WorldWideScience

Sample records for cell landfill methane

  1. Landfill Methane

    Science.gov (United States)

    Landfill methane (CH4) accounts for approximately 1.3% (0.6 Gt) of global anthropogenic greenhouse gas emissions relative to total emissions from all sectors of about 49 Gt CO2-eq yr-1. For countries with a history of controlled landfilling, landfills can be one of the larger national sources of ant...

  2. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    Energy Technology Data Exchange (ETDEWEB)

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31

    Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily

  3. Methane emissions from MBT landfills.

    Science.gov (United States)

    Heyer, K-U; Hupe, K; Stegmann, R

    2013-09-01

    Within the scope of an investigation for the German Federal Environment Agency ("Umweltbundesamt"), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18-24 m(3)CH(4)/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH(4)/(m(2)h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000-135,000 t CO(2-eq.)/a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied

  4. Methane Emissions from Landfill: Isotopic Evidence for Low Percentage of Oxidation from Gas Wells, Active and Closed Cells

    Science.gov (United States)

    Lowry, David; Fisher, Rebecca; Zazzeri, Giulia; al-Shalaan, Aalia; France, James; Lanoisellé, Mathias; Nisbet, Euan

    2017-04-01

    Large landfill sites remain a significant source of methane emissions in developed and developing countries, with a global estimated flux of 29 Tg / yr in the EDGAR 2008 database. This is significantly lower than 20 years ago due to the introduction of gas extraction systems, but active cells still emit significant amounts of methane before the gas is ready for extraction. Historically the methane was either passively oxidized through topsoil layers or flared. Oxidation is still the primary method of methane removal in many countries, and covered, remediated cells across the world continue to emit small quantities of methane. The isotopic signatures of methane from landfill gas wells, and that emitted from active and closed cells have been characterized for more than 20 UK landfills since 2011, with more recent work in Kuwait and Hong Kong. Since 2013 the emission plumes have been identified by a mobile measurement system (Zazzeri et al., 2015). Emissions in all 3 countries have a characteristic δ13C signature of -58 ± 3 ‰ dominated by emissions from the active cells, despite the hot, dry conditions of Kuwait and the hot, humid conditions of Hong Kong. Gas well samples define a similar range. Surface emissions from closed cells and closed landfills are mostly in the range -56 to -52 ‰Ṫhese are much more depleted values than those observed in the 1990s (up to -35 ) when soil oxidation was the dominant mechanism of methane removal. Calculations using isotopic signatures of the amount of methane oxidised in these closed areas before emission to atmosphere range from 5 to 15%, but average less than 10%, and are too small to calculate from the high-emitting active cells. Compared to other major methane sources, landfills have the most consistent isotopic signature globally, and are distinct from the more 13C-enriched natural gas, combustion and biomass burning sources. Zazzeri, G. et al. (2015) Plume mapping and isotopic characterization of anthropogenic methane

  5. Quantification of methane emissions from danish landfills

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Mønster, Jacob; Kjeldsen, Peter

    2013-01-01

    Whole-landfill methane emission was quantified using a tracer technique that combines controlled tracer gas release from the landfill with time-resolved concentration measurements downwind of the landfill using a mobile high-resolution analytical instrument. Methane emissions from 13 Danish...... landfills varied between 2.6 and 60.8 kg CH4 h–1. The highest methane emission was measured at the largest (in terms of disposed waste amounts) of the 13 landfills, whereas the lowest methane emissions (2.6-6.1 kgCH4 h–1) were measured at the older and smaller landfills. At two of the sites, which had gas...... collection, emission measurements showed that the gas collection systems only collected between 30-50% of the methane produced (assuming that the produced methane equalled the sum of the emitted methane and the collected methane). Significant methane emissions were observed from disposed shredder waste...

  6. Greenhouse effect contributions of US landfill methane

    International Nuclear Information System (INIS)

    Augenstein, D.

    1991-01-01

    The greenhouse effect has recently been receiving a great deal of scientific and popular attention. The term refers to a cause-and-effect relationship in which ''heat blanketing'' of the earth, due to trace gas increases in the atmosphere, is expected to result in global warming. The trace gases are increasing as the result of human activities. Carbon dioxide (CO 2 ) is the trace gas contributing most importantly to the ''heat blanketing'' and currently receives the most attention. Less widely recognized has been the high importance of methane (CH 4 ). Methane's contribution to the increased heat blanketing occurring since 1980 is estimated to be over a third as much as that of carbon dioxide. Gas from landfills has in turn been recognized to be a source of methane to the atmospheric buildup. However the magnitude of the landfill methane contribution, and the overall significance of landfill methane to the greenhouse phenomenon has been uncertain and the subject of some debate. (Author)

  7. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Don Augenstein

    1999-01-11

    ''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

  8. Methane recovery from landfill in China

    Energy Technology Data Exchange (ETDEWEB)

    Gaolai, L.

    1996-12-31

    GEF has approved a special project for a demonstration project for Methane Recovery from the Urban Refuse Land Fill. This paper will introduce the possibility of GHG reduction from the landfill in China, describe the activities of the GEF project, and the priorities for international cooperation in this field. The Global Environment Facility (GEF) approved the project, China Promoting Methane Recovery and Unlization from Mixed Municipal Refuse, at its Council meeting in last April. This project is the first one supported by international organization in this field.

  9. Estimating historical landfill quantities to predict methane emissions

    NARCIS (Netherlands)

    Lyons, S.; Murphy, L.; Tol, R.S.J.

    2010-01-01

    There are no observations for methane emissions from landfill waste in Ireland. Methane emissions are imputed from waste data. There are intermittent data on waste sent to landfill. We compare two alternative ways to impute the missing waste " data" and evaluate the impact on methane emissions. We

  10. Quantifying Methane Abatement Efficiency at Three Municipal Solid Waste Landfills; Final Report

    Science.gov (United States)

    Measurements were conducted at three municipal solid waste landfills to compare fugitive methane emissions from the landfill cells to the quantity of collected gas (i.e., gas collection efficiency). The measurements were conducted over a multi-week sampling campaign using EPA Oth...

  11. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Bogner, J.E.

    2009-01-01

    Landfill gas containing methane is produced by anaerobic degradation of organic waste. Methane is a strong greenhouse gas and landfills are one of the major anthropogenic sources of atmospheric methane. Landfill methane may be oxidized by methanotrophic microorganisms in soils or waste materials...... to predict methane emissions from landfills. Additional research and technology development is needed before methane mitigation technologies utilizing microbial methane oxidation processes can become commercially viable and widely deployed....

  12. Development of computer simulations for landfill methane recovery

    Energy Technology Data Exchange (ETDEWEB)

    Massmann, J.W.; Moore, C.A.; Sykes, R.M.

    1981-12-01

    Two- and three-dimensional finite-difference computer programs simulating methane recovery systems in landfills have been developed. These computer programs model multicomponent combined pressure and diffusional flow in porous media. Each program and the processes it models are described in this report. Examples of the capabilities of each program are also presented. The two-dimensional program was used to simulate methane recovery systems in a cylindrically shaped landfill. The effects of various pump locations, geometries, and extraction rates were determined. The three-dimensional program was used to model the Puente Hills landfill, a field test site in southern California. The biochemical and microbiological details of methane generation in landfills are also given. Effects of environmental factors, such as moisture, oxygen, temperature, and nutrients on methane generation are discussed and an analytical representation of the gas generation rate is developed.

  13. Limits and dynamics of methane oxidation in landfill cover soils

    Science.gov (United States)

    In order to understand the limits and dynamics of methane (CH4) oxidation in landfill cover soils, we investigated CH4 oxidation in daily, intermediate, and final cover soils from two California landfills as a function of temperature, soil moisture and CO2 concentration. The results indicate a signi...

  14. Methane emission quantification from landfills using a double tracer approach

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Samuelsson, J.; Fredenslund, Anders Michael

    2007-01-01

    A tracer method was successfully used for quantification of the whole methane (CH4) emission from Fakse landfill. By using two different tracers the emission from different sections of the landfill could be quantified. Furthermore, is was possible to determine the emissions from local on site...

  15. Observations on the methane oxidation capacity of landfill soils

    Science.gov (United States)

    Field data and two independent models indicate that landfill cover methane (CH4) oxidation should not be considered as a constant 10% or any other single value. Percent oxidation is a decreasing exponential function of the total methane flux rate into the cover and is also dependent on climate and c...

  16. Estimating Historical Landfill Quantities to Predict Methane Emissions

    OpenAIRE

    Lyons, Seán; Murphy, Liam; Tol, Richard S. J.

    2009-01-01

    We estimate Irish historical landfill quantities from 1960 -2008 and Irish methane emissions from 1968-2006. A model is constructed in which waste generation is a function of income, price of waste disposal and, household economies of scale. A transformation ratio of waste to methane is also included in the methane emissions model. Our results contrast significantly with the Irish Environmental Protection Agency's (EPA) figures due to the differences in the underlying assumptions. The EPA's w...

  17. Estimating Historical Landfill Quantities to Predict Methane Emissions

    OpenAIRE

    LYONS, SEAN; TOL, RICHARD

    2009-01-01

    PUBLISHED We estimate Irish historical landfill quantities from 1960 -2008 and Irish methane emissions from 1968-2006. A model is constructed in which waste generation is a function of income, price of waste disposal and, household economies of scale. A transformation ratio of waste to methane is also included in the methane emissions model. Our results contrast significantly with the Irish Environmental Protection Agency's (EPA) figures due to the differences in the underlying assumptions...

  18. Estimation of methane emission flux at landfill surface using laser methane detector: Influence of gauge pressure.

    Science.gov (United States)

    Park, Jin-Kyu; Kang, Jong-Yun; Lee, Nam-Hoon

    2016-08-01

    The aim of this study was to investigate the possibility of measuring methane emission fluxes, using surface methane concentration and gauge pressure, by analyzing the influence of gauge pressure on the methane emission flux and the surface methane concentration, as well as the correlation between the methane emission flux and surface methane concentrations. The surface methane concentration was measured using a laser methane detector. Our results show a positive linear relationship between the surface methane concentration and the methane emission flux. Furthermore, the methane emission flux showed a positive linear relationship with the gauge pressure; this implies that when the surface methane concentration and the surface gauge pressure are measured simultaneously, the methane emission flux can be calculated using Darcy's law. A decrease in the vertical permeability was observed when the gauge pressure was increased, because reducing the vertical permeability may lead to a reduced landfill gas emission to the atmosphere, and landfill gas would be accumulated inside the landfill. Finally, this method is simple and can allow for a greater number of measurements during a relatively shorter period. Thus, it provides a better representation of the significant space and time variations in methane emission fluxes. © The Author(s) 2016.

  19. Detection and quantification of methane leakage from landfills

    Energy Technology Data Exchange (ETDEWEB)

    Ljungberg, Sven-Aake; Maartensson, Stig-Goeran (Univ. of Gaevle, Gaevle (Sweden)); Meijer, Jan-Erik; Rosqvist, Haakan (NSR AB, Helsingborg (Sweden))

    2009-03-15

    The purpose of this project was to detect gas leakage and to measure and quantify methane emission from landfills using modern remote sensing techniques. In this project, a handheld laser instrument and an IR camera were used. The overall objective was to develop cost-effective methods for detecting and quantifying methane emissions from landfills. There are many methods available for measuring the methane concentration in air, both from close-up and from long distances. Combined with the use of a tracer gas, the methane emission from entire landfills can be measured relatively accurately. A number of methods are used to detect leakage from parts of landfill surfaces, but there are few methods for quantifying leakage from sub-zones. Field measurements with the laser instrument and the IR camera were carried out at seven Swedish landfills and two landfills in France. The investigated surfaces at the Swedish landfills were divided into different zones, such as top surface, slope, crest and toe of slope. The field measurements in France were taken over entire landfills. The methane emission varied between the different landfills in the project, and also between the different landfill zones. The results from repeated field measurements indicated that a landfill with a final cap and a successful gas recovery system produces barely measurable emissions. The weak points at a landfill are generally slopes, including crests and toes of slopes. Where the covering of the waste is inadequate, leakage often occurs at lift joints and in areas where waste protrudes through the cover. Other weak points are deficiencies in the gas recovery system. Leachate systems can lead landfill gas and thereby cause methane leakage. Along with wind velocity and variations in atmospheric pressure, moisture content in the ground is an important factor that affects methane emissions from landfill surfaces. Results from field measurements of the same feature/surface at different points in time and

  20. Gas Production Potential in the Landfill of Tehran by Landfill Methane Outreach Program

    Directory of Open Access Journals (Sweden)

    Pazoki

    2015-10-01

    Full Text Available Background Landfilling is the most common way of municipal solid waste (MSW disposal in Iran. Many countries have targeted landfill methane recovery among greenhouse gas mitigation strategies, since methane is the second most important greenhouse gas after carbon dioxide. Major questions remain with respect to actual methane production rates in field settings as well as the relative mass of methane that is recovered, emitted, oxidized by methanotrophic bacteria, laterally migrated, or temporarily stored within the landfill volume. Landfill gas (LFG consists of 50% - 60 vol% methane and 30% - 40 vol% carbon dioxide as well as trace amounts of numerous chemical compounds such as aromatics, chlorinated organic compounds and sulfur compounds. Landfill methane outreach program (LMOP is a voluntary assistance program which helps reduce methane emissions from landfills by encouraging the recovery and the beneficial use of LFG as an energy resource. Objectives In this study, the volume of LFG of Tehran by landfill methane outreach program (LMOP software was calculated. In addition, the relationship between the time of gas collection system operation and the volume of LFG production was evaluated. Materials and Methods The LMOP software was used. The available information and some presumptions were used to operate the software. The composition of the solid waste collected from the landfill of Tehran had specific details. A large amount of it was organic materials, which was about 67.8%. These materials have a good potential to produce gas. In addition, LMOP Colombia model uses the first-order equations in all the analytical equations. Furthermore, it is assumed that the landfill operation time is 30 years and the process is considered in two conditions; first, the gas was recovered in 2000, and second, the process started in 2015. Results The modeling results showed that for the gas recovery starting in 2000 and 2015, the power generation would be 2

  1. Methane balance of a bioreactor landfill in Latin America.

    Science.gov (United States)

    Sanderson, Jenny; Hettiaratchi, Patrick; Hunte, Carlos; Hurtado, Omar; Keller, Alejandro

    2008-05-01

    This paper presents results from a methane (CH4) gas emission characterization survey conducted at the Loma Los Colorados landfill located 60 km from Santiago, Chile. The landfill receives approximately 1 million metric tons (t) of waste annually, and is equipped with leachate control systems and landfill gas collection systems. The collected leachate is recirculated to enable operation of the landfill as a bioreactor. For this study, conducted between April and July 2000, a total of 232 surface emission measurements were made over the 23-ha surface area of the landfill. The average surface flux rate of CH4 emissions over the landfill surface was 167 g x m(-2) x day(-1), and the total quantity of surface emissions was 13,320 t/yr. These values do not include the contribution made by "hot spots," originating from leachate pools caused by "daylighting" of leachate, that were identified on the landfill surface and had very high CH4 emission rates. Other point sources of CH4 emissions at this landfill include 20 disconnected gas wells that vent directly to the atmosphere. Additionally, there are 13 gas wells connected to an incinerator responsible for destroying 84 t/yr of CH4. The balance also includes CH4 that is being oxidized on the surface of the landfill by meth-anotrophic bacteria. Including all sources, except leachate pool emissions, the emissions were estimated to be 14,584 t/yr CH4. It was estimated that less than 1% of the gas produced by the decomposition of waste was captured by the gas collection system and 38% of CH4 generated was emitted to the atmosphere through the soil cover.

  2. Landfill methane emission mitigation – How to construct and document a full‐scale biocover system

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2014-01-01

    Landfills receiving organic wastes produce biogas (landfill gas – LFG) containing methane (CH4). Landfills are significant sources of methane, which contributes to climate change. As an alternative to gas utilization systems or as a follow‐on technology when a gas utilization system gets non‐cost...

  3. Methane oxidation at low temperatures in soil exposed to landfill gas

    DEFF Research Database (Denmark)

    Christophersen, Mette; Linderød, L.; Jensen, Pernille Erland

    2000-01-01

    soil moisture regimes, At 2 degreesC the methane oxidation rates were 0.005 to 0.17 mu mol g(-1) h(-1), and calculations showed that it was possible to oxidize all the produced methane at older landfills, even during the winter. Therefore, methane oxidation in top covers of landfills is an alternative...

  4. Methane production, recovery and emission from two Danish landfills

    DEFF Research Database (Denmark)

    Fathi Aghdam, Ehsan

    and Zn and utilized by methanogens to convert CO2 into CH4. The addition of Al and Zn to the incubated SW resulted in higher CH4 production. Relatively high CH4 production from SW at landfills and the unusual gas composition (high CH4 and low CO2 content) are most likely due to methanogens converting......Landfill gas (LFG), mainly consisting of methane (CH4) and carbon dioxide (CO2), is produced by the anaerobic digestion of biodegradable waste deposited in landfills. CH4 is a greenhouse gas with global warming potential 28 times that of CO2 over a period of 100 years. The produced CH4 in landfills...... can be recovered and utilized for the production of electricity and/or heat. Higher recovery of CH4 could result in lower CH4 emissions into the atmosphere, and thus lower the contribution of landfills to climate change. Moreover, higher CH4 recovery can result in higher production of heat...

  5. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method

    DEFF Research Database (Denmark)

    Mønster, Jacob; Samuelsson, Jerker; Kjeldsen, Peter

    2015-01-01

    Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FFIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were...... biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41-81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills...

  6. Methane mass balance at three landfill sites: What is the efficiency of capture by gas collection systems?

    International Nuclear Information System (INIS)

    Spokas, K.; Bogner, J.; Chanton, J.P.; Morcet, M.; Aran, C.; Graff, C.; Golvan, Y. Moreau-Le; Hebe, I.

    2006-01-01

    Many developed countries have targeted landfill methane recovery among greenhouse gas mitigation strategies, since methane is the second most important greenhouse gas after carbon dioxide. Major questions remain with respect to actual methane production rates in field settings and the relative mass of methane that is recovered, emitted, oxidized by methanotrophic bacteria, laterally migrated, or temporarily stored within the landfill volume. This paper presents the results of extensive field campaigns at three landfill sites to elucidate the total methane balance and provide field measurements to quantify these pathways. We assessed the overall methane mass balance in field cells with a variety of designs, cover materials, and gas management strategies. Sites included different cell configurations, including temporary clay cover, final clay cover, geosynthetic clay liners, and geomembrane composite covers, and cells with and without gas collection systems. Methane emission rates ranged from -2.2 to >10,000 mg CH 4 m -2 d -1 . Total methane oxidation rates ranged from 4% to 50% of the methane flux through the cover at sites with positive emissions. Oxidation of atmospheric methane was occurring in vegetated soils above a geomembrane. The results of these studies were used as the basis for guidelines by the French environment agency (ADEME) for default values for percent recovery: 35% for an operating cell with an active landfill gas (LFG) recovery system, 65% for a temporary covered cell with an active LFG recovery system, 85% for a cell with clay final cover and active LFG recovery, and 90% for a cell with a geomembrane final cover and active LFG recovery

  7. Methane oxidation and degradation of organic compounds in landfill soil covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2002-01-01

    High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero-order kin......High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero...

  8. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method.

    Science.gov (United States)

    Mønster, Jacob; Samuelsson, Jerker; Kjeldsen, Peter; Scheutz, Charlotte

    2015-01-01

    Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FTIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were chosen to represent the different stages of the lifetime of a landfill, including open, active, and closed covered landfills, as well as those with and without gas extraction for utilisation or flaring. Measurements also included landfills with biocover for oxidizing any fugitive methane. Methane emission rates ranged from 2.6 to 60.8 kg h(-1), corresponding to 0.7-13.2 g m(-2)d(-1), with the largest emission rates per area coming from landfills with malfunctioning gas extraction systems installed, and the smallest emission rates from landfills closed decades ago and landfills with an engineered biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41-81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills was 154 tons y(-1). This average was obtained from a few measurement campaigns conducted at each of the 15 landfills and extrapolating to annual emissions requires more measurements. Assuming that these landfills are representative of the average Danish landfill, the total emission from Danish landfills were calculated at 20,600 tons y(-1), which is significantly lower than the 33,300 tons y(-1) estimated for the national greenhouse gas inventory for 2011. Copyright © 2014. Published by Elsevier Ltd.

  9. Uncontrolled methane emissions from a MSW landfill surface: influence of landfill features and side slopes.

    Science.gov (United States)

    Di Trapani, Daniele; Di Bella, Gaetano; Viviani, Gaspare

    2013-10-01

    Sanitary landfills for Municipal Solid Waste (MSW) disposal have been identified as one of the most important anthropogenic sources of methane (CH4) emissions; in order to minimize its negative effects on the environment, landfill gas (LFG) recovery is a suitable tool to control CH4 emissions from a landfill site; further, the measurement of CH4 emissions can represent a good way to evaluate the effectiveness of LFG recovering systems. In general, LFG will escape through any faults in the landfill capping or in the LFG collection system. Indeed, some areas of the capping can be more permeable than others (e.g. portions of a side slope), especially when considering a temporarily capped zone (covered area that is not expected to receive any further waste for a period of at least 3 months, but for engineering reasons does not have a permanent cap yet). These areas, which are characterized by abnormal emissions, are usually defined as "features": in particular, a feature is a small, discrete area or an installation where CH4 emissions significantly differ from the surrounding zones. In the present study, the influence that specific features have on CH4 emissions has been investigated, based on direct measurements carried out in different seasons by means of a flux chamber to the case study of Palermo (IT) landfill (Bellolampo). The results showed that the flux chamber method is reliable and easy to perform, and the contoured flux maps, obtained by processing the measured data were found to be a suitable tool for identifying areas with abnormal (high) emissions. Further, it was found that a relationship between methane emission rates and landfill side slope can be established. Concerning the influence of the temporary HDPE cover system on CH4 recovery efficiency, it contributed to a significant decrease of the free surface area available for uncontrolled emissions; this aspect, coupled to the increase of the CH4 volumes collected by the LFG recovery system, led to a

  10. Evaluation of methane oxidation activity in waste biocover soil during landfill stabilization.

    Science.gov (United States)

    He, Ruo; Wang, Jing; Xia, Fang-Fang; Mao, Li-Juan; Shen, Dong-Sheng

    2012-10-01

    Biocover soil has been demonstrated to have high CH(4) oxidation capacity and is considered as a good alternative cover material to mitigate CH(4) emission from landfills, yet the response of CH(4) oxidation activity of biocover soils to the variation of CH(4) loading during landfill stabilization is poorly understood. Compared with a landfill cover soil (LCS) collected from Hangzhou Tianziling landfill cell, the development of CH(4) oxidation activity of waste biocover soil (WBS) was investigated using simulated landfill systems in this study. Although a fluctuation of influent CH(4) flux occurred during landfill stabilization, the WBS covers showed a high CH(4) removal efficiency of 94-96% during the entire experiment. In the LCS covers, the CH(4) removal efficiencies varied with the fluctuation of CH(4) influent flux, even negative ones occurred due to the storage of CH(4) in the soil porosities after the high CH(4) influent flux of ~137 gm(-2) d(-1). The lower concentrations of O(2) and CH(4) as well as the higher concentration of CO(2) were observed in the WBS covers than those in the LCS covers. The highest CH(4) oxidation rates of the two types of soil covers both occurred in the bottom layer (20-30 cm). Compared to the LCS, the WBS showed higher CH(4) oxidation activity and methane monooxygenase activity over the course of the experiment. Overall, this study indicated the WBS worked well for the fluctuation of CH(4) influent flux during landfill stabilization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Methane emission to the atmosphere from landfills in the Canary Islands

    Science.gov (United States)

    Hernández, Pedro A.; Asensio-Ramos, María; Rodríguez, Fátima; Alonso, Mar; García-Merino, Marta; Amonte, Cecilia; Melián, Gladys V.; Barrancos, José; Rodríguez-Delgado, Miguel A.; Hernández-Abad, Marta; Pérez, Erica; Alonso, Monica; Tassi, Franco; Raco, Brunella; Pérez, Nemesio M.

    2017-04-01

    . To quantify the the diffuse or fugitive CO2 and CH4 emission, gas efflux contour maps were constructed using sequential Gaussian simulation (sGs) as interpolation method. Considering that (a) there are 5 controlled landfills in the Canary Islands, (b) the average area of the 23 studied cells is 0.17 km2 and (c) the mean value of the CH4 emission estimated for the studied cells range between 6.9 and 8.1 kt km-2 y-1, the estimated CH4 emission to the atmosphere from landfills in the Canary Islands showed a range of 7.0 - 7.8 kt y-1. On the contrary and for the same period of time, the PRTR-Spain estimates CH4 emission in the order of 10.3 - 14.9 kt y-1, nearly two times our estimated value. This result demonstrates the need to perform direct measurements to estimate the surface fugitive emission of CH4 from landfills. Bingemer, H. G., and P. J. Crutzen (1987). The production of methane from solid wastes, J. Geophys. Res. 92, 2182-2187

  12. Differential Absorption Lidar (DIAL) Measurements of Landfill Methane Emissions

    Science.gov (United States)

    Innocenti, Fabrizio; Robinson, Rod; Gardiner, Tom; Finlayson, Andrew; Connor, Andy

    2017-04-01

    DIFFERENTIAL ABSORPTION LIDAR (DIAL) MEASURMENTS OF LANDFILL METHANE EMISSIONS F. INNOCENTI *, R.A. ROBINSON *, T.D. GARDINER, A. FINLAYSON *, A. CONNOR* * National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom Methane is one of the most important gaseous hydrocarbon species for both industrial and environmental reasons. Understanding and quantifying methane emissions to atmosphere is an important element of climate change research. Range-resolved infrared Differential Absorption Lidar (DIAL) measurements provide the means to map and quantify a wide range of different methane sources. DIAL is a powerful technique that can be used to track and quantify plumes emitted from area emission sources such as landfill sites, waste water treatment plants and petrochemical plants. By using lidar (light detection and ranging), the DIAL technique is able to make remote range-resolved single-ended measurements of the actual distribution of target gases in the atmosphere, with no disruption to normal site operational activities. DIAL provides 3D mapping of emission concentrations and quantification of emission rates for a wide range of target gases such as methane. The NPL DIAL laser source is operated alternately at two similar wavelengths. One of these, termed the "on-resonant wavelength", is chosen to be at a wavelength which is absorbed by the target species. The other, the "off-resonant wavelength", is chosen to be at a nearby wavelength which is not absorbed significantly by the target species. The two wavelengths are chosen to be close, so that the atmospheric scattering properties are the same for both wavelengths. They are also chosen so that any differential absorption due to other atmospheric species are minimised. Any measured difference in the returned signals is therefore due to absorption by the target gas. In the typical DIAL measurement configuration the mobile DIAL facility is positioned downwind of the area being

  13. Preliminary Evaluation of Method to Monitor Landfills Resilience against Methane Emission

    Science.gov (United States)

    Chusna, Noor Amalia; Maryono, Maryono

    2018-02-01

    Methane emission from landfill sites contribute to global warming and un-proper methane treatment can pose an explosion hazard. Stakeholder and government in the cities in Indonesia been found significant difficulties to monitor the resilience of landfill from methane emission. Moreover, the management of methane gas has always been a challenging issue for long waste management service and operations. Landfills are a significant contributor to anthropogenic methane emissions. This study conducted preliminary evaluation of method to manage methane gas emission by assessing LandGem and IPCC method. From the preliminary evaluation, this study found that the IPCC method is based on the availability of current and historical country specific data regarding the waste disposed of in landfills while from the LandGEM method is an automated tool for estimating emission rates for total landfill gas this method account total gas of methane, carbon dioxide and other. The method can be used either with specific data to estimate emissions in the site or default parameters if no site-specific data are available. Both of method could be utilize to monitor the methane emission from landfill site in cities of Central Java.

  14. Methane from landfills in Sweden. Final report; Metan fraan avfallsupplag i Sverige. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, Jerker [Chalmers Univ. of Technology, Goeteborg (Sweden); Galle, Bo; Boerjesson, Gunnar [Linkoeping Univ. (Sweden). Dept. of Water and Environmental Studies

    2006-01-15

    Three years of measurements has been conducted at seven Swedish landfills, quantifying methane emission, methane oxidation and methane production. The measurements reveal a large span between the sites in terms of gas recovery efficiency, 29-78% during normal operation. The fraction of the totally produced methane that is eventually leaking out to the atmosphere, was found to vary between 21-68%. Regarding methane oxidation, the study shows that of the methane going from the landfill interior towards the atmosphere, 6-43% is oxidised to CO{sub 2} in the different landfill cover soils. The highest methane oxidation was found in closed landfills during summertime, and the lowest at active landfills during wintertime, due to the strong temperature dependence of the oxidation. The equipment developed for methane emission measurements is based on time resolved concentration measurements with FTIR spectroscopy in combination with tracer gas releases from the surface of the landfill. The method has proven to be able to state the methane emission from the landfills with high accuracy, {+-}18% of the emission estimate (95% confidence interval). This is in line with what has been achieved in the literature for fugitive emission sources. The system has also proven to be useful for on site leak search. The precision for the methane production measurement was demonstrated to be high, down to {+-}4.2%. This enables trend studies and verification of improvement measures taken at the landfill sites. In terms of absolute accuracy for the production estimate, a 95%-confidence interval of down to (-6.0%, +6.2%) has been achieved. At times of strong methane oxidation the uncertainties increase, particularly if the emission is high. The gas production at the landfill site is therefore preferably measured during autumn-winter-spring when the temperature and the methane oxidation are low. The methane oxidation has been measured by carbon isotope technique, utilising the enrichment in

  15. Estimating methane gas generation from Devil's swamp landfill using greenhouse gas emission models

    Science.gov (United States)

    Adeyemi, Ayodeji Thompson

    Greenhouse gas (GHG) has been a key issue in the study, design, and management of landfills. Landfill gas (LFG) is considered either as a significant source of renewable energy (if extracted and processed accordingly) or significant source of pollution and risk (if not mitigated or processed). A municipal solid waste (MSW) landfill emits a significant amount of methane, a potent GHG. Thus, quantification and mitigation of GHG emissions is an important area of study in engineering and other sciences related to landfill technology and management. The present study will focus on estimating methane generation from Devils swamp landfill (DSLF), a closed landfill in Baton Rouge, LA. The landfill operated for 53 years (1940-1993) and contains both industrial and municipal waste products. Since the Clean Air Act of 1963, landfills are now classified as New Source Performance Standard (NSPS) waste (i.e., waste that will decompose to generate LFG). Currently, the DSLF is being used as source of renewable energy through the "Waste to Energy" program. For this study, to estimate the methane potential in the DSLF, it is important to determine the characteristics and classification of the landfill's wastes. The study uses and compares different GHG modeling tools---LandGEM, a multiphase model, and a simple first-order model---to estimate methane gas emission and compare results with the actual emissions from the DSLF. The sensitivity of the methane generation rate was analyzed by the methane generation models to assess the effects of variables such as initial conditions, specific growth rate, and reaction rate constants. The study concludes that methane (L0) and initial organic concentration in waste (k) are the most important parameters when estimating methane generation using the models.

  16. Assessing methods to estimate emissions of non-methane organic compounds from landfills

    DEFF Research Database (Denmark)

    Saquing, Jovita M.; Chanton, Jeffrey P.; Yazdani, Ramin

    2014-01-01

    The non-methane organic compound (NMOC) emission rate is used to assess compliance with landfill gas emission regulations by the United States Environmental Protection Agency (USEPA). A recent USEPA Report (EPA/600/R-11/033) employed a ratio method to estimate speciated NMOC emissions (i...... and speciated NMOC concentration and flux data from 2012/2013 field sampling of four landfills, an unpublished landfill study, and literature data from three landfills. The ratio method worked well for landfills with thin covers (.......e., individual NMOC emissions): speciated NMOC emissions=measured methane (CH4) emission multiplied by the ratio of individual NMOCs concentration relative to CH4 concentration (CNMOCs/CCH4) in the landfill header gas. The objectives of this study were to (1) evaluate the efficacy of the ratio method...

  17. Temperatures In Compost Landfill Covers As Result Of Methane Oxidation And Compost Respiration

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Merono, A. R.; Pedersen, Rasmus Broen

    2011-01-01

    This study investigated the influence of the temperature on methane (CH4) oxidation and respiration in compost sampled at a full scale biocover implemented at Klintholm landfill exhibiting high temperatures. Compost material was collected at Klintholm landfill and incubated with and without CH4...

  18. Effect of quantity and composition of waste on the prediction of annual methane potential from landfills.

    Science.gov (United States)

    Cho, Han Sang; Moon, Hee Sun; Kim, Jae Young

    2012-04-01

    A study was conducted to investigate the effect of waste composition change on the methane production in landfills. An empirical equation for the methane potential of the mixed waste is derived based on the methane potential values of individual waste components and the compositional ratio of waste components. A correction factor was introduced in the equation and was determined from the BMP and lysimeter tests. The equation and LandGEM were applied for a full size landfill and the annual methane potential was estimated. Results showed that the changes in quantity of waste affected the annual methane potential from the landfill more than the changes of waste composition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Methane oxidation at low temperatures in soil exposed to landfill gas

    DEFF Research Database (Denmark)

    Christophersen, Mette; Linderød, L.; Jensen, Pernille Erland

    2000-01-01

    Soil exposed to elevated methane concentrations can develop a high capacity for methane oxidation. Methane oxidation at high and low methane concentrations is performed by different types of methanotrops and therefore oxidation rates found at low temperatures at the atmospheric methane content...... cannot be extrapolated to soils exposed to high methane concentrations. Four sandy soils with different organic matter content (1-9% w/w) from two landfills in Denmark were investigated in batch experiments in the laboratory to determine the response of methane oxidation at low temperatures and different...... to gas recovery at smaller and older landfills in northern Europe. Equations have been developed that describe the dependency of temperature and soil moisture content for each soil. The oxidation rates depended significantly on the soils (and thereby organic matter content), temperature, and soil...

  20. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.

    Science.gov (United States)

    Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria

    2015-12-01

    Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Mitigation of methane emission from Fakse landfill using a biowindow system

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Fredenslund, Anders Michael; Chanton, Jeffrey

    2011-01-01

    Landfills are significant sources of atmospheric methane (CH4) that contributes to climate change, and therefore there is a need to reduce CH4 emissions from landfills. A promising cost efficient technology is to integrate compost into landfill covers (so-called “biocovers”) to enhance biological...... oxidation of CH4. A full scale biocover system to reduce CH4 emissions was installed at Fakse landfill, Denmark using composted yard waste as active material supporting CH4 oxidation. Ten biowindows with a total area of 5000m2 were integrated into the existing cover at the 12ha site. To increase CH4 load...

  2. Quantification of parameters influencing methane generation due to biodegradation of municipal solid waste in landfills and laboratory experiments.

    Science.gov (United States)

    Fei, Xunchang; Zekkos, Dimitrios; Raskin, Lutgarde

    2016-09-01

    The energy conversion potential of municipal solid waste (MSW) disposed of in landfills remains largely untapped because of the slow and variable rate of biogas generation, delayed and inefficient biogas collection, leakage of biogas, and landfill practices and infrastructure that are not geared toward energy recovery. A database consisting of methane (CH4) generation data, the major constituent of biogas, from 49 laboratory experiments and field monitoring data from 57 landfills was developed. Three CH4 generation parameters, i.e., waste decay rate (k), CH4 generation potential (L0), and time until maximum CH4 generation rate (tmax), were calculated for each dataset using U.S. EPA's Landfill Gas Emission Model (LandGEM). Factors influencing the derived parameters in laboratory experiments and landfills were investigated using multi-linear regression analysis. Total weight of waste (W) was correlated with biodegradation conditions through a ranked classification scheme. k increased with increasing percentage of readily biodegradable waste (Br0 (%)) and waste temperature, and reduced with increasing W, an indicator of less favorable biodegradation conditions. The values of k obtained in the laboratory were commonly significantly higher than those in landfills and those recommended by LandGEM. The mean value of L0 was 98 and 88L CH4/kg waste for laboratory and field studies, respectively, but was significantly affected by waste composition with ranges from 10 to 300L CH4/kg. tmax increased with increasing percentage of biodegradable waste (B0) and W. The values of tmax in landfills were higher than those in laboratory experiments or those based on LandGEM's recommended parameters. Enhancing biodegradation conditions in landfill cells has a greater impact on improving k and tmax than increasing B0. Optimizing the B0 and Br0 values of landfilled waste increases L0 and reduces tmax. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Methane Gas Utilization Project from Landfill at Ellery (NY)

    Energy Technology Data Exchange (ETDEWEB)

    Pantelis K. Panteli

    2012-01-10

    Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

  4. Landfill operation and waste management procedures in the reduction of methane and leachate pollutant emissions from municipal solid waste landfills

    Energy Technology Data Exchange (ETDEWEB)

    Jokela, J.

    2002-07-01

    The objective of the present research was to find ways of minimising emissions from municipal solid waste (MSW) landfills by means of laboratory experiments. During anaerobic incubation for 237 days, the grey waste components produced between 120 and 320 m{sup 3}CH{sub 4} tTS{sup -1} and between 0.32 and 3.5 kg NH{sub 4}-N tTS{sup -1} and the first-order rate constant of degradation ranged from 0.021 and 0.058 d{sup -1}. High amounts of COD and NH{sub 4}-N were observed in the leachate of grey waste in all the procedures tested during lysimeter experiments lasting 573 days. In the 10- year-old landfilled MSW, a high rate of methanisation was achieved with rainwater addition and leachate recirculation over 538 days, whereas initially pre-wetted grey waste and landfilled MSW were rapidly acidified, thus releasing a high amount of COD into the leachate. In batch assays, the grey waste produced a methane potential amounting to 70-85 % of the total methane potential of the grey waste plus putrescibles. In low moisture conditions, i.e. below 55%, methane production was delayed in the old landfill waste and prevented in the grey waste. In the emission potential study with five waste types, putrescibles produced 410 m{sup 3}CH{sub 4} tTS{sup -1} and 3.6 kgNH{sub 4}-N tTS{sup -1}, whereas composted putrescibles produced 41 m{sup 3}CH{sub 4} tVS{sup -1}, and 2.0 kgNH{sub 4}-N tTS{sup -1}. The remains of putrescibles probably caused the leaching potential of 2.1 kgNH{sub 4}-N tTS{sup -1} in the grey waste. Aeration for 51 days in lysimeters reduced the CH{sub 4} potential of putrescibles by more than 68 % and of the lysimeter landfilled grey waste by 50 %, indicating the potential of aeration for CH4 emission reduction. Nitrogen removal of landfill leachate was studied in the laboratory as well as on-site. Over 90 % nitrification of leachate was obtained with loading rates between 100 and 130 mgNH{sub 4}-N l{sup -1} d-1 at 25 deg C. Nitrified leachate was denitrified with a

  5. Assessing methods to estimate emissions of non-methane organic compounds from landfills.

    Science.gov (United States)

    Saquing, Jovita M; Chanton, Jeffrey P; Yazdani, Ramin; Barlaz, Morton A; Scheutz, Charlotte; Blake, Don R; Imhoff, Paul T

    2014-11-01

    The non-methane organic compound (NMOC) emission rate is used to assess compliance with landfill gas emission regulations by the United States Environmental Protection Agency (USEPA). A recent USEPA Report (EPA/600/R-11/033) employed a ratio method to estimate speciated NMOC emissions (i.e., individual NMOC emissions): speciated NMOC emissions=measured methane (CH4) emission multiplied by the ratio of individual NMOCs concentration relative to CH4 concentration (C(NMOCs)/C(CH4)) in the landfill header gas. The objectives of this study were to (1) evaluate the efficacy of the ratio method in estimating speciated NMOC flux from landfills; (2) determine for what types of landfills the ratio method may be in error and why, using recent field data to quantify the spatial variation of (C(NMOCs)/C(CH4)) in landfills; and (3) formulate alternative models for estimating NMOC emissions from landfills for cases in which the ratio method results in biased estimates. This study focuses on emissions through landfill covers measured with flux chambers and evaluates the utility of the ratio method for estimating NMOC emission through this pathway. Evaluation of the ratio method was performed using CH4 and speciated NMOC concentration and flux data from 2012/2013 field sampling of four landfills, an unpublished landfill study, and literature data from three landfills. The ratio method worked well for landfills with thin covers (landfill covers measured with flux chambers, results indicate the current USEPA approach for estimating NMOC emissions may overestimate speciated NMOC emission ⩾10× for many compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Turning a Liability into an Asset: Landfill Methane Recovery in India

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Solid waste disposal sites are not often seen as opportunities for energy solutions. The waste that is disposed in open dumps and landfills generates methane and other gases as it decomposes, causing concerns about explosions, odours, and, increasingly, about the contribution of methane to global climate change. However, the liability of landfill gas (LFG) can be turned into an asset. Many countries regularly capture LFG as a strategy to improve landfill safety, generate electricity, reduce greenhouse gas emissions, and to earn carbon emission reduction credits (e.g. 40% for the United States, 25% for Australia). Many projects in developing countries are taking advantage of the United Nations Framework Convention on Climate Change (UNFCCC) Clean Development Mechanism (CDM) to earn carbon credits by capturing and combusting methane (e.g., the Sudokwon Landfill in Republic of South Korea, the Bandeirantes Landfill in Brazil and the Nanjing Tianjingwa Landfill in China). These Landfill Gas to Energy (LFGE) projects provide a valuable service to the environment and a potentially profitable business venture, providing benefits to local and regional communities.

  7. Towards developing a representative biochemical methane potential (BMP) assay for landfilled municipal solid waste - A review.

    Science.gov (United States)

    Pearse, Lauretta Feyisetan; Hettiaratchi, Joseph Patrick; Kumar, Sunil

    2018-04-01

    The applicability of slurry-based (semi-liquids) BMP assay in determining biodegradation kinetic parameters of landfilled waste is critically reviewed. Factors affecting the amount and rate of methane (CH 4 ) production during anaerobic degradation of municipal solid waste (MSW) and optimal values of these factors specific to landfill conditions are presented. The history of conventional BMP, and some existing procedures are reviewed. A landfill BMP (LBMP) assay is proposed that manipulates some of the key factors, such as moisture content, particle and sample size, that affects the rate of CH 4 production and the CH 4 generation potential of landfilled MSW (LMSW). By selecting proper conditions for these factors, a representative BMP assay could be conducted to ensure accurate determinations of CH 4 potential and the kinetic parameters k; first order rate coefficient and L o ; methane generation potential. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  8. Lateral gas transport in soil adjacent to an old landfill: factors governing emissions and methane oxidation

    DEFF Research Database (Denmark)

    Christophersen, Mette; Kjeldsen, Peter; Holst, Helle

    2001-01-01

    Field investigations of lateral gas transport and subsequent emissions in soil adjacent to an old landfill in Denmark have been conducted during a one-year period. A significant seasonal variation in the emissions with high carbon dioxide and low methane fluxes in the summer (May to October......) was observed. This was attributed to methane oxidation. Diurnal measurements during a drop in barometric pressure showed that the fluxes of landfill gas changed dramatically within a very short time. The concentrations and the soil moisture content in the upper part of the soil profile had significant...... influence on the fluxes, as did the distance from the landfill border, temperature, barometric pressure and the pressure gradient. Statistical analyses proved that soil moisture described the largest part of the variation. No methane at all emitted during the summer. Calculations and isotope analyses showed...

  9. Specific model for the estimation of methane emission from municipal solid waste landfills in India.

    Science.gov (United States)

    Kumar, Sunil; Nimchuk, Nick; Kumar, Rakesh; Zietsman, Josias; Ramani, Tara; Spiegelman, Clifford; Kenney, Megan

    2016-09-01

    The landfill gas (LFG) model is a tool for measuring methane (CH4) generation rates and total CH4 emissions from a particular landfill. These models also have various applications including the sizing of the LFG collection system, evaluating the benefits of gas recovery projects, and measuring and controlling gaseous emissions. This research paper describes the development of a landfill model designed specifically for Indian climatic conditions and the landfill's waste characteristics. CH4, carbon dioxide (CO2), oxygen (O2) and temperature were considered as the prime factor for the development of this model. The developed model was validated for three landfill sites in India: Shillong, Kolkata, and Jaipur. The autocorrelation coefficient for the model was 0.915, while the R(2) value was 0.429. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Evaluation of respiration in compost landfill biocovers intended for methane oxidation

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Pedicone, Alessio; Pedersen, Gitte Bukh

    2011-01-01

    A low-cost alternative approach to reduce landfill gas (LFG) emissions is to integrate compost into the landfill cover design in order to establish a biocover that is optimized for biological oxidation of methane (CH4). A laboratory and field investigation was performed to quantify respiration...... in an experimental compost biocover in terms of oxygen (O2) consumption and carbon dioxide (CO2) production and emission rates. O2 consumption and CO2 production rates were measured in batch and column experiments containing compost sampled from a landfill biowindow at Fakse landfill in Denmark. Column gas...... the compost layer, and CO2 concentrations exceeded 20% at a depth of 40cm below the surface of the biowindow. Overall, the results showed that respiration of compost material placed in biowindows might generate significant CO2 emissions. In landfill compost covers, methanotrophs carrying out CH4 oxidation...

  11. Operating a fuel cell using landfill gas

    Energy Technology Data Exchange (ETDEWEB)

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  12. USING LANDFILL GAS IN FUEL CELLS - A STEP CLOSER TO COMMERICAL REALITY

    Science.gov (United States)

    The article discusses Phase II and Phase III results of a U.S. EPA program underway at International Fuel Cells Corporation. The program involves controlling methane emissions from landfills using a fuel cell. The fuel cell would reduce air emissions affecting global warming, aci...

  13. Estimation of methane emission rate changes using age-defined waste in a landfill site.

    Science.gov (United States)

    Ishii, Kazuei; Furuichi, Toru

    2013-09-01

    Long term methane emissions from landfill sites are often predicted by first-order decay (FOD) models, in which the default coefficients of the methane generation potential and the methane generation rate given by the Intergovernmental Panel on Climate Change (IPCC) are usually used. However, previous studies have demonstrated the large uncertainty in these coefficients because they are derived from a calibration procedure under ideal steady-state conditions, not actual landfill site conditions. In this study, the coefficients in the FOD model were estimated by a new approach to predict more precise long term methane generation by considering region-specific conditions. In the new approach, age-defined waste samples, which had been under the actual landfill site conditions, were collected in Hokkaido, Japan (in cold region), and the time series data on the age-defined waste sample's methane generation potential was used to estimate the coefficients in the FOD model. The degradation coefficients were 0.0501/y and 0.0621/y for paper and food waste, and the methane generation potentials were 214.4 mL/g-wet waste and 126.7 mL/g-wet waste for paper and food waste, respectively. These coefficients were compared with the default coefficients given by the IPCC. Although the degradation coefficient for food waste was smaller than the default value, the other coefficients were within the range of the default coefficients. With these new coefficients to calculate methane generation, the long term methane emissions from the landfill site was estimated at 1.35×10(4)m(3)-CH(4), which corresponds to approximately 2.53% of the total carbon dioxide emissions in the city (5.34×10(5)t-CO(2)/y). Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Comparison of Field Measurements to Methane Emissions Models at a New Landfill

    Science.gov (United States)

    Due to both technical and economic limitations, estimates of methane emissions from landfills rely primarily on models. While models are easy to implement, there is uncertainty due to the use of parameters that are difficult to validate. The objective of this research was to comp...

  15. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources

    Directory of Open Access Journals (Sweden)

    Cai Bo-Feng

    2014-01-01

    Citation: Cai, B.-F., Liu, J.-G., Gao, Q.-X., et al., 2014. Estimation of methane emissions from municipal solid waste landfills in China based on point emission sources. Adv. Clim. Change Res. 5(2, doi: 10.3724/SP.J.1248.2014.081.

  16. The effects of leachate recirculation with supplemental water addition on methane production and waste decomposition in a simulated tropical landfill.

    Science.gov (United States)

    Sanphoti, N; Towprayoon, S; Chaiprasert, P; Nopharatana, A

    2006-10-01

    In order to increase methane production efficiency, leachate recirculation is applied in landfills to increase moisture content and circulate organic matter back into the landfill cell. In the case of tropical landfills, where high temperature and evaporation occurs, leachate recirculation may not be enough to maintain the moisture content, therefore supplemental water addition into the cell is an option that could help stabilize moisture levels as well as stimulate biological activity. The objectives of this study were to determine the effects of leachate recirculation and supplemental water addition on municipal solid waste decomposition and methane production in three anaerobic digestion reactors. Anaerobic digestion with leachate recirculation and supplemental water addition showed the highest performance in terms of cumulative methane production and the stabilization period time required. It produced an accumulated methane production of 54.87 l/kg dry weight of MSW at an average rate of 0.58 l/kg dry weight/d and reached the stabilization phase on day 180. The leachate recirculation reactor provided 17.04 l/kg dry weight at a rate of 0.14l/kg dry weight/d and reached the stabilization phase on day 290. The control reactor provided 9.02 l/kg dry weight at a rate of 0.10 l/kg dry weight/d, and reached the stabilization phase on day 270. Increasing the organic loading rate (OLR) after the waste had reached the stabilization phase made it possible to increase the methane content of the gas, the methane production rate, and the COD removal. Comparison of the reactors' efficiencies at maximum OLR (5 kgCOD/m(3)/d) in terms of the methane production rate showed that the reactor using leachate recirculation with supplemental water addition still gave the highest performance (1.56 l/kg dry weight/d), whereas the leachate recirculation reactor and the control reactor provided 0.69 l/kg dry weight/d and 0.43 l/kg dry weight/d, respectively. However, when considering

  17. Spatial variability of soil gas concentration and methane oxidation capacity in landfill covers.

    Science.gov (United States)

    Röwer, Inga Ute; Geck, Christoph; Gebert, Julia; Pfeiffer, Eva-Maria

    2011-05-01

    In order to devise design criteria for biocovers intended to enhance the microbial oxidation of landfill methane it is critical to understand the factors influencing gas migration and methane oxidation in landfill cover soils. On an old municipal solid waste landfill in north-western Germany soil gas concentrations (10, 40, 90 cm depth), topsoil methane oxidation capacity and soil properties were surveyed at 40 locations along a 16 m grid. As soil properties determine gas flow patterns it was hypothesized that the variability in soil gas composition and the subsequent methanotrophic activity would correspond to the variability of soil properties. Methanotrophic activity was found to be subject to high spatial variability, with values ranging between 0.17 and 9.80 g CH(4)m(-2)h(-1)(.) Considering the current gas production rate of 0.03 g CH(4)m(-2)h(-1), the oxidation capacity at all sampled locations clearly exceeded the flux to the cover, and can be regarded as an effective instrument for mitigating methane fluxes. The methane concentration in the cover showed a high spatial heterogeneity with values between 0.01 and 0.32 vol.% (10 cm depth), 22.52 vol.% (40 cm), and 36.85 vol.% (90 cm). The exposure to methane raised the oxidation capacity, suggested by a statistical correlation to an increase in methane concentration at 90 cm depth. Methane oxidation capacity was further affected by the methanotroph bacteria pH optimum and nutrient availability, and increased with decreasing pH towards neutrality, and increased with soluble ion concentration). Soil methane and carbon dioxide concentration increased with lower flow resistance of the cover, as represented by the soil properties of a reduced bulk density, increase in air capacity and in relative ground level. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Atmospheric modeling to assess wind dependence in tracer dilution method measurements of landfill methane emissions.

    Science.gov (United States)

    Taylor, Diane M; Chow, Fotini K; Delkash, Madjid; Imhoff, Paul T

    2018-03-01

    The short-term temporal variability of landfill methane emissions is not well understood due to uncertainty in measurement methods. Significant variability is seen over short-term measurement campaigns with the tracer dilution method (TDM), but this variability may be due in part to measurement error rather than fluctuations in the actual landfill emissions. In this study, landfill methane emissions and TDM-measured emissions are simulated over a real landfill in Delaware, USA using the Weather Research and Forecasting model (WRF) for two emissions scenarios. In the steady emissions scenario, a constant landfill emissions rate is prescribed at each model grid point on the surface of the landfill. In the unsteady emissions scenario, emissions are calculated at each time step as a function of the local surface wind speed, resulting in variable emissions over each 1.5-h measurement period. The simulation output is used to assess the standard deviation and percent error of the TDM-measured emissions. Eight measurement periods are simulated over two different days to look at different conditions. Results show that standard deviation of the TDM- measured emissions does not increase significantly from the steady emissions simulations to the unsteady emissions scenarios, indicating that the TDM may have inherent errors in its prediction of emissions fluctuations. Results also show that TDM error does not increase significantly from the steady to the unsteady emissions simulations. This indicates that introducing variability to the landfill emissions does not increase errors in the TDM at this site. Across all simulations, TDM errors range from -15% to 43%, consistent with the range of errors seen in previous TDM studies. Simulations indicate diurnal variations of methane emissions when wind effects are significant, which may be important when developing daily and annual emissions estimates from limited field data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. FUEL CELL ENERGY RECOVERY FROM LANDFILL GAS

    Science.gov (United States)

    International Fuel Cells Corporation is conducting a US Environmental Protection Agency (EPA) sponsored program to demonstrate energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The US EPA is interested in fuel cells for this application b...

  20. Landfills

    Science.gov (United States)

    To provide information on landfills, including laws/regulations, and technical guidance on municipal solid waste, hazardous waste, industrial, PCBs, and construction and debris landfills. To provide resources for owners and operators of landfills.

  1. Livingston Parish Landfill Methane Recovery Project (Feasibility Study)

    Energy Technology Data Exchange (ETDEWEB)

    White, Steven

    2012-11-15

    The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report

  2. Methane emissions from landfill: influence of vegetation and weather conditions.

    Science.gov (United States)

    Bian, Rongxing; Xin, Danhui; Chai, Xiaoli

    2018-02-22

    Vegetation plays an important role in CH 4 transport and oxidation in landfill cover soil. This study investigated CH 4 emission fluxes in two landfills with different surface coverage conditions and it found that the CH 4 emission fluxes presented spatial and temporal disparities. A significant discrepancy in CH 4 emission flux between day and night in areas covered with Kochia sieversiana indicated that enhanced diffusion induced by rising temperature was the main mechanism for CH 4 transport during daytime. A significant increase of CH 4 emission flux after the K. sieversiana and Suaeda glauca plants were cut indicated that these plants provide greater contributions to CH 4 oxidation than to CH 4 transport. Diel CH 4 emission flux was found closely correlated with the climatic conditions. Diffusion was determined as the main mechanism for CH 4 transport at daytime in bare area, mediated by solar radiation and air temperature. Diffusion and plant-mediated transport by convection was established as the main transport mechanism in areas covered with K. sieversiana. Our results further the understanding of both the CH 4 emission mechanism and the impact of vegetation on CH 4 oxidation, transport, and emission, which will benefit the development of a reliable model for landfill CH 4 emissions.

  3. Hotspot detection and spatial distribution of methane emissions from landfills by a surface probe method.

    Science.gov (United States)

    Gonzalez-Valencia, Rodrigo; Magana-Rodriguez, Felipe; Cristóbal, Jordi; Thalasso, Frederic

    2016-09-01

    A surface probe method previously developed was used to detect hotspots and to determine spatial variation of methane (CH4) emissions from three landfills located in Mexico, with an intermediate or a final cover, as well as with or without a landfill gas collection system. The method was effective in the three landfills and allowed mapping of CH4 emissions with a resolution of 24-64 measurements per hectare, as well as the detection and quantification of hotspots, with a moderate experimental effort. In the three selected landfills, CH4 emissions were quantified to 10, 72, and 575gm(-2)d(-1). Two straightforward parameters describing the spatial distribution of CH4 emissions were also developed. The first parameter provides the percentage of area responsible for a given percentage of total emissions, while the second parameter assigns a numerical value to flux homogeneity. Together, the emissions map and the spatial distribution parameters offer an appropriate tool to landfill operators willing to begin recovering CH4 emissions or to improve the effectiveness of an existing recovery system. This method may therefore help to reduce the greenhouse gas footprint of landfills, which are still the primary option for waste management in developing countries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Screening method to assess the greenhouse gas mitigation potential of old landfills, based on downwind methane concentration measurements

    DEFF Research Database (Denmark)

    Fredenslund, Anders Michael; Mønster, J.; Kjeldsen, Peter

    2017-01-01

    A nationwide effort is taking place in Denmark to mitigate methane emissions from landfills, by using biocovers. A large number of older landfills were found to be potential candidates for biocover implementation, but very little information was available for these sites to help evaluate if signi...

  5. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover

    NARCIS (Netherlands)

    Kim, G.W.; Ho, A.; Kim, P.J.; Kim, Sang Yun

    2016-01-01

    The landfilling of municipal solid waste is a significant source of atmospheric methane (CH4), contributing up to 20% of total anthropogenic CH4 emissions. The evapotranspiration (ET) cover system, an alternative final cover system in waste landfills, has been considered to be a promising way to

  6. Reduction of methane emission from landfills using bio-mitigation systems – from lab tests to full scale implementation

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    Landfills are significant sources of methane, which contributes to climate change. As an alternative to mitigation by gas utilization systems, bio-mitigation systems may be implemented. Such systems are based on microbial methane oxidation in full surface biological covers, so-called biocovers......, or open or closed bed biofilter systems. The objective of this paper is to describe the relationship between research on process understanding of the oxidation of landfill gas contained methane and the up-scale to full bio-mitigation systems implemented at landfills. The oxidation of methane is controlled...... due to self-heating processes. Bio-mitigation can be used as a stand-alone technology or combined with active or passive gas collection. When implementing bio-mitigation systems focus should be on additional fugitive methane emissions or the presence of uncontrolled point releases. A protocol...

  7. Dynamics of Non-Controlled Emission of Methane from Arico's landfill, Tenerife, Canary Islands

    Science.gov (United States)

    Pérez, C.; Echeita, A.; Lima, R.; Nolasco, D.; Salazar, J.; Hernández, P.; Pérez, N.

    2002-12-01

    Landfills are one of the largest anthropogenic source of methane emissions to the atmosphere. In order to achieve CH4 emission control at landfills, avoiding gas migration into the near surroundings and reducing gas emission through its surface, landfill gas has to be collected and either flared or utilized by means of gas extraction systems. However, these systems might not reach a high efficiency and non-controlled biogenic CH4 emissions to the atmosphere could be an important fraction of the CH4 produced by a landfill. The goal of this study is to evaluate the non-controlled biogenic CH4 emission from Arico's landfill (0.33 Km2; Tenerife, Canary Islands) where urban solid waste disposal rate is about 1,500 td-1. In order to estimate the temporal evolution of non-controlled biogenic CH4 emissions from Arico's landfill, two surface flux surveys of about 500 sampling sites were performed in 1999 and 2001. Non-controlled biogenic CO2 emission rate measurements were performed by means of a NDIR spectrophotometer according to the accumulation chamber method. At each sampling site, landfill gases were also collected at 40 cm deep using a metallic probe. Samples were analyzed within 24 hours for major, minor and trace gas components using a VARIAN microGC QUAD. Non-controlled biogenic CH4 emission rate was estimated by multiplying surface CO2 efflux times CO2/CH4 weight ratio at each sampling site, respectively. Surface CH4 efflux rates for the 1999 and 2001 surveys ranged from negligible values up to 1,647.3 and 103.2 gm-2d-1, respectively. Spatial distribution of the surface CH4 efflux rate showed a non-uniform pattern in the landfill for both surveys. This observation is related to the actual use of the landfill, which is still operative, as well as to the evolution of the landfill's heterogeneity and anisotropy through time. For the 1999 and 2001 surveys, the total output of non-controlled biogenic CH4 emission from Arico's landfill were estimated about 15.7 and 1

  8. Application of portable gas detector in point and scanning method to estimate spatial distribution of methane emission in landfill.

    Science.gov (United States)

    Lando, Asiyanthi Tabran; Nakayama, Hirofumi; Shimaoka, Takayuki

    2017-01-01

    Methane from landfills contributes to global warming and can pose an explosion hazard. To minimize these effects emissions must be monitored. This study proposed application of portable gas detector (PGD) in point and scanning measurements to estimate spatial distribution of methane emissions in landfills. The aims of this study were to discover the advantages and disadvantages of point and scanning methods in measuring methane concentrations, discover spatial distribution of methane emissions, cognize the correlation between ambient methane concentration and methane flux, and estimate methane flux and emissions in landfills. This study was carried out in Tamangapa landfill, Makassar city-Indonesia. Measurement areas were divided into basic and expanded area. In the point method, PGD was held one meter above the landfill surface, whereas scanning method used a PGD with a data logger mounted on a wire drawn between two poles. Point method was efficient in time, only needed one person and eight minutes in measuring 400m 2 areas, whereas scanning method could capture a lot of hot spots location and needed 20min. The results from basic area showed that ambient methane concentration and flux had a significant (pdistribution of methane emissions in the expanded area by using Kriging method. The average of estimated flux from scanning method was 71.2gm -2 d -1 higher than 38.3gm -2 d -1 from point method. Further, scanning method could capture the lower and higher value, which could be useful to evaluate and estimate the possible effects of the uncontrolled emissions in landfill. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Landfills

    Data.gov (United States)

    Vermont Center for Geographic Information — This data set defines both current and historic landfills/waste disposal storage sites for the State of Vermont. Historic landfills were identified with the...

  10. Comparison of first-order-decay modeled and actual field measured municipal solid waste landfill methane data.

    Science.gov (United States)

    Amini, Hamid R; Reinhart, Debra R; Niskanen, Antti

    2013-12-01

    The first-order decay (FOD) model is widely used to estimate landfill gas generation for emissions inventories, life cycle assessments, and regulation. The FOD model has inherent uncertainty due to underlying uncertainty in model parameters and a lack of opportunities to validate it with complete field-scale landfill data sets. The objectives of this paper were to estimate methane generation, fugitive methane emissions, and aggregated collection efficiency for landfills through a mass balance approach using the FOD model for gas generation coupled with literature values for cover-specific collection efficiency and methane oxidation. This study is unique and valuable because actual field data were used in comparison with modeled data. The magnitude and variation of emissions were estimated for three landfills using site-specific model parameters and gas collection data, and compared to vertical radial plume mapping emissions measurements. For the three landfills, the modeling approach slightly under-predicted measured emissions and over-estimated aggregated collection efficiency, but the two approaches yielded statistically equivalent uncertainties expressed as coefficients of variation. Sources of uncertainty include challenges in large-scale field measurement of emissions and spatial and temporal fluctuations in methane flow balance components (generated, collected, oxidized, and emitted methane). Additional publication of sets of field-scale measurement data and methane flow balance components will reduce the uncertainty in future estimates of fugitive emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Evaluating the biochemical methane potential (BMP) of low-organic waste at Danish landfills.

    Science.gov (United States)

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2014-11-01

    The biochemical methane potential (BMP) is an essential parameter when using first order decay (FOD) landfill gas (LFG) generation models to estimate methane (CH4) generation from landfills. Different categories of waste (mixed, shredder and sludge waste) with a low-organic content and temporarily stored combustible waste were sampled from four Danish landfills. The waste was characterized in terms of physical characteristics (TS, VS, TC and TOC) and the BMP was analyzed in batch tests. The experiment was set up in triplicate, including blank and control tests. Waste samples were incubated at 55°C for more than 60 days, with continuous monitoring of the cumulative CH4 generation. Results showed that samples of mixed waste and shredder waste had similar BMP results, which was in the range of 5.4-9.1 kg CH4/ton waste (wet weight) on average. As a calculated consequence, their degradable organic carbon content (DOCC) was in the range of 0.44-0.70% of total weight (wet waste). Numeric values of both parameters were much lower than values of traditional municipal solid waste (MSW), as well as default numeric values in current FOD models. The sludge waste and temporarily stored combustible waste showed BMP values of 51.8-69.6 and 106.6-117.3 kg CH4/ton waste on average, respectively, and DOCC values of 3.84-5.12% and 7.96-8.74% of total weight. The same category of waste from different Danish landfills did not show significant variation. This research studied the BMP of Danish low-organic waste for the first time, which is important and valuable for using current FOD LFG generation models to estimate realistic CH4 emissions from modern landfills receiving low-organic waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Estimation of microbial methane generation and oxidation rates in the municipal solid waste landfill of Kaluga city, Russia.

    Science.gov (United States)

    Zyakun, Anatoly M; Muravyev, Artem I; Baskunov, Boris P; Laurinavichius, Kestutis S; Zakharchenko, Vladimir N; Peshenko, Valentina P; Lykov, Igor N; Shestakova, Galina A

    2010-03-01

    Using a theoretical model and mass isotopic balance, biogas (methane and CO(2)) released from buried products at their microbial degradation was analysed in the landfill of municipal and non-toxic industrial solid organic waste near Kaluga city, Russia. The landfill contains about 1.34 x 10(6) tons of waste buried using a 'sandwich technique' (successive application of sand-clay and waste layers). The delta(13)C values of biogenic methane with respect to CO(2) were-56.8 (+/-2.5) per thousand, whereas the delta(13)C of CO(2) peaked at+9.12 per thousand (+1.4+/-2.3 per thousand on average), reflecting a virtual fractionation of carbon isotopes in the course of bacterial CO(2) reduction at the landfill body. After passing through the aerated soil layers, methane was partially oxidised and characterised by delta(13)C in the range of-50.6 to-38.2 per thousand, evidencing enrichment in (13)C, while the released carbon dioxide had delta(13)C of-23.3 to-4.04 per thousand, respectively. On the mass isotopic balance for the delta(13)C values, the methane production in the landfill anaerobic zone and the methane emitted through the aerated landfill surface to the atmosphere, the portion of methane oxidised by methanotrophic bacteria was calculated to be from 10 to 40% (averaged about 25%). According to the theoretical estimation and field measurements, the annual rate of methane production in the landfill reached about 2.9(+/-1.4)x10(9) g C CH(4) yr(-1) or 5.3(+/-2.6)x10(6) m(3) CH(4) yr(-1). The average rates of methane production in the landfill and methane emission from landfill to the atmosphere are estimated as about 53 (+/-26) g C CH(4) m(-2) d(-1) (or 4 (+/-2) mol CH(4) m(-2) d(-1)) and 33 (+/-12) g C CH(4) m(-2) d(-1) (or 2.7 (+/-1) mol CH(4) m(-2) d(-1)), respectively. The calculated part of methane consumed by methanotrophic bacteria in the aerated part of the landfill was 13(+/-7) g C CH(4) m(-2) d(-1) (or 1.1(+/-0.6) mol CH(4) m(-2) d(-1)) on average.

  13. Methane oxidation and attenuation of sulphur compounds in landfill top cover systems: Lab-scale tests.

    Science.gov (United States)

    Raga, Roberto; Pivato, Alberto; Lavagnolo, Maria Cristina; Megido, Laura; Cossu, Raffaello

    2018-03-01

    In this study, a top cover system is investigated as a control for emissions during the aftercare of new landfills and for old landfills where biogas energy production might not be profitable. Different materials were studied as landfill cover system in lab-scale columns: mechanical-biological pretreated municipal solid waste (MBP); mechanical-biological pretreated biowaste (PB); fine (PBS f ) and coarse (PBS c ) mechanical-biological pretreated mixtures of biowaste and sewage sludge, and natural soil (NS). The effectiveness of these materials in removing methane and sulphur compounds from a gas stream was tested, even coupled with activated carbon membranes. Concentrations of CO 2 , CH 4 , O 2 , N 2 , H 2 S and mercaptans were analysed at different depths along the columns. Methane degradation was assessed using mass balance and the results were expressed in terms of methane oxidation rate (MOR). The highest maximum and mean MOR were observed for MBP (17.2gCH 4 /m 2 /hr and 10.3gCH 4 /m 2 /hr, respectively). Similar values were obtained with PB and PBS c . The lowest values of MOR were obtained for NS (6.7gCH 4 /m 2 /hr) and PBS f (3.6gCH 4 /m 2 /hr), which may be due to their low organic content and void index, respectively. Activated membranes with high load capacity did not seem to have an influence on the methane oxidation process: MBP coupled with 220g/m 2 and 360g/m 2 membranes gave maximum MOR of 16.5gCH 4 /m 2 /hr and 17.4gCH 4 /m 2 /hr, respectively. Activated carbon membranes proved to be very effective on H 2 S adsorption. Furthermore, carbonyl sulphide, ethyl mercaptan and isopropyl mercaptan seemed to be easily absorbed by the filling materials. Copyright © 2017. Published by Elsevier B.V.

  14. Methane emissions from a Californian landfill, determined from airborne remote sensing and in situ measurements

    Science.gov (United States)

    Krautwurst, Sven; Gerilowski, Konstantin; Jonsson, Haflidi H.; Thompson, David R.; Kolyer, Richard W.; Iraci, Laura T.; Thorpe, Andrew K.; Horstjann, Markus; Eastwood, Michael; Leifer, Ira; Vigil, Samuel A.; Krings, Thomas; Borchardt, Jakob; Buchwitz, Michael; Fladeland, Matthew M.; Burrows, John P.; Bovensmann, Heinrich

    2017-09-01

    Fugitive emissions from waste disposal sites are important anthropogenic sources of the greenhouse gas methane (CH4). As a result of the growing world population and the recognition of the need to control greenhouse gas emissions, this anthropogenic source of CH4 has received much recent attention. However, the accurate assessment of the CH4 emissions from landfills by modeling and existing measurement techniques is challenging. This is because of inaccurate knowledge of the model parameters and the extent of and limited accessibility to landfill sites. This results in a large uncertainty in our knowledge of the emissions of CH4 from landfills and waste management. In this study, we present results derived from data collected during the research campaign COMEX (CO2 and MEthane eXperiment) in late summer 2014 in the Los Angeles (LA) Basin. One objective of COMEX, which comprised aircraft observations of methane by the remote sensing Methane Airborne MAPper (MAMAP) instrument and a Picarro greenhouse gas in situ analyzer, was the quantitative investigation of CH4 emissions. Enhanced CH4 concentrations or CH4 plumes were detected downwind of landfills by remote sensing aircraft surveys. Subsequent to each remote sensing survey, the detected plume was sampled within the atmospheric boundary layer by in situ measurements of atmospheric parameters such as wind information and dry gas mixing ratios of CH4 and carbon dioxide (CO2) from the same aircraft. This was undertaken to facilitate the independent estimation of the surface fluxes for the validation of the remote sensing estimates. During the COMEX campaign, four landfills in the LA Basin were surveyed. One landfill repeatedly showed a clear emission plume. This landfill, the Olinda Alpha Landfill, was investigated on 4 days during the last week of August and first days of September 2014. Emissions were estimated for all days using a mass balance approach. The derived emissions vary between 11.6 and 17.8 kt CH4 yr-1

  15. Moving Up to the Top of the Landfill: A Field-Validated, Science-Based Methane Emissions Inventory Model for California Landfills

    Science.gov (United States)

    California is typically at the forefront of innovative planning & regulatory strategies for environmental protection in the U.S. Two years ago, a research project was initiated by the California Energy Commission to develop an improved method for landfill methane emissions for the state greenhouse ...

  16. EPA's landfill methane outreach program: demonstration of the new E-PLUS economic evaluation model: future trends and activities

    International Nuclear Information System (INIS)

    Kerr, T.; Paleyanda, P.; Forbes, C.D.

    1997-01-01

    Landfills contain most of the municipal solid waste (MSW) generated in the United States. As this landfilled MSW decomposes, it produces landfill gas (LFG), containing approximately 50% methane, 43-47% carbon dioxide, and 3-7% non-methane organic compounds (NMOCs). Federal regulations require affected landfills to collect and combust their LFG emissions in order to destroy NMOCs, as they are important precursors to local smog. Since 1994, the U.S. Environmental Protection Agency's Landfill Methane Outreach Program (LMOP) has been working to promote LFG-to-energy as a cost-effective way to reduce emissions of methane - a potent greenhouse gas. The LMOP's latest tool is ''E-PLUS'', Windows-compatible software that can be used to screen potential LFG-to-energy projects. E-PLUS, the Energy Project Landfill Gas Utilization Software, is capable of evaluating the economic feasibility of two energy recovery technologies based on potential LFG emissions estimates. This paper provides an overview of E-PLUS and describes its features and functions in detail. (author)

  17. Landfill methane oxidation across climate types in the U.S.

    Science.gov (United States)

    Chanton, Jeffrey; Abichou, Tarek; Langford, Claire; Hater, Gary; Green, Roger; Goldsmith, Doug; Swan, Nathan

    2011-01-01

    Methane oxidation in landfill covers was determined by stable isotope analyses over 37 seasonal sampling events at 20 landfills with intermediate covers over four years. Values were calculated two ways: by assuming no isotopic fractionation during gas transport, which produces a conservative or minimum estimate, and by assuming limited isotopic fractionation with gas transport producing a higher estimate. Thus bracketed, the best assessment of mean oxidation within the soil covers from chamber captured emitted CH(4) was 37.5 ± 3.5%. The fraction of CH(4) oxidized refers to the fraction of CH(4) delivered to the base of the cover that was oxidized to CO(2) and partitioned to microbial biomass instead of being emitted to the atmosphere as CH(4) expressed as a percentage. Air samples were also collected at the surface of the landfill, and represent CH(4) from soil, from leaking infrastructure, and from cover defects. A similar assessment of this data set yields 36.1 ± 7.2% oxidation. Landfills in five climate types were investigated. The fraction oxidized in arid sites was significantly greater than oxidation in mediterranean sites, or cool and warm continental sites. Sub tropical sites had significantly lower CH(4) oxidation than the other types of sites. This relationship may be explained by the observed inverse relationship between cover loading and fractional CH(4) oxidation.

  18. Evaluation and modeling of biochemical methane potential (BMP) of landfilled solid waste: a pilot scale study

    DEFF Research Database (Denmark)

    Bilgili, M Sinan; Demir, Ahmet; Varank, Gamze

    2009-01-01

    scale landfill reactors. The initial methane potential of solid wastes filled to the reactors was around 0.347 L/CH(4)/g dry waste, which decreased with operational time of landfill reactors to values of 0.117 and 0.154 L/CH(4)/g dry waste for leachate recirculated (R1) and non-recirculated (R2......) reactors, respectively. Results indicated that the average rate constant increased by 32% with leachate recirculation. Also, the performance of the system was modeled using the BMP data for the samples taken from reactors at varying operational times by MATLAB program. The first-order rate constants for R1...... and R2 reactors were 0.01571 and 0.01195 1/d, respectively. The correlation between the model and the experimental parameters was more than 95%, showing the good fit of the model....

  19. Evaluating the methane generation rate constant (k value) of low-organic waste at Danish landfills.

    Science.gov (United States)

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2015-01-01

    The methane (CH4) generation rate constant (k value, yr(-1)) is an essential parameter when using first-order decay (FOD) landfill gas (LFG) generation models to estimate CH4 generation from landfills. Four categories of waste (street cleansing, mixed bulky, shredder, and sludge waste) with a low-organic content, as well as temporarily stored combustible waste, were sampled from four Danish landfills. Anaerobic degradation experiments were set up in duplicate for all waste samples and incubated for 405 days, while the cumulative CH4 generation was continuously monitored. Applying FOD equations to the experimental results, half-life time values (t½, yr) and k values of various waste categories were determined. In general, similar waste categories obtained from different Danish landfills showed similar results. Sludge waste had the highest k values, which were in the range 0.156-0.189 yr(-1). The combustible and street cleansing waste showed k values of 0.023-0.027 yr(-1) and 0.073-0.083 yr(-1), respectively. The lowest k values were obtained for mixed bulky and shredder wastes ranging from 0.013 to 0.017 yr(-1). Most low-organic waste samples showed lower k values in comparison to the default numeric values in current FOD models (e.g., IPCC, LandGEM, and Afvalzorg). Compared with the k values reported in the literature, this research determined low-organic waste for the first time via reliable large-scale and long-term experiments. The degradation parameters provided in this study are valuable when using FOD LFG generation models to estimate CH4 generation from modern landfills that receive only low-organic waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Leachate properties as indicators of methane production process in MSW anaerobic digestion bioreactor landfill

    Science.gov (United States)

    Zeng, Yunmin; Wang, Li'ao; Xu, Tengtun; Li, Jiaxiang; Song, Xue; Hu, Chaochao

    2018-03-01

    In this paper, bioreactor was used to simulate the municipal solid waste (MSW) biodegradation process of landfill, tracing and testing trash methanogenic process and characteristics of leachate during anaerobic digestion, exploring the relationship between the two processes, aiming to screen out the indicators that can predict the methane production process of anaerobic digestion, which provides the support for real-time adjustment of technological parameters of MSW anaerobic digestion system and ensures the efficient operation of bioreactor landfill. The results showed that MSW digestion gas production rate constant is 0.0259 1/d, biogas production potential is 61.93 L/kg. The concentration of TN in leachate continued to increase, showing the trend of nitrogen accumulation. "Ammonia poisoning" was an important factor inhibiting waste anaerobic digestion gas production. In the anaerobic digestion system, although pH values of leachate can indicate methane production process to some degree, there are obvious lagging behind, so it cannot be used as indicator alone. The TOC/TN value of leachate has a certain indication on the stability of the methane production system. When TOC/TN value was larger than12, anaerobic digestion system was stable along with normal production of biogas. However, when TOC/TN value was lower than 12, the digestive system is unstable and the gas production is small. In the process of anaerobic digestion, the synthesis and transformation of valeric acid is more active. HAc/HVa changed greatly and had obvious inflection points, from which methane production period can be predicted.

  1. Landfill gas distribution at the base of passive methane oxidation biosystems: Transient state analysis of several configurations.

    Science.gov (United States)

    Ahoughalandari, Bahar; Cabral, Alexandre R

    2017-11-01

    The design process of passive methane oxidation biosystems needs to include design criteria that account for the effect of unsaturated hydraulic behavior on landfill gas migration, in particular, restrictions to landfill gas flow due to the capillary barrier effect, which can greatly affect methane oxidation rates. This paper reports the results of numerical simulations performed to assess the landfill gas flow behavior of several passive methane oxidation biosystems. The concepts of these biosystems were inspired by selected configurations found in the technical literature. We adopted the length of unrestricted gas migration (LUGM) as the main design criterion in this assessment. LUGM is defined as the length along the interface between the methane oxidation and gas distribution layers, where the pores of the methane oxidation layer material can be considered blocked for all practical purposes. High values of LUGM indicate that landfill gas can flow easily across this interface. Low values of LUGM indicate greater chances of having preferential upward flow and, consequently, finding hotspots on the surface. Deficient designs may result in the occurrence of hotspots. One of the designs evaluated included an alternative to a concept recently proposed where the interface between the methane oxidation and gas distribution layers was jagged (in the form of a see-saw). The idea behind this ingenious concept is to prevent blockage of air-filled pores in the upper areas of the jagged segments. The results of the simulations revealed the extent of the capability of the different scenarios to provide unrestricted and conveniently distributed upward landfill gas flow. They also stress the importance of incorporating an appropriate design criterion in the selection of the methane oxidation layer materials and the geometrical form of passive biosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Methane oxidation in a landfill cover soil reactor: Changing of kinetic parameters and microorganism community structure.

    Science.gov (United States)

    Xing, Zhi L; Zhao, Tian T; Gao, Yan H; Yang, Xu; Liu, Shuai; Peng, Xu Y

    2017-02-23

    Changing of CH 4 oxidation potential and biological characteristics with CH 4 concentration was studied in a landfill cover soil reactor (LCSR). The maximum rate of CH 4 oxidation reached 32.40 mol d -1 m -2 by providing sufficient O 2 in the LCSR. The kinetic parameters of methane oxidation in landfill cover soil were obtained by fitting substrate diffusion and consumption model based on the concentration profile of CH 4 and O 2 . The values of [Formula: see text] (0.93-2.29%) and [Formula: see text] (140-524 nmol kg soil-DW -1 ·s -1 ) increased with CH 4 concentration (9.25-20.30%), while the values of [Formula: see text] (312.9-2.6%) and [Formula: see text] (1.3 × 10 -5 to 9.0 × 10 -3 nmol mL -1 h -1 ) were just the opposite. MiSeq pyrosequencing data revealed that Methylobacter (the relative abundance was decreased with height of LCSR) and Methylococcales_unclassified (the relative abundance was increased expect in H 80) became the key players after incubation with increasing CH 4 concentration. These findings provide information for assessing CH 4 oxidation potential and changing of biological characteristics in landfill cover soil.

  3. Adsorption and transport of methane in landfill cover soil amended with waste-wood biochars.

    Science.gov (United States)

    Sadasivam, Bala Yamini; Reddy, Krishna R

    2015-08-01

    The natural presence of methane oxidizing bacteria (MOB) in landfill soils can stimulate the bio-chemical oxidation of CH4 to CO2 and H2O under suitable environmental conditions. This mechanism can be enhanced by amending the landfill cover soil with organic materials such as biochars that are recalcitrant to biological degradation and are capable of adsorbing CH4 while facilitating the growth and activity of MOB within their porous structure. Several series of batch and small-scale column tests were conducted to quantify the CH4 sorption and transport properties of landfill cover soil amended with four types of waste hardwood biochars under different levels of amendment percentages (2, 5 and 10% by weight), exposed CH4 concentrations (0-1 kPa), moisture content (dry, 25% and 75% water holding capacity), and temperature (25, 35 and 45 °C). The linear forms of the pseudo second-order kinetic model and the Langmuir isotherm model were used to determine the kinetics and the maximum CH4 adsorption capacity of cover materials. The maximum CH4 sorption capacity of dry biochar-amended soils ranged from 1.03 × 10(-2) to 7.97 × 10(-2) mol kg(-1) and exhibited a ten-fold increase compared to that of soil with 1.9 × 10(-3) mol kg(-1). The isosteric heat of adsorption for soil was negative and ranged from -30 to -118 kJ/mol, while that of the biochar-amended soils was positive and ranged from 24 to 440 kJ/mol. The CH4 dispersion coefficients for biochar-amended soils obtained through predictive transport modeling indicated that amending the soil with biochar enhanced the methane transport rates by two orders of magnitude, thereby increasing their potential for enhanced exchange of gases within the cover system. Overall, the use of hardwood biochars as a cover soil amendment to reduce methane emissions from landfills appears to be a promising alternative to conventional soil covers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Numerical modelling of methane oxidation efficiency and coupled water-gas-heat reactive transfer in a sloping landfill cover.

    Science.gov (United States)

    Feng, S; Ng, C W W; Leung, A K; Liu, H W

    2017-10-01

    Microbial aerobic methane oxidation in unsaturated landfill cover involves coupled water, gas and heat reactive transfer. The coupled process is complex and its influence on methane oxidation efficiency is not clear, especially in steep covers where spatial variations of water, gas and heat are significant. In this study, two-dimensional finite element numerical simulations were carried out to evaluate the performance of unsaturated sloping cover. The numerical model was calibrated using a set of flume model test data, and was then subsequently used for parametric study. A new method that considers transient changes of methane concentration during the estimation of the methane oxidation efficiency was proposed and compared against existing methods. It was found that a steeper cover had a lower oxidation efficiency due to enhanced downslope water flow, during which desaturation of soil promoted gas transport and hence landfill gas emission. This effect was magnified as the cover angle and landfill gas generation rate at the bottom of the cover increased. Assuming the steady-state methane concentration in a cover would result in a non-conservative overestimation of oxidation efficiency, especially when a steep cover was subjected to rainfall infiltration. By considering the transient methane concentration, the newly-modified method can give a more accurate oxidation efficiency. Copyright © 2017. Published by Elsevier Ltd.

  5. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Pedersen, Rasmus Broen; Petersen, Per Haugsted

    2014-01-01

    was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested...

  6. Characterization of methane oxidation in a simulated landfill cover system by comparing molecular and stable isotope mass balances.

    Science.gov (United States)

    Schulte, Marcel; Jochmann, Maik A; Gehrke, Tobias; Thom, Andrea; Ricken, Tim; Denecke, Martin; Schmidt, Torsten C

    2017-11-01

    Biological methane oxidation may be regarded as a method of aftercare treatment for landfills to reduce climate relevant methane emissions. It is of social and economic interest to estimate the behavior of bacterial methane oxidation in aged landfill covers due to an adequate long-term treatment of the gas emissions. Different approaches assessing methane oxidation in laboratory column studies have been investigated by other authors recently. However, this work represents the first study in which three independent approaches, ((i) mass balance, (ii) stable isotope analysis, and (iii) stoichiometric balance of product (CO 2 ) and reactant (CH 4 ) by CO 2 /CH 4 -ratio) have been compared for the estimation of the biodegradation by a robust statistical validation on a rectangular, wide soil column. Additionally, an evaluation by thermal imaging as a potential technique for the localization of the active zone of bacterial methane oxidation has been addressed in connection with stable isotope analysis and CO 2 /CH 4 -ratios. Although landfills can be considered as open systems the results for stable isotope analysis based on a closed system correlated better with the mass balance than calculations based on an open system. CO 2 /CH 4 -ratios were also in good agreement with mass balance. In general, highest values for biodegradation were determined from mass balance, followed by CO 2 /CH 4 -ratio, and stable isotope analysis. The investigated topsoil proved to be very suitable as a potential cover layer by removing up to 99% of methane for CH 4 loads of 35-65gm -2 d -1 that are typical in the aftercare phase of landfills. Finally, data from stable isotope analysis and the CO 2 /CH 4 -ratios were used to trace microbial activity within the reactor system. It was shown that methane consumption and temperature increase, as a cause of high microbial activity, correlated very well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil.

    Science.gov (United States)

    Schroth, M H; Eugster, W; Gómez, K E; Gonzalez-Gil, G; Niklaus, P A; Oester, P

    2012-05-01

    Landfills are a major anthropogenic source of the greenhouse gas methane (CH(4)). However, much of the CH(4) produced during the anaerobic degradation of organic waste is consumed by methanotrophic microorganisms during passage through the landfill-cover soil. On a section of a closed landfill near Liestal, Switzerland, we performed experiments to compare CH(4) fluxes obtained by different methods at or above the cover-soil surface with below-ground fluxes, and to link methanotrophic activity to estimates of CH(4) ingress (loading) from the waste body at selected locations. Fluxes of CH(4) into or out of the cover soil were quantified by eddy-covariance and static flux-chamber measurements. In addition, CH(4) concentrations at the soil surface were monitored using a field-portable FID detector. Near-surface CH(4) fluxes and CH(4) loading were estimated from soil-gas concentration profiles in conjunction with radon measurements, and gas push-pull tests (GPPTs) were performed to quantify rates of microbial CH(4) oxidation. Eddy-covariance measurements yielded by far the largest and probably most representative estimates of overall CH(4) emissions from the test section (daily mean up to ∼91,500μmolm(-2)d(-1)), whereas flux-chamber measurements and CH(4) concentration profiles indicated that at the majority of locations the cover soil was a net sink for atmospheric CH(4) (uptake up to -380μmolm(-2)d(-1)) during the experimental period. Methane concentration profiles also indicated strong variability in CH(4) loading over short distances in the cover soil, while potential methanotrophic activity derived from GPPTs was high (v(max)∼13mmolL(-1)(soil air)h(-1)) at a location with substantial CH(4) loading. Our results provide a basis to assess spatial and temporal variability of CH(4) dynamics in the complex terrain of a landfill-cover soil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. AERMOD as a Gaussian dispersion model for planning tracer gas dispersion tests for landfill methane emission quantification

    DEFF Research Database (Denmark)

    Matacchiera, F.; Manes, C.; Beaven, R. P.

    2018-01-01

    that measurements are taken where the plumes of a released tracer-gas and landfill-gas are well-mixed. However, the distance at which full mixing of the gases occurs is generally unknown prior to any experimental campaign. To overcome this problem the present paper demonstrates that, for any specific TDM......, and was benchmarked against the experimental data obtained. The model was used to investigate the impact of different factors (e.g. tracer cylinder placements, wind directions, atmospheric stability parameters) on TDM results to identify appropriate experimental set ups for different conditions. The contribution......The measurement of methane emissions from landfills is important to the understanding of landfills' contribution to greenhouse gas emissions. The Tracer Dispersion Method (TDM) is becoming widely accepted as a technique, which allows landfill emissions to be quantified accurately provided...

  9. Quantification of landfill methane using modified Intergovernmental Panel on Climate Change's waste model and error function analysis.

    Science.gov (United States)

    Govindan, Siva Shangari; Agamuthu, P

    2014-10-01

    Waste management can be regarded as a cross-cutting environmental 'mega-issue'. Sound waste management practices support the provision of basic needs for general health, such as clean air, clean water and safe supply of food. In addition, climate change mitigation efforts can be achieved through reduction of greenhouse gas emissions from waste management operations, such as landfills. Landfills generate landfill gas, especially methane, as a result of anaerobic degradation of the degradable components of municipal solid waste. Evaluating the mode of generation and collection of landfill gas has posted a challenge over time. Scientifically, landfill gas generation rates are presently estimated using numerical models. In this study the Intergovernmental Panel on Climate Change's Waste Model is used to estimate the methane generated from a Malaysian sanitary landfill. Key parameters of the model, which are the decay rate and degradable organic carbon, are analysed in two different approaches; the bulk waste approach and waste composition approach. The model is later validated using error function analysis and optimum decay rate, and degradable organic carbon for both approaches were also obtained. The best fitting values for the bulk waste approach are a decay rate of 0.08 y(-1) and degradable organic carbon value of 0.12; and for the waste composition approach the decay rate was found to be 0.09 y(-1) and degradable organic carbon value of 0.08. From this validation exercise, the estimated error was reduced by 81% and 69% for the bulk waste and waste composition approach, respectively. In conclusion, this type of modelling could constitute a sensible starting point for landfills to introduce careful planning for efficient gas recovery in individual landfills. © The Author(s) 2014.

  10. Biodegradation of Methane and Halocarbons in Simulated Landfill Biocover Systems Containing Compost Materials

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Pedersen, Gitte Bukh; Costa, G.

    2009-01-01

    The attenuation potential of methane (CH4) and of selected volatile organic Compounds (VOCs) was compared in four types of compost materials using dynamic flow column experiments over a period of 255 d. Garden waste compost mixed with wood chips showed the highest steady-state CH4 oxidation rate...... (161 g m(-2) d(-1)), followed by a commercial compost product Supermuld (110 g m(-2) d(-1)). In the column containing the highest fraction of compost (compost/sand mixed in 1: 1), CH4 oxidation declined significantly during the period of operation, probably due to clogging by formation of exopolymeric...... of the columns. Overall, the highest removal of VOCs was observed in the column containing the compost/ wood chip mixture. This study demonstrates that biocovers consisting of compost materials have the potential to attenuate trace gas emissions from landfills....

  11. Release of non-methane organic compounds during simulated landfilling of aerobically pretreated municipal solid waste.

    Science.gov (United States)

    Zhang, Yuanyuan; Yue, Dongbei; Liu, Jianguo; Lu, Peng; Wang, Ying; Liu, Jing; Nie, Yongfeng

    2012-06-30

    Characteristics of non-methane organic compounds (NMOCs) emissions during the anaerobic decomposition of untreated (APD-0) and four aerobically pretreated (APD-20, APD-39, APD-49, and APD-63) samples of municipal solid waste (MSW) were investigated in laboratory. The cumulative mass of the NMOCs of APD-20, APD-39, APD-49, and APD-63 accounted for 15%, 9%, 16%, and 15% of that of APD-0, respectively. The intensities of the NMOC emissions calculated by dividing the cumulative NMOC emissions by the quantities of organic matter removed (Q(VS)) decreased from 4.1 mg/kg Q(VS) for APD-0 to 0.8-3.4 mg/kg Q(VS) for aerobically pretreated MSW. The lipid and starch contents might have significant impact on the intensity of the NMOC emissions. Alkanes dominated the NMOCs released from the aerobically pretreated MSW, while oxygenated compounds were the chief component of the NMOCs generated from untreated MSW. Aerobic pretreatment of MSW prior to landfilling reduces the organic content of the waste and the intensity of the NMOC emissions, and increases the odor threshold, thereby reducing the environmental impact of landfills. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. AERMOD as a Gaussian dispersion model for planning tracer gas dispersion tests for landfill methane emission quantification.

    Science.gov (United States)

    Matacchiera, F; Manes, C; Beaven, R P; Rees-White, T C; Boano, F; Mønster, J; Scheutz, C

    2018-02-13

    The measurement of methane emissions from landfills is important to the understanding of landfills' contribution to greenhouse gas emissions. The Tracer Dispersion Method (TDM) is becoming widely accepted as a technique, which allows landfill emissions to be quantified accurately provided that measurements are taken where the plumes of a released tracer-gas and landfill-gas are well-mixed. However, the distance at which full mixing of the gases occurs is generally unknown prior to any experimental campaign. To overcome this problem the present paper demonstrates that, for any specific TDM application, a simple Gaussian dispersion model (AERMOD) can be run beforehand to help determine the distance from the source at which full mixing conditions occur, and the likely associated measurement errors. An AERMOD model was created to simulate a series of TDM trials carried out at a UK landfill, and was benchmarked against the experimental data obtained. The model was used to investigate the impact of different factors (e.g. tracer cylinder placements, wind directions, atmospheric stability parameters) on TDM results to identify appropriate experimental set ups for different conditions. The contribution of incomplete vertical mixing of tracer and landfill gas on TDM measurement error was explored using the model. It was observed that full mixing conditions at ground level do not imply full mixing over the entire plume height. However, when full mixing conditions were satisfied at ground level, then the error introduced by variations in mixing higher up were always less than 10%. Copyright © 2018. Published by Elsevier Ltd.

  13. Determination of gas recovery efficiency at two Danish landfills by performing downwind methane measurements and stable carbon isotopic analysis.

    Science.gov (United States)

    Aghdam, Ehsan F; Fredenslund, Anders M; Chanton, Jeffrey; Kjeldsen, Peter; Scheutz, Charlotte

    2018-03-01

    In this study, the total methane (CH 4 ) generation rate and gas recovery efficiency at two Danish landfills were determined by field measurements. The landfills are located close to each other and are connected to the same gas collection system. The tracer gas dispersion method was used for quantification of CH 4 emissions from the landfills, while the CH 4 oxidation efficiency in the landfill cover layers was determined by stable carbon isotopic technique. The total CH 4 generation rate was estimated by a first-order decay model (Afvalzorg) and was compared with the total CH 4 generation rate determined by field measurements. CH 4 emissions from the two landfills combined ranged from 29.1 to 49.6 kg CH 4 /h. The CH 4 oxidation efficiency was 6-37%, with an average of 18% corresponding to an average CH 4 oxidation rate of 8.1 kg CH 4 /h. The calculated gas recovery efficiency was 59-76%, indicating a high potential for optimization of the gas collection system. Higher gas recovery efficiencies (73-76%) were observed after the commencement of gas extraction from a new section of one of the landfills. A good agreement was observed between the average total CH 4 generation rates determined by field measurements (147 kg CH 4 /h) and those estimated by the Afvalzorg model (154 kg CH 4 /h). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Mitigation of methane emissions in a pilot-scale biocover system at the av miljø landfill, denmark: system design and gas distribution

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Skov, B.; Cassini, Filippo

    2013-01-01

    -passive biocover system was constructed at the AV Miljø landfill. The biocover is fed by landfill gas pumped out of three leachate wells. An innovative gas distribution system was used to overcome the often observed overloaded hot spot areas resulting from uneven gas distribution to the active methane oxidation...

  15. Did state renewable portfolio standards induce technical change in methane mitigation in the U.S. landfill sector?

    Science.gov (United States)

    Delhotal, Katherine Casey

    Landfill gas (LFG) projects use the gas created from decomposing waste, which is approximately 49% methane, and substitute it for natural gas in engines, boilers, turbines, and other technologies to produce energy or heat. The projects are beneficial in terms of increased safety at the landfill, production of a cost-effective source of energy or heat, reduced odor, reduced air pollution emissions, and reduced greenhouse gas emissions. However, landfills sometimes face conflicting policy incentives. The theory of technical change shows that the diffusion of a technology or groups of technologies increases slowly in the beginning and then picks up speed as knowledge and better understanding of using the technology diffuses among potential users. Using duration analysis, data on energy prices, State and Federal policies related to landfill gas, renewable energy, and air pollution, as well as control data on landfill characteristics, I estimate the influence and direction of influence of renewable portfolio standards (RPS). The analysis found that RPS positively influences the diffusion of landfill gas technologies, encouraging landfills to consider electricity generation projects over direct sales of LFG to another facility. Energy price increases or increased revenues for a project are also critical. Barriers to diffusion include air emission permits in non-attainment areas and policies, such as net metering, which promote other renewables over LFG projects. Using the estimates from the diffusion equations, I analyze the potential influence of a Federal RPS as well as the potential interaction with a Federal, market based climate change policy, which will increase the revenue of a project through higher energy sale prices. My analysis shows that a market based climate change policy such as a cap-and-trade or carbon tax scheme would increase the number of landfill gas projects significantly more than a Federal RPS.

  16. Estimating Potential Methane Emission from Municipal Solid Waste and a Site Suitability Analysis of Existing Landfills in Delhi, India

    Directory of Open Access Journals (Sweden)

    Chander Kumar Singh

    2017-09-01

    Full Text Available The management of rapidly growing municipal solid waste (MSW is one of the major challenges in developing countries. The current study also estimates the suitability of a site through a geographical information system using multi-criteria decision analysis (MCDA for landfill sites in National Capital Territory (NCT. The results of the suitability index indicate that only 58.7 km2 of the land is suitable for the construction of landfill sites, while 194.27 km2 of the total area is moderately suitable. The existing three landfill sites that are currently functional and used by government organizations as landfills are found to be moderately suitable. A large fraction of MSW is disposed in landfills, which emit one third of the total anthropogenic methane (CH4 and are considered an important contributor of Green House Gases (GHGs to the atmosphere. Thus, there is a need for the proper estimation of GHG emission from landfills, specifically CH4, which contributes 20% of the GHGs that contribute to global warming. The current study aims to estimate the CH4 emission from landfills in the NCT, Delhi, India using GHG inventory guidelines from the Intergovernmental Panel on Climate Change (IPCC. The CH4 emission from landfills has doubled from 31.06 Gg/yr to 65.16 Gg/yr from 1999 and 2000 to 2015. The generation of CH4 from MSW is strongly correlated (R2 = 0.58 with the Gross State Domestic Product (GSDP, which is an indicator of wellbeing.

  17. Effect of bio-cover equipped with a novel passive air diffusion system on methane emission reduciton from landfill

    DEFF Research Database (Denmark)

    Lu, W.J.; Mou, Zishen

    2011-01-01

    Based on the aerothermodynamic principles, a kind of breathing bio-cover system was designed to enhance oxygen (O2) supply efficiency and methane (CH4) oxidation capacity. The research showed that O2 concentration (v/v) considerably increased throughout whole profiles of the microcosm (1m) equipped...... with passive air diffusion system (MPADS). When the simulated landfill gas SLFG flow was 771 and 1028 gm−3 d−1, the O2 concentration in MPADS increased gradually and tended to be stable at the atmospheric level after 10 days. The CH4 oxidation rate was 100% when the SLFG flow rate was no more than 1285 gm−3 d......−1, which also was confirmed by the mass balance calculations. The breathing bio-cover system with in situ self-oxygen supply can address the problem of O2 insufficient in conventional landfill bio-cover. The proposed system presents high potential for improving CH4 emission reduction in landfills....

  18. Determination of gas recovery efficiency at two Danish landfills by performing downwind methane measurements and stable carbon isotopic analysis

    DEFF Research Database (Denmark)

    Fathi Aghdam, Ehsan; Fredenslund, Anders Michael; Chanton, Jeffrey

    2017-01-01

    In this study, the total methane (CH4) generation rate and gas recovery efficiency at two Danish landfills were determined by field measurements. The landfills are located close to each other and are connected to the same gas collection system. The tracer gas dispersion method was used...... for quantification of CH4 emissions from the landfills, while the CH4 oxidation efficiency in the landfill cover layers was determined by stable carbon isotopic technique. The total CH4 generation rate was estimated by a first-order decay model (Afvalzorg) and was compared with the total CH4 generation rate...... determined by field measurements. CH4 emissions from the two landfills combined ranged from 29.1 to 49.6 kg CH4/h. The CH4 oxidation efficiency was 6–37%, with an average of 18% corresponding to an average CH4 oxidation rate of 8.1 kg CH4/h. The calculated gas recovery efficiency was 59–76%, indicating...

  19. Methane emissions from a Californian landfill, determined from airborne remote sensing and in situ measurements

    Directory of Open Access Journals (Sweden)

    S. Krautwurst

    2017-09-01

    Full Text Available Fugitive emissions from waste disposal sites are important anthropogenic sources of the greenhouse gas methane (CH4. As a result of the growing world population and the recognition of the need to control greenhouse gas emissions, this anthropogenic source of CH4 has received much recent attention. However, the accurate assessment of the CH4 emissions from landfills by modeling and existing measurement techniques is challenging. This is because of inaccurate knowledge of the model parameters and the extent of and limited accessibility to landfill sites. This results in a large uncertainty in our knowledge of the emissions of CH4 from landfills and waste management. In this study, we present results derived from data collected during the research campaign COMEX (CO2 and MEthane eXperiment in late summer 2014 in the Los Angeles (LA Basin. One objective of COMEX, which comprised aircraft observations of methane by the remote sensing Methane Airborne MAPper (MAMAP instrument and a Picarro greenhouse gas in situ analyzer, was the quantitative investigation of CH4 emissions. Enhanced CH4 concentrations or CH4 plumes were detected downwind of landfills by remote sensing aircraft surveys. Subsequent to each remote sensing survey, the detected plume was sampled within the atmospheric boundary layer by in situ measurements of atmospheric parameters such as wind information and dry gas mixing ratios of CH4 and carbon dioxide (CO2 from the same aircraft. This was undertaken to facilitate the independent estimation of the surface fluxes for the validation of the remote sensing estimates. During the COMEX campaign, four landfills in the LA Basin were surveyed. One landfill repeatedly showed a clear emission plume. This landfill, the Olinda Alpha Landfill, was investigated on 4 days during the last week of August and first days of September 2014. Emissions were estimated for all days using a mass balance approach. The derived emissions vary between 11

  20. Determination of waste decay rate for a large Finnish landfill by calibrating methane generation models on the basis of methane recovery and emissions.

    Science.gov (United States)

    Sormunen, Kai; Laurila, Tuomas; Rintala, Jukka

    2013-10-01

    The aim of this study was to determine the methane (CH(4)) generation factor (k) and CH(4) generation potential (L) for bulk waste in order to calibrate a CH(4) generation model (USEPA Landgem 3.02) and provide information on the remaining CH(4) generation potential in a large (54 ha) municipal solid waste landfill located in a boreal climate. The CH(4) generation model was calibrated by actual CH(4) recovery and emission measurement data. Moreover, waste characterisation information from a previous study was considered.The appropriate k for bulk waste was 0.18 in the studied landfill, which indicated a higher rate of degradation than proposed by the Intergovernmental Panel on Climate Change as a default k value of 0.09 for wet conditions in boreal and temperate climes, whereas the calibrated L of 100 m(3)/t was lower than estimated on the basis of a previous waste characterisation study. The results demonstrate the importance of model calibration, as inappropriate model parameters may result in a large discrepancy (approximately 100 % or 119 million m(3) having an energy equivalent of nearly 1.2 TWh) in cumulative CH(4) generation estimates within a 18-year timescale (2012–30) at the studied landfill.

  1. Case study on prediction of remaining methane potential of landfilled municipal solid waste by statistical analysis of waste composition data.

    Science.gov (United States)

    Sel, İlker; Çakmakcı, Mehmet; Özkaya, Bestamin; Suphi Altan, H

    2016-10-01

    Main objective of this study was to develop a statistical model for easier and faster Biochemical Methane Potential (BMP) prediction of landfilled municipal solid waste by analyzing waste composition of excavated samples from 12 sampling points and three waste depths representing different landfilling ages of closed and active sections of a sanitary landfill site located in İstanbul, Turkey. Results of Principal Component Analysis (PCA) were used as a decision support tool to evaluation and describe the waste composition variables. Four principal component were extracted describing 76% of data set variance. The most effective components were determined as PCB, PO, T, D, W, FM, moisture and BMP for the data set. Multiple Linear Regression (MLR) models were built by original compositional data and transformed data to determine differences. It was observed that even residual plots were better for transformed data the R(2) and Adjusted R(2) values were not improved significantly. The best preliminary BMP prediction models consisted of D, W, T and FM waste fractions for both versions of regressions. Adjusted R(2) values of the raw and transformed models were determined as 0.69 and 0.57, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Assessment of methane production from shredder waste in landfills: The influence of temperature, moisture and metals.

    Science.gov (United States)

    Fathi Aghdam, Ehsan; Scheutz, Charlotte; Kjeldsen, Peter

    2017-05-01

    In this study, methane (CH 4 ) production rates from shredder waste (SW) were determined by incubation of waste samples over a period of 230days under different operating conditions, and first-order decay kinetic constants (k-values) were calculated. SW and sterilized SW were incubated under different temperatures (20-25°C, 37°C, and 55°C), moisture contents (35% and 75% w/w) and amounts of inoculum (5% and 30% of the samples wet weight). The biochemical methane potential (BMP) from different types of SW (fresh, old and sieved) was determined and compared. The ability of metals (iron, aluminum, zinc, and copper) contained in SW to provide electrons for methanogens resulting in gas compositions with high CH 4 contents and very low CO 2 contents was investigated. The BMP of SW was 1.5-6.2kg CH 4 /ton waste. The highest BMP was observed in fresh SW samples, while the lowest was observed in sieved samples (fine fraction of SW). Abiotic production of CH 4 was not observed in laboratory incubations. The biotic experiments showed that when the moisture content was 35% w/w and the temperature was 20-25°C, CH 4 production was extremely low. Increasing the temperature from 20-25°C to 37°C resulted in significantly higher CH 4 production while increasing the temperature from 37°C to 55°C resulted in higher CH 4 production, but to a lower extent. Increasing the moisture and inoculum content also increased CH 4 production. The k-values were 0.033-0.075yr -1 at room temperature, 0.220-0.429yr -1 at 37°C and 0.235-0.488yr -1 at 55°C, indicating that higher temperatures resulted in higher k-values. It was observed that H 2 can be produced by biocorrosion of iron, aluminum, and zinc and it was shown that produced H 2 can be utilized by hydrogenotrophic methanogens to convert CO 2 to CH 4 . Addition of iron and copper to SW resulted in inhibition of CH 4 production, while addition of aluminum and zinc resulted in higher CH 4 production. This suggested that aluminum and

  3. Pretreated Landfill Gas Conversion Process via a Catalytic Membrane Reactor for Renewable Combined Fuel Cell-Power Generation

    Directory of Open Access Journals (Sweden)

    Zoe Ziaka

    2013-01-01

    Full Text Available A new landfill gas-based reforming catalytic processing system for the conversion of gaseous hydrocarbons, such as incoming methane to hydrogen and carbon oxide mixtures, is described and analyzed. The exit synthesis gas (syn-gas is fed to power effectively high-temperature fuel cells such as SOFC types for combined efficient electricity generation. The current research work is also referred on the description and design aspects of permreactors (permeable reformers carrying the same type of landfill gas-reforming reactions. Membrane reactors is a new technology that can be applied efficiently in such systems. Membrane reactors seem to perform better than the nonmembrane traditional reactors. The aim of this research includes turnkey system and process development for the landfill-based power generation and fuel cell industries. Also, a discussion of the efficient utilization of landfill and waste type resources for combined green-type/renewable power generation with increased processing capacity and efficiency via fuel cell systems is taking place. Moreover, pollution reduction is an additional design consideration in the current catalytic processors fuel cell cycles.

  4. Landfill gas

    International Nuclear Information System (INIS)

    Hartnell, Gaynor

    2000-01-01

    Following the UK Government's initiative for stimulating renewable energy through the Non-Fossil Fuel Obligation (NFFO), the UK landfill gas industry has more than trebled in size in just 4 years. As a result, UK companies are now in a strong position to offer their skills and services overseas. Ireland, Greece and Spain also resort heavily to disposal to landfill. Particularly rapid growth of the landfill gas market is expected in the OECD-Pacific and NAFTA areas. The article explains that landfill gas is a methane-rich mixture produced by anaerobic decomposition of organic wastes in landfills: under optimum conditions, up to 500 cubic meters of gas can be obtained from 1 tonne of biodegradable waste. Data on the number and capacity of sites in the UK are given. The Landfill Gas Association runs courses to counteract the skills shortage in the UK, and tailored courses for overseas visitors are planned

  5. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 2. Methane oxidation.

    Science.gov (United States)

    Scheutz, Charlotte; Cassini, Filippo; De Schoenmaeker, Jan; Kjeldsen, Peter

    2017-05-01

    Greenhouse gas mitigation at landfills by methane (CH 4 ) oxidation in engineered biocover systems is believed to be a cost effective technology but so far a full quantitative evaluation of the efficiency of the technology in full scale has only been carried out in a few cases. A third generation semi-passive biocover system was constructed at the AV Miljø Landfill, Denmark. The biocover was fed by landfill gas pumped out of three leachate collection wells. An innovative gas distribution system was used to overcome the often observed uneven gas distribution to the active CH 4 oxidation layer resulting in overloaded areas causing CH 4 emission hot spot areas in the biocover surface. The whole biocover CH 4 oxidation efficiency was determined by measuring the CH 4 inlet load and CH 4 surface fluxes. In addition, CH 4 oxidation was determined for single points in the biocover using two different methods; the carbon mass balance method (based on CH 4 and carbon dioxide (CO 2 ) concentrations in the deeper part of the cover and CH 4 and CO 2 surface flux measurements) and a new-developed tracer gas mass balance method (based on CH 4 and tracer inlet fluxes and CH 4 and tracer surface flux measurements). Overall, the CH 4 oxidation efficiency of the whole biocover varied between 81 and 100% and showed that the pilot plant biocover system installed at AV Miljø landfill was very efficient in oxidizing the landfill CH 4 . The average CH 4 oxidation rate measured at nine campaigns was approximately 13gm -2 d -1 . Extrapolating laboratory measured CH 4 oxidation rates to the field showed that the biocover system had a much larger CH 4 oxidation potential in comparison to the tested CH 4 load. The carbon mass balance approach compared reasonably well with the tracer gas mass balance approach when applied for quantification of CH 4 oxidation in single points at the biofilter giving CH 4 oxidation efficiencies in the range of 84 to a 100%. CH 4 oxidation rates where however

  6. Life-cycle-assessment of fuel-cells-based landfill-gas energy conversion technologies

    Science.gov (United States)

    Lunghi, P.; Bove, R.; Desideri, U.

    Landfill-gas (LFG) is produced as result of the biological reaction of municipal solid waste (MSW). This gas contains about 50% of methane, therefore it cannot be released into the atmosphere as it is because of its greenhouse effect consequences. The high percentage of methane encouraged researchers to find solutions to recover the related energy content for electric energy production. The most common technologies used at the present time are internal combustion reciprocating engines and gas turbines. High conversion efficiency guaranteed by fuel cells (FCs) enable to enhance the energy recovery process and to reduce emissions to air, such as NO x and CO. In any case, in order to investigate the environmental advantages associated with the electric energy generation using fuel cells, it is imperative to consider the whole "life cycle" of the system, "from cradle-to-grave". In fact, fuel cells are considered to be zero-emission devices, but, for example, emissions associated with their manufacture or for hydrogen production must be considered in order to evaluate all impacts on the environment. In the present work a molten carbonate fuel cell (MCFC) system for LFG recovery is considered and a life cycle assessment (LCA) is conducted for an evaluation of environmental consequences and to provide a guide for further environmental impact reduction.

  7. Estudos sobre a oxidação aeróbia do metano na cobertura de três aterros sanitários no Brasil Studies on the aerobic methane oxidation at three sanitary landfills covers in Brazil

    Directory of Open Access Journals (Sweden)

    Cláudia Echevenguá Teixeira

    2009-03-01

    Full Text Available A oxidação biológica e aeróbia do metano em materiais de cobertura de aterros de resíduos sólidos urbanos é uma das alternativas para se minimizarem as emissões dos gases de efeito estufa. Este artigo tem como objetivo avaliar a oxidação biológica do metano em material de cobertura de três aterros brasileiros (dois municipais e uma célula experimental. O trabalho consistiu na coleta de amostras dos solos, as quais foram caracterizadas através de ensaios geotécnicos e microbiológicos. Em laboratório, avaliou-se o consumo de metano de uma amostra de cada aterro. Os resultados revelaram a presença de bactérias metanotróficas e consumo de metano em laboratório, o que sugere que exista uma relação inversa entre o grau de saturação no momento da coleta e o número de bactérias metanotróficas.The biological and aerobic oxidation of methane within the soil cover of municipal solid waste landfills is one an alternative to minimize emissions of greenhouse effect gases. This study aims at assess the biological oxidation of methane within the final cover of three landfills in Brazil (two municipal ones and one experimental cell. The soil samples obtained from the landfill cover were characterized by geotechnical and microbiological tests. In the laboratory the consumption of methane from each sample were evaluated. The results revealed the presence of methanotrophic bacteria and consumption of methane in the laboratory was observed, which also suggest that there is an inverse relation between the degree of saturation at the time of sampling and the number of methanotrophic bacteria.

  8. Evaluating the biochemical methane potential (BMP) of low-organic waste at Danish landfills

    DEFF Research Database (Denmark)

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2014-01-01

    stored combustible waste were sampled from four Danish landfills. The waste was characterized in terms of physical characteristics (TS, VS, TC and TOC) and the BMP was analyzed in batch tests. The experiment was set up in triplicate, including blank and control tests. Waste samples were incubated at 55 C...

  9. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover.

    Science.gov (United States)

    Kim, Gil Won; Ho, Adrian; Kim, Pil Joo; Kim, Sang Yoon

    2016-09-01

    The landfilling of municipal solid waste is a significant source of atmospheric methane (CH4), contributing up to 20% of total anthropogenic CH4 emissions. The evapotranspiration (ET) cover system, an alternative final cover system in waste landfills, has been considered to be a promising way to mitigate CH4 emissions, as well as to prevent water infiltration using vegetation on landfill cover soils. In our previous studies, bottom ash from coal-fired power plants was selected among several industrial residues (blast furnace slag, bottom ash, construction waste, steel manufacture slag, stone powder sludge, and waste gypsum) as the best additive for ET cover systems, with the highest mechanical performance achieved for a 35% (wtwt(-1)) bottom ash content in soil. In this study, to evaluate the field applicability of bottom ash mixed soil as ET cover, four sets of lysimeters (height 1.2m×width 2m×length 6m) were constructed in 2007, and four different treatments were installed: (i) soil+bottom ash (35% wtwt(-1)) (SB); (ii) soil+compost (2% wtwt(-1), approximately corresponding to 40Mgha(-1) in arable field scale) (SC); (iii) soil+bottom ash+compost (SBC); and (iv) soil only as the control (S). The effects of bottom ash mixing in ET cover soil on CH4 oxidation potential and vegetation growth were evaluated in a pilot ET cover system in the 5th year after installation by pilot experiments using the treatments. Our results showed that soil properties were significantly improved by bottom ash mixing, resulting in higher plant growth. Bottom ash addition significantly increased the CH4 oxidation potential of the ET cover soil, mainly due to improved organic matter and available copper concentration, enhancing methanotrophic abundances in soil amended with bottom ash. Conclusively, bottom ash could be a good alternative as a soil additive in the ET cover system to improve vegetation growth and mitigate CH4 emission impact in the waste landfill system. Copyright © 2016

  10. Effects of biochar and wood pellets amendments added to landfill cover soil on microbial methane oxidation: A laboratory column study.

    Science.gov (United States)

    Yargicoglu, Erin N; Reddy, Krishna R

    2017-05-15

    Alternate landfill covers designed to enhance microbial methane (CH 4 ) oxidation and reduce the negative impacts of landfill gas emissions on global climate have recently been proposed and investigated. In this study, the use of biochar as a soil amendment is examined in order to assess the feasibility and effectiveness for enhanced CH 4 removal in landfill covers when incorporated under high compaction conditions and relatively low soil moisture. Four different cover configurations were tested in large soil columns for ∼510 days and potential CH 4 oxidation rates were determined following long-term incubation in small batch assays. Cover designs tested include: a thin biochar layer at 15-18 cm; 2% mixed soil-biochar layer at 20-40 cm; 2% mixed soil-uncharred wood pellets at 20-40 cm; and soil obtained from intermediate cover at an active landfill site. The placement of a thin biochar layer in the cover significantly impacted moisture distribution and infiltration, which in turn affected CH 4 oxidation potential with depth. An increase in CH 4 removal rates was observed among all columns over the 500 day incubation period, with steady-state CH 4 removal efficiencies ranging from ∼60 to 90% in the final stages of incubation (inlet load ∼80 g CH 4  m -2  d -1 ). The thin biochar layer had the lowest average removal efficiency as a result of reduced moisture availability below the biochar layer. The addition of 2% biochar to soil yielded similar CH 4 oxidation rates in terminal assays as the 2% uncharred wood pellet amendment. CH 4 oxidation rates in terminal assays were positively correlated with soil moisture, which was affected by the materials' water holding capacity. The high water holding capacity of biochar led to higher oxidation rates within the thin biochar layer, supporting the initial hypothesis that biochar may confer more favorable physical conditions for methanotrophy. Ultimate performance was apparently affected by soil type and CH 4

  11. The effect of precipitation on municipal solid waste decomposition and methane production in simulated landfill bioreactor with leachate recirculation

    Directory of Open Access Journals (Sweden)

    Pawinee Chaiprasert

    2006-05-01

    Full Text Available The objective of this study is to investigate MSW degradation and methane production in a simulated landfill bioreactor with leachate recirculation under conditions with and without water addition at the representative level of annual precipitation. Experiments were carried out in four simulated reactors using 0.3 m diameter PVC pipe of 1.25 m height. Two leachate recirculation reactors were operated with water addition and the other two were operated without water addition. The results showed that leachate recirculation with precipitation led to greater performance in terms of accelerated biological stabilization and the onset of methanogenesis. In the reactors operated with precipitation, the reduction of COD was 24-54 times higher than that in reactors without precipitation. The percentage of waste decomposition was 59.0-61.4% and the methane production rate was 0.479-0.638 l/kg dry waste/day at the stabilization phase in the reactors operated with precipitation. Conversely, 19.6-22.4% of waste decomposition and 0.01 l/kg dry waste of methane production were found in reactors operated without precipitation. In this experiment, the feasibility of introducing moisture only by leachate recirculation, with no precipitation, seemed to be unsuitable for recirculation due to the high concentration of leachate pollutant. A large quantity of buffering chemical was used. Therefore, during the hydrolysis and acidogenesis phases, precipitation or water added was important for the waste decomposition as to dilute and flush out high TVA concentration and create a favorable environment for methanogenesis.

  12. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 1. System design and gas distribution.

    Science.gov (United States)

    Cassini, Filippo; Scheutz, Charlotte; Skov, Bent H; Mou, Zishen; Kjeldsen, Peter

    2017-05-01

    Greenhouse gas mitigation at landfills by methane oxidation in engineered biocover systems is believed to be a cost effective technology, but so far a full quantitative evaluation of the efficiency of the technology in full scale has only been carried out in a few cases. A third generation semi-passive biocover system was constructed at the AV Miljø Landfill, Denmark. The biocover system was fed by landfill gas pumped out of three leachate collection wells. An innovative gas distribution system was used to overcome the commonly observed surface emission hot spot areas resulting from an uneven gas distribution to the active methane oxidation layer, leading to areas with methane overloading. Performed screening of methane and carbon dioxide surface concentrations, as well as flux measurement using a flux chamber at the surface of the biocover, showed homogenous distributions indicating an even gas distribution. This was supported by results from a tracer gas test where the compound HFC-134a was added to the gas inlet over an adequately long time period to obtain tracer gas stationarity in the whole biocover system. Studies of the tracer gas movement within the biocover system showed a very even gas distribution in gas probes installed in the gas distribution layer. Also the flux of tracer gas out of the biocover surface, as measured by flux chamber technique, showed a spatially even distribution. Installed probes logging the temperature and moisture content of the methane oxidation layer at different depths showed elevated temperatures in the layer with temperature differences to the ambient temperature in the range of 25-50°C at the deepest measuring point due to the microbial processes occurring in the layer. The moisture measurements showed that infiltrating precipitation was efficiently drained away from the methane oxidation layer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Operation of real landfill gas fueled solid oxide fuel cell (SOFC) using internal dry reforming

    DEFF Research Database (Denmark)

    Langnickel, Hendrik; Hagen, Anke

    2017-01-01

    Biomass is one renewable energy source, which is independent from solar radiation and wind effect. Solid oxide fuel cells (SOFC’s) are able to convert landfill gas derived from landfill directly into electricity and heat with a high efficiency. In the present work a planar 16cm2 SOFC cell...

  14. [Landfill gas].

    Science.gov (United States)

    Laursen, E; Hempel-Jørgensen, I; Lassen, E

    1995-11-20

    In a landfill mixture of gases, consisting principally of methane and carbon dioxide, may be produced by microbial degradation of organic waste under anaerobic conditions. Methane is explosive at concentrations between 5 and 15% by volume. Other gases, for instance hydrogensulphide, mercury and ethane, may be emitted at low concentrations, but usually do not represent a health hazard following normal atmospheric dilution. Indoor climate may be affected, though, in cases of accumulation in closed spaces. A case is presented where two persons died following an explosion caused by lighting a cigarette in their house which was surrounded on three sides by a landfill. The explosion occurred after heavy precipitation on a day with low atmospheric pressure. Methane measurements showed values consistent with risk of explosion.

  15. Effect of nutrient and selective inhibitor amendments on methane oxidation, nitrous oxide production, and key gene presence and expression in landfill cover soils: characterization of the role of methanotrophs, nitrifiers, and denitrifiers.

    Science.gov (United States)

    Lee, Sung-Woo; Im, Jeongdae; Dispirito, Alan A; Bodrossy, Levente; Barcelona, Michael J; Semrau, Jeremy D

    2009-11-01

    Methane and nitrous oxide are both potent greenhouse gasses, with global warming potentials approximately 25 and 298 times that of carbon dioxide. A matrix of soil microcosms was constructed with landfill cover soils collected from the King Highway Landfill in Kalamazoo, Michigan and exposed to geochemical parameters known to affect methane consumption by methanotrophs while also examining their impact on biogenic nitrous oxide production. It was found that relatively dry soils (5% moisture content) along with 15 mg NH (4) (+) (kg soil)(-1) and 0.1 mg phenylacetylene(kg soil)(-1) provided the greatest stimulation of methane oxidation while minimizing nitrous oxide production. Microarray analyses of pmoA showed that the methanotrophic community structure was dominated by Type II organisms, but Type I genera were more evident with the addition of ammonia. When phenylacetylene was added in conjunction with ammonia, the methanotrophic community structure was more similar to that observed in the presence of no amendments. PCR analyses showed the presence of amoA from both ammonia-oxidizing bacteria and archaea, and that the presence of key genes associated with these cells was reduced with the addition of phenylacetylene. Messenger RNA analyses found transcripts of pmoA, but not of mmoX, nirK, norB, or amoA from either ammonia-oxidizing bacteria or archaea. Pure culture analyses showed that methanotrophs could produce significant amounts of nitrous oxide, particularly when expressing the particulate methane monooxygenase (pMMO). Collectively, these data suggest that methanotrophs expressing pMMO played a role in nitrous oxide production in these microcosms.

  16. Assessment of methane emission and oxidation at Air Hitam Landfill site cover soil in wet tropical climate.

    Science.gov (United States)

    Abushammala, Mohammed F M; Basri, Noor Ezlin Ahmad; Elfithri, Rahmah

    2013-12-01

    Methane (CH₄) emissions and oxidation were measured at the Air Hitam sanitary landfill in Malaysia and were modeled using the Intergovernmental Panel on Climate Change waste model to estimate the CH₄ generation rate constant, k. The emissions were measured at several locations using a fabricated static flux chamber. A combination of gas concentrations in soil profiles and surface CH₄ and carbon dioxide (CO₂) emissions at four monitoring locations were used to estimate the CH₄ oxidation capacity. The temporal variations in CH₄ and CO₂ emissions were also investigated in this study. Geospatial means using point kriging and inverse distance weight (IDW), as well as arithmetic and geometric means, were used to estimate total CH₄ emissions. The point kriging, IDW, and arithmetic means were almost identical and were two times higher than the geometric mean. The CH₄ emission geospatial means estimated using the kriging and IDW methods were 30.81 and 30.49 gm(−2) day(−1), respectively. The total CH₄ emissions from the studied area were 53.8 kg day(−1). The mean of the CH₄ oxidation capacity was 27.5 %. The estimated value of k is 0.138 year(−1). Special consideration must be given to the CH₄ oxidation in the wet tropical climate for enhancing CH₄ emission reduction.

  17. Further studies on the role of protozoa in landfill

    Energy Technology Data Exchange (ETDEWEB)

    Finlay, B.J.; Clarke, K.J.; Cranwell, P.A.; Embley, T.M.; Hindle, R.M.; Simon, B.M.

    1993-11-01

    The specific objectives of this study were: to determine the growth requirements of methanogen-bearing protozoa living in landfill; to measure the rate of methane generation by these `protozoan consortia`; to quantify the role of protozoan grazing in stimulating overall microbial activity; to determine the identity of both symbiotic methanogens and host ciliates in different landfill sites. The results showed that the landfill ciliated protozoon, Metopus palaeformis, showed net growth in the temperature range 7-35{sup o}C, if the landfill material contained at least 40% water by weight. The methanogens living inside one cell of M.palaeformis produced, on average, 0.37 x 10{sup -12}mol CH{sub 4}/hour. In laboratory studies, the initial rate of methane generation from landfill material was twice as great when ciliates were present. There was no experimental evidence that this was due to ciliate grazing activity stimulating the re-cycling of essential nutrients to free-living bacteria. It is theoretically possible that acetate excreted by ciliates was converted to methane by free-living methanogens and that this was the source of ciliate-enhanced methane production. It was shown that the methanogenic bacteria living symbiotically within the ciliates are quite distinct from free-living methanogens previously described from landfill refuse. It is unlikely that the ciliates act as vectors for the transmission of methanogens between landfill sites. In conclusion, protozoon may be an important component of the landfill microbial community because they stimulate the rate of anaerobic decomposition and hence the rate of methane production. But protozoa are important only when the landfill material is wet (> 40% water) and when the temperature of the landfill does not exceed 30{sup o}C. (author)

  18. Assessment of methane production from shredder waste in landfills: The influence of temperature, moisture and metals

    DEFF Research Database (Denmark)

    Fathi Aghdam, Ehsan; Scheutz, Charlotte; Kjeldsen, Peter

    2017-01-01

    different temperatures (20-25°C, 37°C, and 55°C), moisture contents (35% and 75% w/w) and amounts of inoculum (5% and 30% of the samples wet weight). The biochemical methane potential (BMP) from different types of SW (fresh, old and sieved) was determined and compared. The ability of metals (iron, aluminum.......235-0.488yr(-1) at 55°C, indicating that higher temperatures resulted in higher k-values. It was observed that H2 can be produced by biocorrosion of iron, aluminum, and zinc and it was shown that produced H2 can be utilized by hydrogenotrophic methanogens to convert CO2 to CH4. Addition of iron and copper...

  19. Theoretical analysis of coupled effects of microbe and root architecture on methane oxidation in vegetated landfill covers.

    Science.gov (United States)

    Feng, S; Leung, A K; Ng, C W W; Liu, H W

    2017-12-01

    Reduction of soil moisture by plant root-water uptake could improve soil aeration for microbial aerobic methane oxidation (MAMO) in a landfill cover, but excessive soil moisture removal could suppress microbial activity due to water shortage. Existing models ignore the coupled microbe-vegetation interaction. It is thus not known whether the presence of plants is beneficial or adverse to MAMO. This study proposes a newly-improved theoretical model that couples the effects of root-water uptake and microbial activity for capturing water-gas flow and MAMO in unsaturated soils. Parametric studies are conducted to investigate the effects of root characteristics and transpiration rate on MAMO efficiency. Uniform, parabolic, exponential and triangular root architectures are considered. Ignoring the effects of water shortage on microbe over-predicts the MAMO efficiency significantly, especially for plants with traits that give high root-water uptake ability (i.e., uniformly-rooted and long root length). The effects of plants on MAMO efficiency depends on the initial soil moisture strongly. If the soil is too dry (i.e., close to the permanent wilting point), plant-water uptake, with any root architecture considered, would reduce MAMO efficiency as further soil water removal by plants suppresses microbial activity. Plants with exponential or triangular root architectures could preserve 10% higher MAMO than the other two cases. These two architectures are more capable of minimizing the adverse effects of root-water uptake due to microbial water shortage. This implies that high-water-demand plants such as those with long root length and with uniform or parabolic root architectures require more frequent irrigation to prevent from excessive reduction of MAMO efficiency. Copyright © 2017. Published by Elsevier B.V.

  20. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 2. Methane oxidation

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Cassini, Filippo; De Schoenmaeker, Jan

    2017-01-01

    semi-passive biocover system was constructed at the AV Miljø Landfill, Denmark. The biocover was fed by landfill gas pumped out of three leachate collection wells. An innovative gas distribution system was used to overcome the often observed uneven gas distribution to the active CH4 oxidation layer...

  1. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: Strong N{sub 2}O hotspots at the working face

    Energy Technology Data Exchange (ETDEWEB)

    Harborth, Peter, E-mail: p.harborth@tu-bs.de [Department of Waste and Resource Management, Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, Braunschweig (Germany); Fuß, Roland [Institute of Climate-Smart Agriculture, Johann Heinrich von Thünen Institute, Braunschweig (Germany); Münnich, Kai [Department of Waste and Resource Management, Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, Braunschweig (Germany); Flessa, Heinz [Institute of Climate-Smart Agriculture, Johann Heinrich von Thünen Institute, Braunschweig (Germany); Fricke, Klaus [Department of Waste and Resource Management, Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, Braunschweig (Germany)

    2013-10-15

    Highlights: ► First measurements of N{sub 2}O and CH{sub 4} emissions from an MBT landfill. ► High N{sub 2}O emissions from recently deposited material. ► N{sub 2}O emissions associated with aeration and the occurrence of nitrite and nitrate. ► Strong negative correlation between CH{sub 4} and N{sub 2}O production activity. - Abstract: Mechanical biological treatment (MBT) is an effective technique, which removes organic carbon from municipal solid waste (MSW) prior to deposition. Thereby, methane (CH{sub 4}) production in the landfill is strongly mitigated. However, direct measurements of greenhouse gas emissions from full-scale MBT landfills have not been conducted so far. Thus, CH{sub 4} and nitrous oxide (N{sub 2}O) emissions from a German MBT landfill in operation as well as their concentrations in the landfill gas (LFG) were measured. High N{sub 2}O emissions of 20–200 g CO{sub 2} eq. m{sup −2} h{sup −1} magnitude (up to 428 mg N m{sup −2} h{sup −1}) were observed within 20 m of the working face. CH{sub 4} emissions were highest at the landfill zone located at a distance of 30–40 m from the working face, where they reached about 10 g CO{sub 2} eq. m{sup −2} h{sup −1}. The MBT material in this area has been deposited several weeks earlier. Maximum LFG concentration for N{sub 2}O was 24.000 ppmv in material below the emission hotspot. At a depth of 50 cm from the landfill surface a strong negative correlation between N{sub 2}O and CH{sub 4} concentrations was observed. From this and from the distribution pattern of extractable ammonium, nitrite, and nitrate it has been concluded that strong N{sub 2}O production is associated with nitrification activity and the occurrence of nitrite and nitrate, which is initiated by oxygen input during waste deposition. Therefore, CH{sub 4} mitigation measures, which often employ aeration, could result in a net increase of GHG emissions due to increased N{sub 2}O emissions, especially at MBT landfills.

  2. The development and trial of an unmanned aerial system for the measurement of methane flux from landfill and greenhouse gas emission hotspots.

    Science.gov (United States)

    Allen, Grant; Hollingsworth, Peter; Kabbabe, Khristopher; Pitt, Joseph R; Mead, Mohammed I; Illingworth, Samuel; Roberts, Gareth; Bourn, Mark; Shallcross, Dudley E; Percival, Carl J

    2018-01-09

    This paper describes the development of a new sampling and measurement method to infer methane flux using proxy measurements of CO 2 concentration and wind data recorded by Unmanned Aerial Systems (UAS). The flux method described and trialed here is appropriate to the spatial scale of landfill sites and analogous greenhouse gas emission hotspots, making it an important new method for low-cost and rapid case study quantification of fluxes from currently uncertain (but highly important) greenhouse gas sources. We present a case study using these UAS-based measurements to derive instantaneous methane fluxes from a test landfill site in the north of England using a mass balance model tailored for UAS sampling and co-emitted CO 2 concentration as a methane-emission proxy. Methane flux (and flux uncertainty) during two trials on 27 November 2014 and 5 March 2015, were found to be 0.140 kg s -1 (±61% at 1σ), and 0.050 kg s -1 (±54% at 1σ), respectively. Uncertainty contributing to the flux was dominated by ambient variability in the background (inflow) concentration (>40%) and wind speed (>10%); with instrumental error contributing only ∼1-2%. The approach described represents an important advance concerning the challenging problem of greenhouse gas hotspot flux calculation, and offers transferability to a wide range of analogous environments. This new measurement solution could add to a toolkit of approaches to better validate source-specific greenhouse emissions inventories - an important new requirement of the UNFCCC COP21 (Paris) climate change agreement. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Quantifying spatial and temporal variability of methane emissions from a complex area source: case study of a central Indiana landfill

    Science.gov (United States)

    strengths, limitations, and uncertainties of these two approaches. Because US landfills are highly-engineered and composed of daily, intermediate, and final cover areas with differing thicknesses, composition, and implementation of gas recovery, we also expected different emissi...

  4. Superficial methane emissions from a landfill in Merida, Yucatan, Mexico; Emisiones superficiales de metano en un relleno sanitario en Merida, Yucatan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sauri-Riancho, Maria Rosa [Universidad Autonoma de Yucatan, Yucatan (Mexico)]. E-mail: sriancho@uady.mx; Stentiford, Edward I. [University of Leeds (UK)]. E-mail: e.i.stentiford@leeds.ac.uk; Gamboa-Marrufo, Mauricio; Reza-Bacelis, Gabriela; Cahuich-Poot, Nayla; Mendez-Novelo, Roger [Universidad Autonoma de Yucatan, Yucatan (Mexico)]. E-mails: gmarrufo@uady.mx; gabriela.reza@proactiva.com.mx; nayre63@hotmail.com; mnovelo@uady.mx

    2013-07-15

    On worldwide scale, one of the most important anthropogenic methane sources is landfill disposal for solid wastes. The main goal of this work was to quantify methane emissions at one landfill built in Merida, Mexico. This site had venting wells by which a passive control for biogas movement was exerted. At the venting wells, methane concentrations were measured monthly during a 6 months period. Methane surface emission rate was estimated with the close chamber technique. Obtained results indicated that there are both spatial and seasonal variations in biogas composition. The average methane value during the monitoring period was 21.9% (12.7 to 32.5 V/V) and the surface flow rate was in the range of 0 to 6,004 g CH{sub 4} m-2 d-1, with an average value of 1,480 g CH{sub 4} m-2 d-1, which is a high value in respect to these reported in publications. [Spanish] Entre las fuentes antropogenicas mas importantes de metano a escala mundial se encuentra la disposicion final de los residuos solidos. El objetivo de este trabajo fue cuantificar las emisiones de metano provenientes de un relleno sanitario en Merida, Mexico, en el que el movimiento del biogas se controlaba pasivamente utilizando pozos de venteo. Las concentraciones de metano se midieron mensualmente en los pozos de venteo del sitio a lo largo de un periodo de 6 meses. La tasa de emision superficial de metano se determino utilizando la tecnica de camara cerrada. Los resultados indicaron que existen variaciones considerables tanto espaciales como estacionales de la composicion del biogas proveniente de los pozos de venteo con un promedio de concentracion de metano en el sitio, durante todo el periodo de monitoreo, de 21.9% (12.7 a 32.5 V/V). Los flujos superficiales de gas medidos en diversos puntos a lo largo de la superficie del relleno sanitario tuvieron un promedio de 1,480 g CH{sub 4} m-2 d-1, lo que se considero un valor muy alto cuando se comparo con la informacion hallada en la literatura. El intervalo

  5. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS - PHASE I FINAL REPORT: CONCEPTUAL STUDY

    Science.gov (United States)

    The report discusses results of a conceptual design, cost, and evaluation study of energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The conceptual design of the fuel cell energy recovery system is described, and its economic and environm...

  6. The electrochemical oxidation of methane for fuel cells

    Science.gov (United States)

    Frese, K. W.; Wang, J.; Chen, C.

    1992-06-01

    Methane is an abundant raw material that may be converted to electrical energy in fuel cells or it may be transformed to a liquid fuel such as methanol by suitable electrochemical processes. At present, catalytic electrode materials for methane oxidation are limited to Pt and a few Pt-based alloys. More efficient and cheaper electrode materials are desired to improve the performance and lower the cost of methane anodes in fuel cells. The costs associated with gas reforming would be eliminated in a direct methane fuel cell. A basic research program is being conducted to investigate the factors controlling the performance of various anode materials with the goal of identifying improved electrocatalysts. A specific goal is to improve the oxidation kinetics of CO(ad), a known intermediate in CH4 oxidation.

  7. Modelling gas generation for landfill.

    Science.gov (United States)

    Chakma, Sumedha; Mathur, Shashi

    2017-06-01

    A methodology was developed to predict the optimum long-term spatial and temporal generation of landfill gases such as methane, carbon dioxide, ammonia, and hydrogen sulphide on post-closure landfill. The model incorporated the chemical and the biochemical processes responsible for the degradation of the municipal solid waste. The developed model also takes into account the effects of heterogeneity with different layers as observed at the site of landfills' morphology. The important parameters for gas generation due to biodegradation such as temperature, pH, and moisture content were incorporated. The maximum and the minimum generations of methane and hydrogen sulphide were observed. The rate of gas generation was found almost same throughout the depth after 30 years of landfill closure. The proposed model would be very useful for landfill engineering in the mining landfill gas and proper design for landfill gas management systems.

  8. Use of bioreactor landfill for nitrogen removal to enhance methane production through ex situ simultaneous nitrification-denitrification and in situ denitrification.

    Science.gov (United States)

    Sun, Xiaojie; Zhang, Hongxia; Cheng, Zhaowen

    2017-08-01

    High concentrations of nitrate-nitrogen (NO 3 - -N) derived from ex situ nitrification phase can inhibit methane production during ex situ nitrification and in situ denitrification bioreactor landfill. A combined process comprised of ex situ simultaneous nitrification-denitrification (SND) in an aged refuse bioreactor (ARB) and in situ denitrification in a fresh refuse bioreactor (FRB) was conducted to reduce the negative effect of high concentrationsof NO 3 - -N. Ex situ SND can be achieved because NO 3 - -N concentration can be reduced and the removal rate of ammonium-nitrogen (NH 4 + -N) remains largely unchanged when the ventilation rate of ARB-A2 is controlled. The average NO 3 - -N concentrations of effluent were 470mg/L in ex situ nitrification ARB-A1 and 186mg/L in ex situ SND ARB-A2. The average NH 4 + -N removal rates of ARB-A1 and ARB-A2 were 98% and 94%, respectively. Based on the experimental data from week 4 to week 30, it is predicted that NH 4 + -N concentration in FRB-F1 of the ex situ nitrification and in situ denitrification process would reach 25mg/L after 63weeks, and about 40weeks for the FRB-F2 of ex situ SND and in situ denitrification process . Ex situ SND and in situ denitrification process can improve themethane production of FRB-F2. The lag phase time of methane production for the FRB-F2 was 11weeks. This phase was significantly shorter than the 15-week phases of FRB-F1 in ex situ nitrification and in situ denitrification process. A seven-week stabilizationphase was required to increase methane content from 5% to 50% for FRB-F2. Methane content in FRB-F1 did not reach 50% but reached the 45% peak after 20weeks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Methane emissions from sanitary landfills in Italy. Evaluation and forecasting; Le emissioni di metano dalle discariche di rifiuti in Italia: stima e scenari futuri

    Energy Technology Data Exchange (ETDEWEB)

    Colombari, F.; De Lauretis, R.; De Stefanis, P.; Gaudioso, D. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1998-07-01

    The report estimates the methane emissions from landfills by three different methodologies derived from IPCC experiences. A detailed evaluation of solid waste production (MSW) composition is shown in order to update results obtained from old researches. Finally it shows a prediction of MSW production from 1996 to 2011 in different scenarios related to MSW management strategies. [Italian] Il rapporto analizza la stima della quantita' di metano generato dalle discariche di rifiuti utilizzando tre differenti metodologie di calcolo, derivanti dalle conoscenze scientifiche dell'IPCC, dopo aver approfondito la composizione dei rifiuti. Riporta infine per il periodo 1996-2011, la stima della produzione e dello smaltimento dei rifiuti e la predisposizione di diversi scenari futuri di emissione del metano, relativi a differenti scelte all'interno del sistema di gestione dei rifiuti.

  10. Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: Daily, intermediate, and final California cover soils

    Science.gov (United States)

    We quantified the seasonal variability of CH4, CO2, and N2O emissions from fresh refuse and daily, intermediate, and final cover materials at two California landfills. Fresh refuse fluxes (g m-2 d-1) averaged CH4 0.053[+/-0.03], CO2 135[+/-117], and N2O 0.063[+/-0.059]. Average CH4 emissions across ...

  11. Methane production in anaerobic digestion of organic waste from Recife (Brazil landfill: evaluation in refuse of diferent ages

    Directory of Open Access Journals (Sweden)

    W. N. Schirmer

    2014-06-01

    Full Text Available This work focuses on monitoring the generation of biogas by biochemical methane potential (BMP assays, commonly used to assess anaerobic biodegradability of solid and liquid wastes under controlled conditions. The experiment employed 5 g of substrate of both refuses (fresh and one-year-old wastes, digested with 250 mL of inoculum in 1 L flasks as bioreactors (all of them in triplicate, operating under batch conditions at ± 35 ºC. Despite the difference of age of both refuses evaluated, there was no significant differences in volume (near 1800 mL and composition (55% methane of biogas generated in 80 days of incubation under mesophilic conditions. The important parameters of both refuses (such as moisture content, volatile solids and chemical oxygen demand also showed very similar initial values.

  12. Effects of evolving quality of landfill leachate on microbial fuel cell performance.

    Science.gov (United States)

    Li, Simeng; Chen, Gang

    2018-01-01

    Microbial fuel cell (MFC) is a novel technology for landfill leachate treatment with simultaneous electric power generation. In recent years, more and more modern landfills are operating as bioreactors to shorten the time required for landfill stabilization and improve the leachate quality. For landfills to operate as biofilters, leachate is recirculated back to the landfill, during which time the organics of the leachate can be decomposed. Continuous recirculation typically results in evolving leachate quality, which chronologically corresponds to evolution stages such as hydrolysis, acidogenesis, acetogenesis, methanogenesis, and maturation. In this research, variable power generation (160 to 230 mW m -2 ) by MFC was observed when leachate of various evolutionary stages was used as the feed. The power density followed a Monod-type kinetic model with the chemical oxygen demand (COD) equivalent of the volatile fatty acids (VFAs) ( p < 0.001). The coulombic efficiency decreased from 20% to 14% as the leachate evolved towards maturation. The maximum power density linearly decreased with the increase of internal resistance, resulting from the change of the conductivity of the solution. The decreased conductivity boosted the internal resistance and consequently limited the power generation. COD removal as high as 90% could be achieved with leachate extracted from appropriate evolutionary stages, with a maximum energy yield of 0.9 kWh m -3 of leachate. This study demonstrated the importance of the evolving leachate quality in different evolutionary stages for the performance of leachate-fed MFCs. The leachate extracted from acidogenesis and acetogenesis were optimal for both COD reduction and energy production in MFCs.

  13. Trends for Methane Oxidation at Solid Oxide Fuel Cell Conditions

    DEFF Research Database (Denmark)

    Kleis, Jesper; Jones, Glenn; Abild-Pedersen, Frank

    2009-01-01

    First-principles calculations are used to predict a plausible reaction pathway for the methane oxidation reaction. In turn, this pathway is used to obtain trends in methane oxidation activity at solid oxide fuel cell (SOFC) anode materials. Reaction energetics and barriers for the elementary...... reaction steps on both the close-packed Ni{111} and stepped Ni{211} surfaces are presented. Quantum-mechanical calculations augmented with thermodynamic corrections allow appropriate treatment of the elevated temperatures in SOFCs. Linear scaling relationships are used to extrapolate the results from...

  14. Evaluating Gas Emissions From Landfills – Which Methodologies Can Be Used?

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2011-01-01

    Many methodologies exist to measure whole landfill methane emission as alternatives to imprecise estimation of the methane emission using existing landfill gas generation models. An overview of the different measurement methodologies is given, and suggestions to the most promising methodologies...

  15. Landfill gas management in Canada

    International Nuclear Information System (INIS)

    David, A.

    1997-01-01

    Landfill gas produced from solid waste landfills is one of the most significant sources of anthropogenic methane in Canada. Methane, a potent greenhouse gas, is 24.5 times more powerful than carbon dioxide by weight in terms of global climate change. Landfill gas recovery plays an important role in Canada's commitment to stabilize greenhouse gas emissions at 1990 levels by the year 2000 under the United Nations Framework Convention on Climate Change. Landfill gas is a potentially harmful emission that can be converted into a reliable environmentally-sustainable energy source used to generate electricity, fuel industries and heat buildings. The recovery and utilization of landfill gas is a win-win situation which makes good sense from local, regional and global perspectives. It provides the benefits of (1) reducing the release of greenhouse gases that contribute to global warming; (2) limiting odors; (3) controlling damage to vegetation; (4) reducing risks from explosions, fires and asphyxiation; (5) converting a harmful emission into a reliable energy source; and (6) creating a potential source of revenue and profit. Canadian landfills generate about 1 million tons of methane every year; the equivalent energy of 9 million barrels of oil (eight oil super tankers), or enough energy to meet the annual heating needs of more than half a million Canadian homes. Currently, twenty-seven facilities recover and combust roughly 25% of the methane generated by Canadian landfills producing about 3.2 PJ (10 15 Joules) of energy including 80 MW of electricity and direct fuel for nearby facilities (e.g., cement plants, gypsum board manufacturers, recycling facilities, greenhouses). This paper reviews landfill gas characteristics; environmental, health and safety impacts; landfill gas management in Canada; the costs of landfill gas recovery and utilization systems; and on-going projects on landfill gas utilization and flaring

  16. Evaluation and application of site-specific data to revise the first-order decay model for estimating landfill gas generation and emissions at Danish landfills

    DEFF Research Database (Denmark)

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2015-01-01

    Methane (CH4) generated from low-organic waste degradation at four Danish landfills was estimated by three first-order decay (FOD) landfill gas (LFG) generation models (LandGEM, IPCC, and Afvalzorg). Actual waste data from Danish landfills were applied to fit model (IPCC and Afvalzorg) required......-value). In comparison to the IPCC model, the Afvalzorg model was more suitable for estimating CH4 generation at Danish landfills, because it defined more proper waste categories rather than traditional municipal solid waste (MSW) fractions. Moreover, the Afvalzorg model could better show the influence of not only...... landfills (from the start of disposal until 2020 and until 2100). Through a CH4 mass balance approach, fugitive CH4 emissions from whole sites and a specific cell for shredder waste were aggregated based on the revised Afvalzorg model outcomes. Aggregated results were in good agreement with field...

  17. Landfill gas management facilities design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-15

    In British Columbia, municipal solid waste landfills generate over 1000 tonnes of methane per year; landfill gas management facilities are required to improve the environmental performance of solid waste landfills. The aim of this document, developed by the British Columbia Ministry of the Environment, is to provide guidance for the design, installation, and operation of landfill gas management facilities to address odor and pollutant emissions issues and also address health and safety issues. A review of technical experience and best practices in landfill gas management facilities was carried out, as was as a review of existing regulations related to landfill gas management all over the world. This paper provides useful information to landfill owners, operators, and other professionals for the design of landfill gas management facilities which meet the requirements of landfill gas management regulations.

  18. Leaky Landfills.

    Science.gov (United States)

    Jones, Linda L. Cronin

    1992-01-01

    Provides background information on landfills and describes an activity where students learn how a modern landfill is constructed and develop an understanding of the reasons for several regulations regarding modern landfill construction. Students design and construct working models of three types of landfills. (PR)

  19. Modelling of landfill gas adsorption with bottom ash for utilization of renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Chen

    2011-10-06

    Energy crisis, environment pollution and climate change are the serious challenges to people worldwide. In the 21st century, human being is trend to research new technology of renewable energy, so as to slow down global warming and develop society in an environmentally sustainable method. Landfill gas, produced by biodegradable municipal solid waste in landfill, is a renewable energy source. In this work, landfill gas utilization for energy generation is introduced. Landfill gas is able to produce hydrogen by steam reforming reactions. There is a steam reformer equipment in the fuel cells system. A sewage plant of Cologne in Germany has run the Phosphoric Acid Fuel Cells power station with biogas for more than 50,000 hours successfully. Landfill gas thus may be used as fuel for electricity generation via fuel cells system. For the purpose of explaining the possibility of landfill gas utilization via fuel cells, the thermodynamics of landfill gas steam reforming are discussed by simulations. In practice, the methane-riched gas can be obtained by landfill gas purification and upgrading. This work investigate a new method for upgrading-landfill gas adsorption with bottom ash experimentally. Bottom ash is a by-product of municipal solid waste incineration, some of its physical and chemical properties are analysed in this work. The landfill gas adsorption experimental data show bottom ash can be used as a potential adsorbent for landfill gas adsorption to remove CO{sub 2}. In addition, the alkalinity of bottom ash eluate can be reduced in these adsorption processes. Therefore, the interactions between landfill gas and bottom ash can be explained by series reactions accordingly. Furthermore, a conceptual model involving landfill gas adsorption with bottom ash is developed. In this thesis, the parameters of landfill gas adsorption equilibrium equations can be obtained by fitting experimental data. On the other hand, these functions can be deduced with theoretical approach

  20. Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives

    NARCIS (Netherlands)

    Eerten-Jansen, van M.C.A.A.; Heijne, ter A.; Buisman, C.J.N.; Hamelers, H.V.M.

    2012-01-01

    A methane-producing microbial electrolysis cell (MEC) is a technology to convert CO2 into methane, using electricity as an energy source and microorganisms as the catalyst. A methane-producing MEC provides the possibility to increase the fuel yield per hectare of land area, when the CO2 produced in

  1. The dynamics and microbial ecology of a cellulose degrading and methanogenic landfill bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, P.C.; Smith, M.; Blackall, L.L. [Queensland Univ., St. Lucia (Australia). School of Molecular and Microbial Sciences; O' Sullivan, C.; Clarke, W.P. [Queensland Univ., St. Lucia (Australia). School of Engineering

    2004-07-01

    The microbiology of cellulose hydrolysis was studied to determine how biodegradation from municipal landfills can be accelerated. Cellulosic compounds are the primary source of municipal solid waste, of which nearly 70 per cent is biodegradable. Cellulosic material can be converted to methane through microbial processes. The first rate-limiting action is hydrolysis, where cellulolytic bacteria attach to the cellulosic solids. Enzymes then reduce the cellulose into glucose which is then converted to hydrogen, carbon dioxide, volatile fatty acids and then methane by methanogenic Archaea. The efficiency of anaerobic digestion can be improved by increasing the rate of hydrolysis, which in turn can lead to the development of an economically viable renewable energy source from landfill gas while minimizing the amount of greenhouse gases released to the atmosphere. In this study, a 1.25 litre steady state anaerobic bioreactor was fed 150 ml of landfill leachate containing a slurry of cellulose powder on a daily basis. The biogas production rate and the quality of the biogases were measured. Specific fluorescence in situ hybridization (FISH) studies were conducted on the landfill leachate biomass to determine the types of microorganisms present and the rate of microbial attachment to cellulose. The density and pattern of cell attachment was also studied. It was determined that landfills contain several cellulolytic bacteria belonging to the Clostridium lineage of Firmicutes, which produce a range of end products, including methane. Their presence can enhance methane production from cellulosic wastes. 19 refs., 1 fig.

  2. Micronuclei induced by municipal landfill leachate in mouse bone marrow cells in vivo

    International Nuclear Information System (INIS)

    Li Guangke; Sang Nan; Zhao Youcai

    2004-01-01

    The induction of micronuclei (MN) in polychromatic erythrocytes (PCE) of mouse bone marrow by municipal landfill leachate was studied in vivo. Results showed that mouse exposure via drinking water containing various concentrations of leachate caused a significant increase of MN frequencies in a concentration (Chemical oxygen demand measured with potassium dichromate oxidation, COD Cr )-dependent manner. MN induction in female and male mice was different at higher concentrations. This implies that leachate is a genotoxic agent in mammalian cells and that exposure to leachate in an aquatic environment may pose a potential genotoxic risk to human beings

  3. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 1. System design and gas distribution

    DEFF Research Database (Denmark)

    Cassini, Filippo; Scheutz, Charlotte; Skov, Bent Henning

    2017-01-01

    -passive biocover system was constructed at the AV Miljø Landfill, Denmark. The biocover system was fed by landfill gas pumped out of three leachate collection wells. An innovative gas distribution system was used to overcome the commonly observed surface emission hot spot areas resulting from an uGreenhouse gas...... was constructed at the AV Miljø Landfill, Denmark. The biocover system was fed by landfill gas pumped out of three leachate collection wells. An innovative gas distribution system was used to overcome the commonly observed surface emission hot spot areas resulting from an uneven gas distribution to the active...

  4. Results of coalbed-methane drilling, Meadowfill Landfill, Harrison County, West Virginia: Chapter G.4 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Ruppert, Leslie F.; Trippi, Michael H.; Fedorko, Nick; Grady, William C.; Eble, Cortland F.; Schuller, William A.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The U.S. Environmental Protection Agency funded drilling of a borehole (39.33889°N., 80.26542°W.) to evaluate the potential of enhanced coalbed-methane production from unminable Pennsylvanian coal beds at the Meadowfill Landfill near Bridgeport, Harrison County, W. Va. The drilling commenced on June 17, 2004, and was completed on July 1, 2004. The total depth of the borehole was 1,081 feet (ft) and contained 1,053.95 ft of Pennsylvanian coal-bearing strata, and 27.05 ft of Mississippian strata.

  5. Landfilling: Hydrology

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Beaven, R.

    2011-01-01

    under specific circumstances. Initially a general water balance equation is defined for a typical landfill, and the different parts of the water balance are discussed. A separate section discusses water flow and the hydrogeology of landfilled wastes and considers the impact of water short......Landfill hydrology deals with the presence and movement of water through a landfill. The main objective in landfill hydrology is usually to predict leachate generation, but the presence and movement of water in a landfill also affect the degradation of the waste, the leaching of pollutants...

  6. Simultaneous energy generation and UV quencher removal from landfill leachate using a microbial fuel cell.

    Science.gov (United States)

    Iskander, Syeed Md; Novak, John T; Brazil, Brian; He, Zhen

    2017-11-01

    The presence of UV quenching compounds in landfill leachate can negatively affect UV disinfection in a wastewater treatment plant when leachate is co-treated. Herein, a microbial fuel cell (MFC) was investigated to remove UV quenchers from a landfill leachate with simultaneous bioelectricity generation. The key operating parameters including hydraulic retention time (HRT), anolyte recirculation rate, and external resistance were systematically studied to maximize energy recovery and UV absorbance reduction. It was found that nearly 50% UV absorbance was reduced under a condition of HRT 40 days, continuous anolyte recirculation, and 10 Ω external resistance. Further analysis showed a total reduction of organics by 75.3%, including the reduction of humic acids, fulvic acids, and hydrophilic fraction concentration as TOC. The MFC consumed 0.056 kWh m -3 by its pump system for recirculation and oxygen supply. A reduced HRT of 20 days with periodical anode recirculation (1 hour in every 24 hours) and 39 Ω external resistance (equal to the internal resistance of the MFC) resulted in the highest net energy of 0.123 kWh m -3 . Granular activated carbon (GAC) was used as an effective post-treatment step and could achieve 89.1% UV absorbance reduction with 40 g L -1 . The combined MFC and GAC treatment could reduce 92.9% of the UV absorbance and remove 89.7% of the UV quenchers. The results of this study would encourage further exploration of using MFCs as an energy-efficient method for removing UV quenchers from landfill leachate.

  7. Comparison Of Four Landfill Gas Models Using Data From Four Danish Landfills

    DEFF Research Database (Denmark)

    Mønster, Jacob G.; Mou, Zishen; Kjeldsen, Peter

    2011-01-01

    Data about type and quantity of waste disposed in four Danish landfills was collected and used on four different landfill gas generation models. This was done to compare the output data in order to evaluate the performance of the four landfill gas models when used on Danish waste types......, and to compare the four Danish landfill sites. The results show that three of the models generally give similar methane generation output. Only the LandGem model seems to give a much higher methane generation for Danish waste data, most likely due to a low organic fraction. Interpretation of the waste data...

  8. Analysis of biogas in sanitary landfill Caieiras

    Directory of Open Access Journals (Sweden)

    Giovano Candiani

    2011-06-01

    Full Text Available In this work, the biogas in the Sanitary Landfill Caieiras is qualitatively evaluated, emphasizing the influence of the geomembrana and cover system of vertical drains in the vicinity to capture the landfill. It was possible to detect an increase in the percentage of methane and oxygen reduction, aiming at the commercialization of carbon credits and electricity production.

  9. Quantifying landfill biogas production potential in the U.S.

    Science.gov (United States)

    This study presents an overview of the biogas (biomethane) availability in U.S. landfills, calculated from EPA estimates of landfill capacities. This survey concludes that the volume of landfill-derived methane in the U.S. is 466 billion cubic feet per year, of which 66 percent is collected and onl...

  10. Suggested guidelines for gas emission monitoring at danish landfills

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2015-01-01

    Landfill gas is produced on waste disposal sites receiving organic waste resulting in emission of methane. Regulation requires that the landfill gas is managed in order to reduce emissions, but very few suggestions exist to how the landfill gas management activities are monitored, what requiremen...

  11. Energy upcycle in anaerobic treatment: Ammonium, methane, and carbon dioxide reformation through a hybrid electrodeionization–solid oxide fuel cell system

    International Nuclear Information System (INIS)

    Xu, Linji; Dong, Feifei; Zhuang, Huichuan; He, Wei; Ni, Meng; Feng, Shien-Ping; Lee, Po-Heng

    2017-01-01

    Highlights: • EDI-SOFC integrated with AD is introduced for energy extraction from C and N pollutants. • NH 4 + dissociation to NH 3 and H 2 in EDI avoids C deposition in SOFC. • EDI exhibits nutrient and heavy metal recovery. • SOFCs display its adaptability with NH 3 , H 2 , and biogas. • Energy balance ratio boosts from 1.11 to 1.75 by EDI-SOFC in a HK landfill plant. - Abstract: To create possibilities for a more sustainable wastewater management, a novel system consisting of electrodeionization (EDI) and solid oxide fuel cells (SOFCs) is proposed in this study. This system is integrated with anaerobic digestion/landfills to capture energy from carbonaceous and nitrogenous pollutants. Both EDI and SOFCs showed good performances. EDI removed 95% and 76% ammonium-nitrogen (NH 4 + -N) from diluted (0.025 M) to concentrated (0.5 M) synthetic ammonium wastewaters, respectively, accompanied by hydrogen production. SOFCs converted the recovered fuels, biogas mixtures of methane and carbon dioxide, to electricity. Under the optimal conditions of EDI (3.0 V applied voltage and 7.5 mm internal electrode distance (IED), and SOFCs (750 °C operating temperature), the system achieved 60% higher net energy output as compared to conventional systems. The estimated energy benefit of this proposed system showed that the net energy balance ratio is enhanced from 1.11 (existing system) to 1.75 (this study) for a local Hong Kong active landfill facility with 10.0 g L −1 chemical oxygen demand (COD) and 0.21 M NH 4 + -N. Additionally, an average of 80% inorganic ions (heavy metals and nutrient elements) can be removed from the raw landfill leachate by EDI cell. The results are successful demonstrations of the upgrades of anaerobic processes for energy extraction from wastewater streams.

  12. Fugitive halocarbon emissions from working face of municipal solid waste landfills in China.

    Science.gov (United States)

    Liu, Yanjun; Lu, Wenjing; Dastyar, Wafa; Liu, Yanting; Guo, Hanwen; Fu, Xindi; Li, Hao; Meng, Ruihong; Zhao, Ming; Wang, Hongtao

    2017-12-01

    Halocarbons are important anthropogenic greenhouse gases (GHGs) due to their long lifetime and large characteristic factors. The present study for the first time assessed the global warming potential (GWP) of fugitive halocarbon emissions from the working face of landfills in China. The national emissions of five major halocarbons (CFC-11, CFC-113, CH 2 Cl 2 , CHCl 3 and CCl 4 ) from the working face of municipal solid waste landfills in China were provided through observation-based estimations. The fluxes of halocarbons from working face of landfills were observed much higher than covered cells in landfills hence representing the hot spots of landfill emissions. The annual emissions of the halocarbons from landfills in China were 0.02-15.6kt·y -1 , and their GWPs were 128-60,948kt-CO 2 -eq·y -1 based on their characteristic factors on a 100-year horizon. CFC-113 was the dominant species owing to its highest releasing rate (i.e. 15.4±19.1g·t -1 ) and largest characteristic factor, resulting in a GWP up to 4036±4855kt-CO 2 -eq·y -1 . The annual emissions of CFC-113 from landfills (i.e. 0.61kt·y -1 ) made up ∼76% of the total national CFC-113 emissions. The GWPs of halocarbons were estimated ∼14.4% of landfill methane emissions. Therefore, fugitive halocarbons emissions from working face are significant sources of GHGs in landfill sites in China, although they comprise a small fraction of total landfill gases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Yolo County's Accelerated Anaerobic and Aerobic Composting (Full-Scale Controlled Landfill Bioreactor) Project

    Science.gov (United States)

    Yazdani, R.; Kieffer, J.; Akau, H.; Augenstein, D.

    2002-12-01

    elimination of methane production and acceleration of waste decomposition. In the first phase of this project a 12-acre module that contains a 9.5-acre anaerobic cell and a 2.5-acre aerobic cell has been constructed and filled with over 220,000 tons of municipal solid waste. Water and leachate addition began in April 2002 and to date less than 200,000 gallons of liquid has been added to the 3.5-acre anaerobic cell. The waste filling phase of the aerobic cell was completed in June of 2002 and a 12-inches soil cover and 12-inches of greenwaste compost cover was placed on top of the cell. A vacuum will be applied to the piping within the waste to draw air through the landfill. Instrumentations have been installed to monitor the following parameters: waste temperature, moisture, leachate volumes, leachate hydraulic head over the primary liner, leachate composition, gas volumes and composition. A supervisory Control and Data Acquisition (SCADA) system has been installed to monitor and control the operation of the bioreactor cells. Waste samples were taken from each cell for laboratory testing in early June 2002.

  14. Project identification for methane reduction options

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, T.

    1996-12-31

    This paper discusses efforts directed at reduction in emission of methane to the atmosphere. Methane is a potent greenhouse gas, which on a 20 year timeframe may present a similar problem to carbon dioxide. In addition, methane causes additional problems in the form of smog and its longer atmospheric lifetime. The author discusses strategies for reducing methane emission from several major sources. This includes landfill methane recovery, coalbed methane recovery, livestock methane reduction - in the form of ruminant methane reduction and manure methane recovery. The author presents examples of projects which have implemented these ideas, the economics of the projects, and additional gains which come from the projects.

  15. Landfill Mining of Shredder Residues

    DEFF Research Database (Denmark)

    Hansen, Jette Bjerre; Hyks, Jiri; Shabeer Ahmed, Nassera

    In Denmark, shredder residues (SR) are classified as hazardous waste and until January 2012 the all SR were landfilled. It is estimated that more than 1.8 million tons of SR have been landfilled in mono cells. This paper describes investigations conducted at two Danish landfills. SR were excavated...... from the landfills and size fractionated in order to recover potential resources such as metal and energy and to reduce the amounts of SR left for re-landfilling. Based on the results it is estimated that 60-70% of the SR excavated could be recovered in terms of materials or energy. Only a fraction...... with particle size less than 5 mm needs to be re-landfilled at least until suitable techniques are available for recovery of materials with small particle sizes....

  16. Steam Methane Reformation Testing for Air-Independent Solid Oxide Fuel Cell Systems

    Science.gov (United States)

    Mwara, Kamwana N.

    2015-01-01

    Recently, NASA has been looking into utilizing landers that can be propelled by LOX-CH (sub 4), to be used for long duration missions. Using landers that utilize such propellants, also provides the opportunity to use solid oxide fuel cells as a power option, especially since they are able to process methane into a reactant through fuel reformation. One type of reformation, called steam methane reformation, is a process to reform methane into a hydrogen-rich product by reacting methane and steam (fuel cell exhaust) over a catalyst. A steam methane reformation system could potentially use the fuel cell's own exhaust to create a reactant stream that is hydrogen-rich, and requires less internal reforming of the incoming methane. Also, steam reformation may hold some advantages over other types of reforming, such as partial oxidation (PROX) reformation. Steam reformation does not require oxygen, while up to 25 percent can be lost in PROX reformation due to unusable CO (sub 2) reformation. NASA's Johnson Space Center has conducted various phases of steam methane reformation testing, as a viable solution for in-space reformation. This has included using two different types of catalysts, developing a custom reformer, and optimizing the test system to find the optimal performance parameters and operating conditions.

  17. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    DEFF Research Database (Denmark)

    Mogensen, David; Grunwaldt, Jan-Dierk; Hendriksen, Peter Vang

    2014-01-01

    The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC) have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were...

  18. Real-time monitoring of methane oxidation in a simulated landfill cover soil and MiSeq pyrosequencing analysis of the related bacterial community structure.

    Science.gov (United States)

    Xing, Zhilin; Zhao, Tiantao; Gao, Yanhui; He, Zhi; Zhang, Lijie; Peng, Xuya; Song, Liyan

    2017-10-01

    Real-time CH 4 oxidation in a landfill cover soil was studied using automated gas sampling that determined biogas (CH 4 and CO 2 ) and O 2 concentrations at various depths in a simulated landfill cover soil (SLCS) column reactor. The real-time monitoring system obtained more than 10,000 biogas (CH 4 and CO 2 ) and O 2 data points covering 32 steady states of CH 4 oxidation with 32 different CH 4 fluxes (0.2-125mol·m -2 ·d -1 ). The kinetics of CH 4 oxidation at different depths (0-20cm, 20-40cm, and 40-60cm) of SLCS were well fit by a CH 4 -O 2 dual-substrate model based on 32 values (averaged, n=5-15) of equilibrated CH 4 concentrations. The quality of the fit (R 2 ranged from 0.90 to 0.96) was higher than those reported in previous studies, which suggests that real time monitoring is beneficial for CH 4 oxidation simulations. MiSeq pyrosequencing indicated that CH 4 flux events changed the bacterial community structure (e.g., increased the abundance of Bacteroidetes and Methanotrophs) and resulted in a relative increase in the amount of type I methanotrophs (Methylobacter and Methylococcales) and a decrease in the amount of type II methanotrophs (Methylocystis). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Emissions from the Bena Landfill

    Science.gov (United States)

    Schafer, C.; Blake, D. R.; Hughes, S.

    2016-12-01

    In 2013, Americans generated 254 million tons of municipal solid waste (MSW). The gas generated from the decomposition of MSW is composed of approximately 50% methane, 50% carbon dioxide, and a small proportion of non-methane organic compounds (NMOCs). NMOCs constitute less than 1% of landfill emissions, but they can have a disproportionate environmental impact as they are highly reactive ozone precursors. During the 2016 Student Airborne Research Program (SARP), whole air samples were collected at the Bena landfill outside of Bakersfield, CA and throughout Bakersfield and analyzed using gas chromatography in order to quantify NMOC emissions. This area was determined to have elevated concentrations of benzene, trichloroethylene, and tetrachloroethylene, all of which are categorized by the EPA as hazardous to human health. Benzene was found to have a concentration of 145 ± 4 pptv, four times higher than the background levels in Bakersfield (36 ± 1 pptv). Trichloroethylene and tetrachloroethylene had concentrations of 18 ± 1 pptv and 31 ± 1 pptv which were 18 and 10 times greater than background concentrations, respectively. In addition, hydroxyl radical reactivity (ROH) was calculated to determine the potential for tropospheric ozone formation. The total ROH of the landfill was 7.5 ± 0.2 s-1 compared to total background ROH of 1.0 ± 0.1 s-1 . NMOCs only made up 0.6% of total emissions, but accounted for 67% of total ROH.These results can help to shape future landfill emission policies by highlighting the importance of NMOCs in addition to methane. More research is needed to investigate the ozone forming potential of these compounds at landfills across the country.

  20. Mbeubeuss Landfill : Exploring Options to Protect Health, the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Mbeubeuss Landfill : Exploring Options to Protect Health, the Environment, and Livelihoods (Sénégal) ... International is also working with the project team to examine the potential to extract methane from the landfill and qualify for carbon emissions credits under the Clean Development Mechanism of the Kyoto Protocol.

  1. USERS MANUAL: LANDFILL GAS EMISSIONS MODEL - VERSION 2.0

    Science.gov (United States)

    The document is a user's guide for a computer model, Version 2.0 of the Landfill Gas Emissions Model (LandGEM), for estimating air pollution emissions from municipal solid waste (MSW) landfills. The model can be used to estimate emission rates for methane, carbon dioxide, nonmet...

  2. Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell.

    Science.gov (United States)

    Park, Jungyu; Lee, Beom; Tian, Donjie; Jun, Hangbae

    2018-01-01

    A microbial electrolysis cell (MEC) is a promising technology for enhancing biogas production from an anaerobic digestion (AD) reactor. In this study, the effects of the MEC on the rate of methane production from food waste were examined by comparing an AD reactor with an AD reactor combined with a MEC (AD+MEC). The use of the MEC accelerated methane production and stabilization via rapid organic oxidation and rapid methanogenesis. Over the total experimental period, the methane production rate and stabilization time of the AD+MEC reactor were approximately 1.7 and 4.0 times faster than those of the AD reactor. Interestingly however, at the final steady state, the methane yields of both the reactors were similar to the theoretical maximum methane yield. Based on these results, the MEC did not increase the methane yield over the theoretical value, but accelerated methane production and stabilization by bioelectrochemical reactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Evaluation and application of site-specific data to revise the first-order decay model for estimating landfill gas generation and emissions at Danish landfills.

    Science.gov (United States)

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2015-06-01

    Methane (CH₄) generated from low-organic waste degradation at four Danish landfills was estimated by three first-order decay (FOD) landfill gas (LFG) generation models (LandGEM, IPCC, and Afvalzorg). Actual waste data from Danish landfills were applied to fit model (IPCC and Afvalzorg) required categories. In general, the single-phase model, LandGEM, significantly overestimated CH₄generation, because it applied too high default values for key parameters to handle low-organic waste scenarios. The key parameters were biochemical CH₄potential (BMP) and CH₄generation rate constant (k-value). In comparison to the IPCC model, the Afvalzorg model was more suitable for estimating CH₄generation at Danish landfills, because it defined more proper waste categories rather than traditional municipal solid waste (MSW) fractions. Moreover, the Afvalzorg model could better show the influence of not only the total disposed waste amount, but also various waste categories. By using laboratory-determined BMPs and k-values for shredder, sludge, mixed bulky waste, and street-cleaning waste, the Afvalzorg model was revised. The revised model estimated smaller cumulative CH₄generation results at the four Danish landfills (from the start of disposal until 2020 and until 2100). Through a CH₄mass balance approach, fugitive CH₄emissions from whole sites and a specific cell for shredder waste were aggregated based on the revised Afvalzorg model outcomes. Aggregated results were in good agreement with field measurements, indicating that the revised Afvalzorg model could provide practical and accurate estimation for Danish LFG emissions. This study is valuable for both researchers and engineers aiming to predict, control, and mitigate fugitive CH₄emissions from landfills receiving low-organic waste. Landfill operators use the first-order decay (FOD) models to estimate methane (CH₄) generation. A single-phase model (LandGEM) and a traditional model (IPCC) could result in

  4. Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

  5. A New Empirical Model to Estimate Landfill Gas Pollution

    Directory of Open Access Journals (Sweden)

    Hamidreza Kamalan

    2016-07-01

    Full Text Available Background: Landfills are the most important producers of methane as human source. So, prediction of landfill gas generation is by far the most important concern of scientists, decision makers, and landfill owners as well as health authorities. Almost all the currently used models are based on Monod equation first order decay rate which is experimental while the main purpose of this research is to develop a numerical model. Methods: A real scale pilot landfill with 4500 tons of municipal solid waste has been designed, constructed, and operated for two years. Required measurements have been done to provide proper data on greenhouse gases emitted by the landfill and monitor its status such as internal temperature, leachate content, and its settlement during two years. Afterwards, weighted residual method has been used to develop the numerical model. Then, the newly mathematical method has been verified with data from another landfill. Results: Measurements showed that the minimum and maximum percentages of methane among landfill gas were 22.3 and 46.1%, respectively. These values for velocity of landfill gas are 0.3 and 0.48 meters per second, in that order. Conclusion: Since there is just 0.6 percent error in calculation as compared to real measurements from a landfill in California and most of the models used have ten percent error, this simple empirical numerical model is suggested to be utilized by scientists, decision makers, and landfill owners

  6. Mammalian cell line-based bioassays for toxicological evaluation of landfill leachate treated by Pseudomonas sp. ISTDF1.

    Science.gov (United States)

    Ghosh, Pooja; Das, Mihir Tanay; Thakur, Indu Shekhar

    2014-01-01

    Landfill leachate has become a serious environmental concern because of the presence of many hazardous compounds which even at trace levels are a threat to human health and environment. Therefore, it is important to assess the toxicity of leachate generated and discharge it conforming to the safety standards. The present work examined the efficiency of an earlier reported Pseudomonas sp. strain ISTDF1 for detoxification of leachate collected from Okhla landfill site (New Delhi, India). GC-MS analysis performed after treatment showed the removal of compounds like alpha-limonene diepoxide, brominated dioxin-2-one, Bisphenol A, nitromusk, phthalate derivative, and nitrobenzene originally found in untreated leachate. ICP-AES analysis for heavy metals also showed reduction in concentrations of Zn, Cd, Cr, Fe, Ni, and Pb bringing them within the limit of safety discharge. Methyl tetrazolium (MTT) assay for cytotoxicity, alkaline comet assay for genotoxicity, and 7-ethoxyresorufin-O-deethylase (EROD) assay for dioxin-like behavior were carried out in human hepato-carcinoma cell line HepG2 to evaluate the toxic potential of treated and untreated leachates. The bacterium reduced toxicity as shown by 2.5-fold reduction of MTT EC50 value, 7-fold reduction in Olive Tail Moment, and 2.8-fold reduction in EROD induction after 240 h of bacterial treatment.

  7. Methane Tracking and Mitigation Options - EPA CMOP

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains the sub-model for EPA's MARKAL model, which tracks methane emissions from the energy system, and limited other sources (landfills and manure...

  8. Experimental study of methane partial oxidation on Ni-YSZ anode of solid oxide fuel cells

    Science.gov (United States)

    Iwai, Hiroshi; Tada, Koshi; Kishimoto, Masashi; Saito, Motohiro; Yoshida, Hideo

    2017-08-01

    The effects of oxygen addition to methane directly supplied to solid oxide fuel cells were investigated. Fundamental experiments were conducted using Ni-YSZ (yttria-stabilized zirconia) cermet as a typical anode material, and Ni-YSZ catalysts having different streamwise lengths were fabricated on YSZ flat plates. A premixed gas of methane, oxygen, nitrogen and steam was supplied to a test catalyst set in a rectangular test channel. The exhaust gas compositions and the surface temperature distributions of the test catalysts were measured. It was found that the oxidation of methane prominently proceeded near the upstream edge of the catalyst followed by steam/dry reforming reactions downstream. This resulted in the formation of a high-temperature region, leading to a large temperature gradient in the streamwise direction.

  9. Methane rescues retinal ganglion cells and limits retinal mitochondrial dysfunction following optic nerve crush.

    Science.gov (United States)

    Wang, Ruobing; Sun, Qinglei; Xia, Fangzhou; Chen, Zeli; Wu, Jiangchun; Zhang, Yuelu; Xu, Jiajun; Liu, Lin

    2017-06-01

    Secondary degeneration is a common event in traumatic central nervous system disorders, which involves neuronal apoptosis and mitochondrial dysfunction. Exogenous methane exerts the therapeutic effects in many organ injury. Our study aims to investigate the potential neuroprotection of methane in a rat model of optic nerve crush (ONC). Adult male Sprague-Dawley rats were subjected to ONC and administrated intraperitoneally with methane-saturated or normal saline (10 ml/kg) once per day for one week after ONC. The retinal ganglion cells (RGCs) density was assessed by hematoxylin and eosin staining and Fluoro-Gold retrogradely labeling. Visual function was evaluated by flash visual evoked potentials (FVEP). The retinal apoptosis was measured by terminal-deoxy-transferase-mediated dUTP nick end labeling (TUNEL) assay and the expression of apoptosis-related factors, such as phosphorylated Bcl-2-associated death promoter (pBAD), phosphorylated glycogen synthase kinase-3β (pGSK-3β), Bcl-2 associated X protein (Bax) and Bcl-2 extra large (Bcl-xL). Retinal mitochondrial function was assessed by the mRNA expressions of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM), the mitochondrial DNA (mtDNA) copy number, citrate synthase activity and ATP content. Methane treatment significantly improved the RGC loss and visual dysfunction following ONC. As expected, methane also remarkably inhibited the retinal neural apoptosis, such as the fewer TUNEL-positive cells in ganglion cell layer, accompanied by the up-regulations of anti-apoptotic factors (pGSK-3β, pBAD, Bcl-xL) and the down-regulation of pro-apoptotic factor (Bax). Furthermore, methane treatment suppressed up-regulations of critical mitochondrial components (PGC-1α, NRF1 and TFAM) mRNA and mtDNA copy number, as well as improved the reduction of functional mitochondria markers, including citrate synthase

  10. Degradability of Chlorinated Solvents in Landfill Environment

    Science.gov (United States)

    Wang, J. Y.; Litman, M.

    2002-12-01

    The use of landfills as an in situ remediation system represents a cost-effective alternative for groundwater remediation in the source area. This research was conducted to investigate the intrinsic bioattenuation capacity of the landfill ecosystem for chlorinated aliphatic hydrocarbons (CAHs). This research, using excavated refuse samples, studied how the reductive dechlorination of CAHs is linked to the decomposition of solid waste in landfills. Most research effort in groundwater remediation has focused on the contaminant plumes beneath and downgradient from landfills, while the source area remediation has received increasing attention. Bioreactor landfill and leachate recirculation projects have been planned and implemented by the USEPA and some states. However, the use of bioreactor landfill has primarily been considered only to expedite refuse decomposition. This research provides an understanding of the biological fate of CAHs in landfills, an understanding that can lead to the bioreactor landfill system designed to promote the degradation of pollutants right at the source. The research was conducted in two complementary systems: simulated landfill bioreactors and batch degradation experiment in serum bottles. Refuse samples were excavated from a municipal solid waste landfill located in Wayland, Massachusetts, USA. Bioreactors were designed and operated to facilitate refuse decomposition under landfilling conditions. For each reactor, leachate was collected and recirculated back to the reactor and gas was collected into a gas bag and the methane production rate was monitored. Target CAHs, tetrachloroethene (PCE) and trichloroethene (TCE), were added to selected reactors and maintained at about 20 uM each in leachate. The design is to study the effect of long-term exposure of refuse microorganisms to CAHs on the degradation potential of these chemicals in landfills. Changes of biochemical conditions in bioreactors, including leachate pH, leachate COD, and

  11. Biogas generation in landfills. Equilibria, rates and yields

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, M.

    1997-05-01

    Landfilling in `cells` has become more common in recent years. Different waste streams are guided to different cells, among which the biocell is a landfill designed for biogas production. In this thesis, the dependence of biogas generation on waste composition was investigated. Six 8,000 m{sup 3} test cells, with contents ranging from mainly commercial waste to pure domestic waste and equipped with gas extraction systems and bottom plastic liners, were monitored for seven years. Great emphasis was given to the characterization of conversion processes and governing mechanism in the topics of bio-energetics, kinetics and capacities. A thermodynamic model, in which the oxidations of volatile fatty acids (VFA) (2methane production rates and internal conditions observed during a two year period, demonstrated that high biogas rates corresponded with low VFA levels. To explain the discrepancies between theoretical methane potentials and quantified yields (in this study found to be 150-200 and 40-70 Nm{sup 3}/dry tonne, respectively), the possible nutritional limitation was investigated. Pools and emissions of chemical oxygen demand, N, P and K were quantified. Biomass pools were estimated from methane yields, growth yield coefficients, and bacterial mineral contents. However, results from commercial waste test cells showed that the assimilation of P exceeded the refuse content, which suggests the turnover of microbial biomass and questions the notion of nutritional limitation. In sum, the results showed that the advantages of a reduced content of readily biodegradable material, achieved by guidance or pretreatment, encompass several aspects of the performance. 84 refs, 6 figs, 1 tab

  12. Catalytic reduction of NO by methane using a Pt/C/polybenzimidazole/Pt/C fuel cell

    DEFF Research Database (Denmark)

    Petrushina, Irina; Cleemann, Lars Nilausen; Refshauge, Rasmus

    2007-01-01

    The catalytic NO reduction by methane was studied using a (NO,CH4,Ar),Pt|polybenzimidazole(PBI)–H3PO4|Pt,(H2,Ar) fuel cell at 135 and 165°C. It has been found that, without any reducing agent (like CH4), NO can be electrochemically reduced in the (NO, Ar), Pt/C|PBI–H3PO4|Pt/C, (H2,Ar) fuel cell...

  13. Methane Production in Microbial Reverse-Electrodialysis Methanogenesis Cells (MRMCs) Using Thermolytic Solutions

    KAUST Repository

    Luo, Xi

    2014-08-05

    The utilization of bioelectrochemical systems for methane production has attracted increasing attention, but producing methane in these systems requires additional voltage to overcome large cathode overpotentials. To eliminate the need for electrical grid energy, we constructed a microbial reverse- electrodialysis methanogenesis cell (MRMC) by placing a reverse electrodialysis (RED) stack between an anode with exoelectrogenic microorganisms and a methanogenic biocathode. In the MRMC, renewable salinity gradient energy was converted to electrical energy, thus providing the added potential needed for methane evolution from the cathode. The feasibility of the MRMC was examined using three different cathode materials (stainless steel mesh coated with platinum, SS/Pt; carbon cloth coated with carbon black, CC/CB; or a plain graphite fiber brush, GFB) and a thermolytic solution (ammonium bicarbonate) in the RED stack. A maximum methane yield of 0.60 ± 0.01 mol-CH 4/mol-acetate was obtained using the SS/Pt biocathode, with a Coulombic recovery of 75 ± 2% and energy efficiency of 7.0 ± 0.3%. The CC/CB biocathode MRMC had a lower methane yield of 0.55 ± 0.02 mol-CH4/mol-acetate, which was twice that of the GFB biocathode MRMC. COD removals (89-91%) and Coulombic efficiencies (74-81%) were similar for all cathode materials. Linear sweep voltammetry and electrochemical impedance spectroscopy tests demonstrated that cathodic microorganisms enhanced electron transfer from the cathode compared to abiotic controls. These results show that the MRMC has significant potential for production of nearly pure methane using low-grade waste heat and a source of waste organic matter at the anode. © 2014 American Chemical Society.

  14. Landfilling: Environmental Issues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Manfredi, Simone; Kjeldsen, Peter

    2011-01-01

    to air, soil and water caused by the processes stabilizing the waste in the landfill. The main factors controlling the actual environmental impacts from the landfilling are: the nature and amount of the waste landfilled, the geological and hydrological setting of the landfill, the landfill technology......, the extent and quality of the technical environmental protection measures introduced, the daily operation and the timescale. This chapter describes the main potential environmental impacts from landfills. The modern landfill is able to avoid most of these impacts. However, in the planning and design...... of landfills it is important to understand the potential environmental impacts, which must be avoided. The emissions of landfill gas and leachate causing most of the environmental risks are described in detail in the chapters addressing specific landfill types: Chapter 10.5 (mineral waste landfill), Chapter 10...

  15. Cleaner Landfills

    Science.gov (United States)

    2000-01-01

    Osmotek, Inc. developed the Direct Osmosis treatment system through SBIR funding from Ames Research Center. Using technology originally developed for flight aboard the Space Station, the company brought it to their commercial water purification treatment system, Direct Osmosis. This water purification system uses a direct osmosis process followed by a reverse osmosis treatment. Because the product extracts water from a waste product, Osmotek is marketing the unit for use in landfills. The system can treat leachate (toxic chemicals leached into a water source), by filtering the water and leaving behind the leahcate. The leachate then becomes solidified into substance that can not seep into water.

  16. Impact assessment of concentrate recirculation on the landfill gas production

    Directory of Open Access Journals (Sweden)

    Džolev Nikola M.

    2016-01-01

    Full Text Available This paper explores the impact of concentrate recirculation, as a product of leachate treated by reverse osmosis plant, on the production of landfill gas at the real-scale landfill for municipal solid waste. In an effort to come up with results experimental measurements were carried out at the landfill in Bijeljina. All measurements performed, were divided into 3 groups. The aims of two groups of measurement were to determine landfill gas and methane yield from concentrate and leachate in laboratory conditions (1st group and to find out concentrations of oxidizing matters (COD and BOD5 present in leachate and concentrate at different points of treatment as well as its variability over the time (2nd group which could be used to calculate the potential of landfill gas and methane generation from concentrate by recirculation, theoretically. 3rd group of measurements, carried out in parallel, have goal to determine the quality and quantity of the collected landfill gas at wells throughout the landfill. The results of analysis carried out in this experimental research show the clear evidence of concentrate recirculation impact on methane production by increasing the landfill gas flow, as well as its concentration within the landfill gas composition, at the nearby well. Although results indicated relatively high impact of concentrate recirculation on landfill gas production, comparing to its theoretical potential, the influence on the landfill at whole, is negligible, due to relatively low volumes in recirculation with respect to its size and objectively low potential given by organic matter present in concentrate.

  17. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    Directory of Open Access Journals (Sweden)

    D. Mogensen

    2014-01-01

    Full Text Available The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were performed in the temperature range 600–800°C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r ∝PCH40.7. A simple model is presented which is capable of predicting the methane conversion in a stack configuration from intrinsic kinetics of the anode support material. The predictions are compared with the stack measurements presented here, and good agreement is observed.

  18. Developing Low-Intermediate Temperature Fuel Cells for Direct Conversion of Methane to Methanol Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Torabi, A.; Barton, J.; Willman, C.; Ghezel-Ayagh, H.; Li, N.; Poozhikunnath, A.; Maric, R.; Marina, O. A.

    2016-04-26

    The objective of this project is development of a durable, low-cost, and high performance Low Temperature Solid Oxide Fuel Cell (LT-SOFC) for direct conversion of methane to methanol and other liquids, characterized by: a) operating temperature < 500oC, b) current density of > 100 mA/cm2 in liquid hydrocarbon production mode, c) continuous operation of > 100 h, d) cell area >100 cm2, e) cell cost per rate of product output < 100,000/bpd, f) process intensity of > 0.1 bpd/ft3, g) product yield and carbon efficiency > 50%, and h) volumetric output per cell > 30 L/day.

  19. The presence of hydrogenotrophic methanogens in the inoculum improves methane gas production in microbial electrolysis cells.

    KAUST Repository

    Siegert, Michael

    2014-01-01

    High current densities in microbial electrolysis cells (MECs) result from the predominance of various Geobacter species on the anode, but it is not known if archaeal communities similarly converge to one specific genus. MECs were examined here on the basis of maximum methane production and current density relative to the inoculum community structure. We used anaerobic digester (AD) sludge dominated by acetoclastic Methanosaeta, and an anaerobic bog sediment where hydrogenotrophic methanogens were detected. Inoculation using solids to medium ratio of 25% (w/v) resulted in the highest methane production rates (0.27 mL mL(-1) cm(-2), gas volume normalized by liquid volume and cathode projected area) and highest peak current densities (0.5 mA cm(-2)) for the bog sample. Methane production was independent of solid to medium ratio when AD sludge was used as the inoculum. 16S rRNA gene community analysis using pyrosequencing and quantitative PCR confirmed the convergence of Archaea to Methanobacterium and Methanobrevibacter, and of Bacteria to Geobacter, despite their absence in AD sludge. Combined with other studies, these findings suggest that Archaea of the hydrogenotrophic genera Methanobacterium and Methanobrevibacter are the most important microorganisms for methane production in MECs and that their presence in the inoculum improves the performance.

  20. High power-density single-chamber fuel cells operated on methane

    Science.gov (United States)

    Shao, Zongping; Mederos, Jennifer; Chueh, William C.; Haile, Sossina. M.

    Single-chamber solid oxide fuel cells (SC-SOFCs) incorporating thin-film Sm 0.15Ce 0.85O 1.925 (SDC) as the electrolyte, thick Ni + SDC as the (supporting) anode and SDC + BSCF (Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ) as the cathode were operated in a mixture of methane, oxygen and helium at furnace temperatures of 500-650 °C. Because of the exothermic nature of the oxidation reactions that occur at the anode, the cell temperature was as much as 150 °C greater than the furnace temperature. Overall, the open circuit voltage was only slightly sensitive to temperature and gas composition, varying from ∼0.70 to ∼0.78 V over the range of conditions explored. In contrast, the power density strongly increased with temperature and broadly peaked at a methane to oxygen ratio of ∼1:1. At a furnace temperature of 650 °C (cell temperature ∼790 °C), a peak power density of 760 mW cm -2 was attained using a mixed gas with methane, oxygen and helium flow rates of 87, 80 and 320 mL min -1 [STP], respectively. This level of power output is the highest reported in the literature for single chamber fuel cells and reflects the exceptionally high activity of the BSCF cathode for oxygen electro-reduction and its low activity for methane oxidation.

  1. The presence of hydrogenotrophic methanogens in the inoculum improves methane gas production in microbial electrolysis cells

    Directory of Open Access Journals (Sweden)

    Michael eSiegert

    2015-01-01

    Full Text Available High current densities in microbial electrolysis cells (MECs result from the predominance of various Geobacter species on the anode. MECs inoculated from different sources often converge in terms of current production and predominance of Geobacter species despite variability in the inoculum community. Relatively less is known about the effects of inoculum source on methane gas production in MECs, and specifically whether archaeal communities similarly converge to one specific genus. MECs were examined here on the basis of maximum methane production and current density relative to the inoculum community structure. We used anaerobic digester (AD sludge dominated by acetoclastic Methanosaeta species, and an anaerobic bog sediment where hydrogenotrophic methanogens were detected. Inoculation using solids to medium ratio of 25% w/v resulted in the highest methane production rates (0.27 mL mL–1 cm–2, gas volume normalized by liquid volume and cathode projected area and highest peak current densities (0.5 mA cm–2 for the bog sample. Methane production was independent of solid to medium ratio when AD sludge was used as the inoculum. 16S rRNA gene community analysis using pyrosequencing and qPCR confirmed the convergence of Archaea to Methanobacterium and Methanobrevibacter, and of Bacteria to Geobacter, despite their absence in AD sludge. Combined with other studies, these findings suggest that Archaea of the hydrogenotrophic genera Methanobacterium and Methanobrevibacter are the most important microorganisms for methane production in MECs and that their presence in the inoculum improves the performance.

  2. Australian methane fluxes

    International Nuclear Information System (INIS)

    Williams, D.J.

    1990-01-01

    Estimates are provided for the amount of methane emitted annually into the atmosphere in Australia for a variety of sources. The sources considered are coal mining, landfill, motor vehicles, natural gas suply system, rice paddies, bushfires, termites, wetland and animals. This assessment indicates that the major sources of methane are natural or agricultural in nature and therefore offer little scope for reduction. Nevertheless the remainder are not trival and reduction of these fluxes could play a significant part in any Australian action on the greenhouse problem. 19 refs., 7 tabs., 1 fig

  3. Methane-Oxygen Solid Oxide Fuel Cell System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a defined need for energy dense and highly efficient energy storage and power delivery systems for future space missions. Compared to other fuel cell...

  4. Methane-free biogas for direct feeding of solid oxide fuel cells

    Science.gov (United States)

    Leone, P.; Lanzini, A.; Santarelli, M.; Calì, M.; Sagnelli, F.; Boulanger, A.; Scaletta, A.; Zitella, P.

    This paper deals with the experimental analysis of the performance and degradation issues of a Ni-based anode-supported solid oxide fuel cell fed by a methane-free biogas from dark-anaerobic digestion of wastes by pastry and fruit shops. The biogas is produced by means of an innovative process where the biomass is fermented with a pre-treated bacteria inoculum (Clostridia) able to completely inhibit the methanization step during the fermentation process and to produce a H 2/CO 2 mixture instead of conventional CH 4/CO 2 anaerobic digested gas (bio-methane). The proposed biogas production route leads to a biogas composition which avoids the need of introducing a reformer agent into or before the SOFC anode in order to reformate it. In order to analyse the complete behaviour of a SOFC with the bio-hydrogen fuel, an experimental session with several H 2/CO 2 synthetic mixtures was performed on an anode-supported solid oxide fuel cell with a Ni-based anode. It was found that side reactions occur with such mixtures in the typical thermodynamic conditions of SOFCs (650-800 °C), which have an effect especially at high currents, due to the shift to a mixture consisting of hydrogen, carbon monoxide, carbon dioxide and water. However, cells operated with acceptable performance and carbon deposits (typical of a traditional hydrocarbon-containing biogas) were avoided after 50 h of cell operation even at 650 °C. Experiments were also performed with traditional bio-methane from anaerobic digestion with 60/40 vol% of composition. It was found that the cell performance dropped after few hours of operation due to the formation of carbon deposits. A short-term test with the real as-produced biogas was also successfully performed. The cell showed an acceptable power output (at 800 °C, 0.35 W cm -2 with biogas, versus 0.55 W cm -2 with H 2) although a huge quantity of sulphur was present in the feeding fuel (hydrogen sulphide at 103 ppm and mercaptans up to 10 ppm). Therefore, it

  5. Impact of different plants on the gas profile of a landfill cover

    International Nuclear Information System (INIS)

    Reichenauer, Thomas G.; Watzinger, Andrea; Riesing, Johann; Gerzabek, Martin H.

    2011-01-01

    Research highlights: → Plants influence gas profile and methane oxidation in landfill covers. → Plants regulate water content and increase the availability of oxygen for methane oxidation. → Plant species with deep roots like alfalfa showed more stimulation of methane oxidation than plants with shallow root systems like grasses. - Abstract: Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.

  6. International Methane Partnership Fighting Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Due to the growth of international attention on the problem of climate change combined with the attractiveness of methane mitigation technologies, the capture and use of methane in agriculture, coal mines, landfills, and the oil and gas sector has increasingly become popular over the past few years. Highlighting this, several countries hosted the international 'Methane to Market' Partnership Conference and Exposition in October 2007 in Beijing, China.

  7. Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell-forward osmosis system.

    Science.gov (United States)

    Qin, Mohan; Molitor, Hannah; Brazil, Brian; Novak, John T; He, Zhen

    2016-01-01

    A microbial electrolysis cell (MEC)-forward osmosis (FO) system was previously reported for recovering ammonium and water from synthetic solutions, and here it has been advanced with treating landfill leachate. In the MEC, 65.7±9.1% of ammonium could be recovered in the presence of cathode aeration. Without aeration, the MEC could remove 54.1±10.9% of ammonium from the leachate, but little ammonia was recovered. With 2M NH4HCO3 as the draw solution, the FO process achieved 51% water recovery from the MEC anode effluent in 3.5-h operation, higher than that from the raw leachate. The recovered ammonia was used as a draw solute in the FO for successful water recovery from the treated leachate. Despite the challenges with treating returning solution from the FO, this MEC-FO system has demonstrated the potential for resource recovery from wastes, and provide a new solution for sustainable leachate management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Coal Mine Methane in Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This paper discusses coal mine methane emissions (CMM) in the Russian Federation and the potential for their productive utilisation. It highlights specific opportunities for cost-effective reductions of CMM from oil and natural gas facilities, coal mines and landfills, with the aim of improving knowledge about effective policy approaches.

  9. Thermodynamic analysis of direct internal reforming of methane and butane in proton and oxygen conducting fuel cells

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Geerlings, J.J.C.

    2008-01-01

    We present results of a thermodynamic analysis of direct internal reforming fuel cells, based on either a proton conducting fuel cell (FC-H+) or an oxygen ion conducting fuel cell (FC-O2-). We analyze the option of methane as fuel as well as butane. The model self-consistently combines all chemical

  10. Multi-physicochemical modeling of direct methane fueled solid oxide fuel cells

    Science.gov (United States)

    Xie, Yuanyuan; Ding, Hanping; Xue, Xingjian

    2013-11-01

    Both H2-H2O and CO-CO2 electro-oxidation processes are considered in direct methane fueled SOFC model and incorporated into the comprehensive couplings between multi bulk transport processes, diffusion processes, surface chemical processes and the cell polarization performance. The model is validated using the experimental data of polarization performance at 600 °C, 650 °C and 700 °C respectively. Upon the model validation, extensive simulations are carried out to elucidate the complicated interaction mechanisms with emphasis on surface reaction processes and surface adsorbates under SOFC operating conditions. Results show that the surface reactions of methane are strongly dependent on the cell operating conditions and increase with increasing the operating temperature and cell current. The bulk gas species and surface adsorbates show different degree of sensitivities to cell operating conditions. Surface carbon deposition can be mitigated through increasing the operating temperature, the cell operating current, and the exchange current of electrodes as well as suitable increasing H2O content in the fuel. Surface carbon deposition may also be mitigated through suitable reducing the content of CH4, CO, and/or CO2 in the fuel.

  11. Learning from Landfills.

    Science.gov (United States)

    Galus, Pamela

    2000-01-01

    Describes a project in which students developed an all-class laboratory activity called "The Decomposition of Organic and Inorganic Substances in a Landfill". Explores what conditions are necessary to facilitate decomposition in a landfill. (SAH)

  12. Sanitary landfill liners

    DEFF Research Database (Denmark)

    Christiansen, Ole V.; Stentsøe, Steen; Petersen, Søren

    DS/INF 466 is the revised Danish recommendation for investigations, design and construction of landfill liners.......DS/INF 466 is the revised Danish recommendation for investigations, design and construction of landfill liners....

  13. Landfill design in Serbia

    Directory of Open Access Journals (Sweden)

    Karanac Milica

    2015-01-01

    Full Text Available Waste disposal is an important element of integrated waste management. In order to dispose of waste that is free of environmental risk, the proper design of landfills during their construction and/or closure is necessary. The first section of the paper presents the current state of landfills in Serbia, the second deals with problems in project design of landfills, especially in regard to their: a program of waste disposal; b impermeable layer; c leaching collection and treatment; and d gas collection and treatment. Analysis shows that many modern landfills in Serbia do not meet environmental protection requirements, therefore, they need reconstruction. All existing landfills owned by municipalities, as well as illegal dump sites, should be adequately closed. This paper presents the guidelines for successful landfill design which are to serve to meet the requirements and recommendations of Serbian and European regulations. Sound design of landfill technological elements should insure full sustainability of landfills in Serbia.

  14. Methods of Sensing Land Pollution from Sanitary Landfills

    Science.gov (United States)

    Nosanov, Myron Ellis; Bowerman, Frank R.

    1971-01-01

    Major cities are congested and large sites suitable for landfill development are limited. Methane and other gases are produced at most sanitary landfills and dumps. These gases may migrate horizontally and vertically and have caused fatalities. Monitoring these gases provides data bases for design and construction of safe buildings on and adjacent to landfills. Methods of monitoring include: (1) a portable combustible gas indicator; and (2) glass flasks valved to allow simultaneous exhaust of the flask and aspiration of the sample into the flask. Samples are drawn through tubing from probes as deep as twenty-five feet below the surface.

  15. LANDFILL GAS EMISSIONS MODEL (LANDGEM) VERSION 3.02 USER'S GUIDE

    Science.gov (United States)

    The Landfill Gas Emissions Model (LandGEM) is an automated estimation tool with a Microsoft Excel interface that can be used to estimate emission rates for total landfill gas, methane, carbon dioxide, nonmethane organic compounds, and individual air pollutants from municipal soli...

  16. Landfill gas as vehicle fuel; Deponigas som fordonsbraensle

    Energy Technology Data Exchange (ETDEWEB)

    Benjaminsson, Johan; Johansson, Nina; Karlsvaerd, Johan (Grontmij AB, Stockholm (Sweden))

    2010-03-15

    The landfill gas extraction in Sweden 2008 was 370 GWh. Mainly because of lack of available technologies for landfill gas upgrading and high assessed upgrading costs, landfill gas has so far only been used for heating and cogenerations plants (CHP). In recent years, interest has been brought to upgrade landfill gas and this study highlights the possibility of using landfill gas as fuel for vehicles. A decision in investment in an upgrading installation requires a forecast of future gas production and landfill gas extraction. From 2005, dispose of organic waste is prohibited, reducing the number of active landfills and the landfill gas production will go down. Factors such as moisture content, design of the final coverage and landfill gas collection system have a major impact on the extraction. It is therefore difficult to make appropriate predictions of the future gas production. Today's landfill gas extraction is approximately 35% of the landfill gas production and in the light of this, extraction can be in a level comparable to today's at least ten years ahead, provided that the extraction system is being expanded and that measurements are taken to so that landfills should not dry out. In comparison with biogas from anaerobic digestion in a dedicated digester, landfill gas has a high percentage of nitrogen and a content of many contaminants such as organic silicon compounds (siloxanes) and halogenated hydrocarbons (hydrocarbons containing the halogens chlorine, fluorine and bromine). This often requires more treatment and a further separation step. A common method for purification of landfill gas is regenerative adsorption on a dedicated adsorption material. Carbon dioxide is separated by conventional techniques like PSA, water scrubber and membranes. The main barrier to use landfill gas as vehicle fuel is a cost-effective separation of nitrogen that does not generate high methane losses. Nitrogen is separated by PSA or distillation technique (cryogenic

  17. Airborne monitoring of landfills CH_{4} emissions

    Science.gov (United States)

    Gasbarra, Daniele; Gioli, Beniamino; Carlucci, Pantaleone; Magliulo, Vincenzo; Toscano, Piero; Zaldei, Alessandro

    2017-04-01

    The disposal and treatment of waste produces emissions of greenhouse gases (GHGs), which contribute to global climate change. In particular, large quantities of Methane are released in the breakdown of organic matter in landfills. In this work we present a new payload of the Sky Arrow ERA aircraft and an original methodology to compute methane emissions, based on the atmospheric mass budget approach. The payload is presently being used for intensive measurements in the area known as "Terra dei fuochi". In this area, located between the provinces of Naples and Caserta (Southern Italy), urban waste combined with industrial toxic waste has been illegally dumped in old quarries or buried in the nearby countryside for decades. This led to patchy sources of methane, with several hot spots spread over a heterogeneous land. In this context, the use of aircraft allows for the investigation at the landscape as well as at the regional scale, taking into account all sources, including those of small dimensions. The Sky Arrow ERA is equipped with the Mobile Flux Platform, capable of deriving the 3D wind vector at 50 Hz, while CO2 and water vapor densities are measured by an infrared gas analyzer (Licor 7500). A new configuration of the Licor 7700 open path fast methane gas analyzer was developed, based on enclosing the sensor within a cylinder exposed to the external air in-flow. This set-up allows for fast response measurements, while avoiding external modifications, subjected to restrictions. Ambient methane mixing ratios in excess of 7 ppm were measured during landfills overpasses; performing grid flight plans at different heights, to describe a virtual box enclosing the study area, and applying interpolation procedures, it was possible to reconstruct wind components and scalar concentrations in a 5x5 kilometers domain containing 6 different landfills, with a resolution of 50 m horizontal and 20 m vertical. For each flight the methane mass flows along and across the wind

  18. A DFT study of Ru, Rh, Pd, Os, Ir, and Pt clusters as catalysts for methane dissociation in a direct methane fuel cell (DMHFC)

    Energy Technology Data Exchange (ETDEWEB)

    Psofogiannakisa, G. [Ottawa Univ., Ottawa, ON (Canada). Dept. of Chemical Engineering; Ottawa, Univ., Ottawa, ON (Canada). Centre for Catalysis Research and Innovation; St-Amant, A. [Ottawa Univ., Ottawa, ON (Canada). Dept. of Chemistry; Ternan, M. [Ottawa Univ., Ottawa, ON (Canada). Centre for Catalysis Research and Innovation; EnPross Inc., Ottawa, ON (Canada)

    2008-07-01

    The rate limiting step in a direct methane hydrocarbon fuel cell (DMHFC) is the dissociative chemisorption of methane. Quantum mechanical computations were used to examine the terrace, kink, and step sites on 6 different clusters of group 8 transition metals, notably Ru, Rh, Pd, Os, Ir, and Pt. The computations involved the anodic reaction of a DMHFC with a polymer electrolyte that operates at atmospheric pressure and temperatures higher than 120 degrees C. The interaction between molecular fragments and a surface (Pt) were described and density functional theory (DFT) calculations were performed using Guassian software. The geometries of 5 different platinum clusters were examined along with their electronic energy barriers. The biggest contribution to the stabilization energy came from the overlap between the sigma bond in methane and unoccupied sd hybrid orbitals in the Pt bonding atom. The study showed that when relaxation was allowed, the displacement of the bonding metal atom was 0.36 to 0.52 A. The electronic energy barrier often increased as d-orbital occupancy increased. For the kink surface sites, the energy barriers were considerably smaller for the 5d transition metals than for the 4d transition metals. 5 refs., 1 tab.

  19. Landfill Top Covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2011-01-01

    The purpose of the final cover of a landfill is to contain the waste and to provide for a physical separation between the waste and the environment for protection of public health. Most landfill covers are designed with the primary goal to reduce or prevent infiltration of precipitation...... into the landfill in order to minimize leachate generation. In addition the cover also has to control the release of gases produced in the landfill so the gas can be ventilated, collected and utilized, or oxidized in situ. The landfill cover should also minimize erosion and support vegetation. Finally the cover...... is landscaped in order to fit into the surrounding area/environment or meet specific plans for the final use of the landfill. To fulfill the above listed requirements landfill covers are often multicomponent systems which are placed directly on top of the waste. The top cover may be placed immediately after...

  20. Landfilling: Concepts and Challenges

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Scharff, H.; Hjelmar, O.

    2011-01-01

    new approaches and technological advancement the landfill still is a long lasting accumulation of waste in the environment. Much of current landfill design and technology has been introduced as a reaction to problems encountered at actual landfills. The solution was in many cases sought in isolation......Landfilling of waste historically has been the main management route for waste, and in many parts of the world it still is. Landfills have developed from open polluting dumps to modern highly engineered facilities with sophisticated control measures and monitoring routines. However, in spite of all...... to understand the concepts, the processes and the long-term aspects of landfilling. This chapter describes the main conceptual aspects of landfilling. The historical development is presented and key issues of time frames, mass balances and technical approaches are discussed. The environmental issues...

  1. THE EMISSION POTENTIAL FROM MUNICIPAL SOLID WASTE LANDFILL IN JORDAN

    Directory of Open Access Journals (Sweden)

    Mohammad Aljaradin

    2016-01-01

    Full Text Available A comprehensive study was conducted to monitor the emission potential from solid waste landfilled in Jordan over a period of 292 days using an anaerobic lysimeter. A 30 kg waste sample reflecting the typical municipal solid waste (MSW streams generated in Jordan was used to simulate the influence of climate on the emission potential of landfills located in semi-arid areas. The experimental results demonstrated that a significant amount of leachate and landfill gas was produced. The methane content was found to be more than 45% and the leachate produced reached 15.7 l after 200 days. However, after 260 days the gas and leachate production rate became negligible. A significant amount of heavy metal traces was found in the leachate due to mixed waste disposal. Changes in biogas and leachate quality parameters in the lysimeter revealed typical landfill behaviour trends, the only difference being that they developed much more quickly. In view of current landfill practices in Jordan and the effect of climate change, the results suggest that landfill design and operational modes need to be adjusted in order to achieve sustainability. For this reason, optimized design parameters and operational scenarios for sustainable landfill based on the country’s climatic conditions and financial as well as technical potential are recommended as a primary reference for future landfills in Jordan as well as in similar regions and climates.

  2. Biodegradation of trace gases in simulated landfill soil cover systems.

    Science.gov (United States)

    Scheutz, Charlotte; Kjeldsen, Peter

    2005-07-01

    The attenuation of methane and seven volatile organic compounds (VOCs) was investigated in a dynamic methane and oxygen counter gradient system simulating a landfill soil cover. The VOCs investigated were: Tetrachloromethane (TeCM), trichloromethane (TCM), dichloromethane (DCM), trichloroethylene (TCE), vinyl chloride (VC), benzene, and toluene. Soil was sampled at Skellingsted landfill, Denmark. The soil columns showed a high capacity for methane oxidation, with oxidation rates up to 184 g/m2/d corresponding to a 77% reduction of inlet methane. Maximal methane oxidation occurred at 15-20 cm depth, in the upper part of the column where there were overlapping gradients of methane and oxygen. All the chlorinated hydrocarbons were degraded in the active soil columns with removal efficiencies higher than 57%. Soil gas concentration profiles indicated that the removal of the fully chlorinated compound TeCM was because of anaerobic degradation, whereas the degradation of lower chlorinated compounds like VC and DCM was located in the upper oxic part of the column. Benzene and toluene were also removed in the active column. This study demonstrates the complexity of landfill soil cover systems and shows that both anaerobic and aerobic bacteria may play an important role in reducing the emission of trace components into the atmosphere.

  3. Paraffin oil as a "methane vector" for rapid and high cell density cultivation of Methylosinus trichosporium OB3b.

    Science.gov (United States)

    Han, Bing; Su, Tao; Wu, Hao; Gou, Zhongxuan; Xing, Xin-Hui; Jiang, Hao; Chen, Yin; Li, Xin; Murrell, J Colin

    2009-06-01

    Slow growth and relatively low cell densities of methanotrophs have limited their uses in industrial applications. In this study, a novel method for rapid cultivation of Methylosinus trichosporium OB3b was studied by adding a water-immiscible organic solvent in the medium. Paraffin oil was the most effective at enhancing cell growth and final cell density. This is at least partially due to the increase of methane gas transfer between gas and medium phases since methane solubility is higher in paraffin than in water/nitrate minimal salt medium. During cultivation with paraffin oil at 5% (v/v) in the medium, M. trichosporium OB3b cells also showed higher concentrations of the intermediary metabolites, such as formic acid and pyruvic acid, and consumed more methane compared with the control. Paraffin as methane vector to improve methanotroph growth was further studied in a 5-L fermentor at three concentrations (i.e., 2.5%, 5%, and 10%). Cell density reached about 14 g dry weight per liter with 5% paraffin, around seven times higher than that of the control (without paraffin). Cells cultivated with paraffin tended to accumulate around the interface between oil droplets and the water phase and could exist in oil phase in the case of 10% (v/v) paraffin. These results indicated that paraffin could enhance methanotroph growth, which is potentially useful in cultivation of methanotrophs in large scale in industry.

  4. Methane yield enhancement via electroporation of organic waste.

    Science.gov (United States)

    Safavi, Seyedeh Masoumeh; Unnthorsson, Runar

    2017-08-01

    An experimental study with pulsed electric field (PEF) pre-treatment was conducted to investigate its effect on methane production. PEF pre-treatment converts organic solids into soluble and colloidal forms, increasing bioavailability for anaerobic microorganisms participating in methane generation process. The substrates tested were landfill leachate and fruit/vegetable. Three treatment intensities of 15, 30, and 50kWh/m 3 were applied to investigate the influence of pre-treatment on methane production via biochemical methane potential test. Threshold treatment intensity was found to be around 30kWh/m 3 for landfill leachate beyond which the methane production enhanced linearly with increase in intensity. Methane production of the landfill leachate significantly increased up to 44% with the highest intensity. The result of pulsed electric field pre-treatment on fruit/vegetable showed that 15kWh/m 3 was the intensity by which the highest amount of methane (up to 7%) was achieved. Beyond this intensity, the methane production decreased. Chemical oxygen demand removals were increased up to 100% for landfill leachate and 17% for fruit/vegetable, compared to the untreated slurries. Results indicate that the treatment intensity has a significant effect on the methane production and biosolid removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Artificial sweeteners as potential tracers of municipal landfill leachate

    International Nuclear Information System (INIS)

    Roy, James W.; Van Stempvoort, Dale R.; Bickerton, Greg

    2014-01-01

    Artificial sweeteners are gaining acceptance as tracers of human wastewater in the environment. The 3 artificial sweeteners analyzed in this study were detected in leachate or leachate-impacted groundwater at levels comparable to those of untreated wastewater at 14 of 15 municipal landfill sites tested, including several closed for >50 years. Saccharin was the dominant sweetener in old (pre-1990) landfills, while newer landfills were dominated by saccharin and acesulfame (introduced 2 decades ago; dominant in wastewater). Cyclamate was also detected, but less frequently. A case study at one site illustrates the use of artificial sweeteners to identify a landfill-impacted groundwater plume discharging to a stream. The study results suggest that artificial sweeteners can be useful tracers for current and legacy landfill contamination, with relative abundances of the sweeteners potentially providing diagnostic ability to distinguish different landfills or landfill cells, including crude age-dating, and to distinguish landfill and wastewater sources. -- Highlights: • Artificial sweeteners detected at 14 of 15 municipal landfill sites. • Concentrations comparable to wastewater even at sites closed for >50 yr. • Saccharin elevated at all sites; potentially diagnostic of landfill impacts. • Potential for age-dating recent (past 2 decades) waste with acesulfame. -- Artificial sweeteners may be useful for tracing landfill leachate contamination and distinguishing it from wastewater impacts

  6. Low-Altitude Aerial Methane Concentration Mapping

    Directory of Open Access Journals (Sweden)

    Bara J. Emran

    2017-08-01

    Full Text Available Detection of leaks of fugitive greenhouse gases (GHGs from landfills and natural gas infrastructure is critical for not only their safe operation but also for protecting the environment. Current inspection practices involve moving a methane detector within the target area by a person or vehicle. This procedure is dangerous, time consuming, labor intensive and above all unavailable when access to the desired area is limited. Remote sensing by an unmanned aerial vehicle (UAV equipped with a methane detector is a cost-effective and fast method for methane detection and monitoring, especially for vast and remote areas. This paper describes the integration of an off-the-shelf laser-based methane detector into a multi-rotor UAV and demonstrates its efficacy in generating an aerial methane concentration map of a landfill. The UAV flies a preset flight path measuring methane concentrations in a vertical air column between the UAV and the ground surface. Measurements were taken at 10 Hz giving a typical distance between measurements of 0.2 m when flying at 2 m/s. The UAV was set to fly at 25 to 30 m above the ground. We conclude that besides its utility in landfill monitoring, the proposed method is ready for other environmental applications as well as the inspection of natural gas infrastructure that can release methane with much higher concentrations.

  7. Aerobic landfill bioreactor

    Science.gov (United States)

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  8. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    Energy Technology Data Exchange (ETDEWEB)

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  9. Optimizing gas extraction at landfills in Denmark; Optimering af gasindvinding pae deponeringsanlaeg i Danmark

    Energy Technology Data Exchange (ETDEWEB)

    Willumsen, H.C. [LFG Consult (Denmark)

    2005-07-01

    In landfills which contain organic material and anaerobic decomposition takes place, and landfill gas (LFG) is produced. The LFG contains approximately 50% methane, which contributes to the greenhouse effect when emitting from the landfill. Approximately 19% of the greenhouse gases in the atmosphere are methane, and around 8% of this is emission from landfills. This means that roughly 1.5% of the global warming is related to emission from landfills. Extraction of LFG for energy purposes was started 30 years ago in USA. In Denmark 26 LFG plants have been established since 1985. The gas is utilized for CHP or pure power production in gas engine/generator units. In some cases the LFG is used in gas burners in connection with boilers for district heating systems. 24 million m{sup 3} was recovered in 2004, which is equivalent to a reduction of CO{sub 2} of 160.000 tons CO{sub 2}/year. (BA)

  10. Development and implementation of a screening method to categorise the greenhouse gas mitigation potential of 91 landfills

    DEFF Research Database (Denmark)

    Fredenslund, Anders Michael; Mønster, Jacob; Kjeldsen, Peter

    2018-01-01

    to methane emission mitigation through the construction of biocovers. The method was based on downwind methane concentration measurements, using a van-mounted cavity ring-down spectrometer combined with inverse dispersion modelling to estimate whole-site methane emission rates. This method was found...... to variations in input parameters. Of the 91 landfills in the survey, 25 were found to be relevant for biocover construction when the methane emission threshold was set at 2 kg CH4 h−1....

  11. Estimation of methane generation based on anaerobic digestion ...

    African Journals Online (AJOL)

    ... comparable (within 14%) to the amount estimated by laboratory-scale anaerobic digestion experiment (1.43 Gg methane/month). It is a worthwhile undertaking to further investigate the potential of commercially producing methane from Kiteezi landfill as an alternative source of green and clean energy for urban masses.

  12. Potential of Immobilized Whole-Cell Methylocella tundrae as a Biocatalyst for Methanol Production from Methane.

    Science.gov (United States)

    Mardina, Primata; Li, Jinglin; Patel, Sanjay K S; Kim, In-Won; Lee, Jung-Kul; Selvaraj, Chandrabose

    2016-07-28

    Methanol is a versatile compound that can be biologically synthesized from methane (CH4) by methanotrophs using a low energy-consuming and environment-friendly process. Methylocella tundrae is a type II methanotroph that can utilize CH4 as a carbon and energy source. Methanol is produced in the first step of the metabolic pathway of methanotrophs and is further oxidized into formaldehyde. Several parameters must be optimized to achieve high methanol production. In this study, we optimized the production conditions and process parameters for methanol production. The optimum incubation time, substrate, pH, agitation rate, temperature, phosphate buffer and sodium formate concentration, and cell concentration were determined to be 24 h, 50% CH4, pH 7, 150 rpm, 30°C, 100 mM and 50 mM, and 18 mg/ml, respectively. The optimization of these parameters significantly improved methanol production from 0.66 to 5.18 mM. The use of alginate-encapsulated cells resulted in enhanced methanol production stability and reusability of cells after five cycles of reuse under batch culture conditions.

  13. Analytical investigation of high temperature 1 kW solid oxide fuel cell system feasibility in methane hydrate recovery and deep ocean power generation

    International Nuclear Information System (INIS)

    Azizi, Mohammad Ali; Brouwer, Jacob; Dunn-Rankin, Derek

    2016-01-01

    Highlights: • A dynamic Solid Oxide Fuel Cell (SOFC) model was developed. • Hydrate bed methane dissociation model was integrated with the SOFC model. • SOFC operated steadily for 120 days at high pressure deep ocean environment. • Burning some of the dissociated gas for SMR heat leads to more net methane produced. • Higher SOFC fuel utilization produces higher integrated system efficiency. - Abstract: Methane hydrates are potential valuable energy resources. However, finding an efficient method for methane gas recovery from hydrate sediments is still a challenge. New challenges arise from increasing environmental protection. This is due in part to the technical difficulties involved in the efficient dissociation of methane hydrates at high pressures. In this study, a new approach is proposed to produce valuable products of: 1. Net methane gas recovery from the methane hydrate sediment, and 2. Deep ocean power generation. We have taken the first steps toward utilization of a fuel cell system in methane gas recovery from deep ocean hydrate sediments. An integrated high pressure and high temperature solid oxide fuel cell (SOFC) and steam methane reformer (SMR) system is analyzed for this application and the recoverable amount of methane from deep ocean sediments is measured. System analysis is accomplished for two major cases regarding system performance: 1. Energy for SMR is provided by the burning part of the methane gas dissociated from the hydrate sediment. 2. Energy for SMR is provided through heat exchange with fuel cell effluent gases. We found that the total production of methane gas is higher in the first case compared to the second case. The net power generated by the fuel cell system is estimated for all cases. The primary goal of this study is to evaluate the feasibility of integrated electrochemical devices to accomplish energy efficient dissociation of methane hydrate gases in deep ocean sediments. Concepts for use of electrochemical devices

  14. A process-based inventory model for landfill CH4 emissions inclusive of seasonal soil microclimate and CH4 oxidation

    Science.gov (United States)

    We have developed and field-validated an annual inventory model for California landfill CH4 emissions that incorporates both site-specific soil properties and soil microclimate modeling coupled to 0.5o scale global climatic models. Based on 1-D diffusion, CALMIM (California Landfill Methane Inventor...

  15. The impact of municipal solid waste landfills in Suceava County on air quality

    Directory of Open Access Journals (Sweden)

    Dumitru MIHĂILĂ

    2014-08-01

    Full Text Available The location of municipal solid waste (MSW landfills in inappropriate places is a serious risk to the quality of all environmental factors. These waste disposal sites can become major sources of air quality deterioration through emissions of toxic gas resulted from anaerobic decomposition of organic waste. The paper discusses in detail the qualitative and quantitative effects of municipal waste landfills of the main urban settlements in Suceava County (Suceava City municipal landfill and Gura Humorului, Rădăuţi, Siret, Câmpulung Moldovenesc, Fălticeni and Vatra Dornei urban waste landfills on air quality. The dispersion of methane emitted from the largest MSW landfill in the county, the Suceava municipal landfill respectively, is also presented, taking into account seasonal, daytime and nighttime meteorological parameters

  16. Decomposition of forest products buried in landfills

    International Nuclear Information System (INIS)

    Wang, Xiaoming; Padgett, Jennifer M.; Powell, John S.; Barlaz, Morton A.

    2013-01-01

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g −1 dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  17. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    Energy Technology Data Exchange (ETDEWEB)

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  18. Performance of green waste biocovers for enhancing methane oxidation.

    Science.gov (United States)

    Mei, Changgen; Yazdani, Ramin; Han, Byunghyun; Mostafid, M Erfan; Chanton, Jeff; VanderGheynst, Jean; Imhoff, Paul

    2015-05-01

    Green waste aged 2 and 24months, labeled "fresh" and "aged" green waste, respectively, were placed in biocover test cells and evaluated for their ability to oxidize methane (CH4) under high landfill gas loading over a 15-month testing period. These materials are less costly to produce than green waste compost, yet satisfied recommended respiration requirements for landfill compost covers. In field tests employing a novel gas tracer to correct for leakage, both green wastes oxidized CH4 at high rates during the first few months of operation - 140 and 200g/m(2)/day for aged and fresh green waste, respectively. Biocover performance degraded during the winter and spring, with significant CH4 generated from anaerobic regions in the 60-80cm thick biocovers. Concurrently, CH4 oxidation rates decreased. Two previously developed empirical models for moisture and temperature dependency of CH4 oxidation in soils were used to test their applicability to green waste. Models accounted for 68% and 79% of the observed seasonal variations in CH4 oxidation rates for aged green waste. Neither model could describe similar seasonal changes for the less stable fresh green waste. This is the first field application and evaluation of these empirical models using media with high organic matter. Given the difficulty of preventing undesired CH4 generation, green waste may not be a viable biocover material for many climates and landfill conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells.

    Science.gov (United States)

    Sun, Rui; Zhou, Aijuan; Jia, Jianna; Liang, Qing; Liu, Qian; Xing, Defeng; Ren, Nanqi

    2015-01-01

    Microbial electrolysis cell (MECs) were investigated as a promising technology to manage waste activated sludge (WAS) reduction and bio-methane generation. The effect of WAS concentration on the MECs performance was discussed. At the optimal concentration of 15gCOD/L, maximum methane yield of MECs fed with alkaline pretreated WAS (A-WAS) were achieved with the value of 77.13±2.52LCH4/kg-COD on Day 3, which had been improved by 1.5-fold compared with MECs fed with raw WAS (R-WAS), while that was negligible in open circuit controls. Efficient sludge reduction was also obtained in terms of TCOD, total protein, TSS and VSS removal. Pyrosequencing revealed the dominance of exoelectrogen Geobacter and hydrogen-producing bacteria Petrimonas in MECs fed with WAS. Methanocorpusculum with the capacity of methane generation using CO2 and H2 also showed overwhelming dominance (96.01%). The large proportions of Petrimonas and Methanocorpusculum indicated the occurrence of hydrogenotrophic methanogenesis in our methane-producing MECs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Auto generation plant of Artigas landfill (Bilbao, Spain)

    International Nuclear Information System (INIS)

    Carreras, N.; Dorronsoro, J.L.

    1996-01-01

    The disposition of MSW in the landfill generates a mixture of gases or b iogas , its primary content is methane (50-60%) which has a very important energetic value, that can be very useful. In this sense, the present work point out the characteristics of the auto generation electrical plant of Artigas landfill, just like the results of the analytical study of the past two years. In this project which was partly funded by the UE, have participated Excmo. Ayuntamiento de Bilbao, EVE and CIEMAT. (Author) 6 refs

  1. Investigating Microbial Activity in Diazotrophic Methane Seep Sediment via Transcript Analysis and Single-Cell FISH-NanoSIMS

    Science.gov (United States)

    Dekas, A. E.; Connon, S. A.; Chadwick, G.; Orphan, V. J.

    2012-12-01

    Methane seep microbial ecosystems are phylogenetically diverse and physiologically complex, and require culture-independent techniques to accurately investigate metabolic activity. In the present study we combine an RNA analysis of four key microbial genes with FISH-NanoSIMS analysis of single cells to determine the diversity of nitrogen fixing microorganisms (diazotrophs) present at a deep-sea methane-seeping site, as well as investigate the methane-dependency of a variety of community members. Recently, methane-dependent nitrogen fixation was observed in Mound 12 Costa Rica sediments, and was spatially correlated with the abundance of aggregates of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacterial symbionts (SRB). Combined with the detection of 15N uptake from 15N2 in these aggregates, this suggested that the ANME-SRB aggregates are the primary diazotrophs in seep sediment. However, the diversity of dinitrogenase reductase (nifH) sequences recovered from several deep-sea locales, including Mound 12, suggests a greater diversity of diazotrophs in marine sediment. To investigate the activity of these potential diazotrophs in Mound 12 sediment, we investigated a suite of RNA transcripts in 15N2 incubations in both the presence and absence of methane: nifH, bacterial 16S rRNA, methyl coenzyme M reductase A (mcrA), and adenosine-5'-phosposulfate reductase alpha subunit (aprA). No nifH transcripts were recovered in incubations without methane, consistent with previous measurements lacking 15N2 uptake in the same sediments. The activity of the bacterial community in general, assessed by variable transcription, was also greatly affected by the presence or absence of methane. Single-cell fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS) was employed to confirm diazotrophic activity (15N2 uptake) and protein synthesis (15NH4+ uptake) of particular species implicated as ecologically important by the

  2. Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers.

    Science.gov (United States)

    Stralis-Pavese, Nancy; Sessitsch, Angela; Weilharter, Alexandra; Reichenauer, Thomas; Riesing, Johann; Csontos, József; Murrell, J Colin; Bodrossy, Levente

    2004-04-01

    Landfill sites are responsible for 6-12% of global methane emission. Methanotrophs play a very important role in decreasing landfill site methane emissions. We investigated the methane oxidation capacity and methanotroph diversity in lysimeters simulating landfill sites with different plant vegetations. Methane oxidation rates were 35 g methane m-2 day-1 or higher for planted lysimeters and 18 g methane m-2 day-1 or less for bare soil controls. Best methane oxidation, as displayed by gas depth profiles, was found under a vegetation of grass and alfalfa. Methanotroph communities were analysed at high throughput and resolution using a microbial diagnostic microarray targeting the particulate methane monooxygenase (pmoA) gene of methanotrophs and functionally related bacteria. Members of the genera Methylocystis and Methylocaldum were found to be the dominant members in landfill site simulating lysimeters. Soil bacterial communities in biogas free control lysimeters, which were less abundant in methanotrophs, were dominated by Methylocaldum. Type Ia methanotrophs were found only in the top layers of bare soil lysimeters with relatively high oxygen and low methane concentrations. A competetive advantage of type II methanotrophs over type Ia methanotrophs was indicated under all plant covers investigated. Analysis of average and individual results from parallel samples was used to identify general trends and variations in methanotroph community structures in relation to depth, methane supply and plant cover. The applicability of the technology for the detection of environmental perturbations was proven by an erroneous result, where an unexpected community composition detected with the microarray indicated a potential gas leakage in the lysimeter being investigated.

  3. Co-generation potentials of municipal solid waste landfills in Serbia

    Directory of Open Access Journals (Sweden)

    Bošković Goran B.

    2016-01-01

    Full Text Available Waste management in the Republic of Serbia is based on landfilling. As a result of such year-long practice, a huge number of municipal waste landfills has been created where landfill gas has been generated. Landfill gas, which is essentially methane (50-55% and carbon dioxide (40-45% (both GHGs, has a great environmental impact which can be reduced by using landfill gas in cogeneration plants to produce energy. The aim of this paper is to determine economic and environmental benefits from such energy production. For that purpose, the database of cogeneration potentials (CP of 51 landfills in the Republic of Serbia (RS was created. Amount of landfill gas generated at each municipal landfill was calculated by applying a first order decay equation which requires the data about solid waste production and composition and about some landfill characteristics. For all landfills, which have over 100,000 m3 each, a techno-economic analysis about building a CHP plant was conducted. The results have shown, that the total investment in 14 CHP plants with payback period of less than 7 years amounts € 11,721,288. The total nominal power of these plants is 7 MW of electrical power and 7.9 MW of thermal power, and an average payback period is about 61 months. In addition, using landfill biogas as energy source in proposed plants would reduce methane emission for 161,000 tons of CO2 equivalent per year. [Projekat Ministarstva nauke Republike Srbije, br. III 42013: Research of cogeneration potential of municipal and industrial energy power plant in Republic of Serbia and opportunities for rehabilitation of existing and construction of new cogeneration plants

  4. Assessing the performance of gas collection systems in select Chinese landfills according to the LandGEM model: drawbacks and potential direction.

    Science.gov (United States)

    Sun, Yue; Yue, Dongbei; Li, Rundong; Yang, Ting; Liu, Shiliang

    2015-01-01

    In China, municipal solid waste (MSW) is primarily treated by landfilling. Landfill gas (LFG) collection effectively reduces methane emission from MSW landfills. An accurate system of LFG collection is important in landfill planning, design, and operation. However, China has not developed such systems. In this study, the efficiency of methane collection is calculated in three Chinese landfills with different collection systems (A: vertical wells for MSW before 2010; combined horizontal trenches and under-membrane pipes for MSW from 2011 onwards; B: combined horizontal trenches and vertical wells; C: vertical wells only). This efficiency was computed by dividing the quantity of methane obtained from landfill operation records by the quantity estimated based on the LandGEM model. Results show that the collection efficiencies of landfills with vertical wells and/or horizontal pipes ranged from 8.3% to 27.9%, whereas those of a system equipped with geomembrane reached 65.3%. The poor performance of the landfills was attributed to the open burning of early-stage LFG, LFG release from cracks in high-density polyethylene covers, and high levels of leachate within a landfill site. Therefore, this study proposes an integrated LFG collection system that can remove leachate and collect gas from landfills that accept waste with high moisture content.

  5. Characterization of fine fraction mined from two Finnish landfills.

    Science.gov (United States)

    Mönkäre, Tiina J; Palmroth, Marja R T; Rintala, Jukka A

    2016-01-01

    A fine fraction (FF) was mined from two Finnish municipal solid waste (MSW) landfills in Kuopio (1- to 10-year-old, referred as new landfill) and Lohja (24- to 40-year-old, referred as old landfill) in order to characterize FF. In Kuopio the FF (Sieving showed that 86.5±5.7% of the FF was smaller than 11.2mm and the fraction resembled soil. The total solids (TS) content was 46-82%, being lower in the bottom layers compared to the middle layers. The organic matter content (measured as volatile solids, VS) and the biochemical methane potential (BMP) of FF were lower in the old landfill (VS/TS 12.8±7.1% and BMP 5.8±3.4 m(3)CH4/t TS) than in the new landfill (VS/TS 21.3±4.3% and BMP 14.4±9.9 m(3)CH4/t TS), and both were lower compared with fresh MSW. In the Kuopio landfill materials were also mechanically sieved in the full scale plant in two size fraction <30 mm (VS/TS 31.1% and 32.9 m(3)CH4/t TS) and 30-70 mm (VS/TS 50.8% and BMP 78.5m(3)CH4/t TS). The nitrogen (3.5±2.0 g/kg TS), phosphorus (<1.0-1.5 g/kg TS) and soluble chemical oxygen demand (COD) (2.77±1.77 kg/t TS) contents were low in all samples. Since FF is major fraction of the content of landfill, the characterization of FF is important to find possible methods for using or disposing FF mined from landfills. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells-microbial electrolysis cell (MFCs-MEC) coupled system.

    Science.gov (United States)

    Jiang, Yong; Su, Min; Li, Daping

    2014-03-01

    Removal of sulfide and production of methane from carbon dioxide in microbial electrolysis cells (MECs) at the applied voltage of 0.7 V was achieved using sulfide and organic compound as electron donors. The removal rate of sulfide was 72% and the Faraday efficiency of methane formation was 57% within 70 h of operation. Microbial fuel cell (MFCs) can be connected in series to supply power and drive the reaction in MECs. Removal of sulfide and production of methane from carbon dioxide in MFCs-MEC coupled system was achieved. The sulfide removal rates were 62.5, 60.4, and 57.7%, respectively, in the three anode compartments. Methane accumulated at a rate of 0.354 mL h(-1) L(-1) and the Faraday efficiency was 51%. Microbial characterization revealed that the biocathode of MEC was dominated by relatives of Methanobacterium palustre, Methanobrevibacter arboriphilus, and Methanocorpusculum parvum. This technology has a potential for wastewater treatments and biofuel production from carbon dioxide.

  7. Behavior and influence of desiccation cracking in loess landfill covers

    Science.gov (United States)

    Wu, Tao; Lan, Ji-wu; Qiu, Qing-wen; He, Hai-jie; Li, He

    2017-11-01

    In the northwest region of China, loess was the main closure cover material of local landfills. Tests in a full-scale testing facility were conducted to investigate the behavior and influence of desiccation cracking in loess landfill covers. The desiccation cracks in the loess landfill cover intersected with T-shape, and the intersection angles were close to 90 degrees. The desiccation cracks formed as a result of drying, and would heal with the increase of moisture content of the loess. In addition, desiccation cracking in loess covers would promote the formation of preferential flow channels. As a consequence, the gas permeability of the loess cover was improved, and methane emissions increased obviously.

  8. ENHANCED LANDFILL MINING: KONSEP BARU PENGELOLAAN LANDFILL BERKELANJUTAN

    OpenAIRE

    Wahyono, Sri

    2016-01-01

    Enhanced landfill mining (ELFM) adalah konsep baru yang terintegrasi tentang recovery material dan energi pada sebuah landfill yang bermanfaat bagi keberlanjutan pengelolaan material dan pengelolaan landfill. Konsep tersebut mengintegrasikan berbagai teknologi seperti teknologi ekskavasi, teknologi pemilahan, teknologi termal, teknologi transformasi dan daur ulang. Hal tersebut juga terintegrasi dengan aspek non teknis seperti aspek regulasi, market, ekonomi, sosial, dan lingkungan. Konsep EL...

  9. Numerical simulation of landfill gas pressure distribution in landfills.

    Science.gov (United States)

    Xi, Yonghui; Xiong, Hao

    2013-11-01

    Landfill gas emissions are recognized as one of the three major concerns in municipal solid waste landfills. There are many factors that affect the generation of landfill gas when the landfill is capped. In this article, a model has been developed based on the theory of porous media flow. The model could predict the pressure distribution of landfill gas in landfill, coupling the effect of landfill settlement. According to the simulation analysis of landfill, it was found that: (a) the landfill gas pressure would reach a peak after 1.5 years, then begin to decline, and the rate of decay would slow down after 10 years; (b) the influence radius of the gas wells is limited; (c) the peak value of landfill gas pressure is larger, it appears later and the rate of decay is slower when the landfill settlement is considered in the model; (d) the calculation of excess gas pressure in landfill under different negative pressures of the extraction well is compared between this model and another model, and the results show that the relative pressure distribution form and range are almost the same.

  10. Turkey Run Landfill Emissions Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — landfill emissions measurements for the Turkey run landfill in Georgia. This dataset is associated with the following publication: De la Cruz, F., R. Green, G....

  11. Compositional and physicochemical changes in waste materials and biogas production across 7 landfill sites in UK.

    Science.gov (United States)

    Frank, R R; Cipullo, S; Garcia, J; Davies, S; Wagland, S T; Villa, R; Trois, C; Coulon, F

    2017-05-01

    The aim of this study was to evaluate the spatial distribution of the paper and fines across seven landfill sites (LFS) and assess the relationship between waste physicochemical properties and biogas production. Physicochemical analysis of the waste samples demonstrated that there were no clear trends in the spatial distribution of total solids (TS), moisture content (MC) and waste organic strength (VS) across all LFS. There was however noticeable difference between samples from the same landfill site. The effect of landfill age on waste physicochemical properties showed no clear relationship, thus, providing evidence that waste remains dormant and non-degraded for long periods of time. Landfill age was however directly correlated with the biochemical methane potential (BMP) of waste; with the highest BMP obtained from the most recent LFS. BMP was also correlated with depth as the average methane production decreased linearly with increasing depth. There was also a high degree of correlation between the Enzymatic Hydrolysis Test (EHT) and BMP test results, which motivates its potential use as an alternative to the BMP test method. Further to this, there were also positive correlations between MC and VS, VS and biogas volume and biogas volume and CH 4 content. Outcomes of this work can be used to inform waste degradation and methane enhancement strategies for improving recovery of methane from landfills. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Kentucky State Primer. A Primer on Developing Kentucky's Landfill Gas-to-Energy Potential

    Science.gov (United States)

    2000-05-01

    Throughout the country, the number of landfill gas-to-energy (LFGTE) projects is growing. Recovering methane gas at solid waste landfills provides significant environmental and economic benefits by eliminating methane emissions while capturing the emissions energy value. The methane captured from landfills can be transformed into a cost-effective fuel source for generating electricity and heat, firing boilers, or even powering vehicles. Permits, incentive programs, and policies for LFGTE project development vary greatly from state to state. To guide LFGTE project developers through the state permitting process and to help them to take advantage of state incentive programs, the U.S. Environmental Protection Agencys (EPAs) Landfill Methane Outreach Program (LMOP) has worked with state agencies to develop individual primers for states participating in the State Ally Program. By presenting the latest information on federal and state regulations and incentives affecting LFGTE projects in this primer, the LMOP and Kentucky state officials hope to facilitate development of many of the landfills listed in Table A. To develop this primer, the Commonwealth of Kentucky identified all the permits and funding programs that could apply to LFGTE projects developed in Kentucky. It should be noted, however, that the regulations, agencies, and policies described are subject to change. Changes are likely to occur whenever a state legislature meets, or when the federal government imposes new directions on state and local governments. LFGTE project developers should verify and continuously monitor the status of laws and rules that might affect their plans or the operations of their projects.

  13. On direct internal methane steam reforming kinetics in operating solid oxide fuel cells with nickel-ceria anodes

    Science.gov (United States)

    Thallam Thattai, A.; van Biert, L.; Aravind, P. V.

    2017-12-01

    Major operating challenges remain to safely operate methane fuelled solid oxide fuel cells due to undesirable temperature gradients across the porous anode and carbon deposition. This article presents an experimental study on methane steam reforming (MSR) global kinetics for single operating SOFCs with Ni-GDC (gadolinium doped ceria) anodes for low steam to carbon (S/C) ratios and moderate current densities. The study points out the hitherto insufficient research on MSR global and intrinsic kinetics for operating SOFCs with complete Ni-ceria anodes. Further, it emphasizes the need to develop readily applicable global kinetic models as a subsequent step from previously reported state-of-art and complex intrinsic models. Two rate expressions of the Power law (PL) and Langmuir-Hinshelwood (LH) type have been compared and based on the analysis, limitations of using previously proposed rate expressions for Ni catalytic beds to study MSR kinetics for complete cermet anodes have been identified. Firstly, it has been shown that methane reforming on metallic (Ni) current collectors may not be always negligible, contrary to literature reports. Both PL and LH kinetic models predict significantly different local MSR reaction rate and species partial pressure distributions along the normalized reactor length, indicating a strong need for further experimental verifications.

  14. Distribution of Redox-Sensitive Groundwater Quality Parameters Downgradient of a Landfill (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Rügge, Kirsten; Pedersen, Jørn K.

    1995-01-01

    The leachate plume stretching 300 m downgradient from the Grindsted Landfill (Denmark) has been characterized in terms of redox-sensitive groundwater quality parameters along two longitudinal transects (285 samples). Variations in the levels of methane, sulfide, iron(ll), manganese(ll), ammonium......, dinitrogen oxide, nitrite, nitrate, and oxygen in the groundwater samples indicate that methane production, sulfate reduction, iron reduction, manganese reduction, and nitrate reduction take place in the plume. Adjacent to the landfill, methanogenic and sulfatereducing zones were identified, while aerobic...

  15. Landfill gas-fired power plant pays cost of operating landfill

    International Nuclear Information System (INIS)

    Wallace, I.P.

    1991-01-01

    This paper reports on recovery of energy from refuse that has become increasingly attractive in the past decade. The continuing urbanization of our society has created major challenges in the disposal of our waste products. Because of public concern over the potential presence of toxins, and for other environmental reasons, management and regulation of active and inactive landfills have become much more stringent and costly. Palos Verdes landfill, owned jointly by the Los Angeles County Sanitation Districts and Los Angeles County, is located about three miles from the Pacific Ocean in the city of Rolling Hills Estates, Calif. The landfill was closed in 1980. The garbage was covered with six to eight feet of soil, and the area was landscaped. Part of this area has already been developed as the South Coast Botanical Gardens and Ernie Howlett Park. The remainder is scheduled to become a golf course. As refuse decays within a landfill, the natural anaerobic biological reaction generates a low-Btu methane gas along with carbon dioxide, known as landfill gas (LFG). The gas also contains other less desirable trace components generated by the decomposing garbage. Uncontrolled, these gases migrate to the surface and escape into the atmosphere where they generate environmental problems, including objectionable odors. The Sanitation Districts have installed a matrix of gas wells and a gas collection system to enable incineration of the gas in flares. This approach reduced aesthetic, environmental and safety concerns. However, emissions from the flares were still a problem. The Sanitation Districts then looked at alternatives to flaring the gas, one of which was electrical generation. Since the Sanitation Districts have no on-site use for thermal energy, power generation for use in the utility grid was deemed the most feasible alternative

  16. Environmental and human risk assessment of landfill leachate: An integrated approach with the use of cytotoxic and genotoxic stress indices in mussel and human cells

    International Nuclear Information System (INIS)

    Toufexi, Eirini; Tsarpali, Vasiliki; Efthimiou, Ioanna; Vidali, Maria-Sophia; Vlastos, Dimitris; Dailianis, Stefanos

    2013-01-01

    Highlights: • Landfill leachate poses a threat for aquatic biota and humans. • Leachate induces cytotoxic and oxidative effects on mussel hemocytes. • Increased levels of DNA damage were observed both in vivo and in vitro in hemocytes. • Leachate low doses enhance MN formation in human lymphocyte cultures. • Potential leachate aneugenic activity was detected in human lymphocytes. -- Abstract: The present study investigates leachate hazardous effects on marine biota and human cells, with the use of a battery of assays, both under in vivo and in vitro conditions. According to the results, mussels exposed for 4 days to 0.01 and 0.1% (v/v) of leachate showed increased levels of DNA damage and micronuclei (MN) frequencies in their hemocytes. Similarly, enhanced levels of DNA damage were also observed in hemocytes treated in vitro with relevant concentrations of leachate, followed by a significant enhancement of both superoxide anions (·O 2 − ) and lipid peroxidation products (malondialdehyde/MDA). On the other hand, human lymphocyte cultures treated with such a low concentrations of leachate (0.1, 0.2 and 1%, v/v), showed increased frequencies of MN formation and large MN size ratio, as well as decreased cell proliferation, as indicated by the use of the cytokinesis block micronucleus (CBMN) assay and Cytokinesis Block Proliferation Index (CBPI) respectively. These findings showed the clear-cut genotoxic and cytotoxic effects of leachate on both cellular types, as well as its potential aneugenic activity in human lymphocytes

  17. Environmental and human risk assessment of landfill leachate: An integrated approach with the use of cytotoxic and genotoxic stress indices in mussel and human cells

    Energy Technology Data Exchange (ETDEWEB)

    Toufexi, Eirini; Tsarpali, Vasiliki [Section of Animal Biology, Department of Biology, School of Natural Sciences, University of Patras, GR 26500 Patras (Greece); Efthimiou, Ioanna; Vidali, Maria-Sophia; Vlastos, Dimitris [Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi Str., GR 30100 Agrinio (Greece); Dailianis, Stefanos, E-mail: sdailianis@upatras.gr [Section of Animal Biology, Department of Biology, School of Natural Sciences, University of Patras, GR 26500 Patras (Greece)

    2013-09-15

    Highlights: • Landfill leachate poses a threat for aquatic biota and humans. • Leachate induces cytotoxic and oxidative effects on mussel hemocytes. • Increased levels of DNA damage were observed both in vivo and in vitro in hemocytes. • Leachate low doses enhance MN formation in human lymphocyte cultures. • Potential leachate aneugenic activity was detected in human lymphocytes. -- Abstract: The present study investigates leachate hazardous effects on marine biota and human cells, with the use of a battery of assays, both under in vivo and in vitro conditions. According to the results, mussels exposed for 4 days to 0.01 and 0.1% (v/v) of leachate showed increased levels of DNA damage and micronuclei (MN) frequencies in their hemocytes. Similarly, enhanced levels of DNA damage were also observed in hemocytes treated in vitro with relevant concentrations of leachate, followed by a significant enhancement of both superoxide anions (·O{sub 2}{sup −}) and lipid peroxidation products (malondialdehyde/MDA). On the other hand, human lymphocyte cultures treated with such a low concentrations of leachate (0.1, 0.2 and 1%, v/v), showed increased frequencies of MN formation and large MN size ratio, as well as decreased cell proliferation, as indicated by the use of the cytokinesis block micronucleus (CBMN) assay and Cytokinesis Block Proliferation Index (CBPI) respectively. These findings showed the clear-cut genotoxic and cytotoxic effects of leachate on both cellular types, as well as its potential aneugenic activity in human lymphocytes.

  18. Artificial sweeteners as potential tracers of municipal landfill leachate.

    Science.gov (United States)

    Roy, James W; Van Stempvoort, Dale R; Bickerton, Greg

    2014-01-01

    Artificial sweeteners are gaining acceptance as tracers of human wastewater in the environment. The 3 artificial sweeteners analyzed in this study were detected in leachate or leachate-impacted groundwater at levels comparable to those of untreated wastewater at 14 of 15 municipal landfill sites tested, including several closed for >50 years. Saccharin was the dominant sweetener in old (pre-1990) landfills, while newer landfills were dominated by saccharin and acesulfame (introduced 2 decades ago; dominant in wastewater). Cyclamate was also detected, but less frequently. A case study at one site illustrates the use of artificial sweeteners to identify a landfill-impacted groundwater plume discharging to a stream. The study results suggest that artificial sweeteners can be useful tracers for current and legacy landfill contamination, with relative abundances of the sweeteners potentially providing diagnostic ability to distinguish different landfills or landfill cells, including crude age-dating, and to distinguish landfill and wastewater sources. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. Methane emissions and climate compatibility of fossil fuels

    International Nuclear Information System (INIS)

    Meier, B.

    1992-01-01

    Methane contributes directly and indirectly to the additional greenhouse effect caused by human activities. The vast majority of the anthropogenic methane release occurs worldwide in non-fossil sources such as rice cultivation, livestock operations, sanitary landfills and combustion of bio-mass. Methane emissions also occur during production, distribution and utilisation of fossil fuels. Also when considering the methane release and CO 2 -emissions of processes upstream of combustion, the ranking of environmental compatibility of natural gas, fuel oil and cool remains unchanged. Of all fossil fuels, natural gas contributes the least to the greenhouse effect. (orig.) [de

  20. Analysis of the economic potential of the landfill in the municipality of Chapeco - SC, Brazil; Analise do potencial economico do aterro sanitario do municipio de Chapeco - SC

    Energy Technology Data Exchange (ETDEWEB)

    Cansian, Maricy Moreno, Email: maricymc@gmail.com

    2006-07-01

    This study aims to evaluate the economic and environmental viability of the exploitation of methane gas (CH4) - biogas - concentrated at the bottom of the mountains of waste from landfill Chapeco for power generation. The landfill receives approximately of 80 tons / day, the vast majority of domestic origin.

  1. Flux Balance Analysis Indicates that Methane Is the Lowest Cost Feedstock for Microbial Cell Factories.

    Science.gov (United States)

    Comer, Austin D; Long, Matthew R; Reed, Jennifer L; Pfleger, Brian F

    2017-12-01

    The low cost of natural gas has driven significant interest in using C 1 carbon sources (e.g. methane, methanol, CO, syngas) as feedstocks for producing liquid transportation fuels and commodity chemicals. Given the large contribution of sugar and lignocellulosic feedstocks to biorefinery operating costs, natural gas and other C1 sources may provide an economic advantage. To assess the relative costs of these feedstocks, we performed flux balance analysis on genome-scale metabolic models to calculate the maximum theoretical yields of chemical products from methane, methanol, acetate, and glucose. Yield calculations were performed for every metabolite (as a proxy for desired products) in the genome-scale metabolic models of three organisms: Escherichia coli (bacterium), Saccharomyces cerevisiae (yeast), and Synechococcus sp. PCC 7002 (cyanobacterium). The calculated theoretical yields and current feedstock prices provided inputs to create comparative feedstock cost surfaces. Our analysis shows that, at current market prices, methane feedstock costs are consistently lower than glucose when used as a carbon and energy source for microbial chemical production. Conversely, methanol is costlier than glucose under almost all price scenarios. Acetate feedstock costs could be less than glucose given efficient acetate production from low-cost syngas using nascent biological gas to liquids (BIO-GTL) technologies. Our analysis suggests that research should focus on overcoming the technical challenges of methane assimilation and/or yield of acetate via BIO-GTL to take advantage of low-cost natural gas rather than using methanol as a feedstock.

  2. Flux balance analysis indicates that methane is the lowest cost feedstock for microbial cell factories

    Directory of Open Access Journals (Sweden)

    Austin D. Comer

    2017-12-01

    Full Text Available The low cost of natural gas has driven significant interest in using C1 carbon sources (e.g. methane, methanol, CO, syngas as feedstocks for producing liquid transportation fuels and commodity chemicals. Given the large contribution of sugar and lignocellulosic feedstocks to biorefinery operating costs, natural gas and other C1 sources may provide an economic advantage. To assess the relative costs of these feedstocks, we performed flux balance analysis on genome-scale metabolic models to calculate the maximum theoretical yields of chemical products from methane, methanol, acetate, and glucose. Yield calculations were performed for every metabolite (as a proxy for desired products in the genome-scale metabolic models of three organisms: Escherichia coli (bacterium, Saccharomyces cerevisiae (yeast, and Synechococcus sp. PCC 7002 (cyanobacterium. The calculated theoretical yields and current feedstock prices provided inputs to create comparative feedstock cost surfaces. Our analysis shows that, at current market prices, methane feedstock costs are consistently lower than glucose when used as a carbon and energy source for microbial chemical production. Conversely, methanol is costlier than glucose under almost all price scenarios. Acetate feedstock costs could be less than glucose given efficient acetate production from low-cost syngas using nascent biological gas to liquids (BIO-GTL technologies. Our analysis suggests that research should focus on overcoming the technical challenges of methane assimilation and/or yield of acetate via BIO-GTL to take advantage of low-cost natural gas rather than using methanol as a feedstock.

  3. Energy sector methane recovery and use: the importance of policy

    Energy Technology Data Exchange (ETDEWEB)

    Tom Kerr; Michelle Hershman

    2009-08-15

    To raise awareness about appropriate policy options to advance methane recovery and use in the energy sector, the IEA has conducted a series of analyses and studies over the past few years. This report continues IEA efforts by providing policy makers with examples and best practices in methane mitigation policy design and implementation. This report offers an overview of four types of methane mitigation projects that have the strongest links to the energy sector: oil and gas methane recovery and reduction of leaks and losses; coal mine methane; landfill methane; and manure methane recovery and use. It identifies successful policies that have been used to advance these important projects. This information is intended to guide policy makers as they search for low-cost, near-term solutions to climate change. 38 refs., 10 figs., 1 app.

  4. Genotoxicity assessment of membrane concentrates of landfill leachate treated with Fenton reagent and UV-Fenton reagent using human hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guifang [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Lu, Gang [Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, Department of Environmental Engineering, Jinan University, Guangzhou 510632 (China); Yin, Pinghe, E-mail: tyinph@jnu.edu.cn [Research Center of Analysis and Test, Jinan University, Guangzhou 510632 (China); Zhao, Ling, E-mail: zhaoling@jnu.edu.cn [Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, Department of Environmental Engineering, Jinan University, Guangzhou 510632 (China); Jimmy Yu, Qiming [Griffith School of Engineering, Griffith University, Nathan Campus, Brisbane, Queensland 4111 (Australia)

    2016-04-15

    Highlights: • Membrane concentrates have a threat to human health and environment. • Untreated membrane concentrates induces cytotoxic and genotoxic to HepG2 cells. • Both methods were effective method for degradation of BPA and NP in concentrates. • Both methods were efficient in reducing genotoxic effects of concentrates. • UV-Fenton reagent had higher removal efficiency and provides toxicological safety. - Abstract: Membrane concentrates of landfill leachates contain organic and inorganic contaminants that could be highly toxic and carcinogenic. In this paper, the genotoxicity of membrane concentrates before and after Fenton and UV-Fenton reagent was assessed. The cytotoxicity and genotoxicity was determined by using the methods of methyltetrazolium (MTT), cytokinesis-block micronucleus (CBMN) and comet assay in human hepatoma cells. MTT assay showed a cytotoxicity of 75% after 24 h of exposure to the highest tested concentration of untreated concentrates, and no cytotoxocity for UV-Fenton and Fenton treated concentrates. Both CBMN and comet assays showed increased levels of genotoxicity in cells exposed to untreated concentrates, compared to those occurred in cells exposed to UV-Fenton and Fenton reagent treated concentrates. There was no significant difference between negative control and UV-Fenton treated concentrates for micronucleus and comet assay parameters. UV-Fenton and Fenton treatment, especially the former, were effective methods for degradation of bisphenol A and nonylphenol in concentrates. These findings showed UV-Fenton and Fenton reaction were effective methods for treatment of such complex concentrates, UV-Fenton reagent provided toxicological safety of the treated effluent, and the genotoxicity assays were found to be feasible tools for assessment of toxicity risks of complex concentrates.

  5. Financing landfill gas projects

    International Nuclear Information System (INIS)

    Bull, R.

    1992-01-01

    The problems of financing landfill gas projects in the UK in the last few years are discussed. The approach of the author in setting up a company to finance such projects in the power generation field and a separate company to design and supply turnkey packages is reported. (UK)

  6. Characterization of dissolved organic matter during landfill leachate treatment by sequencing batch reactor, aeration corrosive cell-Fenton, and granular activated carbon in series

    International Nuclear Information System (INIS)

    Bu Lin; Wang Kun; Zhao Qingliang; Wei Liangliang; Zhang Jing; Yang Junchen

    2010-01-01

    Landfill leachate is generally characterized as a complex recalcitrant wastewater containing high concentration of dissolved organic matter (DOM). A combination of sequencing batch reactor (SBR) + aeration corrosive cell-Fenton (ACF) + granular activated carbon (GAC) adsorption in series was proposed for the purpose of removing pollutants in the leachate. Fractionation was also performed to investigate the composition changes and characteristics of the leachate DOM in each treatment process. Experimental results showed that organic matter, in terms of chemical oxygen demand (COD), 5-day biological oxygen demand (BOD 5 ), and dissolved organic carbon (DOC), was reduced by 97.2%, 99.1%, and 98.7%, respectively. To differentiate the DOM portions, leachates were separated into five fractions by XAD-8 and XAD-4 resins: hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N), and hydrophilic fraction (HPI). The predominant fraction in the raw leachate was HPO-A (36% of DOC), while the dominant fraction in the final effluent was HPI (53% of DOC). Accordingly, macromolecules were degraded to simpler ones in a relatively narrow range below 1000 Da. Spectral and chromatographic analyses also showed that most humic-like substances in all fractions were effectively removed during the treatments and led to a simultaneous decrease in aromaticity.

  7. Lidar Measurements of Methane and Applications for Aircraft and Spacecraft

    Science.gov (United States)

    Riris, Haris; Numata, Kenji; Abshire, James; Li, Steve; Wu, Stewart; Krainak, Michael; Sun, Xiaoli

    2010-05-01

    Atmospheric methane levels have remained relatively constant over the last decade around 1.78 parts per million (ppm) but observations since 2007 show that levels may be increasing. This trend may be caused by increased fossil fuel production, rice farming, livestock and landfills, but the underlying causes are quite uncertain. One hypothesis is that reservoirs of carbon trapped in the permafrost regions of northern Canada, Europe, and Siberia thaw as global temperatures rise and are releasing increasing amounts of methane. Another hypothesis points to increased production of methane by microbes as the permafrost warms. Currently most observations of greenhouse gases are limited to in-situ (surface and tower sites) and limited airborne in-situ measurements. Space column density measurements are starting to become available from the GOSAT mission. Although methane survives for a shorter time in the atmosphere than CO2, its impact on climate change per molecule is about 23 times than that of CO2. Accurate global observations of several greenhouse gases, including methane, are urgently needed in order to better understand climate change processes and to reduce the uncertainty in the carbon budget. Differential absorption lidar is a well-established technique to measure atmospheric gases, and methane has optical absorption bands near 1.65, 2.2, 3.4 and 7.8 μm. The near infrared overtones lines of CH4 near 1650 nm are relatively free of interference from other species. There are absorption lines near 1651 nm which are both temperature insensitive and have line strengths well suited for lidar measurements. We have developed a laser and demonstrated lidar measurements of CH4 using lines in this band. Our laser uses a narrow linewidth 1064 nm laser pulse passing through a nonlinear crystal. We generate the tunable laser signals near 1651 nm by using the optical parametric amplification (OPA) process. Inside the crystal the 1064 nm beam overlaps with an injection seed

  8. Current and future trends in global landfill gas generation and emissions

    International Nuclear Information System (INIS)

    Meadows, M.; Franklin, C.; Campbell, D.

    1996-01-01

    This paper assesses the magnitude and distribution of current and future methane generation and emissions from landfill on a world-wide basis. It also estimates the current and future global potential for energy recovery from landfill methane. The mass of methane emitted from land disposal of wastes in any country depends on the waste management strategy of that country. In turn, the waste management strategy of a country depends on its population size, relative proportion living in rural or urban regions and the economic development of the country. We estimate by 2010 there will be a large increase in global methane emissions from solid wastes disposed on land. This increase will be largely from developing regions of the world. The main factor driving this increase is a population shift from rural to urban areas, particularly in regions of highest population, i.e. China and India. This will lead to a greater concentration of waste generation, in turn leading to increased disposal of wastes in deeper sites. In addition increased industrialisation and improved standard of living in regions of high population, will increase the mass of waste disposed of per person and the degradable carbon content of the waste, i.e. the waste will become more like waste from developed countries. In contrast, methane emissions from waste disposed on land in developed countries is likely to decrease by 2010, mainly as result of increased collection and combustion of landfill methane. (Author)

  9. Systems Level Dissection of Anaerobic Methane Cycling: Quantitative Measurements of Single Cell Ecophysiology, Genetic Mechanisms, and Microbial Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Orphan, Victoria [California Inst. of Technology (CalTech), Pasadena, CA (United States); Tyson, Gene [University of Queensland, Brisbane Australia; Meile, Christof [University of Georgia, Athens, Georgia; McGlynn, Shawn [California Inst. of Technology (CalTech), Pasadena, CA (United States); Yu, Hang [California Inst. of Technology (CalTech), Pasadena, CA (United States); Chadwick, Grayson [California Inst. of Technology (CalTech), Pasadena, CA (United States); Marlow, Jeffrey [California Inst. of Technology (CalTech), Pasadena, CA (United States); Trembath-Reichert, Elizabeth [California Inst. of Technology (CalTech), Pasadena, CA (United States); Dekas, Anne [California Inst. of Technology (CalTech), Pasadena, CA (United States); Hettich, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pan, Chongle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ellisman, Mark [University of California San Diego; Hatzenpichler, Roland [California Inst. of Technology (CalTech), Pasadena, CA (United States); Skennerton, Connor [California Inst. of Technology (CalTech), Pasadena, CA (United States); Scheller, Silvan [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2017-12-25

    The global biological CH4 cycle is largely controlled through coordinated and often intimate microbial interactions between archaea and bacteria, the majority of which are still unknown or have been only cursorily identified. Members of the methanotrophic archaea, aka ‘ANME’, are believed to play a major role in the cycling of methane in anoxic environments coupled to sulfate, nitrate, and possibly iron and manganese oxides, frequently forming diverse physical and metabolic partnerships with a range of bacteria. The thermodynamic challenges overcome by the ANME and their bacterial partners and corresponding slow rates of growth are common characteristics in anaerobic ecosystems, and, in stark contrast to most cultured microorganisms, this type of energy and resource limited microbial lifestyle is likely the norm in the environment. While we have gained an in-depth systems level understanding of fast-growing, energy-replete microorganisms, comparatively little is known about the dynamics of cell respiration, growth, protein turnover, gene expression, and energy storage in the slow-growing microbial majority. These fundamental properties, combined with the observed metabolic and symbiotic versatility of methanotrophic ANME, make these cooperative microbial systems a relevant (albeit challenging) system to study and for which to develop and optimize culture-independent methodologies, which enable a systems-level understanding of microbial interactions and metabolic networks. We used an integrative systems biology approach to study anaerobic sediment microcosms and methane-oxidizing bioreactors and expanded our understanding of the methanotrophic ANME archaea, their interactions with physically-associated bacteria, ecophysiological characteristics, and underlying genetic basis for cooperative microbial methane-oxidation linked with different terminal electron acceptors. Our approach is inherently multi-disciplinary and multi-scaled, combining transcriptional and

  10. Arctic methane

    NARCIS (Netherlands)

    Dyupina, E.; Amstel, van A.R.

    2013-01-01

    What are the risks of a runaway greenhouse effect from methane release from hydrates in the Arctic? In January 2013, a dramatic increase of methane concentration up to 2000 ppb has been measured over the Arctic north of Norway in the Barents Sea. The global average being 1750 ppb. It has been

  11. Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing.

    Science.gov (United States)

    Cébron, Aurélie; Bodrossy, Levente; Chen, Yin; Singer, Andrew C; Thompson, Ian P; Prosser, James I; Murrell, J Colin

    2007-10-01

    A considerable amount of methane produced during decomposition of landfill waste can be oxidized in landfill cover soil by methane-oxidizing bacteria (methanotrophs) thus reducing greenhouse gas emissions to the atmosphere. The identity of active methanotrophs in Roscommon landfill cover soil, a slightly acidic peat soil, was assessed by DNA-stable isotope probing (SIP). Landfill cover soil slurries were incubated with (13)C-labelled methane and under either nutrient-rich nitrate mineral salt medium or water. The identity of active methanotrophs was revealed by analysis of (13)C-labelled DNA fractions. The diversity of functional genes (pmoA and mmoX) and 16S rRNA genes was analyzed using clone libraries, microarrays and denaturing gradient gel electrophoresis. 16S rRNA gene analysis revealed that the cover soil was mainly dominated by Type II methanotrophs closely related to the genera Methylocella and Methylocapsa and to Methylocystis species. These results were supported by analysis of mmoX genes in (13)C-DNA. Analysis of pmoA gene diversity indicated that a significant proportion of active bacteria were also closely related to the Type I methanotrophs, Methylobacter and Methylomonas species. Environmental conditions in the slightly acidic peat soil from Roscommon landfill cover allow establishment of both Type I and Type II methanotrophs.

  12. Energy utilization from landfill biogas; Aproveitamento energetico do biogas de aterros sanitarios

    Energy Technology Data Exchange (ETDEWEB)

    Candiani, Giovano [Universidade Federal do ABC, Santo Andre, SP (Brazil). Programa de Pos-Graduacao em Energia; Hoffmann, Gustavo; Silva, Elissandro Rocha da; Moreira, Joao M.L.; Tomioka, Jorge

    2008-07-01

    Landfills for solid waste disposal are used in Brazil and in most of countries in the world. The organic part of the solid wastes produces gas out of the decomposition of its organic content. This gas, named biogas and mostly made of carbon dioxide and methane, may be collected and used as an energy source due the methane presence. In this work we analyze the possible energy utilization of landfill biogas in Brazil in which the organic content of the solid waste is about 60%. The use of biogas as energy source can reduce the greenhouse gas emissions and improve the sanitation conditions of landfills. Moreover, it allows financial gains through selling of energy and carbon credits. In order to make possible the biogas utilization it is necessary to recognize the differences among the many landfills which exist in the country. There are the large and small landfills. The large ones usually have good instrumentation and gas exhaustion systems while the small ones have passive exhaustion systems and very few field instrumentation. The small landfills need to improve their instrumentation system and to incorporate exhaustion systems. (author)

  13. Evaluating fugacity models for trace components in landfill gas

    International Nuclear Information System (INIS)

    Shafi, Sophie; Sweetman, Andrew; Hough, Rupert L.; Smith, Richard; Rosevear, Alan; Pollard, Simon J.T.

    2006-01-01

    A fugacity approach was evaluated to reconcile loadings of vinyl chloride (chloroethene), benzene, 1,3-butadiene and trichloroethylene in waste with concentrations observed in landfill gas monitoring studies. An evaluative environment derived from fictitious but realistic properties such as volume, composition, and temperature, constructed with data from the Brogborough landfill (UK) test cells was used to test a fugacity approach to generating the source term for use in landfill gas risk assessment models (e.g. GasSim). SOILVE, a dynamic Level II model adapted here for landfills, showed greatest utility for benzene and 1,3-butadiene, modelled under anaerobic conditions over a 10 year simulation. Modelled concentrations of these components (95 300 μg m -3 ; 43 μg m -3 ) fell within measured ranges observed in gas from landfills (24 300-180 000 μg m -3 ; 20-70 μg m -3 ). This study highlights the need (i) for representative and time-referenced biotransformation data; (ii) to evaluate the partitioning characteristics of organic matter within waste systems and (iii) for a better understanding of the role that gas extraction rate (flux) plays in producing trace component concentrations in landfill gas. - Fugacity for trace component in landfill gas

  14. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences.

    Science.gov (United States)

    Yadav, Shailendra; Kundu, Sharbadeb; Ghosh, Sankar K; Maitra, S S

    2015-01-01

    Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic) and Thaumarchaeota (mesophilic), were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about "methanogenic archaea composition" and "abundance" in the contrasting ecosystems like "landfill" and "marshland" may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process.

  15. Phytoremediation of landfill leachate

    International Nuclear Information System (INIS)

    Jones, D.L.; Williamson, K.L.; Owen, A.G.

    2006-01-01

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250 m 3 ha -1 yr -1 . However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios

  16. CH4 emission estimates from an active landfill site inferred from a combined approach of CFD modelling and in situ FTIR measurements

    Science.gov (United States)

    Sonderfeld, Hannah; Bösch, Hartmut; Jeanjean, Antoine P. R.; Riddick, Stuart N.; Allen, Grant; Ars, Sébastien; Davies, Stewart; Harris, Neil; Humpage, Neil; Leigh, Roland; Pitt, Joseph

    2017-10-01

    Globally, the waste sector contributes to nearly a fifth of anthropogenic methane emitted to the atmosphere and is the second largest source of methane in the UK. In recent years great improvements to reduce those emissions have been achieved by the installation of methane recovery systems at landfill sites, and subsequently methane emissions reported in national emission inventories have been reduced. Nevertheless, methane emissions of landfills remain uncertain and quantification of emission fluxes is essential to verify reported emission inventories and to monitor changes in emissions. Here we present a new approach for methane emission quantification from a complex source such as a landfill site by applying a computational fluid dynamics (CFD) model to calibrated in situ measurements of methane as part of a field campaign at a landfill site near Ipswich, UK, in August 2014. The methane distribution for different meteorological scenarios is calculated with the CFD model and compared to methane mole fractions measured by an in situ Fourier-transform infrared (FTIR) spectrometer downwind of the prevailing wind direction. Assuming emissions only from the active site, a mean daytime flux of 0.83 mg m-2 s-1, corresponding to a spatially integrated emission of 53.3 kg h-1, was estimated. The addition of a secondary source area adjacent to the active site, where some methane hotspots were observed, improved the agreement between the simulated and measured methane distribution. As a result, the flux from the active site was reduced slightly to 0.71 mg m-2 s-1 (45.6 kg h-1), and at the same time an additional flux of 0.32 mg m-2 s-1 (30.4 kg h-1) was found from the secondary source area. This highlights the capability of our method to distinguish between different emission areas of the landfill site, which can provide more detailed information about emission source apportionment compared to other methods deriving bulk emissions.

  17. Anticancer activity of synthetic bis(indolyl)methane-ortho-biaryls against human cervical cancer (HeLa) cells.

    Science.gov (United States)

    Jamsheena, Vellekkatt; Shilpa, Ganesan; Saranya, Jayaram; Harry, Nissy Ann; Lankalapalli, Ravi Shankar; Priya, Sulochana

    2016-03-05

    Bis(indolyl)methane appended biaryls were designed, synthesized and evaluated in human cervical cancer cell lines (HeLa) for their anticancer activities and compared against normal rat cardiac myoblasts (H9C2) cells. Compounds 1-12 were synthesized, with variations in one of the phenyl unit, in a single step by condensation of biaryl-2-carbaldehydes with indole in the presence of para-toluenesulfonic acid. Compound 1 exhibited a GI50 value of 11.00 ± 0.707 μM and the derivatives, compounds 4 and 11 showed a GI50 value of 8.33 ± 0.416 μM and 9.13 ± 0.177 μM respectively in HeLa cells and was found to be non-toxic to H9C2 cells up to 20 μM. Furthermore, compounds 1, 4 and 11 induced caspase dependent cellular apoptosis in a concentration-dependent manner, reduced mitochondrial membrane potential, inhibited the cell migration and downregulated the production of MMP-2 and MMP-9 in HeLa cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. The decay of wood in landfills in contrasting climates in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Ximenes, Fabiano, E-mail: fabiano.ximenes@dpi.nsw.gov.au [Forest Science, Agriculture NSW, New South Wales Department of Primary Industries, Level 12, 10 Valentine Ave, Parramatta, NSW 2150 (Australia); Björdal, Charlotte [Department of Conservation, Gothenburg University, Guldhedsgatan 5A, Box 130, SE-405 30 Göteborg (Sweden); Cowie, Annette [NSW Department of Primary Industries, Beef Industry Centre, Trevenna Rd., University of New England, Armidale, NSW 2351 (Australia); Barlaz, Morton [Dept. of Civil, Construction, & Environmental Eng., North Carolina State University, Box 7908, Raleigh, NC 27695-7908 (United States)

    2015-07-15

    Highlights: • We examine decay in wood from landfills in contrasting environments in Australia. • Analysis is based on changes in chemical composition and microscopy. • Climate did not influence levels of decay observed. • Microscopy of retrieved samples revealed most of the decay was aerobic in nature. • Current default factors for wood decay in landfills overestimate methane emissions. - Abstract: Wood products in landfill are commonly assumed to decay within several decades, returning the carbon contained therein to the atmosphere, with about half the carbon released as methane. However, the rate and extent of decay is not well known, as very few studies have examined the decay of wood products in landfills. This study reports on the findings from landfill excavations conducted in the Australian cities of Sydney and Cairns located in temperate and tropical environments, respectively. The objective of this study was to determine whether burial of the wood in warmer, more tropical conditions in Cairns would result in greater levels of decay than occurs in the temperate environment of Sydney. Wood samples recovered after 16–44 years in landfill were examined through physical, chemical and microscopic analyses, and compared with control samples to determine the carbon loss. There was typically little or no decay in the wood samples analysed from the landfill in Sydney. Although there was significant decay in rainforest wood species excavated from Cairns, decay levels for wood types that were common to both Cairns and Sydney landfills were similar. The current Intergovernmental Panel on Climate Change (IPCC, 2006) default decay factor for organic materials in landfills is 50%. In contrast, the carbon loss determined for Pinus radiata recovered from Sydney and Cairns landfills was 7.9% and 4.4%, respectively, and 0% for Agathis sp. This suggests that climate did not influence decay, and that the more extensive levels of decay observed for some wood samples

  19. Advanced coal technology by-products: Long-term results from landfill test cells and their implications for reuse or disposal applications

    Energy Technology Data Exchange (ETDEWEB)

    Weinberg, A. [Radian Corp., Austin, TX (United States); Harness, J.L. [USDOE, Washington, DC (United States)

    1994-06-01

    New air pollution regulations under the 1991 Clean Air Act and other legislation are motivating continued development and implementation, of cleaner, more efficient processes for converting coal to electrical power. These clean coal processes produce solid by-products which differ in important respects from conventional pulverized coal combustion ash. Clean coal by-products` contain both residual sorbent and captured SO{sub 2} control products, as well as the mineral component of the coal. The Department of Energy/Morgantown Energy Technology Center has contracted Radian Corporation to construct and monitor landfill test cells with a several different advanced coal combustion by-products at three locations around the US; data from these sites provide a unique picture of the long-term field behavior of clean coal combustion by-products. The field testing sites were located in western Colorado, northern Ohio, and central Illinois. Fluidized bed combustion and lime injection residues are characterized by high lime and calcium sulfate contents` contributed by reacted and unreacted sorbent materials, and produce an leachate, when wetted. Compared with conventional coal fly ash, the clean coal technology ashes have been noted for potential difficulties when wetted, including corrosivity, heat generation, cementation, and swelling on hydration. On the other hand, the high lime content and chemical reactivity of clean coal residues offer potential benefits in reuse as a cementitious material.The results of three years of data collection suggest a fairly consistent pattern of behavior for the calcium-based dry sorbent systems involved in the project, despite differences in the initial of the by-products, differences in the methods of placement, and differences in climate at the test sites.

  20. Transport and reaction processes affecting the attenuation of landfill gas in cover soils

    DEFF Research Database (Denmark)

    Molins, S.; Mayer, K.U.; Scheutz, Charlotte

    2008-01-01

    to the atmosphere. Oxygen supply into the soil column is driven exclusively by diffusion, whereas advection outward offsets part of the diffusive contribution. In the reaction zone, methane consumption reduces the pressure gradient, further decreasing the significance of advection near the top of the column....... Simulations suggest that production of water or accumulation of exopolymeric substances due to microbially mediated methane oxidation can significantly reduce diffusive fluxes. Assuming a constant rate of methane production within a landfill, reduction of the diffusive transport properties, primarily due...

  1. Lateral gas transport in soil adjacent to an old landfill: factors governing gas migration

    DEFF Research Database (Denmark)

    Christophersen, Mette; Kjeldsen, Peter

    2001-01-01

    was observed. There was a good correlation between pressure above the barometric pressure and the methane concentration in the soil, indicating that advective flow was the controlling process. This was confirmed by calculations. Diurnal measurement during a drop in barometric pressure showed that lateral......Field experiments investigating lateral gas transport in soil adjacent to an old landfill in Denmark during a one-year period were conducted. A significant seasonal variation, with low concentrations of methane and high concentrations of carbon dioxide in the summer, caused by methane oxidation...

  2. Estimation of biogas produced by the landfill of Palermo, applying a Gaussian model.

    Science.gov (United States)

    Aronica, S; Bonanno, A; Piazza, V; Pignato, L; Trapani, S

    2009-01-01

    In this work, a procedure is suggested to assess the rate of biogas emitted by the Bellolampo landfill (Palermo, Italy), starting from the data acquired by two of the stations for monitoring meteorological parameters and polluting gases. The data used refer to the period November 2005-July 2006. The methane concentration, measured in the CEP suburb of Palermo, has been analysed together with the meteorological data collected by the station situated inside the landfill area. In the present study, the methane has been chosen as a tracer of the atmospheric pollutants produced by the dump. The data used for assessing the biogas emission refer to night time periods characterized by weak wind blowing from the hill toward the city. The methane rate emitted by the Bellolampo dump has been evaluated using a Gaussian model and considering the landfill both as a single point source and as a multiple point one. The comparison of the results shows that for a first approximation it is sufficient to consider the landfill of Palermo as a single point source. Starting from the monthly percentage composition of the biogas, estimated for the study period, the rate of biogas produced by the dump was evaluated. The total biogas produced by the landfill, obtained as the sum of the emitted component and the recovered one, ranged from 7519.97 to 10,153.7m3/h. For the study period the average monthly estimations of biogas emissions into the atmosphere amount to about 60% of the total biogas produced by the landfill, a little higher than the one estimated by the company responsible for the biogas recovery plant at the landfill.

  3. Landfill Gas Energy Project Data and Landfill Technical Data

    Science.gov (United States)

    This page provides data from the LMOP Database for U.S. landfills and LFG energy projects in Excel files, a map of project and candidate landfill counts by state, project profiles for a select group of projects, and information about Project Expo sites.

  4. Breaking methane

    OpenAIRE

    Rosenzweig, Amy C.

    2015-01-01

    The most powerful oxidant found in nature is compound Q, an enzymatic intermediate that oxidizes methane. New spectroscopic data have resolved the long-running controversy about Q’s chemical structure.

  5. Comparison of potential greenhouse gas emissions from disposal of MSW in sanitary landfills vs. waste-to-energy facilities

    International Nuclear Information System (INIS)

    Taylor, H.F.

    1991-01-01

    The Environmental Protection Agency (EPA) estimates the US currently generates about 160 million tons of municipal solid waste (MSW) per year, and this figure will exceed 200 million tons annually by the year 2000. About 80 percent of the MSW will be disposed of in landfills and waste-to-energy (WTE) facilities, both of which generate greenhouse gases, namely methane and carbon dioxide. This paper provides an introductory level analysis of the potential long term greenhouse gas emissions from these two MSW disposal alternatives. Carbon dioxide credits are derived for fossil fuel offset by WTE and methane emissions are converted to equivalent CO 2 emissions in order to derive a single emission figure for comparison of the greenhouse contribution of the two disposal strategies. A secondary analysis is presented to compare the net equivalent CO 2 emissions from WTE facilities to those from landfills with methane gas recovery, combustion and energy generation. The conclusion is, that for a given amount of MSW, landfilling contributes to the greenhouse effect about 10 times more than a modern Waste-To-Energy facility. Even with 50% of all landfill methane emissions recovered and converted to electricity, the contribution to the greenhouse effect by the landfill alternative is about 6 times greater than the waste-to-energy alternative

  6. Landfills in Jiangsu province, China, and potential threats for public health: Leachate appraisal and spatial analysis using geographic information system and remote sensing

    International Nuclear Information System (INIS)

    Yang Kun; Zhou Xiaonong; Yan Weian; Hang Derong; Steinmann, Peter

    2008-01-01

    Waste disposal is of growing environmental and public health concern in China where landfilling is the predominant method of disposal. The assessment of potential health hazards posed by existing landfills requires sound information, and processing of a significant amount of spatial data. Geographical information system (GIS) and remote sensing (RS) are valuable tools for assessing health impacts due to landfills. The aims of this study were: (i) to analyze the leachate and gas emissions from landfills used for domestic waste disposal in a metropolitan area of Jiangsu province, China, (ii) to investigate remotely-sensed environmental features in close proximity to landfills, and (iii) to evaluate the compliance of their location and leachate quality with the relevant national regulations. We randomly selected five landfills in the metropolitan areas of Wuxi and Suzhou city, Jiangsu province, established a GIS database and examined whether data were in compliance with national environmental and public health regulations. The leachates of the sampled landfills contained heavy metals (Pb, As, Cr 6+ and Hg) and organic compounds in concentrations considered harmful to human health. Measured methane concentrations on landfill surfaces were low. Spatial analysis of the location of landfills with regard to distance from major water bodies, sensible infrastructure and environmental conditions according to current national legislation resulted in the rejection of four of the five sites as inappropriate for landfills. Our results call for rigorous evaluation of the spatial location of landfills in China that must take into consideration environmental and public health criteria

  7. Biochemically enhanced methane production from coal

    Science.gov (United States)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  8. Stabilizing Waste Materials for Landfills

    Science.gov (United States)

    Environmental Science and Technology, 1977

    1977-01-01

    The test procedures used to evaluate the suitability of landfilled materials of varying stability and to determine the leachate from such materials are reviewed. A process for stabilizing a mixture of sulfur dioxide sludge, fly ash, and bottom ash with lime and other additives for deposition in landfills is detailed. (BT)

  9. Landfill Construction and Capacity Expansion

    NARCIS (Netherlands)

    Andre, F.J.; Cerda, E.

    2003-01-01

    We study the optimal capacity and lifetime of landfills taking into account their sequential nature.Such an optimal capacity is characterized by the so-called Optimal Capacity Condition.Particular versions of this condition are obtained for two alternative settings: first, if all the landfills are

  10. High efficiency chemical energy conversion system based on a methane catalytic decomposition reaction and two fuel cells: Part I. Process modeling and validation

    Science.gov (United States)

    Liu, Qinghua; Tian, Ye; Li, Hongjiao; Jia, Lijun; Xia, Chun; Thompson, Levi T.; Li, Yongdan

    A highly efficient integrated energy conversion system is built based on a methane catalytic decomposition reactor (MCDR) together with a direct carbon fuel cell (DCFC) and an internal reforming solid oxide fuel cell (IRSOFC). In the MCDR, methane is decomposed to pure carbon and hydrogen. Carbon is used as the fuel of DCFC to generate power and produce pure carbon dioxide. The hydrogen and unconverted methane are used as the fuel in the IRSOFC. A gas turbine cycle is also used to produce more power output from the thermal energy generated in the IRSOFC. The output performance and efficiency of both the DCFC and IRSOFC are investigated and compared by development of exact models of them. It is found that this system has a unique loading flexibility due to the good high-loading property of DCFC and the good low loading property of IRSOFC. The effects of temperature, pressure, current densities, and methane conversion on the performance of the fuel cells and the system are discussed. The CO 2 emission reduction is effective, up to 80%, can be reduced with the proposed system.

  11. Landfill gas from environment to energy

    International Nuclear Information System (INIS)

    Gendebien, A.; Pauwels, M.; Constant, M.; Ledrut-Damanet, M.J.; Nyns, E.J.; Fabry, R.; Ferrero, G.L.; Willumsen, H.C.; Butson, J.

    1992-01-01

    Landfill gas is an alternative source of energy which can be commercially exploited wherever municipal solid wastes are disposed of in sanitary landfills. In this context, it was decided to launch a comprehensive study on the subject of energy valorization of landfill gas. The main topics dealt with in the study, which is supported by a comprehensive literature survey and six detailed case-studies, include; (i) the environmental impact of landfill gas, (ii) the process of landfill gas genesis and the technology of landfill gas control by its exploitation, (iii) the monitoring of landfill gas emissions, (iv) the policies and legal aspects of landfill gas in the European Community and in the world, (v) the estimation of landfill gas potentials and economics of landfill gas control and exploitation, (vi) the status of landfill gas exploitation in the European Community and in the world. (authors). refs., figs., tabs

  12. The Methanizer: A Small Scale Biogas Reactor for a Restaurant

    OpenAIRE

    Vasudevan, R.; Karlsson, O.; Dhejne, K.; Derewonko, P.; Brezet, J.C.

    2010-01-01

    The purpose of this study is to determine the technical and economic feasibility of a smallscale bioreactor called the Methanizer for a restaurant. The bioreactor converts organic waste produced by the restaurant into methane. This methane can be used to power the restaurant’s cooking stoves. The system proposed is a double-tank, batch-fed bioreactor. This product will help reduce the need for natural gas as well as cut down on landfill use. Results from the technical analysis showed that the...

  13. Enhancing forward osmosis water recovery from landfill leachate by desalinating brine and recovering ammonia in a microbial desalination cell.

    Science.gov (United States)

    Iskander, Syeed Md; Novak, John T; He, Zhen

    2018-05-01

    In this work, a microbial desalination cell (MDC) was employed to desalinate the FO treated leachate for reduction of both salinity and chemical oxygen demand (COD). The FO recovered 51.5% water from a raw leachate and the recovery increased to 83.5% from the concentrated leachate after desalination in the MDC fed with either acetate or another leachate as an electron source and at a different hydraulic retention time (HRT). Easily-degraded substrate like acetate and a long HRT resulted in a low conductivity desalinated effluent. Ammonia was also recovered in the MDC cathode with a recovery efficiency varying from 11 to 64%, affected by current generation and HRT. Significant COD reduction, as high as 65.4%, was observed in the desalination chamber and attributed to the decrease of both organic and inorganic compounds via diffusion and electricity-driven movement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Remote Real-Time Monitoring of Subsurface Landfill Gas Migration

    Directory of Open Access Journals (Sweden)

    Alan F. Smeaton

    2011-06-01

    Full Text Available The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months.

  15. The effect of landfill biogas on vegetal growth

    Directory of Open Access Journals (Sweden)

    Sanchez-Yañez Juan Manuel

    2012-08-01

    Full Text Available The plants carry out the gaseous exchange during the photosynthesis and the respiration, however the stomal opening of the leaves or the flow through lenticels in the root are not selective, the anthropogenic biogas emissions enter to vegetable tissues altering its normal physiology. In landfill sites roots plants are exposed to a flow of a variable concentration of biogas, mainly composed by methane (CH4 50-60% and carbon dioxide (CO2 40-55%, product of the anaerobic digestion of the organic fraction of municipal solid waste (MSW. Biogas, according to its concentration and exposure time is likely to exert a negative effect on plant root growth; however, the mechanism is largely unknown. The aim of this revision was to revise the state of the art of the negative effect of biogas on plants that are close to landfill sites.

  16. Improved methane removal in exhaust gas from biogas upgrading process using immobilized methane-oxidizing bacteria.

    Science.gov (United States)

    Sun, Meng-Ting; Yang, Zhi-Man; Fu, Shan-Fei; Fan, Xiao-Lei; Guo, Rong-Bo

    2018-05-01

    Methane in exhaust gas from biogas upgrading process, which is a greenhouse gas, could cause global warming. The biofilter with immobilized methane-oxidizing bacteria (MOB) is a promising approach for methane removal, and the selections of inoculated MOB culture and support material are vital for the biofilter. In this work, five MOB consortia were enriched at different methane concentrations. The MOB-20 consortium enriched at the methane concentration of 20.0% (v/v) was then immobilized on sponge and two particle sizes of volcanic rock in biofilters to remove methane in exhaust gas from biogas upgrading process. Results showed that the immobilized MOB performed more admirable methane removal capacity than suspended cells. The immobilized MOB on sponge reached the highest methane removal efficiency (RE) of 35%. The rough surface, preferable hydroscopicity, appropriate pore size and particle size of support material might favor the MOB immobilization and accordingly methane removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. The electric energy potential of landfill biogas in Brazil

    International Nuclear Information System (INIS)

    Mambeli Barros, Regina; Tiago Filho, Geraldo Lúcio; Silva, Tiago Rodrigo da

    2014-01-01

    The increases in a country's energy capacity are related to its gross domestic product (GDP). In Brazil, increases in income and the consumption of goods and services have led to an increase in the generation of solid waste (SW), which is sent to landfills as a method of treatment and final disposal. The purpose of this study was to facilitate an increase in energy generation from renewable resources, specifically from landfills via thermal biogas plants, and the research was divided into two phases. The first phase involved the assessment of the potential population size contributing to the landfill, which could result in the installation of a financially viable enterprise to generate electricity in Brazil. Next, an estimate of the costs associated with the generation and collection of solid waste in Brazil was predicted by GDP prognoses, the latter being in accordance with the National Energy Balance (Balanço Energético Nacional – BEN) plan created by the Mines and Energy Ministry of Brazil (Ministério de Minas e Energia do Brasil – MME). The net present value (NPV) and internal rate of return (IRR) of each enterprise scenario was used in the first stage to assess the plan's financial viability. In the second stage, estimation curves such as logistics, decreasing rate of growth, and logarithmic curves were used to establish relationships between the generation scenarios and the projected collection of SW and projected GDP. Thus, a range of possible landfill biogas/methane generation values and installed energy capacities were created, considering the extreme maximum and minimum values. These values were related to the energy sources from residual fuels reported by BEN. The results demonstrated that such values still represented a small percentage (0.00020% in 2010 and 0.44496–0.81042% in 2030) of the projected energy generation from residual fuels. Thus, an urgent need was identified to formulate policies that would encourage landfills as a

  18. Assessing Emissions of Volatile Organic Componds from Landfills Gas

    Directory of Open Access Journals (Sweden)

    Fahime Khademi

    2016-01-01

    Full Text Available Background: Biogas is obtained by anaerobic decomposition of organic wastes buried materials used to produce electricity, heat and biofuels. Biogas is at the second place for power generation after hydropower and in 2000 about 6% of the world power generation was allocated to biogas. Biogas is composed of 40–45 vol% CO2, 55–65 vol% CH4, and about 1% non-methaneVOCs, and non-methane volatile organic compounds. Emission rates are used to evaluate the compliance with landfill gas emission regulations by the United States Environmental Protection Agency (USEPA. BTEX comounds affect the air quality and may be harmful to human health. Benzene, toluene, ethylbenzene and xylene isomers that are generally called BTEX compounds are the most abundant VOCs in biogas. Methods: Sampling of VOCs in biogas vents was operated passively or with Tedlar bags. 20 samples were collected from 40 wells of old and new biogas sites of Shiraz’ landfill. Immediately after sampling, the samples were transferred to the laboratory. Analysis of the samples was performed with GC-MS. Results: The results showed that in the collection of the old and new biogas sites, the highest concentration of VOCs was observed in toluene (0.85ppm followed by benzene (0.81ppm, ethylbenzene (0.13ppm and xylene (0.08ppm. Conclusion: The results of the study showed that in all samples, most available compounds in biogas vents were aromatic hydrocarbon compounds.These compounds’ constituents originate from household hazardous waste materials deposited in the landfill or from biological/chemical decomposition processes within the landfill.

  19. Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling - Part I: Analysis of infiltration shape on two different waste deposit cells.

    Science.gov (United States)

    Audebert, M; Clément, R; Moreau, S; Duquennoi, C; Loisel, S; Touze-Foltz, N

    2016-09-01

    Landfill bioreactors are based on an acceleration of in-situ waste biodegradation by performing leachate recirculation. To quantify the water content and to evaluate the leachate injection system, in-situ methods are required to obtain spatially distributed information, usually electrical resistivity tomography (ERT). In a previous study, the MICS (multiple inversions and clustering strategy) methodology was proposed to improve the hydrodynamic interpretation of ERT results by a precise delimitation of the infiltration area. In this study, MICS was applied on two ERT time-lapse data sets recorded on different waste deposit cells in order to compare the hydrodynamic behaviour of leachate flow between the two cells. This comparison is based on an analysis of: (i) the volume of wetted waste assessed by MICS and the wetting rate, (ii) the infiltration shapes and (iii) the pore volume used by the leachate flow. This paper shows that leachate hydrodynamic behaviour is comparable from one waste deposit cell to another with: (i) a high leachate infiltration speed at the beginning of the infiltration, which decreases with time, (ii) a horizontal anisotropy of the leachate infiltration shape and (iii) a very small fraction of the pore volume used by the leachate flow. This hydrodynamic information derived from MICS results can be useful for subsurface flow modelling used to predict leachate flow at the landfill scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A robust NiO-Sm0.2Ce0.8O1.9 anode for direct-methane solid oxide fuel cell

    KAUST Repository

    Tian, Dong

    2015-07-02

    In order to directly use methane without a reforming process, NiO-Sm0.2Ce0.8O1.9 (NiO-SDC) nanocomposite anode are successfully synthesized via a one-pot, surfactant-assisted co-assembly approach for direct-methane solid oxide fuel cells. Both NiO with cubic phase and SDC with fluorite phase are obtained at 550 °C. Both NiO nanoparticles and SDC nanoparticles are highly monodispersed in size with nearly spherical shapes. Based on the as-synthesized NiO-SDC, two kinds of single cells with different micro/macro-porous structure are successfully fabricated. As a result, the cell performance was improved by 40%-45% with the new double-pore NiO-SDC anode relative to the cell performance with the conventional NiO-SDC anode due to a wider triple-phase-boundary (TPB) area. In addition, no significant degradation of the cell performance was observed after 60 hours, which means an increasing of long term stability. Therefore, the as-synthesized NiO-SDC nanocomposite is a promising anode for direct-methane solid oxide fuel cells.

  1. Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma

    Science.gov (United States)

    Cozzarelli, Isabelle M.; Böhlke, John Karl; Masoner, Jason R.; Breit, George N.; Lorah, Michelle M.; Tuttle, Michele L.W.; Jaeschke, Jeanne B.

    2011-01-01

    Leachate from municipal landfills can create groundwater contaminant plumes that may last for decades to centuries. The fate of reactive contaminants in leachate-affected aquifers depends on the sustainability of biogeochemical processes affecting contaminant transport. Temporal variations in the configuration of redox zones downgradient from the Norman Landfill were studied for more than a decade. The leachate plume contained elevated concentrations of nonvolatile dissolved organic carbon (NVDOC) (up to 300 mg/L), methane (16 mg/L), ammonium (650 mg/L as N), iron (23 mg/L), chloride (1030 mg/L), and bicarbonate (4270 mg/L). Chemical and isotopic investigations along a 2D plume transect revealed consumption of solid and aqueous electron acceptors in the aquifer, depleting the natural attenuation capacity. Despite the relative recalcitrance of NVDOC to biodegradation, the center of the plume was depleted in sulfate, which reduces the long-term oxidation capacity of the leachate-affected aquifer. Ammonium and methane were attenuated in the aquifer relative to chloride by different processes: ammonium transport was retarded mainly by physical interaction with aquifer solids, whereas the methane plume was truncated largely by oxidation. Studies near plume boundaries revealed temporal variability in constituent concentrations related in part to hydrologic changes at various time scales. The upper boundary of the plume was a particularly active location where redox reactions responded to recharge events and seasonal water-table fluctuations. Accurately describing the biogeochemical processes that affect the transport of contaminants in this landfill-leachate-affected aquifer required understanding the aquifer's geologic and hydrodynamic framework.

  2. Evaluating fugacity models for trace components in landfill gas.

    Science.gov (United States)

    Shafi, Sophie; Sweetman, Andrew; Hough, Rupert L; Smith, Richard; Rosevear, Alan; Pollard, Simon J T

    2006-12-01

    A fugacity approach was evaluated to reconcile loadings of vinyl chloride (chloroethene), benzene, 1,3-butadiene and trichloroethylene in waste with concentrations observed in landfill gas monitoring studies. An evaluative environment derived from fictitious but realistic properties such as volume, composition, and temperature, constructed with data from the Brogborough landfill (UK) test cells was used to test a fugacity approach to generating the source term for use in landfill gas risk assessment models (e.g. GasSim). SOILVE, a dynamic Level II model adapted here for landfills, showed greatest utility for benzene and 1,3-butadiene, modelled under anaerobic conditions over a 10 year simulation. Modelled concentrations of these components (95,300 microg m(-3); 43 microg m(-3)) fell within measured ranges observed in gas from landfills (24,300-180,000 microg m(-3); 20-70 microg m(-3)). This study highlights the need (i) for representative and time-referenced biotransformation data; (ii) to evaluate the partitioning characteristics of organic matter within waste systems and (iii) for a better understanding of the role that gas extraction rate (flux) plays in producing trace component concentrations in landfill gas.

  3. Assessing the role of renewable energy policies in landfill gas to energy projects

    International Nuclear Information System (INIS)

    Li, Shanjun; Yoo, Han Kyul; Macauley, Molly; Palmer, Karen; Shih, Jhih-Shyang

    2015-01-01

    Methane (CH 4 ) is the second most prevalent greenhouse gas and has a global warming potential at least 28 times as high as carbon dioxide (CO 2 ). In the United States, Municipal Solid Waste (MSW) landfills are reported to be the third-largest source of human-made methane emissions, responsible for 18% of methane emissions in 2011. Capturing landfill gas (LFG) for use as an energy source for electricity or heat produces alternative energy as well as environmental benefits. A host of federal and state policies encourage the development of landfill gas to energy (LFGE) projects. This research provides the first systematic economic assessment of the role of these policies on adoption decisions. Results suggest that Renewable Portfolio Standards and investment tax credits have contributed to the development of these projects, accounting for 13 of 277 projects during our data period from 1991 to 2010. These policy-induced projects lead to 10.4 MMTCO 2 e reductions in greenhouse gas emissions and a net benefit of $41.8 million. - Highlights: • Examine the role of renewable energy policies in landfill gas to energy projects • Renewable Portfolio Standards and investment tax credit had impacts. • Investment tax credit policy is cost-effectiveness in promoting these projects. • Policy-induced projects lead to significant environmental benefits

  4. Microbial community structure and diversity in a municipal solid waste landfill.

    Science.gov (United States)

    Wang, Xiaolin; Cao, Aixin; Zhao, Guozhu; Zhou, Chuanbin; Xu, Rui

    2017-08-01

    Municipal solid waste (MSW) landfills are the most prevalent waste disposal method and constitute one of the largest sources of anthropogenic methane emissions in the world. Microbial activities in disposed waste play a crucial role in greenhouse gas emissions; however, only a few studies have examined metagenomic microbial profiles in landfills. Here, the MiSeq high-throughput sequencing method was applied for the first time to examine microbial diversity of the cover soil and stored waste located at different depths (0-150cm) in a typical MSW landfill in Yangzhou City, East China. The abundance of microorganisms in the cover soil (0-30cm) was the lowest among all samples, whereas that in stored waste decreased from the top to the middle layer (30-90cm) and then increased from the middle to the bottom layer (90-150cm). In total, 14 phyla and 18 genera were found in the landfill. A microbial diversity analysis showed that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla, whereas Halanaerobium, Methylohalobius, Syntrophomonas, Fastidiosipila, and Spirochaeta were the dominant genera. Methylohalobius (methanotrophs) was more abundant in the cover layers of soil than in stored waste, whereas Syntrophomonas and Fastidiosipila, which affect methane production, were more abundant in the middle to bottom layers (90-150cm) in stored waste. A canonical correlation analysis showed that microbial diversity in the landfill was most strongly correlated with the conductivity, organic matter, and moisture content of the stored waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Sour landfill gas problem solved

    Energy Technology Data Exchange (ETDEWEB)

    Nagl, G.; Cantrall, R. [Wheelabrator Clean Air Systems, Inc., Schaumburg, IL (United States)

    1996-05-01

    In Broward County, Fla., near Pompano Beach, Waste Management of North America (WMNA, a subsidiary of WMX Technologies, Oak Brook, IL) operates the Central Sanitary Landfill and Recycling Center, which includes the country`s largest landfill gas-to-energy plant. The landfill consists of three collection sites: one site is closed, one is currently receiving garbage, and one will open in the future. Approximately 9 million standard cubic feet (scf) per day of landfill gas is collected from approximately 300 wells spread over the 250-acre landfill. With a dramatic increase of sulfur-containing waste coming to a South Florida landfill following Hurricane Andrew, odors related to hydrogen sulfide became a serious problem. However, in a matter of weeks, an innovative desulfurization unit helped calm the landfill operator`s fears. These very high H{sub 2}S concentrations caused severe odor problems in the surrounding residential area, corrosion problems in the compressors, and sulfur dioxide (SO{sub 2}) emission problems in the exhaust gas from the turbine generators.

  6. Evaluation and analysis of gaseous emission in landfill area and estimation of its pollutants dispersion, (case of Rodan in Hormozgan, Iran

    Directory of Open Access Journals (Sweden)

    Amirreza Talaiekhozani

    2016-08-01

    Full Text Available Background: The biogases are the mixture of gases produced through the microbial decomposition of organic waste which are amply observed in the landfills. The main purpose of this study was to estimate the emission rates of landfill gases such as carbon dioxide, methane and non-methane organic compounds (NMOCs in the solid waste landfill of Rodan city in Hormozgan province. Methods: All the necessary information such as population, geographic and climate of Rodan city were collected. Solid waste analysis was then conducted. Afterward, the LandGEM software is used in this study for the purpose of estimation of total biogas, methane, carbon dioxide and NMOCs emission from Rodan’s landfill. Results: The analysis of results showed that only 24.18% of the produced waste in this city is perishable. The calculations indicate that the peak of biogas production which is equal to 420 tons per year would be achieved in the year 2019. The production rates of carbon dioxide and methane in the same year would be equal to 308 and 112 tons per year respectively. The pollutants transmittance calculations in the vicinity of the landfill revealed that the maximum pollutant concentration is within the maximum distance of 200 m. Conclusion: The results obtained in this study could be used for the purpose of design and installation of extraction or incineration equipment in the landfill of Rodan.

  7. Initialization of a methane-fueled single-chamber solid-oxide fuel cell with NiO + SDC anode and BSCF + SDC cathode

    Science.gov (United States)

    Zhang, Chunming; Zheng, Yao; Ran, Ran; Shao, Zongping; Jin, Wanqin; Xu, Nanping; Ahn, Jeongmin

    2008-05-01

    The initialization of an anode-supported single-chamber solid-oxide fuel cell, with NiO + Sm0.2Ce0.8O1.9 anode and Ba0.5Sr0.5Co0.8Fe0.2O3-δ + Sm0.2Ce0.8O1.9 cathode, was investigated. The initialization process had significant impact on the observed performance of the fuel cell. The in situ reduction of the anode by a methane-air mixture failed. Although pure methane did reduce the nickel oxide, it also resulted in severe carbon coking over the anode and serious distortion of the fuel cell. In situ initialization by hydrogen led to simultaneous reduction of both the anode and cathode; however, the cell still delivered a maximum power density of ∼350 mW cm-2, attributed to the re-formation of the BSCF phase under the methane-air atmosphere at high temperatures. The ex situ reduction method appeared to be the most promising. The activated fuel cell showed a peak power density of ∼570 mW cm-2 at a furnace temperature of 600 °C, with the main polarization resistance contributed from the electrolyte.

  8. Agricultural methanization

    International Nuclear Information System (INIS)

    2011-01-01

    After having briefly outlined the interest of the development of methanization of agricultural by-products in the context of struggle against climate change, and noticed that France is only now developing this sector as some other countries already did, this publication describes the methanization process also called anaerobic digestion, which produces a digestate and biogas. Advantages for the agriculture sector are outlined, as well as drawbacks and recommendations (required specific technical abilities, an attention to the use of energetic crops, an improved economic balance which still depends on public subsidies, competition in the field of waste processing). Actions undertaken by the ADEME are briefly evoked

  9. Quantification of the methane concentration using anaerobic oxidation of methane coupled to extracellular electron transfer

    Science.gov (United States)

    A biofilm anode acclimated with acetate, acetate+methane, and methane growth media for over three years produced a steady current density of 1.6-2.3 mA/m^2 in a microbial electrochemical cell (MxC) fed with methane as the sole electron donor. Geobacter was the dominant genus for...

  10. Wide area methane emissions mapping with airborne IPDA lidar

    Science.gov (United States)

    Bartholomew, Jarett; Lyman, Philip; Weimer, Carl; Tandy, William

    2017-08-01

    Methane emissions from natural gas production, storage, and transportation are potential sources of greenhouse gas emissions. Methane leaks also constitute revenue loss potential from operations. Since 2013, Ball Aerospace has been developing advanced airborne sensors using integrated path differential absorption (IPDA) LIDAR instrumentation to identify methane, propane, and longer-chain alkanes in the lowest region of the atmosphere. Additional funding has come from the U.S. Department of Transportation, Pipeline and Hazardous Materials Administration (PHMSA) to upgrade instrumentation to a broader swath coverage of up to 400 meters while maintaining high spatial sampling resolution and geolocation accuracy. Wide area coverage allows efficient mapping of emissions from gathering and distribution networks, processing facilities, landfills, natural seeps, and other distributed methane sources. This paper summarizes the benefits of advanced instrumentation for aerial methane emission mapping, describes the operating characteristics and design of this upgraded IPDA instrumentation, and reviews technical challenges encountered during development and deployment.

  11. Hazardous waste landfill research

    Energy Technology Data Exchange (ETDEWEB)

    Schomaker, N.B.

    1983-05-01

    The hazardous waste land disposal research program is collecting data necessary to support implementation of disposal guidelines mandated by the 'Resource Conservation and Recovery Act of 1976' (RCRA) PL 94-580. This program relating to the categorical area of landfills, surface impoundments, and underground mines encompasses state-of-the-art documents, laboratory analysis, economic assessment, bench and pilot studies, and full scale field verification studies. Over the next five years the research will be reported as Technical Resource Documents in support of the Permit Writers Guidance Manuals. These manuals will be used to provide guidance for conducting the review and evaluation of land disposal permit applications. This paper will present an overview of this program and will report the current status of work in the various categorical areas.

  12. Reduction of Non-CO2 Gas Emissions Through The In Situ Bioconversion of Methane

    Energy Technology Data Exchange (ETDEWEB)

    Scott, A R; Mukhopadhyay, B; Balin, D F

    2012-09-06

    The primary objectives of this research were to seek previously unidentified anaerobic methanotrophs and other microorganisms to be collected from methane seeps associated with coal outcrops. Subsurface application of these microbes into anaerobic environments has the potential to reduce methane seepage along coal outcrop belts and in coal mines, thereby preventing hazardous explosions. Depending upon the types and characteristics of the methanotrophs identified, it may be possible to apply the microbes to other sources of methane emissions, which include landfills, rice cultivation, and industrial sources where methane can accumulate under buildings. Finally, the microbes collected and identified during this research also had the potential for useful applications in the chemical industry, as well as in a variety of microbial processes. Sample collection focused on the South Fork of Texas Creek located approximately 15 miles east of Durango, Colorado. The creek is located near the subsurface contact between the coal-bearing Fruitland Formation and the underlying Pictured Cliffs Sandstone. The methane seeps occur within the creek and in areas adjacent to the creek where faulting may allow fluids and gases to migrate to the surface. These seeps appear to have been there prior to coalbed methane development as extensive microbial soils have developed. Our investigations screened more than 500 enrichments but were unable to convince us that anaerobic methane oxidation (AMO) was occurring and that anaerobic methanotrophs may not have been present in the samples collected. In all cases, visual and microscopic observations noted that the early stage enrichments contained viable microbial cells. However, as the levels of the readily substrates that were present in the environmental samples were progressively lowered through serial transfers, the numbers of cells in the enrichments sharply dropped and were eliminated. While the results were disappointing we acknowledge that

  13. Investigation of Biodegradation Processes in Solid Waste Landfills

    National Research Council Canada - National Science Library

    Colborn, Philip

    1997-01-01

    Greater demands on landfill capacity, stricter regulations intended to minimize landfill environmental impacts, and the economic potential associated with landfill operations have shifted the emphasis...

  14. PERFORMA OKSIDASI METAN PADA REAKTOR KONTINYU DENGAN PENINGKATAN KETEBALAN LAPISAN BIOCOVER LANDFILL

    Directory of Open Access Journals (Sweden)

    Opy Kurniasari

    2013-11-01

    Full Text Available PERFORMANCE OF METHANE OXIDATION IN CONTINUOUS REACTOR BY BIOCOVER LANDFILL FILM THICKNESS IMPROVEMENT. Municipal solid waste (MSW handling in Indonesia is currently highly dependent on landfilling at the final disposal facility (TPA, which generally operated in layer-by-layer basis, allowing the anaerobic (absent of oxygen process. This condition will certainly generate biogas in the form of methane (CH4 and CO2. Methane is a greenhouse gas with a global warming potential greater than CO2, and can absorb infrared radiation 23 times more efficient than CO2 in the period of over 100 years. One way that can be done to reduce methane gas from landfills that escape into nature is to oxidize methane by utilizing landfill cover material (biocover as methane-oxidizing microorganism media. Application of compost as landfill cover material is a low-cost approach to reduce emissions so are suitable for developing countries. The compost used in this study was compost landfill mining, which is degraded naturally in landfill. The purpose of this study was to evaluate the ability of biocover to oxidize the methane on a certain layer thickness with a continuous flow conditions. Three column reactors were used, which were made of flexy glass measuring 70 cm in high and 15 cm in diameter. The methane flowed from the bottom of the reactor continuously at a flow rate of 5 ml/minute. The columns were filled with biocover compost landfill mining with layer thickness of 5, 25, 35 and 60 cm. The results showed that the thicker layer of biocover, the higher the efficiency of methane oxidation. The oxidation efficiency obtained in each layer thickness of 15, 25, 35 and 60 cm was 56.43%, 63.69%, 74.58% and 80, 03% respectively, with the rate of oxidation of 0.29 mol m-2 d-1 and the fraction of oxidation of 99%. The oxidation result was supported by the identification of bacteria isolated in this experiment, namely metanotrophic bacteria that have the ability to oxidize

  15. Macro and micro geo-spatial environment consideration for landfill site selection in Sharjah, United Arab Emirates.

    Science.gov (United States)

    Al-Ruzouq, Rami; Shanableh, Abdallah; Omar, Maher; Al-Khayyat, Ghadeer

    2018-02-17

    Waste management involves various procedures and resources for proper handling of waste materials in compliance with health codes and environmental regulations. Landfills are one of the oldest, most convenient, and cheapest methods to deposit waste. However, landfill utilization involves social, environmental, geotechnical, cost, and restrictive regulation considerations. For instance, landfills are considered a source of hazardous air pollutants that can cause health and environmental problems related to landfill gas and non-methanic organic compounds. The increasing number of sensors and availability of remotely sensed images along with rapid development of spatial technology are helping with effective landfill site selection. The present study used fuzzy membership and the analytical hierarchy process (AHP) in a geo-spatial environment for landfill site selection in the city of Sharjah, United Arab Emirates. Macro- and micro-level factors were considered; the macro-level contained social and economic factors, while the micro-level accounted for geo-environmental factors. The weighted spatial layers were combined to generate landfill suitability and overall suitability index maps. Sensitivity analysis was then carried out to rectify initial theoretical weights. The results showed that 30.25% of the study area had a high suitability index for landfill sites in the Sharjah, and the most suitable site was selected based on weighted factors. The developed fuzzy-AHP methodology can be applied in neighboring regions with similar geo-natural conditions.

  16. Energetic utilization of biogas arising of sanitary landfills

    International Nuclear Information System (INIS)

    Calderon U, R.

    1995-01-01

    The biogas is the gaseous product that is obtained from the fermentation of biodegradable organic matter; this process is known as anaerobic digestion. In this exposition, the formation process of biogas is described in its three continuos phases: 1. Hydrolysis phase, 2. Phase of acid generation and the acetic acid generation and 3. Phase of methane generation. Also, the biogas composition (methane, carbon dioxide, hydrogen, nitrogen, oxygen and traces) is present. Different types of anaerobic digestion as discontinuous digestion, continuo digestion, digestion with suspended biomass, digestion with adhered biomass, and digestion of two phases are shown. Finally, the process that occur in a landfill and its different phases of aerobic and anaerobic decomposition, are describe from its initial stage until the biogas generation

  17. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences

    Directory of Open Access Journals (Sweden)

    Shailendra Yadav

    2015-01-01

    Full Text Available Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic and Thaumarchaeota (mesophilic, were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about “methanogenic archaea composition” and “abundance” in the contrasting ecosystems like “landfill” and “marshland” may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process.

  18. 40 CFR 270.21 - Specific part B information requirements for landfills.

    Science.gov (United States)

    2010-07-01

    ... each landfill or landfill cell; (b) Detailed plans and an engineering report describing how the... chapter; (2) Control of run-on; (3) Control of run-off; (4) Management of collection and holding facilities associated with run-on and run-off control systems; and (5) Control of wind dispersal of...

  19. Landfill Gas Energy Benefits Calculator

    Science.gov (United States)

    This page contains the LFG Energy Benefits Calculator to estimate direct, avoided, and total greenhouse gas reductions, as well as environmental and energy benefits, for a landfill gas energy project.

  20. THE "CHEMICAL OXYGEN DEMAND / TOTAL VOLATILE ACIDS" RATIO AS AN ANAEROBIC TREATABILITY INDICATOR FOR LANDFILL LEACHATES

    Directory of Open Access Journals (Sweden)

    R. C. Contrera

    2015-03-01

    Full Text Available Abstract In some operational circumstances a fast evaluation of landfill leachate anaerobic treatability is necessary, and neither Biochemical Methane Potential nor BOD/COD ratio are fast enough. Looking for a fast indicator, this work evaluated the anaerobic treatability of landfill leachate from São Carlos-SP (Brazil in a pilot scale Anaerobic Sequence Batch Biofilm Reactor (AnSBBR. The experiment was conducted at ambient temperature in the landfill area. After the acclimation, at a second stage of operation, the AnSBBR presented efficiency above 70%, in terms of COD removal, utilizing landfill leachate without water dilution, with an inlet COD of about 11,000 mg.L-1, a TVA/COD ratio of approximately 0.6 and reaction time equal to 7 days. To evaluate the landfill leachate biodegradability variation over time, temporal profiles of concentration were performed in the AnSBBR. The landfill leachate anaerobic biodegradability was verified to have a direct and strong relationship to the TVA/COD ratio. For a TVA/CODTotal ratio lower than 0.20, the biodegradability was considered low, for ratios between 0.20 and 0.40 it was considered medium, and above 0.40 it was considered high.

  1. Spatial and temporal diversity of methanotrophs in a landfill cover soil are differentially related to soil abiotic factors.

    Science.gov (United States)

    Kumaresan, Deepak; Abell, Guy C J; Bodrossy, Levente; Stralis-Pavese, Nancy; Murrell, J Colin

    2009-10-01

    Methanotrophs present in landfill cover soil can limit methane emissions from landfill sites by oxidizing methane produced in landfill. Understanding the spatial and temporal distribution of populations of methanotrophs and the factors influencing their activity and diversity in landfill cover soil is critical to devise better landfill cover soil management strategies. pmoA-based microarray analyses of methanotroph community structure revealed a temporal shift in methanotroph populations across different seasons. Type II methanotrophs (particularly Methylocystis sp.) were found to be present across all seasons. Minor shifts in type I methanotroph populations were observed. In the case of spatial distribution, only minor differences in methanotroph community structure were observed with no recognizable patterns (both vertical and horizontal) at a 5 m scale. Correlation analysis between soil abiotic parameters (total C, N, NH4 (+) , NO3 (-) and water content) and distribution of methanotrophs revealed a lack of conclusive evidence for any distinct correlation pattern between measured abiotic parameters and methanotroph community structure, suggesting that complex interactions of several physico-chemical parameters shape methanotroph diversity and activity in landfill cover soils. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Development of Mobile Tracer Correlation Method for Assessment of Air Emissions from Landfills and Other Area Sources

    Science.gov (United States)

    Abstract - A standardized version of a mobile tracer correlation measurement method was developed and used for assessment of methane emissions from 15 landfills in 56 field deployments from 2009 to 2013. This general area source measurement method uses advances in instrumentation...

  3. Development of a Mobile Tracer Correlation Method for Assessment of Air Emissions from Landfills and Other Area Sources (Abstract)

    Science.gov (United States)

    Work toward a standardized version of a mobile tracer correlation measurement method is discussed. The method used for assessment of methane emissions from 15 landfills in 56 field deployments from 2009 to 2013. This general area source measurement method uses advances in instrum...

  4. Effects of trace volatile organic compounds on methane oxidation

    Directory of Open Access Journals (Sweden)

    Wilai Chiemchaisri

    2001-06-01

    Full Text Available The effects of volatile organic compounds (VOCs on methane oxidation in landfill cover soils were examined. The batch experiments were conducted using single and mixed VOCs, such as, dichloromethane (DCM, trichloroethylene (TCE, tetrachloroethylene (PCE, and benzene. The results from all combinations showed a decrease in methane oxidation rate with increase in VOC concentrations. Moreover, inhibition effects of TCE and DCM were found higher than benzene and PCE. The reduction of methane oxidation by benzene and PCE could be attributed to the toxicity effect, whereas TCE and DCM were found to exhibit the competitive-inhibition effect. When the soil was mixed with DCM, no methane oxidation was found. Damage to the cell’s internal membrane was found in a methanotrophic culture exposed to VOC gases which is the attachment site of a key enzyme needed for methane oxidationOs efeitos dos compostos orgânicos voláteis (VOCs na oxidação do metano em camadas superficiais do solo. Os experimentos foram conduzidos usando somente VOCs ou mistura do mesmo, como, diclorometano (DCM, tricloroetileno (TCE, tetracloroetileno (PCE, e benzeno. Os resultados de todas as combinações mostraram uma diminuição na taxa da oxidação do metano com aumento nas concentrações de VOC. Além disso, os efeitos da inibição de TCE e de DCM foram mais elevados do que do benzeno e PCE. A redução da oxidação do metano pelo benzeno e PCE poderia ser atribuída ao efeito da toxicidade, visto que TCE e DCM exibiram o efeito de competição-inibição. Quando o solo foi misturado com o DCM, nenhuma oxidação do metano foi encontrada. Os danos à membrana interna celular foi observada em uma cultura metanotrófica exposta aos gases de VOC que é o local de ligação de uma enzima chave necessário para a oxidação do metano.

  5. High Efficiency Direct Methane Solid Oxide Fuel Cell System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a defined need for energy dense and highly efficient energy storage and power delivery systems for future space missions. Compared to other fuel cell...

  6. [Culturable psychrotolerant methanotrophic bacteria in landfill cover soil].

    Science.gov (United States)

    Kallistova, A Iu; Montonen, L; Jurgens, G; Munster, U; Kevbrina, M V; Nozhevnikova, A N

    2014-01-01

    Methanotrophs closely related to psychrotolerant members of the genera Methylobacter and Methylocella were identified in cultures enriched at 10@C from landfill cover soil samples collected in the period from April to November. Mesophilic methanotrophs of the genera Methylobacter and Methylosinus were found in cultures enriched at 20 degrees C from the same cover soil samples. A thermotolerant methanotroph related to Methylocaldum gracile was identified in the culture enriched at 40 degrees C from a sample collected in May (the temperature of the cover soil was 11.5-12.5 degrees C). In addition to methanotrophs, methylobacteria of the genera Methylotenera and Methylovorus and members of the genera Verrucomicrobium, Pseudomonas, Pseudoxanthomonas, Dokdonella, Candidatus Protochlamydia, and Thiorhodospira were also identified in the enrichment cultures. A methanotroph closely related to the psychrotolerant species Methylobacter tundripaludum (98% sequence identity of 16S r-RNA genes with the type strain SV96(T)) was isolated in pure culture. The introduction of a mixture of the methanotrophic enrichments, grown at 15 degrees C, into the landfill cover soil resulted in a decrease in methane emission from the landfill surface in autumn (October, November). The inoculum used was demonstrated to contain methanotrophs closely related to Methylobacter tundripaludum SV96.

  7. Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors.

    Science.gov (United States)

    Ge, Sai; Liu, Lei; Xue, Qiang; Yuan, Zhiming

    2016-09-01

    Landfill is the most common and efficient ways of municipal solid waste (MSW) disposal and the landfill biogas, mostly methane, is currently utilized to generate electricity and heat. The aim of this work is to study the effects and the role of exogenous aerobic bacteria mixture (EABM) on methane production and biodegradation of MSW in bioreactors. The results showed that the addition of EABM could effectively enhance hydrolysis and acidogenesis processes of MSW degradation, resulting in 63.95% reduction of volatile solid (VS), the highest methane production rate (89.83Lkg(-1) organic matter) ever recorded and a threefold increase in accumulative methane production (362.9L) than the control (127.1L). In addition, it is demonstrated that white-rot fungi (WRF) might further promote the methane production through highly decomposing lignin, but the lower pH value in leachate and longer acidogenesis duration may cause methane production reduced. The data demonstrated that methane production and biodegradation of MSW in bioreactors could be significantly enhanced by EABM via enhanced hydrolysis and acidogenesis processes, and the results are of great economic importance for the future design and management of landfill. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Application of Deuterium and Oxygen-18 to Trace Leachate Movement in Bantar Gebang Sanitary Landfill

    Directory of Open Access Journals (Sweden)

    E.R. Pujiindiyati

    2011-08-01

    Full Text Available Bantar Gebang landfill was constructed in 1986 with total area of 108 ha and approximately 6000 ton/day solid waste is disposed to this landfill. Mostly, the people living surrounding landfill get afraid of impact of the hazardous chemicals produced by waste disposal to their health. The purpose of this investigation was to study the migration of leachate to Cibitung River water and shallow groundwaters near to the river. It is possible to be done because chemical contents and isotopic characteristics of municipal landfill leachate are unique, relative to aqueous media in the most natural environments. Laser absorption method developed by the LGR (Los Gatos Research was used to measure absolute abundances of 2HHO, HH18O and HHO in a number of water samples. In-situ measurements were also conducted as an additional parameter besides their isotopes. The δ2H of the H2O in landfill leachate was significantly enriched, with values of - 22.6 ‰ to + 4.3 ‰. This deuterium enrichment was undoubtedly due to the extensive production of microbial methane within the limited reservoir of the landfill. However, the enriched deuterium value in leachate was not detected in the river which still had depleted values. It was probably caused by the amount of natural water in the river was comparatively large, with respect to limited leachate discarded to the river.The electrical conductivity of the leachate was higher (3200 to 7600 S and the decreasing values were still monitored in the river to approximately 12 km after streaming the landfills. The effect of the high electrical conductivity and enriched deuterium of leachate was not clearly indicated in the groundwater samples which still represented the local precipitation recharge, except a monitoring well located in Bantar Gebang landfill area which has an indication of leachate contamination.

  9. Methane mitigation in cities: how new measurements and partnerships can contribute to emissions reduction strategies

    Science.gov (United States)

    Hopkins, F. M.; Bush, S. E.; Ehleringer, J. R.; Lai, C. T.; Rambo, J. P.; Wiggins, E. B.; Miu, J. C. L.; Carranza, V.; Randerson, J. T.

    2014-12-01

    Cities generate a large fraction of anthropogenic methane emissions that are increasing with urbanization and greater reliance on natural gas as fuel. New measurements of methane in cities suggest an as-yet unrealized potential for city-scale methane mitigation. We present high-resolution methane observations from four cities in North America to demonstrate the utility of methane surveys for identifying urban methane sources. We used portable, continuous on-road measurements to determine the spatial distribution of methane in Fairbanks, Los Angeles, Salt Lake City, and San Diego. Across cities, methane tended to be highly concentrated in space, suggesting discrete, point emission sources. Elevated methane levels were found near known emission sources, such as landfills, wastewater treatment facilities, and natural gas-fueled power plants, and revealed the location of fugitive leaks in natural gas infrastructure. The mix of sources and sizes of methane leaks varied among cities, highlighting a need for locally adaptive emissions regulation. Urban methane observations can inform anthropogenic processes in development of methane mitigation strategies. We discuss specific examples of how continuous atmospheric measurements can enhance the design of mitigation strategies in these cities, and potential contributions of these approaches to cross-sectoral efforts to reduce methane emissions at the city level.

  10. Ni modified ceramic anodes for direct-methane solid oxide fuel cells

    Science.gov (United States)

    Xiao, Guoliang; Chen, Fanglin

    2016-01-19

    In accordance with certain embodiments of the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes synthesizing a composition having a perovskite present therein. The method further includes applying the composition on an electrolyte support to form an anode and applying Ni to the composition on the anode.

  11. Hunting for valuables from landfills and assessing their market opportunities A case study with Kudjape landfill in Estonia.

    Science.gov (United States)

    Bhatnagar, Amit; Kaczala, Fabio; Burlakovs, Juris; Kriipsalu, Mait; Hogland, Marika; Hogland, William

    2017-06-01

    Landfill mining is an alternative technology that merges the ideas of material recycling and sustainable waste management. This paper reports a case study to estimate the value of landfilled materials and their respective market opportunities, based on a full-scale landfill mining project in Estonia. During the project, a dump site (Kudjape, Estonia) was excavated with the main objectives of extracting soil-like final cover material with the function of methane degradation. In total, about 57,777 m 3 of waste was processed, particularly the uppermost 10-year layer of waste. Manual sorting was performed in four test pits to determine the detailed composition of wastes. 11,610 kg of waste was screened on site, resulting in fine (40 mm) fractions with the share of 54% and 46%, respectively. Some portion of the fine fraction was sieved further to obtain a very fine grained fraction of <10 mm and analyzed for its potential for metals recovery. The average chemical composition of the <10 mm soil-like fraction suggests that it offers opportunities for metal (Cr, Cu, Ni, Pb, and Zn) extraction and recovery. The findings from this study highlight the importance of implementing best available site-specific technologies for on-site separation up to 10 mm grain size, and the importance of developing and implementing innovative extraction methods for materials recovery from soil-like fractions.

  12. Evaluation of potential opportunities for electric power generation from landfill gas at “Tsalapitsa”

    Directory of Open Access Journals (Sweden)

    Ganev Ivaylo

    2014-01-01

    Full Text Available Potential opportunities for electric power generation from landfill gas (LFG utilization were estimated for the second largest landfill site in Bulgaria, situated near the city of Plovdiv. The work performed was based on detailed analysis of experimentally obtained and model-predicted features of the “Tsalapitsa” landfill site. The study presents a short description of the site, the global characteristics of the disposed municipal solid waste, and the experimentally obtained methane composition of the LFG. Based on the above described observations, the potential for LFG recovery at “Tsalapitsa” was determined, together with that for electric power generation for the next 25 years. A set of recommendations was then developed regarding the parameters required for the installation of electric power generation from LFG in Plovdiv.

  13. Effects of biochar amendment on geotechnical properties of landfill cover soil.

    Science.gov (United States)

    Reddy, Krishna R; Yaghoubi, Poupak; Yukselen-Aksoy, Yeliz

    2015-06-01

    Biochar is a carbon-rich product obtained when plant-based biomass is heated in a closed container with little or no available oxygen. Biochar-amended soil has the potential to serve as a landfill cover material that can oxidise methane emissions for two reasons: biochar amendment can increase the methane retention time and also enhance the biological activity that can promote the methanotrophic oxidation of methane. Hydraulic conductivity, compressibility and shear strength are the most important geotechnical properties that are required for the design of effective and stable landfill cover systems, but no studies have been reported on these properties for biochar-amended landfill cover soils. This article presents physicochemical and geotechnical properties of a biochar, a landfill cover soil and biochar-amended soils. Specifically, the effects of amending 5%, 10% and 20% biochar (of different particle sizes as produced, size-20 and size-40) to soil on its physicochemical properties, such as moisture content, organic content, specific gravity and pH, as well as geotechnical properties, such as hydraulic conductivity, compressibility and shear strength, were determined from laboratory testing. Soil or biochar samples were prepared by mixing them with 20% deionised water based on dry weight. Samples of soil amended with 5%, 10% and 20% biochar (w/w) as-is or of different select sizes, were also prepared at 20% initial moisture content. The results show that the hydraulic conductivity of the soil increases, compressibility of the soil decreases and shear strength of the soil increases with an increase in the biochar amendment, and with a decrease in biochar particle size. Overall, the study revealed that biochar-amended soils can possess excellent geotechnical properties to serve as stable landfill cover materials. © The Author(s) 2015.

  14. Landfill aeration for emission control before and during landfill mining.

    Science.gov (United States)

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. New electrolytes for direct methane fuel cells. Annual report, January 10, 1977-January 9, 1978. [Perhalogenated sulfonic acids

    Energy Technology Data Exchange (ETDEWEB)

    Brummer, S.B.; McHardy, J.; Koch, V.; Turner, M.; Toland, D.

    1978-01-01

    The program is aimed at developing a fuel cell electrolyte for the direct oxidation of CH/sub 4/ and/or impure H/sub 2/ fuels. Work in the first year has focused on the di- and tribasic methane sulfonic acids CX/sub 2/(SO/sub 3/H)/sub 2/ and CX(SO/sub 3/H)/sub 3/ where X was H, F, or Cl. Synthesis of the halogenated acids proved to be more difficult than anticipated, and only three acids, viz. CH(SO/sub 3/H)/sub 3/; CH/sub 2/(SO/sub 3/H)/sub 2/; CCl/sub 2/(SO/sub 3/H)/sub 2/ were prepared in sufficient quantity for electrochemical testing. However, promising synthetic routes have been identified for the other acids. Cyclic voltammetry was used to study the adsorption properties of the acids and half cell tests with gas diffusion electrodes were used to determine their suitability as fuel cell electrolytes. Results are presented and discussed. Also a program has been under way to develop low Pt loading (1 mg cm/sup -2/) fuel cell electrodes. The objective was to achieve control over the mass transfer parameters of an electrode so that optimum structures could be designed for use with the new electrolytes. In the interest of reproducibility, the experimental electrodes incorporated only well characterized materials; all forms of carbon were omitted. Optimum performance with H/sub 3/PO/sub 4/ was achieved with electrodes made as follows. One mg cm/sup -2/ Pt black and 1 mg cm/sup -2/ TFE 30 were mixed and filtered onto porous TFE tape. The tape was pressed into Au plated Ta screen sintered for 10 minutes at 340/sup 0/C. Current vs potential curves for both anodic reactions (CH/sub 4/ and H/sub 2/ oxidation) and cathodic reactions (O/sub 2/ and air reduction) were superior to the curves obtained with an American Cyanamid electrode containing 25 mg Pt cm/sup -2/. (WHK)

  16. Coalbed Methane Outreach Program

    Science.gov (United States)

    Coalbed Methane Outreach Program, voluntary program seeking to reduce methane emissions from coal mining activities. CMOP promotes profitable recovery/use of coal mine methane (CMM), addressing barriers to using CMM instead of emitting it to atmosphere.

  17. Astronomy on a Landfill

    Science.gov (United States)

    Venner, Laura

    2008-09-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in astronomical activities is one of the main goals of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will assist in bringing the goals of IYA 2009 to the approximately 25,000 students and 15,000 adults that visit our site from the NY/NJ region each year. Diversifying our traditional environmental science offerings, we have incorporated astronomy into our repertoire with "The Sun Through Time” module, which includes storytelling, cultural astronomy, telescope anatomy, and other activities that are based on the electromagnetic spectrum and our current knowledge of the sun. These lessons have also been modified to bring astronomy to underserved communities, specifically those individuals that have dexterity or cognitive ability differences. The program is conducted in a classroom setting and is designed to meet New Jersey Core Curriculum Content Standards. With the installation of our new 20” telescope, students and amateur astronomers will be given the opportunity to perform rudimentary research. In addition, a program is in development that will allow individuals to measure local sky brightness and understand the effects of light pollution on astronomical viewing. Teaching astronomy in an urban setting presents many challenges. All individuals, regardless of ability level or location, should be given the opportunity to be exposed to the wonders of the universe and the MEC/CESE has been successful in providing those opportunities.

  18. Impact of meteorological parameters on extracted landfill gas composition and flow

    DEFF Research Database (Denmark)

    Fathi Aghdam, Ehsan; Scheutz, Charlotte; Kjeldsen, Peter

    2018-01-01

    The objective of this study was to investigate the impact of four pre-selected meteorological parameters (barometric pressure, wind speed, ambient temperature and solar radiation) on recovered landfill gas (LFG) flow, methane (CH4) content of the LFG and the recovered CH4 flow by performing...... winter, but not during summer. Ambient temperature and solar radiation were not major meteorological parameters affecting LFG recovery, as low correlation coefficients were observed between these two parameters and the LFG recovery data....

  19. Influence of a municipal solid waste landfill in the surrounding environment: toxicological risk and odor nuisance effects.

    Science.gov (United States)

    Palmiotto, Marinella; Fattore, Elena; Paiano, Viviana; Celeste, Giorgio; Colombo, Andrea; Davoli, Enrico

    2014-07-01

    The large amounts of treated waste materials and the complex biological and physicochemical processes make the areas in the proximity of landfills vulnerable not only to emissions of potential toxic compounds but also to nuisance such as odor pollution. All these factors have a dramatic impact in the local environment producing environmental quality degradation. Most of the human health problems come from the landfill gas, from its non-methanic volatile organic compounds and from hazardous air pollutants. In addition several odorants are released during landfill operations and uncontrolled emissions. In this work we present an integrated risk assessment for emissions of hazard compounds and odor nuisance, to describe environmental quality in the landfill proximity. The study was based on sampling campaigns to acquire emission data for polychlorinated dibenzo-p-dioxins and dibenzofurans, dioxin-like polychlorobiphenyls, polycyclic aromatic hydrocarbons, benzene and vinyl chloride monomer and odor. All concentration values in the emissions from the landfill were measured and used in an air dispersion model to estimate maximum concentrations and depositions in correspondence to five sensitive receptors located in proximity of the landfill. Results for the different scenarios and cancer and non-cancer effects always showed risk estimates which were orders of magnitude below those accepted from the main international agencies (WHO, US EPA). Odor pollution was significant for a limited downwind area near the landfill appearing to be a significant risk factor of the damage to the local environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Measurement of carbon storage in landfills from the biogenic carbon content of excavated waste samples.

    Science.gov (United States)

    De la Cruz, Florentino B; Chanton, Jeffrey P; Barlaz, Morton A

    2013-10-01

    Landfills are an anaerobic ecosystem and represent the major disposal alternative for municipal solid waste (MSW) in the U.S. While some fraction of the biogenic carbon, primarily cellulose (Cel) and hemicellulose (H), is converted to carbon dioxide and methane, lignin (L) is essentially recalcitrant. The biogenic carbon that is not mineralized is stored within the landfill. This carbon storage represents a significant component of a landfill carbon balance. The fraction of biogenic carbon that is not reactive in the landfill environment and therefore stored was derived for samples of excavated waste by measurement of the total organic carbon, its biogenic fraction, and the remaining methane potential. The average biogenic carbon content of the excavated samples was 64.6±18.0% (average±standard deviation), while the average carbon storage factor was 0.09±0.06g biogenic-C stored per g dry sample or 0.66±0.16g biogenic-C stored per g biogenic C. Published by Elsevier Ltd.

  1. Quantitative Study of Biogas Generation Potential from Different Landfill Sites of Nepal

    Directory of Open Access Journals (Sweden)

    Bikash Adhikari

    2015-01-01

    Full Text Available This research paper was study of waste composition and quantitative analysis of biogas generation potential with its recovery at Sisdole, Pokhara and Karaute Dada landfill sites (LFS of Nepal. The waste management practice in LFS are significant deciding factors for the assessment of environmental impacts caused including the release of green house gases like methane, carbondioxide etc to the atmosphere, that could contribute significantly to global warming and climate change. The total waste disposed to Sisdole LFS, Pokhara LFS and Karaute Dada LFS are 410, 80 and 7.8 tons respectively.  The waste composition was studied onsite with waste reduction method and analyzed for their composition. The organic component of wastes was found high as 61.6%, 52.5% and 65% at Sisdole, Pokhara and Karaute Dada LFS respectively. The biogas potential at these landfill sites were 12157.78 cum, 851.99 cum and 169 cum of biogas per day in Sisdole, Pokhara and Karaute Dada LFS respectively. 4.68, 0.33 and 0.07 MW energy per day can be generated from these amounts of biogas produced in Sisdole, Pokhara and Karaute Dada LFS respectively. Proper gas collection system can be the source of income from these landfill sites and help to mitigate the adverse impact of methane that is being released from these landfill sites

  2. Environmental upgrading of a landfill

    International Nuclear Information System (INIS)

    Agostinetto, V.; Vendrame, G.

    1999-01-01

    This article refers to an experimental study concerning the vegetative upgrading of a closed-down landfill (once used for industrial waste disposal). The aim was to check the possibility of reconstructing or aiding the natural growth of a vegetation in keeping with the surrounding area, in a tried environment such as that of landfills. The original idea contained in the approved project - which meant to generically upgrade the territory by planting species belonging to the grassy layer, shrubs and trees - has, with time, undergone some changes. On the basis of both the knowledge acquired during management and of a more accurate analysis of the territory, the experiment was preferred to aim at finding out which were the species, both continental and Mediterranean, able to gradually adjust to the surrounding landscape, leaving to natural selection the task to decide which species were more suitable to the upgrading of closed-down landfills, and which planting technique was more effective [it

  3. New tool for landfill location.

    Science.gov (United States)

    Vasiloglou, Vasilios Chr

    2004-12-01

    In the present paper a decision-making process for the potential location of new landfill areas with wide community participation and acceptance is suggested. The main scientific contribution of this work is the elaboration of an independent decision-making tool, which can be used in landfill site selection. Specifically, at a first level it acts as an intermediary between experts (i.e. engineers, technical advisors) and decision-makers (i.e. elected representatives, appointive advisors), helping decision-makers to use experts' knowledge. At a higher level, it acts as an independent processor of decision-makers judgments thereby giving a result that is in accordance with pre-chosen criteria. In this way, the local authorities can effectively participate in the decision-making process and avert the violation of possible agreements. Furthermore, the criteria (pre-selection - evaluation) and the methodology of multicriteria analysis for new landfill location are presented.

  4. Quantifying Methane Fluxes Simply and Accurately: The Tracer Dilution Method

    Science.gov (United States)

    Rella, Christopher; Crosson, Eric; Green, Roger; Hater, Gary; Dayton, Dave; Lafleur, Rick; Merrill, Ray; Tan, Sze; Thoma, Eben

    2010-05-01

    Methane is an important atmospheric constituent with a wide variety of sources, both natural and anthropogenic, including wetlands and other water bodies, permafrost, farms, landfills, and areas with significant petrochemical exploration, drilling, transport, or processing, or refining occurs. Despite its importance to the carbon cycle, its significant impact as a greenhouse gas, and its ubiquity in modern life as a source of energy, its sources and sinks in marine and terrestrial ecosystems are only poorly understood. This is largely because high quality, quantitative measurements of methane fluxes in these different environments have not been available, due both to the lack of robust field-deployable instrumentation as well as to the fact that most significant sources of methane extend over large areas (from 10's to 1,000,000's of square meters) and are heterogeneous emitters - i.e., the methane is not emitted evenly over the area in question. Quantifying the total methane emissions from such sources becomes a tremendous challenge, compounded by the fact that atmospheric transport from emission point to detection point can be highly variable. In this presentation we describe a robust, accurate, and easy-to-deploy technique called the tracer dilution method, in which a known gas (such as acetylene, nitrous oxide, or sulfur hexafluoride) is released in the same vicinity of the methane emissions. Measurements of methane and the tracer gas are then made downwind of the release point, in the so-called far-field, where the area of methane emissions cannot be distinguished from a point source (i.e., the two gas plumes are well-mixed). In this regime, the methane emissions are given by the ratio of the two measured concentrations, multiplied by the known tracer emission rate. The challenges associated with atmospheric variability and heterogeneous methane emissions are handled automatically by the transport and dispersion of the tracer. We present detailed methane flux

  5. Performance evaluation and comparison of fuel processors integrated with PEM fuel cell based on steam or autothermal reforming and on CO preferential oxidation or selective methanation

    International Nuclear Information System (INIS)

    Ercolino, Giuliana; Ashraf, Muhammad A.; Specchia, Vito; Specchia, Stefania

    2015-01-01

    Highlights: • Modeling of different fuel processors integrated with PEM fuel cell stack. • Steam or autothermal reforming + CO selective methanation or preferential oxidation. • Reforming of different hydrocarbons: gasoline, light diesel oil, natural gas. • 5 kW e net systems comparison via energy efficiency and primary fuel rate consumed. • Highest net efficiency: steam reformer + CO selective methanation based system. - Abstract: The performances of four different auxiliary power unit (APU) schemes, based on a 5 kW e net proton exchange membrane fuel cell (PEM-FC) stack, are evaluated and compared. The fuel processor section of each APU is characterized by a reformer (autothermal ATR or steam SR), a non-isothermal water gas shift (NI-WGS) reactor and a final syngas catalytic clean-up step: the CO preferential oxidation (PROX) reactor or the CO selective methanation (SMET) one. Furthermore, three hydrocarbon fuels, the most commonly found in service stations (gasoline, light diesel oil and natural gas) are considered as primary fuels. The comparison is carried out examining the results obtained by a series of steady-state system simulations in Aspen Plus® of the four different APU schemes by varying the fed fuel. From the calculated data, the performance of CO-PROX is not very different compared to that of the CO-SMET, but the performance of the SR based APUs is higher than the scheme of the ATR based APUs. The most promising APU scheme with respect to an overall performance target is the scheme fed with natural gas and characterized by a fuel processor chain consisting of SR, NI-WGS and CO-SMET reactors. This processing reactors scheme together with the fuel cell section, notwithstanding having practically the same energy efficiency of the scheme with SR, NI-WGS and CO-PROX reactors, ensures a less complex scheme, higher hydrogen concentration in the syngas, lower air mass rate consumption, the absence of nitrogen in the syngas and higher potential

  6. The decay of wood in landfills in contrasting climates in Australia.

    Science.gov (United States)

    Ximenes, Fabiano; Björdal, Charlotte; Cowie, Annette; Barlaz, Morton

    2015-07-01

    Wood products in landfill are commonly assumed to decay within several decades, returning the carbon contained therein to the atmosphere, with about half the carbon released as methane. However, the rate and extent of decay is not well known, as very few studies have examined the decay of wood products in landfills. This study reports on the findings from landfill excavations conducted in the Australian cities of Sydney and Cairns located in temperate and tropical environments, respectively. The objective of this study was to determine whether burial of the wood in warmer, more tropical conditions in Cairns would result in greater levels of decay than occurs in the temperate environment of Sydney. Wood samples recovered after 16-44years in landfill were examined through physical, chemical and microscopic analyses, and compared with control samples to determine the carbon loss. There was typically little or no decay in the wood samples analysed from the landfill in Sydney. Although there was significant decay in rainforest wood species excavated from Cairns, decay levels for wood types that were common to both Cairns and Sydney landfills were similar. The current Intergovernmental Panel on Climate Change (IPCC, 2006) default decay factor for organic materials in landfills is 50%. In contrast, the carbon loss determined for Pinus radiata recovered from Sydney and Cairns landfills was 7.9% and 4.4%, respectively, and 0% for Agathis sp. This suggests that climate did not influence decay, and that the more extensive levels of decay observed for some wood samples from Cairns indicates that those wood types were more susceptible to biodegradation. Microscopic analyses revealed that most decay patterns observed in samples analysed from Sydney were consistent with aerobic fungal decay. Only a minor portion of the microbial decay was due to erosion bacteria active in anaerobic/near anaerobic environments. The findings of this study strongly suggest that models that adopt

  7. A correction in the CDM methodological tool for estimating methane emissions from solid waste disposal sites.

    Science.gov (United States)

    Santos, M M O; van Elk, A G P; Romanel, C

    2015-12-01

    Solid waste disposal sites (SWDS) - especially landfills - are a significant source of methane, a greenhouse gas. Although having the potential to be captured and used as a fuel, most of the methane formed in SWDS is emitted to the atmosphere, mainly in developing countries. Methane emissions have to be estimated in national inventories. To help this task the Intergovernmental Panel on Climate Change (IPCC) has published three sets of guidelines. In addition, the Kyoto Protocol established the Clean Development Mechanism (CDM) to assist the developed countries to offset their own greenhouse gas emissions by assisting other countries to achieve sustainable development while reducing emissions. Based on methodologies provided by the IPCC regarding SWDS, the CDM Executive Board has issued a tool to be used by project developers for estimating baseline methane emissions in their project activities - on burning biogas from landfills or on preventing biomass to be landfilled and so avoiding methane emissions. Some inconsistencies in the first two IPCC guidelines have already been pointed out in an Annex of IPCC latest edition, although with hidden details. The CDM tool uses a model for methane estimation that takes on board parameters, factors and assumptions provided in the latest IPCC guidelines, while using in its core equation the one of the second IPCC edition with its shortcoming as well as allowing a misunderstanding of the time variable. Consequences of wrong ex-ante estimation of baseline emissions regarding CDM project activities can be of economical or environmental type. Example of the first type is the overestimation of 18% in an actual project on biogas from landfill in Brazil that harms its developers; of the second type, the overestimation of 35% in a project preventing municipal solid waste from being landfilled in China, which harms the environment, not for the project per se but for the undue generated carbon credits. In a simulated landfill - the same

  8. Methane steam reforming kinetics over Ni-YSZ anodematerials for Solid Oxide FuelCells

    DEFF Research Database (Denmark)

    Mogensen, David

    of internal reforming has to be carefully controlled. The objective of this thesis is to make such a careful control possible by examining the rate of internal steam reforming in SOFCs. The catalytic steam reforming activity of Ni-YSZ anode material was tested both in a packed bed reactor to determine...... energy. The overall efficiency of a fuel cell system operating on natural gas can be significantly improved by having part of the steam reforming take place inside the SOFC stack. In order to avoid large temperature gradients as a result of the highly endothermal steam reforming reaction, the amount...... accurately predict the steam reforming rate in a stack from the rate expression obtained from the packed bed experiments. During the experiments a previously unreported long term dynamic behavior of the catalyst was observed. After startup, the initial high reactivity was slowly reduced by a factor 5-10 over...

  9. Methane steam reforming kinetics over Ni-YSZ anode materials for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Mogensen, David

    of internal reforming has to be carefully controlled. The objective of this thesis is to make such a careful control possible by examining the rate of internal steam reforming in SOFCs. The catalytic steam reforming activity of Ni-YSZ anode material was tested both in a packed bed reactor to determine...... energy. The overall efficiency of a fuel cell system operating on natural gas can be significantly improved by having part of the steam reforming take place inside the SOFC stack. In order to avoid large temperature gradients as a result of the highly endothermal steam reforming reaction, the amount...... accurately predict the steam reforming rate in a stack from the rate expression obtained from the packed bed experiments. During the experiments a previously unreported long term dynamic behavior of the catalyst was observed. After startup, the initial high reactivity was slowly reduced by a factor 5-10 over...

  10. Influence of the set anode potential on the performance and internal energy losses of a methane-producing microbial electrolysis cell.

    Science.gov (United States)

    Villano, Marianna; Ralo, Cláudia; Zeppilli, Marco; Aulenta, Federico; Majone, Mauro

    2016-02-01

    The effect of the set anode potential (between + 200 mV and - 200 mV vs. SHE, standard hydrogen electrode) on the performance and distribution of internal potential losses has been analyzed in a continuous-flow methane-producing microbial electrolysis cell (MEC).Both acetate removal rate (at the anode) and methane generation rate (at the cathode) were higher (1 gCOD/L day and 0.30 m(3)/m(3) day, respectively) when the anode potential was controlled at + 200 mV. However, both the yields of acetate conversion into current and current conversion into methane were very high (72-90%) under all the tested conditions. Moreover, the sum of internal potential losses decreased from 1.46 V to 0.69 V as the anode potential was decreased from + 200 mV to - 200 mV, with cathode overpotentials always representing the main potential losses. This was likely to be due to the high energy barrier which has to be overcome in order to activate the cathode reaction. Finally, the energy efficiency correspondingly increased reaching 120% when the anode was controlled at - 200 mV.

  11. Performance study of a solid oxide fuel cell and gas turbine hybrid system designed for methane operating with non-designed fuels

    Science.gov (United States)

    Li, Yang; Weng, Yiwu

    This paper presents an analysis of the fuel flexibility of a methane-based solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system. The simulation models of the system are mathematically defined. Special attention is paid to the development of an SOFC thermodynamic model that allows for the calculation of radial temperature gradients. Based on the simulation model, the new design point of system for new fuels is defined first; the steady-state performance of the system fed by different fuels is then discussed. When the hybrid system operates with hydrogen, the net power output at the new design point will decrease to 70% of the methane, while the design net efficiency will decrease to 55%. Similar to hydrogen, the net output power of the ethanol-fueled system will decrease to 88% of the methane value due to the lower cooling effect of steam reforming. However, the net efficiency can remain at 61% at high level due to increased heat recuperation from exhaust gas. To increase the power output of the hybrid system operating with non-design fuels without changing the system configuration, three different measures are introduced and investigated in this paper. The introduced measures can increase the system net power output operating with hydrogen to 94% of the original value at the cost of a lower efficiency of 45%.

  12. Reduction of environmental impact of solid domestic landfills of residential area due to their recycling

    Directory of Open Access Journals (Sweden)

    Zhilina Tatiana

    2017-01-01

    Full Text Available In the research it was considered dynamics of growth of municipal solid waste landfill in a city of Tyumen for six years Shows the distribution of waste by placing objects, calculated amounts of solid household and industrial wastes placed on landfill south of the Tyumen region. Comparison of components suitable for generating methane for household waste and scum of wastewater. Formation of methane and carbon dioxide at various stages of fermentation of municipal solid waste. Specific generation of municipal waste per 1 inhabitant is calculated. The concept of co-utilization of municipal waste of apartment buildings. Comparative estimate of various options for fermentation of waste. It is established that the amount of methane produced is sufficient to compensate for the communal needs of apartment buildings. Reducing the anthropogenic burden on landfill is possible upon conditions of the implementation of biogas recovery and its reuse on the site of waste generation that is conducive to development of productions based on using secondary energy resources on the cheap raw materials basis.

  13. Decomposition and carbon storage of selected paper products in laboratory-scale landfills

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoming, E-mail: wangxiaoming_cqu@163.com [Key Laboratory of Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, National Center for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing (China); Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); De la Cruz, Florentino B. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Ximenes, Fabiano [Department of Primary Industries, New South Wales (Australia); Barlaz, Morton A. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States)

    2015-11-01

    The objective of this study was to measure the anaerobic biodegradation of different types of paper products in laboratory-scale landfill reactors. The study included (a) measurement of the loss of cellulose, hemicellulose, organic carbon, and (b) measurement of the methane yields for each paper product. The test materials included two samples each of newsprint (NP), copy paper (CP), and magazine paper (MG), and one sample of diaper (DP). The methane yields, carbon storage factors and the extent of cellulose and hemicellulose decomposition all consistently show that papers made from mechanical pulps (e.g., NPs) are less degradable than those made from chemical pulps where essentially all lignin was chemically removed (e.g., CPs). The diaper, which is not only made from chemical pulp but also contains some gel and plastic, exhibited limited biodegradability. The extent of biogenic carbon conversion varied from 21 to 96% among papers, which contrasts with the uniform assumption of 50% by the Intergovernmental Panel on Climate Change (IPCC) for all degradable materials discarded in landfills. Biochemical methane potential tests also showed that the solids to liquid ratio used in the test can influence the results. - Highlights: • Decomposition of major paper products measured under simulated landfill conditions • Varied decomposition behaviors across paper types governed by pulp types • A copy paper made from eucalyptus exhibited inhibited decomposition.

  14. Impact assessment of intermediate soil cover on landfill stabilization by characterizing landfilled municipal solid waste.

    Science.gov (United States)

    Qi, Guangxia; Yue, Dongbei; Liu, Jianguo; Li, Rui; Shi, Xiaochong; He, Liang; Guo, Jingting; Miao, Haomei; Nie, Yongfeng

    2013-10-15

    Waste samples at different depths of a covered municipal solid waste (MSW) landfill in Beijing, China, were excavated and characterized to investigate the impact of intermediate soil cover on waste stabilization. A comparatively high amount of unstable organic matter with 83.3 g kg(-1) dry weight (dw) total organic carbon was detected in the 6-year-old MSW, where toxic inorganic elements containing As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn of 10.1, 0.98, 85.49, 259.7, 530.4, 30.5, 84.0, and 981.7 mg kg(-1) dw, respectively, largely accumulated because of the barrier effect of intermediate soil cover. This accumulation resulted in decreased microbial activities. The intermediate soil cover also caused significant reduction in moisture in MSW under the soil layer, which was as low as 25.9%, and led to inefficient biodegradation of 8- and 10-year-old MSW. Therefore, intermediate soil cover with low permeability seems to act as a barrier that divides a landfill into two landfill cells with different degradation processes by restraining water flow and hazardous matter. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Emission model for landfills with mechanically-biologically pretreated waste, with the emphasis on modelling the gas balance; Emissionsprognosemodell fuer Deponien mit mechanisch-biologisch vorbehandelten Abfaellen - Schwerpunkt: Modellierung des Gashaushaltes

    Energy Technology Data Exchange (ETDEWEB)

    Danhamer, H.

    2001-07-01

    The objective of this work was to determine influence factors on processes going on in landfills with mechanically-biologically pretreated waste (MBP-landfills) in order to predict emissions. For this purpose a computer based model has been developed. The model allows to simulate the gas, water and heat balance as well as settlement processes and was called DESIM2005 (version MB). It is based on theoretical modeling approaches as well as data from lab and reactor experiments. The main focus of model application was to determine factors influencing the gas phase and the emissions of landfill gas and methane during operation and aftercare of MBP-landfills. By performing simulations the effects of changing parameters for the processes gas transport and biological degradation as well as the effects of different qualities in waste pretreatment and of varying landfill operation techniques were investigated. Possibilities for increasing the environmental sustainability of landfills containing mechanically-biologically pretreated waste were shown. (orig.)

  16. Impermeable layers in landfill design

    Directory of Open Access Journals (Sweden)

    Karanac Milica

    2013-01-01

    Full Text Available Landfills are complex systems which could potentially contaminate the environment. It should be prevented by providing impermeability during the landfill design. In that aim related regulations should be followed and adequate materials that provide impermeability should be used. The first part of the paper presents review of the current regulations, interpretations, and recommendations from U.S., EU and Republic of Serbia. Knowing that the Serbian regulation should fully follow related European Directive, in analyses some inadequate formulations and terms were observed related to the Directive Annex I, 3.2. Request of the Regulation that deals with the bottom of the landfill leakage is formulated differently than in Directive as well. Mentioned problems enable some design solutions which are not among the best available techniques. In the second part the paper presents comparative analysis of possible alternatives in impermeable layer design, both for the bottom and landfill cover. Some materials like clay, CCL, GCL might not be able to satisfy prescribed requirements. The longest lifetime and the lowest coefficient of permeability, as well as excellent mechanical, chemical and thermal stability, show the mixture of sand, bentonite and polymers (PEBSM. [Projekat Ministarstva nauke Republike Srbije, br. TR 34009

  17. Landfilling of waste incineration residues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Cai, Zuansi

    2002-01-01

    Residues from waste incineration are bottom ashes and air-pollution-control (APC) residues including fly ashes. The leaching of heavy metals and salts from the ashes is substantial and a wide spectrum of leaching tests and corresponding criteria have been introduced to regulate the landfilling...

  18. Formulation of steam-methane reforming rate in Ni-YSZ porous anode of solid oxide fuel cells

    Science.gov (United States)

    Sugihara, Shinichi; Kawamura, Yusuke; Iwai, Hiroshi

    2018-02-01

    The steam-methane reforming reaction on a Ni-YSZ (yttria-stabilized zirconia) cermet was experimentally investigated under atmospheric pressure and in the temperature range from 650 to 750 °C. We examined the effects of the partial pressures of methane and steam in the supply gas on the reaction rate. The experiments were conducted with a low Ni contained Ni-YSZ cermet sheet of thickness 0.1 mm. Its porous microstructure and accompanied parameters were quantified using the FIB-SEM (focused ion beam scanning electron microscopy) technique. A power-law-type rate equation incorporating the reaction-rate-limiting conditions was obtained on the basis of the unit surface area of the Ni-pore contact surface in the cermet. The kinetics indicated a strong positive dependence on the methane partial pressure and a negative dependence on the steam partial pressure. The obtained rate equation successfully reproduced the experimental results for Ni-YSZ samples having different microstructures in the case of low methane consumption. The equation also reproduced the limiting-reaction behaviours at different temperatures.

  19. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    Energy Technology Data Exchange (ETDEWEB)

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  20. Quantifying capital goods for waste landfilling

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Stentsøe, Steen; Willumsen, Hans Christian

    2013-01-01

    to approximately 260 kg per tonne of waste landfilled. The environmental burdens from the extraction and manufacturing of the materials used in the landfill, as well as from the construction of the landfill, were modelled as potential environmental impacts. For example, the potential impact on global warming was 2.......5 kg carbon dioxide (CO2) equivalents or 0.32 milli person equivalents per tonne of waste. The potential impacts from the use of materials and construction of the landfill are low-to-insignificant compared with data reported in the literature on impact potentials of landfills in operation......Materials and energy used for construction of a hill-type landfill of 4 million m3 were quantified in detail. The landfill is engineered with a liner and leachate collections system, as well as a gas collection and control system. Gravel and clay were the most common materials used, amounting...

  1. Thermodynamic characteristics of a low concentration methane catalytic combustion gas turbine

    International Nuclear Information System (INIS)

    Yin, Juan; Su, Shi; Yu, Xin Xiang; Weng, Yiwu

    2010-01-01

    Low concentration methane, emitted from coal mines, landfill, animal waste, etc. into the atmosphere, is not only a greenhouse gas, but also a waste energy source if not utilised. Methane is 23 times more potent than CO 2 in terms of trapping heat in the atmosphere over a timeframe of 100 years. This paper studies a novel lean burn catalytic combustion gas turbine, which can be powered with about 1% methane (volume) in air. When this technology is successfully developed, it can be used not only to mitigate the methane for greenhouse gas reduction, but also to utilise such methane as a clean energy source. This paper presents our study results on the thermodynamic characteristics of this new lean burn catalytic combustion gas turbine system by conducting thermal performance analysis of the turbine cycle. The thermodynamic data including thermal efficiencies and exergy loss of main components of the turbine system are presented under different pressure ratios, turbine inlet temperatures and methane concentrations.

  2. Use of the landfill water pollution index (LWPI) for groundwater quality assessment near the landfill sites.

    Science.gov (United States)

    Talalaj, Izabela A; Biedka, Pawel

    2016-12-01

    The purpose of the paper is to assess the groundwater quality near the landfill sites using landfill water pollution index (LWPI). In order to investigate the scale of groundwater contamination, three landfills (E, H and S) in different stages of their operation were taken into analysis. Samples of groundwater in the vicinity of studied landfills were collected four times each year in the period from 2004 to 2014. A total of over 300 groundwater samples were analysed for pH, EC, PAH, TOC, Cr, Hg, Zn, Pb, Cd, Cu, as required by the UE legal acts for landfill monitoring system. The calculated values of the LWPI allowed the quantification of the overall water quality near the landfill sites. The obtained results indicated that the most negative impact on groundwater quality is observed near the old Landfill H. Improper location of piezometer at the Landfill S favoured infiltration of run-off from road pavement into the soil-water environment. Deep deposition of the groundwater level at Landfill S area reduced the landfill impact on the water quality. Conducted analyses revealed that the LWPI can be used for evaluation of water pollution near a landfill, for assessment of the variability of water pollution with time and for comparison of water quality from different piezometers, landfills or time periods. The applied WQI (Water Quality Index) can also be an important information tool for landfill policy makers and the public about the groundwater pollution threat from landfill.

  3. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations.

    Science.gov (United States)

    Tansel, Berrin; Surita, Sharon C

    2014-11-01

    The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditions in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the Si-O bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the Si-O bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Auto generation plant of Artigas landfill (Bilbao, Spain); Planta de autogeneracion electrica del vertedero de Artigas (Bilbao)

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, N.; Dorronsoro, J.L.

    1996-07-01

    The disposition of MSW in the landfill generates a mixture of gases or {sup b}iogas{sup ,} its primary content is methane (50-60%) which has a very important energetic value, that can be very useful. In this sense, the present work point out the characteristics of the auto generation electrical plant of Artigas landfill, just like the results of the analytical study of the past two years. In this project which was partly funded by the UE, have participated Excmo. Ayuntamiento de Bilbao, EVE and CIEMAT. (Author) 6 refs.

  5. Quantifying methane emissions and sources in the Colorado Front Range

    Science.gov (United States)

    Hughes, S.; Townsend-Small, A.; Schroeder, J.; Blake, N. J.; Blake, D. R.

    2016-12-01

    Methane is a powerful greenhouse gas and is relatively constant throughout the atmosphere, at 1.8 ppmv. This value, however, is increasing primarily due to anthropogenic sources, including agriculture and natural gas extraction. Here we present atmospheric methane fluxes measured during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) in July - August 2014 in the Colorado Front Range on the NCAR C-130. During this campaign 775 advanced whole air samples (AWAS) were collected onboard the aircraft and 248 samples were collected on the ground in order to quantify and evaluate air pollution sources. Methane concentrations were measured continuously aboard the aircraft using cavity ringdown spectroscopy. Major sources of methane in this region are oil and natural gas extraction and distribution, landfills, and cattle feed lots. In order to assess the impact of methane emissions on this area, methane flux was evaluated by comparing upwind and downwind concentrations where significant enhancements were observed downwind. We also present information from other hydrocarbons measured in canisters to attribute methane emissions to urban, agricultural, and oil and gas sources. The state of Colorado recently enacted legislation to reduce emissions of hydrocarbons from oil and gas facilities and our measurements will provide a preliminary estimate of whether these regulations are effective.

  6. Technical and economic evaluation of biogas capture and treatment for the Piedras Blancas landfill in Córdoba, Argentina.

    Science.gov (United States)

    Francisca, Franco Matías; Montoro, Marcos Alexis; Glatstein, Daniel Alejandro

    2017-05-01

    Landfill gas (LFG) management is one of the most important tasks for landfill operation and closure because of its impact in potential global warming. The aim of this work is to present a case history evaluating an LFG capture and treatment system for the present landfill facility in Córdoba, Argentina. The results may be relevant for many developing countries around the world where landfill gas is not being properly managed. The LFG generation is evaluated by modeling gas production applying the zero-order model, Landfill Gas Emissions Model (LandGEM; U.S. Environmental Protection Agency [EPA]), Scholl Canyon model, and triangular model. Variability in waste properties, weather, and landfill management conditions are analyzed in order to evaluate the feasibility of implementing different treatment systems. The results show the advantages of capturing and treating LFG in order to reduce the emissions of gases responsible for global warming and to determine the revenue rate needed for the project's financial requirements. This particular project reduces by half the emission of equivalent tons of carbon dioxide (CO 2 ) compared with the situation where there is no gas treatment. In addition, the study highlights the need for a change in the electricity prices if it is to be economically feasible to implement the project in the current Argentinean electrical market. Methane has 21 times more greenhouse gas potential than carbon dioxide. Because of that, it is of great importance to adequately manage biogas emissions from landfills. In addition, it is environmentally convenient to use this product as an alternative energy source, since it prevents methane emissions while preventing fossil fuel consumption, minimizing carbon dioxide emissions. Performed analysis indicated that biogas capturing and energy generation implies 3 times less equivalent carbon dioxide emissions; however, a change in the Argentinean electrical market fees are required to guarantee the

  7. Simulated evapotranspiration from a landfill irrigated with landfill leachate

    International Nuclear Information System (INIS)

    Aronsson, P.

    1996-01-01

    Evapotranspiration from a landfill area, irrigated with leachate water, was simulated with the SOIL model. Three different types of vegetation (bare soil, grass ley, and willow) were used both with and without irrigation. The highest simulated evapotranspiration (604 mm) during the growing season was found from an irrigated willow stand with a high interception capacity. The lowest evapotranspiration (164 mm) was found from the bare soil. The relatively high evapotranspiration from the willow was probably caused by the high LAI (Leaf Area Index) and the low aerodynamic resistance within the willow stand. The results indicate that it is possible to reduce most of the leakage water from a landfill by irrigation of willow stands. 9 refs, 4 figs, 1 tab

  8. A tiered observational system for anthropogenic methane emissions

    Science.gov (United States)

    Duren, R. M.; Miller, C. E.; Hulley, G. C.; Hook, S. J.; Sander, S. P.

    2014-12-01

    Improved understanding of anthropogenic methane emissions is required for closing the global carbon budget and addressing priority challenges in climate policy. Several decades of top-down and bottom-up studies show that anthropogenic methane emissions are systematically underestimated in key regions and economic sectors. These uncertainties have been compounded by the dramatic rise of disruptive technologies (e.g., the transformation in the US energy system due to unconventional gas and oil production). Methane flux estimates derived from inverse analyses and aircraft-based mass balance approaches underscore the disagreement in nationally and regionally reported methane emissions as well as the possibility of a long-tail distribution in fugitive emissions spanning the US natural gas supply chain; i.e. a small number of super-emitters may be responsible for most of the observed anomalies. Other studies highlight the challenges of sectoral and spatial attribution of fugitive emissions - including the relative contributions of dairies vs oil and gas production or disentangling the contributions of natural gas transmission, distribution, and consumption or landfill emissions in complex urban environments. Limited observational data remains a foundational barrier to resolving these challenges. We present a tiered observing system strategy for persistent, high-frequency monitoring over large areas to provide remote detection, geolocation and quantification of significant anthropogenic methane emissions across cities, states, basins and continents. We describe how this would both improve confidence in methane emission estimates and expedite resolution of fugitive emissions and leaks. We summarize recent prototype field campaigns that employ multiple vantage points and measurement techniques (including NASA's CARVE and HyTES aircraft and PanFTS instrument on Mt Wilson). We share preliminary results of this tiered observational approach including examples of individual

  9. Corrective action investigation plan for CAU Number 453: Area 9 Landfill, Tonopah Test Range

    International Nuclear Information System (INIS)

    1997-01-01

    This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and criteria for conducting site investigation activities at the Area 9 Landfill, Corrective Action Unit (CAU) 453/Corrective Action (CAS) 09-55-001-0952, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Area 9 Landfill is located northwest of Area 9 on the TTR. The landfill cells associated with CAU 453 were excavated to receive waste generated from the daily operations conducted at Area 9 and from range cleanup which occurred after test activities

  10. Reductive dechlorination of chlorinated solvents in landfills

    International Nuclear Information System (INIS)

    Wang, J.Y.; Wu, C.

    2002-01-01

    The use of landfills as an in situ biological treatment system represents an alternative for source area remediation with a significant cost saving. The specific objective of this research is to investigate the intrinsic bioattenuation capacity of the landfill ecosystem for chlorinated aliphatic hydrocarbons (CAHs). The research was conducted in two complementary systems: simulated landfill bioreactors and batch degradation experiment in serum bottles. Refuse samples excavated from a landfill were tested in laboratory bioreactors designed and operated to facilitate refuse decomposition under landfilling conditions. Each bioreactor was operated with leachate recirculation and gas collection. Target CAHs, tetrachloroethene (PCE) and trichloroethene (TCE), were added to selected reactors and maintained at 20 μM each in leachate to simulate the effect of long-term exposure of refuse microorganisms to CAHs on the degradation potential of these chemicals in landfills. At two different stages of refuse decomposition, active refuse decomposition representing young landfills and maturation phase representing aged landfills, anaerobic microbial cultures were derived from selected bioreactors and tested in serum bottles for their abilities to biodegrade target CAHs. Results of this study suggest that landfills have an intrinsic reductive dechlorination capacity for PCE and TCE. The decomposition of refuse, a source of complex organics, enhances reductive dechlorination by the refuse cultures tested in this study. In addition, the test results suggest that it may be possible to develop engineering strategies to promote both CAHs degradation and refuse decomposition in landfills. (author)

  11. Landfill reduction experience in The Netherlands.

    Science.gov (United States)

    Scharff, Heijo

    2014-11-01

    Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the continued operation of a 'safety net' in waste management. Regulations have created a financial incentive to pass on the burden of monitoring and controlling the impact of waste to future generations. To prevent this, it is necessary to revise regulations on aftercare and create incentives to actively stabilise landfills. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Imaging and characterization of heterogeneous landfills using geophysical methods

    NARCIS (Netherlands)

    Konstantaki, L.A.

    2016-01-01

    Nowadays many countries use landfilling for the management of their waste or for treating old landfills. Emissions from landfills can be harmful to the environment and to human health, making the stabilization of landfills a priority for the landfill communities. Estimation of the emission potential

  13. Identification of Cellulose Breaking Bacteria in Landfill Samples for Organic Waste Management

    Science.gov (United States)

    Chan, P. M.; Leung, F. C.

    2015-12-01

    According to the Hong Kong Environmental Protection Department, the citizens of Hong Kong disposes 13,500 tonnes of waste to the landfill everyday. Out of the 13,500 tonnes, 3600 tonnes consist of organic waste. Furthermore, due to the limited supply of land for landfills in Hong Kong, it is estimated that landfills will be full by about 2020. Currently, organic wastes at landfills undergo anaerobic respiration, where methane gas, one of the most harmful green house gases, will be released. The management of such waste is a pressing issue, as possible solutions must be presented in this crucial period of time. The Independent Schools Foundation Academy introduced their very own method to manage the waste produced by the students. With an approximate of 1500 students on campus, the school produces 27 metric tonnes of food waste each academic year. The installation of the rocket food composter provides an alternate method of disposable of organic waste the school produces, for the aerobic environment allows for different by-products to be produced, namely compost that can be used for organic farming by the primary school students and subsequently carbon dioxide, a less harmful greenhouse gas. This research is an extension on the current work, as another natural factor is considered. It evaluates the microorganism community present in leachate samples collected from the North East New Territories Landfill, for the bacteria in the area exhibits special characteristics in the process of decomposition. Through the sequencing and analysis of the genome of the bacteria, the identification of the bacteria might lead to a break through on the current issue. Some bacteria demonstrate the ability to degrade lignin cellulose, or assist in the production of methane gas in aerobic respirations. These characteristics can hopefully be utilized in the future in waste managements across the globe.

  14. Optimization of first order decay gas generation model parameters for landfills located in cold semi-arid climates.

    Science.gov (United States)

    Vu, Hoang Lan; Ng, Kelvin Tsun Wai; Richter, Amy

    2017-11-01

    Canada has one of the highest waste generation rates in the world. Because of high land availability, land disposal rates in the province of Saskatchewan are high compared to the rest of the country. In this study, landfill gas data was collected at semi-arid landfills in Regina and Saskatoon, Saskatchewan, and curve fitting was carried out to find optimal k and L o or DOC values using LandGEM, Afvalzorg Simple, and IPCC first order decay models. Model parameters at each landfill were estimated and compared using default k and L o or DOC values. Methane generation rates were substantially overestimated using default values (with percentage errors from 55 to 135%). The mean percentage errors for the optimized k and L o or DOC values ranged from 11.60% to 19.93% at the Regina landfill, and 1.65% to 10.83% at the Saskatoon landfill. Finally, the effect of different iterative methods on the curve fitting process was examined. The residual sum of squares for each model and iterative approaches were similar, with the exception of iterative method 1 for the IPCC model. The default values in these models fail to represent landfills located in cold semi-arid climates. The use of site specific data, provided enough information is available regarding waste mass and composition, can greatly help to improve the accuracy of these first order decay models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Landfill reduction experience in The Netherlands

    International Nuclear Information System (INIS)

    Scharff, Heijo

    2014-01-01

    Highlights: • ‘Zero waste’ initiatives never consider risks, side effects or experience of achieved low levels of landfill. • This paper provides insight into what works and what not. • Where strong gradients in regulations and tax occur between countries, waste will find its way to landfills across borders. • Strong landfill reduction can create a fierce competition over the remaining waste to be landfilled resulting in losses. • At some point a public organisation should take responsibility for the operation of a ‘safety net’ in waste management. - Abstract: Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the

  16. Monitoring fugitive CH4 and CO2 emissions from a closed landfill at Tenerife, Canary Islands

    Science.gov (United States)

    Asensio-Ramos, María; Tompkins, Mitchell R. K.; Turtle, Lara A. K.; García-Merino, Marta; Amonte, Cecilia; Rodrígez, Fátima; Padrón, Eleazar; Melián, Gladys V.; Padilla, Germán; Barrancos, José; Pérez, Nemesio M.

    2017-04-01

    Solid waste must be managed systematically to ensure environmental best practices. One of the ways to manage this huge problem is to systematic dispose waste materials in locations such as landfills. However, landfills could face possible threats to the environment such as groundwater pollution and the release of landfill gases (CH4, volatile organic compounds, etc.) to the atmosphere. These structures should be carefully filled, monitored and maintained while they are active and for up to 30 years after they are closed. Even after years of being closed, a systematically amount of landfill gas could be released to the atmosphere through its surface in a diffuse and fugitive form. During the period 1999-2016, we have studied the spatial-temporal distribution of the surface fugitive emission of CO2 and CH4 into the atmosphere in a cell in the Arico's municipal landfill (0.3 km2) at Tenerife, Canary Islands, Spain. This cell was operative until 2004, when it was filled and closed. Monitoring these diffuse landfill emissions provides information of how the closed landfill is degassing. To do so, we have performed 9 gas emission surveys during the period 1999-2016. Surface landfill CO2 efflux measurements were carried out at around 450 sampling site by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. Landfill gases taken in the chamber were analyzed using a double channel VARIAN 4900 micro-GC. CH4 efflux measurements were computed combining CO2 efflux measurements and CH4/CO2 ratio in the landfill's surface gas. To quantify the total CH4 emission, CH4 efflux contour map was constructed using sequential Gaussian simulation (sGs) as interpolation method. In general, a decrease in the CO2 emission is observed since the cell was closed (2004) to the present. The total CO2 and CH4 diffuse emissions estimated in the 2016 survey were 4.54 ± 0.14 t d-1 and 268.65 ± 17.99 t d-1, respectively

  17. Geosynthetic applications in landfill design

    International Nuclear Information System (INIS)

    Alshunnar, I.S.; Afifi, S.S.; Tiseo, B.

    1996-01-01

    Landfills are designed to contain waste and to provide protection against discharges of leachate into the environment. Main components of a landfill include a liner system, a leachate collection system, and a cover system. Traditional designs have typically incorporated clay soils for containment and sands with embedded piping for leachate collection. As a result of recent advances in design, geosynthetic materials are now widely used for components. While these materials present cost and feasibility advantages, they also pose significant challenges in stability evaluations, handing during installation, and quality assurance. This paper presents an overview of applications of geosynthetics in design and construction, including: Advantages, disadvantages, design criteria, possible economic benefits of various systems, and related construction considerations. 2 figs., 1 tab

  18. LANDFILL LEACHATES PRETREATMENT BY OZONATION

    Directory of Open Access Journals (Sweden)

    Jacek Leszczyński

    2016-06-01

    Full Text Available In this paper, the application of ozonation processes for stabilized landfill leachate treatment was investigated. The leachate came from a municipal sanitary landfill located nearby Bielsk Podlaski. The average values of its main parameters were: pH 8.23; COD 870 mgO2/dm3; BOD 90 mgO2/dm3; NH4+ 136.2 mgN/dm3; UV254 absorbance 0.312 and turbidity 14 NTU. The ozone dosages used were in the range of 115.5 to 808.5 mgO3/dm3 of the leachate. The maximum COD, color and UV254 absorbance removal wa.5 mgO3/dm3. After oxidation, the ratio of BOD/COD was increased from 0.1 up to 0.23.

  19. Biogeochemistry of landfill leachate plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Kjeldsen, Peter; Bjerg, Poul Løgstrup

    2001-01-01

    is on dissolved organic matter, xenobiotic organic compounds, inorganic macrocomponents as anions and cations, and heavy metals. Laboratory as well as field investigations are included. This review is an up-date of an earlier comprehensive review. The review shows that most leachate contamination plumes...... are relatively narrow and do not in terms of width exceed the width of the landfill. The concept of redox zones being present in the plume has been confirmed by the reported composition of the leachate contaminated groundwater at several landfills and constitutes an important framework for understanding...... in a few cases. Apparently, observations in actual plumes indicate more extensive degradation than has been documented in the laboratory. The behavior of cations in leachate plumes is strongly influenced by exchange with the sediment, although the sediment often is very coarse and sandy. Ammonium seems...

  20. Emerging contaminants at a closed and an operating landfill in Oklahoma

    Science.gov (United States)

    Andrews, William J.; Masoner, Jason R.; Cozzarelli, Isabelle M.

    2012-01-01

    Landfills are the final depositories for a wide range of solid waste from both residential and commercial sources, and therefore have the potential to produce leachate containing many organic compounds found in consumer products such as pharmaceuticals, plasticizers, disinfectants, cleaning agents, fire retardants, flavorings, and preservatives, known as emerging contaminants (ECs). Landfill leachate was sampled from landfill cells of three different age ranges from two landfills in Central Oklahoma. Samples were collected from an old cell containing solid waste greater than 25 years old, an intermediate age cell with solid waste between 16 and 3 years old, and operating cell with solid waste less than 5 years old to investigate the chemical variability and persistence of selected ECs in landfill leachate of differing age sources. Twenty-eight of 69 analyzed ECs were detected in one or more samples from the three leachate sources. Detected ECs ranged in concentration from 0.11 to 114 μg/L and included 4 fecal and plant sterols, 13 household\\industrial, 7 hydrocarbon, and 4 pesticide compounds. Four ECs were solely detected in the oldest leachate sample, two ECs were solely detected in the intermediate leachate sample, and no ECs were solely detected in the youngest leachate sample. Eleven ECs were commonly detected in all three leachate samples and are an indication of the contents of solid waste deposited over several decades and the relative resistance of some ECs to natural attenuation processes in and near landfills.

  1. Landfill Gas Conversion to LNG and LCO{sub 2}. Phase II Final Report for January 25, 1999 - April 30, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W. R.; Cook, W. J.; Siwajek, L. A.

    2000-10-20

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery.

  2. Polyfluoroalkyl compounds in landfill leachates

    International Nuclear Information System (INIS)

    Busch, Jan; Ahrens, Lutz; Sturm, Renate; Ebinghaus, Ralf

    2010-01-01

    Polyfluoroalkyl compounds (PFCs) are widely used in industry and consumer products. These products could end up finally in landfills where their leachates are a potential source for PFCs into the aqueous environment. In this study, samples of untreated and treated leachate from 22 landfill sites in Germany were analysed for 43 PFCs. ΣPFC concentrations ranged from 31 to 12,819 ng/L in untreated leachate and 4-8060 ng/L in treated leachate. The dominating compounds in untreated leachate were perfluorobutanoic acid (PFBA) (mean contribution 27%) and perfluorobutane sulfonate (PFBS) (24%). The discharge of PFCs into the aqueous environment depended on the cleaning treatment systems. Membrane treatments (reverse osmosis and nanofiltrations) and activated carbon released lower concentrations of PFCs into the environment than cleaning systems using wet air oxidation or only biological treatment. The mass flows of ΣPFCs into the aqueous environment ranged between 0.08 and 956 mg/day. - The first comprehensive survey of polyfluoroalkyl compounds (PFCs) in landfill leachates.

  3. Landfill covers for dry environments

    International Nuclear Information System (INIS)

    Dwyer, S.F.

    1996-01-01

    A large-scale landfill cover field test is currently underway at Sandia National Laboratories in Albuquerque, New Mexico. It is intended to compare and document the performance of alternative landfill cover technologies of various costs and complexities for interim stabilization and/or final closure of landfills in arid and semi-arid environments. Test plots of traditional designs recommended by the US Environmental Protection Agency for both RCRA Subtitle open-quote C close-quote and open-quote D close-quote regulated facilities have been constructed side-by-side with the alternative covers and will serve as baselines for comparison to these alternative covers. The alternative covers were designed specifically for dry environments. The covers will be tested under both ambient and stressed conditions. All covers have been instrumented to measure water balance variables and soil temperature. An on-site weather station records all pertinent climatological data. A key to acceptance of an alternative environmental technology is seeking regulatory acceptance and eventual permitting. The lack of acceptance by regulatory agencies is a significant barrier to development and implementation of innovative cover technologies. Much of the effort on this demonstration has been toward gaining regulatory and public acceptance

  4. METHANE INCORPORATION BY PROCARYOTIC PHOTOSYNTHETICMICROORGANISMS

    Energy Technology Data Exchange (ETDEWEB)

    Norton, Charles J.; Kirk, Martha; Calvin, Melvin

    1970-08-01

    The procaryotic photosynthetic microorganisms Anacystis nidulans, Nostoc and Rhodospirillum rubrum have cell walls and membranes that are resistant to the solution of methane in their lipid components and intracellular fluids. But Anacystis nidulans, possesses a limited bioxidant system, a portion of which may be extracellularly secreted, which rapidly oxidizes methane to carbon dioxide. Small C{sup 14} activities derived from CH{sub 4} in excess of experimental error are detected in all the major biochemical fractions of Anacystis nidulans and Nostoc. This limited capacity to metabolize methane appears to be a vestigial potentiality that originated over two billion years ago in the early evolution of photosynthetic bacteria and blue-green algae.

  5. Quantification of the methane concentration using anaerobic oxidation of methane coupled to extracellular electron transfer.

    Science.gov (United States)

    Gao, Yaohuan; Ryu, Hodon; Rittmann, Bruce E; Hussain, Abid; Lee, Hyung-Sool

    2017-10-01

    A biofilm anode acclimated with growth media containing acetate, then acetate+methane, and finally methane alone produced electrical current in a microbial electrochemical cell (MxC) fed with methane as the sole electron donor. Geobacter was the dominant genus for the bacterial domain (93%) in the biofilm anode, while methanogens (Methanocorpusculum labreanum and Methanosaeta concilii) accounted for 82% of the total archaeal clones in the biofilm. Fluorescence in situ hybridization (FISH) imaging clearly showed a biofilm of mixed bacteria and archaea, suggesting a syntrophic interaction between them for performing anaerobic oxidation of methane (AOM) in the biofilm anode. Measured cumulative coulombs were linearly correlated to the methane-gas concentration in the range of 10-99.97% (R 2 ≥0.99) when the measurement was sustained for at least 50min Thus, cumulative coulombs over 50min could be used to quantify the methane concentration in gas samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Instrumental research method of qualitative composition of landfill gas in the surface layer of landfills

    Science.gov (United States)

    Gilmanshin, I. R.; Kashapov, N. F.; Gilmanshina, S. I.; Galeeva, A. I.

    2017-09-01

    The article analyzes the practice of waste management in Russia. The system of target indicators of the efficient landfills functioning is formalized. The method of instrumental analysis of concentration and qualitative composition of landfill gas in the surface layer of the Samosyrovo landfill is presented.

  7. Release and attenuation of fluorocarbons in landfills

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2003-01-01

    . The residual blowing agent remaining after the six-week period may be very slowly released if the integrity of the foam particles with respect to diffusional properties is kept after disposal of the foam waste in landfills. Laboratory experiments simulating attenuation processes in the landfilled waste...... and the landfill soil cover showed a substantial degradation of CFC-11 and to a lesser extent of HCFC- 141b which may lead to significant emission reduction of the blowing agents. HFC-134a and HFC-245fa were not degraded in the landfilled waste or the cover soil within the time frame of the experiments (210 days)....

  8. Congenital anomalies and proximity to landfill sites.

    LENUS (Irish Health Repository)

    Boyle, E

    2004-01-01

    The occurrence of congenital anomalies in proximity to municipal landfill sites in the Eastern Region (counties Dublin, Kildare, Wicklow) was examined by small area (district electoral division), distance and clustering tendancies in relation to 83 landfills, five of which were major sites. The study included 2136 cases of congenital anomaly, 37,487 births and 1423 controls between 1986 and 1990. For the more populous areas of the region 50% of the population lived within 2-3 km of a landfill and within 4-5 km for more rural areas. In the area-level analysis, the standardised prevalence ratios, empirical and full Bayesian modelling, and Kulldorff\\'s spatial scan statistic found no association between the residential area of cases and location of landfills. In the case control analysis, the mean distance of cases and controls from the nearest landfill was similar. The odds ratios of cases compared to controls for increasing distances from all landfills and major landfills showed no significant difference from the baseline value of 1. The kernel and K methods showed no tendency of cases to cluster in relationship to landfills. In conclusion, congenital anomalies were not found to occur more commonly in proximity to municipal landfills.

  9. Field study of nitrous oxide production with in situ aeration in a closed landfill site.

    Science.gov (United States)

    Nag, Mitali; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei; Xiaoli, Chai

    2016-03-01

    Nitrous oxide (N(2)O) has gained considerable attention as a contributor to global warming and depilation of stratospheric ozone layer. Landfill is one of the high emitters of greenhouse gas such as methane and N(2)O during the biodegradation of solid waste. Landfill aeration has been attracted increasing attention worldwide for fast, controlled and sustainable conversion of landfills into a biological stabilized condition, however landfill aeration impel N(2)O emission with ammonia removal. N(2)O originates from the biodegradation, or the combustion of nitrogen-containing solid waste during the microbial process of nitrification and denitrification. During these two processes, formation of N(2)O as a by-product from nitrification, or as an intermediate product of denitrification. In this study, air was injected into a closed landfill site and investigated the major N(2)O production factors and correlations established between them. The in-situ aeration experiment was carried out by three sets of gas collection pipes along with temperature probes were installed at three different distances of one, two and three meter away from the aeration point; named points A-C, respectively. Each set of pipes consisted of three different pipes at three different depths of 0.0, 0.75 and 1.5 m from the bottom of the cover soil. Landfill gases composition was monitored weekly and gas samples were collected for analysis of nitrous oxide concentrations. It was evaluated that temperatures within the range of 30-40°C with high oxygen content led to higher generation of nitrous oxide with high aeration rate. Lower O(2) content can infuse N(2)O production during nitrification and high O(2) inhibit denitrification which would affect N(2)O production. The findings provide insights concerning the production potentials of N(2)O in an aerated landfill that may help to minimize with appropriate control of the operational parameters and biological reactions of N turnover. Investigation of

  10. Decomposition and carbon storage of hardwood and softwood branches in laboratory-scale landfills.

    Science.gov (United States)

    Wang, Xiaoming; Barlaz, Morton A

    2016-07-01

    Tree branches are an important component of yard waste disposed in U.S. municipal solid waste (MSW) landfills. The objective of this study was to characterize the anaerobic biodegradability of hardwood (HW) and softwood (SW) branches under simulated but optimized landfill conditions by measuring methane (CH4) yields, decay rates, the decomposition of cellulose, hemicellulose and organic carbon, as well as carbon storage factors (CSFs). Carbon conversions to CH4 and CO2 ranged from zero to 9.5% for SWs and 17.1 to 28.5% for HWs. When lipophilic or hydrophilic compounds present in some of the HW and SW samples were extracted, some samples showed increased biochemical methane potentials (BMPs). The average CH4 yield, carbon conversion, and CSF measured here, 59.4mLCH4g(-1) dry material, 13.9%, and 0.39gcarbonstoredg(-1) dry material, respectively, represent reasonable values for use in greenhouse gas inventories in the absence of detailed wood type/species data for landfilled yard waste. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Anaerobic biodegradation of alkylbenzenes and trichloroethylene in aquifer sediment down gradient of a sanitary landfill

    Science.gov (United States)

    Johnston, James J.; Borden, Robert C.; Barlaz, Morton A.

    1996-08-01

    The objective of this investigation was to evaluate the anaerobic biodegradability of benzene, toluene, ethylbenzene, ortho-, meta- and para-xylene (BTEX) and trichloroethylene (TCE) in aquifer sediment down gradient of an unlined landfill. The major organic contaminants identified in the shallow unconfined aquifer are cis-dichloroethylene ( c-DCE) and toluene. The biodegradative potential of the contaminated aquifer was measured in three sets of microcosms constructed using anaerobic aquifer sediment from three boreholes down gradient of the landfill. The degradability of BTEX and TCE was examined under ambient and amended conditions. TCE was degraded in microcosms with aquifer material from all three boreholes. Toluene biodegradation was inconsistent, exhibiting biodegradation with no lag in one set of microcosms but more limited biodegradation in two additional sets of microcosms. TCE exhibited an inhibitory effect on toluene degradation at one location. The addition of calcium carbonate stimulated TCE biodegradation which was not further stimulated by nutrient addition. TCE was converted to ethylene, a harmless byproduct, in all tests. Benzene, ethylbenzene and xylene isomers were recalcitrant in both ambient and amendment experiments. Biodegradation occurred under methanogenic conditions as methane was produced in all experiments. Bromoethane sulfonic acid (BES), a methanogenic inhibitor, inhibited methane and ethylene production and TCE biodegradation. The results indicate the potential for intrinsic bioremediation of TCE and toluene down gradient of the Wilder's Grove, North Carolina, landfill. The low concentrations of TCE in monitoring wells was consistent with its biodegradation in laboratory microcosms.

  12. Global Methane Initiative

    Science.gov (United States)

    The Global Methane Initiative promotes cost-effective, near-term methane recovery through partnerships between developed and developing countries, with participation from the private sector, development banks, and nongovernmental organizations.

  13. Atmospheric Ozone and Methane in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Ivar S. A. Isaksen

    2014-07-01

    Full Text Available Ozone and methane are chemically active climate-forcing agents affected by climate–chemistry interactions in the atmosphere. Key chemical reactions and processes affecting ozone and methane are presented. It is shown that climate-chemistry interactions have a significant impact on the two compounds. Ozone, which is a secondary compound in the atmosphere, produced and broken down mainly in the troposphere and stratosphre through chemical reactions involving atomic oxygen (O, NOx compounds (NO, NO2, CO, hydrogen radicals (OH, HO2, volatile organic compounds (VOC and chlorine (Cl, ClO and bromine (Br, BrO. Ozone is broken down through changes in the atmospheric distribution of the afore mentioned compounds. Methane is a primary compound emitted from different sources (wetlands, rice production, livestock, mining, oil and gas production and landfills.Methane is broken down by the hydroxyl radical (OH. OH is significantly affected by methane emissions, defined by the feedback factor, currently estimated to be in the range 1.3 to 1.5, and increasing with increasing methane emission. Ozone and methane changes are affected by NOx emissions. While ozone in general increase with increases in NOx emission, methane is reduced, due to increases in OH. Several processes where current and future changes have implications for climate-chemistry interactions are identified. It is also shown that climatic changes through dynamic processes could have significant impact on the atmospheric chemical distribution of ozone and methane, as we can see through the impact of Quasi Biennial Oscillation (QBO. Modeling studies indicate that increases in ozone could be more pronounced toward the end of this century. Thawing permafrost could lead to important positive feedbacks in the climate system. Large amounts of organic material are stored in the upper layers of the permafrost in the yedoma deposits in Siberia, where 2 to 5% of the deposits could be organic material

  14. Landfills - LANDFILL_BOUNDARIES_IDEM_IN: Waste Site Boundaries in Indiana (Indiana Department of Environmental Management, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — LANDFILL_BOUNDARIES_IDEM_IN.SHP is a polygon shapefile that contains boundaries for open dump sites, approved landfills, and permitted landfills in Indiana, provided...

  15. Effects of Moisture Content in Solid Waste Landfills

    National Research Council Canada - National Science Library

    Eck, Craig

    2000-01-01

    Solid waste landfills are an extremely complex and heterogeneous environment. Modeling the biodegradation processes within a landfill must involve an understanding of how environmental factors affect these processes...

  16. Mining gold from the waste mountain. Energy recovery from landfill gas; Afvalberg als goudmijn. Meer energie uit stortgas

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, K. [Energieprojecten.com, Steenwijk (Netherlands)

    2002-05-01

    Methane from landfill sites can be an attractive source of green gas or green power. Utilisation of landfill gas has so far been held back by lack of efficient collection and application techniques. However, research into the extraction, purification and conversion of the gas carried out in the Netherlands and elsewhere has been yielding promising results. Depending on the circumstances, processed landfill gas can serve as a domestic gas or be used to produce electricity. [Dutch] Methaan dat op stortplaatsen vrijkomt, kan een aantrekkelijke bron zijn voor groen gas of groene stroom. Tot nu toe ontbreekt het aan technieken om dit stortgas met maximaal rendement te winnen en te benutten. Experimenten in binnen- en buitenland met winning, opwerking en conversie zijn echter veelbelovend. Afhankelijk van de omstandigheden zal de keuze vervolgens vallen op gas of op elektriciteit.

  17. Quantifying methane emission from fugitive sources by combining tracer release and downwind measurements – A sensitivity analysis based on multiple field surveys

    DEFF Research Database (Denmark)

    Mønster, Jacob; Samuelsson, Jerker; Kjeldsen, Peter

    2014-01-01

    instrument can measure methane plumes more than 1.2km away from small sources (about 5kgh−1) in urban areas with a measurement frequency allowing plume crossing at normal driving speed. The method can be used for quantification of total methane emissions from diffuse area sources down to 1kg per hour and can......Using a dual species methane/acetylene instrument based on cavity ring down spectroscopy (CRDS), the dynamic plume tracer dispersion method for quantifying the emission rate of methane was successfully tested in four measurement campaigns: (1) controlled methane and trace gas release with different...... trace gas configurations, (2) landfill with unknown emission source locations, (3) landfill with closely located emission sources, and (4) comparing with an Fourier transform infrared spectroscopy (FTIR) instrument using multiple trace gasses for source separation. The new real-time, high precision...

  18. Hanford Site Solid Waste Landfill permit application

    International Nuclear Information System (INIS)

    1991-01-01

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs

  19. Heat management strategies for MSW landfills.

    Science.gov (United States)

    Yeşiller, Nazli; Hanson, James L; Kopp, Kevin B; Yee, Emma H

    2016-10-01

    Heat is a primary byproduct of landfilling of municipal solid waste. Long-term elevated temperatures have been reported for MSW landfills under different operational conditions and climatic regions around the world. A conceptual framework is presented for management of the heat generated in MSW landfills. Three main strategies are outlined: extraction, regulation, and supplementation. Heat extraction allows for beneficial use of the excess landfill heat as an alternative energy source. Two approaches are provided for the extraction strategy: extracting all of the excess heat above baseline equilibrium conditions in a landfill and extracting only a part of the excess heat above equilibrium conditions to obtain target optimum waste temperatures for maximum gas generation. Heat regulation allows for controlling the waste temperatures to achieve uniform distribution at target levels at a landfill facility. Two approaches are provided for the regulation strategy: redistributing the excess heat across a landfill to obtain uniform target optimum waste temperatures for maximum gas generation and redistributing the excess heat across a landfill to obtain specific target temperatures. Heat supplementation allows for controlling heat generation using external thermal energy sources to achieve target waste temperatures. Two approaches are provided for the supplementation strategy: adding heat to the waste mass using an external energy source to increase waste temperatures and cooling the waste mass using an external energy source to decrease waste temperatures. For all strategies, available landfill heat energy is determined based on the difference between the waste temperatures and the target temperatures. Example analyses using data from landfill facilities with relatively low and high heat generation indicated thermal energy in the range of -48.4 to 72.4MJ/m(3) available for heat management. Further modeling and experimental analyses are needed to verify the effectiveness

  20. Internal short circuit and accelerated rate calorimetry tests of lithium-ion cells: Considerations for methane-air intrinsic safety and explosion proof/flameproof protection methods.

    Science.gov (United States)

    Dubaniewicz, Thomas H; DuCarme, Joseph P

    2016-09-01

    Researchers with the National Institute for Occupational Safety and Health (NIOSH) studied the potential for lithium-ion cell thermal runaway from an internal short circuit in equipment for use in underground coal mines. In this third phase of the study, researchers compared plastic wedge crush-induced internal short circuit tests of selected lithium-ion cells within methane (CH 4 )-air mixtures with accelerated rate calorimetry tests of similar cells. Plastic wedge crush test results with metal oxide lithium-ion cells extracted from intrinsically safe evaluated equipment were mixed, with one cell model igniting the chamber atmosphere while another cell model did not. The two cells models exhibited different internal short circuit behaviors. A lithium iron phosphate (LiFePO 4 ) cell model was tolerant to crush-induced internal short circuits within CH 4 -air, tested under manufacturer recommended charging conditions. Accelerating rate calorimetry tests with similar cells within a nitrogen purged 353-mL chamber produced ignitions that exceeded explosion proof and flameproof enclosure minimum internal pressure design criteria. Ignition pressures within a 20-L chamber with 6.5% CH 4 -air were relatively low, with much larger head space volume and less adiabatic test conditions. The literature indicates that sizeable lithium thionyl chloride (LiSOCl 2 ) primary (non rechargeable) cell ignitions can be especially violent and toxic. Because ignition of an explosive atmosphere is expected within explosion proof or flameproof enclosures, there is a need to consider the potential for an internal explosive atmosphere ignition in combination with a lithium or lithium-ion battery thermal runaway process, and the resulting effects on the enclosure.

  1. Leachate Characterization from a Closed Landfill in Air Hitam, Puchong, Malaysia

    International Nuclear Information System (INIS)

    Nur Fatin Dahlia Mat Salleh; Ku Halim Ku Hamid

    2013-01-01

    Leachate, wastewater that was collected from landfill is known to have pungent smell and may impose serious harm to human health and the environment. Air Hitam, Puchong Sanitary Landfill has stopped its land filling operation since December 2006 and is under post-closure maintenance stages. After several years of stopping its operation, a landfill will still produce leachate hence it needs constant monitoring and maintenance. The main aim of this paper was to characterize leachate produced from Air Hitam, Puchong Closed Landfill, according to several important parameters: pH, temperature, chemical oxygen demand (COD), ammoniacal nitrogen (NH 4 -N), total organic carbon (TOC), total solids, volatile organic acids (VOA) and heavy metals content, to determine its suitability in producing methane by identifying its phase. Leachate samples were drawn weekly for a period of 3 months from three different ponds, untreated raw leachate pond 1 and treated leachate pond 2 and 3. Results obtained showed that the average values were around 25 degree Celsius, average pH 8, highest COD reading was 5,248 mg/L, TOC highest at 6,797 mg/L, VOA highest at 1,424 mg/L and ammoniacal content of 3.10 mg/L the highest. (author)

  2. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters

    Science.gov (United States)

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel MM; Schubert, Carsten J

    2015-01-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes. PMID:25679533

  3. A water budget model for operating landfills: an application in Greece.

    Science.gov (United States)

    Komilis, Dimitrios; Athiniotou, Angeliki

    2014-08-01

    The goal of the work was to develop and verify a one-dimensional monthly water budget model (MWBM) to predict leachate generation rates from operating landfills. Although there has been a considerable modelling work on the hydraulic behaviour of landfills after they reach closure, less attention has been given on such modelling for operating landfills that have a continuously changing geometry. A MWBM was developed here that accounted for landfill cell development, precipitation and evaporation, the change of the water holding capacity of a waste cell and waste decomposition. The MWBM was verified using a two-year leachate generation rate database from a new operating sanitary landfill in Greece. The MWBM results showed a very good agreement with field data whilst it was observed that peak precipitation rates followed a parallel trend with peak leachate generation rates. A distinct two-month lag phase between the model results and actual values was observed during a certain period, which is a likely indication of the presence of channelling within the waste mass. A sensitivity analysis performed in the MWBM showed that the leachate is affected by the initial municipal solid waste moisture content as well as by the precipitation rates. A linear regression empirical model showed that precipitation can still be an adequate predictor of leachate generation rates in operating landfills. © The Author(s) 2014.

  4. Characterisation of landfills using a multidisciplinary approach

    NARCIS (Netherlands)

    Paap, B.F.; Bakker, M.A.J.; Hoekstra, N.K.; Oonk, H.

    2011-01-01

    The Netherlands has about 3800 abandoned landfills with a total surface of about 9000 ha. As they are often located near urban areas and their influence extends into their surrounding environment they put pressure on available space. Most abandoned landfills were in use until the 1960s and 1970s.

  5. Quantifying capital goods for waste landfilling.

    Science.gov (United States)

    Brogaard, Line K; Stentsøe, Steen; Willumsen, Hans Christian; Christensen, Thomas H

    2013-06-01

    Materials and energy used for construction of a hill-type landfill of 4 million m(3) were quantified in detail. The landfill is engineered with a liner and leachate collections system, as well as a gas collection and control system. Gravel and clay were the most common materials used, amounting to approximately 260 kg per tonne of waste landfilled. The environmental burdens from the extraction and manufacturing of the materials used in the landfill, as well as from the construction of the landfill, were modelled as potential environmental impacts. For example, the potential impact on global warming was 2.5 kg carbon dioxide (CO2) equivalents or 0.32 milli person equivalents per tonne of waste. The potential impacts from the use of materials and construction of the landfill are low-to-insignificant compared with data reported in the literature on impact potentials of landfills in operation. The construction of the landfill is only a significant contributor to the impact of resource depletion owing to the high use of gravel and steel.

  6. Imaging scatterers in landfills using seismic interferometry

    NARCIS (Netherlands)

    Konstantaki, L.A.; Dragnov, D.S.; Heimovaara, T.J.; Ghose, R.

    2013-01-01

    A significant problem with landfills is their aftercare period. A landfill is considered to be safe for the environment only after a relatively long period of time. Until it reaches such a condition, it has to be periodically treated. Not only are treatments very expensive, but they could be

  7. Electrochemical evaluation of sulfur poisoning in a methane-fuelled solid oxide fuel cell: Effect of current density and sulfur concentration

    DEFF Research Database (Denmark)

    Hagen, Anke; Johnson, Gregory B.; Hjalmarsson, Per

    2014-01-01

    , the effect of sulfur was less pronounced on mass transfer/fuel reforming processes but quite significant on the charge transfer/TPB processes. Overall, sulfur related performance loss was more severe at the highest current density (1 A cm−2), due to the deactivation of catalytic fuel reforming reactions......A Ni/ScYSZ based SOFC was tested at 1, 0.5, 0.25, and 0 (OCV) A cm−2 in methane fuel containing 0–100 ppm H2S. Analysis of cell voltage loss during short-term H2S poisoning showed that SOFC performance loss was generally larger at higher current loads. Separating the effect of H2S on catalytic...... reforming and electrochemical activity by evaluating the relevant area specific resistances and charge transfer processes based on impedance spectroscopy revealed that the poisoning of electrochemical activity was not dependent on current density. Two major anode processes were significantly affected...

  8. 1,1-Bis(3'-indolyl)-1-(p-substituted phenyl)methanes inhibit proliferation of estrogen receptor-negative breast cancer cells by activation of multiple pathways.

    Science.gov (United States)

    Vanderlaag, Kathy; Su, Yunpeng; Frankel, Arthur E; Grage, Henry; Smith, Roger; Khan, Shaheen; Safe, Stephen

    2008-05-01

    1,1-Bis(3'-indolyl)-1-(p-substituted phenyl)methanes containing para-trifluoromethyl (DIM-C-pPhCF(3)), t-butyl (DIM-C-pPhtBu), and phenyl (DIM-C-pPhC(6)H(5)) groups are methylene-substituted diindolylmetyhanes (C-DIMs) that activate peroxisome proliferator-activated receptor gamma (PPARgamma) in estrogen receptor alpha-negative MDA-MB-231 and MDA-MB-453 breast cancer cells. C-DIMs inhibit breast cancer cell proliferation; however, inhibition of G(0)/G(1) to S phase progression and cyclin D1 downregulation was observed in MDA-MB-231 but not MDA-MB-453 cells. Nonsteroidal anti-inflammatory drug-activated gene 1 (NAG-1), a transforming growth factor beta-like peptide, was also induced by these compounds, and the response was dependent on cell-context dependent activation of kinase pathways. However, inhibition of cell growth, induction of NAG-1 and activation of kinases by C-DIMs were not inhibited by PPARgamma antagonists. Despite the induction of NAG-1 and downregulation of the antiapoptotic protein survivin by C-DIMs in both MDA-MB-231 and MDA-MB-453 cells, apoptotic cell death was not observed. Nevertheless, the cytotoxicity of C-DIMs in vitro was complemented by inhibition of tumor growth in athymic nude mice bearing MDA-MB-231 cells as xenografts and treated with DIM-C-pPhC(6)H(5) (40 mg/kg/day). The growth inhibition of tumors derived from highly aggressive MDA-MB-231 cells suggests a potential role for the C-DIM compounds in the clinical treatment of ER-negative breast cancer.

  9. Analysis of landfills with historic airphotos

    Science.gov (United States)

    Erb, T. L.; Philipson, W. R.; Teng, W. L.; Liang, T.

    1981-01-01

    An investigation is conducted regarding the value of existing aerial photographs for waste management, including landfill monitoring. The value of historic aerial photographs for documenting landfill boundaries is shown in a graph in which the expansion of an active landfill is traced over a 40-year period. Historic aerial photographs can also be analyzed to obtain general or detailed land-use and land-cover information. In addition, the photographs provide information regarding other elements of the physical environment, including geology, soils, and surface and subsurface drainage. The value of historic photos is discussed, taking into account applications for inventory, assessing contamination/health hazards, planning corrective measures, planning waste collection and facilities, developing inactive landfills, and research concerning improved land-filling operations.

  10. Review of existing landfill leachate production models

    International Nuclear Information System (INIS)

    Khan, T.A.

    2000-01-01

    The protection of water resources is a fundamental consideration in managing landfill operations. Landfill sites should be designed and operated so as to control leachate production and hence minimize the risk of surface and ground water pollution. A further important development is the use of computer models to estimate the production of leachate from landfill sites. It is revealed from the literature that a number of landfill leachate management model lave been development in recent years. These models allow different engineering schemes to be evaluated and are essential tools for design and operation managements of modern landfills. This paper describes a review of such models mainly focused on their theory, practicability, data requirements, suitability to real situation and usefulness. An evaluation of these models identifies. (author)

  11. GEOTECHNICAL DESIGN OF SOLID WASTE LANDFILL SITES

    Directory of Open Access Journals (Sweden)

    Suat AKBULUT

    2003-02-01

    Full Text Available Solid waste landfills are important engineering structures for protection of wastes, decrease of environmental pollution, and especially prevention of soil and water pollution. Solid wastes should conveniently be maintained in landfill areas to control environmental pollution caused by waste disposals. Until the middle of this century clay liners were used for maintenance of waste disposal, but it was observed that these liner systems were insufficient. Today thinner and less permeable liner systems are constructed by using synthetic materials. In this study, by evaluating the waste landfills, site assessment of landfills and construction of natural and synthetic liner systems were summarized respectively, and especially the design properties of these systems were examined intensively. Also, leachate collection and removal facilities, landfill gas collection unites, and final cover unites were evaluated in a detailed way.

  12. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS - PHASE III. DEMONSTRATION TESTS - PHASE IV. GUIDELINES AND RECOMMENDATIONS- VOLUME 1. TECHNICAL REPORT

    Science.gov (United States)

    The report summarizes the results of a four-phase program to demonstrate that fuel cell energy recovery using a commercial phosphoric acid fuel cell is both environmentally sound and commercially feasible. Phase I, a conceptual design and evaluation study, addressed the technical...

  13. Overview of options for cost effectively reducing methane emissions into the atmosphere

    International Nuclear Information System (INIS)

    Hogan, K.; Jacobs, C.

    1993-01-01

    Methane is a major greenhouse gas, second only to carbon dioxide in its contribution to future global warming. Methane concentrations have more than doubled over the last two centuries and continue to rise annually. These increases are largely correlated with increasing human populations. Methane emissions from human related activities currently account for about 70 percent of annual emissions. Because methane has a shorter lifetime than other major greenhouse gases, efforts to reduce methane emissions may fairly quickly be translated into lower atmospheric concentrations of methane and lower levels of radiative forcing. This fairly quick response would have the benefit of slowing the rate of climate change and hence allow natural ecosystems more time to adapt. Importantly, methane may be cost-effectively reduced from a number of major sources in the United States and worldwide. Methane is a valuable fuel, not just a waste by-product, and often systems may be recognized to reap the fuel value of the methane and more than justify the necessary expenditures. Such options for reducing methane emissions exist for reducing methane from coal mining, natural gas systems, landfills, and animal management, and have been implemented to varying degrees in countries around the world. However, there are a number of barriers that hinder the more widespread use of technologies, including institutional, financial, regulatory, information, and other barriers. This paper describes an array of available options that may be cost-effectively implemented to reduce methane emissions. This paper also discusses a number of programs that have been developed in the United States and internationally to promote the implementation of these methane reduction options and overcome existing barriers

  14. Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liukang [LI-COR Inc., Lincoln, NE (United States); McDermitt, Dayle [LI-COR Inc., Lincoln, NE (United States); Anderson, Tyler [LI-COR Inc., Lincoln, NE (United States); Riensche, Brad [LI-COR Inc., Lincoln, NE (United States); Komissarov, Anatoly [LI-COR Inc., Lincoln, NE (United States); Howe, Julie [LI-COR Inc., Lincoln, NE (United States)

    2012-02-01

    Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been

  15. Inferred performance of surface hydraulic barriers from landfill operational data

    International Nuclear Information System (INIS)

    Gross, B.A.; Bonaparte, R.; Othman, M.A.

    1997-01-01

    There are few published data on the field performance of surface hydraulic barriers (SHBs) used in waste containment or remediation applications. In contrast, operational data for liner systems used beneath landfills are widely available. These data are frequently collected and reported as a facility permit condition. This paper uses leachate collection system (LCS) and leak detection system (LDS) liquid flow rate and chemical quality data collected from modem landfill double-liner systems to infer the likely hydraulic performance of SHBs. Operational data for over 200 waste management unit liner systems are currently being collected and evaluated by the authors as part of an ongoing research investigation for the United States Environmental Protection Agency (USEPA). The top liner of the double-liner system for the units is either a geomembrane (GMB) alone, geomembrane overlying a geosynthetic clay liner (GMB/GCL), or geomembrane overlying a compacted clay liner (GMB/CCL). In this paper, select data from the USEPA study are used to: (i) infer the likely efficiencies of SHBs incorporating GMBs and overlain by drainage layers; and (ii) evaluate the effectiveness of SHBs in reducing water infiltration into, and drainage from, the underlying waste (i.e., source control). SHB efficiencies are inferred from calculated landfill liner efficiencies and then used to estimate average water percolation rates through SHBs as a function of site average annual rainfall. The effectiveness of SHBs for source control is investigated by comparing LCS liquid flow rates for open and closed landfill cells. The LCS flow rates for closed cells are also compared to the estimated average water percolation rates through SHBs presented in the paper

  16. Evaluation of the Oedometer Tests of Municipal Landfill Waste Material

    Directory of Open Access Journals (Sweden)

    Imre Emőke

    2014-07-01

    Full Text Available The aim of the ongoing research is (i to develop a new biodegradation landfill technique so that the landfill gas production could be controlled and the utilisation of the landfill gas could economically be optimized, (ii to plan the energy utilisation of the landfill including individual and combined solutions (solar, wind, geothermal energy, energy storage using methanol etc.. [1, 2, 3

  17. Latest on Mobile Methane Measurements with Fast Open-Path Technology: Experiences, Opportunities & Perspectives

    Science.gov (United States)

    Burba, George; Anderson, Tyler; Ediger, Kevin; von Fischer, Joseph; Gioli, Beniamino; Ham, Jay; Hupp, Jason; Kohnert, Katrin; Larmanou, Eric; Levy, Peter; Polidori, Andrea; Pikelnaya, Olga; Price, Eric; Sachs, Torsten; Serafimovich, Andrei; Zondlo, Mark; Zulueta, Rommel

    2016-04-01

    Methane plays a critical role in the radiation balance, chemistry of the atmosphere, and air quality. The major sources of methane include agricultural and natural production, landfill emissions, oil and gas development sites, and natural gas distribution networks in rural and urban environments. The majority of agricultural and natural methane production occurs in areas with little infrastructure or easily available grid power (e.g., rice fields, arctic and boreal wetlands, tropical mangroves, etc.) Past approaches for direct measurements of methane fluxes relied on fast closed-path analyzers, which typically require powerful pumps and grid power. Power and labor demands may be among the key reasons why such methane fluxes were often measured at locations with good infrastructure and grid power, and not necessarily with high methane production. Landfill methane emissions were traditionally assessed via point-in-time measurements taken at monthly or longer time intervals using techniques such as the trace plume method, the mass balance method, etc. These are subject to large uncertainties because of the snapshot nature of the measurements, while the changes in emission rates are continuous due to ongoing landfill development, changes in management practices, and the barometric pumping phenomenon. Installing a continuously operating flux station in the middle of an active landfill requires a low-power approach with no cables stretching across the landfill. The majority of oil and gas and urban methane emission happens via variable-rate point sources or diffused spots in topographically challenging terrains, such as street tunnels, elevated locations at water treatment plants, vents, etc. Locating and measuring methane emissions from such sources is challenging when using traditional micrometeorological techniques, and requires development of novel approaches. In 2010, a new lightweight high-speed high-resolution open-path technology was developed with the goal of

  18. Geomicrobial and Geochemical Redox Processes in a Landfill-Polluted Aquifer

    DEFF Research Database (Denmark)

    Ludvigsen, Liselotte; Heron, Gorm; Albrechtsen, Hans-Jørgen

    1995-01-01

    The distribution of different dominant microbial-mediated redox processes in a landfill leachate-polluted aquifer (Grindsted, Denmark) was investigated. The most probable number method was utilized for detecting bacteria able to use each of the electron acceptors, and unamended incubations were...... utilized to detect the activity of the redox processes using the investigated electron acceptors. The redox processes investigated were methane production and reduction of sulfate, Fe(III), Mn(IV), and nitrate. The presence of methanogenic bacteria and methanogenic activity were observed close...

  19. The aspects of fire safety at landfills

    Directory of Open Access Journals (Sweden)

    Aleshina Tat'yana Anatol'evna

    2014-01-01

    Full Text Available Starting with 2008 and till 2013 there have been alarm messages about fires occurring at landfill places in Russia. Landfill fires are especially dangerous as they emit dangerous fumes from the combustion of the wide range of materials within the landfill. Subsurface landfill fires, unlike typical fires, cannot be put out with water. The article includes the analysis of the sources and causes of conflagrations at landfills. There maintains the necessity to eliminate the reasons, which cause the fires. There are quantification indices of environmental, social and economic effects of fires at landfills all over Russia. Surface fires generally burn at relatively low temperatures and are characterized by the emission of dense white smoke and the products of incomplete combustion. The smoke includes irritating agents, such as organic acids and other compounds. Higher temperature fires can cause the breakdown of volatile compounds, which emit dense black smoke. Surface fires are classified as either accidental or deliberate. For the ecologic security there is a need in the execution of proper hygienic requirements to the content of the places as well as international recommendations. In addition to the burning and explosion hazards posed by landfill fires, smoke and other by-products of landfill fires also present a health risk to firefighters and others exposed to them. Smoke from landfill fires generally contains particulate matter (the products of incomplete combustion of the fuel source, which can aggravate pre-existing pulmonary conditions or cause respiratory distress and damage ecosystem. The monitoring of conducting preventive inflamings and transition to alternative, environment friendly methods of waste disposal is needed.

  20. Monitoring of landfill influences on groundwater

    Directory of Open Access Journals (Sweden)

    Mihael Brenčič

    2004-06-01

    Full Text Available Landfills of waste present serious threat to groundwater. To prevent groundwater pollution from landfill monitoring is performed. Rule of groundwater pollution monitoring from dangerous substances implements principles in Slovene legislation. In everyday practice certain questions arose since validity of the rule. These questions are about responsible parties in monitoring, groundwater distribution in space, target groundwater units, characterization level of the landfill and its surroundings, background values in groundwater, table of content of groundwater monitoring plan, quality of groundwater monitoring network, phases of monitoring, maintenance of monitoring network and activation of piezometers.

  1. Doses from radioactive methane

    International Nuclear Information System (INIS)

    Phipps, A.W.; Kendall, G.M.; Fell, T.P.; Harrison, J.D.

    1990-01-01

    A possible radiation hazard arises from exposure to methane labelled with either a 3 H or a 14 C nuclide. This radioactive methane could be released from a variety of sources, e.g. land burial sites containing radioactive waste. Standard assumptions adopted for vapours would not apply to an inert alkane like methane. This paper discusses mechanisms by which radioactive methane would irradiate tissues and provides estimates of doses. Data on skin thickness and metabolism of methane are discussed with reference to these mechanisms. It is found that doses are dominated by dose from the small fraction of methane which is inhaled and metabolised. This component of dose has been calculated under rather conservative assumptions. (author)

  2. Disaster Debris Recovery Database - Landfills

    Science.gov (United States)

    The US EPA Region 5 Disaster Debris Recovery Database includes public datasets of over 6,000 composting facilities, demolition contractors, transfer stations, landfills and recycling facilities for construction and demolition materials, electronics, household hazardous waste, metals, tires, and vehicles in the states of Illinois, Indiana, Iowa, Kentucky, Michigan, Minnesota, Missouri, North Dakota, Ohio, Pennsylvania, South Dakota, West Virginia and Wisconsin.In this update, facilities in the 7 states that border the EPA Region 5 states were added to assist interstate disaster debris management. Also, the datasets for composters, construction and demolition recyclers, demolition contractors, and metals recyclers were verified and source information added for each record using these sources: AGC, Biocycle, BMRA, CDRA, ISRI, NDA, USCC, FEMA Debris Removal Contractor Registry, EPA Facility Registry System, and State and local listings.

  3. Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes.

    Science.gov (United States)

    Chen, Yin; Dumont, Marc G; Cébron, Aurélie; Murrell, J Colin

    2007-11-01

    Active methanotrophs in a landfill soil were revealed by detecting the 16S rRNA of methanotrophs and the mRNA transcripts of key genes involved in methane oxidation. New 16S rRNA primers targeting type I and type II methanotrophs were designed and optimized for analysis by denaturing gradient gel electrophoresis. Direct extraction of RNA from soil enabled the analysis of the expression of the functional genes: mmoX, pmoA and mxaF, which encode subunits of soluble methane monooxygenase, particulate methane monooxygenase and methanol dehydrogenase respectively. The 16S rRNA polymerase chain reaction (PCR) primers for type I methanotrophs detected Methylomonas, Methylosarcina and Methylobacter sequences from both soil DNA and cDNA which was generated from RNA extracted directly from the landfill cover soil. The 16S rRNA primers for type II methanotrophs detected primarily Methylocella and some Methylocystis 16S rRNA genes. Phylogenetic analysis of mRNA recovered from the soil indicated that Methylobacter, Methylosarcina, Methylomonas, Methylocystis and Methylocella were actively expressing genes involved in methane and methanol oxidation. Transcripts of pmoA but not mmoX were readily detected by reverse transcription polymerase chain reaction (RT-PCR), indicating that particulate methane monooxygenase may be largely responsible for methane oxidation in situ.

  4. 1,1-Bis(3'-indolyl)-1-(p-substituted phenyl)methanes induce autophagic cell death in estrogen receptor negative breast cancer.

    Science.gov (United States)

    Vanderlaag, Kathy; Su, Yunpeng; Frankel, Arthur E; Burghardt, Robert C; Barhoumi, Rola; Chadalapaka, Gayathri; Jutooru, Indira; Safe, Stephen

    2010-12-03

    A novel series of methylene-substituted DIMs (C-DIMs), namely 1,1-bis(3'-indolyl)-1-(p-substituted phenyl)methanes containing t-butyl (DIM-C-pPhtBu) and phenyl (DIM-C-pPhC6H5) groups inhibit proliferation of invasive estrogen receptor-negative MDA-MB-231 and MDA-MB-453 human breast cancer cell lines with IC50 values between 1-5 uM. The main purpose of this study was to investigate the pathways of C-DIM-induced cell death. The effects of the C-DIMs on apoptotic, necrotic and autophagic cell death were determined using caspase inhibitors, measurement of lactate dehydrogenase release, and several markers of autophagy including Beclin and light chain associated protein 3 expression (LC3). The C-DIM compounds did not induce apoptosis and only DIM-C-pPhCF3 exhibited necrotic effects. However, treatment of MDA-MB-231 and MDA-MB-453 cells with C-DIMs resulted in accumulation of LC3-II compared to LC3-I protein, a characteristic marker of autophagy, and transient transfection of green fluorescent protein-LC3 also revealed that treatment with C-DIMs induced a redistribution of LC3 to autophagosomes after C-DIM treatment. In addition, the autofluorescent drug monodansylcadaverine (MDC), a specific autophagolysosome marker, accumulated in vacuoles after C-DIM treatment, and western blot analysis of lysates from cells treated with C-DIMs showed that the Beclin 1/Bcl-2 protein ratio increased. The results suggest that C-DIM compounds may represent a new mechanism-based agent for treating drug-resistant ER-negative breast tumors through induction of autophagy.

  5. Options for cost-effectively reducing atmospheric methane concentrations from anthropogenic biomass sources

    International Nuclear Information System (INIS)

    Roos, K.F.; Jacobs, C.; Orlic, M.

    1993-01-01

    Methane is a major greenhouse gas, second only to carbon dioxide in its contribution to future global warming. Methane concentrations have more than doubled over the last two centuries and continue to rise annually. These increases are largely correlated with increasing human populations. Methane emissions from human related activities currently account for about 70 percent of annual emissions. Of these human related emissions, biomass sources account for about 75 percent and non-biomass sources about 25 percent. Because methane has a shorter lifetime than other major greenhouse gases, efforts to reduce methane emissions may fairly quickly be translated into lower atmospheric concentrations of methane and lower levels of radiative forcing. This fairly quick response would have the benefit of slowing the rate of climate change and hence allow natural ecosystems more time to adapt. Importantly, methane may be cost-effectively reduced from a number of biomass and non-biomass sources in the United States and worldwide. Methane is a valuable fuel, not just a waste by-product, and often systems may be reconfigured to reap the fuel value of the methane and more than justify the necessary expenditures. Such options for reducing methane emission from biomass sources exist for landfills, livestock manures, and ruminant livestock, and have been implemented to varying degrees in countries around the world. However, there are a number of barriers that hinder the more widespread use of technologies, including institutional, financial, regulatory, informational, and other barriers. This paper describes an array of available options that may be cost-effectively implemented to reduce methane emissions from biomass sources. This paper also discusses a number of programs that have been developed in the United States and internationally to promote the implementation of these methane reduction options and overcome existing barriers

  6. Landfill closure with dredged materials - desktop analysis.

    Science.gov (United States)

    2014-08-01

    This report describes a Rutgers University project for the New Jersey Department of : Transportation (NJDOT) designed to analyze the potential for closure of New Jersey : landfills using dredge material from existing Confined Disposal Facilities (CDF...

  7. Hydrologic Evaluation of Landfill Performance (HELP) Model

    Science.gov (United States)

    The program models rainfall, runoff, infiltration, and other water pathways to estimate how much water builds up above each landfill liner. It can incorporate data on vegetation, soil types, geosynthetic materials, initial moisture conditions, slopes, etc.

  8. Natural attenuation of biogas in landfill covers

    International Nuclear Information System (INIS)

    Cossu, R.; Privato, A.; Raga, R.

    2005-01-01

    In the risk evaluation of uncontrolled biogas emissions from landfills, the process of natural attenuation in landfill covers assumes a very important role. The capacity of biogas oxidation in the cover soils seems to be the most important control to mitigate the biogas emission during the aftercare period when the biogas collection system might fail. In the present paper laboratory experiences on lab columns to study the biogas oxidation are discussed [it

  9. The mixed waste landfill integrated demonstration

    International Nuclear Information System (INIS)

    Burford, T.D.; Williams, C.V.

    1994-01-01

    The Mixed Waste Landfill Integrated Demonstration (MWLID) focuses on ''in-situ'' characterization, monitoring, remediation, and containment of landfills in arid environments that contain hazardous and mixed waste. The MWLID mission is to assess, demonstrate, and transfer technologies and systems that lead to faster, better, cheaper, and safer cleanup. Most important, the demonstrated technologies will be evaluated against the baseline of conventional technologies and systems. The comparison will include the cost, efficiency, risk, and feasibility of using these innovative technologies at other sites

  10. Environmental and human risk assessment of landfill leachate: an integrated approach with the use of cytotoxic and genotoxic stress indices in mussel and human cells.

    Science.gov (United States)

    Toufexi, Eirini; Tsarpali, Vasiliki; Efthimiou, Ioanna; Vidali, Maria-Sophia; Vlastos, Dimitris; Dailianis, Stefanos

    2013-09-15

    The present study investigates leachate hazardous effects on marine biota and human cells, with the use of a battery of assays, both under in vivo and in vitro conditions. According to the results, mussels exposed for 4 days to 0.01 and 0.1% (v/v) of leachate showed increased levels of DNA damage and micronuclei (MN) frequencies in their hemocytes. Similarly, enhanced levels of DNA damage were also observed in hemocytes treated in vitro with relevant concentrations of leachate, followed by a significant enhancement of both superoxide anions (O₂(-)) and lipid peroxidation products (malondialdehyde/MDA). On the other hand, human lymphocyte cultures treated with such a low concentrations of leachate (0.1, 0.2 and 1%, v/v), showed increased frequencies of MN formation and large MN size ratio, as well as decreased cell proliferation, as indicated by the use of the cytokinesis block micronucleus (CBMN) assay and Cytokinesis Block Proliferation Index (CBPI) respectively. These findings showed the clear-cut genotoxic and cytotoxic effects of leachate on both cellular types, as well as its potential aneugenic activity in human lymphocytes. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Methods for determining the methane generation potential and methane generation rate constant for the FOD model: a review.

    Science.gov (United States)

    Park, Jin-Kyu; Chong, Yong-Gil; Tameda, Kazuo; Lee, Nam-Hoon

    2018-03-01

    In the first order decay (FOD) model of landfill methane generation, the methane generation potential ( L 0 ) and methane generation rate constant ( k) for both bulk municipal solid waste (MSW) and individual waste components have been determined by a variety of approaches throughout various literature. Differences in the determination methods for L 0 and k are related to differences in our understanding of the waste decomposition dynamics. A thorough understanding of the various available methods for determining L 0 and k values is critical for comparative study and the drawing of valid conclusions. The aim of this paper is to review the literature on the available determining methods and the ranges for L 0 and k values of both bulk MSW and individual waste components, while focusing on understanding the decomposition of waste, including the role of lignin. L 0 estimates in the literature are highly variable and have been derived from theoretical stoichiometric calculations, laboratory experiments, or actual field measurements. The lignin concentration in waste is correlated with the fraction of total degradable organic carbon (DOC f ) that will actually anaerobically degrade in the landfill. The k value has been determined by precipitation rates, laboratory simulations, aged-defined waste sample, and model fitting or regression analysis using actual gas data. However, the lignin concentration does not correlate well with the k value, presumably due to the impact of lignin arrangement and structure on cellulose bioavailability and degradation rate. In sum, this review summarizes the literature on the measurement of L 0 and k values, including the dynamics and decomposition of bulk MSW and individual waste components within landfills.

  12. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-12-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.

  13. Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control

    Energy Technology Data Exchange (ETDEWEB)

    Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

    2005-03-30

    The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

  14. Shallow groundwater hydrochemistry assessment of engineered landfill and dumpsite

    Science.gov (United States)

    Zawawi, Mohd Hafiz; Kamaruddin, Mohamad Anuar; Ramli, Mohd Zakwan; Hossain, Md Shabbir

    2017-04-01

    In this paper, hydrochemistry analysis was performed at two different landfill site that is Matang and Beriah landfills, to evaluate the environmental risks associated with leachate flowing into groundwater resources. Selected parameters considered were heavy metal and physico-chemical properties of the groundwater samples. Analysis for Matang Landfill shows that the pollutant species seem to accumulate within MT1 that were located at the southeast of the landfill site. The pollutant species have tendency to migrate and disperse toward the southeast side of the landfill site which are MT 1, MT4 AND MT5. Meanwhile, the analysis for Beriah Landfill site shows that the contaminant tends to migrate to the south west direction of the landfill where AP6 and AP7 show the highest concentration of Heavy Metals, Cl-, Mg2+ and Ca2. The concentration of heavy metal is higher in Beriah Landfill as compared to Matang Landfill which was due to the type of landfill itself, where Matang Landfill operates as sanitary landfill meanwhile Beriah Landfil function as a dumpsite or uncontrolled landfill.

  15. Minimizing methane release

    NARCIS (Netherlands)

    Arendonk, van J.A.M.

    2014-01-01

    "Methane emissions from cows are decreasing, but not at the pace which the agricultural sector and the government agreed. The project, Reduced methane emission of dairy cows (ME001), will provide insights that enable targeted interventions for a 30% reduction of greenhouse gasses in the Netherlands

  16. Methane and Climate Change

    NARCIS (Netherlands)

    Reay, D.; Smith, P.; Amstel, van A.R.

    2010-01-01

    Methane is a powerful greenhouse gas and is estimated to be responsible for approximately one-fifth of man-made global warming. Per kilogram, it is 25 times more powerful than carbon dioxide over a 100-year time horizon -- and global warming is likely to enhance methane release from a number of

  17. Utilization of coalbed methane

    Energy Technology Data Exchange (ETDEWEB)

    Gustavson, J.B. [Gustavson Associates Inc., Boulder, CO (United States)

    1996-02-01

    Substantial progress has been made in capturing coalbed methane (CBM gas), which constitutes a valuable source of clean burning energy. It is of importance to study the various potential uses of coalbed methane and to understand the various technologies required, as well as their economics and any institutional constraints. In industrialised countries, the uses of coalbed methane are almost solely dependent on microeconomics; coalbed methane must compete for a market against natural gas and other energy sources - and frequently, coalbed methane is not competitive against other energy sources. In developing countries, on the other hand, particularly where other sources of energy are in short supply, coalbed methane economics yield positive results. Here, constraints to development of CBM utilization are mainly lack of technology and investment capital. Sociological aspects such as attitude and cultural habits, may also have a strong negative influence. This paper outlines the economics of coalbed methane utilization, particularly its competition with natural gas, and touches upon the many different uses to which coalbed methane may be applied. 24 refs., 4 figs.

  18. Further study of the intrinsic safety of internally shorted lithium and lithium-ion cells within methane-air.

    Science.gov (United States)

    Dubaniewicz, Thomas H; DuCarme, Joseph P

    2014-11-01

    National Institute for Occupational Safety and Health (NIOSH) researchers continue to study the potential for lithium and lithium-ion battery thermal runaway from an internal short circuit in equipment for use in underground coal mines. Researchers conducted cell crush tests using a plastic wedge within a 20-L explosion-containment chamber filled with 6.5% CH 4 -air to simulate the mining hazard. The present work extends earlier findings to include a study of LiFePO 4 cells crushed while under charge, prismatic form factor LiCoO 2 cells, primary spiral-wound constructed LiMnO 2 cells, and crush speed influence on thermal runaway susceptibility. The plastic wedge crush was a more severe test than the flat plate crush with a prismatic format cell. Test results indicate that prismatic Saft MP 174565 LiCoO 2 and primary spiral-wound Saft FRIWO M52EX LiMnO 2 cells pose a CH 4 -air ignition hazard from internal short circuit. Under specified test conditions, A123 systems ANR26650M1A LiFePO 4 cylindrical cells produced no chamber ignitions while under a charge of up to 5 A. Common spiral-wound cell separators are too thin to meet intrinsic safety standards provisions for distance through solid insulation, suggesting that a hard internal short circuit within these cells should be considered for intrinsic safety evaluation purposes, even as a non-countable fault. Observed flames from a LiMnO 2 spiral-wound cell after a chamber ignition within an inert atmosphere indicate a sustained exothermic reaction within the cell. The influence of crush speed on ignitions under specified test conditions was not statistically significant.

  19. Methane sources in Hong Kong - identification by mobile measurement and isotopic analysis

    Science.gov (United States)

    Fisher, Rebecca; Brownlow, Rebecca; Lowry, David; Lanoisellé, Mathias; Nisbet, Euan

    2017-04-01

    Hong Kong (22.4°N, 114.1°E) has a wide variety of natural and anthropogenic sources of methane within a small densely populated area (1106 km2, population ˜7.3 million). These include emissions from important source categories that have previously been poorly studied in tropical regions such as agriculture and wetlands. According to inventories (EDGAR v.4.2) anthropogenic methane emissions are mainly from solid waste disposal, wastewater disposal and fugitive leaks from oil and gas. Methane mole fraction was mapped out across Hong Kong during a mobile measurement campaign in July 2016. This technique allows rapid detection of the locations of large methane emissions which may focus targets for efforts to reduce emissions. Methane is mostly emitted from large point sources, with highest concentrations measured close to active landfill sites, sewage works and a gas processing plant. Air samples were collected close to sources (landfills, sewage works, gas processing plant, wetland, rice, traffic, cows and water buffalo) and analysed by mass spectrometry to determine the δ13C isotopic signatures to extend the database of δ13C isotopic signatures of methane from tropical regions. Isotopic signatures of methane sources in Hong Kong range from -70 ‰ (cows) to -37 ‰ (gas processing). Regular sampling of air for methane mole fraction and δ13C has recently begun at the Swire Institute of Marine Science, situated at Cape d'Aguilar in the southeast of Hong Kong Island. This station receives air from important source regions: southerly marine air from the South China Sea in summer and northerly continental air in winter and measurements will allow an integrated assessment of emissions from the wider region.

  20. Greenhouse effect and waste sector in Italy: Analysis and quantitative estimates of methane emissions

    International Nuclear Information System (INIS)

    Pizzullo, Marcello; Tognotti, Leonardo

    1997-01-01

    Methane is the most important atmospheric gas with a considerable effect on climate change after carbon dioxide. In this work methane emissions from waste have been evaluated. Estimates include emissions resulting from anaerobic degradation of landfill municipal solid waste and industrial and municipal wastewater anaerobic treatments. The adopted methodology follows specific guidelines carried out by IPCC (Intergovernamental Panel on Climate Change), the scientific reference commission for the Framework Convention on Climate Change subscribed in 1992 during the Earth Summit in Rio de Janeiro. Some factors used in the methodology for landfill emissions have been modified and adapted to the italian situation. The estimate of emission resulting from industrial wastewater anaerobic treatments has required preliminary evaluation of annual wastewater quantities produced by some significant industrial sectors

  1. Adsorption and transport of methane in biochars derived from waste wood.

    Science.gov (United States)

    Sadasivam, Bala Yamini; Reddy, Krishna R

    2015-09-01

    Mitigation of landfill gas (LFG) is among the critical aspects considered in the design of a landfill cover in order to prevent atmospheric pollution and control global warming. In general, landfill cover soils can partially remove methane (CH4) through microbial oxidation carried out by methanotrophic bacteria present within them. The oxidizing capacity of these landfill cover soils may be improved by adding organic materials, such as biochar, which increase adsorption and promote subsequent or simultaneous oxidation of CH4. In this study, seven wood-derived biochars and granular activated carbon (GAC) were characterized for their CH4 adsorption capacity by conducting batch and small-scale column studies. The effects of influential factors, such as exposed CH4 concentration, moisture content and temperature on CH4 adsorption onto biochars, were determined. The CH4 transport was modeled using a 1-D advection-dispersion equation that accounted for sorption. The effects of LFG inflow rates and moisture content on the combined adsorption and transport properties of biochars were determined. The maximum CH4 adsorption capacity of GAC (3.21mol/kg) was significantly higher than that of the biochars (0.05-0.9mol/kg). The CH4 gas dispersion coefficients for all of the biochars ranged from 1×10(-3) to 3×10(-3)m(2)s(-1). The presence of moisture significantly suppressed the extent of methane adsorption onto the biochars and caused the methane to break through within shorter periods of time. Overall, certain biochar types have a high potential to enhance CH4 adsorption and transport properties when used as a cover material in landfills. However, field-scale studies need to be conducted in order to evaluate the performance of biochar-based cover system under a more dynamic field condition that captures the effect of seasonal and temporal changes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Quantification of methane and nitrous oxide emissions from various waste treatment facilities by tracer dilution method

    Science.gov (United States)

    Mønster, Jacob; Rella, Chris; Jacobson, Gloria; Kjeldsen, Peter; Scheutz, Charlotte

    2013-04-01

    tracer gas concentrations while another measured the nitrous oxide concentration. We present the performance of these instruments at different waste treatment facilities (waste water treatment plants, composting facilities, sludge mineralization beds, anaerobic digesters and landfills) in Denmark, and discuss the strengths and limitations of the method of the method for quantifying methane and nitrous oxide emissions from the different sources. Furthermore, we have measured the methane emissions from 10 landfills with emission rates ranging from 5 to 135 kg/h depending on the age, state, content and aftercare of the landfill. In addition, we have studied 3 waste water treatment plants, and found nitrous oxide emission of 200 to 700 g/h from the aeration tanks and a total methane emission ranging from 2 to 15 kg/h, with the primary emission coming from the sludge treatment. References Galle, B., Samuelsson, J., Svensson, B.H., and Börjesson, G. (2001). Measurements of methane emissions from landfills using a time correlation tracer method based on FTIR absorption spectroscopy. Environmental Science & Technology 35 (1), 21-25 Scheutz, C., Samuelsson, J., Fredenslund, A. M., and Kjeldsen, P. (2011). Quantification of multiple methane emission sources at landfills using a double tracer technique. Waste Management, 31(5), 1009-17 Solomon, S., D. Qin, M. Manning, R.B. Alley, T. Berntsen, N.L. Bindoff, Z. Chen, A. Chidthaisong, J.M. Gregory, G.C. Hegerl, M. Heimann, B. Hewitson, B.J. Hoskins, F. Joos, J. Jouzel, V. Kattsov, U. Lohmann, T.Matsuno, M. Molina, N. Nicholls, J.Overpeck, G. Raga, V. Ramaswamy, J. Ren, M. Rusticucci, R. Somerville, T.F. Stocker, P. Whetton, R.A.Wood and D. Wratt, 2007: Technical Summary. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  3. Landfills potential source for cores -- computer model analyzes landfills for on-site recycling operations

    Science.gov (United States)

    Philip A. Araman; R.J. Bush; E.B. Hager; A.L. Hammett

    1999-01-01

    Are you having trouble finding enough used pallet cores? Do you have trouble finding more than one reliable source of used pallet parts? Have you ever considered your local landfill as a "source?" In 1995, more pallets ended up in landfills that at pallet recovery-repair companies. Virginia Tech and the U.S. Forest Service have developed a business plan...

  4. Reduction of greenhouse gases emissions listed in the Kyoto Protocol by the utilization of landfill gas using solid oxide fuel cells; Reducao das emissoes de gases de efeito estufa listados no protocolo de Quioto pelo aproveitamento do gas gerado em aterros sanitarios utilizando celulas a combustivel de oxido solido. Estudo de caso do aterro municipal de Santo Andre, SP, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Paris, Alexandre Gellert

    2007-07-01

    In the last few years, the Kyoto Protocol had been a subject very debated, at first, in a restricted niche, manly academics and professionals related to the area of climate changes. On 16th February 2005 the Kyoto Protocol entered into force and with this a lot of publicity all over the world, so today is common to hear about it at the mass communications media. The extension of the subject is broad, this work discuss the utilization of one the Kyoto's flexibility mechanisms, to contribute to financing the use of the landfill gas in the solid oxide fuel cells. Among the three mechanisms presented in the Kyoto Protocol, the clean development mechanism (CDM) in article 12, is the only one that can be implemented by non-Annex I countries, the case of Brazil. In other hand, the issue of solid waste in Brazil is critical. Even being illegal, most of the solid waste goes to uncontrolled areas in open air places 'lixoes', causing degradation of the environment and the communities around this areas, and also emission of green house gases (GHG), deregulating the global climate system. Decontaminate this areas and the construction of landfills to replace than, considering the landfill as a bioreactor, and the utilization of the biogas to generate power can improve nowadays picture that we are facing. The utilization of an innovative alternative technology as the solid oxide fuel cell (SOFC) instead the conventional technologies will be more efficient and environmentally better. Among other barriers the cost is pointed as the biggest. In this context, the SOFC is the most expensive fuel cell, so the utilization of CDM can contribute to finance the application of this technology. Scenarios were made of 250 kW, 500 kW, 1,000 kW, 5,000 kW and 10,000 kW of installed power using biogas from the Municipal Landfill of Santo Andre. The calculations of the emission factor were done ex ante and ex post according to ACM0002. Comparing the costs of the installed power

  5. Methane to bioproducts: the future of the bioeconomy?

    Science.gov (United States)

    Pieja, Allison J; Morse, Molly C; Cal, Andrew J

    2017-12-01

    Methanotrophs have been studied since the 1970s, but interest has increased tremendously in recent years due to their potential to transform methane into valuable bioproducts. The vast quantity of available methane and the low price of methane as natural gas have helped to spur this interest. The most well-studied, biologically-derived products from methane include methanol, polyhydroxyalkanoates, and single cell protein. However, many other high-interest chemicals such as biofuels or high-value products such as ectoine could be made industrially relevant through metabolic engineering. Although challenges must be overcome to achieve commercialization of biologically manufactured methane-to-products, taking a holistic view of the production process or radically re-imagining pathways could lead to a future bioeconomy with methane as the primary feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. One-dimensional transient solution for landfill gas pressure in landfills

    Science.gov (United States)

    He, Haijie; Lan, Ji-wu; Li, He; Wu, Tao; Ma, Peng-cheng

    2017-11-01

    The paper summarizes depth-based changing rules of the gas permeation coefficient, establishes a one-dimensional gas pressure distribution model with consideration of depth-based changes of the permeation coefficient, and analyzes gas extraction pressure values required by different waste landfill thickness. Results show that the gas extraction negative pressure of -1kPa satisfied gas collection requirements of landfills with thicknesses of 10m, 15m and 20m. The gas extraction negative pressure of -1kPa satisfied gas collection requirements of landfills with thicknesses of 10m, 15m and 20m. On the landfill with waste thickness of 30m, landfill gas within the scope from the pile top to the 27m height under the ground could not be collected effectively, the maximum gas pressure of about 0.65kPa appeared at the 12m height under the ground.

  7. Development and optimization of open cell foam-based platelet milli-reactor for the intensification and the valorisation of CO2 methanation

    International Nuclear Information System (INIS)

    Frey, Myriam

    2016-01-01

    In response to the different international agreements to reduce the emission of greenhouse gases and limit their impact on global warming, an energy transition is in progress to increase the share of renewable energies. The Power-to-Gas concept is one of many solutions proposed to answer the need to charge and discharge this intermittent energy source. However, the methanation reaction, highly exothermal, needs a process able to efficiently evacuate the heat produced by the reaction. During this thesis, a structure milli-reactor, filled with an open cell foam coated with a catalyst (Ni/Ceria-Zirconia), was developed as an answer to this issue. The reactor was hydrodynamically and thermally characterized. The second one allowed us to evidence hot spots formation. The presence of nano-fibres allowed better control of the heat generated, limiting the deactivation of the catalyst (sintering). Catalytic tests, performed on a small scale pilot, clearly showed the advantage of structured beds compared to fixed bed, classically used in processes, with a moderate heat elevation around 25 C. (author)

  8. Biochemical processes in soil and groundwater contaminated by leachates from municipal landfills (Mini review

    Directory of Open Access Journals (Sweden)

    Yu N. Vodyanitskii

    2016-09-01

    Full Text Available World clean water deficit grows by increasing pollution on the planet. Landfill of solid domestic waste is one of the most important sources of pollution, where the leachate seeping through soil, gets into the soil and groundwater. Area of landfills of solid household waste, reaches tens of hectares and the mass of waste reaches millions of tones. The specificity of the leachate is the high content of soluble organic substances, providing reduction conditions in contaminated soil and groundwater. Reduction environment is defines biogeochemical processes under landfills with the participation of: ammonium, iron, manganese, bicarbonate, sulfate, methane. The main processes in polluted soil stream are including: biological degradation of organic matter and a variety of biological and abiotic processes. Wide discrimination of the most diverse groups of microorganisms in the polluted leachate is occurs, overlay neighboring redox zones. Microbial population is identifies specific redox zones more contaminated leachate nucleus than on the borders of the leachate with oxygen-enriched by the background thread. Biological reduction processes in the leachate are developing at different speeds: fast evolving and denitrification reduction of iron, slow – methanogenesis.

  9. Dimethyl sulfide emission behavior from landfill site with air and water control.

    Science.gov (United States)

    Long, Yuyang; Zhang, Siyuan; Fang, Yuan; Du, Yao; Liu, Weijia; Fang, Chengran; Shen, Dongsheng

    2017-12-01

    Municipal solid waste landfills are responsible for odors affecting the environment and human health. Dimethyl sulfide (DMS) is one of the major odorous compounds known for its low odor threshold and wide distribution. This study examined the generation, migration and emission of DMS in four artificial landfill-simulating reactors: Reactor 1 and Reactor 2, running under anaerobic and semi-aerobic conditions, respectively, without leachate recirculation; and Reactor 3 and Reactor 4, running under anaerobic and semi-aerobic conditions, respectively, with leachate recirculation. From the odor control perspective, aeration can efficiently inhibit maximum DMS headspace concentration by 31.7-93.7%, especially with the functioning of leachate recirculation. However, leachate recirculation in anaerobic conditions may double the DMS emission concentration but may also shorten the period over which DMS is effective because of the upward migration of liquid DMS in the recirculated leachate. The DMS generation was active in the acidification and methane fermentation phase of the simulated landfill and was possibly affected by the volatile fatty acid concentration, chemical oxygen demand, total organic carbon concentration and pH of the leachate, as well as total organic carbon in the refuse. Most significantly, DMS emission can be effectually dealt with by aeration along with leachate recirculation.

  10. Greenhouse gases emission from sanitary landfills in Lombardy: estimation and uncertainty analysis

    International Nuclear Information System (INIS)

    Antognazza, F.; Moretti, M.; Caserini, S.

    2009-01-01

    Quantification of methane emissions from landfills is important to evaluate measures for reduction of greenhouse gas emissions. A census has been conducted across all landfills in Lombardy in order to get a double assessment of greenhouse gas emissions in the period 1973-2007. The first approach is of a deterministic kind: it produced a GHG emission assessment of about 2,240 ktCO 2 (like 2.4% of GHG emission in Lombardy in 2005). The second approach is a probabilistic approach according to Monte Carlo simulation, and allows an assessment of probabilistic distribution of emissions and uncertainty. Uncertainty in GHG emission from landfill in Lombardy is about 20% and efficiency of LFG collection and biodegradable carbon content are the most relevant parameters in this assessment. Also, a projection of GHG emission was made. Two scenarios were analyzed for the 2008-2020 period: a business as usual (BAU) one and an alternative one. It results that we are expecting a 50% reduction of GHG emission, with alternative scenario, from 2007 level: at regional scale it is like a 1% of overall GHG emissions in Lombardy. [it

  11. Leachate pollution management to overcome global climate change impact in Piyungan Landfill, Indonesia

    Science.gov (United States)

    Harjito; Suntoro; Gunawan, T.; Maskuri, M.

    2018-03-01

    Environmental problems associated with the landfill system are generated by domestic waste landfills, especially those with open dumping systems. In these systems, waste degrades and produces some gases, namely methane gas (CH4) and carbon dioxide (CO2), which can cause global climate change. This research aimed at identifying the areas that experience groundwater pollution and the spread pattern of leachate movement to the vicinity as well as to develop a leachate management model. The Electricity Resistivity Tomography (ERT) survey is deployed to assess the distribution of electrical resistivity in the polluted areas. In this study, the groundwater contamination is at a very low in the aquifer zone, i.e., 3-9 Ωm. It is caused by the downward migration of leachate to water table that raises the ion concentration of groundwater. These ions will increase the electrical conductivity (EC), i.e., up to 1,284 μmhos/cm, and decrease the electrical resistivity. The leachate spreads westward and northward at a depth of 6-17 m (aquifer) with a thickness of pollution between 4 and11 m.The recommended landfill management model involves the installation of rainwater drainage, use of cover and baseliner made of waterproof materials, and massive waste treatment.

  12. Application of the IPCC model to a Brazilian landfill: First results

    International Nuclear Information System (INIS)

    Penteado, Roger; Cavalli, Massimo; Magnano, Enrico; Chiampo, Fulvia

    2012-01-01

    The Intergovernmental Panel on Climate Change gave a methodology to estimate the methane emissions from Municipal Solid Wastes landfills, based on a First Order Decay (FOD) model that assumes biodegradation kinetics depending on the type of wastes. This model can be used to estimate both the National greenhouse gas emissions in the industrialized countries as well as the reductions of these emissions in the developing ones when the Clean Development Mechanism, as defined by the Kyoto Protocol, is implemented. In this paper, the FOD model has been use to evaluate the biogas flow rates emitted by a Brazilian landfill and the results have been compared to the extracted ones: some first results can be useful to evidence the weight of key parameters and do a correct use of the model. - Highlights: ► Landfill biogas is greenhouse gas and fuel at the same time. ► In developing countries its collection can implement Kyoto Protocol mechanisms. ► Biogas collection and exploiting become part of energy policy. ► Project economical balance is based on reliable estimates of generated quantities.

  13. CO-DIGESTION OF SEWAGE SLUDGE AND MATURE LANDFILL LEACHATE IN PRE-BIOAUGMENTED SYSTEM

    Directory of Open Access Journals (Sweden)

    Agnieszka Montusiewicz

    2014-10-01

    Full Text Available The study examined the effects of co-digestion of sewage sludge and mature landfill leachate at the volumetric ratio of 95:5% in primarily bioaugmented system. Bioaugmentation was carried out with the use of commercial product Arkea® in the volumetric dose of 5% and lasted three months prior to the co-digestion start-up. Co-digestion was undergone without bioaugmentation. The results indicated that in the first period (of three months following bioaugmentation, co-digestion led to biogas/methane yields only 5-8% lower as compared to anaerobic digestion of sewage sludge, and the differences were not statistically significant. Moreover, a comparable value of volatile solids removal was obtained. However, the effects became worse over time, i.e. a lower organics removal efficiency of 16% as well as 9.5–13% decreases of biogas/methane yields were achieved by applying co-digestion for a further period (of the same duration. Co-digestion of sewage sludge and mature landfill leachate could be recognized as quite efficient in the system that was primarily bioaugmented with the use of Arkea®. However, the beneficial impact of bioaugmentation remained for the limited period of three months after its completion. To sustain the favourable effects a periodical, repeatable bioaugmentation of the co-digestion system is required.

  14. Advanced manufacturing of intermediate temperature, direct methane oxidation membrane electrode assemblies for durable solid oxide fuel cell, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ITN proposes to create an innovative anode supported membrane electrode assembly (MEA) for solid oxide fuel cells (SOFCs) that is capable of long-term operation at...

  15. Tracing landfill gas migration using chlorofluorocarbons

    Science.gov (United States)

    Archbold, M.; Elliot, T. E.; Redeker, K.; Boshoff, G.

    2003-04-01

    Typical landfill gas (LFG) compositions include a wide range of trace-level Volatile Organic Compounds (VOCs). The most mobile VOCs are chlorofluorocarbons (CFCs), and their presence around landfills may reflect the initial flushing out of VOCs during the early aerobic stage when landfills are most active reaching high temperatures, driving off VOCs, and injecting LFG into the surrounding environment. CFCs are aerobically stable and therefore, may prove a useful means of characterising the environmental impact of landfill gas in the unsaturated zone around landfills. Moreover, as a possible pathfinder environmental tracer of LFG impacts in the environment, any subsequent changes in the CFCs concentrations after injection potentially reflect natural attenuation (NA) processes, which can also affect other VOCs. Thus tracing the CFCs around a landfill may provide an analogue indicator/proxy for other VOCs transport and fate. To assess the feasibility of using chlorofluorocarbons (CFC-11, CFC-12, CFC-113) as proxy tracers, it is imperative to characterise the effects of possible NA processes on both CFC abundances and their overall systematics. In this research, anaerobic biodegradation microcosm studies, which mimic the unsaturated zone of a LFG plume, are conducted using methanogenic soil samples. Results are discussed in terms of the potential effects on CFCs signatures due to anaerobic biodegradation in the unsaturated zone and will also explore ways of characterising NA processes by identifying the effects of diffusion on transport processes, and degradation products of CFCs. The discussion will also include how stable carbon isotopic signatures may be used to enhance our assessments of biodegradation of CFCs in the unsaturated zone around landfills.

  16. Municipal solid waste landfills harbor distinct microbiomes

    Science.gov (United States)

    Stamps, Blake W.; Lyles, Christopher N.; Suflita, Joseph M.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Kolpin, Dana W.; Stevenson, Bradley S.

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its “built environments.” Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of “landfill microbiomes” and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.

  17. Municipal Solid Waste Landfills Harbor Distinct Microbiomes

    Directory of Open Access Journals (Sweden)

    Blake Warren Stamps

    2016-04-01

    Full Text Available Landfills are the final repository for most of the discarded material from human society and its built environments. Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2 and a complex mixture of soluble chemical compounds in leachate. Characterization of landfill microbiomes and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.

  18. Microbial diversity and dynamics during methane production from municipal solid waste

    International Nuclear Information System (INIS)

    Bareither, Christopher A.; Wolfe, Georgia L.; McMahon, Katherine D.; Benson, Craig H.

    2013-01-01

    Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and

  19. Microbial diversity and dynamics during methane production from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Bareither, Christopher A., E-mail: christopher.bareither@colostate.edu [Civil and Environmental Engineering, Colorado State University, Ft. Collins, CO 80532 (United States); Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States); Wolfe, Georgia L., E-mail: gwolfe@wisc.edu [Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 (United States); McMahon, Katherine D., E-mail: tmcmahon@engr.wisc.edu [Bacteriology, Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States); Benson, Craig H., E-mail: chbenson@wisc.edu [Civil and Environmental Engineering, Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2013-10-15

    Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and

  20. Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

    2013-04-01

    The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

  1. Mobile mapping of methane emissions and isoscapes

    Science.gov (United States)

    Takriti, Mounir; Ward, Sue; Wynn, Peter; Elias, Dafydd; McNamara, Niall

    2017-04-01

    Methane (CH4) is a potent greenhouse gas emitted from a variety of natural and anthropogenic sources. It is crucial to accurately and efficiently detect CH4 emissions and identify their sources to improve our understanding of changing emission patterns as well as to identify ways to curtail their release into the atmosphere. However, using established methods this can be challenging as well as time and resource intensive due to the temporal and spatial heterogeneity of many sources. To address this problem, we have developed a vehicle mounted mobile system that combines high precision CH4 measurements with isotopic mapping and dual isotope source characterisation. We here present details of the development and testing of a unique system for the detection and isotopic analysis of CH4 plumes built around a Picarro isotopic (13C/12C) gas analyser and a high precision Los Gatos greenhouse gas analyser. Combined with micrometeorological measurements and a mechanism for collecting discrete samples for high precision dual isotope (13C/12C, 2H/1H) analysis the system enables mapping of concentrations as well as directional and isotope based source verification. We then present findings from our mobile methane surveys around the North West of England. This area includes a variety of natural and anthropogenic methane sources within a relatively small geographical area, including livestock farming, urban and industrial gas infrastructure, landfills and waste water treatment facilities, and wetlands. We show that the system was successfully able to locate leaks from natural gas infrastructure and emissions from agricultural activities and to distinguish isotope signatures from these sources.

  2. Estimate the potential production of electricity: a case study of the sanitary landfill of Santo Andre, Sao Paulo, Brazil; Estimativa do potencial de producao de eletricidade: estudo de caso do aterro sanitario de Santo Andre, Sao Paulo, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Elissando Rocha da; Moreira, Joao M. L.; Candiani, Giovano [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), SP (Brazil)

    2010-07-01

    The recovery of the biogas generated from sanitary landfills, associated to its energetic use has been widely discussed. Thus, this paper aims to estimate the potential production of electric energy from sanitary landfill Santo Andre-SP. The biogas production was estimated using the rate of deposition of solid wastes in the landfill, using some mathematical models with parameters suggested by two models: LanGEM-USEPA (conventional landfill) and Word Bank. These results indicate that the potential of biogas production will be approximately 11 x 10{sup 6} Kg of methane/year in 2017 and production of electric energy in that year will be approximately 32,000 MWh, considering an of 75% over collection of biogas. (author)

  3. Methane Emission by Camelids

    Science.gov (United States)

    Dittmann, Marie T.; Runge, Ullrich; Lang, Richard A.; Moser, Dario; Galeffi, Cordula; Kreuzer, Michael; Clauss, Marcus

    2014-01-01

    Methane emissions from ruminant livestock have been intensively studied in order to reduce contribution to the greenhouse effect. Ruminants were found to produce more enteric methane than other mammalian herbivores. As camelids share some features of their digestive anatomy and physiology with ruminants, it has been proposed that they produce similar amounts of methane per unit of body mass. This is of special relevance for countrywide greenhouse gas budgets of countries that harbor large populations of camelids like Australia. However, hardly any quantitative methane emission measurements have been performed in camelids. In order to fill this gap, we carried out respiration chamber measurements with three camelid species (Vicugna pacos, Lama glama, Camelus bactrianus; n = 16 in total), all kept on a diet consisting of food produced from alfalfa only. The camelids produced less methane expressed on the basis of body mass (0.32±0.11 L kg−1 d−1) when compared to literature data on domestic ruminants fed on roughage diets (0.58±0.16 L kg−1 d−1). However, there was no significant difference between the two suborders when methane emission was expressed on the basis of digestible neutral detergent fiber intake (92.7±33.9 L kg−1 in camelids vs. 86.2±12.1 L kg−1 in ruminants). This implies that the pathways of methanogenesis forming part of the microbial digestion of fiber in the foregut are similar between the groups, and that the lower methane emission of camelids can be explained by their generally lower relative food intake. Our results suggest that the methane emission of Australia's feral camels corresponds only to 1 to 2% of the methane amount produced by the countries' domestic ruminants and that calculations of greenhouse gas budgets of countries with large camelid populations based on equations developed for ruminants are generally overestimating the actual levels. PMID:24718604

  4. Methane emission by camelids.

    Directory of Open Access Journals (Sweden)

    Marie T Dittmann

    Full Text Available Methane emissions from ruminant livestock have been intensively studied in order to reduce contribution to the greenhouse effect. Ruminants were found to produce more enteric methane than other mammalian herbivores. As camelids share some features of their digestive anatomy and physiology with ruminants, it has been proposed that they produce similar amounts of methane per unit of body mass. This is of special relevance for countrywide greenhouse gas budgets of countries that harbor large populations of camelids like Australia. However, hardly any quantitative methane emission measurements have been performed in camelids. In order to fill this gap, we carried out respiration chamber measurements with three camelid species (Vicugna pacos, Lama glama, Camelus bactrianus; n = 16 in total, all kept on a diet consisting of food produced from alfalfa only. The camelids produced less methane expressed on the basis of body mass (0.32±0.11 L kg⁻¹ d⁻¹ when compared to literature data on domestic ruminants fed on roughage diets (0.58±0.16 L kg⁻¹ d⁻¹. However, there was no significant difference between the two suborders when methane emission was expressed on the basis of digestible neutral detergent fiber intake (92.7±33.9 L kg⁻¹ in camelids vs. 86.2±12.1 L kg⁻¹ in ruminants. This implies that the pathways of methanogenesis forming part of the microbial digestion of fiber in the foregut are similar between the groups, and that the lower methane emission of camelids can be explained by their generally lower relative food intake. Our results suggest that the methane emission of Australia's feral camels corresponds only to 1 to 2% of the methane amount produced by the countries' domestic ruminants and that calculations of greenhouse gas budgets of countries with large camelid populations based on equations developed for ruminants are generally overestimating the actual levels.

  5. Methane emission by camelids.

    Science.gov (United States)

    Dittmann, Marie T; Runge, Ullrich; Lang, Richard A; Moser, Dario; Galeffi, Cordula; Kreuzer, Michael; Clauss, Marcus

    2014-01-01

    Methane emissions from ruminant livestock have been intensively studied in order to reduce contribution to the greenhouse effect. Ruminants were found to produce more enteric methane than other mammalian herbivores. As camelids share some features of their digestive anatomy and physiology with ruminants, it has been proposed that they produce similar amounts of methane per unit of body mass. This is of special relevance for countrywide greenhouse gas budgets of countries that harbor large populations of camelids like Australia. However, hardly any quantitative methane emission measurements have been performed in camelids. In order to fill this gap, we carried out respiration chamber measurements with three camelid species (Vicugna pacos, Lama glama, Camelus bactrianus; n = 16 in total), all kept on a diet consisting of food produced from alfalfa only. The camelids produced less methane expressed on the basis of body mass (0.32±0.11 L kg⁻¹ d⁻¹) when compared to literature data on domestic ruminants fed on roughage diets (0.58±0.16 L kg⁻¹ d⁻¹). However, there was no significant difference between the two suborders when methane emission was expressed on the basis of digestible neutral detergent fiber intake (92.7±33.9 L kg⁻¹ in camelids vs. 86.2±12.1 L kg⁻¹ in ruminants). This implies that the pathways of methanogenesis forming part of the microbial digestion of fiber in the foregut are similar between the groups, and that the lower methane emission of camelids can be explained by their generally lower relative food intake. Our results suggest that the methane emission of Australia's feral camels corresponds only to 1 to 2% of the methane amount produced by the countries' domestic ruminants and that calculations of greenhouse gas budgets of countries with large camelid populations based on equations developed for ruminants are generally overestimating the actual levels.

  6. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    International Nuclear Information System (INIS)

    Kheradmand, S.; Karimi-Jashni, A.; Sartaj, M.

    2010-01-01

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD rem for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

  7. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system.

    Science.gov (United States)

    Kheradmand, S; Karimi-Jashni, A; Sartaj, M

    2010-06-01

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25g COD/L/d and 93% at loading rate of 3.37g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD(rem) for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Pilot scale evaluation of the BABIU process--upgrading of landfill gas or biogas with the use of MSWI bottom ash.

    Science.gov (United States)

    Mostbauer, P; Lombardi, L; Olivieri, T; Lenz, S

    2014-01-01

    Biogas or landfill gas can be converted to a high-grade gas rich in methane with the use of municipal solid waste incineration bottom ash as a reactant for fixation of CO2 and H2S. In order to verify results previously obtained at a laboratory scale with 65-90 kg of bottom ash (BA), several test runs were performed at a pilot scale, using 500-1000 kg of bottom ash and up to 9.2 Nm(3)/h real landfill gas from a landfill in the Tuscany region (Italy). The input flow rate was altered. The best process performance was observed at a input flow rate of 3.7 Nm(3)/(htBA). At this flow rate, the removal efficiencies for H2S were approximately 99.5-99%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Techno-economic analysis of sorption-enhanced steam methane reforming in a fixed bed reactor network integrated with fuel cell

    Science.gov (United States)

    Diglio, Giuseppe; Hanak, Dawid P.; Bareschino, Piero; Mancusi, Erasmo; Pepe, Francesco; Montagnaro, Fabio; Manovic, Vasilije

    2017-10-01

    Sorption-enhanced steam methane reforming (SE-SMR) is a promising alternative for H2 production with inherent CO2 capture. This study evaluates the techno-economic performance of SE-SMR in a network of fixed beds and its integration with a solid oxide fuel cell (SE-SMR-SOFC) for power generation. The analysis revealed that both proposed systems are characterised by better economic performance than the reference systems. In particular, for SE-SMR the levelised cost of hydrogen is 1.6 €ṡkg-1 and the cost of CO2 avoided is 29.9 €ṡtCO2-1 (2.4 €ṡkg-1 and 50 €ṡtCO2-1, respectively, for SMR with CO2 capture) while for SE-SMR-SOFC the levelised cost of electricity is 0.078 €ṡkWh-1 and the cost of CO2 avoided is 36.9 €ṡtCO2-1 (0.080 €ṡkWh-1 and 80 €ṡtCO2-1, respectively, for natural gas-fired power plant with carbon capture). The sensitivity analysis showed that the specific cost of fuel and the capital cost of fuel cell mainly affect the economic performance of SE-SMR and SE-SMR-SOFC, respectively. The daily revenue of the SE-SMR-SOFC system is higher than that of the natural gas-fired power plant if the difference between the carbon tax and the CO2 transport and storage cost is > 6 €ṡtCO2-1.

  10. Stable condition of dimethylmonothioarsinic acid (DMMTAV) and dimethyldithioarsinic acid ( DMDTAV) in landfill leachate

    Science.gov (United States)

    Kwon, E.; Yoon, H. O.; Kim, J. A.; Lee, H.; Jung, S.; Kim, Y. T.

    2015-12-01

    When waste containing arsenic (As) are disposed of landfill, such facilities (i.e., landfill) can play an important role in disseminating As to the surrounding environment. These disposal of waste containing As might cause a serious environmental pollution due to potentially As remobilization in landfill. Especially, As species containing sulfur such as DMDTAv and DMMTAv found occasionally high concentration in landfill leachate. These As species (i.e., DMDTAv and DMMTAv) had the higher toxicity to human cells compared to other pentavalent As species. However, there was no chemical standard material of these As species (i.e., DMDTAv and DMMTAv) commercially. In this study, we synthesized DMDTAv and DMMTAv by simulating reaction with the sufficient sulfur condition from DMAv. DMMTAv was quite changeable to DMDTAv due to its short life time from our preliminary study. Thus, it is important to find the stable condition of synthesis process for DMDTAv and DMMTAv under suitable environmental condition. This study can be very significant in quantitative analysis area to detect the various As species in environmental media such as landfill.

  11. Nitrogen Removal from Landfill Leachate by Microalgae

    Science.gov (United States)

    Pereira, Sérgio F. L.; Gonçalves, Ana L.; Moreira, Francisca C.; Silva, Tânia F. C. V.; Vilar, Vítor J. P.; Pires, José C. M.

    2016-01-01

    Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N–NH4+) concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus) removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N–NH4+ concentration. In terms of nutrients uptake, an effective removal of N–NH4+ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N–NO3− removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates. PMID:27869676

  12. Nitrogen Removal from Landfill Leachate by Microalgae.

    Science.gov (United States)

    Pereira, Sérgio F L; Gonçalves, Ana L; Moreira, Francisca C; Silva, Tânia F C V; Vilar, Vítor J P; Pires, José C M

    2016-11-17

    Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N-NH₄⁺) concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus) removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N-NH₄⁺ concentration. In terms of nutrients uptake, an effective removal of N-NH₄⁺ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N-NO₃ - removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates.

  13. Nitrogen Removal from Landfill Leachate by Microalgae

    Directory of Open Access Journals (Sweden)

    Sérgio F. L. Pereira

    2016-11-01

    Full Text Available Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N–NH4+ concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N–NH4+ concentration. In terms of nutrients uptake, an effective removal of N–NH4+ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N–NO3− removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates.

  14. Chemical Looping Combustion of Methane: A Technology Development View

    Directory of Open Access Journals (Sweden)

    Rutuja Bhoje

    2013-01-01

    Full Text Available Methane is a reliable and an abundantly available energy source occurring in nature as natural gas, biogas, landfill gas, and so forth. Clean energy generation using methane can be accomplished by using chemical looping combustion. This theoretical study for chemical looping combustion of methane was done to consider some key technology development points to help the process engineer choose the right oxygen carrier and process conditions. Combined maximum product (H2O + CO2 generation, weight of the oxygen carrier, net enthalpy of CLC process, byproduct formation, CO2 emission from the air reactor, and net energy obtainable per unit weight (gram of oxygen carrier in chemical looping combustion can be important parameters for CLC operation. Carbon formed in the fuel reactor was oxidised in the air reactor and that increased the net energy obtainable from the CLC process but resulted in CO2 emission from the air reactor. Use of CaSO4 as oxygen carrier generated maximum energy (−5.3657 kJ, 800°C per gram of oxygen carrier used in the CLC process and was found to be the best oxygen carrier for methane CLC. Such a model study can be useful to identify the potential oxygen carriers for different fuel CLC systems.

  15. Landfills and the waste act implementation - what has changed?

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2013-10-01

    Full Text Available The introduction of landfill permits by Section 20 of the Environment Conservation Act, 1989, resulted in the development of the Minimum Requirements series of documents to guide waste disposal to landfill. The promulgation of the National...

  16. Revival of Archaeal Methane Microbiology.

    Science.gov (United States)

    Welte, Cornelia U

    2018-01-01

    The methane concentration in the Earth's atmosphere is rising, and, as methane is a potent greenhouse gas, it contributes considerably to climate change. It is produced by methanogenic archaea that thrive in anoxic habitats and can be oxidized by methane-oxidizing bacteria or archaea. In this Perspective , recent innovations and discoveries in archaeal methane microbiology are discussed and a future outlook on how novel methane-metabolizing archaea might be cultivated is provided.

  17. Sensitivity analysis of the waste composition and water content parameters on the biogas production models on solid waste landfills

    Science.gov (United States)

    Rodrigo-Ilarri, Javier; Segura-Sobrino, Francisco; Rodrigo-Clavero, Maria-Elena

    2014-05-01

    Landfills are commonly used as the final deposit of urban solid waste. Despite the waste is previously processed on a treatment plant, the final amount of organic matter which reaches the landfill is large however. The biodegradation of this organic matter forms a mixture of greenhouse gases (essentially Methane and Carbon-Dioxide as well as Ammonia and Hydrogen Sulfide). From the environmental point of view, solid waste landfills are therefore considered to be one of the main greenhouse gas sources. Different mathematical models are usually applied to predict the amount of biogas produced on real landfills. The waste chemical composition and the availability of water in the solid waste appear to be the main parameters of these models. Results obtained when performing a sensitivity analysis over the biogas production model parameters under real conditions are shown. The importance of a proper characterizacion of the waste as well as the necessity of improving the understanding of the behaviour and development of the water on the unsaturated mass of waste are emphasized.

  18. Heavy element accumulation in Evernia prunastri lichen transplants around a municipal solid waste landfill in central Italy.

    Science.gov (United States)

    Nannoni, Francesco; Santolini, Riccardo; Protano, Giuseppe

    2015-09-01

    This paper presents the results of a biomonitoring study to evaluate the environmental impact of airborne emissions from a municipal solid waste landfill in central Italy. Concentrations of 11 heavy elements, as well as photosynthetic efficiency and cell membrane integrity were measured in Evernia prunastri lichens transplanted for 4months in 17 monitoring sites around the waste landfill. Heavy element contents were also determined in surface soils. Analytical data indicated that emissions from the landfill affected Cd, Co, Cr, Cu, Ni, Pb, Sb and Zn concentrations in lichens transplanted within the landfill and along the fallout direction. In these sites moderate to severe accumulation of these heavy elements in lichens was coupled with an increase in cell membrane damage and decrease in photosynthetic efficiency. Nevertheless, results indicated that landfill emissions had no relevant impact on lichens, as heavy element accumulation and weak stress symptoms were detected only in lichen transplants from sites close to solid waste. The appropriate management of this landfill poses a low risk of environmental contamination by heavy elements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Methane - quick fix or tough target? New methods to reduce emissions.

    Science.gov (United States)

    Nisbet, E. G.; Lowry, D.; Fisher, R. E.; Brownlow, R.

    2016-12-01

    Methane is a cost-effective target for greenhouse gas reduction efforts. The UK's MOYA project is designed to improve understanding of the global methane budget and to point to new methods to reduce future emissions. Since 2007, methane has been increasing rapidly: in 2014 and 2015 growth was at rates last seen in the 1980s. Unlike 20thcentury growth, primarily driven by fossil fuel emissions in northern industrial nations, isotopic evidence implies present growth is driven by tropical biogenic sources such as wetlands and agriculture. Discovering why methane is rising is important. Schaefer et al. (Science, 2016) pointed out the potential clash between methane reduction efforts and food needs of a rising, better-fed (physically larger) human population. Our own work suggests tropical wetlands are major drivers of growth, responding to weather changes since 2007, but there is no acceptable way to reduce wetland emission. Just as sea ice decline indicates Arctic warming, methane may be the most obvious tracker of climate change in the wet tropics. Technical advances in instrumentation can do much in helping cut urban and industrial methane emissions. Mobile systems can be mounted on vehicles, while drone sampling can provide a 3D view to locate sources. Urban land planning often means large but different point sources are typically clustered (e.g. landfill or sewage plant near incinerator; gas wells next to cattle). High-precision grab-sample isotopic characterisation, using Keeling plots, can separate source signals, to identify specific emitters, even where they are closely juxtaposed. Our mobile campaigns in the UK, Kuwait, Hong Kong and E. Australia show the importance of major single sources, such as abandoned old wells, pipe leaks, or unregulated landfills. If such point sources can be individually identified, even when clustered, they will allow effective reduction efforts to occur: these can be profitable and/or improve industrial safety, for example in the

  20. Microbial diversity and dynamics during methane production from municipal solid waste.

    Science.gov (United States)

    Bareither, Christopher A; Wolfe, Georgia L; McMahon, Katherine D; Benson, Craig H

    2013-10-01

    The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Methane prediction in collieries

    CSIR Research Space (South Africa)

    Creedy, DP

    1999-06-01

    Full Text Available The primary aim of the project was to assess the current status of research on methane emission prediction for collieries in South Africa in comparison with methods used and advances achieved elsewhere in the world....

  2. Methane monitoring from space

    Science.gov (United States)

    Stephan, C.; Alpers, M.; Millet, B.; Ehret, G.; Flamant, P.

    2017-11-01

    Methane is one of the strongest anthropogenic greenhouse gases. It contributes by its radiative forcing significantly to the global warming. For a better understanding of climate changes, it is necessary to apply precise space-based measurement techniques in order to obtain a global view on the complex processes that control the methane concentration in the atmosphere. The MERLIN mission is a joint French-German cooperation, on a micro satellite mission for space-based measurement of spatial and temporal gradients of atmospheric methane columns on a global scale. MERLIN will be the first Integrated Path Differential Absorption LIDAR for greenhouse gas monitoring from space. In contrast to passive methane missions, the LIDAR instrument allows measurements at alllatitudes, all-seasons and during night.

  3. Methane Metabolism by Yeast

    Data.gov (United States)

    National Aeronautics and Space Administration — Our Technical Approach is to move the soluble Methane Monooxygenase system (sMMO) from methanotrophic bacteria into Pichi). sMMO consists of a hydroxylase (MMOH)...

  4. Terrestrial plant methane production

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Møller, Ian M.

    We evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants. We conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature...... the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  5. Crenothrix are major methane consumers in stratified lakes.

    Science.gov (United States)

    Oswald, Kirsten; Graf, Jon S; Littmann, Sten; Tienken, Daniela; Brand, Andreas; Wehrli, Bernhard; Albertsen, Mads; Daims, Holger; Wagner, Michael; Kuypers, Marcel Mm; Schubert, Carsten J; Milucka, Jana

    2017-09-01

    Methane-oxidizing bacteria represent a major biological sink for methane and are thus Earth's natural protection against this potent greenhouse gas. Here we show that in two stratified freshwater lakes a substantial part of upward-diffusing methane was oxidized by filamentous gamma-proteobacteria related to Crenothrix polyspora. These filamentous bacteria have been known as contaminants of drinking water supplies since 1870, but their role in the environmental methane removal has remained unclear. While oxidizing methane, these organisms were assigned an 'unusual' methane monooxygenase (MMO), which was only distantly related to 'classical' MMO of gamma-proteobacterial methanotrophs. We now correct this assignment and show that Crenothrix encode a typical gamma-proteobacterial PmoA. Stable isotope labeling in combination swith single-cell imaging mass spectrometry revealed methane-dependent growth of the lacustrine Crenothrix with oxygen as well as under oxygen-deficient conditions. Crenothrix genomes encoded pathways for the respiration of oxygen as well as for the reduction of nitrate to N 2 O. The observed abundance and planktonic growth of Crenothrix suggest that these methanotrophs can act as a relevant biological sink for methane in stratified lakes and should be considered in the context of environmental removal of methane.

  6. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    International Nuclear Information System (INIS)

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS)

  7. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS).

  8. Assessment of the Landfill Situation of Addis Ababa City ...

    African Journals Online (AJOL)

    The objective of this study was to assess the Addis Ababa City landfill system with respect to the standard requirement for a landfill. This qualitative study was conducted during March 2001 at the Addis Ababa landfill site found at the southwestern end of Addis Ababa commonly called 'Repi'. The methods employed were ...

  9. Redox zones of a landfill leachate pollution plume (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Lyngkilde, John; Christensen, Thomas Højlund

    1992-01-01

    Downgradient from an old municipal landfill allowing leachate, rich in dissolved organic carbon, to enter a shallow sandy aerobic aquifer, a sequence of redoxe zones is identified from groundwater chemical analysis. Below the landfill, methanogenic conditions prevail, followed by sulfidogenic...... the fate of reactive pollutants leached from the landfill....

  10. Landfill stabilization focus area: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

  11. Landfill stabilization focus area: Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed

  12. A combined approach to investigate the toxicity of an industrial landfill's leachate: Chemical analyses, risk assessment and in vitro assays

    International Nuclear Information System (INIS)

    Baderna, D.; Maggioni, S.; Boriani, E.; Gemma, S.; Molteni, M.; Lombardo, A.; Colombo, A.; Bordonali, S.; Rotella, G.; Lodi, M.; Benfenati, E.

    2011-01-01

    Solid wastes constitute an important and emerging problem. Landfills are still one of the most common ways to manage waste disposal. The risk assessment of pollutants from landfills is becoming a major environmental issue in Europe, due to the large number of sites and to the importance of groundwater protection. Furthermore, there is lack of knowledge for the environmental, ecotoxicological and toxicological characteristics of most contaminants contained into landfill leacheates. Understanding leachate composition and creating an integrated strategy for risk assessment are currently needed to correctly face the landfill issues and to make projections on the long-term impacts of a landfill, with particular attention to the estimation of possible adverse effects on human health and ecosystem. In the present study, we propose an integrated strategy to evaluate the toxicity of the leachate using chemical analyses, risk assessment guidelines and in vitro assays using the hepatoma HepG2 cells as a model. The approach was applied on a real case study: an industrial waste landfill in northern Italy for which data on the presence of leachate contaminants are available from the last 11 years. Results from our ecological risk models suggest important toxic effects on freshwater fish and small rodents, mainly due to ammonia and inorganic constituents. Our results from in vitro data show an inhibition of cell proliferation by leachate at low doses and cytotoxic effect at high doses after 48 h of exposure. - Research highlights: → We study the toxicity of leachate from a non-hazardous industrial waste landfill. → We perform chemical analyses, risk assessments and in vitro assays on HepG2 cells. → Risk models suggest toxic effects due to ammonia and inorganic constituents. → In vitro assays show that leachate inhibits cell proliferation at low doses. → Leachate can induce cytotoxic effects on HepG2 cells at high doses.

  13. Valuation of environmental problems in landfill deposition and composting - test of methodology; Verdsetting av miljoekonsekvenser av avfallsdeponering og kompostering - metodeutproeving

    Energy Technology Data Exchange (ETDEWEB)

    Leknes, Einar; Movik, Espen; Wiik, Ragnhild; Meissnes, Rudolf

    1995-08-01

    This study is aimed at the tests and design of methods for valuation of environmental problems associated with the landfill deposition of household waste. An extensive review of literature has been conducted with respect to the environmental impacts and valuation methods. Environmental impact assessment and valuation with respect to emission of greenhouse gases (GHG's), leachate and disamenity, have been performed for 4 Norwegian landfills. These differ in their approach towards waste treatment in terms of GHG-collection, briquette production and composting and also in their location in terms of proximity to residential areas and the quality of natural recipients. The study shows that the collection of methane and production of briquettes causes major reductions in the generation of GHG's, whereas composting brings significant reductions for all types of environmental impacts. (author)

  14. Lamellar titanates: a breakthrough in the search for new solid oxide fuel cell anode materials operating on methane

    Energy Technology Data Exchange (ETDEWEB)

    Perillat-Merceroz, Cedric; Rosini, Sebastien; Gauthier, Gilles [CEA/LITEN, Laboratoire d' innovation technologique et des, energies nouvelles 17 rue des Martyrs, 38054 Grenoble (France); Roussel, Pascal; Vannier, Rose-Noelle [Universite Lille Nord de France, CNRS, UMR8181, UCCS, Unite de catalyse et de chimie du solide ENSCL-USTL, BP90108, 59652 Villeneuve d' Ascq (France); Gelin, Patrick [Universite Lyon1, CNRS, UMR5256, IRCELYON, Institut de recherches sur la catalyse et l' environnement, de Lyon 2 avenue Albert Einstein, 69626 Villeurbanne (France)

    2011-07-15

    Decreasing the dimensionality of the La{sub x}Sr{sub 1-x}TiO{sub 3+{delta}} family structure from 3D to 2D by increasing the La content greatly enhances the electrochemical performance of the material as an SOFC anode. This is attested to by the strong decrease in the polarization resistance values deduced from the complex impedance spectra (Nyquist plot) recorded at 900 C in H{sub 2}/H{sub 2}O(3%) on a symmetrical cell. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Measuring Methane from Cars, Ships, Airplanes, Helicopters and Drones Using High-Speed Open-Path Technology

    Science.gov (United States)

    Burba, George; Anderson, Tyler; Biraud, Sebastien; Caulton, Dana; von Fischer, Joe; Gioli, Beniamino; Hanson, Chad; Ham, Jay; Kohnert, Katrin; Larmanou, Eric; Levy, Peter; Polidori, Andrea; Pikelnaya, Olga; Sachs, Torsten; Serafimovich, Andrei; Zaldei, Alessandro; Zondlo, Mark; Zulueta, Rommel

    2017-04-01

    Methane plays a critical role in the radiation balance, chemistry of the atmosphere, and air quality. The major anthropogenic sources of methane include oil and gas development sites, natural gas distribution networks, landfill emissions, and agricultural production. The majority of oil and gas and urban methane emission occurs via variable-rate point sources or diffused spots in topographically challenging terrains (e.g., street tunnels, elevated locations at water treatment plants, vents, etc.). Locating and measuring such methane emissions is challenging when using traditional micrometeorological techniques, and requires development of novel approaches. Landfill methane emissions traditionally assessed at monthly or longer time intervals are subject to large uncertainties because of the snapshot nature of the measurements and the barometric pumping phenomenon. The majority of agricultural and natural methane production occurs in areas with little infrastructure or easily available grid power (e.g., rice fields, arctic and boreal wetlands, tropical mangroves, etc.). A lightweight, high-speed, high-resolution, open-path technology was recently developed for eddy covariance measurements of methane flux, with power consumption 30-150 times below other available technologies. It was designed to run on solar panels or a small generator and be placed in the middle of the methane-producing ecosystem without a need for grid power. Lately, this instrumentation has been utilized increasingly more frequently outside of the traditional use on stationary flux towers. These novel approaches include measurements from various moving platforms, such as cars, aircraft, and ships. Projects included mapping of concentrations and vertical profiles, leak detection and quantification, mobile emission detection from natural gas-powered cars, soil methane flux surveys, etc. This presentation will describe the latest state of the key projects utilizing the novel lightweight low-power high

  16. A HIGH-PRECISION NEAR-INFRARED SURVEY FOR RADIAL VELOCITY VARIABLE LOW-MASS STARS USING CSHELL AND A METHANE GAS CELL

    International Nuclear Information System (INIS)

    Gagné, Jonathan; Plavchan, Peter; Gao, Peter; Anglada-Escude, Guillem; Furlan, Elise; Brinkworth, Carolyn; Ciardi, David R.; Davison, Cassy; Henry, Todd J.; White, Russel; Tanner, Angelle; Riedel, Adric R.; Latham, David; Johnson, John A.; Bottom, Michael; Mills, Sean; Beichman, Chas; Wallace, Kent; Mennesson, Bertrand; Von Braun, Kaspar

    2016-01-01

    We present the results of a precise near-infrared (NIR) radial velocity (RV) survey of 32 low-mass stars with spectral types K2–M4 using CSHELL at the NASA InfraRed Telescope Facility in the K band with an isotopologue methane gas cell to achieve wavelength calibration and a novel, iterative RV extraction method. We surveyed 14 members of young (≈25–150 Myr) moving groups, the young field star ε Eridani, and 18 nearby (<25 pc) low-mass stars and achieved typical single-measurement precisions of 8–15 m s −1 with a long-term stability of 15–50 m s −1 over longer baselines. We obtain the best NIR RV constraints to date on 27 targets in our sample, 19 of which were never followed by high-precision RV surveys. Our results indicate that very active stars can display long-term RV variations as low as ∼25–50 m s −1 at ≈2.3125 μ m, thus constraining the effect of jitter at these wavelengths. We provide the first multiwavelength confirmation of GJ 876 bc and independently retrieve orbital parameters consistent with previous studies. We recovered RV variabilities for HD 160934 AB and GJ 725 AB that are consistent with their known binary orbits, and nine other targets are candidate RV variables with a statistical significance of 3 σ –5 σ . Our method, combined with the new iSHELL spectrograph, will yield long-term RV precisions of ≲5 m s −1 in the NIR, which will allow the detection of super-Earths near the habitable zone of mid-M dwarfs.

  17. A HIGH-PRECISION NEAR-INFRARED SURVEY FOR RADIAL VELOCITY VARIABLE LOW-MASS STARS USING CSHELL AND A METHANE GAS CELL

    Energy Technology Data Exchange (ETDEWEB)

    Gagné, Jonathan [Carnegie Institution of Washington DTM, 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Plavchan, Peter [Department of Physics, Missouri State University, 901 S National Ave, Springfield, MO 65897 (United States); Gao, Peter [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Anglada-Escude, Guillem [School of Physics and Astronomy, Queen Mary University of London, 327 Mile End Rd, E1 4NS, London (United Kingdom); Furlan, Elise; Brinkworth, Carolyn; Ciardi, David R. [NASA Exoplanet Science Institute, California Institute of Technology, 770 S. Wilson Ave., Pasadena, CA 91125 (United States); Davison, Cassy; Henry, Todd J.; White, Russel [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Tanner, Angelle [Mississippi State University, Department of Physics and Astronomy, Hilbun Hall, Starkville, MS 39762 (United States); Riedel, Adric R. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Latham, David; Johnson, John A. [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Bottom, Michael [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Mills, Sean [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave, Chicago, IL 60637 (United States); Beichman, Chas [NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Wallace, Kent; Mennesson, Bertrand [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91125 (United States); Von Braun, Kaspar, E-mail: jgagne@carnegiescience.edu [Lowell Observatory, West Mars Hill Road, Flagstaff, AZ 86001 (United States); and others

    2016-05-01

    We present the results of a precise near-infrared (NIR) radial velocity (RV) survey of 32 low-mass stars with spectral types K2–M4 using CSHELL at the NASA InfraRed Telescope Facility in the K band with an isotopologue methane gas cell to achieve wavelength calibration and a novel, iterative RV extraction method. We surveyed 14 members of young (≈25–150 Myr) moving groups, the young field star ε Eridani, and 18 nearby (<25 pc) low-mass stars and achieved typical single-measurement precisions of 8–15 m s{sup −1}with a long-term stability of 15–50 m s{sup −1} over longer baselines. We obtain the best NIR RV constraints to date on 27 targets in our sample, 19 of which were never followed by high-precision RV surveys. Our results indicate that very active stars can display long-term RV variations as low as ∼25–50 m s{sup −1} at ≈2.3125 μ m, thus constraining the effect of jitter at these wavelengths. We provide the first multiwavelength confirmation of GJ 876 bc and independently retrieve orbital parameters consistent with previous studies. We recovered RV variabilities for HD 160934 AB and GJ 725 AB that are consistent with their known binary orbits, and nine other targets are candidate RV variables with a statistical significance of 3 σ –5 σ . Our method, combined with the new iSHELL spectrograph, will yield long-term RV precisions of ≲5 m s{sup −1} in the NIR, which will allow the detection of super-Earths near the habitable zone of mid-M dwarfs.

  18. Pulsed Laser Techniques in Laser Heated Diamond Anvil Cells for Studying Methane (CH4) and Water (H2O) at Extreme Pressures and Temperatures

    Science.gov (United States)

    Holtgrewe, N.; Lobanov, S.; Mahmood, M.; Goncharov, A. F.

    2017-12-01

    Scientific advancement in the fields of high pressure material synthesis and research on planetary interiors rely heavily on a variety of techniques for probing such extreme conditions, such as laser-heating diamond anvil cells (LHDACs) (Goncharov et al., J. Synch. Rad., 2009) and shock compression (Nellis et al., J. Chem. Phys., 2001/ Armstrong et al., Appl. Phys. Lett., 2008). However, certain chemical properties can create complications in the detection of such extreme states, for example the instability of energetic materials, and detection of these dynamic chemical states by time-resolved methods has proven to be valuable in exploring the kinetics of these materials. Current efforts at the Linac Coherent Light Source (LCLS) for exploring the transitions between different phases of condensed matter (Armstrong et. al., APS Mar. Meeting, 2017/ Radousky et al., APS Mar. Meeting, 2017), and X-ray synchrotron pulsed heating are useful techniques but require large facilities and are not always accessible. Instead, optical properties of materials can serve as a window into the state or structure of species through electronic absorption properties. Pump-probe spectroscopy can be used to detect these electronic properties in time and allow the user to develop a picture of complex dynamic chemical events. Here we present data acquired up to 1.5 megabar (Mbar) pressures and temperatures >3000 K using pulsed transmission/reflective spectroscopy combined with a pulsed LHDAC and time-resolved detection (streak camera) (McWilliams et. al., PNAS, 2015/ McWilliams et al., PRL, 2016). Time-resolved optical properties will be presented on methane (CH4) and water (H2O) at P-T conditions found in icy bodies such as Uranus and Neptune (Lee and Scandolo, Nature Comm., 2011). Our results show that the interiors of Uranus and Neptune are optically opaque at P-T conditions corresponding to the mantles of these icy bodies, which has implications for the unusual magnetic fields of these

  19. Spatio-temporal variation of landfill gas in pilot-scale semi-aerobic and anaerobic landfills over 5years.

    Science.gov (United States)

    Wu, Xiaohui; Yue, Bo; Huang, Qifei; Wang, Qi; Lin, Ye; Zhang, Wei; Yan, Zhuoyi

    2017-04-01

    Variation of CH 4 , CO 2 , and O 2 concentrations in layers of different depths in semi-aerobic and anaerobic landfills was analyzed over a period of 5years. The results showed that most of the municipal solid waste became basically stable after 5years of landfill disposal. In the upper and middle layer, the concentration of CH 4 in the semi-aerobic landfill was significantly lower than that in the anaerobic landfill in different landfill periods, while in the lower layer, there was little difference in the CH 4 concentration between the semi-aerobic and anaerobic landfills. The average concentration of CH 4 and CO 2 in the anaerobic landfill was always higher than that in the semi-aerobic landfill, while the O 2 concentration showed an opposite variation in different landfill periods. This was related to the aerobic reaction of landfill waste around the perforated pipe in the semi-aerobic landfill, which inhibited effective landfill gas generation. Copyright © 2016. Published by Elsevier B.V.

  20. Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE).

    Science.gov (United States)

    Xing, Wei; Lu, Wenjing; Zhao, Yan; Zhang, Xu; Deng, Wenjing; Christensen, Thomas H

    2013-02-01

    In some arid regions where landfill produces minimal amount of leachate, leachate recirculation is suggested as a cost-effective option. However, its long-term impacts to environment remain disputed. For the purpose of revealing the environmental impacts of leachate recirculation in landfill, four scenarios were modeled using EASEWASTE, comparing the strategies of leachate recirculation (with or without gas management), evaporation and discharge. In the current situation (Scenario A), a total of 280 t of waste was generated and then transported to a conventional landfill for disposal. A number of contaminants derived from waste can be stored in the landfill for long periods, with 11.69 person equivalent (PE) for stored ecotoxicity in water and 29.62 PE for stored ecotoxicity in soil, considered as potential risks of releasing to the environment someday. Meanwhile, impacts to ecotoxicity and human toxicity in surface water, and those to groundwater, present relatively low levels. In Scenario B, leachate evaporation in a collecting pool has minimal impacts on surface water. However, this strategy significantly impacts groundwater (1055.16 PE) because of the potential infiltration of leachate, with major contaminants of As, ammonia, and Cd. A number of ions, such as Cl(-), Mg(2+), and Ca(2+), may also contaminate groundwater. In Scenario C, the direct discharge of leachate to surface water may result in acidification (2.71 PE) and nutrient enrichment (2.88 PE), primarily attributed to soluble ammonia in leachate and the depositional ammonia from biogas. Moreover, the direct discharge of leachate may also result in ecotoxicity and human toxicity via water contaminated by heavy metals in leachate, with 3.96 PE and 11.64 PE respectively. The results also show that landfill gas is the main contributor to global warming and photochemical ozone formation due to methane emission. In Scenario D, landfill gas flaring was thus be modeled and proven to be efficient for reducing

  1. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill

    Science.gov (United States)

    Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping

    2016-01-01

    In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability. PMID:26771627

  2. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill

    Directory of Open Access Journals (Sweden)

    Ren Peng

    2016-01-01

    Full Text Available In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability.

  3. The Comet Assay for the Evaluation of Genotoxic Potential of Landfill Leachate

    Directory of Open Access Journals (Sweden)

    Kamila Widziewicz

    2012-01-01

    Full Text Available Genotoxic assessment of landfill leachate before and after biological treatment was conducted with two human cell lines (Me45 and NHDF and Daphnia magna somatic cells. The alkali version of comet assay was used to examine genotoxicity of leachate by DNA strand breaks analysis and its repair dynamics. The leachate samples were collected from Zabrze landfill, situated in the Upper Silesian Industrial District, Poland. Statistically significant differences (Kruskal-Wallice ANOVA rank model were observed between DNA strand breaks in cells incubated with leachate before and after treatment (P<0.001. Nonparametric Friedman ANOVA confirmed time-reliable and concentration-reliable cells response to leachate concentration. Examinations of chemical properties showed a marked decrease in leachate parameters after treatment which correlate to reduced genotoxicity towards tested cells. Obtained results demonstrate that biological cotreatment of leachate together with municipal wastewater is an efficient method for its genotoxic potential reduction; however, treated leachate still possessed genotoxic character.

  4. Fiscal year 1996 groundwater sampling for the Horn Rapids Landfill

    International Nuclear Information System (INIS)

    Kemp, C.J.; Ford, B.H.

    1996-10-01

    The Horn Rapids Landfill is contained within the 1100-EM-1 Operable Unit immediately north of Richland, Washington. The landfill is a 20 hectare size area and was placed on the National Priorities List in July 1989. The landfill was used primarily to dispose of office and construction waste, asbestos, sewage sludge, and fly ash. The remedial investigation/feasibility study for the operable unit identified some polychlorinated biphenol-contaminated soil in the landfill. The operable unit record of decision included excavation of the PCB-contaminated soil and placing a soil cap over the landfill in April 1995

  5. Using landfill gas as the primary fuel for a 200 WTPD thermal dryer[Held jointly with the 4. Canadian organic residuals and biosolids managment conference

    Energy Technology Data Exchange (ETDEWEB)

    Shulmister, D. [Manattee County, Manatee, FL (United States). Wastewater Division; Monroe, A. [McKim and Creed, Cary, NC (United States)

    2007-07-01

    Although there is no evidence of health problems, there is a growing opposition to class B land application of biosolids in many localities in the United States, resulting in less sites available to dispose of class B biosolids. Manatee County, located on the West Coast of Florida, decided to implement thermal drying of its biosolids. This produced a class A pellet that could be used without restriction as a fertilizer or soil amendment. The dryer will be located at the county's southeast water reclamation facility, adjacent to the county's Lena Road landfill. The methane gas from the landfill will be used as the primary fuel for the dryer. This paper presented how Manatee County, Florida decided to meet its long term biosolids handling and disposal needs. The paper provided background information on Manatee County, Florida. It discussed the reasons for the dryer technology selection, location of the dryer, sizing criteria as well as listing the components of the dryer. The paper also discussed dryer procurement. Other topics that were presented included fuel requirements and an analysis of landfill gas. The County expects to save approximately two million dollars per year by selecting landfill gas from its Lena Road landfill as the primary fuel for the dryer. 5 tabs.

  6. Landfilling: Bottom Lining and Leachate Collection

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Manfredi, Simone; Kjeldsen, Peter

    2011-01-01

    the environmental risk associated with landfills. This chapter provides information about the materials used in the construction of liners and drainage systems, tools to calculate migrations through liners, as well as information about requirements for lining systems in the European Union (EU) and the United States...

  7. Landfill Lifespan Estimation: A Case Study

    African Journals Online (AJOL)

    Michael

    2017-12-02

    Dec 2, 2017 ... Akyen, T., Boye, C.B. and Ziggah, Y. Y. (2017), “Landfill Lifespan Estimation: A Case Study”, Ghana Mining ... through the application of various modeling ... The data was provided by the. Environmental and Sanitation Unit of the Tarkwa. Nsuaem Municipal Assembly. Table 1 presents the data used. Fig.

  8. Landfill gases and some effects on vegetation

    Science.gov (United States)

    Franklin B. Flower; Ida A. Leone; Edward F. Gilman; John J. Arthur

    1977-01-01

    Gases moving from refuse landfills through soil were studied in New Jersey. The gases, products of anaerobic decomposition of organic matter in the refuse, caused injury and death of peach trees, ornamentals, and commercial farm crops, and create possible hazards to life and property because of the entrance of combustible gases into residences. Remedial measures are...

  9. Intrinsic bioremediation of landfills interim report

    International Nuclear Information System (INIS)

    Brigmon, R.L.; Fliermans, C.B.

    1997-01-01

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP)

  10. Combined Treatment of Old Sanitary Landfill Leachate

    Directory of Open Access Journals (Sweden)

    Visnja Orescanin

    2016-06-01

    Full Text Available Landfill leachate presents hardly treatable, highly complex and very toxic environmental effluent originated in the municipal solid waste degradation process. Although, numerous treatment methods were developed so far, none of them alone could achieve permissible limits of the primary pollutants to discharge into natural recipients. The current study aimed to develop and apply the process to treat landfill leachate by simultaneous application of electrochemical me