RPE cells, actin cytoskeleton remodeling and membrane blebs in RPE cells contributes to outer barrier breakdown. Intraocular injection of fasudil, significantly reduces both retinal hypoxia and RPE barrier breakdown. Diabetes-induced cell blebbing may contribute to ischemic maculopathy and represent an intervention target.

  12. Somatic hypermutation of T cell receptor α chain contributes to selection in nurse shark thymus.

    Science.gov (United States)

    Ott, Jeannine A; Castro, Caitlin D; Deiss, Thaddeus C; Ohta, Yuko; Flajnik, Martin F; Criscitiello, Michael F

    2018-04-17

    Since the discovery of the T cell receptor (TcR), immunologists have assigned somatic hypermutation (SHM) as a mechanism employed solely by B cells to diversify their antigen receptors. Remarkably, we found SHM acting in the thymus on α chain locus of shark TcR. SHM in developing shark T cells likely is catalyzed by activation-induced cytidine deaminase (AID) and results in both point and tandem mutations that accumulate non-conservative amino acid replacements within complementarity-determining regions (CDRs). Mutation frequency at TcRα was as high as that seen at B cell receptor loci (BcR) in sharks and mammals, and the mechanism of SHM shares unique characteristics first detected at shark BcR loci. Additionally, fluorescence in situ hybridization showed the strongest AID expression in thymic corticomedullary junction and medulla. We suggest that TcRα utilizes SHM to broaden diversification of the primary αβ T cell repertoire in sharks, the first reported use in vertebrates. © 2018, Ott et al.

  13. Contribution of Cell Elongation to the Biofilm Formation of Pseudomonas aeruginosa during Anaerobic Respiration

    Science.gov (United States)

    Park, Yongjin; Yoon, Sang Sun

    2011-01-01

    Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO2 −) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process. PMID:21267455

  14. Overexpression of c-Jun contributes to sorafenib resistance in human hepatoma cell lines.

    Directory of Open Access Journals (Sweden)

    Yuki Haga

    Full Text Available Despite recent advances in treatment strategies, it is still difficult to cure patients with hepatocellular carcinoma (HCC. Sorafenib is the only approved multiple kinase inhibitor for systemic chemotherapy in patients with advanced HCC. The majority of advanced HCC patients are resistant to sorafenib. The mechanisms of sorafenib resistance are still unknown.The expression of molecules involved in the mitogen-activated protein kinase (MAPK signaling pathway in human hepatoma cell lines was examined in the presence or absence of sorafenib. Apoptosis of human hepatoma cells treated with sorafenib was investigated, and the expression of Jun proto-oncogene (c-Jun was measured.The expression and phosphorylation of c-Jun were enhanced in human hepatoma cell lines after treatment with sorafenib. Inhibiting c-Jun enhanced sorafenib-induced apoptosis. The overexpression of c-Jun impaired sorafenib-induced apoptosis. The expression of osteopontin, one of the established AP-1 target genes, was enhanced after treatment with sorafenib in human hepatoma cell lines.The protein c-Jun plays a role in sorafenib resistance in human hepatoma cell lines. The modulation and phosphorylation of c-Jun could be a new therapeutic option for enhancing responsiveness to sorafenib. Modulating c-Jun may be useful for certain HCC patients with sorafenib resistance.

  15. ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus.

    Science.gov (United States)

    Frankel, Matthew B; Wojcik, Brandon M; DeDent, Andrea C; Missiakas, Dominique M; Schneewind, Olaf

    2010-10-01

    The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion. © 2010 Blackwell Publishing Ltd.

  16. Effect of 60 Co gamma radiation on trehalose level of Saccharomyces boulardii cells

    International Nuclear Information System (INIS)

    Santos, Raquel Gouvea dos; Neves, Maria Jose; Duarte, Rinaldo; Nicoli, Jacques R.

    1996-01-01

    The medicine Floratil used for diarrhea treatment is composed by lyophilized yeast cells of Saccharomyces boulardii. The action mechanism of this product is unknown. The efficacy of S. boulardii depends on its viability. The increase in the trehalose level in S. cerevisiae cells submitted to a previous sub-lethal level heat shock results in resistance to a lethal shock. The aim of this work was to study weather the cell trehalose level is involved also in the resistance of gamma irradiation. It was noted that the yeast cells surviving to gamma irradiation had more trehalose level than control cells. Apparently there is a positive correlation between of trehalose level and gamma irradiation resistance of S.boulardii cells. (author)

  17. Human induced pluripotent cells resemble embryonic stem cells demonstrating enhanced levels of DNA repair and efficacy of nonhomologous end-joining

    Energy Technology Data Exchange (ETDEWEB)

    Fan Jinshui; Robert, Carine [Department of Radiation Oncology, University of Maryland School of Medicine, 655 West Baltimore Street, BRB 7-023A, Baltimore, MD 21201 (United States); Jang, Yoon-Young; Liu Hua; Sharkis, Saul; Baylin, Stephen Bruce [Johns Hopkins University School of Medicine, Department of Oncology, Baltimore, MD 21231-1000 (United States); Rassool, Feyruz Virgilia, E-mail: frassool@som.umaryland.edu [Department of Radiation Oncology, University of Maryland School of Medicine, 655 West Baltimore Street, BRB 7-023A, Baltimore, MD 21201 (United States)

    2011-08-01

    Highlights: {yields} iPSC and hESC demonstrate a similar cell cycle profile, with increased S phase cells and decreased G0/G1. {yields} iPSC and hESC increased ROS and decreased DSBs, compared with differentiated parental cells. {yields} iPSC and hESC demonstrate elevated DSB repair activity, including nonhomologous end-joining, compared with differentiated parental cells. {yields} iPSC however show a partial apoptotic response to DNA damage, compared to hESC. {yields} DNA damage responses may constitute important markers for the efficacy of iPSC reprogramming. - Abstract: To maintain the integrity of the organism, embryonic stem cells (ESC) need to maintain their genomic integrity in response to DNA damage. DNA double strand breaks (DSBs) are one of the most lethal forms of DNA damage and can have disastrous consequences if not repaired correctly, leading to cell death, genomic instability and cancer. How human ESC (hESC) maintain genomic integrity in response to agents that cause DSBs is relatively unclear. Adult somatic cells can be induced to 'dedifferentiate' into induced pluripotent stem cells (iPSC) and reprogram into cells of all three germ layers. Whether iPSC have reprogrammed the DNA damage response is a critical question in regenerative medicine. Here, we show that hESC demonstrate high levels of endogenous reactive oxygen species (ROS) which can contribute to DNA damage and may arise from high levels of metabolic activity. To potentially counter genomic instability caused by DNA damage, we find that hESC employ two strategies: First, these cells have enhanced levels of DNA repair proteins, including those involved in repair of DSBs, and they demonstrate elevated nonhomologous end-joining (NHEJ) activity and repair efficacy, one of the main pathways for repairing DSBs. Second, they are hypersensitive to DNA damaging agents, as evidenced by a high level of apoptosis upon irradiation. Importantly, iPSC, unlike the parent cells they are derived

  18. Human induced pluripotent cells resemble embryonic stem cells demonstrating enhanced levels of DNA repair and efficacy of nonhomologous end-joining

    International Nuclear Information System (INIS)

    Fan Jinshui; Robert, Carine; Jang, Yoon-Young; Liu Hua; Sharkis, Saul; Baylin, Stephen Bruce; Rassool, Feyruz Virgilia

    2011-01-01

    Highlights: → iPSC and hESC demonstrate a similar cell cycle profile, with increased S phase cells and decreased G0/G1. → iPSC and hESC increased ROS and decreased DSBs, compared with differentiated parental cells. → iPSC and hESC demonstrate elevated DSB repair activity, including nonhomologous end-joining, compared with differentiated parental cells. → iPSC however show a partial apoptotic response to DNA damage, compared to hESC. → DNA damage responses may constitute important markers for the efficacy of iPSC reprogramming. - Abstract: To maintain the integrity of the organism, embryonic stem cells (ESC) need to maintain their genomic integrity in response to DNA damage. DNA double strand breaks (DSBs) are one of the most lethal forms of DNA damage and can have disastrous consequences if not repaired correctly, leading to cell death, genomic instability and cancer. How human ESC (hESC) maintain genomic integrity in response to agents that cause DSBs is relatively unclear. Adult somatic cells can be induced to 'dedifferentiate' into induced pluripotent stem cells (iPSC) and reprogram into cells of all three germ layers. Whether iPSC have reprogrammed the DNA damage response is a critical question in regenerative medicine. Here, we show that hESC demonstrate high levels of endogenous reactive oxygen species (ROS) which can contribute to DNA damage and may arise from high levels of metabolic activity. To potentially counter genomic instability caused by DNA damage, we find that hESC employ two strategies: First, these cells have enhanced levels of DNA repair proteins, including those involved in repair of DSBs, and they demonstrate elevated nonhomologous end-joining (NHEJ) activity and repair efficacy, one of the main pathways for repairing DSBs. Second, they are hypersensitive to DNA damaging agents, as evidenced by a high level of apoptosis upon irradiation. Importantly, iPSC, unlike the parent cells they are derived from, mimic hESC in their ROS levels

  19. Delayed rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells

    Science.gov (United States)

    Weick, Michael; Demb, Jonathan B.

    2011-01-01

    SUMMARY Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5–10 mV) also suppressed firing during subsequent depolarization. This suppression was sensitive selectively to blockers of delayed-rectifier K channels (KDR). Somatic membrane patches showed TEA-sensitive KDR currents with activation near −25 mV and removal of inactivation at voltages negative to Vrest. Brief periods of hyperpolarization apparently remove KDR inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. PMID:21745646

  20. Expansion of PD-1-positive effector CD4 T cells in an experimental model of SLE: contribution to the self-organized criticality theory.

    Science.gov (United States)

    Miyazaki, Yumi; Tsumiyama, Ken; Yamane, Takashi; Ito, Mitsuhiro; Shiozawa, Shunichi

    2013-04-18

    We have developed a systems biology concept to explain the origin of systemic autoimmunity. From our studies of systemic lupus erythematosus (SLE) we have concluded that this disease is the inevitable consequence of over-stimulating the host's immune system by repeated exposure to antigen to levels that surpass a critical threshold, which we term the system's "self-organized criticality". We observed that overstimulation of CD4 T cells in mice led to the development of autoantibody-inducing CD4 T cells (aiCD4 T) capable of generating various autoantibodies and pathological lesions identical to those observed in SLE. We show here that this is accompanied by the significant expansion of a novel population of effector T cells characterized by expression of programmed death-1 (PD-1)-positive, CD27(low), CD127(low), CCR7(low) and CD44(high)CD62L(low) markers, as well as increased production of IL-2 and IL-6. In addition, repeated immunization caused the expansion of CD8 T cells into fully-matured cytotoxic T lymphocytes (CTL) that express Ly6C(high)CD122(high) effector and memory markers. Thus, overstimulation with antigen leads to the expansion of a novel effector CD4 T cell population that expresses an unusual memory marker, PD-1, and