WorldWideScience

Sample records for cell landfill methane

  1. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    Energy Technology Data Exchange (ETDEWEB)

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31

    Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily

  2. Methane emissions from MBT landfills

    Energy Technology Data Exchange (ETDEWEB)

    Heyer, K.-U., E-mail: heyer@ifas-hamburg.de; Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD

  3. Quantification of methane emissions from danish landfills

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Mønster, Jacob; Kjeldsen, Peter

    2013-01-01

    Whole-landfill methane emission was quantified using a tracer technique that combines controlled tracer gas release from the landfill with time-resolved concentration measurements downwind of the landfill using a mobile high-resolution analytical instrument. Methane emissions from 13 Danish...

  4. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with

  5. Landfill gas cleanup for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    EPRI is to test the feasibility of using a carbonate fuel cell to generate electricity from landfill gas. Landfills produce a substantial quantity of methane gas, a natural by-product of decaying organic wastes. Landfill gas, however, contains sulfur and halogen compounds, which are known contaminants to fuel cells and their fuel processing equipment. The objective of this project is to clean the landfill gas well enough to be used by the fuel cell without making the process prohibitively expensive. The cleanup system tested in this effort could also be adapted for use with other fuel cells (e.g., solid oxide, phosphoric acid) running on landfill gas.

  6. LANDFILL GAS PRETREATMENT FOR FUEL CELL APPLICATIONS

    Science.gov (United States)

    The paper discusses the U.S. EPA's program, underway at International Fuel Cells Corporation, to demonstrate landfill methane control and the fuel cell energy recovery concept. In this program, two critical issues are being addressed: (1) a landfill gas cleanup method that would ...

  7. Methane production in simulated hybrid bioreactor landfill.

    Science.gov (United States)

    Xu, Qiyong; Jin, Xiao; Ma, Zeyu; Tao, Huchun; Ko, Jae Hac

    2014-09-01

    The aim of this work was to study a hybrid bioreactor landfill technology for landfill methane production from municipal solid waste. Two laboratory-scale columns were operated for about ten months to simulate an anaerobic and a hybrid landfill bioreactor, respectively. Leachate was recirculated into each column but aeration was conducted in the hybrid bioreactor during the first stage. Results showed that leachate pH in the anaerobic bioreactor maintained below 6.5, while in the hybrid bioreactor quickly increased from 5.6 to 7.0 due to the aeration. The temporary aeration resulted in lowering COD and BOD5 in the leachate. The volume of methane collected from the hybrid bioreactor was 400 times greater than that of the anaerobic bioreactor. Also, the methane production rate of the hybrid bioreactor was improved within a short period of time. After about 10 months' operation, the total methane production in the hybrid bioreactor was 212 L (16 L/kgwaste).

  8. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Don Augenstein

    2001-02-01

    The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  9. Methane recovery from landfill in China

    Energy Technology Data Exchange (ETDEWEB)

    Gaolai, L.

    1996-12-31

    GEF has approved a special project for a demonstration project for Methane Recovery from the Urban Refuse Land Fill. This paper will introduce the possibility of GHG reduction from the landfill in China, describe the activities of the GEF project, and the priorities for international cooperation in this field. The Global Environment Facility (GEF) approved the project, China Promoting Methane Recovery and Unlization from Mixed Municipal Refuse, at its Council meeting in last April. This project is the first one supported by international organization in this field.

  10. Detection and quantification of methane leakage from landfills

    Energy Technology Data Exchange (ETDEWEB)

    Ljungberg, Sven-Aake; Maartensson, Stig-Goeran (Univ. of Gaevle, Gaevle (Sweden)); Meijer, Jan-Erik; Rosqvist, Haakan (NSR AB, Helsingborg (Sweden))

    2009-03-15

    The purpose of this project was to detect gas leakage and to measure and quantify methane emission from landfills using modern remote sensing techniques. In this project, a handheld laser instrument and an IR camera were used. The overall objective was to develop cost-effective methods for detecting and quantifying methane emissions from landfills. There are many methods available for measuring the methane concentration in air, both from close-up and from long distances. Combined with the use of a tracer gas, the methane emission from entire landfills can be measured relatively accurately. A number of methods are used to detect leakage from parts of landfill surfaces, but there are few methods for quantifying leakage from sub-zones. Field measurements with the laser instrument and the IR camera were carried out at seven Swedish landfills and two landfills in France. The investigated surfaces at the Swedish landfills were divided into different zones, such as top surface, slope, crest and toe of slope. The field measurements in France were taken over entire landfills. The methane emission varied between the different landfills in the project, and also between the different landfill zones. The results from repeated field measurements indicated that a landfill with a final cap and a successful gas recovery system produces barely measurable emissions. The weak points at a landfill are generally slopes, including crests and toes of slopes. Where the covering of the waste is inadequate, leakage often occurs at lift joints and in areas where waste protrudes through the cover. Other weak points are deficiencies in the gas recovery system. Leachate systems can lead landfill gas and thereby cause methane leakage. Along with wind velocity and variations in atmospheric pressure, moisture content in the ground is an important factor that affects methane emissions from landfill surfaces. Results from field measurements of the same feature/surface at different points in time and

  11. Estimation of future methane production from Hellenic landfills

    Energy Technology Data Exchange (ETDEWEB)

    Tsatsarelis, T.; Karagiannidis, A. [Aristotle Univ., Thessaloniki (Greece). Lab. of Heat Transfer and Environmental Engineering

    2009-07-15

    Organic waste decomposition leads to the production of Landfill Gas (LFG). LFG mainly consists of methane (CH{sub 4}) and carbon dioxide (CO{sub 2}). It is common understanding now that LFG should be considered either as a significant source of pollution and risk (if migrating uncontrollably to the air and ground), or as a significant source of renewable energy (if extracted and processed accordingly). There are two possible solutions for dealing with LFG emissions. In the case of low methane ratios, LFG should be extracted and flared or oxidized in biofilters. On the other hand, in the case of high methane content, LFG becomes an evidently valuable energy resource, as it is then able to sustain the fuelling of engines producing electricity and thermal energy. More specifically, it can be used as a supplementary or primary fuel to increase the production of electric power, as a pipeline quality gas and vehicle fuel, or even as a supply of heat and carbon dioxide for greenhouses and various industrial processes. Technologies that utilize LFG include internal combustion engines, gas turbines, fuel cells and boiler systems. The main objective of this research was to predict expected methane generation in Hellenic sanitary landfills, in order to evaluate its potential for energy production and to ensure health and safety in and around these sites on the long term. The study was performed for the period 2008--2028 with the use of a multi-phase model and included a sensitivity analysis in order to determine the impact of certain waste parameters. In this context, two 'extreme' reference scenarios were formulated and assessed, one anticipating fulfillment of the EU landfill directive (which sets limits to the amount of biodegradable and packaging materials to be deposited in sanitary landfills) whereas a second (do-nothing scenario) assuming no such timely compliance. The model used here for methane estimation is a multi-phase model developed by the Norwegian

  12. Methane emission quantification from landfills using a double tracer approach

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Samuelsson, J.; Fredenslund, Anders Michael;

    2007-01-01

    A tracer method was successfully used for quantification of the whole methane (CH4) emission from Fakse landfill. By using two different tracers the emission from different sections of the landfill could be quantified. Furthermore, is was possible to determine the emissions from local on site...

  13. Estimation method for national methane emission from solid waste landfills

    Science.gov (United States)

    Kumar, Sunil; Gaikwad, S. A.; Shekdar, A. V.; Kshirsagar, P. S.; Singh, R. N.

    In keeping with the global efforts on inventorisation of methane emission, municipal solid waste (MSW) landfills are recognised as one of the major sources of anthropogenic emissions generated from human activities. In India, most of the solid wastes are disposed of by landfilling in low-lying areas located in and around the urban centres resulting in generation of large quantities of biogas containing a sizeable proportion of methane. After a critical review of literature on the methodology for estimation of methane emissions, the default methodology has been used in estimation following the IPCC guidelines 1996. However, as the default methodology assumes that all potential methane is emitted in the year of waste deposition, a triangular model for biogas from landfill has been proposed and the results are compared. The methodology proposed for methane emissions from landfills based on a triangular model is more realistic and can very well be used in estimation on global basis. Methane emissions from MSW landfills for the year AD 1980-1999 have been estimated which could be used in computing national inventories of methane emission.

  14. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Bogner, J.E.;

    2009-01-01

    Landfill gas containing methane is produced by anaerobic degradation of organic waste. Methane is a strong greenhouse gas and landfills are one of the major anthropogenic sources of atmospheric methane. Landfill methane may be oxidized by methanotrophic microorganisms in soils or waste materials ...

  15. Detection and quantification of methane leakage from landfills

    Energy Technology Data Exchange (ETDEWEB)

    Ljungberg, Sven-Aake; Maartensson, Stig-Goeran (Univ. of Gaevle, Gaevle (Sweden)); Meijer, Jan-Erik; Rosqvist, Haakan (NSR AB, Helsingborg (Sweden))

    2009-03-15

    The purpose of this project was to detect gas leakage and to measure and quantify methane emission from landfills using modern remote sensing techniques. In this project, a handheld laser instrument and an IR camera were used. The overall objective was to develop cost-effective methods for detecting and quantifying methane emissions from landfills. There are many methods available for measuring the methane concentration in air, both from close-up and from long distances. Combined with the use of a tracer gas, the methane emission from entire landfills can be measured relatively accurately. A number of methods are used to detect leakage from parts of landfill surfaces, but there are few methods for quantifying leakage from sub-zones. Field measurements with the laser instrument and the IR camera were carried out at seven Swedish landfills and two landfills in France. The investigated surfaces at the Swedish landfills were divided into different zones, such as top surface, slope, crest and toe of slope. The field measurements in France were taken over entire landfills. The methane emission varied between the different landfills in the project, and also between the different landfill zones. The results from repeated field measurements indicated that a landfill with a final cap and a successful gas recovery system produces barely measurable emissions. The weak points at a landfill are generally slopes, including crests and toes of slopes. Where the covering of the waste is inadequate, leakage often occurs at lift joints and in areas where waste protrudes through the cover. Other weak points are deficiencies in the gas recovery system. Leachate systems can lead landfill gas and thereby cause methane leakage. Along with wind velocity and variations in atmospheric pressure, moisture content in the ground is an important factor that affects methane emissions from landfill surfaces. Results from field measurements of the same feature/surface at different points in time and

  16. Gas Production Potential in the Landfill of Tehran by Landfill Methane Outreach Program

    Directory of Open Access Journals (Sweden)

    Pazoki

    2015-10-01

    Full Text Available Background Landfilling is the most common way of municipal solid waste (MSW disposal in Iran. Many countries have targeted landfill methane recovery among greenhouse gas mitigation strategies, since methane is the second most important greenhouse gas after carbon dioxide. Major questions remain with respect to actual methane production rates in field settings as well as the relative mass of methane that is recovered, emitted, oxidized by methanotrophic bacteria, laterally migrated, or temporarily stored within the landfill volume. Landfill gas (LFG consists of 50% - 60 vol% methane and 30% - 40 vol% carbon dioxide as well as trace amounts of numerous chemical compounds such as aromatics, chlorinated organic compounds and sulfur compounds. Landfill methane outreach program (LMOP is a voluntary assistance program which helps reduce methane emissions from landfills by encouraging the recovery and the beneficial use of LFG as an energy resource. Objectives In this study, the volume of LFG of Tehran by landfill methane outreach program (LMOP software was calculated. In addition, the relationship between the time of gas collection system operation and the volume of LFG production was evaluated. Materials and Methods The LMOP software was used. The available information and some presumptions were used to operate the software. The composition of the solid waste collected from the landfill of Tehran had specific details. A large amount of it was organic materials, which was about 67.8%. These materials have a good potential to produce gas. In addition, LMOP Colombia model uses the first-order equations in all the analytical equations. Furthermore, it is assumed that the landfill operation time is 30 years and the process is considered in two conditions; first, the gas was recovered in 2000, and second, the process started in 2015. Results The modeling results showed that for the gas recovery starting in 2000 and 2015, the power generation would be 2

  17. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method

    Energy Technology Data Exchange (ETDEWEB)

    Mønster, Jacob [Department of Environmental Engineering, Technical University of Denmark, Miljøvej – Building 113, DK-2800 Lyngby (Denmark); Samuelsson, Jerker, E-mail: jerker.samuelsson@fluxsense.se [Chalmers University of Technology/FluxSense AB, SE-41296 Göteborg (Sweden); Kjeldsen, Peter [Department of Environmental Engineering, Technical University of Denmark, Miljøvej – Building 113, DK-2800 Lyngby (Denmark); Scheutz, Charlotte, E-mail: chas@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljøvej – Building 113, DK-2800 Lyngby (Denmark)

    2015-01-15

    Highlights: • Quantification of whole landfill site methane emission at 15 landfills. • Multiple on-site source identification and quantification. • Quantified methane emission from shredder waste and composting. • Large difference between measured and reported methane emissions. - Abstract: Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FTIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were chosen to represent the different stages of the lifetime of a landfill, including open, active, and closed covered landfills, as well as those with and without gas extraction for utilisation or flaring. Measurements also included landfills with biocover for oxidizing any fugitive methane. Methane emission rates ranged from 2.6 to 60.8 kg h{sup −1}, corresponding to 0.7–13.2 g m{sup −2} d{sup −1}, with the largest emission rates per area coming from landfills with malfunctioning gas extraction systems installed, and the smallest emission rates from landfills closed decades ago and landfills with an engineered biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41–81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills was 154 tons y{sup −1}. This average was obtained from a few measurement campaigns conducted at each of the 15 landfills and extrapolating to annual emissions requires more measurements. Assuming that these landfills are representative of the average Danish landfill, the total emission from Danish landfills were calculated at 20,600 tons y{sup −1}, which is significantly lower than the 33,300 tons y{sup −1} estimated for the national greenhouse gas inventory for

  18. Methane mass balance at three landfill sites: What is the efficiency of capture by gas collection systems?

    International Nuclear Information System (INIS)

    Many developed countries have targeted landfill methane recovery among greenhouse gas mitigation strategies, since methane is the second most important greenhouse gas after carbon dioxide. Major questions remain with respect to actual methane production rates in field settings and the relative mass of methane that is recovered, emitted, oxidized by methanotrophic bacteria, laterally migrated, or temporarily stored within the landfill volume. This paper presents the results of extensive field campaigns at three landfill sites to elucidate the total methane balance and provide field measurements to quantify these pathways. We assessed the overall methane mass balance in field cells with a variety of designs, cover materials, and gas management strategies. Sites included different cell configurations, including temporary clay cover, final clay cover, geosynthetic clay liners, and geomembrane composite covers, and cells with and without gas collection systems. Methane emission rates ranged from -2.2 to >10,000 mg CH4 m-2 d-1. Total methane oxidation rates ranged from 4% to 50% of the methane flux through the cover at sites with positive emissions. Oxidation of atmospheric methane was occurring in vegetated soils above a geomembrane. The results of these studies were used as the basis for guidelines by the French environment agency (ADEME) for default values for percent recovery: 35% for an operating cell with an active landfill gas (LFG) recovery system, 65% for a temporary covered cell with an active LFG recovery system, 85% for a cell with clay final cover and active LFG recovery, and 90% for a cell with a geomembrane final cover and active LFG recovery

  19. Landfill methane emission mitigation – How to construct and document a full‐scale biocover system

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2014-01-01

    Landfills receiving organic wastes produce biogas (landfill gas – LFG) containing methane (CH4). Landfills are significant sources of methane, which contributes to climate change. As an alternative to gas utilization systems or as a follow‐on technology when a gas utilization system gets non......‐cost‐effective, bio‐mitigation systems may be implemented. Bio‐mitigation systems are defined here as systems based on microbial removal processes implemented at landfills to reduce emission of methane (or other harmful substances). In respect to CH4, experiments have documented that a very high methane oxidation...... rate can be obtained in soils, compost and other materials, high enough to significant reduce the methane emission from landfills. The process has been scaled up by DTU Environment to a full‐scale implemented technology at two Danish landfills. Now the Danish government has decided to establish bio...

  20. Gradient packing bed bio-filter for landfill methane mitigation.

    Science.gov (United States)

    Obulisamy, Parthiba Karthikeyan; Sim Yan May, Jane; Rajasekar, Balasubramanian

    2016-10-01

    We assessed the suitability of various biogenic materials for development of a gradient packed bed bio-filter to mitigate the methane (CH4) emission from landfills. Five different biogenic materials (windrow compost-WC; vermicompost-VC; landfill top cover-LTC; landfill bottom soil-LBS; and river soil sediment-SS) were screened. Among these materials, the VC showed a better CH4 oxidation potential (MOP) of 12.6μg CH4 gdw(-1)h(-1). Subsequently, the VC was used as a packing material along with wood chips in proto-type bio-filters. Wood chips were mixed at 5-15% to form three distinct gradients in a test bio-filter. Under the three different CH4 loading rates of 33, 44 and 55 gCH4 m(-3)h(-1), the achieved MOPs were 31, 41, and 47gCH4 m(-3)h(-1), respectively. The gradient packed bed bio-filter is effective for landfill CH4 mitigation than the conventional bio-filter as the latter shows gas channeling effects with poor MOPs. PMID:26883060

  1. Gradient packing bed bio-filter for landfill methane mitigation.

    Science.gov (United States)

    Obulisamy, Parthiba Karthikeyan; Sim Yan May, Jane; Rajasekar, Balasubramanian

    2016-10-01

    We assessed the suitability of various biogenic materials for development of a gradient packed bed bio-filter to mitigate the methane (CH4) emission from landfills. Five different biogenic materials (windrow compost-WC; vermicompost-VC; landfill top cover-LTC; landfill bottom soil-LBS; and river soil sediment-SS) were screened. Among these materials, the VC showed a better CH4 oxidation potential (MOP) of 12.6μg CH4 gdw(-1)h(-1). Subsequently, the VC was used as a packing material along with wood chips in proto-type bio-filters. Wood chips were mixed at 5-15% to form three distinct gradients in a test bio-filter. Under the three different CH4 loading rates of 33, 44 and 55 gCH4 m(-3)h(-1), the achieved MOPs were 31, 41, and 47gCH4 m(-3)h(-1), respectively. The gradient packed bed bio-filter is effective for landfill CH4 mitigation than the conventional bio-filter as the latter shows gas channeling effects with poor MOPs.

  2. Integrating landfill bioreactors, partial nitritation and anammox process for methane recovery and nitrogen removal from leachate.

    Science.gov (United States)

    Sun, Faqian; Su, Xiaomei; Kang, Tingting; Wu, Songwei; Yuan, Mengdong; Zhu, Jing; Zhang, Xiayun; Xu, Fang; Wu, Weixiang

    2016-01-01

    A new process consisting of a landfill bioreactor, partial-nitritation (PN) and the anammox process has been developed for landfill leachate treatment. In this study, the landfill bioreactor exhibited excellent performance in methane-rich biogas recovery, with a specific biogas yield of 0.47 L gas g(-1) COD and methane percentages of 53-76%. PN was achieved in the aerobic reactor by high free ammonia (101 ± 83 mg NH3 L(-1)) inhibition for nitrite-oxidizing bacteria, and the desired PN effluent composition (effluent nitrite: ammonium ratio of 1.1 ± 0.3) was controlled by adjusting the alkalinity concentration per unit of ammonium oxidized to approximately 14.3 mg CaCO3 mg(-1) N in the influent. The startup of anammox process was successfully achieved with a membrane bioreactor in 160 d, and a maximum nitrogen removal rate of 216 mg N L(-1) d(-1) was attained for real landfill leachate treatment. The quantitative polymerase chain reaction results confirmed that the cell-specific anammox activity was approximately 68-95 fmol N cell(-1) d(-1), which finally led to the stable operation of the system. PMID:27279481

  3. Integrating landfill bioreactors, partial nitritation and anammox process for methane recovery and nitrogen removal from leachate

    Science.gov (United States)

    Sun, Faqian; Su, Xiaomei; Kang, Tingting; Wu, Songwei; Yuan, Mengdong; Zhu, Jing; Zhang, Xiayun; Xu, Fang; Wu, Weixiang

    2016-06-01

    A new process consisting of a landfill bioreactor, partial-nitritation (PN) and the anammox process has been developed for landfill leachate treatment. In this study, the landfill bioreactor exhibited excellent performance in methane-rich biogas recovery, with a specific biogas yield of 0.47 L gas g‑1 COD and methane percentages of 53–76%. PN was achieved in the aerobic reactor by high free ammonia (101 ± 83 mg NH3 L‑1) inhibition for nitrite-oxidizing bacteria, and the desired PN effluent composition (effluent nitrite: ammonium ratio of 1.1 ± 0.3) was controlled by adjusting the alkalinity concentration per unit of ammonium oxidized to approximately 14.3 mg CaCO3 mg‑1 N in the influent. The startup of anammox process was successfully achieved with a membrane bioreactor in 160 d, and a maximum nitrogen removal rate of 216 mg N L‑1 d‑1 was attained for real landfill leachate treatment. The quantitative polymerase chain reaction results confirmed that the cell-specific anammox activity was approximately 68–95 fmol N cell‑1 d‑1, which finally led to the stable operation of the system.

  4. Methane oxidation and degradation of organic compounds in landfill soil covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2002-01-01

    High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero-order kin......High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero...... in the anaerobic zone in the lower part of soil columns permeated with artificial landfill gas. The lesser-chlorinated compounds were degraded in the upper oxic zone with overlapping gradients of methane and oxygen. Methane oxidation and degradation of HOCs in the top-soils may play a very important role...

  5. The prediction of the methane production in landfill affected by the temperature

    Directory of Open Access Journals (Sweden)

    Zhou Lianying

    2015-01-01

    Full Text Available The functional relationship between the generation rate coefficient and temperature was developed for quantitative prediction of the temperature effect in this paper. The methane production of the landfill was predicted under the condition of the seasonal variation. The results showed that considering the temperature effect, the methane production is higher than the methane production without temperature effect of the 0.14×106 m3~0.28×106m3.With the depth increasing, the effect of the atmospheric temperature fluctuation on the temperature change of the landfill was weakened. The temperature has a significant effect on the methane production in the landfill. The temperature effect should be considered when simulate the long time effect of the landfill methane production.

  6. [Depth Profiles of Methane Oxidation Kinetics and the Related Methanotrophic Community in a Simulated Landfill Cover].

    Science.gov (United States)

    Xing, Zhi-lin; Zhao, Tian-tao; Gao, Yan-hui; He, Zhi; Yang, Xu; Peng, Xu-ya

    2015-11-01

    Simulated landfill cover with real time online monitoring system was developed using cover soils. Then the system started and the concentrations of bio-gas in various depths were continuously monitored, and it was found that the system ran continually and stably after 2-3 h when methane flux changed. After that, the relationship between regularity of methane oxidation and methane flux in landfill cover was analyzed. The results indicated that concentration of oxygen decreased with increasing methane flux when the depth was deeper than 20 cm, and no obvious correlation between oxygen concentration in landfill cover surface and methane flux, however, methane oxidation rate showed positive correlation with methane flux in various depths (range of R2 was 0.851-0.999). Kinetics of CH4 oxidation in landfill cover was fitted by CH4 -O2 dual-substrate model (range of R2 was 0.902-0.955), the half-saturation constant K(m) increasing with depth was 0.157-0.729 in dynamic condition. Finally, methanotrophs community structure in original cover soil sample and that in simulated landfill cover were investigated by high-throughout sequencing technology, and the statistics indicated that the abundance and species of methanotrophs in simulated landfill cover significantly increased compared with those in original cover soil sample, and type I methanotrophs including Methylobacter and Methylophilaceae and type II methanotrophs Methylocystis were dominant species. PMID:26911022

  7. The estimation of methane emissions from landfills with different cover systems

    Science.gov (United States)

    Park, S.; Lee, K.; Sung, K.

    2006-12-01

    Methane is a very potent greenhouse gas, second only to CO2 as an anthropogenic contributor to global warming. Landfills are important anthropogenic source in the CH4 emissions. Microbially mediated CH4 oxidation in landfills with conventional soil covers can serve as an efficient biological sink. Methane from modern sanitary landfills equipped with composite covers and gas collection system is vented directly to the atmosphere, except for some of the largest landfills at which it is collected and burned. However, previous laboratory research has shown that biofilters have the potential to reduce CH4 emissions from landfills with modern composite covers. In this study a CH4 emission model was developed. The model used the calculated CH4 oxidation rates to estimate CH4 emissions from landfills constructed with conventional soil covers, modern composite covers, and modern composite covers plus biofilters. According to the CH4 emission rates predicted by CH4 emission model, it was estimated that 90% of the generated CH4 was emitted to the atmosphere for landfills with modern composite cover. For landfills with modern composite cover plus biofilters, an average of only 9% of the generated CH4 was estimated to be emitted. For landfills with conventional covers, an average of 83% of the generated CH4 was estimated to be emitted. By comparing the CH4 emission rates from three different landfill types, the use of a properly managed biofilter should be an effective technique to reduce CH4 emissions from landfills.

  8. A national landfill methane budget for Sweden based on field measurements, and an evaluation of IPCC models

    OpenAIRE

    Börjesson, Gunnar; Samuelsson, Jerker; Chanton, Jeffrey; Adolfsson, Rolf; Galle, Bo; Svensson, Bo H.

    2011-01-01

    Seven Swedish landfills were investigated from 2001 to 2003. On each landfill, a measure of the total methane production was calculated from data on: (1) methane emissions (leakage); (2) methane oxidation and (3) from gas recovery. Methane emissions were determined via a tracer gas (N2O) release-based remote sensing method. N2O and CH4 were measured with an Fourier Transform infrared detector at a distance of more than 1 km downwind from the landfills. Methane oxidation in the landfill cover...

  9. A national landfill methane budget for Sweden based on field measurements, and an evaluation of IPCC models

    OpenAIRE

    Borjesson, Gunnar; Samuelsson, Jerker; Chanton, Jeffrey; Adolfsson, Rolf; Galle, Bo; Svensson, Bo

    2009-01-01

    Seven Swedish landfills were investigated from 2001 to 2003. On each landfill, a measure of the total methane production was calculated from data on: (1) methane emissions (leakage); (2) methane oxidation and (3) from gas recovery. Methane emissions were determined via a tracer gas (N2O) release-based remote sensing method. N2O and CH4 were measured with an Fourier Transform infrared detector at a distance of more than 1 km downwind from the landfills. Methane oxidation in the landfill covers...

  10. Evaluation and modeling of biochemical methane potential (BMP) of landfilled solid waste: a pilot scale study

    DEFF Research Database (Denmark)

    Bilgili, M Sinan; Demir, Ahmet; Varank, Gamze

    2009-01-01

    The main goal of this study was to present a comparison of landfill performance with respect to solids decomposition. Biochemical methane potential (BMP) test was used to determine the initial and the remaining CH(4) potentials of solid wastes during 27 months of landfilling operation in two pilot...

  11. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method

    DEFF Research Database (Denmark)

    Mønster, Jacob; Samuelsson, Jerker; Kjeldsen, Peter;

    2015-01-01

    Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FFIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were...

  12. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.

    Science.gov (United States)

    Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria

    2015-12-01

    Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual.

  13. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.

    Science.gov (United States)

    Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria

    2015-12-01

    Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual. PMID:26346020

  14. Use of stable isotopes to determine methane oxidation in landfill cover soils

    Science.gov (United States)

    Liptay, K.; Chanton, J.; Czepiel, P.; Mosher, B.

    1998-04-01

    The mean isotopic composition of CH4 emitted from six New England (United States) landfills was 13C and D enriched (-48.1 to -50.4‰ and -273 to -281‰) relative to anoxic zone landfill CH4 (mean values of -55.9 to -56.2‰ and -296 to -300‰) owing to the oxidation of methane as it was transported from the landfill to the atmosphere through the soil cap. The fraction of methane oxidized f0 during its passage through the soil cap was calculated from the degree of 13C enrichment in emitted CH4 relative to anoxic zone CH4 in conjunction with values determined for the preference of soil methane oxidizing bacteria for 12CH4 over 13CH4 (α = 1.022 ± 0.008). Mean values for methane oxidation in six landfills were from 24 to 35% of the total flux through the soil during the warm season, depending upon how the data were grouped. Our results bracket recent estimates of methane oxidation of about 30% in the warm summer period produced using a model with the input terms of soil temperature, moisture, depth, and oxygen concentration. Because of variations in the response of methane oxidation to temperature at these New England sites, our study is consistent with the modeling results of Czepiel et al. [1996b] that the best estimate for the annual value for methane oxidation in the landfills considered is about 10%.

  15. Quantification of parameters influencing methane generation due to biodegradation of municipal solid waste in landfills and laboratory experiments.

    Science.gov (United States)

    Fei, Xunchang; Zekkos, Dimitrios; Raskin, Lutgarde

    2016-09-01

    The energy conversion potential of municipal solid waste (MSW) disposed of in landfills remains largely untapped because of the slow and variable rate of biogas generation, delayed and inefficient biogas collection, leakage of biogas, and landfill practices and infrastructure that are not geared toward energy recovery. A database consisting of methane (CH4) generation data, the major constituent of biogas, from 49 laboratory experiments and field monitoring data from 57 landfills was developed. Three CH4 generation parameters, i.e., waste decay rate (k), CH4 generation potential (L0), and time until maximum CH4 generation rate (tmax), were calculated for each dataset using U.S. EPA's Landfill Gas Emission Model (LandGEM). Factors influencing the derived parameters in laboratory experiments and landfills were investigated using multi-linear regression analysis. Total weight of waste (W) was correlated with biodegradation conditions through a ranked classification scheme. k increased with increasing percentage of readily biodegradable waste (Br0 (%)) and waste temperature, and reduced with increasing W, an indicator of less favorable biodegradation conditions. The values of k obtained in the laboratory were commonly significantly higher than those in landfills and those recommended by LandGEM. The mean value of L0 was 98 and 88L CH4/kg waste for laboratory and field studies, respectively, but was significantly affected by waste composition with ranges from 10 to 300L CH4/kg. tmax increased with increasing percentage of biodegradable waste (B0) and W. The values of tmax in landfills were higher than those in laboratory experiments or those based on LandGEM's recommended parameters. Enhancing biodegradation conditions in landfill cells has a greater impact on improving k and tmax than increasing B0. Optimizing the B0 and Br0 values of landfilled waste increases L0 and reduces tmax. PMID:26525969

  16. Methane Gas Utilization Project from Landfill at Ellery (NY)

    Energy Technology Data Exchange (ETDEWEB)

    Pantelis K. Panteli

    2012-01-10

    Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

  17. Comparison of Field Measurements to Methane Emissions Models at a New Landfill.

    Science.gov (United States)

    De la Cruz, Florentino B; Green, Roger B; Hater, Gary R; Chanton, Jeffrey P; Thoma, Eben D; Harvey, Tierney A; Barlaz, Morton A

    2016-09-01

    Estimates of methane emissions from landfills rely primarily on models due to both technical and economic limitations. While models are easy to implement, there is uncertainty due to the use of parameters that are difficult to validate. The objective of this research was to compare modeled emissions using several greenhouse gas (GHG) emissions reporting protocols including: (1) Intergovernmental Panel on Climate Change (IPCC); (2) U.S. Environmental Protection Agency Greenhouse Gas Reporting Program (EPA GHGRP); (3) California Air Resources Board (CARB); and (4) Solid Waste Industry for Climate Solutions (SWICS), with measured emissions data collected over three calendar years from a young landfill with no gas collection system. By working with whole landfill measurements of fugitive methane emissions and methane oxidation, the collection efficiency could be set to zero, thus eliminating one source of parameter uncertainty. The models consistently overestimated annual methane emissions by a factor ranging from 4-31. Varying input parameters over reasonable ranges reduced this range to 1.3-8. Waste age at the studied landfill was less than four years and the results suggest the need for measurements at additional landfills to evaluate the accuracy of the tested models to young landfills. PMID:27455372

  18. Turning a Liability into an Asset: Landfill Methane Recovery in India

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Solid waste disposal sites are not often seen as opportunities for energy solutions. The waste that is disposed in open dumps and landfills generates methane and other gases as it decomposes, causing concerns about explosions, odours, and, increasingly, about the contribution of methane to global climate change. However, the liability of landfill gas (LFG) can be turned into an asset. Many countries regularly capture LFG as a strategy to improve landfill safety, generate electricity, reduce greenhouse gas emissions, and to earn carbon emission reduction credits (e.g. 40% for the United States, 25% for Australia). Many projects in developing countries are taking advantage of the United Nations Framework Convention on Climate Change (UNFCCC) Clean Development Mechanism (CDM) to earn carbon credits by capturing and combusting methane (e.g., the Sudokwon Landfill in Republic of South Korea, the Bandeirantes Landfill in Brazil and the Nanjing Tianjingwa Landfill in China). These Landfill Gas to Energy (LFGE) projects provide a valuable service to the environment and a potentially profitable business venture, providing benefits to local and regional communities.

  19. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources

    Institute of Scientific and Technical Information of China (English)

    CAI Bo-Feng; LIU Jian-Guo; GAO Qing-Xian; NIE Xiao-Qin; CAO Dong; LIU Lan-Cui; ZHOU Ying; ZHANG Zhan-Sheng

    2014-01-01

    The methane (CH4) emissions from municipal solid waste (MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD (first-order decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition, degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2,107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 Mt in 2007. Compared with the CH4 emissions of 2.20 Mt in 2005, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t. Jiangsu province ranks the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general, the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.

  20. Operating a fuel cell using landfill gas

    Energy Technology Data Exchange (ETDEWEB)

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  1. Reduction of methane emission from landfills using bio-mitigation systems – from lab tests to full scale implementation

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    , or open or closed bed biofilter systems. The objective of this paper is to describe the relationship between research on process understanding of the oxidation of landfill gas contained methane and the up-scale to full bio-mitigation systems implemented at landfills. The oxidation of methane is controlled...

  2. USING LANDFILL GAS IN FUEL CELLS - A STEP CLOSER TO COMMERICAL REALITY

    Science.gov (United States)

    The article discusses Phase II and Phase III results of a U.S. EPA program underway at International Fuel Cells Corporation. The program involves controlling methane emissions from landfills using a fuel cell. The fuel cell would reduce air emissions affecting global warming, aci...

  3. Evaluating the biochemical methane potential (BMP) of low-organic waste at Danish landfills

    DEFF Research Database (Denmark)

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2014-01-01

    The biochemical methane potential (BMP) is an essential parameter when using first order decay (FOD) landfill gas (LFG) generation models to estimate methane (CH4) generation from landfills. Different categories of waste (mixed, shredder and sludge waste) with a low-organic content and temporaril...... for the first time, which is important and valuable for using current FOD LFG generation models to estimate realistic CH4 emissions from modern landfills receiving low-organic waste.......The biochemical methane potential (BMP) is an essential parameter when using first order decay (FOD) landfill gas (LFG) generation models to estimate methane (CH4) generation from landfills. Different categories of waste (mixed, shredder and sludge waste) with a low-organic content and temporarily...... content (DOCC) was in the range of 0.44–0.70% of total weight (wet waste). Numeric values of both parameters were much lower than values of traditional municipal solid waste (MSW), as well as default numeric values in current FOD models. The sludge waste and temporarily stored combustible waste showed BMP...

  4. Specific model for the estimation of methane emission from municipal solid waste landfills in India.

    Science.gov (United States)

    Kumar, Sunil; Nimchuk, Nick; Kumar, Rakesh; Zietsman, Josias; Ramani, Tara; Spiegelman, Clifford; Kenney, Megan

    2016-09-01

    The landfill gas (LFG) model is a tool for measuring methane (CH4) generation rates and total CH4 emissions from a particular landfill. These models also have various applications including the sizing of the LFG collection system, evaluating the benefits of gas recovery projects, and measuring and controlling gaseous emissions. This research paper describes the development of a landfill model designed specifically for Indian climatic conditions and the landfill's waste characteristics. CH4, carbon dioxide (CO2), oxygen (O2) and temperature were considered as the prime factor for the development of this model. The developed model was validated for three landfill sites in India: Shillong, Kolkata, and Jaipur. The autocorrelation coefficient for the model was 0.915, while the R(2) value was 0.429. PMID:27343450

  5. Assessing methods to estimate emissions of non-methane organic compounds from landfills

    DEFF Research Database (Denmark)

    Saquing, Jovita M.; Chanton, Jeffrey P.; Yazdani, Ramin;

    2014-01-01

    The non-methane organic compound (NMOC) emission rate is used to assess compliance with landfill gas emission regulations by the United States Environmental Protection Agency (USEPA). A recent USEPA Report (EPA/600/R-11/033) employed a ratio method to estimate speciated NMOC emissions (i.e., indi......The non-methane organic compound (NMOC) emission rate is used to assess compliance with landfill gas emission regulations by the United States Environmental Protection Agency (USEPA). A recent USEPA Report (EPA/600/R-11/033) employed a ratio method to estimate speciated NMOC emissions (i...

  6. Neural Network Modeling and Prediction of Methane Fraction in Biogas from Landfill Bioreactors

    Directory of Open Access Journals (Sweden)

    A Ghavidel

    2009-09-01

    Full Text Available "n "nBackgrounds and Objectives:A number of different technologies have recently been studied todetermine the best use of biogas, however, to choose optimize technologies of using biogas for energy recovery it is necessary to monitor and predict the methane percentage of biogas. In this study, a method is proposed for predicting the methane fraction in landfill gas originating from Labscalelandfill bioreactors, based on neural network."nMaterials and Methods: In this study, two different systems were applied, to predict the methane fraction in landfill gas as a final product of anaerobic digestion, we used the leachate specifications as input parameters. In system I (C1, the leachate generated from a fresh-waste reactor was drained to recirculation tank, and recycled. In System II (C2, the leachate generated from a fresh waste landfill reactor was fed through a well-decomposed refuse landfill reactor, and at the same time, the leachate generated from a well-decomposed refuse landfill reactor recycled to a fresh waste landfill reactor."nResults: There is very good agreement in the trends between forecasted and measured data. R valuesare 0.999 and 0.997, and the obtained Root mean square error values are 1.098 and 2.387 for training and test data, respectively"nConclusion: The proposed method can significantly predict the methane fraction in landfill gasoriginating and, consequently, neural network can be use to optimize the dimensions of a plant using biogas for energy (i.e. heat and/or electricity recovery and monitoring system.

  7. Effects of methane on the microbial populations and oxidation rates in different landfill cover soil columns.

    Science.gov (United States)

    He, Ruo; Ruan, Aidong; Shen, Dong-Sheng

    2007-05-01

    A considerable fraction of methane produced in landfills is oxidized by landfill cover soils. In this work, microbial populations and oxidation rates developed in response to the presence of methane were studied in three soil columns simulated landfill cover soil environments. The population of aerobic heterotrophic bacteria was highest in the waste soil, middle in the clay soil, and lowest in the red soil. After exposure to methane-rich environments, the populations of methanotrophic bacteria showed increases in the waste and clay soils. The population of methanotrophic bacteria increased from 30.77x10(4) to 141.77x10(4) cfu g d.w.-1 in the middle layer of the waste soil column as a function of exposure to methane for 120 days. The populations of methanotrophic bacteria were correlated with the potential methane oxidation rates in the waste and clay soils, respectively. The topsoil was observed to be dried in the three soil columns. Most of methane oxidation occurred at the depth of between 10 and 20 cm in the waste soil column, while it took place mainly at the depth of between 20 and 30 cm in the clay soil column.

  8. FUEL CELL ENERGY RECOVERY FROM LANDFILL GAS

    Science.gov (United States)

    International Fuel Cells Corporation is conducting a US Environmental Protection Agency (EPA) sponsored program to demonstrate energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The US EPA is interested in fuel cells for this application b...

  9. Methane emission estimation from landfills in Delhi: A comparative assessment of different methodologies

    Science.gov (United States)

    Chakraborty, Monojit; Sharma, Chhemendra; Pandey, Jitendra; Singh, Nahar; Gupta, Prabhat K.

    2011-12-01

    Landfills are important anthropogenic sources of methane (CH 4) emission especially in fast urbanizing countries. This paper presents the CH 4 emission estimations carried out using the in-situ CH 4 measurements, IPCC 1996 Default methodology (DM), Modified Triangular Method (MTM) and First Order Decay (FOD) method for the three landfills currently operational in the capital city Delhi of India. The in-situ methodology has yielded the landfills specific methane emission factors (EFs). The annual average methane emission rates from three landfills namely, Ghazipur (GL), Bhalswa (BL) and Okhla (OL) are 14.6, 23.6 & 7.5 Gg y -1 by DM; 13.3, 10.6 & 7.2 Gg y -1 by the FOD; 17.0, 13.7 and 10.7 Gg y -1 by the MTM; and 4.6, 4.2 and 1.4 Gg y -1 by the in-situ measurement method respectively. The CH 4 EFs have been found to be 9.7 ± 2.6, 5.5 ± 1.6 and 5.5 ± 1.7 g kg -1 of waste respectively for the GL, BL and OL landfills in Delhi. The study reveals that in-situ methodology seems to provide better representative emission estimation compared to other methods. The FOD method also yields comparable results with that of in-situ methodology in cases where good waste composition data is available.

  10. Lateral gas transport in soil adjacent to an old landfill: factors governing emissions and methane oxidation

    DEFF Research Database (Denmark)

    Christophersen, Mette; Kjeldsen, Peter; Holst, Helle;

    2001-01-01

    Field investigations of lateral gas transport and subsequent emissions in soil adjacent to an old landfill in Denmark have been conducted during a one-year period. A significant seasonal variation in the emissions with high carbon dioxide and low methane fluxes in the summer (May to October...

  11. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources

    Directory of Open Access Journals (Sweden)

    Cai Bo-Feng

    2014-01-01

    Citation: Cai, B.-F., Liu, J.-G., Gao, Q.-X., et al., 2014. Estimation of methane emissions from municipal solid waste landfills in China based on point emission sources. Adv. Clim. Change Res. 5(2, doi: 10.3724/SP.J.1248.2014.081.

  12. The effects of leachate recirculation with supplemental water addition on methane production and waste decomposition in a simulated tropical landfill.

    Science.gov (United States)

    Sanphoti, N; Towprayoon, S; Chaiprasert, P; Nopharatana, A

    2006-10-01

    In order to increase methane production efficiency, leachate recirculation is applied in landfills to increase moisture content and circulate organic matter back into the landfill cell. In the case of tropical landfills, where high temperature and evaporation occurs, leachate recirculation may not be enough to maintain the moisture content, therefore supplemental water addition into the cell is an option that could help stabilize moisture levels as well as stimulate biological activity. The objectives of this study were to determine the effects of leachate recirculation and supplemental water addition on municipal solid waste decomposition and methane production in three anaerobic digestion reactors. Anaerobic digestion with leachate recirculation and supplemental water addition showed the highest performance in terms of cumulative methane production and the stabilization period time required. It produced an accumulated methane production of 54.87 l/kg dry weight of MSW at an average rate of 0.58 l/kg dry weight/d and reached the stabilization phase on day 180. The leachate recirculation reactor provided 17.04 l/kg dry weight at a rate of 0.14l/kg dry weight/d and reached the stabilization phase on day 290. The control reactor provided 9.02 l/kg dry weight at a rate of 0.10 l/kg dry weight/d, and reached the stabilization phase on day 270. Increasing the organic loading rate (OLR) after the waste had reached the stabilization phase made it possible to increase the methane content of the gas, the methane production rate, and the COD removal. Comparison of the reactors' efficiencies at maximum OLR (5 kgCOD/m(3)/d) in terms of the methane production rate showed that the reactor using leachate recirculation with supplemental water addition still gave the highest performance (1.56 l/kg dry weight/d), whereas the leachate recirculation reactor and the control reactor provided 0.69 l/kg dry weight/d and 0.43 l/kg dry weight/d, respectively. However, when considering

  13. Evaluation of respiration in compost landfill biocovers intended for methane oxidation

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Pedicone, Alessio; Pedersen, Gitte Bukh;

    2011-01-01

    A low-cost alternative approach to reduce landfill gas (LFG) emissions is to integrate compost into the landfill cover design in order to establish a biocover that is optimized for biological oxidation of methane (CH4). A laboratory and field investigation was performed to quantify respiration...... in an experimental compost biocover in terms of oxygen (O2) consumption and carbon dioxide (CO2) production and emission rates. O2 consumption and CO2 production rates were measured in batch and column experiments containing compost sampled from a landfill biowindow at Fakse landfill in Denmark. Column gas...... concentration profiles were compared to field measurements. Column studies simulating compost respiration in the biowindow showed average CO2 production and O2 consumption rates of 107±14gm−2d−1 and 63±12gm−2d−1, respectively. Gas profiles from the columns showed elevated CO2 concentrations throughout...

  14. Livingston Parish Landfill Methane Recovery Project (Feasibility Study)

    Energy Technology Data Exchange (ETDEWEB)

    White, Steven

    2012-11-15

    The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report

  15. Evaluation of methane emissions from Palermo municipal landfill: Comparison between field measurements and models.

    Science.gov (United States)

    Di Bella, Gaetano; Di Trapani, Daniele; Viviani, Gaspare

    2011-08-01

    Methane (CH(4)) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH(4) is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH(4) emissions from landfill sites and the quantification of CH(4) emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH(4) diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH(4) diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH(4) contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH(4) mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency. PMID:21482094

  16. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover

    NARCIS (Netherlands)

    Kim, G.W.; Ho, A.; Kim, P.J.; Kim, Sang Yun

    2016-01-01

    The landfilling of municipal solid waste is a significant source of atmospheric methane (CH4), contributing up to 20% of total anthropogenic CH4 emissions. The evapotranspiration (ET) cover system, an alternative final cover system in waste landfills, has been considered to be a promising way to mit

  17. Measurements of methane emissions from landfills using mobile plume method with trace gas and cavity ring-down spectroscopy

    Science.gov (United States)

    Mønster, J.; Kjeldsen, P.; Scheutz, C.

    2012-04-01

    Methane is emitted to the atmosphere from both anthropogenic and natural sources. One of the major anthropogenic sources is methane produced by bacteria in anaerobic environments such as rice pads and landfills. Land filling has for many years been the preferred waste disposal method, resulting in a large methane production with a large contribution to the global increase in atmospheric green house gas concentration. Several steps have been taken to reduce the emission of methane from landfills. In order to validate the effect of these steps, a measurement method is needed to quantify methane emissions with a large spatial variation. One method is to use a highly sensitive and fast analytical method, capable of measuring the atmospheric concentration methane downwind from emission areas. Combined with down-wind measurements of a trace gas, emitted at a controlled mass flow rate, the methane emission can be calculated. This method is called the mobile plume method, as the whole plume is measured by doing several transects. In the current study a methane/acetylene analyzer with cavity ring-down spectroscopy detection (Picarro, G2203) was used to estimate methane from a number of Danish landfills. We measured at both active and closed landfills and investigated the difference in methane emission. At landfills where the emissions could have more than one origin, the source strength of the different emission areas was determined by accurate trace gas positioning and choosing appropriate wind speed and measurement distance. To choose these factors, we addressed the uncertainties and limitations of the method with respect to the configuration of the trace gas bottles and the distance between the emission area and the measurement points. Composting of organic material in large piles was done at several of the investigated landfills and where possible, the methane emission from this partly anaerobic digestion was measured as a separate emission.

  18. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Pedersen, Rasmus Broen; Petersen, Per Haugsted;

    2014-01-01

    usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux......Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The system was...... designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their...

  19. Field-scale treatment of landfill gas with a passive methane oxidizing biofilter

    Energy Technology Data Exchange (ETDEWEB)

    Philopoulos, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering; Felske, C. [Alberta Research Council, Edmonton, AB (Canada); McCartney, D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering, Natural Resources Engineering Facility

    2008-09-15

    Municipal solid waste (MSW) landfills produce methane (CH{sub 4}) and carbon dioxide (CO{sub 2}) as a result of the anaerobic biodegradation of organic fractions of waste. This paper provided details of field tests conducted to test 2 approaches that addressed the issue of gases produced at a landfill in Alberta. A CH{sub 4} oxidation layer was applied to replace intermediate and final landfill covers. Landfill gas (LFG) was then trapped using 3 biogenic CH{sub 4} oxidizing biofilters. Mature yard waste was used as a biofilter medium. The LFG was trapped by the liner, accumulated in a collection system, and then passed through the biofilter medium. The study was conducted over a period of 10 months. Results of the study showed that the integration of the biofilter into the landfill cover showed promising results. Low surface emissions were observed in 6 out of 8 monitoring events at 2 of the sites. Low influent LFG fluxes at the third site did not allow for full air sampling analyses to be conducted. 22 refs., 4 tabs., 8 figs.

  20. Modeling of methane oxidation in landfill cover soil using an artificial neural network.

    Science.gov (United States)

    Abushammala, Mohammed F M; Basri, Noor Ezlin Ahmad; Elfithri, Rahmah; Younes, Mohammad K; Irwan, Dani

    2014-02-01

    Knowing the fraction of methane (CH4) oxidized in landfill cover soils is an important step in estimating the total CH4 emissions from any landfill. Predicting CH4 oxidation in landfill cover soils is a difficult task because it is controlled by a number of biological and environmental factors. This study proposes an artificial neural network (ANN) approach using feedforward backpropagation to predict CH4 oxidation in landfill cover soil in relation to air temperature, soil moisture content, oxygen (O2) concentration at a depth of 10 cm in cover soil, and CH4 concentration at the bottom of cover soil. The optimum ANN model giving the lowest mean square error (MSE) was configured from three layers, with 12 and 9 neurons at the first and the second hidden layers, respectively, log-sigmoid (logsig) transfer function at the hidden and output layers, and the Levenberg-Marquardt training algorithm. This study revealed that the ANN oxidation model can predict CH4 oxidation with a MSE of 0.0082, a coefficient of determination (R2) between the measured and predicted outputs of up to 0.937, and a model efficiency (E) of 0.8978. To conclude, further developments of the proposed ANN model are required to generalize and apply the model to other landfills with different cover soil properties.

  1. High Frequency Measurements of Methane Concentrations and Carbon Isotopes at a Marsh and Landfill

    Science.gov (United States)

    Mortazavi, B.; Wilson, B.; Chanton, J.; Eller, K.; Dong, F.; Baer, D. S.; Gupta, M.; Dzwonkowski, B.

    2012-12-01

    High frequency measurements of methane concentrations and carbon isotopes can help constrain the source strengths of methane emitted to the atmosphere. We report here methane concentrations and 13C values measured at 0.5 Hz with cavity enhanced laser absorption spectrometers (Los Gatos Research) deployed at a saltmarsh in Alabama and a landfill in Florida. Methane concentrations and 13C at the saltmarsh were monitored over a 2.5 day time period at 2 m, 0.5 m above the ground as well as from the outflow of a flow-through (2 L) chamber placed on the Spartina alterniflora dominated marsh. A typical measurement cycle included regular samples from two tanks of known methane concentrations and isotopic values and from ambient air samples. Over the 2.5-day measurement period methane concentrations and isotopic ratios at 2 m averaged 1.85 ppm and -43.57‰ (±0.34, 1 SE), respectively. The concentration and isotopic values from the chamber outflow varied from 1.92 to 5.81 ppm and -38.5 to -59.3‰, respectively. Methane flux from the marsh ranged from undetectable to 3.6 mgC m-2hr-1, with high fluxes measured during low tide. The 13δCH4 of the emitted CH4 from the marsh, determined from a mass balance equation using the chamber inflow and outflow concentration and isotopic values ranged from -62.1 to -93.9‰ and averaged -77‰ (±1.25, 1SE). At the landfill ambient methane concentrations and 13C ratios measured over multiple days varied from 4.25 to 11.91 ppm and from -58.81 to -45.12‰, respectively. At higher methane concentrations the δ13C of CH4 was more depleted consistent with previously observed relationship at this site made by more traditional techniques. Over a 30-minute measurement period CH4 concentrations at the landfill could vary by as much as 15 ppm. The high frequency continuous optical measurements with field-deployed instruments provide us with an unprecedented temporal resolution of CH4 concentrations and isotopic ratios. These measurements will

  2. The landfill gas timeline: the Brogborough test cells

    Energy Technology Data Exchange (ETDEWEB)

    Caine, M.; Campell, D.; Santen, A. van [AEA Technology Environment, National Environmental Centre, Culham Science and Engineering Centre, Abingdon (United Kingdom)

    1999-07-01

    The Brogborough test cells were initiated in 1986 to demonstrate several robust and easily applied techniques for accelerating waste degradation in landfill, principally as a means of enhancing energy recovery from landfill gas. This paper maps the project up to July 1998. The main conclusions are listed below. The Brogborough test cells data set includes over 9-years continuous flow data - longer than any other large scale landfill test programme. Specific yield data are 2 to 3 times higher than published data from commercial landfills - even from the control cells - indicating increased recovery as a result of the idealized landfill engineering and gas abstraction systems in place. Cells 5 and 6 (in situ treatments) produced more rapid methanogenesis, as designed. Cells 3 and 4 (applied treatments) have shown statistically significant enhancement in landfill gas production rates relative to the control cell of 20 to 30% in specific yield. Total yields have exceeded 113 m{sup 3} t{sup -1}. (au)

  3. Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil

    International Nuclear Information System (INIS)

    Highlights: ► We quantify above- and below-ground CH4 fluxes in a landfill-cover soil. ► We link methanotrophic activity to estimates of CH4 loading from the waste body. ► Methane loading and emissions are highly variable in space and time. ► Eddy covariance measurements yield largest estimates of CH4 emissions. ► Potential methanotrophic activity is high at a location with substantial CH4 loading. - Abstract: Landfills are a major anthropogenic source of the greenhouse gas methane (CH4). However, much of the CH4 produced during the anaerobic degradation of organic waste is consumed by methanotrophic microorganisms during passage through the landfill-cover soil. On a section of a closed landfill near Liestal, Switzerland, we performed experiments to compare CH4 fluxes obtained by different methods at or above the cover-soil surface with below-ground fluxes, and to link methanotrophic activity to estimates of CH4 ingress (loading) from the waste body at selected locations. Fluxes of CH4 into or out of the cover soil were quantified by eddy-covariance and static flux-chamber measurements. In addition, CH4 concentrations at the soil surface were monitored using a field-portable FID detector. Near-surface CH4 fluxes and CH4 loading were estimated from soil–gas concentration profiles in conjunction with radon measurements, and gas push–pull tests (GPPTs) were performed to quantify rates of microbial CH4 oxidation. Eddy-covariance measurements yielded by far the largest and probably most representative estimates of overall CH4 emissions from the test section (daily mean up to ∼91,500 μmol m−2 d−1), whereas flux-chamber measurements and CH4 concentration profiles indicated that at the majority of locations the cover soil was a net sink for atmospheric CH4 (uptake up to −380 μmol m−2 d−1) during the experimental period. Methane concentration profiles also indicated strong variability in CH4 loading over short distances in the cover soil, while

  4. Estimating methane emission and oxidation from two temporary covers on landfilled MBT treated waste

    OpenAIRE

    Bour, Olivier; Zdanevitch, Isabelle; Briand, Mark; Llinas, Laurent

    2009-01-01

    Surface gaseous emissions and upper layer waste gas composition were measured on two French MBT plants with aerobic pre-treatment process. The goals were to characterize the gaseous emissions, and to assess the efficiency of the upper layer to oxidize the methane flux coming from the residual organic fraction. The first plant was operated without recovery of organic fraction and with concentration of the fine fraction in a cell. The methane fluxes were high and the oxidized methane fraction w...

  5. Release and fate of fluorocarbons in a shredder residue landfill cell: 2. Field investigations.

    Science.gov (United States)

    Scheutz, Charlotte; Fredenslund, Anders M; Nedenskov, Jonas; Kjeldsen, Peter

    2010-11-01

    The shredder residues from automobiles, home appliances and other metal containing products are often disposed in landfills, as recycling technologies for these materials are not common in many countries. Shredder waste contains rigid and soft foams from cushions and insulation panels blown with fluorocarbons. The objective of this study was to determine the gas composition, attenuation, and emission of fluorocarbons in a monofill shredder residue landfill cell by field investigation. Landfill gas generated within the shredder waste primarily consisted of CH(4) (27%) and N(2) (71%), without CO(2), indicating that the gas composition was governed by chemical reactions in combination with anaerobic microbial reactions. The gas generated also contained different fluorocarbons (up to 27 μg L(-1)). The presence of HCFC-21 and HCFC-31 indicated that anaerobic degradation of CFC-11 occurred in the landfill cell, as neither of these compounds has been produced for industrial applications. This study demonstrates that a landfill cell containing shredder waste has a potential for attenuating CFC-11 released from polyurethane (PUR) insulation foam in the cell via aerobic and anaerobic biodegradation processes. In deeper, anaerobic zones of the cell, reductive dechlorination of CFCs to HCFCs was evident, while in the shallow, oxic zones, there was a high potential for biooxidation of both methane and lesser chlorinated fluorocarbons. These findings correlated well with both laboratory results (presented in a companion paper) and surface emission measurements that, with the exception from a few hot spots, indicated that surface emissions were negative or below detection. PMID:20444588

  6. Variation of Coenzyme F420 Activity and Methane Yield in Landfill Simulation of Organic Waste

    Institute of Scientific and Technical Information of China (English)

    CHENG Yun-huan; SANG Shu-xun; HUANG Hua-zhou; LIU Xiao-juan; OUYANG Jin-bao

    2007-01-01

    A simulated landfill anaerobic bioreactor was used to characterize the anaerobic biodegradation and biogas generation of organic waste which was mainly composed of residuals of vegetables and foods. We investigated the dynamics of the coenzyme F420 activity and determined correlations between biogas yields, methane yields, methane concentration and coenzyme F420 activity. The experiment was carried out under different conditions from control without any treatment, addition of Fe3+, microorganism inoculation to a combination of Fe3+ addition and inoculation at a temperature of 36±2 ℃. The experiment was lasted 120 d and coenzyme F420 activity was analyzed using ultraviolet spectrophotometry. Experimental results indicated that activity of the coenzyme F420 treated by Fe3+ and microorganism inoculation increased substantially. The waste treated by inoculation had the greatest increase. When the waste was treated by Fe3+, inoculation and the combination of Fe3+ and inoculation, biogas yields increased by 46.9%, 132.6% and 153.1%, respectively; while the methane yields increased 4, 97 and 98 times. Methane concentration varied between 0 and 6% in the control reactor, from 0 to 14% for waste treated by the addition of Fe3+, from 0 to 59% for waste treated by inoculation and from 0 to 63% for waste treated by Fe3+ addition and inoculation. Correlations between coenzyme F420 activity and biogas production, methane production and methane concentration proved to be positively significant (p<0.05), except for the control. Consequently, coenzyme F420 activity could be used as an index for monitoring the ac-tivity of methanogens during anaerobic biodegradation of the organic fraction of municipal solid waste.

  7. Adsorption and transport of methane in landfill cover soil amended with waste-wood biochars.

    Science.gov (United States)

    Sadasivam, Bala Yamini; Reddy, Krishna R

    2015-08-01

    The natural presence of methane oxidizing bacteria (MOB) in landfill soils can stimulate the bio-chemical oxidation of CH4 to CO2 and H2O under suitable environmental conditions. This mechanism can be enhanced by amending the landfill cover soil with organic materials such as biochars that are recalcitrant to biological degradation and are capable of adsorbing CH4 while facilitating the growth and activity of MOB within their porous structure. Several series of batch and small-scale column tests were conducted to quantify the CH4 sorption and transport properties of landfill cover soil amended with four types of waste hardwood biochars under different levels of amendment percentages (2, 5 and 10% by weight), exposed CH4 concentrations (0-1 kPa), moisture content (dry, 25% and 75% water holding capacity), and temperature (25, 35 and 45 °C). The linear forms of the pseudo second-order kinetic model and the Langmuir isotherm model were used to determine the kinetics and the maximum CH4 adsorption capacity of cover materials. The maximum CH4 sorption capacity of dry biochar-amended soils ranged from 1.03 × 10(-2) to 7.97 × 10(-2) mol kg(-1) and exhibited a ten-fold increase compared to that of soil with 1.9 × 10(-3) mol kg(-1). The isosteric heat of adsorption for soil was negative and ranged from -30 to -118 kJ/mol, while that of the biochar-amended soils was positive and ranged from 24 to 440 kJ/mol. The CH4 dispersion coefficients for biochar-amended soils obtained through predictive transport modeling indicated that amending the soil with biochar enhanced the methane transport rates by two orders of magnitude, thereby increasing their potential for enhanced exchange of gases within the cover system. Overall, the use of hardwood biochars as a cover soil amendment to reduce methane emissions from landfills appears to be a promising alternative to conventional soil covers. PMID:25935750

  8. Adsorption and transport of methane in landfill cover soil amended with waste-wood biochars.

    Science.gov (United States)

    Sadasivam, Bala Yamini; Reddy, Krishna R

    2015-08-01

    The natural presence of methane oxidizing bacteria (MOB) in landfill soils can stimulate the bio-chemical oxidation of CH4 to CO2 and H2O under suitable environmental conditions. This mechanism can be enhanced by amending the landfill cover soil with organic materials such as biochars that are recalcitrant to biological degradation and are capable of adsorbing CH4 while facilitating the growth and activity of MOB within their porous structure. Several series of batch and small-scale column tests were conducted to quantify the CH4 sorption and transport properties of landfill cover soil amended with four types of waste hardwood biochars under different levels of amendment percentages (2, 5 and 10% by weight), exposed CH4 concentrations (0-1 kPa), moisture content (dry, 25% and 75% water holding capacity), and temperature (25, 35 and 45 °C). The linear forms of the pseudo second-order kinetic model and the Langmuir isotherm model were used to determine the kinetics and the maximum CH4 adsorption capacity of cover materials. The maximum CH4 sorption capacity of dry biochar-amended soils ranged from 1.03 × 10(-2) to 7.97 × 10(-2) mol kg(-1) and exhibited a ten-fold increase compared to that of soil with 1.9 × 10(-3) mol kg(-1). The isosteric heat of adsorption for soil was negative and ranged from -30 to -118 kJ/mol, while that of the biochar-amended soils was positive and ranged from 24 to 440 kJ/mol. The CH4 dispersion coefficients for biochar-amended soils obtained through predictive transport modeling indicated that amending the soil with biochar enhanced the methane transport rates by two orders of magnitude, thereby increasing their potential for enhanced exchange of gases within the cover system. Overall, the use of hardwood biochars as a cover soil amendment to reduce methane emissions from landfills appears to be a promising alternative to conventional soil covers.

  9. Children living near a sanitary landfill have increased breath methane and Methanobrevibacter smithii in their intestinal microbiota.

    Science.gov (United States)

    de Araujo Filho, Humberto Bezerra; Carmo-Rodrigues, Mirian Silva; Mello, Carolina Santos; Melli, Lígia Cristina Fonseca Lahoz; Tahan, Soraia; Pignatari, Antonio Carlos Campos; de Morais, Mauro Batista

    2014-01-01

    This study evaluated the breath CH4 excretion and concentration of M. smithii in intestinal microbiota of schoolchildren from 2 slums. One hundred and eleven children from a slum near a sanitary landfill, 35 children of a slum located away from the sanitary landfill, and 32 children from a high socioeconomic level school were included in the study. Real-time PCR was performed to quantify the M. smithii nifH gene and it was present in the microbiota of all the participating children, with higher (P landfill (3.16 × 10(7) CFU/g of feces), comparing with the children from the slum away from the landfill (2.05 × 10(6) CFU/g of feces) and those from the high socioeconomic level group (3.93 × 10(5) CFU/g of feces). The prevalence of children who present breath methane was 53% in the slum near the landfill, 31% in the slum further away from the landfill and, 22% in the high socioeconomic level group. To live near a landfill is associated with higher concentrations of M. smithii in intestinal microbiota, comparing with those who live away from the landfill, regardless of their socioeconomics conditions.

  10. Children Living near a Sanitary Landfill Have Increased Breath Methane and Methanobrevibacter smithii in Their Intestinal Microbiota

    Directory of Open Access Journals (Sweden)

    Humberto Bezerra de Araujo Filho

    2014-01-01

    Full Text Available This study evaluated the breath CH4 excretion and concentration of M. smithii in intestinal microbiota of schoolchildren from 2 slums. One hundred and eleven children from a slum near a sanitary landfill, 35 children of a slum located away from the sanitary landfill, and 32 children from a high socioeconomic level school were included in the study. Real-time PCR was performed to quantify the M. smithii nifH gene and it was present in the microbiota of all the participating children, with higher P<0.05 concentrations in those who lived in the slum near the landfill (3.16×107 CFU/g of feces, comparing with the children from the slum away from the landfill (2.05×106 CFU/g of feces and those from the high socioeconomic level group (3.93×105 CFU/g of feces. The prevalence of children who present breath methane was 53% in the slum near the landfill, 31% in the slum further away from the landfill and, 22% in the high socioeconomic level group. To live near a landfill is associated with higher concentrations of M. smithii in intestinal microbiota, comparing with those who live away from the landfill, regardless of their socioeconomics conditions.

  11. Quantifying methane oxidation in a landfill-cover soil by gas push-pull tests

    International Nuclear Information System (INIS)

    Methane (CH4) oxidation by aerobic methanotrophs in landfill-cover soils decreases emissions of landfill-produced CH4 to the atmosphere. To quantify in situ rates of CH4 oxidation we performed five gas push-pull tests (GPPTs) at each of two locations in the cover soil of the Lindenstock landfill (Liestal, Switzerland) over a 4 week period. GPPTs consist of the injection of a gas mixture containing CH4, O2 and noble gas tracers followed by extraction from the same location. Quantification of first-order rate constants was based upon comparison of breakthrough curves of CH4 with either Ar or CH4 itself from a subsequent inactive GPPT containing acetylene as an inhibitor of CH4 oxidation. The maximum calculated first-order rate constant was 24.8 ± 0.8 h-1 at location 1 and 18.9 ± 0.6 h-1 at location 2. In general, location 2 had higher background CH4 concentrations in vertical profile samples than location 1. High background CH4 concentrations in the cover soil during some experiments adversely affected GPPT breakthrough curves and data interpretation. Real-time PCR verified the presence of a large population of methanotrophs at the two GPPT locations and comparison of stable carbon isotope fractionation of CH4 in an active GPPT and a subsequent inactive GPPT confirmed that microbial activity was responsible for the CH4 oxidation. The GPPT was shown to be a useful tool to reproducibly estimate in situ rates of CH4 oxidation in a landfill-cover soil when background CH4 concentrations were low.

  12. Ammonium-dependent regulation of aerobic methane-consuming bacteria in landfill cover soil by leachate irrigation.

    Science.gov (United States)

    Lü, Fan; He, Pinjing; Guo, Min; Yang, Na; Shao, Liming

    2012-01-01

    The impacts of landfill leachate irrigation on methane oxidation activities and methane-consuming bacteria populations were studied by incubation of landfill cover soils with leachate and (NH4)2SO4 solution at different ammonium concentrations. The community structures and abundances of methane-oxidizing bacteria (MOB) and ammonia-oxidizing bacteria (AOB) were examined by PCR-DGGE and real-time PCR. Compared with the pure (NH4)2SO4 solution, leachate addition was found to have a positive effect on methane oxidation activity. In terms of the irrigation amount, ammonium in leachate was responsible for the actual inhibition of leachate. The extent of inhibitory effect mainly depended on its ammonium concentration. The suppression of the predominant methane-consuming bacteria, type I MOB, was responsible for the decreased methane oxidation activity by ammonium inhibition. Methane-consuming bacteria responded diversely in abundance to ammonium. The abundance of type I MOB decreased by fivefold; type II MOB showed stimulation response of fivefold magnification upon the first addition but lessened to be lower than the original level after the second addition; the amount of AOB was stimulated to increase for 20-30 times gradually. Accumulated nitrate from nitrification strengthened the ammonium inhibition on type I and type II MOB, as a result, repetitive irrigation was unfavorable for methane oxidation.

  13. Kinetics of biological methane oxidation in the presence of non-methane organic compounds in landfill bio-covers

    International Nuclear Information System (INIS)

    In this experimental program, the effects of non-methane organic compounds (NMOCs) on the biological methane (CH4) oxidation process were examined. The investigation was performed on compost experiments incubated with CH4 and selected NMOCs under different environmental conditions. The selected NMOCs had different concentrations and their effects were tested as single compounds and mixtures of compounds. The results from all experimental sets showed a decrease in CH4 oxidation capacity of the landfill bio-cover with the increase in NMOCs concentrations. For example, in the experiment using compost with 100% moisture content at 35 deg. C without any NMOCs the Vmax value was 35.0 μg CH4h-1gwetwt-1. This value was reduced to 19.1 μg CH4h-1gwetwt-1 when mixed NMOCs were present in the batch reactors under the same environmental conditions. The experimental oxidation rates of CH4 in the presence of single and mixed NMOCs were modeled using the uncompetitive inhibition model and kinetic parameters, including the dissociation constants, were obtained. Additionally, the degradation rates of the NMOCs and co-metabolic abilities of methanotrophic bacteria were estimated.

  14. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Sangjae [Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Nam, Anwoo [Korea Environment Corporation, 42 Hwangyeong-ro, Seo-gu, Incheon 404-170 (Korea, Republic of); Yi, Seung-Muk [Department of Environmental Health, School of Public Health, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Jae Young, E-mail: jaeykim@snu.ac.kr [Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2015-02-15

    Highlights: • CH{sub 4}/CO{sub 2} and CH{sub 4} + CO{sub 2}% are proposed as indices to evaluate semi-aerobic landfills. • A landfill which CH{sub 4}/CO{sub 2} > 1.0 is difficult to be categorized as semi-aerobic landfill. • Field conditions should be carefully investigated to determine landfill types. • The MCF default value for semi-aerobic landfills underestimates the methane emissions. - Abstract: According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH{sub 4} produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH{sub 4}/CO{sub 2} ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3–1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0–2.0) for anaerobic landfill sites. The low CH{sub 4} + CO{sub 2}% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills.

  15. Ammonium-dependent regulation of aerobic methane-consuming bacteria in landfill cover soil by leachate irrigation

    Institute of Scientific and Technical Information of China (English)

    Fan Lü; Pinjing He; Min Guo; Na Yang; Liming Shao

    2012-01-01

    The impacts of landfill leachate irrigation on methane oxidation activities and methane-consuming bacteria populations were studied by incubation of landfill cover soils with leachate and (NH4)2SO4 solution at different ammonium concentrations.The community structures and abundances of methane-oxidizing bacteria (MOB) and ammonia-oxidizing bacteria (AOB) were examined by PCRDGGE and real-time PCR.Compared with the pure (NH4)2SO4 solution,leachate addition was found to have a positive effect on methane oxidation activity.In terms of the irrigation amount,ammonium in leachate was responsible for the actual inhibition of leachate.The extent of inhibitory effect mainly depended on its ammonium concentration.The suppression of the predominant methaneconsuming bacteria,type Ⅰ MOB,was responsible for the decreased methane oxidation activity by ammonium inhibition.Methaneconsuming bacteria responded diversely in abundance to ammonium.The abundance of type Ⅰ MOB decreased by fivefold; type Ⅱ MOB showed stimulation response of fivefold magnification upon the first addition but lessened to be lower than the original level after the second addition; the amount of AOB was stimulated to increase for 20-30 times gradually.Accumulated nitrate from nitrification strengthened the ammonium inhibition on type Ⅰ and type Ⅱ MOB,as a result,repetitive irrigation was unfavorable for methane oxidation.

  16. Enhancement of methane production and bio-stabilisation of municipal solid waste in anaerobic bioreactor landfill.

    Science.gov (United States)

    Mali Sandip, T; Khare Kanchan, C; Biradar Ashok, H

    2012-04-01

    The aim of the experiment was to enhance biodegradation and methane production of municipal solid waste (MSW). Two groups of simulated anaerobic bioreactor landfill were used; one group of mixed MSW with three bioreactors (R1, R2 and R3) and second group was compostable MSW with two bioreactors (R4 and R5). The different combinations of operational parameters were aeration with addition of aerobic microbial culture, anaerobic sludge, coarse gravel mixing, intermediate soil cover and varied leachate recirculation rate. The results observed at the end of 270days prevail that the process combination of above operational parameters adopted in compostable MSW bioreactor was more efficient approach for stabilization of MSW. It has accelerated the methane production rate (141.28Lkg(-1)dry waste) by 25%. It was also observed that the degradation time of MSW was reduced by 25% compared to maximum values quoted in the literature. The nonlinear regression of the cumulative biogas production and digestion time shows that Gompertz growth equation fits the results well. PMID:22342079

  17. Methane oxidation in homogenous soil covers of landfills: a finite – element analysis of the influence of gas diffusion coefficient

    OpenAIRE

    Zygmunt M; Stępniewski W.

    2000-01-01

    Methane produced in municipal landfills covered with a soil layer diffuses to the atmosphere. Counterdiffusion of oxygen down the soil creates an oxic zone where biochemical oxidation of methane by methanotrophic microorganisms can take place. Oxidation is possible only in that part of the oxic zone where both the substrates, i.e., methane ond oxygen are present simultanously. Biochemical oxidation of methane is governed by Michaelis-Menten kinetics. The solution of the equation system compri...

  18. Assessment of zonal distribution of methane on MSW landfills in northern regions for its usage in local power engineering

    Directory of Open Access Journals (Sweden)

    A.N. Chusov

    2015-10-01

    Full Text Available Municipal solid waste (MSW landfills located in regions of Russia with low temperatures and relatively low rainfall averages are considered unpromising in terms of their biogas potential; however, these claims have not been substantiated. Assessment of the biogas potential of such landfills requires special field research for analyzing biogas composition and emission speed, which could define the processes taking place inside a landfill. We should note that the use of mathematical models that do not take into account the specifics of a particular landfill makes it impossible to get detailed and reliable information about its biogas potential. This work contains the results of research conducted for assessing the biogas potential of three municipal solid waste landfills located in various zones of the Northwestern Federal District with Atlantic continental and moderately continental climate. The research showed that biochemical processes of waste decomposition accompanied by the emission of biogas with high (50 vol% and above methane content are possible even in areas with a relatively cold climate. This confirms the presence of the energy potential of these landfills, which can be used for the needs of heat, electricity and gas supply to the population, etc.

  19. Release and fate of fluorocarbons in a shredder residue landfill cell: 1. Laboratory experiments.

    Science.gov (United States)

    Scheutz, Charlotte; Fredenslund, Anders M; Nedenskov, Jonas; Kjeldsen, Peter

    2010-11-01

    The shredder residues from automobiles, home appliances and other metal-containing products are often disposed in landfills, as recycling technologies for these materials are not common in many countries. Shredder waste contains rigid and soft foams from cushions and insulation panels blown with fluorocarbons. The objective of this study was to use laboratory experiments to estimate fluorocarbon release and attenuation processes in a monofill shredder residue (SR) landfill cell. Waste from the open SR landfill cell at the AV Miljø landfill in Denmark was sampled at three locations. The waste contained 1-3% metal and a relatively low fraction of rigid polyurethane (PUR) foam particles. The PUR waste contained less blowing agent (CFC-11) than predicted from a release model. However, CFC-11 was steadily released in an aerobic bench scale experiment. Anaerobic waste incubation bench tests showed that SRSR produced significant methane (CH(4)), but at rates that were in the low end of the range observed for municipal solid waste. Aerobic and anaerobic batch experiments showed that processes in SRSR potentially can attenuate the fluorocarbons released from the SRSR itself: CFC-11 is degraded under anaerobic conditions with the formation of degradation products, which are being degraded under CH(4) oxidation conditions prevailing in the upper layers of the SR. PMID:20435458

  20. Did state renewable portfolio standards induce technical change in methane mitigation in the U.S. landfill sector?

    Science.gov (United States)

    Delhotal, Katherine Casey

    Landfill gas (LFG) projects use the gas created from decomposing waste, which is approximately 49% methane, and substitute it for natural gas in engines, boilers, turbines, and other technologies to produce energy or heat. The projects are beneficial in terms of increased safety at the landfill, production of a cost-effective source of energy or heat, reduced odor, reduced air pollution emissions, and reduced greenhouse gas emissions. However, landfills sometimes face conflicting policy incentives. The theory of technical change shows that the diffusion of a technology or groups of technologies increases slowly in the beginning and then picks up speed as knowledge and better understanding of using the technology diffuses among potential users. Using duration analysis, data on energy prices, State and Federal policies related to landfill gas, renewable energy, and air pollution, as well as control data on landfill characteristics, I estimate the influence and direction of influence of renewable portfolio standards (RPS). The analysis found that RPS positively influences the diffusion of landfill gas technologies, encouraging landfills to consider electricity generation projects over direct sales of LFG to another facility. Energy price increases or increased revenues for a project are also critical. Barriers to diffusion include air emission permits in non-attainment areas and policies, such as net metering, which promote other renewables over LFG projects. Using the estimates from the diffusion equations, I analyze the potential influence of a Federal RPS as well as the potential interaction with a Federal, market based climate change policy, which will increase the revenue of a project through higher energy sale prices. My analysis shows that a market based climate change policy such as a cap-and-trade or carbon tax scheme would increase the number of landfill gas projects significantly more than a Federal RPS.

  1. Effect of bio-cover equipped with a novel passive air diffusion system on methane emission reduciton from landfill

    DEFF Research Database (Denmark)

    Lu, W.J.; Mou, Zishen

    2011-01-01

    Based on the aerothermodynamic principles, a kind of breathing bio-cover system was designed to enhance oxygen (O2) supply efficiency and methane (CH4) oxidation capacity. The research showed that O2 concentration (v/v) considerably increased throughout whole profiles of the microcosm (1m) equipped...... with passive air diffusion system (MPADS). When the simulated landfill gas SLFG flow was 771 and 1028 gm−3 d−1, the O2 concentration in MPADS increased gradually and tended to be stable at the atmospheric level after 10 days. The CH4 oxidation rate was 100% when the SLFG flow rate was no more than 1285 gm−3 d......−1, which also was confirmed by the mass balance calculations. The breathing bio-cover system with in situ self-oxygen supply can address the problem of O2 insufficient in conventional landfill bio-cover. The proposed system presents high potential for improving CH4 emission reduction in landfills....

  2. Greenhouse gas reduction by recovery and utilization of landfill methane and CO{sub 2} technical and market feasibility study, Boului Landfill, Bucharest, Romania. Final report, September 30, 1997--September 19, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Cook, W.J.; Brown, W.R.; Siwajek, L. [Acrion Technologies, Inc., Cleveland, OH (United States); Sanders, W.I. [Power Management Corp., Bellevue, WA (United States); Botgros, I. [Petrodesign, SA, Bucharest (Romania)

    1998-09-01

    The project is a landfill gas to energy project rated at about 4 megawatts (electric) at startup, increasing to 8 megawatts over time. The project site is Boului Landfill, near Bucharest, Romania. The project improves regional air quality, reduces emission of greenhouse gases, controls and utilizes landfill methane, and supplies electric power to the local grid. The technical and economic feasibility of pre-treating Boului landfill gas with Acrion`s new landfill gas cleanup technology prior to combustion for power production us attractive. Acrion`s gas treatment provides several benefits to the currently structured electric generation project: (1) increase energy density of landfill gas from about 500 Btu/ft{sup 3} to about 750 Btu/ft{sup 3}; (2) remove contaminants from landfill gas to prolong engine life and reduce maintenance;; (3) recover carbon dioxide from landfill gas for Romanian markets; and (4) reduce emission of greenhouse gases methane and carbon dioxide. Greenhouse gas emissions reduction attributable to successful implementation of the landfill gas to electric project, with commercial liquid CO{sub 2} recovery, is estimated to be 53 million metric tons of CO{sub 2} equivalent of its 15 year life.

  3. Modeling the effects of vegetation on methane oxidation and emissions through soil landfill final covers across different climates.

    Science.gov (United States)

    Abichou, Tarek; Kormi, Tarek; Yuan, Lei; Johnson, Terry; Francisco, Escobar

    2015-02-01

    Plant roots are reported to enhance the aeration of soil by creating secondary macropores which improve the diffusion of oxygen into soil as well as the supply of methane to bacteria. Therefore, methane oxidation can be improved considerably by the soil structuring processes of vegetation, along with the increase of organic biomass in the soil associated with plant roots. This study consisted of using a numerical model that combines flow of water and heat with gas transport and oxidation in soils, to simulate methane emission and oxidation through simulated vegetated and non-vegetated landfill covers under different climatic conditions. Different simulations were performed using different methane loading flux (5-200 g m(-2) d(-1)) as the bottom boundary. The lowest modeled surface emissions were always obtained with vegetated soil covers for all simulated climates. The largest differences in simulated surface emissions between the vegetated and non-vegetated scenarios occur during the growing season. Higher average yearly percent oxidation was obtained in simulations with vegetated soil covers as compared to non-vegetated scenario. The modeled effects of vegetation on methane surface emissions and percent oxidation were attributed to two separate mechanisms: (1) increase in methane oxidation associated with the change of the physical properties of the upper vegetative layer and (2) increase in organic matter associated with vegetated soil layers. Finally, correlations between percent oxidation and methane loading into simulated vegetated and non-vegetated covers were proposed to allow decision makers to compare vegetated versus non-vegetated soil landfill covers. These results were obtained using a modeling study with several simplifying assumptions that do not capture the complexities of vegetated soils under field conditions.

  4. Field-scale tracking of active methane-oxidizing communities in a landfill-cover soil reveals spatial and seasonal variability

    NARCIS (Netherlands)

    Henneberger, R.; Chiri, E.; Bodelier, P.L.E.; Frenzel, P.; Luke, C.; Schroth, M.H.

    2015-01-01

    Aerobic methane-oxidizing bacteria (MOB) in soils mitigate methane (CH4) emissions. We assessed spatial and seasonal differences in active MOB communities in a landfill cover soil characterized by highly variable environmental conditions. Field-based measurements of CH4 oxidation activity and stable

  5. FUEL CELL OPERATION ON LANDFILL GAS AT PENROSE POWER STATION

    Science.gov (United States)

    This demonstration test successfully demonstrated operation of a commercial phosphoric acid fuel cell (FC) on landfill gas (LG) at the Penrose Power Station in Sun Valley, CA. Demonstration output included operation up to 137 kW; 37.1% efficiency at 120 kW; exceptionally low sec...

  6. Mitigation of methane emissions in a pilot-scale biocover system at the av miljø landfill, denmark: system design and gas distribution

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Skov, B.; Cassini, Filippo;

    2013-01-01

    Greenhouse gas mitigation at landfills by methane oxidation in engineered biocover systems is believed to be a cost effective technology but so far a full quantitative evaluation of the efficiency of the technology in full scale has only been carried out in a few cases. A third generation semi......-passive biocover system was constructed at the AV Miljø landfill. The biocover is fed by landfill gas pumped out of three leachate wells. An innovative gas distribution system was used to overcome the often observed overloaded hot spot areas resulting from uneven gas distribution to the active methane oxidation...... layer. Performed screening of methane and carbon dioxide concentration at the surface of the biocover showed homogenous distributions indicating an even gas distribution. This was supported by result from a performed tracer test where the compound HFC-134a was added to the gas inlet over a 12 day period...

  7. Microbial methane oxidation as a means of treating residual emissions during passive landfill venting; Mikrobielle Methanoxidation zur Behandlung von Rest-Emissionen bei der passiven Deponieentgasung

    Energy Technology Data Exchange (ETDEWEB)

    Gebert, J.; Groengroeft, A. [Hamburg Univ. (Germany). Inst. fuer Bodenkunde

    2005-07-01

    Microbial oxidation of methane in biofilters provides a way of treating residual or lean gas emissions from landfills whose methane content and quantities no longer meet the minimum requirements for gas utilisation or flaring. In this process methane is oxidised by methanotropic bacteria in the presence of atmospheric oxygen. This yields carbon dioxide, which is less hazardous on account of its nonflammability and lower global warming potential. This contribution describes the methane degradation performance and performance governing factors of a biofilter which was exposed to a passive gas flow and observed over a period of two years.

  8. Pretreated Landfill Gas Conversion Process via a Catalytic Membrane Reactor for Renewable Combined Fuel Cell-Power Generation

    Directory of Open Access Journals (Sweden)

    Zoe Ziaka

    2013-01-01

    Full Text Available A new landfill gas-based reforming catalytic processing system for the conversion of gaseous hydrocarbons, such as incoming methane to hydrogen and carbon oxide mixtures, is described and analyzed. The exit synthesis gas (syn-gas is fed to power effectively high-temperature fuel cells such as SOFC types for combined efficient electricity generation. The current research work is also referred on the description and design aspects of permreactors (permeable reformers carrying the same type of landfill gas-reforming reactions. Membrane reactors is a new technology that can be applied efficiently in such systems. Membrane reactors seem to perform better than the nonmembrane traditional reactors. The aim of this research includes turnkey system and process development for the landfill-based power generation and fuel cell industries. Also, a discussion of the efficient utilization of landfill and waste type resources for combined green-type/renewable power generation with increased processing capacity and efficiency via fuel cell systems is taking place. Moreover, pollution reduction is an additional design consideration in the current catalytic processors fuel cell cycles.

  9. Life-cycle-assessment of fuel-cells-based landfill-gas energy conversion technologies

    Science.gov (United States)

    Lunghi, P.; Bove, R.; Desideri, U.

    Landfill-gas (LFG) is produced as result of the biological reaction of municipal solid waste (MSW). This gas contains about 50% of methane, therefore it cannot be released into the atmosphere as it is because of its greenhouse effect consequences. The high percentage of methane encouraged researchers to find solutions to recover the related energy content for electric energy production. The most common technologies used at the present time are internal combustion reciprocating engines and gas turbines. High conversion efficiency guaranteed by fuel cells (FCs) enable to enhance the energy recovery process and to reduce emissions to air, such as NO x and CO. In any case, in order to investigate the environmental advantages associated with the electric energy generation using fuel cells, it is imperative to consider the whole "life cycle" of the system, "from cradle-to-grave". In fact, fuel cells are considered to be zero-emission devices, but, for example, emissions associated with their manufacture or for hydrogen production must be considered in order to evaluate all impacts on the environment. In the present work a molten carbonate fuel cell (MCFC) system for LFG recovery is considered and a life cycle assessment (LCA) is conducted for an evaluation of environmental consequences and to provide a guide for further environmental impact reduction.

  10. [Uncertainty analysis for evaluating methane emissions from municipal solid waste landfill in Beijing].

    Science.gov (United States)

    Chen, Cao-Cao; Liu, Chun-Lan; Li, Zheng; Wang, Hai-Hua; Zhang, Yan; Wang, Lu

    2012-01-01

    In order to improve the accurate evaluation of CH4 emissions from municipal solid waste landfill in Beijing, FOD-model and Monte Carlo method were conducted. Based on local data, national data and experts' experience, the uncertainty of FOD-model and parameters' sensitivity analysis were identified. And we quantified effect of various parameters on model output. The results showed that 95% probability distribution range of CH4 emission from landfill was (11.8-19.76) x 10(4) t x a(-1) in Beijing. The mean value was 15.58 x 10(4)t x a(-1) with uncertainty range of -24.26% - 26.83%. Among all the parameters MCF (after 2000) showed the greatest impact on landfill CH4 emission in 2008, and its contribution to the uncertainty of emission result was 41.4%. This research can improve the assessment accuracy and quality on CH4 emission from municipal solid waste landfill in Beijing, as providing scientific basis to improve the landfill greenhouse gas inventory and data collection.

  11. Mitigation of methane emission from Fakse landfill using a biowindow system

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Fredenslund, Anders Michael; Chanton, Jeffrey;

    2011-01-01

    oxidation of CH4. A full scale biocover system to reduce CH4 emissions was installed at Fakse landfill, Denmark using composted yard waste as active material supporting CH4 oxidation. Ten biowindows with a total area of 5000m2 were integrated into the existing cover at the 12ha site. To increase CH4 load...

  12. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover.

    Science.gov (United States)

    Kim, Gil Won; Ho, Adrian; Kim, Pil Joo; Kim, Sang Yoon

    2016-09-01

    The landfilling of municipal solid waste is a significant source of atmospheric methane (CH4), contributing up to 20% of total anthropogenic CH4 emissions. The evapotranspiration (ET) cover system, an alternative final cover system in waste landfills, has been considered to be a promising way to mitigate CH4 emissions, as well as to prevent water infiltration using vegetation on landfill cover soils. In our previous studies, bottom ash from coal-fired power plants was selected among several industrial residues (blast furnace slag, bottom ash, construction waste, steel manufacture slag, stone powder sludge, and waste gypsum) as the best additive for ET cover systems, with the highest mechanical performance achieved for a 35% (wtwt(-1)) bottom ash content in soil. In this study, to evaluate the field applicability of bottom ash mixed soil as ET cover, four sets of lysimeters (height 1.2m×width 2m×length 6m) were constructed in 2007, and four different treatments were installed: (i) soil+bottom ash (35% wtwt(-1)) (SB); (ii) soil+compost (2% wtwt(-1), approximately corresponding to 40Mgha(-1) in arable field scale) (SC); (iii) soil+bottom ash+compost (SBC); and (iv) soil only as the control (S). The effects of bottom ash mixing in ET cover soil on CH4 oxidation potential and vegetation growth were evaluated in a pilot ET cover system in the 5th year after installation by pilot experiments using the treatments. Our results showed that soil properties were significantly improved by bottom ash mixing, resulting in higher plant growth. Bottom ash addition significantly increased the CH4 oxidation potential of the ET cover soil, mainly due to improved organic matter and available copper concentration, enhancing methanotrophic abundances in soil amended with bottom ash. Conclusively, bottom ash could be a good alternative as a soil additive in the ET cover system to improve vegetation growth and mitigate CH4 emission impact in the waste landfill system. PMID:27067424

  13. Field-scale tracking of active methane-oxidizing communities in a landfill cover soil reveals spatial and seasonal variability.

    Science.gov (United States)

    Henneberger, Ruth; Chiri, Eleonora; Bodelier, Paul E L; Frenzel, Peter; Lüke, Claudia; Schroth, Martin H

    2015-05-01

    Aerobic methane-oxidizing bacteria (MOB) in soils mitigate methane (CH4 ) emissions. We assessed spatial and seasonal differences in active MOB communities in a landfill cover soil characterized by highly variable environmental conditions. Field-based measurements of CH4 oxidation activity and stable-isotope probing of polar lipid-derived fatty acids (PLFA-SIP) were complemented by microarray analysis of pmoA genes and transcripts, linking diversity and function at the field scale. In situ CH4 oxidation rates varied between sites and were generally one order of magnitude lower in winter compared with summer. Results from PLFA-SIP and pmoA transcripts were largely congruent, revealing distinct spatial and seasonal clustering. Overall, active MOB communities were highly diverse. Type Ia MOB, specifically Methylomonas and Methylobacter, were key drivers for CH4 oxidation, particularly at a high-activity site. Type II MOB were mainly active at a site showing substantial fluctuations in CH4 loading and soil moisture content. Notably, Upland Soil Cluster-gamma-related pmoA transcripts were also detected, indicating concurrent oxidation of atmospheric CH4 . Spatial separation was less distinct in winter, with Methylobacter and uncultured MOB mediating CH4 oxidation. We propose that high diversity of active MOB communities in this soil is promoted by high variability in environmental conditions, facilitating substantial removal of CH4 generated in the waste body.

  14. Spatial patterns of methane oxidation and methanotrophic diversity in landfill cover soils of southern China.

    Science.gov (United States)

    Chi, Zi-Fang; Lu, Wen-Jing; Wang, Hong-Tao

    2015-04-01

    Aerobic CH4 oxidation is an important CH4 sink in landfills. To investigate the distribution and community diversity of methanotrophs and link with soil characteristics and operational parameters (e.g., concentrations of O2, CH4), cover soil samples were collected at different locations and depths from the Mengzi semi-aerobic landfill (SAL) in Yunnan Province of southern China. Specific PCR followed by denaturing gradient gel electrophoresis and realtime PCR were used to examine methanotrophs in the landfill cover soils. The results showed that different locations did harbor distinct methanotroph communities. Methanotrophs were more abundant in areas near the venting pipes because of the higher O2 concentrations. The depth of 20-25 cm, where the ratio of the CH4 to O2 was within the range from 1.3 to 8.6, was more conducive to the growth of CH4-oxidizing bacteria. Type II methanotrophs dominated in all samples compared with Type I methanotrophs, as evidenced by the high ratio of Type II to Type I methanotrophic copy numbers (from 1.76 to 11.60). The total copy numbers of methanotrophs detected were similar to other ecosystems, although the CH4 concentration was much higher in SAL cover soil. Methylobacter and Methylocystis were the most abundant Type I and Type II methanotrophs genera, respectively, in the Mengzi SAL. The results suggested that SALs could provide a special environment with both high concentrations of CH4 and O2 for methanotrophs, especially around the vertical venting pipes. PMID:25341468

  15. Spatial patterns of methane oxidation and methanotrophic diversity in landfill cover soils of southern China.

    Science.gov (United States)

    Chi, Zi-Fang; Lu, Wen-Jing; Wang, Hong-Tao

    2015-04-01

    Aerobic CH4 oxidation is an important CH4 sink in landfills. To investigate the distribution and community diversity of methanotrophs and link with soil characteristics and operational parameters (e.g., concentrations of O2, CH4), cover soil samples were collected at different locations and depths from the Mengzi semi-aerobic landfill (SAL) in Yunnan Province of southern China. Specific PCR followed by denaturing gradient gel electrophoresis and realtime PCR were used to examine methanotrophs in the landfill cover soils. The results showed that different locations did harbor distinct methanotroph communities. Methanotrophs were more abundant in areas near the venting pipes because of the higher O2 concentrations. The depth of 20-25 cm, where the ratio of the CH4 to O2 was within the range from 1.3 to 8.6, was more conducive to the growth of CH4-oxidizing bacteria. Type II methanotrophs dominated in all samples compared with Type I methanotrophs, as evidenced by the high ratio of Type II to Type I methanotrophic copy numbers (from 1.76 to 11.60). The total copy numbers of methanotrophs detected were similar to other ecosystems, although the CH4 concentration was much higher in SAL cover soil. Methylobacter and Methylocystis were the most abundant Type I and Type II methanotrophs genera, respectively, in the Mengzi SAL. The results suggested that SALs could provide a special environment with both high concentrations of CH4 and O2 for methanotrophs, especially around the vertical venting pipes.

  16. Evaluation of aerated biofilter systems for microbial methane oxidation of poor landfill gas.

    Science.gov (United States)

    Haubrichs, R; Widmann, R

    2006-01-01

    In the long-term, landfills are producing landfill gas (LFG) with low calorific values. Therefore, the utilization of LFG in combined heat and power plants (CHP) is limited to a certain period of time. A feasible method for LFG treatment is microbial CH(4) oxidation. Different materials were tested in actively aerated lab-scale bio-filter systems with a volume of 0.167 m(3). The required oxygen for the microbial CH(4) oxidation was provided through perforated probes, which distributed ambient air into the filter material. Three air input levels were installed along the height of the filter, each of them adjusted to a particular flow rate. During the tests, stable degradation rates of around 28 g/(m(3) h) in a fine-grained compost material were observed at a CH(4) inlet concentration of 30% over a period of 148 days. Compared with passive (not aerated) tests, the CH(4) oxidation rate increased by a factor of 5.5. Therefore, the enhancement of active aeration on the microbial CH(4) oxidation was confirmed. At a O(2)/CH(4) ratio of 2.5, nearly 100% of the CH(4) load was decomposed. By lowering the ratio from 2.5 to 2, the efficiency fell to values from 88% to 92%. By varying the distribution to the three air input levels, the CH(4) oxidation process was spread more evenly over the filter volume.

  17. An integrated system for hydrogen and methane production during landfill leachate treatment

    International Nuclear Information System (INIS)

    'Full text': The patent-pending integrated waste-to-energy system comprises both a novel biohydrogen reactor with a gravity settler (Biohydrogenator, Hafez et al., 2009), followed by a second stage conventional anaerobic digester for the production of methane gas. This chemical-free process has been tested with a synthetic wastewater/leachate solution, and was operated at 37oC for 45 days. The biohydrogenator (system (A), stage 1) steadily produced hydrogen with no methane during the experimental period. The maximum hydrogen yield was 400 ml H2 / g glucose with an average of 345 ml H2 / g glucose, as compared to 141 and 118 ml H2 / g glucose for two consecutive runs done in parallel using a conventional continuously stirrer tank reactor (System (B)). The maximum and average hydrogen production rates in system (A) were 22 and 19 L H2/d, the maximum yield was 2.8 mol H2 /mol glucose higher than 1.6-2.3 mol H2 /mol glucose reported for continuous-flow reactors. The methane yield for the second stage in system (A) approached a maximum value of 426 ml CH4/ gCOD removed. (author)

  18. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: strong N2O hotspots at the working face.

    Science.gov (United States)

    Harborth, Peter; Fuss, Roland; Münnich, Kai; Flessa, Heinz; Fricke, Klaus

    2013-10-01

    Mechanical biological treatment (MBT) is an effective technique, which removes organic carbon from municipal solid waste (MSW) prior to deposition. Thereby, methane (CH4) production in the landfill is strongly mitigated. However, direct measurements of greenhouse gas emissions from full-scale MBT landfills have not been conducted so far. Thus, CH4 and nitrous oxide (N2O) emissions from a German MBT landfill in operation as well as their concentrations in the landfill gas (LFG) were measured. High N2O emissions of 20-200gCO2eq.m(-2)h(-1) magnitude (up to 428mgNm(-2)h(-1)) were observed within 20m of the working face. CH4 emissions were highest at the landfill zone located at a distance of 30-40m from the working face, where they reached about 10gCO2eq.m(-2)h(-1). The MBT material in this area has been deposited several weeks earlier. Maximum LFG concentration for N2O was 24.000ppmv in material below the emission hotspot. At a depth of 50cm from the landfill surface a strong negative correlation between N2O and CH4 concentrations was observed. From this and from the distribution pattern of extractable ammonium, nitrite, and nitrate it has been concluded that strong N2O production is associated with nitrification activity and the occurrence of nitrite and nitrate, which is initiated by oxygen input during waste deposition. Therefore, CH4 mitigation measures, which often employ aeration, could result in a net increase of GHG emissions due to increased N2O emissions, especially at MBT landfills. PMID:23453435

  19. Methane oxidation potential of boreal landfill cover materials: The governing factors and enhancement by nutrient manipulation.

    Science.gov (United States)

    Maanoja, Susanna T; Rintala, Jukka A

    2015-12-01

    Methanotrophs inhabiting landfill covers are in a crucial role in mitigating CH4 emissions, but the characteristics of the cover material or ambient temperature do not always enable the maximal CH4 oxidation potential (MOP). This study aimed at identifying the factors governing MOPs of different materials used for constructing biocovers and other cover structures. We also tested whether the activity of methanotrophs could be enhanced at cold temperature (4 and 12°C) by improving the nutrient content (NO3(-), PO4(3-), trace elements) of the cover material. Compost samples from biocovers designed to support CH4 oxidation were exhibiting the highest MOPs (4.16 μmol CH4 g dw(-1) h(-1)), but also the soil samples collected from other cover structures were oxidising CH4 (0.41 μmol CH4 g dw(-1) h(-1)). The best predictors for the MOPs were the NO3(-) content and activity of heterotrophic bacteria at 72.8%, which were higher in the compost samples than in the soil samples. The depletion of NO3(-) from the landfill cover material limiting the activity of methanotrophs could not be confirmed by the nutrient manipulation assay at 4°C as the addition of nitrogen decreased the MOPs from 0.090 μmol CH4 g dw(-1) h(-1) to 0.096 μmol CH4 g dw(-1)h(-1)) suggesting that this was attributable to stimulation of the enzymatic activity of the psychrotolerant methanotrophs. PMID:26298483

  20. Methane oxidation potential of boreal landfill cover materials: The governing factors and enhancement by nutrient manipulation.

    Science.gov (United States)

    Maanoja, Susanna T; Rintala, Jukka A

    2015-12-01

    Methanotrophs inhabiting landfill covers are in a crucial role in mitigating CH4 emissions, but the characteristics of the cover material or ambient temperature do not always enable the maximal CH4 oxidation potential (MOP). This study aimed at identifying the factors governing MOPs of different materials used for constructing biocovers and other cover structures. We also tested whether the activity of methanotrophs could be enhanced at cold temperature (4 and 12°C) by improving the nutrient content (NO3(-), PO4(3-), trace elements) of the cover material. Compost samples from biocovers designed to support CH4 oxidation were exhibiting the highest MOPs (4.16 μmol CH4 g dw(-1) h(-1)), but also the soil samples collected from other cover structures were oxidising CH4 (0.41 μmol CH4 g dw(-1) h(-1)). The best predictors for the MOPs were the NO3(-) content and activity of heterotrophic bacteria at 72.8%, which were higher in the compost samples than in the soil samples. The depletion of NO3(-) from the landfill cover material limiting the activity of methanotrophs could not be confirmed by the nutrient manipulation assay at 4°C as the addition of nitrogen decreased the MOPs from 0.090 μmol CH4 g dw(-1) h(-1) to 0.096 μmol CH4 g dw(-1)h(-1)) suggesting that this was attributable to stimulation of the enzymatic activity of the psychrotolerant methanotrophs.

  1. Capacity for Methane Oxidation in Landfill Cover Soils Measured in Laboratory-Scale Soil Microcosms

    OpenAIRE

    Kightley, D.; Nedwell, D. B.; Cooper, M.

    1995-01-01

    Laboratory-scale soil microcosms containing different soils were permeated with CH(inf4) for up to 6 months to investigate their capacity to develop a methanotrophic community. Methane emissions were monitored continuously until steady states were established. The porous, coarse sand soil developed the greatest methanotrophic capacity (10.4 mol of CH(inf4) (middot) m(sup-2) (middot) day(sup-1)), the greatest yet reported in the literature. Vertical profiles of O(inf2), CH(inf4), and methanotr...

  2. Biodegradation of Methane and Halocarbons in Simulated Landfill Biocover Systems Containing Compost Materials

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Pedersen, Gitte Bukh; Costa, G.;

    2009-01-01

    The attenuation potential of methane (CH4) and of selected volatile organic Compounds (VOCs) was compared in four types of compost materials using dynamic flow column experiments over a period of 255 d. Garden waste compost mixed with wood chips showed the highest steady-state CH4 oxidation rate...... (161 g m(-2) d(-1)), followed by a commercial compost product Supermuld (110 g m(-2) d(-1)). In the column containing the highest fraction of compost (compost/sand mixed in 1: 1), CH4 oxidation declined significantly during the period of operation, probably due to clogging by formation of exopolymeric...... substances. After 40 d of operation, CH, production was observed. All the VOCs tested were degraded. CFC-11 (CCl3F) and HCFC-21 (CCl2FH) were anaerobically degraded by reductive dechlonnation, generating HCFC-31 (CClFH2) and HFC-41 (CFH3), which were both aerobically degraded in the oxic portion...

  3. TESTING OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS: GROTON LANDFILL

    Science.gov (United States)

    The report summarizes the results of follow-on tests following a four-phase EPA program. The environmental impact of widespread use of this concept would be a significant reduction of global warming gas emissions (methane and carbon dioxide). The follow-on testing, conducted by N...

  4. Assessment of zonal distribution of methane on MSW landfills in northern regions for its usage in local power engineering

    OpenAIRE

    A.N. Chusov; V.I. Maslikov; D.V. Molodtsov; V.V. Zhazhkov; O.A. Riabuokhin

    2015-01-01

    Municipal solid waste (MSW) landfills located in regions of Russia with low temperatures and relatively low rainfall averages are considered unpromising in terms of their biogas potential; however, these claims have not been substantiated. Assessment of the biogas potential of such landfills requires special field research for analyzing biogas composition and emission speed, which could define the processes taking place inside a landfill. We should note that the use of mathematical models tha...

  5. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: Strong N{sub 2}O hotspots at the working face

    Energy Technology Data Exchange (ETDEWEB)

    Harborth, Peter, E-mail: p.harborth@tu-bs.de [Department of Waste and Resource Management, Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, Braunschweig (Germany); Fuß, Roland [Institute of Climate-Smart Agriculture, Johann Heinrich von Thünen Institute, Braunschweig (Germany); Münnich, Kai [Department of Waste and Resource Management, Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, Braunschweig (Germany); Flessa, Heinz [Institute of Climate-Smart Agriculture, Johann Heinrich von Thünen Institute, Braunschweig (Germany); Fricke, Klaus [Department of Waste and Resource Management, Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, Braunschweig (Germany)

    2013-10-15

    Highlights: ► First measurements of N{sub 2}O and CH{sub 4} emissions from an MBT landfill. ► High N{sub 2}O emissions from recently deposited material. ► N{sub 2}O emissions associated with aeration and the occurrence of nitrite and nitrate. ► Strong negative correlation between CH{sub 4} and N{sub 2}O production activity. - Abstract: Mechanical biological treatment (MBT) is an effective technique, which removes organic carbon from municipal solid waste (MSW) prior to deposition. Thereby, methane (CH{sub 4}) production in the landfill is strongly mitigated. However, direct measurements of greenhouse gas emissions from full-scale MBT landfills have not been conducted so far. Thus, CH{sub 4} and nitrous oxide (N{sub 2}O) emissions from a German MBT landfill in operation as well as their concentrations in the landfill gas (LFG) were measured. High N{sub 2}O emissions of 20–200 g CO{sub 2} eq. m{sup −2} h{sup −1} magnitude (up to 428 mg N m{sup −2} h{sup −1}) were observed within 20 m of the working face. CH{sub 4} emissions were highest at the landfill zone located at a distance of 30–40 m from the working face, where they reached about 10 g CO{sub 2} eq. m{sup −2} h{sup −1}. The MBT material in this area has been deposited several weeks earlier. Maximum LFG concentration for N{sub 2}O was 24.000 ppmv in material below the emission hotspot. At a depth of 50 cm from the landfill surface a strong negative correlation between N{sub 2}O and CH{sub 4} concentrations was observed. From this and from the distribution pattern of extractable ammonium, nitrite, and nitrate it has been concluded that strong N{sub 2}O production is associated with nitrification activity and the occurrence of nitrite and nitrate, which is initiated by oxygen input during waste deposition. Therefore, CH{sub 4} mitigation measures, which often employ aeration, could result in a net increase of GHG emissions due to increased N{sub 2}O emissions, especially at MBT landfills.

  6. Initial results of detected methane emissions from landfills in the Los Angeles Basin during the COMEX campaign by the Methane Airborne MAPper (MAMAP) instrument and a greenhouse gas in-situ analyser

    Science.gov (United States)

    Krautwurst, Sven; Gerilowski, Konstantin; Kolyer, Richard; Jonsson, Haflidi; Krings, Thomas; Horstjann, Markus; Leifer, Ira; Vigil, Sam; Buchwitz, Michael; Schüttemeyer, Dirk; Fladeland, Matthew M.; Burrows, John P.; Bovensmann, Heinrich

    2015-04-01

    Methane (CH4) is the second most important anthropogenic greenhouse gas beside carbon dioxide (CO2). Significant contributors to the global methane budget are fugitive emissions from landfills. Due to the growing world population, it is expected that the amount of waste and, therefore, waste disposal sites will increase in number and size in parts of the world, often adjacent growing megacities. Besides bottom-up modelling, a variety of ground based methods (e.g., flux chambers, trace gases, radial plume mapping, etc.) have been used to estimate (top-down) these fugitive emissions. Because landfills usually are large, sometimes with significant topographic relief, vary temporally, and leak/emit heterogeneously across their surface area, assessing total emission strength by ground-based techniques is often difficult. In this work, we show how airborne based remote sensing measurements of the column-averaged dry air mole fraction of CH4 can be utilized to estimate fugitive emissions from landfills in an urban environment by a mass balance approach. Subsequently, these emission rates are compared to airborne in-situ horizontal cross section measurements of CH4 taken within the planetary boundary layer (PBL) upwind and downwind of the landfill at different altitudes immediately after the remote sensing measurements were finished. Additional necessary parameters (e.g., wind direction, wind speed, aerosols, dew point temperature, etc.) for the data inversion are provided by a standard instrumentation suite for atmospheric measurements aboard the aircraft, and nearby ground-based weather stations. These measurements were part of the CO2 and Methane EXperiment (COMEX), which was executed during the summer 2014 in California and was co-funded by the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). The remote sensing measurements were taken by the Methane Airborne MAPper (MAMAP) developed and operated by the University of Bremen and

  7. Observations from using models to fit the gas production of varying volume test cells and landfills.

    Science.gov (United States)

    Lamborn, Julia

    2012-12-01

    Landfill operators are looking for more accurate models to predict waste degradation and landfill gas production. The simple microbial growth and decay models, whilst being easy to use, have been shown to be inaccurate. Many of the newer and more complex (component) models are highly parameter hungry and many of the required parameters have not been collected or measured at full-scale landfills. This paper compares the results of using different models (LANDGEM, HBM, and two Monod models developed by the author) to fit the gas production of laboratory scale, field test cell and full-scale landfills and discusses some observations that can be made regarding the scalability of gas generation rates. The comparison of these results show that the fast degradation rate that occurs at laboratory scale is not replicated at field-test cell and full-scale landfills. At small scale, all the models predict a slower rate of gas generation than actually occurs. At field test cell and full-scale a number of models predict a faster gas generation than actually occurs. Areas for future work have been identified, which include investigations into the capture efficiency of gas extraction systems and into the parameter sensitivity and identification of the critical parameters for field-test cell and full-scale landfill predication.

  8. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS - PHASE I FINAL REPORT: CONCEPTUAL STUDY

    Science.gov (United States)

    The report discusses results of a conceptual design, cost, and evaluation study of energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The conceptual design of the fuel cell energy recovery system is described, and its economic and environm...

  9. Superficial methane emissions from a landfill in Merida, Yucatan, Mexico; Emisiones superficiales de metano en un relleno sanitario en Merida, Yucatan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sauri-Riancho, Maria Rosa [Universidad Autonoma de Yucatan, Yucatan (Mexico)]. E-mail: sriancho@uady.mx; Stentiford, Edward I. [University of Leeds (UK)]. E-mail: e.i.stentiford@leeds.ac.uk; Gamboa-Marrufo, Mauricio; Reza-Bacelis, Gabriela; Cahuich-Poot, Nayla; Mendez-Novelo, Roger [Universidad Autonoma de Yucatan, Yucatan (Mexico)]. E-mails: gmarrufo@uady.mx; gabriela.reza@proactiva.com.mx; nayre63@hotmail.com; mnovelo@uady.mx

    2013-07-15

    On worldwide scale, one of the most important anthropogenic methane sources is landfill disposal for solid wastes. The main goal of this work was to quantify methane emissions at one landfill built in Merida, Mexico. This site had venting wells by which a passive control for biogas movement was exerted. At the venting wells, methane concentrations were measured monthly during a 6 months period. Methane surface emission rate was estimated with the close chamber technique. Obtained results indicated that there are both spatial and seasonal variations in biogas composition. The average methane value during the monitoring period was 21.9% (12.7 to 32.5 V/V) and the surface flow rate was in the range of 0 to 6,004 g CH{sub 4} m-2 d-1, with an average value of 1,480 g CH{sub 4} m-2 d-1, which is a high value in respect to these reported in publications. [Spanish] Entre las fuentes antropogenicas mas importantes de metano a escala mundial se encuentra la disposicion final de los residuos solidos. El objetivo de este trabajo fue cuantificar las emisiones de metano provenientes de un relleno sanitario en Merida, Mexico, en el que el movimiento del biogas se controlaba pasivamente utilizando pozos de venteo. Las concentraciones de metano se midieron mensualmente en los pozos de venteo del sitio a lo largo de un periodo de 6 meses. La tasa de emision superficial de metano se determino utilizando la tecnica de camara cerrada. Los resultados indicaron que existen variaciones considerables tanto espaciales como estacionales de la composicion del biogas proveniente de los pozos de venteo con un promedio de concentracion de metano en el sitio, durante todo el periodo de monitoreo, de 21.9% (12.7 a 32.5 V/V). Los flujos superficiales de gas medidos en diversos puntos a lo largo de la superficie del relleno sanitario tuvieron un promedio de 1,480 g CH{sub 4} m-2 d-1, lo que se considero un valor muy alto cuando se comparo con la informacion hallada en la literatura. El intervalo

  10. Microbial reduction of methane emissions. Subproject 1: Development of a biofilter system for the degradation of methane, odours and trace gases for actively vented landfills. Subproject 2: Development of a biofilter system for the degradation of methane, odours and trace gases for passively vented landfills. Subproject 3: Planning, development and realisation of medium and large scale biofilter plants at active and passive gas drainage systems. Final report; Mikrobielle Verminderung von Methanemissionen. Teilvorhaben 1: Entwicklung eines Biofilterverfahrens zum Abbau von Methan, Geruechen und Spurengasen bei der aktiven Deponieentgasung. Teilvorhaben 2: Entwicklung eines Biofilterverfahrens zum Abbau von Methan, Geruechen und Spurengasen bei der passiven Deponieentgasung. Teilvorhaben 3: Planung, Entwicklung und Realisation halb- und grosstechnischer Biofilteranlagen an aktiven und passiven Entgasungssystemen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stegmann, R.; Streese, J.; Dammann, Bernd; Gebert, J.; Groengroeft, A.; Miehlich, G.; Schulze, H.; Berndt, M.

    2003-07-01

    Old landfills may emit considerable amounts of methane, carbon dioxide and trace gases. However, gas flow rate and methane content are usually too low for energetic utilization or flaring of the landfill gas. Microbial degradation is considered an alternative treatment for the reduction of methane emissions from those sites. The project aimed in the investigation of the suitability of actively vented biofilters for this purpose and the collection of operational experience and dimensioning data for large scale applications of the process. Different experimental plants were operated in laboratory scale (filter volume: 60 L) and container scale (filter volume: 4 m{sup 3}). The laboratory scale plant was operated with synthetic methane, whereas the container scale plant was set up at an old landfill and operated with real landfill gas. For each plant, the gas was diluted with ambient air prior to feeding into the closed biofilters, thus sufficient oxygen for methane oxidation was present throughout the filter material. At first, fine-grained compost as biofilter material was investigated. A biofilter unit of 15 m{sup 3} size containing porous clay pellets as filter material was integrated into the recultivation layer of a Hamburg harbour sludge landfill. The parameters of landfill gas emission as well as the abiotic parameters of biofilter operation were monitored by a high-resolution automatic data collection system and gas distribution and gas emissions via the biofilter surface measured regularly. In addition, microbiological laboratory studies and studies concerning physical questions of biofilter operations were conducted. (orig.)

  11. Assessment of methane production from domestic waste landfill in China%中国城市生活垃圾填埋气甲烷产量评估

    Institute of Scientific and Technical Information of China (English)

    卜美东; 张田

    2012-01-01

    Based on the survey on quantity, characteristics and changing trend of municipal solid wastes, the methane emission from landfill in China from 2005 to 2009 is calculated by IPCC model in this paper. At present, the annual landfill methane gas production is beyond 5 billion cubic metres, which could produce about 20 TWh electricity powers, if fully used, The research indicated that densely populated and economically developed areas often with higher methane production, showing a decreasing trend from the east to west of China geographically. The potentials of alternative energy are very considerable in some regions. The landfill gas recycling projects can not only effectively reduce the greenhouse gas emissions, improve air quality,but also can yield substantial clean energy resources and economic benefits. And then realize the win-win of environmental protection and energy demand.%研究了国内城市生活垃圾清运量、填埋量、构成特点及变化趋势,采用联合国政府间气候变化委员会(IPCC)推荐的用于估算填埋气甲烷产量的IPCC缺省法,对2005~2009年中国城市生活垃圾填埋气甲烷产量进行了初步评估;目前我国年垃圾填埋气甲烷产量已超过50亿m3,可转化为电能200亿kwh左右,人口密度越大、经济越发达地区其填埋气产量越高,在地域上呈现由东到西递减趋势.开发填埋气回收利用工程,不仅能有效地控制温室气体甲烷的排放,而且通过净化后还可获得资源量可观的清洁能源,实现能源与环保的双赢.

  12. Landfill leachate treatment in assisted landfill bioreactor

    Institute of Scientific and Technical Information of China (English)

    HE Pin-jing; QU Xian; SHAO Li-ming; LEE Duu-jong

    2006-01-01

    Landfill is the major disposal route of municipal solid waste(MSW) in most Asian countries. Leachate from landfill presents a strong wastewater that needs intensive treatment before discharge. Direct recycling was proposed as an effective alternative for leachate treatment by taking the landfill as a bioreactor. This process was proved not only considerably reducing the pollution potential of leachate, but also enhancing organic degradation in the landfill. However, as this paper shows, although direct leachate recycling was effective in landfilled MSW with low food waste fraction (3.5%, w/w), it failed in MSW containing 54% food waste, as normally noted in Asian countries. The initial acid stuck would inhibit methanogenesis to build up, hence strong leachate was yielded from landfill to threaten the quality of receiving water body. We demonstrated the feasibility to use an assisted bioreactor landfill, with a well-decomposed refuse layer as ex-situ anaerobic digester to reducing COD loading in leachate. By doing so, the refuse in simulated landfill column (2.3 m high) could be stabilized in 30 weeks while the COD in leachate reduced by 95%(61000 mg/L to 3000 mg/L). Meanwhile, the biogas production was considerably enhanced, signaling by the much greater amount and much higher methane content in the biogas.

  13. Landfill leachate treatment in assisted landfill bioreactor.

    Science.gov (United States)

    He, Pin-Jing; Qu, Xian; Shao, Li-Ming; Lee, Duu-Jong

    2006-01-01

    Landfill is the major disposal route of municipal solid waste (MSW) in most Asian countries. Leachate from landfill presents a strong wastewater that needs intensive treatment before discharge. Direct recycling was proposed as an effective alternative for leachate treatment by taking the landfill as a bioreactor. This process was proved not only considerably reducing the pollution potential of leachate, but also enhancing organic degradation in the landfill. However, as this paper shows, although direct leachate recycling was effective in landfilled MSW with low food waste fraction (3.5%, w/w), it failed in MSW containing 54% food waste, as normally noted in Asian countries. The initial acid stuck would inhibit methanogenesis to build up, hence strong leachate was yielded from landfill to threaten the quality of receiving water body. We demonstrated the feasibility to use an assisted bioreactor landfill, with a well-decomposed refuse layer as ex-situ anaerobic digester to reducing COD loading in leachate. By doing so, the refuse in simulated landfill column (2.3 m high) could be stabilized in 30 weeks while the COD in leachate reduced by 95% (61000 mg/L to 3000 mg/L). Meanwhile, the biogas production was considerably enhanced, signaling by the much greater amount and much higher methane content in the biogas. PMID:20050569

  14. Research Progress on Methanotrophic Bacteria in Landfills and the Reduction of Methane Emission%垃圾填埋场甲烷氧化菌及甲烷减排的研究进展

    Institute of Scientific and Technical Information of China (English)

    王晓琳; 曹爱新; 周传斌; 赵恺凝; 赵国柱

    2016-01-01

    As the main source of anthropogenic methane emission,landfills globally produce 35-69 Tg methane per year. The technology of reducing the methane emission in landfills has become a hot topic at present. Methanotrophic bacteria decomposing methane are the important biological collection to reduce atmospheric methane emissions,which is of significance in keeping the balance of the methane concentration in the atmosphere. Starting from the taxonomy and characteristics of methanotrophic bacteria,and the mechanism of its oxidizing methane, we summarized the latest research progress on the methods of studying diversity,factors affecting the activities of methanotrophic bacteria in landfills,and applications of them in the biological reduction of methane emission. Based on the prior researches,the issues in current studies of methanotrophic bacteria are also discussed. We propose comprehensive measures of utilizing the complex microbial agents of methanotrophic bacteria in landfills,providing a new thought in the research and application of reducing methane emission in landfills.%垃圾填埋场是全球最重要的人为甲烷排放源之一,其全球年甲烷释放量为35-69 Tg,垃圾填埋场甲烷减排是目前全球温室气体研究的热点。甲烷氧化菌能够氧化分解甲烷,作为减少大气甲烷排放的重要生物汇,对保持大气中甲烷浓度的平衡具有重要意义。从甲烷氧化菌的类型及其特征、甲烷氧化机理着手,介绍了多样性研究方法、填埋场中甲烷氧化菌的活性影响因素及甲烷生物减排应用等最新研究进展。在综述前人研究的基础上,探讨了目前研究的不足,提出了利用甲烷氧化菌复合微生物菌剂等综合处理措施,旨为垃圾填埋场甲烷减排的研究和应用提供新的思路。

  15. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS: PHASE II. PRETREATMENT SYSTEM PERFORMANCE MEASUREMENT

    Science.gov (United States)

    The report describes Phase II of a demonstration of the utilization of commercial phosphoric acid fuel cells to recover energy from landfill gas. This phase consisted primarily of the construction and testing of a Gas Pretreatment Unit (GPU) whose function is to remove those impu...

  16. Methane emissions from sanitary landfills in Italy. Evaluation and forecasting; Le emissioni di metano dalle discariche di rifiuti in Italia: stima e scenari futuri

    Energy Technology Data Exchange (ETDEWEB)

    Colombari, F.; De Lauretis, R.; De Stefanis, P.; Gaudioso, D. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1998-07-01

    The report estimates the methane emissions from landfills by three different methodologies derived from IPCC experiences. A detailed evaluation of solid waste production (MSW) composition is shown in order to update results obtained from old researches. Finally it shows a prediction of MSW production from 1996 to 2011 in different scenarios related to MSW management strategies. [Italian] Il rapporto analizza la stima della quantita' di metano generato dalle discariche di rifiuti utilizzando tre differenti metodologie di calcolo, derivanti dalle conoscenze scientifiche dell'IPCC, dopo aver approfondito la composizione dei rifiuti. Riporta infine per il periodo 1996-2011, la stima della produzione e dello smaltimento dei rifiuti e la predisposizione di diversi scenari futuri di emissione del metano, relativi a differenti scelte all'interno del sistema di gestione dei rifiuti.

  17. ELECTRIC POWER GENERATION USING A PHOSPHORIC ACID FUEL CELL ON A MUNICIPAL SOLID WASTE LANDFILL GAS STREAM

    Science.gov (United States)

    The report gives results of tests to verify the performance of a landfill gas pretreatment unit (GPU) and a phorsphoric acid fuel cell system. The complete system removes contaminants from landfill gas and produces electricity for on-site use or connection to an electric grid. Th...

  18. Use of CFD for static sampling hood design: An example for methane flux assessment on landfill surfaces.

    Science.gov (United States)

    Lucernoni, Federico; Rizzotto, Matteo; Tapparo, Federica; Capelli, Laura; Sironi, Selena; Busini, Valentina

    2016-11-01

    The work focuses on the principles for the design of a specific static hood and on the definition of an optimal sampling procedure for the assessment of landfill gas (LFG) surface emissions. This is carried out by means of computational fluid dynamics (CFD) simulations to investigate the fluid dynamics conditions of the hood. The study proves that understanding the fluid dynamic conditions is fundamental in order to understand the sampling results and correctly interpret the measured concentration values by relating them to a suitable LFG emission model, and therefore to estimate emission rates. For this reason, CFD is a useful tool for the design and evaluation of sampling systems, among others, to verify the fundamental hypotheses on which the mass balance for the sampling hood is defined. The procedure here discussed, which is specific for the case of the investigated landfill, can be generalized to be applied also to different scenarios, where hood sampling is involved. PMID:27540761

  19. Catalytically upgraded landfill gas as a cost-effective alternative for fuel cells

    Science.gov (United States)

    Urban, W.; Lohmann, H.; Gómez, J. I. Salazar

    The potential use of landfill gas as feeding fuel for the so-called molten carbonate fuel cells (MCFC) imposes the need for new upgrading technologies in order to meet the much tougher feed gas specifications of this type of fuel cells in comparison to gas engines. Nevertheless, MCFC has slightly lower purity demands than low temperature fuel cells. This paper outlines the idea of a new catalytic purification process for landfill gas conditioning, which may be supposed to be more competitive than state-of-the-art technologies and summarises some lab-scale results. This catalytic process transforms harmful landfill gas minor compounds into products that can be easily removed from the gas stream by a subsequent adsorption step. The optimal process temperature was found to be in the range 250-400 °C. After a catalyst screening, two materials were identified, which have the ability to remove all harmful minor compounds from landfill gas. The first material was a commercial alumina that showed a high activity towards the removal of organic silicon compounds. The alumina protects both a subsequent catalyst for the removal of other organic minor compounds and the fuel cell. Due to gradual deactivation caused by silica deposition, the activated alumina needs to be periodically replaced. The second material was a commercial V 2O 5/TiO 2-based catalyst that exhibited a high activity for the total oxidation of a broad spectrum of other harmful organic minor compounds into a simpler compound class "acid gases (HCl, HF and SO 2)", which can be easily removed by absorption with, e.g. alkalised alumina. The encouraging results obtained allow the scale-up of this LFG conditioning process to test it under real LFG conditions.

  20. Landfill gas management in Canada

    International Nuclear Information System (INIS)

    Landfill gas produced from solid waste landfills is one of the most significant sources of anthropogenic methane in Canada. Methane, a potent greenhouse gas, is 24.5 times more powerful than carbon dioxide by weight in terms of global climate change. Landfill gas recovery plays an important role in Canada's commitment to stabilize greenhouse gas emissions at 1990 levels by the year 2000 under the United Nations Framework Convention on Climate Change. Landfill gas is a potentially harmful emission that can be converted into a reliable environmentally-sustainable energy source used to generate electricity, fuel industries and heat buildings. The recovery and utilization of landfill gas is a win-win situation which makes good sense from local, regional and global perspectives. It provides the benefits of (1) reducing the release of greenhouse gases that contribute to global warming; (2) limiting odors; (3) controlling damage to vegetation; (4) reducing risks from explosions, fires and asphyxiation; (5) converting a harmful emission into a reliable energy source; and (6) creating a potential source of revenue and profit. Canadian landfills generate about 1 million tons of methane every year; the equivalent energy of 9 million barrels of oil (eight oil super tankers), or enough energy to meet the annual heating needs of more than half a million Canadian homes. Currently, twenty-seven facilities recover and combust roughly 25% of the methane generated by Canadian landfills producing about 3.2 PJ (1015 Joules) of energy including 80 MW of electricity and direct fuel for nearby facilities (e.g., cement plants, gypsum board manufacturers, recycling facilities, greenhouses). This paper reviews landfill gas characteristics; environmental, health and safety impacts; landfill gas management in Canada; the costs of landfill gas recovery and utilization systems; and on-going projects on landfill gas utilization and flaring

  1. PRACTICE REVIEW OF FIVE BIOREACTOR/RECIRCULATION LANDFILLS

    Science.gov (United States)

    Six bioreactor landfills were analyzed to provide a perspective of current practice and technical issues that differentiate bioreactor landfills from conventional landfills. Five of the bioreactor landfills were anaerobic and one was aerated. In one case, nearly identical cells e...

  2. Methane production in anaerobic digestion of organic waste from Recife (Brazil landfill: evaluation in refuse of diferent ages

    Directory of Open Access Journals (Sweden)

    W. N. Schirmer

    2014-06-01

    Full Text Available This work focuses on monitoring the generation of biogas by biochemical methane potential (BMP assays, commonly used to assess anaerobic biodegradability of solid and liquid wastes under controlled conditions. The experiment employed 5 g of substrate of both refuses (fresh and one-year-old wastes, digested with 250 mL of inoculum in 1 L flasks as bioreactors (all of them in triplicate, operating under batch conditions at ± 35 ºC. Despite the difference of age of both refuses evaluated, there was no significant differences in volume (near 1800 mL and composition (55% methane of biogas generated in 80 days of incubation under mesophilic conditions. The important parameters of both refuses (such as moisture content, volatile solids and chemical oxygen demand also showed very similar initial values.

  3. Liquid balance monitoring inside conventional, Retrofit, and bio-reactor landfill cells

    Energy Technology Data Exchange (ETDEWEB)

    Abichou, Tarek, E-mail: abichou@eng.fsu.edu [Department of Civil and Environmental Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL 32311 (United States); Barlaz, Morton A. [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Green, Roger; Hater, Gary [Waste Management Inc., Cincinnati, OH 45211 (United States)

    2013-10-15

    Highlights: • The Retrofit, Control, and As-Built cells received 48, 14, and 213 L Mg{sup −1} (liters of liquids per metric ton of waste). • The leachate collection system yielded 60, 57 and 198 L Mg{sup −1} from the Retrofit, Control, and As-Built cells. • The head on liner in all cells was below regulatory limits. • Measured moisture content of the waste samples was consistent with that calculated from accumulated liquid by balance. • The in-place saturated hydraulic conductivity of the MSW was calculated to be in the range of 10{sup −8} to 10{sup −7} m s{sup −1}. - Abstract: The Outer Loop landfill bioreactor (OLLB) in Louisville, KY, USA has been the site of a study to evaluate long-term bioreactor performance at a full-scale operational landfill. Three types of landfill units were studied including a conventional landfill (Control cell), a new landfill area that had an air addition and recirculation piping network installed as waste was being placed (As-Built cell), and a conventional landfill that was modified to allow for liquids recirculation (Retrofit cell). During the monitoring period, the Retrofit, Control, and As-Built cells received 48, 14, and 213 L Mg{sup −1} (liters of liquids per metric ton of waste), respectively. The leachate collection system yielded 60, 57 and 198 L Mg{sup −1} from the Retrofit, Control, and As-Built cells, respectively. The head on liner in all cells was below regulatory limits. In the Control and As-Built cells, leachate head on liner decreased once waste placement stopped. The measured moisture content of the waste samples was consistent with that calculated from the estimate of accumulated liquid by the liquid balance. Additionally, measurements on excavated solid waste samples revealed large spatial variability in waste moisture content. The degree of saturation in the Control cells decreased from 85% to 75%. The degree of saturation increased from 82% to 83% due to liquids addition in the Retrofit

  4. Landfill gas management facilities design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-15

    In British Columbia, municipal solid waste landfills generate over 1000 tonnes of methane per year; landfill gas management facilities are required to improve the environmental performance of solid waste landfills. The aim of this document, developed by the British Columbia Ministry of the Environment, is to provide guidance for the design, installation, and operation of landfill gas management facilities to address odor and pollutant emissions issues and also address health and safety issues. A review of technical experience and best practices in landfill gas management facilities was carried out, as was as a review of existing regulations related to landfill gas management all over the world. This paper provides useful information to landfill owners, operators, and other professionals for the design of landfill gas management facilities which meet the requirements of landfill gas management regulations.

  5. Simulation model for oxygen consumption flux and prediction of methane oxidation in landfill cover soil%覆盖层氧气消耗通量模型及甲烷氧化能力预测

    Institute of Scientific and Technical Information of China (English)

    邢志林; 赵天涛; 陈新安; 车轮; 张丽杰; 全学军

    2015-01-01

    填埋场覆盖层生物气扩散规律和甲烷氧化能力的评估是甲烷减排研究的重要组成部分。以数值模拟方法分析了氧气在覆盖层中的扩散规律,得到了指数方程形式的氧气扩散模型(R2范围0.8941~0.9975);通过检测有机碳和甲烷浓度变化进一步考察了模拟覆盖层不同深度的甲烷氧化能力,证实了在0.05~0.25 m范围内甲烷氧化活性最高;以Fick定律和轴向扩散模型推导了模拟覆盖层中氧气消耗通量模型,该模型计算得到的氧气消耗通量与覆盖层中微生物甲烷氧化经验方程相比无显著差异;结合以上模型推演出覆盖层甲烷消耗通量模型,与实际检测值相比,预测结果理想(R2=0.9983)。该成果可为揭示填埋场覆盖层生物气扩散规律、强化甲烷氧化能力以及预测甲烷排放提供新的思路和理论依据。%Diffusion process of biogas and evaluation of methane oxidation in landfill cover soil are important parts of research on methane emission. Diffusion process of oxygen in landfill cover soil was analyzed by simulation, and an oxygen diffusion model fitted by exponential equation (0.8941methane oxidation in different landfill cover depths was also investigated by analyzing organic carbon and monitoring methane concentration. The most intensive methane oxidation occurred at the layer of 0.05—0.25 m. An oxygen consumption flux model in landfill cover was derived on the basis of Fick’s law and axial dispersion model. There was no significant difference between fitted values by oxygen consumption flux model and derived values by empirical equation of biological methane oxidation. Based on the above model, a methane consumption flux model was derived finally, and the prediction was consistent with detection. These results provided new ideas and theoretical basis for revealing biogas diffusion process in landfill cover soil

  6. Modelling of landfill gas adsorption with bottom ash for utilization of renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Chen

    2011-10-06

    Energy crisis, environment pollution and climate change are the serious challenges to people worldwide. In the 21st century, human being is trend to research new technology of renewable energy, so as to slow down global warming and develop society in an environmentally sustainable method. Landfill gas, produced by biodegradable municipal solid waste in landfill, is a renewable energy source. In this work, landfill gas utilization for energy generation is introduced. Landfill gas is able to produce hydrogen by steam reforming reactions. There is a steam reformer equipment in the fuel cells system. A sewage plant of Cologne in Germany has run the Phosphoric Acid Fuel Cells power station with biogas for more than 50,000 hours successfully. Landfill gas thus may be used as fuel for electricity generation via fuel cells system. For the purpose of explaining the possibility of landfill gas utilization via fuel cells, the thermodynamics of landfill gas steam reforming are discussed by simulations. In practice, the methane-riched gas can be obtained by landfill gas purification and upgrading. This work investigate a new method for upgrading-landfill gas adsorption with bottom ash experimentally. Bottom ash is a by-product of municipal solid waste incineration, some of its physical and chemical properties are analysed in this work. The landfill gas adsorption experimental data show bottom ash can be used as a potential adsorbent for landfill gas adsorption to remove CO{sub 2}. In addition, the alkalinity of bottom ash eluate can be reduced in these adsorption processes. Therefore, the interactions between landfill gas and bottom ash can be explained by series reactions accordingly. Furthermore, a conceptual model involving landfill gas adsorption with bottom ash is developed. In this thesis, the parameters of landfill gas adsorption equilibrium equations can be obtained by fitting experimental data. On the other hand, these functions can be deduced with theoretical approach

  7. Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO2 levels: The added value of the isotope (δ13C and δ18O CO2; δ13C and δD CH4) approach

    International Nuclear Information System (INIS)

    Highlights: ► Comparison of the isotope and mass balance approaches to evaluate the level of methane oxidation within a landfill. ► The level of methane oxidation is not homogenous under the landfill cover and is strongly correlated to the methane flux. ► Isotope tracking of the contribution of the methane oxidation to the CO2 concentrations in the ambient air. - Abstract: We are presenting here a multi-isotope approach (δ13C and δ18O of CO2; δ13C and δD of CH4) to assess (i) the level(s) of methane oxidation during waste biodegradation and its migration through a landfill cover in Sonzay (France), and (ii) its contribution to the atmospheric CO2 levels above the surface. The isotope approach is compared to the more conventional mass balance approach. Results from the two techniques are comparable and show that the CH4 oxidation under the landfill cover is heterogenous, with low oxidation percentages in samples showing high biogas fluxes, which was expected in clay covers presenting fissures, through which CH4 is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH4 oxidation by the methanotrophic bacteria. δ13C of CO2 samples taken at different heights (from below the cover up to 8 m above the ground level) were also used to identify and assess the relative contributions of its main sources both under the landfill cover and in the surrounding atmosphere.

  8. Landfill Mining of Shredder Residues

    DEFF Research Database (Denmark)

    Hansen, Jette Bjerre; Hyks, Jiri; Shabeer Ahmed, Nassera;

    In Denmark, shredder residues (SR) are classified as hazardous waste and until January 2012 the all SR were landfilled. It is estimated that more than 1.8 million tons of SR have been landfilled in mono cells. This paper describes investigations conducted at two Danish landfills. SR were excavate...

  9. The implementation of artificial neural networks to model methane oxidation in landfill soil covers[Includes the CSCE forum on professional practice and career development : 1. international engineering mechanics and materials specialty conference : 1. international/3. coastal, estuarine and offshore engineering specialty conference : 2. international/8. construction specialty conference

    Energy Technology Data Exchange (ETDEWEB)

    Szeto, A.; Albanna, M.; Warith, M. [Ottawa Univ., ON (Canada). Faculty of Civil and Environmental Engineering

    2009-07-01

    The disposal of solid waste significantly contributes to the total anthropogenic emissions of methane (CH{sub 4}), a greenhouse gas that negatively affects climate change. The oxidation of methane in landfill bio-covers takes place through the use of methanotrophic bacteria which provides a sink for methane. The rate at which methane is biologically oxidized depends on several parameters. This study provided a better understanding of the oxidation of methane in landfill soil covers through modeling methane oxidation with artificial neural networks (ANNs). An ANN was trained and tested to model methane oxidation in various batch scale systems for 3 types of soils. Input data consisted of temperature, moisture content, soil composition and the nutrient content added to the system. Model results were in good agreement with experimental results reported by other researchers. It was concluded that the use of ANNs to model methane oxidation in batch scale bio-covers can address the large number of complicated physical and biochemical processes that occur within the landfill bio-cover. 10 refs., 7 tabs., 5 figs.

  10. Landfilling: Hydrology

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Beaven, R.

    2011-01-01

    Landfill hydrology deals with the presence and movement of water through a landfill. The main objective in landfill hydrology is usually to predict leachate generation, but the presence and movement of water in a landfill also affect the degradation of the waste, the leaching of pollutants...... and the geotechnical stability of the fill. Understanding landfill hydrology is thus important for many aspects of landfill, in particular siting, design and operation. The objective of this chapter is to give a basic understanding of the hydrology of landfills, and to present ways to estimate leachate quantities......-circuiting. In the final section different existing hydrological models for landfills are presented with a special focus on the HELP model. This model is the most widely used tool for the prediction of leachate quantities in landfills, and for the sizing of leachate control and management infrastructure....

  11. Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives

    OpenAIRE

    Eerten-Jansen, van, M.C.A.A.; Heijne, ter, A.; C J N Buisman; Hamelers, H.V.M.

    2012-01-01

    A methane-producing microbial electrolysis cell (MEC) is a technology to convert CO2 into methane, using electricity as an energy source and microorganisms as the catalyst. A methane-producing MEC provides the possibility to increase the fuel yield per hectare of land area, when the CO2 produced in biofuel production processes is converted to additional fuel methane. Besides increasing fuel yield per hectare of land area, this also results in more efficient use of land area, water, and nutrie...

  12. Results of coalbed-methane drilling, Meadowfill Landfill, Harrison County, West Virginia: Chapter G.4 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Ruppert, Leslie F.; Trippi, Michael H.; Fedorko, Nick; Grady, William C.; Eble, Cortland F.; Schuller, William A.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The U.S. Environmental Protection Agency funded drilling of a borehole (39.33889°N., 80.26542°W.) to evaluate the potential of enhanced coalbed-methane production from unminable Pennsylvanian coal beds at the Meadowfill Landfill near Bridgeport, Harrison County, W. Va. The drilling commenced on June 17, 2004, and was completed on July 1, 2004. The total depth of the borehole was 1,081 feet (ft) and contained 1,053.95 ft of Pennsylvanian coal-bearing strata, and 27.05 ft of Mississippian strata.

  13. Molten carbonate fuel cell: An experimental analysis of a 1 kW system fed by landfill gas

    International Nuclear Information System (INIS)

    Highlights: • A novel cylindrical geometry 1 kW MCFC is analysed. • A description of the considered experimental set-up is provided. • The results of a suitable experimental campaign are discussed. • The MCFC is fed by hydrogen, landfill gas and different mixtures of them. • A comparative analysis of the so fuelled MCFC performance results is performed. - Abstract: In this paper the results of an on-site experimental analysis carried out on a Molten Carbonate Fuel Cell (MCFC) fed by different fuels (hydrogen, landfill gas and different mixtures of them) are presented. The examined MCFC is one of the experimental devices of an innovative power plant located at the urban landfill of Giugliano in Campania (Naples, Italy). Here, electricity is produced through four cogenerative reciprocating engines and one cogenerative gas turbine fed by landfill gas, operating since 2003. At the same site, two different fuel cells are installed for scientific purposes. During the considered experimental campaign, the MCFC is initially supplied by hydrogen for testing the system at the best operating conditions. Afterward, the fuel cell is fed by mixtures of different ratios of hydrogen and reformed landfill gas. For this reason, the system is equipped with an external reformer and a suitable gas cleaning. In order to analyse the system energy performance under varying electricity loads (obtained through an electronic device), several tests were carried out. In addition, several stress tests were also performed aiming at analysing the system endurance when fed by landfill gas. The experimental results concerning the produced electric currents and voltages show satisfactory performance of the system, while the obtained operating temperatures and cell reliability still need to be improved

  14. Comparison between controlled landfill reactor and conditioned landfill bioreactor

    Institute of Scientific and Technical Information of China (English)

    LUO Feng; CHEN Wan-zhi; SONG Fu-zhong; LI Xiao-peng; ZHANG Guo-qing

    2004-01-01

    Bioreactor landfills allow a more active landfill management that recognizes the biological, chemical and physical processes involved in a landfill environment. The results of laboratory-scale simulators of landfill reactors treating municipal solid wastes were studied, the effect of solid waste size, leachate recirculation, nutrient balance, pH value, moisture content and temperature on the rate of municipal solid waste(MSW) biodegradation were determined, and it indicated the optimum pH value, moisture content and temperature can used to decompose MSW. The results of waste biodegradation were compared with that of the simulators of the leachate-recirculated landfill and conservative sanitary landfill. In the control experiment the antitheses of a decreasing trend of the organic load, measured as biological oxygen demand and chemical oxygen demand, was shown, and heavy metals concentration was observed. An obvious enhancement of effective disposal from simulator of conservative sanitary landfill(CSL), to that of leachate-recirculated landfill(LRL) and to that of conditioned bioreactor landfill(CBL) would be noted, through displaying the compared results of solid waste settlement, heavy metal concentration in leachate, methane production rate, biogas composition, BOD and COD as well as their ratio.

  15. Comparison between controlled landfill reactor and conditioned landfill bioreactor.

    Science.gov (United States)

    Luo, Feng; Chen, Wan-Zhi; Song, Fu-Zhong; Li, Xiao-Peng; Zhang, Guo-Qing

    2004-01-01

    Bioreactor landfills allow a more active landfill management that recognizes the biological, chemical and physical processes involved in a landfill environment. The laboratory-scale simulators of landfill reactors treating municipal solid wastes were studied, the effect of solid waste size, leachate recirculation, nutrient balance, pH value, moisture content and temperature on the rate of municipal solid waste (MSW) biodegradation were determined, and it indicated the optimum pH value, moisture content and temperature decomposing MSW. The results of waste biodegradation were compared with that of the leachate-recirculated landfill simulator and conservative sanitary landfill simulator. In the control experiment the antitheses of a decreasing trend of the organic load, measured as biological oxygen demand and chemical oxygen demand, was shown. An obvious enhancement of effective disposal from conservative sanitary landfill (CSL) simulator, to the leachate-recirculated landfill (LRL) simulator and to the conditioned bioreactor landfill (CBL) simulator would be noted, through displaying the compared results of solid waste settlement, heavy metal concentration in leachate, methane production rate, biogas composition, BOD and COD as well as their ratio. PMID:15559832

  16. Landfill gas generation assessment procedure guidance report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-03-15

    Landfill gas (LFG) at municipal solid waste (MSW) landfills is generated as a result of physical, chemical, and microbial processes occurring within the waste. The purpose of this guidelines document was to provide a procedure for the assessment of LFG generation at MSW landfills in British Columbia and to provide guidelines for landfill owners and operators to comply with the 2008 British Columbia landfill gas management regulation. The study used a regulatory-based model. This paper outlined the requirement to complete a landfill gas generation assessment. It included previous landfill gas generation assessments as well as information on historical waste tonnage, projected waste tonnage, waste characteristics, meteorological data, and water addition. Landfill gas generation parameter selection was also discussed in terms of waste categorization; methane generation potential; landfill gas generation rate; and water addition factor. Other topics that were addressed included landfill gas and methane generation estimate; landfill gas generation assessment reporting; and a solid waste composition study. 13 refs., 6 tabs., 1 fig., 6 appendices.

  17. Rapid digestion of shredded MSW by sequentially flooding and draining small landfill cells.

    Science.gov (United States)

    Clarke, William P; Xie, Sihuang; Patel, Miheka

    2016-09-01

    This paper compares the digestion of a packed bed of shredded municipal waste using a flood and drain regime against a control digestion of similarly prepared material using a trickle flow regime. All trials were performed on shallow (2m) beds of the sub-8cm fraction of shredded mixed MSW, encapsulated in a polyethylene bladder. The control cell (Cell 1) was loaded with 1974 tonnes shredded municipal waste and produced 76±9m(3) CH4dryt(-1) (45±2m(3) CH4 'as received't(-1)) over 200days in response to a daily recirculation of the leachate inventory which was maintained at 60m(3). The flood and drain operation was performed on two co-located cells (Cell 2 and Cell 3) that were loaded simultaneously with 1026 and 915 tonnes of the sub-8cm fraction of shredded mixed MSW, with a third empty cell used as a reservoir for 275m(3) of mature landfill leachate. Cell 2 was first digested in isolation by flooding and draining once per week to avoid excessive souring. Gas production from Cell 2 peaked and declined to a steady residual level in 150days. Cell 3 was flooded and drained for the first time 186days after the commencement of Cell 2, using the same inventory of leachate which was now exchanged between the cells, such that each cell was flooded and drained twice per week. Biogas production from Cell 3 commenced immediately with flooding, peaking and reducing to a residual level within 100days. The average CH4 yield from Cells 2 and 3 was 123±15m(3)dryt(-1) (92±2m(3) 'as received't(-1), equal to 95% of the long term (2month) BMP yield. PMID:26718389

  18. The co-oxidation of methane and dichloromethane in landfill bio-cover[Includes the CSCE forum on professional practice and career development : 1. international engineering mechanics and materials specialty conference : 1. international/3. coastal, estuarine and offshore engineering specialty conference : 2. international/8. construction specialty conference

    Energy Technology Data Exchange (ETDEWEB)

    Dagher, E.; Albanna, M.; Fernandes, L.; Warith, M. [Ottawa Univ., ON (Canada). Faculty of Engineering

    2009-07-01

    Solid waste landfills are responsible for 13 per cent of the annual global anthropogenic methane (CH{sub 4}) emissions. Landfill bio-cover systems using methanotrophic bacteria to oxidize CH{sub 4} to carbon dioxide (CO{sub 2}) and water (H{sub 2}O) is a cost effective solution for the attenuation of these fugitive greenhouse gases (GHGs). This study analyzed the affect of dichloromethane (DCM), a volatile organic compound (VOC), on the rate of methane oxidation at several environmental conditions. Compost from Trail Road, a municipal landfill in Ottawa, was used in batch experiments. Gas chromatography was used to measure the concentrations of CH{sub 4} in the absence of DCM, and under varying DCM concentrations and atmospheric temperatures. The oxidation of DCM by the methanotrophs in the presence as well as absence of CH{sub 4} was also observed, and their oxidation rates determined. The study showed that the presence of DCM plays a very significant role on the oxidative capacity of CH{sub 4} under closed conditions on a laboratory scale. The study also showed that it will be important to restrict the type of waste that can be dumped in landfills. Controlling the industrial waste of non-methane organic carbon (NMOC) dumped into municipal landfills is crucial if CH{sub 4} is to be oxidized by a bio-cover. 15 refs., 4 figs.

  19. Methane oxidation kinetics of bio-cover sewage sludge modified by coal ash for landfill%垃圾填埋场覆盖材料改性污泥的甲烷氧化动力学

    Institute of Scientific and Technical Information of China (English)

    王丹; 赵玲; 尹平河; 肖娟宜; 黄思明

    2012-01-01

    在实验室模拟条件下,以粉煤灰改性污泥为垃圾填埋场生物覆盖材料,分析了初始甲烷浓度、初始氧气浓度对甲烷氧化效率的影响,并测定了甲烷氧化动力学方程及动力学参数,旨在为材料实际工程应用提供理论依据.结果表明:初始CH4、O2浓度制约生物覆盖材料的甲烷氧化效率,初始CH4、O2浓度越高,材料甲烷氧化能力越强;甲烷氧化过程符合2级动力学方程-dV(CH4)/dt=kV(CH4)V(O2);利用Michaelis-Menten模型得出覆盖层材料的最大氧化速率Vmax为2.54 μmol g-1h-1,半速常数Km为0.49 μmol.%In this study, laboratory-scale experiments were carried out to examine the effects of initial methane and oxygen contents on methane oxidation efficiency in landfill bio-cover sewage sludge, and the kinetic equation and corresponding parameters were also determined, aiming to provide scientific basis for the practical engineering application. The results showed that the methane and oxygen contents strongly affected the methane oxidation efficiency. The higher methane and oxygen contents resulted in stronger methane oxidation efficiency. The kinetics of methane oxidation was - dV( CH4)/di = kV{ CH4 ) V( 02) , which fit the second-order reaction. As calculated from Michaelis-Menten equation, the largest methane oxidation rate ( Kmax ) was 2. 54 μmol g ‐ 1h‐ 1, and the half saturation constant ( Km ) was found at 0. 49 μmol.

  20. Investigation of Integrated Subsurface Processing of Landfill Gas and Carbon Sequestration, Johnson County, Kansas

    Energy Technology Data Exchange (ETDEWEB)

    K. David Newell; Timothy R. Carr

    2007-03-31

    The Johnson County Landfill in Shawnee, KS is operated by Deffenbaugh Industries and serves much of metropolitan Kansas City. Refuse, which is dumped in large plastic-underlined trash cells covering several acres, is covered over with shale shortly after burial. The landfill waste, once it fills the cell, is then drilled by Kansas City LFG, so that the gas generated by anaerobic decomposition of the refuse can be harvested. Production of raw landfill gas from the Johnson County landfill comes from 150 wells. Daily production is approximately 2.2 to 2.5 mmcf, of which approximately 50% is methane and 50% is carbon dioxide and NMVOCs (non-methane volatile organic compounds). Heating value is approximately 550 BTU/scf. A upgrading plant, utilizing an amine process, rejects the carbon dioxide and NMVOCs, and upgrades the gas to pipeline quality (i.e., nominally a heating value >950 BTU/scf). The gas is sold to a pipeline adjacent to the landfill. With coal-bearing strata underlying the landfill, and carbon dioxide a major effluent gas derived from the upgrading process, the Johnson County Landfill is potentially an ideal setting to study the feasibility of injecting the effluent gas in the coals for both enhanced coalbed methane recovery and carbon sequestration. To these ends, coals below the landfill were cored and then were analyzed for their thickness and sorbed gas content, which ranged up to 79 scf/ton. Assuming 1 1/2 square miles of land (960 acres) at the Johnson County Landfill can be utilized for coalbed and shale gas recovery, the total amount of in-place gas calculates to 946,200 mcf, or 946.2 mmcf, or 0.95 bcf (i.e., 985.6 mcf/acre X 960 acres). Assuming that carbon dioxide can be imbibed by the coals and shales on a 2:1 ratio compared to the gas that was originally present, then 1682 to 1720 days (4.6 to 4.7 years) of landfill carbon dioxide production can be sequestered by the coals and shales immediately under the landfill. Three coal--the Bevier

  1. Mill Seat Landfill Bioreactor Renewable Green Power (NY)

    Energy Technology Data Exchange (ETDEWEB)

    Barton & Loguidice, P.C.

    2010-01-07

    The project was implemented at the Mill Seat landfill located in the Town of Bergen, Monroe County, New York. The landfill was previously equipped with a landfill gas collection system to collect methane gas produced by the bioreactor landfill and transport it to a central location for end use. A landfill gas to energy facility was also previously constructed at the site, which utilized generator engines, designed to be powered with landfill methane gas, to produce electricity, to be utilized on site and to be sold to the utility grid. The landfill gas generation rate at the site had exceeded the capacity of the existing generators, and the excess landfill gas was therefore being burned at a candlestick flare for destruction. The funded project consisted of the procurement and installation of two (2) additional 800 KW Caterpillar 3516 generator engines, generator sets, switchgear and ancillary equipment.

  2. Bioreactor landfill

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; XING Kai; Anthony Adzomani

    2004-01-01

    Following the population expansion, there is a growing threat brought by municipal solid waste (MSW) against environment and human health. Sanitary landfill is the most important method of MSW disposal in China. In contrast to the conventional landfill, this paper introduces a new technique named bioreactor landfill (BL). Mechanisms, operation conditions as well as the advantages and disadvantages of BL are also discussed in this paper.

  3. Perspective of harnessing energy from landfill leachate via microbial fuel cells: novel biofuels and electrogenic physiologies.

    Science.gov (United States)

    Wu, Dong; Wang, Ting; Huang, Xinghua; Dolfing, Jan; Xie, Bing

    2015-10-01

    Organic carbon, nitrogen, and sulfur are highly concentrated in municipal solid waste (MSW) landfill leachate, which usually frustrates conventional leachate treatment technologies from the perspective of energy costs. Therefore, the possibility of converting leachate to a new energy source via microbial fuel cell (MFC) technology has been examined recently. This paper summarizes the power output and energy recovery efficiency of the leachate-fed MFCs according to different feeding patterns, cell structures, and loading rates. Also, we assess potential energy-generating chemicals in leachate like nitrogen and sulfur compounds and propose alternative pathways, which may lift strict ratios between organic carbon and nitrogen content in conventional denitrification of leachate and are expected to achieve a higher voltage than traditional organic-oxygen based cells. Although currently power output of leachate-fed MFCs is limited, it seems well possible that dynamic characteristics of MSW leachates and microbial physiologies underlying some bio-electrochemically efficient activities (e.g., direct interspecies electron transfer) could be stimulated in MFC systems to improve the present status. PMID:26239072

  4. Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO{sub 2} levels: The added value of the isotope ({delta}{sup 13}C and {delta}{sup 18}O CO{sub 2}; {delta}{sup 13}C and {delta}D CH{sub 4}) approach

    Energy Technology Data Exchange (ETDEWEB)

    Widory, D., E-mail: d.widory@brgm.fr [BRGM, 3 ave Claude Guillemin, 45000 Orleans (France); Proust, E.; Bellenfant, G. [BRGM, 3 ave Claude Guillemin, 45000 Orleans (France); Bour, O. [INERIS, Parc Technologique ALATA, 60550 Verneuil-en-Halatte (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Comparison of the isotope and mass balance approaches to evaluate the level of methane oxidation within a landfill. Black-Right-Pointing-Pointer The level of methane oxidation is not homogenous under the landfill cover and is strongly correlated to the methane flux. Black-Right-Pointing-Pointer Isotope tracking of the contribution of the methane oxidation to the CO{sub 2} concentrations in the ambient air. - Abstract: We are presenting here a multi-isotope approach ({delta}{sup 13}C and {delta}{sup 18}O of CO{sub 2}; {delta}{sup 13}C and {delta}D of CH{sub 4}) to assess (i) the level(s) of methane oxidation during waste biodegradation and its migration through a landfill cover in Sonzay (France), and (ii) its contribution to the atmospheric CO{sub 2} levels above the surface. The isotope approach is compared to the more conventional mass balance approach. Results from the two techniques are comparable and show that the CH{sub 4} oxidation under the landfill cover is heterogenous, with low oxidation percentages in samples showing high biogas fluxes, which was expected in clay covers presenting fissures, through which CH{sub 4} is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH{sub 4} oxidation by the methanotrophic bacteria. {delta}{sup 13}C of CO{sub 2} samples taken at different heights (from below the cover up to 8 m above the ground level) were also used to identify and assess the relative contributions of its main sources both under the landfill cover and in the surrounding atmosphere.

  5. Effects of trace volatile organic compounds on methane oxidation

    Directory of Open Access Journals (Sweden)

    Chiemchaisri Wilai

    2001-01-01

    Full Text Available The effects of volatile organic compounds (VOCs on methane oxidation in landfill cover soils were examined. The batch experiments were conducted using single and mixed VOCs, such as, dichloromethane (DCM, trichloroethylene (TCE, tetrachloroethylene (PCE, and benzene. The results from all combinations showed a decrease in methane oxidation rate with increase in VOC concentrations. Moreover, inhibition effects of TCE and DCM were found higher than benzene and PCE. The reduction of methane oxidation by benzene and PCE could be attributed to the toxicity effect, whereas TCE and DCM were found to exhibit the competitive-inhibition effect. When the soil was mixed with DCM, no methane oxidation was found. Damage to the cell's internal membrane was found in a methanotrophic culture exposed to VOC gases which is the attachment site of a key enzyme needed for methane oxidation

  6. Catalytic reduction of NO by methane using a Pt/C/polybenzimidazole/Pt/C fuel cell

    OpenAIRE

    Petrushina, Irina; Cleemann, Lars Nilausen; Refshauge, Rasmus; Bjerrum, Niels; Bandur, Viktor

    2007-01-01

    The catalytic NO reduction by methane was studied using a (NO,CH4,Ar),Pt|polybenzimidazole(PBI)–H3PO4|Pt,(H2,Ar) fuel cell at 135 and 165°C. It has been found that, without any reducing agent (like CH4), NO can be electrochemically reduced in the (NO, Ar), Pt/C|PBI–H3PO4|Pt/C, (H2,Ar) fuel cell with participation of H+ or electrochemically produced hydrogen. When added, methane partially suppresses the electrochemical reduction of NO. Methane outlet concentration monitoring has shown the CH4 ...

  7. Project identification for methane reduction options

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, T.

    1996-12-31

    This paper discusses efforts directed at reduction in emission of methane to the atmosphere. Methane is a potent greenhouse gas, which on a 20 year timeframe may present a similar problem to carbon dioxide. In addition, methane causes additional problems in the form of smog and its longer atmospheric lifetime. The author discusses strategies for reducing methane emission from several major sources. This includes landfill methane recovery, coalbed methane recovery, livestock methane reduction - in the form of ruminant methane reduction and manure methane recovery. The author presents examples of projects which have implemented these ideas, the economics of the projects, and additional gains which come from the projects.

  8. Feasibility of atmospheric methane removal using methanotrophic biotrickling filters

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sukhwan; Carey, Jeffrey N.; Semrau, Jeremy D. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Civil and Environmental Engineering

    2009-07-15

    Methane is a potent greenhouse gas with a global warming potential {proportional_to}23 times that of carbon dioxide. Here, we describe the modeling of a biotrickling filtration system composed of methane-consuming bacteria, i.e., methanotrophs, to assess the utility of these systems in removing methane from the atmosphere. Model results indicate that assuming the global average atmospheric concentration of methane, 1.7 ppmv, methane removal is ineffective using these methanotrophic biofilters as the methane concentration is too low to enable cell survival. If the concentration is increased to 500-6,000 ppmv, however, similar to that found above landfills and in concentrated animal feeding operations (factory farms), 4.98-35.7 tons of methane can be removed per biofilter per year assuming biotrickling filters of typical size (3.66 m in diameter and 11.5 m in height). Using reported ranges of capital, operational, and maintenance costs, the cost of the equivalent ton of CO{sub 2} removal using these systems is $90-$910 ($2,070-$20,900 per ton of methane), depending on the influent concentration of methane and if heating is required. The use of methanotrophic biofilters for controlling methane emissions is technically feasible and, provided that either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive. (orig.)

  9. Study on Production of Hydrogen from Methane for Proton Exchange Membrane Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    宋正昶; 李传统

    2001-01-01

    The hydrogen production from methane for proton exchange membrane fuel cell (PEMFC) was studied experimentally. The conversion rate of methane under different steam-carbon ratios, the effect of the different excess air ratios on the constituents of the gas produced, the permeability of hydrogen under different pressure differences, and the effect of different system pressure on the reaction enthalpy of hydrogen were obtained. The results lay the basis for the production of hydrogen applicable to PEMFC, moreover, provide a new way for the comprehensive utilization of the coal bed methane.

  10. Soil gas investigations at the Sanitary Landfill

    International Nuclear Information System (INIS)

    A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C1C4 hydrocarbons; the C5-C10 normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials

  11. Characterization and Energy Generation of Sharda Landfill at Agra

    Directory of Open Access Journals (Sweden)

    Sohail Ayub

    2014-05-01

    Full Text Available Most of the global municipal solid waste is dumped in non regulated landfills and the generated methane is emitted to the atmosphere which has global warming potential. Some of the modern regulated landfills attempt to capture and utilize landfill gas. An attempt has been made in this study for the recovery of energy potential of Shadra site. This includes different methodologies to determine the feasibility of recovery project. The laboratory results show that the percentage by volume of methane is 51%. The landfill gas (LFG generation is very low (i.e. low-range recovery scenario and it is un-economical to recover such low flow gases produced in landfill. So, this reveals that flaring is only the option to reduce the global warming potential (GWP and also the problems of odour in the vicinity of landfill.

  12. INPP Landfill

    International Nuclear Information System (INIS)

    The objective of this report is to propose the basic design for final disposal of Very Low Level Radioactive Waste (VLLW) produced at the Ignalina Nuclear Power Plant and at other small waste producers in Lithuania. Considering the safety for the environment, as well as the construction costs, it has been decided that the repository will be of a landfill type based on the same design principles as similar authorised facilities in other countries. It has also been decided that the location of the landfill shall be in the vicinity of the Ignalina Nuclear Power Plant (INPP)

  13. THE EMISSION POTENTIAL FROM MUNICIPAL SOLID WASTE LANDFILL IN JORDAN

    OpenAIRE

    Mohammad Aljaradin; Kenneth M. Persson

    2016-01-01

    A comprehensive study was conducted to monitor the emission potential from solid waste landfilled in Jordan over a period of 292 days using an anaerobic lysimeter. A 30 kg waste sample reflecting the typical municipal solid waste (MSW) streams generated in Jordan was used to simulate the influence of climate on the emission potential of landfills located in semi-arid areas. The experimental results demonstrated that a significant amount of leachate and landfill gas was produced. The methane c...

  14. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    DEFF Research Database (Denmark)

    Mogensen, David; Grunwaldt, Jan-Dierk; Hendriksen, Peter Vang;

    2014-01-01

    The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC) have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were...... performed in the temperature range 600-800 degrees C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r proportional to P-CH4(0.7)). A simple model is presented which is capable of predicting the methane conversion...

  15. Ceria catalyst for inert-substrate-supported tubular solid oxide fuel cells running on methane fuel

    Science.gov (United States)

    Zhao, Kai; Kim, Bok-Hee; Du, Yanhai; Xu, Qing; Ahn, Byung-Guk

    2016-05-01

    A ceria catalyst is applied to an inert-substrate supported tubular single cell for direct operation on methane fuel. The tubular single cell comprises a porous yttria-stabilized zirconia (YSZ) supporter, a Ni-Ce0.8Sm0.2O1.9 anode, a YSZ/Ce0.8Sm0.2O1.9 bi-layer electrolyte, and a La0.6Sr0.4Co0.2Fe0.8O3-δ cathode. The ceria catalyst is incorporated into the porous YSZ supporter layer by a cerium nitrate impregnation. The effects of ceria on the microstructure and electrochemical performance of the tubular single cell are investigated with respect to the number of impregnations. The optimum number of impregnations is determined to be four based on the maximum power density and polarization property of the tubular single cell in hydrogen and methane fuels. At 700 °C, the tubular single cell shows similar maximum power densities of ∼260 mW cm-2 in hydrogen and methane fuels, respectively. Moreover, the ceria catalyst significantly improves the performance stability of the cell running on methane fuel. At a current density of 350 mA cm-2, the single cell shows a low degradation rate of 2.5 mV h-1 during the 13 h test in methane fuel. These results suggest the feasibility of applying the ceria catalyst to the inert-substrate supported tubular single cell for direct operation on methane fuel.

  16. Evolution on qualities of leachate and landfill gas in the semi-aerobic landfill

    Institute of Scientific and Technical Information of China (English)

    HUANG Qifei; YANG Yufei; PANG Xiangrui; WANG Qi

    2008-01-01

    To study the characteristics of stabilization in semi-aerobic landfill, large-scale simulated landfill was constructed based on the semi-aerobic landfill theory. Consequently, the concentrations of chemical oxygen demand (COD), ammonia nitrogen, and nitrite nitrogen, and the pH value in leachate, as well as the component contents of landfill gas composition (methane, carbon dioxide, and oxygen) in landfill were regularly monitored for 52 weeks. The results showed that COD and ammonia concentrations declined rapidly and did not show the accumulating rule like anaerobic landfill, and remained at about 300 and 100 mg/L, respectively, after 48 weeks. Meanwhile, the descending rate reached 98.9% and 96.9%, respectively. Nitrate concentration increased rapidly after 24 weeks and fluctuated between 220-280 mg/L after 43 weeks. The pH values were below 7 during the first 8 weeks and after that leachates appeared to be alkaline. Carbon dioxide was the main composition in landfill gas and its concentration remained at a high level through the whole stabilization process. The average contents of carbon dioxide, oxygen, and methane varied between 19 vol.%-28 vol.%, 2 vol.%-8 vol.%, and 5 vol.%-13 vol.%, respectively. A relative equilibrium was reached after 48 weeks. The highest temperature in the landfill chamber could amount to 75.8 degrees centigrade.

  17. Landfill leachate sludge use as soil additive prior and after electrocoagulation treatment: A cytological assessment using CHO-k1 cells.

    Science.gov (United States)

    Morozesk, M; Bonomo, M M; Rocha, L D; Duarte, I D; Zanezi, E R L; Jesus, H C; Fernandes, M N; Matsumoto, S T

    2016-09-01

    Electrocoagulation has recently attracted attention as a potential technique for treating toxic effluents due to its versatility and environmental compatibility, generating a residue chemically suitable to be used as a soil additive. In the present study, landfill leachate sludge hazardous effects were investigated prior and after electrocoagulation process using in vitro assays with the mammalian cells CHO-k1. An integrated strategy for risk assessment was used to correctly estimate the possible adverse landfill leachate sludge effects on human health and ecosystem. Electrocoagulation process proved to be an effective treatment due to possibility to improve effluent adverse characteristics and produce sludge with potential to be used as soil additive. Despite low cytoxicity, the residue presented genotoxic and mutagenic effects, indicating a capacity to induce genetic damages, probably due to induction of polyploidization process in cells. The observed effects demand an improvement of waste management methods for reduce negative risks of landfill leachate sludge application.

  18. Landfill leachate sludge use as soil additive prior and after electrocoagulation treatment: A cytological assessment using CHO-k1 cells.

    Science.gov (United States)

    Morozesk, M; Bonomo, M M; Rocha, L D; Duarte, I D; Zanezi, E R L; Jesus, H C; Fernandes, M N; Matsumoto, S T

    2016-09-01

    Electrocoagulation has recently attracted attention as a potential technique for treating toxic effluents due to its versatility and environmental compatibility, generating a residue chemically suitable to be used as a soil additive. In the present study, landfill leachate sludge hazardous effects were investigated prior and after electrocoagulation process using in vitro assays with the mammalian cells CHO-k1. An integrated strategy for risk assessment was used to correctly estimate the possible adverse landfill leachate sludge effects on human health and ecosystem. Electrocoagulation process proved to be an effective treatment due to possibility to improve effluent adverse characteristics and produce sludge with potential to be used as soil additive. Despite low cytoxicity, the residue presented genotoxic and mutagenic effects, indicating a capacity to induce genetic damages, probably due to induction of polyploidization process in cells. The observed effects demand an improvement of waste management methods for reduce negative risks of landfill leachate sludge application. PMID:27243586

  19. 垃圾渗滤液发酵产氢和产甲烷特性研究%Bio-production of hydrogen and methane from landfill leachate by anaerobic fermentation

    Institute of Scientific and Technical Information of China (English)

    徐乔根; 傅木星; 苏泱洲; 汪敏; 潘建国

    2012-01-01

    The characteristics of hydrogen and methane production from landfill leachate by anaerobic fermentation at 37 ℃ and pH 7. 0 was studied. The experimental results suggested that during the process of leachate anaerobic fermentation,the maximum cumulative production of hydrogen and methane was 24. 33,91. 95 mL (counted by per gram of COD) respectively; there was a lag phase a in the process of hydrogen production,while the methane production process appear no lag phase. Large amount of volatile organic acids and ethanol were found in the ultimate liquid product in hydrogen production process with the concentration of ethanol,acetate and butyrate was 487. 23,1 175. 21, 1 225. 78 mg/L respectively. Compared with hydrogen production process,ethanol,acetate and butyrate production of methane production process was relatively low,the concentration of was 256. 38,106. 73,107. 42 mg/L respectively. The ultimate mixture of hydrogen production process was strong acidic, the pH value was 4. 21. While, in methane production process,the ultimate mixture was close to neutral, the pH value was 6. 32. The removal rate of COD in methane production process was 41. 78% , which was higher than that of hydrogen production process (32. 14%). This might be the acetate in ultimate mixture of hydrogen production process could be utilized by methanogenesis and further be biodegrade.%以实际垃圾渗滤液作为厌氧发酵基质,研究了初始pH为7.0、中温(37℃)条件下的发酵产氢、产甲烷特性.结果表明,利用垃圾渗滤液作为基质发酵产氢或甲烷时,氢气的最大累积产量为24.33 mL(以每克COD计,下同),甲烷的最大累积产量为91.59 mL,产氢发酵在初期存在明显的迟滞期,但是产甲烷发酵不存在明显迟滞期;产氢发酵的液相末端产物中含有大量的挥发性有机酸和乙醇,乙醇、乙酸、丁酸质量浓度分别为487.23、1175.21、1225.78 mg/L,相比产氢发酵,产甲烷发酵的液相末端产物中乙

  20. Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

  1. Measurement of representative landfill gas migration samples at landfill perimeters: a case study

    OpenAIRE

    Kiernan, Breda M.; Beirne, Stephen; Fay, Cormac; Diamond, Dermot

    2009-01-01

    This paper describes the development of a fully integrated autonomous system based on existing infrared sensing technology capable of monitoring landfill gas migration (specifically carbon dioxide and methane) at landfill sites. Sampling using the described system was validated against the industry standard, GA2000 Plus hand held device, manufactured by Geotechnical Instruments Inc. As a consequence of repeated sampling during validation experiments, fluctuations in the gas mixtures became ap...

  2. Landfill gas monitoring at borehole wells using an autonomous environmental monitoring system

    OpenAIRE

    Kiernan, Breda M.; Beirne, Stephen; Fay, Cormac; Diamond, Dermot

    2008-01-01

    An autonomous environmental monitoring system(Smart Landfill) has been constructed for the quantitative measurement of the components of landfill gas found at borehole wells at the perimeter of landfill sites. The main components of landfill gas are the greenhouse gases, methane and carbon dioxide and have been monitored in the range 0-5 % volume. This monitoring system has not only been tested in the laboratory but has been deployed in multiple field trials and the data collected successf...

  3. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2

    OpenAIRE

    Baani, Mohamed; Liesack, Werner

    2008-01-01

    Methane-oxidizing bacteria (methanotrophs) attenuate methane emission from major sources, such as wetlands, rice paddies, and landfills, and constitute the only biological sink for atmospheric methane in upland soils. Their key enzyme is particulate methane monooxygenase (pMMO), which converts methane to methanol. It has long been believed that methane at the trace atmospheric mixing ratio of 1.75 parts per million by volume (ppmv) is not oxidized by the methanotrophs cultured to date, but ra...

  4. Biogas generation in landfills. Equilibria, rates and yields

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, M.

    1997-05-01

    Landfilling in `cells` has become more common in recent years. Different waste streams are guided to different cells, among which the biocell is a landfill designed for biogas production. In this thesis, the dependence of biogas generation on waste composition was investigated. Six 8,000 m{sup 3} test cells, with contents ranging from mainly commercial waste to pure domestic waste and equipped with gas extraction systems and bottom plastic liners, were monitored for seven years. Great emphasis was given to the characterization of conversion processes and governing mechanism in the topics of bio-energetics, kinetics and capacities. A thermodynamic model, in which the oxidations of volatile fatty acids (VFA) (2methane production rates and internal conditions observed during a two year period, demonstrated that high biogas rates corresponded with low VFA levels. To explain the discrepancies between theoretical methane potentials and quantified yields (in this study found to be 150-200 and 40-70 Nm{sup 3}/dry tonne, respectively), the possible nutritional limitation was investigated. Pools and emissions of chemical oxygen demand, N, P and K were quantified. Biomass pools were estimated from methane yields, growth yield coefficients, and bacterial mineral contents. However, results from commercial waste test cells showed that the assimilation of P exceeded the refuse content, which suggests the turnover of microbial biomass and questions the notion of nutritional limitation. In sum, the results showed that the advantages of a reduced content of readily biodegradable material, achieved by guidance or pretreatment, encompass several aspects of the performance. 84 refs, 6 figs, 1 tab

  5. Methane Tracking and Mitigation Options - EPA CMOP

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains the sub-model for EPA's MARKAL model, which tracks methane emissions from the energy system, and limited other sources (landfills and manure...

  6. Methane Detector With Plastic Fresnel Lens

    Science.gov (United States)

    Grant, W. B.

    1986-01-01

    Laser detector for natural gas leaks modified by substitution of molded plastic lens for spherical mirror. By measuring relative attenuation at two wavelengths, detector used to check for methane escaping from pipelines above or below ground and from landfill.

  7. PERFORMA OKSIDASI METAN PADA REAKTOR KONTINYU DENGAN PENINGKATAN KETEBALAN LAPISAN BIOCOVER LANDFILL

    OpenAIRE

    Opy Kurniasari; Tri Padmi; Edwan Kardena; Enri Damanhuri

    2013-01-01

    PERFORMANCE OF METHANE OXIDATION IN CONTINUOUS REACTOR BY BIOCOVER LANDFILL FILM THICKNESS IMPROVEMENT. Municipal solid waste (MSW) handling in Indonesia is currently highly dependent on landfilling at the final disposal facility (TPA), which generally operated in layer-by-layer basis, allowing the anaerobic (absent of oxygen) process. This condition will certainly generate biogas in the form of methane (CH4) and CO2. Methane is a greenhouse gas with a global warming potential greater than CO...

  8. Landfills, Landfills, Published in 2003, Taylor County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Landfills dataset, was produced all or in part from Published Reports/Deeds information as of 2003. It is described as 'Landfills'. Data by this publisher are...

  9. Landfills, landfill, Published in 2004, Duchesne County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Landfills dataset, was produced all or in part from Other information as of 2004. It is described as 'landfill'. Data by this publisher are often provided in...

  10. Numerical modelling of methane-powered micro-tubular, single-chamber solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, N. [School of Applied Mathematics, University of Birmingham, B15 2TT (United Kingdom); Department of Chemical Engineering, University of Birmingham, B15 2TT (United Kingdom); Decent, S.P. [School of Applied Mathematics, University of Birmingham, B15 2TT (United Kingdom); Kendall, K. [Department of Chemical Engineering, University of Birmingham, B15 2TT (United Kingdom)

    2010-12-01

    An experimentally validated, two-dimensional, axisymmetric, numerical model of micro-tubular, single-chamber solid oxide fuel cell (MT-SC-SOFC) has been developed. The model incorporates methane full combustion, steam reforming, dry reforming and water-gas shift reaction followed by electrochemical oxidation of produced hydrogen within the anode. On the cathode side, parasitic combustion of methane along with the electrochemical oxygen reduction is implemented. The results show that the poor performance of single-chamber SOFC as compared to the conventional (dual-chamber) SOFC (in case of micro-tubes) is due to the mass transport limitation on the anode side. The gas velocity inside the micro-tube is far too low when compared to the gas-chamber inlet velocity. The electronic current density is also non-uniform over the cell length, mainly due to the short length of the anode current collector located at the cell outlet. Furthermore, the higher temperature near the cell edges is due to the methane combustion (very close to the cell inlet) and current collection point (at the cell outlet). Both of these locations could be sensitive to the silver current collecting wire as silver may rupture due to cell overheating. (author)

  11. Impact assessment of concentrate recirculation on the landfill gas production

    Directory of Open Access Journals (Sweden)

    Džolev Nikola M.

    2016-01-01

    Full Text Available This paper explores the impact of concentrate recirculation, as a product of leachate treated by reverse osmosis plant, on the production of landfill gas at the real-scale landfill for municipal solid waste. In an effort to come up with results experimental measurements were carried out at the landfill in Bijeljina. All measurements performed, were divided into 3 groups. The aims of two groups of measurement were to determine landfill gas and methane yield from concentrate and leachate in laboratory conditions (1st group and to find out concentrations of oxidizing matters (COD and BOD5 present in leachate and concentrate at different points of treatment as well as its variability over the time (2nd group which could be used to calculate the potential of landfill gas and methane generation from concentrate by recirculation, theoretically. 3rd group of measurements, carried out in parallel, have goal to determine the quality and quantity of the collected landfill gas at wells throughout the landfill. The results of analysis carried out in this experimental research show the clear evidence of concentrate recirculation impact on methane production by increasing the landfill gas flow, as well as its concentration within the landfill gas composition, at the nearby well. Although results indicated relatively high impact of concentrate recirculation on landfill gas production, comparing to its theoretical potential, the influence on the landfill at whole, is negligible, due to relatively low volumes in recirculation with respect to its size and objectively low potential given by organic matter present in concentrate.

  12. Availability and properties of materials for the Fakse Landfill biocover

    DEFF Research Database (Denmark)

    Pedersen, Gitte Bukh; Scheutz, Charlotte; Kjeldsen, Peter

    2010-01-01

    Methane produced in landfills can be oxidized in landfill covers made of compost; often called biocovers. Compost materials originating from seven different sources were characterized to determine their methane-oxidizing capacity and suitability for use in a full-scale biocover at Fakse Landfill...... in Denmark. Methane oxidation rates were determined in batch incubations. Based on material availability, characteristics, and the results of batch incubations, five of the seven materials were selected for further testing in column incubations. Three of the best performing materials showed comparable...... average methane oxidation rates: screened garden waste compost, sewage sludge compost, and an unscreened 4-year old garden waste compost (120, 112, and 108 g m2 d1, respectively). On the basis of these results, material availability and cost, the unscreened garden waste compost was determined...

  13. Catalytic reduction of NO by methane using a Pt/C/polybenzimidazole/Pt/C fuel cell

    DEFF Research Database (Denmark)

    Petrushina, Irina; Cleemann, Lars Nilausen; Refshauge, Rasmus;

    2007-01-01

    The catalytic NO reduction by methane was studied using a (NO,CH4,Ar),Pt|polybenzimidazole(PBI)–H3PO4|Pt,(H2,Ar) fuel cell at 135 and 165°C. It has been found that, without any reducing agent (like CH4), NO can be electrochemically reduced in the (NO, Ar), Pt/C|PBI–H3PO4|Pt/C, (H2,Ar) fuel cell...

  14. Gaseous methyl- and inorganic mercury in landfill gas from landfills in Florida, Minnesota, Delaware, and California

    Science.gov (United States)

    Lindberg, S. E.; Southworth, G.; Prestbo, E. M.; Wallschläger, D.; Bogle, M. A.; Price, J.

    2005-01-01

    Municipal waste landfills contain numerous sources of mercury which could be emitted to the atmosphere. Their generation of methane by anaerobic bacteria suggests that landfills may act as bioreactors for methylated mercury compounds. Since our previous study at a single Florida landfill, gaseous inorganic and methylated mercury species have now been identified and quantified in landfill gas at nine additional municipal landfills in several regions of the US. Total gaseous mercury occurs at concentrations in the μg m-3 range, while methylated compounds occur at concentrations in the ng m-3 range at all but one of the landfill sites. Dimethylmercury is the predominant methylated species, at concentrations up to 100 ng m-3, while monomethyl mercury was generally lower. Limited measurements near sites where waste is exposed for processing (e.g. working face, transfer areas) suggest that dimethylmercury is released during these activities as well. Although increasing amounts of landfill gas generated in the US are flared (which should thermally decompose the organic mercury to inorganic mercury), unflared landfill gas is a potentially important anthropogenic source of methylated mercury emissions to the atmosphere.

  15. Methane Production in Microbial Reverse-Electrodialysis Methanogenesis Cells (MRMCs) Using Thermolytic Solutions

    KAUST Repository

    Luo, Xi

    2014-08-05

    The utilization of bioelectrochemical systems for methane production has attracted increasing attention, but producing methane in these systems requires additional voltage to overcome large cathode overpotentials. To eliminate the need for electrical grid energy, we constructed a microbial reverse- electrodialysis methanogenesis cell (MRMC) by placing a reverse electrodialysis (RED) stack between an anode with exoelectrogenic microorganisms and a methanogenic biocathode. In the MRMC, renewable salinity gradient energy was converted to electrical energy, thus providing the added potential needed for methane evolution from the cathode. The feasibility of the MRMC was examined using three different cathode materials (stainless steel mesh coated with platinum, SS/Pt; carbon cloth coated with carbon black, CC/CB; or a plain graphite fiber brush, GFB) and a thermolytic solution (ammonium bicarbonate) in the RED stack. A maximum methane yield of 0.60 ± 0.01 mol-CH 4/mol-acetate was obtained using the SS/Pt biocathode, with a Coulombic recovery of 75 ± 2% and energy efficiency of 7.0 ± 0.3%. The CC/CB biocathode MRMC had a lower methane yield of 0.55 ± 0.02 mol-CH4/mol-acetate, which was twice that of the GFB biocathode MRMC. COD removals (89-91%) and Coulombic efficiencies (74-81%) were similar for all cathode materials. Linear sweep voltammetry and electrochemical impedance spectroscopy tests demonstrated that cathodic microorganisms enhanced electron transfer from the cathode compared to abiotic controls. These results show that the MRMC has significant potential for production of nearly pure methane using low-grade waste heat and a source of waste organic matter at the anode. © 2014 American Chemical Society.

  16. Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions.

    Science.gov (United States)

    Luo, Xi; Zhang, Fang; Liu, Jia; Zhang, Xiaoyuan; Huang, Xia; Logan, Bruce E

    2014-01-01

    The utilization of bioelectrochemical systems for methane production has attracted increasing attention, but producing methane in these systems requires additional voltage to overcome large cathode overpotentials. To eliminate the need for electrical grid energy, we constructed a microbial reverse-electrodialysis methanogenesis cell (MRMC) by placing a reverse electrodialysis (RED) stack between an anode with exoelectrogenic microorganisms and a methanogenic biocathode. In the MRMC, renewable salinity gradient energy was converted to electrical energy, thus providing the added potential needed for methane evolution from the cathode. The feasibility of the MRMC was examined using three different cathode materials (stainless steel mesh coated with platinum, SS/Pt; carbon cloth coated with carbon black, CC/CB; or a plain graphite fiber brush, GFB) and a thermolytic solution (ammonium bicarbonate) in the RED stack. A maximum methane yield of 0.60 ± 0.01 mol-CH4/mol-acetate was obtained using the SS/Pt biocathode, with a Coulombic recovery of 75 ± 2% and energy efficiency of 7.0 ± 0.3%. The CC/CB biocathode MRMC had a lower methane yield of 0.55 ± 0.02 mol-CH4/mol-acetate, which was twice that of the GFB biocathode MRMC. COD removals (89-91%) and Coulombic efficiencies (74-81%) were similar for all cathode materials. Linear sweep voltammetry and electrochemical impedance spectroscopy tests demonstrated that cathodic microorganisms enhanced electron transfer from the cathode compared to abiotic controls. These results show that the MRMC has significant potential for production of nearly pure methane using low-grade waste heat and a source of waste organic matter at the anode.

  17. Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions.

    Science.gov (United States)

    Luo, Xi; Zhang, Fang; Liu, Jia; Zhang, Xiaoyuan; Huang, Xia; Logan, Bruce E

    2014-01-01

    The utilization of bioelectrochemical systems for methane production has attracted increasing attention, but producing methane in these systems requires additional voltage to overcome large cathode overpotentials. To eliminate the need for electrical grid energy, we constructed a microbial reverse-electrodialysis methanogenesis cell (MRMC) by placing a reverse electrodialysis (RED) stack between an anode with exoelectrogenic microorganisms and a methanogenic biocathode. In the MRMC, renewable salinity gradient energy was converted to electrical energy, thus providing the added potential needed for methane evolution from the cathode. The feasibility of the MRMC was examined using three different cathode materials (stainless steel mesh coated with platinum, SS/Pt; carbon cloth coated with carbon black, CC/CB; or a plain graphite fiber brush, GFB) and a thermolytic solution (ammonium bicarbonate) in the RED stack. A maximum methane yield of 0.60 ± 0.01 mol-CH4/mol-acetate was obtained using the SS/Pt biocathode, with a Coulombic recovery of 75 ± 2% and energy efficiency of 7.0 ± 0.3%. The CC/CB biocathode MRMC had a lower methane yield of 0.55 ± 0.02 mol-CH4/mol-acetate, which was twice that of the GFB biocathode MRMC. COD removals (89-91%) and Coulombic efficiencies (74-81%) were similar for all cathode materials. Linear sweep voltammetry and electrochemical impedance spectroscopy tests demonstrated that cathodic microorganisms enhanced electron transfer from the cathode compared to abiotic controls. These results show that the MRMC has significant potential for production of nearly pure methane using low-grade waste heat and a source of waste organic matter at the anode. PMID:25010133

  18. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    Directory of Open Access Journals (Sweden)

    D. Mogensen

    2014-01-01

    Full Text Available The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were performed in the temperature range 600–800°C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r ∝PCH40.7. A simple model is presented which is capable of predicting the methane conversion in a stack configuration from intrinsic kinetics of the anode support material. The predictions are compared with the stack measurements presented here, and good agreement is observed.

  19. Nitrogen removal in the bioreactor landfill system with intermittent aeration at the top of landfilled waste

    Energy Technology Data Exchange (ETDEWEB)

    He Ruo [College of Environment and Resource, Zhejiang University, Hangzhou 310029 (China)]. E-mail: heruo@zju.edu.cn; Shen Dongsheng [College of Environment and Resource, Zhejiang University, Hangzhou 310029 (China)

    2006-08-25

    High ammonia concentration of recycled landfill leachate makes it very difficult to treat. In this work, a vertical aerobic/anoxic/anaerobic lab-scale bioreactor landfill system, which was constructed by intermittent aeration at the top of landfilled waste, as a bioreactor for in situ nitrogen removal was investigated during waste stabilization. Intermittent aeration at the top of landfilled waste might stimulate the growth of nitrifying bacteria and denitrifying bacteria in the top and middle layers of waste. The nitrifying bacteria population for the landfill bioreactor with intermittent aeration system reached between10{sup 6} and 10{sup 8} cells/dry g waste, although it decreased 2 orders of magnitude on day 30, due to the inhibitory effect of the acid environment and high organic matter in the landfilled waste. The denitrifying bacteria population increased by between 4 and 13 orders of magnitude compared with conventional anaerobic landfilled waste layers. Leachate NO{sub 3} {sup -}-N concentration was very low in both two experimental landfill reactors. After 105 days operation, leachate NH{sub 4} {sup +}-N and TN concentrations for the landfill reactor with intermittent aeration system dropped to 186 and 289 mg/l, respectively, while they were still kept above 1000 mg/l for the landfill reactor without intermittent aerobic system. In addition, there is an increase in the rate of waste stabilization as well as an increase of 12% in the total waste settlement for the landfill reactor with intermittent aeration system.

  20. Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming

    International Nuclear Information System (INIS)

    Highlights: ► A 2D model is developed for solid oxide fuel cells (SOFCs). ► CH4 reforming by CO2 (MCDR) is included. ► SOFC with MCDR shows comparable performance with methane steam reforming SOFC. ► Increasing CO electrochemical oxidation greatly enhances the SOFC performance. ► Effects of potential and temperature on SOFC performance are also discussed. - Abstract: A two-dimensional model is developed to simulate the performance of solid oxide fuel cells (SOFCs) fed with CO2 and CH4 mixture. The electrochemical oxidations of both CO and H2 are included. Important chemical reactions are considered in the model, including methane carbon dioxide reforming (MCDR), reversible water gas shift reaction (WGSR), and methane steam reforming (MSR). It’s found that at a CH4/CO2 molar ratio of 50/50, MCDR and reversible WGSR significantly influence the cell performance while MSR is negligibly small. The performance of SOFC fed with CO2/CH4 mixture is comparable to SOFC running on CH4/H2O mixtures. The electric output of SOFC can be enhanced by operating the cell at a low operating potential or at a high temperature. In addition, the development of anode catalyst with high activity towards CO electrochemical oxidation is important for SOFC performance enhancement. The model can serve as a useful tool for optimization of the SOFC system running on CH4/CO2 mixtures

  1. The presence of hydrogenotrophic methanogens in the inoculum improves methane gas production in microbial electrolysis cells.

    KAUST Repository

    Siegert, Michael

    2014-01-01

    High current densities in microbial electrolysis cells (MECs) result from the predominance of various Geobacter species on the anode, but it is not known if archaeal communities similarly converge to one specific genus. MECs were examined here on the basis of maximum methane production and current density relative to the inoculum community structure. We used anaerobic digester (AD) sludge dominated by acetoclastic Methanosaeta, and an anaerobic bog sediment where hydrogenotrophic methanogens were detected. Inoculation using solids to medium ratio of 25% (w/v) resulted in the highest methane production rates (0.27 mL mL(-1) cm(-2), gas volume normalized by liquid volume and cathode projected area) and highest peak current densities (0.5 mA cm(-2)) for the bog sample. Methane production was independent of solid to medium ratio when AD sludge was used as the inoculum. 16S rRNA gene community analysis using pyrosequencing and quantitative PCR confirmed the convergence of Archaea to Methanobacterium and Methanobrevibacter, and of Bacteria to Geobacter, despite their absence in AD sludge. Combined with other studies, these findings suggest that Archaea of the hydrogenotrophic genera Methanobacterium and Methanobrevibacter are the most important microorganisms for methane production in MECs and that their presence in the inoculum improves the performance.

  2. Mobile measurement of methane: plumes, isotopes and inventory verification

    Science.gov (United States)

    Lowry, D.; Zazzeri, G.; Fisher, R. E.; France, J.; Al-Shalaan, A.; Lanoisellé, M.; Nisbet, E. G.

    2015-12-01

    Since 2013 the RHUL group has been identifying methane plumes from major UK sources using a Picarro 2301 coupled to the A0941 mobile module. Once identified the plumes have been sampled by filling Tedlar or Flexfoil bags for later carbon isotopic analysis by high-precision IRMS. This method has ben successfully deployed to isotopically characterize the main anthropogenic methane emitters in the UK (natural gas, coal, landfill, wastewater treatment, cattle; Zazzeri et al., 2015) and during overseas campaigns in eastern Australia (coal, cattle, legacy gas wells) and Kuwait (landfill, wastewater treatment, oil refineries, cattle, camels). This has identified strong similarities of isotopic signature for some sources (landfill, cattle), but large variations for others (natural gas, coal), which must be isotopically resolved at regional scale. Both landfill and natural gas emissions in SE England have tightly-constrained δ13C signatures, averaging -58 ± 3‰ and -36 ± 2‰, respectively, the latter being characteristic of homogenised North Sea gas supply. In contrast, signatures for coal mines in England and Wales fall in a range of 51.2 ± 0.3‰ to 30.9 ± 1.4‰, but can be tightly constrained by region. On a local scale in west London, repeat surveys in the boroughs of Hounslow and Runnymede have been made for comparison with the latest 1x1 km grid UK inventories for 2009 and 2012, which are subdivided by UNECE categories. An excess methane map can be derived for comparison with inventory emissions maps by identifying daily background and binning the excess values from mobile measurements by grid-square. This shows that the spatial distribution of emissions in the UK 2012 inventory is a big improvement on that of 2009. It also suggests that there is an overestimation of emissions from old landfills (closed before 2000 and reliant on a topsoil cap for oxidation), and an underestimation on emissions from currently active landfill cells. Zazzeri, G. et al. (2015

  3. Earthworm activity in a simulated landfill cover soil shifts the community composition of active methanotrophs

    OpenAIRE

    Kumaresan, Deepak; Héry, Marina; Bodrossy, Levente; Singer, Andrew C.; Stralis-Pavese, Nancy; Thompson, Ian P.; Murrell, J. Colin

    2011-01-01

    Landfills represent a major source of methane into the atmosphere. In a previous study, we demonstrated that earthworm activity in landfill cover soil can increase soil methane oxidation capacity (Héry et al., 2008). In this study, a simulated landfill cover soil mesocosm (1 m x 0.15 m) was used to observe the influence of earthworms (Eisenia veneta) on the active methanotroph community composition, by analyzing the expression of the pmoA gene, which is responsible for methane oxidation. mRN...

  4. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    OpenAIRE

    Mogensen, D.; J.-D. Grunwaldt; Hendriksen, P. V.; J. U. Nielsen; K. Dam-Johansen

    2014-01-01

    The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC) have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were performed in the temperature range 600-800 degrees C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r proportional ...

  5. The presence of hydrogenotrophic methanogens in the inoculum improves methane gas production in microbial electrolysis cells

    Directory of Open Access Journals (Sweden)

    Michael eSiegert

    2015-01-01

    Full Text Available High current densities in microbial electrolysis cells (MECs result from the predominance of various Geobacter species on the anode. MECs inoculated from different sources often converge in terms of current production and predominance of Geobacter species despite variability in the inoculum community. Relatively less is known about the effects of inoculum source on methane gas production in MECs, and specifically whether archaeal communities similarly converge to one specific genus. MECs were examined here on the basis of maximum methane production and current density relative to the inoculum community structure. We used anaerobic digester (AD sludge dominated by acetoclastic Methanosaeta species, and an anaerobic bog sediment where hydrogenotrophic methanogens were detected. Inoculation using solids to medium ratio of 25% w/v resulted in the highest methane production rates (0.27 mL mL–1 cm–2, gas volume normalized by liquid volume and cathode projected area and highest peak current densities (0.5 mA cm–2 for the bog sample. Methane production was independent of solid to medium ratio when AD sludge was used as the inoculum. 16S rRNA gene community analysis using pyrosequencing and qPCR confirmed the convergence of Archaea to Methanobacterium and Methanobrevibacter, and of Bacteria to Geobacter, despite their absence in AD sludge. Combined with other studies, these findings suggest that Archaea of the hydrogenotrophic genera Methanobacterium and Methanobrevibacter are the most important microorganisms for methane production in MECs and that their presence in the inoculum improves the performance.

  6. High Efficiency Direct Methane Solid Oxide Fuel Cell System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a defined need for energy dense and highly efficient energy storage and power delivery systems for future space missions. Compared to other fuel cell...

  7. Methane-free biogas for direct feeding of solid oxide fuel cells

    Science.gov (United States)

    Leone, P.; Lanzini, A.; Santarelli, M.; Calì, M.; Sagnelli, F.; Boulanger, A.; Scaletta, A.; Zitella, P.

    This paper deals with the experimental analysis of the performance and degradation issues of a Ni-based anode-supported solid oxide fuel cell fed by a methane-free biogas from dark-anaerobic digestion of wastes by pastry and fruit shops. The biogas is produced by means of an innovative process where the biomass is fermented with a pre-treated bacteria inoculum (Clostridia) able to completely inhibit the methanization step during the fermentation process and to produce a H 2/CO 2 mixture instead of conventional CH 4/CO 2 anaerobic digested gas (bio-methane). The proposed biogas production route leads to a biogas composition which avoids the need of introducing a reformer agent into or before the SOFC anode in order to reformate it. In order to analyse the complete behaviour of a SOFC with the bio-hydrogen fuel, an experimental session with several H 2/CO 2 synthetic mixtures was performed on an anode-supported solid oxide fuel cell with a Ni-based anode. It was found that side reactions occur with such mixtures in the typical thermodynamic conditions of SOFCs (650-800 °C), which have an effect especially at high currents, due to the shift to a mixture consisting of hydrogen, carbon monoxide, carbon dioxide and water. However, cells operated with acceptable performance and carbon deposits (typical of a traditional hydrocarbon-containing biogas) were avoided after 50 h of cell operation even at 650 °C. Experiments were also performed with traditional bio-methane from anaerobic digestion with 60/40 vol% of composition. It was found that the cell performance dropped after few hours of operation due to the formation of carbon deposits. A short-term test with the real as-produced biogas was also successfully performed. The cell showed an acceptable power output (at 800 °C, 0.35 W cm -2 with biogas, versus 0.55 W cm -2 with H 2) although a huge quantity of sulphur was present in the feeding fuel (hydrogen sulphide at 103 ppm and mercaptans up to 10 ppm). Therefore, it

  8. Kinetics of (reversible) internal reforming of methane in solid oxide fuel cells under stationary and APU conditions

    Science.gov (United States)

    Timmermann, H.; Sawady, W.; Reimert, R.; Ivers-Tiffée, E.

    The internal reforming of methane in a solid oxide fuel cell (SOFC) is investigated and modeled for flow conditions relevant to operation. To this end, measurements are performed on anode-supported cells (ASC), thereby varying gas composition (y CO = 4-15%, yH2 = 5 - 17 % , yCO2 = 6 - 18 % , yH2O = 2 - 30 % , yCH4 = 0.1 - 20 %) and temperature (600-850 °C). In this way, operating conditions for both stationary applications (methane-rich pre-reformate) as well as for auxiliary power unit (APU) applications (diesel-POX reformate) are represented. The reforming reaction is monitored in five different positions alongside the anodic gas channel by means of gas chromatography. It is shown that methane is converted in the flow field for methane-rich gas compositions, whereas under operation with diesel reformate the direction of the reaction is reversed for temperatures below 675 °C, i.e. (exothermic) methanation occurs along the anode. Using a reaction model, a rate equation for reforming could be derived which is also valid in the case of methanation. By introducing this equation into the reaction model the methane conversion along a catalytically active Ni-YSZ cermet SOFC anode can be simulated for the operating conditions specified above.

  9. Optimization of dry reforming of methane over Ni/YSZ anodes for solid oxide fuel cells

    Science.gov (United States)

    Guerra, Cosimo; Lanzini, Andrea; Leone, Pierluigi; Santarelli, Massimo; Brandon, Nigel P.

    2014-01-01

    This work investigates the catalytic properties of Ni/YSZ anodes as electrodes of Solid Oxide Fuel Cells (SOFCs) to be operated under direct dry reforming of methane. The experimental test rig consists of a micro-reactor, where anode samples are characterized. The gas composition at the reactor outlet is monitored using a mass spectrometer. The kinetics of the reactions occurring over the anode is investigated by means of Isotherm reactions and Temperature-programmed reactions. The effect of the variation of temperature, gas residence time and inlet carbon dioxide-methane volumetric ratio is analyzed. At 800 °C, the best catalytic performance (in the carbon safe region) is obtained for 1.5 reactions, respectively. In other ranges, dry reforming and reverse water gas shift are the dominant reactions and the inlet feed reaches almost the equilibrium condition provided that a sufficient gas residence time is obtained.

  10. Methane Steam Reforming Kinetics in Operating Solid Oxide Fuel Cells

    OpenAIRE

    Fan, L.

    2014-01-01

    By 2040, electricity generation will account for more than 40 % of global energy consumption. Gains in efficiency through energy-saving practices and technologies – such as hybrid vehicles and new, high efficiency natural gas power plants – will temper demand growth and curb emissions. Different from the conventional thermal power plants, fuel cells are potentially more efficient than traditional heat engines since they are not limited by the maximum efficiency of the Carnot cycle. Rather, th...

  11. Modeling lateral gas transport in soil adjacent to an old landfill

    DEFF Research Database (Denmark)

    Poulsen, T.G.; Christophersen, Mette; Moldrup, P.;

    2001-01-01

    . An empirical expression for calculating methane oxidation rate as a function of soil temperature was developed using site-specific measurements of methane oxidation rate. The transport and degradation parameter expressions were incorporated into a numerical model for simulating landfill gas transport, using...... the gas transport model using methane oxidation rate, landfill gas pressure, and wind-induced dispersion as fitting parameters. The model was subsequently tested against independent concentration and flux data (not used in the model calibration). This yielded a prediction accuracy similar to that found......Lateral migration of landfill gases in soils surrounding old (closed) municipal landfills can lead to explosion hazards and damage to vegetation. Landfill gas production and migration is controlled by microbial activity and soil physical properties such as gas (air) permeability, gas diffusivity...

  12. Coal Mine Methane in Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This paper discusses coal mine methane emissions (CMM) in the Russian Federation and the potential for their productive utilisation. It highlights specific opportunities for cost-effective reductions of CMM from oil and natural gas facilities, coal mines and landfills, with the aim of improving knowledge about effective policy approaches.

  13. Methane Dynamics in Flooded Lands

    Science.gov (United States)

    Methane (CH4) is the second most important anthropogenic greenhouse gas with a heat trapping capacity 34 times greater than that of carbon dioxide on a100 year time scale. Known anthropogenic CH4 sources include livestock production, rice agriculture, landfills, and natural gas m...

  14. Methods of Sensing Land Pollution from Sanitary Landfills

    Science.gov (United States)

    Nosanov, Myron Ellis; Bowerman, Frank R.

    1971-01-01

    Major cities are congested and large sites suitable for landfill development are limited. Methane and other gases are produced at most sanitary landfills and dumps. These gases may migrate horizontally and vertically and have caused fatalities. Monitoring these gases provides data bases for design and construction of safe buildings on and adjacent to landfills. Methods of monitoring include: (1) a portable combustible gas indicator; and (2) glass flasks valved to allow simultaneous exhaust of the flask and aspiration of the sample into the flask. Samples are drawn through tubing from probes as deep as twenty-five feet below the surface.

  15. Transport and reaction processes affecting the attenuation of landfill gas in cover soils

    DEFF Research Database (Denmark)

    Molins, S.; Mayer, K.U.; Scheutz, Charlotte;

    2008-01-01

    of methane, chlorofluorocarbons, and hydrochlorofluorocarbons to the atmosphere. This study was conducted to investigate the effect of oxidation reactions on the overall gas transport regime and to evaluate, the contributions of various gas transport processes on methane attenuation in landfill cover soils...... to the atmosphere. Oxygen supply into the soil column is driven exclusively by diffusion, whereas advection outward offsets part of the diffusive contribution. In the reaction zone, methane consumption reduces the pressure gradient, further decreasing the significance of advection near the top of the column......Methane and trace organic gases produced in landfill waste are partly oxidized in the top 40 cm of landfill cover soils under aerobic conditions. The balance between the oxidation of landfill gases and the ingress of atmospheric oxygen into the soil cover determines the attenuation of emissions...

  16. Diamond dissolution and the production of methane and other carbon-bearing species in hydrothermal diamond-anvil cells

    Science.gov (United States)

    Chou, I.-Ming; Anderson, Alan J.

    2009-01-01

    Raman analysis of the vapor phase formed after heating pure water to near critical (355-374 ??C) temperatures in a hydrothermal diamond-anvil cell (HDAC) reveals the synthesis of abiogenic methane. This unexpected result demonstrates the chemical reactivity of diamond at relatively low temperatures. The rate of methane production from the reaction between water and diamond increases with increasing temperature and is enhanced by the presence of a metal gasket (Re, Ir, or Inconel) which is compressed between the diamond anvils to seal the aqueous sample. The minimum detection limit for methane using Raman spectroscopy was determined to be ca. 0.047 MPa, indicating that more than 1.4 nanograms (or 8.6 ?? 10-11 mol) of methane were produced in the HDAC at 355 ??C and 30 MPa over a period of ten minutes. At temperatures of 650 ??C and greater, hydrogen and carbon dioxide were detected in addition to methane. The production of abiogenic methane, observed in all HDAC experiments where a gasket was used, necessitates a reexamination of the assumed chemical systems and intensive parameters reported in previous hydrothermal investigations employing diamonds. The results also demonstrate the need to minimize or eliminate the production of methane and other carbonic species in experiments by containing the sample within a HDAC without using a metal gasket.

  17. [Influence of substrate COD on methane production in single-chambered microbial electrolysis cell].

    Science.gov (United States)

    Teng, Wen-Kai; Liu, Guang-Li; Luo, Hai-Ping; Zhang, Ren-Duo; Fu, Shi-Yu

    2015-03-01

    The chemical oxygen demand (COD) of substrate can affect the microbial activity of both anode and cathode biofilm in the single-chamber methanogenic microbial electrolysis cell (MEC). In order to investigate the effect of COD on the performance of MEC, a single chamber MEC was constructed with biocathode. With the change of initial concentration of COD (700, 1 000 and 1 350 mg x L(-1)), the methane production rate, COD removal and energy efficiency in the MEC were examined under different applied voltages. The results showed that the methane production rate and COD removal increased with the increasing COD. With the applied voltage changing from 0.3 to 0.7 V, the methane production rate increased at the COD of 700 mg x L(-1), while it increased at first and then decreased at the COD of 1000 mg x L(-1) and 1350 mg x L(-1). A similar trend was observed for the COD removal. The cathode potential reached the minimum (- 0.694 ± 0.001) V as the applied voltage was 0.5 V, which therefore facilitated the growth of methanogenic bacteria and improved the methane production rate and energy efficiency of the MEC. The maximum energy income was 0.44 kJ ± 0.09 kJ (1450 kJ x m(-3)) in the MEC, which was obtained at the initial COD of 1000 mg x L(-1) and the applied voltage of 0.5 V. Methanogenic MECs could be used for the treatment of wastewaters containing low organic concentrations to achieve positive energy production, which might provide a new method to recover energy from low-strength domestic wastewater.

  18. 生活垃圾填埋场甲烷自然减排的新途径——厌氧与好氧的共氧化作用%New Way for Natural Mitigation of Methane in Domestic Waste Landfill Sites: Co-oxidation of Anaerobic and Aerobic Oxidation

    Institute of Scientific and Technical Information of China (English)

    周海燕; 韩丹

    2011-01-01

    通过证实生活垃圾填埋场中甲烷厌氧氧化与好氧氧化的共存,提出了甲烷自然减排的新途径.分别选取暴雨过后垃圾填埋表层30~60 cm的覆土、1.5 m以下的垃圾以及底层矿化垃圾做硫酸盐还原菌阳性反应实验,结果表明:生活垃圾填埋体不同填埋层都存在不同数量级的硫酸盐还原菌,且底层矿化垃圾中的硫酸盐还原菌的数量最多,表层覆土中最少.颗粒大小比例为50%:50%的垃圾样品表现出最佳的甲烷好氧与厌氧氧化效果,且厌氧氧化在共氧化作用中的比例达到20%以上.含水率为25%时,矿化垃圾中微生物活性最大,好氧与厌氧氧化甲烷速率均达到最大;当含水率接近70%时,甲烷厌氧氧化的贡献率可达30%以上.外源甲烷的补充可以驯化甲烷氧化微生物,其中甲烷好氧氧化时间最大可缩短50%;而甲烷通入量超过2 mL后,甲烷好氧与厌氧氧化均受到抑制.%A new way for natural mitigation of methane was put forward by authenticating co-oxidation of anaerobic and aerobic oxidation of methane in domestic waste landfill sites. The soil at 30-60 cm, the waste below 1.5 m from the surface, and the aged waste at the bottom, were selected for the experiments of sulfate-reducing bacteria positive reaction. The results showed that sulfate-reducing bacteria nearly existed in all landfill layers of waste landfill bodies, and aged waste at the bottom contained most, the surface soil contained least. Waste samples with 50%: 50% of coarse and fine particle size proportion showed the best methane oxidation effect of aerobic and anaerobic oxidation, and anaerobic oxidation accounted for above 20%. Microbial activity in aged waste and its methane co-oxidation rate both reached the maximum value as moisture content was 25%. Anaerobic oxidation rate could reach more than 30% as moisture content was close to 70%. Supplement of exogenous methane could culture methane-oxidizing bacteria

  19. Landfilling: Environmental Issues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Manfredi, Simone; Kjeldsen, Peter

    2011-01-01

    Waste disposed of in a landfill is by its nature different from the material found in the surroundings of the landfill and thereby the landfill may potentially affect the surrounding environment. This may be in terms of attracting or repelling flora and fauna from the area and through the emission......, the extent and quality of the technical environmental protection measures introduced, the daily operation and the timescale. This chapter describes the main potential environmental impacts from landfills. The modern landfill is able to avoid most of these impacts. However, in the planning and design...

  20. Landfilling: Concepts and Challenges

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Scharff, H.; Hjelmar, O.

    2011-01-01

    Landfilling of waste historically has been the main management route for waste, and in many parts of the world it still is. Landfills have developed from open polluting dumps to modern highly engineered facilities with sophisticated control measures and monitoring routines. However, in spite of all...... new approaches and technological advancement the landfill still is a long lasting accumulation of waste in the environment. Much of current landfill design and technology has been introduced as a reaction to problems encountered at actual landfills. The solution was in many cases sought in isolation...... to understand the concepts, the processes and the long-term aspects of landfilling. This chapter describes the main conceptual aspects of landfilling. The historical development is presented and key issues of time frames, mass balances and technical approaches are discussed. The environmental issues...

  1. Ultrasound assisted biogas production from landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Oz, Nilgün Ayman, E-mail: nilgunayman@comu.edu.tr; Yarimtepe, Canan Can

    2014-07-15

    Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency

  2. 生活垃圾填埋场甲烷自然减排的新途径:厌氧与好氧的共氧化作用%A new way of natural mitigation of methane in a refuse landfill: Anaerobic and aerobic co-oxidation

    Institute of Scientific and Technical Information of China (English)

    韩丹; 石峰; 柴晓利; 陈浩泉; 赵由才

    2011-01-01

    The surface soil at 30 ~60 cm, refuse at 1.5 m depth and the aged refuse at the bottom of the refuse landfill were selected for experiments on sulfate-reducing bacteria (SRB). It was found that SRB existed in nearly all layers of the solid waste landfill, with aged refuse at the bottom containing the most and the surface soil the least SRB. Garbage samples with a 50%: 50% coarse:fine particle size proportion showed the best aerobic and anaerobic methane oxidation effect, and anaerobic oxidation accounted for above 20%. Microbial activity in aged refuse and co-oxidation rate of methane reached a maximum value with a 25% moisture content. Anaerobic oxidation rate could reach more than 30% as the moisture content approached 70%. Supplementation of exogenous methane could shorten the time of aerobic oxidation by 50%. However, both aerobic and anaerobic oxidation were weakened if the amount of exogenous methane was beyond 2 mL for the 20 g aged refuse. Therefore, a new way for natural mitigation of methane in a refuse landfill is put forward based on anaerobic and aerobic co-oxidation of methane.%采用暴雨过后垃圾填埋表层30~60 cm的覆土、表层1.5 m以下的垃圾,以及刚刚开挖出来的9年矿化垃圾进行硫酸盐还原菌阳性反应试验,结果表明生活垃圾填埋体不同填埋层都存在不同数量级的硫酸盐还原菌,且底层矿化垃圾中的硫酸盐还原菌的数量最多,表层覆土中最少.颗粒大小比例为50%:50%的垃圾样品表现出最佳的甲烷好氧与厌氧氧化效果,且厌氧氧化在共氧化作用中的比例达到20%以上.含水率为25%时,矿化垃圾中微生物活性最大,好氧与厌氧氧化甲烷速率均达到最大.当含水率接近70%时,甲烷厌氧氧化的贡献率可达30%以上.外源甲烷的补充可以驯化甲烷氧化微生物,其中甲烷好氧氧化时间最大可缩短50%;而初始甲烷一次通人量超过2 mL(20g矿化垃圾)后,甲烷好氧与厌氧氧化

  3. THE EMISSION POTENTIAL FROM MUNICIPAL SOLID WASTE LANDFILL IN JORDAN

    Directory of Open Access Journals (Sweden)

    Mohammad Aljaradin

    2016-01-01

    Full Text Available A comprehensive study was conducted to monitor the emission potential from solid waste landfilled in Jordan over a period of 292 days using an anaerobic lysimeter. A 30 kg waste sample reflecting the typical municipal solid waste (MSW streams generated in Jordan was used to simulate the influence of climate on the emission potential of landfills located in semi-arid areas. The experimental results demonstrated that a significant amount of leachate and landfill gas was produced. The methane content was found to be more than 45% and the leachate produced reached 15.7 l after 200 days. However, after 260 days the gas and leachate production rate became negligible. A significant amount of heavy metal traces was found in the leachate due to mixed waste disposal. Changes in biogas and leachate quality parameters in the lysimeter revealed typical landfill behaviour trends, the only difference being that they developed much more quickly. In view of current landfill practices in Jordan and the effect of climate change, the results suggest that landfill design and operational modes need to be adjusted in order to achieve sustainability. For this reason, optimized design parameters and operational scenarios for sustainable landfill based on the country’s climatic conditions and financial as well as technical potential are recommended as a primary reference for future landfills in Jordan as well as in similar regions and climates.

  4. Cooling of a Diesel Reformate Fuelled Solid Oxide Fuel Cell by Internal Reforming of Methane: A Modelling Study

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiaowei; Alexander Kromp

    2013-01-01

    In this paper a system combining a diesel reformer using catalytic partial oxidation (CPOX) with the Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Unit (APU) applications is modeled with respect to the cooling effect provided by internal reforming of methane in anode gas channel.A model mixture consisting of 80% n-hexadecane and 20% 1-methylnaphthalin is used to simulate the commercial diesel.The modelling consists of several steps.First,equilibrium gas composition at the exit of CPOX reformer is modelled in terms oxygen to carbon (O/C) ratio,fuel utilization ratio and anode gas recirculation.Second,product composition,especially methane content,is determined for the methanation process at the operating temperatures ranging from 500 ℃ to 520 ℃.Finally,the cooling power provided by internal reforming of methane in SOFC fuel channel is calculated for two concepts to increase the methane content of the diesel reformate.The results show that the first concept,operating the diesel reformer at low O/C ratio and/or recirculation ratio,is not realizable due to high probability of coke formation,whereas the second concept,combining a methanation process with CPOX,can provide a significant cooling effect in addition to the conventional cooling concept which needs higher levels of excess air.

  5. Lateral gas transport in soil adjacent to an old landfill: factors governing gas migration

    DEFF Research Database (Denmark)

    Christophersen, Mette; Kjeldsen, Peter

    2001-01-01

    Field experiments investigating lateral gas transport in soil adjacent to an old landfill in Denmark during a one-year period were conducted. A significant seasonal variation, with low concentrations of methane and high concentrations of carbon dioxide in the summer, caused by methane oxidation...... migration of landfill gas was a very dynamic system and the concentrations of LFG at a specific place and depth changed dramatically within a very short time. The experiments showed that change in barometric pressure was an important factor affecting gas migration at the Skellingsted landfill in Denmark....

  6. Prediction of landfill leachate amount using HELP model Case study: Semnan landfill

    Directory of Open Access Journals (Sweden)

    A Ghavidel

    2011-04-01

    Full Text Available "nBackground and Objectives:. Owing to the non-seperated municipal solid wastes the leachate form in land fills contain high amounts of heavy metalls and toxic substances Hence, leachate treatment is a serious problem. In order to design leachate treatment and collection systems, estimation of quality and quantity of leachate is of high necessity. Hydrologic Evaluation of Landfill Performance (HELP Model was used to estimate leachate generation in the lined landfill cells for a variety of conditions. The HELP program is a quasi-two-dimensional hydrologic model for conducting water balance analysis of landfills, cover systems, and other solid waste containment facilities. In this paper HELP program is used to predict leachate generating in Semnan landfill after its operational life."nMaterials and Methods: HELP model use weather, soil and design data to estimate leachate quantity. The meteorological data were obtained from semnan Atmospheric Data Centre. Soil mechanics examinations in the landfill area were applied to achieve soil data. In addition, design parameters were based on Semnan landfill design specifications. Semnan landfill capacity is designed so as to accommodate municipal solid wastes generated during the next 25 years."nResults: In this study result indicated that precipitation and evapotranspiration has the most influenced on leachate generation increase and decrease, respectively. 82% of annual precipitation isn't percolated into Semnan landfill due to evapotranspiration. HELP Model simulations were indicated that the maximum and average value of leachate height above barrier layer is 36 and 3mm,respectively."nConclusion: Semnan landfill is designed under minimum standard condition. Therefore, low height of leachate generated is due to area weather. The precipitation amount is low while the evapotranspiration amount is high in this area. High evapotranspiration is due to high temperature and solar radiation in Semnan

  7. Landfill Gas Capture Opportunity in Sub-Saharan Africa

    OpenAIRE

    Ouedraogo, Fatimata

    2005-01-01

    This study entitled, Landfill gas capture opportunity in Sub-Saharan Africa, analyzes urban waste in both quantitative and qualitative terms in selected Sub-Saharan African (SSA) countries to find out if available methane from municipal waste could be used as a supplementary energy source and evaluate whether potential waste-to-energy (WTE) project candidates meet a certain level of cost e...

  8. Aerobic landfill bioreactor

    Science.gov (United States)

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  9. Investigation of methane steam reforming in planar porous support of solid oxide fuel cell

    International Nuclear Information System (INIS)

    Adopting the porous support in integrated-planar solid oxide fuel cell (IP-SOFC) can reduce the operating temperature by reducing thickness of electrolyte layer, and also, provide internal reforming environment for hydrogen-rich fuel gas. The distributions of reactant and product components, and temperature of methane steam reforming for IP-SOFC were investigated by the developed physical and mathematical model with thermodynamic analysis, in which eleven possible reaction mechanisms were considered by the source terms and Arrhenius relationship. Numerical simulation of the model revealed that the progress of reforming reaction and the distribution of the product, H2, were influenced by the operating conditions, included that of temperature, ratio of H2O and CH4, as well as by the porosity of the supporting material. The simulating results indicate that the methane conversion rate can reach its maximum value under the operating temperature of 800 deg. C and porosity of ε = 0.4, which rather approximate to the practical operating conditions of IP-SOFC. In addition, characteristics of carbon deposition on surface of catalyst were discussed under various operating conditions and configuration parameters of the porous support. The present works provided some theoretical explanations to the numerous experimental observations and engineered practices

  10. Landfill gas issues affecting the design and operation of waste to energy facilities

    International Nuclear Information System (INIS)

    A common location for waste to energy (WTE) facilities is adjacent to an existing landfill. This is an appropriate place to site WTE facilities, given that solid waste is already directed to the landfill site, and bypass refuse and ash generated by the WTE facility can readily be disposed at the existing landfill. Often, however, the existing landfill is unlined, and is generating landfill gas (LFG) in sufficient quantities and pressures to create lateral LFG migration. Such LFG migration must be addressed in the design of the WTE facility. LFG is composed of approximately equal parts of methane and carbon dioxide. Since methane is explosive under certain conditions, its accumulation within onsite structures must be controlled. Alternatives for LFG migration control include perimeter extraction systems, and active and passive subslab systems for individual facility buildings. In this paper advantages and disadvantages of the various control system types are discussed. LFG control and safety during plant construction also are addressed

  11. Methane emissions in the Netherlands

    International Nuclear Information System (INIS)

    Methane is the most important greenhouse gas after carbon dioxide. Detailed national emission estimates are needed to narrow the gap between world emission estimates and budget results from atmospheric chemistry. These estimates have to be based on sound emission factors and better extrapolation of methane measurement results. The article identifies the most important sources of methane in the Netherlands as landfills, ruminants, manure and the production, distribution and combustion of gas. It explains that emissions from landfills will decrease as a result of policies to reduce landfilling. The encouragement of increased internal use of otherwise vented gas on oil and gas production platforms and the planned extra maintenance of destribution networks should further decrease emissions. Policies to reduce milk and beef surplus and the introduction of new types of stabling and manure handling systems will reduce emissions in the agriculture sector. These measures should produce a total reduction of methane of 20% in 2000 with respect to 1990 levels. 5 refs., 3 figs., 2 tabs

  12. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    Energy Technology Data Exchange (ETDEWEB)

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  13. Landfill Top Covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2011-01-01

    The purpose of the final cover of a landfill is to contain the waste and to provide for a physical separation between the waste and the environment for protection of public health. Most landfill covers are designed with the primary goal to reduce or prevent infiltration of precipitation into the ......The purpose of the final cover of a landfill is to contain the waste and to provide for a physical separation between the waste and the environment for protection of public health. Most landfill covers are designed with the primary goal to reduce or prevent infiltration of precipitation...... is landscaped in order to fit into the surrounding area/environment or meet specific plans for the final use of the landfill. To fulfill the above listed requirements landfill covers are often multicomponent systems which are placed directly on top of the waste. The top cover may be placed immediately after......) and the requirement for protection of the local environment/situation (climatology, morphology, etc.). At modern landfills the cover system is only one of the environmental protection measures which often also include leachate and gas collection and subsequently treatment or recovery. At old abandoned landfills...

  14. Methane oxidation and methanotrophs: resistance and resilience against model perturbations

    Science.gov (United States)

    Ho, A.; Frenzel, P.

    2009-04-01

    Biodiversity is claimed to be essential for ecosystem functioning. However, most experiments on biodiversity and ecosystem functioning (BEF) have been made on higher plants, while only few studies have dealt with microbial communities. Overall microbial diversity may be very high, and general functions like aerobic carbon mineralization are assumed to be supported by highly redundant communities. Therefore, we focused on methane oxidation, a microbial process of global importance mitigating methane emissions from wetland, rice fields, and landfills. We used a rice paddy as our model system, where >90% of potentially emitted methane may be oxidized in the oxic surface layer. This community is presumed to consist of 10-20 taxa more or less equivalent to species. We focused on the ability of methanotrophs to recover from a disturbance causing a significant die-off of all microbial populations. This was simulated by mixing native with sterile soil in two ratios (1:4 and 1:40). Microcosms were incubated and the temporal shift of the methanotrophic communities was followed by pmoA-based Terminal Restriction Length Polymorphism (T-RFLP), qPCR, and a pmoA-based diagnostic microarray. We consistently observed distinctive temporal shifts between Methylocystaceaea and Methylococcacea, a rapid population growth leading to the same or even higher cell numbers as in microcosms made from native soil alone, but no effect on the amount of methane oxidized. The ratio of different methanotrophs changed with treatment, while the number of taxa stayed nearly the same. Overall, methanotrophs showed a remarkable resilience compensating for die-offs. It has to be noted, however, that our experiment focused on methanotrophs adapted to and living at high methane fluxes. Quite different, methanotrophs living in upland soils do not mitigate methane emissions, but are the only biological sink to atmospheric methane. These microbes are severely substrate limited, and will be much more

  15. Modelling the behaviour of mechanical biological treatment outputs in landfills using the GasSim model.

    Science.gov (United States)

    Donovan, S M; Bateson, T; Gronow, J R; Voulvoulis, N

    2010-03-15

    The pretreatment of the biodegradable components of municipal solid waste (MSW) has been suggested as a method of reducing landfill gas emissions. Mechanical biological treatment (MBT) is the technology being developed to provide this reduction in biodegradability, either as an alternative to source segregated collection or for dealing with residual MSW which still contains high levels of biodegradable waste. The compost like outputs (CLOs) from MBT plants can be applied to land as a soil conditioner; treated to produce a solid recovered fuel (SRF) or landfilled. In this study the impact that landfilling of these CLOs will have on gaseous emissions is investigated. It is important that the gas production behaviour of landfilled waste is well understood, especially in European member states where the mitigation of gaseous emissions is a legal requirement. Results of an experiment carried out to characterise the biodegradable components of pretreated biowastes have been used with the GasSim model to predict the long term emissions behaviour of landfills accepting these wastes, in varying quantities. The landfill directive also enforces the mitigation of potential methane emissions from landfills, and the ability of landfill operators to capture gaseous emissions from low emitting landfills of the future is discussed, as well as new techniques that could be used for the mitigation of methane generation. PMID:20092874

  16. Characterization of fine fraction mined from two Finnish landfills.

    Science.gov (United States)

    Mönkäre, Tiina J; Palmroth, Marja R T; Rintala, Jukka A

    2016-01-01

    A fine fraction (FF) was mined from two Finnish municipal solid waste (MSW) landfills in Kuopio (1- to 10-year-old, referred as new landfill) and Lohja (24- to 40-year-old, referred as old landfill) in order to characterize FF. In Kuopio the FF (volatile solids, VS) and the biochemical methane potential (BMP) of FF were lower in the old landfill (VS/TS 12.8±7.1% and BMP 5.8±3.4 m(3)CH4/t TS) than in the new landfill (VS/TS 21.3±4.3% and BMP 14.4±9.9 m(3)CH4/t TS), and both were lower compared with fresh MSW. In the Kuopio landfill materials were also mechanically sieved in the full scale plant in two size fraction characterization of FF is important to find possible methods for using or disposing FF mined from landfills. PMID:25817722

  17. Hydrophobic organic chemicals (HOCs) removal from biologically treated landfill leachate by powder-activated carbon (PAC), granular-activated carbon (GAC) and biomimetic fat cell (BFC).

    Science.gov (United States)

    Liyan, Song; Youcai, Zhao; Weimin, Sun; Ziyang, Lou

    2009-04-30

    Biological pretreatment efficiently remove organic matter from landfill leachate, but further removal of refractory hydrophobic organic chemicals (HOCs) is hard even with advanced treatment. In this work, three-stage-aged refuse bioreactor (ARB) efficiently removed chemical oxygen demand (COD) and biochemical oxygen demand (BOD) of fresh leachate produced in Shanghai laogang landfill, from 8603 to 451 mg L(-1) and 1368 to 30 mg L(-1), respectively. In downstream treatment, 3 g L(-1) powder-activated carbon (PAC), granular-activated carbon (GAC) and biomimetic fat cell (BFC) removed 89.2, 73.4 and 81.1% HOCs, but only 24.6, 19.1 and 8.9% COD, respectively. Through the specific HOCs accumulation characteristics of BFC, about 11.2% HOCs with low molecular weight (BFC. It was also found that the biologically treated leachate effluent exhibited a wide molecular weight distribution (34-514,646 Da). These constitutes are derived from both autochthonous and allochthonous matters as well as biological activities.

  18. The impact of municipal solid waste landfills in Suceava County on air quality

    Directory of Open Access Journals (Sweden)

    Dumitru MIHĂILĂ

    2014-08-01

    Full Text Available The location of municipal solid waste (MSW landfills in inappropriate places is a serious risk to the quality of all environmental factors. These waste disposal sites can become major sources of air quality deterioration through emissions of toxic gas resulted from anaerobic decomposition of organic waste. The paper discusses in detail the qualitative and quantitative effects of municipal waste landfills of the main urban settlements in Suceava County (Suceava City municipal landfill and Gura Humorului, Rădăuţi, Siret, Câmpulung Moldovenesc, Fălticeni and Vatra Dornei urban waste landfills on air quality. The dispersion of methane emitted from the largest MSW landfill in the county, the Suceava municipal landfill respectively, is also presented, taking into account seasonal, daytime and nighttime meteorological parameters

  19. Methanotrophy in London, UK, Landfill Topsoil: Microbiology, Stable Carbon Isotopes, Seasonal Variation and Laboratory Model Study

    Science.gov (United States)

    Sriskantharajah, S.; Fisher, R.; Lowry, D.; Grassineau, N.; Nisbet, E. G.

    2004-12-01

    Landfill is a major source of methane emissions into the atmosphere. Aerobic soil is also a good sink of methane, as it is inhabited by methane consuming bacteria, methanotrophs. Methanotrophic bacteria were cultured from landfill soil samples. Three genera of methanotrophs were cultured: Methylocaldum, Methylosinus and Methylomonas. Interestingly, the only established members of the Methylocaldum genus are all thermophilic, whilst those isolated in this study are mesophilic. This suggests that those Methylocaldum methanotrophs found in landfills may have migrated from hot spring natural settings. Representatives of each genera were inoculated into a simple topsoil model and subjected to variations in temperature, methane concentration and incubation periods. As expected, temperature greatly affected methane oxidation, but methane concentration affected the rate of oxidation far more than expected. The model study implies that the complete combustion of methane to carbon dioxide is greatly affected by temperature and methane availability, whilst the effect on the uptake of methane is not as great. Seasonal variations in methane concentrations within the topsoil were monitored over a one year period from November 2002 to October 2003 and show that methane flow through the topsoil, and consequently methanotrophy, is strongly controlled by meteorology, mainly air temperature and pressure. Generally, methanotrophy was low during colder months and higher at during warmer months, but changes in air pressure complicate this by controlling the rate of flow of methane through the topsoil. δ 13C analyses of methane and carbon dioxide emitted from landfill topsoil showed that there was a great deal of methanotrophic activity during the warmer months of 2003, with most fractionation of residual methane occurring during August. During the heat wave experienced in the UK in August 2003, the δ 13C from borehole samples of methane in the anaerobic zone shifted from -57‰ to -16

  20. Evaluation and application of site-specific data to revise the first-order decay model for estimating landfill gas generation and emissions at Danish landfills

    DEFF Research Database (Denmark)

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2015-01-01

    Methane (CH4) generated from low-organic waste degradation at four Danish landfills was estimated by three first-order decay (FOD) landfill gas (LFG) generation models (LandGEM, IPCC, and Afvalzorg). Actual waste data from Danish landfills were applied to fit model (IPCC and Afvalzorg) required...... categories. In general, the single-phase model, LandGEM, significantly overestimated CH4 generation, because it applied too high default values for key parameters to handle low-organic waste scenarios. The key parameters were biochemical CH4 potential (BMP) and CH4 generation rate constant (k.......Implications: Landfill operators use the first-order decay (FOD) models to estimate methane (CH4) generation. A single-phase model (LandGEM) and a traditional model (IPCC) could result in overestimation when handling a low-organic waste scenario. Site-specific data were important and capable of calibrating key parameter...

  1. Microbial mitigation of greenhouse gas emissions from landfill cover soils

    Science.gov (United States)

    Lee, Sung-Woo

    Landfills are one of the major sources of methane (CH4), a potent greenhouse gas with a global warming potential (GWP) ˜23 times higher than that of carbon dioxide (CO2). Although some effective strategies have been formulated to prevent methane emissions from large landfills, many landfills allow methane to be freely emitted to the atmosphere. In such situations, it is often proposed to stimulate methanotrophs, a group of bacteria that consume methane, in the cover soil to prevent fugitive methane emissions. Several factors, however, must be addressed to make such a biogenic removal mechanism effective. First, methanotrophic activity can be inhibited by nonmethane organic compounds (NMOCs) that are commonly found in landfill soil gas. Second, although methanotrophs can be easily stimulated with the addition of nitrogenous fertilizers, biogenic production of nitrous oxide with a GWP ˜296 times higher than that of carbon dioxide, is also stimulated. To consider these issues, two general areas of research were performed. First, a dimensionless number was developed based on Michaelis-Menten kinetics that describes the effects of the presence of multiple NMOCs on methanotrophic growth and survival. This model was validated via experimental measurements of methanotrophic growth in the presence of varying amounts of NMOCs. Second, the effects of nutrient amendments on methane oxidation and nitrous oxide production were examined by constructing soil microcosms using landfill cover soils. Here, it was shown that the addition of ammonium in the presence of phenylacetylene stimulated methane oxidation but inhibited nitrous oxide production. Furthermore, to understand the methanotrophic community structure and activity in response to these amendments, DNA microarray and transcript analyses were performed. The results indicated the predominance of Type II methanotrophs but that Type I methanotrophs responded more significantly to these amendments. Also, substantial activity

  2. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    Energy Technology Data Exchange (ETDEWEB)

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  3. Potential of Immobilized Whole-Cell Methylocella tundrae as a Biocatalyst for Methanol Production from Methane.

    Science.gov (United States)

    Mardina, Primata; Li, Jinglin; Patel, Sanjay K S; Kim, In-Won; Lee, Jung-Kul; Selvaraj, Chandrabose

    2016-07-28

    Methanol is a versatile compound that can be biologically synthesized from methane (CH4) by methanotrophs using a low energy-consuming and environment-friendly process. Methylocella tundrae is a type II methanotroph that can utilize CH4 as a carbon and energy source. Methanol is produced in the first step of the metabolic pathway of methanotrophs and is further oxidized into formaldehyde. Several parameters must be optimized to achieve high methanol production. In this study, we optimized the production conditions and process parameters for methanol production. The optimum incubation time, substrate, pH, agitation rate, temperature, phosphate buffer and sodium formate concentration, and cell concentration were determined to be 24 h, 50% CH4, pH 7, 150 rpm, 30°C, 100 mM and 50 mM, and 18 mg/ml, respectively. The optimization of these parameters significantly improved methanol production from 0.66 to 5.18 mM. The use of alginate-encapsulated cells resulted in enhanced methanol production stability and reusability of cells after five cycles of reuse under batch culture conditions. PMID:27012239

  4. Economic and environmental benefits of landfill gas utilisation in Oman.

    Science.gov (United States)

    Abushammala, Mohammed Fm; Qazi, Wajeeha A; Azam, Mohammed-Hasham; Mehmood, Umais A; Al-Mufragi, Ghithaa A; Alrawahi, Noor-Alhuda

    2016-08-01

    Municipal solid waste disposed in landfill sites decomposes under anaerobic conditions and produces so-called landfill-gas, which contains 30%-40% of carbon dioxide (CO2) and 50%-60% of methane (CH4). Methane has the potential of causing global warming 25 times more than CO2 Therefore, migration of landfill-gas from landfills to the surrounding environment can potentially affect human life and environment. Thus, this research aims to determine municipal solid waste generation in Oman over the years 1971-2030, to quantify annual CH4 emissions inventory that resulted from this waste over the same period of time, and to determine the economic and environmental benefits of capturing the CH4 gas for energy production. It is found that cumulative municipal solid waste landfilled in Oman reaches 3089 Giga gram (Gg) in the year 2030, of which approximately 85 Gg of CH4 emissions are produced in the year 2030. The study also found that capturing CH4 emissions between the years 2016 and 2030 could attract revenues of up to US$333 million and US$291 million from the carbon reduction and electricity generation, simultaneously. It is concluded that CH4 emissions from solid waste in Oman increases enormously with time, and capture of this gas for energy production could provide a sustainable waste management solution in Oman. PMID:26922087

  5. Prediction of landfill leachate amount using HELP model Case study: Semnan landfill

    OpenAIRE

    A Ghavidel; M.J Zoqi

    2011-01-01

    "nBackground and Objectives:. Owing to the non-seperated municipal solid wastes the leachate form in land fills contain high amounts of heavy metalls and toxic substances Hence, leachate treatment is a serious problem. In order to design leachate treatment and collection systems, estimation of quality and quantity of leachate is of high necessity. Hydrologic Evaluation of Landfill Performance (HELP) Model was used to estimate leachate generation in the lined landfill cells for a variety of co...

  6. A review on utilization of combustible waste gas (II):Landfill gas,flare gas,associated gas and coalbed methane%可燃废气利用技术研究进展(Ⅱ):填埋气、火炬气、伴生天然气和煤矿瓦斯

    Institute of Scientific and Technical Information of China (English)

    王一坤; 陈国辉; 雷小苗; 王长安; 邓磊; 车得福

    2014-01-01

    The utilization of combustible waste gas is an important way of energy conservation and emission reduction.The progress in utilization technologies of landfill gas,flare gas,associated gas and coalbed methane has been presented.Due to the very low utilization ratio and insufficient resourceful utilization of landfill gas,the waste landfill treatment of which the leachate treatment and efficient LFG extraction and utilization are the key technologies should be widely popularized.Generally,the flare gas is fired to provide heat which is then recycled by waste heat boiler.Sometimes it can be directly burned in gas turbine for power generation.With low yield,the associated gas can be used as the inj ection fluid for oil production,or for field power generation.When the yield is high and stable,the associated gas can be transported by pipe-lines,liquid natural gas (LNG)and compressed natural gas (CNG)ships.The optimal utilization of low concentration coalbed methane is for gas-steam combined cycle power generation,of which the power gen-eration efficiency can reach up to higher than 45%.Usually,the coalbed methane is applied as assistant air in mine-mouth power plants,for the technical requirements and cost of this method are the lowest.%可燃废气利用是实现我国节能减排的重要途径之一。介绍了目前填埋气、火炬气、伴生天然气和煤矿瓦斯几种可燃废气的利用技术和工业应用现状。其中:填埋气的利用率很低,资源化利用技术不足,需大力推广以渗滤液处理、高效LFG抽排及利用为核心的填埋垃圾处理工艺;火炬气通常引入燃油或燃气锅炉加以利用,也可以将火炬气燃烧后利用余热锅炉回收热量,或者作为中等热值的气体,直接引入燃气轮机燃烧发电;伴生天然气的产量不高时,可以将其回注驱油或就地发电,产量高且稳定时,可以采用管道输送、液化天然气(LNG)和压缩天然气(CNG

  7. Auto generation plant of Artigas landfill (Bilbao, Spain)

    International Nuclear Information System (INIS)

    The disposition of MSW in the landfill generates a mixture of gases or biogas, its primary content is methane (50-60%) which has a very important energetic value, that can be very useful. In this sense, the present work point out the characteristics of the auto generation electrical plant of Artigas landfill, just like the results of the analytical study of the past two years. In this project which was partly funded by the UE, have participated Excmo. Ayuntamiento de Bilbao, EVE and CIEMAT. (Author) 6 refs

  8. Groundwater geochemistry of a municipal landfill in Araras, SP

    Directory of Open Access Journals (Sweden)

    Carlos Frederico de Castro Alves 1

    2014-03-01

    Full Text Available A contaminated area associated with a residential unlined landfill, located in Araras, was investigated. The aim of this work was to develop a hydrogeological and geochemical conceptual model in order to identify the redox zones related to the landfill and to explain the main processes resulting from the impact of leachates on the local groundwaters and soil. The work consisted of a surface geological mapping, geophysical survey with electric tomography, logging of subsoil boreholes, an installation of monitoring wells and soil, gas, leachate and groundwater samples analyses. The results show that the Araras landfill is in the methanogenic phase and promotes alterations in local groundwater quality. The main parameters of environmental interest identified in the leachate were total dissolved solids, biochemical oxygen demand, ammonium, methane, Na, Cl, Fe, Mn, Ba, B, Co and Cd. According to criteria specifically developed for this landfill, the following redox zones were identified in the groundwater: (i aerobic, located upgradient from the landfill; (ii methanogenic, downgradient from the landfill; (iii iron and/or manganese reduction, located between the methanogenic zone and the Araras river. Bypassing the iron and/or manganese redox zone, the existence of a denitrification zone was inferred. Besides the redox reactions in these zones, other processes that mitigate the impact of leachate into groundwater were also discovered: dilution, degradation by the action of surface microorganisms, dispersion, ionic exchange, formation of organic and inorganic complexes, dissolution and precipitation.

  9. [Application of cowl in semi-aerobic landfill and its influence in initial stage].

    Science.gov (United States)

    Han, Dan; Zhao, You-cai; Xue, Bin-jie; Gao, Pin

    2009-10-15

    Enhancement of semi-aerobic landfill performance through a cowl installed on the gas ventilation pipeline using a simulated landfill box with 2 m x 1 m x 2 m in size was investigated, aiming at the maximum methane emission reduction. Influence of cowl on semi-aerobic environment formation was explored, and variety of methane and carbon dioxide concentrations at different wind speeds and mechanism of cowl operation were identified to provide information on design and improvement of semi-aerobic landfill. The results show that the cowl speeds up the semi-aerobic environment to shape, from over 50 days down to approximately 40 days, and reduces methane emission by promoting methane transformation to carbon dioxide. When the cowl is taken off suddenly during the normal operation, carbon dioxide concentration falls to 15.88% from the initial 16.67% immediately, and methane concentration increases to 16.12% from 6.14%. However, the carbon dioxide and methane concentration becomes 19.18% and 10.05%, respectively, as the cowl is taken on again. Additionally, methane emissions in the exhaust gas were monitored at different wind speeds of 2.0, 3.5, 5.0, 6.5, 8.0 m/s, and finds that the methane concentration reduces from the initial 15% to below 5% when the wind speed increases from 2 m/s to 8 m/s.

  10. Co-generation potentials of municipal solid waste landfills in Serbia

    Directory of Open Access Journals (Sweden)

    Bošković Goran B.

    2016-01-01

    Full Text Available Waste management in the Republic of Serbia is based on landfilling. As a result of such year-long practice, a huge number of municipal waste landfills has been created where landfill gas has been generated. Landfill gas, which is essentially methane (50-55% and carbon dioxide (40-45% (both GHGs, has a great environmental impact which can be reduced by using landfill gas in cogeneration plants to produce energy. The aim of this paper is to determine economic and environmental benefits from such energy production. For that purpose, the database of cogeneration potentials (CP of 51 landfills in the Republic of Serbia (RS was created. Amount of landfill gas generated at each municipal landfill was calculated by applying a first order decay equation which requires the data about solid waste production and composition and about some landfill characteristics. For all landfills, which have over 100,000 m3 each, a techno-economic analysis about building a CHP plant was conducted. The results have shown, that the total investment in 14 CHP plants with payback period of less than 7 years amounts € 11,721,288. The total nominal power of these plants is 7 MW of electrical power and 7.9 MW of thermal power, and an average payback period is about 61 months. In addition, using landfill biogas as energy source in proposed plants would reduce methane emission for 161,000 tons of CO2 equivalent per year. [Projekat Ministarstva nauke Republike Srbije, br. III 42013: Research of cogeneration potential of municipal and industrial energy power plant in Republic of Serbia and opportunities for rehabilitation of existing and construction of new cogeneration plants

  11. Ultrasound assisted biogas production from landfill leachate.

    Science.gov (United States)

    Oz, Nilgün Ayman; Yarimtepe, Canan Can

    2014-07-01

    The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman's test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (pbiogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann-Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p<0.05) in anaerobic batch reactors. The overall results showed that low frequency ultrasound pretreatment can be potentially used for wastewater management especially with integration of anaerobic processes.

  12. Behavior of engineered nanoparticles in landfill leachate.

    Science.gov (United States)

    Bolyard, Stephanie C; Reinhart, Debra R; Santra, Swadeshmukul

    2013-08-01

    This research sought to understand the behavior of engineered nanoparticles in landfill leachate by examining the interactions between nanoparticles and leachate components. The primary foci of this paper are the effects of ZnO, TiO2, and Ag nanoparticles on biological landfill processes and the form of Zn, Ti, and Ag in leachate following the addition of nanoparticles. Insight into the behavior of nanoparticles in landfill leachate was gained from the observed increase in the aqueous concentrations over background for Zn, Ti, and Ag in some tested leachates attributed to leachate components interacting with the nanoparticle coatings resulting in dispersion, dissolution/dissociation, and/or agglomeration. Coated nanoparticles did not affect biological processes when added to leachate; five-day biochemical oxygen demand and biochemical methane potential results were not statistically different when exposed to nanoparticles, presumably due to the low concentration of dissolved free ionic forms of the associated metals resulting from the interaction with leachate components. Chemical speciation modeling predicted that dissolved Zn in leachate was primarily associated with dissolved organic matter, Ti with hydroxide, and Ag with hydrogen sulfide and ammonia; less than 1% of dissolved Zn and Ag was in the free ionic form, and free ionic Ti and Ag concentrations were negligible.

  13. Evaluation of an integrated methane autothermal reforming and high-temperature proton exchange membrane fuel cell system

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the performance and efficiency of an integrated autothermal reforming and HT-PEMFC (high-temperature proton exchange membrane fuel cell) system fueled by methane. Effect of the inclusion of a CO (carbon monoxide) removal process on the integrated HT-PEMFC system was considered. An increase in the S/C (steam-to-carbon) ratio and the reformer temperature can enhance the hydrogen fraction while the CO formation reduces with increasing S/C ratio. The fuel processor efficiency of the methane autothermal reformer with a WGS (water gas shift reactor) reactor, as the CO removal process, is higher than that without a WGS reactor. A higher fuel processor efficiency can be obtained when the feed of the autothermal reformer is preheated to the reformer temperature. Regarding the cell performance, the reformate gas from the methane reformer operated at Tin = TR and with a high S/C ratio is suitable for the HT-PEMFC system without a WGS reactor. When considering the HT-PEMFC system with a WGS reactor, the CO poisoning has less significant impact on the cell performance and the system can be operated over a broader range to minimize the required total active area. A WGS reactor is necessary for the methane autothermal reforming and HT-PEMFC integrated system with regard to the system efficiency. - Highlights: • An integrated autothermal reforming and HT-PEMFC system was studied. • The HT-PEMFC system with and without a CO removal process was considered. • Parametric analysis was performed to obtain a high system efficiency. • The HT-PEMFC system with the WGS reactor can be run over a broader range. • The efficiencies of the HT-PEMFC systems without and with a WGS reactor were reported

  14. Genotoxicity assessment of membrane concentrates of landfill leachate treated with Fenton reagent and UV-Fenton reagent using human hepatoma cell line.

    Science.gov (United States)

    Wang, Guifang; Lu, Gang; Yin, Pinghe; Zhao, Ling; Yu, Qiming Jimmy

    2016-04-15

    Membrane concentrates of landfill leachates contain organic and inorganic contaminants that could be highly toxic and carcinogenic. In this paper, the genotoxicity of membrane concentrates before and after Fenton and UV-Fenton reagent was assessed. The cytotoxicity and genotoxicity was determined by using the methods of methyltetrazolium (MTT), cytokinesis-block micronucleus (CBMN) and comet assay in human hepatoma cells. MTT assay showed a cytotoxicity of 75% after 24h of exposure to the highest tested concentration of untreated concentrates, and no cytotoxocity for UV-Fenton and Fenton treated concentrates. Both CBMN and comet assays showed increased levels of genotoxicity in cells exposed to untreated concentrates, compared to those occurred in cells exposed to UV-Fenton and Fenton reagent treated concentrates. There was no significant difference between negative control and UV-Fenton treated concentrates for micronucleus and comet assay parameters. UV-Fenton and Fenton treatment, especially the former, were effective methods for degradation of bisphenol A and nonylphenol in concentrates. These findings showed UV-Fenton and Fenton reaction were effective methods for treatment of such complex concentrates, UV-Fenton reagent provided toxicological safety of the treated effluent, and the genotoxicity assays were found to be feasible tools for assessment of toxicity risks of complex concentrates. PMID:26780702

  15. Assessing a prospective landfill gas to energy project in Agadir, Morocco

    OpenAIRE

    Sabri, Ahmed

    2011-01-01

    The aim of this study is to appraise and to establish an actual and concrete business opportunity in the field of MSW management, utilizing Landfill Gas and generating green energy in Morocco, in particular in Greater Agadir City and in the perspective of technology transfer. A special focus is on the LFGTE technology and expertise available in Scandinavia, represented by a selected Swedish company Biogas Systems Ab, pioneers in Converting Landfill Methane to Electricity. One part of the Auth...

  16. Effect of leachate recycle and inoculation on microbial characteristics of municipal refuse in landfill bioreactors

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Population development of key groups of anaerobic and aerobic bacteria involved in municipal refuse decomposition under laboratory landfill bioreactors with and without leachate recycle adinoculation was measured since modeling municipal refuse was landfilled in bioreactors for about 210 days. Hydrolytic fermentative bacteria (HFB), hydrogen-producing acetogenic bacteria (HPAB), methane-producing bacteria (MPB), sulfate-reducing bacteria (SRB), anaerobic and aerobic cellulolytic bacteria and denitrabacteria were enumerated by the most probable number technique. The results showed that the dominant microorganismgroups were the methanogenic bacteria including hydrolytic fermentative, hydrogen-producing acetogenic and methane-producing bacteria. They were present in fresh refuse but at low values and positively affected by leachate recycle and refuse inoculation. The amounts of HFB or HPAB in digesters D4 and D5 operated with noculation and leachate recycle reached their maximum values of1010-1012 cells/g dry refuse for HFB or 105-106 cells/g dry refuse for HPAB on day 60, in digester D3 operated with leachate recycle on day 120 for HFB (109 cells/g dry refuse) or on day 90 for HPAB (105 cells/g dry refuse), and in digesters D1 and D2 on day 210 for HFB (109 cells/g dry refuse) or on day 90 for HPAB (104-106 cells/g dry refuse). The population of methane-producing bacteria in digesters D4 and D5 sharply increased on days 60 and 90 respectively, however in igesters D1, D2 and D3 on day 120. Leachate recycle and inoculation changed the cellulolytic microorganisms composition of refuse ecosystem, the higher amounts of anaerobic cellulolytic bacteria were measured in digesters D4 and D5 (107 cells/g dry refuse), followed by digesters D3 (106 cells/g dry refuse), D2 or D1(104 cells/g dry refuse). However, the amounts of aerobic cellulolytic bacteria were much lower than that of anaerobic cellulolytic bacteria. And it was higher in digester D3 than those in digesters D1, D2

  17. Bacterial community composition and abundance in leachate of semi-aerobic and anaerobic landfills

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Bo Yue; Qi Wang; Zechun Huang; Qifei Huang; Zengqiang Zhang

    2011-01-01

    The abundance and phylogenetic composition of bacterial community in leachate of semi-aerobic and anaerobic landfill were compared through real-time polymerase chain reaction and denaturing gradient gel electrophoresis.In semi-aerobic landfill scenario,the bacterial 16S rRNA copy numbers in leachate had no significant reduction from initial stage to stable period.In the scenario of anaerobic landfill,the largest bacterial 16S rRNA gene copy number was found in leachate at initial stage,but it reduced significantly at stable period.Moreover,methane-oxidizing bacteria population in stable period was lower than that in initial period in both two landfill processes.However,semi-aerobic landfill leachate had more methanotrophic bacteria populations than that in the anaerobic one.Furthermore,according to the sequences and phylogenetic analysis,obvious difference could be detected in bacterial community composition in different scenarios.Proteobacteria and bacteroidetes took up a dominantly higher proportion in semi-aerobic landfill leachate.To summarize up,different landfill methods and its landfill ages had crucial impacts on bacterial abundance and composition in leachate of semi-aerobic and anaerobic landfills.

  18. Methanotrophic community structure of aged refuse and its capability for methane bio-oxidation

    Institute of Scientific and Technical Information of China (English)

    Juan Mei; Li Wang; Dan Han; Youcai Zhao

    2011-01-01

    Aged refuse from waste landfills closed for eight years was examined and found to contain rich methanotrophs capable of biooxidation for methane.Specially, community structure and methane oxidation capability of methanotrophs in the aged refuse were studied.The amount of methanotrophs ranged 61.97×103-632.91×103 cells/g (in dry basis) in aged refuse from Shanghai Laogang Landfill.Type Ⅰ and Ⅱ methanotrophs were found in the aged refuse in the presence of sterilized sewage sludge and only TypeⅠ methanotrophs were detected in the presence of nitrate minimal salt medium (NMS).The clone sequences of the pmoA gene obtained from the aged refuse were similar to the pmoA gene of Methylobacter, Methylocaldum, and Methylocystis, and two clones were distinct with known genera of Type Ⅰ methanotrophs according to phylogenetic analysis.Aged refuse enriched with NMS was used for methane biological oxidation and over 93% conversions were obtained.

  19. Assessing Emissions of Volatile Organic Componds from Landfills Gas

    OpenAIRE

    Fahime Khademi; Mohammad Reza Samaei; Kourosh Azizi; Abbas Shahsavani; Hassan Hashemi; Aida Iraji; Abdolkhalegh Miri

    2016-01-01

    Background: Biogas is obtained by anaerobic decomposition of organic wastes buried materials used to produce electricity, heat and biofuels. Biogas is at the second place for power generation after hydropower and in 2000 about 6% of the world power generation was allocated to biogas. Biogas is composed of 40–45 vol% CO2, 55–65 vol% CH4, and about 1% non-methaneVOCs, and non-methane volatile organic compounds. Emission rates are used to evaluate the compliance with landfil...

  20. N 2O emissions at municipal solid waste landfill sites: Effects of CH 4 emissions and cover soil

    Science.gov (United States)

    Zhang, Houhu; He, Pinjing; Shao, Liming

    Municipal solid waste landfills are the significant anthropogenic sources of N 2O due to the cooxidation of ammonia by methane-oxidizing bacteria in cover soils. Such bacteria could be developed through CH 4 fumigation, as evidenced by both laboratory incubation and field measurement. During a 10-day incubation with leachate addition, the average N 2O fluxes in the soil samples, collected from the three selected landfill covers, were multiplied by 1.75 ( p landfill sites, N 2O fluxes in two landfill sites were significantly correlated with the variations of the CH 4 emissions without landfill gas recovery ( p landfill gas recovery in another landfill site ( p > 0.05). The annual average N 2O flux was 176 ± 566 μg N 2O-N m -2 h -1 ( p landfill site, which was 72% ( p landfill sites, respectively. The magnitude order of N 2O emissions in three landfill sites was also coincident by the results of laboratory incubation, suggesting the sandy soil cover could mitigate landfill N 2O emissions.

  1. Environmental and human risk assessment of landfill leachate: An integrated approach with the use of cytotoxic and genotoxic stress indices in mussel and human cells

    International Nuclear Information System (INIS)

    Highlights: • Landfill leachate poses a threat for aquatic biota and humans. • Leachate induces cytotoxic and oxidative effects on mussel hemocytes. • Increased levels of DNA damage were observed both in vivo and in vitro in hemocytes. • Leachate low doses enhance MN formation in human lymphocyte cultures. • Potential leachate aneugenic activity was detected in human lymphocytes. -- Abstract: The present study investigates leachate hazardous effects on marine biota and human cells, with the use of a battery of assays, both under in vivo and in vitro conditions. According to the results, mussels exposed for 4 days to 0.01 and 0.1% (v/v) of leachate showed increased levels of DNA damage and micronuclei (MN) frequencies in their hemocytes. Similarly, enhanced levels of DNA damage were also observed in hemocytes treated in vitro with relevant concentrations of leachate, followed by a significant enhancement of both superoxide anions (·O2−) and lipid peroxidation products (malondialdehyde/MDA). On the other hand, human lymphocyte cultures treated with such a low concentrations of leachate (0.1, 0.2 and 1%, v/v), showed increased frequencies of MN formation and large MN size ratio, as well as decreased cell proliferation, as indicated by the use of the cytokinesis block micronucleus (CBMN) assay and Cytokinesis Block Proliferation Index (CBPI) respectively. These findings showed the clear-cut genotoxic and cytotoxic effects of leachate on both cellular types, as well as its potential aneugenic activity in human lymphocytes

  2. Environmental and human risk assessment of landfill leachate: An integrated approach with the use of cytotoxic and genotoxic stress indices in mussel and human cells

    Energy Technology Data Exchange (ETDEWEB)

    Toufexi, Eirini; Tsarpali, Vasiliki [Section of Animal Biology, Department of Biology, School of Natural Sciences, University of Patras, GR 26500 Patras (Greece); Efthimiou, Ioanna; Vidali, Maria-Sophia; Vlastos, Dimitris [Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi Str., GR 30100 Agrinio (Greece); Dailianis, Stefanos, E-mail: sdailianis@upatras.gr [Section of Animal Biology, Department of Biology, School of Natural Sciences, University of Patras, GR 26500 Patras (Greece)

    2013-09-15

    Highlights: • Landfill leachate poses a threat for aquatic biota and humans. • Leachate induces cytotoxic and oxidative effects on mussel hemocytes. • Increased levels of DNA damage were observed both in vivo and in vitro in hemocytes. • Leachate low doses enhance MN formation in human lymphocyte cultures. • Potential leachate aneugenic activity was detected in human lymphocytes. -- Abstract: The present study investigates leachate hazardous effects on marine biota and human cells, with the use of a battery of assays, both under in vivo and in vitro conditions. According to the results, mussels exposed for 4 days to 0.01 and 0.1% (v/v) of leachate showed increased levels of DNA damage and micronuclei (MN) frequencies in their hemocytes. Similarly, enhanced levels of DNA damage were also observed in hemocytes treated in vitro with relevant concentrations of leachate, followed by a significant enhancement of both superoxide anions (·O{sub 2}{sup −}) and lipid peroxidation products (malondialdehyde/MDA). On the other hand, human lymphocyte cultures treated with such a low concentrations of leachate (0.1, 0.2 and 1%, v/v), showed increased frequencies of MN formation and large MN size ratio, as well as decreased cell proliferation, as indicated by the use of the cytokinesis block micronucleus (CBMN) assay and Cytokinesis Block Proliferation Index (CBPI) respectively. These findings showed the clear-cut genotoxic and cytotoxic effects of leachate on both cellular types, as well as its potential aneugenic activity in human lymphocytes.

  3. Methane Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Methane (CH4) flux is the net rate of methane exchange between an ecosystem and the atmosphere. Data of this variable were generated by the USGS LandCarbon project...

  4. Evaluating Gas Emissions From Landfills – Which Methodologies Can Be Used?

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2011-01-01

    Many methodologies exist to measure whole landfill methane emission as alternatives to imprecise estimation of the methane emission using existing landfill gas generation models. An overview of the different measurement methodologies is given, and suggestions to the most promising methodologies...... are presented. Methods based on the tracer dilution approach are most promising. However, still some developments are needed, both in respect to the technical implementation, and in respect to the protocols needed to obtain annual emission estimates based on the limited number of measurement campaigns....

  5. Distribution of Redox-Sensitive Groundwater Quality Parameters Downgradient of a Landfill (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Rügge, Kirsten; Pedersen, Jørn K.;

    1995-01-01

    , dinitrogen oxide, nitrite, nitrate, and oxygen in the groundwater samples indicate that methane production, sulfate reduction, iron reduction, manganese reduction, and nitrate reduction take place in the plume. Adjacent to the landfill, methanogenic and sulfatereducing zones were identified, while aerobic......The leachate plume stretching 300 m downgradient from the Grindsted Landfill (Denmark) has been characterized in terms of redox-sensitive groundwater quality parameters along two longitudinal transects (285 samples). Variations in the levels of methane, sulfide, iron(ll), manganese(ll), ammonium...

  6. Research, development and demonstration in the design of sanitary landfill to optimize the generation and capture of compressible gas

    Science.gov (United States)

    Nosanov, M. E.; Teeple, F. E.; Buesch, S. C.

    1982-02-01

    The influences of selected factors on the generation and recovery of methane gas from sanitary landfills were investigated. The factors included encapsulation, shredding, air classifying, moisture, and pH. Facilities consisting of six model sanitary landfill cells, each with a capacity of approximately 450 cubic yards of municipal waste, and auxiliary subsystems were constructed. Municipal waste in each cell is contained in a 30-mil thick polyvinly chloride plastic sheeting forming a virtually gas-tight envelope. Two cells were filled with as-collected urban waste, two with shredded waste, and two with shredded and air classified waste, constituting three pairs of cells. One of each pair is a control cell with the other used as an experimental variable. Systems were provided for adding measured amounts of water, removing and recirculating leachate, and for extracting gas and measuring gas flow. During testing, gas production and internal cell characteristics were measured to determine the effects of mechanical processing, moisture content, and leachate pH.

  7. Protease cell wall degradation of Chlorella vulgaris: effect on methane production.

    Science.gov (United States)

    Mahdy, Ahmed; Mendez, Lara; Blanco, Saul; Ballesteros, Mercedes; González-Fernández, Cristina

    2014-11-01

    In order to optimize the enzymatic dosage and microalgae biomass loads subjected to enzymatic hydrolysis prior anaerobic digestion of Chlorella vulgaris, organic matter solubilisation and methane production were investigated. Experimental data using protease dosage of 0.585 AU g DW(-1) showed that increasing biomass loads up to 65 g L(-1) did not affect markedly the hydrolysis efficiency (51%). Enzymatically pretreated biomasses subjected to anaerobic digestion enhanced methane production by 50-70%. The attempt of decreasing the enzymatic dosages revealed diminished hydrolysis efficiency concomitantly with a decreased methane production enhancement. In agreement with the good results observed for organic matter conversion into biogas, total nitrogen mineralization was attained for enzymatically pretreated biomass. Despite the high protein content of the biomass and the biocatalyst used in the present study no ammonia inhibition was detected.

  8. Analysis of the economic potential of the landfill in the municipality of Chapeco - SC, Brazil; Analise do potencial economico do aterro sanitario do municipio de Chapeco - SC

    Energy Technology Data Exchange (ETDEWEB)

    Cansian, Maricy Moreno, Email: maricymc@gmail.com

    2006-07-01

    This study aims to evaluate the economic and environmental viability of the exploitation of methane gas (CH4) - biogas - concentrated at the bottom of the mountains of waste from landfill Chapeco for power generation. The landfill receives approximately of 80 tons / day, the vast majority of domestic origin.

  9. Characterization of dissolved organic matter during landfill leachate treatment by sequencing batch reactor, aeration corrosive cell-Fenton, and granular activated carbon in series

    International Nuclear Information System (INIS)

    Landfill leachate is generally characterized as a complex recalcitrant wastewater containing high concentration of dissolved organic matter (DOM). A combination of sequencing batch reactor (SBR) + aeration corrosive cell-Fenton (ACF) + granular activated carbon (GAC) adsorption in series was proposed for the purpose of removing pollutants in the leachate. Fractionation was also performed to investigate the composition changes and characteristics of the leachate DOM in each treatment process. Experimental results showed that organic matter, in terms of chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), and dissolved organic carbon (DOC), was reduced by 97.2%, 99.1%, and 98.7%, respectively. To differentiate the DOM portions, leachates were separated into five fractions by XAD-8 and XAD-4 resins: hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N), and hydrophilic fraction (HPI). The predominant fraction in the raw leachate was HPO-A (36% of DOC), while the dominant fraction in the final effluent was HPI (53% of DOC). Accordingly, macromolecules were degraded to simpler ones in a relatively narrow range below 1000 Da. Spectral and chromatographic analyses also showed that most humic-like substances in all fractions were effectively removed during the treatments and led to a simultaneous decrease in aromaticity.

  10. Landfill mining: a critical review of two decades of research.

    Science.gov (United States)

    Krook, Joakim; Svensson, Niclas; Eklund, Mats

    2012-03-01

    Landfills have historically been seen as the ultimate solution for storing waste at minimum cost. It is now a well-known fact that such deposits have related implications such as long-term methane emissions, local pollution concerns, settling issues and limitations on urban development. Landfill mining has been suggested as a strategy to address such problems, and in principle means the excavation, processing, treatment and/or recycling of deposited materials. This study involves a literature review on landfill mining covering a meta-analysis of the main trends, objectives, topics and findings in 39 research papers published during the period 1988-2008. The results show that, so far, landfill mining has primarily been seen as a way to solve traditional management issues related to landfills such as lack of landfill space and local pollution concerns. Although most initiatives have involved some recovery of deposited resources, mainly cover soil and in some cases waste fuel, recycling efforts have often been largely secondary. Typically, simple soil excavation and screening equipment have therefore been applied, often demonstrating moderate performance in obtaining marketable recyclables. Several worldwide changes and recent research findings indicate the emergence of a new perspective on landfills as reservoirs for resource extraction. Although the potential of this approach appears significant, it is argued that facilitating implementation involves a number of research challenges in terms of technology innovation, clarifying the conditions for realization and developing standardized frameworks for evaluating economic and environmental performance from a systems perspective. In order to address these challenges, a combination of applied and theoretical research is required. PMID:22083108

  11. Sustainable Approach for Landfill Management at Final Processing Site Cikundul in Sukabumi City, Indonesia

    Directory of Open Access Journals (Sweden)

    Sri Darwati

    2012-01-01

    Full Text Available The main problem of landfill management in Indonesia is the difficulty in getting a location for Final Processing Sites (FPS due to limited land and high land prices. Besides, about 95% of existing landfills are uncontrolled dumping sites, which could potentially lead to water, soil and air pollution. Based on data from the Ministry of Environment (2010, The Act of the Republic of Indonesia Number 18 Year 2008 Concerning Solid Waste Management, prohibits open dumping at final processing sites and in ratification, the Local Governments have to convert the open dump sites into controlled or sanitary landfill. The Research Institute for Human Settlements has been conducting multi-year researches related to the rehabilitation of dumpsites toward sustainable landfill. The research methods are literature reviews, experiments, laboratory analysis and field observations. A pilot model of dumpsite rehabilitation was carried out in 2010 at the Final Processing Site at Cikundul in Sukabumi City, consisting of (1 mining landfill (2 construction of landfill cells in a former mining area with a semi aerobic landfill and an anaerobic landfill and (3 landfill operations using decomposed material from landfill mining as a soil cover. The purpose of the study is to develop a sustainable approach for landfill management and rehabilitation through landfill mining and implementation of semi aerobic landfill. Findings in the construction of landfill mining indicate that (1 the construction of landfill mining is constrained by leachate that is trapped in a pile of waste, therefore, the leachate needs to be pumped to leachate treatment installations, (2 the volume of waste excavation is expanding due to the high plastic content of about 26% in landfills (3 the potency of decomposed materials from landfill mining is 40–83% for landfill operations or greening.. The performance of landfill systems shows that leachate quality of semi aerobic landfill tends to be lower

  12. Energy sector methane recovery and use: the importance of policy

    Energy Technology Data Exchange (ETDEWEB)

    Tom Kerr; Michelle Hershman

    2009-08-15

    To raise awareness about appropriate policy options to advance methane recovery and use in the energy sector, the IEA has conducted a series of analyses and studies over the past few years. This report continues IEA efforts by providing policy makers with examples and best practices in methane mitigation policy design and implementation. This report offers an overview of four types of methane mitigation projects that have the strongest links to the energy sector: oil and gas methane recovery and reduction of leaks and losses; coal mine methane; landfill methane; and manure methane recovery and use. It identifies successful policies that have been used to advance these important projects. This information is intended to guide policy makers as they search for low-cost, near-term solutions to climate change. 38 refs., 10 figs., 1 app.

  13. Study of biogas production parameters in the sanitary landfill; Estudio de los parametros que afectan la produccion de biogas en un vertedero controlado

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Domenech, G.; Gordillo Bolasell, M. A.; Sanchez Ferrer, A.

    2001-07-01

    The following article contents a study about some of the parameters affecting the evolution of the gas production in a sanitary landfill placed in the province of Barcelona. The work is focused on the quality of biogas produced, measured as the percentage of methane and thus its energy profitability. The parameters included in this paper are: -Situation of the gas extraction station -Age of the wastes. -Reinfiltration of concentrated liquid leachate in the considered cell. Among the previous factors, the situation of the gas station and the age of wastes showed a critical influence on the methane content, whereas the use of leachate reinfiltration did not produce significant differences in the quality of biogas in the short-term applications. (Author) 5 refs.

  14. Corrective Action Plan for Corrective Action Unit 453: Area 9 UXO Landfill, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada

    1998-09-30

    This corrective action plan proposes the closure method for the area 9 unexploded Ordnance landfill, corrective action unit 453 located at the Tonopah Test Range. The area 9 UXO landfill consists of corrective action site no. 09-55-001-0952 and is comprised of three individual landfill cells designated as A9-1, A9-2, and A9-3. The three landfill cells received wastes from daily operations at area 9 and from range cleanups which were performed after weapons testing. Cell locations and contents were not well documented due to the unregulated disposal practices commonly associated with early landfill operations. However, site process knowledge indicates that the landfill cells were used for solid waste disposal, including disposal of UXO.

  15. The decay of wood in landfills in contrasting climates in Australia.

    Science.gov (United States)

    Ximenes, Fabiano; Björdal, Charlotte; Cowie, Annette; Barlaz, Morton

    2015-07-01

    Wood products in landfill are commonly assumed to decay within several decades, returning the carbon contained therein to the atmosphere, with about half the carbon released as methane. However, the rate and extent of decay is not well known, as very few studies have examined the decay of wood products in landfills. This study reports on the findings from landfill excavations conducted in the Australian cities of Sydney and Cairns located in temperate and tropical environments, respectively. The objective of this study was to determine whether burial of the wood in warmer, more tropical conditions in Cairns would result in greater levels of decay than occurs in the temperate environment of Sydney. Wood samples recovered after 16-44years in landfill were examined through physical, chemical and microscopic analyses, and compared with control samples to determine the carbon loss. There was typically little or no decay in the wood samples analysed from the landfill in Sydney. Although there was significant decay in rainforest wood species excavated from Cairns, decay levels for wood types that were common to both Cairns and Sydney landfills were similar. The current Intergovernmental Panel on Climate Change (IPCC, 2006) default decay factor for organic materials in landfills is 50%. In contrast, the carbon loss determined for Pinus radiata recovered from Sydney and Cairns landfills was 7.9% and 4.4%, respectively, and 0% for Agathis sp. This suggests that climate did not influence decay, and that the more extensive levels of decay observed for some wood samples from Cairns indicates that those wood types were more susceptible to biodegradation. Microscopic analyses revealed that most decay patterns observed in samples analysed from Sydney were consistent with aerobic fungal decay. Only a minor portion of the microbial decay was due to erosion bacteria active in anaerobic/near anaerobic environments. The findings of this study strongly suggest that models that adopt

  16. Effective monitoring of landfills: flux measurements and thermography enhance efficiency and reduce environmental impact

    Science.gov (United States)

    Battaglini, Raffaele; Raco, Brunella; Scozzari, Andrea

    2013-12-01

    This work presents a methodology for estimating the behaviour of a landfill system in terms of biogas release to the atmosphere. Despite the various positions towards the impact of methane on global warming, there is a general agreement about the fact that methane from landfill represents about 23% of the total anthropogenic CH4 released to the atmosphere. Despite the importance of this topic, no internationally accepted protocol exists to quantify the leakage of biogas from the landfill cover. To achieve this goal, this paper presents a field method based on accumulation chamber flux measurements. In addition, the results obtained from a nine-year-long monitoring activity on an Italian municipal solid waste (MSW) landfill are presented. The connection between such flux measurements of biogas release and thermal anomalies detected by infrared radiometry is also discussed. The main overall benefit of the presented approach is a significant increase in the recovered energy from the landfill site by means of an optimal collection of biogas, which implies a reduction of the total anthropogenic methane originated from the disposal of waste.

  17. Lidar Measurements of Methane and Applications for Aircraft and Spacecraft

    Science.gov (United States)

    Riris, Haris; Numata, Kenji; Abshire, James; Li, Steve; Wu, Stewart; Krainak, Michael; Sun, Xiaoli

    2010-01-01

    Atmospheric methane levels have remained relatively constant over the last decade around 1.78 parts per million (ppm) but observations since 2007 show that levels may be increasing. This trend may be caused by increased fossil fuel production, rice farming, livestock and landfills, but the underlying causes are quite uncertain. One hypothesis is that reservoirs of carbon trapped in the permafrost regions of northern Canada, Europe, and Siberia thaw as global temperatures rise and are releasing increasing amounts of methane. Another hypothesis points to increased production of methane by microbes as the permafrost warms. Currently most observations of greenhouse gases are limited to in-situ (surface and tower sites) and limited airborne in-situ measurements. Space column density measurements are starting to become available from the GOSAT mission. Although methane survives for a shorter time in the atmosphere than CO2, its impact on climate change per molecule is about 23 times than that of CO2. Accurate global observations of several greenhouse gases, including methane, are urgently needed in order to better understand climate change processes and to reduce the uncertainty in the carbon budget. Differential absorption lidar is a well-established technique to measure atmospheric gases, and methane has optical absorption bands near 1.65,2.2,3.4 and 7.8 micron. The near infrared overtones lines of CH4 near 1650 nm are relatively free of interference from other species. There are absorption lines near 1651 nm which are both temperature insensitive and have line strengths well suited for lidar measurements. We have developed a laser and demonstrated lidar measurements of CH4 using lines in this band. Our laser uses a narrow linewidth 1064 nm laser pulse passing through a nonlinear crystal. We generate the tunable laser signals near 1651 nm by using the optical parametric amplification (OPA) process. Inside the crystal the 1064 nm beam overlaps with an injection seed

  18. Attributing Atmospheric Methane to Anthropogenic Emission Sources.

    Science.gov (United States)

    Allen, David

    2016-07-19

    Methane is a greenhouse gas, and increases in atmospheric methane concentration over the past 250 years have driven increased radiative forcing of the atmosphere. Increases in atmospheric methane concentration since 1750 account for approximately 17% of increases in radiative forcing of the atmosphere, and that percentage increases by approximately a factor of 2 if the effects of the greenhouse gases produced by the atmospheric reactions of methane are included in the assessment. Because of the role of methane emissions in radiative forcing of the atmosphere, the identification and quantification of sources of methane emissions is receiving increased scientific attention. Methane emission sources include biogenic, geogenic, and anthropogenic sources; the largest anthropogenic sources are natural gas and petroleum systems, enteric fermentation (livestock), landfills, coal mining, and manure management. While these source categories are well-known, there is significant uncertainty in the relative magnitudes of methane emissions from the various source categories. Further, the overall magnitude of methane emissions from all anthropogenic sources is actively debated, with estimates based on source sampling extrapolated to regional or national scale ("bottom-up analyses") differing from estimates that infer emissions based on ambient data ("top-down analyses") by 50% or more. To address the important problem of attribution of methane to specific sources, a variety of new analytical methods are being employed, including high time resolution and highly sensitive measurements of methane, methane isotopes, and other chemical species frequently associated with methane emissions, such as ethane. This Account describes the use of some of these emerging measurements, in both top-down and bottom-up methane emission studies. In addition, this Account describes how data from these new analytical methods can be used in conjunction with chemical mass balance (CMB) methods for source

  19. Attributing Atmospheric Methane to Anthropogenic Emission Sources.

    Science.gov (United States)

    Allen, David

    2016-07-19

    Methane is a greenhouse gas, and increases in atmospheric methane concentration over the past 250 years have driven increased radiative forcing of the atmosphere. Increases in atmospheric methane concentration since 1750 account for approximately 17% of increases in radiative forcing of the atmosphere, and that percentage increases by approximately a factor of 2 if the effects of the greenhouse gases produced by the atmospheric reactions of methane are included in the assessment. Because of the role of methane emissions in radiative forcing of the atmosphere, the identification and quantification of sources of methane emissions is receiving increased scientific attention. Methane emission sources include biogenic, geogenic, and anthropogenic sources; the largest anthropogenic sources are natural gas and petroleum systems, enteric fermentation (livestock), landfills, coal mining, and manure management. While these source categories are well-known, there is significant uncertainty in the relative magnitudes of methane emissions from the various source categories. Further, the overall magnitude of methane emissions from all anthropogenic sources is actively debated, with estimates based on source sampling extrapolated to regional or national scale ("bottom-up analyses") differing from estimates that infer emissions based on ambient data ("top-down analyses") by 50% or more. To address the important problem of attribution of methane to specific sources, a variety of new analytical methods are being employed, including high time resolution and highly sensitive measurements of methane, methane isotopes, and other chemical species frequently associated with methane emissions, such as ethane. This Account describes the use of some of these emerging measurements, in both top-down and bottom-up methane emission studies. In addition, this Account describes how data from these new analytical methods can be used in conjunction with chemical mass balance (CMB) methods for source

  20. Energy utilization from landfill biogas; Aproveitamento energetico do biogas de aterros sanitarios

    Energy Technology Data Exchange (ETDEWEB)

    Candiani, Giovano [Universidade Federal do ABC, Santo Andre, SP (Brazil). Programa de Pos-Graduacao em Energia; Hoffmann, Gustavo; Silva, Elissandro Rocha da; Moreira, Joao M.L.; Tomioka, Jorge

    2008-07-01

    Landfills for solid waste disposal are used in Brazil and in most of countries in the world. The organic part of the solid wastes produces gas out of the decomposition of its organic content. This gas, named biogas and mostly made of carbon dioxide and methane, may be collected and used as an energy source due the methane presence. In this work we analyze the possible energy utilization of landfill biogas in Brazil in which the organic content of the solid waste is about 60%. The use of biogas as energy source can reduce the greenhouse gas emissions and improve the sanitation conditions of landfills. Moreover, it allows financial gains through selling of energy and carbon credits. In order to make possible the biogas utilization it is necessary to recognize the differences among the many landfills which exist in the country. There are the large and small landfills. The large ones usually have good instrumentation and gas exhaustion systems while the small ones have passive exhaustion systems and very few field instrumentation. The small landfills need to improve their instrumentation system and to incorporate exhaustion systems. (author)

  1. Methane Production Quantification and Energy Estimation for Bangalore Municipal Solid Waste

    Science.gov (United States)

    Kumar, A.; Dand, R.; Lakshmikanthan, P.; Babu, G. L. Sivakumar

    2014-01-01

    Landfills are considered as cornerstone of solid waste management. Landfill gas (LFG) and leachate are principal outputs from landfills. Methane, occupying significant volume of landfill gas, has considerable potential as a source of energy replacing enormous amounts of fossil fuels currently in use. Gas extraction and utilization systems need to be designed and implemented in order to exploit this resource. Assessment of economic viability of these systems necessitates estimation of gas released and its energy potential. Gas quantification and energy estimation for municipal solid waste (MSW) of Bangalore city was carried out using five independent methodologies. A small scale experiment was conducted to monitor the gas generation and the results were compared and analysed. Results show that significant energy can be harnessed from the MSW if requisite LFG management systems are installed. The use of methane as an energy source maximizes the extraction of useful resources from landfills, minimizes the global warming and offsets significant amount of fossil fuels.

  2. Mixed Waste Landfill Integrated Demonstration

    International Nuclear Information System (INIS)

    The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID's success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories' Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque's and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ''dry'' soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater

  3. Methane; the other greenhouse gas research and policy in the Netherlands

    NARCIS (Netherlands)

    Amstel AR van; Swart RJ; Krol MS; Beck JP; Bouman AF; Hoek KW van der

    1993-01-01

    The increase of anthropogenic activities is the main reason for the increase of methane emissions in the Netherlands. Methane is an important greenhouse gas. The most important sources in the Netherlands are landfills, cattle, manure and the exploration, transport and distribution of oil and gas. In

  4. Contribution by the methanogenic endosymbionts of anaerobic ciliates to methane production in Dutch freshwater sediments

    NARCIS (Netherlands)

    Hoek, van A.H.A.M.; Alen, T.A.; Vogels, G.D.; Hackstein, J.H.P.

    2006-01-01

    Biogenic methane contributes substantially to the atmospheric methane concentration and thus to global warming. This trace gas is predominantly produced by strictly anaerobic methanogenic archaea, which thrive in the most divergent ecological niches, e. g. paddy fields, sediments, landfills, and the

  5. Investigating observational constraints on the contemporary methane budget

    OpenAIRE

    Monteil, G. A.

    2014-01-01

    Methane (CH4) is an important greenhouse gas, naturally produced by bio-degradation of organic material (mainly in wetlands), by continuous and eruptive releases from mud volcanoes, and by combustion of organic material in forest and peat fires. Large quantities of methane are also emitted by human activities, related to agriculture (cattle farming, rice cultivation), waste management (landfills, water treatment plants), and energy production and use (extraction of fossil fuels). As a result ...

  6. Arctic methane

    NARCIS (Netherlands)

    Dyupina, E.; Amstel, van A.R.

    2013-01-01

    What are the risks of a runaway greenhouse effect from methane release from hydrates in the Arctic? In January 2013, a dramatic increase of methane concentration up to 2000 ppb has been measured over the Arctic north of Norway in the Barents Sea. The global average being 1750 ppb. It has been sugges

  7. The decay of wood in landfills in contrasting climates in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Ximenes, Fabiano, E-mail: fabiano.ximenes@dpi.nsw.gov.au [Forest Science, Agriculture NSW, New South Wales Department of Primary Industries, Level 12, 10 Valentine Ave, Parramatta, NSW 2150 (Australia); Björdal, Charlotte [Department of Conservation, Gothenburg University, Guldhedsgatan 5A, Box 130, SE-405 30 Göteborg (Sweden); Cowie, Annette [NSW Department of Primary Industries, Beef Industry Centre, Trevenna Rd., University of New England, Armidale, NSW 2351 (Australia); Barlaz, Morton [Dept. of Civil, Construction, & Environmental Eng., North Carolina State University, Box 7908, Raleigh, NC 27695-7908 (United States)

    2015-07-15

    Highlights: • We examine decay in wood from landfills in contrasting environments in Australia. • Analysis is based on changes in chemical composition and microscopy. • Climate did not influence levels of decay observed. • Microscopy of retrieved samples revealed most of the decay was aerobic in nature. • Current default factors for wood decay in landfills overestimate methane emissions. - Abstract: Wood products in landfill are commonly assumed to decay within several decades, returning the carbon contained therein to the atmosphere, with about half the carbon released as methane. However, the rate and extent of decay is not well known, as very few studies have examined the decay of wood products in landfills. This study reports on the findings from landfill excavations conducted in the Australian cities of Sydney and Cairns located in temperate and tropical environments, respectively. The objective of this study was to determine whether burial of the wood in warmer, more tropical conditions in Cairns would result in greater levels of decay than occurs in the temperate environment of Sydney. Wood samples recovered after 16–44 years in landfill were examined through physical, chemical and microscopic analyses, and compared with control samples to determine the carbon loss. There was typically little or no decay in the wood samples analysed from the landfill in Sydney. Although there was significant decay in rainforest wood species excavated from Cairns, decay levels for wood types that were common to both Cairns and Sydney landfills were similar. The current Intergovernmental Panel on Climate Change (IPCC, 2006) default decay factor for organic materials in landfills is 50%. In contrast, the carbon loss determined for Pinus radiata recovered from Sydney and Cairns landfills was 7.9% and 4.4%, respectively, and 0% for Agathis sp. This suggests that climate did not influence decay, and that the more extensive levels of decay observed for some wood samples

  8. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations

    Energy Technology Data Exchange (ETDEWEB)

    Tansel, Berrin, E-mail: tanselb@fiu.edu; Surita, Sharon C.

    2014-11-15

    Highlights: • In the digester gas, D4 and D5 comprised the 62% and 27% if siloxanes, respectively. • In landfill gas, the bulk of siloxanes were TMSOH (58%) followed by D4 (17%). • Methane utilization may be a possible mechanism for TMSOH formation in the landfills. • The geometric configurations of D4 and D5 molecules make them very stable. - Abstract: The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditions in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the Si–O bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the Si–O bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups.

  9. Comparison between two methane reforming models applied to a quasi-two-dimensional planar solid oxide fuel cell model

    International Nuclear Information System (INIS)

    Up to recently 2-D solid oxide fuel cell (SOFC) modelling efforts were based on global kinetic approaches for the methane steam reforming and water gas shift reactions (WGS) or thermodynamic equilibrium. Lately detailed models for elementary heterogeneous chemical kinetics of reforming (HCR) over Ni-YSZ anode became available in literature. Both approaches were employed in a quasi 2-D model of a planar high temperature electrolyte supported (ESC) SOFC and simulations were carried out for three different fuel gas compositions: pre-reformed natural gas (high CH4 content), and two different biomass derived producer gases (low CH4 content). The results show that the HCR predicts much slower reforming rates which leads to a more evenly distributed solid temperature but smaller power output and thus electrical efficiency. The two models result into predictions that differ greatly if high methane content fuels are used and for such cases the decision upon the modelling scheme to follow should be based on experimental investigations.

  10. Process for separating nitrogen from methane using microchannel process technology

    Science.gov (United States)

    Tonkovich, Anna Lee; Qiu, Dongming; Dritz, Terence Andrew; Neagle, Paul; Litt, Robert Dwayne; Arora, Ravi; Lamont, Michael Jay; Pagnotto, Kristina M.

    2007-07-31

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  11. Kinetics of methane oxidation in selected mineral soils

    Science.gov (United States)

    Walkiewicz, A.; Bulak, P.; Brzeziñska, M.; Włodarczyk, T.; Polakowski, C.

    2012-10-01

    The kinetic parameters of methane oxidation in three mineral soils were measured under laboratory conditions. Incubationswere preceded by a 24-day preincubationwith 10%vol. of methane. All soils showed potential to the consumption of added methane. None of the soils, however, consumed atmospheric CH4. Methane oxidation followed the Michaelis-Menten kinetics, with relatively low values of parameters for Eutric Cambisol, while high values for Haplic Podzol, and especially for Mollic Gleysol which showed the highest methanotrophic activity and much lower affinity to methane. The high values of parameters for methane oxidation are typical for organic soils and mineral soils from landfill cover. The possibility of the involvement of nitrifying microorganisms, which inhabit the ammonia-fertilized agricultural soils should be verified.

  12. Subsurface investigation in Sarimukti landfill using DC resistivity

    Science.gov (United States)

    Kirana, Kartika Hajar; Susanto, Kusnahadi; Susilawati, Anggie

    2015-09-01

    Layering process in landfill will produce leachate that produced by the entry of a mixture of rain water or ground water into the piles solid waste. In Sarimukti landfill, leachate from landfill channeled through a pipe to the leachate pond that planted beneath the soil surface. If the pipe is leaking, the leachate will contaminate the surrounding soil and may also to contaminate groundwater. Therefore, it is necessary to investigate subsurface conditions. One type of subsurface investigation can be determined by measuring the resistivity by using DC resistivity method. Resistivity measured in Sarimukti landfill with semigriding design including 8 lines perpendicular to each other. The result show there is resistivity contrast of materials, such as the solid waste, soil, water content that is predicted as leachate, and methane gas. The range of resistivity values are from 1 Ωm to 500 Ωm with variations of depth in according to line lenght. The resistivity values respectively: leachate is 1 to 10 Ωm; Wet soil is 10 to 100 Ωm; wet waste is 100 to 400 Ωm; gas is > 400 Ωm. Then, leachate was found at depth of 25 meters and wet soil is predicted as aquifer layer with 70 meters depth. The resistivity of aquifer layer is 1 to 20 Ωm and covered by silt clay as clay cap. Thus, it can predicted that leachate not seep into the aquifer layer.

  13. Landfill Construction and Capacity Expansion

    NARCIS (Netherlands)

    Andre, F.J.; Cerda, E.

    2003-01-01

    We study the optimal capacity and lifetime of landfills taking into account their sequential nature.Such an optimal capacity is characterized by the so-called Optimal Capacity Condition.Particular versions of this condition are obtained for two alternative settings: first, if all the landfills are t

  14. Comparison of potential greenhouse gas emissions from disposal of MSW in sanitary landfills vs. waste-to-energy facilities

    International Nuclear Information System (INIS)

    The Environmental Protection Agency (EPA) estimates the US currently generates about 160 million tons of municipal solid waste (MSW) per year, and this figure will exceed 200 million tons annually by the year 2000. About 80 percent of the MSW will be disposed of in landfills and waste-to-energy (WTE) facilities, both of which generate greenhouse gases, namely methane and carbon dioxide. This paper provides an introductory level analysis of the potential long term greenhouse gas emissions from these two MSW disposal alternatives. Carbon dioxide credits are derived for fossil fuel offset by WTE and methane emissions are converted to equivalent CO2 emissions in order to derive a single emission figure for comparison of the greenhouse contribution of the two disposal strategies. A secondary analysis is presented to compare the net equivalent CO2 emissions from WTE facilities to those from landfills with methane gas recovery, combustion and energy generation. The conclusion is, that for a given amount of MSW, landfilling contributes to the greenhouse effect about 10 times more than a modern Waste-To-Energy facility. Even with 50% of all landfill methane emissions recovered and converted to electricity, the contribution to the greenhouse effect by the landfill alternative is about 6 times greater than the waste-to-energy alternative

  15. Isolation of methanotrophic bacteria from a london landfill: a preliminary study using molecular and stable isotopic techniques.

    Science.gov (United States)

    Sriskantharajah, S.; Cutting, S.; Lowry, D.; Grassineau, N.; Nisbet, E.

    2003-04-01

    Methane emissions from landfills are an important source of European greenhouse emissions, and could be reduced by a biological management program that used methanotrophs in landfill cover soils. Topsoil samples taken from a London Landfill were incubated on Nitrate Mineral Salts medium in the presence of methane. The resulting colonies were probed for methanotrophic DNA using PCR amplification. DNA from methanotroph positive colonies was cloned and sequenced for identification. Isolates belonging to the genera Methylocaldum, Methylomonas and Methylosinus were detected. Phylogenetic analysis suggests the presence of possible new species. In addition dried samples of the isolates were analysed for their stable carbon isotope (δ 13C) composition. The results were δ 13C values of -27 per mil and -25 per mil for Methylomonas isolates, -35 per mil and -44 per mil for Methylosinus isolates, -58 per mil and -60 per mil for some of the Methylocaldum isolates and -35 per mil and -45 per mil for the others. This isotopic variation is reflected in a phylogenetic tree of the isolates. The differences shown in the δ 13C analysis could be due to differing biochemical properties, and if the technique is further developed, it may be used for rapid identification of bacteria useful in landfill management for reducing methane emissions. The results suggest that useful reductions in methane emissions could be achieved by a careful design of landfill cover to culture methanotrophs.

  16. Landfill gas from environment to energy

    International Nuclear Information System (INIS)

    Landfill gas is an alternative source of energy which can be commercially exploited wherever municipal solid wastes are disposed of in sanitary landfills. In this context, it was decided to launch a comprehensive study on the subject of energy valorization of landfill gas. The main topics dealt with in the study, which is supported by a comprehensive literature survey and six detailed case-studies, include; (i) the environmental impact of landfill gas, (ii) the process of landfill gas genesis and the technology of landfill gas control by its exploitation, (iii) the monitoring of landfill gas emissions, (iv) the policies and legal aspects of landfill gas in the European Community and in the world, (v) the estimation of landfill gas potentials and economics of landfill gas control and exploitation, (vi) the status of landfill gas exploitation in the European Community and in the world. (authors). refs., figs., tabs

  17. Potential application of biocover soils to landfills for mitigating toluene emission.

    Science.gov (United States)

    Su, Yao; Pei, Junshen; Tian, Baohu; Fan, Fengxi; Tang, Mengling; Li, Wei; He, Ruo

    2015-12-15

    Biocover soils have been demonstrated to be a good alternative cover material to mitigate CH4 emission from landfills. To evaluate the potential of biocover soil in mitigating emissions of non-methane volatile organic compounds (NMVOCs) from landfills, simulated cover soil columns with the influx of toluene (chosen as typical of NMVOCs) concentrations of 102-1336 mg m(-3) in the presence or absence of the major landfill gas components (i.e., CH4 and CO2) were conducted in this study. In the two experimental materials (waste biocover soils (WBS) and landfill cover soils (LCS)), higher toluene reduction was observed in WBS with respect to LCS. After the introduction of landfill gas, an increase of microbial diversity and relative abundance of toluene-degrading bacteria and methanotrophs occurred in WBS. To illustrate the role of toluene-degrading activity in mitigating toluene emissions through landfill covers, an analytical model was developed by incorporating the steady-state vapor transport with the first-order kinetics of aerobic biodegradation limited by O2 availability. This study demonstrated that biocover soils have great potential in applying to landfills for mitigating toluene emission to the atmosphere. PMID:26073517

  18. Methylated mercury species in municipal waste landfill gas sampled in Florida, USA

    Science.gov (United States)

    Lindberg, S. E.; Wallschläger, D.; Prestbo, E. M.; Bloom, N. S.; Price, J.; Reinhart, D.

    Mercury-bearing material has been placed in municipal landfills from a wide array of sources including fluorescent lights, batteries, electrical switches, thermometers, and general waste. Despite its known volatility, persistence, and toxicity in the environment, the fate of mercury in landfills has not been widely studied. The nature of landfills designed to reduce waste through generation of methane by anaerobic bacteria suggests the possibility that these systems might also serve as bioreactors for the production of methylated mercury compounds. The toxicity of such species mandates the need to determine if they are emitted in municipal landfill gas (LFG). In a previous study, we had measured levels of total gaseous mercury (TGM) in LFG in the μg/m 3 range in two Florida landfills, and elevated levels of monomethyl mercury (MMM) were identified in LFG condensate, suggesting the possible existence of gaseous organic Hg compounds in LFG. In the current study, we measured TGM, Hg 0, and methylated mercury compounds directly in LFG from another Florida landfill. Again, TGM was in the μg/m 3 range, MMM was found in condensate, and this time we positively identified dimethyl mercury (DMM) in the LGF in the ng/m 3 range. These results identify landfills as a possible anthropogenic source of DMM emissions to air, and may help explain the reports of MMM in continental rainfall.

  19. Potential application of biocover soils to landfills for mitigating toluene emission.

    Science.gov (United States)

    Su, Yao; Pei, Junshen; Tian, Baohu; Fan, Fengxi; Tang, Mengling; Li, Wei; He, Ruo

    2015-12-15

    Biocover soils have been demonstrated to be a good alternative cover material to mitigate CH4 emission from landfills. To evaluate the potential of biocover soil in mitigating emissions of non-methane volatile organic compounds (NMVOCs) from landfills, simulated cover soil columns with the influx of toluene (chosen as typical of NMVOCs) concentrations of 102-1336 mg m(-3) in the presence or absence of the major landfill gas components (i.e., CH4 and CO2) were conducted in this study. In the two experimental materials (waste biocover soils (WBS) and landfill cover soils (LCS)), higher toluene reduction was observed in WBS with respect to LCS. After the introduction of landfill gas, an increase of microbial diversity and relative abundance of toluene-degrading bacteria and methanotrophs occurred in WBS. To illustrate the role of toluene-degrading activity in mitigating toluene emissions through landfill covers, an analytical model was developed by incorporating the steady-state vapor transport with the first-order kinetics of aerobic biodegradation limited by O2 availability. This study demonstrated that biocover soils have great potential in applying to landfills for mitigating toluene emission to the atmosphere.

  20. The effect of landfill biogas on vegetal growth

    Directory of Open Access Journals (Sweden)

    Sanchez-Yañez Juan Manuel

    2012-08-01

    Full Text Available The plants carry out the gaseous exchange during the photosynthesis and the respiration, however the stomal opening of the leaves or the flow through lenticels in the root are not selective, the anthropogenic biogas emissions enter to vegetable tissues altering its normal physiology. In landfill sites roots plants are exposed to a flow of a variable concentration of biogas, mainly composed by methane (CH4 50-60% and carbon dioxide (CO2 40-55%, product of the anaerobic digestion of the organic fraction of municipal solid waste (MSW. Biogas, according to its concentration and exposure time is likely to exert a negative effect on plant root growth; however, the mechanism is largely unknown. The aim of this revision was to revise the state of the art of the negative effect of biogas on plants that are close to landfill sites.

  1. Remote Real-Time Monitoring of Subsurface Landfill Gas Migration

    Directory of Open Access Journals (Sweden)

    Alan F. Smeaton

    2011-06-01

    Full Text Available The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months.

  2. Remote Real-Time Monitoring of Subsurface Landfill Gas Migration

    Science.gov (United States)

    Fay, Cormac; Doherty, Aiden R.; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M.; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O’Connor, Noel E.; Smeaton, Alan F.; Diamond, Dermot

    2011-01-01

    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months. PMID:22163975

  3. Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling - Part I: Analysis of infiltration shape on two different waste deposit cells.

    Science.gov (United States)

    Audebert, M; Clément, R; Moreau, S; Duquennoi, C; Loisel, S; Touze-Foltz, N

    2016-09-01

    Landfill bioreactors are based on an acceleration of in-situ waste biodegradation by performing leachate recirculation. To quantify the water content and to evaluate the leachate injection system, in-situ methods are required to obtain spatially distributed information, usually electrical resistivity tomography (ERT). In a previous study, the MICS (multiple inversions and clustering strategy) methodology was proposed to improve the hydrodynamic interpretation of ERT results by a precise delimitation of the infiltration area. In this study, MICS was applied on two ERT time-lapse data sets recorded on different waste deposit cells in order to compare the hydrodynamic behaviour of leachate flow between the two cells. This comparison is based on an analysis of: (i) the volume of wetted waste assessed by MICS and the wetting rate, (ii) the infiltration shapes and (iii) the pore volume used by the leachate flow. This paper shows that leachate hydrodynamic behaviour is comparable from one waste deposit cell to another with: (i) a high leachate infiltration speed at the beginning of the infiltration, which decreases with time, (ii) a horizontal anisotropy of the leachate infiltration shape and (iii) a very small fraction of the pore volume used by the leachate flow. This hydrodynamic information derived from MICS results can be useful for subsurface flow modelling used to predict leachate flow at the landfill scale. PMID:27103399

  4. SOFC中干甲烷浓度对Ni-YSZ阳极上反应的影响%Effects of dry methane concentration on the methane reactions at Ni-YSZ anode in solid oxide fuel cell

    Institute of Scientific and Technical Information of China (English)

    由宏新; 高红杰; 陈刚; 阿布里提; 丁信伟

    2013-01-01

    为探讨固体氧化物燃料电池(solid oxide fuel cell,SOFC)中干甲烷浓度对反应的影响,采用色谱在线测量阳极尾气,总结阳极尾气的变化规律.在此基础上,分析干甲烷在固体氧化物燃料电池Ni-YSZ阳极上的反应,寻找干甲烷浓度与电流对电池阳极反应影响的数学关系.结果表明,随着电流密度的增加,低浓度甲烷按顺序发生CH4+O2-→CO+2H2+2e-、CH4+2O2-→CO+H2O+H2+4e-、CH4+3O2-→ CO+2H2O+6e-、CH4+4O2-→ CO2+2H2O+8e-反应,高浓度甲烷只发生甲烷的第一个氧化反应,中浓度甲烷发生前两个或前三个反应.依据法拉第第一定律及反应物之间的关系,确定甲烷的低、中、高浓度的判定依据分别为:qv(CH4)≤I/(4F)、I/(4F)≤qv(CH4)≤I/(2F)、qv(CH4)≥I/(2F).%The dry methane with different concentration was used to research the dry methane reactions at Ni-YSZ anode in solid oxide fuel cell ( SOFC). The anode exhaust gases were measured by on-line chromatography. The reactions of dry methane with different concentration at SOFC Ni-YSZ anodes were analyzed by summarizing the anode exhaust gases regular pattern for different reactions. The mathematical relationships between dry methane concentration and current for different anode reaction were studied. As the oxygen ion concentration at the anode three-phase boundary increasing continuously, the following reactions with low concentration methane occurs in sequence of CH4+O2→ CO+2H2+2e , CH4+2O2→CO+H2O+H2+e-, CH4+3O2-→CO+2H2O+6e- and CH4+4O2-→CO2+2H2O+8e-. The first two or three reactions occurred with medium methane concentration, while the first reaction occurred only with high methane concentration. The judgment for methane in low, medium or high concentrations were qv(CH4) ≤/(4F) 、1(AF) ≤qV(CH4) ≤I/ (2F)、qv(CH4) ≥I/(2F) which are based on Faraday's first law and the relationship among the reactant species.

  5. High efficiency chemical energy conversion system based on a methane catalytic decomposition reaction and two fuel cells: Part I. Process modeling and validation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qinghua; Tian, Ye; Li, Hongjiao; Jia, Lijun; Xia, Chun; Li, Yongdan [Tianjin Key Laboratory of Catalysis Science and Technology and State Key Laboratory for Chemical Engineering (Tianjin University), School of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Thompson, Levi T. [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136 (United States)

    2010-10-01

    A highly efficient integrated energy conversion system is built based on a methane catalytic decomposition reactor (MCDR) together with a direct carbon fuel cell (DCFC) and an internal reforming solid oxide fuel cell (IRSOFC). In the MCDR, methane is decomposed to pure carbon and hydrogen. Carbon is used as the fuel of DCFC to generate power and produce pure carbon dioxide. The hydrogen and unconverted methane are used as the fuel in the IRSOFC. A gas turbine cycle is also used to produce more power output from the thermal energy generated in the IRSOFC. The output performance and efficiency of both the DCFC and IRSOFC are investigated and compared by development of exact models of them. It is found that this system has a unique loading flexibility due to the good high-loading property of DCFC and the good low loading property of IRSOFC. The effects of temperature, pressure, current densities, and methane conversion on the performance of the fuel cells and the system are discussed. The CO{sub 2} emission reduction is effective, up to 80%, can be reduced with the proposed system. (author)

  6. Assessing the role of spatial structure on cell-specific activity and interactions within uncultured methane-oxidizing syntrophic consortia (Invited)

    Science.gov (United States)

    Orphan, V. J.; McGlynn, S.; Chadwick, G.; Dekas, A.; Green-Saxena, A.

    2013-12-01

    Sulfate-coupled anaerobic oxidation of methane is catalysed through symbiotic associations between archaea and sulphate-reducing bacteria and represents the dominant sink for methane in the oceans. These methane-oxidizing symbiotic consortia form well-structured multi-celled aggregations in marine methane seeps, where close spatial proximity is believed to be essential for efficient exchange of substrates between syntrophic partners. The nature of this interspecies metabolic relationship is still unknown however there are a number of hypotheses regarding the electron carrying intermediate and ecophysiology of the partners, each of which should be affected by, and influence, the spatial arrangement of archaeal and bacterial cells within aggregates. To advance our understanding of the role of spatial structure within naturally occurring environmental consortia, we are using spatial statistical methods combined with fluorescence in situ hybridization and high-resolution nanoscale secondary ion mass spectrometry (FISH-nanoSIMS) to quantify the effect of spatial organization and intra- and inter-species interactions on cell-specific microbial activity within these diverse archaeal-bacterial partnerships.

  7. TOTAL COLUMN METHANE RETRIEVALS USING THE TROPOSPHERIC INFRARED MAPPING SPECTROMETER OVER SUNGLINT

    Directory of Open Access Journals (Sweden)

    N. Larsen

    2012-07-01

    Full Text Available Because it is a greenhouse gas, the detection of methane concentrations is a global issue. Additionally, the presence of methane is indicative of potential valuable petroleum and natural gas deposits. Therefore methane seep detection is useful for petroleum exploration around the world. The detection of methane, and other absorbing gases, over water is an issue for passive systems because one is seeking to detect an absorbing gas over an absorbing surface. The solution to this dilemma is to use the sun/sensor geometry for sun glint off of water to measure the absorbing gas over a reflecting surface, and therefore significantly increase the signal to noise of the measurement being taken. In September of 2010 Lockheed Martin performed a proof of concept by demonstrating from an airship over San Francisco Bay the capability of the Tropospheric Infrared Mapping Spectrometer's (TIMS hyper spectral sensor to passively measure methane, CO, and water vapor over sunglint water. The Lockheed Martin prototype TIMS sensor system is a hyper spectral grating spectrometer instrument that operates in the 2.3 micron spectral region at 0.25 cm-1 resolution. The Lockheed Martin retrieval algorithm developed applies the kCARTA (kCompressed Atmospheric Radiative Transfer Algorithm with Jacobians, with the HITRAN 2008 lineshape parameters, to retrieve the total column amount of atmospheric species along with the calibrated TIMS sensors radiometric input. A cell with known amount of methane was placed into the input to the TIMS to simulate atmospheric enhancements near the water surface. The amount in the cell was retrieved well within the uncertainty of 1% of the amount in the cell. Multi frame retrievals on data in which the cell was not placed into the input beam demonstrated 1% precision. In addition, in situ surface measurements were done over a landfill park, where measurements of methane were taken over known hotspots. This research allows for the future

  8. Assessing Emissions of Volatile Organic Componds from Landfills Gas

    Directory of Open Access Journals (Sweden)

    Fahime Khademi

    2016-01-01

    Full Text Available Background: Biogas is obtained by anaerobic decomposition of organic wastes buried materials used to produce electricity, heat and biofuels. Biogas is at the second place for power generation after hydropower and in 2000 about 6% of the world power generation was allocated to biogas. Biogas is composed of 40–45 vol% CO2, 55–65 vol% CH4, and about 1% non-methaneVOCs, and non-methane volatile organic compounds. Emission rates are used to evaluate the compliance with landfill gas emission regulations by the United States Environmental Protection Agency (USEPA. BTEX comounds affect the air quality and may be harmful to human health. Benzene, toluene, ethylbenzene and xylene isomers that are generally called BTEX compounds are the most abundant VOCs in biogas. Methods: Sampling of VOCs in biogas vents was operated passively or with Tedlar bags. 20 samples were collected from 40 wells of old and new biogas sites of Shiraz’ landfill. Immediately after sampling, the samples were transferred to the laboratory. Analysis of the samples was performed with GC-MS. Results: The results showed that in the collection of the old and new biogas sites, the highest concentration of VOCs was observed in toluene (0.85ppm followed by benzene (0.81ppm, ethylbenzene (0.13ppm and xylene (0.08ppm. Conclusion: The results of the study showed that in all samples, most available compounds in biogas vents were aromatic hydrocarbon compounds.These compounds’ constituents originate from household hazardous waste materials deposited in the landfill or from biological/chemical decomposition processes within the landfill.

  9. ENGINEERING ASPECTS OF LANDFILLING MUNICIPAL SOLID WASTE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Sanitary landfilling is the most important method of municipalsolid waste disposal in China. Landfill sites are always set up in mountain valley, on plain or beside seashore. A complete landfill consists of base system, cover system, and leachate collection and gas extraction system. This paper reviews the state-of-the-art landfilling technology in China and collection discusses research projects for engineers.

  10. Biochemically enhanced methane production from coal

    Science.gov (United States)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  11. Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma

    Science.gov (United States)

    Cozzarelli, Isabelle M.; Bohlke, Johnkarl F.; Masoner, Jason R.; Breit, George N.; Lorah, Michelle M.; Tuttle, Michele L.W.; Jaeschke, Jeanne B.

    2011-01-01

    Leachate from municipal landfills can create groundwater contaminant plumes that may last for decades to centuries. The fate of reactive contaminants in leachate-affected aquifers depends on the sustainability of biogeochemical processes affecting contaminant transport. Temporal variations in the configuration of redox zones downgradient from the Norman Landfill were studied for more than a decade. The leachate plume contained elevated concentrations of nonvolatile dissolved organic carbon (NVDOC) (up to 300 mg/L), methane (16 mg/L), ammonium (650 mg/L as N), iron (23 mg/L), chloride (1030 mg/L), and bicarbonate (4270 mg/L). Chemical and isotopic investigations along a 2D plume transect revealed consumption of solid and aqueous electron acceptors in the aquifer, depleting the natural attenuation capacity. Despite the relative recalcitrance of NVDOC to biodegradation, the center of the plume was depleted in sulfate, which reduces the long-term oxidation capacity of the leachate-affected aquifer. Ammonium and methane were attenuated in the aquifer relative to chloride by different processes: ammonium transport was retarded mainly by physical interaction with aquifer solids, whereas the methane plume was truncated largely by oxidation. Studies near plume boundaries revealed temporal variability in constituent concentrations related in part to hydrologic changes at various time scales. The upper boundary of the plume was a particularly active location where redox reactions responded to recharge events and seasonal water-table fluctuations. Accurately describing the biogeochemical processes that affect the transport of contaminants in this landfill-leachate-affected aquifer required understanding the aquifer's geologic and hydrodynamic framework.

  12. Biogas production enhancement using semi-aerobic pre-aeration in a hybrid bioreactor landfill.

    Science.gov (United States)

    Cossu, Raffaello; Morello, Luca; Raga, Roberto; Cerminara, Giulia

    2016-09-01

    Landfilling continues to be one of the main methods used in managing Municipal Solid Waste (MSW) worldwide, particularly in developing countries. Although in many countries national legislation aims to reduce this practice as much as possible, landfill is a necessary and unavoidable step in closing the material cycle. The need for innovative waste management techniques to improve landfill management and minimize the adverse environmental impact produced has resulted in an increasing interest in innovative systems capable of accelerating waste stabilization. Landfill bioreactors allow decomposition kinetics to be increased and post-operational phase to be shortened; in particular, hybrid bioreactors combine the benefits afforded by both aerobic and anaerobic processes. Six bioreactor simulators were used in the present study: four managed as hybrid, with an initial semi-aerobic phase and a second anaerobic phase, and two as anaerobic control bioreactors. The main goal of the first aerated phase is to reduce Volatile Fatty Acids (VFA) in order to increase pH and enhance methane production during the anaerobic phase; for this reason, air injection was stopped only when these parameters reached the optimum range for methanogenic bacteria. Biogas and leachate were constantly monitored throughout the entire methanogenic phase with the aim of calibrating a Gompertz Model and evaluating the effects of pre-aeration on subsequent methane production. The results showed that moderate and intermittent pre-aeration produces a positive effect both on methane potential and in the kinetics of reaction. PMID:26531047

  13. A robust NiO-Sm0.2Ce0.8O1.9 anode for direct-methane solid oxide fuel cell

    KAUST Repository

    Tian, Dong

    2015-07-02

    In order to directly use methane without a reforming process, NiO-Sm0.2Ce0.8O1.9 (NiO-SDC) nanocomposite anode are successfully synthesized via a one-pot, surfactant-assisted co-assembly approach for direct-methane solid oxide fuel cells. Both NiO with cubic phase and SDC with fluorite phase are obtained at 550 °C. Both NiO nanoparticles and SDC nanoparticles are highly monodispersed in size with nearly spherical shapes. Based on the as-synthesized NiO-SDC, two kinds of single cells with different micro/macro-porous structure are successfully fabricated. As a result, the cell performance was improved by 40%-45% with the new double-pore NiO-SDC anode relative to the cell performance with the conventional NiO-SDC anode due to a wider triple-phase-boundary (TPB) area. In addition, no significant degradation of the cell performance was observed after 60 hours, which means an increasing of long term stability. Therefore, the as-synthesized NiO-SDC nanocomposite is a promising anode for direct-methane solid oxide fuel cells.

  14. The effect of landfill biogas on vegetal growth

    OpenAIRE

    Sanchez-Yañez Juan Manuel; Baltierra-Trejo Eduardo; Márquez-Benavides Liliana

    2012-01-01

    The plants carry out the gaseous exchange during the photosynthesis and the respiration, however the stomal opening of the leaves or the flow through lenticels in the root are not selective, the anthropogenic biogas emissions enter to vegetable tissues altering its normal physiology. In landfill sites roots plants are exposed to a flow of a variable concentration of biogas, mainly composed by methane (CH4) 50-60% and carbon dioxide (CO2) 40-55%, product of the anaerobic digestion of the o...

  15. Vertical profiles of community abundance and diversity of anaerobic methanotrophic archaea (ANME) and bacteria in a simple waste landfill in north China.

    Science.gov (United States)

    Dong, Jun; Ding, Linjie; Wang, Xu; Chi, Zifang; Lei, Jiansen

    2015-03-01

    Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms. PMID:25561057

  16. Vertical profiles of community abundance and diversity of anaerobic methanotrophic archaea (ANME) and bacteria in a simple waste landfill in north China.

    Science.gov (United States)

    Dong, Jun; Ding, Linjie; Wang, Xu; Chi, Zifang; Lei, Jiansen

    2015-03-01

    Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms.

  17. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste.

    Science.gov (United States)

    Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G

    2013-10-01

    Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ(13)C, δ(2)H and δ(18)O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ(13)C-value of the dissolved inorganic carbon (δ(13)C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ(13)C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ(13)C-DIC of -20‰ to -25‰. The production of methane under anaerobic conditions caused an increase in δ(13)C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a δ(13)C-DIC of about -20‰. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidation-reduction status of MSW landfills. Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and

  18. The impact of daily covers on sidewall leakage in landfills

    Energy Technology Data Exchange (ETDEWEB)

    Welker, A. L. [Villanova Univ., Dept. of Civil Engineering, PA (United States)

    2000-09-01

    Typically, sanitary landfills are covered by 15 cm of locally available soil on a daily basis. This practice is intended to limit short term negative effects of the waste material on the above-ground environment such as odor, fire, or vermin attraction. Daily placement of compacted soil creates low hydraulic conductivity stratifying layers within the landfill which, in due course, may result in side-slope seepage, decreased stability and decreased efficiency of methane gas venting. The expense of soil acquisitions and the the diminishing availability of landfill space increases the need for alternative materials to replace the daily cover. This paper examines the the threat of sidewall landfill leakage for a hypothetical landfill with traditional soil cover and an alternative daily cover, to demonstrate that the threat of sidewall leakage is real and can be decreased with the use of alternative material as the daily cover such as crushed glass, sludge from waste-water treatment plants, industrial waste, foams and various geosynthetics. At the same time, results of the modelling study showed that with proper drainage sidewall seepage will not occur even with a daily cover that has a hydraulic conductivity two orders of magnitude smaller than the waste, despite positive pressure building up on top of the daily cover. These results imply that the threat of sidewall leakage is minimal, and while alternative daily cover material would help to reduce it even further, their use is most likely to be the result of economic, not technical, considerations. 12 refs., 3 tabs., 4 figs.

  19. Characterization, Concentrations and Emission Rates of Volatile Organic Compounds from Two Major Landfill Sites in Kuwait

    Directory of Open Access Journals (Sweden)

    Mohammad AlAhmad

    2012-01-01

    Full Text Available Problem statement: The emission of pollutants from landfill sites in Kuwait is of major concern due to the associated adverse environmental and health impacts. There are 18 landfill sites in Kuwait which are contributing to the emission of atmospheric pollutants including; methane, carbon dioxide and Volatile Organic Compounds (VOCs. Approach: Determine the concentration and composition of VOCs in LFG emissions from two major landfill sites in Kuwait and to investigate the influence of the "In-Situ Aerobic Stabilization" on the reduction of VOCs emission. VOCs samples were collected during an intensive, short-term field sampling campaign conducted in 2010 where 50 individual volatile organic compounds were identified and quantified in landfill gas samples collected from the two landfill sites and the Project Area. Results: The concentration levels of VOCs were found to be significantly different within the same landfill site; however, the average total VOCs emissions were comparable between the two landfill sites. Concentration of total VOCs (i.e., sum of 50 compounds in LFG emissions varied between 9.4-67.2 ppm in Jleeb Al-Shuyoukh landfill site and from 15.4-57.7 ppm in Al-Qurain landfill site. Annual emissions of the well-known five VOCs (i.e., benzene, toluene, ethylbenzene, m-, o- and p-xylenes and styrene were also computed for each vent pipe from Jleeb Al-Shuyoukh landfill using the measured average concentrations and LFG flow rates. The results, if calculated in terms of the average ΣBTEX+S quantity emitted per vent pipe per year, showed that the magnitude of ΣBTEX+S emissions ranged between 0.108 -11.686 g y−1. Conclusion: The results of this pilot project demonstrated that the “in-situ aerobic stabilization method” applied on old solid waste deposits in the project area of Jleeb Al-Shuyoukh landfill can significantly reduce the average VOCs concentration in LFG emissions from high-productivity wells in the project

  20. High efficiency chemical energy conversion system based on a methane catalytic decomposition reaction and two fuel cells. Part II. Exergy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qinghua; Tian, Ye; Li, Hongjiao; Jia, Lijun; Xia, Chun; Li, Yongdan [Tianjin Key Laboratory of Catalysis Science and Technology and State Key Laboratory for Chemical Engineering (Tianjin University), School of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Thompson, Levi T. [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136 (United States)

    2010-10-01

    A methane catalytic decomposition reactor-direct carbon fuel cell-internal reforming solid oxide fuel cell (MCDR-DCFC-IRSOFC) energy system is highly efficient for converting the chemical energy of methane into electrical energy. A gas turbine cycle is also used to output more power from the thermal energy generated in the IRSOFC. In part I of this work, models of the fuel cells and the system are proposed and validated. In this part, exergy conservation analysis is carried out based on the developed electrochemical and thermodynamic models. The ratio of the exergy destruction of each unit is examined. The results show that the electrical exergy efficiency of 68.24% is achieved with the system. The possibility of further recovery of the waste heat is discussed and the combined power-heat exergy efficiency is over 80%. (author)

  1. Landfill aeration for emission control before and during landfill mining.

    Science.gov (United States)

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area.

  2. PERFORMA OKSIDASI METAN PADA REAKTOR KONTINYU DENGAN PENINGKATAN KETEBALAN LAPISAN BIOCOVER LANDFILL

    Directory of Open Access Journals (Sweden)

    Opy Kurniasari

    2013-11-01

    Full Text Available PERFORMANCE OF METHANE OXIDATION IN CONTINUOUS REACTOR BY BIOCOVER LANDFILL FILM THICKNESS IMPROVEMENT. Municipal solid waste (MSW handling in Indonesia is currently highly dependent on landfilling at the final disposal facility (TPA, which generally operated in layer-by-layer basis, allowing the anaerobic (absent of oxygen process. This condition will certainly generate biogas in the form of methane (CH4 and CO2. Methane is a greenhouse gas with a global warming potential greater than CO2, and can absorb infrared radiation 23 times more efficient than CO2 in the period of over 100 years. One way that can be done to reduce methane gas from landfills that escape into nature is to oxidize methane by utilizing landfill cover material (biocover as methane-oxidizing microorganism media. Application of compost as landfill cover material is a low-cost approach to reduce emissions so are suitable for developing countries. The compost used in this study was compost landfill mining, which is degraded naturally in landfill. The purpose of this study was to evaluate the ability of biocover to oxidize the methane on a certain layer thickness with a continuous flow conditions. Three column reactors were used, which were made of flexy glass measuring 70 cm in high and 15 cm in diameter. The methane flowed from the bottom of the reactor continuously at a flow rate of 5 ml/minute. The columns were filled with biocover compost landfill mining with layer thickness of 5, 25, 35 and 60 cm. The results showed that the thicker layer of biocover, the higher the efficiency of methane oxidation. The oxidation efficiency obtained in each layer thickness of 15, 25, 35 and 60 cm was 56.43%, 63.69%, 74.58% and 80, 03% respectively, with the rate of oxidation of 0.29 mol m-2 d-1 and the fraction of oxidation of 99%. The oxidation result was supported by the identification of bacteria isolated in this experiment, namely metanotrophic bacteria that have the ability to oxidize

  3. An anaerobic field injection experiment in a landfill leachate plume (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Bjerg, Poul Løgstrup; Ludvigsen, L.;

    1999-01-01

    Redox conditions may be environmental factors which affect the fate of the xenobiotic organic compounds. Therefore the redox conditions were characterized in an anaerobic, leachate-contaminated aquifer 15–60 m downgradient from the Grindsted Landfill, Denmark, where an field injection experiment...... the experimental period of 924 days owing to variations in the leachate from the landfill. However, no indication of change in the redox environment resulting from the field injection experiment or natural variation was observed in the individual sampling points. The methane, Fe(II), hydrogen, and VFA groundwater...

  4. Autonomous remote gas sensor network platforms with applications in landfill, wastewater and ambient air quality measurement

    OpenAIRE

    McNamara, Eoghan; Nardi Pinto, Camila; Collins, Fiachra; Fay, Cormac; Fregonezi Paludetti, Lizandra; Zanoni Nubiato, Keni; Xavier Costa, Ernane; Morgado, Marcelo; Diamond, Dermot

    2013-01-01

    Carbon dioxide (CO2) and methane (CH4) are produced by anaerobes on decaying matter. This gas production is present in landfill sites and in anaerobic lagoons in waste water treatment plants (WWTP). Monitoring gas production is important as CO2 can collect in low lying areas and asphyxiates, CH4 is flammable in the 5%-15% v/v gas/air region. Both CO2 and CH4 are greenhouse gases, CH4 having 25 times the global warming potential of CO2. At landfill site perimeters, CO2 and CH4 must not exceed ...

  5. Landfill gas at 0.17 NOK/kWh from Norwegian plants

    International Nuclear Information System (INIS)

    This article relates briefly to the utilization of bio gas from sanitary landfills in Norway. The annual cost of investment for the energy parts of plants is on an average of 0.9 NOK/kWh, and the total investment about 2.2 NOK/kWh. The calculated energy price for the recovery of 1 kWh of thermal energy from bio gas shows to be about 0.17 NOK/kWh. Bio gas from landfills consists of methane (40-55%) and carbon dioxide (25-40%), and the recovered volume of gas per ton of waste is 2.8 Nm3. 1 fig

  6. Energetic utilization of biogas arising of sanitary landfills

    International Nuclear Information System (INIS)

    The biogas is the gaseous product that is obtained from the fermentation of biodegradable organic matter; this process is known as anaerobic digestion. In this exposition, the formation process of biogas is described in its three continuos phases: 1. Hydrolysis phase, 2. Phase of acid generation and the acetic acid generation and 3. Phase of methane generation. Also, the biogas composition (methane, carbon dioxide, hydrogen, nitrogen, oxygen and traces) is present. Different types of anaerobic digestion as discontinuous digestion, continuo digestion, digestion with suspended biomass, digestion with adhered biomass, and digestion of two phases are shown. Finally, the process that occur in a landfill and its different phases of aerobic and anaerobic decomposition, are describe from its initial stage until the biogas generation

  7. Reduction of Non-CO2 Gas Emissions Through The In Situ Bioconversion of Methane

    Energy Technology Data Exchange (ETDEWEB)

    Scott, A R; Mukhopadhyay, B; Balin, D F

    2012-09-06

    The primary objectives of this research were to seek previously unidentified anaerobic methanotrophs and other microorganisms to be collected from methane seeps associated with coal outcrops. Subsurface application of these microbes into anaerobic environments has the potential to reduce methane seepage along coal outcrop belts and in coal mines, thereby preventing hazardous explosions. Depending upon the types and characteristics of the methanotrophs identified, it may be possible to apply the microbes to other sources of methane emissions, which include landfills, rice cultivation, and industrial sources where methane can accumulate under buildings. Finally, the microbes collected and identified during this research also had the potential for useful applications in the chemical industry, as well as in a variety of microbial processes. Sample collection focused on the South Fork of Texas Creek located approximately 15 miles east of Durango, Colorado. The creek is located near the subsurface contact between the coal-bearing Fruitland Formation and the underlying Pictured Cliffs Sandstone. The methane seeps occur within the creek and in areas adjacent to the creek where faulting may allow fluids and gases to migrate to the surface. These seeps appear to have been there prior to coalbed methane development as extensive microbial soils have developed. Our investigations screened more than 500 enrichments but were unable to convince us that anaerobic methane oxidation (AMO) was occurring and that anaerobic methanotrophs may not have been present in the samples collected. In all cases, visual and microscopic observations noted that the early stage enrichments contained viable microbial cells. However, as the levels of the readily substrates that were present in the environmental samples were progressively lowered through serial transfers, the numbers of cells in the enrichments sharply dropped and were eliminated. While the results were disappointing we acknowledge that

  8. THE "CHEMICAL OXYGEN DEMAND / TOTAL VOLATILE ACIDS" RATIO AS AN ANAEROBIC TREATABILITY INDICATOR FOR LANDFILL LEACHATES

    Directory of Open Access Journals (Sweden)

    R. C. Contrera

    2015-03-01

    Full Text Available Abstract In some operational circumstances a fast evaluation of landfill leachate anaerobic treatability is necessary, and neither Biochemical Methane Potential nor BOD/COD ratio are fast enough. Looking for a fast indicator, this work evaluated the anaerobic treatability of landfill leachate from São Carlos-SP (Brazil in a pilot scale Anaerobic Sequence Batch Biofilm Reactor (AnSBBR. The experiment was conducted at ambient temperature in the landfill area. After the acclimation, at a second stage of operation, the AnSBBR presented efficiency above 70%, in terms of COD removal, utilizing landfill leachate without water dilution, with an inlet COD of about 11,000 mg.L-1, a TVA/COD ratio of approximately 0.6 and reaction time equal to 7 days. To evaluate the landfill leachate biodegradability variation over time, temporal profiles of concentration were performed in the AnSBBR. The landfill leachate anaerobic biodegradability was verified to have a direct and strong relationship to the TVA/COD ratio. For a TVA/CODTotal ratio lower than 0.20, the biodegradability was considered low, for ratios between 0.20 and 0.40 it was considered medium, and above 0.40 it was considered high.

  9. Control of PCDDs/PCDFs, PCBs and PAHs emissions in exhaust of landfill gas fed engines

    Energy Technology Data Exchange (ETDEWEB)

    Idczak, F.; Dengis, P.; Duchateau, P.; Petitjean, S. [ISSeP, Liege (Belgium)

    2004-09-15

    Wallonia in Belgium, like many countries around the world, planned to reduce amounts of waste generated by human activity and stored in landfills. Since they experienced a couple of crisis situations in the past, both with former and presently used landfill sites, authorities launched a demanding landfill monitoring program which covers now 9 out of the 10 major sites. Biogas produced in these landfills are collected and eliminated in two different ways. Either simply burned in a flare, or, when the methane grade and flow are high enough, the biogas can be burned in electricity producing engines. This later use represents an energy recovery from the waste. In the context of difficulty for landfill sites to be accepted by the public (the well-known NIMBY phenomenon), the question has been raised whether combustion of the biogas did not entail production of dioxins and other polyaromatic compounds. For the exhaust gases of engines operated with biogas, a check on the presence of dioxins and associated organic pollutants, composed of three different runs or days of sampling for each of 5 landfill sites was performed upon demand of responsible authorities.

  10. Agricultural methanization

    International Nuclear Information System (INIS)

    After having briefly outlined the interest of the development of methanization of agricultural by-products in the context of struggle against climate change, and noticed that France is only now developing this sector as some other countries already did, this publication describes the methanization process also called anaerobic digestion, which produces a digestate and biogas. Advantages for the agriculture sector are outlined, as well as drawbacks and recommendations (required specific technical abilities, an attention to the use of energetic crops, an improved economic balance which still depends on public subsidies, competition in the field of waste processing). Actions undertaken by the ADEME are briefly evoked

  11. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina.

    Science.gov (United States)

    Yin, Qi; Zhu, Xiaoyu; Zhan, Guoqiang; Bo, Tao; Yang, Yanfei; Tao, Yong; He, Xiaohong; Li, Daping; Yan, Zhiying

    2016-04-01

    The anaerobic digestion (AD) and microbial electrolysis cell (MEC) coupled system has been proved to be a promising process for biomethane production. In this paper, it was found that by co-cultivating Geobacter with Methanosarcina in an AD-MEC coupled system, methane yield was further increased by 24.1%, achieving to 360.2 mL/g-COD, which was comparable to the theoretical methane yield of an anaerobic digester. With the presence of Geobacter, the maximum chemical oxygen demand (COD) removal rate (216.8 mg COD/(L·hr)) and current density (304.3A/m(3)) were both increased by 1.3 and 1.8 fold compared to the previous study without Geobacter, resulting in overall energy efficiency reaching up to 74.6%. Community analysis demonstrated that Geobacter and Methanosarcina could coexist together in the biofilm, and the electrochemical activities of both were confirmed by cyclic voltammetry. Our study observed that the carbon dioxide content in total gas generated from the AD reactor with Geobacter was only half of that generated from the same reactor without Geobacter, suggesting that Methanosarcina may obtain the electron transferred from Geobacter for the reduction of carbon dioxide to methane. Taken together, Geobacter not only can improve the performance of the MEC system, but also can enhance methane production.

  12. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina.

    Science.gov (United States)

    Yin, Qi; Zhu, Xiaoyu; Zhan, Guoqiang; Bo, Tao; Yang, Yanfei; Tao, Yong; He, Xiaohong; Li, Daping; Yan, Zhiying

    2016-04-01

    The anaerobic digestion (AD) and microbial electrolysis cell (MEC) coupled system has been proved to be a promising process for biomethane production. In this paper, it was found that by co-cultivating Geobacter with Methanosarcina in an AD-MEC coupled system, methane yield was further increased by 24.1%, achieving to 360.2 mL/g-COD, which was comparable to the theoretical methane yield of an anaerobic digester. With the presence of Geobacter, the maximum chemical oxygen demand (COD) removal rate (216.8 mg COD/(L·hr)) and current density (304.3A/m(3)) were both increased by 1.3 and 1.8 fold compared to the previous study without Geobacter, resulting in overall energy efficiency reaching up to 74.6%. Community analysis demonstrated that Geobacter and Methanosarcina could coexist together in the biofilm, and the electrochemical activities of both were confirmed by cyclic voltammetry. Our study observed that the carbon dioxide content in total gas generated from the AD reactor with Geobacter was only half of that generated from the same reactor without Geobacter, suggesting that Methanosarcina may obtain the electron transferred from Geobacter for the reduction of carbon dioxide to methane. Taken together, Geobacter not only can improve the performance of the MEC system, but also can enhance methane production. PMID:27090713

  13. Performance of Ni-Fe/gadolinium-doped CeO{sub2} anode supported tubular solid oxide fuel cells using steam reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Liang, B.; Suzuki, T.; Hamamoto, K.; Yamaguchi, T.; Sumi, H.; Fujishiro, Y.; Ingram, B. J.; Carter, J. D. (Chemical Sciences and Engineering Division); (National Institute of Advanced Industrial Science and Technology)

    2012-03-15

    Iron nanoparticles (Fe{sub 2}O{sub 3}) were added to NiO/gadolinium-doped CeO{sub 2} (GDC) anode supported solid oxide fuel cell (SOFC) for the direct methane-water fuel operation. The cell was co-sintered at 1400 C, and the anode porosity is 31.8%. The main size corresponding to peak volume is around 1.5 {mu}m. When steam and methane directly fed to the cell, the power density is about 0.57 W cm{sup -2} at 650 C. It is the familiar performance for H{sub 2} operation (4 times of flow rate) with same fuel utilization. Compare with the testing temperature of 600 and 650 C, there is almost no carbon fiber deposition at 700 C with steam/methane (S/C) of 5. At the same time, fuel operation of high value of S/C (=3.3) resulted in fiber-like deposition and degradation of power performance based on loading test results.

  14. [Culturable psychrotolerant methanotrophic bacteria in landfill cover soil].

    Science.gov (United States)

    Kallistova, A Iu; Montonen, L; Jurgens, G; Munster, U; Kevbrina, M V; Nozhevnikova, A N

    2014-01-01

    Methanotrophs closely related to psychrotolerant members of the genera Methylobacter and Methylocella were identified in cultures enriched at 10@C from landfill cover soil samples collected in the period from April to November. Mesophilic methanotrophs of the genera Methylobacter and Methylosinus were found in cultures enriched at 20 degrees C from the same cover soil samples. A thermotolerant methanotroph related to Methylocaldum gracile was identified in the culture enriched at 40 degrees C from a sample collected in May (the temperature of the cover soil was 11.5-12.5 degrees C). In addition to methanotrophs, methylobacteria of the genera Methylotenera and Methylovorus and members of the genera Verrucomicrobium, Pseudomonas, Pseudoxanthomonas, Dokdonella, Candidatus Protochlamydia, and Thiorhodospira were also identified in the enrichment cultures. A methanotroph closely related to the psychrotolerant species Methylobacter tundripaludum (98% sequence identity of 16S r-RNA genes with the type strain SV96(T)) was isolated in pure culture. The introduction of a mixture of the methanotrophic enrichments, grown at 15 degrees C, into the landfill cover soil resulted in a decrease in methane emission from the landfill surface in autumn (October, November). The inoculum used was demonstrated to contain methanotrophs closely related to Methylobacter tundripaludum SV96.

  15. Alternative anode materials for methane oxidation in solid oxide fuel cells

    OpenAIRE

    Sfeir, Joseph; Grätzel, Michael

    2005-01-01

    Fuel Cells are electrochemical devices that are able to directly convert chemical energy to electrical energy, without any Carnot limitation. Hence, their energy efficiencies are relatively high. Among the various types of fuel cells, solid oxide fuel cells (SOFC) are operated at high temperatures and in principle can run on various fuels such as natural gas and hydrogen. As natural gas is sought to become one of the main fuels of the next decades, its direct feed to a SOFC is desirable as th...

  16. Application of Deuterium and Oxygen-18 to Trace Leachate Movement in Bantar Gebang Sanitary Landfill

    Directory of Open Access Journals (Sweden)

    E.R. Pujiindiyati

    2011-08-01

    Full Text Available Bantar Gebang landfill was constructed in 1986 with total area of 108 ha and approximately 6000 ton/day solid waste is disposed to this landfill. Mostly, the people living surrounding landfill get afraid of impact of the hazardous chemicals produced by waste disposal to their health. The purpose of this investigation was to study the migration of leachate to Cibitung River water and shallow groundwaters near to the river. It is possible to be done because chemical contents and isotopic characteristics of municipal landfill leachate are unique, relative to aqueous media in the most natural environments. Laser absorption method developed by the LGR (Los Gatos Research was used to measure absolute abundances of 2HHO, HH18O and HHO in a number of water samples. In-situ measurements were also conducted as an additional parameter besides their isotopes. The δ2H of the H2O in landfill leachate was significantly enriched, with values of - 22.6 ‰ to + 4.3 ‰. This deuterium enrichment was undoubtedly due to the extensive production of microbial methane within the limited reservoir of the landfill. However, the enriched deuterium value in leachate was not detected in the river which still had depleted values. It was probably caused by the amount of natural water in the river was comparatively large, with respect to limited leachate discarded to the river.The electrical conductivity of the leachate was higher (3200 to 7600 S and the decreasing values were still monitored in the river to approximately 12 km after streaming the landfills. The effect of the high electrical conductivity and enriched deuterium of leachate was not clearly indicated in the groundwater samples which still represented the local precipitation recharge, except a monitoring well located in Bantar Gebang landfill area which has an indication of leachate contamination.

  17. An experimental study with bioreactor-landfill system%生物反应器填埋场的试验研究

    Institute of Scientific and Technical Information of China (English)

    王君琴; 沈东升

    2003-01-01

    In this study, a methane bioreactor-landfill system was utilized to treat municipal solid waste (MSW). Through analyzing and detecting the pollutant(CODcr) in the bioreactor-landfill system, a simulated mathematic formulaof waste degradation was established. After treated with this system, the CODcr and VFA concentrations in MSW could be decreased from more than 20000 and 7000 mg·L-1 to less than 1500 and 200 mg·L-1, respec-tively.

  18. The Boston Methane Project: Mapping Surface Emissions to Inform Atmospheric Estimation of Urban Methane Flux

    Science.gov (United States)

    Phillips, N.; Crosson, E.; Down, A.; Hutyra, L.; Jackson, R. B.; McKain, K.; Rella, C.; Raciti, S. M.; Wofsy, S. C.

    2012-12-01

    Lost and unaccounted natural gas can amount to over 6% of Massachusetts' total annual greenhouse gas inventory (expressed as equivalent CO2 tonnage). An unknown portion of this loss is due to natural gas leaks in pipeline distribution systems. The objective of the Boston Methane Project is to estimate the overall leak rate from natural gas systems in metropolitan Boston, and to compare this flux with fluxes from the other primary methane emissions sources. Companion talks at this meeting describe the atmospheric measurement and modeling framework, and chemical and isotopic tracers that can partition total atmospheric methane flux into natural gas and non-natural gas components. This talk focuses on estimation of surface emissions that inform the atmospheric modeling and partitioning. These surface emissions include over 3,300 pipeline natural gas leaks in Boston. For the state of Massachusetts as a whole, the amount of natural gas reported as lost and unaccounted for by utility companies was greater than estimated landfill emissions by an order of magnitude. Moreover, these landfill emissions were overwhelmingly located outside of metro Boston, while gas leaks are concentrated in exactly the opposite pattern, increasing from suburban Boston toward the urban core. Work is in progress to estimate spatial distribution of methane emissions from wetlands and sewer systems. We conclude with a description of how these spatial data sets will be combined and represented for application in atmospheric modeling.

  19. Performance analysis of energy recovery in an Italian municipal solid waste landfill

    International Nuclear Information System (INIS)

    The objective of this paper is to assess the techno-economic viability of the use of fuel cell as an alternative technology for landfill gas energy recovery. The case of an Italian municipal solid waste landfill is analyzed. The landfill was opened in 1998 and in 2001 the energy recovery facility started operation. The current landfill gas conversion system is based on internal combustion engine technology. However, the drawbacks of internal combustion engine in terms of conversion efficiency and air emissions are widely acknowledged. Some authors have proposed molten carbonate fuel cell as one of the most interesting solution for landfill gas energy recovery for the near future. Fuel cells have proven capable of providing superior energy efficiency and environmental performance, but their widespread use is constrained by the capital cost required. Using actual data from the landfill, a comparison between the current energy recovery system and a hypothetical alternative solution based on molten carbonate fuel cell is performed. The analysis assesses the cost-effectiveness of the two solutions, considering also some environmental externalities usually not included in traditional economic assessment. The main strengths and weaknesses of the two landfill gas energy recovery systems are highlighted and some new insights into molten carbonate fuel cell overall sustainability are provided.

  20. Microbial Community Structure and Function at an Aquifer Contaminated with Landfill Leachate (Norman,OK)

    Science.gov (United States)

    Weiss, J. V.; Voytek, M. A.; Lowit, M. B.; Cozzarelli, I. M.; Kirshtein, J. D.

    2006-05-01

    Geochemical research at an aquifer contaminated with landfill leachate (Norman, OK) has shown that contaminated areas have significant increases in the concentration of dissolved organic carbon (DOC) and persistent anaerobic conditions as compared to uncontaminated areas. As a result, sulfate is depleted in the center of the contaminant plume with concomitant increases in Fe(II) and methane. These observations have been used to infer the dominant biogeochemical processes in this ecosystem which include Fe reduction, sulfate reduction, and methanogenesis. Because each of these processes is microbially-mediated, the goal of this study was to use a combination of culture-based and molecular methods to determine the composition and diversity of the microbial community in the contaminant plume. Groundwater and sediment samples were collected along the flow path of contamination in June 2005. We used most probable number (MPN) analyses to determine the abundances of key functional groups of bacteria including methanogens, sulfate-reducers (SRB), and iron-reducers (FeRB). Quantitative PCR (qPCR) was performed to determine abundances of functional genes of the dissimilatory sulfite reductase (dsr) and methyl coenzyme M-reductase (mcr) genes and the 16 rRNA genes targeting Geobacter spp. Results from the MPN analyses confirmed the presence of a relatively abundant and diverse anaerobic community in the groundwater at the landfill (e.g. 102 SRB, FeRB ml-1. In general, with increasing distance from the source of contamination, abundances of FeRB, SRB, and methanogens decreased to < 101 cells ml-1 groundwater and < 102 cells g soil. In fact, most of these groups were undetectable throughout much of the sampling transect, particularly in the groundwater. For example, methanogens were largely absent despite the presence of high concentrations of methane. In contrast to these estimates obtained with MPN analyses, the results of qPCR indicated that there were measurable, and many

  1. CYANOBACTERIA FOR MITIGATING METHANE EMISSION FROM SUBMERGED PADDY FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Upasana Mishra; Shalini Anand [Department of Environmental Studies, Inderprastha Engineering College, Sahibabad, Ghaziabad (India)

    2008-09-30

    Atmospheric methane, a potent greenhouse gas with high absorption potential for infrared radiation, is responsible for one forth of the total anticipated warming. It is forming a major part of green house gases, next after carbon dioxide. Its concentration has been increasing alarmingly on an average at the rate of one percent per year. Atmospheric methane, originating mainly from biogenic sources such as paddy fields, natural wetlands and landfills, accounts for 15-20% of the world's total anthropogenic methane emission. With intensification of rice cultivation in coming future, methane emissions from paddy fields are anticipated to increase. India's share in world's rice production is next after to China and likewise total methane emission from paddy fields also. Methane oxidation through planktophytes, particularly microalgae which are autotrophic and abundant in rice rhizospheres, hold promise in controlling methane emission from submerged paddy fields. The present study is focused on the role of nitrogen fixing, heterocystous cyanobacteria and Azolla (a water fern harboring a cyanobacterium Anabaena azollae) as biological sink for headspace concentration of methane in flooded soils. In this laboratory study, soil samples containing five potent nitrogen fixer cyanobacterial strains from paddy fields, were examined for their methane reducing potential. Soil sample without cyanobacterial strain was tested and taken as control. Anabaena sp. was found most effective in inhibiting methane concentration by 5-6 folds over the control. Moist soil cores treated with chemical nitrogen, urea, in combination with cyanobacteria mixture, Azolla microphylla or cyanobacteria mixture plus Azolla microphylla exhibited significance reduction in the headspace concentration of methane than the soil cores treated with urea alone. Contrary to other reports, this study also demonstrates that methane oxidation in soil core samples from paddy fields was stimulated by

  2. Landfill aeration for emission control before and during landfill mining.

    Science.gov (United States)

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area. PMID:26445364

  3. Landfill gas generation and emission at danish waste disposal sites receiving waste with a low organic waste content

    DEFF Research Database (Denmark)

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2015-01-01

    two models are multi-phase models, which defines waste fractions into traditional MSW and low-organic waste categories, respectively. Both the LandGEM and the IPCC model estimated significantly larger methane (CH4) generation in comparison to the Afvalzorg model. The Afvalzorg model could better show...... the influence of not only the total disposed waste amount, but also various waste categories, and was found more suitable to estimate LFG generation from landfills receiving low-organic waste. Four major waste categories currently being disposed at Danish landfills (mixed bulky, shredder, dewatered sludge......The landfill gas (LFG) generation from four Danish landfills was estimated using three first-order-decay (FOD) models; the LandGEM model (developed by the US EPA), the IPCC (developed by the Intergovernmental Panel on Climate Change) and the Afvalzorg model (developed by a Dutch company). The last...

  4. Evaluation of potential opportunities for electric power generation from landfill gas at “Tsalapitsa”

    Directory of Open Access Journals (Sweden)

    Ganev Ivaylo

    2014-01-01

    Full Text Available Potential opportunities for electric power generation from landfill gas (LFG utilization were estimated for the second largest landfill site in Bulgaria, situated near the city of Plovdiv. The work performed was based on detailed analysis of experimentally obtained and model-predicted features of the “Tsalapitsa” landfill site. The study presents a short description of the site, the global characteristics of the disposed municipal solid waste, and the experimentally obtained methane composition of the LFG. Based on the above described observations, the potential for LFG recovery at “Tsalapitsa” was determined, together with that for electric power generation for the next 25 years. A set of recommendations was then developed regarding the parameters required for the installation of electric power generation from LFG in Plovdiv.

  5. Evaluation Of Landfill Gas Decay Constant For Municipal Solid Waste Landfills Operated As Bioreactors

    Science.gov (United States)

    Prediction of the rate of gas production from bioreactor landfills is important to optimize energy recovery and to estimate greenhouse gas emissions. Landfill gas (LFG) composition and flow rate were monitored for four years for a conventional and two bioreactor landfill landfil...

  6. Sanitary Landfill Supplemental Test Final Report

    International Nuclear Information System (INIS)

    This report summarizes the performance of the Sanitary Landfill Supplemental Test data, an evaluation of applicability, conclusions, recommendations, and related information for implementation of this remediation technology at the SRS Sanitary Landfill

  7. Sanitary Landfill Supplemental Test Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Altman, D.J.

    1999-07-28

    This report summarizes the performance of the Sanitary Landfill Supplemental Test data, an evaluation of applicability, conclusions, recommendations, and related information for implementation of this remediation technology at the SRS Sanitary Landfill.

  8. Acceleration of aged-landfill stabilization by combining partial nitrification and leachate recirculation: A field-scale study

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jinwook [R& D Center, Samsung Engineering Co., Ltd., 415-10 Woncheon-dong, Youngtong-gu, Suwon, Gyeonggi-do 443-823 (Korea, Republic of); Kim, Seungjin; Baek, Seungcheon [Department of Civil and Environmental Engineering, Hanyang University, Sa 3-dong, Sangnok-gu, Ansan, Gyeonggi-do 426-791 (Korea, Republic of); Lee, Nam-Hoon [Department of Environmental & Energy Engineering, Anyang University, 22 Samdeok-ro, 37 Beon-gil, Manan-gu, Anyang, Gyeonggi-do 430-714 (Korea, Republic of); Park, Seongjun; Lee, Junghun; Lee, Heechang [Department of Civil and Environmental Engineering, Hanyang University, Sa 3-dong, Sangnok-gu, Ansan, Gyeonggi-do 426-791 (Korea, Republic of); Bae, Wookeun, E-mail: wkbae@hanyang.ac.kr [Department of Civil and Environmental Engineering, Hanyang University, Sa 3-dong, Sangnok-gu, Ansan, Gyeonggi-do 426-791 (Korea, Republic of)

    2015-03-21

    Highlights: • To solve the drawbacks (NH{sub 4}{sup +} accumulation) of leachate recirculation, ex-situ SBR was applied. • Produced NO{sub 2}{sup −} was recirculated and denitrified to N{sub 2} in landfill with insufficient carbon source. • Despite the inhibition of methanogenesis by DO and nitrate, CH{sub 4} fraction eventually increased. - Abstract: Leachate recirculation for rapid landfill stabilization can result in the accumulation of high-strength ammonium. An on-site sequencing batch reactor (SBR) was therefore, applied to oxidize the ammonium to nitrite, which was then recirculated to the landfill for denitrification to nitrogen gas. At relatively higher ammonium levels, nitrite accumulated well in the SBR; the nitrite was denitrified stably in the landfill, despite an insufficient biodegradable carbon source in the leachate. As the leachate was recirculated, the methane and carbon dioxide contents produced from the landfill fluctuated, implying that the organic acids and hydrogen produced in the acid production phase acted as the carbon source for denitrification in the landfill. Leachate recirculation combined with ex-situ partial nitrification of the leachate may enhance the biodegradation process by: (a) removing the nitrogen that is contained with the leachate, and (b) accelerating landfill stabilization, because the biodegradation efficiency of landfill waste is increased by supplying sufficient moisture and its byproducts are used as the carbon source for denitrification. In addition, partial nitrification using an SBR has advantages for complete denitrification in the landfill, since the available carbon source is in short supply in aged landfills.

  9. Effects of biochar amendment on geotechnical properties of landfill cover soil.

    Science.gov (United States)

    Reddy, Krishna R; Yaghoubi, Poupak; Yukselen-Aksoy, Yeliz

    2015-06-01

    Biochar is a carbon-rich product obtained when plant-based biomass is heated in a closed container with little or no available oxygen. Biochar-amended soil has the potential to serve as a landfill cover material that can oxidise methane emissions for two reasons: biochar amendment can increase the methane retention time and also enhance the biological activity that can promote the methanotrophic oxidation of methane. Hydraulic conductivity, compressibility and shear strength are the most important geotechnical properties that are required for the design of effective and stable landfill cover systems, but no studies have been reported on these properties for biochar-amended landfill cover soils. This article presents physicochemical and geotechnical properties of a biochar, a landfill cover soil and biochar-amended soils. Specifically, the effects of amending 5%, 10% and 20% biochar (of different particle sizes as produced, size-20 and size-40) to soil on its physicochemical properties, such as moisture content, organic content, specific gravity and pH, as well as geotechnical properties, such as hydraulic conductivity, compressibility and shear strength, were determined from laboratory testing. Soil or biochar samples were prepared by mixing them with 20% deionised water based on dry weight. Samples of soil amended with 5%, 10% and 20% biochar (w/w) as-is or of different select sizes, were also prepared at 20% initial moisture content. The results show that the hydraulic conductivity of the soil increases, compressibility of the soil decreases and shear strength of the soil increases with an increase in the biochar amendment, and with a decrease in biochar particle size. Overall, the study revealed that biochar-amended soils can possess excellent geotechnical properties to serve as stable landfill cover materials. PMID:25898984

  10. Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors.

    Science.gov (United States)

    Ge, Sai; Liu, Lei; Xue, Qiang; Yuan, Zhiming

    2016-09-01

    Landfill is the most common and efficient ways of municipal solid waste (MSW) disposal and the landfill biogas, mostly methane, is currently utilized to generate electricity and heat. The aim of this work is to study the effects and the role of exogenous aerobic bacteria mixture (EABM) on methane production and biodegradation of MSW in bioreactors. The results showed that the addition of EABM could effectively enhance hydrolysis and acidogenesis processes of MSW degradation, resulting in 63.95% reduction of volatile solid (VS), the highest methane production rate (89.83Lkg(-1) organic matter) ever recorded and a threefold increase in accumulative methane production (362.9L) than the control (127.1L). In addition, it is demonstrated that white-rot fungi (WRF) might further promote the methane production through highly decomposing lignin, but the lower pH value in leachate and longer acidogenesis duration may cause methane production reduced. The data demonstrated that methane production and biodegradation of MSW in bioreactors could be significantly enhanced by EABM via enhanced hydrolysis and acidogenesis processes, and the results are of great economic importance for the future design and management of landfill.

  11. Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors.

    Science.gov (United States)

    Ge, Sai; Liu, Lei; Xue, Qiang; Yuan, Zhiming

    2016-09-01

    Landfill is the most common and efficient ways of municipal solid waste (MSW) disposal and the landfill biogas, mostly methane, is currently utilized to generate electricity and heat. The aim of this work is to study the effects and the role of exogenous aerobic bacteria mixture (EABM) on methane production and biodegradation of MSW in bioreactors. The results showed that the addition of EABM could effectively enhance hydrolysis and acidogenesis processes of MSW degradation, resulting in 63.95% reduction of volatile solid (VS), the highest methane production rate (89.83Lkg(-1) organic matter) ever recorded and a threefold increase in accumulative methane production (362.9L) than the control (127.1L). In addition, it is demonstrated that white-rot fungi (WRF) might further promote the methane production through highly decomposing lignin, but the lower pH value in leachate and longer acidogenesis duration may cause methane production reduced. The data demonstrated that methane production and biodegradation of MSW in bioreactors could be significantly enhanced by EABM via enhanced hydrolysis and acidogenesis processes, and the results are of great economic importance for the future design and management of landfill. PMID:26601890

  12. Ni modified ceramic anodes for direct-methane solid oxide fuel cells

    Science.gov (United States)

    Xiao, Guoliang; Chen, Fanglin

    2016-01-19

    In accordance with certain embodiments of the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes synthesizing a composition having a perovskite present therein. The method further includes applying the composition on an electrolyte support to form an anode and applying Ni to the composition on the anode.

  13. An AEM survey of a leaking landfill

    OpenAIRE

    Beamish, D

    2005-01-01

    This study presents results obtained from a remarkably small-scale helicopter airborne electromagnetic (AEM) survey of a closed landfill. The landfill, occupying a former quarry, is situated among shallow, worked-out coal seams (pillar and stall workings) and was located over at least two mineshafts that occupied the quarry floor. The landfill was known to be leaking from an extensive borehole investigation that took place in the 1970’s, when the landfill was active. Redevelopment issues and ...

  14. Electrochemical performance of a solid oxide fuel cell with an anode based on Cu-Ni/CeO2 for methane direct oxidation

    Science.gov (United States)

    Hornés, Aitor; Escudero, María J.; Daza, Loreto; Martínez-Arias, Arturo

    2014-03-01

    A CuNi-CeO2/YSZ/LSF solid oxide fuel cell has been fabricated and tested with respect to its electrochemical activity for direct oxidation of dry methane. The electrodes have been prepared by impregnation of corresponding porous YSZ layers, using reverse microemulsions as impregnating medium for the anode (constituted by Cu-Ni at 1:1 atomic ratio in combination with CeO2). On the basis of I-V electrochemical testing complemented by impedance spectroscopy (IS) measurements it is shown the ability of the SOFC for direct oxidation of methane in a rather stable way. Differences in the behavior as a function of operating temperature (1023-1073 K) are also revealed and examined on the basis of analysis of IS spectra.

  15. Methane mitigation in cities: how new measurements and partnerships can contribute to emissions reduction strategies

    Science.gov (United States)

    Hopkins, F. M.; Bush, S. E.; Ehleringer, J. R.; Lai, C. T.; Rambo, J. P.; Wiggins, E. B.; Miu, J. C. L.; Carranza, V.; Randerson, J. T.

    2014-12-01

    Cities generate a large fraction of anthropogenic methane emissions that are increasing with urbanization and greater reliance on natural gas as fuel. New measurements of methane in cities suggest an as-yet unrealized potential for city-scale methane mitigation. We present high-resolution methane observations from four cities in North America to demonstrate the utility of methane surveys for identifying urban methane sources. We used portable, continuous on-road measurements to determine the spatial distribution of methane in Fairbanks, Los Angeles, Salt Lake City, and San Diego. Across cities, methane tended to be highly concentrated in space, suggesting discrete, point emission sources. Elevated methane levels were found near known emission sources, such as landfills, wastewater treatment facilities, and natural gas-fueled power plants, and revealed the location of fugitive leaks in natural gas infrastructure. The mix of sources and sizes of methane leaks varied among cities, highlighting a need for locally adaptive emissions regulation. Urban methane observations can inform anthropogenic processes in development of methane mitigation strategies. We discuss specific examples of how continuous atmospheric measurements can enhance the design of mitigation strategies in these cities, and potential contributions of these approaches to cross-sectoral efforts to reduce methane emissions at the city level.

  16. Modelling the Potential Biogas Productivity Range from a MSW Landfill for Its Sustainable Exploitation

    OpenAIRE

    Elena Cristina Rada; Marco Ragazzi; Paolo Stefani; Marco Schiavon; Vincenzo Torretta

    2015-01-01

    A model of biogas generation was modified and applied to the case of a sanitary landfill in Italy. The modifications considered the role of the temperature field normally established within each layer of waste. It must be pointed out the temperature affects the anaerobic biodegradation kinetics. In order to assess the effect of moisture on the waste biodegradation rate, on the bacteria process and then on the methane production, the model was compared with the LandGEM one. Information on the ...

  17. Quantitative Study of Biogas Generation Potential from Different Landfill Sites of Nepal

    Directory of Open Access Journals (Sweden)

    Bikash Adhikari

    2015-01-01

    Full Text Available This research paper was study of waste composition and quantitative analysis of biogas generation potential with its recovery at Sisdole, Pokhara and Karaute Dada landfill sites (LFS of Nepal. The waste management practice in LFS are significant deciding factors for the assessment of environmental impacts caused including the release of green house gases like methane, carbondioxide etc to the atmosphere, that could contribute significantly to global warming and climate change. The total waste disposed to Sisdole LFS, Pokhara LFS and Karaute Dada LFS are 410, 80 and 7.8 tons respectively.  The waste composition was studied onsite with waste reduction method and analyzed for their composition. The organic component of wastes was found high as 61.6%, 52.5% and 65% at Sisdole, Pokhara and Karaute Dada LFS respectively. The biogas potential at these landfill sites were 12157.78 cum, 851.99 cum and 169 cum of biogas per day in Sisdole, Pokhara and Karaute Dada LFS respectively. 4.68, 0.33 and 0.07 MW energy per day can be generated from these amounts of biogas produced in Sisdole, Pokhara and Karaute Dada LFS respectively. Proper gas collection system can be the source of income from these landfill sites and help to mitigate the adverse impact of methane that is being released from these landfill sites

  18. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    Science.gov (United States)

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  19. Landfilling of waste incineration residues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Cai, Zuansi;

    2002-01-01

    Residues from waste incineration are bottom ashes and air-pollution-control (APC) residues including fly ashes. The leaching of heavy metals and salts from the ashes is substantial and a wide spectrum of leaching tests and corresponding criteria have been introduced to regulate the landfilling...... of the ashes. Leaching test, however, must be selected carefully to provide information relevant for the actual disposal scenario and for evaluating the benefits of pre-treating the residues prior to landfilling. This paper describes research at the Technical University of Denmark addressing some...

  20. Impact assessment of intermediate soil cover on landfill stabilization by characterizing landfilled municipal solid waste.

    Science.gov (United States)

    Qi, Guangxia; Yue, Dongbei; Liu, Jianguo; Li, Rui; Shi, Xiaochong; He, Liang; Guo, Jingting; Miao, Haomei; Nie, Yongfeng

    2013-10-15

    Waste samples at different depths of a covered municipal solid waste (MSW) landfill in Beijing, China, were excavated and characterized to investigate the impact of intermediate soil cover on waste stabilization. A comparatively high amount of unstable organic matter with 83.3 g kg(-1) dry weight (dw) total organic carbon was detected in the 6-year-old MSW, where toxic inorganic elements containing As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn of 10.1, 0.98, 85.49, 259.7, 530.4, 30.5, 84.0, and 981.7 mg kg(-1) dw, respectively, largely accumulated because of the barrier effect of intermediate soil cover. This accumulation resulted in decreased microbial activities. The intermediate soil cover also caused significant reduction in moisture in MSW under the soil layer, which was as low as 25.9%, and led to inefficient biodegradation of 8- and 10-year-old MSW. Therefore, intermediate soil cover with low permeability seems to act as a barrier that divides a landfill into two landfill cells with different degradation processes by restraining water flow and hazardous matter.

  1. Decomposition and carbon storage of selected paper products in laboratory-scale landfills

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoming, E-mail: wangxiaoming_cqu@163.com [Key Laboratory of Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, National Center for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing (China); Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); De la Cruz, Florentino B. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Ximenes, Fabiano [Department of Primary Industries, New South Wales (Australia); Barlaz, Morton A. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States)

    2015-11-01

    The objective of this study was to measure the anaerobic biodegradation of different types of paper products in laboratory-scale landfill reactors. The study included (a) measurement of the loss of cellulose, hemicellulose, organic carbon, and (b) measurement of the methane yields for each paper product. The test materials included two samples each of newsprint (NP), copy paper (CP), and magazine paper (MG), and one sample of diaper (DP). The methane yields, carbon storage factors and the extent of cellulose and hemicellulose decomposition all consistently show that papers made from mechanical pulps (e.g., NPs) are less degradable than those made from chemical pulps where essentially all lignin was chemically removed (e.g., CPs). The diaper, which is not only made from chemical pulp but also contains some gel and plastic, exhibited limited biodegradability. The extent of biogenic carbon conversion varied from 21 to 96% among papers, which contrasts with the uniform assumption of 50% by the Intergovernmental Panel on Climate Change (IPCC) for all degradable materials discarded in landfills. Biochemical methane potential tests also showed that the solids to liquid ratio used in the test can influence the results. - Highlights: • Decomposition of major paper products measured under simulated landfill conditions • Varied decomposition behaviors across paper types governed by pulp types • A copy paper made from eucalyptus exhibited inhibited decomposition.

  2. Performance evaluation and comparison of fuel processors integrated with PEM fuel cell based on steam or autothermal reforming and on CO preferential oxidation or selective methanation

    International Nuclear Information System (INIS)

    Highlights: • Modeling of different fuel processors integrated with PEM fuel cell stack. • Steam or autothermal reforming + CO selective methanation or preferential oxidation. • Reforming of different hydrocarbons: gasoline, light diesel oil, natural gas. • 5 kWe net systems comparison via energy efficiency and primary fuel rate consumed. • Highest net efficiency: steam reformer + CO selective methanation based system. - Abstract: The performances of four different auxiliary power unit (APU) schemes, based on a 5 kWe net proton exchange membrane fuel cell (PEM-FC) stack, are evaluated and compared. The fuel processor section of each APU is characterized by a reformer (autothermal ATR or steam SR), a non-isothermal water gas shift (NI-WGS) reactor and a final syngas catalytic clean-up step: the CO preferential oxidation (PROX) reactor or the CO selective methanation (SMET) one. Furthermore, three hydrocarbon fuels, the most commonly found in service stations (gasoline, light diesel oil and natural gas) are considered as primary fuels. The comparison is carried out examining the results obtained by a series of steady-state system simulations in Aspen Plus® of the four different APU schemes by varying the fed fuel. From the calculated data, the performance of CO-PROX is not very different compared to that of the CO-SMET, but the performance of the SR based APUs is higher than the scheme of the ATR based APUs. The most promising APU scheme with respect to an overall performance target is the scheme fed with natural gas and characterized by a fuel processor chain consisting of SR, NI-WGS and CO-SMET reactors. This processing reactors scheme together with the fuel cell section, notwithstanding having practically the same energy efficiency of the scheme with SR, NI-WGS and CO-PROX reactors, ensures a less complex scheme, higher hydrogen concentration in the syngas, lower air mass rate consumption, the absence of nitrogen in the syngas and higher potential power

  3. Emission model for landfills with mechanically-biologically pretreated waste, with the emphasis on modelling the gas balance; Emissionsprognosemodell fuer Deponien mit mechanisch-biologisch vorbehandelten Abfaellen - Schwerpunkt: Modellierung des Gashaushaltes

    Energy Technology Data Exchange (ETDEWEB)

    Danhamer, H.

    2001-07-01

    The objective of this work was to determine influence factors on processes going on in landfills with mechanically-biologically pretreated waste (MBP-landfills) in order to predict emissions. For this purpose a computer based model has been developed. The model allows to simulate the gas, water and heat balance as well as settlement processes and was called DESIM2005 (version MB). It is based on theoretical modeling approaches as well as data from lab and reactor experiments. The main focus of model application was to determine factors influencing the gas phase and the emissions of landfill gas and methane during operation and aftercare of MBP-landfills. By performing simulations the effects of changing parameters for the processes gas transport and biological degradation as well as the effects of different qualities in waste pretreatment and of varying landfill operation techniques were investigated. Possibilities for increasing the environmental sustainability of landfills containing mechanically-biologically pretreated waste were shown. (orig.)

  4. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Wimmer, Bernhard, E-mail: bernhard.wimmer@ait.ac.at [AIT Austrian Institute of Technology GmbH, Health and Environment Department, Environmental Resources and Technologies, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Hrad, Marlies; Huber-Humer, Marion [Institute of Waste Management, Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna (Austria); Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G. [AIT Austrian Institute of Technology GmbH, Health and Environment Department, Environmental Resources and Technologies, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria)

    2013-10-15

    Highlights: ► The isotopic signature of δ{sup 13}C-DIC of leachates is linked to the reactivity of MSW. ► Isotopic signatures of leachates depend on aerobic/anaerobic conditions in landfills. ► In situ aeration of landfills can be monitored by isotope analysis in leachate. ► The isotopic analysis of leachates can be used for assessing the stability of MSW. ► δ{sup 13}C-DIC of leachates helps to define the duration of landfill aftercare. - Abstract: Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ{sup 13}C, δ{sup 2}H and δ{sup 18}O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ{sup 13}C-value of the dissolved inorganic carbon (δ{sup 13}C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ{sup 13}C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ{sup 13}C-DIC of −20‰ to −25‰. The production of methane under anaerobic conditions caused an increase in δ{sup 13}C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW

  5. Thermodynamic Analysis of Methane-fueled Solid Oxide Fuel Cells Considering CO Electrochemical Oxidation

    Institute of Scientific and Technical Information of China (English)

    Qiong Sun; Keqing Zheng; Meng Ni⁎

    2014-01-01

    abstract Thermodynamic analyses in the literature have shown that solid oxide fuel cells (SOFCs) with proton conducting electrolyte (H-SOFC) exhibited higher performance than SOFC with oxygen ion conducting electrolyte (O-SOFC). However, these studies only consider H2 electrochemical oxidation and totally neglect the contribution of CO electrochemical oxidation in O-SOFC. In this short communication, a thermodynamic model is developed to compare the theoretically maximum efficiencies of H-SOFC and O-SOFC, considering the electrochemical oxidation of CO in O-SOFC anode. It is found that O-SOFC exhibits a higher maximum efficiency than H-SOFC due to the contribution from CO electrochemical oxidation, which is contrary to the common understanding of electrolyte effect on SOFC performance. The effects of operating temperature and fuel utilization factor on the theoretical efficiency of SOFC are also analyzed and discussed.

  6. A correction in the CDM methodological tool for estimating methane emissions from solid waste disposal sites.

    Science.gov (United States)

    Santos, M M O; van Elk, A G P; Romanel, C

    2015-12-01

    Solid waste disposal sites (SWDS) - especially landfills - are a significant source of methane, a greenhouse gas. Although having the potential to be captured and used as a fuel, most of the methane formed in SWDS is emitted to the atmosphere, mainly in developing countries. Methane emissions have to be estimated in national inventories. To help this task the Intergovernmental Panel on Climate Change (IPCC) has published three sets of guidelines. In addition, the Kyoto Protocol established the Clean Development Mechanism (CDM) to assist the developed countries to offset their own greenhouse gas emissions by assisting other countries to achieve sustainable development while reducing emissions. Based on methodologies provided by the IPCC regarding SWDS, the CDM Executive Board has issued a tool to be used by project developers for estimating baseline methane emissions in their project activities - on burning biogas from landfills or on preventing biomass to be landfilled and so avoiding methane emissions. Some inconsistencies in the first two IPCC guidelines have already been pointed out in an Annex of IPCC latest edition, although with hidden details. The CDM tool uses a model for methane estimation that takes on board parameters, factors and assumptions provided in the latest IPCC guidelines, while using in its core equation the one of the second IPCC edition with its shortcoming as well as allowing a misunderstanding of the time variable. Consequences of wrong ex-ante estimation of baseline emissions regarding CDM project activities can be of economical or environmental type. Example of the first type is the overestimation of 18% in an actual project on biogas from landfill in Brazil that harms its developers; of the second type, the overestimation of 35% in a project preventing municipal solid waste from being landfilled in China, which harms the environment, not for the project per se but for the undue generated carbon credits. In a simulated landfill - the same

  7. Minimizing N2O fluxes from full-scale municipal solid waste landfill with properly selected cover soil

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Municipal solid waste landfills emit nitrous oxide (N2O) gas. Assuming that the soil cover is the primary N2O source from landfills,this study tested, during a four-year project, the hypothesis that the proper use of chosen soils with fine texture minimizes N2O emissions. A full-scale sanitary landfill, a full-scale bioreactor landfill and a cell planted with Nerium indicum or Festuca arundinacea Schreb, at the Hangzhou Tianziling landfill in Hangzhou City were the test sites. The N2O emission rates from all test sites were considerably lower than those reported in the published reports. Specifically, the N2O emission rate was dependent on soil water content and nitrate concentrations in the cover soil. The effects of leachate recirculation and irrigation were minimal. Properly chosen cover soils applied to the landfills reduced N2O flux.

  8. The Comet Assay for the Evaluation of Genotoxic Potential of Landfill Leachate

    OpenAIRE

    Kamila Widziewicz; Joanna Kalka; Magdalena Skonieczna; Paweł Madej

    2012-01-01

    Genotoxic assessment of landfill leachate before and after biological treatment was conducted with two human cell lines (Me45 and NHDF) and Daphnia magna somatic cells. The alkali version of comet assay was used to examine genotoxicity of leachate by DNA strand breaks analysis and its repair dynamics. The leachate samples were collected from Zabrze landfill, situated in the Upper Silesian Industrial District, Poland. Statistically significant differences (Kruskal-Wallice ANOVA rank model) wer...

  9. Influence of the set anode potential on the performance and internal energy losses of a methane-producing microbial electrolysis cell.

    Science.gov (United States)

    Villano, Marianna; Ralo, Cláudia; Zeppilli, Marco; Aulenta, Federico; Majone, Mauro

    2016-02-01

    The effect of the set anode potential (between + 200 mV and - 200 mV vs. SHE, standard hydrogen electrode) on the performance and distribution of internal potential losses has been analyzed in a continuous-flow methane-producing microbial electrolysis cell (MEC).Both acetate removal rate (at the anode) and methane generation rate (at the cathode) were higher (1 gCOD/L day and 0.30 m(3)/m(3) day, respectively) when the anode potential was controlled at + 200 mV. However, both the yields of acetate conversion into current and current conversion into methane were very high (72-90%) under all the tested conditions. Moreover, the sum of internal potential losses decreased from 1.46 V to 0.69 V as the anode potential was decreased from + 200 mV to - 200 mV, with cathode overpotentials always representing the main potential losses. This was likely to be due to the high energy barrier which has to be overcome in order to activate the cathode reaction. Finally, the energy efficiency correspondingly increased reaching 120% when the anode was controlled at - 200 mV. PMID:26342333

  10. Preface for the Special Column of Methane Transformation

    Institute of Scientific and Technical Information of China (English)

    Ye Wang

    2009-01-01

    @@ Methane is the main constituent of natural gas, coal-bed gas, landfill gas and methane hydrate resources. These resources may be used more efficiently as clean fuels or as chemical feedstocks if methane can be effectively transformed into liquid fuels or chemicals. However, methane only possesses C-H bonds and is a very stable organic molecule hard to functionalize. The C-H activation, particularly the selective functionalization of C-H bonds in saturated hydrocarbons, remains a difficult challenge in chemistry. The present technology for chemical utilization of methane involves the steam reforming of methane to synthesis gas and the subsequent transformation of synthesis gas to methanol or hydrocarbon fuels via methanol synthesis or Fischer-Tropsch synthesis. However, the steam reforming of methane is a high-cost process. The development of more efficient and economical processes for methane transformation is a dream of all chemists and chemical engineers. I think that this is also one of the most important themes of the Journal of Natural Gas Chemistry.

  11. Spatially explicit methane inventory for Switzerland

    Science.gov (United States)

    Hiller, Rebecca; Bretscher, Daniel; DelSontro, Tonya; Eugster, Werner; Henne, Stephan; Henneberger, Ruth; Künzle, Thomas; Merbold, Lutz; Neininger, Bruno; Schellenberger, Andreas; Schroth, Martin; Buchmann, Nina; Brunner1, Dominik

    2013-04-01

    Spatially explicit greenhouse gas inventories are gaining in importance as a tool for policy makers to plan and control mitigation measures, and are a required input for atmospheric models used to relate atmospheric concentration measurements with upstream sources. In order to represent the high spatial heterogeneity in Switzerland, we compiled the national methane inventory into a 500 m x 500 m cadaster. In addition to the anthropogenic emissions reported to the United Nation Framework Convention on Climate Change (UNFCCC), we also included natural and semi-natural methane fluxes, i.e., emissions from lakes and reservoirs, wetlands, wild animals as well as forest uptake. Methane emissions were disaggregated according to geostatistical information about source location and extent. In Switzerland, highest methane emissions originate from the agricultural sector (152 Gg CH4 yr-1), followed by emissions from waste management (16 Gg CH4 yr-1) with highest contributions from landfills, and the energy sector (13 Gg CH4 yr-1) with highest contributions from the distribution of natural gas. Natural and semi-natural emissions only add a small amount (inventory was evaluated against methane concentrations measured from a small research aircraft (METAIR-DIMO) above the Swiss Plateau on 18 different days from May 2009 to August 2010 over. Source sensitivities of the air measured were determined by backward runs of the Lagrangian particle dispersion model FLEXPART-COSMO. Source sensitivities were multiplied with the methane inventory to derive simulated methane concentration time series. While the pattern of the variations can be reproduced well for some flight days (correlation coefficient up to 0.75), the amplitude of the variations for the simulated time series is underestimated by at least 20% suggesting an underestimation of CH4 emissions by the inventory, which is also concluded from inverse estimation using a Bayesian approach.

  12. Methane Hotspots in the Los Angeles Megacity

    Science.gov (United States)

    Hopkins, F. M.; Randerson, J. T.; Bush, S.; Ehleringer, J. R.; Lai, C.; Kort, E. A.; Blake, D. R.

    2013-12-01

    Airborne observations show that Los Angeles (LA) is a large source of methane to the atmosphere, yet the sources of excess methane from the urban area are poorly constrained. We used a mobile laboratory, a Ford Transit van equipped with cavity ring down spectrometers (Picarro, Inc.), to measure greenhouse gases (CH4, CO2, and CO) mole fractions in LA. On-road surveys across the LA Basin were conducted seasonally to determine patterns of CH4 enrichment in space and over time, with a focus on quantifying methane leaks from known sources. We found fugitive leaks and elevated CH4 concentrations throughout the LA Basin. Some were associated with known sources, such as landfills, wastewater treatment, and oil and gas infrastructure, while others had an unknown origin. Urban CH4 enrichment varied over the course of the year, largely due to seasonal changes in meteorological conditions. Nevertheless, our mobile surveys revealed CH4 hotspots (>200 ppb elevated with respect to background levels) that persisted among seasons. High CH4 concentrations were most easily predicted by proximity to methane sources, particularly near the coast, while elevated CH4 levels were more evenly dispersed in inland areas. CH4 hotspots had a disproportionate impact on excess methane relative to the area they accounted for, typically providing more than a quarter of excess methane measured on a transect. These data improve estimates of the relative roles of specific leaks and emission sectors to LA's excess methane. Depending on the cost of reducing these CH4 leaks, a focus on CH4 emissions may prove an effective way to reduce LA's greenhouse gas emissions in the near term.

  13. T2LBM Version 1.0: Landfill bioreactor model for TOUGH2

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M.

    2001-05-22

    The need to control gas and leachate production and minimize refuse volume in landfills has motivated the development of landfill simulation models that can be used by operators to predict and design optimal treatment processes. T2LBM is a module for the TOUGH2 simulator that implements a Landfill Bioreactor Model to provide simulation capability for the processes of aerobic or anaerobic biodegradation of municipal solid waste and the associated flow and transport of gas and liquid through the refuse mass. T2LBM incorporates a Monod kinetic rate law for the biodegradation of acetic acid in the aqueous phase by either aerobic or anaerobic microbes as controlled by the local oxygen concentration. Acetic acid is considered a proxy for all biodegradable substrates in the refuse. Aerobic and anaerobic microbes are assumed to be immobile and not limited by nutrients in their growth. Methane and carbon dioxide generation due to biodegradation with corresponding thermal effects are modeled. The numerous parameters needed to specify biodegradation are input by the user in the SELEC block of the TOUGH2 input file. Test problems show that good matches to laboratory experiments of biodegradation can be obtained. A landfill test problem demonstrates the capabilities of T2LBM for a hypothetical two-dimensional landfill scenario with permeability heterogeneity and compaction.

  14. Modelling of biogas extraction at an Italian landfill accepting mechanically and biologically treated municipal solid waste.

    Science.gov (United States)

    Calabrò, Paolo S; Orsi, Sirio; Gentili, Emiliano; Carlo, Meoni

    2011-12-01

    This paper presents the results of the modelling of the biogas extraction in a full-scale Italian landfill by the USEPA LandGEM model and the Andreottola-Cossu approach. The landfill chosen for this research ('Il Fossetto' plant, Monsummano Terme, Italy) had accepted mixed municipal raw waste for about 15 years. In the year 2003 a mechanical biological treatment (MBT) was implemented and starting from the end of the year 2006, the recirculation in the landfill of the concentrated leachate coming from the internal membrane leachate treatment plant was put into practice. The USEPA LandGEM model and the Andreottola-Cossu approach were chosen since they require only input data routinely acquired during landfill management (waste amount and composition) and allow a simplified calibration, therefore they are potentially useful for practical purposes such as landfill gas management. The results given by the models are compared with measured data and analysed in order to verify the impact of MBT on biogas production; moreover, the possible effects of the recirculation of the concentrated leachate are discussed. The results clearly show how both models can adequately fit measured data even after MBT implementation. Model performance was significantly reduced for the period after the beginning of recirculation of concentrated leachate when the probable inhibition of methane production, due to the competition between methanogens and sulfate-reducing bacteria, significantly influenced the biogas production and composition. PMID:21930528

  15. Quantifying capital goods for waste landfilling

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Stentsøe, Steen; Willumsen, Hans Christian;

    2013-01-01

    Materials and energy used for construction of a hill-type landfill of 4 million m3 were quantified in detail. The landfill is engineered with a liner and leachate collections system, as well as a gas collection and control system. Gravel and clay were the most common materials used, amounting...... to approximately 260 kg per tonne of waste landfilled. The environmental burdens from the extraction and manufacturing of the materials used in the landfill, as well as from the construction of the landfill, were modelled as potential environmental impacts. For example, the potential impact on global warming was 2.......5 kg carbon dioxide (CO2) equivalents or 0.32 milli person equivalents per tonne of waste. The potential impacts from the use of materials and construction of the landfill are low-to-insignificant compared with data reported in the literature on impact potentials of landfills in operation...

  16. Methane release

    International Nuclear Information System (INIS)

    The Swiss Gas Industry has carried out a systematic, technical estimate of methane release from the complete supply chain from production to consumption for the years 1992/1993. The result of this survey provided a conservative value, amounting to 0.9% of the Swiss domestic output. A continuation of the study taking into account new findings with regard to emission factors and the effect of the climate is now available, which provides a value of 0.8% for the target year of 1996. These results show that the renovation of the network has brought about lower losses in the local gas supplies, particularly for the grey cast iron pipelines. (author)

  17. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations.

    Science.gov (United States)

    Tansel, Berrin; Surita, Sharon C

    2014-11-01

    The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditions in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the Si-O bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the Si-O bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups.

  18. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations.

    Science.gov (United States)

    Tansel, Berrin; Surita, Sharon C

    2014-11-01

    The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditions in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the Si-O bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the Si-O bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups. PMID:25160660

  19. Dunsink Landfill A Study Of The Health Effects Of Living In Close Proximity To A Landfill And The Public Perception Of Landfills

    OpenAIRE

    Drumm, Aoife Catriona

    2006-01-01

    This thesis deals with the adverse health effects caused by living in close proximity to a landfill and the public perception o f landfills. The main case study is that of Dunsink Landfill in Finglas, County Dublin. Other landfills focused on are Nantygwyddon Landfill in Rhondda, Wales and Miron Quarry in Montreal, Quebec, Canada. This thesis examines all forms of continuous illness found in three areas near Dunsink Landfill, not just more serious illnesses such as canc...

  20. Simulated evapotranspiration from a landfill irrigated with landfill leachate

    International Nuclear Information System (INIS)

    Evapotranspiration from a landfill area, irrigated with leachate water, was simulated with the SOIL model. Three different types of vegetation (bare soil, grass ley, and willow) were used both with and without irrigation. The highest simulated evapotranspiration (604 mm) during the growing season was found from an irrigated willow stand with a high interception capacity. The lowest evapotranspiration (164 mm) was found from the bare soil. The relatively high evapotranspiration from the willow was probably caused by the high LAI (Leaf Area Index) and the low aerodynamic resistance within the willow stand. The results indicate that it is possible to reduce most of the leakage water from a landfill by irrigation of willow stands. 9 refs, 4 figs, 1 tab

  1. Corrective action investigation plan for CAU Number 453: Area 9 Landfill, Tonopah Test Range

    International Nuclear Information System (INIS)

    This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and criteria for conducting site investigation activities at the Area 9 Landfill, Corrective Action Unit (CAU) 453/Corrective Action (CAS) 09-55-001-0952, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Area 9 Landfill is located northwest of Area 9 on the TTR. The landfill cells associated with CAU 453 were excavated to receive waste generated from the daily operations conducted at Area 9 and from range cleanup which occurred after test activities

  2. Auto generation plant of Artigas landfill (Bilbao, Spain); Planta de autogeneracion electrica del vertedero de Artigas (Bilbao)

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, N.; Dorronsoro, J.L.

    1996-07-01

    The disposition of MSW in the landfill generates a mixture of gases or {sup b}iogas{sup ,} its primary content is methane (50-60%) which has a very important energetic value, that can be very useful. In this sense, the present work point out the characteristics of the auto generation electrical plant of Artigas landfill, just like the results of the analytical study of the past two years. In this project which was partly funded by the UE, have participated Excmo. Ayuntamiento de Bilbao, EVE and CIEMAT. (Author) 6 refs.

  3. Surface emission of landfill gas from solid waste landfill

    Science.gov (United States)

    Park, Jin-Won; Shin, Ho-Chul

    The surface emission of landfill gas (LFG) was studied to estimate the amount of LFG efflux from solid waste landfills using an air flux chamber. LFG efflux increased as atmospheric temperature increased during the day, and the same pattern for the surface emission was observed for the change of seasons. LFG efflux rate decreased from summer through winter. The average LFG efflux rates of winter, spring and summer were 0.1584, 0.3013 and 0.8597 m 3 m -2 h -1 respectively. The total amount of surface emission was calculated based on the seasonal LFG efflux rate and the landfill surface area. From the estimates of LFG generation, it is expected that about 30% of the generated LFG may be released through the surface without extraction process. As forced extraction with a blower proceeded, the extraction well pressure decreased from 1100 to -100 mm H 2O, and the LFG surface efflux decreased markedly above 80%. Thus, the utilization of LFG by forced extraction would be the good solution for global warming and air pollution by LFG.

  4. Identification of Cellulose Breaking Bacteria in Landfill Samples for Organic Waste Management

    Science.gov (United States)

    Chan, P. M.; Leung, F. C.

    2015-12-01

    According to the Hong Kong Environmental Protection Department, the citizens of Hong Kong disposes 13,500 tonnes of waste to the landfill everyday. Out of the 13,500 tonnes, 3600 tonnes consist of organic waste. Furthermore, due to the limited supply of land for landfills in Hong Kong, it is estimated that landfills will be full by about 2020. Currently, organic wastes at landfills undergo anaerobic respiration, where methane gas, one of the most harmful green house gases, will be released. The management of such waste is a pressing issue, as possible solutions must be presented in this crucial period of time. The Independent Schools Foundation Academy introduced their very own method to manage the waste produced by the students. With an approximate of 1500 students on campus, the school produces 27 metric tonnes of food waste each academic year. The installation of the rocket food composter provides an alternate method of disposable of organic waste the school produces, for the aerobic environment allows for different by-products to be produced, namely compost that can be used for organic farming by the primary school students and subsequently carbon dioxide, a less harmful greenhouse gas. This research is an extension on the current work, as another natural factor is considered. It evaluates the microorganism community present in leachate samples collected from the North East New Territories Landfill, for the bacteria in the area exhibits special characteristics in the process of decomposition. Through the sequencing and analysis of the genome of the bacteria, the identification of the bacteria might lead to a break through on the current issue. Some bacteria demonstrate the ability to degrade lignin cellulose, or assist in the production of methane gas in aerobic respirations. These characteristics can hopefully be utilized in the future in waste managements across the globe.

  5. Environmental state and buffering properties of underground hydrosphere in waste landfill site of the largest petrochemical companies in Europe

    Science.gov (United States)

    Musin, R. Kh; Kurlyanov, N. A.; Kalkamanova, Z. G.; Korotchenko, T. V.

    2016-03-01

    The article examines the waste landfill site of PJSC “Nizhnekamskneftekhim” built 1982. Particular attention is paid to the volume of disposed wastes and peculiarities of landfill operation. It has been revealed that the landfill negatively impacts groundwater. The increase in groundwater level and contamination degree is dependent on recharge from infiltration of precipitation that interacts with the waste in the landfill cells. Groundwater contamination follows the longitudinal distribution pattern, with maximum intensity reaching in the nearest area of the landfill. With increasing distance, concentration of all pollutants sharply reduces. Within three kilometers away from the landfill, groundwater turns to its background values indicating its quality. The landfill discharges oil, phenols, formaldehyde, benzol, toluene, xylene, ethylbenzene, and iron and, to a lesser extent, sulfates, chlorides and barium into the underground hydrosphere. The overlimiting concentrations of other components are caused by intensive leaching from the rocks by aggressive carbonic acid water. The concentrations of hydrocarbonates can reach 8 g/l in the groundwater within the landfill and its nearest area, however, under natural conditions, they do not exceed 0.4 g/l. This is only possible in a case of partial activity of carbon dioxide associated with destruction of organic matter disposed in the landfill. One of the processes that play an important role in groundwater quality recovery is mixing of contaminated groundwater with infiltrating precipitation.

  6. Kinetics of Internal Methane Steam Reforming in Solid Oxide Fuel Cells and Its Influence on Cell Performance– Coupling Experiments and Modeling

    OpenAIRE

    Fan, L.; Pourquie, M.J.B.M.; Thattai, A.; Verkooijen, A.H.M.; Aravind, P.V.

    2013-01-01

    Mathematical modeling tools are useful for predicting the safe operation limits and efficiencies of SOFCs. For a particular SOFC design, variations in internal methane reforming kinetic parameters is expected to affect local gas compositions, local Nernst voltages, current densities and temperature profiles and in turn the safe operation limits and efficiency. However, it is observed that methane reforming kinetic data widely used in SOFC CFD models are often determined from measurements on n...

  7. Landfill reduction experience in The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Scharff, Heijo, E-mail: h.scharff@afvalzorg.nl

    2014-11-15

    Highlights: • ‘Zero waste’ initiatives never consider risks, side effects or experience of achieved low levels of landfill. • This paper provides insight into what works and what not. • Where strong gradients in regulations and tax occur between countries, waste will find its way to landfills across borders. • Strong landfill reduction can create a fierce competition over the remaining waste to be landfilled resulting in losses. • At some point a public organisation should take responsibility for the operation of a ‘safety net’ in waste management. - Abstract: Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the

  8. Landfill reduction experience in The Netherlands

    International Nuclear Information System (INIS)

    Highlights: • ‘Zero waste’ initiatives never consider risks, side effects or experience of achieved low levels of landfill. • This paper provides insight into what works and what not. • Where strong gradients in regulations and tax occur between countries, waste will find its way to landfills across borders. • Strong landfill reduction can create a fierce competition over the remaining waste to be landfilled resulting in losses. • At some point a public organisation should take responsibility for the operation of a ‘safety net’ in waste management. - Abstract: Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the

  9. LANDFILL LEACHATES PRETREATMENT BY OZONATION

    Directory of Open Access Journals (Sweden)

    Jacek Leszczyński

    2016-06-01

    Full Text Available In this paper, the application of ozonation processes for stabilized landfill leachate treatment was investigated. The leachate came from a municipal sanitary landfill located nearby Bielsk Podlaski. The average values of its main parameters were: pH 8.23; COD 870 mgO2/dm3; BOD 90 mgO2/dm3; NH4+ 136.2 mgN/dm3; UV254 absorbance 0.312 and turbidity 14 NTU. The ozone dosages used were in the range of 115.5 to 808.5 mgO3/dm3 of the leachate. The maximum COD, color and UV254 absorbance removal wa.5 mgO3/dm3. After oxidation, the ratio of BOD/COD was increased from 0.1 up to 0.23.

  10. Geosynthetic applications in landfill design

    International Nuclear Information System (INIS)

    Landfills are designed to contain waste and to provide protection against discharges of leachate into the environment. Main components of a landfill include a liner system, a leachate collection system, and a cover system. Traditional designs have typically incorporated clay soils for containment and sands with embedded piping for leachate collection. As a result of recent advances in design, geosynthetic materials are now widely used for components. While these materials present cost and feasibility advantages, they also pose significant challenges in stability evaluations, handing during installation, and quality assurance. This paper presents an overview of applications of geosynthetics in design and construction, including: Advantages, disadvantages, design criteria, possible economic benefits of various systems, and related construction considerations. 2 figs., 1 tab

  11. Biogeochemistry of landfill leachate plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Kjeldsen, Peter; Bjerg, Poul Løgstrup;

    2001-01-01

    is on dissolved organic matter, xenobiotic organic compounds, inorganic macrocomponents as anions and cations, and heavy metals. Laboratory as well as field investigations are included. This review is an up-date of an earlier comprehensive review. The review shows that most leachate contamination plumes...... and precipitation. Although complexation of heavy metals with dissolved organic matter is significant, the heavy metals are in most cases still strongly attenuated in leachate-polluted aquifers. The information available on attenuation processes has increased dramatically during the last 15 a, but the number...... are relatively narrow and do not in terms of width exceed the width of the landfill. The concept of redox zones being present in the plume has been confirmed by the reported composition of the leachate contaminated groundwater at several landfills and constitutes an important framework for understanding...

  12. Biochemical methane production potential from different components of fraction of municipal solid waste

    OpenAIRE

    de Andrés Pérez de Rada, Mª Magdalena

    2009-01-01

    - Issues of management of the organic fraction of municipal solid waste (biogas production in landfills, leachates with high concentrations of organics, odour problems). - Porribility of energy production from this fraction by mean of Anaerobic digestion. - Evaluation of the biogas and methane potential productions from single components of the organic fraction of MSW by mean of lab test. - Modelling of cumulative production.

  13. Path integrated optical remote sensing technique to estimate ammonia and methane gas emissions from CAFOs

    Science.gov (United States)

    The U.S. EPA recently demonstrated the open-path optical remote sensing technology to identify hot spots and estimate mass flux of fugitive gases from closed landfill. The objective of this research is to validate this technology for estimating ammonia and methane emission from concentrated animal f...

  14. Electricity Generation Characteristics of Microbial Fuel Cell ith Landfill Leachate as Fuel%以垃圾渗滤液为燃料的微生物燃料电池产电性能

    Institute of Scientific and Technical Information of China (English)

    张晓艳; 滕洪辉

    2011-01-01

    The double-chamber microbial fuel cell ( DCMFC ) with landfill leachate from some refuse dump of Siping City of Jilin Province as fuel was designed in the system with the bacteria in the titanium anode chamber separated from the titanium cathode chamber by a salt bridge. The effects of cathode chamber solution parameters on the electricity generation performance of DCMFC were researched. The results show that the DCMFC output power density is 12. 074 W/m2, open-circuit voltage is 1.13 V, internal resistance is 76. 868 O, under cathode chamber solution optimum conditions of 30 'C , 1.0 g/L H2O2, pH =2. 5, and 0. 5 g/L Na2SO4. After the DCMFC was continuously running for 30 days, the COD removal rate of landfill leachate reached to 95% , the adjust of cathode chamber operational parameters can improve the microbial fuel cell electricit generation.%以吉林省四平市某垃圾场渗滤液为燃料,纯钛板为负载微生物阳极和阴极,用盐桥转移电子方式组建双室微生物燃料电池(DCMFC).研究阴极室溶液电子受体质量浓度、pH值、温度等因素对输出功率密度、开路电压、内阻等电池性能的影响,并考察了对垃圾渗滤液的处理效果.实验结果表明,阴极溶液以1.0 g/L双氧水为电子受体,在pH=2.5、ρ(硫酸钠)=0.5 g/L、温度约为30 ℃的最佳实验条件下,该微生物燃料电池的输出功率密度达12.074 W/m2,开路电压为1.13 V,内阻为76.868 Ω.经过连续30 d的运行,垃圾渗滤液化学需氧量(COD)去除率达95%,表明选择恰当的阴极室溶液能提高微生物燃料电池的产电性能.

  15. Identification of Methanogens and Controls on Methane Production in Incubations of Natural Methane Seep Sediments

    Science.gov (United States)

    Kevorkian, R.; Lloyd, K. G.

    2014-12-01

    Methane, the most abundant hydrocarbon in Earth's atmosphere, is produced in large quantities in sediments underlying the world's oceans. Very little of this methane makes it to surface sediments as it is consumed by Anaerobic Methanotrophs (ANME's) in consortia with Sulfate Reducing Bacteria (SRB). Less is known about which organisms are responsible for methane production in marine sediments, and whether that production is under thermodynamic control based on hydrogen concentrations. Although ANMEs have been found to be active in methanogenic sediments and incubations, it is currently unknown whether they are able to grow in methanogenic conditions. We demonstrated with bottle incubations of methane seep sediment taken from Cape Lookout Bight, NC, that hydrogen controls methane production. While sulfate was present the hydrogen concentration was maintained at below 2 nM. Only after the depletion of sulfate allowed hydrogen concentrations to rise above 5 nM did we see production of methane. The same sediments when spiked with methane gas demonstrated its complete removal while sulfate reduction occurred. Quantitative PCR shows that ANME-2 and ANME-1 increase in 16S copy number as methane increases. Total direct cell counts demonstrate a decline in cells with the decrease of sulfate until a recovery corresponding with production of methane. Our results strongly suggest that hydrogen concentrations influence what metabolic processes can occur in marine sediments, and that ANME-1 and ANME-2 are able to grow on the energy provided from methane production.

  16. Origin of hydrogen in methane produced by Methanobacterium thermoautotrophicum.

    OpenAIRE

    Daniels, L; Fulton, G; Spencer, R W; Orme-Johnson, W H

    1980-01-01

    The production of deuterated methane by Methanobacterium thermoautotrophicum in H2O-D2O mixtures was examined by high-resolution mass spectrometry. The hydrogen in the methane arose solely from water and not from hydrogen gas. Hydrogen gas served only as an electron source in methanogenesis. A whole-cell product isotope discrimination of 1.5 favoring hydrogen over deuterium was observed in methane production in 81 atom% deuterated water. The distribution of deuterated methane species is descr...

  17. A tiered observational system for anthropogenic methane emissions

    Science.gov (United States)

    Duren, R. M.; Miller, C. E.; Hulley, G. C.; Hook, S. J.; Sander, S. P.

    2014-12-01

    Improved understanding of anthropogenic methane emissions is required for closing the global carbon budget and addressing priority challenges in climate policy. Several decades of top-down and bottom-up studies show that anthropogenic methane emissions are systematically underestimated in key regions and economic sectors. These uncertainties have been compounded by the dramatic rise of disruptive technologies (e.g., the transformation in the US energy system due to unconventional gas and oil production). Methane flux estimates derived from inverse analyses and aircraft-based mass balance approaches underscore the disagreement in nationally and regionally reported methane emissions as well as the possibility of a long-tail distribution in fugitive emissions spanning the US natural gas supply chain; i.e. a small number of super-emitters may be responsible for most of the observed anomalies. Other studies highlight the challenges of sectoral and spatial attribution of fugitive emissions - including the relative contributions of dairies vs oil and gas production or disentangling the contributions of natural gas transmission, distribution, and consumption or landfill emissions in complex urban environments. Limited observational data remains a foundational barrier to resolving these challenges. We present a tiered observing system strategy for persistent, high-frequency monitoring over large areas to provide remote detection, geolocation and quantification of significant anthropogenic methane emissions across cities, states, basins and continents. We describe how this would both improve confidence in methane emission estimates and expedite resolution of fugitive emissions and leaks. We summarize recent prototype field campaigns that employ multiple vantage points and measurement techniques (including NASA's CARVE and HyTES aircraft and PanFTS instrument on Mt Wilson). We share preliminary results of this tiered observational approach including examples of individual

  18. Aerobic Biostabilization of Old MSW Landfills

    OpenAIRE

    M. C. Zanetti

    2008-01-01

    Many years after the end of the cultivation phase, landfills may generate intense odours, toxic and explosive gases and heavily-polluted leachate. A wide-spreading trend in the management of MSW landfills is represented by the forced aeration of wastes in order to achieve the stabilization, reducing the negative environmental impact of uncontrolled sites (old landfills which can be definitely considered as contaminated sites) and the management costs of controlled and working facilities. One ...

  19. Landfill Gas Conversion to LNG and LCO{sub 2}. Phase II Final Report for January 25, 1999 - April 30, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W. R.; Cook, W. J.; Siwajek, L. A.

    2000-10-20

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery.

  20. Performance of alternative oxide anodes for the electrochemical oxidation of hydrogen and methane in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Tu, H.; Apfel, H.; Stimming, U. [Department of Physics E19, Technical University of Munich, James-Franck-Strasse 1, D-85748 Garching (Germany)

    2006-07-15

    The electrode performances of the alternative oxides: La{sub 0.05}Ca{sub 0.95}Cr{sub 0.05}Ti{sub 0.95}O{sub 3-{delta}}-8YSZ and Ce{sub 0.8}TM{sub 0.2}O{sub 2-{delta}}(TM=Mn, Co) for the direct electrochemical oxidation of methane are investigated to assess their potential as anode materials for efficient methane conversion in a SOFC. The electrochemical oxidation of hydrogen was also studied, for comparison. The oxides are characterised electrochemically with impedance spectroscopy in the frequency range from 10 mHz to 1MHz, using a three-electrode geometry. They are compared to a standard Ni/8YSZ anode for the electrochemical oxidation of hydrogen. It is found that La{sub 0.05}Ca{sub 0.95}Cr{sub 0.05}Ti{sub 0.95}O{sub 3-{delta}}-8YSZ demonstrates a poor electrochemical activity in both hydrogen and methane. However, the electrochemical activity of Ce{sub 0.8}Mn{sub 0.2}O{sub 2-{delta}} is promising, but the electronic conductivity needs to be increased, e.g., by adding a conducting oxide, before it can be used as an anode material in a SOFC. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  1. Landfill Barrier-Overview and Prospect

    Institute of Scientific and Technical Information of China (English)

    Zheng Liange; Zhao Yongsheng

    2000-01-01

    Landfill is the primary method of waste disposal. The increasing attention focused on the effect of landfill on environment prompts the development of environmental sound landfill system. As the key parts of landfill, the barrier system can provide impermeabilization of leachate and prevent biogas from escaping intotheenvironment. In recent years, the technology pertaining the barrier system developed rapidly. In this paper, new materials used in liners and new concept of barrier construction are reviewed; the mechanisms of leachate through clay liner and geomembrane, the calculation of leaks through liner and the effect of freezing/thaw on liner are discussed.

  2. Congenital anomalies and proximity to landfill sites.

    LENUS (Irish Health Repository)

    Boyle, E

    2004-01-01

    The occurrence of congenital anomalies in proximity to municipal landfill sites in the Eastern Region (counties Dublin, Kildare, Wicklow) was examined by small area (district electoral division), distance and clustering tendancies in relation to 83 landfills, five of which were major sites. The study included 2136 cases of congenital anomaly, 37,487 births and 1423 controls between 1986 and 1990. For the more populous areas of the region 50% of the population lived within 2-3 km of a landfill and within 4-5 km for more rural areas. In the area-level analysis, the standardised prevalence ratios, empirical and full Bayesian modelling, and Kulldorff\\'s spatial scan statistic found no association between the residential area of cases and location of landfills. In the case control analysis, the mean distance of cases and controls from the nearest landfill was similar. The odds ratios of cases compared to controls for increasing distances from all landfills and major landfills showed no significant difference from the baseline value of 1. The kernel and K methods showed no tendency of cases to cluster in relationship to landfills. In conclusion, congenital anomalies were not found to occur more commonly in proximity to municipal landfills.

  3. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    Energy Technology Data Exchange (ETDEWEB)

    Galowitz, Stephen

    2013-06-30

    systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh's of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

  4. Does Size Really Matter? Landfill Scale Impacts on Property Values

    OpenAIRE

    Lim, Jong Seok; Missios, Paul

    2005-01-01

    The economic advantage of constructing and operating large-scale landfills over small-scale landfills has been used to justify regional landfills as a solution to the municipal waste disposal problem. In addition to the dampening effects on social efforts to divert waste away from landfills, higher external costs of larger landfills may in fact offset the private cost advantages. In this study, the negative effects of a landfill that are capitalized in property values of houses located in the...

  5. Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions

    International Nuclear Information System (INIS)

    Nowadays the control of greenhouse gas is probably the most challenging environmental policy issue. Since CO2 is considered the major greenhouse gas (GHG) that contributes to the global warming, enforcing technological strategies aiming to avoid or reuse CO2 emissions becomes crucial, in order to mitigate GHG environmental impact. Currently, solutions conventionally adopted to this purpose are carbon capture and storage (CCS) technologies. In this context, instead, the followed strategy aims to further improvements in energetic conversion efficiency with related reduced specific CO2 emissions (per produced kWhe). Therefore, with particular reference to the electric power generation, this paper proposes an innovative energy conversion system, based on solid oxide fuel cell (SOFC), characterized by higher efficiency and reduced CO2 emission factor respect to an analogous conventional energy plant. In particular, the innovative solution consists of combining SOFC to methane dry reforming technology, while the conventional system refers to steam methane reforming-SOFC coupling. The innovative system performance up to 65% electric efficiency as cited in the paper, was validated through simulations carried out in Aspen Plus environment. - Highlights: • An innovative high efficiency plant with low CO2 emissions is presented. • The new solution combined SOFC to methane dry reforming technology (CDR–SOFC). • A comparison between CDR–SOFC and SMR–SOFC system was carried out in Aspen Plus. • CDR–SOFC efficiency is greater of 6.4% percentage points respect to SMR–SOFC. • A CO2 emission factor reduction of about 10% was achieved by CDR–SOFC plant

  6. Decomposition and carbon storage of hardwood and softwood branches in laboratory-scale landfills.

    Science.gov (United States)

    Wang, Xiaoming; Barlaz, Morton A

    2016-07-01

    Tree branches are an important component of yard waste disposed in U.S. municipal solid waste (MSW) landfills. The objective of this study was to characterize the anaerobic biodegradability of hardwood (HW) and softwood (SW) branches under simulated but optimized landfill conditions by measuring methane (CH4) yields, decay rates, the decomposition of cellulose, hemicellulose and organic carbon, as well as carbon storage factors (CSFs). Carbon conversions to CH4 and CO2 ranged from zero to 9.5% for SWs and 17.1 to 28.5% for HWs. When lipophilic or hydrophilic compounds present in some of the HW and SW samples were extracted, some samples showed increased biochemical methane potentials (BMPs). The average CH4 yield, carbon conversion, and CSF measured here, 59.4mLCH4g(-1) dry material, 13.9%, and 0.39gcarbonstoredg(-1) dry material, respectively, represent reasonable values for use in greenhouse gas inventories in the absence of detailed wood type/species data for landfilled yard waste. PMID:27016683

  7. Heat management strategies for MSW landfills.

    Science.gov (United States)

    Yeşiller, Nazli; Hanson, James L; Kopp, Kevin B; Yee, Emma H

    2016-10-01

    Heat is a primary byproduct of landfilling of municipal solid waste. Long-term elevated temperatures have been reported for MSW landfills under different operational conditions and climatic regions around the world. A conceptual framework is presented for management of the heat generated in MSW landfills. Three main strategies are outlined: extraction, regulation, and supplementation. Heat extraction allows for beneficial use of the excess landfill heat as an alternative energy source. Two approaches are provided for the extraction strategy: extracting all of the excess heat above baseline equilibrium conditions in a landfill and extracting only a part of the excess heat above equilibrium conditions to obtain target optimum waste temperatures for maximum gas generation. Heat regulation allows for controlling the waste temperatures to achieve uniform distribution at target levels at a landfill facility. Two approaches are provided for the regulation strategy: redistributing the excess heat across a landfill to obtain uniform target optimum waste temperatures for maximum gas generation and redistributing the excess heat across a landfill to obtain specific target temperatures. Heat supplementation allows for controlling heat generation using external thermal energy sources to achieve target waste temperatures. Two approaches are provided for the supplementation strategy: adding heat to the waste mass using an external energy source to increase waste temperatures and cooling the waste mass using an external energy source to decrease waste temperatures. For all strategies, available landfill heat energy is determined based on the difference between the waste temperatures and the target temperatures. Example analyses using data from landfill facilities with relatively low and high heat generation indicated thermal energy in the range of -48.4 to 72.4MJ/m(3) available for heat management. Further modeling and experimental analyses are needed to verify the effectiveness

  8. Fiber Methane Gas Sensor and Its Application in Methane Outburst Prediction in Coal Mine

    Institute of Scientific and Technical Information of China (English)

    Jia-Sheng Ni; Jun Chang; Tong-Yu Liu; Yan-Fang Li; Yan-Jie Zhao; Qian Wang

    2008-01-01

    Fiber optic methane gas detecting system based on distributed feedback (DFB) laser wavelength scanning technique is demonstrated. Wavelength scan of methane absorption peak at 1665.9 nm is realized by saw tooth modulation of current which is injected to DFB laser. A reference methane gas cell is used to find the methane absorption peak around 1666 rim, and normalization is used to reduce the outside affection such as power drift, fiber loss. Concentration is got by arithmetic processing absorption coefficient of the methane gas. In-situ test is carried out in coal mine and long time precision of 0.05% is achieved. Some spot data of coal mine is introduced. By the system, methane outburst can be measured.

  9. Methane reforming of high temperature fuel cell%高温型燃料电池的甲烷重整方式

    Institute of Scientific and Technical Information of China (English)

    王毓娟; 林维明

    2001-01-01

    Methane reforming of high temperature fuel cells was realized by external reforming and internal reforming. External reforming had been used widely but still had many drawbacks. The advantage of internal reforming lied in effectively coupling of endothermic reforming and exothermic electrochemical reaction. Internal methane reforming was divided into steam reforming and direct oxidation. The reactions occurred and the application in SOFC had been detailed discussed.%高温型燃料电池的甲烷重整包括外部重整与内部重整两种方式。外部重整已经广为采用,内部重整的优势在于节省系统成本并能将吸热的蒸汽重整反应与放热的电化学反应有效耦合,相对于前者燃料利用率与热效率更高,但是大规模采用则经济优势不明显。对固体氧化物燃料电池的甲烷内部重整(包括水蒸汽重整与直接氧化两种途径)中发生的反应及各自的优缺点作了较为详尽的分析。

  10. Leachate Characterization from a Closed Landfill in Air Hitam, Puchong, Malaysia

    International Nuclear Information System (INIS)

    Leachate, wastewater that was collected from landfill is known to have pungent smell and may impose serious harm to human health and the environment. Air Hitam, Puchong Sanitary Landfill has stopped its land filling operation since December 2006 and is under post-closure maintenance stages. After several years of stopping its operation, a landfill will still produce leachate hence it needs constant monitoring and maintenance. The main aim of this paper was to characterize leachate produced from Air Hitam, Puchong Closed Landfill, according to several important parameters: pH, temperature, chemical oxygen demand (COD), ammoniacal nitrogen (NH4-N), total organic carbon (TOC), total solids, volatile organic acids (VOA) and heavy metals content, to determine its suitability in producing methane by identifying its phase. Leachate samples were drawn weekly for a period of 3 months from three different ponds, untreated raw leachate pond 1 and treated leachate pond 2 and 3. Results obtained showed that the average values were around 25 degree Celsius, average pH 8, highest COD reading was 5,248 mg/L, TOC highest at 6,797 mg/L, VOA highest at 1,424 mg/L and ammoniacal content of 3.10 mg/L the highest. (author)

  11. MONITORING APPROACHES FOR BIOREACTOR LANDFILLS - Report

    Science.gov (United States)

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 30CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppor...

  12. Imaging scatterers in landfills using seismic interferometry

    NARCIS (Netherlands)

    Konstantaki, L.A.; Dragnov, D.S.; Heimovaara, T.J.; Ghose, R.

    2013-01-01

    A significant problem with landfills is their aftercare period. A landfill is considered to be safe for the environment only after a relatively long period of time. Until it reaches such a condition, it has to be periodically treated. Not only are treatments very expensive, but they could be dangero

  13. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS - PHASE III. DEMONSTRATION TESTS - PHASE IV. GUIDELINES AND RECOMMENDATIONS- VOLUME 1. TECHNICAL REPORT

    Science.gov (United States)

    The report summarizes the results of a four-phase program to demonstrate that fuel cell energy recovery using a commercial phosphoric acid fuel cell is both environmentally sound and commercially feasible. Phase I, a conceptual design and evaluation study, addressed the technical...

  14. Atmospheric Ozone and Methane in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Ivar S. A. Isaksen

    2014-07-01

    Full Text Available Ozone and methane are chemically active climate-forcing agents affected by climate–chemistry interactions in the atmosphere. Key chemical reactions and processes affecting ozone and methane are presented. It is shown that climate-chemistry interactions have a significant impact on the two compounds. Ozone, which is a secondary compound in the atmosphere, produced and broken down mainly in the troposphere and stratosphre through chemical reactions involving atomic oxygen (O, NOx compounds (NO, NO2, CO, hydrogen radicals (OH, HO2, volatile organic compounds (VOC and chlorine (Cl, ClO and bromine (Br, BrO. Ozone is broken down through changes in the atmospheric distribution of the afore mentioned compounds. Methane is a primary compound emitted from different sources (wetlands, rice production, livestock, mining, oil and gas production and landfills.Methane is broken down by the hydroxyl radical (OH. OH is significantly affected by methane emissions, defined by the feedback factor, currently estimated to be in the range 1.3 to 1.5, and increasing with increasing methane emission. Ozone and methane changes are affected by NOx emissions. While ozone in general increase with increases in NOx emission, methane is reduced, due to increases in OH. Several processes where current and future changes have implications for climate-chemistry interactions are identified. It is also shown that climatic changes through dynamic processes could have significant impact on the atmospheric chemical distribution of ozone and methane, as we can see through the impact of Quasi Biennial Oscillation (QBO. Modeling studies indicate that increases in ozone could be more pronounced toward the end of this century. Thawing permafrost could lead to important positive feedbacks in the climate system. Large amounts of organic material are stored in the upper layers of the permafrost in the yedoma deposits in Siberia, where 2 to 5% of the deposits could be organic material

  15. Decomposition and carbon storage of selected paper products in laboratory-scale landfills.

    Science.gov (United States)

    Wang, Xiaoming; De la Cruz, Florentino B; Ximenes, Fabiano; Barlaz, Morton A

    2015-11-01

    The objective of this study was to measure the anaerobic biodegradation of different types of paper products in laboratory-scale landfill reactors. The study included (a) measurement of the loss of cellulose, hemicellulose, organic carbon, and (b) measurement of the methane yields for each paper product. The test materials included two samples each of newsprint (NP), copy paper (CP), and magazine paper (MG), and one sample of diaper (DP). The methane yields, carbon storage factors and the extent of cellulose and hemicellulose decomposition all consistently show that papers made from mechanical pulps (e.g., NPs) are less degradable than those made from chemical pulps where essentially all lignin was chemically removed (e.g., CPs). The diaper, which is not only made from chemical pulp but also contains some gel and plastic, exhibited limited biodegradability. The extent of biogenic carbon conversion varied from 21 to 96% among papers, which contrasts with the uniform assumption of 50% by the Intergovernmental Panel on Climate Change (IPCC) for all degradable materials discarded in landfills. Biochemical methane potential tests also showed that the solids to liquid ratio used in the test can influence the results.

  16. Thermophilic methane production and oxidation in compost.

    Science.gov (United States)

    Jäckel, Udo; Thummes, Kathrin; Kämpfer, Peter

    2005-04-01

    Methane cycling within compost heaps has not yet been investigated in detail. We show that thermophilic methane oxidation occurred after a lag phase of up to one day in 4-week old, 8-week old and mature (>10-week old) compost material. The potential rate of methane oxidation was between 2.6 and 4.1 micromol CH4(gdw)(-1)h(-1). Profiles of methane concentrations within heaps of different ages indicated that 46-98% of the methane produced was oxidised by methanotrophic bacteria. The population size of thermophilic methanotrophs was estimated at 10(9) cells (gdw)(-1), based on methane oxidation rates. A methanotroph (strain KTM-1) was isolated from the highest positive step of a serial dilution series. This strain belonged to the genus Methylocaldum, which contains thermotolerant and thermophilic methanotrophs. The closest relative organism on the basis of 16S rRNA gene sequence identity was M. szegediense (>99%), a species originally isolated from hot springs. The temperature optimum (45-55 degrees C) for methane oxidation within the compost material was identical to that of strain KTM-1, suggesting that this strain was well adapted to the conditions in the compost material. The temperatures measured in the upper layer (0-40 cm) of the compost heaps were also in this range, so we assume that these organisms are capable of effectively reducing the potential methane emissions from compost.

  17. Variations of dominant microbial populations in groundwater in response to the leachate from Laogang Landfill

    Institute of Scientific and Technical Information of China (English)

    TIAN Yang-jie; YANG Hong; LI Dao-tang; LIN Zhi-xin

    2005-01-01

    Temporal changes of dominant microbial populations in groundwater in response to the leachate from Shanghai Laogang Landfill were investigated. Concentrations of dissolved redox-relevant species in groundwater suggested that the dominating redox process had changed from denitrification to methane-production/sulfate-reduction due to landfilling. Dominant microbial populations were determined using restriction fragment length polymorphism(RFLP) analyses of 16S rRNA gene libraries, which were further studied by sequencing and phylogenetic analyses. The results indicated that obvious shifts of dominant microbial populations had occurred in groundwater in response to the pollution of leachate. The closest relatives of some dominant clones are accordant with the dominating redox processes determined by hydrochemical analyses, based on the GenBank's indications on the ability to perform redox reactions.

  18. Geomicrobial and Geochemical Redox Processes in a Landfill-Polluted Aquifer

    DEFF Research Database (Denmark)

    Ludvigsen, Liselotte; Heron, Gorm; Albrechtsen, Hans-Jørgen;

    1995-01-01

    The distribution of different dominant microbial-mediated redox processes in a landfill leachate-polluted aquifer (Grindsted, Denmark) was investigated. The most probable number method was utilized for detecting bacteria able to use each of the electron acceptors, and unamended incubations were...... to the landfill. Sulfate-reducing bacteria and sulfate reduction were observed in the area where methanogenesis took place, but were also observed further downgradient in the leachate plume. Fe(III)-reducing bacteria were found in almost all samples from the entire anaerobic leachate plume, but no ongoing Fe...... utilized to detect the activity of the redox processes using the investigated electron acceptors. The redox processes investigated were methane production and reduction of sulfate, Fe(III), Mn(IV), and nitrate. The presence of methanogenic bacteria and methanogenic activity were observed close...

  19. Toxicological characterization of a novel wastewater treatment process using EDTA-Na2Zn as draw solution (DS) for the efficient treatment of MBR-treated landfill leachate.

    Science.gov (United States)

    Niu, Aping; Ren, Yi-Wei; Yang, Li; Xie, Shao-Lin; Jia, Pan-Pan; Zhang, Jing-Hui; Wang, Xiao; Li, Jing; Pei, De-Sheng

    2016-07-01

    Landfill leachate has become an important source of environmental pollution in past decades, due to the increase of waste volume. Acute toxic and genotoxic hazards to organisms can be caused by landfill leachate. Thus, how to efficiently recover water from landfill leachate and effectively eliminate combined toxicity of landfill leachate are the most pressing issues in waste management. In this study, EDTA-Na2Zn as draw solution (DS) was used to remove the toxicity of membrane bioreactor-treated landfill leachate (MBR-treated landfill leachate) in forward osmosis (FO) process, and nanofiltration (NF) was designed for recovering the diluted DS. Zebrafish and human cells were used for toxicity assay after the novel wastewater treatment process using EDTA-Na2Zn as DS. Results showed that the water recovery rate of MBR-treated landfill leachate (M-LL) in FO membrane system could achieve 66.5% and 71.2% in the PRO and FO mode respectively, and the diluted DS could be efficiently recovered by NF. Toxicity tests performed by using zebrafish and human cells showed that M-LL treated by EDTA-Na2Zn had no toxicity effect on zebrafish larvae and human cells, but it had very slight effect on zebrafish embryos. In conclusion, all results indicated that EDTA-Na2Zn as DS can effectively eliminate toxicity of landfill leachate and this method is economical and eco-friendly for treatment of different types of landfill leachate. PMID:27108367

  20. Kinetics of Internal Methane Steam Reforming in Solid Oxide Fuel Cells and Its Influence on Cell Performance– Coupling Experiments and Modeling

    NARCIS (Netherlands)

    Fan, L.; Pourquie, M.J.B.M.; Thattai, A.; Verkooijen, A.H.M.; Aravind, P.V.

    2013-01-01

    Mathematical modeling tools are useful for predicting the safe operation limits and efficiencies of SOFCs. For a particular SOFC design, variations in internal methane reforming kinetic parameters is expected to affect local gas compositions, local Nernst voltages, current densities and temperature

  1. Electrochemical evaluation of sulfur poisoning in a methane-fuelled solid oxide fuel cell: Effect of current density and sulfur concentration

    DEFF Research Database (Denmark)

    Hagen, Anke; Johnson, Gregory B.; Hjalmarsson, Per

    2014-01-01

    A Ni/ScYSZ based SOFC was tested at 1, 0.5, 0.25, and 0 (OCV) A cm−2 in methane fuel containing 0–100 ppm H2S. Analysis of cell voltage loss during short-term H2S poisoning showed that SOFC performance loss was generally larger at higher current loads. Separating the effect of H2S on catalytic...... by the presence of H2S in the fuel; the lower frequency mass transfer/fuel reforming processes and higher frequency charge transfer/triple phase boundary (TPB) processes. At high current densities (0.5 and 1 A cm−2), mass transfer/fuel reforming processes were the most sensitive to sulfur poisoning. At OCV...... in the anode, leading to less available fuel and a higher fuel utilization. All poisoning effects were reversible after removing H2S from the fuel....

  2. Compact, low power consumption methane sensor based on a novel miniature multipass gas cell and a CW, room temperature interband cascade laser emitting at 3.3 μm

    Science.gov (United States)

    Dong, Lei; Li, Chunguang; Sanchez, Nancy P.; Gluszek, Aleksander K.; Griffin, Robert J.; Tittel, Frank K.

    2016-02-01

    A tunable diode laser absorption spectroscopy (TDLAS)-based methane sensor, employing a miniature dense-pattern multi-pass gas cell (MPGC) and a continuous wave, room temperature interband cascade laser (ICL), is reported. The optical integration based on an advanced folded optical path design and an efficient ICL control system with appropriate electrical power management results in a methane sensor with a small footprint (32 × 20 × 17 cm3) and low-power consumption (6W). The direct absorption measurement strategy allows absolute quantitative assessments without any calibration. Polynomial and least-squares fit algorithms are employed to remove the baseline of the spectral scan and retrieve CH4 concentrations, respectively. An Allan-Werle deviation analysis shows that the measurement precision can reach 1.4 ppb for a 60 s averaging time. Continuous measurements lasting seven days were performed to demonstrate the stability and robustness of the reported methane sensor.

  3. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters.

    Science.gov (United States)

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel M M; Schubert, Carsten J

    2015-09-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes. PMID:25679533

  4. Inferred performance of surface hydraulic barriers from landfill operational data

    Energy Technology Data Exchange (ETDEWEB)

    Gross, B.A. [GeoSyntec Consultants, Austin, TX (United States); Bonaparte, R.; Othman, M.A. [GeoSyntec Consultants, Atlanta, GA (United States)

    1997-12-31

    There are few published data on the field performance of surface hydraulic barriers (SHBs) used in waste containment or remediation applications. In contrast, operational data for liner systems used beneath landfills are widely available. These data are frequently collected and reported as a facility permit condition. This paper uses leachate collection system (LCS) and leak detection system (LDS) liquid flow rate and chemical quality data collected from modem landfill double-liner systems to infer the likely hydraulic performance of SHBs. Operational data for over 200 waste management unit liner systems are currently being collected and evaluated by the authors as part of an ongoing research investigation for the United States Environmental Protection Agency (USEPA). The top liner of the double-liner system for the units is either a geomembrane (GMB) alone, geomembrane overlying a geosynthetic clay liner (GMB/GCL), or geomembrane overlying a compacted clay liner (GMB/CCL). In this paper, select data from the USEPA study are used to: (i) infer the likely efficiencies of SHBs incorporating GMBs and overlain by drainage layers; and (ii) evaluate the effectiveness of SHBs in reducing water infiltration into, and drainage from, the underlying waste (i.e., source control). SHB efficiencies are inferred from calculated landfill liner efficiencies and then used to estimate average water percolation rates through SHBs as a function of site average annual rainfall. The effectiveness of SHBs for source control is investigated by comparing LCS liquid flow rates for open and closed landfill cells. The LCS flow rates for closed cells are also compared to the estimated average water percolation rates through SHBs presented in the paper.

  5. Estimating dispersed and point source emissions of methane in East Anglia: results and implications

    Science.gov (United States)

    Harris, Neil; Connors, Sarah; Hancock, Ben; Jones, Pip; Murphy, Jonathan; Riddick, Stuart; Robinson, Andrew; Skelton, Robert; Manning, Alistair; Forster, Grant; Oram, David; O'Doherty, Simon; Young, Dickon; Stavert, Ann; Fisher, Rebecca; Lowry, David; Nisbet, Euan; Zazzeri, Guilia; Allen, Grant; Pitt, Joseph

    2016-04-01

    We have been investigating ways to estimate dispersed and point source emissions of methane. To do so we have used continuous measurements from a small network of instruments at 4 sites across East Anglia since 2012. These long-term series have been supplemented by measurements taken in focussed studies at landfills, which are important point sources of methane, and by measurements of the 13C:12C ratio in methane to provide additional information about its sources. These measurements have been analysed using the NAME InTEM inversion model to provide county-level emissions (~30 km x ~30 km) in East Anglia. A case study near a landfill just north of Cambridge was also analysed using a Gaussian plume model and the Windtrax dispersion model. The resulting emission estimates from the three techniques are consistent within the uncertainties, despite the different spatial scales being considered. A seasonal cycle in emissions from the landfill (identified by the isotopic measurements) is observed with higher emissions in winter than summer. This would be expected from consideration of the likely activity of methanogenic bacteria in the landfill, but is not currently represented in emission inventories such as the UK National Atmospheric Emissions Inventory. The possibility of assessing North Sea gas field emissions using ground-based measurements will also be discussed.

  6. Evaluation of the Oedometer Tests of Municipal Landfill Waste Material

    Directory of Open Access Journals (Sweden)

    Imre Emőke

    2014-07-01

    Full Text Available The aim of the ongoing research is (i to develop a new biodegradation landfill technique so that the landfill gas production could be controlled and the utilisation of the landfill gas could economically be optimized, (ii to plan the energy utilisation of the landfill including individual and combined solutions (solar, wind, geothermal energy, energy storage using methanol etc.. [1, 2, 3

  7. Scenarios selection for a simple concept landfill

    International Nuclear Information System (INIS)

    Scenarios are used to deal with uncertainty on the evolution of complex systems. The scenario selection methodologies also have to provide a basis for reflexion and traceability of the reasoning. A scenario selection method has been developed for the case of disposal of uranium mill tailings in a landfill site. In the case of a simple concept landfill, a methodology that fulfils these requirements has been developed. It distinguishes on the one hand the landfill evolution, and on the other hand, the human behavior evolution. It is based on three steps: (i) characterization of the landfill itself, in order to define situations leading to releases of radionuclides, (ii) characterization of the human behavior in order to define situations leading to intrusions, and (iii) characterization of the interfaces between the two subsystems, in order to identify situations which could lead to a radiological risk for man. The method, applied to performance assessment for landfill of uranium mill tailings, has led to one reference scenario, and five altered scenarios taking into account specific landfill evolutions such as loss of covering or loss of integrity of the dike, and human intrusions such as housing on the site of landfill or excavation of the site. Copyright (2001) Material Research Society

  8. Microbial activity in the landfill soil.

    Science.gov (United States)

    Brzezinska, M Swiontek; Burkowska, A; Walczak, M

    2012-01-01

    The research objective was to determine the activity of microorganisms in the soil exposed to direct influence of a landfill, as well as in the soil beyond its influence. Fluorescein diacetate (FDA) hydrolytic activity and respiration in the soil were determined. The highest number of cultivated bacteria was recorded at the site located within the zone of direct influence exerted by the landfill, whereas the least amount was found at a distance of 1000 metres from the landfill. In contrast, the largest numbers of molds were observed in the soil at a distance of 1000 m from the headquarters of the landfill. The highest FDA hydrolytic activity and biological oxygen demand (BOD5) were recorded in the soil by the headquarters of the landfill, and the least parameters were revealed at a distance of 1000 m from the landfill. It was found a high correlation between the number of bacteria and FDA hydrolytic activity of soil and BOD5 in the north-eastern of the landfill. However, in the same place, there is a low correlation between the number of molds, and FDA hydrolytic activity of soil and BOD5.

  9. The aspects of fire safety at landfills

    Directory of Open Access Journals (Sweden)

    Aleshina Tat'yana Anatol'evna

    2014-01-01

    Full Text Available Starting with 2008 and till 2013 there have been alarm messages about fires occurring at landfill places in Russia. Landfill fires are especially dangerous as they emit dangerous fumes from the combustion of the wide range of materials within the landfill. Subsurface landfill fires, unlike typical fires, cannot be put out with water. The article includes the analysis of the sources and causes of conflagrations at landfills. There maintains the necessity to eliminate the reasons, which cause the fires. There are quantification indices of environmental, social and economic effects of fires at landfills all over Russia. Surface fires generally burn at relatively low temperatures and are characterized by the emission of dense white smoke and the products of incomplete combustion. The smoke includes irritating agents, such as organic acids and other compounds. Higher temperature fires can cause the breakdown of volatile compounds, which emit dense black smoke. Surface fires are classified as either accidental or deliberate. For the ecologic security there is a need in the execution of proper hygienic requirements to the content of the places as well as international recommendations. In addition to the burning and explosion hazards posed by landfill fires, smoke and other by-products of landfill fires also present a health risk to firefighters and others exposed to them. Smoke from landfill fires generally contains particulate matter (the products of incomplete combustion of the fuel source, which can aggravate pre-existing pulmonary conditions or cause respiratory distress and damage ecosystem. The monitoring of conducting preventive inflamings and transition to alternative, environment friendly methods of waste disposal is needed.

  10. Closure Alternatives for Municipal Waste Landfills.Study Case: Municipal Waste Landfill Medias,Sibiu County

    Directory of Open Access Journals (Sweden)

    MIHĂIESCU R.

    2010-12-01

    Full Text Available In the recent decades, the environmental impact produced by municipal solid wastes has received specialattention. All new EU countries are involved in the process of implementation of the European Council Directive31/99/EC on the landfill of waste in the European Union. As consequence National legislation, adapted to fit the EUrequirements, focuses on integrated waste management and environmental control of municipal solid waste landfills,from start-up to closure and assimilation into the environment. In Romania, by Government decision, HG 349/2005,was established the obligatoriness of closing unconform waste landfills located in urban areas starting at July 2009. Asconsequence the owner of municipal waste landfill Medias started the proceedings of closure for the landfill. The aim ofthis study is to compare, from an environmental point of view, different alternatives for the closure of the municipalsolid waste landfill Somard-Medias (Romania.

  11. Comparison of the methane oxidation rate in four media

    Directory of Open Access Journals (Sweden)

    Juliana Lundgren Rose

    2012-06-01

    Full Text Available Landfill gas emissions are one of the main sources of anthropogenic methane (CH4, a major greenhouse gas. In this paper, an economically attractive alternative to minimize greenhouse gas emissions from municipal solid waste landfills was sought. This alternative consists in special biofilters as landfill covers with oxidative capacity in the presence of CH4. To improve the quality/cost ratio of the project, compost was chosen as one of the cover substrates and soil (Typic red yellow-silt-clay Podzolic as the other. The performance of four substrates was studied in laboratory experiments: municipal solid waste (MSW compost, soil, and two soil-compost at different proportions. This study aimed to evaluate the suitability and environmental compatibility as a means of CH4 oxidation in biofilters. Four biofilters were constructed in 60 cm PVC tubes with an internal diameter of 10 cm. Each filter contained 2.3 L of oxidizing substrate at the beginning of the experiment. The gas used was a mixture of CH4 and air introduced at the bottom of each biofilter, at a flow of 150 mL min-1, by a flow meter. One hundred days after the beginning of the experiment, the best biofilter was the MSW compost with an oxidation rate of 990 g m-3 day-1 , corresponding to an efficiency of 44 %. It can be concluded that the four substrates studied have satisfactory oxidative capacity, and the substrates can be used advantageously as cover substrate of MSW landfills.

  12. Monitoring of landfill influences on groundwater

    Directory of Open Access Journals (Sweden)

    Mihael Brenčič

    2004-06-01

    Full Text Available Landfills of waste present serious threat to groundwater. To prevent groundwater pollution from landfill monitoring is performed. Rule of groundwater pollution monitoring from dangerous substances implements principles in Slovene legislation. In everyday practice certain questions arose since validity of the rule. These questions are about responsible parties in monitoring, groundwater distribution in space, target groundwater units, characterization level of the landfill and its surroundings, background values in groundwater, table of content of groundwater monitoring plan, quality of groundwater monitoring network, phases of monitoring, maintenance of monitoring network and activation of piezometers.

  13. Hydrogen stable isotopic constraints on methane emissions from oil and gas extraction in the Colorado Front Range, USA

    Science.gov (United States)

    Townsend-Small, A.; Botner, E. C.; Jimenez, K.; Blake, N. J.; Schroeder, J.; Meinardi, S.; Barletta, B.; Simpson, I. J.; Blake, D. R.; Flocke, F. M.; Pfister, G.; Bon, D.; Crawford, J. H.

    2015-12-01

    The climatic implications of a shift from oil and coal to natural gas depend on the magnitude of fugitive emissions of methane from the natural gas supply chain. Attempts to constrain methane emissions from natural gas production regions can be confounded by other sources of methane. Here we demonstrate the utility of stable isotopes, particularly hydrogen isotopes, for source apportionment of methane emissions. The Denver, Colorado area is home to a large oil and gas field with both conventional oil and gas wells and newer hydraulic fracturing wells. The region also has a large metropolitan area with several landfills and a sizable cattle population. As part of the DISCOVER-AQ and FRAPPE field campaigns in summer 2014, we collected three types of canister samples for analysis of stable isotopic composition of methane: 1), samples from methane sources; 2), samples from two stationary ground sites, one in the Denver foothills, and one in an oil and gas field; and 3), from the NCAR C-130 aircraft in samples upwind and downwind of the region. Our results indicate that hydrogen isotope ratios are excellent tracers of sources of methane in the region, as we have shown previously in California and Texas. Use of carbon isotope ratios is complicated by the similarity of natural gas isotope ratios to that of background methane. Our results indicate that, despite the large amount of natural gas production in the region, biological sources such as cattle feedlots and landfills account for at least 50% of total methane emissions in the Front Range. Future work includes comparison of isotopes and alkane ratios as tracers of methane sources, and calculation of total methane fluxes in the region using continuous measurements of methane concentrations during aircraft flights.

  14. Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liukang [LI-COR Inc., Lincoln, NE (United States); McDermitt, Dayle [LI-COR Inc., Lincoln, NE (United States); Anderson, Tyler [LI-COR Inc., Lincoln, NE (United States); Riensche, Brad [LI-COR Inc., Lincoln, NE (United States); Komissarov, Anatoly [LI-COR Inc., Lincoln, NE (United States); Howe, Julie [LI-COR Inc., Lincoln, NE (United States)

    2012-02-01

    Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been

  15. Attenuation of Landfill Leachate In Unsaturated Sandstone

    Science.gov (United States)

    Butler, A. P.; Brook, C.; Godley, A.; Lewin, K.; Young, C. P.

    Landfill leachate emanating from old "dilute and disperse" sites represents a potential (and in many cases actual) threat to the integrity of groundwater. Indeed, this concern has been included in EU legislation (80/86/EEC), where key contaminants (e.g. ammonia, various toxic organic compounds and heavy metals) are explicitly highlighted in terms of their impact on groundwater. In the UK, whilst there are a substantial number of unlined landfills sited on major aquifers, many of these are in locations where there is a substantial unsaturated zone. Thus, there exists the opportunity for the modification and attenuation of contaminants prior to it encountering the water table. An understanding of likely changes in leachate content and concentrations at such sites will enable a more comprehensive assessment of the potential risks and liabilities posed by such sites to be evaluated. The Burntstump landfill, situated 8 km north of Nottingham (UK), is sited on an outcrop of Sherwood sandstone. The fine friable sand has been quarried since the 1960s and the excavated volume used to store municipal waste. Filling at the site commenced in the mid 1970s and originally was unlined. In 1978 the first of what was to become a series of boreholes was installed within an area of roughly 5 m radius over one of the original waste cells. Cores of the waste and underlying sandstone were extracted and analysed for a range of physical and chemical parameters. The most recent set of analyses were obtained in 2000. The series of investigations therefore provide an important record of leachate migration and modification through the unsaturated zone for over twenty years. The progression of the leachate front is clearly delineated by the chloride concentration profile with an average velocity of around 1.6 m.yr-1. Combining this value with an average (and reasonably uniform) measured moisture content of about 7% gives a mean inter-granular specific discharge of 110 mm.yr-1. An interesting

  16. Latest on Mobile Methane Measurements with Fast Open-Path Technology: Experiences, Opportunities & Perspectives

    Science.gov (United States)

    Burba, George; Anderson, Tyler; Ediger, Kevin; von Fischer, Joseph; Gioli, Beniamino; Ham, Jay; Hupp, Jason; Kohnert, Katrin; Larmanou, Eric; Levy, Peter; Polidori, Andrea; Pikelnaya, Olga; Price, Eric; Sachs, Torsten; Serafimovich, Andrei; Zondlo, Mark; Zulueta, Rommel

    2016-04-01

    Methane plays a critical role in the radiation balance, chemistry of the atmosphere, and air quality. The major sources of methane include agricultural and natural production, landfill emissions, oil and gas development sites, and natural gas distribution networks in rural and urban environments. The majority of agricultural and natural methane production occurs in areas with little infrastructure or easily available grid power (e.g., rice fields, arctic and boreal wetlands, tropical mangroves, etc.) Past approaches for direct measurements of methane fluxes relied on fast closed-path analyzers, which typically require powerful pumps and grid power. Power and labor demands may be among the key reasons why such methane fluxes were often measured at locations with good infrastructure and grid power, and not necessarily with high methane production. Landfill methane emissions were traditionally assessed via point-in-time measurements taken at monthly or longer time intervals using techniques such as the trace plume method, the mass balance method, etc. These are subject to large uncertainties because of the snapshot nature of the measurements, while the changes in emission rates are continuous due to ongoing landfill development, changes in management practices, and the barometric pumping phenomenon. Installing a continuously operating flux station in the middle of an active landfill requires a low-power approach with no cables stretching across the landfill. The majority of oil and gas and urban methane emission happens via variable-rate point sources or diffused spots in topographically challenging terrains, such as street tunnels, elevated locations at water treatment plants, vents, etc. Locating and measuring methane emissions from such sources is challenging when using traditional micrometeorological techniques, and requires development of novel approaches. In 2010, a new lightweight high-speed high-resolution open-path technology was developed with the goal of

  17. Methane emission from sewers.

    Science.gov (United States)

    Liu, Yiwen; Ni, Bing-Jie; Sharma, Keshab R; Yuan, Zhiguo

    2015-08-15

    Recent studies have shown that sewer systems produce and emit a significant amount of methane. Methanogens produce methane under anaerobic conditions in sewer biofilms and sediments, and the stratification of methanogens and sulfate-reducing bacteria may explain the simultaneous production of methane and sulfide in sewers. No significant methane sinks or methanotrophic activities have been identified in sewers to date. Therefore, most of the methane would be emitted at the interface between sewage and atmosphere in gravity sewers, pumping stations, and inlets of wastewater treatment plants, although oxidation of methane in the aeration basin of a wastewater treatment plant has been reported recently. Online measurements have also revealed highly dynamic temporal and spatial variations in methane production caused by factors such as hydraulic retention time, area-to-volume ratio, temperature, and concentration of organic matter in sewage. Both mechanistic and empirical models have been proposed to predict methane production in sewers. Due to the sensitivity of methanogens to environmental conditions, most of the chemicals effective in controlling sulfide in sewers also suppress or diminish methane production. In this paper, we review the recent studies on methane emission from sewers, including the production mechanisms, quantification, modeling, and mitigation. PMID:25889543

  18. Municipal landfill sites as sources of microorganisms potentially pathogenic to humans.

    Science.gov (United States)

    Kalwasińska, Agnieszka; Burkowska, Aleksandra

    2013-05-01

    The present research was aimed at assessing the quality of air and soil on the premises and in the vicinity of the municipal landfill sites in Toruń with regard to the presence of pathogenic bacteria, potentially dangerous to humans. Air samples (the impaction method using a MAS-100 impactor) and soil samples were collected from seven sampling sites including the operating and closed landfill cells, sampling sites located near leachate ponds, and sampling sites located outside the above premises. The research also involved assessing microbial air contamination in three indoor spaces on the premises of the landfill sites. Microbial tests involved the determination of the number of culturable mesophilic, mannitol-positive, and α- and β-hemolytic bacteria in the air, determination of the number of coliform bacteria, spore-forming Clostridium perfringens in soil, and the presence of Salmonella in soil. The results indicate that bioaerosol emitted by this municipal facility is the source of hemolytic bacteria (≤ 300 CFU m(-3) of air), as well as of pathogenic bacteria (Pseudomonas aeruginosa and Bacillus subtilis). The highest risk of exposure to biological agents was determined in the sorting facility. Over sixty percent of air samples in this sampling site presented high pollution degree with mesophilic bacteria (500-2000 CFU m(-3) of air) and over one fourth of air samples presented very high pollution degree (>2000 CFU m(-3) of air). Indoor air in other rooms was considered highly/moderately contaminated (100-2000 CFU m(-3) of air). The highest risk related to the presence of Salmonella, Clostridium perfringens, and coliform bacteria in soil was determined at the operating landfill cell and near the leachate pond of the closed landfill cell. At the operating landfill cell the total coli ranged from 4-1226 MPN g(-1) of dry mass of soil and Clostridium perfringens ranged from landfill sites in densely populated areas, and emphasize the need for regular monitoring

  19. Landfill leachate treatment in rotating biological contactors

    OpenAIRE

    Cortez, Susana

    2010-01-01

    Tese de doutoramento em Engenharia Química e Biológica Sanitary landfilling is the most used and accepted method to eliminate municipal solid waste worldwide due to its economic advantages. The generation of leachate is an inevitable consequence of this practice. Landfill leachate is a high-strength wastewater with great chemical complexity and diversity. In order to avoid discharges to the environment causing negative impacts to the biota or public health, it must be properly collected an...

  20. Nitrifyers in constructed wetlands treating landfill leachates

    OpenAIRE

    Sundberg, Carina

    2008-01-01

    Landfill leachate is produced many years after a landfill site closes. Hence, treatment by “natural methods”, as e.g. constructed wetlands, with low management requirements is attractive. Constructed wetlands usually provide both shallow and deep areas with aerobic and anaerobic zones, which is suitable for nitrification followed by denitrification of the ammonium-rich leachates. Full-scale treatment systems are influenced by climatic variables that affect the microbial community. Also, the o...

  1. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2002-08-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5 acre aerobic cell is nearly complete with only the blower station and biofilter remaining. Waste placement and instrumentation installation is ongoing in the west-side 6-acre anaerobic cell. The current project status and preliminary monitoring results are summarized in this report.

  2. Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control

    Energy Technology Data Exchange (ETDEWEB)

    Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

    2005-03-30

    The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

  3. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-12-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.

  4. Oxidation of methane from manure storages in soils

    Energy Technology Data Exchange (ETDEWEB)

    Oonk, H. [OonKAY, Fabianusstraat 12, Apeldoorn (Netherlands); Koopmans, J. [PAS Mestopslagsystemen, De Giek 31, Drachten (Netherlands)

    2012-09-12

    Dutch methane emissions from manure treatment and storage are estimated to be 115 Gg CH{sub 4}, which is about 1.5% of total greenhouse gas emissions. A possible option to reduce methane emissions from manure storages is to feed emissions into the soil next to the storage, where it is oxidized by methanotrophic bacteria, comparable to the way methane is oxidized in top-layers of landfills. A feasibility study is performed to evaluate the technical and economic viability of the method. An annual average methane oxidizing capacity of about 2-3 g m{sup -2} h{sup -1} seems to be feasible in sandy or loamy soils, without major modifications. A single manure storage will require a few 100 m{sup 2} of soil to abate 70% or more of its methane. The system seems to be economically feasible and cost-effective. Additional investments are less than 5% of the total costs of a manure storage. Costs for emission reduction are 1 to 4 euro per Mg CO{sub 2}-eq. Proof of concept was no part of this feasibility study. The technology described is only expected and not demonstrated to work.

  5. Marine Bromophenol Bis (2,3-Dibromo-4,5-dihydroxy-phenyl)-methane Inhibits the Proliferation, Migration, and Invasion of Hepatocellular Carcinoma Cells via Modulating β1-Integrin/FAK Signaling

    OpenAIRE

    Ning Wu; Jiao Luo; Bo Jiang; Lijun Wang; Shuaiyu Wang; Changhui Wang; Changqing Fu; Jian Li; Dayong Shi

    2015-01-01

    Bis (2,3-dibromo-4,5-dihydroxy-phenyl)-methane (BDDPM) is a natural bromophenol compound derived from marine algae. Previous reports have shown that BDDPM possesses antimicrobial activity. In the present study, we found that BDDPM has cytotoxic activity on a wide range of tumor cells, including BEL-7402 cells (IC50 = 8.7 μg/mL). Further studies have shown that prior to the onset of apoptosis, the BDDPM induces BEL-7402 cell detachment by decreasing the adherence of cells to the extracellula...

  6. Recirculation of reverse osmosis concentrate in lab-scale anaerobic and aerobic landfill simulation reactors.

    Science.gov (United States)

    Morello, Luca; Cossu, Raffaello; Raga, Roberto; Pivato, Alberto; Lavagnolo, Maria Cristina

    2016-10-01

    Leachate treatment is a major issue in the context of landfill management, particularly in view of the consistent changes manifested over time in the quality and quantity of leachate produced, linked to both waste and landfill characteristics, which renders the procedure technically difficult and expensive. Leachate recirculation may afford a series of potential advantages, including improvement of leachate quality, enhancement of gas production, acceleration of biochemical processes, control of moisture content, as well as nutrients and microbe migration within the landfill. Recirculation of the products of leachate treatment, such as reverse osmosis (RO) concentrate, is a less common practice, with widespread controversy relating to its suitability, potential impacts on landfill management and future gaseous and leachable emissions. Scientific literature provides the results of only a few full-scale applications of concentrate recirculation. In some cases, an increase of COD and ammonium nitrogen in leachate was observed, coupled with an increase of salinity; which, additionally, might negatively affect performance of the RO plant itself. In other cases, not only did leachate production not increase significantly but the characteristics of leachate extracted from the well closest to the re-injection point also remained unchanged. This paper presents the results of lab-scale tests conducted in landfill simulation reactors, in which the effects of injection of municipal solid waste (MSW) landfill leachate RO concentrate were evaluated. Six reactors were managed with different weekly concentrate inputs, under both anaerobic and aerobic conditions, with the aim of investigating the short and long-term effects of this practice on landfill emissions. Lab-scale tests resulted in a more reliable identification of compound accumulation and kinetic changes than full-scale applications, further enhancing the development of a mass balance in which gaseous emissions and waste

  7. Occurrence and treatment efficiency of pharmaceuticals in landfill leachates.

    Science.gov (United States)

    Lu, Mu-Chen; Chen, Yao Yin; Chiou, Mei-Rung; Chen, Men Yu; Fan, Huan-Jung

    2016-09-01

    Landfill leachates might contain pharmaceuticals due to the expired or unwanted drugs were disposed of at landfills. These pharmaceuticals might pose a threat to soil and groundwater. Therefore, this study investigated the distributions of pharmaceutical residues and toxicities among four typical municipal landfill leachates. Twenty six pharmaceuticals were investigated in this study and fifteen of them were found in all samples from four leachates. In addition, ampicillin and methylenedioxymethamphetamine (MDMA) were detected in urban landfills (A1 and A2) but were not in rural and suburb landfills (B and C). On the other hand, some compounds were much more abundant in suburb/rural landfill leachates than those in urban landfills including diclofenac, gemfibrozil and amphetamine. Landfill leachate treatment plants could not remove most of the pharmaceuticals effectively. Landfill leachates without proper treatments would have significant adverse health impacts on human and aquatic life. PMID:27026494

  8. Methane-Powered Vehicles

    Science.gov (United States)

    1982-01-01

    Liquid methane is beginning to become an energy alternative to expensive oil as a power source for automotive vehicles. Methane is the principal component of natural gas, costs less than half as much as gasoline, and its emissions are a lot cleaner than from gasoline or diesel engines. Beech Aircraft Corporation's Boulder Division has designed and is producing a system for converting cars and trucks to liquid methane operation. Liquid methane (LM) is a cryogenic fuel which must be stored at a temperature of 260 degrees below zero Fahrenheit. The LM system includes an 18 gallon fuel tank in the trunk and simple "under the hood" carburetor conversion equipment. Optional twin-fuel system allows operator to use either LM or gasoline fuel. Boulder Division has started deliveries for 25 vehicle conversions and is furnishing a liquid methane refueling station. Beech is providing instruction for Northwest Natural Gas, for conversion of methane to liquid state.

  9. Options for cost-effectively reducing atmospheric methane concentrations from anthropogenic biomass sources

    International Nuclear Information System (INIS)

    Methane is a major greenhouse gas, second only to carbon dioxide in its contribution to future global warming. Methane concentrations have more than doubled over the last two centuries and continue to rise annually. These increases are largely correlated with increasing human populations. Methane emissions from human related activities currently account for about 70 percent of annual emissions. Of these human related emissions, biomass sources account for about 75 percent and non-biomass sources about 25 percent. Because methane has a shorter lifetime than other major greenhouse gases, efforts to reduce methane emissions may fairly quickly be translated into lower atmospheric concentrations of methane and lower levels of radiative forcing. This fairly quick response would have the benefit of slowing the rate of climate change and hence allow natural ecosystems more time to adapt. Importantly, methane may be cost-effectively reduced from a number of biomass and non-biomass sources in the United States and worldwide. Methane is a valuable fuel, not just a waste by-product, and often systems may be reconfigured to reap the fuel value of the methane and more than justify the necessary expenditures. Such options for reducing methane emission from biomass sources exist for landfills, livestock manures, and ruminant livestock, and have been implemented to varying degrees in countries around the world. However, there are a number of barriers that hinder the more widespread use of technologies, including institutional, financial, regulatory, informational, and other barriers. This paper describes an array of available options that may be cost-effectively implemented to reduce methane emissions from biomass sources. This paper also discusses a number of programs that have been developed in the United States and internationally to promote the implementation of these methane reduction options and overcome existing barriers

  10. Reduction of greenhouse gases emissions listed in the Kyoto Protocol by the utilization of landfill gas using solid oxide fuel cells; Reducao das emissoes de gases de efeito estufa listados no protocolo de Quioto pelo aproveitamento do gas gerado em aterros sanitarios utilizando celulas a combustivel de oxido solido. Estudo de caso do aterro municipal de Santo Andre, SP, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Paris, Alexandre Gellert

    2007-07-01

    In the last few years, the Kyoto Protocol had been a subject very debated, at first, in a restricted niche, manly academics and professionals related to the area of climate changes. On 16th February 2005 the Kyoto Protocol entered into force and with this a lot of publicity all over the world, so today is common to hear about it at the mass communications media. The extension of the subject is broad, this work discuss the utilization of one the Kyoto's flexibility mechanisms, to contribute to financing the use of the landfill gas in the solid oxide fuel cells. Among the three mechanisms presented in the Kyoto Protocol, the clean development mechanism (CDM) in article 12, is the only one that can be implemented by non-Annex I countries, the case of Brazil. In other hand, the issue of solid waste in Brazil is critical. Even being illegal, most of the solid waste goes to uncontrolled areas in open air places 'lixoes', causing degradation of the environment and the communities around this areas, and also emission of green house gases (GHG), deregulating the global climate system. Decontaminate this areas and the construction of landfills to replace than, considering the landfill as a bioreactor, and the utilization of the biogas to generate power can improve nowadays picture that we are facing. The utilization of an innovative alternative technology as the solid oxide fuel cell (SOFC) instead the conventional technologies will be more efficient and environmentally better. Among other barriers the cost is pointed as the biggest. In this context, the SOFC is the most expensive fuel cell, so the utilization of CDM can contribute to finance the application of this technology. Scenarios were made of 250 kW, 500 kW, 1,000 kW, 5,000 kW and 10,000 kW of installed power using biogas from the Municipal Landfill of Santo Andre. The calculations of the emission factor were done ex ante and ex post according to ACM0002. Comparing the costs of the installed power

  11. Atmospheric distribution of methane on Mars: A model study

    Science.gov (United States)

    Viscardy, Sébastien; Daerden, Frank; Neary, Lori

    2016-10-01

    In the past decade, the detection of methane (CH4) in the atmosphere of Mars has been reported several times. These observations have strongly drawn the attention of the scientific community and triggered a renewed interest in Mars as their implications for the geochemical or biological activities are remarkable. However, given that methane is expected to have a photochemical lifetime of several centuries, the relatively fast loss rates of methane estimated from Earth-based measurements remain unexplained. Although this gave rise to objections against the validity of those observations, recent in situ measurements confirmed that methane is being occasionally released into the atmosphere from an unknown source (possibly from the ground). Additionally, ExoMars/TGO was launched to Mars in March 2016. NOMAD, one of the instruments onboard TGO, will provide the first global detailed observations of methane on Mars. It is in this context that we present a model study of the behavior of methane plumes.A general circulation model for the atmosphere of Mars is applied to simulate surface emission of methane and to investigate its vertical distribution during the first weeks after the release. Such surface emissions were suggested to explain observations of methane. Previous GCM simulations focused on the horizontal evolution of the methane, but the present study focuses on the three-dimensional dispersion of methane throughout the atmosphere after the surface release. It is found that a highly nonuniform vertical distribution, including distinct vertical layers, can appear throughout the atmosphere during the first weeks after the emission. This is explained by the global circulation patterns in the atmosphere at the time of the emission. Large Hadley cells transport the methane rapidly to other locations over the planet, and methane will be stretched out in layers along the general circulation streamlines at heights corresponding to strong zonal jets.This result changes

  12. Correlation between physicochemical and ecotoxicological approaches to estimate landfill leachates toxicity.

    Science.gov (United States)

    Pablos, M V; Martini, F; Fernández, C; Babín, M M; Herraez, I; Miranda, J; Martínez, J; Carbonell, G; San-Segundo, L; García-Hortigüela, P; Tarazona, J V

    2011-08-01

    Leachates from municipal solid waste (MSW) landfills may contain a huge diversity of contaminants; these wastewaters should be considered as potentially hazardous complex mixtures, representing a potential environmental risk for surface and groundwater. Current MSW landfill wastes regulatory approaches deem exclusively on the physicochemical characterization and does not contemplate the ecotoxicological assessment of landfill leachates. However, the presence of highly toxic substances in consumer products requires reconsideration on the need of more specific ecotoxicological assessments. The main aim of this study was to evaluate the toxicity of different MSW landfill leachates using a battery of toxicity tests including acute toxicity tests with Daphnia magna and the anuran Xenopus laevis and the in vitro toxicity test with the fish cell line RTG-2. The additional objective was to study the possible correlation between physicochemical properties and the toxicity results obtained for untreated landfill leachates. The results showed that the proposed test battery was effective for the ecotoxicological characterization of MSW landfill leachates. A moderate to strong correlation between the measured physicochemical parameters and the calculated toxicity units was detected for all toxicity assays. Correlation factors of 0.85, 0.86 and 0.55 for Daphnia, Xenopus and RTG-2 tests, respectively, were found. The discriminant analysis showed that certain physicochemical parameters could be used for an initial categorization of the potential aquatic acute toxicity of leachates; this finding may facilitate leachates management as the physicochemical characterization is currently the most common or even only monitoring method employed in a large majority of landfills. Ammonia, alkalinity and chemical oxygen demand (COD), together with chloride, allowed a proper categorization of leachates toxicity for up to 75% of tested samples, with a small percentage of false negatives. PMID

  13. Municipal Solid Waste Landfills Harbor Distinct Microbiomes

    Directory of Open Access Journals (Sweden)

    Blake Warren Stamps

    2016-04-01

    Full Text Available Landfills are the final repository for most of the discarded material from human society and its built environments. Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2 and a complex mixture of soluble chemical compounds in leachate. Characterization of landfill microbiomes and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.

  14. Landfills as critical infrastructures: analysis of observational datasets after 12 years of non-invasive monitoring

    Science.gov (United States)

    Scozzari, Andrea; Raco, Brunella; Battaglini, Raffaele

    2016-04-01

    This work presents the results of more than ten years of observations, performed on a regular basis, on a municipal solid waste disposal located in Italy. Observational data are generated by the combination of non-invasive techniques, involving the direct measurement of biogas release to the atmosphere and thermal infrared imaging. In fact, part of the generated biogas tends to escape from the landfill surface even when collecting systems are installed and properly working. Thus, methodologies for estimating the behaviour of a landfill system by means of direct and/or indirect measurement systems have been developed in the last decades. It is nowadays known that these infrastructures produce more than 20% of the total anthropogenic methane released to the atmosphere, justifying the need for a systematic and efficient monitoring of such infrastructures. During the last 12 years, observational data regarding a solid waste disposal site located in Tuscany (Italy) have been collected on a regular basis. The collected datasets consist in direct measurements of gas flux with the accumulation chamber method, combined with the detection of thermal anomalies by infrared radiometry. This work discusses the evolution of the estimated performance of the landfill system, its trends, the benefits and the critical aspects of such relatively long-term monitoring activity.

  15. Standardization of the Electricity and Economic Potentials of Landfill gas (LFG in Lagos, Nigeria.

    Directory of Open Access Journals (Sweden)

    Christopher N AKUJIEZE

    2014-05-01

    Full Text Available Globally, various practical data and scholarly estimations of the electricity potentials of landfill gas (LFG have been forwarded and these can be juxtaposed for estimations in the megacity called Lagos. The calculated values were between 63.22- 700MW of  derivable electricity. However, in order to limit observable disparities and ambiguities in these derivations and thus allow for more accurate projections, these estimations can be gauged using as template; -stoichiometry, establishing 50% of landfill gas as methane, assuming 50% of this volume as recoverable, and using a proposed engine efficiency of 30%. This standardization projects a theoretical mean achievable electrical power of 121.69 MW for the Lagos area from a population of about 21 million with a generation per capita (GPC of 0.63kg with biodegradable content of about 60%. The yearly electrical energy was placed at 1,066,004.4 MWh with tariff revenue in excess of US$ 106.6 million /yr. An accruing carbon credit of about US$75.59 million /yr is expected from certified emission reduction (CER. The projected derivations can be used as models for evaluation of the landfill gas and electricity potentials in many parts of the world.

  16. Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

    2013-04-01

    The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

  17. Methanation assembly using multiple reactors

    Science.gov (United States)

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  18. CO-DIGESTION OF SEWAGE SLUDGE AND MATURE LANDFILL LEACHATE IN PRE-BIOAUGMENTED SYSTEM

    Directory of Open Access Journals (Sweden)

    Agnieszka Montusiewicz

    2014-10-01

    Full Text Available The study examined the effects of co-digestion of sewage sludge and mature landfill leachate at the volumetric ratio of 95:5% in primarily bioaugmented system. Bioaugmentation was carried out with the use of commercial product Arkea® in the volumetric dose of 5% and lasted three months prior to the co-digestion start-up. Co-digestion was undergone without bioaugmentation. The results indicated that in the first period (of three months following bioaugmentation, co-digestion led to biogas/methane yields only 5-8% lower as compared to anaerobic digestion of sewage sludge, and the differences were not statistically significant. Moreover, a comparable value of volatile solids removal was obtained. However, the effects became worse over time, i.e. a lower organics removal efficiency of 16% as well as 9.5–13% decreases of biogas/methane yields were achieved by applying co-digestion for a further period (of the same duration. Co-digestion of sewage sludge and mature landfill leachate could be recognized as quite efficient in the system that was primarily bioaugmented with the use of Arkea®. However, the beneficial impact of bioaugmentation remained for the limited period of three months after its completion. To sustain the favourable effects a periodical, repeatable bioaugmentation of the co-digestion system is required.

  19. Use of a New Low-Power Laser-Based Instrumentation to Measure Methane Emissions from Remote Permafrost Regions

    Science.gov (United States)

    Burba, George; Sturtevant, Cove; Peltola, Olli; Schreiber, Peter; Zulueta, Rommel; Haapanala, Sami; Mammarella, Ivan; Rinne, Janne; Vesala, Timo; McDermitt, Dayle; Oechel, Walt

    2013-04-01

    The permafrost regions store significant amount of organic materials under anaerobic conditions, leading to large methane production and accumulation in the upper layers of bedrock, soil and ice. These regions are currently undergoing dramatic change in response to warming trends, and may become a significant potential source of global methane release under a warming climate over following decades and centuries. Present measurements of methane fluxes in permafrost regions have mostly been made with static chamber techniques, and very few were done with the eddy covariance approach using closed-path analyzers. Although chambers and closed-path analyzers have advantages, both techniques have significant limitations, especially for remote or portable research in cold regions. Static chamber measurements are discrete in time and space, and particularly difficult to use over polygonal tundra with highly non-uniform micro-topography and active water layer. They also may not capture the dynamics of methane fluxes on varying time scales (hourly to annual). In addition, placement of the chamber may disturb the surface integrity causing a significant over-estimation of the measured flux. Closed-path gas analyzers for measuring methane eddy fluxes employ advanced technologies such as TDLS (Tunable Diode Laser Spectroscopy), ICOS (Integrated Cavity Output Spectroscopy), WS-CRDS (wavelength scanned cavity ring-down spectroscopy), but require high flow rates at significantly reduced optical cell pressures to provide adequate response time and sharpen absorption features. Such methods, when used with the eddy covariance technique, require a vacuum pump and a total of 400-1500 Watts of grid power for the pump, climate control, and analyzer systems. The weight of such systems often exceeds 100-200 lbs, restricting practical applicability for remote or portable field studies. As a result, spatial coverage of eddy covariance methane flux measurements in cold regions remains limited

  20. Adsorption and transport of methane in biochars derived from waste wood.

    Science.gov (United States)

    Sadasivam, Bala Yamini; Reddy, Krishna R

    2015-09-01

    Mitigation of landfill gas (LFG) is among the critical aspects considered in the design of a landfill cover in order to prevent atmospheric pollution and control global warming. In general, landfill cover soils can partially remove methane (CH4) through microbial oxidation carried out by methanotrophic bacteria present within them. The oxidizing capacity of these landfill cover soils may be improved by adding organic materials, such as biochar, which increase adsorption and promote subsequent or simultaneous oxidation of CH4. In this study, seven wood-derived biochars and granular activated carbon (GAC) were characterized for their CH4 adsorption capacity by conducting batch and small-scale column studies. The effects of influential factors, such as exposed CH4 concentration, moisture content and temperature on CH4 adsorption onto biochars, were determined. The CH4 transport was modeled using a 1-D advection-dispersion equation that accounted for sorption. The effects of LFG inflow rates and moisture content on the combined adsorption and transport properties of biochars were determined. The maximum CH4 adsorption capacity of GAC (3.21mol/kg) was significantly higher than that of the biochars (0.05-0.9mol/kg). The CH4 gas dispersion coefficients for all of the biochars ranged from 1×10(-3) to 3×10(-3)m(2)s(-1). The presence of moisture significantly suppressed the extent of methane adsorption onto the biochars and caused the methane to break through within shorter periods of time. Overall, certain biochar types have a high potential to enhance CH4 adsorption and transport properties when used as a cover material in landfills. However, field-scale studies need to be conducted in order to evaluate the performance of biochar-based cover system under a more dynamic field condition that captures the effect of seasonal and temporal changes. PMID:26005190

  1. Adsorption and transport of methane in biochars derived from waste wood.

    Science.gov (United States)

    Sadasivam, Bala Yamini; Reddy, Krishna R

    2015-09-01

    Mitigation of landfill gas (LFG) is among the critical aspects considered in the design of a landfill cover in order to prevent atmospheric pollution and control global warming. In general, landfill cover soils can partially remove methane (CH4) through microbial oxidation carried out by methanotrophic bacteria present within them. The oxidizing capacity of these landfill cover soils may be improved by adding organic materials, such as biochar, which increase adsorption and promote subsequent or simultaneous oxidation of CH4. In this study, seven wood-derived biochars and granular activated carbon (GAC) were characterized for their CH4 adsorption capacity by conducting batch and small-scale column studies. The effects of influential factors, such as exposed CH4 concentration, moisture content and temperature on CH4 adsorption onto biochars, were determined. The CH4 transport was modeled using a 1-D advection-dispersion equation that accounted for sorption. The effects of LFG inflow rates and moisture content on the combined adsorption and transport properties of biochars were determined. The maximum CH4 adsorption capacity of GAC (3.21mol/kg) was significantly higher than that of the biochars (0.05-0.9mol/kg). The CH4 gas dispersion coefficients for all of the biochars ranged from 1×10(-3) to 3×10(-3)m(2)s(-1). The presence of moisture significantly suppressed the extent of methane adsorption onto the biochars and caused the methane to break through within shorter periods of time. Overall, certain biochar types have a high potential to enhance CH4 adsorption and transport properties when used as a cover material in landfills. However, field-scale studies need to be conducted in order to evaluate the performance of biochar-based cover system under a more dynamic field condition that captures the effect of seasonal and temporal changes.

  2. Extension of gas utilization operation time in case of decreasing methane concentration; Verlaengerung der Betriebsdauer von Gasverwertungsanlagen bei fallenden Methankonzentrationen

    Energy Technology Data Exchange (ETDEWEB)

    Hegemann, Tim [DMT GmbH und Co. KG, Essen (Germany); Brandt, Andreas [Steag GmbH, Essen (Germany). Bereich Grubengas NRW; Minegas GmbH, Essen (Germany)

    2013-06-15

    In the Ruhr area Minegas GmbH (Minegas) currently operates gas engines on abandoned mine methane at round about 17 different locations. In the course of time the methane content decreases at some production sites, while in unison the carbon dioxide content increases. Whereas the composition of abandoned mine methane and landfill gas are slightly different, the worsening of the quality is comparable, making it harder to operate the gas engines or even prevent them from running. The minimum methane concentration in the gas-mixture needed for the combustion in the gas engines can theoretically be lowered by adding pure oxygen to the gas mixture. That way, depending on the production site and the future development, the utilization of methane can be extended for years - while using the existing gas engines and technologies. (orig.)

  3. Quantification of Methane Source Locations and Emissions in AN Urban Setting

    Science.gov (United States)

    Crosson, E.; Richardson, S.; Tan, S. M.; Whetstone, J.; Bova, T.; Prasad, K. R.; Davis, K. J.; Phillips, N. G.; Turnbull, J. C.; Shepson, P. B.; Cambaliza, M. L.

    2011-12-01

    The regulation of methane emissions from urban sources such as landfills and waste-water treatment facilities is currently a highly debated topic in the US and in Europe. This interest is fueled, in part, by recent measurements indicating that urban emissions are a significant source of Methane (CH4) and in fact may be substantially higher than current inventory estimates(1). As a result, developing methods for locating and quantifying emissions from urban methane sources is of great interest to industries such as landfill and wastewater treatment facility owners, watchdog groups, and the governmental agencies seeking to evaluate or enforce regulations. In an attempt to identify major methane source locations and emissions in Boston, Indianapolis, and the Bay Area, systematic measurements of CH4 concentrations and meteorology data were made at street level using a vehicle mounted cavity ringdown analyzer. A number of discrete sources were detected at concentration levels in excess of 15 times background levels. Using Gaussian plume models as well as tomographic techniques, methane source locations and emission rates will be presented. In addition, flux chamber measurements of discrete sources such as those found in natural gas leaks will also be presented. (1) Wunch, D., P.O. Wennberg, G.C. Toon, G. Keppel-Aleks, and Y.G. Yavin, Emissions of Greenhouse Gases from a North American Megacity, Geophysical Research Letters, Vol. 36, L15810, doi:10.1029/2009GL)39825, 2009.

  4. Quantification of methane and nitrous oxide emissions from various waste treatment facilities by tracer dilution method

    Science.gov (United States)

    Mønster, Jacob; Rella, Chris; Jacobson, Gloria; Kjeldsen, Peter; Scheutz, Charlotte

    2013-04-01

    tracer gas concentrations while another measured the nitrous oxide concentration. We present the performance of these instruments at different waste treatment facilities (waste water treatment plants, composting facilities, sludge mineralization beds, anaerobic digesters and landfills) in Denmark, and discuss the strengths and limitations of the method of the method for quantifying methane and nitrous oxide emissions from the different sources. Furthermore, we have measured the methane emissions from 10 landfills with emission rates ranging from 5 to 135 kg/h depending on the age, state, content and aftercare of the landfill. In addition, we have studied 3 waste water treatment plants, and found nitrous oxide emission of 200 to 700 g/h from the aeration tanks and a total methane emission ranging from 2 to 15 kg/h, with the primary emission coming from the sludge treatment. References Galle, B., Samuelsson, J., Svensson, B.H., and Börjesson, G. (2001). Measurements of methane emissions from landfills using a time correlation tracer method based on FTIR absorption spectroscopy. Environmental Science & Technology 35 (1), 21-25 Scheutz, C., Samuelsson, J., Fredenslund, A. M., and Kjeldsen, P. (2011). Quantification of multiple methane emission sources at landfills using a double tracer technique. Waste Management, 31(5), 1009-17 Solomon, S., D. Qin, M. Manning, R.B. Alley, T. Berntsen, N.L. Bindoff, Z. Chen, A. Chidthaisong, J.M. Gregory, G.C. Hegerl, M. Heimann, B. Hewitson, B.J. Hoskins, F. Joos, J. Jouzel, V. Kattsov, U. Lohmann, T.Matsuno, M. Molina, N. Nicholls, J.Overpeck, G. Raga, V. Ramaswamy, J. Ren, M. Rusticucci, R. Somerville, T.F. Stocker, P. Whetton, R.A.Wood and D. Wratt, 2007: Technical Summary. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  5. Landfill pollution control with isotope techniques

    International Nuclear Information System (INIS)

    Groundwater and surface water contamination by sanitary landfills is being monitored since 1989 in Italy by using isotope techniques combined with chemical analyses. The results obtained are considered mostly satisfactory for identifying sources of contaminants and predicting their behaviour. We present in this work the results of chemical and isotopic measurements performed on rainwater, surface water and groundwater samples, with the aim of investigating the fate of contaminants released from some landfills located near Ancona, Central Italy. The isotope determinations included δ18O, δ2H and tritium (3H). The first objective of these investigations is establishing the background values of the main environmental parameters related to contamination, and obtaining indication about source and residence time (age) of groundwater in the landfill proximity. In particular, the methods used for detecting groundwater and/or surface waters contamination derived from the landfill, are based on the occurrence of tritium activity anomalies and chemical concentration changes. In order to estimate the regional background of environmental tritium in shallow groundwater, we measured the tritium content of monthly rainwater samples collected in stations on the Apennines in proximity of Ancona. The tritium concentration ranged from 3 to 6 TU in winter months (October to April), and reached the maximum values (up to 14 TU) in summer months. The investigations of groundwater and surface water contamination were undertaken on landfills dismissed from 1986 to 1998. The isotopic and chemical monitoring was started one year ago and was carried out on leachates, surface waters and groundwater (the last sampled in several downstream wells). The tritium concentration in leachates can be very high, due to a still active tritium release from the landfill. Tritium values in wells outside of the landfill area, lower than in leachate but higher than the regional background of environmental

  6. Utilization of coalbed methane

    Energy Technology Data Exchange (ETDEWEB)

    Gustavson, J.B. [Gustavson Associates Inc., Boulder, CO (United States)

    1996-02-01

    Substantial progress has been made in capturing coalbed methane (CBM gas), which constitutes a valuable source of clean burning energy. It is of importance to study the various potential uses of coalbed methane and to understand the various technologies required, as well as their economics and any institutional constraints. In industrialised countries, the uses of coalbed methane are almost solely dependent on microeconomics; coalbed methane must compete for a market against natural gas and other energy sources - and frequently, coalbed methane is not competitive against other energy sources. In developing countries, on the other hand, particularly where other sources of energy are in short supply, coalbed methane economics yield positive results. Here, constraints to development of CBM utilization are mainly lack of technology and investment capital. Sociological aspects such as attitude and cultural habits, may also have a strong negative influence. This paper outlines the economics of coalbed methane utilization, particularly its competition with natural gas, and touches upon the many different uses to which coalbed methane may be applied. 24 refs., 4 figs.

  7. Methane and Climate Change

    NARCIS (Netherlands)

    Reay, D.; Smith, P.; Amstel, van A.R.

    2010-01-01

    Methane is a powerful greenhouse gas and is estimated to be responsible for approximately one-fifth of man-made global warming. Per kilogram, it is 25 times more powerful than carbon dioxide over a 100-year time horizon -- and global warming is likely to enhance methane release from a number of sour

  8. Ecotoxicological diagnosis of a sealed municipal landfill.

    Science.gov (United States)

    Hernández, A J; Bartolomé, C; Pérez-Leblic, M I; Rodríguez, J; Alvarez, J; Pastor, J

    2012-03-01

    Assessing the environmental impact of a soil-topped landfill requires an accurate ecotoxicological diagnosis. This paper describes various diagnostic protocols for this purpose and their application to a real case: the urban solid waste (USW) municipal landfill of Getafe (Madrid, Spain). After their initial sealing with soil from the surroundings about 20 years ago, most USW landfills in the autonomous community of Madrid have continued to receive waste. This has hindered precise assessment of their impact on their environment and affected ecosystems. The procedure proposed here overcomes this problem by assessing the situation in edaphic, aquatic and ecological terms. The present study focused on the most influential soil variables (viz. salinity due largely to the presence of anions, and heavy metals and organic compounds). These variables were also determined in surface waters of the wetland most strongly affected by leachates running down landfill slopes. Determinations included the characterization of plant communities and microbial biodiversity. The study was supplemented with a bioassay under controlled conditions in pots containing soil contaminated with variable concentrations of Zn (as ZnCl(2)) intended to assess ecochemical actions in a population of Bromus rubens, which grows profusely in the landfill. PMID:21075508

  9. Estimate the potential production of electricity: a case study of the sanitary landfill of Santo Andre, Sao Paulo, Brazil; Estimativa do potencial de producao de eletricidade: estudo de caso do aterro sanitario de Santo Andre, Sao Paulo, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Elissando Rocha da; Moreira, Joao M. L.; Candiani, Giovano [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), SP (Brazil)

    2010-07-01

    The recovery of the biogas generated from sanitary landfills, associated to its energetic use has been widely discussed. Thus, this paper aims to estimate the potential production of electric energy from sanitary landfill Santo Andre-SP. The biogas production was estimated using the rate of deposition of solid wastes in the landfill, using some mathematical models with parameters suggested by two models: LanGEM-USEPA (conventional landfill) and Word Bank. These results indicate that the potential of biogas production will be approximately 11 x 10{sup 6} Kg of methane/year in 2017 and production of electric energy in that year will be approximately 32,000 MWh, considering an of 75% over collection of biogas. (author)

  10. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    International Nuclear Information System (INIS)

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g CODrem for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

  11. Advanced manufacturing of intermediate temperature, direct methane oxidation membrane electrode assemblies for durable solid oxide fuel cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ITN proposes to create an innovative anode supported membrane electrode assembly (MEA) for solid oxide fuel cells (SOFCs) that is capable of long-term operation at...

  12. Feasibility analysis of remedial scheme of Qilongcun landfill

    Institute of Scientific and Technical Information of China (English)

    LUO Yun-ju; LIU Dong-yan; LIU Xin-rong; LI Xiu-lan

    2006-01-01

    Based on hydro-geological of Qilongcun landfill, the transportation mathematical model of leachat was established. The boundaries conditions and replenishment of model were determined. The leachate COD density and the water level were simulated, and the model was identified, and then the right model was defined. The right model was used to simulate leachate COD density in the interior, exterior, and peripheral of landfill. The results show that the COD densities are not high. The pollution is slight in the interior of landfill and is little in the exterior of landfill. They are proving the overburden on top of landfill and drain around the landfill is right. The max. density on the south of landfill shows it is scientific that the cisterns are building on the south of landfill. The paper shows the remediation scheme is feasible.

  13. MOLECULAR AND CULTURAL METHODOLOGIES FOR ENUMERATING BACTERIA IN LANDFILL LEACHATES

    Science.gov (United States)

    Landfill bioreactor technology has been under investigation in the field for its potential economic and waste treatment benefits over conventional landfill systems. A better understanding of biological influences on the stabilization process is needed for incorporation into the e...

  14. Assessment of microbiological and chemical properties in a municipal landfill area.

    Science.gov (United States)

    Frączek, Krzysztof J; Ropek, Dariusz R; Lenart-Boroń, Anna M

    2014-01-01

    This study aimed at determining the environmental hazards for soils posed by a large municipal landfilll. The concentrations of heavy metals and Policyclic Aromatic Hydrocarbons, as well as microbial composition (i.e., mesophilic bacteria, actinomycetes, molds, Salmonella, Staphylococcus, Clostridium perfringens) in four soils within and in the vicinity of the landfill were evaluated and compared to waste samples. Both chemical and microbiological analyses revealed only limited contamination of surrounding areas. Although the increased alkalinity of soils was detected, the concentrations of heavy metals and Polycyclic Aromatic Hydrocarbons (PAHs) did not exceed the admissible values. All examined microbial groups were abundant in soil and waste. The highest microbial cell numbers were observed in warm summer and spring months. Although the site south of the landfill shows no trace of microbial contamination, pathogenic bacteria were found north of the landfill. This may suggest that there are other, more effective, transmission routes of bacteria than groundwater flow.

  15. Removal of high concentrated ammonia nitrogen from landfill leachate by landfilled waste layer

    Institute of Scientific and Technical Information of China (English)

    GUO Hui-dong; HE Pin-jing; SHAO Li-ming; LI Guo-jian

    2004-01-01

    The landfill of municipal solid waste(MSW) could be regarded as denitrification reactor and used in ammonia nitrogen biological removal process. In this research, the process was applied to municipal solid waste(MSW) collected in Shanghai, China, which was characterized with high food waste content. The NH4+ removal efficiency in the system of SBR nitrifying reactor followed by fresh and matured landfilled waste layer in series was studied. In the nitrifying reactor, above 90% of NH4+ in leachate was oxidized to NO2- and NO3-. Then high concentrated NO2- and NO3- was removed in the way of denitrification process in fresh landfilled waste layer. At the same time, degradation of fresh landfilled waste was accelerated. Up to the day 120, 136.5 gC/(kg dry waste) and 17.9 gN/(kg dry waste) were produced from waste layer. It accounted for 50.15% and 86.89% of the total carbon and nitrogen content of preliminary fresh waste, which was 4.42 times and 5.17 times higher than that of reference column respectively. After filtering through matured landfilled waste, BOD5 concentration in leachate dropped to below 100 mg/L, which would not affect following nitrification adversely. Because the matured landfilled waste acted as a well methanogenic reactor, 23% of carbon produced accumulatively from fresh landfilled waste degradation was converted into CH4.

  16. Sensitivity analysis of the waste composition and water content parameters on the biogas production models on solid waste landfills

    Science.gov (United States)

    Rodrigo-Ilarri, Javier; Segura-Sobrino, Francisco; Rodrigo-Clavero, Maria-Elena

    2014-05-01

    Landfills are commonly used as the final deposit of urban solid waste. Despite the waste is previously processed on a treatment plant, the final amount of organic matter which reaches the landfill is large however. The biodegradation of this organic matter forms a mixture of greenhouse gases (essentially Methane and Carbon-Dioxide as well as Ammonia and Hydrogen Sulfide). From the environmental point of view, solid waste landfills are therefore considered to be one of the main greenhouse gas sources. Different mathematical models are usually applied to predict the amount of biogas produced on real landfills. The waste chemical composition and the availability of water in the solid waste appear to be the main parameters of these models. Results obtained when performing a sensitivity analysis over the biogas production model parameters under real conditions are shown. The importance of a proper characterizacion of the waste as well as the necessity of improving the understanding of the behaviour and development of the water on the unsaturated mass of waste are emphasized.

  17. Microbial diversity and dynamics during methane production from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Bareither, Christopher A., E-mail: christopher.bareither@colostate.edu [Civil and Environmental Engineering, Colorado State University, Ft. Collins, CO 80532 (United States); Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States); Wolfe, Georgia L., E-mail: gwolfe@wisc.edu [Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 (United States); McMahon, Katherine D., E-mail: tmcmahon@engr.wisc.edu [Bacteriology, Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States); Benson, Craig H., E-mail: chbenson@wisc.edu [Civil and Environmental Engineering, Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2013-10-15

    Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and

  18. Bioenergy recovery from landfill gas: A case study in China

    Institute of Scientific and Technical Information of China (English)

    Wei WANG; Yuxiang LUO; Zhou DENG

    2009-01-01

    Landfill gas (LFG) utilization which means a synergy between environmental protection and bioenergy recovery was investigated in this study. Pressure swing adsorption technology was used in LFG purification, and laboratory experiment, pilot-scale test, and on-site demon-stration were carried out in Shenzhen, China. In the laboratory experiment, A-type carbon molecular sieve was selected as the adsorbent by comparison of several other adsorbents. The oPtimal adsorption pressure and adsorp-tion time were 0.25 MPa and 2 min, respectively, under which the product generation rate was 4.5 m3/h and the methane concentration was above 90%. The process and optimization of the pilot-scale test were also reported in the paper. The product gas was of high quality compared with the National Standard of Compressed Natural Gas as Vehicle Fuel (GB 18047-2000), when the air concentration in feed gas was under 10.96%. The demonstration project was composed of a collection system, production system,and utilization system. The drive performance, environ-mental protection performance, and economic feasibility of the product gas -- as alternative fuel in passenger car,truck, and bulldozer-were tested, showing the feasibility technology for LFG utilization.

  19. Landfilling: Bottom Lining and Leachate Collection

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Manfredi, Simone; Kjeldsen, Peter;

    2011-01-01

    The critical element of a landfill, which is essential for the protection of the environment in general, and prevention of contamination of the underlying soils and groundwater in particular, is the bottom lining system. The major focus of the bottom lining system development is to prevent leachate...... from entering the groundwater or surface water. The bottom lining system should cover the full footprint area of the landfill, including both the relatively flat bottom and the sideslopes in the case of an excavated configuration. This prevents the lateral migration of leachate from within the landfill...... works together with the overlying leachate management system, also referred to as the leachate collection and removal system (LCRS), which consists of a drainage layer that provides easy horizontal drainage of the leachate to a point of gravitational collection or pumping. Although individual liners...

  20. A Monolithically Integrated Gallium Nitride Nanowire/Silicon Solar Cell Photocathode for Selective Carbon Dioxide Reduction to Methane.

    Science.gov (United States)

    Wang, Yichen; Fan, Shizhao; AlOtaibi, Bandar; Wang, Yongjie; Li, Lu; Mi, Zetian

    2016-06-20

    A gallium nitride nanowire/silicon solar cell photocathode for the photoreduction of carbon dioxide (CO2 ) is demonstrated. Such a monolithically integrated nanowire/solar cell photocathode offers several unique advantages, including the absorption of a large part of the solar spectrum and highly efficient carrier extraction. With the incorporation of copper as the co-catalyst, the devices exhibit a Faradaic efficiency of about 19 % for the 8e(-) photoreduction to CH4 at -1.4 V vs Ag/AgCl, a value that is more than thirty times higher than that for the 2e(-) reduced CO (ca. 0.6 %). PMID:27128407

  1. A Monolithically Integrated Gallium Nitride Nanowire/Silicon Solar Cell Photocathode for Selective Carbon Dioxide Reduction to Methane.

    Science.gov (United States)

    Wang, Yichen; Fan, Shizhao; AlOtaibi, Bandar; Wang, Yongjie; Li, Lu; Mi, Zetian

    2016-06-20

    A gallium nitride nanowire/silicon solar cell photocathode for the photoreduction of carbon dioxide (CO2 ) is demonstrated. Such a monolithically integrated nanowire/solar cell photocathode offers several unique advantages, including the absorption of a large part of the solar spectrum and highly efficient carrier extraction. With the incorporation of copper as the co-catalyst, the devices exhibit a Faradaic efficiency of about 19 % for the 8e(-) photoreduction to CH4 at -1.4 V vs Ag/AgCl, a value that is more than thirty times higher than that for the 2e(-) reduced CO (ca. 0.6 %).

  2. Further study of the intrinsic safety of internally shorted lithium and lithium-ion cells within methane-air

    OpenAIRE

    Dubaniewicz, Thomas H.; DuCarme, Joseph P.

    2014-01-01

    National Institute for Occupational Safety and Health (NIOSH) researchers continue to study the potential for lithium and lithium-ion battery thermal runaway from an internal short circuit in equipment for use in underground coal mines. Researchers conducted cell crush tests using a plastic wedge within a 20-L explosion-containment chamber filled with 6.5% CH4-air to simulate the mining hazard. The present work extends earlier findings to include a study of LiFePO4 cells crushed while under c...

  3. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    International Nuclear Information System (INIS)

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS)

  4. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS).

  5. Landfill stabilization focus area: Technology summary

    International Nuclear Information System (INIS)

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed

  6. Aerobic Biostabilization of Old MSW Landfills

    Directory of Open Access Journals (Sweden)

    M. C. Zanetti

    2008-01-01

    Full Text Available Many years after the end of the cultivation phase, landfills may generate intense odours, toxic and explosive gases and heavily-polluted leachate. A wide-spreading trend in the management of MSW landfills is represented by the forced aeration of wastes in order to achieve the stabilization, reducing the negative environmental impact of uncontrolled sites (old landfills which can be definitely considered as contaminated sites and the management costs of controlled and working facilities. One of the most interesting challenges is the in situ waste aerobic stabilization, obtained by insufflating air into the wastes. The aerobic metabolism is energetically convenient in comparison with the anaerobic one, it is characterized by a higher degradation rate and a temperature increase (like in the compost production. In order to obtain an aerobic biostabilization of waste in landfills, several air injection systems have been developed and applied in the last years, like Biopuster© or AEROflott® patented systems. The feasibility of the application of in situ biostabilization must be evaluated by means of different tests, in order to evaluate the main characteristics of the wastes. The main parameters to be evaluated are the biological stability and the air permeability of the wastes. In March 2006, the biological stability of the wastes located in the Trinitapoli Landfill, Italy, has been evaluated by the Politecnico di Torino. Black Index Test and Static Respirometric Index Test have been performed in the laboratories of the Politecnico. On the basis of the obtained results, the potential biogas production from the examined landfill was estimated together with the potential volume reduction.

  7. Landfill stabilization focus area: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

  8. Targeted modification of organic components of municipal solid waste by short-term pre-aeration and its enhancement on anaerobic degradation in simulated landfill bioreactors.

    Science.gov (United States)

    Ni, Zhe; Liu, Jianguo; Girotto, Francesca; Cossu, Raffaello; Qi, Guangxia

    2016-09-01

    Pre-aeration is effective on regulating subsequent anaerobic degradation of municipal solid waste (MSW) with high organic fractions during landfilling. The strength of pre-aeration should be optimized to intentionally remove some easily biodegradable fractions while conserve bio-methane potential as much as possible. This study investigates the evolution of organic components in MSW during 2-14days pre-aeration process and its impacts on subsequent anaerobic degradation in simulated landfill bioreactors. Results showed that a 6-day pre-aeration enabled to develop a thermophilic stage, which significantly accelerated biodegradation of organics except lignocelluloses, with removal rates of 42.8%, 76.7% and 25.1% for proteins, carbohydrates and lipids, respectively. Particularly, ammonia from accelerated ammonification in the thermophilic stage neutralized VFAs generated from anaerobic landfilling. As a result, the MSW with 6-day pre-aeration obtained the highest methane yield 123.4NL/kg dry matter. Therefore, it is recommended to interrupt pre-aeration before its cooling stage to switch to anaerobic landfilling. PMID:27243602

  9. Targeted modification of organic components of municipal solid waste by short-term pre-aeration and its enhancement on anaerobic degradation in simulated landfill bioreactors.

    Science.gov (United States)

    Ni, Zhe; Liu, Jianguo; Girotto, Francesca; Cossu, Raffaello; Qi, Guangxia

    2016-09-01

    Pre-aeration is effective on regulating subsequent anaerobic degradation of municipal solid waste (MSW) with high organic fractions during landfilling. The strength of pre-aeration should be optimized to intentionally remove some easily biodegradable fractions while conserve bio-methane potential as much as possible. This study investigates the evolution of organic components in MSW during 2-14days pre-aeration process and its impacts on subsequent anaerobic degradation in simulated landfill bioreactors. Results showed that a 6-day pre-aeration enabled to develop a thermophilic stage, which significantly accelerated biodegradation of organics except lignocelluloses, with removal rates of 42.8%, 76.7% and 25.1% for proteins, carbohydrates and lipids, respectively. Particularly, ammonia from accelerated ammonification in the thermophilic stage neutralized VFAs generated from anaerobic landfilling. As a result, the MSW with 6-day pre-aeration obtained the highest methane yield 123.4NL/kg dry matter. Therefore, it is recommended to interrupt pre-aeration before its cooling stage to switch to anaerobic landfilling.

  10. Redox zones of a landfill leachate pollution plume (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Lyngkilde, John; Christensen, Thomas Højlund

    1992-01-01

    Downgradient from an old municipal landfill allowing leachate, rich in dissolved organic carbon, to enter a shallow sandy aerobic aquifer, a sequence of redoxe zones is identified from groundwater chemical analysis. Below the landfill, methanogenic conditions prevail, followed by sulfidogenic, fe...... the fate of reactive pollutants leached from the landfill....

  11. PBTS, MERCURY AND OTHER POLLUTANTS FROM MSW LANDFILLS

    Science.gov (United States)

    Approximately 60% of municipal solid waste (MSW) is currently sent to a landfill for disposal. In addition, there are over 35,000 closed landfills as well as industrial and Superfund landfills. Concerns have been raised for more than 2 decades about the potential for dioxin/fur...

  12. Electrocoagulation and decolorization of landfill leachate

    Science.gov (United States)

    Mussa, Zainab Haider; Othman, Mohamed Rozali; Abdullah, Md Pauzi

    2013-11-01

    In this study, several operating conditions such as electrode material, treatment time, applied voltage, Cl□ concentration and PH of solution were tested on treatability of landfill leachate by using electrocoagulation (EC) method. According to the results, EC method can be used efficiently for the treatment of landfill leachate by using proper operating conditions. The best removal rats were obtained when C (rod) electrode as anode, operating time is 120 min, voltage applied is 10 V, NaCl concentration is 5.85 g/L and the raw PH, for these conditions, 70% color removal was obtained.

  13. Chemical Looping Combustion of Methane: A Technology Development View

    Directory of Open Access Journals (Sweden)

    Rutuja Bhoje

    2013-01-01

    Full Text Available Methane is a reliable and an abundantly available energy source occurring in nature as natural gas, biogas, landfill gas, and so forth. Clean energy generation using methane can be accomplished by using chemical looping combustion. This theoretical study for chemical looping combustion of methane was done to consider some key technology development points to help the process engineer choose the right oxygen carrier and process conditions. Combined maximum product (H2O + CO2 generation, weight of the oxygen carrier, net enthalpy of CLC process, byproduct formation, CO2 emission from the air reactor, and net energy obtainable per unit weight (gram of oxygen carrier in chemical looping combustion can be important parameters for CLC operation. Carbon formed in the fuel reactor was oxidised in the air reactor and that increased the net energy obtainable from the CLC process but resulted in CO2 emission from the air reactor. Use of CaSO4 as oxygen carrier generated maximum energy (−5.3657 kJ, 800°C per gram of oxygen carrier used in the CLC process and was found to be the best oxygen carrier for methane CLC. Such a model study can be useful to identify the potential oxygen carriers for different fuel CLC systems.

  14. Carbon Dioxide/Methane Separation by Adsorption on Sepiolite

    Institute of Scientific and Technical Information of China (English)

    José A.Delgado; María A.Uguina; José L.Sotelo; Beatriz Ruíz; Marcio Rosário

    2007-01-01

    In this work,the use of sepiolite for the removal of carbon dioxide from a carbon dioxide/methane mixture by a pressure swing adsorption (PSA) process has been researched.Adsorption equilibrium and kinetics have been measured in a fixed-bed.and the adsorption equilibrium parameters of carbon dioxide and methane on sepiolite have been obtained.A model based on the LDF approximation has been employed to simulate the fixed-bed kinetics.using the Langmuir equation to describe the adsotption equilibrium isotherm.The functioning of a PSA cycle for separating carbon dioxide/methane mixtures using sepiolite as adsorbent has also been studied.The experimental results were compared with the ones predicted by the model adapted to a PSA system.Methane with purity higher than 97% can be obtained from feeds containing carbon dioxide with concentrations ranging from 34% to 56% with the proposed PSA cycle.These results suggest that sepiolite is an adsorbent with good properties for its employment in a PSA cycle for carbon dioxide removal from landfill gases.

  15. Valuation of environmental problems in landfill deposition and composting - test of methodology; Verdsetting av miljoekonsekvenser av avfallsdeponering og kompostering - metodeutproeving

    Energy Technology Data Exchange (ETDEWEB)

    Leknes, Einar; Movik, Espen; Wiik, Ragnhild; Meissnes, Rudolf

    1995-08-01

    This study is aimed at the tests and design of methods for valuation of environmental problems associated with the landfill deposition of household waste. An extensive review of literature has been conducted with respect to the environmental impacts and valuation methods. Environmental impact assessment and valuation with respect to emission of greenhouse gases (GHG's), leachate and disamenity, have been performed for 4 Norwegian landfills. These differ in their approach towards waste treatment in terms of GHG-collection, briquette production and composting and also in their location in terms of proximity to residential areas and the quality of natural recipients. The study shows that the collection of methane and production of briquettes causes major reductions in the generation of GHG's, whereas composting brings significant reductions for all types of environmental impacts. (author)

  16. The Comet Assay for the Evaluation of Genotoxic Potential of Landfill Leachate

    Directory of Open Access Journals (Sweden)

    Kamila Widziewicz

    2012-01-01

    Full Text Available Genotoxic assessment of landfill leachate before and after biological treatment was conducted with two human cell lines (Me45 and NHDF and Daphnia magna somatic cells. The alkali version of comet assay was used to examine genotoxicity of leachate by DNA strand breaks analysis and its repair dynamics. The leachate samples were collected from Zabrze landfill, situated in the Upper Silesian Industrial District, Poland. Statistically significant differences (Kruskal-Wallice ANOVA rank model were observed between DNA strand breaks in cells incubated with leachate before and after treatment (P<0.001. Nonparametric Friedman ANOVA confirmed time-reliable and concentration-reliable cells response to leachate concentration. Examinations of chemical properties showed a marked decrease in leachate parameters after treatment which correlate to reduced genotoxicity towards tested cells. Obtained results demonstrate that biological cotreatment of leachate together with municipal wastewater is an efficient method for its genotoxic potential reduction; however, treated leachate still possessed genotoxic character.

  17. Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE).

    Science.gov (United States)

    Xing, Wei; Lu, Wenjing; Zhao, Yan; Zhang, Xu; Deng, Wenjing; Christensen, Thomas H

    2013-02-01

    In some arid regions where landfill produces minimal amount of leachate, leachate recirculation is suggested as a cost-effective option. However, its long-term impacts to environment remain disputed. For the purpose of revealing the environmental impacts of leachate recirculation in landfill, four scenarios were modeled using EASEWASTE, comparing the strategies of leachate recirculation (with or without gas management), evaporation and discharge. In the current situation (Scenario A), a total of 280 t of waste was generated and then transported to a conventional landfill for disposal. A number of contaminants derived from waste can be stored in the landfill for long periods, with 11.69 person equivalent (PE) for stored ecotoxicity in water and 29.62 PE for stored ecotoxicity in soil, considered as potential risks of releasing to the environment someday. Meanwhile, impacts to ecotoxicity and human toxicity in surface water, and those to groundwater, present relatively low levels. In Scenario B, leachate evaporation in a collecting pool has minimal impacts on surface water. However, this strategy significantly impacts groundwater (1055.16 PE) because of the potential infiltration of leachate, with major contaminants of As, ammonia, and Cd. A number of ions, such as Cl(-), Mg(2+), and Ca(2+), may also contaminate groundwater. In Scenario C, the direct discharge of leachate to surface water may result in acidification (2.71 PE) and nutrient enrichment (2.88 PE), primarily attributed to soluble ammonia in leachate and the depositional ammonia from biogas. Moreover, the direct discharge of leachate may also result in ecotoxicity and human toxicity via water contaminated by heavy metals in leachate, with 3.96 PE and 11.64 PE respectively. The results also show that landfill gas is the main contributor to global warming and photochemical ozone formation due to methane emission. In Scenario D, landfill gas flaring was thus be modeled and proven to be efficient for reducing

  18. Methane: A Neglected Greenhouse Gas

    OpenAIRE

    Claudia Kemfert; Wolf-Peter Schill

    2009-01-01

    Methane is a greenhouse gas that gets far less public attention than carbon dioxide. This is entirely unwarranted. Being 25 times more potent than carbon dioxide in trapping heat in the atmosphere, methane accounts for about one-sixth of all anthropogenic (i.e. human-induced) greenhouse gas emissions. Methane is also overlooked when it comes to taking concrete measures for climate protection, despite the fact that reducing methane emissions is potentially cheap. Major sources of methane emiss...

  19. LANDFILLS AS BIOREACTORS: RESEARH AT THE OUTER LOOP LANDFILL, LOUISVILLE, KENTUCKY; FIRST INTERIM REPORT

    Science.gov (United States)

    Interim report resulting from a cooperative research and development agreement (CRADA) between US EP A's Officeof Research and Development - National Risk Management Research Laboratory and a n ongoing field demonstrationof municipal waste landfills being operated as bioreact...

  20. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill

    Directory of Open Access Journals (Sweden)

    Ren Peng

    2016-01-01

    Full Text Available In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability.

  1. Influence of landfill structures on stabilization of fully recycled leachate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The experiment was conducted to treat the leachate from two simulating columns by recycling to the columns themselves without being discharged into the enviroment. The columns were employed to simulate anaerobic and semi-aerobic landfills separately. The influence of landfill structure on stabilization of fully recycled leachate was studied. The results show that semi-aerobic landfill structure accelerates the stabilization of leachate recycled. The full recycle of leachate in semi-aerobic landfill is a very feasible and effective technology for leachate treatment with low cost and energy saving especially in arid and rare rainfall regions. Meanwhile, the environmental impact of landfill can be greatly minimized.

  2. Microbiological indication of municipal solid waste landfill non-stabilization

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qi-xing; SYLVESTER Runyuzi; YU Ji-yu; ZHANG Qian-ru

    2004-01-01

    Accidental collapse resulted from unstable factors is an important technological problem to be solved in sanitary landfill. Microbiological degradation of organic matters in landfilled solid waste are an important unstable factor. A landfill reactor was thus manufactured and installed to examine quantitative and population dynamics of microorganisms during degradation of landfilled solid waste. It was showed that unstable landfill can be reflected and indicated by microbiological features such as rapidly decreased growth amount of microorganisms, no detection of fungi and actinomyces, and changing the dominant population into methanogenic bacteria and Acinotobacter.

  3. Spectroscopy Properties of Dissolved Organic Matter in Landfill Leachate During Corrosion Cell-Fenton Post-treatment%腐蚀电池-Fenton处理渗滤液溶解性有机物光谱特征

    Institute of Scientific and Technical Information of China (English)

    赵庆良; 卜琳; 杨俊晨; 王琨

    2011-01-01

    To differentiate the transformation of dissolved organic matter(DOM) during corrosion cell-Fenton(CCF) post-treatment,the leachate was separated into five fractions by XAD-8 and XAD-4 resins(hydrophilic fraction,HPI;hydrophobic acid,HPO-A;transphilic acid,TPI-A;hydrophobic neutral,HPO-N;transphilic neutral,TPI-N).UV-Vis spectroscopy and fluorescence spectroscopy were used for the degradation analysis.Experimental results showed that DOM in landfill leachate reduced 61.8% of dissolved organic carbon(DOC).Especially for HPO-A and HPO-N,with the removal ratios were up to 74.9% and 66.5%,respectively.The predominant portion in the effluent was HPI(comprising 60.1% of DOC).Spectral analyses showed that the leachate DOM was composed of abundant condensed ring aromatic compounds and humic substances,with the HPO-A was the highest aromatic fraction.The ratio of absorbance at 253 nm and 203 nm(E253/E203) was decreased in the order of HPO-A HPO-N TPI-A TPI-N HPI.The unsaturated conjugated structures were efficiently destroyed after the CCF treatment,and the functional groups such as carbonyl,amine were also eliminated.The main fluorophores in leachate fractions were in the region of aromatic protein-like and visible fulvic-like.The fluorescence intensity of peaks in each fraction decreased after CCF treatment,especially for the fulvic-like fluorescent substances.The results indicated that the CCF treatment was efficient to remove the hydrophobic fractions and reduce the complicacy of leachate effluent.%为了研究垃圾渗滤液中溶解性有机物(DOM)在腐蚀电池-Fenton(CCF)深度处理过程中的去除特性,采用XAD-8和XAD-4树脂将DOM分成5种组分(亲水性有机物HPI、疏水性有机酸HPO-A、过渡亲水性有机酸TPI-A、疏水性中性有机物HPO-N、过渡亲水性中性有机物TPI-N),并用紫外和荧光光谱对各组分的降解变化进行分析.研究表明,CCF能有效降低渗滤液中DOM,溶解

  4. Closure Alternatives for Municipal Waste Landfills.Study Case: Municipal Waste Landfill Medias,Sibiu County

    OpenAIRE

    R. MIHĂIESCU; L. MUNTEAN; C. BODEA; Cristina MODOI; C. MALOŞ; MIHĂIESCU Tania; V. Arghiuş; Gh. ROŞIAN; Baciu, N.

    2010-01-01

    In the recent decades, the environmental impact produced by municipal solid wastes has received specialattention. All new EU countries are involved in the process of implementation of the European Council Directive31/99/EC on the landfill of waste in the European Union. As consequence National legislation, adapted to fit the EUrequirements, focuses on integrated waste management and environmental control of municipal solid waste landfills,from start-up to closure and assimilation into the env...

  5. Enzymatic Oxidation of Methane

    Energy Technology Data Exchange (ETDEWEB)

    Sirajuddin, S; Rosenzweig, AC

    2015-04-14

    Methane monooxygenases (MMOs) are enzymes that catalyze the oxidation of methane to methanol in methanotrophic bacteria. As potential targets for new gas-to-liquid methane bioconversion processes, MMOs have attracted intense attention in recent years. There are two distinct types of MMO, a soluble, cytoplasmic MMO (sMMO) and a membrane-bound, particulate MMO (pMMO). Both oxidize methane at metal centers within a complex, multisubunit scaffold, but the structures, active sites, and chemical mechanisms are completely different. This Current Topic review article focuses on the overall architectures, active site structures, substrate reactivities, proteinprotein interactions, and chemical mechanisms of both MMOs, with an emphasis on fundamental aspects. In addition, recent advances, including new details of interactions between the sMMO components, characterization of sMMO intermediates, and progress toward understanding the pMMO metal centers are highlighted. The work summarized here provides a guide for those interested in exploiting MMOs for biotechnological applications.

  6. Intrinsic bioremediation of landfills interim report

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L. [Westinghouse Savannah River Company, Aiken, SC (United States); Fliermans, C.B.

    1997-07-14

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP).

  7. Intrinsic bioremediation of landfills interim report

    International Nuclear Information System (INIS)

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP)

  8. BIOREACTOR DESIGN - OUTER LOOP LANDFILL, LOUISVILLE, KY

    Science.gov (United States)

    Bioreactor field demonstration projects are underway at the Outer Loop Landfill in Louisville, KY, USA. The research effort is a cooperative research effort between US EPA and Waste Management Inc. Two primary kinds of municipal waste bioreactors are under study at this site. ...

  9. Using landfill gas as the primary fuel for a 200 WTPD thermal dryer[Held jointly with the 4. Canadian organic residuals and biosolids managment conference

    Energy Technology Data Exchange (ETDEWEB)

    Shulmister, D. [Manattee County, Manatee, FL (United States). Wastewater Division; Monroe, A. [McKim and Creed, Cary, NC (United States)

    2007-07-01

    Although there is no evidence of health problems, there is a growing opposition to class B land application of biosolids in many localities in the United States, resulting in less sites available to dispose of class B biosolids. Manatee County, located on the West Coast of Florida, decided to implement thermal drying of its biosolids. This produced a class A pellet that could be used without restriction as a fertilizer or soil amendment. The dryer will be located at the county's southeast water reclamation facility, adjacent to the county's Lena Road landfill. The methane gas from the landfill will be used as the primary fuel for the dryer. This paper presented how Manatee County, Florida decided to meet its long term biosolids handling and disposal needs. The paper provided background information on Manatee County, Florida. It discussed the reasons for the dryer technology selection, location of the dryer, sizing criteria as well as listing the components of the dryer. The paper also discussed dryer procurement. Other topics that were presented included fuel requirements and an analysis of landfill gas. The County expects to save approximately two million dollars per year by selecting landfill gas from its Lena Road landfill as the primary fuel for the dryer. 5 tabs.

  10. Methane production potential of leachate generated from Korean food waste recycling facilities: a lab-scale study.

    Science.gov (United States)

    Lee, Dae Hee; Behera, Shishir Kumar; Kim, Ji Won; Park, Hung-Suck

    2009-02-01

    This paper examines the applicability of food waste leachate (FWL) in bioreactor landfills or anaerobic digesters to produce methane as a sustainable solution to the persisting leachate management problem in Korea. Taking into account the climatic conditions in Korea and FWL characteristics, the effect of key parameters, viz., temperature, alkalinity and salinity on methane yield was investigated. The monthly average moisture content and the ratio of volatile solids to total solids of the FWL were found to be 84% and 91%, respectively. The biochemical methane potential experiment under standard digestion conditions showed the methane yield of FWL to be 358 and 478 ml/g VS after 10 and 28 days of digestion, respectively, with an average methane content of 70%. Elemental analysis showed the chemical composition of FWL to be C(13.02)H(23.01)O(5.93)N(1). The highest methane yield of 403 ml/g VS was obtained at 35 degrees C due to the adaptation of seed microorganisms to mesophilic atmosphere, while methane yields at 25, 45 and 55 degrees C were 370, 351 and 275 ml/g VS, respectively, at the end of 20 days. Addition of alkalinity had a favorable effect on the methane yield. Dilution of FWL with salinity of 2g/l NaCl resulted in 561 ml CH(4)/g VS at the end of 30 days. Considering its high biodegradability (82.6%) and methane production potential, anaerobic digestion of FWL in bioreactor landfills or anaerobic digesters with a preferred control of alkalinity and salinity can be considered as a sustainable solution to the present emergent problem.

  11. Laser beam methane detector

    Science.gov (United States)

    Hinkley, E. D., Jr.

    1981-01-01

    Instrument uses infrared absorption to determine methane concentration in liquid natural gas vapor. Two sensors measure intensity of 3.39 mm laser beam after it passes through gas; absorption is proportional to concentration of methane. Instrument is used in modeling spread of LNG clouds and as leak detector on LNG carriers and installations. Unit includes wheels for mobility and is both vertically and horizontally operable.

  12. Product specific emissions from municipal solid waste landfills

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Hauschild, Michael Zwicky

    1998-01-01

    For the inventory analysis of environmental impacts associated with products in LCA there is a great need for estimates of emissions from waste products disposed at municipal solid waste landfills (product specific emissions). Since product specific emissions can not be calculated or measured...... directly at the landfills, they must be estimated by modelling of landfill processes. This paper presents a landfill model based on a large number of assumptions and approximations concerning landfill properties, waste product properties and characteristics of various kinds of environmental protection...... systems (e.g. landfill gas combustion units and leachate treatment units). The model is useful for estimation of emissions from waste products disposed in landfills and it has been made operational in the computer tool LCA-LAND presented in a following paper. In the model, waste products are subdivided...

  13. Microbial community analysis in a long-term membrane-less microbial electrolysis cell with hydrogen and methane production.

    Science.gov (United States)

    Rago, Laura; Ruiz, Yolanda; Baeza, Juan A; Guisasola, Albert; Cortés, Pilar

    2015-12-01

    A single-chamber microbial electrolysis cell (MEC) aiming at hydrogen production with acetate as sole carbon source failed due to methanogenesis build-up despite the significant amount of 2-bromoethanesulfonate (BES) dosage, 50 mM. Specific batch experiments and a thorough microbial community analysis, pyrosequencing and qPCR, of cathode, anode and medium were performed to understand these observations. The experimental data rebuts different hypothesis and shows that methanogenesis at high BES concentration was likely due to the capacity of some Archaea (hydrogen-oxidizing genus Methanobrevibacter) to resist high BES concentration up to 200 mM. Methanobrevibacter, of the Methanobacteriales order, represented almost the 98% of the total Archaea in the cathode whereas Geobacter was highly abundant in the anode (72% of bacteria). Moreover, at higher BES concentration (up to 200 mM), methanogenesis activity decreased resulting in an increase of homoacetogenic activity, which challenged the performance of the MEC for H2 production.

  14. Space monitoring of municipal solid waste landfills in Kazakhstan

    Science.gov (United States)

    Skakova, Olga; Shagarova, Lyudmila

    Municipal solid waste (MSW) landfills are special facilities designed for waste isolation and disposal ensuring sanitary and epidemiological safety of population. A solid waste landfill is a complex object with its own specific features. Modern remote-sensing methods are an indispensable source of information for the analysis of space images of solid waste landfills in Kazakhstan. Space monitoring of solid waste landfills includes the following tasks: 1. Identification and mapping of landfill areas according to the data of remote earth sensing. 2. Studying of energy and structural characteristics of landfills based on remote sensing data. 3. Analysis of the state of landfills based on a comparison of current and archive remote sensing data. Space monitoring of territories of municipal solid waste landfills uses modern computer technologies. They include satellite imagery combined with sub-satellite research, as well as other sources of information used for identification and mapping of landfill territories. Investigation of municipal solid waste landfills requires targeted survey of landfill areas, remote sensing using operational and archival data including theoretical foundations of physical optics and statistical data. Processing of digital satellite information uses methods of pattern recognition, automated image processing and correlation analysis. Based on spectral energy and textural characteristics of municipal solid waste landfills obtained by remote sensing methods, the technology of space monitoring of landfill areas, including landfill recognition and characterization of solid waste landfills from remote observations was developed. Monitoring of MSW landfills uses satellite images of ultrahigh and medium spatial resolution. Medium-resolution images are used to determine temperature, vegetation cover and soil degradation. High-resolution images are used to detect landfills, to determine forms of soil degradation, to calculate geometrical parameters, and

  15. Are termite mounds biofilters for methane? - Challenges and new approaches to quantify methane oxidation in termite mounds

    Science.gov (United States)

    Nauer, Philipp A.; Hutley, Lindsay B.; Bristow, Mila; Arndt, Stefan K.

    2015-04-01

    Methane emissions from termites contribute around 3% to global methane in the atmosphere, although the total source estimate for termites is the most uncertain among all sources. In tropical regions, the relative source contribution of termites can be far higher due to the high biomass and relative importance of termites in plant decomposition. Past research focused on net emission measurements and their variability, but little is known about underlying processes governing these emissions. In particular, microbial oxidation of methane (MOX) within termite mounds has rarely been investigated. In well-studied ecosystems featuring an oxic matrix above an anoxic methane-producing habitat (e.g. landfills or sediments), the fraction of oxidized methane (fox) can reach up to 90% of gross production. However, conventional mass-balance approaches to apportion production and consumption processes can be challenging to apply in the complex-structured and almost inaccessible environment of a termite mound. In effect, all field-based data on termite-mound MOX is based on one study that measured isotopic shifts in produced and emitted methane. In this study a closed-system isotope fractionation model was applied and estimated fox ranged from 10% to almost 100%. However, it is shown here that by applying an open-system isotope-pool model, the measured isotopic shifts can also be explained by physical transport of methane alone. Different field-based methods to quantify MOX in termite mounds are proposed which do not rely on assumptions of physical gas transport. A simple approach is the use of specific inhibitors for MOX, e.g. difluoromethane (CH2F2), combined with chamber-based flux measurements before and after their application. Data is presented on the suitability of different inhibitors and first results of their application in the field. Alternatively, gas-tracer methods allow the quantification of methane oxidation and reaction kinetics without knowledge of physical gas

  16. Development of 2D dynamic model for hydrogen-fed and methane-fed solid oxide fuel cells

    Science.gov (United States)

    Luo, X. J.; Fong, K. F.

    2016-10-01

    A new two-dimensional (2D) dynamic model is developed in Fortran to study the mass and energy transport, the velocity field and the electrochemical phenomena of high-temperature solid oxide fuel cell (SOFC). The key feature of this model is that gas properties, reaction heat, open circuit voltage, ohmic voltage and exchange current density are temperature-dependent. Based on this, the change of gas temperature and related characteristics can be evaluated in this study. The transient performances of SOFC, like heat-up and start-up processes, are therefore assessed accordingly. In this 2D dynamic SOFC model, chemical and electrochemical reaction, flow field, mass and energy transfer models are coupled in order to determine the current density, the mass fraction and the temperature of gas species. Mass, momentum and energy balance equations are discretized by finite difference method. Performance evaluation in current density, electrical efficiency and overall efficiency is conducted for the effects of different operating parameters in SOFC. The present model can serve as a valuable tool for in-depth performance evaluation of other design and operating parameters of SOFC unit, as well as further dynamic simulation and optimization of SOFC as a prime mover in cogeneration or trigeneration system.

  17. In-Situ Quantification of Methanotrophic Activity in a Landfill Cover Soil Using Gas Push-Pull Tests

    Science.gov (United States)

    Gomez, K. E.; Gonzalez-Gil, G.; Schroth, M. H.; Zeyer, J.

    2007-12-01

    Landfills are both a major anthropogenic source and a sink for the greenhouse gas CH4. Methanogenic bacteria produce CH4 during the anaerobic digestion of landfill waste, whereas, methanotrophic bacteria consume CH4 as it is transported through a landfill cover soil. Methanotrophs are thought to be ubiquitous in soils, but typically exist in large numbers at oxic/anoxic interfaces, close to anaerobic methane sources but exposed to oxygen required for metabolism. Accurate in-situ quantification of the sink strength of methanotrophs in landfill cover soils is needed for global carbon balances and for local emissions mitigation strategies. We measured in-situ CH4 concentrations at 30, 60, and 100 cm depth at 18 evenly spaced locations across a landfill cover soil. Furthermore, we performed Gas Push-Pull Tests (GPPTs) to estimate in-situ rates of methanotrophic activity in the cover soil. The GPPT is a gas-tracer test in which a gas mixture containing CH4, O2, and non-reactive tracer gases is injected (pushed) into the so