WorldWideScience

Sample records for cell interactions uncovered

  1. Hepatitis C virus host cell interactions uncovered

    DEFF Research Database (Denmark)

    Gottwein, Judith; Bukh, Jens

    2007-01-01

      Insights into virus-host cell interactions as uncovered by Randall et al. (1) in a recent issue of PNAS further our understanding of the hepatitis C virus (HCV) life cycle, persistence, and pathogenesis and might lead to the identification of new therapeutic targets. HCV persistently infects 180...... million individuals worldwide, causing chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The only approved treatment, combination therapy with IFN- and ribavirin, targets cellular pathways (2); however, a sustained virologic response is achieved only in approximately half of the patients...... treated. Therefore, there is a pressing need for the identification of novel drugs against hepatitis C. Although most research focuses on the development of HCV-specific antivirals, such as protease and polymerase inhibitors (3), cellular targets could be pursued and might allow the development of broad...

  2. Uncovering homo-and hetero-interactions on the cell membrane using single particle tracking approaches

    Science.gov (United States)

    Torreno-Pina, Juan A.; Manzo, Carlo; Garcia-Parajo, Maria F.

    2016-03-01

    The plasma membrane of eukaryotic cells is responsible for a myriad of functions that regulate cell physiology and plays a crucial role in a multitude of processes that include adhesion, migration, signaling recognition and cell-cell communication. This is accomplished by specific interactions between different membrane components such as lipids and proteins on the lipid bilayer but also through interactions with the underlying cortical actin cytoskeleton on the intracellular side and the glycocalyx matrix in close proximity to the extracellular side. Advanced biophysical techniques, including single particle tracking (SPT) have revealed that the lateral diffusion of molecular components on the plasma membrane represents a landmark manifestation of such interactions. Indeed, by studying changes in the diffusivity of individual membrane molecules, including sub-diffusion, confined diffusion and/or transient arrest of molecules in membrane compartments, it has been possible to gain insight on the nature of molecular interactions and to infer on its functional role for cell response. In this review, we will revise some exciting results where SPT has been crucial to reveal homo- and hetero-interactions on the cell membrane.

  3. Uncovering transcriptional interactions via an adaptive fuzzy logic approach

    Directory of Open Access Journals (Sweden)

    Chen Chung-Ming

    2009-12-01

    Full Text Available Abstract Background To date, only a limited number of transcriptional regulatory interactions have been uncovered. In a pilot study integrating sequence data with microarray data, a position weight matrix (PWM performed poorly in inferring transcriptional interactions (TIs, which represent physical interactions between transcription factors (TF and upstream sequences of target genes. Inferring a TI means that the promoter sequence of a target is inferred to match the consensus sequence motifs of a potential TF, and their interaction type such as AT or RT is also predicted. Thus, a robust PWM (rPWM was developed to search for consensus sequence motifs. In addition to rPWM, one feature extracted from ChIP-chip data was incorporated to identify potential TIs under specific conditions. An interaction type classifier was assembled to predict activation/repression of potential TIs using microarray data. This approach, combining an adaptive (learning fuzzy inference system and an interaction type classifier to predict transcriptional regulatory networks, was named AdaFuzzy. Results AdaFuzzy was applied to predict TIs using real genomics data from Saccharomyces cerevisiae. Following one of the latest advances in predicting TIs, constrained probabilistic sparse matrix factorization (cPSMF, and using 19 transcription factors (TFs, we compared AdaFuzzy to four well-known approaches using over-representation analysis and gene set enrichment analysis. AdaFuzzy outperformed these four algorithms. Furthermore, AdaFuzzy was shown to perform comparably to 'ChIP-experimental method' in inferring TIs identified by two sets of large scale ChIP-chip data, respectively. AdaFuzzy was also able to classify all predicted TIs into one or more of the four promoter architectures. The results coincided with known promoter architectures in yeast and provided insights into transcriptional regulatory mechanisms. Conclusion AdaFuzzy successfully integrates multiple types of

  4. Uncovering Interaction Structures in a Brief Psychodynamic Psychotherapy

    Directory of Open Access Journals (Sweden)

    Fernanda Barcellos Serralta

    2016-08-01

    Full Text Available Abstract Interaction structures refers to the repetitive ways of interaction between the patient-therapist dyad over the course of treatment. This construct is operationalized by the repeated application of the Psychotherapy Process Q-Set (PQS to psychotherapy sessions. Studies in this line of research have so far focused only on long-term treatment. The present study examines whether interaction structures can be detected empirically in short-term psychotherapies. All sessions (N = 31 of a successful case of brief psychodynamic psychotherapy were coded with the Psychotherapy Process Q-Set (PQS. The application of Q type factor analysis procedures with varimax rotation revealed five interaction structures: resistance, alliance, facing depression, expectation of change, and introspection and hearing. The analysis of variation of these structures over the course of the treatment showed that these interactions are nonlinear, may be positively or negatively protruding in different sessions, or be predominant at some treatment phase.

  5. Uncovering the true identity of naive pluripotent stem cells

    NARCIS (Netherlands)

    Welling, M.; Geijsen, N.

    2013-01-01

    Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass (ICM) of blastocyst embryos. Although first characterized over 30 years ago, the ontology of these cells remains elusive. Identifying the in vivo counterpart of murine ESCs will be essential for the derivation of

  6. Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation.

    Science.gov (United States)

    Yamano, Koji; Queliconi, Bruno B; Koyano, Fumika; Saeki, Yasushi; Hirokawa, Takatsugu; Tanaka, Keiji; Matsuda, Noriyuki

    2015-10-16

    Damaged mitochondria are eliminated through autophagy machinery. A cytosolic E3 ubiquitin ligase Parkin, a gene product mutated in familial Parkinsonism, is essential for this pathway. Recent progress has revealed that phosphorylation of both Parkin and ubiquitin at Ser(65) by PINK1 are crucial for activation and recruitment of Parkin to the damaged mitochondria. However, the mechanism by which phosphorylated ubiquitin associates with and activates phosphorylated Parkin E3 ligase activity remains largely unknown. Here, we analyze interactions between phosphorylated forms of both Parkin and ubiquitin at a spatial resolution of the amino acid residue by site-specific photo-crosslinking. We reveal that the in-between-RING (IBR) domain along with RING1 domain of Parkin preferentially binds to ubiquitin in a phosphorylation-dependent manner. Furthermore, another approach, the Fluoppi (fluorescent-based technology detecting protein-protein interaction) assay, also showed that pathogenic mutations in these domains blocked interactions with phosphomimetic ubiquitin in mammalian cells. Molecular modeling based on the site-specific photo-crosslinking interaction map combined with mass spectrometry strongly suggests that a novel binding mechanism between Parkin and ubiquitin leads to a Parkin conformational change with subsequent activation of Parkin E3 ligase activity. PMID:26260794

  7. Uncovering protein interaction in abstracts and text using a novel linear model and word proximity networks

    CERN Document Server

    Abi-Haidar, Alaa; Maguitman, Ana G; Radivojac, Predrag; Retchsteiner, Andreas; Verspoor, Karin; Wang, Zhiping; Rocha, Luis M; 10.1186/gb-2008-9-s2-s11

    2008-01-01

    We participated in three of the protein-protein interaction subtasks of the Second BioCreative Challenge: classification of abstracts relevant for protein-protein interaction (IAS), discovery of protein pairs (IPS) and text passages characterizing protein interaction (ISS) in full text documents. We approached the abstract classification task with a novel, lightweight linear model inspired by spam-detection techniques, as well as an uncertainty-based integration scheme. We also used a Support Vector Machine and the Singular Value Decomposition on the same features for comparison purposes. Our approach to the full text subtasks (protein pair and passage identification) includes a feature expansion method based on word-proximity networks. Our approach to the abstract classification task (IAS) was among the top submissions for this task in terms of the measures of performance used in the challenge evaluation (accuracy, F-score and AUC). We also report on a web-tool we produced using our approach: the Protein Int...

  8. Uncovering Viral Protein-Protein Interactions and their Role in Arenavirus Life Cycle

    Directory of Open Access Journals (Sweden)

    Nora López

    2012-09-01

    Full Text Available The Arenaviridae family includes widely distributed pathogens that cause severe hemorrhagic fever in humans. Replication and packaging of their single-stranded RNA genome involve RNA recognition by viral proteins and a number of key protein-protein interactions. Viral RNA synthesis is directed by the virus-encoded RNA dependent-RNA polymerase (L protein and requires viral RNA encapsidation by the Nucleoprotein. In addition to the role that the interaction between L and the Nucleoprotein may have in the replication process, polymerase activity appears to be modulated by the association between L and the small multifunctional Z protein. Z is also a structural component of the virions that plays an essential role in viral morphogenesis. Indeed, interaction of the Z protein with the Nucleoprotein is critical for genome packaging. Furthermore, current evidence suggests that binding between Z and the viral envelope glycoprotein complex is required for virion infectivity, and that Z homo-oligomerization is an essential step for particle assembly and budding. Efforts to understand the molecular basis of arenavirus life cycle have revealed important details on these viral protein-protein interactions that will be reviewed in this article.

  9. Distilling a Visual Network of Retinitis Pigmentosa Gene-Protein Interactions to Uncover New Disease Candidates.

    Directory of Open Access Journals (Sweden)

    Daniel Boloc

    Full Text Available Retinitis pigmentosa (RP is a highly heterogeneous genetic visual disorder with more than 70 known causative genes, some of them shared with other non-syndromic retinal dystrophies (e.g. Leber congenital amaurosis, LCA. The identification of RP genes has increased steadily during the last decade, and the 30% of the cases that still remain unassigned will soon decrease after the advent of exome/genome sequencing. A considerable amount of genetic and functional data on single RD genes and mutations has been gathered, but a comprehensive view of the RP genes and their interacting partners is still very fragmentary. This is the main gap that needs to be filled in order to understand how mutations relate to progressive blinding disorders and devise effective therapies.We have built an RP-specific network (RPGeNet by merging data from different sources: high-throughput data from BioGRID and STRING databases, manually curated data for interactions retrieved from iHOP, as well as interactions filtered out by syntactical parsing from up-to-date abstracts and full-text papers related to the RP research field. The paths emerging when known RP genes were used as baits over the whole interactome have been analysed, and the minimal number of connections among the RP genes and their close neighbors were distilled in order to simplify the search space.In contrast to the analysis of single isolated genes, finding the networks linking disease genes renders powerful etiopathological insights. We here provide an interactive interface, RPGeNet, for the molecular biologist to explore the network centered on the non-syndromic and syndromic RP and LCA causative genes. By integrating tissue-specific expression levels and phenotypic data on top of that network, a more comprehensive biological view will highlight key molecular players of retinal degeneration and unveil new RP disease candidates.

  10. Electrocatalytic Oxygen Evolution on Iridium Oxide: Uncovering Catalyst-Substrate Interactions and Active Iridium Oxide Species

    OpenAIRE

    Reier, T.; Teschner, D; Lunkenbein, T.; Bergmann, A; Selve, S.; Kraehnert, R.; R. Schlögl; Strasser, P.

    2014-01-01

    The morphology, crystallinity, and chemical state of well-defined Ir oxide nanoscale thin-film catalysts prepared on Ti substrates at various calcination temperatures were investigated. Special emphasis was placed on the calcination temperature-dependent interaction between Ir oxide film and Ti substrate and its impact on the electrocatalytic oxygen evolution reaction (OER) activity. The Ir oxide films were characterized by scanning electron microscopy, transmission electron microscopy, scann...

  11. Fibronectin-cell interactions

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, M R; Woods, A

    1990-01-01

    in vivo. Much data suggests that fibronectins may promote extracellular matrix assembly, and cell adhesion to those matrices. However, one outstanding enigma is that fibronectins may, under different circumstances, promote both cell migration and anchorage. An analysis of the interaction of fibroblasts...... with proteolytically derived and purified domains of plasma fibronectin revealed that the type of adhesion and the correlated cytoskeletal organization depended on multiple interactions of fibronectin domains with the cell surface. Human dermal fibroblasts were capable of interacting with the integrin-binding domain...... and both heparin-binding domains of the plasma fibronectin molecule and their interactions determined the type of adhesion. The same principle was seen in a study of the ability of plasma fibronectin to promote basement membrane assembly in an endodermal cell line, PF-HR9. There also, interactions of both...

  12. Arcaine uncovers dual interactions of polyamines with the N-methyl-D-aspartate receptor

    International Nuclear Information System (INIS)

    This study investigated the interaction between the polyamines spermine and spermidine and the N-methyl-D-aspartate (NMDA) receptor by using (+)-[3H]-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-im ine maleate ([3H]MK801) binding to well washed rat brain membranes. The actions of arcaine, agmatine, diethylenetriamine and 1,8-octanediamine as polyamine antagonists were compared to use as tools in this study. Arcaine was found to be the antagonist of choice due to its greater potency. Several divalent cations, including Ba++, Ca++ and Sr++, but not Zn++, decreased the apparent potency of arcaine. These cations enhance [3H]MK801 binding in a similar fashion to spermidine and spermine suggesting that they may share a common site and mechanism of action. Moreover, arcaine competitively reduced the enhancement of [3H]MK801 binding produced by Sr++ did not alter the inhibition produced by higher concentrations of this cation, a phenomenon that also occurs with spermidine. The distinct arcaine sensitivity of the two separate phases of the concentration-response curves of both spermidine and Sr++ suggests two separate mechanisms underlying the action of spermidine-like drugs on the NMDA receptor. Further investigation of the increase in [3H]MK801 binding produced by spermidine revealed that spermidine increased the equilibrium affinity of this ligand by 2-fold without significantly altering the density of binding sites. In contrast, polyamine induced increases in the dissociation of [3H]MK801 required higher polyamine concentrations than necessary to increase ligand binding and were relatively insensitive to arcaine. These findings suggest that polyamines do not activate or promote the activation of the NMDA receptor, but instead enhance [3H]MK801 binding by allosterically increasing ligand affinity

  13. X-ray computed tomography uncovers root-root interactions: quantifying spatial relationships between interacting root systems in three dimensions

    Directory of Open Access Journals (Sweden)

    Alexander Martin Paya

    2015-04-01

    Full Text Available Research in the field of plant biology has recently demonstrated that inter- and intra-specific interactions belowground can dramatically alter root growth. Our aim was to answer questions related to the effect of inter- vs. intra-specific interactions on the growth and utilization of undisturbed space by fine roots within three dimensions (3D using micro X-ray computed tomography. To achieve this, Populus tremuloides (quaking aspen and Picea mariana (black spruce seedlings were planted into containers as either solitary individuals, or inter-/intra-specific pairs, allowed to grow for two months, and 3D metrics developed in order to quantify their use of belowground space. In both aspen and spruce, inter-specific root interactions produced a shift in the vertical distribution of the root system volume, and deepened the average position of root tips when compared to intra-specifically growing seedlings. Inter-specific interactions also increased the minimum distance between root tips belonging to the same root system. There was no effect of belowground interactions on the radial distribution of roots, or the directionality of lateral root growth for either species. In conclusion, we found that significant differences were observed more often when comparing controls (solitary individuals and paired seedlings (inter- or intra-specific, than when comparing inter- and intra-specifically growing seedlings. This would indicate that competition between neighboring seedlings was more responsible for shifting fine root growth in both species than was neighbor identity. However, significant inter- vs. intra-specific differences were observed, which further emphasizes the importance of biological interactions in competition studies.

  14. Uncovering Scaling Laws to Infer Multidrug Response of Resistant Microbes and Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kevin B. Wood

    2014-03-01

    Full Text Available Drug resistance in bacterial infections and cancers constitutes a major threat to human health. Treatments often include several interacting drugs, but even potent therapies can become ineffective in resistant mutants. Here, we simplify the picture of drug resistance by identifying scaling laws that unify the multidrug responses of drug-sensitive and -resistant cells. On the basis of these scaling relationships, we are able to infer the two-drug response of resistant mutants in previously unsampled regions of dosage space in clinically relevant microbes such as E. coli, E. faecalis, S. aureus, and S. cerevisiae as well as human non-small-cell lung cancer, melanoma, and breast cancer stem cells. Importantly, we find that scaling relations also apply across evolutionarily close strains. Finally, scaling allows one to rapidly identify new drug combinations and predict potent dosage regimes for targeting resistant mutants without any prior mechanistic knowledge about the specific resistance mechanism.

  15. Uncovering the true identity of naïve pluripotent stem cells

    NARCIS (Netherlands)

    Welling, M.; Geijsen, N.

    2013-01-01

    Summary Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass (ICM) of blastocyst embryos. Although first characterized over 30 years ago, the ontology of these cells remains elusive. Identifying the in vivo counterpart of murine ESCs will be essential for the deriv

  16. Transcriptome atlas of eight liver cell types uncovers effects of histidine catabolites on rat liver regeneration

    Indian Academy of Sciences (India)

    C. F. Chang; J. Y. Fan; F. C. Zhang; J. Ma; C. S. Xu

    2010-12-01

    Eight liver cell types were isolated using the methods of Percoll density gradient centrifugation and immunomagnetic beads to explore effects of histidine catabolites on rat liver regeneration. Rat Genome 230 2.0 Array was used to detect the expression profiles of genes associated with metabolism of histidine and its catabolites for the above-mentioned eight liver cell types, and bioinformatic and systems biology approaches were employed to analyse the relationship between above genes and rat liver regeneration. The results showed that the urocanic acid (UA) was degraded from histidine in Kupffer cells, acts on Kupffer cells itself and dendritic cells to generate immune suppression by autocrine and paracrine modes. Hepatocytes, biliary epithelia cells, oval cells and dendritic cells can convert histidine to histamine, which can promote sinusoidal endothelial cells proliferation by GsM pathway, and promote the proliferation of hepatocytes and biliary epithelia cells by GqM pathway.

  17. Uncovering cancer cell behavioral phenotype in 3-D in vitro metastatic landscapes

    Science.gov (United States)

    Liu, Liyu; Sun, Bo; Duclos, Guillaume; Kam, Yoonseok; Gatenby, Robert; Stone, Howard; Austin, Robert

    2012-02-01

    One well-known fact is that cancer cell genetics determines cell metastatic potentials. However, from a physics point of view, genetics as cell properties cannot directly act on metastasis. An agent is needed to unscramble the genetics first before generating dynamics for metastasis. Exactly this agent is cell behavioral phenotype, which is rarely studied due to the difficulties of real-time cell tracking in in vivo tissue. Here we have successfully constructed a micro in vitro environment with collagen based Extracellular Matrix (ECM) structures for cell 3-D metastasis. With stable nutrition (glucose) gradient inside, breast cancer cell MDA-MB-231 is able to invade inside the collagen from the nutrition poor site towards the nutrition rich site. Continuous confocal microscopy captures images of the cells every 12 hours and tracks their positions in 3-D space. The micro fluorescent beads pre-mixed inside the ECM demonstrate that invasive cells have altered the structures through mechanics. With the observation and the analysis of cell collective behaviors, we argue that game theory may exist between the pioneering cells and their followers in the metastatic cell group. The cell collaboration may explain the high efficiency of metastasis.

  18. Uncovering the link between malfunctions in Drosophila neuroblast asymmetric cell division and tumorigenesis

    Directory of Open Access Journals (Sweden)

    Kelsom Corey

    2012-11-01

    Full Text Available Abstract Asymmetric cell division is a developmental process utilized by several organisms. On the most basic level, an asymmetric division produces two daughter cells, each possessing a different identity or fate. Drosophila melanogaster progenitor cells, referred to as neuroblasts, undergo asymmetric division to produce a daughter neuroblast and another cell known as a ganglion mother cell (GMC. There are several features of asymmetric division in Drosophila that make it a very complex process, and these aspects will be discussed at length. The cell fate determinants that play a role in specifying daughter cell fate, as well as the mechanisms behind setting up cortical polarity within neuroblasts, have proved to be essential to ensuring that neurogenesis occurs properly. The role that mitotic spindle orientation plays in coordinating asymmetric division, as well as how cell cycle regulators influence asymmetric division machinery, will also be addressed. Most significantly, malfunctions during asymmetric cell division have shown to be causally linked with neoplastic growth and tumor formation. Therefore, it is imperative that the developmental repercussions as a result of asymmetric cell division gone awry be understood.

  19. Single cell analysis of Vibrio harveyi uncovers functional heterogeneity in response to quorum sensing signals

    Directory of Open Access Journals (Sweden)

    Anetzberger Claudia

    2012-09-01

    Full Text Available Abstract Background Vibrio harveyi and closely related species are important pathogens in aquaculture. A complex quorum sensing cascade involving three autoinducers controls bioluminescence and several genes encoding virulence factors. Single cell analysis of a V. harveyi population has already indicated intercellular heterogeneity in the production of bioluminescence. This study was undertaken to analyze the expression of various autoinducer-dependent genes in individual cells. Results Here we used reporter strains bearing promoter::gfp fusions to monitor the induction/repression of three autoinducer-regulated genes in wild type conjugates at the single cell level. Two genes involved in pathogenesis - vhp and vscP, which code for an exoprotease and a component of the type III secretion system, respectively, and luxC (the first gene in the lux operon were chosen for analysis. The lux operon and the exoprotease gene are induced, while vscP is repressed at high cell density. As controls luxS and recA, whose expression is not dependent on autoinducers, were examined. The responses of the promoter::gfp fusions in individual cells from the same culture ranged from no to high induction. Importantly, simultaneous analysis of two autoinducer induced phenotypes, bioluminescence (light detection and exoproteolytic activity (fluorescence of a promoter::gfp fusion, in single cells provided evidence for functional heterogeneity within a V. harveyi population. Conclusions Autoinducers are not only an indicator for cell density, but play a pivotal role in the coordination of physiological activities within the population.

  20. Tissue-Specific Gain of RTK Signalling Uncovers Selective Cell Vulnerability during Embryogenesis.

    Directory of Open Access Journals (Sweden)

    Yannan Fan

    Full Text Available The successive events that cells experience throughout development shape their intrinsic capacity to respond and integrate RTK inputs. Cellular responses to RTKs rely on different mechanisms of regulation that establish proper levels of RTK activation, define duration of RTK action, and exert quantitative/qualitative signalling outcomes. The extent to which cells are competent to deal with fluctuations in RTK signalling is incompletely understood. Here, we employ a genetic system to enhance RTK signalling in a tissue-specific manner. The chosen RTK is the hepatocyte growth factor (HGF receptor Met, an appropriate model due to its pleiotropic requirement in distinct developmental events. Ubiquitously enhanced Met in Cre/loxP-based Rosa26(stopMet knock-in context (Del-R26(Met reveals that most tissues are capable of buffering enhanced Met-RTK signalling thus avoiding perturbation of developmental programs. Nevertheless, this ubiquitous increase of Met does compromise selected programs such as myoblast migration. Using cell-type specific Cre drivers, we genetically showed that altered myoblast migration results from ectopic Met expression in limb mesenchyme rather than in migrating myoblasts themselves. qRT-PCR analyses show that ectopic Met in limbs causes molecular changes such as downregulation in the expression levels of Notum and Syndecan4, two known regulators of morphogen gradients. Molecular and functional studies revealed that ectopic Met expression in limb mesenchyme does not alter HGF expression patterns and levels, but impairs HGF bioavailability. Together, our findings show that myoblasts, in which Met is endogenously expressed, are capable of buffering increased RTK levels, and identify mesenchymal cells as a cell type vulnerable to ectopic Met-RTK signalling. These results illustrate that embryonic cells are sensitive to alterations in the spatial distribution of RTK action, yet resilient to fluctuations in signalling levels of an

  1. Silencing the Majority of Cerebellar Granule Cells Uncovers Their Essential Role in Motor Learning and Consolidation

    Directory of Open Access Journals (Sweden)

    Elisa Galliano

    2013-04-01

    Full Text Available Cerebellar granule cells (GCs account for more than half of all neurons in the CNS of vertebrates. Theoretical work has suggested that the abundance of GCs is advantageous for sparse coding during memory formation. Here, we minimized the output of the majority of GCs by selectively eliminating their CaV2.1 (P/Q-type Ca2+ channels, which mediate the bulk of their neurotransmitter release. This resulted in reduced GC output to Purkinje cells (PCs and stellate cells (SCs as well as in impaired long-term plasticity at GC-PC synapses. As a consequence modulation amplitude and regularity of simple spike (SS output were affected. Surprisingly, the overall motor performance was intact, whereas demanding motor learning and memory consolidation tasks were compromised. Our findings indicate that a minority of functionally intact GCs is sufficient for the maintenance of basic motor performance, whereas acquisition and stabilization of sophisticated memories require higher numbers of normal GCs controlling PC firing.

  2. Induced Pluripotent Stem Cell Models of Progranulin-Deficient Frontotemporal Dementia Uncover Specific Reversible Neuronal Defects

    Directory of Open Access Journals (Sweden)

    Sandra Almeida

    2012-10-01

    Full Text Available The pathogenic mechanisms of frontotemporal dementia (FTD remain poorly understood. Here we generated multiple induced pluripotent stem cell lines from a control subject, a patient with sporadic FTD, and an FTD patient with a novel heterozygous GRN mutation (progranulin [PGRN] S116X. In neurons and microglia differentiated from PGRN S116X induced pluripotent stem cells, the levels of intracellular and secreted PGRN were reduced, establishing patient-specific cellular models of PGRN haploinsufficiency. Through a systematic screen of inducers of cellular stress, we found that PGRN S116X neurons, but not sporadic FTD neurons, exhibited increased sensitivity to staurosporine and other kinase inhibitors. Moreover, the serine/threonine kinase S6K2, a component of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways, was specifically downregulated in PGRN S116X neurons. Both increased sensitivity to kinase inhibitors and reduced S6K2 were rescued by PGRN expression. Our findings identify cell-autonomous, reversible defects in patient neurons with PGRN deficiency, and provide a compelling model for studying PGRN-dependent pathogenic mechanisms and testing potential therapies.

  3. Uncovering the role of cathode buffer layer in organic solar cells

    Science.gov (United States)

    Qi, Boyuan; Zhang, Zhi-Guo; Wang, Jizheng

    2015-01-01

    Organic solar cells (OSCs) as the third generation photovoltaic devices have drawn intense research, for their ability to be easily deposited by low-cost solution coating technologies. However the cathode in conventional OSCs, Ca, can be only deposited by thermal evaporation and is highly unstable in ambient. Therefore various solution processible cathode buffer layers (CBLs) are synthesized as substitute of Ca and show excellent effect in optimizing performance of OSCs. Yet, there is still no universal consensus on the mechanism that how CBL works, which is evidently a critical scientific issue that should be addressed. In this article detailed studies are targeted on the interfacial physics at the interface between active layer and cathode (with and without treatment of a polar CBL) by using ultraviolet photoelectron spectroscopy, capacitance-voltage measurement, and impedance spectroscopy. The experimental data demonstrate that CBL mainly takes effect in three ways: suppressing surface states at the surface of active layer, protecting the active layer from being damaged by thermally evaporated cathode, and changing the energy level alignment by forming dipole moments with active layer and/or cathode. Our findings here provide a comprehensive picture of interfacial physics in devices with and without CBL.

  4. Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data.

    Directory of Open Access Journals (Sweden)

    Yu Liu

    Full Text Available The article revisits spatial interaction and distance decay from the perspective of human mobility patterns and spatially-embedded networks based on an empirical data set. We extract nationwide inter-urban movements in China from a check-in data set that covers half a million individuals within 370 cities to analyze the underlying patterns of trips and spatial interactions. By fitting the gravity model, we find that the observed spatial interactions are governed by a power law distance decay effect. The obtained gravity model also closely reproduces the exponential trip displacement distribution. The movement of an individual, however, may not obey the same distance decay effect, leading to an ecological fallacy. We also construct a spatial network where the edge weights denote the interaction strengths. The communities detected from the network are spatially cohesive and roughly consistent with province boundaries. We attribute this pattern to different distance decay parameters between intra-province and inter-province trips.

  5. Specific silencing of the REST target genes in insulin-secreting cells uncovers their participation in beta cell survival.

    Science.gov (United States)

    Martin, David; Allagnat, Florent; Gesina, Emilie; Caille, Dorothee; Gjinovci, Asllan; Waeber, Gerard; Meda, Paolo; Haefliger, Jacques-Antoine

    2012-01-01

    The absence of the transcriptional repressor RE-1 Silencing Transcription Factor (REST) in insulin-secreting beta cells is a major cue for the specific expression of a large number of genes. These REST target genes were largely ascribed to a function of neurotransmission in a neuronal context, whereas their role in pancreatic beta cells has been poorly explored. To identify their functional significance, we have generated transgenic mice expressing REST in beta cells (RIP-REST mice), and previously discovered that REST target genes are essential to insulin exocytosis. Herein we characterized a novel line of RIP-REST mice featuring diabetes. In diabetic RIP-REST mice, high levels of REST were associated with postnatal beta cell apoptosis, which resulted in gradual beta cell loss and sustained hyperglycemia in adults. Moreover, adenoviral REST transduction in INS-1E cells led to increased cell death under control conditions, and sensitized cells to death induced by cytokines. Screening for REST target genes identified several anti-apoptotic genes bearing the binding motif RE-1 that were downregulated upon REST expression in INS-1E cells, including Gjd2, Mapk8ip1, Irs2, Ptprn, and Cdk5r2. Decreased levels of Cdk5r2 in beta cells of RIP-REST mice further confirmed that it is controlled by REST, in vivo. Using siRNA-mediated knock-down in INS-1E cells, we showed that Cdk5r2 protects beta cells against cytokines and palmitate-induced apoptosis. Together, these data document that a set of REST target genes, including Cdk5r2, is important for beta cell survival. PMID:23029270

  6. Specific silencing of the REST target genes in insulin-secreting cells uncovers their participation in beta cell survival.

    Directory of Open Access Journals (Sweden)

    David Martin

    Full Text Available The absence of the transcriptional repressor RE-1 Silencing Transcription Factor (REST in insulin-secreting beta cells is a major cue for the specific expression of a large number of genes. These REST target genes were largely ascribed to a function of neurotransmission in a neuronal context, whereas their role in pancreatic beta cells has been poorly explored. To identify their functional significance, we have generated transgenic mice expressing REST in beta cells (RIP-REST mice, and previously discovered that REST target genes are essential to insulin exocytosis. Herein we characterized a novel line of RIP-REST mice featuring diabetes. In diabetic RIP-REST mice, high levels of REST were associated with postnatal beta cell apoptosis, which resulted in gradual beta cell loss and sustained hyperglycemia in adults. Moreover, adenoviral REST transduction in INS-1E cells led to increased cell death under control conditions, and sensitized cells to death induced by cytokines. Screening for REST target genes identified several anti-apoptotic genes bearing the binding motif RE-1 that were downregulated upon REST expression in INS-1E cells, including Gjd2, Mapk8ip1, Irs2, Ptprn, and Cdk5r2. Decreased levels of Cdk5r2 in beta cells of RIP-REST mice further confirmed that it is controlled by REST, in vivo. Using siRNA-mediated knock-down in INS-1E cells, we showed that Cdk5r2 protects beta cells against cytokines and palmitate-induced apoptosis. Together, these data document that a set of REST target genes, including Cdk5r2, is important for beta cell survival.

  7. The Making of a History Standards Wiki: "Covering", "Uncovering", and "Discovering" Curriculum Frameworks Using a Highly Interactive Technology

    Science.gov (United States)

    Maloy, Robert W.; Poirier, Michelle; Smith, Hilary K.; Edwards, Sharon A.

    2010-01-01

    This article explores using a wiki, one of the newest forms of interactive computer-based technology, as a resource for teaching the Massachusetts K-12 History and Social Science Curriculum Framework, a set of state-mandated learning standards. Wikis are web pages that can be easily edited by multiple authors. They invite active involvement by…

  8. LIF independent JAK signalling to chromatin in embryonic stem cells uncovered from an adult stem cell disease

    OpenAIRE

    Griffiths, Dean S.; Li, Juan; Dawson, Mark A.; Trotter, Matthew W B; Cheng, Yi-Han; Smith, Aileen M.; Mansfield, William; Liu, Pentao; Kouzarides, Tony; Nichols, Jennifer; Bannister, Andrew J; Green, Anthony R.; Göttgens, Berthold

    2010-01-01

    Activating mutations in the tyrosine kinase JAK2 cause myeloproliferative neoplasms, clonal blood stem cell disorders with a propensity for leukaemic transformation. LIF signalling through JAK-STAT enables ES cell self-renewal. Here we show that mouse ES cells carrying the human JAK2V617F mutation could self-renew in chemically defined conditions without cytokines or small molecule inhibitors independently of JAK signalling through STAT3 or PI3K pathways. Phosphorylation of histone H3Y41 by J...

  9. Enhanced CLIP uncovers IMP protein-RNA targets in human pluripotent stem cells important for cell adhesion and survival

    Science.gov (United States)

    Conway, Anne E.; Van Nostrand, Eric L.; Pratt, Gabriel A.; Aigner, Stefan; Wilbert, Melissa L.; Sundararaman, Balaji; Freese, Peter; Lambert, Nicole J.; Sathe, Shashank; Liang, Tiffany Y.; Essex, Anthony; Landais, Severine; Burge, Christopher B.; Jones, D. Leanne; Yeo, Gene W.

    2016-01-01

    SUMMARY Human pluripotent stem cells (hPSCs) require precise control of post-transcriptional RNA networks to maintain proliferation and survival. Using enhanced UV crosslinking and immunoprecipitation (eCLIP), we identify RNA targets of the IMP/IGF2BP family of RNA-binding proteins in hPSCs. At the broad region- and binding site-level IMP1 and IMP2 show reproducible binding to a large and overlapping set of 3′UTR-enriched targets. RNA Bind-N-Seq applied to recombinant full-length IMP1 and IMP2 reveals CA-rich motifs that are enriched in eCLIP-defined binding sites. We observe that IMP1 loss in hPSCs recapitulates IMP1 phenotypes, including a reduction in cell adhesion and an increase in cell death. For cell adhesion, in hPSCs we find IMP1 maintains levels of integrin mRNA, specifically regulating RNA stability of ITGB5. Additionally, we show IMP1 can be linked to hPSC survival via direct target BCL2. Thus, transcriptome-wide binding profiles identify hPSC targets modulating well-characterized IMP1 roles. PMID:27068461

  10. The cell-surface interaction.

    Science.gov (United States)

    Hayes, J S; Czekanska, E M; Richards, R G

    2012-01-01

    The realm of surface-dependent cell and tissue responses is the foundation of orthopaedic-device-related research. However, to design materials that elicit specific responses from tissues is a complex proposition mainly because the vast majority of the biological principles controlling the interaction of cells with implants remain largely ambiguous. Nevertheless, many surface properties, such as chemistry and topography, can be manipulated in an effort to selectively control the cell-material interaction. On the basis of this information there has been much research in this area, including studies focusing on the structure and composition of the implant interface, optimization of biological and chemical coatings and elucidation of the mechanisms involved in the subsequent cell-material interactions. Although a wealth of information has emerged, it also advocates the complexity and dynamism of the cell-material interaction. Therefore, this chapter aims to provide the reader with an introduction to the basic concepts of the cell-material interaction and to provide an insight into the factors involved in determining the cell and tissue response to specific surface features, with specific emphasis on surface microtopography. PMID:21984613

  11. Genetic cell targeting uncovers specific neuronal types and distinct subregions in the bed nucleus of the stria terminalis.

    Science.gov (United States)

    Nguyen, Amanda Q; Dela Cruz, Julie A D; Sun, Yanjun; Holmes, Todd C; Xu, Xiangmin

    2016-08-15

    The bed nucleus of the stria terminalis (BNST) plays an important role in fear, stress, and anxiety. It contains a collection of subnuclei delineated by gross cytoarchitecture features; however, there has yet to be a systematic examination of specific BNST neuronal types and their associated neurochemical makeup. The present study focuses on improved characterization of the anterior BNST based on differing molecular and chemical expression aided by mouse genetics. Specific Cre driver lines crossed with a fluorescent reporter line were used for genetic cell targeting and immunochemical staining. Using this new approach, we were able to robustly identify specific excitatory and inhibitory cell types in the BNST. The presence and distribution of excitatory neurons were firmly established; glutamatergic neurons in the anterior BNST accounted for about 14% and 31% of dorsal and ventral BNST cells, respectively. GABAergic neurons expressing different isoforms of glutamic acid decarboxylase were found to have differential subregional distributions. Almost no parvalbumin-expressing cells were found in the BNST, while somatostatin-expressing cells and calretinin-expressing cells account for modest proportions of BNST cells. In addition, vasoactive intestinal peptide-expressing axonal plexuses were prominent in the oval and juxtacapsular subregions. In addition, we discovered that corticotropin-releasing hormone-expressing cells contain GABAergic and glutamatergic subpopulations. Together, this study reveals new information on excitatory and inhibitory neurons in the BNST, which will facilitate genetic dissection and functional studies of BNST subregions. J. Comp. Neurol. 524:2379-2399, 2016. © 2016 Wiley Periodicals, Inc. PMID:26718312

  12. Uncovering SUMOylation Dynamics during Cell-Cycle Progression Reveals FoxM1 as a Key Mitotic SUMO Target Protein

    DEFF Research Database (Denmark)

    Schimmel, Joost; Eifler, Karolin; Sigurdsson, Jón Otti; Cuijpers, Sabine A G; Hendriks, Ivo A; Verlaan-de Vries, Matty; Kelstrup, Christian D; Francavilla, Chiara; Medema, René H; Olsen, Jesper Velgaard; Vertegaal, Alfred C O

    2014-01-01

    Loss of small ubiquitin-like modification (SUMOylation) in mice causes genomic instability due to the missegregation of chromosomes. Currently, little is known about the identity of relevant SUMO target proteins that are involved in this process and about global SUMOylation dynamics during cell-cycle...... progression. We performed a large-scale quantitative proteomics screen to address this and identified 593 proteins to be SUMO-2 modified, including the Forkhead box transcription factor M1 (FoxM1), a key regulator of cell-cycle progression and chromosome segregation. SUMOylation of FoxM1 peaks during G2 and M...... relieving FoxM1 autorepression. Cells deficient for FoxM1 SUMOylation showed increased levels of polyploidy. Our findings contribute to understanding the role of SUMOylation during cell-cycle progression....

  13. Whole genome bisulfite sequencing of cell-free DNA and its cellular contributors uncovers placenta hypomethylated domains

    OpenAIRE

    Jensen, Taylor J.; Kim, Sung K; Zhu, Zhanyang; Chin, Christine; Gebhard, Claudia; Lu, Tim; Deciu, Cosmin; Van den Boom, Dirk; Ehrich, Mathias

    2015-01-01

    Background Circulating cell-free fetal DNA has enabled non-invasive prenatal fetal aneuploidy testing without direct discrimination of the maternal and fetal DNA. Testing may be improved by specifically enriching the sample material for fetal DNA. DNA methylation may allow for such a separation of DNA; however, this depends on knowledge of the methylomes of circulating cell-free DNA and its cellular contributors. Results We perform whole genome bisulfite sequencing on a set of unmatched sampl...

  14. Uncovering surface-exposed antigens of Lactobacillus rhamnosus by cell shaving proteomics and two-dimensional immunoblotting.

    Science.gov (United States)

    Espino, Eva; Koskenniemi, Kerttu; Mato-Rodriguez, Lourdes; Nyman, Tuula A; Reunanen, Justus; Koponen, Johanna; Öhman, Tiina; Siljamäki, Pia; Alatossava, Tapani; Varmanen, Pekka; Savijoki, Kirsi

    2015-02-01

    The present study reports the identification and comparison of all expressed cell-surface exposed proteins from the well-known probiotic L. rhamnosus GG and a related dairy strain, Lc705. To obtain this information, the cell-surface bound proteins were released from intact cells by trypsin shaving under hypertonic conditions with and without DTT. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses of the purified peptides identified a total of 102 and 198 individual proteins from GG and Lc705, respectively. Comparison of both data sets suggested that the Msp-type antigens (Msp1, Msp2) and the serine protease HtrA were uniquely exposed at the cell surface of GG, whereas the Lc705-specific proteins included lactocepin and a wider range of different moonlighting proteins. ImmunoEM analyses with the GG and Lc705 antibodies suggested that the whole-cell immunization yielded antibodies toward surface-bound proteins and proteins that were secreted or released from the cell-surface. One of the detected antigens was a pilus-like structure on the surface of GG cells, which was not detected with Lc705 antibodies. Further 2-DE immunoblotting analysis of GG proteins with both L. rhamnosus antisera revealed that majority of the detected antigens were moonlighting proteins with potential roles in adhesion, pathogen exclusion or immune stimulation. The present study provides the first catalog of surface-exposed proteins from lactobacilli and highlights the importance of the specifically exposed moonlighting proteins for adaptation and probiotic functions of L. rhamnosus. PMID:25531588

  15. Cell-cell interactions promote mammary epithelial cell differentiation

    OpenAIRE

    1985-01-01

    Mammary epithelium differentiates in a stromal milieu of adipocytes and fibroblasts. To investigate cell-cell interactions that may influence mammary epithelial cell differentiation, we developed a co-culture system of murine mammary epithelium and adipocytes and other fibroblasts. Insofar as caseins are specific molecular markers of mammary epithelial differentiation, rat anti-mouse casein monoclonal antibodies were raised against the three major mouse casein components to study this interac...

  16. Nonlinear Interaction of Convective Cells in Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans; Juul Rasmussen, Jens; Thomsen, Kenneth

    1984-01-01

    The nonlinear interaction of externally excited convective cells was investigated experimentally. Two cells of the same polarity were observed to coalesce into one large cell provided their relative distance was sufficiently short. The nonlinear nature of the interaction was explicitly demonstrat...

  17. Functional Metabolomics Uncovers Metabolic Alterations Associated to Severe Oxidative Stress in MCF7 Breast Cancer Cells Exposed to Ascididemin

    OpenAIRE

    Daniel Morvan

    2013-01-01

    Marine natural products are a source of promising agents for cancer treatment. However, there is a need to improve the evaluation of their mechanism of action in tumors. Metabolomics of the response to anti-tumor agents is a tool to reveal candidate biomarkers and metabolic targets. We used two-dimensional high-resolution magic angle spinning proton-NMR spectroscopy-based metabolomics to investigate the response of MCF7 breast cancer cells to ascididemin, a marine alkaloid and lead molecule f...

  18. Single-stranded DNA library preparation uncovers the origin and diversity of ultrashort cell-free DNA in plasma

    OpenAIRE

    Philip Burnham; Min Seong Kim; Sean Agbor-Enoh; Helen Luikart; Hannah A. Valantine; Kiran K Khush; Iwijn De Vlaminck

    2016-01-01

    Circulating cell-free DNA (cfDNA) is emerging as a powerful monitoring tool in cancer, pregnancy and organ transplantation. Nucleosomal DNA, the predominant form of plasma cfDNA, can be adapted for sequencing via ligation of double-stranded DNA (dsDNA) adapters. dsDNA library preparations, however, are insensitive to ultrashort, degraded cfDNA. Drawing inspiration from advances in paleogenomics, we have applied a single-stranded DNA (ssDNA) library preparation method to sequencing of cfDNA in...

  19. Functional Metabolomics Uncovers Metabolic Alterations Associated to Severe Oxidative Stress in MCF7 Breast Cancer Cells Exposed to Ascididemin

    Directory of Open Access Journals (Sweden)

    Daniel Morvan

    2013-10-01

    Full Text Available Marine natural products are a source of promising agents for cancer treatment. However, there is a need to improve the evaluation of their mechanism of action in tumors. Metabolomics of the response to anti-tumor agents is a tool to reveal candidate biomarkers and metabolic targets. We used two-dimensional high-resolution magic angle spinning proton-NMR spectroscopy-based metabolomics to investigate the response of MCF7 breast cancer cells to ascididemin, a marine alkaloid and lead molecule for anti-cancer treatment. Ascididemin induced severe oxidative stress and apoptosis within 48 h of exposure. Thirty-three metabolites were quantified. Metabolic response involved downregulation of glycolysis and the tricarboxylic acid cycle, and phospholipid metabolism alterations. Candidate metabolic biomarkers of the response of breast cancer cells to ascididemin were proposed including citrate, gluconate, polyunsaturated fatty acids, glycerophospho-choline and -ethanolamine. In addition, candidate metabolic targets were identified. Overall, the response to Asc could be related to severe oxidative stress and anti-inflammatory effects.

  20. Gene network and familial analyses uncover a gene network involving Tbx5/Osr1/Pcsk6 interaction in the second heart field for atrial septation.

    Science.gov (United States)

    Zhang, Ke K; Xiang, Menglan; Zhou, Lun; Liu, Jielin; Curry, Nathan; Heine Suñer, Damian; Garcia-Pavia, Pablo; Zhang, Xiaohua; Wang, Qin; Xie, Linglin

    2016-03-15

    Atrial septal defects (ASDs) are a common human congenital heart disease (CHD) that can be induced by genetic abnormalities. Our previous studies have demonstrated a genetic interaction between Tbx5 and Osr1 in the second heart field (SHF) for atrial septation. We hypothesized that Osr1 and Tbx5 share a common signaling networking and downstream targets for atrial septation. To identify this molecular networks, we acquired the RNA-Seq transcriptome data from the posterior SHF of wild-type, Tbx5(+/) (-), Osr1(+/-), Osr1(-/-) and Tbx5(+/-)/Osr1(+/-) mutant embryos. Gene set analysis was used to identify the Kyoto Encyclopedia of Genes and Genomes pathways that were affected by the doses of Tbx5 and Osr1. A gene network module involving Tbx5 and Osr1 was identified using a non-parametric distance metric, distance correlation. A subset of 10 core genes and gene-gene interactions in the network module were validated by gene expression alterations in posterior second heart field (pSHF) of Tbx5 and Osr1 transgenic mouse embryos, a time-course gene expression change during P19CL6 cell differentiation. Pcsk6 was one of the network module genes that were linked to Tbx5. We validated the direct regulation of Tbx5 on Pcsk6 using immunohistochemical staining of pSHF, ChIP-quantitative polymerase chain reaction and luciferase reporter assay. Importantly, we identified Pcsk6 as a novel gene associated with ASD via a human genotyping study of an ASD family. In summary, our study implicated a gene network involving Tbx5, Osr1 and Pcsk6 interaction in SHF for atrial septation, providing a molecular framework for understanding the role of Tbx5 in CHD ontogeny. PMID:26744331

  1. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control.

    Science.gov (United States)

    Pinzon-Morales, Ruben-Dario; Hirata, Yutaka

    2015-01-01

    The cerebellar granule cells (GCs) have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to support motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN) to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF), an unstable two-wheel balancing robot (2 DOFs), and a simulation model of a quadcopter (6 DOFs). Results showed that adequate control was maintained with a relatively small number of GCs (< 200) in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs). It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights). Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections). PMID:25983678

  2. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control

    Directory of Open Access Journals (Sweden)

    Ruben Dario Pinzon Morales

    2015-05-01

    Full Text Available The cerebellar granule cells (GCs have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to \\textcolor{red}{support} motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF, an unstable two-wheel balancing robot (2 DOFs, and a simulation model of a quadcopter (6 DOFs. Results showed that adequate control was maintained with a relatively small number of GCs ($<$ 200 in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs. It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights. Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections.

  3. Single-stranded DNA library preparation uncovers the origin and diversity of ultrashort cell-free DNA in plasma.

    Science.gov (United States)

    Burnham, Philip; Kim, Min Seong; Agbor-Enoh, Sean; Luikart, Helen; Valantine, Hannah A; Khush, Kiran K; De Vlaminck, Iwijn

    2016-01-01

    Circulating cell-free DNA (cfDNA) is emerging as a powerful monitoring tool in cancer, pregnancy and organ transplantation. Nucleosomal DNA, the predominant form of plasma cfDNA, can be adapted for sequencing via ligation of double-stranded DNA (dsDNA) adapters. dsDNA library preparations, however, are insensitive to ultrashort, degraded cfDNA. Drawing inspiration from advances in paleogenomics, we have applied a single-stranded DNA (ssDNA) library preparation method to sequencing of cfDNA in the plasma of lung transplant recipients (40 samples, six patients). We found that ssDNA library preparation yields a greater portion of sub-100 bp nuclear genomic cfDNA (p 10(-5), Mann-Whitney U Test), and an increased relative abundance of mitochondrial (10.7x, p 10(-5)) and microbial cfDNA (71.3x, p 10(-5)). The higher yield of microbial sequences from this method increases the sensitivity of cfDNA-based monitoring for infections following transplantation. We detail the fragmentation pattern of mitochondrial, nuclear genomic and microbial cfDNA over a broad fragment length range. We report the observation of donor-specific mitochondrial cfDNA in the circulation of lung transplant recipients. A ssDNA library preparation method provides a more informative window into understudied forms of cfDNA, including mitochondrial and microbial derived cfDNA and short nuclear genomic cfDNA, while retaining information provided by standard dsDNA library preparation methods. PMID:27297799

  4. Nonlinear Interaction of Convective Cells in Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans; Juul Rasmussen, Jens; Thomsen, Kenneth

    1985-01-01

    The nonlinear interaction of externally excited convective cells was investigated experimentally. Two cells of the same polarity coalesced into one large cell provided their relative distance was sufficiently short, while cells of opposite polarity interacted through a mutual perturbation of orbi...... only. The nonlinear nature of the coalescence was explicitly demonstrated. The implications of the observations for interpreting the cascade in a turbulent spectrum in two-dimensional systems are pointed out....

  5. Interactions between semiconductor nanowires and living cells

    International Nuclear Information System (INIS)

    Semiconductor nanowires are increasingly used for biological applications and their small dimensions make them a promising tool for sensing and manipulating cells with minimal perturbation. In order to interface cells with nanowires in a controlled fashion, it is essential to understand the interactions between nanowires and living cells. The present paper reviews current progress in the understanding of these interactions, with knowledge gathered from studies where living cells were interfaced with vertical nanowire arrays. The effect of nanowires on cells is reported in terms of viability, cell–nanowire interface morphology, cell behavior, changes in gene expression as well as cellular stress markers. Unexplored issues and unanswered questions are discussed. (topical review)

  6. Interaction between Mesenchymal Stem Cells and B-Cells

    Science.gov (United States)

    Fan, Linxiao; Hu, Chenxia; Chen, Jiajia; Cen, Panpan; Wang, Jie; Li, Lanjuan

    2016-01-01

    Mesenchymal stem cells (MSCs) are multipotent; non-hematopoietic stem cells. Because of their immunoregulatory abilities; MSCs are widely used for different clinical applications. Compared with that of other immune cells; the investigation of how MSCs specifically regulate B-cells has been superficial and insufficient. In addition; the few experimental studies on this regulation are often contradictory. In this review; we summarize the various interactions between different types or states of MSCs and B-cells; address how different types of MSCs and B-cells affect this interaction and examine how other immune cells influence the regulation of B-cells by MSCs. Finally; we hypothesize why there are conflicting results on the interaction between MSCs and B-cells in the literature. PMID:27164080

  7. Cell Docking, Movement and Cell-Cell Interactions of Heterogeneous Cell Suspensions in a Cell Manipulation Microdevice

    OpenAIRE

    Long-Sun Huang; Yu-Hung Wang; Yu-Wei Chung; Fei-Lung Lai; Shiaw-Min Hwang

    2011-01-01

    This study demonstrates a novel cell manipulation microdevice for cell docking, culturing, cell-cell contact and interaction by microfluidic manipulation of heterogeneous cell suspensions. Heterogeneous cell suspensions include disparate blood cells of natural killer cells and leukemia cancer cells for immune cell transplantation therapy. However, NK cell alloreactivity from different healthy donors present various recovery response levels. Little is still known about the interactions and cyt...

  8. Focal adhesions and cell-matrix interactions

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1988-01-01

    Focal adhesions are areas of cell surfaces where specializations of cytoskeletal, membrane and extracellular components combine to produce stable cell-matrix interactions. The morphology of these adhesions and the components identified in them are discussed together with possible mechanisms of...

  9. Uncovering the function of Disrupted in Schizophrenia 1 through interactions with the cAMP phosphodiesterase PDE4: Contributions of the Houslay lab to molecular psychiatry.

    Science.gov (United States)

    Brandon, Nicholas J

    2016-07-01

    Nearly 10years ago the laboratory of Miles Houslay was part of a collaboration which identified and characterized the interaction between Disrupted in Schizophrenia 1 and phosphodiesterase type 4. This work has had significant impact on our thinking of psychiatric illness causation and the potential for therapeutics. PMID:26432168

  10. Interaction of tumor cells with the microenvironment

    Directory of Open Access Journals (Sweden)

    Lehnert Hendrik

    2011-09-01

    Full Text Available Abstract Recent advances in tumor biology have revealed that a detailed analysis of the complex interactions of tumor cells with their adjacent microenvironment (tumor stroma is mandatory in order to understand the various mechanisms involved in tumor growth and the development of metastasis. The mutual interactions between tumor cells and cellular and non-cellular components (extracellular matrix = ECM of the tumor microenvironment will eventually lead to a loss of tissue homeostasis and promote tumor development and progression. Thus, interactions of genetically altered tumor cells and the ECM on the one hand and reactive non-neoplastic cells on the other hand essentially control most aspects of tumorigenesis such as epithelial-mesenchymal-transition (EMT, migration, invasion (i.e. migration through connective tissue, metastasis formation, neovascularisation, apoptosis and chemotherapeutic drug resistance. In this mini-review we will focus on these issues that were recently raised by two review articles in CCS.

  11. Interaction of Stellate Cells with Pancreatic Carcinoma Cells

    International Nuclear Information System (INIS)

    Pancreatic cancer is characterized by its late detection, aggressive growth, intense infiltration into adjacent tissue, early metastasis, resistance to chemo- and radiotherapy and a strong “desmoplastic reaction”. The dense stroma surrounding carcinoma cells is composed of fibroblasts, activated stellate cells (myofibroblast-like cells), various inflammatory cells, proliferating vascular structures, collagens and fibronectin. In particular the cellular components of the stroma produce the tumor microenvironment, which plays a critical role in tumor growth, invasion, spreading, metastasis, angiogenesis, inhibition of anoikis, and chemoresistance. Fibroblasts, myofibroblasts and activated stellate cells produce the extracellular matrix components and are thought to interact actively with tumor cells, thereby promoting cancer progression. In this review, we discuss our current understanding of the role of pancreatic stellate cells (PSC) in the desmoplastic response of pancreas cancer and the effects of PSC on tumor progression, metastasis and drug resistance. Finally we present some novel ideas for tumor therapy by interfering with the cancer cell-host interaction

  12. Mimicking the inflammatory cell adhesion cascade by nucleic acid aptamer programmed cell-cell interactions

    OpenAIRE

    Zhao, Weian; Loh, Weili; Droujinine, Ilia A.; Teo, Weisuong; Kumar, Namit; Schafer, Sebastian; Cui, Cheryl H.; Zhang, Liang; Sarkar, Debanjan; Karnik, Rohit; Karp, Jeffrey M.

    2011-01-01

    Nature has evolved effective cell adhesion mechanisms to deliver inflammatory cells to inflamed tissue; however, many culture-expanded therapeutic cells are incapable of targeting diseased tissues following systemic infusion, which represents a great challenge in cell therapy. Our aim was to develop simple approaches to program cell-cell interactions that would otherwise not exist toward cell targeting and understanding the complex biology of cell-cell interactions. We employed a chemistry ap...

  13. Niche interactions in epidermal stem cells

    Institute of Scientific and Technical Information of China (English)

    Hye-Ryung Choi; Sang-Young Byun; Soon-Hyo Kwon; Kyoung-Chan Park

    2015-01-01

    Within the epidermis and dermis of the skin, cellssecrete and are surrounded by the extracellular matrix(ECM), which provides structural and biochemicalsupport. The ECM of the epidermis is the basementmembrane, and collagen and other dermal componentsconstitute the ECM of the dermis. There is significantvariation in the composition of the ECM of the epidermisand dermis, which can affect "cell to cell" and "cellto ECM" interactions. These interactions, in turn, caninfluence biological responses, aging, and woundhealing; abnormal ECM signaling likely contributes toskin diseases. Thus, strategies for manipulating cell-ECM interactions are critical for treating wounds and avariety of skin diseases. Many of these strategies focuson epidermal stem cells, which reside in a unique nichein which the ECM is the most important component;interactions between the ECM and epidermal stemcells play a major role in regulating stem cell fate. Asthey constitute a major portion of the ECM, it is likelythat integrins and type Ⅳ collagens are important instem cell regulation and maintenance. In this review,we highlight recent research-including our previouswork-exploring the role that the ECM and its associatedcomponents play in shaping the epidermal stem cellniche.

  14. Finding missing interactions of the Arabidopsis thaliana root stem cell niche gene regulatory network

    Directory of Open Access Journals (Sweden)

    Eugenio eAzpeitia

    2013-04-01

    Full Text Available AbstractOver the last few decades, the Arabidopsis thaliana root stem cell niche has become a model system for the study of plant development and the stem cell niche. Currently, many of the molecular mechanisms involved in root stem cell niche maintenance and development have been described. A few years ago, we published a gene regulatory network model integrating this information. This model suggested that there were missing components or interactions. Upon updating the model, the observed stable gene configurations of the root stem cell niche could not be recovered, indicating that there are additional missing components or interactions in the model. In fact, due to the lack of experimental data, gene regulatory networks inferred from published data are usually incomplete. However, predicting the location and nature of the missing data is a not trivial task. Here, we propose a set of procedures for detecting and predicting missing interactions in Boolean networks. We used these procedures to predict putative missing interactions in the A. thaliana root stem cell niche network model. Using our approach, we identified three necessary interactions to recover the reported gene activation configurations that have been experimentally uncovered for the different cell types within the root stem cell niche: 1 a regulation of PHABULOSA to restrict its expression domain to the vascular cells, 2 a self-regulation of WOX5, possibly by an indirect mechanism through the auxin signalling pathway and 3 a positive regulation of JACKDAW by MAGPIE. The procedures proposed here greatly reduce the number of possible Boolean functions that are biologically meaningful and experimentally testable and that do not contradict previous data. We believe that these procedures can be used on any Boolean network. However, because the procedures were designed for the specific case of the root stem cell niche, formal demonstrations of the procedures should be shown in future

  15. Proteomics of cell-cell interactions in health and disease.

    Science.gov (United States)

    Lindoso, Rafael S; Sandim, Vanessa; Collino, Federica; Carvalho, Adriana B; Dias, Juliana; da Costa, Milene R; Zingali, Russolina B; Vieyra, Adalberto

    2016-01-01

    The mechanisms of cell-cell communications are now under intense study by proteomic approaches. Proteomics has unraveled changes in protein profiling as the result of cell interactions mediated by ligand/receptor, hormones, soluble factors, and the content of extracellular vesicles. Besides being a brief overview of the main and profitable methodologies now available (evaluating theory behind the methods, their usefulness, and pitfalls), this review focuses on-from a proteome perspective-some signaling pathways and post-translational modifications (PTMs), which are essential for understanding ischemic lesions and their recovery in two vital organs in mammals, the heart, and the kidney. Knowledge of misdirection of the proteome during tissue recovery, such as represented by the convergence between fibrosis and cancer, emerges as an important tool in prognosis. Proteomics of cell-cell interaction is also especially useful for understanding how stem cells interact in injured tissues, anticipating clues for rational therapeutic interventions. In the effervescent field of induced pluripotency and cell reprogramming, proteomic studies have shown what proteins from specialized cells contribute to the recovery of infarcted tissues. Overall, we conclude that proteomics is at the forefront in helping us to understand the mechanisms that underpin prevalent pathological processes. PMID:26552723

  16. The Molecular Interaction of CAR and JAML Recruits the Central Cell Signal Transducer PI3K

    Energy Technology Data Exchange (ETDEWEB)

    Verdino, Petra; Witherden, Deborah A.; Havran, Wendy L.; Wilson, Ian A. (Scripps)

    2010-11-15

    Coxsackie and adenovirus receptor (CAR) is the primary cellular receptor for group B coxsackieviruses and most adenovirus serotypes and plays a crucial role in adenoviral gene therapy. Recent discovery of the interaction between junctional adhesion molecule-like protein (JAML) and CAR uncovered important functional roles in immunity, inflammation, and tissue homeostasis. Crystal structures of JAML ectodomain (2.2 angstroms) and its complex with CAR (2.8 angstroms) reveal an unusual immunoglobulin-domain assembly for JAML and a charged interface that confers high specificity. Biochemical and mutagenesis studies illustrate how CAR-mediated clustering of JAML recruits phosphoinositide 3-kinase (P13K) to a JAML intracellular sequence motif as delineated for the {alpha}{beta} T cell costimulatory receptor CD28. Thus, CAR and JAML are cell signaling receptors of the immune system with implications for asthma, cancer, and chronic nonhealing wounds.

  17. Uncovering undetected hypoglycemic events

    Directory of Open Access Journals (Sweden)

    Unger J

    2012-03-01

    Full Text Available Jeff UngerCatalina Research Institute, Chino, CA, USAAbstract: Hypoglycemia is the rate-limiting factor that often prevents patients with diabetes from safely and effectively achieving their glycemic goals. Recent studies have reported that severe hypoglycemia is associated with a significant increase in the adjusted risks of major macrovascular events, major microvascular events, and mortality. Minor hypoglycemic episodes can also have serious implications for patient health, psychological well being, and adherence to treatment regimens. Hypoglycemic events can impact the health economics of the patient, their employer, and third-party payers. Insulin treatment is a key predictor of hypoglycemia, with one large population-based study reporting an overall prevalence of 7.1% (type 1 diabetes mellitus and 7.3% (type 2 diabetes mellitus in insulin-treated patients, compared with 0.8% in patients with type 2 diabetes treated with an oral sulfonylurea. Patients with type 1 diabetes typically experience symptomatic hypoglycemia on average twice weekly and severe hypoglycemia once annually. The progressive loss of islet cell function in patients with type 2 diabetes results in a higher risk of both symptomatic and unrecognized hypoglycemia over time. Patients with diabetes who become hypoglycemic are also more susceptible to developing defective counter-regulation, also known as hypoglycemia awareness autonomic failure, which is life-threatening and must be aggressively addressed. In patients unable to recognize hypoglycemia symptoms, frequent home monitoring or use of continuous glucose sensors are critical. Primary care physicians play a key role in the prevention and management of hypoglycemia in patients with diabetes, particularly in those requiring intensive insulin therapy, yet physicians are often unaware of the multitude of consequences of hypoglycemia or how to deal with them. Careful monitoring, adherence to guidelines, and use of optimal

  18. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity.

    Science.gov (United States)

    Molumby, Michael J; Keeler, Austin B; Weiner, Joshua A

    2016-05-01

    Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs), have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron's dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes. PMID:27117416

  19. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity

    Directory of Open Access Journals (Sweden)

    Michael J. Molumby

    2016-05-01

    Full Text Available Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs, have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron’s dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes.

  20. Menin-mediated regulation of miRNA biogenesis uncovers the IRS2 pathway as a target for regulating pancreatic beta cells

    Science.gov (United States)

    Gurung, Buddha; Katona, Bryson W.; Hua, Xianxin

    2014-01-01

    Menin, a protein encoded by the MEN1 gene, is mutated in patients with multiple endocrine neoplasia type 1 (MEN1). Menin acts as a tumor suppressor in endocrine organs while it is also required for transformation of a subgroup of leukemia. The recently solved crystal structure of menin with different binding partners reveals that menin is a key scaffold protein that cross-talks with various partners, including transcription factors, to regulate gene transcription. Our recent findings unravel a previously undiscovered mechanism for menin-mediated control of gene expression via processing of certain microRNA’s, thus adding to the plethora of ways in which menin regulates gene expression. By interacting with ARS2, an RNA binding protein, menin facilitates the processing of pri-let 7a and pri-miR155 to pre-let 7a and pre-miR155 respectively. Consistently, excision of the Men1 gene results in upregulation of IRS2, a let-7a target. As IRS2 is known to mediate both insulin signaling and insulin-induced cell proliferation, and let-7a targets include oncogenes like RAS and HMGA2, a deeper understanding of the menin-ARS2 complex in regulating miRNA biogenesis will yield further insights into the pathogenesis of the MEN1 syndrome and other menin-associated malignancies. PMID:25594065

  1. Dendritic cell – regulatory T-cell interaction

    Directory of Open Access Journals (Sweden)

    Justyna Wojas

    2010-03-01

    Full Text Available The one of the main modes of homeostasis protection is maintaining the balance between antimicrobial immunological reactions and mechanisms involved in immune response suppression. The interaction between dendritic and T cells plays a crucial role in inducing both an immune response and immunological tolerance. Dendritic cells are also able to affect the differentiation, migration, and activation of CD4 T cells using cell-to-cell contact and/or cytokine production. The proper cytokine microenvironment can influence the induction of FoxP3 transcription factor in T cells, determining the regulatory properties of these cells. However, it is still unclear what is more substantial for Treg induction: th e cytokines in the microenvironment, stimulation by a specific DC population, or the type of antigens presented by DC. Activated natural Treg as well as induced Treg cells use similar mechanisms to generate tolerance, for example by the production of such anti-inflammatory cytokines as TGF-β or IL-10 and by direct contact with target cells. Recently, some reports have described the possibility that Treg cells lose FoxP3 expression followed by loss of suppressive function directed against proliferating T lymphocytes.

  2. Inferring yeast cell cycle regulators and interactions using transcription factor activities

    Directory of Open Access Journals (Sweden)

    Galbraith Simon J

    2005-06-01

    Full Text Available Abstract Background Since transcription factors are often regulated at the post-transcriptional level, their activities, rather than expression levels may provide valuable information for investigating functions and their interactions. The recently developed Network Component Analysis (NCA and its generalized form (gNCA provide a robust framework for deducing the transcription factor activities (TFAs from various types of DNA microarray data and transcription factor-gene connectivity. The goal of this work is to demonstrate the utility of TFAs in inferring transcription factor functions and interactions in Saccharomyces cerevisiae cell cycle regulation. Results Using gNCA, we determined 74 TFAs from both wild type and fkh1 fkh2 deletion mutant microarray data encompassing 1529 ORFs. We hypothesized that transcription factors participating in the cell cycle regulation exhibit cyclic activity profiles. This hypothesis was supported by the TFA profiles of known cell cycle factors and was used as a basis to uncover other potential cell cycle factors. By combining the results from both cluster analysis and periodicity analysis, we recovered nearly 90% of the known cell cycle regulators, and identified 5 putative cell cycle-related transcription factors (Dal81, Hap2, Hir2, Mss11, and Rlm1. In addition, by analyzing expression data from transcription factor knockout strains, we determined 3 verified (Ace2, Ndd1, and Swi5 and 4 putative interaction partners (Cha4, Hap2, Fhl1, and Rts2 of the forkhead transcription factors. Sensitivity of TFAs to connectivity errors was determined to provide confidence level of these predictions. Conclusion By subjecting TFA profiles to analyses based upon physiological signatures we were able to identify cell cycle related transcription factors consistent with current literature, transcription factors with potential cell cycle dependent roles, and interactions between transcription factors.

  3. Anthocyanins influence tannin-cell wall interactions.

    Science.gov (United States)

    Bautista-Ortín, Ana Belén; Martínez-Hernández, Alejandro; Ruiz-García, Yolanda; Gil-Muñoz, Rocío; Gómez-Plaza, Encarna

    2016-09-01

    The rate of tannin extraction was studied in a vinification of red grapes and the results compared with another vinification made with white grapes fermented as for typical red wine, in the presence of skins and seeds. Even though the grapes presented a quite similar skin and seed tannin content, the differences in tannin concentration between both vinifications was very large, despite the fact that the only apparent difference between the phenolic composition of both wines was the anthocyanin content. This suggests that anthocyanins play an important role in tannin extractability, perhaps because they affect the extent of the tannin-cell wall interaction, a factor that largely controls the resulting quantity of tannins in wines. To confirm this observation, the effect of anthocyanins on the tannin extractability from grape seeds and skin and on the interaction between tannins and grape cell walls suspended in model solutions were studied. The results indicated that anthocyanins favored skin and seed tannin extraction and that there is a competition for the adsorption sites between anthocyanins and tannins that increases the tannin content when anthocyanins are present. PMID:27041322

  4. Melittin interaction with sulfated cell surface sugars.

    Science.gov (United States)

    Klocek, Gabriela; Seelig, Joachim

    2008-03-01

    Melittin is a 26-residue cationic peptide with cytolytic and antimicrobial properties. Studies on the action mechanism of melittin have focused almost exclusively on the membrane-perturbing properties of this peptide, investigating in detail the melittin-lipid interaction. Here, we report physical-chemical studies on an alternative mechanism by which melittin could interact with the cell membrane. As the outer surface of many cells is decorated with anionic (sulfated) glycosaminoglycans (GAGs), a strong Coulombic interaction between the two oppositely charged molecules can be envisaged. Indeed, the present study using isothermal titration calorimetry reveals a high affinity of melittin for several GAGs, that is, heparan sulfate (HS), dermatan sulfate, and heparin. The microscopic binding constant of melittin for HS is 2.4 x 10 (5) M (-1), the reaction enthalpy is Delta H melittin (0) = -1.50 kcal/mol, and the peptide-to-HS stoichiometry is approximately 11 at 10 mM Tris, 100 mM NaCl at pH 7.4 and 28 degrees C. Delta H melittin (0) is characterized by a molar heat capacity of Delta C P (0) = -227 cal mol (-1) K (-1). The large negative heat capacity change indicates that hydrophobic interactions must also be involved in the binding of melittin to HS. Circular dichroism spectroscopy demonstrates that the binding of the peptide to HS induces a conformational change to a predominantly alpha-helical structure. A model for the melittin-HS complex is presented. Melittin binding was compared with that of magainin 2 and nisin Z to HS. Magainin 2 is known for its antimicrobial properties, but it does not cause lysis of the eukaryotic cells. Nisin Z shows activity against various Gram-positive bacteria. Isothermal titration calorimetry demonstrates that magainin 2 and nisin Z do not bind to HS (5-50 degrees C, 10 mM Tris, and 100 mM NaCl at pH 7.4). PMID:18220363

  5. Innovative Tools and Technology for Analysis of Single Cells and Cell-Cell Interaction.

    Science.gov (United States)

    Konry, Tania; Sarkar, Saheli; Sabhachandani, Pooja; Cohen, Noa

    2016-07-11

    Heterogeneity in single-cell responses and intercellular interactions results from complex regulation of cell-intrinsic and environmental factors. Single-cell analysis allows not only detection of individual cellular characteristics but also correlation of genetic content with phenotypic traits in the same cell. Technological advances in micro- and nanofabrication have benefited single-cell analysis by allowing precise control of the localized microenvironment, cell manipulation, and sensitive detection capabilities. Additionally, microscale techniques permit rapid, high-throughput, multiparametric screening that has become essential for -omics research. This review highlights innovative applications of microscale platforms in genetic, proteomic, and metabolic detection in single cells; cell sorting strategies; and heterotypic cell-cell interaction. We discuss key design aspects of single-cell localization and isolation in microfluidic systems, dynamic and endpoint analyses, and approaches that integrate highly multiplexed detection of various intracellular species. PMID:26928209

  6. Uncovering Aberrant Mutant PKA Function with Flow Cytometric FRET.

    Science.gov (United States)

    Lee, Shin-Rong; Sang, Lingjie; Yue, David T

    2016-03-29

    Biology has been revolutionized by tools that allow the detection and characterization of protein-protein interactions (PPIs). Förster resonance energy transfer (FRET)-based methods have become particularly attractive as they allow quantitative studies of PPIs within the convenient and relevant context of living cells. We describe here an approach that allows the rapid construction of live-cell FRET-based binding curves using a commercially available flow cytometer. We illustrate a simple method for absolutely calibrating the cytometer, validating our binding assay against the gold standard isothermal calorimetry (ITC), and using flow cytometric FRET to uncover the structural and functional effects of the Cushing-syndrome-causing mutation (L206R) on PKA's catalytic subunit. We discover that this mutation not only differentially affects PKAcat's binding to its multiple partners but also impacts its rate of catalysis. These findings improve our mechanistic understanding of this disease-causing mutation, while illustrating the simplicity, general applicability, and power of flow cytometric FRET. PMID:26997269

  7. Uncovering Aberrant Mutant PKA Function with Flow Cytometric FRET

    Directory of Open Access Journals (Sweden)

    Shin-Rong Lee

    2016-03-01

    Full Text Available Biology has been revolutionized by tools that allow the detection and characterization of protein-protein interactions (PPIs. Förster resonance energy transfer (FRET-based methods have become particularly attractive as they allow quantitative studies of PPIs within the convenient and relevant context of living cells. We describe here an approach that allows the rapid construction of live-cell FRET-based binding curves using a commercially available flow cytometer. We illustrate a simple method for absolutely calibrating the cytometer, validating our binding assay against the gold standard isothermal calorimetry (ITC, and using flow cytometric FRET to uncover the structural and functional effects of the Cushing-syndrome-causing mutation (L206R on PKA’s catalytic subunit. We discover that this mutation not only differentially affects PKAcat’s binding to its multiple partners but also impacts its rate of catalysis. These findings improve our mechanistic understanding of this disease-causing mutation, while illustrating the simplicity, general applicability, and power of flow cytometric FRET.

  8. Small RNA Sequencing Uncovers New miRNAs and moRNAs Differentially Expressed in Normal and Primary Myelofibrosis CD34+ Cells.

    Directory of Open Access Journals (Sweden)

    Paola Guglielmelli

    Full Text Available Myeloproliferative neoplasms (MPN are chronic myeloid cancers thought to arise at the level of CD34+ hematopoietic stem/progenitor cells. They include essential thrombocythemia (ET, polycythemia vera (PV and primary myelofibrosis (PMF. All can progress to acute leukemia, but PMF carries the worst prognosis. Increasing evidences indicate that deregulation of microRNAs (miRNAs might plays an important role in hematologic malignancies, including MPN. To attain deeper knowledge of short RNAs (sRNAs expression pattern in CD34+ cells and of their possible role in mediating post-transcriptional regulation in PMF, we sequenced with Illumina HiSeq2000 technology CD34+ cells from healthy subjects and PMF patients. We detected the expression of 784 known miRNAs, with a prevalence of miRNA up-regulation in PMF samples, and discovered 34 new miRNAs and 99 new miRNA-offset RNAs (moRNAs, in CD34+ cells. Thirty-seven small RNAs were differentially expressed in PMF patients compared with healthy subjects, according to microRNA sequencing data. Five miRNAs (miR-10b-5p, miR-19b-3p, miR-29a-3p, miR-379-5p, and miR-543 were deregulated also in PMF granulocytes. Moreover, 3'-moR-128-2 resulted consistently downregulated in PMF according to RNA-seq and qRT-PCR data both in CD34+ cells and granulocytes. Target predictions of these validated small RNAs de-regulated in PMF and functional enrichment analyses highlighted many interesting pathways involved in tumor development and progression, such as signaling by FGFR and DAP12 and Oncogene Induced Senescence. As a whole, data obtained in this study deepened the knowledge of miRNAs and moRNAs altered expression in PMF CD34+ cells and allowed to identify and validate a specific small RNA profile that distinguishes PMF granulocytes from those of normal subjects. We thus provided new information regarding the possible role of miRNAs and, specifically, of new moRNAs in this disease.

  9. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets

    OpenAIRE

    Wilm, Andreas; Aw, Pauline Poh Kim; Bertrand, Denis; Yeo, Grace Hui Ting; Ong, Swee Hoe; Wong, Chang Hua; Khor, Chiea Chuen; Petric, Rosemary; Hibberd, Martin Lloyd; Nagarajan, Niranjan

    2012-01-01

    The study of cell-population heterogeneity in a range of biological systems, from viruses to bacterial isolates to tumor samples, has been transformed by recent advances in sequencing throughput. While the high-coverage afforded can be used, in principle, to identify very rare variants in a population, existing ad hoc approaches frequently fail to distinguish true variants from sequencing errors. We report a method (LoFreq) that models sequencing run-specific error rates to accurately call va...

  10. Single-cell dynamics of mast cell-CD4+ CD25+ regulatory T cell interactions.

    Science.gov (United States)

    Frossi, Barbara; D'Incà, Federica; Crivellato, Enrico; Sibilano, Riccardo; Gri, Giorgia; Mongillo, Marco; Danelli, Luca; Maggi, Laura; Pucillo, Carlo E

    2011-07-01

    The biological behavior of immune cells is determined by their intrinsic properties and interactions with other cell populations within their microenvironment. Several studies have confirmed the existence of tight spatial interactions between mast cells (MCs) and Tregs in different settings. For instance, we have recently identified the functional cross-talk between MCs and Tregs, through the OX40L-OX40 axis, as a new mechanism of reciprocal influence. However, there is scant information regarding the single-cell dynamics of this process. In this study, time-lapse video microscopy revealed direct interactions between Tregs and MCs in both murine and human cell co-cultures, resulting in the inhibition of the MC degranulation response. MCs incubated with WT, but not OX40-deficient, Tregs mediated numerous and long-lasting interactions and displayed different morphological features lacking the classical signs of exocytosis. MC degranulation and Ca2+ mobilization upon activation were inhibited by Tregs on a single-cell basis, without affecting overall cytokine secretion. Transmission electron microscopy showed ultrastructural evidence of vesicle-mediated secretion reconcilable with the morphological pattern of piecemeal degranulation. Our results suggest that MC morphological and functional changes following MC-Treg interactions can be ascribed to cell-cell contact and represent a transversal, non-species-specific mechanism of immune response regulation. Further research, looking at the molecular composition of this interaction will broaden our understanding of its contribution to immunity. PMID:21509780

  11. Comparative Proteomics Reveals Important Viral-Host Interactions in HCV-Infected Human Liver Cells.

    Directory of Open Access Journals (Sweden)

    Shufeng Liu

    Full Text Available Hepatitis C virus (HCV poses a global threat to public health. HCV envelop protein E2 is the major component on the virus envelope, which plays an important role in virus entry and morphogenesis. Here, for the first time, we affinity purified E2 complex formed in HCV-infected human hepatoma cells and conducted comparative mass spectrometric analyses. 85 cellular proteins and three viral proteins were successfully identified in three independent trials, among which alphafetoprotein (AFP, UDP-glucose: glycoprotein glucosyltransferase 1 (UGT1 and HCV NS4B were further validated as novel E2 binding partners. Subsequent functional characterization demonstrated that gene silencing of UGT1 in human hepatoma cell line Huh7.5.1 markedly decreased the production of infectious HCV, indicating a regulatory role of UGT1 in viral lifecycle. Domain mapping experiments showed that HCV E2-NS4B interaction requires the transmembrane domains of the two proteins. Altogether, our proteomics study has uncovered key viral and cellular factors that interact with E2 and provided new insights into our understanding of HCV infection.

  12. Comparative Proteomics Reveals Important Viral-Host Interactions in HCV-Infected Human Liver Cells.

    Science.gov (United States)

    Liu, Shufeng; Zhao, Ting; Song, BenBen; Zhou, Jianhua; Wang, Tony T

    2016-01-01

    Hepatitis C virus (HCV) poses a global threat to public health. HCV envelop protein E2 is the major component on the virus envelope, which plays an important role in virus entry and morphogenesis. Here, for the first time, we affinity purified E2 complex formed in HCV-infected human hepatoma cells and conducted comparative mass spectrometric analyses. 85 cellular proteins and three viral proteins were successfully identified in three independent trials, among which alphafetoprotein (AFP), UDP-glucose: glycoprotein glucosyltransferase 1 (UGT1) and HCV NS4B were further validated as novel E2 binding partners. Subsequent functional characterization demonstrated that gene silencing of UGT1 in human hepatoma cell line Huh7.5.1 markedly decreased the production of infectious HCV, indicating a regulatory role of UGT1 in viral lifecycle. Domain mapping experiments showed that HCV E2-NS4B interaction requires the transmembrane domains of the two proteins. Altogether, our proteomics study has uncovered key viral and cellular factors that interact with E2 and provided new insights into our understanding of HCV infection. PMID:26808496

  13. Enhancement of Chemotactic Cell Aggregation by Haptotactic Cell-To-Cell Interaction.

    Directory of Open Access Journals (Sweden)

    Tae-Goo Kwon

    Full Text Available The crawling of biological cell is a complex phenomenon involving various biochemical and mechanical processes. Some of these processes are intrinsic to individual cells, while others pertain to cell-to-cell interactions and to their responses to extrinsically imposed cues. Here, we report an interesting aggregation dynamics of mathematical model cells, when they perform chemotaxis in response to an externally imposed global chemical gradient while they influence each other through a haptotaxis-mediated social interaction, which confers intriguing trail patterns. In the absence of the cell-to-cell interaction, the equilibrium population density profile fits well to that of a simple Keller-Segal population dynamic model, in which a chemotactic current density [Formula: see text] competes with a normal diffusive current density [Formula: see text], where p and ρ refer to the concentration of chemoattractant and population density, respectively. We find that the cell-to-cell interaction confers a far more compact aggregation resulting in a much higher peak equilibrium cell density. The mathematical model system is applicable to many biological systems such as swarming microglia and neutrophils or accumulating ants towards a localized food source.

  14. Mirror-symmetric microtubule assembly and cell interactions drive lumen formation in the zebrafish neural rod

    OpenAIRE

    Buckley, Clare E.; Ren, Xiaoyun; Ward, Laura C; Girdler, Gemma C; Araya, Claudio; Green, Mary J; Clark, Brian S.; Link, Brian A.; Clarke, Jonathan D. W.

    2012-01-01

    By analysing the cellular and subcellular events that occur in the centre of the developing zebrafish neural rod, we have uncovered a novel mechanism of cell polarisation during lumen formation. Cells from each side of the neural rod interdigitate across the tissue midline. This is necessary for localisation of apical junctional proteins to the region where cells intersect the tissue midline. Cells assemble a mirror-symmetric microtubule cytoskeleton around the tissue midline, which is necess...

  15. Local cell metrics: a novel method for analysis of cell-cell interactions

    Directory of Open Access Journals (Sweden)

    Chen Chien-Chiang

    2009-10-01

    Full Text Available Abstract Background The regulation of many cell functions is inherently linked to cell-cell contact interactions. However, effects of contact interactions among adherent cells can be difficult to detect with global summary statistics due to the localized nature and noise inherent to cell-cell interactions. The lack of informatics approaches specific for detecting cell-cell interactions is a limitation in the analysis of large sets of cell image data, including traditional and combinatorial or high-throughput studies. Here we introduce a novel histogram-based data analysis strategy, termed local cell metrics (LCMs, which addresses this shortcoming. Results The new LCM method is demonstrated via a study of contact inhibition of proliferation of MC3T3-E1 osteoblasts. We describe how LCMs can be used to quantify the local environment of cells and how LCMs are decomposed mathematically into metrics specific to each cell type in a culture, e.g., differently-labelled cells in fluorescence imaging. Using this approach, a quantitative, probabilistic description of the contact inhibition effects in MC3T3-E1 cultures has been achieved. We also show how LCMs are related to the naïve Bayes model. Namely, LCMs are Bayes class-conditional probability functions, suggesting their use for data mining and classification. Conclusion LCMs are successful in robust detection of cell contact inhibition in situations where conventional global statistics fail to do so. The noise due to the random features of cell behavior was suppressed significantly as a result of the focus on local distances, providing sensitive detection of cell-cell contact effects. The methodology can be extended to any quantifiable feature that can be obtained from imaging of cell cultures or tissue samples, including optical, fluorescent, and confocal microscopy. This approach may prove useful in interpreting culture and histological data in fields where cell-cell interactions play a critical

  16. Cancer stem cell-vascular endothelial cell interactions in glioblastoma.

    Science.gov (United States)

    Sharma, Aman; Shiras, Anjali

    2016-05-01

    Glioblastoma (GBM), a higher grade glial tumor, is highly aggressive, therapy resistant and often shows poor patient prognosis due to frequent recurrence. These features of GBM are attributed to presence of a significantly smaller proportion of glioma stem cells (GSCs) that are endowed with self-renewal ability, multi-potent nature and show resistance to therapy in patients. GSCs preferably take shelter close to tumor vasculature due to paracrine need of soluble factors secreted by endothelial cells (ECs) of vasculature. The physical proximity of GSCs to ECs creates a localized perivascular niche where mutual GSC-EC interactions regulate GSC stemness, migration, therapy resistance, and cellular kinetics during tumor growth. Together, perivascular niche presents a therapeutically targetable tumor structure for clinical management of GBM. Thus, understanding cellular and non-cellular components in perivascular niche is vital for designing in vitro and in vivo GBM tumor models. Here, we discuss the components and structure of tumor vascular niche and its impact on tumor progression. PMID:26692486

  17. Characterization of adhesive interactions between human endothelial cells and megakaryocytes.

    OpenAIRE

    Avraham, H; Cowley, S; Chi, S. Y.; Jiang, S.; Groopman, J E

    1993-01-01

    Cell-cell adhesion is essential for many immunological functions and is believed to be important in the regulation of hematopoiesis. Adhesive interactions between human endothelial cells and megakaryocytes were characterized in vitro using the CMK megakaryocytic cell line as well as marrow megakaryocytes. Although there was no adhesion between unactivated human umbilical vein endothelial cells (HUVEC) and megakaryocytes, treatment of HUVEC with inflammatory cytokines such as IL-1 beta, tumor ...

  18. Neuronal chemokines : Versatile messengers in central nervous system cell interaction

    NARCIS (Netherlands)

    de Haas, A. H.; van Weering, H. R. J.; de Jong, E. K.; Boddeke, H. W. G. M.; Biber, K. P. H.

    2007-01-01

    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemoki

  19. Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms

    OpenAIRE

    Andenmatten, Nicole; Egarter, Saskia; Jackson, Allison J.; JULLIEN, Nicolas; Herman, Jean-Paul; Meissner, Markus

    2012-01-01

    We established a conditional site–specific recombination system based on dimerizable Cre–mediated recombination in the apicomplexan parasite Toxoplasma gondii. Using a novel single vector strategy that allows ligand-dependent, efficient removal of a gene of interest, we generated three knockouts of apicomplexan genes considered essential for host-cell invasion. Our findings uncover the existence of an alternative invasion pathway in apicomplexan parasites.

  20. Cell Phone Roulette and "Consumer Interactive" Quality

    Science.gov (United States)

    Navarro, Peter

    2005-01-01

    Under current policies, cell phone consumers face a lower probability of finding the best carrier for their usage patterns than winning at roulette. Corroborating survey data consistently show significant dissatisfaction among cell phone users, network performance is a major issue, and customer "churn" is high. This problem may be traced to a new…

  1. Uncovering Plagiarism - Author Profiling at PAN

    OpenAIRE

    Rosso, Paolo; RANGEL PARDO, FRANCISCO MANUEL

    2014-01-01

    PAN is a yearly workshop and evaluation lab on uncovering plagiarism, authorship, and social software misuse. Since 2009, PAN has been organizing benchmark activities on uncovering plagiarism, authorship, and social software misuse . An additional task - author profiling - has also recently been proposed. Author profiling, instead of focusing on individual authors, studies how language is shared by a class of people. Author profiling is a problem of growing importance in applications in foren...

  2. Interaction and uptake of exosomes by ovarian cancer cells

    OpenAIRE

    Altevogt Peter; Keller Sascha; Escrevente Cristina; Costa Júlia

    2011-01-01

    Abstract Background Exosomes consist of membrane vesicles that are secreted by several cell types, including tumors and have been found in biological fluids. Exosomes interact with other cells and may serve as vehicles for the transfer of protein and RNA among cells. Methods SKOV3 exosomes were labelled with carboxyfluoresceine diacetate succinimidyl-ester and collected by ultracentrifugation. Uptake of these vesicles, under different conditions, by the same cells from where they originated w...

  3. Stem cell autotomy and niche interaction in different systems

    OpenAIRE

    Dorn, David C.; Dorn, August

    2015-01-01

    The best known cases of cell autotomy are the formation of erythrocytes and thrombocytes (platelets) from progenitor cells that reside in special niches. Recently, autotomy of stem cells and its enigmatic interaction with the niche has been reported from male germline stem cells (GSCs) in several insect species. First described in lepidopterans, the silkmoth, followed by the gipsy moth and consecutively in hemipterans, foremost the milkweed bug. In both, moths and the milkweed bug, GSCs form ...

  4. Glioma cell dispersion is driven by α5 integrin-mediated cell-matrix and cell-cell interactions.

    Science.gov (United States)

    Blandin, Anne-Florence; Noulet, Fanny; Renner, Guillaume; Mercier, Marie-Cécile; Choulier, Laurence; Vauchelles, Romain; Ronde, Philippe; Carreiras, Franck; Etienne-Selloum, Nelly; Vereb, Gyorgy; Lelong-Rebel, Isabelle; Martin, Sophie; Dontenwill, Monique; Lehmann, Maxime

    2016-07-01

    Glioblastoma multiform (GBM) is the most common and most aggressive primary brain tumor. The fibronectin receptor, α5 integrin is a pertinent novel therapeutic target. Despite numerous data showing that α5 integrin support tumor cell migration and invasion, it has been reported that α5 integrin can also limit cell dispersion by increasing cell-cell interaction. In this study, we showed that α5 integrin was involved in cell-cell interaction and gliomasphere formation. α5-mediated cell-cell cohesion limited cell dispersion from spheroids in fibronectin-poor microenvironment. However, in fibronectin-rich microenvironment, α5 integrin promoted cell dispersion. Ligand-occupied α5 integrin and fibronectin were distributed in fibril-like pattern at cell-cell junction of evading cells, forming cell-cell fibrillar adhesions. Activated focal adhesion kinase was not present in these adhesions but was progressively relocalized with α5 integrin as cell migrates away from the spheroids. α5 integrin function in GBM appears to be more complex than previously suspected. As GBM overexpressed fibronectin, it is most likely that in vivo, α5-mediated dissemination from the tumor mass overrides α5-mediated tumor cell cohesion. In this respect, α5-integrin antagonists may be useful to limit GBM invasion in brain parenchyma. PMID:27063097

  5. Tensor GSVD of patient- and platform-matched tumor and normal DNA copy-number profiles uncovers chromosome arm-wide patterns of tumor-exclusive platform-consistent alterations encoding for cell transformation and predicting ovarian cancer survival.

    Science.gov (United States)

    Sankaranarayanan, Preethi; Schomay, Theodore E; Aiello, Katherine A; Alter, Orly

    2015-01-01

    The number of large-scale high-dimensional datasets recording different aspects of a single disease is growing, accompanied by a need for frameworks that can create one coherent model from multiple tensors of matched columns, e.g., patients and platforms, but independent rows, e.g., probes. We define and prove the mathematical properties of a novel tensor generalized singular value decomposition (GSVD), which can simultaneously find the similarities and dissimilarities, i.e., patterns of varying relative significance, between any two such tensors. We demonstrate the tensor GSVD in comparative modeling of patient- and platform-matched but probe-independent ovarian serous cystadenocarcinoma (OV) tumor, mostly high-grade, and normal DNA copy-number profiles, across each chromosome arm, and combination of two arms, separately. The modeling uncovers previously unrecognized patterns of tumor-exclusive platform-consistent co-occurring copy-number alterations (CNAs). We find, first, and validate that each of the patterns across only 7p and Xq, and the combination of 6p+12p, is correlated with a patient's prognosis, is independent of the tumor's stage, the best predictor of OV survival to date, and together with stage makes a better predictor than stage alone. Second, these patterns include most known OV-associated CNAs that map to these chromosome arms, as well as several previously unreported, yet frequent focal CNAs. Third, differential mRNA, microRNA, and protein expression consistently map to the DNA CNAs. A coherent picture emerges for each pattern, suggesting roles for the CNAs in OV pathogenesis and personalized therapy. In 6p+12p, deletion of the p21-encoding CDKN1A and p38-encoding MAPK14 and amplification of RAD51AP1 and KRAS encode for human cell transformation, and are correlated with a cell's immortality, and a patient's shorter survival time. In 7p, RPA3 deletion and POLD2 amplification are correlated with DNA stability, and a longer survival. In Xq, PABPC5

  6. Tensor GSVD of patient- and platform-matched tumor and normal DNA copy-number profiles uncovers chromosome arm-wide patterns of tumor-exclusive platform-consistent alterations encoding for cell transformation and predicting ovarian cancer survival.

    Directory of Open Access Journals (Sweden)

    Preethi Sankaranarayanan

    Full Text Available The number of large-scale high-dimensional datasets recording different aspects of a single disease is growing, accompanied by a need for frameworks that can create one coherent model from multiple tensors of matched columns, e.g., patients and platforms, but independent rows, e.g., probes. We define and prove the mathematical properties of a novel tensor generalized singular value decomposition (GSVD, which can simultaneously find the similarities and dissimilarities, i.e., patterns of varying relative significance, between any two such tensors. We demonstrate the tensor GSVD in comparative modeling of patient- and platform-matched but probe-independent ovarian serous cystadenocarcinoma (OV tumor, mostly high-grade, and normal DNA copy-number profiles, across each chromosome arm, and combination of two arms, separately. The modeling uncovers previously unrecognized patterns of tumor-exclusive platform-consistent co-occurring copy-number alterations (CNAs. We find, first, and validate that each of the patterns across only 7p and Xq, and the combination of 6p+12p, is correlated with a patient's prognosis, is independent of the tumor's stage, the best predictor of OV survival to date, and together with stage makes a better predictor than stage alone. Second, these patterns include most known OV-associated CNAs that map to these chromosome arms, as well as several previously unreported, yet frequent focal CNAs. Third, differential mRNA, microRNA, and protein expression consistently map to the DNA CNAs. A coherent picture emerges for each pattern, suggesting roles for the CNAs in OV pathogenesis and personalized therapy. In 6p+12p, deletion of the p21-encoding CDKN1A and p38-encoding MAPK14 and amplification of RAD51AP1 and KRAS encode for human cell transformation, and are correlated with a cell's immortality, and a patient's shorter survival time. In 7p, RPA3 deletion and POLD2 amplification are correlated with DNA stability, and a longer survival

  7. Interaction of Proteins Identified in Human Thyroid Cells

    Directory of Open Access Journals (Sweden)

    Jessica Pietsch

    2013-01-01

    Full Text Available Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains.

  8. Interactions of Histophilus somni with Host Cells.

    Science.gov (United States)

    Behling-Kelly, Erica; Rivera-Rivas, Jose; Czuprynski, Charles J

    2016-01-01

    Histophilus somni resides as part of the normal microflora in the upper respiratory tract of healthy cattle. From this site, the organism can make its way into the lower respiratory tract, where it is one of the important bacterial agents of the respiratory disease complex. If H. somni cells disseminate to the bloodstream, they frequently result in thrombus formation. A series of in vitro investigations have examined potential mechanisms that might contribute to such thrombus formation. Earlier work showed that H. somni can stimulate some bovine endothelial cells to undergo apoptosis. More recent studies indicate that H. somni stimulates endothelial cell tissue factor activity and disrupts intercellular junctions. The net effect is to enhance procoagulant activity on the endothelium surface and to make the endothelial monolayer more permeable to molecules, leukocytes, and perhaps H. somni cells. H. somni also activates bovine platelets, which also can enhance tissue factor activity on the endothelium surface. When exposed to H. somni, bovine neutrophils and mononuclear phagocytes form extracellular traps in vitro. Ongoing research is investigating how the interplay among endothelial cells, platelets, and leukocytes might contribute to the thrombus formation seen in infected cattle. PMID:26728064

  9. Visualization and targeted disruption of protein interactions in living cells.

    Science.gov (United States)

    Herce, Henry D; Deng, Wen; Helma, Jonas; Leonhardt, Heinrich; Cardoso, M Cristina

    2013-01-01

    Protein-protein interactions are the basis of all processes in living cells, but most studies of these interactions rely on biochemical in vitro assays. Here we present a simple and versatile fluorescent-three-hybrid (F3H) strategy to visualize and target protein-protein interactions. A high-affinity nanobody anchors a GFP-fusion protein of interest at a defined cellular structure and the enrichment of red-labelled interacting proteins is measured at these sites. With this approach, we visualize the p53-HDM2 interaction in living cells and directly monitor the disruption of this interaction by Nutlin 3, a drug developed to boost p53 activity in cancer therapy. We further use this approach to develop a cell-permeable vector that releases a highly specific peptide disrupting the p53 and HDM2 interaction. The availability of multiple anchor sites and the simple optical readout of this nanobody-based capture assay enable systematic and versatile analyses of protein-protein interactions in practically any cell type and species. PMID:24154492

  10. Topographical control of cell-cell interaction in C6 glioma by nanodot arrays

    Science.gov (United States)

    Lee, Chia-Hui; Cheng, Ya-Wen; Huang, G. Steven

    2014-05-01

    Nanotopography modulates the physiological behavior of cells and cell-cell interactions, but the manner of communication remains unclear. Cell networking (syncytium) of astroglia provides the optimal microenvironment for communication of the nervous system. C6 glioma cells were seeded on nanodot arrays with dot diameters ranging from 10 to 200 nm. Cell viability, morphology, cytoskeleton, and adhesion showed optimal cell growth on 50-nm nanodots if sufficient incubation was allowed. In particular, the astrocytic syncytium level maximized at 50 nm. The gap junction protein Cx43 showed size-dependent and time-dependent transport from the nucleus to the cell membrane. The transport efficiency was greatly enhanced by incubation on 50-nm nanodots. In summary, nanotopography is capable of modulating cell behavior and influencing the cell-cell interactions of astrocytes. By fine-tuning the nanoenvironment, it may be possible to regulate cell-cell communications and optimize the biocompatibility of neural implants.

  11. Potential electrode/electrolyte interactions in solid oxide fuel cells

    International Nuclear Information System (INIS)

    Yttria-stabilized zirconia and strontium-doped lanthanum manganite are the prime candidates for the electrolyte and the air electrode material, respectively, for the solid oxide fuel cell. In this study, the potential high temperature interactions, including intrinsic reactivity and interdiffusion, between these two fuel cell components have been investigated

  12. Detecting protein-protein interactions in living cells

    DEFF Research Database (Denmark)

    Gottschalk, Marie; Bach, Anders; Hansen, Jakob Lerche;

    2009-01-01

    to the endogenous C-terminal peptide of the NMDA receptor, as evaluated by a cell-free protein-protein interaction assay. However, it is important to address both membrane permeability and effect in living cells. Therefore a bioluminescence resonance energy transfer (BRET) assay was established, where the C...

  13. Cell-cell and cell-stromal interactions in differentiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Medina, D.; Huberman, E.

    1987-01-01

    Differentiation and proliferation of tumor cells can be modulated by direct cell contact and by diffusable macromolecules produced by stromal cells. The expression of specific functions of stromal, as well as epithelial cells can be influenced by specific inducers that can modulate synthesis and secretion of growth factors, extracellular matrix molecules and cell surface molecules. The end result of such alterations of stromal cell function is a decrease in proliferation and/or increase in differentiative properties of the tumor cell. The important factors in normal prostate gland differentiation are not well defined, whereas a variety of molecules have been defined in mammary gland and hematopoetic growth and differentiation. It is important to recognize that the induction of differentiation in epithelial systems does not automatically signify an alteration in tumorigenesis, much less prove the importance of cell-cell interactions in differentiation of epithelial tumors. Although there are reports of regression of tumors in strong embryonic fields or in regenerating fields and isolated reports of non-neural epithelial tumors converting to benign growth when placed in heterotypic cellular interactions, what is desperately needed is convincing evidence in well-documented model systems that specific induction of differentiated function in epithelial tumors occurs and that the phenomenon operates under the same fundamental laws that regulate cell differentiation in normal development. Until such results can be demonstrated and accepted widely, the concept of differentiation therapy will only be applicable to specialized cases like hematopoetic tumors and teratocarcinomas. To simply demonstrate that an inducer generates a differentiated response in a tumor cell population is not sufficient to argue that growth and tumorigenicity will be compromised. 96 refs.

  14. Human immunodeficiencies related to APC/T cell interaction

    Directory of Open Access Journals (Sweden)

    Marinos eKallikourdis

    2015-08-01

    Full Text Available The primary event for initiating adaptive immune responses is the encounter between T lymphocytes and antigen presenting cells (APC in the T cell area of secondary lymphoid organs and the formation of highly organized inter-cellular junctions referred to as the immune synapses. In vivo live-cell imaging of APC-T cell interactions combined to functional studies unveiled that T cell fate is dictated, in large part, by the stability of the initial contact. Immune cell interaction is equally important during delivery of T cell help to B cells and for the killing of target cells by cytotoxic T cells and NK cells. The critical role of contact dynamics and synapse stability on the immune response is well illustrated by human immune deficiencies in which disease pathogenesis is linked to altered adhesion or defective cross-talk between the synaptic partners. Here we will discuss in details the mechanisms of defective APC-T cell communications in Wiskott-Aldrich syndrome (WAS and in warts, hypogammaglobulinemia, infections, myelokathexis syndrome (WHIM. In addition, we will summarize the evidences pointing to a compromised conjugate formation in WIP deficiency, DOCK8 deficiency and X-linked lymphoproliferative syndrome.

  15. Interaction of Protein and Cell with Different Chitosan Membranes

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Interaction between proteins, cells and biomaterial surfaces is commonly observed and often used to measure biocompatibility of biomaterials.In this investigation, three kinds of biomaterials derived from chitosan were prepared.The surface wettability of these polymers, interaction of protein with material surface, and their effects on cell adhesion and growth were studied.The results show that the surface contact angle and surface charge of biomaterials have a close bearing on protein adsorption as well as cell adhesion and growth, indicating that through different chemical modifications, chitosan can be made into different kinds of biomedical materials to satisfy various needs.

  16. Micropatterned Surfaces to Study Hyaluronic Acid Interactions with Cancer Cells

    OpenAIRE

    Dickinson, Laura E.; Gerecht, Sharon

    2010-01-01

    Cancer invasion and progression involves a motile cell phenotype, which is under complex regulation by growth factors/cytokines and extracellular matrix (ECM) components within the tumor microenvironment. Hyaluronic acid (HA) is one stromal ECM component that is known to facilitate tumor progression by enhancing invasion, growth, and angiogenesis1. Interaction of HA with its cell surface receptor CD44 induces signaling events that promote tumor cell growth, survival, and migration, thereby in...

  17. Neuronal Chemokines: Versatile Messengers In Central Nervous System Cell Interaction

    OpenAIRE

    de Haas, A. H.; van Weering, H. R. J.; Jong, E.K.; Boddeke, H. W. G. M.; Biber, K.P.H.

    2007-01-01

    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemokines are generally found under both physiological and pathological conditions. Whereas many reports describe chemokine expression in astrocytes and microglia and their role in the migration of leuko...

  18. Visualization and targeted disruption of protein interactions in living cells

    OpenAIRE

    Herce, Henry D.; Deng, Wen; Helma, Jonas; Leonhardt, Heinrich; Cardoso, M. Cristina

    2013-01-01

    Protein–protein interactions are the basis of all processes in living cells, but most studies of these interactions rely on biochemical in vitro assays. Here we present a simple and versatile fluorescent-three-hybrid (F3H) strategy to visualize and target protein–protein interactions. A high-affinity nanobody anchors a GFP-fusion protein of interest at a defined cellular structure and the enrichment of red-labelled interacting proteins is measured at these sites. With this approach, we visual...

  19. Development of living cell force sensors for the interrogation of cell surface interactions

    Science.gov (United States)

    Brown, Scott Chang

    The measurement of cell surface interactions, or cell interaction forces, are critical for the early diagnosis and prevention of disease, the design of targeted drug and gene delivery vehicles, the development of next-generation implant materials, and much more. However, the technologies and devices that are currently available are highly limited with respect to the dynamic force range over which they can measure cell-cell or cell-substratum interactions, and with their ability to adequately mimic biologically relevant systems. Consequently, research efforts that involve cell surface interactions have been limited. In this dissertation, existing tools for research at the nanoscale (i.e., atomic force microscopy microcantilevers) are modified to develop living cell force sensors that allow for the highly sensitive measurement of cell-mediated interactions over the entire range of forces expected in biotechnology (and nano-biotechnology) research (from a single to millions of receptor-ligand bonds). Several force sensor motifs have been developed that can be used to measure interactions using single adherent cells, single suspension culture cell, and cell monolayers (tissues) over a wide range of interaction conditions (e.g., approach velocity, shear rate, contact time) using a conventional atomic force microscope. This new tool has been applied to study the pathogenesis of spontaneous pneumothorax and the interaction of cells with 14 man-made interfaces. Consequently, a new hypothesis of the interactions that manifest spontaneous pneumothorax has been developed. Additionally, these findings have the potential to lead to the development of tools for data mining materials and surfaces for unique cell interactions that could have an immense societal impact.

  20. A Population Dynamics Analysis of the Interaction between Adaptive Regulatory T Cells and Antigen Presenting Cells

    OpenAIRE

    Fouchet, David; Regoes, Roland

    2008-01-01

    Background Regulatory T cells are central actors in the maintenance of tolerance of self-antigens or allergens and in the regulation of the intensity of the immune response during infections by pathogens. An understanding of the network of the interaction between regulatory T cells, antigen presenting cells and effector T cells is starting to emerge. Dynamical systems analysis can help to understand the dynamical properties of an interaction network and can shed light on the different tasks t...

  1. Early Bunyavirus-Host Cell Interactions

    Directory of Open Access Journals (Sweden)

    Amelina Albornoz

    2016-05-01

    Full Text Available The Bunyaviridae is the largest family of RNA viruses, with over 350 members worldwide. Several of these viruses cause severe diseases in livestock and humans. With an increasing number and frequency of outbreaks, bunyaviruses represent a growing threat to public health and agricultural productivity globally. Yet, the receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely uncharacterized. The focus of this review is on the early steps of bunyavirus infection, from virus binding to penetration from endosomes. We address current knowledge and advances for members from each genus in the Bunyaviridae family regarding virus receptors, uptake, intracellular trafficking and fusion.

  2. Early Bunyavirus-Host Cell Interactions.

    Science.gov (United States)

    Albornoz, Amelina; Hoffmann, Anja B; Lozach, Pierre-Yves; Tischler, Nicole D

    2016-01-01

    The Bunyaviridae is the largest family of RNA viruses, with over 350 members worldwide. Several of these viruses cause severe diseases in livestock and humans. With an increasing number and frequency of outbreaks, bunyaviruses represent a growing threat to public health and agricultural productivity globally. Yet, the receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely uncharacterized. The focus of this review is on the early steps of bunyavirus infection, from virus binding to penetration from endosomes. We address current knowledge and advances for members from each genus in the Bunyaviridae family regarding virus receptors, uptake, intracellular trafficking and fusion. PMID:27213430

  3. [Multipotent mesenchymal stromal and immune cells interaction: reciprocal effects].

    Science.gov (United States)

    Andreeva, E R; Buravkova, L B

    2012-12-01

    Adult multipotent mesenchymal stromal cells (MMSCs) are considered now as one of the key players in physiological and pathological tissue remodeling. Clarification of the mechanisms that mediate MMSC functions, is one of the most intriguing issues in modern cell physiology. Present Review summarizes current understanding of the MMSC effects on different types of immune cells. The realization of MMSC immunomodulatory capacity is considered as a contribution of direct cell-to-cell contacts, soluble mediators and of local microenvironmental factors, the most important of which is the partial pressure of oxygen. MMSCs and immune cells interaction is discussed in the terms of reciprocal effects, modifying properties of all "partner cells". Special attention is paid to the influence of immune cells on the MMSCs. "Immunosuppressive" phenomenon of MMSCs is considered as the integral part of the "response to injury" mechanism. PMID:23461191

  4. Uncover the recruiter in you!

    CERN Multimedia

    2013-01-01

    2013 saw the launch of the one-day training course "Selecting the best person for CERN". So far, 10 courses have taken place and over 100 participants have taken part in this interactive, hands on experience.   The course has been met with much enthusiasm and positive feedback, with participants not only feeling better prepared and organised for the recruitment boards, but also equipped with concrete tools on how to prepare and conduct an effective selection interview. Following on from this success, further sessions are planned in 2014: we look forward to welcoming recruiting supervisors and board members who are likely to take part in a recruitment process, whether for LD or LD2IC, and who are interested in finding out more about how to get the most out of this important process! To enrol to this course, please follow this link: "Selecting the best person for CERN".

  5. Alteration of pancreatic cancer cell functions by tumor-stromal cell interaction

    OpenAIRE

    Shin eHamada; Atsushi eMasamune; Tooru eShimosegawa

    2013-01-01

    Pancreatic cancer shows a characteristic tissue structure called desmoplasia, which consists of dense fibrotic stroma surrounding cancer cells. Interactions between pancreatic cancer cells and stromal cells promote invasive growth of cancer cells and establish a specific microenvironment such as hypoxia which further aggravates the malignant behavior of cancer cells. Pancreatic stellate cells (PSCs) play pivotal role in the development of fibrosis within the pancreatic cancer tissue, and also...

  6. Alteration of pancreatic cancer cell functions by tumor-stromal cell interaction

    OpenAIRE

    Hamada, Shin; Masamune, Atsushi; Shimosegawa, Tooru

    2013-01-01

    Pancreatic cancer shows a characteristic tissue structure called desmoplasia, which consists of dense fibrotic stroma surrounding cancer cells. Interactions between pancreatic cancer cells and stromal cells promote invasive growth of cancer cells and establish a specific microenvironment such as hypoxia which further aggravates the malignant behavior of cancer cells. Pancreatic stellate cells (PSCs) play a pivotal role in the development of fibrosis within the pancreatic cancer tissue, and al...

  7. Interactions between chitosan and cells measured by AFM

    International Nuclear Information System (INIS)

    Chitosan, a biocompatible material that has been widely used in bone tissue engineering, is believed to have a high affinity to osteoblastic cells. This research is the first to prove this hypothesis. By using atomic force microscopy (AFM) with a chitosan-modified cantilever, quantitative evaluation of the interforce between chitosan and cells was carried out. A chitosan tip functionalized with Arg-Gly-Asp (RGD) was also used to measure the interforce between RGD-chitosan and osteoblastic cells. This research concluded by examining cell adhesion and spreading of chitosan substrates as further characterization of the interactions between cells and chitosan. The force measured by AFM showed that the interforce between chitosan and osteoblasts was the highest (209 nN). The smallest adhesion force (61.8 nN) appeared between chitosan and muscle fibroblasts, which did not demonstrate any osteoblastic properties. This result proved that there was a significant interaction between chitosan and bone cells, and correlated with the observations of cell attachment and spreading. The technique developed in this research directly quantified the adhesion between chitosan and cells. This is the first study to demonstrate that specific interaction exists between chitosan and osteoblasts.

  8. Interactions between chitosan and cells measured by AFM

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Sheng-Wen; Thien, Doan Van Hong; Ho, Ming-Hua [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan (China); Hsieh, Hsyue-Jen [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Li, Chung-Hsing [Division of Orthodontics and Pediatric Dentistry, Department of Dentistry, Tri-Service General Hospital, Taipei, Taiwan (China); Hung, Chang-Hsiang [Department of Dentistry, Kinmen Hospital Department of Health, Taiwan (China); Li, Hsi-Hsin, E-mail: mhho@mail.ntust.edu.t [Deputy Superintendent, Kinmen Hospital Department of Health, Taiwan (China)

    2010-10-01

    Chitosan, a biocompatible material that has been widely used in bone tissue engineering, is believed to have a high affinity to osteoblastic cells. This research is the first to prove this hypothesis. By using atomic force microscopy (AFM) with a chitosan-modified cantilever, quantitative evaluation of the interforce between chitosan and cells was carried out. A chitosan tip functionalized with Arg-Gly-Asp (RGD) was also used to measure the interforce between RGD-chitosan and osteoblastic cells. This research concluded by examining cell adhesion and spreading of chitosan substrates as further characterization of the interactions between cells and chitosan. The force measured by AFM showed that the interforce between chitosan and osteoblasts was the highest (209 nN). The smallest adhesion force (61.8 nN) appeared between chitosan and muscle fibroblasts, which did not demonstrate any osteoblastic properties. This result proved that there was a significant interaction between chitosan and bone cells, and correlated with the observations of cell attachment and spreading. The technique developed in this research directly quantified the adhesion between chitosan and cells. This is the first study to demonstrate that specific interaction exists between chitosan and osteoblasts.

  9. Proapoptotic RYBP interacts with FANK1 and induces tumor cell apoptosis through the AP-1 signaling pathway.

    Science.gov (United States)

    Ma, Wen; Zhang, Xuan; Li, Meng; Ma, Xiaoli; Huang, Bingren; Chen, Hong; Chen, Deng

    2016-08-01

    Ring1 and YY1 Binding Protein (RYBP) induces tumor-specific cell apoptosis, but the underlying molecular mechanism has not been fully understood. Here we conducted a yeast two hybrid screen and identified FANK1 (Fibronectin type III and ankyrin repeat domains 1) as a novel RYBP-interacting protein. This interaction was confirmed by coimmunoprecipitation, GST pulldown and immunofluorescence assays. We mapped that the FNIII domain at the N-terminal of FANK1 binds to the Serine/Threonine-rich region at the C-terminal of RYBP. Further studies showed that overexpression of RYBP stabilized, whereas knockdown of RYBP by its specific shRNAs reduced, the expression of FANK1. Mechanistic studies revealed that RYBP inhibited the proteasome degradation of polyubiquitinated FANK1, thus prolonging the half-life of FANK1 protein. Functional studies indicated that RYBP activates FANK1-mediated activator protein 1 (AP-1) signaling pathway which contributes to tumor cell apoptosis. Taken together, our current study uncovered a new mechanism which RYBP utilizes to exert its pro-apoptotic activity in human tumor cells. PMID:27060496

  10. Interaction of peptides with cell membranes: insights from molecular modeling

    International Nuclear Information System (INIS)

    The investigation of the interaction of peptides with cell membranes is the focus of active research. It can enhance the understanding of basic membrane functions such as membrane transport, fusion, and signaling processes, and it may shed light on potential applications of peptides in biomedicine. In this review, we will present current advances in computational studies on the interaction of different types of peptides with the cell membrane. Depending on the properties of the peptide, membrane, and external environment, the peptide–membrane interaction shows a variety of different forms. Here, on the basis of recent computational progress, we will discuss how different peptides could initiate membrane pores, translocate across the membrane, induce membrane endocytosis, produce membrane curvature, form fibrils on the membrane surface, as well as interact with functional membrane proteins. Finally, we will present a conclusion summarizing recent progress and providing some specific insights into future developments in this field. (topical review)

  11. INTERACTIONS BETWEEN THE HUMAN GASTRIC CARCINOMA CELL AND THE HUMAN VASCULAR ENDOTHELIAL CELL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To definite the interactions between the human gastric carcinoma cell and the human vascular endothelial cell during the establishment and maintenance of the tumor vascular system and the tumor hematogenous metastasis.Methods We prepared the conditioned mediums of each cell so as to study the effect of the conditioned medium on itself or others by MTT colorimetry. The comprehensive effect of interactions between two cells was determined by stratified transfilter co-culture or direct contact co-culture.Results The conditioned medium of human gastric carcinoma cell can stimulate the proliferation of the human vascular endothelial cell, but the CM of HVEC can inhibit the growth of HGCC. Both kinds of cells can inhibit the growth of itself. The ultimate comprehensive effect of the interactions between two kinds of cells was increase of total cell numbers.Conclusion There exist the complicated interactions between the human gastric carcinoma cell and the human vascular endothelial cell during the tumor angiogenesis and the tumor hematogenous metastasis. The ultimate comprehensive effect of the interactions is increase of total cells numbers and tumor volume.

  12. Interaction of dermatologically relevant nanoparticles with skin cells and skin

    OpenAIRE

    Annika Vogt; Fiorenza Rancan; Sebastian Ahlberg; Berouz Nazemi; Chun Sik Choe; Darvin, Maxim E.; Sabrina Hadam; Ulrike Blume-Peytavi; Kateryna Loza; Jörg Diendorf; Matthias Epple; Christina Graf; Eckart Rühl; Meinke, Martina C; Jürgen Lademann

    2014-01-01

    The investigation of nanoparticle interactions with tissues is complex. High levels of standardization, ideally testing of different material types in the same biological model, and combinations of sensitive imaging and detection methods are required. Here, we present our studies on nanoparticle interactions with skin, skin cells, and biological media. Silica, titanium dioxide and silver particles were chosen as representative examples for different types of skin exposure to nanomaterials, e....

  13. Cell-material interactions on biphasic polyurethane matrix.

    Science.gov (United States)

    Dicesare, Patrick; Fox, Wade M; Hill, Michael J; Krishnan, G Rajesh; Yang, Shuying; Sarkar, Debanjan

    2013-08-01

    Cell-matrix interaction is a key regulator for controlling stem cell fate in regenerative tissue engineering. These interactions are induced and controlled by the nanoscale features of extracellular matrix and are mimicked on synthetic matrices to control cell structure and functions. Recent studies have shown that nanostructured matrices can modulate stem cell behavior and exert specific role in tissue regeneration. In this study, we have demonstrated that nanostructured phase morphology of synthetic matrix can control adhesion, proliferation, organization and migration of human mesenchymal stem cells (MSCs). Nanostructured biodegradable polyurethanes (PU) with segmental composition exhibit biphasic morphology at nanoscale dimensions and can control cellular features of MSCs. Biodegradable PU with polyester soft segment and hard segment composed of aliphatic diisocyanates and dipeptide chain extender were designed to examine the effect polyurethane phase morphology. By altering the polyurethane composition, morphological architecture of PU was modulated and its effect was examined on MSC. Results show that MSCs can sense the nanoscale morphology of biphasic polyurethane matrix to exhibit distinct cellular features and, thus, signifies the relevance of matrix phase morphology. The role of nanostructured phases of a synthetic matrix in controlling cell-matrix interaction provides important insights for regulation of cell behavior on synthetic matrix and, therefore, is an important tool for engineering tissue regeneration. PMID:23255285

  14. Ganglioside GM2 mediates migration of tumor cells by interacting with integrin and modulating the downstream signaling pathway.

    Science.gov (United States)

    Kundu, Manjari; Mahata, Barun; Banerjee, Avisek; Chakraborty, Sohini; Debnath, Shibjyoti; Ray, Sougata Sinha; Ghosh, Zhumur; Biswas, Kaushik

    2016-07-01

    The definitive role of ganglioside GM2 in mediating tumor-induced growth and progression is still unknown. Here we report a novel role of ganglioside GM2 in mediating tumor cell migration and uncovered its mechanism. Data shows differential expression levels of GM2-synthase as well as GM2 in different human cancer cells. siRNA mediated knockdown of GM2-synthase in CCF52, A549 and SK-RC-26B cells resulted in significant inhibition of tumor cell migration as well as invasion in vitro without affecting cellular proliferation. Over-expression of GM2-synthase in low-GM2 expressing SK-RC-45 cells resulted in a consequent increase in migration thus confirming the potential role GM2 and its downstream partners play in tumor cell migration and motility. Further, treatment of SK-RC-45 cells with exogenous GM2 resulted in a dramatic increase in migratory and invasive capacity with no change in proliferative capacity, thereby confirming the role of GM2 in tumorigenesis specifically by mediating tumor migration and invasion. Gene expression profiling of GM2-synthase silenced cells revealed altered expression of several genes involved in cell migration primarily those controlling the integrin mediated signaling. GM2-synthase knockdown resulted in decreased phosphorylation of FAK, Src as well as Erk, while over-expression and/or exogenous GM2 treatment caused increased FAK and Erk phosphorylation respectively. Again, GM2 mediated invasion and Erk phosphorylation is blocked in integrin knockdown SK-RC-45 cells, thus confirming that GM2 mediated migration and phosphorylation of Erk is integrin dependent. Finally, confocal microscopy suggested co-localization while co-immunoprecipitation and surface plasmon resonance (SPR) confirmed direct interaction of membrane bound ganglioside, GM2 with the integrin receptor. PMID:27066976

  15. Synergistic interaction between selective drugs in cell populations models.

    Directory of Open Access Journals (Sweden)

    Victoria Doldán-Martelli

    Full Text Available The design of selective drugs and combinatorial drug treatments are two of the main focuses in modern pharmacology. In this study we use a mathematical model of chimeric ligand-receptor interaction to show that the combination of selective drugs is synergistic in nature, providing a way to gain optimal selective potential at reduced doses compared to the same drugs when applied individually. We use a cell population model of proliferating cells expressing two different amounts of a target protein to show that both selectivity and synergism are robust against variability and heritability in the cell population. The reduction in the total drug administered due to the synergistic performance of the selective drugs can potentially result in reduced toxicity and off-target interactions, providing a mechanism to improve the treatment of cell-based diseases caused by aberrant gene overexpression, such as cancer and diabetes.

  16. Cell-scaffold interactions in the bone tissue engineering triad

    Directory of Open Access Journals (Sweden)

    CM Murphy

    2013-09-01

    Full Text Available Bone tissue engineering has emerged as one of the leading fields in tissue engineering and regenerative medicine. The success of bone tissue engineering relies on understanding the interplay between progenitor cells, regulatory signals, and the biomaterials/scaffolds used to deliver them – otherwise known as the tissue engineering triad. This review will discuss the roles of these fundamental components with a specific focus on the interaction between cell behaviour and scaffold structural properties. In terms of scaffold architecture, recent work has shown that pore size can affect both cell attachment and cellular invasion. Moreover, different materials can exert different biomechanical forces, which can profoundly affect cellular differentiation and migration in a cell type specific manner. Understanding these interactions will be critical for enhancing the progress of bone tissue engineering towards clinical applications.

  17. ESA uncovers Geminga's `hot spot'

    Science.gov (United States)

    2004-07-01

    16 July 2004 Astronomers using ESA’s X-ray observatory XMM-Newton have detected a small, bright ‘hot spot’ on the surface of the neutron star called Geminga, 500 light-years away. The hot spot is the size of a football field and is caused by the same mechanism producing Geminga’s X-ray tails. This discovery identifies the missing link between the X-ray and gamma-ray emission from Geminga. hi-res Size hi-res: 1284 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot This figure shows the effects of charged particles accelerated in the magnetosphere of Geminga. Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of particles kicked out by Geminga’s strong magnetic field, trail the neutron star as it moves about in space. Panel (b) shows how electrically charged particles interact with Geminga’s magnetic field. For example, if electrons (blue) are kicked out by the star, positrons (in red) hit the star’s magnetic poles like in an ‘own goal’. Panel (c) illustrates the size of Geminga’s magnetic field (blue) compared to that of the star itself at the centre (purple). The magnetic field is tilted with respect to Geminga’s rotation axis (red). Panel (d) shows the magnetic poles of Geminga, where charged particles hit the surface of the star, creating a two-million degrees hot spot, a region much hotter than the surroundings. As the star spins on its rotation axis, the hot spot comes into view and then disappears, causing the periodic colour change seen by XMM-Newton. An animated version of the entire sequence can be found at: Click here for animated GIF [low resolution, animated GIF, 5536 KB] Click here for AVI [high resolution, AVI with DIVX compression, 19128 KB] hi-res Size hi-res: 371 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot, panel (a) Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of

  18. Functional living biointerfaces to direct cell-material interaction

    OpenAIRE

    Rodrigo Navarro, Aleixandre

    2015-01-01

    [EN] This thesis deals with the development of a living biointerface between synthetic substrates and living cells to engineer cell-material interactions for tissue engineering purposes. This living biointerface is made of Lactococcus lactis, a non-pathogenic lactic bacteria widely used as starter in the dairy industry and, recently, in the expression of heterologous proteins in applications such as oral vaccine delivery or membrane-bound expression of proteins. L. lactis has been engine...

  19. Dimethylsulfoxide exposure modulates HL-60 cell rolling interactions

    OpenAIRE

    David J. Gee; L. Kate Wright; Jonathan Zimmermann; Kayla Cole; Karen Soule; Michelle Ubowski

    2012-01-01

    Human leukaemic HL-60 cells are widely used for studying interactions involving adhesion molecules [e.g. P-selectin and PSGL-1 (P-selectin glycoprotein ligand-1)] since their rolling behaviour has been shown to mimic the dynamics of leucocyte rolling in vitro. HL-60 cells are neutrophilic promyelocytes that can undergo granulocytic differentiation upon exposure to compounds such as DMSO (dimethylsulfoxide). Using a parallel plate flow chamber functionalized with recombinant P-selectin–...

  20. Stem cell autotomy and niche interaction in different systems.

    Science.gov (United States)

    Dorn, David C; Dorn, August

    2015-07-26

    The best known cases of cell autotomy are the formation of erythrocytes and thrombocytes (platelets) from progenitor cells that reside in special niches. Recently, autotomy of stem cells and its enigmatic interaction with the niche has been reported from male germline stem cells (GSCs) in several insect species. First described in lepidopterans, the silkmoth, followed by the gipsy moth and consecutively in hemipterans, foremost the milkweed bug. In both, moths and the milkweed bug, GSCs form finger-like projections toward the niche, the apical cells (homologs of the hub cells in Drosophila). Whereas in the milkweed bug the projection terminals remain at the surface of the niche cells, in the gipsy moth they protrude deeply into the singular niche cell. In both cases, the projections undergo serial retrograde fragmentation with progressing signs of autophagy. In the gipsy moth, the autotomized vesicles are phagocytized and digested by the niche cell. In the milkweed bug the autotomized vesicles accumulate at the niche surface and disintegrate. Autotomy and sprouting of new projections appears to occur continuously. The significance of the GSC-niche interactions, however, remains enigmatic. Our concept on the signaling relationship between stem cell-niche in general and GSC and niche (hub cells and cyst stem cells) in particular has been greatly shaped by Drosophila melanogaster. In comparing the interactions of GSCs with their niche in Drosophila with those in species exhibiting GSC autotomy it is obvious that additional or alternative modes of stem cell-niche communication exist. Thus, essential signaling pathways, including niche-stem cell adhesion (E-cadherin) and the direction of asymmetrical GSC division - as they were found in Drosophila - can hardly be translated into the systems where GSC autotomy was reported. It is shown here that the serial autotomy of GSC projections shows remarkable similarities with Wallerian axonal destruction, developmental axon

  1. Inferring gene-environment interaction from case-parent trio data: evaluation of and adjustment for spurious GxE and development of a data-smoothing method to uncover true GxE

    OpenAIRE

    Shin, Ji-Hyung

    2012-01-01

    Most complex diseases are influenced jointly by genes (G) and environmental or non-genetic attributes (E). Gene-environment interaction (GxE) is measured by statistical interaction between G and E, which occurs when genotype relative risks (GRRs) vary with E. In this thesis, we explore the sources of spurious GxE and propose a data-smoothing approach to GxE for case-parent trio data. In the first project, we address the problem of making inference about GxE based on the transmission rates of...

  2. Cell-cell interactions during patterning of the Arabidopsis anther.

    Science.gov (United States)

    Feng, Xiaoqi; Dickinson, Hugh G

    2010-04-01

    Key steps in the evolution of the angiosperm anther include the patterning of the concentrically organized microsporangium and the incorporation of four such microsporangia into a leaf-like structure. Mutant studies in the model plant Arabidopsis thaliana are leading to an increasingly accurate picture of (i) the cell lineages culminating in the different cell types present in the microsporangium (the microsporocytes, the tapetum, and the middle and endothecial layers), and (ii) some of the genes responsible for specifying their fates. However, the processes that confer polarity on the developing anther and position the microsporangia within it remain unclear. Certainly, data from a range of experimental strategies suggest that hormones play a central role in establishing polarity and the patterning of the anther initial, and may be responsible for locating the microsporangia. But the fact that microsporangia were originally positioned externally suggests that their development is likely to be autonomous, perhaps with the reproductive cells generating signals controlling the growth and division of the investing anther epidermis. These possibilities are discussed in the context of the expression of genes which initiate and maintain male and female reproductive development, and in the perspective of our current views of anther evolution. PMID:20298223

  3. Inverting adherent cells for visualizing ECM interactions at the basal cell side

    International Nuclear Information System (INIS)

    Interactions with the extracellular matrix (ECM) govern a wide range of cellular functions, including survival, migration and invasion. However, in adherent cells these interactions occur primarily on the basal cell side, making them inaccessible to high-resolution, surface-scanning imaging techniques such as atomic force microscopy (AFM) or scanning electron microscopy (SEM). Here we describe a fast and reliable method for inverting adherent cells, exposing the basal cell membrane for direct analysis by AFM or SEM in combination with fluorescence microscopy. Cells including their matrix adhesion sites remain intact during the inversion process and are transferred together with the complete array of basally associated ECM proteins. Molecular features of ECM proteins, such as the characteristic 67 nm collagen D-periodicity, are well preserved after inversion. To demonstrate the versatility of the method, we compared basal interactions of fibroblasts with fibrillar collagen I and fibronectin matrices. While fibroblasts remodel the fibronectin layer exclusively from above, they actively invade even thin collagen layers by contacting individual collagen nanofibrils both basally and apically through a network of cellular extensions. Cell–matrix entanglement coincides with enhanced cell spreading and flattening, indicating that nanoscale ECM interactions govern macroscopic changes in cell morphology. The presented cell inversion technique can thus provide novel insight into nanoscale cell–matrix interactions at the basal cell side. - Highlights: ► We present a novel method for inverting adherent cells to expose the basal cell side. ► Basal cell sides can be imaged at high resolution by AFM and SEM. ► Cells can be inverted together with the underlying extracellular matrix. ► AFM images of inverted cells provide a nanoscale look at basal cell–ECM interactions

  4. Interaction with Dopamine D2 Receptor Enhances Expression of Transient Receptor Potential Channel 1 at the Cell Surface

    OpenAIRE

    Hannan, Meredith A.; Kabbani, Nadine; Paspalas, Constantinos D.; Levenson, Robert

    2008-01-01

    Receptor signaling is mediated by direct protein interaction with various types of cytoskeletal, adapter, effector, and additional receptor molecules. In brain tissue and in cultured neurons, activation of dopamine D2 receptors (D2Rs) has been found to impact cellular calcium signaling. Using a yeast two-hybrid approach, we have uncovered a direct physical interaction between the D2R and the transient receptor potential channel (TRPC) subtypes 1, 4 and 5. The TRPC/D2R interaction was further ...

  5. Real space Dynamical Super Cell Approximation for interacting disordered systems

    OpenAIRE

    Moradian, Rostam

    2004-01-01

    Effective medium super-cell approximation method which is introduced for disordered systems is extended to a general case of interacting disordered systems. We found that the dynamical cluster approximation (DCA) and also the non local coherent potential approximation (NLCPA) are two simple case of this technique. Whole equations of this formalism derived by using the effective medium theory in real space.

  6. Maintenance of immune homeostasis through ILC/T cell interactions

    Directory of Open Access Journals (Sweden)

    Nicole evon Burg

    2015-08-01

    Full Text Available Innate lymphoid cells (ILCs have emerged as a new family of immune cells with crucial functions in innate and adaptive immunity. ILC subsets mirror the cytokine and transcriptional profile of CD4+ T helper (TH cell subsets. Hence, group 1 (ILC1, group 2 (ILC2 and group 3 (ILC3 ILCs can be distinguished by the production of TH1, TH2, and TH17-type cytokines, respectively. Cytokine release by ILCs not only shapes early innate immunity, but can also orchestrate TH immune responses to microbial or allergen exposure. Recent studies have identified an unexpected effector function of ILCs as antigen presenting cells (APCs. Both ILC2s and ILC3s are able to process and present foreign antigens (Ags via major histocompatibility complex (MHC class II, and to induce cognate CD4+ T cell responses. In addition, Ag-stimulated T cells promote ILC activation and effector functions indicating a reciprocal interaction between the adaptive and innate immune system. A fundamental puzzle in ILC function is how ILC/T cell interactions promote host protection and prevent autoimmune diseases. Furthermore, the way in which microenvironmental and inflammatory signals determine the outcome of ILC/T cell immune responses in various tissues is not yet understood. This review focuses on recent advances in understanding the mechanisms that coordinate the collaboration between ILCs and T cells under homeostatic and inflammatory conditions. We also discuss the potential roles of T cells and other immune cells to regulate ILC functions and to maintain homeostasis in mucosal tissues.

  7. Interaction of injectable neurotropic drugs with the red cell membrane.

    Science.gov (United States)

    Reinhart, Walter H; Lubszky, Szabina; Thöny, Sandra; Schulzki, Thomas

    2014-10-01

    The normal red blood cell (RBC) shape is a biconcave discocyte. An intercalation of a drug in the outer half of the membrane lipid bilayer leads to echinocytosis, an intercalation in the inner half to stomatocytosis. We have used the shape transforming capacity of RBCs as a model to analyse the membrane interaction potential of various neurotropic drugs. Chlorpromazine, clomipramine, citalopram, clonazepam, and diazepam induced a reversible stomatocytosis, phenytoin induced echinocytosis, while the anticonvulsants levetiracetam, valproic acid and phenobarbital had no effect. This diversity of RBC shape transformations suggests that the pharmacological action is not linked to the membrane interaction. We conclude that this simple RBC shape transformation assay could be a useful tool to screen for potential drug interactions with cell membranes. PMID:24997296

  8. Oocyte-granulosa-theca cell interactions during preantral follicular development

    Directory of Open Access Journals (Sweden)

    Orisaka Makoto

    2009-07-01

    Full Text Available Abstract The preantral-early antral follicle transition is the penultimate stage of follicular development in terms of gonadotropin dependence and follicle destiny (growth versus atresia. Follicular growth during this period is tightly regulated by oocyte-granulosa-theca cell interactions. Formation of the theca cell layer is a key event that occurs during this transitional stage. Granulosal factor(s stimulates the recruitment of theca cells from cortical stromal cells, while oocyte-derived growth differentiation factor-9 (GDF-9 is involved in the differentiation of theca cells during this early stage of follicular development. The preantral to early antral transition is most susceptible to follicular atresia. GDF-9 promotes follicular survival and growth during transition from preantral stage to early antral stage by suppressing granulosa cell apoptosis and follicular atresia. GDF-9 also enhances preantral follicle growth by up-regulating theca cell androgen production. Thecal factor(s promotes granulosa cell proliferation and suppress granulosa cell apoptosis. Understanding the intraovarian mechanisms in the regulation of follicular growth and atresia during this stage may be of clinical significance in the selection of the best quality germ cells for assisted reproduction. In addition, since certain ovarian dysfunctions, such as polycystic ovarian syndrome and gonadotropin poor-responsiveness, are consequences of dysregulated follicle growth at this transitional stage, understanding the molecular and cellular mechanisms in the control of follicular development during the preantral-early antral transition may provide important insight into the pathophysiology and rational treatment of these conditions.

  9. The Dynamics of Interactions Among Immune and Glioblastoma Cells.

    Science.gov (United States)

    Eder, Katalin; Kalman, Bernadette

    2015-12-01

    Glioblastoma is the most common intracranial malignancy that constitutes about 50 % of all gliomas. Despite aggressive, multimodal therapy consisting of surgery, radiation, and chemotherapy, the outcome of patients with glioblastoma remains poor with 5-year survival rates of <10 %. Resistance to conventional therapies is most likely caused by several factors. Alterations in the functions of local immune mediators may represent a critical contributor to this resistance. The tumor microenvironment contains innate and adaptive immune cells in addition to the cancer cells and their surrounding stroma. These various cells communicate with each other by means of direct cell-cell contact or by soluble factors including cytokines and chemokines, and act in autocrine and paracrine manners to modulate tumor growth. There are dynamic interactions among the local immune elements and the tumor cells, where primarily the protective immune cells attempt to overcome the malignant cells. However, by developing somatic mutations and epigenetic modifications, the glioblastoma tumor cells acquire the capability of counteracting the local immune responses, and even exploit the immune cells and products for their own growth benefits. In this review, we survey those immune mechanisms that likely contribute to glioblastoma pathogenesis and may serve as a basis for novel treatment strategies. PMID:26224516

  10. Interaction of dermatologically relevant nanoparticles with skin cells and skin

    Science.gov (United States)

    Rancan, Fiorenza; Ahlberg, Sebastian; Nazemi, Berouz; Choe, Chun Sik; Darvin, Maxim E; Hadam, Sabrina; Blume-Peytavi, Ulrike; Loza, Kateryna; Diendorf, Jörg; Epple, Matthias; Graf, Christina; Rühl, Eckart; Meinke, Martina C; Lademann, Jürgen

    2014-01-01

    Summary The investigation of nanoparticle interactions with tissues is complex. High levels of standardization, ideally testing of different material types in the same biological model, and combinations of sensitive imaging and detection methods are required. Here, we present our studies on nanoparticle interactions with skin, skin cells, and biological media. Silica, titanium dioxide and silver particles were chosen as representative examples for different types of skin exposure to nanomaterials, e.g., unintended environmental exposure (silica) versus intended exposure through application of sunscreen (titanium dioxide) or antiseptics (silver). Because each particle type exhibits specific physicochemical properties, we were able to apply different combinations of methods to examine skin penetration and cellular uptake, including optical microscopy, electron microscopy, X-ray microscopy on cells and tissue sections, flow cytometry of isolated skin cells as well as Raman microscopy on whole tissue blocks. In order to assess the biological relevance of such findings, cell viability and free radical production were monitored on cells and in whole tissue samples. The combination of technologies and the joint discussion of results enabled us to look at nanoparticle–skin interactions and the biological relevance of our findings from different angles. PMID:25551064

  11. Interaction of dermatologically relevant nanoparticles with skin cells and skin

    Directory of Open Access Journals (Sweden)

    Annika Vogt

    2014-12-01

    Full Text Available The investigation of nanoparticle interactions with tissues is complex. High levels of standardization, ideally testing of different material types in the same biological model, and combinations of sensitive imaging and detection methods are required. Here, we present our studies on nanoparticle interactions with skin, skin cells, and biological media. Silica, titanium dioxide and silver particles were chosen as representative examples for different types of skin exposure to nanomaterials, e.g., unintended environmental exposure (silica versus intended exposure through application of sunscreen (titanium dioxide or antiseptics (silver. Because each particle type exhibits specific physicochemical properties, we were able to apply different combinations of methods to examine skin penetration and cellular uptake, including optical microscopy, electron microscopy, X-ray microscopy on cells and tissue sections, flow cytometry of isolated skin cells as well as Raman microscopy on whole tissue blocks. In order to assess the biological relevance of such findings, cell viability and free radical production were monitored on cells and in whole tissue samples. The combination of technologies and the joint discussion of results enabled us to look at nanoparticle–skin interactions and the biological relevance of our findings from different angles.

  12. A genetic interaction map of cell cycle regulators.

    Science.gov (United States)

    Billmann, Maximilian; Horn, Thomas; Fischer, Bernd; Sandmann, Thomas; Huber, Wolfgang; Boutros, Michael

    2016-04-15

    Cell-based RNA interference (RNAi) is a powerful approach to screen for modulators of many cellular processes. However, resulting candidate gene lists from cell-based assays comprise diverse effectors, both direct and indirect, and further dissecting their functions can be challenging. Here we screened a genome-wide RNAi library for modulators of mitosis and cytokinesis inDrosophilaS2 cells. The screen identified many previously known genes as well as modulators that have previously not been connected to cell cycle control. We then characterized ∼300 candidate modifiers further by genetic interaction analysis using double RNAi and a multiparametric, imaging-based assay. We found that analyzing cell cycle-relevant phenotypes increased the sensitivity for associating novel gene function. Genetic interaction maps based on mitotic index and nuclear size grouped candidates into known regulatory complexes of mitosis or cytokinesis, respectively, and predicted previously uncharacterized components of known processes. For example, we confirmed a role for theDrosophilaCCR4 mRNA processing complex componentl(2)NC136during the mitotic exit. Our results show that the combination of genome-scale RNAi screening and genetic interaction analysis using process-directed phenotypes provides a powerful two-step approach to assigning components to specific pathways and complexes. PMID:26912791

  13. Probing mechanical principles of cell-nanomaterial interactions

    Science.gov (United States)

    Gao, Huajian

    2014-01-01

    With the rapid development of nanotechnology, various types of nanoparticles, nanowires, nanofibers, nanotubes, and atomically thin plates and sheets have emerged as candidates for an ever increasing list of potential applications for next generation electronics, microchips, composites, barrier coatings, biosensors, drug delivery, and energy harvesting and conversion systems. There is now an urgent societal need to understand both beneficial and hazardous effects of nanotechnology which is projected to produce and release thousands of tons of nanomaterials into the environment in the coming decades. This paper aims to present an overview of some recent studies conducted at Brown University on the mechanics of cell-nanomaterial interactions, including the modeling of nanoparticles entering cells by receptor-mediated endocytosis and coarse-grained molecular dynamics simulations of nanoparticles interacting with cell membranes. The discussions will be organized around the following questions: Why and how does cellular uptake of nanoparticles depend on particle size, shape, elasticity and surface structure? In particular, we will discuss the effect of nanoparticle size on receptor-mediated endocytosis, the effect of elastic stiffness on cell-particle interactions, how high aspect ratio nanomaterials such as carbon nanotubes and graphenes enter cells and how different geometrical patterns of ligands on a nanoparticle can be designed to control the rate of particle uptake.

  14. Interaction of nanosilver particles with human lymphocyte cells

    Science.gov (United States)

    Zhornik, Alena; Baranova, Ludmila; Volotovski, Igor; Chizhik, Sergey; Drozd, Elizaveta; Sudas, Margarita; Buu Ngo, Quoc; Chau Nguyen, Hoai; Huynh, Thi Ha; Hien Dao, Trong

    2015-01-01

    The damaging effects of nanoparticles were hypothesized to be the oxidative stress caused by the formation of reactive oxygen species and initiation of inflammatory reactions. In this context a study on the effects of nanosilver particles on the formation of reactive oxygen species in human lymphocyte culture was carried out. The obtained results showed that fluorescence intensity considerably increased after cells had interacted with nanosilver particles of varying concentrations, indicating the formation of reactive oxygen species and their accumulation in lymphocyte cells. Morphological study of the lymphocyte cells under the effects of nanosilver particles showed that the change in morphology depends on the concentration and size of nanosilver particles: for a size ≤20 nm the lymphocyte cell significantly shrank with pronounced differences in the morphological structure of the cell membrane, but for a size ≥200 nm no change was observed.

  15. IgA production requires B cell interaction with subepithelial dendritic cells in Peyer's patches.

    Science.gov (United States)

    Reboldi, Andrea; Arnon, Tal I; Rodda, Lauren B; Atakilit, Amha; Sheppard, Dean; Cyster, Jason G

    2016-05-13

    Immunoglobulin A (IgA) induction primarily occurs in intestinal Peyer's patches (PPs). However, the cellular interactions necessary for IgA class switching are poorly defined. Here we show that in mice, activated B cells use the chemokine receptor CCR6 to access the subepithelial dome (SED) of PPs. There, B cells undergo prolonged interactions with SED dendritic cells (DCs). PP IgA class switching requires innate lymphoid cells, which promote lymphotoxin-β receptor (LTβR)-dependent maintenance of DCs. PP DCs augment IgA production by integrin αvβ8-mediated activation of transforming growth factor-β (TGFβ). In mice where B cells cannot access the SED, IgA responses against oral antigen and gut commensals are impaired. These studies establish the PP SED as a niche supporting DC-B cell interactions needed for TGFβ activation and induction of mucosal IgA responses. PMID:27174992

  16. Some Specification Tests of Uncovered Interest Parity

    OpenAIRE

    Ian D. McAVINCHEY; Ronald MacDONALD

    1990-01-01

    Exchange rate theory has recently been concerned with versions of the uncovered interest rate parity (UIP) condition, as an alternative to purchasing power parity. The UIP condition is examined, for the U.S. Dollar, the Deutschemark, the Yen, and the Swiss Franc all against the Pound Sterling, using dynamic specification tests based on residual from the LUS and OLS classes, and selected error orthogonality tests. Market errors for one currency may have an information role for other currencies...

  17. Lead exposure at uncovered outdoor firing ranges

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, R.L.; Hicks, A.M.; O' Leary, L.M.; London, S. (University of Southern California School of Medicine, Los Angeles (USA))

    1991-06-01

    Excessive lead exposure in shooting instructors at indoor firing ranges and covered outdoor firing ranges has been documented. The City of Los Angeles assessed exposure of its full-time shooting instructors at uncovered outdoor ranges via air monitoring and blood lead-level measurements. Results of these tests revealed that significant lead exposure and absorption can occur at outdoor firing ranges. The use of copper-jacketed ammunition may decrease air lead levels and decrease lead absorption by range instructors.

  18. 'Mystery shoppers' can uncover ED weaknesses.

    Science.gov (United States)

    2006-12-01

    One veteran "mystery shopper" has uncovered several common ED practices that can hurt patient satisfaction. You can learn from her observations to improve your ED's customer service: Be sure to let all of your patients know how long they might expect to wait before seeing a doctor. Wash your hands where the patient can see you, so they can be confident you are practicing good hygiene. Clearly explain all forms and discharge instructions to help ensure patient compliance. PMID:17209484

  19. Uncovering student ideas in physical science

    CERN Document Server

    Keeley, Page

    2014-01-01

    If you and your students can't get enough of a good thing, Volume 2 of Uncovering Student Ideas in Physical Science is just what you need. The book offers 39 new formative assessment probes, this time with a focus on electric charge, electric current, and magnets and electromagnetism. It can help you do everything from demystify electromagnetic fields to explain the real reason balloons stick to the wall after you rub them on your hair.

  20. Tumour-stromal interactions: Integrins and cell adhesions as modulators of mammary cell survival and transformation

    International Nuclear Information System (INIS)

    Stromal–epithelial interactions modulate mammary epithelial cell (MEC) growth and apoptosis by influencing cell adhesion and tissue organization. Perturbations in the mammary stroma and cell adhesion characterize breast tumors and underlie the altered tissue organization, disrupted tissue homeostasis and enhanced survival phenotype of the disease. Apoptosis resistance likely arises during malignant transformation via genetic and epigenetic modification of cell adhesion pathways induced by a changing tissue microenvironment. Acquisition of adhesion-linked survival networks that enhance MEC viability in the absence of basement membrane interactions probably promote malignant transformation, and may render breast tumors sufficiently resistant to exogenous apoptotic stimuli to generate multidrug resistance

  1. Ionizing radiation induces heritable disruption of epithelial cell interactions

    International Nuclear Information System (INIS)

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, β-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization

  2. EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells.

    Science.gov (United States)

    Li, Jianhua; Lu, Erick; Yi, Tangsheng; Cyster, Jason G

    2016-05-01

    T follicular helper (Tfh) cells are a subset of T cells carrying the CD4 antigen; they are important in supporting plasma cell and germinal centre responses. The initial induction of Tfh cell properties occurs within the first few days after activation by antigen recognition on dendritic cells, although how dendritic cells promote this cell-fate decision is not fully understood. Moreover, although Tfh cells are uniquely defined by expression of the follicle-homing receptor CXCR5 (refs 1, 2), the guidance receptor promoting the earlier localization of activated T cells at the interface of the B-cell follicle and T zone has been unclear. Here we show that the G-protein-coupled receptor EBI2 (GPR183) and its ligand 7α,25-dihydroxycholesterol mediate positioning of activated CD4 T cells at the interface of the follicle and T zone. In this location they interact with activated dendritic cells and are exposed to Tfh-cell-promoting inducible co-stimulator (ICOS) ligand. Interleukin-2 (IL-2) is a cytokine that has multiple influences on T-cell fate, including negative regulation of Tfh cell differentiation. We demonstrate that activated dendritic cells in the outer T zone further augment Tfh cell differentiation by producing membrane and soluble forms of CD25, the IL-2 receptor α-chain, and quenching T-cell-derived IL-2. Mice lacking EBI2 in T cells or CD25 in dendritic cells have reduced Tfh cells and mount defective T-cell-dependent plasma cell and germinal centre responses. These findings demonstrate that distinct niches within the lymphoid organ T zone support distinct cell fate decisions, and they establish a function for dendritic-cell-derived CD25 in controlling IL-2 availability and T-cell differentiation. PMID:27147029

  3. A population dynamics analysis of the interaction between adaptive regulatory T cells and antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    David Fouchet

    Full Text Available BACKGROUND: Regulatory T cells are central actors in the maintenance of tolerance of self-antigens or allergens and in the regulation of the intensity of the immune response during infections by pathogens. An understanding of the network of the interaction between regulatory T cells, antigen presenting cells and effector T cells is starting to emerge. Dynamical systems analysis can help to understand the dynamical properties of an interaction network and can shed light on the different tasks that can be accomplished by a network. METHODOLOGY AND PRINCIPAL FINDINGS: We used a mathematical model to describe a interaction network of adaptive regulatory T cells, in which mature precursor T cells may differentiate into either adaptive regulatory T cells or effector T cells, depending on the activation state of the cell by which the antigen was presented. Using an equilibrium analysis of the mathematical model we show that, for some parameters, the network has two stable equilibrium states: one in which effector T cells are strongly regulated by regulatory T cells and another in which effector T cells are not regulated because the regulatory T cell population is vanishingly small. We then simulate different types of perturbations, such as the introduction of an antigen into a virgin system, and look at the state into which the system falls. We find that whether or not the interaction network switches from the regulated (tolerant state to the unregulated state depends on the strength of the antigenic stimulus and the state from which the network has been perturbed. CONCLUSION/SIGNIFICANCE: Our findings suggest that the interaction network studied in this paper plays an essential part in generating and maintaining tolerance against allergens and self-antigens.

  4. Nanoscale tissue engineering: spatial control over cell-materials interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wheeldon, Ian; Farhadi, Arash; Bick, Alexander G; Khademhosseini, Ali [Center for Biomedical Engineering, Department of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Jabbari, Esmaiel, E-mail: alik@rics.bwh.harvard.edu [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2011-05-27

    Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness these interactions through nanoscale biomaterials engineering in order to study and direct cellular behavior. Here, we review two- and three-dimensional (2- and 3D) nanoscale tissue engineering technologies, and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffold technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D. However, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and that can control the temporal changes in the cellular microenvironment. (topical review)

  5. Nanoscale tissue engineering: spatial control over cell-materials interactions

    International Nuclear Information System (INIS)

    Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness these interactions through nanoscale biomaterials engineering in order to study and direct cellular behavior. Here, we review two- and three-dimensional (2- and 3D) nanoscale tissue engineering technologies, and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffold technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D. However, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and that can control the temporal changes in the cellular microenvironment. (topical review)

  6. Stem cell autotomy and niche interaction in differentsystems

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The best known cases of cell autotomy are theformation of erythrocytes and thrombocytes (platelets)from progenitor cells that reside in special niches.Recently, autotomy of stem cells and its enigmaticinteraction with the niche has been reported from malegermline stem cells (GSCs) in several insect species.First described in lepidopterans, the silkmoth, followedby the gipsy moth and consecutively in hemipterans,foremost the milkweed bug. In both, moths and themilkweed bug, GSCs form finger-like projectionstoward the niche, the apical cells (homologs of thehub cells in Drosophila). Whereas in the milkweedbug the projection terminals remain at the surfaceof the niche cells, in the gipsy moth they protrudedeeply into the singular niche cell. In both cases, theprojections undergo serial retrograde fragmentationwith progressing signs of autophagy. In the gipsy moth,the autotomized vesicles are phagocytized and digestedby the niche cell. In the milkweed bug the autotomizedvesicles accumulate at the niche surface and disintegrate.Autotomy and sprouting of new projectionsappears to occur continuously. The significance of theGSC-niche interactions, however, remains enigmatic.Our concept on the signaling relationship betweenstem cell-niche in general and GSC and niche (hubcells and cyst stem cells) in particular has been greatlyshaped by Drosophila melanogaster. In comparingthe interactions of GSCs with their niche in Drosophilawith those in species exhibiting GSC autotomy itis obvious that additional or alternative modes ofstem cell-niche communication exist. Thus, essentialsignaling pathways, including niche-stem cell adhesion(E-cadherin) and the direction of asymmetrical GSCdivision - as they were found in Drosophila - can hardlybe translated into the systems where GSC autotomy was reported. It is shown here that the serial autotomyof GSC projections shows remarkable similarities withWallerian axonal destruction, developmental axonpruning and dying

  7. Multiple cell and population-level interactions with mouse embryonic stem cell heterogeneity.

    Science.gov (United States)

    Cannon, Danielle; Corrigan, Adam M; Miermont, Agnes; McDonel, Patrick; Chubb, Jonathan R

    2015-08-15

    Much of development and disease concerns the generation of gene expression differences between related cells sharing similar niches. However, most analyses of gene expression only assess population and time-averaged levels of steady-state transcription. The mechanisms driving differentiation are buried within snapshots of the average cell, lacking dynamic information and the diverse regulatory history experienced by individual cells. Here, we use a quantitative imaging platform with large time series data sets to determine the regulation of developmental gene expression by cell cycle, lineage, motility and environment. We apply this technology to the regulation of the pluripotency gene Nanog in mouse embryonic stem cells. Our data reveal the diversity of cell and population-level interactions with Nanog dynamics and heterogeneity, and how this regulation responds to triggers of pluripotency. Cell cycles are highly heterogeneous and cycle time increases with Nanog reporter expression, with longer, more variable cycle times as cells approach ground-state pluripotency. Nanog reporter expression is highly stable over multiple cell generations, with fluctuations within cycles confined by an attractor state. Modelling reveals an environmental component to expression stability, in addition to any cell-autonomous behaviour, and we identify interactions of cell density with both cycle behaviour and Nanog. Rex1 expression dynamics showed shared and distinct regulatory effects. Overall, our observations of multiple partially overlapping dynamic heterogeneities imply complex cell and environmental regulation of pluripotent cell behaviour, and suggest simple deterministic views of stem cell states are inappropriate. PMID:26209649

  8. Choice of partners: sexual cell interactions in Dictyostelium discoideum.

    Science.gov (United States)

    Urushihara, H

    1996-08-01

    Recognition of mating partners is of central importance in the sexual processes. In consideration that the most important function of sexuality is to shuffle genetic materials to generate wider variation of characters, mating among different genetic backgrounds is preferable. Wild isolates of cellular slime mold Dictyostelium discoideum are predominantly heterothallic, but homothallic ones also exist. In addition, there are bi-sexual strains which are compatible with either mating type of heterothallic strains but are self-incompatible. How cells of these organisms choose proper mating partners may include the essential mechanisms for sexual cell recognition in general. This minireview addresses studies on sexual cell interactions of D. discoideum with special attention to cell recognition and evolution of the mating system. PMID:8906358

  9. Live cell imaging of membrane / cytoskeleton interactions and membrane topology

    Science.gov (United States)

    Chierico, Luca; Joseph, Adrian S.; Lewis, Andrew L.; Battaglia, Giuseppe

    2014-09-01

    We elucidate the interaction between actin and specific membrane components, using real time live cell imaging, by delivering probes that enable access to components, that cannot be accessed genetically. We initially investigated the close interplay between Phosphatidylinositol 4,5-bisphosphate (PIP2) and the F-actin network. We show that, during the early stage of cell adhesion, PIP2 forms domains within the filopodia membrane. We studied these domains alongside cell spreading and observed that these very closely follow the actin tread-milling. We show that this mechanism is associated with an active transport of PIP2 rich organelles from the cell perinuclear area to the edge, along actin fibers. Finally, mapping other phospholipids and membrane components we observed that the PIP2 domains formation is correlated with sphingosine and cholesterol rafts.

  10. Identification of chikungunya virus interacting proteins in mammalian cells

    Indian Academy of Sciences (India)

    Mandar S Paingankar; Vidya A Arankalle

    2014-06-01

    Identification and characterization of virus host interactions is an essential step for the development of novel antiviral strategies. Very few studies have been targeted towards identification of chikungunya virus (CHIKV) interacting host proteins. In current study, virus overlay protein binding assay (VOPBA) and matrix-assisted laser desorption/ionization time of flight analysis (MALDI TOF/TOF) were employed for the identification of CHIKV binding proteins in mammalian cells. HSP70 and actin were identified as virus binding proteins in HEK-293T and Vero-E6 cells, whereas STAT-2 was identified as an additional protein in Vero-E6 cells. Pre-incubation with anti-HSP70 antibody and miRNA silencing of HSP70 significantly reduced the CHIKV production in HEK-293T and Vero-E6 cells at early time points. These results suggest that CHIKV exploits the housekeeping molecules such as actin, HSP70 and STAT-2 to establish infection in the mammalian cells.

  11. Melittin interaction with sulfated sugars and cell membranes

    OpenAIRE

    Klocek, Gabriela

    2008-01-01

    The presented work focused on an alternative mechanism of action of melittin on the cell membranes. The study using ITC reveals that melittin has a high affinity for several glycosaminoglycans (GAGs), i.e. heparan sulfate (HS), dermatan sulfate and heparin. The interaction between peptide and GAGs comprised both electrostatic and non-ionic components. Circular dichroism (CD) spectroscopy demonstrates that the binding of melittin to HS and other GAGs induces a conformational cha...

  12. Simian Immunodeficiency Virus Interactions with Macaque Dendritic Cells

    OpenAIRE

    Teleshova, Natalia; Derby, Nina; Martinelli, Elena; Pugach, Pavel; Calenda, Giulia; Robbiani, Melissa

    2013-01-01

    This chapter summarizes advances in the following areas: (1) dendritic cell (DC)-mediated simian immunodeficiency virus (SIV) transmission, (2) role of DCs in innate and adaptive immunity against SIV, and (3) approaches to harness DC function to induce anti-SIV responses. The nonhuman primate (NHP) model of human immunodeficiency virus (HIV) infection in rhesus macaques and other Asian NHP species is highly relevant to advance the understanding of virus–host interactions critical for transmis...

  13. Crotamine and crotoxin interact with tumor cells and trigger cell death

    International Nuclear Information System (INIS)

    Crotoxin (Crtx) and Crotamine (Crota) are polypeptides isolated from Crotalus durissus terrificus snake venom (CV). Previous reports have been shown therapeutic effects of Crotalus durissus terrificus venom and Crtx on skin, breast and lung tumours, although, the mechanisms of this antitumoral effect are still unknown. The aim of this work was to investigate the antitumoral effect of Crtx and Crota on brain tumours cells (GH3 and RT2) in vitro and their capacity of interaction with these tumour cells membranes. Cell survival after Crtx and Crota treatment was evaluated by MTT assay in different times post-treatment and apoptosis was evaluated by DAPI staining. In order to evaluate the specific interaction of Crtx and Crota, these polypeptides were radiolabelled, using 125I as radiotracer and binding assays were performed. The results were compared with the binding in nontumoral brain tissue. Crtx and Crota induced apoptosis on both tumour cells lineages but, Crota was more powerful than Crtx 90% and 20% cell death for RT2 cells; 80% and 20% cell death for GH3 cells, respectively). Both 125I-Crtx and 125I-Crota bound specifically in glioblastoma membranes. Nonetheless, CV polypeptides recognised glioblastoma cells with higher specificity than normal brain tissue. These results suggest that the Crtx and Crota interactions with the plasmatic membrane of tumour cells may be the first step of the cascade of signalling that trigger their antitumoral effect. (author)

  14. Elastic Interaction between a String of Cells and an Individual Cell

    Institute of Scientific and Technical Information of China (English)

    WU Heng-An; LONG Rong; WANG Xiu-Xi; WANG Feng-Chao

    2007-01-01

    The elastic interaction between a string of cells and an individual cell on an elastic substrate is investigated numerically using the force-dipole model. This interaction is found to be of short range, and the cut-off distance is about 1.4 times of the length of the cell. The energy-minimization distance is about half the cellular length. The specific relationship between the cellular reorientation and the cellular position are obtained quantitatively. A critical distance is found, and the cellular orientation has an abrupt change at this transition point.

  15. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Millaku, Agron, E-mail: agron.mi@hotmail.com [Limnos-Company for Applied Ecology Ltd, Podlimbarskega 31, 1000 Ljubljana (Slovenia); Drobne, Damjana [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia); Centre of Excellence, Advanced Materials and Technologies for the Future (CO NAMASTE), Jamova cesta 39, 1000 Ljubljana (Slovenia); Centre of Excellence, Nanoscience and Nanotechnology (Nanocentre), Jamova cesta 39, 1000 Ljubljana (Slovenia); Torkar, Matjaz [Institute of Metals and Technology IMT, Lepi pot 11, 1000 Ljubljana (Slovenia); Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, 1000 Ljubljana (Slovenia); Novak, Sara [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia); Remškar, Maja [Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, 1000 Ljubljana (Slovenia); Pipan-Tkalec, Živa [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia)

    2013-09-15

    Graphical abstract: Scanning electron microscopy is particularly well suited to the observation of nanofibre/cell interaction in the endothelial cells lining the hepatopancreas. (a) Tungsten oxide nanofibres, (b) test organism Porcellio scaber and schematic appearance of digestive tubes, (c) digestive tube (hepatopancreas) prepared for SEM investigation, (d) digestive gland cells (C) with nanofibres (NF) embedded in the cell membrane and (e) nanofibres inserted deeply in the cells and damaged nanofibres due to peristalsis. -- Highlights: • Tungsten oxide nanofibres react physically with digestive gland epithelial cells in Porcellio scaber. • Physical peristaltic forces of lead to insertion of nanofibres into the cells. • No toxic responses as measured by conventional toxicity biomarkers were detected. • Physical interactions were observed in a majority of the investigated animals. -- Abstract: We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells.

  16. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells

    International Nuclear Information System (INIS)

    Graphical abstract: Scanning electron microscopy is particularly well suited to the observation of nanofibre/cell interaction in the endothelial cells lining the hepatopancreas. (a) Tungsten oxide nanofibres, (b) test organism Porcellio scaber and schematic appearance of digestive tubes, (c) digestive tube (hepatopancreas) prepared for SEM investigation, (d) digestive gland cells (C) with nanofibres (NF) embedded in the cell membrane and (e) nanofibres inserted deeply in the cells and damaged nanofibres due to peristalsis. -- Highlights: • Tungsten oxide nanofibres react physically with digestive gland epithelial cells in Porcellio scaber. • Physical peristaltic forces of lead to insertion of nanofibres into the cells. • No toxic responses as measured by conventional toxicity biomarkers were detected. • Physical interactions were observed in a majority of the investigated animals. -- Abstract: We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells

  17. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Dudás, József, E-mail: jozsef.dudas@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Fullár, Alexandra, E-mail: fullarsz@gmail.com [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest (Hungary); Romani, Angela, E-mail: angela.romani@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Pritz, Christian, E-mail: christian.pritz@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Kovalszky, Ilona, E-mail: koval@korb1.sote.hu [1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest (Hungary); Hans Schartinger, Volker, E-mail: volker.schartinger@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Mathias Sprinzl, Georg, E-mail: georg.sprinzl@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Riechelmann, Herbert, E-mail: herbert.riechelmann@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria)

    2013-04-01

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factor κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells.

  18. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factor κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells

  19. Targeting proliferating cell nuclear antigen and its protein interactions induces apoptosis in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Rebekka Müller

    Full Text Available Multiple myeloma is a hematological cancer that is considered incurable despite advances in treatment strategy during the last decade. Therapies targeting single pathways are unlikely to succeed due to the heterogeneous nature of the malignancy. Proliferating cell nuclear antigen (PCNA is a multifunctional protein essential for DNA replication and repair that is often overexpressed in cancer cells. Many proteins involved in the cellular stress response interact with PCNA through the five amino acid sequence AlkB homologue 2 PCNA-interacting motif (APIM. Thus inhibiting PCNA's protein interactions may be a good strategy to target multiple pathways simultaneously. We initially found that overexpression of peptides containing the APIM sequence increases the sensitivity of cancer cells to contemporary therapeutics. Here we have designed a cell-penetrating APIM-containing peptide, ATX-101, that targets PCNA and show that it has anti-myeloma activity. We found that ATX-101 induced apoptosis in multiple myeloma cell lines and primary cancer cells, while bone marrow stromal cells and primary healthy lymphocytes were much less sensitive. ATX-101-induced apoptosis was caspase-dependent and cell cycle phase-independent. ATX-101 also increased multiple myeloma cells' sensitivity against melphalan, a DNA damaging agent commonly used for treatment of multiple myeloma. In a xenograft mouse model, ATX-101 was well tolerated and increased the anti-tumor activity of melphalan. Therefore, targeting PCNA by ATX-101 may be a novel strategy in multiple myeloma treatment.

  20. Influence of the fibroblastic reticular network on cell-cell interactions in lymphoid organs.

    Directory of Open Access Journals (Sweden)

    Frederik Graw

    Full Text Available Secondary lymphoid organs (SLO, such as lymph nodes and the spleen, display a complex micro-architecture. In the T cell zone the micro-architecture is provided by a network of fibroblastic reticular cells (FRC and their filaments. The FRC network is thought to enhance the interaction between immune cells and their cognate antigen. However, the effect of the FRC network on cell interaction cannot be quantified to date because of limitations in immunological methodology. We use computational models to study the influence of different densities of FRC networks on the probability that two cells meet. We developed a 3D cellular automaton model to simulate cell movements and interactions along the FRC network inside lymphatic tissue. We show that the FRC network density has only a small effect on the probability of a cell to come into contact with a static or motile target. However, damage caused by a disruption of the FRC network is greatest at FRC densities corresponding to densities observed in the spleen of naïve mice. Our analysis suggests that the FRC network as a guiding structure for moving T cells has only a minor effect on the probability to find a corresponding dendritic cell. We propose alternative hypotheses by which the FRC network might influence the functionality of immune responses in a more significant way.

  1. Interaction and uptake of exosomes by ovarian cancer cells

    International Nuclear Information System (INIS)

    Exosomes consist of membrane vesicles that are secreted by several cell types, including tumors and have been found in biological fluids. Exosomes interact with other cells and may serve as vehicles for the transfer of protein and RNA among cells. SKOV3 exosomes were labelled with carboxyfluoresceine diacetate succinimidyl-ester and collected by ultracentrifugation. Uptake of these vesicles, under different conditions, by the same cells from where they originated was monitored by immunofluorescence microscopy and flow cytometry analysis. Lectin analysis was performed to investigate the glycosylation properties of proteins from exosomes and cellular extracts. In this work, the ovarian carcinoma SKOV3 cell line has been shown to internalize exosomes from the same cells via several endocytic pathways that were strongly inhibited at 4°C, indicating their energy dependence. Partial colocalization with the endosome marker EEA1 and inhibition by chlorpromazine suggested the involvement of clathrin-dependent endocytosis. Furthermore, uptake inhibition in the presence of 5-ethyl-N-isopropyl amiloride, cytochalasin D and methyl-beta-cyclodextrin suggested the involvement of additional endocytic pathways. The uptake required proteins from the exosomes and from the cells since it was inhibited after proteinase K treatments. The exosomes were found to be enriched in specific mannose- and sialic acid-containing glycoproteins. Sialic acid removal caused a small but non-significant increase in uptake. Furthermore, the monosaccharides D-galactose, α-L-fucose, α-D-mannose, D-N-acetylglucosamine and the disaccharide β-lactose reduced exosomes uptake to a comparable extent as the control D-glucose. In conclusion, exosomes are internalized by ovarian tumor cells via various endocytic pathways and proteins from exosomes and cells are required for uptake. On the other hand, exosomes are enriched in specific glycoproteins that may constitute exosome markers. This work contributes to

  2. Stochastic dynamics of interacting haematopoietic stem cell niche lineages.

    Directory of Open Access Journals (Sweden)

    Tamás Székely

    2014-09-01

    Full Text Available Since we still know very little about stem cells in their natural environment, it is useful to explore their dynamics through modelling and simulation, as well as experimentally. Most models of stem cell systems are based on deterministic differential equations that ignore the natural heterogeneity of stem cell populations. This is not appropriate at the level of individual cells and niches, when randomness is more likely to affect dynamics. In this paper, we introduce a fast stochastic method for simulating a metapopulation of stem cell niche lineages, that is, many sub-populations that together form a heterogeneous metapopulation, over time. By selecting the common limiting timestep, our method ensures that the entire metapopulation is simulated synchronously. This is important, as it allows us to introduce interactions between separate niche lineages, which would otherwise be impossible. We expand our method to enable the coupling of many lineages into niche groups, where differentiated cells are pooled within each niche group. Using this method, we explore the dynamics of the haematopoietic system from a demand control system perspective. We find that coupling together niche lineages allows the organism to regulate blood cell numbers as closely as possible to the homeostatic optimum. Furthermore, coupled lineages respond better than uncoupled ones to random perturbations, here the loss of some myeloid cells. This could imply that it is advantageous for an organism to connect together its niche lineages into groups. Our results suggest that a potential fruitful empirical direction will be to understand how stem cell descendants communicate with the niche and how cancer may arise as a result of a failure of such communication.

  3. Interaction and uptake of exosomes by ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Altevogt Peter

    2011-03-01

    Full Text Available Abstract Background Exosomes consist of membrane vesicles that are secreted by several cell types, including tumors and have been found in biological fluids. Exosomes interact with other cells and may serve as vehicles for the transfer of protein and RNA among cells. Methods SKOV3 exosomes were labelled with carboxyfluoresceine diacetate succinimidyl-ester and collected by ultracentrifugation. Uptake of these vesicles, under different conditions, by the same cells from where they originated was monitored by immunofluorescence microscopy and flow cytometry analysis. Lectin analysis was performed to investigate the glycosylation properties of proteins from exosomes and cellular extracts. Results In this work, the ovarian carcinoma SKOV3 cell line has been shown to internalize exosomes from the same cells via several endocytic pathways that were strongly inhibited at 4°C, indicating their energy dependence. Partial colocalization with the endosome marker EEA1 and inhibition by chlorpromazine suggested the involvement of clathrin-dependent endocytosis. Furthermore, uptake inhibition in the presence of 5-ethyl-N-isopropyl amiloride, cytochalasin D and methyl-beta-cyclodextrin suggested the involvement of additional endocytic pathways. The uptake required proteins from the exosomes and from the cells since it was inhibited after proteinase K treatments. The exosomes were found to be enriched in specific mannose- and sialic acid-containing glycoproteins. Sialic acid removal caused a small but non-significant increase in uptake. Furthermore, the monosaccharides D-galactose, α-L-fucose, α-D-mannose, D-N-acetylglucosamine and the disaccharide β-lactose reduced exosomes uptake to a comparable extent as the control D-glucose. Conclusions In conclusion, exosomes are internalized by ovarian tumor cells via various endocytic pathways and proteins from exosomes and cells are required for uptake. On the other hand, exosomes are enriched in specific

  4. Spatial Evolutionary Games of Interaction among Generic Cancer Cells

    DEFF Research Database (Denmark)

    Bach, Lars Arve; Sumpter, David J.T.; Alsner, Jan; Loeschcke, Volker

    2003-01-01

    Evolutionary game models of cellular interactions have shown that heterogeneity in the cellular genotypic composition is maintained through evolution to stable coexistence of growth-promoting and non-promoting cell types. We generalise these mean-field models and relax the assumption of perfect...... mixing of cells by instead implementing an individual-based model that includes the stochastic and spatial effects likely to occur in tumours. The scope for coexistence of genotypic strategies changed with the inclusion of explicit space and stochasticity. The spatial models show some interesting...... deviations from their mean-field counterparts, for example the possibility of altruistic (paracrine) cell strategies to thrive. Such effects can however, be highly sensitive to model implementation and the more realistic models with semi-synchronous and stochastic updating do not show evolution of altruism...

  5. Interactions between endothelial cells and T cells modulate responses to mixed neutron/gamma radiation.

    Science.gov (United States)

    Cary, Lynnette H; Noutai, Daniel; Salber, Rudolph E; Williams, Margaret S; Ngudiankama, Barbara F; Whitnall, Mark H

    2014-06-01

    Detonation of an improvised nuclear device near a population center would cause significant casualties from the acute radiation syndrome (ARS) due to exposure to mixed neutron/gamma fields (MF). The pathophysiology of ARS involves inflammation, microvascular damage and alterations in immune function. Interactions between endothelial cells (EC) and hematopoietic cells are important not only for regulating immune cell traffic and function, but also for providing the microenvironment that controls survival, differentiation and migration of hematopoietic stem and progenitor cells in blood-forming tissues. Endothelial cells/leukocyte interactions also influence tumor progression and the results of anticancer therapies. In this study, we hypothesized that irradiation of endothelial cells would modulate their effects on hematopoietic cells and vice versa. Human umbilical vein endothelial cells (HUVEC) and immortalized T lymphocytes (Jurkat cells) were cultured individually and in co-culture after exposure to mixed fields. Effects of nonirradiated cells were compared to effects of irradiated cells and alterations in signaling pathways were determined. Mitogen-activated protein kinases (MAPKs) p38 and p44/42 (ERK1/2) in HUVEC exhibited higher levels of phosphorylated protein after exposure to mixed field radiation. IL-6, IL-8, G-CSF, platelet derived growth factor (PDGF) and angiopoietin 2 (ANG2) protein expression were upregulated in HUVEC by exposure to mixed field radiation. PCR arrays using HUVEC mRNA revealed alterations in gene expression after exposure to mixed fields and/or co-culture with Jurkat cells. The presence of HUVEC also influenced the function of Jurkat cells. Nonirradiated Jurkat cells showed an increase in proliferation when co-cultured with nonirradiated HUVEC, and a decrease in proliferation when co-cultured with irradiated HUVEC. Additionally, nonirradiated Jurkat cells incubated in media from irradiated HUVEC exhibited upregulation of activated

  6. Interaction between antigen presenting cells and autoreactive T cells derived from BXSB mice with murine lupus

    Institute of Scientific and Technical Information of China (English)

    Peng Yang; Bo Li; Ping Lv; Yan Zhang; XiaoMing Gao

    2007-01-01

    Systemic lupus erythematosus (SLE) is a typical autoimmune disease involving multiple systems and organs. Ample evidence suggests that autoreactive T cells play a pivotal role in the development of this autoimmune disorder. This study was undertaken to investigate the mechanisms of interaction between antigen presenting cells (APCs) and an autoreactive T cell (ATL1) clone obtained from lupus-prone BXSB mice. ATL1 cells, either before or after γ-ray irradiation, were able to activate naive B cells, as determined by B cell proliferation assays. Macrophages from BXSB mice were able to stimulate the proliferation of resting ATL1 cells at a responder/stimulator (R/S) ratio of 1/2.5. Dendritic cells (DCs) were much more powerful stimulators for ATL1 cells on a per cell basis. The T cell stimulating ability of macrophages and B cells, but not DCs, was sensitive toγ-ray irradiation. Monoclonal antibodies against mouse MHC-Ⅱand CD4 were able to block DC-mediated stimulation of ATL1 proliferation, indicating cognate recognition between ATL1 and APCs. Our data suggest that positive feedback loops involving macrophages, B cells and autoreactive T cells may play a pivotal role in keeping the momentum of autoimmune responses leading to autoimmune diseases.

  7. Putative interaction of brush cells with bicarbonate secreting cells in the proximal corpus mucosa

    Directory of Open Access Journals (Sweden)

    Julia Anna-Maria Eberle

    2013-07-01

    Full Text Available The gastric epithelium is protected from the highly acidic luminal content by alkaline mucus which is secreted from specialized epithelial cells. In the stomach of mice strong secretion of alkaline fluid was observed at the gastric groove, the border between corpus and fundus mucosa. Since this region is characterized by numerous brush cells it was proposed that these cells might secrete alkaline solution as suggested for brush cells in the bile duct. In fact, it was found that in this region multiple cells express elements which are relevant for the secretion of bicarbonate, including carbonic anhydrase (CAII, the cystic fibrosis transmembrane conductance regulator (CFTR and the Na+/H+ exchanger (NHE1. However, this cell population was distinct from brush cells which express the TRP-channel TRPM5 and are considered as putative sensory cells. The location of both cell populations in close proximity implies the possibility for a paracrine interaction. This view was substantiated by the finding that brush cells express prostaglandin synthase-1 (COX-1 and the neighbouring cells a specific receptor type for prostaglandins. The notion that brush cells may be able to sense a local acidification was supported by the observation that they express the channel PKD1L3 which contributes to the acid responsiveness of gustatory sensory cells. The results support the concept that brush cells may sense the luminal content and influence via prostaglandins the secretion of alkaline solution.

  8. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells.

    Science.gov (United States)

    Millaku, Agron; Drobne, Damjana; Torkar, Matjaz; Novak, Sara; Remškar, Maja; Pipan-Tkalec, Živa

    2013-09-15

    We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells. PMID:23742956

  9. Clinical role modelling: uncovering hidden knowledge.

    Science.gov (United States)

    Davies, E

    1993-04-01

    Those responsible for the education of nurses are well aware of the need to reconcile the art and science of nursing so that future practitioners can be prepared to offer a humanistic and professional service to society. One way to assist students in this integration is to provide them with opportunities for role modelling as a means of discovering the knowledge embedded in clinical practice. A study of first-year undergraduate students undertaking a course which provides such opportunities in a number of practice settings was carried out to determine whether the observation of clinical role models does lead to knowledge discovery. The study, which used a grounded theory approach, indicated that the major aspect of nursing uncovered by the students through observation of clinical role models was that of provision of direct care. They articulated their values in relation to 'good' and 'bad' care and identified those attributes of nurses which they considered contributed to these care positions. In addition, they were able to recognize creativity and flexibility in practitioners and to relate these attributes to the ability to provide individualized, context-specific care. There was some uncovering of aspects of the nurse's role in maintaining their own professional competence, socializing neophytes into the profession and collaborating with the members of the multi-disciplinary health care team. PMID:8496511

  10. Electron microscopy study of antioxidant interaction with bacterial cells

    Science.gov (United States)

    Plotnikov, Oleg P.; Novikova, Olga V.; Konnov, Nikolai P.; Korsukov, Vladimir N.; Gunkin, Ivan F.; Volkov, Uryi P.

    2000-10-01

    To maintain native microorganisms genotype and phenotype features a lyophylization technique is widely used. However in this case cells are affected by influences of vacuum and low temperature that cause a part of the cells population to be destruction. Another factor reduced microorganisms vitality is formation of reactive oxygen forms that damage certain biological targets (such as DNA, membranes etc.) Recently to raise microorganism's resistance against adverse condition natural and synthetic antioxidants are used. Antioxidant- are antagonists of free radicals. Introduction of antioxidants in protective medium for lyophylization increase bacteria storage life about 2,0-4,8 fold in comparison with reference samples. In the article the main results of our investigation of antioxidants interaction with microorganism cells is described. As bacteria cells we use vaccine strain yersinia pestis EV, that were grown for 48 h at 28 degree(s)C on the Hottinger agar (pH 7,2). Antioxidants are inserted on the agar surface in specimen under test. To investigate a localization of antioxidants for electron microscopy investigation, thallium organic antioxidants were used. The thallium organic compounds have an antioxidant features if thallium is in low concentration (about 1(mu) g/ml). The localization of the thallium organic antioxidants on bacteria Y. pestis EV is visible in electron microscopy images, thallium being heavy metal with high electron density. The negatively stained bacteria and bacteria thin sections with thallium organic compounds were investigated by means of transmission electron microscopy. The localization of the thallium organic compounds is clearly visible in electron micrographs as small dark spots with size about 10-80nm. Probably mechanisms of interaction of antioxidants with bacteria cells are discussed.

  11. Real-time sensing of epithelial cell-cell and cell-substrate interactions by impedance spectroscopy on porous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, D.; RoyChaudhuri, C., E-mail: chirosreepram@yahoo.com [Department of Electronics and Telecommunication Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Pal, D. [Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India)

    2015-07-28

    Oxidized porous silicon (PS) is a common topographical biocompatible substrate that potentially provides a distinct in vitro environment for better understanding of in vivo behavior. But in the reported studies on oxidized PS, cell-cell and cell-substrate interactions have been detected only by fluorescent labeling. This paper is the first attempt to investigate real-time sensing of these interactions on HaCaT cells by label-free impedance spectroscopy on oxidized PS of two pore diameters (50 and 500 nm). One of the major requirements for successful impedance spectroscopy measurement is to restrict the channeling of electric field lines through the pores. To satisfy this criterion, we have designed the pore depths after analyzing the penetration of the medium by using computational fluid dynamics simulation. A distributed electrical model was also developed for estimating the various cellular attributes by considering a pseudorandom distribution of pores. It is observed from the impedance measurements and from the model that the proliferation rate increases for 50 nm pores but decreases for 500 nm pores compared to that for planar substrates. The rate of decrease in cell substrate separation (h) in the initial stage is more than the rate of increase in cell-cell junction resistance (R{sub b}) corresponding to the initial adhesion phase of cells. It is observed that R{sub b} and h are higher for 50 nm pores than those for planar substrates, corresponding to the fact that substrates more conducive toward cell adhesion encourage cell-cell interactions than direct cell-substrate interactions. Thus, the impedance spectroscopy coupled with the proposed theoretical framework for PS substrates can sense and quantify the cellular interactions.

  12. Real-time sensing of epithelial cell-cell and cell-substrate interactions by impedance spectroscopy on porous substrates

    International Nuclear Information System (INIS)

    Oxidized porous silicon (PS) is a common topographical biocompatible substrate that potentially provides a distinct in vitro environment for better understanding of in vivo behavior. But in the reported studies on oxidized PS, cell-cell and cell-substrate interactions have been detected only by fluorescent labeling. This paper is the first attempt to investigate real-time sensing of these interactions on HaCaT cells by label-free impedance spectroscopy on oxidized PS of two pore diameters (50 and 500 nm). One of the major requirements for successful impedance spectroscopy measurement is to restrict the channeling of electric field lines through the pores. To satisfy this criterion, we have designed the pore depths after analyzing the penetration of the medium by using computational fluid dynamics simulation. A distributed electrical model was also developed for estimating the various cellular attributes by considering a pseudorandom distribution of pores. It is observed from the impedance measurements and from the model that the proliferation rate increases for 50 nm pores but decreases for 500 nm pores compared to that for planar substrates. The rate of decrease in cell substrate separation (h) in the initial stage is more than the rate of increase in cell-cell junction resistance (Rb) corresponding to the initial adhesion phase of cells. It is observed that Rb and h are higher for 50 nm pores than those for planar substrates, corresponding to the fact that substrates more conducive toward cell adhesion encourage cell-cell interactions than direct cell-substrate interactions. Thus, the impedance spectroscopy coupled with the proposed theoretical framework for PS substrates can sense and quantify the cellular interactions

  13. Extensive Promoter-centered Chromatin Interactions Provide a Topological Basis for Transcription Regulation

    OpenAIRE

    Li, Guoliang; Ruan, Xiaoan; Auerbach, Raymond K.; Sandhu, Kuljeet Singh; Zheng, Meizhen; Wang, Ping; Poh, Huay Mei; Goh, Yufen; Lim, Joanne; Zhang, Jingyao; Sim, Hui Shan; Peh, Su Qin; Mulawadi, Fabianus Hendriyan; Ong, Chin Thing; Orlov, Yuriy L.

    2012-01-01

    Higher-order chromosomal organization for transcription regulation is poorly understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET), we mapped long-range chromatin interactions associated with RNA polymerase II in human cells and uncovered widespread promoter-centered intra-genic, extra-genic and inter-genic interactions. These interactions further aggregated into higher-order clusters, wherein proximal and distal genes were engage...

  14. Microfabrication of a tunable collagen/alginate-chitosan hydrogel membrane for controlling cell-cell interactions.

    Science.gov (United States)

    Song, Yizhe; Zhang, Demeng; Lv, Yan; Guo, Xin; Lou, Ruyun; Wang, Shujun; Wang, Xiuli; Yu, Weiting; Ma, Xiaojun

    2016-11-20

    Indirect cell contact co-culture system is increasingly becoming more attractable owing to their advantages of easy cell separation and desirable outcomes for cell-cell interactions. However, how to precisely control the spatial position of cells within multicellular co-cultures is still experimentally challenging due to the incapability of the conventional methods in vitro. In the present study, a tunable collagen/alginate-chitosan (Col/Alg-Chi) membrane was established, which was capable of controlling intercellular distance between the neighboring cells at a level of micrometer resolution. It was showed that intercellular distance between the hepatocytes and the fibroblasts exerted significant influence on hepatic function in vitro. In particular, maintenance of the functionality of primary hepatocytes requires direct contact between the hepatocytes and their supportive stromal cells, and their effective contact distance is within 30μm. This technical platform would potentially enable investigations of dynamic cell-cell interaction in a multitude of applications including organogenesis, development or even neoplastic transformation. PMID:27561537

  15. Uncovering growth-suppressive MicroRNAs in lung cancer

    DEFF Research Database (Denmark)

    Liu, Xi; Sempere, Lorenzo F; Galimberti, Fabrizio;

    2009-01-01

    PURPOSE: MicroRNA (miRNA) expression profiles improve classification, diagnosis, and prognostic information of malignancies, including lung cancer. This study uncovered unique growth-suppressive miRNAs in lung cancer. EXPERIMENTAL DESIGN: miRNA arrays were done on normal lung tissues and...... adenocarcinomas from wild-type and proteasome degradation-resistant cyclin E transgenic mice to reveal repressed miRNAs in lung cancer. Real-time and semiquantitative reverse transcription-PCR as well as in situ hybridization assays validated these findings. Lung cancer cell lines were derived from each......-malignant human lung tissue bank. RESULTS: miR-34c, miR-145, and miR-142-5p were repressed in transgenic lung cancers. Findings were confirmed by real-time and semiquantitative reverse transcription-PCR as well as in situ hybridization assays. Similar miRNA profiles occurred in human normal versus malignant lung...

  16. Pyramidal Cell-Interneuron Interactions Underlie Hippocampal Ripple Oscillations

    Science.gov (United States)

    Stark, Eran; Roux, Lisa; Eichler, Ronny; Senzai, Yuta; Royer, Sebastien; Buzsáki, György

    2015-01-01

    SUMMARY High-frequency ripple oscillations, observed most prominently in the hippocampal CA1 pyramidal layer, are associated with memory consolidation. The cellular and network mechanisms underlying the generation, frequency control, and spatial coherence of the rhythm are poorly understood. Using multisite optogenetic manipulations in freely behaving rodents, we found that depolarization of a small group of nearby pyramidal cells was sufficient to induce high-frequency oscillations, whereas closed-loop silencing of pyramidal cells or activation of parvalbumin-(PV) or somatostatin-immunoreactive interneurons aborted spontaneously occurring ripples. Focal pharmacological blockade of GABAA receptors abolished ripples. Localized PV inter-neuron activation paced ensemble spiking, and simultaneous induction of high-frequency oscillations at multiple locations resulted in a temporally coherent pattern mediated by phase-locked inter-neuron spiking. These results constrain competing models of ripple generation and indicate that temporally precise local interactions between excitatory and inhibitory neurons support ripple generation in the intact hippocampus. PMID:25033186

  17. Uncovering the dynamics of interaction in development cooperation

    DEFF Research Database (Denmark)

    Fejerskov, Adam Moe; Lundsgaarde, Erik; Cold-Ravnkilde, Signe

    critically reflects on the substantial body of scholarship that seeks to document the characteristics of new actors in international development and chart the consequences of their engagement for global development governance. This review underlines the importance of questioning the homogeneity of actor......The rising prominence of new state and non-state actors in international politics has stimulated extensive discussion in the social sciences over the last decade and development cooperation has been a central arena for conceptualising the encounter between old and new powers. This working paper...... constellations, relationships and ideas. Specifically, it addresses the extent to which the commonly-used binary concepts of development cooperation provider groups adequately capture relevant distinctions among the actors and add analytical value to research on development cooperation. The paper advocates...

  18. Uncovering the interaction between empathetic pain and cognition.

    Science.gov (United States)

    Hu, Kesong; Fan, Zhiwei; He, Shuchang

    2015-11-01

    Recent studies have demonstrated that empathizing with pain involves both cognitive and affective components of pain. How does empathetic pain impact cognition? To investigate this question, in the present study, participants performed a classic color-word Stroop task that followed a pain portraying or a corresponding control image. We found that observing pain experience in another had a basic slowing down effect on Reaction times (RTs) during neutral Stroop trials. Further, it affected cognition in a way that it decreased interference and increased facilitation. Moreover, our findings revealed that RTs during the incongruent and congruent trials were essentially unchanged by pain observing (empathy vs. control). The data are best accounted by a two-opposing effect model that empathetic pain impacts cognition through two different ways: it slows down performance in general, and facilitates performance during incongruent and congruent trials in particular. In this way, the present study also lends support to an idea that all components of empathy should be understood from an integrative approach. PMID:25476997

  19. Multifunction Co-culture Model for Evaluating Cell–Cell Interactions

    OpenAIRE

    Bogdanowicz, Danielle R.; Lu, Helen H.

    2014-01-01

    Interactions within the same cell population (homotypic) and between different cell types (heterotypic) are essential for tissue development, repair, and homeostasis. To elucidate the underlying mechanisms of these cellular interactions, co-culture models have been used extensively to investigate the role of cell–cell physical contact, autocrine and/or paracrine interactions on cell function, as well as stem cell differentiation. Specifically, the mixed co-culture model is often optimal for i...

  20. Interaction of carbohydrate modified boron nitride nanotubes with living cells.

    Science.gov (United States)

    Emanet, Melis; Şen, Özlem; Çobandede, Zehra; Çulha, Mustafa

    2015-10-01

    Boron nitride nanotubes (BNNTs) are composed of boron and nitrogen atoms and they show significantly different properties from their carbon analogues (carbon nanotubes, CNTs). Due to their unique properties including low electrical conductivity, and imaging contrast and neutron capture properties; they can be used in biomedical applications. When their use in biological fields is considered, the route of their toxic effect should be clarified. Therefore, the study of interactions between BNNTs and living systems is important in envisaging biological applications at both cellular and sub-cellular levels to fully gain insights of their potential adverse effects. In this study, BNNTs were modified with lactose, glucose and starch and tested for their cytotoxicity. First, the interactions and the behavior of BNNTs with bovine serum albumin (BSA), Dulbecco's Modified Eagle's Medium (DMEM) and DMEM/Nutrient Mixture F-12Ham were investigated. Thereafter, their cellular uptake and the cyto- and genotoxicity on human dermal fibroblasts (HDFs) and adenocarcinoma human alveolar basal epithelial cells (A549) were evaluated. HDFs and A549 cells internalized the modified and unmodified BNNTs, and BNNTs were found to not cause significant viability change and DNA damage. A higher uptake rate of BNNTs by A549 cells compared to HDFs was observed. Moreover, a concentration-dependent cytotoxicity was observed on A549 cells while they were safer for HDFs in the same concentration range. Based on these findings, it can be concluded that BNNTs and their derivatives made with biomacromolecules might be good candidates for several applications in medicine and biomedical applications. PMID:26222410

  1. Interactions between bone cells and biomaterials: An update.

    Science.gov (United States)

    Beauvais, Sabrina; Drevelle, Olivier; Jann, Jessica; Lauzon, Marc-Antoine; Foruzanmehr, Mohammadreza; Grenier, Guillaume; Roux, Sophie; Faucheux, Nathalie

    2016-01-01

     As the populations of the Western world become older, they will suffer more and more from bone defects related to osteoporosis (non-union fractures, vertebral damages), cancers (malignant osteolysis) and infections (osteomyelitis). Autografts are usually used to fill these defects, but they have several drawbacks such as morbidity at the donor site and the amount and quality of bone that can be harvested. Recent scientific milestones made in biomaterials development were shown to be promising to overcome these limitations. Cell interactions with biomaterials can be improved by adding at their surface functional groups such as adhesive peptides and/or growth factors. The development of such biomimetic materials able to control bone cell responses can only proceed if it is based on a sound understanding of bone cell behavior and regulation. This review focuses on bone physiology and the regulation of bone cell differentiation and function, and how the latest advances in biomimetic materials can be translated within promising clinical outcomes. PMID:27100704

  2. Interaction exists between matriptase inhibitors and intestinal epithelial cells.

    Science.gov (United States)

    Pászti-Gere, Erzsebet; Barna, Réka Fanni; Ujhelyi, Gabriella; Steinmetzer, Torsten

    2016-10-01

    The type II trypsin-like transmembrane serine protease matriptase, is mainly expressed in epithelial cells and one of the key regulators in the formation and maintenance of epithelial barrier integrity. Therefore, we have studied the inhibition of matriptase in a non-transformed porcine intestinal IPEC-J2 cell monolayer cultured on polyester membrane inserts by the non-selective 4-(2-aminoethyl)-benzosulphonylfluoride (AEBSF) and four more selective 3-amidinophenylalanine-derived matriptase inhibitors. It was found that suppression of matriptase activity by MI-432 and MI-460 led to decreased transepithelial electrical resistance (TER) of the cell monolayer and to an enhanced transport of fluorescently labelled dextran, a marker for paracellular transport between apical and basolateral compartments. To this date this is the first report in which the inhibition of matriptase activity by synthetic inhibitors has been correlated to a reduced barrier integrity of a non-cancerous IPEC-J2 epithelial cell monolayer in order to describe interaction between matriptase activity and intestinal epithelium in vitro. PMID:26118419

  3. Interactions of Streptococcus iniae with phagocytic cell line.

    Science.gov (United States)

    El Aamri, Fatima; Remuzgo-Martínez, S; Acosta, Félix; Real, Fernando; Ramos-Vivas, José; Icardo, José M; Padilla, Daniel

    2015-04-01

    Streptococcus iniae has become one of the most serious aquatic pathogens in the last decade, causing large losses in wild and farmed fish worldwide. There is clear evidence that this pathogen is capable not only of causing serious disease in fish but also of being transferred to and infecting humans. In this study, we investigate the interaction of S. iniae with two murine macrophage cell lines, J774-A1 and RAW 264.7. Cytotoxicity assay demonstrated significant differences between live and UV-light killed IUSA-1 strains. The burst respiratory activity decreased to baseline after 1 and 4 h of exposure for J774-A1 and RAW 264.7, respectively. Immunofluorescent and ultrastructural study of infected cells confirmed the intracellular localization of bacteria at 1 h and 24 h post-infection. Using qRT-PCR arrays, we investigated the changes in the gene expression of immune relevant genes associated with macrophage activation. In this screening, we identified 11 of 84 genes up-regulated, we observed over-expression of pro-inflammatory response as IL-1α, IL-1β, and TNF-α, without a good anti-inflammatory response. Present findings suggest a capacity of S. iniae to modulate a mammalian macrophages cell lines to their survival and replication intracellular, which makes this cell type as a reservoir for continued infection. PMID:24956597

  4. Cell interactions involved in development of the bilaterally symmetrical intestinal valve cells during embryogenesis in Caenorhabditis elegans.

    Science.gov (United States)

    Bowerman, B; Tax, F E; Thomas, J H; Priess, J R

    1992-12-01

    We describe two different cell interactions that appear to be required for the proper development of a pair of bilaterally symmetrical cells in Caenorhabditis elegans called the intestinal valve cells. Previous experiments have shown that at the beginning of the 4-cell stage of embryogenesis, two sister blastomeres called ABa and ABp are equivalent in development potential. We show that cell interactions between ABp and a neighboring 4-cell-stage blastomere called P2 distinguish the fates of ABa and ABp by inducing descendants of ABp to produce the intestinal valve cells, a cell type not made by ABa. A second cell interaction appears to occur later in embryogenesis when two bilaterally symmetrical descendants of ABp, which both have the potential to produce valve cells, contact each other; production of the valve cells subsequently becomes limited to only one of the two descendants. This second interaction does not occur properly if the two symmetrical descendants of ABp are prevented from contacting each other. Thus the development of the intestinal valve cells appears to require both an early cell interaction that establishes a bilaterally symmetrical pattern of cell fate and a later interaction that breaks the symmetrical cell fate pattern by restricting to only one of two cells the ability to produce a pair of valve cells. PMID:1295733

  5. Aggregation of mononuclear and red blood cells through an {alpha}4{beta}1-Lu/basal cell adhesion molecule interaction in sickle cell disease. : Mononuclear and sickle red blood cell interactions

    OpenAIRE

    Chaar, Vicky; Picot, Julien; Renaud, Olivier; Bartolucci, Pablo; Nzouakou, Ruben; Bachir, Dora; Galactéros, Frédéric; Colin, Yves; Le Van Kim, Caroline; El Nemer, Wassim

    2010-01-01

    BACKGROUND: Abnormal interactions between red blood cells, leukocytes and endothelial cells play a critical role in the occurrence of the painful vaso-occlusive crises associated with sickle cell disease. We investigated the interaction between circulating leukocytes and red blood cells which could lead to aggregate formation, enhancing the incidence of vaso-occlusive crises. DESIGN AND METHODS: Blood samples from patients with sickle cell disease (n=25) and healthy subjects (n=5) were analyz...

  6. Uncovering the Hidden Decisions that Shape Curricula

    Science.gov (United States)

    Harlow, Danielle Boyd

    2010-10-01

    Developing explanatory models is a central practice to scientific inquiry. When students create and test explanatory models for scientific phenomenon, they develop content knowledge, knowledge of the nature of science, and creative thinking skills. Unfortunately, such instruction rarely occurs in K-12 science. This is, in part, because teachers do not have the opportunity to develop sophisticated understandings of the process of modeling, but also because teaching in this way requires teachers to make real-time instructional decisions that are responsive to students' ideas. This is challenging for teachers, especially because this decision process is often invisible. In this talk, I will highlight the importance of providing opportunities for sophisticated science thinking for our youngest learners and consider how uncovering the decisions that shape physics courses for teachers may benefit their future students.

  7. A Framework to Uncover Multiple Alternative Clusterings

    DEFF Research Database (Denmark)

    Dang, Xuan-Hong; Bailey, James

    Clustering is often referred to as unsupervised learning which aims at uncovering hidden structures from data. Unfortunately, though widely being used as one of the principal tools to understand the data, most conventional clustering techniques are limited in achieving this goal since they only...... attempt to find a single clustering solution from the data. For many real-world applications, especially those being described in high dimensional data, it is common to see that the data can be grouped into different yet meaningful ways. This gives rise to the recently emerging research area of mining...... alternative clusterings. In this paper, we propose a framework named MACL that is capable of discovering multiple alternative clusterings from a given dataset.MACL seeks alternative clusterings in sequence and a novel solution is found by conditioning on all previously known clusterings. The framework takes a...

  8. Hypertonic saline impedes tumor cell-endothelial cell interaction by reducing adhesion molecule and laminin expression.

    LENUS (Irish Health Repository)

    Shields, Conor J

    2012-02-03

    BACKGROUND: Hypertonic saline infusion dampens inflammatory responses and suppresses neutrophil-endothelial interaction by reducing adhesion molecule expression. This study tested the hypothesis that hypertonic saline attenuates tumor cell adhesion to the endothelium through a similar mechanism. METHODS: Human colon cancer cells (LS174T) were transfected with green fluorescent protein and exposed to lipopolysaccharide, tumor necrosis factor-alpha, and interleukin-6 under hypertonic and isotonic conditions for 1 and 4 hours. Confluent human umbilical vein endothelial cells were similarly exposed. Cellular apoptosis and expression of adhesion molecules and laminin were measured by flow cytometry. Tumor cell adhesion to endothelium and laminin was assessed with fluorescence microscopy. Data are represented as mean +\\/- standard error of mean, and an ANOVA test was performed to gauge statistical significance, with P <.05 considered significant. RESULTS: Hypertonic exposure significantly reduced tumor cell adhesion despite the presence of the perioperative cell stressors (42 +\\/- 2.9 vs 172.5 +\\/- 12.4, P <.05), attenuated tumor cell beta-1 integrin (14.43 vs 23.84, P <.05), and endothelial cell laminin expression (22.78 +\\/- 2.2 vs 33.74 +\\/- 2.4, P <.05), but did not significantly alter cell viability. CONCLUSION: Hypertonic saline significantly attenuates tumor cell adhesion to endothelium by inhibiting adhesion molecule and laminin expression. This may halt the metastatic behavior of tumor cells shed at surgery.

  9. Interaction of KSHV with Host Cell Surface Receptors and Cell Entry

    Directory of Open Access Journals (Sweden)

    Mohanan Valiya Veettil

    2014-10-01

    Full Text Available Virus entry is a complex process characterized by a sequence of events. Since the discovery of KSHV in 1994, tremendous progress has been made in our understanding of KSHV entry into its in vitro target cells. KSHV entry is a complex multistep process involving viral envelope glycoproteins and several cell surface molecules that is utilized by KSHV for its attachment and entry. KSHV has a broad cell tropism and the attachment and receptor engagement on target cells have an important role in determining the cell type-specific mode of entry. KSHV utilizes heparan sulfate, integrins and EphrinA2 molecules as receptors which results in the activation of host cell pre-existing signal pathways that facilitate the subsequent cascade of events resulting in the rapid entry of virus particles, trafficking towards the nucleus followed by viral and host gene expression. KSHV enters human fibroblast cells by dynamin dependant clathrin mediated endocytosis and by dynamin independent macropinocytosis in dermal endothelial cells. Once internalized into endosomes, fusion of the viral envelope with the endosomal membranes in an acidification dependent manner results in the release of capsids which subsequently reaches the nuclear pore vicinity leading to the delivery of viral DNA into the nucleus. In this review, we discuss the principal mechanisms that enable KSHV to interact with the host cell surface receptors as well as the mechanisms that are required to modulate cell signaling machinery for a successful entry.

  10. A glimpse into the interactions of cells in a microenvironment: the modulation of T cells by mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Choi J

    2014-05-01

    Full Text Available Jonghoon Choi,1,2 Mintai P Hwang,3 Jong-Wook Lee,3 Kwan Hyi Lee3,41Institute of Research Strategy and Development (IRSD, Seoul, Republic of Korea; 2Department of Bionano Engineering, Hanyang University, Ansan, Republic of Korea; 3Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; 4Department of Biomedical Engineering, University of Science and Technology, Seoul, Republic of KoreaAbstract: Mesenchymal stem cells (MSCs have been thought to hold potential as a mode of therapy for immuno-related pathologies, particularly for autoimmune diseases. Despite their potential, the interaction between MSCs and T cells, key players in the pathophysiology of autoimmune diseases, is not yet well understood, thereby preventing further clinical progress. A major obstacle is the highly heterogeneous nature of MSCs in vitro. Unfortunately, bulk assays do not provide information with regard to cell–cell contributions that may play a critical role in the overall cellular response. To address these issues, we investigated the interaction between smaller subsets of MSCs and CD4 T cells in a microwell array. We demonstrate that MSCs appear capable of modulating the T cell proliferation rate in response to persistent cell–cell interactions, and we anticipate the use of our microwell array in the classification of subpopulations within MSCs, ultimately leading to specific therapeutic interventions.Keywords: mesenchymal stem cell, T cell, microwell array

  11. CD80 and CD86 differentially regulate mechanical interactions of T-cells with antigen-presenting dendritic cells and B-cells.

    Science.gov (United States)

    Lim, Tong Seng; Goh, James Kang Hao; Mortellaro, Alessandra; Lim, Chwee Teck; Hämmerling, Günter J; Ricciardi-Castagnoli, Paola

    2012-01-01

    Functional T-cell responses are initiated by physical interactions between T-cells and antigen-presenting cells (APCs), including dendritic cells (DCs) and B-cells. T-cells are activated more effectively by DCs than by B-cells, but little is known about the key molecular mechanisms that underpin the particular potency of DC in triggering T-cell responses. To better understand the influence of physical intercellular interactions on APC efficacy in activating T-cells, we used single cell force spectroscopy to characterize and compare the mechanical forces of interactions between DC:T-cells and B:T-cells. Following antigen stimulation, intercellular interactions of DC:T-cell conjugates were stronger than B:T-cell interactions. DCs induced higher levels of T-cell calcium mobilization and production of IL-2 and IFNγ than were elicited by B-cells, thus suggesting that tight intercellular contacts are important in providing mechanically stable environment to initiate T-cell activation. Blocking antibodies targeting surface co-stimulatory molecules CD80 or CD86 weakened intercellular interactions and dampen T-cell activation, highlighting the amplificatory roles of CD80/86 in regulating APC:T-cell interactions and T-cell functional activation. The variable strength of mechanical forces between DC:T-cells and B:T-cell interactions were not solely dependent on differential APC expression of CD80/86, since DCs were superior to B-cells in promoting strong interactions with T-cells even when CD80 and CD86 were inhibited. These data provide mechanical insights into the effects of co-stimulatory molecules in regulating APC:T-cell interactions. PMID:23024807

  12. CD80 and CD86 differentially regulate mechanical interactions of T-cells with antigen-presenting dendritic cells and B-cells.

    Directory of Open Access Journals (Sweden)

    Tong Seng Lim

    Full Text Available Functional T-cell responses are initiated by physical interactions between T-cells and antigen-presenting cells (APCs, including dendritic cells (DCs and B-cells. T-cells are activated more effectively by DCs than by B-cells, but little is known about the key molecular mechanisms that underpin the particular potency of DC in triggering T-cell responses. To better understand the influence of physical intercellular interactions on APC efficacy in activating T-cells, we used single cell force spectroscopy to characterize and compare the mechanical forces of interactions between DC:T-cells and B:T-cells. Following antigen stimulation, intercellular interactions of DC:T-cell conjugates were stronger than B:T-cell interactions. DCs induced higher levels of T-cell calcium mobilization and production of IL-2 and IFNγ than were elicited by B-cells, thus suggesting that tight intercellular contacts are important in providing mechanically stable environment to initiate T-cell activation. Blocking antibodies targeting surface co-stimulatory molecules CD80 or CD86 weakened intercellular interactions and dampen T-cell activation, highlighting the amplificatory roles of CD80/86 in regulating APC:T-cell interactions and T-cell functional activation. The variable strength of mechanical forces between DC:T-cells and B:T-cell interactions were not solely dependent on differential APC expression of CD80/86, since DCs were superior to B-cells in promoting strong interactions with T-cells even when CD80 and CD86 were inhibited. These data provide mechanical insights into the effects of co-stimulatory molecules in regulating APC:T-cell interactions.

  13. Cell-cell interactions determine the dorsoventral axis in embryos of an equally cleaving opisthobranch mollusc.

    Science.gov (United States)

    Boring, L

    1989-11-01

    Dorsoventral polarity in molluscan embryos can arise by two distinct mechanisms, where the mechanism employed is strongly correlated with the cleavage pattern of the early embryo. In species with unequal cleavage, the dorsal lineage, or "D quadrant", is determined in a cell-autonomous manner by the inheritance of cytoplasmic determinants. However, in gastropod molluscs with equal cleavage, cell-cell interactions are required to specify the fate of the dorsal blastomere. During the fifth cleavage interval in equally cleaving embryos, one of the vegetal macromeres makes exclusive contacts with the animal micromeres, and this macromere will give rise to the mesodermal precursor cell at the next division, thereby identifying the dorsal quadrant. This study examines D-quadrant determination in an equally cleaving species from a group of previously uninvestigated gastropods, the subclass Opisthobranchia. Blastomere ablation experiments were performed on embryos of Haminoea callidegenita to (i) determine the developmental potential of macromeres before and after fifth cleavage, and (ii) examine the role of micromere-macromere interactions in the establishment of bilateral symmetry. The results suggest that the macromeres are developmentally equivalent prior to fifth cleavage, but become nonequivalent soon afterward. The dorsoventral axis corresponds to the displacement of the micromeres over one macromere early in the fifth cleavage interval. This unusual cellular topology is hypothesized to result from constraints imposed on micromere-macromere interactions in an embryo that develops from a large egg and forms a stereoblastula (no cleavage cavity). Ablation of the entire first quarter of micromeres results in embryos which remain radially symmetrical in the vegetal hemisphere, indicating that micromere-macromere interactions are required for the elaboration of bilateral symmetry properties. Therefore, inductive interactions between cells may represent a general strategy

  14. Heparan sulfate proteoglycans: structure, protein interactions and cell signaling

    Directory of Open Access Journals (Sweden)

    Juliana L. Dreyfuss

    2009-09-01

    Full Text Available Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.Proteoglicanos de heparam sulfato são encontrados tanto superfície celular quanto na matriz extracelular em todas as espécies animais. Esta revisão tem enfoque nas características estruturais dos proteoglicanos de heparam sulfato e nas interações destes proteoglicanos com proteínas que levam à sinalização celular. As cadeias de heparam sulfato, devido a sua variedade estrutural, são capazes de se ligar e interagir com ampla gama de proteínas, como fatores de crescimento, quimiocinas, morfógenos, componentes da matriz extracelular, enzimas, entreoutros. Existe uma especificidade estrutural que direciona as interações dos heparam sulfatos e proteínas alvo. Esta especificidade está relacionada com a estrutura da cadeia do polissacarídeo e os motivos conservados da cadeia polipeptídica das proteínas envolvidas nesta interação. Os heparam

  15. A DLM/FD/IB Method for Simulating Cell/Cell and Cell/Particle Interaction in Microchannels

    Institute of Scientific and Technical Information of China (English)

    Tsorng-Whay PAN; Lingling SHI; Roland GLOWINSKI

    2010-01-01

    A spring model is used to simulate the skeleton structure of the red blood cell(RBC)membrane and to study the red blood cell(RBC)rheology in Poiseuille flow with an immersed boundary method.The lateral migration properties of many cells in Poiseuille flow have been investigated.The authors also combine the above methodology with a distributed Lagrange multiplier/fictitious domain method to simulate the interaction of cells and neutrally buoyant particles in a microchannel for studying the margination of particles.

  16. Estimating the Energetic State of Malignant Cells from RNA Transcription and Protein Interaction Network Data

    OpenAIRE

    Rietman, Edward A.; Sachs, Rainer; Hahnfeldt, Philip; Hlatky, Lynn

    2014-01-01

    Gene expression data, or transcription data, are surrogates for actual protein concentrations in the cells. In addition protein-protein interactions are static diagrams of all the protein-protein interactions in the cell. These interactions may consist of covalent bonding or maybe just secondary bonding such as hydrogen bonding. Given these two surrogate data types we show a technique to compute the Gibbs free energy of a cell. We apply this to yeast cell cycle and to cancer.

  17. Altered protein secretions during interactions between adipose tissue- or bone marrow-derived stromal cells and inflammatory cells

    OpenAIRE

    Hattori, Hidemi; Ishihara, Masayuki

    2015-01-01

    Introduction Paracrine effects can be exploited in cell-based therapies that secrete factors, such as chemokines and cytokines, and can recruit inflammatory cells to transplants. In this study, mouse adipose tissue-derived stromal cells (ASCs) and bone marrow-derived stromal cells (ST2 cells) were used to examine changes in paracrine interactions with inflammation cells. Methods Green fluorescent protein positive (GFP+) bone marrow cells (BMCs) were injected into an irradiated mouse via the f...

  18. Persistent Polyclonal B Cell Lymphocytosis B Cells Can Be Activated through CD40-CD154 Interaction

    Directory of Open Access Journals (Sweden)

    Emmanuelle Dugas-Bourdages

    2014-01-01

    Full Text Available Persistent polyclonal B cell lymphocytosis (PPBL is a rare disorder, diagnosed primarily in adult female smokers and characterized by an expansion of CD19+CD27+IgM+ memory B cells, by the presence of binucleated lymphocytes, and by a moderate elevation of serum IgM. The clinical course is usually benign, but it is not known whether or not PPBL might be part of a process leading to the emergence of a malignant proliferative disorder. In this study we sought to investigate the functional response of B cells from patients with PPBL by use of an optimal memory B cell culture model based on the CD40-CD154 interaction. We found that the proliferation of PPBL B cells was almost as important as that of B cells from normal controls, resulting in high immunoglobulin secretion with in vitro isotypic switching. We conclude that the CD40-CD154 activation pathway is functional in the memory B cell population of PPBL patients, suggesting that the disorder may be due to either a dysfunction of other cells in the microenvironment or a possible defect in another B cell activation pathway.

  19. A microfluidic cell-trapping device for single-cell tracking of host-microbe interactions.

    Science.gov (United States)

    Delincé, Matthieu J; Bureau, Jean-Baptiste; López-Jiménez, Ana Teresa; Cosson, Pierre; Soldati, Thierry; McKinney, John D

    2016-08-16

    The impact of cellular individuality on host-microbe interactions is increasingly appreciated but studying the temporal dynamics of single-cell behavior in this context remains technically challenging. Here we present a microfluidic platform, InfectChip, to trap motile infected cells for high-resolution time-lapse microscopy. This approach allows the direct visualization of all stages of infection, from bacterial uptake to death of the bacterium or host cell, over extended periods of time. We demonstrate the utility of this approach by co-culturing an established host-cell model, Dictyostelium discoideum, with the extracellular pathogen Klebsiella pneumoniae or the intracellular pathogen Mycobacterium marinum. We show that the outcome of such infections is surprisingly heterogeneous, ranging from abortive infection to death of the bacterium or host cell. InfectChip thus provides a simple method to dissect the time-course of host-microbe interactions at the single-cell level, yielding new insights that could not be gleaned from conventional population-based measurements. PMID:27425421

  20. Synergistic interactions between PBDEs and PCBs in human neuroblastoma cells.

    Science.gov (United States)

    Pellacani, C; Tagliaferri, S; Caglieri, A; Goldoni, M; Giordano, G; Mutti, A; Costa, L G

    2014-04-01

    Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are ubiquitous environmental pollutants. Exposure to these chemicals has been associated with developmental neurotoxicity, endocrine dysfunction, and reproductive disorders. Humans and wildlife are generally exposed to a mixture of these environmental pollutants, highlighting the need to evaluate the potential effects of combined exposures. In this study, we investigated the cytotoxic effects of the combined exposure to two PBDEs and two PCBs in a human neuronal cell line. 2,2',4,4'-Tetrabromodiphenyl ether, 2,2',4,4',5-pentabromodiphenyl ether, PCB-126 (3,3',4,4',5-pentachlorobiphenyl; a dioxin-like PCB), and PCB-153 (2,2',4,4',5,5'-hexachlorobiphenyl; a non-dioxin-like PCB) were chosen, because their concentrations are among the highest in human tissues and the environment. The results suggest that the nature of interactions is related to the PCB structure. Mixtures of PCB-153 and both PBDEs had a prevalently synergistic effect. In contrast, mixtures of each PBDE congener with PCB-126 showed additive effects at threshold concentrations, and synergistic effects at higher concentrations. These results emphasize the concept that the toxicity of xenobiotics may be affected by possible interactions, which may be of significance given the common coexposures to multiple contaminants. PMID:22434561

  1. Human epithelial cells exposed to functionalized multiwalled carbon nanotubes: interactions and cell surface modifications.

    Science.gov (United States)

    Fanizza, C; Casciardi, S; Incoronato, F; Cavallo, D; Ursini, C L; Ciervo, A; Maiello, R; Fresegna, A M; Marcelloni, A M; Lega, D; Alvino, A; Baiguera, S

    2015-09-01

    With the expansion of the production and applications of multiwalled carbon nanotubes (MWCNTs) in several industrial and science branches, the potential adverse effects on human health have attracted attention. Numerous studies have been conducted to evaluate how chemical functionalization may affect MWCNT effects; however, controversial data have been reported, showing either increased or reduced toxicity. In particular, the impact of carboxylation on MWCNT cytotoxicity is far from being completely understood. The aim of this work was the evaluation of the modifications induced by carboxylated-MWCNTs (MWCNTs-COOH) on cell surface and the study of cell-MWCNT-COOH interactions by means of field emission scanning electron microscope (FESEM). Human pulmonary epithelial cells (A549) were incubated with MWCNTs-COOH for different exposure times and concentrations (10 μg/mL for 1, 2, 4 h; 5, 10, 20 μg/mL for 24 h). At short incubation time, MWCNTs-COOH were easily observed associated with plasma membrane and in contact with microvilli. After 24 h exposure, FESEM analysis revealed that MWCNTs-COOH induced evident changes in the cellular surface in comparison to control cells: treated cells showed blebs, holes and a depletion of the microvilli density in association with structure modifications, such as widening and/or lengthening. In particular, an increase of cells showing holes and microvilli structure alterations was observed at 20 μg/mL concentration. FESEM analysis showed nanotube agglomerates, of different sizes, entering into the cell with two different mechanisms: inward bending of the membrane followed by nanotube sinking, and nanotube internalization directly through holes. The observed morphological microvilli modifications, induced by MWCNTs-COOH, could affect epithelial functions, such as the control of surfactant production and secretion, leading to pathological conditions, such as alveolar proteinosis. More detailed studies will be, however, necessary to

  2. CD80 and CD86 Differentially Regulate Mechanical Interactions of T-Cells with Antigen-Presenting Dendritic Cells and B-Cells

    OpenAIRE

    Tong Seng Lim; James Kang Hao Goh; Alessandra Mortellaro; Chwee Teck Lim; Hämmerling, Günter J.; Paola Ricciardi-Castagnoli

    2012-01-01

    Functional T-cell responses are initiated by physical interactions between T-cells and antigen-presenting cells (APCs), including dendritic cells (DCs) and B-cells. T-cells are activated more effectively by DCs than by B-cells, but little is known about the key molecular mechanisms that underpin the particular potency of DC in triggering T-cell responses. To better understand the influence of physical intercellular interactions on APC efficacy in activating T-cells, we used single cell force ...

  3. WeSME: Uncovering Mutual Exclusivity of Cancer Drivers and Beyond

    OpenAIRE

    Kim, Yoo-Ah; Madan, Sanna; Przytycka, Teresa M.

    2016-01-01

    Mutual exclusivity is a widely recognized property of many cancer drivers. Knowledge about these relationships can provide important insights into cancer drivers, cancer-driving pathways, and cancer subtypes. It can also be used to predict new functional interactions between cancer driving genes and uncover novel cancer drivers. Currently, most of mutual exclusivity analyses are preformed focusing on a limited set of genes in part due to the computational cost required to rigorously compute p...

  4. Physical View on the Interactions Between Cancer Cells and the Endothelial Cell Lining During Cancer Cell Transmigration and Invasion

    Science.gov (United States)

    Mierke, Claudia T.

    There exist many reviews on the biological and biochemical interactions of cancer cells and endothelial cells during the transmigration and tissue invasion of cancer cells. For the malignant progression of cancer, the ability to metastasize is a prerequisite. In particular, this means that certain cancer cells possess the property to migrate through the endothelial lining into blood or lymph vessels, and are possibly able to transmigrate through the endothelial lining into the connective tissue and follow up their invasion path in the targeted tissue. On the molecular and biochemical level the transmigration and invasion steps are well-defined, but these signal transduction pathways are not yet clear and less understood in regards to the biophysical aspects of these processes. To functionally characterize the malignant transformation of neoplasms and subsequently reveal the underlying pathway(s) and cellular properties, which help cancer cells to facilitate cancer progression, the biomechanical properties of cancer cells and their microenvironment come into focus in the physics-of-cancer driven view on the metastasis process of cancers. Hallmarks for cancer progression have been proposed, but they still lack the inclusion of specific biomechanical properties of cancer cells and interacting surrounding endothelial cells of blood or lymph vessels. As a cancer cell is embedded in a special environment, the mechanical properties of the extracellular matrix also cannot be neglected. Therefore, in this review it is proposed that a novel hallmark of cancer that is still elusive in classical tumor biological reviews should be included, dealing with the aspect of physics in cancer disease such as the natural selection of an aggressive (highly invasive) subtype of cancer cells displaying a certain adhesion or chemokine receptor on their cell surface. Today, the physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present

  5. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored

    OpenAIRE

    Szklarczyk, D.; A. Franceschini; Kuhn, M; Simonovic, M.; Roth, A.; P. Minguez; Doerks, T.; Stark, M; Muller, J.; Bork, P.; Jensen, L. J.; Mering, C.V.

    2010-01-01

    An essential prerequisite for any systems-level understanding of cellular functions is to correctly uncover and annotate all functional interactions among proteins in the cell. Toward this goal, remarkable progress has been made in recent years, both in terms of experimental measurements and computational prediction techniques. However, public efforts to collect and present protein interaction information have struggled to keep up with the pace of interaction discovery, partly because protein...

  6. Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Rao Mahendra S

    2008-09-01

    Full Text Available Abstract Background Interactions of cells with the extracellular matrix (ECM are critical for the establishment and maintenance of stem cell self-renewal and differentiation. However, the ECM is a complex mixture of matrix molecules; little is known about the role of ECM components in human embryonic stem cell (hESC differentiation into neural progenitors and neurons. Results A reproducible protocol was used to generate highly homogenous neural progenitors or a mixed population of neural progenitors and neurons from hESCs. This defined adherent culture system allowed us to examine the effect of ECM molecules on neural differentiation of hESCs. hESC-derived differentiating embryoid bodies were plated on Poly-D-Lysine (PDL, PDL/fibronectin, PDL/laminin, type I collagen and Matrigel, and cultured in neural differentiation medium. We found that the five substrates instructed neural progenitors followed by neuronal differentiation to differing degrees. Glia did not appear until 4 weeks later. Neural progenitor and neuronal generation and neurite outgrowth were significantly greater on laminin and laminin-rich Matrigel substrates than on other 3 substrates. Laminin stimulated hESC-derived neural progenitor expansion and neurite outgrowth in a dose-dependent manner. The laminin-induced neural progenitor expansion was partially blocked by the antibody against integrin α6 or β1 subunit. Conclusion We defined laminin as a key ECM molecule to enhance neural progenitor generation, expansion and differentiation into neurons from hESCs. The cell-laminin interactions involve α6β1 integrin receptors implicating a possible role of laminin/α6β1 integrin signaling in directed neural differentiation of hESCs. Since laminin acts in concert with other ECM molecules in vivo, evaluating cellular responses to the composition of the ECM is essential to clarify further the role of cell-matrix interactions in neural derivation of hESCs.

  7. A Systems Model for Immune Cell Interactions Unravels the Mechanism of Inflammation in Human Skin

    OpenAIRE

    Valeyev, Najl V; Hundhausen, Christian; Umezawa, Yoshinori; Kotov, Nikolay V; Williams, Gareth; Clop, Alex; Ainali, Crysanthi; Ouzounis, Christos; Tsoka, Sophia; Nestle, Frank O

    2010-01-01

    Author Summary A functional immune system requires complex interactions among diverse cell types, mediated by a variety of cytokines. These interactions include phenomena such as positive and negative feedback loops that can be experimentally characterized by dose-dependent cytokine production measurements. However, any experimental approach is not only limited with regard to the number of cell-cell interactions that can be studied at a given time, but also does not have the capacity to asses...

  8. Cancer Stem Cells and Their Interaction with the Tumor Microenvironment in Neuroblastoma

    Directory of Open Access Journals (Sweden)

    Evan F. Garner

    2015-12-01

    Full Text Available Neuroblastoma, a solid tumor arising from neural crest cells, accounts for over 15% of all pediatric cancer deaths. The interaction of neuroblastoma cancer-initiating cells with their microenvironment likely plays an integral role in the maintenance of resistant disease and tumor relapse. In this review, we discuss the interaction between neuroblastoma cancer-initiating cells and the elements of the tumor microenvironment and how these interactions may provide novel therapeutic targets for this difficult to treat disease.

  9. Structural characteristics of an antigen required for its interaction with Ia and recognition by T cells

    DEFF Research Database (Denmark)

    Sette, A; Buus, S; Colon, S;

    1987-01-01

    A detailed analysis of the residues within an immunogenic peptide that endow it with the capacity to interact with Ia and to be recognized by T cells is presented. Ia interacts with only a few of the peptide residues and overall exhibits a very broad specificity. Some residues appear to interact...... both with Ia and with T cells, leading to a model in which a peptide antigen is 'sandwiched' between Ia and the T-cell receptor....

  10. In vivo tumor cell adhesion in the pulmonary microvasculature is exclusively mediated by tumor cell - endothelial cell interaction

    Directory of Open Access Journals (Sweden)

    Mees Soeren T

    2010-04-01

    Full Text Available Abstract Background Metastasis formation is the leading cause of death among colon cancer patients. We established a new in-situ model of in vivo microscopy of the lung to analyse initiating events of metastatic tumor cell adhesion within this typical metastatic target of colon cancer. Methods Anaesthetized CD rats were mechanically ventilated and 106 human HT-29LMM and T84 colon cancer cells were injected intracardially as single cell suspensions. Quantitative in vivo microscopy of the lung was performed in 10 minute intervals for a total of 40 minutes beginning with the time of injection. Results After vehicle treatment of HT-29LMM controls 15.2 ± 5.3; 14.2 ± 7.5; 11.4 ± 5.5; and 15.4 ± 6.5 cells/20 microscopic fields were found adherent within the pulmonary microvasculature in each 10 minute interval. Similar numbers were found after injection of the lung metastasis derived T84 cell line and after treatment of HT-29LMM with unspecific mouse control-IgG. Subsequently, HT-29LMM cells were treated with function blocking antibodies against β1-, β4-, and αv-integrins wich also did not impair tumor cell adhesion in the lung. In contrast, after hydrolization of sialylated glycoproteins on the cells' surface by neuraminidase, we observed impairment of tumor cell adhesion by more than 50% (p Conclusions These results demonstrate that the initial colon cancer cell adhesion in the capillaries of the lung is predominantly mediated by tumor cell - endothelial cell interactions, possibly supported by platelets. In contrast to reports of earlier studies that metastatic tumor cell adhesion occurs through integrin mediated binding of extracellular matrix proteins in liver, in the lung, the continuously lined endothelium appears to be specifically targeted by circulating tumor cells.

  11. Simian immunodeficiency virus interactions with macaque dendritic cells.

    Science.gov (United States)

    Teleshova, Natalia; Derby, Nina; Martinelli, Elena; Pugach, Pavel; Calenda, Giulia; Robbiani, Melissa

    2013-01-01

    This chapter summarizes advances in the following areas: (1) dendritic cell (DC)-mediated simian immunodeficiency virus (SIV) transmission, (2) role of DCs in innate and adaptive immunity against SIV, and (3) approaches to harness DC function to induce anti-SIV responses. The nonhuman primate (NHP) model of human immunodeficiency virus (HIV) infection in rhesus macaques and other Asian NHP species is highly relevant to advance the understanding of virus-host interactions critical for transmission and disease pathogenesis. HIV infection is associated with changes in frequency, phenotype, and function of the two principal subsets of DCs, myeloid DCs and plasmacytoid DCs. DC biology during pathogenic SIV infection is strikingly similar to that observed in HIV-infected patients. The NHP models provide an opportunity to dissect the requirements for DC-driven SIV infection and to understand how SIV distorts the DC system to its advantage. Furthermore, the SIV model of mucosal transmission enables the study of the earliest events of infection at the portal of entry that cannot be studied in humans, and, importantly, the involvement of DCs. Nonpathogenic infection in African NHP hosts allows investigations into the role of DCs in disease control. Understanding how DCs are altered during SIV infection is critical to the design of therapeutic and preventative strategies against HIV. PMID:22975875

  12. Cell-cell interaction between vocal fold fibroblasts and bone marrow mesenchymal stromal cells in three-dimensional hyaluronan hydrogel.

    Science.gov (United States)

    Chen, Xia; Thibeault, Susan L

    2016-05-01

    Mesenchymal stromal cells (MSCs) are multipotential adult cells present in all tissues. Paracrine effects and differentiating ability make MSCs an ideal cell source for tissue regeneration. However, little is known about how interactions between implanted MSCs and native cells influence cellular growth, proliferation, and behaviour. By using an in vitro three-dimensional (3D) co-culture assay of normal or scarred human vocal fold fibroblasts (VFFs) and bone marrow-derived MSCs (BM-MSCs) in a uniquely suited hyaluronan hydrogel (HyStem-VF), we investigated cell morphology, survival rate, proliferation and protein and gene expression of VFFs and BM-MSCs. BM-MSCs inhibited cell proliferation of both normal and scarred VFFs without changes in VFF morphology or viability. BM-MSCs demonstrated decreased proliferation and survival rate after 7 days of co-culture with VFFs. Interactions between BM-MSCs and VFFs led to a significant increase in protein secretion of collagen I and hepatocyte growth factor (HGF) and a decrease of vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1 (MCP-1) and interleukin-6 (IL-6). In particular, BM-MSCs significantly upregulated matrix metalloproteinase 1 (MMP1) and HGF gene expression for scarred VFFs compared to normal VFFs, indicating the potential for increases in extracellular matrix remodelling and tissue regeneration. Application of BM-MSCs-hydrogels may play a significant role in tissue regeneration, providing a therapeutic approach for vocal fold scarring. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23653427

  13. Retinoschisin, a photoreceptor-secreted protein, and its interaction with bipolar and muller cells

    OpenAIRE

    Reid, SNM; Yamashita, C; Farber, D B

    2003-01-01

    Usually, photoreceptors interact with other retinal cells through the neurotransmitter glutamate. Here we describe a nonsynaptic interaction via a secreted protein, retinoschisin. Using in situ hybridization, we found that from early postnatal life retinoschisin mRNA is present only in the outer retina of the mouse, and with single-cell RT-PCR we demonstrated its localization in rod and cone photoreceptor cells but not in Muller cells. Western blot analyses of proteins from cultured ocular ti...

  14. Cell Receptor-Basement Membrane Interactions in Health and Disease: A Kidney-Centric View.

    Science.gov (United States)

    Borza, Corina M; Chen, Xiwu; Zent, Roy; Pozzi, Ambra

    2015-01-01

    Cell-extracellular matrix (ECM) interactions are essential for tissue development, homeostasis, and response to injury. Basement membranes (BMs) are specialized ECMs that separate epithelial or endothelial cells from stromal components and interact with cells via cellular receptors, including integrins and discoidin domain receptors. Disruption of cell-BM interactions due to either injury or genetic defects in either the ECM components or cellular receptors often lead to irreversible tissue injury and loss of organ function. Animal models that lack specific BM components or receptors either globally or in selective tissues have been used to help with our understanding of the molecular mechanisms whereby cell-BM interactions regulate organ function in physiological and pathological conditions. We review recently published works on animal models that explore how cell-BM interactions regulate kidney homeostasis in both health and disease. PMID:26610916

  15. Endothelial monolayers on collagen-coated nanofibrous membranes: cell-cell and cell-ECM interactions.

    Science.gov (United States)

    Kang, Donggu; Kim, Jeong Hwa; Jeong, Young Hun; Kwak, Jong-Young; Yoon, Sik; Jin, Songwan

    2016-06-01

    Endothelial cells (ECs) form a monolayer lining over the entire vascular wall and play an important role in maintaining vascular homeostasis and cancer metastasis. Loss of proper endothelial function can lead to vascular diseases. Therefore, the endothelial monolayer is particularly important in tissue regeneration and mimicking vascular tissue in vitro. Numerous studies have described the effects of ECs on nanofibers made from a variety of synthetic polymer materials designed to mimic the extracellular matrix (ECM). However, little is known about maintaining the integrity of ECs in in vitro systems. Here we describe polycaprolactone nanofibrous membranes coated with collagen gel that overcome many limitations of conventional nanofibers used for engineering endothelia. We investigated cell-cell and cell-ECM junctional complexes using collagen-coated and conventional nanofibrous membranes. Conventional nanofibrous membranes alone did not form a monolayer with ECs, whereas collagen-coated nanofibrous membranes did. Several concentrations of collagen in the gel coating promoted the formation of cell-cell junctional complexes, facilitated the deposition of laminin, and increased the focal contact organization of ECs. These results suggest the possible use of collagen-coated nanofibrous membranes for vascular tissue engineering applications and a vascular platform for organ-on-a-chip systems. PMID:27186924

  16. Staphylococcal enterotoxin induced mitogenesis: toxin binding and cell-cell interactions.

    Science.gov (United States)

    Buxser, E S; Bonventre, P F; Archer, D L

    1983-07-01

    The binding characteristics of 125I-labelled staphylococcal enterotoxin A (125I-SEA), a T-cell mitogen, to murine lymphoid cell subpopulations were analyzed. Both T- and B-lymphocytes from murine spleens possess specific binding sites for SEA, as do T-lymphocytes from thymus. B-lymphocytes appear to have a greater capacity for binding of 125-SEA than do T-lymphocytes from either thymus or spleen. Enterotoxin did not specifically bind to thioglycollate-induced peritoneal exudate cells (PECs), used as a source of macrophages. Adherent PECs however, incorporated 125-ISEA by fluid phase endocytosis. When exposed to SEA and thoroughly washed, macrophages stimulate lymphocyte mitogenesis in spleen or thymus cell cultures not directly exposed to toxin. Maximum mitogenic stimulation took place only when both PECs and lymphocytes were exposed to SEA. The presence of splenic B-lymphocytes enhanced the mitogenic response of thymus derived T-cells to SEA. Thus, B-lymphocytes appear to contribute to SEA mitogenesis. These data suggest that mitogenic stimulation and possibly other immunological phenomena associated with SEA occur as a result of complex interactions between cellular components of the immune system. PMID:6605472

  17. Retinoic acid, local cell-cell interactions, and pattern formation in vertebrate limbs.

    Science.gov (United States)

    Bryant, S V; Gardiner, D M

    1992-07-01

    Retinoic acid (RA), a derivative of vitamin A, has remarkable effects on developing and regenerating limbs. These effects include teratogenesis, arising from RA's ability to inhibit growth and pattern formation. They also include pattern duplication, arising as a result of the stimulation of additional growth and pattern formation. In this review we present evidence that the diverse effects of RA are consistent with a singular, underlying explanation. We propose that in all cases exogenously applied RA causes the positional information of pattern formation-competent cells to be reset to a value that is posterior-ventral-proximal with respect to the limb. The diversity of outcomes can be seen as a product of the mode of application of exogenous RA (global versus local) coupled with the unifying concept that growth and pattern formation in both limb development and limb regeneration are controlled by local cell-cell interactions, as formulated in the polar coordinate model. We explore the possibility that the major role of endogenous RA in limb development is in the establishment of the limb field rather than as a diffusible morphogen that specifies graded positional information across the limb as previously proposed. Finally, we interpret the results of the recent finding that RA can turn tail regenerates into limbs, as evidence that intercalary interactions may also be involved in the formation of the primary body axis. PMID:1628749

  18. Uncovering Research Topics of Academic Communities of Scientific Collaboration Network

    OpenAIRE

    Hongqi Han; Shuo Xu; Jie Gui; Xiaodong Qiao; Lijun Zhu; Han Zhang

    2014-01-01

    In order to improve the quality of applications, such as recommendation or retrieval in knowledge-based service system, it is very helpful to uncover research topics of academic communities in scientific collaboration network (SCN). Previous research mainly focuses on network characteristics measurement and community evolution, but it remains largely understudied on how to uncover research topics of each community. This paper proposes a nonjoint approach, consisting of three simple steps: (1)...

  19. Stimulatory interactions between human coronary smooth muscle cells and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Sara Paccosi

    Full Text Available Despite inflammatory and immune mechanisms participating to atherogenesis and dendritic cells (DCs driving immune and non-immune tissue injury response, the interactions between DCs and vascular smooth muscle cells (VSMCs possibly relevant to vascular pathology including atherogenesis are still unclear. To address this issue, immature DCs (iDCs generated from CD14+ cells isolated from healthy donors were matured either with cytokines (mDCs, or co-cultured (ccDCs with human coronary artery VSMCs (CASMCs using transwell chambers. Co-culture induced DC immunophenotypical and functional maturation similar to cytokines, as demonstrated by flow cytometry and mixed lymphocyte reaction. In turn, factors from mDCs and ccDCs induced CASMC migration. MCP-1 and TNFα, secreted from DCs, and IL-6 and MCP-1, secreted from CASMCs, were primarily involved. mDCs adhesion to CASMCs was enhanced by CASMC pre-treatment with IFNγ and TNFα ICAM-1 and VCAM-1 were involved, since the expression of specific mRNAs for these molecules increased and adhesion was inhibited by neutralizing antibodies to the counter-receptors CD11c and CD18. Adhesion was also inhibited by CASMC pre-treatment with the HMG-CoA-reductase inhibitor atorvastatin and the PPARγ agonist rosiglitazone, which suggests a further mechanism for the anti-inflammatory action of these drugs. Adhesion of DCs to VSMCs was shown also in vivo in rat carotid 7 to 21 days after crush and incision injury. The findings indicate that DCs and VSMCs can interact with reciprocal stimulation, possibly leading to perpetuate inflammation and vascular wall remodelling, and that the interaction is enhanced by a cytokine-rich inflammatory environment and down-regulated by HMGCoA-reductase inhibitors and PPARγ agonists.

  20. Macroscopic model for biological fixation and its uncover-ing idea in Chinese Mongolian traditional osteopathy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Namula; LI Xue-en; WANG Mei; HU Da-lai

    2009-01-01

    Splintage external fixation in Chinese Mongolian oste-opathy is a biological macroscopic model. In this model, the ideas of self-life "unity of mind and body" and vital natural "correspondence of nature and human" combine the physi-ological and psychological self-fixation with supplementary external fixation of fracture using small splints. This model implies macroscopic ideas of uncovering fixation and healing: structural stability integrating geometrical "dy-namic" stability with mechanical "dynamic" equilibrium and the stability of state integrating statics with dynamics, and osteoblasts with osteoclasts, and psychological stability in-tegrating closed and open systems of human and nature. These ideas indicate a trend of development in modem osteopathy.

  1. Radiation Interaction with Therapeutic Drugs and Cell Membranes

    International Nuclear Information System (INIS)

    This transient permeabilized state of the cell membrane, named the 'cell electroporation' (CE) can be used to increase cells uptake of drugs that do not readily pass cell membrane, thus enabling their cytotoxicity. The anticancer drugs, such as bleomycin (BL) and cisplatin, are the most candidates for the combined use with ionizing and non-ionizing radiation fields. The methods and installations for the cell electroporation by electron beam (EB) and microwave (MW) irradiation are presented. The viability tests of the human leukocytes under EB and MW exposure with/without the BL in the cell cultures are discussed

  2. Ho:YAG laser: intervertebral disk cell interaction using three-dimensional cell culture system

    Science.gov (United States)

    Sato, Masato; Ishihara, Miya; Arai, Tsunenori; Asazuma, Takashi; Kikuchi, Toshiyuki; Kikuchi, Makoto; Fujikawa, Kyosuke

    2000-06-01

    The purpose of this study is to evaluate the influence on the intervertebral disc cells after laser irradiation using three- dimensional culture system and to clarify the optimum Ho:YAG laser irradiation condition on percutaneous laser disc decompression (PLDD) for lumbar disc herniation. Since the Ho:YAG laser ablation is characterized by water-vapor bubble dynamics, not only thermal effect but also acoustic effect on cell metabolism might occur in the intervertebral disc. We studied the disc cell reaction from the metabolic point of view to investigate photothermal and photoacoustic effects on three-dimensional cultured disc cell. Intervertebral discs were obtained from female 30 Japanese white rabbits weighing about 1 kg. A pulsed Ho:YAG laser (wavelength: 2.1 micrometer, pulse width: about 200 microseconds) was delivered through a 200 micrometer-core diameter single silica glass fiber. We used the Ho:YAG laser irradiation fluence ranging from 60 to approximately 800 J/cm2 at the fiber end. To investigate acoustic effect, the acoustic transducer constructed with polyvinylidene fluoride (PVdF) film and acoustic absorber was used to detect the stress wave. Thermocouple and thermography were used to investigate thermal effect. Concerning damage of plasma membrane and ability of matrix synthesis, thermal effect might mainly affect cell reaction in total energy of 54 J (closed to practically used condition), but in 27 J, acoustic effect might contribute to it. We found that total energy was key parameter among the optimum condition, so that temperature and/or stress wave may influence Ho:YAG laser-disc cell interactions.

  3. Cell Mechanosensitivity: Mechanical Properties and Interaction with Gravitational Field

    Directory of Open Access Journals (Sweden)

    I. V. Ogneva

    2013-01-01

    Full Text Available This paper addressed the possible mechanisms of primary reception of a mechanical stimulus by different cells. Data concerning the stiffness of muscle and nonmuscle cells as measured by atomic force microscopy are provided. The changes in the mechanical properties of cells that occur under changed external mechanical tension are presented, and the initial stages of mechanical signal transduction are considered. The possible mechanism of perception of different external mechanical signals by cells is suggested.

  4. Cutting edge: Bcl6-interacting corepressor contributes to germinal center T follicular helper cell formation and B cell helper function.

    Science.gov (United States)

    Yang, Jessica A; Tubo, Noah J; Gearhart, Micah D; Bardwell, Vivian J; Jenkins, Marc K

    2015-06-15

    CD4(+) germinal center (GC)-T follicular helper (Tfh) cells help B cells become long-lived plasma cells and memory cells. The transcriptional repressor Bcl6 plays a key role in GC-Tfh formation by inhibiting the expression of genes that promote differentiation into other lineages. We determined whether BCOR, a component of a Polycomb repressive complex that interacts with the Bcl6 BTB domain, influences GC-Tfh differentiation. T cell-targeted BCOR deficiency led to a substantial loss of peptide:MHC class II-specific GC-Tfh cells following Listeria monocytogenes infection and a 2-fold decrease following immunization with a peptide in CFA. The reduction in GC-Tfh cells was associated with diminished plasma cell and GC B cell formation. Thus, T cell-expressed BCOR is critical for optimal GC-Tfh cell differentiation and humoral immunity. PMID:25964495

  5. Effect of Interaction between Chromatin Loops on Cell-to-Cell Variability in Gene Expression.

    Directory of Open Access Journals (Sweden)

    Tuoqi Liu

    2016-05-01

    Full Text Available According to recent experimental evidence, the interaction between chromatin loops, which can be characterized by three factors-connection pattern, distance between regulatory elements, and communication form, play an important role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effect that addresses the question of how changes in these factors affect variability at the expression level in a systematic rather than case-by-case fashion. Here we make such an effort, based on a mechanic model that maps three fundamental patterns for two interacting DNA loops into a 4-state model of stochastic transcription. We first show that in contrast to side-by-side loops, nested loops enhance mRNA expression and reduce expression noise whereas alternating loops have just opposite effects. Then, we compare effects of facilitated tracking and direct looping on gene expression. We find that the former performs better than the latter in controlling mean expression and in tuning expression noise, but this control or tuning is distance-dependent, remarkable for moderate loop lengths, and there is a limit loop length such that the difference in effect between two communication forms almost disappears. Our analysis and results justify the facilitated chromatin-looping hypothesis.

  6. Development of a 3D coculture system to study adipocyte and lymph node cell interactions

    OpenAIRE

    Daya, S.; Loughlin, J.; MacQueen, H.

    2006-01-01

    We have developed a long term 3-dimensional coculture system with adipocytes and lymph node cells for the purpose of investigating interactions between these cells in vitro. Present experimental work with the culture system is aimed at introducing lymph node cells, in proportions similar to those found in intact lymph nodes, among differentiated adipocytes and observing interactions and the establishment of a spatial relationship between them. Co-cultures will be used to investigate the ly...

  7. Insights into age- and sickle-cell-disease- interaction using principal components analysis

    OpenAIRE

    Thakre Tushar P; Amin Manik; Mamtani Manju R; Sharma Mamta; Sharma Smita; Amin Amit; Kulkarni Hemant

    2006-01-01

    Abstract Background In the context of sickle cell anemia, peripheral blood indexes provide key information that is also potentially influenced by age. Therefore, it is necessary to understand the extent and nature of interactions between sickle cell anemia and age, especially in situations where there is a high prevalence of sickle cell anemia. Methods In a cross-sectional study of 374 subjects with varying hemoglobin S (HbS) status, we characterized the interaction between age and sickle hem...

  8. Measurement of interaction forces between red blood cells in aggregates by optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Maklygin, A Yu; Priezzhev, A V; Karmenian, A; Nikitin, Sergei Yu; Obolenskii, I S; Lugovtsov, Andrei E; Kisun Li

    2012-06-30

    We have fabricated double-beam optical tweezers and demonstrated the possibility of their use for measuring the interaction forces between red blood cells (erythrocytes). It has been established experimentally that prolonged trapping of red blood cells in a tightly focused laser beam does not cause any visible changes in their shape or size. We have measured the interaction between red blood cells in the aggregate, deformed by optical tweezers.

  9. Aquatic flower-inspired cell culture platform with simplified medium exchange process for facilitating cell-surface interaction studies.

    Science.gov (United States)

    Hong, Hyeonjun; Park, Sung Jea; Han, Seon Jin; Lim, Jiwon; Kim, Dong Sung

    2016-02-01

    Establishing fundamentals for regulating cell behavior with engineered physical environments, such as topography and stiffness, requires a large number of cell culture experiments. However, cell culture experiments in cell-surface interaction studies are generally labor-intensive and time-consuming due to many experimental tasks, such as multiple fabrication processes in sample preparation and repetitive medium exchange in cell culture. In this work, a novel aquatic flower-inspired cell culture platform (AFIP) is presented. AFIP aims to facilitate the experiments on the cell-surface interaction studies, especially the medium exchange process. AFIP was devised to capture and dispense cell culture medium based on interactions between an elastic polymer substrate and a liquid medium. Thus, the medium exchange can be performed easily and without the need of other instruments, such as a vacuum suction and pipette. An appropriate design window of AFIP, based on scaling analysis, was identified to provide a criterion for achieving stability in medium exchange as well as various surface characteristics of the petal substrates. The developed AFIP, with physically engineered petal substrates, was also verified to exchange medium reliably and repeatedly. A closed structure capturing the medium was sustained stably during cell culture experiments. NIH3T3 proliferation results also demonstrated that AFIP can be applied to the cell-surface interaction studies as an alternative to the conventional method. PMID:26683462

  10. Interaction of PC-3 cells with fibronectin adsorbed on sulfonated polystyrene surfaces

    Directory of Open Access Journals (Sweden)

    Hanna M. Kowalczyńska

    2012-01-01

    Full Text Available The ability of cancer cells to invade neighboring tissues is crucial for cell dissemination and tumor metastasis. It is generally assumed that cell adhesion to extracellular matrix proteins is an important stage of cancer progression. Hence, adhesion of cancer cells under in vitro conditions to proteins adsorbed on a substratum surface has been studied to provide a better understanding of cell-protein interaction mechanisms. A protein, adsorbed in an appropriate conformation on a substratum surface, creates a biologically active layer that regulates such cell functions as adhesion, spreading, proliferation and migration. In our study, we examined the interaction of PC-3 cells under in vitro conditions with fibronectin adsorbed on sulfonated polystyrene surfaces of a defined chemical composition and topography. We investigated cell adhesion to fibronectin and cell spreading. Using automatic, sequential microscopic image registration, we are the first to present observations of the dynamics of PC-3 cell spreading and the cell shape during this process. Our results show that cell adhesion and the shape of spreading cells strongly depend on the time interaction with fibronectin. The analysis of images of cytoskeletal protein distribution in the cell region near the cell-substratum interface revealed that induction of a signal cascade took place, which led to the reorganization of the cytoskeletal proteins and the activation of focal adhesion kinase (FAK. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 4, pp. 706–718

  11. An evolutionary-game model of tumour-cell interactions: possible relevance to gene therapy

    DEFF Research Database (Denmark)

    Bach, Lars Arve; Bentzen, Søren; Alsner, Jan;

    2001-01-01

    interpretations of gene therapy. Two prototypical strategies for gene therapy are suggested, both of them leading to extinction of the malignant phenotype: one approach would be to reduce the relative proportion of the cooperating malignant cell type below a certain critical value. Another approach would be to......Evolutionary games have been applied as simple mathematical models of populations where interactions between individuals control the dynamics. Recently, it has been proposed to use this type of model to describe the evolution of tumour cell populations with interactions between cells. We extent the...... analysis to allow for synergistic effects between cells. A mathematical model of a tumour cell population is presented in which population-level synergy is assumed to originate through the interaction of triplets of cells. A threshold of two cooperating cells is assumed to be required to produce a...

  12. Neural cell adhesion molecule differentially interacts with isoforms of the fibroblast growth factor receptor

    DEFF Research Database (Denmark)

    Christensen, Claus; Berezin, Vladimir; Bock, Elisabeth

    2011-01-01

    The fibroblast growth factor receptor (FGFR) can be activated through direct interactions with various fibroblast growth factors or through a number of cell adhesion molecules, including the neural cell adhesion molecule (NCAM). We produced recombinant proteins comprising the ligand...... the expression pattern of various FGFR isoforms determines the cell context-specific effects of NCAM signaling through FGFR....

  13. Regulation of cohesion-dependent cell interactions in Myxococcus xanthus.

    OpenAIRE

    Dana, J R; Shimkets, L J

    1993-01-01

    Myxococcus xanthus has two nearly independent genetic systems, A and S, which appear to mediate adventurous (single-cell) movement and social (group) movement, respectively. In addition to a notable reduction in group movement, social motility mutants exhibit decreased biofilm formation, cell cohesion, dye binding, fibril production, and fruiting body formation. The stk-1907 allele, containing transposon Tn5 insertion omega DK1907, was introduced into wild-type cells and many social motility ...

  14. Cell Mechanosensitivity: Mechanical Properties and Interaction with Gravitational Field

    OpenAIRE

    I. V. Ogneva

    2013-01-01

    This paper addressed the possible mechanisms of primary reception of a mechanical stimulus by different cells. Data concerning the stiffness of muscle and nonmuscle cells as measured by atomic force microscopy are provided. The changes in the mechanical properties of cells that occur under changed external mechanical tension are presented, and the initial stages of mechanical signal transduction are considered. The possible mechanism of perception of different external mechanical signals by c...

  15. An ultrastructural study of cell-cell interactions in capture organs of the nematophagous fungus Arthrobotrys oligospora

    NARCIS (Netherlands)

    Veenhuis, Marten; Nordbring-Hertz, Birgit; Harder, Willem

    1985-01-01

    A detailed ultrastructural analysis was made of interactions between individual cells within the same adhesive network (trap) of the nematophagous fungus Arthrobotrys oligospora. These interactions were confined to traps which had captured nematodes, and occurred concurrently with the fungus-nematod

  16. A photoactivatable nanopatterned substrate for analyzing collective cell migration with precisely tuned cell-extracellular matrix ligand interactions.

    Directory of Open Access Journals (Sweden)

    Yoshihisa Shimizu

    Full Text Available Collective cell migration is involved in many biological and pathological processes. Various factors have been shown to regulate the decision to migrate collectively or individually, but the impact of cell-extracellular matrix (ECM interactions is still debated. Here, we developed a method for analyzing collective cell migration by precisely tuning the interactions between cells and ECM ligands. Gold nanoparticles are arrayed on a glass substrate with a defined nanometer spacing by block copolymer micellar nanolithography (BCML, and photocleavable poly(ethylene glycol (Mw  =  12 kDa, PEG12K and a cyclic RGD peptide, as an ECM ligand, are immobilized on this substrate. The remaining glass regions are passivated with PEG2K-silane to make cells interact with the surface via the nanoperiodically presented cyclic RGD ligands upon the photocleavage of PEG12K. On this nanostructured substrate, HeLa cells are first patterned in photo-illuminated regions, and cell migration is induced by a second photocleavage of the surrounding PEG12K. The HeLa cells gradually lose their cell-cell contacts and become disconnected on the nanopatterned substrate with 10-nm particles and 57-nm spacing, in contrast to their behavior on the homogenous substrate. Interestingly, the relationship between the observed migration collectivity and the cell-ECM ligand interactions is the opposite of that expected based on conventional soft matter models. It is likely that the reduced phosphorylation at tyrosine-861 of focal adhesion kinase (FAK on the nanopatterned surface is responsible for this unique migration behavior. These results demonstrate the usefulness of the presented method in understanding the process of determining collective and non-collective migration features in defined micro- and nano-environments and resolving the crosstalk between cell-cell and cell-ECM adhesions.

  17. Depressed immune surveillance against cancer: role of deficient T cell: extracellular matrix interactions.

    Science.gov (United States)

    Górski, A; Castronovo, V; Stepień-Sopniewska, B; Grieb, P; Ryba, M; Mrowiec, T; Korczak-Kowalska, G; Wierzbicki, P; Matysiak, W; Dybowska, B

    1994-07-01

    Although T cells infiltrate malignant tumors, the local immune response is usually inefficient and tumors escape destruction. While extracellular matrix proteins strongly costimulate T cell responses in normal individuals, our studies indicate that peripheral blood T cells from cancer patients and tumor infiltrating cells respond poorly or are resistant to stimulative signals mediated by collagen I and IV and fibronectin. Moreover, the adhesive properties of cancer T cells are markedly depressed. Those functional deficiencies are paralleled by variable deficits in integrin and non-integrin T cell receptors for extracellular matrix. Immunotherapy with BCG causes a dramatic but transient increase in T cell: ECM interactions. PMID:7827959

  18. Keynote Paper: Cell-Surface Adhesive Interactions in Microchannels and Microvessels

    CERN Document Server

    King, M R

    2003-01-01

    Adhesive interactions between white blood cells and the interior surface of the blood vessels they contact is important in inflammation and in the progression of heart disease. Parallel-plate microchannels have been useful in characterizing the strength of these interactions, in conditions that are much simplified over the complex environment these cells experience in the body. Recent computational and experimental work by several laboratories have attempted to bridge this gap between behavior observed in flow chamber experiments, and cell-surface interactions observed in the microvessels of anesthetized animals.

  19. Cellular interactions via conditioned media induce in vivo nephron generation from tubular epithelial cells or mesenchymal stem cells

    International Nuclear Information System (INIS)

    Highlights: •We have attempted in vivo nephron generation using conditioned media. •Vascular and tubular cells do cross-talks on cell proliferation and tubular changes. •Tubular cells suppress these changes in mesenchymal stem cells. •Tubular cells differentiate mesenchymal stem cells into tubular cells. •Nephrons can be created from implanted tubular cells or mesenchymal stem cells. -- Abstract: There are some successful reports of kidney generation by utilizing the natural course of kidney development, namely, the use of an artificially treated metanephros, blastocyst or ureteric bud. Under a novel concept of cellular interactions via conditioned media (CMs), we have attempted in vivo nephron generation from tubular epithelial cells (TECs) or mesenchymal stem cells (MSCs). Here we used 10× CMs of vascular endothelial cells (VECs) and TECs, which is the first to introduce a CM into the field of organ regeneration. We first present stimulative cross-talks induced by these CMs between VECs and TECs on cell proliferation and morphological changes. In MSCs, TEC-CM suppressed these changes, however, induced cytokeratin expression, indicating the differentiation of MSCs into TECs. As a result, glomerular and tubular structures were created following the implantation of TECs or MSCs with both CMs. Our findings suggest that the cellular interactions via CMs might induce in vivo nephron generation from TECs or MSCs. As a promoting factor, CMs could also be applied to the regeneration of other organs and tissues

  20. Cellular interactions via conditioned media induce in vivo nephron generation from tubular epithelial cells or mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Machiguchi, Toshihiko, E-mail: machiguchi.toshihiko.23u@st.kyoto-u.ac.jp; Nakamura, Tatsuo, E-mail: nakamura@frontier.kyoto-u.ac.jp

    2013-06-07

    Highlights: •We have attempted in vivo nephron generation using conditioned media. •Vascular and tubular cells do cross-talks on cell proliferation and tubular changes. •Tubular cells suppress these changes in mesenchymal stem cells. •Tubular cells differentiate mesenchymal stem cells into tubular cells. •Nephrons can be created from implanted tubular cells or mesenchymal stem cells. -- Abstract: There are some successful reports of kidney generation by utilizing the natural course of kidney development, namely, the use of an artificially treated metanephros, blastocyst or ureteric bud. Under a novel concept of cellular interactions via conditioned media (CMs), we have attempted in vivo nephron generation from tubular epithelial cells (TECs) or mesenchymal stem cells (MSCs). Here we used 10× CMs of vascular endothelial cells (VECs) and TECs, which is the first to introduce a CM into the field of organ regeneration. We first present stimulative cross-talks induced by these CMs between VECs and TECs on cell proliferation and morphological changes. In MSCs, TEC-CM suppressed these changes, however, induced cytokeratin expression, indicating the differentiation of MSCs into TECs. As a result, glomerular and tubular structures were created following the implantation of TECs or MSCs with both CMs. Our findings suggest that the cellular interactions via CMs might induce in vivo nephron generation from TECs or MSCs. As a promoting factor, CMs could also be applied to the regeneration of other organs and tissues.

  1. Bubble-cell interactions with laser-activated polymeric microcapsules

    Science.gov (United States)

    Versluis, Michel; Lajoinie, Guillaume; van Rooij, Tom; Skachkov, Ilya; Kooiman, Klazina; de Jong, Nico; Physics of Fluids Group, University of Twente Team; Biomedical Engineering, Erasmus MC Team

    2015-11-01

    Polymeric microcapsules that are made light-absorbing by the addition of a dye in their shell can generate cavitation microbubbles with spatiotemporal control when irradiated by a pulsed laser. These particles less than 3 μm in size can circulate through the body, bind to tissues and are expected to be readily detected, even if a single cavitation bubble is produced. In this paper, we study the impact of such cavitation bubbles on a cell monolayer and quantify it in terms of cell poration and cell viability. Two capsules formulations were used; the first one encapsulates a low boiling point oil and induced less cell damage than the second that was loaded with a high boiling point oil. We also report the generation of stable bubbles by the first capsule formulation that completely absorb the cells in their close vicinity. Physics of Fluid group MIRA Institute for Biomedical Technology and Technical Medicine MESA+ Institute for Nanotechnology.

  2. Fluorescence lifetime imaging microscopy (FLIM) to quantify protein-protein interactions inside cells.

    Science.gov (United States)

    Duncan, R R

    2006-11-01

    Recent developments in cellular imaging spectroscopy now permit the minimally invasive study of protein dynamics inside living cells. These advances are of interest to cell biologists, as proteins rarely act in isolation, but rather in concert with others in forming cellular machinery. Until recently, all protein interactions had to be determined in vitro using biochemical approaches: this biochemical legacy has provided cell biologists with the basis to test defined protein-protein interactions not only inside cells, but now also with high spatial resolution. These techniques can detect and quantify protein behaviours down to the single-molecule level, all inside living cells. More recent developments in TCSPC (time-correlated single-photon counting) imaging are now also driving towards being able to determine protein interaction rates with similar spatial resolution, and together, these experimental advances allow investigators to perform biochemical experiments inside living cells. PMID:17052173

  3. Investigation of interaction between the drug and cell membrane by capillary electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    By introducing cell membrane into electrophoretic buffer as pseudo-stationary phase,a novel capillary electrophoresis method was established to explore the interaction between drugs and cell membrane,where the interaction between citalopram and rabbit red blood cell membrane was used as an example. A series of concentrations of cell membrane were suspended into the running buffer by peak-shift method. The binding constant of citalopram to rabbit red blood cell membrane of 0.977 g-1·L was obtained after treatment of Scatchard plot. This method could provide not only a new way for the investigation on the interactions between drugs and cell membrane,but also a new approach for high throughput screening of the drug membrane permeability,biological activity,and evaluating drugs in vivo.

  4. Antigen availability determines CD8⁺ T cell-dendritic cell interaction kinetics and memory fate decisions.

    Science.gov (United States)

    Henrickson, Sarah E; Perro, Mario; Loughhead, Scott M; Senman, Balimkiz; Stutte, Susanne; Quigley, Michael; Alexe, Gabriela; Iannacone, Matteo; Flynn, Michael P; Omid, Shaida; Jesneck, Jonathan L; Imam, Sabrina; Mempel, Thorsten R; Mazo, Irina B; Haining, W Nicholas; von Andrian, Ulrich H

    2013-09-19

    T cells are activated by antigen (Ag)-bearing dendritic cells (DCs) in lymph nodes in three phases. The duration of the initial phase of transient, serial DC-T cell interactions is inversely correlated with Ag dose. The second phase, characterized by stable DC-T cell contacts, is believed to be necessary for full-fledged T cell activation. Here we have shown that this is not the case. CD8⁺ T cells interacting with DCs presenting low-dose, short-lived Ag did not transition to phase 2, whereas higher Ag dose yielded phase 2 transition. Both antigenic constellations promoted T cell proliferation and effector differentiation but yielded different transcriptome signatures at 12 hr and 24 hr. T cells that experienced phase 2 developed long-lived memory, whereas conditions without stable contacts yielded immunological amnesia. Thus, T cells make fate decisions within hours after Ag exposure, resulting in long-term memory or abortive effector responses, correlating with T cell-DCs interaction kinetics. PMID:24054328

  5. Uncovering the Matter-Neutrino Resonance

    CERN Document Server

    Vaananen, D

    2015-01-01

    Matter Neutrino Resonances (MNRs) can drastically modify neutrino flavor evolution in astrophysical environments and may significantly impact nucleosynthesis. Here we further investigate the underlying physics of MNR type flavor transitions. We provide generalized resonance conditions and make analytical predictions for the behavior of the system. We discuss the adiabatic evolution of these transitions, considering both Symmetric and Standard scenarios. Symmetric MNR transitions differ from Standard MNR transitions in that both neutrinos and antineutrinos can completely transform to other flavors simultaneously. We provide an example of the simplest system in which such transitions can occur with a neutrino and an antineutrino having a single energy and emission angle. We further apply linearized stability analysis to predict the location of self-induced nutation type (or bipolar) oscillations due to neutrino-neutrino interactions in the regions where MNR is ineffective. In all cases, we compare our analytica...

  6. The PDZ protein MPP2 interacts with c-Src in epithelial cells

    International Nuclear Information System (INIS)

    c-Src is a non-receptor tyrosine kinase involved in regulating cell proliferation, cell migration and cell invasion and is tightly controlled by reversible phosphorylation on regulatory sites and through protein-protein interactions. The interaction of c-Src with PDZ proteins was recently identified as novel mechanism to restrict c-Src function. The objective of this study was to identify and characterise PDZ proteins that interact with c-Src to control its activity. By PDZ domain array screen, we identified the interaction of c-Src with the PDZ protein Membrane Protein Palmitoylated 2 (MPP2), a member of the Membrane-Associated Guanylate Kinase (MAGUK) family, to which also the Discs large (Dlg) tumour suppressor protein belongs. The function of MPP2 has not been established and the functional significance of the MPP2 c-Src interaction is not known. We found that in non-transformed breast epithelial MCF-10A cells, endogenous MPP2 associated with the cytoskeleton in filamentous structures, which partially co-localised with microtubules and c-Src. MPP2 and c-Src interacted in cells, where c-Src kinase activity promoted increased interaction of c-Src with MPP2. We furthermore found that MPP2 was able to negatively regulate c-Src kinase activity in cells, suggesting that the functional significance of the MPP2-c-Src interaction is to restrict Src activity. Consequently, the c-Src-dependent disorganisation of the cortical actin cytoskeleton of epithelial cells expressing c-Src was suppressed by MPP2. In conclusion we demonstrate here that MPP2 interacts with c-Src in cells to control c-Src activity and morphological function.

  7. Cell-collagen interactions : the use of peptide Toolkits to investigate collagen-receptor interactions

    NARCIS (Netherlands)

    Farndale, Richard W.; Lisman, Ton; Bihan, Dominique; Hamaia, Samir; Smerling, Christiane S.; Pugh, Nicholas; Konitsiotis, Antonios; Leitinger, Birgit; de Groot, Philip G.; Jarvis, Gavin E.; Raynal, Nicolas

    2008-01-01

    Fibrillar collagens provide the most fundamental platform in the vertebrate organism for the attachment of cells and matrix molecules. we have identified specific sites in collagens to which cells can attach, either directly or through protein intermediaries. Using Toolkits of triple-helical peptide

  8. Physiopathology of blood platelets: a model system for studies of cell-to-cell interaction. Progress report, November 1, 1979-October 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    This report covers the studies on basic mechanisms of cellular interactions, utilizing platelets as a model system and, when possible, concentrating on the influence that environmental factors (nutritional, metabolic, cellular, immunologic and others) have on them. The four major sections include: platelet interaction with tumor cells; a model for the study of cell-to-cell interaction; interaction of platelets with vessel walls; and platelet interactions with immune proteins.

  9. Tumor-stem cells interactions by fluorescence imaging

    Science.gov (United States)

    Meleshina, Aleksandra V.; Cherkasova, Elena I.; Sergeeva, Ekaterina; Turchin, Ilya V.; Kiseleva, Ekaterina V.; Dashinimaev, Erdem B.; Shirmanova, Marina V.; Zagaynova, Elena V.

    2013-02-01

    Recently, great deal of interest is investigation the function of the stem cells (SC) in tumors. In this study, we studied «recipient-tumor- fluorescent stem cells » system using the methods of in vivo imaging and laser scanning microscopy (LSM). We used adipose-derived adult stem (ADAS) cells of human lentiviral transfected with the gene of fluorescent protein Turbo FP635. ADAS cells were administrated into nude mice with transplanted tumor HeLa Kyoto (human cervical carcinoma) at different stages of tumor growth (0-8 days) intravenously or into tumor. In vivo imaging was performed on the experimental setup for epi - luminescence bioimaging (IAP RAS, Nizhny Novgorod). The results of the imaging showed localization of fluorophore tagged stem cells in the spleen on day 5-9 after injection. The sensitivity of the technique may be improved by spectral separation autofluorescence and fluorescence of stem cells. We compared the results of in vivo imaging and confocal laser scanning microscopy (LSM 510 META, Carl Zeiss, Germany). Internal organs of the animals and tumor tissue were investigated. It was shown that with i.v. injection of ADAS, bright fluorescent structures with spectral characteristics corresponding to TurboFP635 protein are locally accumulated in the marrow, lungs and tumors of animals. These findings indicate that ADAS cells integrate in the animal body with transplanted tumor and can be identified by fluorescence bioimaging techniques in vivo and ex vivo.

  10. Interactions of competent Streptococcus sanguis (Wicky) cells with native or denatured, homologous or heterologous deoxyribonucleic acids.

    OpenAIRE

    Ranhand, J M

    1980-01-01

    Competent cell-deoxyribonucleic acid (DNA) interactions were examined using tritium-labeled homologous or heterologous native or denatured DNAs and competent Streptococcus sanguis Wicky cells (strain WE4). The DNAs used were extracted from WE4 cells, Escherichia coli B cells, and E. coli bacteriophages T2, T4, T6, and T7. The reactions examined were: (i) total DNA binding, (ii) deoxyribonuclease-resistant DNA binding, and (iii) the production of acid-soluble products from the DNA. Optimal tem...

  11. Plant cell wall dynamics and wall-related susceptibility in plant–pathogen interactions

    OpenAIRE

    Bellincampi, Daniela; Cervone, Felice; Lionetti, Vincenzo

    2014-01-01

    The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteri...

  12. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions

    OpenAIRE

    Daniela eBellincampi; Felice eCervone; Vincenzo eLionetti

    2014-01-01

    The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteri...

  13. Enthalpy-driven interactions with sulfated glycosaminoglycans promote cell membrane penetration of arginine peptides.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Nadai, Ryo; Kimura, Hitoshi; Nishitsuji, Kazuchika; Uchimura, Kenji; Sakai-Kato, Kumiko; Kawakami, Kohsaku; Shigenaga, Akira; Kawakami, Toru; Otaka, Akira; Hojo, Hironobu; Sakashita, Naomi; Saito, Hiroyuki

    2016-06-01

    The first step of cell membrane penetration of arginine peptides is thought to occur via electrostatic interactions between positive charges of arginine residues and negative charges of sulfated glycosaminoglycans (GAGs) on the cell surface. However, the molecular interaction of arginine peptides with GAG still remains unclear. Here, we compared the interactions of several arginine peptides of Tat, R8, and Rev and their analogues with heparin in relation to the cell membrane penetration efficiency. The high-affinity binding of arginine peptides to heparin was shown to be driven by large favorable enthalpy contributions, possibly reflecting multidentate hydrogen bondings of arginine residues with sulfate groups of heparin. Interestingly, the lysine peptides in which all arginine residues are substituted with lysine residues exhibited negligible binding enthalpy despite of their considerable binding to heparin. In CHO-K1 cells, arginine peptides exhibited a great cell-penetrating ability whereas their corresponding lysine peptides did not penetrate into cells. The degree of cell penetration of arginine peptides markedly decreased by the chlorate treatment of cells which prevents the sulfation of GAG chains. Significantly, the cell penetration efficiency of arginine peptides was found to be correlated with the favorable enthalpy of binding to heparin. These results suggest that the enthalpy-driven strong interaction with sulfated GAGs such as heparan sulfate plays a critical role in the efficient cell membrane penetration of arginine peptides. PMID:27003128

  14. BCL6 interacting corepressor contributes to germinal center T follicular helper cell formation and B cell helper function

    OpenAIRE

    Yang, Jessica A.; Tubo, Noah J.; Gearhart, Micah D.; Bardwell, Vivian J.; Jenkins, Marc K.

    2015-01-01

    CD4+ germinal center (GC) T follicular helper (GC-Tfh) cells help B cells become long-lived plasma cells and memory cells. The transcriptional repressor BCL6 plays a key role in GC-Tfh formation by inhibiting the expression of genes that promote differentiation into other lineages. We determined whether BCOR, a component of a Polycomb repressive complex that interacts with the BCL6 BTB domain, influences GC-Tfh differentiation. T cell-targeted BCOR deficiency led to a substantial loss of pept...

  15. Polarization of cells and soft objects driven by mechanical interactions: Consequences for migration and chemotaxis

    Science.gov (United States)

    Leoni, M.; Sens, P.

    2015-02-01

    We study a generic model for the polarization and motility of self-propelled soft objects, biological cells, or biomimetic systems, interacting with a viscous substrate. The active forces generated by the cell on the substrate are modeled by means of oscillating force multipoles at the cell-substrate interface. Symmetry breaking and cell polarization for a range of cell sizes naturally "emerge" from long range mechanical interactions between oscillating units, mediated both by the intracellular medium and the substrate. However, the harnessing of cell polarization for motility requires substrate-mediated interactions. Motility can be optimized by adapting the oscillation frequency to the relaxation time of the system or when the substrate and cell viscosities match. Cellular noise can destroy mechanical coordination between force-generating elements within the cell, resulting in sudden changes of polarization. The persistence of the cell's motion is found to depend on the cell size and the substrate viscosity. Within such a model, chemotactic guidance of cell motion is obtained by directionally modulating the persistence of motion, rather than by modulating the instantaneous cell velocity, in a way that resembles the run and tumble chemotaxis of bacteria.

  16. Contextual interactions in a generalized energy model of complex cells

    OpenAIRE

    Dellen, Babette; Clark, John W.; Wessel, Ralf

    2009-01-01

    We propose a generalized energy model of complex cells to describe modulatory contextual influences on the responses of neurons in the primary visual cortex (V1). Many orientationselective cells in V1 respond to contrast of orientation and motion of stimuli exciting the classical receptive field (CRF) and the non-CRF, or surround. In the proposed model, a central spatiotemporal filter, defining the CRF, is nonlinearly combined with a spatiotemporal filter extending into the non- ...

  17. Interaction of multi-functional silver nanoparticles with living cells

    International Nuclear Information System (INIS)

    Silver nanoparticles (AgNPs) are widely used in household products and in medicine due to their antibacterial and to wound healing properties. In recent years, there is also an effort for their use in biomedical imaging and photothermal therapy. The primary reason behind the effort for their utility in biomedicine and therapy is their unique plasmonic properties and easy surface chemistry for a variety of functionalizations. In this study, AgNPs modified with glucose, lactose, oligonucleotides and combinations of these ligands are investigated for their cytotoxicity and cellular uptake in living non-cancer (L929) and cancer (A549) cells. It is found that the chemical nature of the ligand strongly influences the toxicity and cellular uptake into the model cells. While the lactose-and glucose-modified AgNPs enter the L929 cells at about the same rate, a significant increase in the rate of lactose-modified AgNPs into the A549 cells is observed. The binding of oligonucleotides along with the carbohydrate on the AgNP surfaces influences the differential uptake rate pattern into the cells. The cytotoxicity study with the modified AgNPs reveals that only naked AgNPs influence the viability of the A549 cells. The findings of this study may provide the key to developing effective applications in medicine such as cancer therapy.

  18. Interaction of multi-functional silver nanoparticles with living cells

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Ilknur; Cam, Dilek; Kahraman, Mehmet; Culha, Mustafa [Department of Genetics and Bioengineering, Yeditepe University, Kayisdagi/Kadikoey, Istanbul 34755 (Turkey); Baysal, Asli [Department of Chemistry, Faculty of Arts and Sciences, Istanbul Technical University, Maslak, Istanbul 34469 (Turkey)

    2010-04-30

    Silver nanoparticles (AgNPs) are widely used in household products and in medicine due to their antibacterial and to wound healing properties. In recent years, there is also an effort for their use in biomedical imaging and photothermal therapy. The primary reason behind the effort for their utility in biomedicine and therapy is their unique plasmonic properties and easy surface chemistry for a variety of functionalizations. In this study, AgNPs modified with glucose, lactose, oligonucleotides and combinations of these ligands are investigated for their cytotoxicity and cellular uptake in living non-cancer (L929) and cancer (A549) cells. It is found that the chemical nature of the ligand strongly influences the toxicity and cellular uptake into the model cells. While the lactose-and glucose-modified AgNPs enter the L929 cells at about the same rate, a significant increase in the rate of lactose-modified AgNPs into the A549 cells is observed. The binding of oligonucleotides along with the carbohydrate on the AgNP surfaces influences the differential uptake rate pattern into the cells. The cytotoxicity study with the modified AgNPs reveals that only naked AgNPs influence the viability of the A549 cells. The findings of this study may provide the key to developing effective applications in medicine such as cancer therapy.

  19. Human mammary progenitor cell fate decisions are productsof interactions with combinatorial microenvironments

    DEFF Research Database (Denmark)

    LaBarge, Mark A.; Nelson, Celeste M.; Villadsen, René;

    2009-01-01

    factors, ECM, and other cells, as well as physical properties of the ECM. To understand regulation of fate decisions, therefore, would require a means of understanding carefully choreographed combinatorial interactions. Here we used microenvironment protein microarrays to functionally identify...

  20. STD NMR spectroscopy: a case study of fosfomycin binding interactions in living bacterial cells

    Energy Technology Data Exchange (ETDEWEB)

    Milagre, Cintia D.F.; Cabeca, Luis Fernando; Martins, Lucas G.; Marsaioli, Anita J., E-mail: anita@iq [Universidade Estadual de Campinas (IQ/UNICAMP), SP (Brazil). Inst. de Quimica

    2011-07-01

    A saturation transfer difference (STD) NMR experiment was successfully employed to observe the binding interactions of fosfomycin resistant and non-resistant bacterial strains using living cell suspensions, without the need for isotopic labelling of the ligand or receptor. (author)

  1. B Cells Promote Th1- Skewed NKT Cell Response by CD1d-TCR Interaction

    OpenAIRE

    Shin, Jung Hoon; Park, Se-Ho

    2013-01-01

    CD1d expressing dendritic cells (DCs) are good glyco-lipid antigen presenting cells for NKT cells. However, resting B cells are very weak stimulators for NKT cells. Although α-galactosylceramide (α-GalCer) loaded B cells can activate NKT cells, it is not well defined whether B cells interfere NKT cell stimulating activity of DCs. Unexpectedly, we found in this study that B cells can promote Th1-skewed NKT cell response, which means a increased level of IFN-γ by NKT cells, concomitant with a d...

  2. Characterization of the Coronavirus M Protein and Nucleocapsid Interaction in Infected Cells

    OpenAIRE

    Narayanan, Krishna; Maeda, Akihiko; Maeda, Junko; Makino, Shinji

    2000-01-01

    Coronavirus contains three envelope proteins, M, E and S, and a nucleocapsid, which consists of genomic RNA and N protein, within the viral envelope. We studied the macromolecular interactions involved in coronavirus assembly in cells infected with a murine coronavirus, mouse hepatitis virus (MHV). Coimmunoprecipitation analyses demonstrated an interaction between N protein and M protein in infected cells. Pulse-labeling experiments showed that newly synthesized, unglycosylated M protein inte...

  3. Promoted cell and material interaction on atmospheric pressure plasma treated titanium

    Energy Technology Data Exchange (ETDEWEB)

    Han, Inho [Convergence Technology Exam. Div. II, Korean Intellectual Patent Office, Daejeon (Korea, Republic of); Vagaska, Barbora [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Seo, Hyok Jin [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kang, Jae Kyeong [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kwon, Byeong-Ju [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Lee, Mi Hee [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Park, Jong-Chul, E-mail: parkjc@yuhs.ac [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of)

    2012-03-01

    Surface carbon contamination is a natural phenomenon. However, it interferes with cell-biomaterial interaction. In order to eliminate the interference, atmospheric pressure plasma treatment was employed. Dielectric barrier discharge treatment of titanium surface for less than 10 min turned titanium super-hydrophilic. Adsorption of fibronectin which is the major cell adhesive protein increased after plasma treatment. Cell attachment parameters of osteoblast cells such as population, cell area, perimeter, Feret's diameter and cytoskeleton development were also enhanced. Cell proliferation increased on the plasma treated titanium. In conclusion, dielectric barrier discharge type atmospheric pressure plasma system is effective to modify titanium surface and the modified titanium promotes cell and material interactions.

  4. Interaction of tRNA with MEK2 in pancreatic cancer cells

    Science.gov (United States)

    Wang, Xiaoyun; Chow, Christina R.; Ebine, Kazumi; Lee, Jiyoung; Rosner, Marsha R.; Pan, Tao; Munshi, Hidayatullah G.

    2016-01-01

    Although the translational function of tRNA has long been established, extra translational functions of tRNA are still being discovered. We previously developed a computational method to systematically predict new tRNA-protein complexes and experimentally validated six candidate proteins, including the mitogen-activated protein kinase kinase 2 (MEK2), that interact with tRNA in HEK293T cells. However, consequences of the interaction between tRNA and these proteins remain to be elucidated. Here we tested the consequence of the interaction between tRNA and MEK2 in pancreatic cancer cell lines. We also generated disease and drug resistance-derived MEK2 mutants (Q60P, P128Q, S154F, E207K) to evaluate the function of the tRNA-MEK2 interaction. Our results demonstrate that tRNA interacts with the wild-type and mutant MEK2 in pancreatic cancer cells; furthermore, the MEK2 inhibitor U0126 significantly reduces the tRNA-MEK2 interaction. In addition, tRNA affects the catalytic activity of the wild type and mutant MEK2 proteins in different ways. Overall, our findings demonstrate the interaction of tRNA with MEK2 in pancreatic cancer cells and suggest that tRNA may impact MEK2 activity in cancer cells. PMID:27301426

  5. Erythropoietin withdrawal alters interactions between young red blood cells, splenic endothelial cells, and macrophages: an in vitro model of neocytolysis

    Science.gov (United States)

    Trial, J.; Rice, L.; Alfrey, C. P.

    2001-01-01

    BACKGROUND: We have described the rapid destruction of young red blood cells (neocytolysis) in astronauts adapting to microgravity, in polycythemic high altitude dwellers who descend to sea level, and in patients with kidney disorders. This destruction results from a decrease in erythropoietin (EPO) production. We hypothesized that such EPO withdrawal could trigger physiological changes in cells other than red cell precursors and possibly lead to the uptake and destruction of young red cells by altering endothelial cell-macrophage interactions, most likely occurring in the spleen. METHODS: We identified EPO receptors on human splenic endothelial cells (HSEC) and investigated the responses of these cells to EPO withdrawal. RESULTS: A monolayer of HSEC, unlike human endothelial cells from aorta, glomerulus, or umbilical vein, demonstrated an increase in permeability upon EPO withdrawal that was accompanied by unique morphological changes. When HSEC were cultured with monocyte-derived macrophages (but not when either cell type was cultured alone), EPO withdrawal induced an increased ingestion of young red cells by macrophages when compared with the constant presence or absence of EPO. CONCLUSIONS: HSEC may represent a unique cell type that is able to respond to EPO withdrawal by increasing permeability and interacting with phagocytic macrophages, which leads to neocytolysis.

  6. Single-cell protein secretomic signatures as potential correlates to tumor cell lineage evolution and cell-cell interaction

    Directory of Open Access Journals (Sweden)

    Minsuk eKwak

    2013-02-01

    Full Text Available Secreted proteins including cytokines, chemokines and growth factors represent important functional regulators mediating a range of cellular behavior and cell-cell paracrine/autocrine signaling, e.g. in the immunological system, tumor microenvironment or stem cell niche. Detection of these proteins is of great value not only in basic cell biology but also for diagnosis and therapeutic monitoring of human diseases such as cancer. However, due to co-production of multiple effector proteins from a single cell, referred to as polyfunctionality, it is biologically informative to measure a panel of secreted proteins, or secretomic signature, at the level of single cells. Recent evidence further indicates that a genetically-identical cell population can give rise to diverse phenotypic differences. It is known that cytokines, for example, in the immune system define the effector functions and lineage differentiation of immune cells. In this Perspective Article, we hypothesize that protein secretion profile may represent a universal measure to identify the definitive correlate in the larger context of cellular functions to dissect cellular heterogeneity and evolutionary lineage relationship in human cancer.

  7. A Cell-Based Protein-Protein Interaction Method Using a Permuted Luciferase Reporter

    OpenAIRE

    Eishingdrelo, Haifeng; Cai, Jidong; Weissensee, Paul; Sharma, Praveen; Tocci, Michael J; Wright, Paul S

    2011-01-01

    We have developed a novel cell-based protein-protein interaction assay method. The method relies on conversion of an inactive permuted luciferase containing a Tobacco Etch Virus protease (TEV) cleavage sequence fused onto protein (A) to an active luciferase upon interaction and cleavage by another protein (B) fused with the TEV protease. We demonstrate assay applicability for ligand-induced protein-protein interactions including G-protein coupled receptors, receptor tyrosine kinases and nucle...

  8. A cell-free approach to accelerate the study of protein–protein interactions in vitro

    OpenAIRE

    Sierecki, E.; Giles, N.; Polinkovsky, M.; Moustaqil, M.; Alexandrov, K.; Gambin, Y.

    2013-01-01

    Protein–protein interactions are highly desirable targets in drug discovery, yet only a fraction of drugs act as binding inhibitors. Here, we review the different technologies used to find and validate protein–protein interactions. We then discuss how the novel combination of cell-free protein expression, AlphaScreen and single-molecule fluorescence spectroscopy can be used to rapidly map protein interaction networks, determine the architecture of protein complexes, and find new targets for d...

  9. Interfacial energetics approach for analysis of endothelial cell and segmental polyurethane interactions.

    Science.gov (United States)

    Hill, Michael J; Cheah, Calvin; Sarkar, Debanjan

    2016-08-01

    Understanding the physicochemical interactions between endothelial cells and biomaterials is vital for regenerative medicine applications. Particularly, physical interactions between the substratum interface and spontaneously deposited biomacromolecules as well as between the induced biomolecular interface and the cell in terms of surface energetics are important factors to regulate cellular functions. In this study, we examined the physical interactions between endothelial cells and segmental polyurethanes (PUs) using l-tyrosine based PUs to examine the structure-property relations in terms of PU surface energies and endothelial cell organization. Since, contact angle analysis used to probe surface energetics provides incomplete interpretation and understanding of the physical interactions, we sought a combinatorial surface energetics approach utilizing water contact angle, Zisman's critical surface tension (CST), Kaelble's numerical method, and van Oss-Good-Chaudhury theory (vOGCT), and applied to both substrata and serum adsorbed matrix to correlate human umbilical vein endothelial cell (HUVEC) behavior with surface energetics of l-tyrosine based PU surfaces. We determined that, while water contact angle of substratum or adsorbed matrix did not correlate well with HUVEC behavior, overall higher polarity according to the numerical method as well as Lewis base character of the substratum explained increased HUVEC interaction and monolayer formation as opposed to organization into networks. Cell interaction was also interpreted in terms of the combined effects of substratum and adsorbed matrix polarity and Lewis acid-base character to determine the effect of PU segments. PMID:27065449

  10. The role of particle-to-cell interactions in dictating nanoparticle aided magnetophoretic separation of microalgal cells.

    Science.gov (United States)

    Toh, Pey Yi; Ng, Bee Wah; Ahmad, Abdul Latif; Chieh, Derek Chan Juinn; Lim, JitKang

    2014-11-01

    Successful application of a magnetophoretic separation technique for harvesting biological cells often relies on the need to tag the cells with magnetic nanoparticles. This study investigates the underlying principle behind the attachment of iron oxide nanoparticles (IONPs) onto microalgal cells, Chlorella sp. and Nannochloropsis sp., in both freshwater and seawater, by taking into account the contributions of various colloidal forces involved. The complex interplay between van der Waals (vdW), electrostatic (ES) and Lewis acid-base interactions (AB) in dictating IONP attachment was studied under the framework of extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis. Our results showed that ES interaction plays an important role in determining the net interaction between the Chlorella sp. cells and IONPs in freshwater, while the AB and vdW interactions play a more dominant role in dictating the net particle-to-cell interaction in high ionic strength media (≥100 mM NaCl), such as seawater. XDLVO predicted effective attachment between cells and surface functionalized IONPs (SF-IONPs) with an estimated secondary minimum of -3.12 kT in freshwater. This prediction is in accordance with the experimental observation in which 98.89% of cells can be magnetophoretically separated from freshwater with SF-IONPs. We have observed successful magnetophoretic separation of microalgal cells from freshwater and/or seawater for all the cases as long as XDLVO analysis predicts particle attachment. For both the conditions, no pH adjustment is required for particle-to-cell attachment. PMID:25227473

  11. Regulation of IL-6 and IL-8 production by reciprocal cell-to-cell interactions between tumor cells and stromal fibroblasts through IL-1α in ameloblastoma

    International Nuclear Information System (INIS)

    Highlights: • We studied the interaction between tumor cells and fibroblasts in ameloblastoma. • AM-3 ameloblastoma cells secreted significantly high IL-1α levels. • IL-1α derived from AM-3 cells promoted IL-6 and IL-8 secretion of fibroblasts. • IL-6 and IL-8 activated the cellular motility and proliferation of AM-3 cells. - Abstract: Ameloblastoma is an odontogenic benign tumor that occurs in the jawbone, which invades bone and reoccurs locally. This tumor is treated by wide surgical excision and causes various problems, including changes in facial countenance and mastication disorders. Ameloblastomas have abundant tumor stroma, including fibroblasts and immune cells. Although cell-to-cell interactions are considered to be involved in the pathogenesis of many diseases, intercellular communications in ameloblastoma have not been fully investigated. In this study, we examined interactions between tumor cells and stromal fibroblasts via soluble factors in ameloblastoma. We used a human ameloblastoma cell line (AM-3 ameloblastoma cells), human fibroblasts (HFF-2 fibroblasts), and primary-cultured fibroblasts from human ameloblastoma tissues, and analyzed the effect of ameloblastoma-associated cell-to-cell communications on gene expression, cytokine secretion, cellular motility and proliferation. AM-3 ameloblastoma cells secreted higher levels of interleukin (IL)-1α than HFF-2 fibroblasts. Treatment with conditioned medium from AM-3 ameloblastoma cells upregulated gene expression and secretion of IL-6 and IL-8 of HFF-2 fibroblasts and primary-cultured fibroblast cells from ameloblastoma tissues. The AM3-stimulated production of IL-6 and IL-8 in fibroblasts was neutralized by pretreatment of AM-3 cells with anti-IL-1α antibody and IL-1 receptor antagonist. Reciprocally, cellular motility of AM-3 ameloblastoma cells was stimulated by HFF-2 fibroblasts in IL-6 and IL-8 dependent manner. In conclusion, ameloblastoma cells and stromal fibroblasts behave

  12. Regulation of IL-6 and IL-8 production by reciprocal cell-to-cell interactions between tumor cells and stromal fibroblasts through IL-1α in ameloblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Fuchigami, Takao [Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Kibe, Toshiro [Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Koyama, Hirofumi; Kishida, Shosei; Iijima, Mikio [Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Nishizawa, Yoshiaki [Kagoshima University Faculty of Medicine, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Hijioka, Hiroshi; Fujii, Tomomi [Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Ueda, Masahiro [Natural Science Centre for Research and Education, Kagoshima University, 1-21-24 Koorimoto, Kagoshima 890-8580 (Japan); Nakamura, Norifumi [Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Kiyono, Tohru [Department of Virology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuouku, Tokyo 104-0045 (Japan); Kishida, Michiko, E-mail: kmichiko@m2.kufm.kagoshima-u.ac.jp [Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan)

    2014-09-05

    Highlights: • We studied the interaction between tumor cells and fibroblasts in ameloblastoma. • AM-3 ameloblastoma cells secreted significantly high IL-1α levels. • IL-1α derived from AM-3 cells promoted IL-6 and IL-8 secretion of fibroblasts. • IL-6 and IL-8 activated the cellular motility and proliferation of AM-3 cells. - Abstract: Ameloblastoma is an odontogenic benign tumor that occurs in the jawbone, which invades bone and reoccurs locally. This tumor is treated by wide surgical excision and causes various problems, including changes in facial countenance and mastication disorders. Ameloblastomas have abundant tumor stroma, including fibroblasts and immune cells. Although cell-to-cell interactions are considered to be involved in the pathogenesis of many diseases, intercellular communications in ameloblastoma have not been fully investigated. In this study, we examined interactions between tumor cells and stromal fibroblasts via soluble factors in ameloblastoma. We used a human ameloblastoma cell line (AM-3 ameloblastoma cells), human fibroblasts (HFF-2 fibroblasts), and primary-cultured fibroblasts from human ameloblastoma tissues, and analyzed the effect of ameloblastoma-associated cell-to-cell communications on gene expression, cytokine secretion, cellular motility and proliferation. AM-3 ameloblastoma cells secreted higher levels of interleukin (IL)-1α than HFF-2 fibroblasts. Treatment with conditioned medium from AM-3 ameloblastoma cells upregulated gene expression and secretion of IL-6 and IL-8 of HFF-2 fibroblasts and primary-cultured fibroblast cells from ameloblastoma tissues. The AM3-stimulated production of IL-6 and IL-8 in fibroblasts was neutralized by pretreatment of AM-3 cells with anti-IL-1α antibody and IL-1 receptor antagonist. Reciprocally, cellular motility of AM-3 ameloblastoma cells was stimulated by HFF-2 fibroblasts in IL-6 and IL-8 dependent manner. In conclusion, ameloblastoma cells and stromal fibroblasts behave

  13. Understanding Peptide Dendrimer Interactions with Model Cell Membrane Mimics

    DEFF Research Database (Denmark)

    Lind, Tania Kjellerup

    fusion method, which presents improved means for studying drug-membrane interactions in the future. The interaction mechanism of a family of dendrimers was examined and in particular one dendrimer (BALY) was extensively studied by the combined use of quartz crystal microbalance, atomic force microscopy......Since mass production of antimicrobial agents was established 70 years ago these miracle-drugs have been integral tools in modern medicine, saving an uncountable number of lives. However, bacteria are now consistently and with alarming rates developing resistance towards common antibiotics. Very...... few new drugs have been marketed over the last decades, making it impossible to keep pace with the disturbing levels of multi-drug resistant bacteria. Research in the area of novel drugs, which are less prone to induce resistance, and in-depth knowledge on their uptake mechanisms is thus of paramount...

  14. Transcriptional profiling of macrophage and tumor cell interactions in vitro.

    Science.gov (United States)

    Roudnicky, Filip; Hollmén, Maija

    2016-06-01

    Macrophages are important mediators of tumor progression and their function is broadly influenced by different microenvironmental stimuli. To understand the molecular basis of the tumor-supporting role of macrophages in aggressive breast cancer we co-cultured human peripheral monocytes with two breast cancer cell lines representing distinct aggressive cellular phenotype and transcriptionally profiled the changes occurring in both cells during in vitro activated crosstalk. Here we provide a detailed description of the experimental design, sample identity and analysis of the Illumina RNA-Seq data, which have been deposited into Gene Expression Omnibus (GEO): GSE75130. PMID:27081631

  15. Within tumors, interactions between T cells and tumor cells are impeded by the extracellular matrix

    OpenAIRE

    Salmon, Hélène; Donnadieu, Emmanuel

    2012-01-01

    In principle, T cells can recognize and kill cancer cells. However, tumors have the ability to escape T cell attack. By imaging the dynamic behavior of T cells in human lung tumor explants, we have recently established the importance of the extracellular matrix in limiting access of T cells to tumor cells.

  16. From detecting astrocyte connectivity to uncovering drug effects in living tissues

    CERN Document Server

    Pires, Marcelo; Vaz, Sandra; Sebastião, Ana; Lind, Pedro G

    2013-01-01

    We introduce a simple procedure of multivariate signal analysis to uncover the connectivity structure among cells composing a living tissue and describe how to apply it for extracting insight on the effect of drugs in the tissue. The procedure is based in the covariance matrix of time resolved activity signals. By determining the time-lag that maximizes covariance one derives the weight of the corresponding connection between cells. Introducing simple constraints, it is possible to conclude if pairs of cells are connected or not and in which direction. After testing the method against synthetic data we apply it to study propagation of $Ca^{2+}$ waves in astrocytes, with the aim of uncovering the cell connectivity structure. Our method shows to be particularly suited for this type of networking signal propagation where signals are pulse-like and have short time-delays, and is shown to be superior to standard methods, namely a multivariate Granger algorithm. Finally, based the statistical analysis of the connec...

  17. Weaving Social Foundations through Dance Pedagogy: A Pedagogy of Uncovering

    Science.gov (United States)

    Barr, Sherrie; Risner, Doug

    2014-01-01

    Today's dance educators enter classrooms populated by increasingly diverse students in which teachers' pedagogical knowledge necessitates heightened understandings of race, ethnicity, social class, gender, and sexuality. Uncovering taken-for-granted assumptions, dominant stereotypes, and educational structures that reproduce social…

  18. The uncovered parity properties of the Czech Koruna

    Czech Academy of Sciences Publication Activity Database

    Derviz, Alexis

    2002-01-01

    Roč. 11, č. 1 (2002), s. 17-37. ISSN 1210-0455 R&D Projects: GA AV ČR KSK1019101 Institutional research plan: CEZ:AV0Z1075907 Keywords : uncovered parity * asset prices * international consumption-based capital asset pricing model Subject RIV: AH - Economics

  19. Uncovering key data points to improve OR profitability.

    Science.gov (United States)

    Stiefel, Robert A; Greenfield, Howard

    2014-03-01

    Using data analysis to target areas for performance improvement in the operating room (OR) involves: regularly monitoring key OR statistics, such as through use of a dashboard, determining the root causes of problems uncovered by the data analysis, making appropriate corrections and continuing to monitor performance. PMID:24701846

  20. Cell Physiology and Interactions of Biomaterials and Matrices

    Czech Academy of Sciences Publication Activity Database

    Hunkeler, D.; Vaňková, Radomíra

    2003-01-01

    Roč. 28, č. 6 (2003), s. 193-197. ISSN 0032-3918 R&D Projects: GA MŠk OC 840.20 Institutional research plan: CEZ:AV0Z5038910 Keywords : Biomaterials * Cell physiology * Encapsulation Subject RIV: CE - Biochemistry

  1. Fast polyhedral cell sorting for interactive rendering of unstructured grids

    Energy Technology Data Exchange (ETDEWEB)

    Combra, J; Klosowski, J T; Max, N; Silva, C T; Williams, P L

    1998-10-30

    Direct volume rendering based on projective methods works by projecting, in visibility order, the polyhedral cells of a mesh onto the image plane, and incrementally compositing the cell's color and opacity into the final image. Crucial to this method is the computation of a visibility ordering of the cells. If the mesh is ''well-behaved'' (acyclic and convex), then the MPVO method of Williams provides a very fast sorting algorithm; however, this method only computes an approximate ordering in general datasets, resulting in visual artifacts when rendered. A recent method of Silva et al. removed the assumption that the mesh is convex, by means of a sweep algorithm used in conjunction with the MPVO method; their algorithm is substantially faster than previous exact methods for general meshes. In this paper we propose a new technique, which we call BSP-XMPVO, which is based on a fast and simple way of using binary space partitions on the boundary elements of the mesh to augment the ordering produced by MPVO. Our results are shown to be orders of magnitude better than previous exact methods of sorting cells.

  2. Developmental Corneal Innervation: Interactions between Nerves and Specialized Apical Corneal Epithelial Cells

    OpenAIRE

    Kubilus, James K.; Linsenmayer, Thomas F.

    2010-01-01

    During developmental innervation of the chicken cornea, nerves interact with apical corneal epithelial cells to form synapse-like structures. In addition, these apical epithelial cells express class III β-tubulin, an isoform of β-tubulin generally thought to be neuron specific.

  3. Metabolic protein interactions in Bacillus subtilis studied at the single cell level

    NARCIS (Netherlands)

    Detert Oude Weme, Ruud Gerardus Johannes

    2015-01-01

    We have investigated protein-protein interactions in live Bacillus subtilis cells (a bacterium). B. subtilis’ natural habitat is the soil and the roots of plants, but also the human microbiota. B. subtilis is used worldwide as a model organism. Unlike eukaryotic cells, bacteria do not have organelle

  4. Targeting CD47-SIRPα interactions for potentiating therapeutic antibody-mediated tumor cell destruction by phagocytes

    OpenAIRE

    Zhao, X.W.

    2014-01-01

    The primary aim of the studies described in this thesis was to investigate the role of CD47-SIRPα interactions in therapeutic antibody-dependent tumor cell destruction by human phagocytes and also explore the killing mechanism(s) by which human phagocytes, and in particular human neutrophils, mediate therapeutic antibody-dependent cytotoxicity towards cancer cells.

  5. Impact of processing on the noncovalent interactions between procyanidin and apple cell wall.

    Science.gov (United States)

    Le Bourvellec, Carine; Watrelot, Aude A; Ginies, Christian; Imberty, Anne; Renard, Catherine M G C

    2012-09-19

    Procyanidins can bind cell wall material in raw product, and it could be supposed that the same mechanism of retention of procyanidins by apple cell walls takes place in cooked products. To evaluate the influence of cell wall composition and disassembly during cooking on the cell walls' capacity to interact with procyanidins, four cell wall materials differing in their protein contents and physical characteristics were prepared: cell wall with proteins, cell wall devoid of protein, and two processed cell walls differing by their drying method. Protein contents varied from 23 to 99 mg/g and surface areas from 1.26 to 3.16 m(2)/g. Apple procyanidins with an average polymerization degree of 8.7 were used. The adsorption of apple procyanidins on solid cell wall material was quantified using the Langmuir isotherm formulation. The protein contents in cell wall material had no effect on procyanidin/cell wall interactions, whereas modification of the cell wall material by boiling, which reduces pectin content, and drying decreased the apparent affinity and increased the apparent saturation levels when constants were expressed relative to cell wall weight. However, boiling and drying increased apparent saturation levels and had no effect on apparent affinity when the same data were expressed per surface units. Isothermal titration calorimetry indicated strong affinity (K(a) = 1.4 × 10(4) M(-1)) between pectins solubilized by boiling and procyanidins. This study higllights the impact of highly methylated pectins and drying, that is, composition and structure of cell wall in the cell wall/procyanidin interactions. PMID:22861056

  6. A novel family of katanin-like 2 protein isoforms (KATNAL2), interacting with nucleotide-binding proteins Nubp1 and Nubp2, are key regulators of different MT-based processes in mammalian cells.

    Science.gov (United States)

    Ververis, Antonis; Christodoulou, Andri; Christoforou, Maria; Kamilari, Christina; Lederer, Carsten W; Santama, Niovi

    2016-01-01

    Katanins are microtubule (MT)-severing AAA proteins with high phylogenetic conservation throughout the eukaryotes. They have been functionally implicated in processes requiring MT remodeling, such as spindle assembly in mitosis and meiosis, assembly/disassembly of flagella and cilia and neuronal morphogenesis. Here, we uncover a novel family of katanin-like 2 proteins (KATNAL2) in mouse, consisting of five alternatively spliced isoforms encoded by the Katnal2 genomic locus. We further demonstrate that in vivo these isoforms are able to interact with themselves, with each other and moreover directly and independently with MRP/MinD-type P-loop NTPases Nubp1 and Nubp2, which are integral components of centrioles, negative regulators of ciliogenesis and implicated in centriole duplication in mammalian cells. We find KATNAL2 localized on interphase MTs, centrioles, mitotic spindle, midbody and the axoneme and basal body of sensory cilia in cultured murine cells. shRNAi of Katnal2 results in inefficient cytokinesis and severe phenotypes of enlarged cells and nuclei, increased numbers of centrioles and the manifestation of aberrant multipolar mitotic spindles, mitotic defects, chromosome bridges, multinuclearity, increased MT acetylation and an altered cell cycle pattern. Silencing or stable overexpression of KATNAL2 isoforms drastically reduces ciliogenesis. In conclusion, KATNAL2s are multitasking enzymes involved in the same cell type in critically important processes affecting cytokinesis, MT dynamics, and ciliogenesis and are also implicated in cell cycle progression. PMID:26153462

  7. MUC1 (CD227) interacts with lck tyrosine kinase in Jurkat lymphoma cells and normal T cells.

    Science.gov (United States)

    Mukherjee, P; Tinder, T L; Basu, G D; Gendler, S J

    2005-01-01

    MUC1 (CD227) is a large transmembrane epithelial mucin glycoprotein, which is aberrantly overexpressed in most adenocarcinomas and is a target for immune therapy for epithelial tumors. Recently, MUC1 has been detected in a variety of hematopoietic cell malignancies including T and B cell lymphomas and myelomas; however, its function in these cells is not clearly defined. Using the Jurkat T cell lymphoma cell line and normal human T cells, we demonstrate that MUC1 is not only expressed in these cells but is also phosphorylated upon T cell receptor (TCR) ligation and associates with the Src-related T cell tyrosine kinase, p56lck. Upon TCR-mediated activation of Jurkat cells, MUC1 is found in the low-density membrane fractions, where linker of T cell activation is contained. Abrogation of MUC1 expression in Jurkat cells by MUC1-specific small interfering RNA resulted in defects in TCR-mediated downstream signaling events associated with T cell activation. These include reduction in Ca2+ influx and extracellular signal-regulated kinase 1/2 phosphorylation, leading to a decrease in CD69 expression, proliferation, and interleukin-2 production. These results suggest a regulatory role of MUC1 in modulating proximal signal transduction events through its interaction with proteins of the activation complex. PMID:15513966

  8. Elisidepsin Interacts Directly with Glycosylceramides in the Plasma Membrane of Tumor Cells to Induce Necrotic Cell Death.

    Directory of Open Access Journals (Sweden)

    José Manuel Molina-Guijarro

    Full Text Available Plasma membrane integrity is essential for cell life. Any major break on it immediately induces the death of the affected cell. Different molecules were described as disrupting this cell structure and thus showing antitumor activity. We have previously defined that elisidepsin (Irvalec®, PM02734 inserts and self-organizes in the plasma membrane of tumor cells, inducing a rapid loss of membrane integrity, cell permeabilization and necrotic death. Here we show that, in sensitive HCT-116 colorectal cells, all these effects are consequence of the interaction of elisidepsin with glycosylceramides in the cell membrane. Of note, an elisidepsin-resistant subline (HCT-116-Irv presented reduced levels of glycosylceramides and no accumulation of elisidepsin in the plasma membrane. Consequently, drug treatment did not induce the characteristic necrotic cell death. Furthermore, GM95, a mutant derivative from B16 mouse melanoma cells lacking ceramide glucosyltransferase (UGCG activity and thus the synthesis of glycosylceramides, was also resistant to elisidepsin. Over-expression of UGCG gene in these deficient cells restored glycosylceramides synthesis, rendering them sensitive to elisidepsin, at a similar level than parental B16 cells. These results indicate that glycosylceramides act as membrane targets of elisidepsin, facilitating its insertion in the plasma membrane and the subsequent membrane permeabilization that leads to drug-induced cell death. They also indicate that cell membrane lipids are a plausible target for antineoplastic therapy.

  9. The ECM-Cell Interaction of Cartilage Extracellular Matrix on Chondrocytes

    Directory of Open Access Journals (Sweden)

    Yue Gao

    2014-01-01

    Full Text Available Cartilage extracellular matrix (ECM is composed primarily of the network type II collagen (COLII and an interlocking mesh of fibrous proteins and proteoglycans (PGs, hyaluronic acid (HA, and chondroitin sulfate (CS. Articular cartilage ECM plays a crucial role in regulating chondrocyte metabolism and functions, such as organized cytoskeleton through integrin-mediated signaling via cell-matrix interaction. Cell signaling through integrins regulates several chondrocyte functions, including differentiation, metabolism, matrix remodeling, responses to mechanical stimulation, and cell survival. The major signaling pathways that regulate chondrogenesis have been identified as wnt signal, nitric oxide (NO signal, protein kinase C (PKC, and retinoic acid (RA signal. Integrins are a large family of molecules that are central regulators in multicellular biology. They orchestrate cell-cell and cell-matrix adhesive interactions from embryonic development to mature tissue function. In this review, we emphasize the signaling molecule effect and the biomechanics effect of cartilage ECM on chondrogenesis.

  10. The interaction of inflammatory cells in granuloma faciale

    Directory of Open Access Journals (Sweden)

    Takeshi Nakahara

    2010-11-01

    Full Text Available Granuloma faciale (GF is a rare chronic inflammatory skin disease characterized by single or multiple reddish-brown cutaneous plaques or nodules. Although this condition is benign, its clinical course is extremely chronic with poor response to therapy. The typical histopathological features of GF include vasculitis with mixed cellular infiltration; however, its etiopathogenesis remains unknown. Here, we describe the case of a 76-year-old man with GF resistant to topical steroids. Biopsy of the lesion revealed i dense mixed inflammatory cellular infiltrates of lymphocytes, histiocytes, neutrophils, and eosino­phils, ii mild perivascular nuclear dust and swollen endothelium of blood vessels, and iii a narrow Grenz zone beneath the epidermis. Immunohistochemical staining demonstrated mixed cellular infiltrates intermixed with CD1a+ dendritic cells, CD68+ histiocytes, and CD4+ and CD8+ T cells.

  11. Interaction of lasioglossin III with CCRF-CEM cells

    Czech Academy of Sciences Publication Activity Database

    Slaninová, Jiřina; Mlsová, V.; Günterová, Jana; Borovičková, Lenka; Čeřovský, Václav

    Praha : Institute of Organic Chemistry and Biochemistry AS CR, v. v. i, 2011 - (Slaninová, J.), s. 136-138 ISBN 978-80-86241-44-9. - (Collection Symposium Series. 13). [Biologically Active Peptides /12./. Praha (CZ), 27.04.2011-29.04.2011] R&D Projects: GA ČR GA203/08/0536 Institutional research plan: CEZ:AV0Z40550506 Keywords : lasioglossin * antimicrobial peptides * cancer cells * flow cytometry Subject RIV: CC - Organic Chemistry

  12. Perturbation of Hyaluronan Interactions Inhibits Malignant Properties of Glioma Cells

    OpenAIRE

    Ward, Jeanine A; Huang, Lei; Guo, Huiming; Ghatak, Shibnath; Toole, Bryan P.

    2003-01-01

    Malignant progression of gliomas is characterized by acquisition of inappropriate growth and invasive properties. In vitro, these malignant properties are reflected in, and measured by, the ability to grow in an anchorage-independent manner and to invade artificial extracellular matrices. The results of numerous studies have suggested that the extracellular and pericellular matrix polysaccharide, hyaluronan, plays an important role in these attributes of malignant cancer cells. However, with ...

  13. Hydroxyapatite nanopowders: Synthesis, densification and cell-materials interaction

    International Nuclear Information System (INIS)

    Hydroxyapatite (HA) nanopowders with different aspect ratios were synthesized using reverse micelle template system. Nanopowders were characterized using X-ray diffraction (XRD), BET specific average surface area analysis and transmission electron microscopy (TEM). It was observed that increase in aqueous to organic ratio (A/O) and pH decreased the aspect ratio of the nanopowders. HA nanopowders with the highest aspect ratio (rod-shaped) of 7.2 ± 3.2 and the lowest aspect ratio (spherical) of 1.3 ± 0.3 were synthesized for processing dense compacts. Effect of powder morphology on densification at 1250 oC was studied with different amount of rod-shaped and spherical nanopowders. It was observed that an increase in high aspect ratio powder content in the compacts decreased sintered density under pressureless sintering condition. Also, due to excessive grain growth, no nanoscale morphology could be retained in the sintered microstructure. Mineralization study in simulated body fluid (SBF) showed formation of apatite layer on the entire surface of both compacts made with spherical and rod-shaped particles. Cytotoxicity result with OPC1 human osteoblast cells showed excellent cell attachment and cell spreading on samples after 5 days in culture

  14. Interaction of herpes simplex virus glycoprotein gC with mammalian cell surface molecules.

    OpenAIRE

    Tal-Singer, R; Peng, C.; Ponce de Leon, M; Abrams, W R; Banfield, B W; Tufaro, F; Cohen, G H; Eisenberg, R J

    1995-01-01

    The entry of herpes simplex virus (HSV) into mammalian cells is a multistep process beginning with an attachment step involving glycoproteins gC and gB. A second step requires the interaction of glycoprotein gD with a cell surface molecule. We explored the interaction between gC and the cell surface by using purified proteins in the absence of detergent. Truncated forms of gC and gD, gC1(457t), gC2(426t), and gD1(306t), lacking the transmembrane and carboxyl regions were expressed in the bacu...

  15. Investigating Protein-protein Interactions in Live Cells Using Bioluminescence Resonance Energy Transfer

    Science.gov (United States)

    Estruch, Sara B.; Fisher, Simon E.

    2014-01-01

    Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a 'donor' luciferase enzyme to an 'acceptor' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA. PMID:24893771

  16. Design of Cell-Matrix Interactions in Hyaluronic Acid Hydrogel Scaffolds

    OpenAIRE

    Lam, Jonathan; Truong, Norman F.; Segura, Tatiana

    2013-01-01

    The design of hyaluronic acid-based hydrogel scaffolds to elicit highly controlled and tunable cell response and behavior is a major field of interest in developing tissue engineering and regenerative medicine applications. This review will begin with an overview of the biological context of hyaluronic acid, knowledge needed to better understand how to engineer cell-matrix interactions in the scaffolds via the incorporation of different types of signals in order to direct and control cell beh...

  17. Homophilic interaction of the L1 family of cell adhesion molecules

    OpenAIRE

    Wei, Chun Hua; Ryu, Seong Eon

    2012-01-01

    Homophilic interaction of the L1 family of cell adhesion molecules plays a pivotal role in regulating neurite outgrowth and neural cell networking in vivo. Functional defects in L1 family members are associated with neurological disorders such as X-linked mental retardation, multiple sclerosis, low-IQ syndrome, developmental delay, and schizophrenia. Various human tumors with poor prognosis also implicate the role of L1, a representative member of the L1 family of cell adhesion molecules, and...

  18. The effect of folate on the methotrexate/indomethacin interaction in a murine cancer cell line.

    OpenAIRE

    Hollingsworth, S J; Anderson, E. M.; Bennett, A

    1995-01-01

    1. The effect of folate on the interaction between methotrexate (a folate analogue) and indomethacin has been examined in murine NC carcinoma cells. 2. Conditioning of NC cells to a physiological (20 nM) folate concentration after culture in a high folate concentration increased the response to methotrexate. The sensitivity of these conditioned cells to methotrexate related inversely to the folate concentration. 3. At 20 nM and 2 microM folate, indomethacin 1 micrograms ml-1 potentiated the c...

  19. Immunocytochemical and autoradiographic studies of the endocrine cells interacting with GABA in the rat stomach.

    OpenAIRE

    Gilon, Patrick; Mallefet, Jérôme; De Vriendt, C; Pauwels, S.; Geffard, M.; Campistron, G.; Remacle, Claude

    1990-01-01

    There are now increasing evidences suggesting that GABA is able of direct interaction with certain endocrine cells. In the present study, highly specific anti-GABA-glutaraldehyde antibodies and 3H-GABA uptake were used at the light and electron microscope levels to investigate the occurrence of cells containing endogenous GABA or taking up exogenous GABA in the mucosal antrum and corpus of the rat stomach. Only certain endocrine cell types of both regions were immunostained or grain-labelled....

  20. Interaction of human endothelial cells and nickel-titanium materials modified with silicon ions

    Energy Technology Data Exchange (ETDEWEB)

    Lotkov, Aleksandr I., E-mail: lotkov@ispms.tsc.ru; Kashin, Oleg A., E-mail: okashin@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Kudryavtseva, Yuliya A., E-mail: yulia-k1970@mail.ru; Antonova, Larisa V., E-mail: antonova.la@mail.ru; Matveeva, Vera G., E-mail: matveeva-vg@mail.ru; Sergeeva, Evgeniya A., E-mail: sergeewa.ew@yandex.ru [Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, 650002 (Russian Federation); Kudryashov, Andrey N., E-mail: kudryashov@angioline.ru [Angioline Interventional Device Ltd, Novosibirsk, 630090 (Russian Federation)

    2015-10-27

    The paper studies the influence of chemical and phase compositions of NiTi surface layers modified with Si ions by plasma immersion implantation on their interaction with endothelial cells. It is shown that certain technological modes of Si ion implantation enhance the adhesion, proliferation, and viability of endothelial cells. It is found that the Si-modified NiTi surface is capable of stimulating the formation of capillary-like structures in the cell culture.

  1. Interaction of human endothelial cells and nickel-titanium materials modified with silicon ions

    Science.gov (United States)

    Lotkov, Aleksandr I.; Kashin, Oleg A.; Kudryavtseva, Yuliya A.; Antonova, Larisa V.; Kudryashov, Andrey N.; Matveeva, Vera G.; Sergeeva, Evgeniya A.

    2015-10-01

    The paper studies the influence of chemical and phase compositions of NiTi surface layers modified with Si ions by plasma immersion implantation on their interaction with endothelial cells. It is shown that certain technological modes of Si ion implantation enhance the adhesion, proliferation, and viability of endothelial cells. It is found that the Si-modified NiTi surface is capable of stimulating the formation of capillary-like structures in the cell culture.

  2. Interaction of human endothelial cells and nickel-titanium materials modified with silicon ions

    International Nuclear Information System (INIS)

    The paper studies the influence of chemical and phase compositions of NiTi surface layers modified with Si ions by plasma immersion implantation on their interaction with endothelial cells. It is shown that certain technological modes of Si ion implantation enhance the adhesion, proliferation, and viability of endothelial cells. It is found that the Si-modified NiTi surface is capable of stimulating the formation of capillary-like structures in the cell culture

  3. Significance of Nano- and Microtopography for Cell-Surface Interactions in Orthopaedic Implants

    Directory of Open Access Journals (Sweden)

    M. Jäger

    2007-09-01

    Full Text Available Cell-surface interactions play a crucial role for biomaterial application in orthopaedics. It is evident that not only the chemical composition of solid substances influence cellular adherence, migration, proliferation and differentiation but also the surface topography of a biomaterial. The progressive application of nanostructured surfaces in medicine has gained increasing interest to improve the cytocompatibility and osteointegration of orthopaedic implants. Therefore, the understanding of cell-surface interactions is of major interest for these substances. In this review, we elucidate the principle mechanisms of nano- and microscale cell-surface interactions in vitro for different cell types onto typical orthopaedic biomaterials such as titanium (Ti, cobalt-chrome-molybdenum (CoCrMo alloys, stainless steel (SS, as well as synthetic polymers (UHMWPE, XLPE, PEEK, PLLA. In addition, effects of nano- and microscaled particles and their significance in orthopaedics were reviewed. The significance for the cytocompatibility of nanobiomaterials is discussed critically.

  4. Combined modeling of cell aggregation and adhesion mediated by receptor–ligand interactions under shear flow

    Directory of Open Access Journals (Sweden)

    Yu Du

    2015-11-01

    Full Text Available Blood cell aggregation and adhesion to endothelial cells under shear flow are crucial to many biological processes such as thrombi formation, inflammatory cascade, and tumor metastasis, in which these cellular interactions are mainly mediated by the underlying receptor–ligand bindings. While theoretical modeling of aggregation dynamics and adhesion kinetics of interacting cells have been well studied separately, how to couple these two processes remains unclear. Here we develop a combined model that couples cellular aggregation dynamics and adhesion kinetics under shear flow. The impacts of shear rate (or shear stress and molecular binding affinity were elucidated. This study provides a unified model where the action of a fluid flow drives cell aggregation and adhesion under the modulations of the mechanical shear flow and receptor–ligand interaction kinetics. It offers an insight into understanding the relevant biological processes and functions.

  5. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments

    Energy Technology Data Exchange (ETDEWEB)

    LaBarge, Mark A; Nelson, Celeste M; Villadsen, Rene; Fridriksdottir, Agla; Ruth, Jason R; Stampfer, Martha R; Petersen, Ole W; Bissell, Mina J

    2008-09-19

    In adult tissues, multi-potent progenitor cells are some of the most primitive members of the developmental hierarchies that maintain homeostasis. That progenitors and their more mature progeny share identical genomes, suggests that fate decisions are directed by interactions with extrinsic soluble factors, ECM, and other cells, as well as physical properties of the ECM. To understand regulation of fate decisions, therefore, would require a means of understanding carefully choreographed combinatorial interactions. Here we used microenvironment protein microarrays to functionally identify combinations of cell-extrinsic mammary gland proteins and ECM molecules that imposed specific cell fates on bipotent human mammary progenitor cells. Micropatterned cell culture surfaces were fabricated to distinguish between the instructive effects of cell-cell versus cell-ECM interactions, as well as constellations of signaling molecules; and these were used in conjunction with physiologically relevant 3 dimensional human breast cultures. Both immortalized and primary human breast progenitors were analyzed. We report on the functional ability of those proteins of the mammary gland that maintain quiescence, maintain the progenitor state, and guide progenitor differentiation towards myoepithelial and luminal lineages.

  6. Role of Plasmodium falciparum thrombospondin-related anonymous protein in host-cell interactions

    Directory of Open Access Journals (Sweden)

    Malhotra Pawan

    2008-04-01

    Full Text Available Abstract Background Thrombospondin-related anonymous protein (TRAP is essential for sporozoite motility and for liver cell invasion. TRAP is a type 1 membrane protein that possesses multiple adhesive domains in its extracellular region. Methods Plasmodium falciparum TRAP (PfTRAP and its subdomains were expressed in a mammalian expression system, and eleven different mutants generated to study interaction of PfTRAP with liver cells. Binding studies between HepG2 cell extracts and PfTRAP were performed using co-immunoprecipitation protocols. Results Five different amino acid residues of PfTRAP that are involved in liver cell binding have been identified. These PfTRAP mutants bound to heparin like the wild type PfTRAP thereby suggesting a non-heparin mediated binding of PfTRAP to liver cells. Three Src family proteins -Lyn, Lck and CrkL which interact with PfTRAP are also identified. Liver cell extracts and immunoprecipitated Src family kinases phosphorylated PfTRAP at multiple sites. An analysis of multiple TRAP sequences revealed Src homology 3 domain (SH3 binding motifs. Conclusion Binding of PfTRAP to SH3-domain containing proteins like Src-family kinases and their ability to phosphorylate PfTRAP suggests a novel role for PfTRAP in cell signaling during sporozoite invasion and homing inside the liver cells. These data shed new light on TRAP-liver cell interactions.

  7. Identifying functional cancer-specific miRNA-mRNA interactions in testicular germ cell tumor.

    Science.gov (United States)

    Sedaghat, Nafiseh; Fathy, Mahmood; Modarressi, Mohammad Hossein; Shojaie, Ali

    2016-09-01

    Testicular cancer is the most common cancer in men aged between 15 and 35 and more than 90% of testicular neoplasms are originated at germ cells. Recent research has shown the impact of microRNAs (miRNAs) in different types of cancer, including testicular germ cell tumor (TGCT). MicroRNAs are small non-coding RNAs which affect the development and progression of cancer cells by binding to mRNAs and regulating their expressions. The identification of functional miRNA-mRNA interactions in cancers, i.e. those that alter the expression of genes in cancer cells, can help delineate post-regulatory mechanisms and may lead to new treatments to control the progression of cancer. A number of sequence-based methods have been developed to predict miRNA-mRNA interactions based on the complementarity of sequences. While necessary, sequence complementarity is, however, not sufficient for presence of functional interactions. Alternative methods have thus been developed to refine the sequence-based interactions using concurrent expression profiles of miRNAs and mRNAs. This study aims to find functional cancer-specific miRNA-mRNA interactions in TGCT. To this end, the sequence-based predicted interactions are first refined using an ensemble learning method, based on two well-known methods of learning miRNA-mRNA interactions, namely, TaLasso and GenMiR++. Additional functional analyses were then used to identify a subset of interactions to be most likely functional and specific to TGCT. The final list of 13 miRNA-mRNA interactions can be potential targets for identifying TGCT-specific interactions and future laboratory experiments to develop new therapies. PMID:27235586

  8. MPQ-cytometry: a magnetism-based method for quantification of nanoparticle-cell interactions

    Science.gov (United States)

    Shipunova, V. O.; Nikitin, M. P.; Nikitin, P. I.; Deyev, S. M.

    2016-06-01

    Precise quantification of interactions between nanoparticles and living cells is among the imperative tasks for research in nanobiotechnology, nanotoxicology and biomedicine. To meet the challenge, a rapid method called MPQ-cytometry is developed, which measures the integral non-linear response produced by magnetically labeled nanoparticles in a cell sample with an original magnetic particle quantification (MPQ) technique. MPQ-cytometry provides a sensitivity limit 0.33 ng of nanoparticles and is devoid of a background signal present in many label-based assays. Each measurement takes only a few seconds, and no complicated sample preparation or data processing is required. The capabilities of the method have been demonstrated by quantification of interactions of iron oxide nanoparticles with eukaryotic cells. The total amount of targeted nanoparticles that specifically recognized the HER2/neu oncomarker on the human cancer cell surface was successfully measured, the specificity of interaction permitting the detection of HER2/neu positive cells in a cell mixture. Moreover, it has been shown that MPQ-cytometry analysis of a HER2/neu-specific iron oxide nanoparticle interaction with six cell lines of different tissue origins quantitatively reflects the HER2/neu status of the cells. High correlation of MPQ-cytometry data with those obtained by three other commonly used in molecular and cell biology methods supports consideration of this method as a prospective alternative for both quantifying cell-bound nanoparticles and estimating the expression level of cell surface antigens. The proposed method does not require expensive sophisticated equipment or highly skilled personnel and it can be easily applied for rapid diagnostics, especially under field conditions.Precise quantification of interactions between nanoparticles and living cells is among the imperative tasks for research in nanobiotechnology, nanotoxicology and biomedicine. To meet the challenge, a rapid method

  9. Oocyte-somatic cells interactions, lessons from evolution

    Directory of Open Access Journals (Sweden)

    Charlier Cathy

    2012-10-01

    Full Text Available Abstract Background Despite the known importance of somatic cells for oocyte developmental competence acquisition, the overall mechanisms underlying the acquisition of full developmental competence are far from being understood, especially in non-mammalian species. The present work aimed at identifying key molecular signals from somatic origin that would be shared by vertebrates. Results Using a parallel transcriptomic analysis in 4 vertebrate species - a teleost fish, an amphibian, and two mammals - at similar key steps of developmental competence acquisition, we identified a large number of species-specific differentially expressed genes and a surprisingly high number of orthologous genes exhibiting similar expression profiles in the 3 tetrapods and in the 4 vertebrates. Among the evolutionary conserved players participating in developmental competence acquisition are genes involved in key processes such as cellular energy metabolism, cell-to-cell communications, and meiosis control. In addition, we report many novel molecular actors from somatic origin that have never been studied in the vertebrate ovary. Interestingly, a significant number of these new players actively participate in Drosophila oogenesis. Conclusions Our study provides a comprehensive overview of evolutionary-conserved mechanisms from somatic origin participating in oocyte developmental competence acquisition in 4 vertebrates. Together our results indicate that despite major differences in ovarian follicular structure, some of the key players from somatic origin involved in oocyte developmental competence acquisition would be shared, not only by vertebrates, but also by metazoans. The conservation of these mechanisms during vertebrate evolution further emphasizes the important contribution of the somatic compartment to oocyte quality and paves the way for future investigations aiming at better understanding what makes a good egg.

  10. Cellulose-hemicellulose interaction in wood secondary cell-wall

    Science.gov (United States)

    Zhang, Ning; Li, Shi; Xiong, Liming; Hong, Yu; Chen, Youping

    2015-12-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose.

  11. Interaction of gold nanoparticles with proteins and cells

    Science.gov (United States)

    Wang, Pengyang; Wang, Xin; Wang, Liming; Hou, Xiaoyang; Liu, Wei; Chen, Chunying

    2015-06-01

    Gold nanoparticles (Au NPs) possess many advantages such as facile synthesis, controllable size and shape, good biocompatibility, and unique optical properties. Au NPs have been widely used in biomedical fields, such as hyperthermia, biocatalysis, imaging, and drug delivery. The broad application range may result in hazards to the environment and human health. Therefore, it is important to predict safety and evaluate therapeutic efficiency of Au NPs. It is necessary to establish proper approaches for the study of toxicity and biomedical effects. In this review, we first focus on the recent progress in biological effects of Au NPs at the molecular and cellular levels, and then introduce key techniques to study the interaction between Au NPs and proteins. Knowledge of the biomedical effects of Au NPs is significant for the rational design of functional nanomaterials and will help predict their safety and potential applications.

  12. Interactions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages

    Directory of Open Access Journals (Sweden)

    Marie-Pierre eChapot-Chartier

    2014-05-01

    Full Text Available Lactic acid bacteria (LAB are Gram positive bacteria widely used in the production of fermented food in particular cheese and yoghurts. Bacteriophage infections during fermentation processes have been for many years a major industrial concern and have stimulated numerous research efforts. Better understanding of the molecular mechanisms of bacteriophage interactions with their host bacteria is required for the development of efficient strategies to fight against infections. The bacterial cell wall plays key roles in these interactions. First, bacteriophages must adsorb at the bacterial surface through specific interactions with receptors that are cell wall components. At next step, phages must overcome the barrier constituted by cell wall peptidoglycan to inject DNA inside bacterial cell. Also at the end of the infection cycle, phages synthesize endolysins able to hydrolyze peptidoglycan and lyse bacterial cells to release phage progeny. In the last decade, concomitant development of genomics and structural analysis of cell wall components allowed considerable advances in the knowledge of their structure and function in several model LAB. Here, we describe the present knowledge on the structure of the cell wall glycopolymers of the best characterized LAB emphasizing their structural variations and we present the available data regarding their role in bacteria-phage specific interactions at the different steps of the infection cycle.

  13. The relevance of membrane models to understand nanoparticles-cell membrane interactions

    Science.gov (United States)

    Rascol, Estelle; Devoisselle, Jean-Marie; Chopineau, Joël

    2016-02-01

    Over the past two decades, numerous types of nanoparticles (NPs) have been developed for medical applications; however only a few nanomedicines are actually available on the market. One reason is the lack of understanding and data concerning the NP fate and their behavior upon contact with biological media and cell membranes. Biomimetic membrane models are interesting tools to approach and understand NPs-cell membrane interactions. The use of these models permits one to control physical and chemical parameters and to rapidly compare membrane types and the influence of different media conditions. The interactions between NPs and cell membranes can be qualified and quantified using analytical and modeling methods. In this review, the major studies concerning NPs-cell membrane models and associated methods are described. The advantages and drawbacks for each method are compared for the different models. The key mechanisms of interactions between NPs and cell membranes are revealed using cell membrane models and are interrogated in comparison with the NP behavior in cellulo or in vivo. Investigating the interactions between NPs and cell membrane models is now proposed as an intermediate step between physicochemical characterization of NPs and biological assays.

  14. Microencapsulation of stem cells to study cellular interactions.

    Science.gov (United States)

    Moore, Keith; Vandergriff, Adam; Potts, Jay D

    2013-01-01

    Microencapsulation is a technique used in both controlled delivery of materials over time as well as preservation of these materials while delivery is occurring. The range of materials able to be encapsulated is variable, from drugs to living cells. The latter is described here. Electrospray microencapsulation applies a high-voltage field, through which a polymeric material is extruded. A gelling bath, comprising a cross-linking material, is used to create a stable hydrogel containing secondary substances intended for delivery. Control of extrusion parameters, such as flow rate and voltage, allows for specification of diameter and pore sizes of the microcapsules. PMID:23955738

  15. Modelling spatio-temporal interactions within the cell

    Indian Academy of Sciences (India)

    Padmini Rangamani; Ravi Iyengar

    2007-01-01

    Biological phenomena at the cellular level can be represented by various types of mathematical formulations. Such representations allow us to carry out numerical simulations that provide mechanistic insights into complex behaviours of biological systems and also generate hypotheses that can be experimentally tested. Currently, we are particularly interested in spatio-temporal representations of dynamic cellular phenomena and how such models can be used to understand biological specificity in functional responses. This review describes the capability and limitations of the approaches used to study spatio-temporal dynamics of cell signalling components.

  16. Alloreactive cloned T cell lines. I. Interactions between cloned amplifier and cytolytic T cell lines

    OpenAIRE

    1980-01-01

    Several T cell clones have been derived by limiting dilution of secondary mixed leukocyte culture cells stimulated by H-2- and M locus (Mls)-disparate spleen cells. When examined for the expression of cytolytic activity and the ability to proliferate, these cell clones can be classified into two major categories. One type of cell is noncytolytic; when cultured with irradiated spleen cells, such clones proliferate in response to Mls determinants. Some, but not all, of these clones express Lyt-...

  17. Effect of chemotherapy and irradiation on interactions between stromal and hemopoietic cells in vitro

    International Nuclear Information System (INIS)

    We examined the interactions between stromal and hemopoietic cells in mouse long-term bone marrow cultures. The adherent stroma is formed by several layers of cells consisting of macrophage, fibroblasts, and adventitial cells which accumulate lipid to become adipocytes. Stromal cells become closely apposed to loosely adherent hemopoietic cells but gap junctions occur only among cells in the adherent layer. The hemopoietic cells form tightly packed structures resembling cobblestones which contain granulocytes in all stages of differentiation. Using an in vitro model for bone marrow transplantation (BMT), we treated pure mouse stromal cell cultures with irradiation (1000 R) or chemotherapy (BCNU) prior to engraftment with hemopoietic stem cells. After two weeks, engrafted cultures were indistinguishable from the long-term bone marrow cultures previously described by Dexter. The adipocytes in irradiated cultures developed numerous submembrane pinocytotic vesicles but stromal-hemopoietic cell interactions remained unchanged compared to unirradiated controls. By contrast, granulocytes grafted onto chemotherapy treated stroma showed swelling of endoplasmic reticulum suggesting early toxic injury. These findings are consistent with functional studies of hemopoiesis after engraftment onto treated stroma and confirm an important role for stromal cells in the support of hemopoiesis

  18. Reciprocal interaction among gasotransmitters in isolated pancreatic β-cells.

    Science.gov (United States)

    Moustafa, Amira; Habara, Yoshiaki

    2016-01-01

    We aimed to elucidate the interplay among the three well-known gas molecules, nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S), and their effects on intracellular Ca(2+) concentration ([Ca(2+)]i) and insulin secretion in rat pancreatic β-cells. Immunofluorescence studies demonstrated the expression of constitutive enzymes that are responsible for the production of NO, CO and H2S. CO and H2S increased NO production as indicated by the increase in diaminofluorescein-2 triazole fluorescence. NO and CO induced an elevation in the sulfane sulfur pool and concomitantly H2S production. The NO- and CO-induced H2S production was partially inhibited by hypotaurine, an H2S scavenger. NO and H2S produced CO production as revealed by a myoglobin assay. A calmodulin antagonist in the absence of extracellular Ca(2+) significantly attenuated NO and H2S production. NO and CO induced a [Ca(2+)]i increase mainly via Ca(2+) release from internal stores; however, H2S induced a [Ca(2+)]i increase via the influx of extracellular Ca(2+). NO dose-dependently stimulated basal insulin release but CO dose-dependently inhibited it. H2S showed an insignificant effect on basal insulin secretion from freshly isolated pancreatic islets. Herein, we address for the first time the reciprocal and synergistic relation among gasotransmitters with diverse effects on basal insulin secretion that regulate β-cells functions and homeostasis. PMID:26577175

  19. Organelle interactions and possible degradation pathways visualized in high-pressure frozen algal cells.

    Science.gov (United States)

    Aichinger, N; Lütz-Meindl, U

    2005-08-01

    Summary Organelle interactions, although essential for both anabolic and catabolic pathways in plant cells have not been examined in detail so far. In the present study the structure of different organelle-organelle, organelle-vesicle and organelle-membrane interactions were investigated in growing and nongrowing cells of the green alga Micrasterias denticulata by use of high pressure freeze fixation and energy filtering transmission electron microscopy. It became clear that contacts between mitochondria always occur by formation of a cone-shaped protuberance of one of the mitochondria which penetrates into its fusion partner. In the same way, structural interactions between mitochondria and mucilage vesicles and between microbodies and mucilage vesicles are achieved. Lytic compartments contact mitochondria or mucilage vesicles again by forming protuberances and by extending their contents into the respective compartment. Detached portions of mitochondria are found inside lytic compartments as a consequence of such interactions. Mitochondria found in contact with the plasma membrane reveal structural disintegration. Our study shows that interactions of organelles and vesicles are frequent events in Micrasterias cells of different ages. The interactive contacts between lytic compartments and organelles or vesicles suggest a degradation pathway different from autophagy processes described in the literature. Both the interactions between vesicles and organelles and the degradation pathways occur independently from cytoskeleton function as demonstrated by use of cytochalasin D and the microtubule inhibitor amiprophos-methyl. PMID:16159344

  20. Interaction between microfluidic droplets in a Hele-Shaw cell

    Science.gov (United States)

    Sarig, Itai; Starosvetsky, Yuli; Gat, Amir

    2015-11-01

    Various fluidic systems, such as chemical and biological lab-on-a-chip devices, involve motion of multiple droplets within an immersing fluid in narrow micro-channels. Modeling the dynamics of such systems requires calculation of the forces of interaction between the moving droplets. These forces are commonly approximated by superposition of dipoles solutions, which requires an assumption of sufficiently large distance between the droplets. In this work we obtain exact solutions for two droplets, and a droplet within a droplet, located within a moving immersing fluid and without limitation on the distance between the droplets. This is achieved by solution of the Laplace equation for the pressure in a bi-polar coordinate system, Fourier method and transformation and calculation of the force in a Cartesian coordinate system. Our results are validated with numerical computations, experimental data and with the existing dipole-based models. We utilize the results to calculate the dynamics of a droplet within a droplet, and of two close droplets, located within an immersing fluid with oscillating speed. The obtained results may be used to study the dynamics of dense droplet lattices, common to many current micro-fluidic systems.

  1. PIAS1-FAK Interaction Promotes the Survival and Progression of Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jerfiz D. Constanzo

    2016-05-01

    Full Text Available The sequence of genomic alterations acquired by cancer cells during tumor progression and metastasis is poorly understood. Focal adhesion kinase (FAK is a non-receptor tyrosine kinase that integrates cytoskeleton remodeling, mitogenic signaling and cell survival. FAK has previously been reported to undergo nuclear localization during cell migration, cell differentiation and apoptosis. However, the mechanism behind FAK nuclear accumulation and its contribution to tumor progression has remained elusive. We report that amplification of FAK and the SUMO E3 ligase PIAS1 gene loci frequently co-occur in non-small cell lung cancer (NSCLC cells, and that both gene products are enriched in a subset of primary NSCLCs. We demonstrate that endogenous FAK and PIAS1 proteins interact in the cytoplasm and the cell nucleus of NSCLC cells. Ectopic expression of PIAS1 promotes proteolytic cleavage of the FAK C-terminus, focal adhesion maturation and FAK nuclear localization. Silencing of PIAS1 deregulates focal adhesion turnover, increases susceptibility to apoptosis in vitro and impairs tumor xenograft formation in vivo. Nuclear FAK in turn stimulates gene transcription favoring DNA repair, cell metabolism and cytoskeleton regulation. Consistently, ablation of FAK by CRISPR/Cas9 editing, results in basal DNA damage, susceptibility to ionizing radiation and impaired oxidative phosphorylation. Our findings provide insight into a mechanism regulating FAK cytoplasm-nuclear distribution and demonstrate that FAK activity in the nucleus promotes NSCLC survival and progression by increasing cell-ECM interaction and DNA repair regulation.

  2. Mutual interaction of Basophils and T cells in chronic inflammatory diseases

    Directory of Open Access Journals (Sweden)

    Marika eSarfati

    2015-08-01

    Full Text Available Basophils are, together with mast cells, typical innate effector cells of allergen-induced IgE-dependent allergic diseases. Both cell types express the high affinity receptor for IgE (FcεR1, release histamine, inflammatory mediators and cytokines following FcεR1 cross-linking. Basophils are rare granulocytes in blood, lymphoid and non-lymphoid tissues and the difficulties to detect and isolate these cells has hampered the study of their biology and the understanding of their possible role in pathology. Furthermore, the existence of other FcεR1-expressing cells, including professional Ag-presenting dendritic cells, generated some controversy regarding the ability of basophils to express MHC Class II molecules, present Ag and drive naïve T cell differentiation into Th2 cells. The focus of this review is to present the recent advances on the interactions between basophils and peripheral blood and tissue memory Th1, Th2 and Th17 cells, as well as their potential role in IgE-independent non allergic chronic inflammatory disorders, including human inflammatory bowel diseases. Basophils interactions with the innate players of IgE-dependent allergic inflammation, particularly innate lymphoid cells, will also be considered. The previously unrecognized function for basophils in skewing adaptive immune responses opens novel perspectives for the understanding of their contribution to the pathogenesis of inflammatory diseases.

  3. Human Epithelial Cells Discriminate between Commensal and Pathogenic Interactions with Candida albicans

    Science.gov (United States)

    Rast, Timothy J.; Kullas, Amy L.; Southern, Peter J.; Davis, Dana A.

    2016-01-01

    The commensal fungus, Candida albicans, can cause life-threatening infections in at risk individuals. C. albicans colonizes mucosal surfaces of most people, adhering to and interacting with epithelial cells. At low concentrations, C. albicans is not pathogenic nor does it cause epithelial cell damage in vitro; at high concentrations, C. albicans causes mucosal infections and kills epithelial cells in vitro. Here we show that while there are quantitative dose-dependent differences in exposed epithelial cell populations, these reflect a fundamental qualitative difference in host cell response to C. albicans. Using transcriptional profiling experiments and real time PCR, we found that wild-type C. albicans induce dose-dependent responses from a FaDu epithelial cell line. However, real time PCR and Western blot analysis using a high dose of various C. albicans strains demonstrated that these dose-dependent responses are associated with ability to promote host cell damage. Our studies support the idea that epithelial cells play a key role in the immune system by monitoring the microbial community at mucosal surfaces and initiating defensive responses when this community is dysfunctional. This places epithelial cells at a pivotal position in the interaction with C. albicans as epithelial cells themselves promote C. albicans stimulated damage. PMID:27088599

  4. Numerical simulation of the pairwise interaction of deformable cells during migration in a microchannel

    Science.gov (United States)

    Lan, Hongzhi; Khismatullin, Damir B.

    2014-07-01

    Leukocytes and other circulating cells deform and move relatively to the channel flow in the lateral and translational directions. Their migratory property is important in immune response, hemostasis, cancer progression, delivery of nutrients, and microfluidic technologies such as cell separation and enrichment, and flow cytometry. Using our three-dimensional computational algorithm for multiphase viscoelastic flow, we have investigated the effect of pairwise interaction on the lateral and translational migration of circulating cells in a microchannel. The numerical simulation data show that when two cells with the same size and small separation distance interact, repulsive interaction take place until they reach the same lateral equilibrium position. During this process, they undergo swapping or passing, depending on the initial separation distance between each other. The threshold value of this distance increases with cell deformation, indicating that the cells experiencing larger deformation are more likely to swap. When a series of closely spaced cells with the same size are considered, they generally undergo damped oscillation in both lateral and translational directions until they reach equilibrium positions where they become evenly distributed in the flow direction (self-assembly phenomenon). A series of cells with a large lateral separation distance could collide repeatedly with each other, eventually crossing the centerline and entering the other side of the channel. For a series of cells with different deformability, more deformable cells, upon impact with less deformable cells, move to an equilibrium position closer to the centerline. The results of our study show that the bulk deformation of circulating cells plays a key role in their migration in a microchannel.

  5. The Uncovered Interest Parity in the Foreign Exchange (FX Markets

    Directory of Open Access Journals (Sweden)

    Silvio Ricardo Micheloto

    2004-12-01

    Full Text Available This work verifies the uncovered interest rates parity (UIP in the FX (foreign exchange emerging markets by using the panel cointegration technique. The data involves several developing countries that compose the EMBI+ Global Index. We compare the results of several panel estimators: OLS (ordinary list square, DOLS (dynamic OLS and FMOLS (fully modified OLS. This new panel technique can handle problems of either non-stationary series (spurious regression or small problem. This latter problem has being considered one of the main causes for distorting the UIP empirical results. By using this approach, we check the UIP in the FX (foreign exchange emerging markets. These markets are more critical because they have been subjected to changing FX regimes and speculative attacks. Our results do not corroborate the uncovered interest parity for the developing countries in the recent years. Thus, the forward premium puzzle may hold in the FX emergent markets.

  6. Uncovering Student Ideas in Astronomy 45 Formative Assessment Probes

    CERN Document Server

    Keeley, Page

    2012-01-01

    What do your students know-or think they know-about what causes night and day, why days are shorter in winter, and how to tell a planet from a star? Find out with this book on astronomy, the latest in NSTA's popular Uncovering Student Ideas in Science series. The 45 astronomy probes provide situations that will pique your students' interest while helping you understand how your students think about key ideas related to the universe and how it operates.

  7. Uncovering the systemic issues that reside in home care

    OpenAIRE

    Giannasi, Wynona

    2012-01-01

    This video clip comprises the Keynote Address: “Uncovering the systemic issues that reside in home care” held at the 21st Annual John K. Friesen Conference, "Innovations in Home Care: A Public Policy Perspective," MAY 16-17, 2012, Vancouver, BC. Presented by Wynona Giannasi, Partner, Howegroup – Public Sector Consultants, Vancouver BC. It is well known that jurisdictions with more comprehensive and integrated home care delivery systems are able to extend independent living for older p...

  8. Interactions between Periodontal Bacteria and Human Oral Epithelial Cells: Fusobacterium nucleatum Adheres to and Invades Epithelial Cells

    OpenAIRE

    Han, Yiping W.; Shi, Wenyuan; HUANG, GEORGE T.-J.; Kinder Haake, Susan; Park, No-Hee; Kuramitsu, Howard; Genco, Robert J.

    2000-01-01

    Bacteria are causative agents of periodontal diseases. Interactions between oral bacteria and gingival epithelial cells are essential aspects of periodontal infections. Using an in vitro tissue culture model, a selected group of gram-negative anaerobic bacteria frequently associated with periodontal diseases, including Bacteroides forsythus, Campylobacter curvus, Eikenella corrodens, Fusobacterium nucleatum, Porphyromonas gingivalis, and Prevotella intermedia, were examined for their ability ...

  9. Systems-level approach to uncovering diffusive states and their transitions from single particle trajectories

    CERN Document Server

    Koo, Peter K

    2016-01-01

    The stochastic motions of a diffusing particle contain information concerning the particle's interactions with binding partners and with its local environment. However, accurate determination of the underlying diffusive properties, beyond normal diffusion, has remained challenging when analyzing particle trajectories on an individual basis. Here, we introduce the maximum likelihood estimator (MLE) for confined diffusion and fractional Brownian motion. We demonstrate that this MLE yields improved estimation over traditional mean square displacement analyses. We also introduce a model selection scheme (that we call mleBIC) that classifies individual trajectories to a given diffusion mode. We demonstrate the statistical limitations of classification via mleBIC using simulated data. To overcome these limitations, we introduce a new version of perturbation expectation-maximization (pEMv2), which simultaneously analyzes a collection of particle trajectories to uncover the system of interactions which give rise to u...

  10. Anodized titania: Processing and characterization to improve cell-materials interactions for load bearing implants

    Science.gov (United States)

    Das, Kakoli

    The objective of this study is to investigate in vitro cell-materials interactions using human osteoblast cells on anodized titanium. Titanium is a bioinert material and, therefore, gets encapsulated after implantation into the living body by a fibrous tissue that isolates them from the surrounding tissues. In this work, bioactive nonporous and nanoporous TiO2 layers were grown on commercially pure titanium substrate by anodization process using different electrolyte solutions namely (1) H3PO 4, (2) HF and (3) H2SO4, (4) aqueous solution of citric acid, sodium fluoride and sulfuric acid. The first three electrolytes produced bioactive TiO2 films with a nonporous structure showing three distinctive surface morphologies. Nanoporous morphology was obtained on Ti-surfaces from the fourth electrolyte at 20V for 4h. Cross-sectional view of the nanoporous surface reveals titania nanotubes of length 600 nm. It was found that increasing anodization time initially increased the height of the nanotubes while maintaining the tubular array structure, but beyond 4h, growth of nanotubes decreased with a collapsed array structure. Human osteoblast (HOB) cell attachment and growth behavior were studied using an osteoprecursor cell line (OPC 1) for 3, 7 and 11 days. Colonization of the cells was noticed with distinctive cell-to-cell attachment on HF anodized surfaces. TiO2 layer grown in H2SO4 electrolyte did not show significant cell growth on the surface, and some cell death was also noticed. Good cellular adherence with extracellular matrix extensions in between the cells was noticed for samples anodized with H3PO 4 electrolyte and nanotube surface. Cell proliferation was excellent on anodized nanotube surfaces. An abundant amount of extracellular matrix (ECM) between the neighboring cells was also noticed on nanotube surfaces with filopodia extensions coming out from cells to grasp the nanoporous surface for anchorage. To better understand and compare cell-materials interactions

  11. Malignant Gastroduodenal Obstruction: Treatment with Self-Expanding Uncovered Wallstent

    International Nuclear Information System (INIS)

    Purpose: To retrospectively evaluate the clinical effectiveness of a self-expanding uncovered Wallstent in patients with malignant gastroduodenal obstruction. Materials and Methods: Under combined endoscopic and fluoroscopic guidance, 29 patients with a malignant gastroduodenal stenosis were treated with a self-expanding uncovered metallic Wallstent. A dysphagia score was assessed before and after the intervention to measure the success of this palliative therapy. The dysphagia score ranged between grade 0 to grade 4: grade 0 = able to tolerate solid food, grade 1 = able to tolerate soft food, grade 2 = able to tolerate thick liquids, grade 3 = able to tolerate water or clear fluids, and grade 4 = unable to tolerate anything perorally. Stent patency and patients survival rates were calculated. Results: The insertion of the gastroduodenal stent was technically successful in 28 patients (96.5%). After stenting, 25 patients (86.2%) showed clinical improvement by at least one score point. During follow-up, 22 (78.5%) of 28 patients showed no stent occlusion until death and did not have to undergo any further intervention. In six patients (20.6%), all of whom were treated with secondary stent insertions, occlusion with tumor ingrowth and/or overgrowth was observed after the intervention. The median period of primary stent patency in our study was 240 days. Conclusion: Placement of an uncovered Wallstent is clinically effective in patients with malignant gastroduodenal obstruction. Stent placement is associated with high technical success, good palliation effect, and high durability of stent function.

  12. Effects of ionizing radiation on cell-matrix interactions at the single molecule level

    International Nuclear Information System (INIS)

    Single molecule microscopy is a technology that allows for accurate assessment of the location and motion of single fluorescent molecules, even in the context of observations on living biological samples. In the present thesis, a flexible analysis tool for single molecule data as obtained in biological experiments was established. The development of a tool to faithfully detect and localize diffraction-limited images of individual fluorescent probes was necessary since data acquired under cell cultivation conditions that account for a three-dimensional microenvironment as experienced physiologically by cells in native tissue poses a challenge not faced ordinarily. After design, implementation, quantitative tests using simulations for comparisons and verification, and evaluation of the different steps of the analysis procedure including local background estimation, local noise estimation, de-noising approaches, detection, localization, and post-processing, analysis capabilities were utilized to evaluate the impact of x-ray irradiation on the plasma membrane architecture of U2OS human osteosarcoma cells as assessed by tracking individual fluorescent lipid-mimetic dye molecules diffusing in the outer membrane leaflet. It was shown that lateral diffusion in the plasma membrane is well described as two-phase anomalous subdiffusion and presence of 3D extracellular matrix leads to lower anomalous exponents of the fast fraction in comparison to monolayer cell culture. Interestingly, even high single-dose (25 Gy) treatments known to induce membrane-mediated apoptosis in tumor microvessel endothelium via membrane viscosity enhancing ceramide generation were not observed to alter membrane architecture in U2OS cells which can be related to amplifying, feedback-driven redox-signaling in the endothelium absent in U2OS. In summary, the sensitive and accurate framework developed in this thesis to assess minute changes of plasma membrane located dynamic processes did not uncover a

  13. Effects of ionizing radiation on cell-matrix interactions at the single molecule level

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, Florian

    2015-04-20

    Single molecule microscopy is a technology that allows for accurate assessment of the location and motion of single fluorescent molecules, even in the context of observations on living biological samples. In the present thesis, a flexible analysis tool for single molecule data as obtained in biological experiments was established. The development of a tool to faithfully detect and localize diffraction-limited images of individual fluorescent probes was necessary since data acquired under cell cultivation conditions that account for a three-dimensional microenvironment as experienced physiologically by cells in native tissue poses a challenge not faced ordinarily. After design, implementation, quantitative tests using simulations for comparisons and verification, and evaluation of the different steps of the analysis procedure including local background estimation, local noise estimation, de-noising approaches, detection, localization, and post-processing, analysis capabilities were utilized to evaluate the impact of x-ray irradiation on the plasma membrane architecture of U2OS human osteosarcoma cells as assessed by tracking individual fluorescent lipid-mimetic dye molecules diffusing in the outer membrane leaflet. It was shown that lateral diffusion in the plasma membrane is well described as two-phase anomalous subdiffusion and presence of 3D extracellular matrix leads to lower anomalous exponents of the fast fraction in comparison to monolayer cell culture. Interestingly, even high single-dose (25 Gy) treatments known to induce membrane-mediated apoptosis in tumor microvessel endothelium via membrane viscosity enhancing ceramide generation were not observed to alter membrane architecture in U2OS cells which can be related to amplifying, feedback-driven redox-signaling in the endothelium absent in U2OS. In summary, the sensitive and accurate framework developed in this thesis to assess minute changes of plasma membrane located dynamic processes did not uncover a

  14. Identification of differences in gene expression in primary cell cultures of human endometrial epithelial cells and trophoblast cells following their interaction

    DEFF Research Database (Denmark)

    Høgh, Mette; Islin, Henrik; Møller, Charlotte;

    2006-01-01

    interaction between the cell types was simulated in vitro by growing primary cell cultures of human endometrial epithelial cells and trophoblast cells together (co-culture) and separately (control cultures). Gene expression in the cell cultures was compared using the Differential Display method and confirmed...... using a modified Northern Blot method. Results Twelve transcripts were identified as being differentially expressed following the interaction between trophoblast and endometrial cells. Some of these sequences show homology to known human genes while other sequences are coding for potential novel genes......: (1) one sequence was homologous to the to Homer 1 gene, (2) one identical to the mRNA for XP-G factor, (3) one similar to a hypothetical protein, (4) transcripts showing homologies to a mRNA coding for a cellular proapoptotic protein, and (5) sequences homologous to regions on human chromosomes 5 and...

  15. Molecular flexibility can influence the stimulatory ability of receptor–ligand interactions at cell–cell junctions

    OpenAIRE

    Qi, Shuyan; Krogsgaard, Michelle; Davis, Mark M; Chakraborty, Arup K.

    2006-01-01

    Direct cell–cell communication is crucial for many processes in biology, particularly embryogenesis, interactions between hematopoetic cells, and in the nervous system. This communication is often mediated by the binding of receptors to cognate ligands at a cell–cell junction. One such interaction that is very important for the development of many immune responses is the binding of the αβ T cell receptor for antigen (TCR) on T lymphocytes with peptide–MHC complexes on other cells. In general,...

  16. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    OpenAIRE

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widel...

  17. Interaction of tRNA with MEK2 in pancreatic cancer cells

    OpenAIRE

    Xiaoyun Wang; Christina R. Chow; Kazumi Ebine; Jiyoung Lee; Marsha R Rosner; Tao Pan; Munshi, Hidayatullah G.

    2016-01-01

    Although the translational function of tRNA has long been established, extra translational functions of tRNA are still being discovered. We previously developed a computational method to systematically predict new tRNA-protein complexes and experimentally validated six candidate proteins, including the mitogen-activated protein kinase kinase 2 (MEK2), that interact with tRNA in HEK293T cells. However, consequences of the interaction between tRNA and these proteins remain to be elucidated. Her...

  18. Probiotic Gut Microbiota Isolate Interacts with Dendritic Cells via Glycosylated Heterotrimeric Pili

    OpenAIRE

    Tytgat, Hanne L. P.; van Teijlingen, Nienke H.; Sullan, Ruby May A.; Douillard, François P.; Pia Rasinkangas; Marcel Messing; Justus Reunanen; Reetta Satokari; Jos Vanderleyden; Yves F Dufrêne; Geijtenbeek, Teunis B. H.; de Vos, Willem M.; Sarah Lebeer

    2016-01-01

    Mapping of the microbial molecules underlying microbiota-host interactions is key to understand how microbiota preserve mucosal homeostasis. A pivotal family of such bacterial molecules are pili. Pili are proteinaceous cell wall appendages with a well-documented role in adhesion, whilst their role in immune interaction with the host is less established. Gram-positive pili are often posttranslationally modified by sortase-specific cleavage reactions and the formation of intramolecular peptide ...

  19. Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells

    Directory of Open Access Journals (Sweden)

    NirOsherov

    2012-09-01

    Full Text Available Aspergillus fumigatus is an opportunistic environmental mold that can cause severe allergic responses in atopic individuals and poses a life-threatening risk for severely immunocompromised patients. Infection is caused by inhalation of fungal spores (conidia into the lungs. The initial point of contact between the fungus and the host is a monolayer of lung epithelial cells. Understanding how these cells react to fungal contact is crucial to elucidating the pathobiology of Aspergillus-related disease states. The experimental systems, both in vitro and in vivo, used to study these interactions, are described. Distinction is made between bronchial and alveolar epithelial cells. The experimental findings suggest that lung epithelial cells are more than just “innocent bystanders” or a purely physical barrier against infection. They can be better described as an active extension of our innate immune system, operating as a surveillance mechanism that can specifically identify fungal spores and activate an offensive response to block infection. This response includes the internalization of adherent conidia and the release of cytokines, antimicrobial peptides and reactive oxygen species. In the case of allergy, lung epithelial cells can dampen an over-reactive immune response by releasing anti-inflammatory compounds such as kinurenine. This review summarizes our current knowledge regarding the interaction of A. fumigatus with lung epithelial cells. A better understanding of the interactions between A. fumigatus and lung epithelial cells has therapeutic implications, as stimulation or inhibition of the epithelial response may alter disease outcome.

  20. Lipid raft association restricts CD44-ezrin interaction and promotion of breast cancer cell migration.

    LENUS (Irish Health Repository)

    Donatello, Simona

    2012-12-01

    Cancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells. Specifically, in nonmigrating cells, CD44 and ezrin localized to different membranous compartments: CD44 predominantly in rafts, and ezrin in nonraft compartments. After the induction of migration (either nonspecific or CD44-driven), CD44 affiliation with lipid rafts was decreased. This was accompanied by increased coprecipitation of CD44 and active (threonine-phosphorylated) ezrin-radixin-moesin (ERM) proteins in nonraft compartments and increased colocalization of CD44 with the nonraft protein, transferrin receptor. Pharmacological raft disruption using methyl-β-cyclodextrin also increased CD44-ezrin coprecipitation and colocalization, further suggesting that CD44 interacts with ezrin outside rafts during migration. Conversely, promoting CD44 retention inside lipid rafts by pharmacological inhibition of depalmitoylation virtually abolished CD44-ezrin interactions. However, transient single or double knockdown of flotillin-1 or caveolin-1 was not sufficient to increase cell migration over a short time course, suggesting complex crosstalk mechanisms. We propose a new model for CD44-dependent breast cancer cell migration, where CD44 must relocalize outside lipid rafts to drive cell migration. This could have implications for rafts as pharmacological targets to down-regulate cancer cell migration.

  1. Reciprocal interactions between cell adhesion molecules of the immunoglobulin superfamily and the cytoskeleton in neurons

    Directory of Open Access Journals (Sweden)

    Vladimir eSytnyk

    2016-02-01

    Full Text Available Cell adhesion molecules of the immunoglobulin superfamily (IgSF including the neural cell adhesion molecule (NCAM and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail.

  2. Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons.

    Science.gov (United States)

    Leshchyns'ka, Iryna; Sytnyk, Vladimir

    2016-01-01

    Cell adhesion molecules of the immunoglobulin superfamily (IgSF) including the neural cell adhesion molecule (NCAM) and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites, and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function, and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail. PMID:26909348

  3. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development.

    Directory of Open Access Journals (Sweden)

    Carolina N Perdigoto

    2016-07-01

    Full Text Available An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2 in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures.

  4. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development

    Science.gov (United States)

    Bar, Carmit; Tsai, Pai-Chi; Valdes, Victor J.; Cohen, Idan; Santoriello, Francis J.; Zhao, Dejian; Hsu, Ya-Chieh; Ezhkova, Elena

    2016-01-01

    An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures. PMID:27414999

  5. Gene Related to Anergy in Lymphocytes (GRAIL) Expression in CD4+ T Cells Impairs Actin Cytoskeletal Organization during T Cell/Antigen-presenting Cell Interactions*

    OpenAIRE

    Schartner, Jill M.; Simonson, William T; Wernimont, Sarah A.; Nettenstrom, Lauren M.; Huttenlocher, Anna; Seroogy, Christine M.

    2009-01-01

    GRAIL (gene related to anergy in lymphocytes), is an E3 ubiquitin ligase with increased expression in anergic CD4+ T cells. The expression of GRAIL has been shown to be both necessary and sufficient for the induction of T cell (T) anergy. To date, several subsets of anergic T cells have demonstrated altered interactions with antigen-presenting cells (APC) and perturbed TCR-mediated signaling. The role of GRAIL in mediating these aspects of T cell anergy remains unclear. We used flow cytometry...

  6. Dynamic assessment of Amyloid oligomers - cell membrane interaction by advanced impedance spectroscopy

    Science.gov (United States)

    Gheorghiu, M.; David, S.; Polonschii, C.; Bratu, D.; Gheorghiu, E.

    2013-04-01

    The amyloid β (Aβ) peptides are believed to be pivotal in Alzheimer's disease (AD) pathogenesis and onset of vascular dysfunction. Recent studies indicate that Aβ1-42 treatment influences the expression of tight junction protein complexes, stress fibre formation, disruption and aggregation of actin filaments and cellular gap formation. Aiming for functional characterization of model cells upon Aβ1-42 treatment, we deployed an advanced Electric Cell-substrate Impedance Sensing for monitoring cell evolution. A precision Impedance Analyzer with a multiplexing module developed in house was used for recording individual electrode sets in the 40 Hz - 100 KHz frequency range. In a step forward from the classical ECIS assays, we report on a novel data analysis algorithm that enables access to cellular and paracellular electrical parameters and cell surface interaction with fully developed cell monolayers. The evolution of the impedance at selected frequencies provides evidence for a dual effect of Aβ42 exposure, at both paracellular permeability and cell adherence level, with intricate dynamics that open up new perspectives on Aβ1-42 oligomers - cell membrane interaction. Validation of electrical impedance assays of the amyloid fibrils effect on cell membrane structure is achieved by both AFM analysis and Surface Plasmon Resonance studies. The capabilities of this noninvasive, real time platform for cell analysis in a wider applicative context are outlined.

  7. Cell contact-dependent lethal effect of the dinoflagellate Heterocapsa circularisquama on phytoplankton-phytoplankton interactions

    Science.gov (United States)

    Yamasaki, Yasuhiro; Zou, Yanan; Go, Jyoji; Shikata, Tomoyuki; Matsuyama, Yukihiko; Nagai, Kiyohito; Shimasaki, Yohei; Yamaguchi, Kenichi; Oshima, Yuji; Oda, Tatsuya; Honjo, Tsuneo

    2011-01-01

    We used bi-algal culture experiments to investigate and verify the roles of growth interaction between Heterocapsa circularisquama and Prorocentrum dentatum in monospecific bloom formation. Growth of H. circularisquama was slightly inhibited when inoculated at 10 2 cells mL -1 along with P. dentatum at 10 4 cells mL -1. In other combinations of inoculation densities, P. dentatum density rapidly decreased to extremely low levels in the presence of H. circularisquama. We used a mathematical model to simulate growth and interactions of H. circularisquama and P. dentatum in bi-algal cultures. The model indicates that one species will always inhibit the growth of the other and that the relative initial cell densities of the species are critical in determining the outcome. When cultured together under conditions without cell contact, growth of H. circularisquama and P. dentatum was not inhibited. As with P. dentatum, the growth of Heterosigma akashiwo and Skeletonema costatum was inhibited in intact cell suspensions with H. circularisquama, but a nontoxic species, Heterocapsa triquetra, did not affect the growth of P. dentatum or the other species. Similarly, cell suspensions of H. circularisquama showed hemolytic activity toward rabbit erythrocytes, but those of H. triquetra did not. In addition, the cell-free supernatant of H. circularisquama cultures showed no significant hemolytic activity. These results suggest that H. circularisquama causes lethality in P. dentatum by direct cell contact in which live-cell-mediated hemolytic activity might be a contributing factor.

  8. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches

    International Nuclear Information System (INIS)

    The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sprouting blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches

  9. Platelet-tumor cell interaction with the subendothelial extracellular matrix: relationship to cancer metastasis

    International Nuclear Information System (INIS)

    Dissemination of neoplastic cells within the body involves invasion of blood vessels by tumor cells. This requires adhesion of blood-borne cells to the luminal surface of the vascular endothelium, invasion through the endothelial cell layer and local dissolution of the subendothelial basement membrane. The authors studied the interaction of platelets and tumor cells with cultured vascular endothelial cells and their secreted basement membrane-like extracellular matrix (ECM). Interaction of platelets with this ECM was associated with platelet activation, aggregation and degradation of heparan sulfate in the ECM by means of the platelet heparitinase. Biochemical and scanning electron microscopy (SEM) studies have demonstrated that platelets may detect even minor gaps between adjacent endothelial cells and degrade the ECM heparan sulfate. Platelets were also shown to recruit lymphoma cells into minor gaps in the vascular endothelium. It is suggested that the platelet heparitinase is involved in the impairment of the integrity of the vessel wall and thus play a role in tumor cell metastasis. (Auth.)

  10. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Caroline; Squadrito, Mario Leonardo [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); Iruela-Arispe, M. Luisa, E-mail: arispe@mcdb.ucla.edu [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles 90095, CA (United States); De Palma, Michele, E-mail: michele.depalma@epfl.ch [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2013-07-01

    The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sprouting blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches.

  11. Cluster of red blood cells in microcapillary flow: hydrodynamic versus macromolecule induced interaction

    CERN Document Server

    Clavería, Viviana; Thiébaud, Marine; Abkarian, Manouk; Coupier, Gwennou; Misbah, Chaouqi; John, Thomas; Wagner, Christian

    2016-01-01

    We present experiments on RBCs that flow through microcapillaries under physiological conditions. We show that the RBC clusters form as a subtle imbrication between hydrodynamics interaction and adhesion forces because of plasma proteins. Clusters form along the capillaries and macromolecule-induced adhesion contribute to their stability. However, at high yet physiological flow velocities, shear stresses overcome part of the adhesion forces, and cluster stabilization due to hydrodynamics becomes the only predominant mechanism. For the case of pure hydrodynamic interaction, cell-to-cell distances have a pronounced bimodal distribution. Our 2D-numerical simulations on vesicles captures the transition between adhesive and non-adhesive clusters at different flow velocities.

  12. Sialoglycoconjugates in Trypanosoma cruzi-host cell interaction: possible biological model - a review

    Directory of Open Access Journals (Sweden)

    Alane Beatriz Vermelho

    1994-03-01

    Full Text Available A number of glycoconjugates, including glycolipids and glycoproteins, participate in the process of host-cell invasion by Trypanosoma cruzi and one of the most important carbohydrates involved on this interaction is sialic acid. It is known that parasite trans-sialidase participates with sialic acid in a coordinated fashion in the initial stages of invasion. Given the importance of these sialogycoconjugates, this review sets out various possible biological models for the interaction between the parasite and mammalian cells that possess a sialylated receptor/ligand system.

  13. Nematic order by elastic interactions and rigidity sensing of living cells

    CERN Document Server

    Friedrich, Benjamin M

    2010-01-01

    We predict spontaneous nematic order in an ensemble of active force generators with elastic interactions as a minimal model for early cytoskeletal self-polarization. Mean-field theory is formally equivalent to Maier-Saupe theory for a nematic liquid. However, the elastic interactions are long-ranged (and thus depend on cell shape and matrix elasticity) and originate in cell activity. Depending on the density of force generators, we find two regimes of cellular rigidity sensing for which nematic order depends on matrix rigidity either in a step-like manner or with a maximum at an optimal rigidity.

  14. Oxygen Modulates Human Decidual Natural Killer Cell Surface Receptor Expression and Interactions with Trophoblasts1

    Science.gov (United States)

    Wallace, Alison E.; Goulwara, Sonu S.; Whitley, Guy S.; Cartwright, Judith E.

    2014-01-01

    Decidual natural killer (dNK) cells have been shown to both promote and inhibit trophoblast behavior important for decidual remodeling in pregnancy and have a distinct phenotype compared to peripheral blood NK cells. We investigated whether different levels of oxygen tension, mimicking the physiological conditions of the decidua in early pregnancy, altered cell surface receptor expression and activity of dNK cells and their interactions with trophoblast. dNK cells were isolated from terminated first-trimester pregnancies and cultured in oxygen tensions of 3%, 10%, and 21% for 24 h. Cell surface receptor expression was examined by flow cytometry, and the effects of secreted factors in conditioned medium (CM) on the trophoblast cell line SGHPL-4 were assessed in vitro. SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 10% were significantly more invasive (P oxygen tensions of 3% or 21%. After 24 h, a lower percentage of dNK cells expressed CD56 at 21% oxygen (P oxygen (P oxygen tensions, with large patient variation. This study demonstrates dNK cell phenotype and secreted factors are modulated by oxygen tension, which induces changes in trophoblast invasion and endovascular-like differentiation. Alterations in dNK cell surface receptor expression and secreted factors at different oxygen tensions may represent regulation of function within the decidua during the first trimester of pregnancy. PMID:25232021

  15. Interaction between carbon nanotubes and mammalian cells: characterization by flow cytometry and application

    International Nuclear Information System (INIS)

    We show herein that CNT-cell complexes are formed in the presence of a magnetic field. The complexes were analyzed by flow cytometry as a quantitative method for monitoring the physical interactions between CNTs and cells. We observed an increase in side scattering signals, where the amplitude was proportional to the amount of CNTs that are associated with cells. Even after the formation of CNT-cell complexes, cell viability was not significantly decreased. The association between CNTs and cells was strong enough to be used for manipulating the complexes and thereby conducting cell separation with magnetic force. In addition, the CNT-cell complexes were also utilized to facilitate electroporation. We observed a time constant from CNT-cell complexes but not from cells alone, indicating a high level of pore formation in cell membranes. Experimentally, we achieved the expression of enhanced green fluorescence protein by using a low electroporation voltage after the formation of CNT-cell complexes. These results suggest that higher transfection efficiency, lower electroporation voltage, and miniaturized setup dimension of electroporation may be accomplished through the CNT strategy outlined herein

  16. Interaction between carbon nanotubes and mammalian cells: characterization by flow cytometry and application

    Energy Technology Data Exchange (ETDEWEB)

    Cai Dong; Blair, Derek; Dufort, Fay J; Gumina, Maria R; Chiles, Thomas C [Department of Biology, Boston College, Chestnut Hill, MA 02467 (United States); Huang Zhongping; Canahan, D [NanoLab, Incorporated, Newton, MA 02458 (United States); Hong, George [Bioprocess Division, Millipore Corporation, 80 Ashby Road, Bedford, MA 01730 (United States); Wagner, Dean [Naval Health Research Center, Detachment Environmental Health Effects Laboratory, Wright Patterson Air Force Base, OH 45433 (United States); Kempa, K; Ren, Z F [Department of Physics, Boston College, Chestnut Hill, MA 02467 (United States)], E-mail: caid@bc.edu

    2008-08-27

    We show herein that CNT-cell complexes are formed in the presence of a magnetic field. The complexes were analyzed by flow cytometry as a quantitative method for monitoring the physical interactions between CNTs and cells. We observed an increase in side scattering signals, where the amplitude was proportional to the amount of CNTs that are associated with cells. Even after the formation of CNT-cell complexes, cell viability was not significantly decreased. The association between CNTs and cells was strong enough to be used for manipulating the complexes and thereby conducting cell separation with magnetic force. In addition, the CNT-cell complexes were also utilized to facilitate electroporation. We observed a time constant from CNT-cell complexes but not from cells alone, indicating a high level of pore formation in cell membranes. Experimentally, we achieved the expression of enhanced green fluorescence protein by using a low electroporation voltage after the formation of CNT-cell complexes. These results suggest that higher transfection efficiency, lower electroporation voltage, and miniaturized setup dimension of electroporation may be accomplished through the CNT strategy outlined herein.

  17. Interactions of bovine viral diarrhoea virus glycoprotein E(rns) with cell surface glycosaminoglycans.

    Science.gov (United States)

    Iqbal, M; Flick-Smith, H; McCauley, J W

    2000-02-01

    Recombinant E(rns) glycoprotein of bovine viral diarrhoea virus (BVDV) has been tagged with a marker epitope or linked to an immunoglobulin Fc tail and expressed in insect and mammalian cell lines. The product was shown to be functional, both having ribonuclease activity and binding to a variety of cells that were permissive and non-permissive for replication of BVDV. Addition of soluble E(rns) to the medium blocked replication of BVDV in permissive cells. Binding of epitope-tagged E(rns) to permissive calf testes (CTe) cells was abolished and virus infection was reduced when cells were treated with heparinases I or III. E(rns) failed to bind to mutant Chinese hamster ovary (CHO) cells that lacked glycosaminoglycans (pgsA-745 cells) or heparan sulphate (pgsD-677 cells) but bound to normal CHO cells. E(rns) also bound to heparin immobilized on agarose and could be eluted by heparin and by a high concentration of salt. Flow cytometric analysis of E(rns) binding to CTe cell cultures showed that glycosaminoglycans such as heparin, fucoidan and dermatan sulphate all inhibit binding but dextran sulphate, keratan sulphate, chondroitin sulphate and mannan fail to inhibit binding. The low molecular mass polysulphonated inhibitor suramin also inhibited binding to CTe cells but poly-L-lysine did not. Furthermore, suramin, the suramin analogue CPD14, fucoidan and pentosan polysulphate inhibited the infectivity of virus. It is proposed that binding of E(rns) to cells is through an interaction with glycosaminoglycans and that BVDV may bind to cells initially through this interaction. PMID:10644844

  18. Interaction between adipose tissue-derived mesenchymal stem cells and regulatory T-cells

    NARCIS (Netherlands)

    A.U. Engela (Anja); C.C. Baan (Carla); A. Peeters (Anna); W. Weimar (Willem); M.J. Hoogduijn (Martin)

    2013-01-01

    textabstractMesenchymal stem cells (MSCs) exhibit immunosuppressive capabilities, which have evoked interest in their application as cell therapy in transplant patients. So far it has been unclear whether allogeneic MSCs and host regulatory T-cells (Tregs) functionally influence each other. We inves

  19. Large-scale in silico modeling of metabolic interactions between cell types in the human brain.

    Science.gov (United States)

    Lewis, Nathan E; Schramm, Gunnar; Bordbar, Aarash; Schellenberger, Jan; Andersen, Michael P; Cheng, Jeffrey K; Patel, Nilam; Yee, Alex; Lewis, Randall A; Eils, Roland; König, Rainer; Palsson, Bernhard Ø

    2010-12-01

    Metabolic interactions between multiple cell types are difficult to model using existing approaches. Here we present a workflow that integrates gene expression data, proteomics data and literature-based manual curation to model human metabolism within and between different types of cells. Transport reactions are used to account for the transfer of metabolites between models of different cell types via the interstitial fluid. We apply the method to create models of brain energy metabolism that recapitulate metabolic interactions between astrocytes and various neuron types relevant to Alzheimer's disease. Analysis of the models identifies genes and pathways that may explain observed experimental phenomena, including the differential effects of the disease on cell types and regions of the brain. Constraint-based modeling can thus contribute to the study and analysis of multicellular metabolic processes in the human tissue microenvironment and provide detailed mechanistic insight into high-throughput data analysis. PMID:21102456

  20. Mapping the Complex Morphology of Cell Interactions with Nanowire Substrates Using FIB-SEM

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Købler, Carsten; Jensen, Mikkel Ravn Boye;

    2013-01-01

    image post-processing were specifically optimised for cellular monolayers cultured on nanostructured substrates. Cells display a wide range of interactions with the nanostructures depending on the surface morphology, but also greatly varying from one cell to another on the same substrate, illustrating a...... substrates made from silicon black (Nanograss) with low- and high nanowire density. After culturing for 72 hours the cells were fixed, heavy metal stained, embedded in resin, and processed with FIB-SEM block face imaging without removing the substrate. The sample preparation procedure, image acquisition and......Using high resolution focused ion beam scanning electron microscopy (FIB-SEM) we study the details of cell-nanostructure interactions using serial block face imaging. 3T3 Fibroblast cellular monolayers are cultured on flat glass as a control surface and on two types of nanostructured scaffold...

  1. Columnar cell lesions and pseudoangiomatous hyperplasia like stroma: is there an epithelial-stromal interaction?

    Science.gov (United States)

    Recavarren, Rosemary A; Chivukula, Mamatha; Carter, Gloria; Dabbs, David J

    2009-01-01

    The significance of association between cancer and its microenvironment has been increasingly recognized. It has been shown in animal models that interaction between neoplastic epithelial cells and adjacent stroma can modulate tumor behavior. Carcinoma associated stromal cells can transform normal epithelial cells into neoplastic cells. In breast, columnar cell lesions are non-obligate precursors of low grade ductal carcinoma in situ. Columnar cell lesions can be seen intimately associated with PASH-like-stroma, a lesion we termed as CCPLS. Our aim is to investigate epithelial-stromal interactions in CCPLS and compare them to PASH without columnar cell lesions in breast core needle biopsies. Normal terminal duct lobular unit (TDLU) epithelium was seen in association with columnar cell lesions as well as PASH. Eight (8) cases of each category were examined by a panel of immunostains: CD117 (C-kit), CD34, CD105, bFGF, AR, ER-beta, MIB-1. We observed a markedly decreased expression of c-kit in columnar cell lesions compared to TDLU-epithelium. CD105 showed a quantitative increase in activated vessels in CCPLS compared to PASH. A subset of CCPLS and PASH were androgen receptor positive. A strong nuclear positivity for ER-beta is observed in the epithelium and stroma of all CCPLS cases. We conclude that (1) activated blood vessels predominate in CCPLS; (2) A molecular alteration is signified by c-kit loss in columnar cell lesions; (3) ER-beta and androgen receptor positivity indicate CCPLS are hormonally responsive lesions. Our study suggests an intimate vascular and hormone dependent epithelial-stromal interaction exists in CCPLS lesions. PMID:19918332

  2. Two forms of cerebellar glial cells interact differently with neurons in vitro

    OpenAIRE

    1984-01-01

    Specific interactions between neurons and glia dissociated from early postnatal mouse cerebellar tissue were studied in vitro by indirect immunocytochemical staining with antisera raised against purified glial filament protein, galactocerebroside, and the NILE glycoprotein. Two forms of cells were stained with antisera raised against purified glial filament protein. The first, characterized by a cell body 9 microns diam and processes 130-150 microns long, usually had two to three neurons asso...

  3. Interaction between human immunodeficiency virus and Toxoplasma gondii replication in dually infected monocytoid cells.

    OpenAIRE

    Welker, Y; Molina, J. M.; Poirot, C.; Ferchal, F; Decazes, J M; Lagrange, P.; Derouin, F.

    1993-01-01

    THP-1 monocytoid cells, either not infected or chronically infected with human immunodeficiency virus type 1 (HIV-1), were challenged with Toxoplasma gondii. Parasitic growth, as assessed by trophozoite counting and measurement of supernatant p30 membrane antigen, was similar in HIV-infected and noninfected THP-1 cells. Also, T. gondii did not affect HIV replication. These experiments therefore failed to demonstrate any interaction between HIV-1 and T. gondii replication in concurrently infec...

  4. Hydrophobic interaction governs unspecific adhesion of staphylococci: a single cell force spectroscopy study

    OpenAIRE

    Nicolas Thewes; Peter Loskill; Philipp Jung; Henrik Peisker; Markus Bischoff; Mathias Herrmann; Karin Jacobs

    2014-01-01

    Unspecific adhesion of bacteria is usually the first step in the formation of biofilms on abiotic surfaces, yet it is unclear up to now which forces are governing this process. Alongside long-ranged van der Waals and electrostatic forces, short-ranged hydrophobic interaction plays an important role. To characterize the forces involved during approach and retraction of an individual bacterium to and from a surface, single cell force spectroscopy is applied: A single cell of the apathogenic spe...

  5. IMAGING OF THE INTERACTION OF CANCER CELLS AND THE LYMPHATIC SYSTEM

    OpenAIRE

    Tran Cao, Hop S.; McElroy, Michele; Kaushal, Sharmeela; Robert M. Hoffman; Bouvet, Michael

    2011-01-01

    A thorough understanding of the lymphatic system and its interaction with cancer cells is crucial to our ability to fight cancer metastasis. Efforts to study the lymphatic system had previously been limited by the inability to visualize the lymphatic system in vivo in real time. Fluorescence imaging can address these limitations and allow for visualization of lymphatic delivery and trafficking of cancer cells and possibly therapeutic agents as well. Here, we review recent articles in which an...

  6. Uncovering the role of p53 splice variants in human malignancy: a clinical perspective

    Directory of Open Access Journals (Sweden)

    Surget S

    2013-12-01

    Full Text Available Sylvanie Surget,1,2 Marie P Khoury,1,2 Jean-Christophe Bourdon1,21Dundee Cancer Centre, 2Jacqui Wood Cancer Centre, Ninewells Hospital, University of Dundee, Dundee, UKAbstract: Thirty-five years of research on p53 gave rise to more than 68,000 articles and reviews, but did not allow the uncovering of all the mysteries that this major tumor suppressor holds. How p53 handles the different signals to decide the appropriate cell fate in response to a stress and its implication in tumorigenesis and cancer progression remains unclear. Nevertheless, the uncovering of p53 isoforms has opened new perspectives in the cancer research field. Indeed, the human TP53 gene encodes not only one but at least twelve p53 protein isoforms, which are produced in normal tissues through alternative initiation of translation, usage of alternative promoters, and alternative splicing. In recent years, it became obvious that the different p53 isoforms play an important role in regulating cell fate in response to different stresses in normal cells by differentially regulating gene expression. In cancer cells, abnormal expression of p53 isoforms contributes actively to cancer formation and progression, regardless of TP53 mutation status. They can also be associated with response to treatment, depending on the cell context. The determination of p53 isoform expression and p53 mutation status helps to define different subtypes within a particular cancer type, which would have different responses to treatment. Thus, the understanding of the regulation of p53 isoform expression and their biological activities in relation to the cellular context would constitute an important step toward the improvement of the diagnostic, prognostic, and predictive values of p53 in cancer treatment. This review aims to summarize the involvement of p53 isoforms in cancer and to highlight novel potential therapeutic targets.Keywords: p53, isoforms, p63, p73, alternative splicing, cancer

  7. The interactions of intracellular Protista and their host cells, with special reference to heterotrophic organisms.

    Science.gov (United States)

    Bannister, L H

    1979-04-11

    Intracellular genera are found in all the major groups of Protista, but are particularly common among the dinoflagellates, trypanosomatid zooflagellates and suctorian ciliates; the Sporozoa are nearly all intracellular at some stage of their life, and the Microspora entirely so. Intracellular forms can dwell in the nucleus, within phagosomal or other vacuoles or may lie free in the hyaloplasm of their host cells. Organisms tend to select their hosts from a restricted taxonomic range although there are some notable exceptions. There is also great variation in the types of host cell inhabited. There are various reasons for both host and cell selectivity including recognition phenomena at the cell surfaces. Invasion of host cells is usually preceded by surface interactions with the invader. Some organisms depend upon phagocytosis for entry, but others induce host cells to engulf them by non-phagocytic means or invade by microinjection through the host plasma membrane. Protista avoid lysosomal destruction by their resistance to enzyme attack, by surrounding themselves with lysosome-inhibiting vacuoles, by escaping from the phagosomal system into the hyaloplasm and by choosing host cells which lack lysosomes. Nutrition of intracellular heterotrophic organisms involves some degree of competition with the host cell's metabolism as well as erosion of host cell cytoplasm. In Plasmodium infections, red cells are made more permeable to required nutrients by the action of the parasite on the host cell membrane. The parasite is often dependent upon the host cell for complex nutrients which it cannot synthesize for itself. Intracellular forms often profoundly modify the structure and metabolism of the host cell or interfere with its growth and multiplication. This may result in the final lysis of the host cell at the end of the intracellular phase or before the infection of other cells. Certain types of intracellular organisms may have arisen initially as forms attached to the

  8. Phosphorylated nucleolin interacts with translationally controlled tumor protein during mitosis and with Oct4 during interphase in ES cells.

    Directory of Open Access Journals (Sweden)

    Helena Johansson

    Full Text Available BACKGROUND: Reprogramming of somatic cells for derivation of either embryonic stem (ES cells, by somatic cell nuclear transfer (SCNT, or ES-like cells, by induced pluripotent stem (iPS cell procedure, provides potential routes toward non-immunogenic cell replacement therapies. Nucleolar proteins serve as markers for activation of embryonic genes, whose expression is crucial for successful reprogramming. Although Nucleolin (Ncl is one of the most abundant nucleolar proteins, its interaction partners in ES cells have remained unidentified. METHODOLOGY: Here we explored novel Ncl-interacting proteins using in situ proximity ligation assay (PLA, colocalization and immunoprecipitation (IP in ES cells. PRINCIPAL FINDINGS: We found that phosphorylated Ncl (Ncl-P interacted with translationally controlled tumor protein (Tpt1 in murine ES cells. The Ncl-P/Tpt1 complex peaked during mitosis and was reduced upon retinoic acid induced differentiation, signifying a role in cell proliferation. In addition, we showed that Ncl-P interacted with the transcription factor Oct4 during interphase in human as well as murine ES cells, indicating of a role in transcription. The Ncl-P/Oct4 complex peaked during early stages of spontaneous human ES cell differentiation and may thus be involved in the initial differentiation event(s of mammalian development. CONCLUSIONS: Here we described two novel protein-protein interactions in ES cells, which give us further insight into the complex network of interacting proteins in pluripotent cells.

  9. Role of Protein Glycosylation in Candida parapsilosis Cell Wall Integrity and Host Interaction

    Science.gov (United States)

    Pérez-García, Luis A.; Csonka, Katalin; Flores-Carreón, Arturo; Estrada-Mata, Eine; Mellado-Mojica, Erika; Németh, Tibor; López-Ramírez, Luz A.; Toth, Renata; López, Mercedes G.; Vizler, Csaba; Marton, Annamaria; Tóth, Adél; Nosanchuk, Joshua D.; Gácser, Attila; Mora-Montes, Héctor M.

    2016-01-01

    Candida parapsilosis is an important, emerging opportunistic fungal pathogen. Highly mannosylated fungal cell wall proteins are initial contact points with host immune systems. In Candida albicans, Och1 is a Golgi α1,6-mannosyltransferase that plays a key role in the elaboration of the N-linked mannan outer chain. Here, we disrupted C. parapsilosis OCH1 to gain insights into the contribution of N-linked mannosylation to cell fitness and to interactions with immune cells. Loss of Och1 in C. parapsilosis resulted in cellular aggregation, failure of morphogenesis, enhanced susceptibility to cell wall perturbing agents and defects in wall composition. We removed the cell wall O-linked mannans by β-elimination, and assessed the relevance of mannans during interaction with human monocytes. Results indicated that O-linked mannans are important for IL-1β stimulation in a dectin-1 and TLR4-dependent pathway; whereas both, N- and O-linked mannans are equally important ligands for TNFα and IL-6 stimulation, but neither is involved in IL-10 production. Furthermore, mice infected with C. parapsilosis och1Δ null mutant cells had significantly lower fungal burdens compared to wild-type (WT)-challenged counterparts. Therefore, our data are the first to demonstrate that C. parapsilosis N- and O-linked mannans have different roles in host interactions than those reported for C. albicans. PMID:27014229

  10. Interaction of CSR1 with XIAP reverses inhibition of caspases and accelerates cell death.

    Science.gov (United States)

    Zheng, Zhong-Liang; Tan, Lang-Zhu; Yu, Yan P; Michalopoulos, George; Luo, Jian-Hua

    2012-08-01

    Cellular Stress Response 1 (CSR1) is a tumor suppressor gene that is located at 8p21, a region that is frequently deleted in prostate cancer as well as a variety of human malignancies. Previous studies have indicated that the expression of CSR1 induces cell death. In this study, we found that CSR1 interacts with X-linked Inhibitor of Apoptosis Protein (XIAP), using yeast two-hybrid screening analyses. XIAP overexpression has been found in many human cancers, and forced expression of XIAP blocks apoptosis. Both in vitro and in vivo analyses indicated that the C-terminus of CSR1 binds XIAP with high affinity. Through a series of in vitro recombinant protein-binding analyses, the XIAP-binding motif in CSR1 was determined to include amino acids 513 to 572. Targeted knock-down of XIAP enhanced CSR1-induced cell death, while overexpression of XIAP antagonized CSR1 activity. The binding of CSR1 with XIAP enhanced caspase-9 and caspase-3 protease activities, and CSR1-induced cell death was dramatically reduced on expression of a mutant CSR1 that does not bind XIAP. However, a XIAP mutant that does not interact with caspase-9 had no impact on CSR1-induced cell death. These results suggest that cell death is induced when CSR1 binds XIAP, preventing the interaction of XIAP with caspases. Thus, this study may have elucidated a novel mechanism by which tumor suppressors induce cell death. PMID:22683311

  11. The study of flow and proton exchange interactions in the cylindrical solid oxide fuel cell

    International Nuclear Information System (INIS)

    The solid oxide fuel cell operates at high temperature of about 1000 deg C. In this temperature, some known materials such as Ni, ... which is abundant in the nature, can be used as a catalyst in the electrodes. The electrolytes of such cell solid oxide fuel cell can be made through non-porous solid ceramics such as Zircon's (ZrO2). It can be stabilized using a doped Yttrium oxide. The importance of Yttria-stabilised Zirconia at high temperature belongs to the transport of oxygen ions through the electrolyte. Oxygen using in the hot cathode side causes a considerable reduction in the concentration of oxygen molecules. The oxygen ions exchange through the electrolyte relates to the molecular oxygen concentration gradient between the anode and cathode. Applying fuels such as hydrogen or natural gas in the anode and its chemical reaction with oxygen ions transfer from cathode through the electrolyte, produce electricity, water and heat. To study the ion exchange and its interaction into solid oxide fuel cell, a mathematical model had been considered in this article. This model simulates and illustrates the interaction, diffusion and oxygen ions exchange into fuel cell. The electrical power of fuel cell due to the ion exchange can be obtained using a simulation method. The ion exchange simulation, diffusion of molecules, their interactions and system development through the mathematical model has been discussed in this paper

  12. Interactions between zebrafish pigment cells responsible for the generation of Turing patterns.

    Science.gov (United States)

    Nakamasu, Akiko; Takahashi, Go; Kanbe, Akio; Kondo, Shigeru

    2009-05-26

    The reaction-diffusion system is one of the most studied nonlinear mechanisms that generate spatially periodic structures autonomous. On the basis of many mathematical studies using computer simulations, it is assumed that animal skin patterns are the most typical examples of the Turing pattern (stationary periodic pattern produced by the reaction-diffusion system). However, the mechanism underlying pattern formation remains unknown because the molecular or cellular basis of the phenomenon has yet to be identified. In this study, we identified the interaction network between the pigment cells of zebrafish, and showed that this interaction network possesses the properties necessary to form the Turing pattern. When the pigment cells in a restricted region were killed with laser treatment, new pigment cells developed to regenerate the striped pattern. We also found that the development and survival of the cells were influenced by the positioning of the surrounding cells. When melanophores and xanthophores were located at adjacent positions, these cells excluded one another. However, melanophores required a mass of xanthophores distributed in a more distant region for both differentiation and survival. Interestingly, the local effect of these cells is opposite to that of their effects long range. This relationship satisfies the necessary conditions required for stable pattern formation in the reaction-diffusion model. Simulation calculations for the deduced network generated wild-type pigment patterns as well as other mutant patterns. Our findings here allow further investigation of Turing pattern formation within the context of cell biology. PMID:19433782

  13. Cellular interaction between fixed and living cells; transfer of radioactive materials from living cells to fixed cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakiyama, H.; Otsu, H.; Kanegasaki, S.

    1979-06-01

    Transfer of radioactive materials to fixed cells from an overlying layer of living cells has been examined to determine whether fixed cells can act as acceptors of glycosyltransferases of living cells. After the incubation of living cells were removed by EDTA treatment, and the radioactivity associated with the fixed cells was determined. Lipids, proteins and carbohydrates were found to be transfered from the living cells to the fixed cells. The amount of radioactivity transferred to the fixed cells was dependent on the number of both fixed and living cells and increased with the time of incubation. When fixed cells were treated with chloroform-methanol before the addition of living cells, the transfer of both lipids and proteins to the fixed cells decreased drastically, but only a slight decrease in carbohydrate transfer was observed. Most of the radioactive materials transferred from living cells labeled with glucosamine or fucose to chloroform-methanol-treated fixed cells were solubilized by trypsin but not by the detergents tested. Approximately 55% of the materials transferred from the cells labeled with glucosamine could be solubilized by hyaluronidase and chondroitinase, and the rest was solubilized by neuraminidase and a glycosidase mixture. The treatment of chloroform-methanol-extracted fixed cells with trypsin caused a significant decrease in the transfer from cells labeled with glucosamine. When nucleotide sugars were used as the radioactive precursor, no significant amount of radioactivity was transferred to the fixed cells.

  14. A targeting drug-delivery model via interactions among cells and liposomes under ultrasonic excitation

    International Nuclear Information System (INIS)

    In our previous work, it was found that acoustic cavitation might play a role in improving the cell permeability to microparticles when liposomes were used in an in vitro experiment. The purpose of this project is to expand our study and to learn other possible mechanisms by which cells may interact with liposomes under ultrasound (US) excitation and become transiently permeable to microparticles. It is further hypothesized that two possible scenarios may be involved in in vitro experiments: (1) drug-carrying liposomes transiently overcome the cell membrane barrier and enter into a cell while the cell is still viable; (2) the liposomes incorporate with a cell at its membrane through a fusing process. To prove this hypothesis, liposomes of two different structures were synthesized: one has fluorescent molecules encapsulated into liposomes and the other has fluorescent markers incorporated into the shells of liposomes. Liposomes of each kind were mixed with human breast cancer cells (MCF7-cell line) in a suspension at 5 (liposomes) : 1 (cell) ratio and were then exposed to a focused 1 MHz ultrasound beam at its focal region for 40 s. The US signal contained 20 cycles per tone-burst at a pulse-repetition-frequency of 10 kHz; the spatial peak acoustic pressure amplitude was 0.25 MPa. It was found that the possible mechanisms might include the acoustic cavitation, the endocytosis and cell-fusion. Acoustic radiation force might make liposomes collide with cells effectively and facilitate the delivery process

  15. Effects of transforming growth interacting factor on biological behaviors of gastric carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Zhong-Liang Hu; Ji-Fang Wen; De-Sheng Xiao; Hui Zhen; Chun-Yan Fu

    2005-01-01

    AIM:Transforming growth interacting factor (TGIF) is an inhibitor of both transforming growth factor β (TGF-β) and retinoid signaling pathways. Moreover, the activation of MAPK pathway can prolong its half-life. However, its role in carcinogenesis is still unknown. Thus we attempted to investigate the effect of TGIF on biologic behaviors of gastric carcinoma cells.METHODS: Gastric carcinoma cell line, SGC-7901, was stably transfected with plasmid PcDNA3.1-TGIF. Western blotting and cell immunohistochemistry screening for the highly expressing clone of TGIF were employed. The growth of transfected cells was investigated by MTT and colonyformation assays, and apoptosis was measured by flow cytometry (FCM) and transmission electron microscopy.Tumorigenicity of the transfectant cells was also analyzed.RESULTS: TGIF had no effect on the proliferation, cell cycle and apoptosis of SGC-7901 cells, but cellular organelles of cells transfected with TGIF were richer than those of vector control or parental cells. Its clones were smaller than the control ones in plate efficiency, and its tumor tissues also had no obvious necrosis compared with the vector control or parental cells. Moreover, TGIF could resist TGF-β mediated growth inhibition.CONCLUSION: TGIF may induce differentiation of stomach neoplastic cells. In addition, TGIF can counteract the growth inhibition induced by TGF-β.

  16. Interaction of plasminogen-related protein B with endothelial and smooth muscle cells in vitro.

    Science.gov (United States)

    Morioka, Hideo; Morii, Takeshi; Vogel, Tikva; Hornicek, Francis J; Weissbach, Lawrence

    2003-07-01

    Plasminogen-related protein B (PRP-B) closely resembles the N-terminal plasminogen activation peptide, which is released from plasminogen during conversion to plasmin. We have previously demonstrated that the steady-state level of mRNA encoding PRP-B is increased within tumor tissues, and that recombinant PRP-B antagonizes neoplastic growth when administered systemically to mice harboring tumors, but no insights into the cell targets of PRP-B have been presented. Employing serum-free medium optimized for culturing human endothelial or smooth muscle cells, we show that recombinant PRP-B inhibits basic fibroblast growth factor-dependent cell migration for both cell types, as well as tube formation of endothelial cells. Comparison with the angiogenesis inhibitors angiostatin and endostatin revealed similar results. Recombinant PRP-B is effective in promoting cell attachment of endothelial and smooth muscle cells, and antibody interference experiments reveal that the interaction of recombinant PRP-B with endothelial cells is mediated at least in part by alpha(v)-containing integrins. Inhibition of angiogenesis in vivo by PRP-B was demonstrated in the chicken chorioallantoic membrane assay. PRP-B and other antiangiogenic molecules may elicit metabolic perturbations in endothelial cells as well as perivascular mesenchymal cells such as smooth muscle cells and pericytes. PMID:12799192

  17. Signaling through urokinase and urokinase receptor in lung cancer cells requires interactions with beta1 integrins.

    Science.gov (United States)

    Tang, Chi-Hui; Hill, Marla L; Brumwell, Alexis N; Chapman, Harold A; Wei, Ying

    2008-11-15

    The urokinase receptor (uPAR) is upregulated upon tumor cell invasion and correlates with poor lung cancer survival. Although a cis-interaction with integrins has been ascribed to uPAR, whether this interaction alone is critical to urokinase (uPA)- and uPAR-dependent signaling and tumor promotion is unclear. Here we report the functional consequences of point mutations of uPAR (H249A-D262A) that eliminate beta1 integrin interactions but maintain uPA binding, vitronectin attachment and association with alphaV integrins, caveolin and epidermal growth factor receptor. Disruption of uPAR interactions with beta1 integrins recapitulated previously reported findings with beta1-integrin-derived peptides that attenuated matrix-dependent ERK activation, MMP expression and in vitro migration by human lung adenocarcinoma cell lines. The uPAR mutant cells acquired enhanced capacity to adhere to vitronectin via uPAR-alphaVbeta5-integrin, rather than through the uPAR-alpha3beta1-integrin complex and they were unable to initiate uPA signaling to activate ERK, Akt or Stat1. In an orthotopic lung cancer model, uPAR mutant cells exhibited reduced tumor size compared with cells expressing wild-type uPAR. Taken together, the results indicate that uPAR-beta1-integrin interactions are essential to signals induced by integrin matrix ligands or uPA that support lung cancer cell invasion in vitro and progression in vivo. PMID:18940913

  18. Novel therapeutic strategies targeting tumor-stromal interactions in pancreatic cancer

    OpenAIRE

    ShinHamada

    2013-01-01

    Therapy-resistance and postoperative recurrence are causes of the poor prognosis in pancreatic cancer. Conventional therapies have a limited impact on the control of pancreatic cancer, resulting in the rapid re-growth of the tumor. The indispensable role of tumor-stromal interaction, which acts as a defender of cancer cells and enhances malignant potential, is being uncovered now. For example, specific signaling pathways for desmoplasia induction have been identified, such as sonic hedgehog (...

  19. Intercellular interactions and progression of hormonal resistance of breast cancer cells

    Directory of Open Access Journals (Sweden)

    S. E. Semina

    2015-01-01

    Full Text Available The main goal of the study is the analysis of the role of cell-cell interactions in the formation of the tumor cell resistance to hormonal drugs. About 70 % of breast tumors contain estrogen receptor (ER, a key molecular target for hormone (endocrine therapy. However, the efficiency of endocrine therapy of breast cancer is limited by the development of hormone resistance which leads to progression of tumor cells to hormone-independent phenotype, increase in tumor malignancy and worse prognosis. Hormonal independence may be accompanied with the loss of the receptors, as well as with the another mechanisms including ligand-independent receptor activation, disbalance between receptor activators and repressors, stimulation of hormone-independent pathways. It is less known about the role of the intercellular interactions in the progression of hormonal resistance. Several studies demonstrate the involvement of cell junctions in the mediating of cell response to (anti estrogens, however the significance of cell-cell contacts in the formation of hormonal resistance still not clear. Here we have hypothesized that the formation of the hormone resistance of tumors may be based, at least in part, on the transferring of the resistant phenotype from the resistant to hormone-sensitive cells – as a result of the secretion of the specific factors acting in the paracrine manner or via the direct cell-cell contacts. Using the estrogen-dependent breast cancer cells MCF-7 and the resistant subline MCF-7 / T developed by long-term cultivation of MCF-7 cells in the presence of antiestrogen tamoxifen, we investigated the possible changes in the hormonal sensitivity of these cells caused by the co-cultivation in vitro. To discern the cell cultures, the MCF-7 / T cells were previously transfected with the plasmid containing the gene of the green fluorescent protein (GFP, and GFP-positive hormone-resistant subline MCF-7 / T / GFP+ was developed. We showed that the co

  20. Bacterial-induced cell reprogramming to stem cell-like cells: new premise in host-pathogen interactions

    OpenAIRE

    Hess, Samuel; Rambukkana, Anura

    2014-01-01

    Bacterial pathogens employ a myriad of strategies to alter host tissue cell functions for bacterial advantage during infection. Recent advances revealed a fusion of infection biology with stem cell biology by demonstrating developmental reprogramming of lineage committed host glial cells to progenitor/stem cell-like cells by an intracellular bacterial pathogen Mycobacterium leprae. Acquisition of migratory and immunomodulatory properties of such reprogrammed cells provides an added advantage ...

  1. Pharmacological inhibition of radiation induced in vitro tumor cell/endothelium cell interactions and in vivo metastasis processes

    International Nuclear Information System (INIS)

    Exposure of endothelial cells with ionizing radiation (IR) or treatment with inflammatory cytokines (e. g. TNFα) induces a Rho-GTPase and NF-κB dependent activation of the expression of various cell adhesion molecules, including E-selectin. E-selectin mediates the adhesion of tumor cells (TC) to endothelial cells and is probably involved in the extravasation step of circulating tumor cells. HMG-CoA reductase inhibitors (e. g. lovastatin) inhibit the function of Rho-GTPases and thus are anticipated to attenuate Rho-regulated cell-cell-adhesion as well. This study focuses on the influence of IR and TNFα on the expression of endothelial- and/or tumor cell-specific pro-adhesive factors and whether these effects are influenced by lovastatin. To this end, the effect of IR and TNFα on cell-cell-interactions between human colon carcinoma cells (HT29) and human umbilical vein endothelial cells (HUVEC) was investigated using an ELISA-based cell adhesion-assay. Moreover, the influence of pre-treatment with lovastatin and other types of inhibitors on HUVEC-HT29 adhesion was monitored. Additionally, we investigated the effect of lovastatin on mRNA expression level of different cell adhesion molecules, metastatic factors and DNA-repair genes upon radiation exposure by qRT-PCR. To scrutinize the in vivo relevance of the data obtained, we investigated the effect of total body irradiation (TBI) on the mRNA expression of pro-adhesive factors in BALB/c mice. To analyze tumor cell extravasation, tumor cells were injected into the lateral tail vein of immundeficient mice, followed by total body irradiation (TBI, 4 Gy). After four weeks a large increase of lung metastases was monitored, which could be blocked by preatreatment of the mice with lovastatin, the Rac1-specific small-molecule inhibitor NSC23766 as well as the sLex-mimetic glycyrrhizin. Summarizing, we provide evidence, that irradiation promotes upregulation of different cell adhesion molecules in vitro and stimulates

  2. INTERACT

    DEFF Research Database (Denmark)

    Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD

    , and demonstrated in public settings. We then describe INTERACT, a proposed research project that stages the robotic marionettes in a live performance. The interdisciplinary project brings humanities research to bear on scientific and technological inquiry, and culminates in the development a live......This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions...... interaction between a human operator and an artificial actor or agent. We can apply insights from puppetry to develop culturally-aware robots. Here we describe the development of a robotic marionette theatre wherein robotic controllers assume the role of human puppeteers. The system has been built, tested...

  3. Host parasite communications-Messages from helminths for the immune system: Parasite communication and cell-cell interactions.

    Science.gov (United States)

    Coakley, Gillian; Buck, Amy H; Maizels, Rick M

    2016-07-01

    Helminths are metazoan organisms many of which have evolved parasitic life styles dependent on sophisticated manipulation of the host environment. Most notably, they down-regulate host immune responses to ensure their own survival, by exporting a range of immuno-modulatory mediators that interact with host cells and tissues. While a number of secreted immunoregulatory parasite proteins have been defined, new work also points to the release of extracellular vesicles, or exosomes, that interact with and manipulate host gene expression. These recent results are discussed in the overall context of how helminths communicate effectively with the host organism. PMID:27297184

  4. Adhesion frequency assay for in situ kinetics analysis of cross-junctional molecular interactions at the cell-cell interface.

    Science.gov (United States)

    Zarnitsyna, Veronika I; Zhu, Cheng

    2011-01-01

    The micropipette adhesion assay was developed in 1998 to measure two-dimensional (2D) receptor-ligand binding kinetics. The assay uses a human red blood cell (RBC) as adhesion sensor and presenting cell for one of the interacting molecules. It employs micromanipulation to bring the RBC into contact with another cell that expresses the other interacting molecule with precisely controlled area and time to enable bond formation. The adhesion event is detected as RBC elongation upon pulling the two cells apart. By controlling the density of the ligands immobilized on the RBC surface, the probability of adhesion is kept in mid-range between 0 and 1. The adhesion probability is estimated from the frequency of adhesion events in a sequence of repeated contact cycles between the two cells for a given contact time. Varying the contact time generates a binding curve. Fitting a probabilistic model for receptor-ligand reaction kinetics to the binding curve returns the 2D affinity and off-rate. The assay has been validated using interactions of Fcγ receptors with IgG Fc, selectins with glycoconjugate ligands, integrins with ligands, homotypical cadherin binding, T cell receptor and coreceptor with peptide-major histocompatibility complexes. The method has been used to quantify regulations of 2D kinetics by biophysical factors, such as the membrane microtopology, membrane anchor, molecular orientation and length, carrier stiffness, curvature, and impingement force, as well as biochemical factors, such as modulators of the cytoskeleton and membrane microenvironment where the interacting molecules reside and the surface organization of these molecules. The method has also been used to study the concurrent binding of dual receptor-ligand species, and trimolecular interactions using a modified model. The major advantage of the method is that it allows study of receptors in their native membrane environment. The results could be very different from those obtained using purified

  5. Effects of spermatozoa-oviductal cell coincubation time and oviductal cell age on spermatozoa-oviduct interactions.

    Science.gov (United States)

    Aldarmahi, Ahmed; Elliott, Sarah; Russell, Jean; Fazeli, Alireza

    2014-01-01

    The oviduct plays a crucial role in sperm storage, maintenance of sperm viability and sperm transport to the site of fertilisation. The aim of the present study was to investigate the effects of oviductal cell culture passage number, oviductal cell age and spermatozoa-oviduct coincubation times on gene expression in oviductal cells. Immortalised oviductal epithelial cells (OPEC) obtained from two different cell passages (36 and 57) were subcultured three times with and without spermatozoa for 24 h (control group). In a second study, OPEC were cocultured with spermatozoa for different time intervals (0, 4, 12 and 24 h). Expression of adrenomedullin (ADM), heat shock 70 kDa protein 8 (HSPA8) and prostaglandin E synthase (PGES) in OPEC was measured by quantitative polymerase chain reaction. The expression of ADM and HSPA8 was decreased significantly in OPEC cells from Passage 57, particularly in the later subculture group. These effects on HSPA8, but not ADM, expression in OPEC were further altered after coculture with spermatozoa for 24 h. We also demonstrated that spermatozoa-oviduct coculture for 12 and 24 h resulted in significantly higher expression of ADM, HSPA8 and PGES in OPEC. Overall, the data suggest that the OPEC lose some of their properties as a result of oviductal cell aging and that there are spermatozoa-oviduct interactions leading to increased oviductal cell gene expression. PMID:23551866

  6. Interaction of bone marrow-derived mesenchymal stem cells on neuroblastoma cells

    OpenAIRE

    Kwong, Rebecca Sze-Wai.

    2012-01-01

    Background Mesenchymal stem cells (MSC) were first discovered in the 1970s by scientist A.J. Friedenstein and his colleagues. Friedenstein isolated the first mesenchymal stem cells and was credited for discovering its multilineage differentiation potential. To this day, an extensive amount of research has been conducted on the use of these cells in the treatment of degenerative diseases and various autoimmune disorders. Its migratory ability and immunosuppressive characteristics make MSCs...

  7. Non-CpG Oligonucleotides Exert Adjuvant Effects by Enhancing Cognate B Cell-T Cell Interactions, Leading to B Cell Activation, Differentiation, and Isotype Switching

    Directory of Open Access Journals (Sweden)

    Melinda Herbáth

    2015-01-01

    Full Text Available Natural and synthetic nucleic acids are known to exert immunomodulatory properties. Notably, nucleic acids are known to modulate immune function via several different pathways and various cell types, necessitating a complex interpretation of their effects. In this study we set out to compare the effects of a CpG motif containing oligodeoxynucleotide (ODN with those of a control and an inhibitory non-CpG ODN during cognate B cell-T cell interactions. We employed an antigen presentation system using splenocytes from TCR transgenic DO11.10 mice and the ovalbumin peptide recognized by the TCR as model antigen. We followed early activation events by measuring CD69 expression, late activation by MHC class II expression, cell division and antibody production of switched, and nonswitched isotypes. We found that both of the tested non-CpG ODN exerted significant immunomodulatory effects on early T cell and on late B cell activation events. Importantly, a synergism between non-CpG effects and T cell help acting on B cells was observed, resulting in enhanced IgG production following cognate T cell-B cell interactions. We propose that non-CpG ODN may perform as better adjuvants when a strong antigen-independent immune activation, elicited by CpG ODNs, is undesirable.

  8. Surface modification of hydrophobic polymers for improvement of endothelial cell-surface interactions

    NARCIS (Netherlands)

    Dekker, A.; Reitsma, K.; Beugeling, T.; Bantjes, A.; Feijen, J.; Kirkpatrick, C.J.; Aken, van W.G.

    1992-01-01

    The aim of this study is to improve the interaction of endothelial cells with polymers used in vascular prostheses. Polytetrafluoroethylene (PTFE; Teflon) films were treated by means of nitrogen and oxygen plasmas. Depending on the plasma exposure time, modified PTFE surfaces showed water-contact an

  9. N-cadherin-mediated interaction with multiple myeloma cells inhibits osteoblast differentiation

    NARCIS (Netherlands)

    R.W.J. Groen; M.F.M. de Rooij; K.A. Kocemba; R.M. Reijmers; A. de Haan-Kramer; M.B. Overdijk; L. Aalders; H. Rozemuller; A.C.M. Martens; P.L. Bergsagel; M.J. Kersten; S.T. Pals; M. Spaargaren

    2011-01-01

    Background Multiple myeloma is a hematologic malignancy characterized by a clonal expansion of malignant plasma cells in the bone marrow, which is accompanied by the development of osteolytic lesions and/or diffuse osteopenia. The intricate bi-directional interaction with the bone marrow microenviro

  10. Cell interaction with modified nanotubes formed on titanium alloy Ti-6Al-4V

    Czech Academy of Sciences Publication Activity Database

    Moravec, H.; Vandrovcová, Marta; Chotová, K.; Fojt, J.; Průchová, E.; Joska, L.; Bačáková, Lucie

    2016-01-01

    Roč. 65 (2016), s. 313-322. ISSN 0928-4931 R&D Projects: GA ČR(CZ) GA15-01558S Institutional support: RVO:67985823 Keywords : titanium * electrochemical oxidation * hydrothermal modification * thermal treatment * protein adsorption * cell interaction Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.088, year: 2014

  11. Probiotic Gut Microbiota Isolate Interacts with Dendritic Cells via Glycosylated Heterotrimeric Pili

    NARCIS (Netherlands)

    Tytgat, Hanne; Teijlingen, van N.H.; Sullan, R.M.; Douillard, F.P.; Rasinkangas, P.; Messing, M.; Reunanen, J.; Satokari, R.; Vanderleyden, J.; Dufrêne, Y.F.; Geijtenbeek, T.B.H.; Vos, de W.M.; Lebeer, S.

    2016-01-01

    Mapping of the microbial molecules underlying microbiota-host interactions is key to understand how microbiota preserve mucosal homeostasis. A pivotal family of such bacterial molecules are pili. Pili are proteinaceous cell wall appendages with a well-documented role in adhesion, whilst their role i

  12. Formation of functional cell membrane domains: the interplay of lipid- and protein-mediated interactions.

    OpenAIRE

    Harder, Thomas

    2003-01-01

    Numerous cell membrane associated processes, including signal transduction, membrane sorting, protein processing and virus trafficking take place in membrane subdomains. Protein-protein interactions provide the frameworks necessary to generate biologically functional membrane domains. For example, coat proteins define membrane areas destined for sorting processes, viral proteins self-assemble to generate a budding virus, and adapter molecules organize multimolecular signalling assemblies, whi...

  13. Single-cell force spectroscopy of the medically important Staphylococcus epidermidis-Candida albicans interaction

    Science.gov (United States)

    Beaussart, Audrey; Herman, Philippe; El-Kirat-Chatel, Sofiane; Lipke, Peter N.; Kucharíková, Soňa; van Dijck, Patrick; Dufrêne, Yves F.

    2013-10-01

    Despite the clinical importance of bacterial-fungal interactions, their molecular details are poorly understood. A hallmark of such medically important interspecies associations is the interaction between the two nosocomial pathogens Staphylococcus aureus and Candida albicans, which can lead to mixed biofilm-associated infections with enhanced antibiotic resistance. Here, we use single-cell force spectroscopy (SCFS) to quantify the forces engaged in bacterial-fungal co-adhesion, focusing on the poorly investigated S. epidermidis-C. albicans interaction. Force curves recorded between single bacterial and fungal germ tubes showed large adhesion forces (~5 nN) with extended rupture lengths (up to 500 nm). By contrast, bacteria poorly adhered to yeast cells, emphasizing the important role of the yeast-to-hyphae transition in mediating adhesion to bacterial cells. Analysis of mutant strains altered in cell wall composition allowed us to distinguish the main fungal components involved in adhesion, i.e. Als proteins and O-mannosylations. We suggest that the measured co-adhesion forces are involved in the formation of mixed biofilms, thus possibly as well in promoting polymicrobial infections. In the future, we anticipate that this SCFS platform will be used in nanomedicine to decipher the molecular mechanisms of a wide variety of pathogen-pathogen interactions and may help in designing novel anti-adhesion agents.

  14. Interactions between organic anions on multiple transporters in Caco-2 cells

    DEFF Research Database (Denmark)

    Grandvuinet, Anne Sophie; Steffansen, Bente

    2011-01-01

    Caco-2 cell line may be used as an overall model to predict interactions on multiple membrane transporters in the intestine. Taurocholic acid (TCA) and estrone-3-sulfate (E1S) were used as model substrates. Possible inhibitors studied were TCA, E1S, taurolithocholic acid, fluvastatin, and glipizide...

  15. Molecular Dynamics Study on the Biophysical Interactions of Seven Green Tea Catechins with Cell Membranes

    Science.gov (United States)

    Molecular dynamics simulations were performed to study the interactions of bioactive catechins (flavonoids) commonly found in green tea with lipid bilayers, as model for cell membranes. Previously, a number of experimental studies rationalized catechin’s anticarcinogenic, antibacterial, and other be...

  16. Cell-type specific adhesive interactions of skeletal myoblasts with thrombospondin-1.

    OpenAIRE

    Adams, J. C.; Lawler, J

    1994-01-01

    Thrombospondin-1 (TSP-1) is an extracellular matrix glycoprotein that may play important roles in the morphogenesis and repair of skeletal muscle. To begin to explore the role of thrombospondin-1 in this tissue, we have examined the interactions of three rodent skeletal muscle cell lines, C2C12, G8, and H9c2, with platelet TSP-1. The cells secrete thrombospondin and incorporate it into the cell layer in a distribution distinct from that of fibronectin. Myoblasts attach and spread on fibronect...

  17. Tumor cell-macrophage interactions increase angiogenesis through secretion of EMMPRIN

    OpenAIRE

    Amit-Cohen, Bat-Chen; Rahat, Maya M.; Rahat, Michal A.

    2013-01-01

    Tumor macrophages are generally considered to be alternatively/M2 activated to induce secretion of pro-angiogenic factors such as VEGF and MMPs. EMMPRIN (CD147, basigin) is overexpressed in many tumor types, and has been shown to induce fibroblasts and endothelial cell expression of MMPs and VEGF. We first show that tumor cell interactions with macrophages resulted in increased expression of EMMPRIN and induction of MMP-9 and VEGF. Human A498 renal carcinoma or MCF-7 breast carcinoma cell lin...

  18. Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization

    NARCIS (Netherlands)

    Denholtz, M.; Bonora, G.; Chronis, C.; Splinter, E.; de Laat, W.; Ernst, J.; Pellegrini, M.; Plath, K.

    2013-01-01

    The relationship between 3D organization of the genome and gene-regulatory networks is poorly understood. Here, we examined long-range chromatin interactions genome-wide in mouse embryonic stem cells (ESCs), iPSCs, and fibroblasts and uncovered a pluripotency-specific genome organization that is gra

  19. The influence of carbohydrates in the interaction of Paracoccidioides brasiliensis with CCL-6 cells in vitro

    Directory of Open Access Journals (Sweden)

    Francisco Laurindo da Silva

    2012-12-01

    Full Text Available INTRODUCTION: Little is known about the early events in the interaction between Paracoccidioides brasiliensis and its host. To understand the effect of carbohydrates in the interaction between the fungus and epithelial cell in culture, we analyzed the influence of different carbohydrate solutions on the adhesion of P. brasiliensis yeast cells to CCL-6 cells in culture. METHODS: Fungal cells were cultivated with the epithelial cell line, and different concentrations of D-fucose, N-acetyl-glucosamine, D-mannose, D-glucosamine, D-galactosamine, sorbitol and fructose were added at the beginning of the experiment. Six hours after the treatment, the cells were fixed and observed by light microscopy. The number of P. brasiliensis cells that were adhered to the CCL-6 monolayer was estimated. RESULTS: The number of adhesion events was diminished following treatments with D-fucose, N-acetyl-glucosamine, D-mannose, D-glucosamine and D-galactosamine as compared to the untreated controls. Sorbitol and fructose-treated cells had the same adhesion behavior as the observed in the control. P. brasiliensis propagules were treated with fluorescent lectins. The FITC-labeled lectins WGA and Con-A bound to P. brasiliensis yeast cells, while SBA and PNA did not. CONCLUSIONS: The perceptual of adhesion between P. brasiliensis and CCL-6 cells decreased with the use of D-mannose, N-acetyl-glucosamine and D-glucosamine. The assay using FITC-labeled lectins suggests the presence of N-acetyl-glucosamine, α-mannose and α-glucose on the P. brasiliensis cell surface. An enhanced knowledge of the mediators of adhesion on P. brasiliensis could be useful in the future for the development of more efficient and less harmful methods for disease treatment and control.

  20. Review Article: The weak interactive characteristic of resonance cells and broadband effect of metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaopeng, E-mail: xpzhao@nwpu.edu.cn; Song, Kun [Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi’an, 710129 (China)

    2014-10-15

    Metamaterials are artificial media designed to control electromagnetic wave propagation. Due to resonance, most present-day metamaterials inevitably suffer from narrow bandwidth, extremely limiting their practical applications. On the basis of tailored properties, a metamaterial within which each distinct unit cell resonates at its inherent frequency and has almost no coupling effect with the other ones, termed as weak interaction system, can be formulated. The total response of a weak interaction system can be treated as an overlap of the single resonance spectrum of each type of different unit cells. This intriguing feature therefore makes it possible to accomplish multiband or broadband metamaterials in a simple way. By introducing defects into metamaterials to form a weak interaction system, multiband and broadband electromagnetic metamaterials have first been experimentally demonstrated by our group. The similar concept can also be readily extended to acoustic and seismic metamaterials.

  1. Inductive interactions mediated by interplay of asymmetric signalling underlie development of adult haematopoietic stem cells.

    Science.gov (United States)

    Souilhol, Céline; Gonneau, Christèle; Lendinez, Javier G; Batsivari, Antoniana; Rybtsov, Stanislav; Wilson, Heather; Morgado-Palacin, Lucia; Hills, David; Taoudi, Samir; Antonchuk, Jennifer; Zhao, Suling; Medvinsky, Alexander

    2016-01-01

    During embryonic development, adult haematopoietic stem cells (HSCs) emerge preferentially in the ventral domain of the aorta in the aorta-gonad-mesonephros (AGM) region. Several signalling pathways such as Notch, Wnt, Shh and RA are implicated in this process, yet how these interact to regulate the emergence of HSCs has not previously been described in mammals. Using a combination of ex vivo and in vivo approaches, we report here that stage-specific reciprocal dorso-ventral inductive interactions and lateral input from the urogenital ridges are required to drive HSC development in the aorta. Our study strongly suggests that these inductive interactions in the AGM region are mediated by the interplay between spatially polarized signalling pathways. Specifically, Shh produced in the dorsal region of the AGM, stem cell factor in the ventral and lateral regions, and BMP inhibitory signals in the ventral tissue are integral parts of the regulatory system involved in the development of HSCs. PMID:26952187

  2. Review Article: The weak interactive characteristic of resonance cells and broadband effect of metamaterials

    Directory of Open Access Journals (Sweden)

    Xiaopeng Zhao

    2014-10-01

    Full Text Available Metamaterials are artificial media designed to control electromagnetic wave propagation. Due to resonance, most present-day metamaterials inevitably suffer from narrow bandwidth, extremely limiting their practical applications. On the basis of tailored properties, a metamaterial within which each distinct unit cell resonates at its inherent frequency and has almost no coupling effect with the other ones, termed as weak interaction system, can be formulated. The total response of a weak interaction system can be treated as an overlap of the single resonance spectrum of each type of different unit cells. This intriguing feature therefore makes it possible to accomplish multiband or broadband metamaterials in a simple way. By introducing defects into metamaterials to form a weak interaction system, multiband and broadband electromagnetic metamaterials have first been experimentally demonstrated by our group. The similar concept can also be readily extended to acoustic and seismic metamaterials.

  3. Review Article: The weak interactive characteristic of resonance cells and broadband effect of metamaterials

    International Nuclear Information System (INIS)

    Metamaterials are artificial media designed to control electromagnetic wave propagation. Due to resonance, most present-day metamaterials inevitably suffer from narrow bandwidth, extremely limiting their practical applications. On the basis of tailored properties, a metamaterial within which each distinct unit cell resonates at its inherent frequency and has almost no coupling effect with the other ones, termed as weak interaction system, can be formulated. The total response of a weak interaction system can be treated as an overlap of the single resonance spectrum of each type of different unit cells. This intriguing feature therefore makes it possible to accomplish multiband or broadband metamaterials in a simple way. By introducing defects into metamaterials to form a weak interaction system, multiband and broadband electromagnetic metamaterials have first been experimentally demonstrated by our group. The similar concept can also be readily extended to acoustic and seismic metamaterials

  4. Interactions

    DEFF Research Database (Denmark)

    The main theme of this anthology is the unique interaction between mathematics, physics and philosophy during the beginning of the 20th century. Seminal theories of modern physics and new fundamental mathematical structures were discovered or formed in this period. Significant physicists such as...

  5. Bone cell-materials interaction on alumina ceramics with different grain sizes

    International Nuclear Information System (INIS)

    The objective of this work was to study adhesion, proliferation and differentiation of osteoblast cells (OPC1) on alumina ceramic, a bio-inert material. Alumina ceramic with different average grain sizes, 1 μm and 12 μm, respectively, were used in as-prepared condition without any grinding and polishing to understand the influence of grain size on cell-material interactions. Scanning electron microscopy and confocal imaging were used to study attachment, adhesion and differentiation of OPC1 cells. Cells attached, proliferated and differentiated well on both the substrates. Adhesion of cells, as assessed by observing the production of vinculin, was found to be a consistent phenomenon on both the substrates. On day 5 of cell culture, significant cell-attachment was observed and vinculin was detected throughout cytoplasm. MTT assay showed that proliferation of OPC1 cells was consistently higher in the case of 12 μm-alumina. Cells of different morphology, nodular, plate-like as well as elongated, were found to get anchored at grains, grain boundaries as well as pores. On day 16, there were clear signs of mineralization as well. Over all, alumina with average grain size of 12 μm showed better cell-attachment, growth and differentiation compared to 1 μm grain size samples.

  6. Trichomonas vaginalis exosomes deliver cargo to host cells and mediate host∶parasite interactions.

    Directory of Open Access Journals (Sweden)

    Olivia Twu

    Full Text Available Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogential tract where it remains extracellular and adheres to epithelial cells. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Here, we use a combination of methodologies including cell fractionation, immunofluorescence and electron microscopy, RNA, proteomic and cytokine analyses and cell adherence assays to examine pathogenic properties of T. vaginalis. We have found that T.vaginalis produces and secretes microvesicles with physical and biochemical properties similar to mammalian exosomes. The parasite-derived exosomes are characterized by the presence of RNA and core, conserved exosomal proteins as well as parasite-specific proteins. We demonstrate that T. vaginalis exosomes fuse with and deliver their contents to host cells and modulate host cell immune responses. Moreover, exosomes from highly adherent parasite strains increase the adherence of poorly adherent parasites to vaginal and prostate epithelial cells. In contrast, exosomes from poorly adherent strains had no measurable effect on parasite adherence. Exosomes from parasite strains that preferentially bind prostate cells increased binding of parasites to these cells relative to vaginal cells. In addition to establishing that parasite exosomes act to modulate host∶parasite interactions, these studies are the first to reveal a potential role for exosomes in promoting parasite∶parasite communication and host cell colonization.

  7. Interaction of angiotensin II with functional smooth muscle cells in culture

    International Nuclear Information System (INIS)

    In this study the authors report on the characterization of a highly enriched population of cultured vascular smooth muscle cells (SMC) prepared from collagenase-treated medial layer explant outgrowths of rabbit aortae. Studies done on cells from first passage explant outgrowths showed that the cells retain the fine structural features of vascular SMC in situ, can be immunostained with anti-smooth muscle myosin IgG, and bind [125I]angiotensin II (ANG II) in a specific and saturable manner with an apparent Kd of 1 nM. Addition of ANG II to the cultures causes obvious shape changes and retraction of cell processes. Electron microscopic autoradiography of cells labeled with [125I]ANG II show that the initial site of interaction of ANG II with the SMC is the plasma membrane. The distribution of ANG II receptors among cells in the population was studied using light microscopic autoradiography. The autoradiographical grain density varied among cells in the population ranging from cells that were heavily labeled to those that possessed virtually no label. These data imply that the expression of ANG II receptors may be limited to a certain progeny within the cell population or is a function of their stage within the cell cycle

  8. Interactions between Periodontal Bacteria and Human Oral Epithelial Cells: Fusobacterium nucleatum Adheres to and Invades Epithelial Cells

    Science.gov (United States)

    Han, Yiping W.; Shi, Wenyuan; Huang, George T.-J.; Kinder Haake, Susan; Park, No-Hee; Kuramitsu, Howard; Genco, Robert J.

    2000-01-01

    Bacteria are causative agents of periodontal diseases. Interactions between oral bacteria and gingival epithelial cells are essential aspects of periodontal infections. Using an in vitro tissue culture model, a selected group of gram-negative anaerobic bacteria frequently associated with periodontal diseases, including Bacteroides forsythus, Campylobacter curvus, Eikenella corrodens, Fusobacterium nucleatum, Porphyromonas gingivalis, and Prevotella intermedia, were examined for their ability to adhere to and invade primary cultures of human gingival epithelial cells (HGEC). The effects of these bacteria on the production of interleukin-8 (IL-8), a proinflammatory chemokine, were also measured. These studies provided an initial demonstration that F. nucleatum adhered to and invaded HGEC and that this was accompanied by high levels of IL-8 secretion from the epithelial cells. The attachment and invasion characteristics of F. nucleatum were also tested using KB cells, an oral epithelial cell line. The invasion was verified by transmission electron microscopy and with metabolic inhibitors. Invasion appeared to occur via a “zipping” mechanism and required the involvement of actins, microtubules, signal transduction, protein synthesis, and energy metabolism of the epithelial cell, as well as protein synthesis by F. nucleatum. A spontaneous mutant, lam, of F. nucleatum, isolated as defective in autoagglutination, was unable to attach to or invade HGEC or KB cells, further indicating the requirement of bacterial components in these processes. Sugar inhibition assays indicated that lectin-like interactions were involved in the attachment of F. nucleatum to KB cells. Investigation of these new virulence phenotypes should improve our understanding of the role of F. nucleatum in periodontal infections. PMID:10816455

  9. Game theory in the death galaxy: interaction of cancer and stromal cells in tumour microenvironment.

    Science.gov (United States)

    Wu, Amy; Liao, David; Tlsty, Thea D; Sturm, James C; Austin, Robert H

    2014-08-01

    Preventing relapse is the major challenge to effective therapy in cancer. Within the tumour, stromal (ST) cells play an important role in cancer progression and the emergence of drug resistance. During cancer treatment, the fitness of cancer cells can be enhanced by ST cells because their molecular signalling interaction delays the drug-induced apoptosis of cancer cells. On the other hand, competition among cancer and ST cells for space or resources should not be ignored. We explore the population dynamics of multiple myeloma (MM) versus bone marrow ST cells by using an experimental microecology that we call the death galaxy, with a stable drug gradient and connected microhabitats. Evolutionary game theory is a quantitative way to capture the frequency-dependent nature of interactive populations. Therefore, we use evolutionary game theory to model the populations in the death galaxy with the gradients of pay-offs and successfully predict the future densities of MM and ST cells. We discuss the possible clinical use of such analysis for predicting cancer progression. PMID:25097749

  10. CCR4 promotes medullary entry and thymocyte-dendritic cell interactions required for central tolerance.

    Science.gov (United States)

    Hu, Zicheng; Lancaster, Jessica N; Sasiponganan, Chayanit; Ehrlich, Lauren I R

    2015-10-19

    Autoimmunity results from a breakdown in central or peripheral tolerance. To establish central tolerance, developing T cells must enter the thymic medulla, where they scan antigen-presenting cells (APCs) displaying a diverse array of autoantigens. If a thymocyte is activated by a self-antigen, the cell undergoes either deletion or diversion into the regulatory T cell (T reg) lineage, thus maintaining self-tolerance. Mechanisms promoting thymocyte medullary entry and interactions with APCs are incompletely understood. CCR4 is poised to contribute to central tolerance due to its expression by post-positive selection thymocytes, and expression of its ligands by medullary thymic dendritic cells (DCs). Here, we use two-photon time-lapse microscopy to demonstrate that CCR4 promotes medullary entry of the earliest post-positive selection thymocytes, as well as efficient interactions between medullary thymocytes and DCs. In keeping with the contribution of thymic DCs to central tolerance, CCR4 is involved in regulating negative selection of polyclonal and T cell receptor (TCR) transgenic thymocytes. In the absence of CCR4, autoreactive T cells accumulate in secondary lymphoid organs and autoimmunity ensues. These studies reveal a previously unappreciated role for CCR4 in the establishment of central tolerance. PMID:26417005

  11. Increased endothelial cell-leukocyte interaction in murine schistosomiasis: possible priming of endothelial cells by the disease.

    Directory of Open Access Journals (Sweden)

    Suellen D S Oliveira

    Full Text Available BACKGROUND AND AIMS: Schistosomiasis is an intravascular parasitic disease associated with inflammation. Endothelial cells control leukocyte transmigration and vascular permeability being modulated by pro-inflammatory mediators. Recent data have shown that endothelial cells primed in vivo in the course of a disease keep the information in culture. Herein, we evaluated the impact of schistosomiasis on endothelial cell-regulated events in vivo and in vitro. METHODOLOGY AND PRINCIPAL FINDINGS: The experimental groups consisted of Schistosoma mansoni-infected and age-matched control mice. In vivo infection caused a marked influx of leukocytes and an increased protein leakage in the peritoneal cavity, characterizing an inflamed vascular and cellular profile. In vitro leukocyte-mesenteric endothelial cell adhesion was higher in cultured cells from infected mice as compared to controls, either in the basal condition or after treatment with the pro-inflammatory cytokine tumor necrosis factor (TNF. Nitric oxide (NO donation reduced leukocyte adhesion to endothelial cells from control and infected groups; however, in the later group the effect was more pronounced, probably due to a reduced NO production. Inhibition of control endothelial NO synthase (eNOS increased leukocyte adhesion to a level similar to the one observed in the infected group. Besides, the adhesion of control leukocytes to endothelial cells from infected animals is similar to the result of infected animals, confirming that schistosomiasis alters endothelial cells function. Furthermore, NO production as well as the expression of eNOS were reduced in cultured endothelial cells from infected animals. On the other hand, the expression of its repressor protein, namely caveolin-1, was similar in both control and infected groups. CONCLUSION/SIGNIFICANCE: Schistosomiasis increases vascular permeability and endothelial cell-leukocyte interaction in vivo and in vitro. These effects are partially

  12. Raf-1 Physically Interacts with Rb and Regulates Its Function: a Link between Mitogenic Signaling and Cell Cycle Regulation

    OpenAIRE

    Wang, Sheng; Ghosh, Richik N.; Chellappan, Srikumar P

    1998-01-01

    Cells initiate proliferation in response to growth factor stimulation, but the biochemical mechanisms linking signals received at the cell surface receptors to the cell cycle regulatory molecules are not yet clear. In this study, we show that the signaling molecule Raf-1 can physically interact with Rb and p130 proteins in vitro and in vivo and that this interaction can be detected in mammalian cells without overexpressing any component. The binding of Raf-1 to Rb occurs subsequent to mitogen...

  13. The role of cell-extracellular matrix interactions in glomerular injury.

    Science.gov (United States)

    Borza, Corina M; Pozzi, Ambra

    2012-05-15

    Glomerulosclerosis is characterized by excessive deposition of extracellular matrix within the glomeruli of the kidney, glomerular cell death, and subsequent loss of functional glomeruli. While in physiological situations the levels of extracellular matrix components are kept constant by a tight balance between formation and degradation, in the case of injury that results in fibrosis there is increased matrix deposition relative to its breakdown. Multiple factors control matrix synthesis and degradation, thus contributing to the development of glomerulosclerosis. This review focuses primarily on the role of cell-matrix interactions, which play a critical role in governing glomerular cell cues in both healthy and diseased kidneys. Cell-extracellular matrix interactions are made possible by various cellular receptors including integrins, discoidin domain receptors, and dystroglycan. Upon binding to a selective extracellular matrix protein, these receptors activate intracellular signaling pathways that can either downregulate or upregulate matrix synthesis and deposition. This, together with the observation that changes in the expression levels of matrix receptors have been documented in glomerular disease, clearly emphasizes the contribution of cell-matrix interactions in glomerular injury. Understanding the molecular mechanisms whereby extracellular matrix receptors regulate matrix homeostasis in the course of glomerular injury is therefore critical for devising more effective therapies to treat and ideally prevent glomerulosclerosis. PMID:22417893

  14. Modeling of cell adhesion and deformation mediated by receptor-ligand interactions.

    Science.gov (United States)

    Golestaneh, Amirreza F; Nadler, Ben

    2016-04-01

    The current work is devoted to studying adhesion and deformation of biological cells mediated by receptors and ligands in order to enhance the existing models. Due to the sufficient in-plane continuity and fluidity of the phospholipid molecules, an isotropic continuum fluid membrane is proposed for modeling the cell membrane. The developed constitutive model accounts for the influence of the presence of receptors on the deformation and adhesion of the cell membrane through the introduction of spontaneous area dilation. Motivated by physics, a nonlinear receptor-ligand binding force is introduced based on charge-induced dipole interaction. Diffusion of the receptors on the membrane is governed by the receptor-ligand interaction via Fick's Law and receptor-ligand interaction. The developed model is then applied to study the deformation and adhesion of a biological cell. The proposed model is used to study the role of the material, binding, spontaneous area dilation and environmental properties on the deformation and adhesion of the cell. PMID:26093646

  15. Antagonists of IGF:Vitronectin Interactions Inhibit IGF-I-Induced Breast Cancer Cell Functions.

    Science.gov (United States)

    Kashyap, Abhishek S; Shooter, Gary K; Shokoohmand, Ali; McGovern, Jacqui; Sivaramakrishnan, Manaswini; Croll, Tristan I; Cane, Gaëlle; Leavesley, David I; Söderberg, Ola; Upton, Zee; Hollier, Brett G

    2016-07-01

    We provide proof-of-concept evidence for a new class of therapeutics that target growth factor:extracellular matrix (GF:ECM) interactions for the management of breast cancer. Insulin-like growth factor-I (IGF-I) forms multiprotein complexes with IGF-binding proteins (IGFBP) and the ECM protein vitronectin (VN), and stimulates the survival, migration and invasion of breast cancer cells. For the first time we provide physical evidence for IGFBP-3:VN interactions in breast cancer patient tissues; these interactions were predominantly localized to tumor cell clusters and in stroma surrounding tumor cells. We show that disruption of IGF-I:IGFBP:VN complexes with L(27)-IGF-II inhibits IGF-I:IGFBP:VN-stimulated breast cancer cell migration and proliferation in two- and three-dimensional assay systems. Peptide arrays screened to identify regions critical for the IGFBP-3/-5:VN and IGF-II:VN interactions demonstrated IGFBP-3/-5 and IGF-II binds VN through the hemopexin-2 domain, and VN binds IGFBP-3 at residues not involved in the binding of IGF-I to IGFBP-3. IGFBP-interacting VN peptides identified from these peptide arrays disrupted the IGF-I:IGFBP:VN complex, impeded the growth of primary tumor-like spheroids and, more importantly, inhibited the invasion of metastatic breast cancer cells in 3D assay systems. These studies provide first-in-field evidence for the utility of small peptides in antagonizing GF:ECM-mediated biologic functions and present data demonstrating the potential of these peptide antagonists as novel therapeutics. Mol Cancer Ther; 15(7); 1602-13. ©2016 AACR. PMID:27196774

  16. Immunoregulatory Effects Triggered by Lactic Acid Bacteria Exopolysaccharides: New Insights into Molecular Interactions with Host Cells

    Directory of Open Access Journals (Sweden)

    Jonathan Laiño

    2016-08-01

    Full Text Available Researchers have demonstrated that lactic acid bacteria (LAB with immunomodulatory capabilities (immunobiotics exert their beneficial effects through several molecules, including cell wall, peptidoglycan, and exopolysaccharides (EPS, that are able to interact with specific host cell receptors. EPS from LAB show a wide heterogeneity in its composition, meaning that biological properties depend on the strain and. therefore, only a part of the mechanism of action has been elucidated for these molecules. In this review, we summarize the current knowledge of the health-promoting actions of EPS from LAB with special focus on their immunoregulatory actions. In addition, we describe our studies using porcine intestinal epithelial cells (PIE cells as a model to evaluate the molecular interactions of EPS from two immunobiotic LAB strains and the host cells. Our studies showed that EPS from immunobiotic LAB have anti-inflammatory capacities in PIE cells since they are able to reduce the production of inflammatory cytokines in cells challenged with the Toll-like receptor (TLR-4-agonist lipopolysaccharide. The effects of EPS were dependent on TLR2, TLR4, and negative regulators of TLR signaling. We also reported that the radioprotective 105 (RP105/MD1 complex, a member of the TLR family, is partially involved in the immunoregulatory effects of the EPS from LAB. Our work described, for the first time, that LAB and their EPS reduce inflammation in intestinal epithelial cells in a RP105/MD1-dependent manner. A continuing challenge for the future is to reveal more effector-receptor relationships in immunobiotic-host interactions that contribute to the beneficial effects of these bacteria on mucosal immune homeostasis. A detailed molecular understanding should lead to a more rational use of immunobiotics in general, and their EPS in particular, as efficient prevention and therapies for specific immune-related disorders in humans and animals.

  17. A porous cell method for the simulation of fluid-solid interactions

    Institute of Scientific and Technical Information of China (English)

    H.B.Gu; D.M.Causon; C.G.Mingham; L.Qian; P.Z.Lin

    2010-01-01

    There are many ways of describing a solid,porous or fluid region of the computational domain when solving the Navier-Stokes equations(NSE) for flow motions.Amongst these the porous cell method is one of the most flexible approaches.In this method, a parameter is defined as a ratio of the volume open to water and air in a calculation cell to its cell volume.In the calculation,the same numerical procedure is applied to every cell and no explicit boundary conditions are needed at solid boundaries.The method is used to simulate flow through porous media,around solid bodies and over a moving seabed.The results compare well with experimental data and other numerical resuhs.In our future work the porous cell method will be applied to more complex fluid-solid" interaction situations.

  18. Steep differences in wingless signaling trigger Myc-independent competitive cell interactions.

    Science.gov (United States)

    Vincent, Jean-Paul; Kolahgar, Golnar; Gagliardi, Maria; Piddini, Eugenia

    2011-08-16

    Wnt signaling is a key regulator of development that is often associated with cancer. Wingless, a Drosophila Wnt homolog, has been reported to be a survival factor in wing imaginal discs. However, we found that prospective wing cells survive in the absence of Wingless as long as they are not surrounded by Wingless-responding cells. Moreover, local autonomous overactivation of Wg signaling (as a result of a mutation in APC or axin) leads to the elimination of surrounding normal cells. Therefore, relative differences in Wingless signaling lead to competitive cell interactions. This process does not involve Myc, a well-established cell competition factor. It does, however, require Notum, a conserved secreted feedback inhibitor of Wnt signaling. We suggest that Notum could amplify local differences in Wingless signaling, thus serving as an early trigger of Wg signaling-dependent competition. PMID:21839923

  19. DNA-protein interaction at erythroid important regulatory elements of MEL cells by in vivo footprinting

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Using ligation-mediated PCR method to study the status of DNA-protein interaction at hypersensitive site 2 of locus control Region and β maj promoter of MEL cell line before and after induction, MEL cell has been cultured and induced to differentiation by Hemin and DMSO, then the live cells have been treated with dimethyl sulfate. Ligation mediated PCR has been carried out following the chemical cleavage. The results demonstrate that before and after induction, the status of DNA-protein interaction at both hypersensitive site 2 and β maj promoter change significantly, indicating that distal regulatory elements (locus control region, hypersensitive sites) as well as proximal regulatory elements (promoter, enhancer) of β -globin gene cluster participate in the regulation of developmental specificity.

  20. Interactions of Francisella tularensis with Alveolar Type II Epithelial Cells and the Murine Respiratory Epithelium.

    Directory of Open Access Journals (Sweden)

    Matthew Faron

    Full Text Available Francisella tularensis is classified as a Tier 1 select agent by the CDC due to its low infectious dose and the possibility that the organism can be used as a bioweapon. The low dose of infection suggests that Francisella is unusually efficient at evading host defenses. Although ~50 cfu are necessary to cause human respiratory infection, the early interactions of virulent Francisella with the lung environment are not well understood. To provide additional insights into these interactions during early Francisella infection of mice, we performed TEM analysis on mouse lungs infected with F. tularensis strains Schu S4, LVS and the O-antigen mutant Schu S4 waaY::TrgTn. For all three strains, the majority of the bacteria that we could detect were observed within alveolar type II epithelial cells at 16 hours post infection. Although there were no detectable differences in the amount of bacteria within an infected cell between the three strains, there was a significant increase in the amount of cellular debris observed in the air spaces of the lungs in the Schu S4 waaY::TrgTn mutant compared to either the Schu S4 or LVS strain. We also studied the interactions of Francisella strains with human AT-II cells in vitro by characterizing the ability of these three strains to invade and replicate within these cells. Gentamicin assay and confocal microscopy both confirmed that F. tularensis Schu S4 replicated robustly within these cells while F. tularensis LVS displayed significantly lower levels of growth over 24 hours, although the strain was able to enter these cells at about the same level as Schu S4 (1 organism per cell, as determined by confocal imaging. The Schu S4 waaY::TrgTn mutant that we have previously described as attenuated for growth in macrophages and mouse virulence displayed interesting properties as well. This mutant induced significant airway inflammation (cell debris and had an attenuated growth phenotype in the human AT-II cells. These

  1. Interactions between calcium oxalate monohydrate crystals and Madin-Darby canine kidney cells: endocytosis and cell proliferation.

    Science.gov (United States)

    Kohjimoto, Y; Ebisuno, S; Tamura, M; Ohkawa, T

    1996-01-01

    The present investigation was designed to study the biological responses in cultures of Madin-Darby canine kidney (MDCK) cells exposed to calcium oxalate monohydrate (COM) crystals, the most common type of urinary crystals. The addition of COM crystals significantly accelerated the multiplication of MDCK cells and significantly activated the cell viability. After exposure of MDCK cells to COM crystals, scanning electron microscopy revealed that some crystals adhered to the plasma membrane and others were endocytosed by the cell. This cellular uptake of crystals was time dependent from 1 to 8 h and showed a specificity according to crystal type. However, the endocytosis of aggregated COM crystals was less marked than that of non-aggregated crystals. Pre-treatment with each of the glycosaminoglycans (sodium pentosan polysulphate, heparin, and chondroitin sulphate C) produced a significant reduction of the cellular uptake of COM crystals, suggesting that these glycosaminoglycans may play some critical roles in preventing the cellular uptake of crystals. Although investigation in further detail is necessary, we speculate that these crystal-cell interactions, that is, the cellular uptake of crystals and cell proliferation, may be among the earliest processes in the formation of kidney stones. PMID:8873377

  2. Juxtacrine interaction of macrophages and bone marrow stromal cells induce interleukin-6 signals and promote cell migration

    Institute of Scientific and Technical Information of China (English)

    Jia Chang; Amy J Koh; Hernan Roca; Laurie K McCauley

    2015-01-01

    The bone marrow contains a heterogeneous milieu of cells, including macrophages, which are key cellular mediators for resolving infection and inflammation. Macrophages are most well known for their ability to phagocytose foreign bodies or apoptotic cells to maintain homeostasis;however, little is known about their function in the bone microenvironment. In the current study, we investigated the in vitro interaction of murine macrophages and bone marrow stromal cells (BMSCs), with focus on the juxtacrine induction of IL-6 signaling and the resultant effect on BMSC migration and growth. The juxtacrine interaction of primary mouse macrophages and BMSCs activated IL-6 signaling in the co-cultures, which subsequently enhanced BMSC migration and increased BMSC numbers. BMSCs and macrophages harvested from IL-6 knockout mice revealed that IL-6 signaling was essential for enhancement of BMSC migration and increased BMSC numbers via juxtacrine interactions. BMSCs were the main contributor of IL-6 signaling, and hence activation of the IL-6/gp130/STAT3 pathway. Meanwhile, macrophage derived IL-6 remained important for the overall production of IL-6 protein in the co-cultures. Taken together, these findings show the function of macrophages as co-inducers of migration and growth of BMSCs, which could directly influence bone formation and turnover.

  3. Human HLA-G+ extravillous trophoblasts: Immune-activating cells that interact with decidual leukocytes.

    Science.gov (United States)

    Tilburgs, Tamara; Crespo, Ângela C; van der Zwan, Anita; Rybalov, Basya; Raj, Towfique; Stranger, Barbara; Gardner, Lucy; Moffett, Ashley; Strominger, Jack L

    2015-06-01

    Invading human leukocyte antigen-G+ (HLA-G+) extravillous trophoblasts (EVT) are rare cells that are believed to play a key role in the prevention of a maternal immune attack on foreign fetal tissues. Here highly purified HLA-G+ EVT and HLA-G- villous trophoblasts (VT) were isolated. Culture on fibronectin that EVT encounter on invading the uterus increased HLA-G, EGF-Receptor-2, and LIF-Receptor expression on EVT, presumably representing a further differentiation state. Microarray and functional gene set enrichment analysis revealed a striking immune-activating potential for EVT that was absent in VT. Cocultures of HLA-G+ EVT with sample matched decidual natural killer cells (dNK), macrophages, and CD4+ and CD8+ T cells were established. Interaction of EVT with CD4+ T cells resulted in increased numbers of CD4+CD25(HI)FOXP3+CD45RA+ resting regulatory T cells (Treg) and increased the expression level of the Treg-specific transcription factor FOXP3 in these cells. However, EVT did not enhance cytokine secretion in dNK, whereas stimulation of dNK with mitogens or classical natural killer targets confirmed the distinct cytokine secretion profiles of dNK and peripheral blood NK cells (pNK). EVT are specialized cells involved in maternal-fetal tolerance, the properties of which are not imitated by HLA-G-expressing surrogate cell lines. PMID:26015573

  4. Remote Control of Tissue Interactions via Engineered Photo-switchable Cell Surfaces

    Science.gov (United States)

    Luo, Wei; Pulsipher, Abigail; Dutta, Debjit; Lamb, Brian M.; Yousaf, Muhammad N.

    2014-09-01

    We report a general cell surface molecular engineering strategy via liposome fusion delivery to create a dual photo-active and bio-orthogonal cell surface for remote controlled spatial and temporal manipulation of microtissue assembly and disassembly. Cell surface tailoring of chemoselective functional groups was achieved by a liposome fusion delivery method and quantified by flow cytometry and characterized by a new cell surface lipid pull down mass spectrometry strategy. Dynamic co-culture spheroid tissue assembly in solution and co-culture tissue multilayer assembly on materials was demonstrated by an intercellular photo-oxime ligation that could be remotely cleaved and disassembled on demand. Spatial and temporal control of microtissue structures containing multiple cell types was demonstrated by the generation of patterned multilayers for controlling stem cell differentiation. Remote control of cell interactions via cell surface engineering that allows for real-time manipulation of tissue dynamics may provide tools with the scope to answer fundamental questions of cell communication and initiate new biotechnologies ranging from imaging probes to drug delivery vehicles to regenerative medicine, inexpensive bioreactor technology and tissue engineering therapies.

  5. Focal adhesion kinase regulates expression of thioredoxin-interacting protein (TXNIP) in cancer cells.

    Science.gov (United States)

    Ho, Baotran; Huang, Grace; Golubovskaya, Vita M

    2014-01-01

    Focal Adhesion Kinase (FAK) plays an important role in cancer cell survival. Previous microarray gene profiling study detected inverse regulation between expression of thioredoxin-interacting protein (TXNIP) and FAK, where down-regulation of FAK by siRNA in MCF-7 cells caused up-regulation of TXNIP mRNA level, and in contrast up-regulation of doxycyclin- induced FAK caused repression of TXNIP. In the present report, we show that overexpression of FAK in MCF-7 cells repressed TXNIP promoter activity. Treatment of MCF-7 cells with 1alpha, 25-dihydroxyvitamin D3 (1,25D) down-regulated endogenous FAK and up-regulated TXNIP protein level, and treatment with 5-FU decreased FAK protein expression and up-regulated TXNIP protein expression in 293 cells. Moreover, silencing of FAK with siRNA increased TXNIP protein expression, while overexpression of FAK inhibited TXNIP protein expression in 293 cells. In addition, treatment of DBTRG glioblastoma cells with FAK inhibitor Y15 increased TXNIP mRNA, decreased cancer cell viability and increased apoptosis. These results for the first time demonstrate FAK-regulated TXNIP expression which is important for apoptotic, survival and oxidative stress signaling pathways in cancer cells. PMID:23387972

  6. Interaction of graphene-related materials with human intestinal cells: an in vitro approach

    Science.gov (United States)

    Kucki, M.; Rupper, P.; Sarrieu, C.; Melucci, M.; Treossi, E.; Schwarz, A.; León, V.; Kraegeloh, A.; Flahaut, E.; Vázquez, E.; Palermo, V.; Wick, P.

    2016-04-01

    Graphene-related materials (GRM) inherit unique combinations of physicochemical properties which offer a high potential for technological as well as biomedical applications. It is not clear which physicochemical properties are the most relevant factors influencing the behavior of GRM in complex biological environments. In this study we have focused on the interaction of GRM, especially graphene oxide (GO), and Caco-2 cells in vitro. We mimiked stomach transition by acid-treatment of two representative GRM followed by analysis of their physicochemical properties. No significant changes in the material properties or cell viability of exposed Caco-2 cells in respect to untreated GRM could be detected. Furthermore, we explored the interaction of four different GO and Caco-2 cells to identify relevant physicochemical properties for the establishment of a material property-biological response relationship. Despite close interaction with the cell surface and the formation of reactive oxygen species (ROS), no acute toxicity was found for any of the applied GO (concentration range 0-80 μg ml-1) after 24 h and 48 h exposure. Graphene nanoplatelet aggregates led to low acute toxicity at high concentrations, indicating that aggregation, the number of layers or the C/O ratio have a more pronounced effect on the cell viability than the lateral size alone.Graphene-related materials (GRM) inherit unique combinations of physicochemical properties which offer a high potential for technological as well as biomedical applications. It is not clear which physicochemical properties are the most relevant factors influencing the behavior of GRM in complex biological environments. In this study we have focused on the interaction of GRM, especially graphene oxide (GO), and Caco-2 cells in vitro. We mimiked stomach transition by acid-treatment of two representative GRM followed by analysis of their physicochemical properties. No significant changes in the material properties or cell

  7. Uncovering brain-heart information through advanced signal and image processing.

    Science.gov (United States)

    Valenza, Gaetano; Toschi, Nicola; Barbieri, Riccardo

    2016-05-13

    Through their dynamical interplay, the brain and the heart ensure fundamental homeostasis and mediate a number of physiological functions as well as their disease-related aberrations. Although a vast number of ad hoc analytical and computational tools have been recently applied to the non-invasive characterization of brain and heart dynamic functioning, little attention has been devoted to combining information to unveil the interactions between these two physiological systems. This theme issue collects contributions from leading experts dealing with the development of advanced analytical and computational tools in the field of biomedical signal and image processing. It includes perspectives on recent advances in 7 T magnetic resonance imaging as well as electroencephalogram, electrocardiogram and cerebrovascular flow processing, with the specific aim of elucidating methods to uncover novel biological and physiological correlates of brain-heart physiology and physiopathology. PMID:27044995

  8. Uncovering brain–heart information through advanced signal and image processing

    Science.gov (United States)

    Toschi, Nicola; Barbieri, Riccardo

    2016-01-01

    Through their dynamical interplay, the brain and the heart ensure fundamental homeostasis and mediate a number of physiological functions as well as their disease-related aberrations. Although a vast number of ad hoc analytical and computational tools have been recently applied to the non-invasive characterization of brain and heart dynamic functioning, little attention has been devoted to combining information to unveil the interactions between these two physiological systems. This theme issue collects contributions from leading experts dealing with the development of advanced analytical and computational tools in the field of biomedical signal and image processing. It includes perspectives on recent advances in 7 T magnetic resonance imaging as well as electroencephalogram, electrocardiogram and cerebrovascular flow processing, with the specific aim of elucidating methods to uncover novel biological and physiological correlates of brain–heart physiology and physiopathology. PMID:27044995

  9. Live-cell fluorescent microscopy platforms for real-time monitoring of polyplex-cell interaction

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Wu, LinPing; Andersen, Helene;

    2014-01-01

    A myriad of cationic polymeric delivery vehicles are currently being developed with the aim of transporting various forms of nucleic acids to mammalian cells. The complexes between polycations and nucleic acids are referred to as polyplexes. The screening for successful polyplex candidates requir...... of performance and intracellular trafficking of polyplexes as well as for assessing cell functionality. This review highlights the application of some of the most promising fluorescent microscopy platforms in relation to polyplex-mediated transfection processes....

  10. Localized Modeling of Biochemical and Flow Interactions during Cancer Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Julie Behr

    Full Text Available This work focuses on one component of a larger research effort to develop a simulation tool to model populations of flowing cells. Specifically, in this study a local model of the biochemical interactions between circulating melanoma tumor cells (TC and substrate adherent polymorphonuclear neutrophils (PMN is developed. This model provides realistic three-dimensional distributions of bond formation and attendant attraction and repulsion forces that are consistent with the time dependent Computational Fluid Dynamics (CFD framework of the full system model which accounts local pressure, shear and repulsion forces. The resulting full dynamics model enables exploration of TC adhesion to adherent PMNs, which is a known participating mechanism in melanoma cell metastasis. The model defines the adhesion molecules present on the TC and PMN cell surfaces, and calculates their interactions as the melanoma cell flows past the PMN. Biochemical rates of reactions between individual molecules are determined based on their local properties. The melanoma cell in the model expresses ICAM-1 molecules on its surface, and the PMN expresses the β-2 integrins LFA-1 and Mac-1. In this work the PMN is fixed to the substrate and is assumed fully rigid and of a prescribed shear-rate dependent shape obtained from micro-PIV experiments. The melanoma cell is transported with full six-degrees-of-freedom dynamics. Adhesion models, which represent the ability of molecules to bond and adhere the cells to each other, and repulsion models, which represent the various physical mechanisms of cellular repulsion, are incorporated with the CFD solver. All models are general enough to allow for future extensions, including arbitrary adhesion molecule types, and the ability to redefine the values of parameters to represent various cell types. The model presented in this study will be part of a clinical tool for development of personalized medical treatment programs.

  11. Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations

    KAUST Repository

    Perozziello, Gerardo

    2013-07-01

    In this study, we propose a fast, simple method to biofunctionalise microfluidic systems for cellomic investigations based on micro-fluidic protocols. Many available processes either require expensive and time-consuming protocols or are incompatible with the fabrication of microfluidic systems. Our method differs from the existing since it is applicable to an assembled system, uses few microlitres of reagents and it is based on the use of microbeads. The microbeads have specific surface moieties to link the biomolecules and couple cell receptors. Furthermore, the microbeads serve as arm spacer and offer the benefit of the multi-valent interaction. Microfluidics was adapted together with topology and biochemistry surface modifications to offer the microenvironment for cellomic studies. Based on this principle, we exploit the streptavidin-biotin interaction to couple antibodies to the biofunctionalised microfluidic environment within 5 h using 200 μL of reagents and biomolecules. We selected the antibodies able to form complexes with the MHC class I (MHC-I) molecules present on the cell membrane and involved in the immune surveillance. To test the microfluidic system, tumour cell lines (RMA) were rolled across the coupled antibodies to recognise and strip MHC-I molecules. As result, we show that cell rolling performed inside a microfluidic chamber functionalised with beads and the opportune antibody facilitate the removal of MHC class I molecules. We showed that the level of median fluorescent intensity of the MHC-I molecules is 300 for cells treated in a not biofunctionalised surface. It decreased to 275 for cells treated in a flat biofunctionalised surface and to 250 for cells treated on a surface where biofunctionalised microbeads were immobilised. The cells with reduced expression of MHC-I molecules showed, after cytotoxicity tests, susceptibility 3.5 times higher than normal cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Probiotic Gut Microbiota Isolate Interacts with Dendritic Cells via Glycosylated Heterotrimeric Pili.

    Science.gov (United States)

    Tytgat, Hanne L P; van Teijlingen, Nienke H; Sullan, Ruby May A; Douillard, François P; Rasinkangas, Pia; Messing, Marcel; Reunanen, Justus; Satokari, Reetta; Vanderleyden, Jos; Dufrêne, Yves F; Geijtenbeek, Teunis B H; de Vos, Willem M; Lebeer, Sarah

    2016-01-01

    Mapping of the microbial molecules underlying microbiota-host interactions is key to understand how microbiota preserve mucosal homeostasis. A pivotal family of such bacterial molecules are pili. Pili are proteinaceous cell wall appendages with a well-documented role in adhesion, whilst their role in immune interaction with the host is less established. Gram-positive pili are often posttranslationally modified by sortase-specific cleavage reactions and the formation of intramolecular peptide bonds. Here we report glycosylation as a new level of posttranslational modification of sortase-dependent pili of a beneficial microbiota species and its role in immune modulation. We focused on the SpaCBA pili of the model probiotic and beneficial human gut microbiota isolate Lactobacillus rhamnosus GG. A unique combination of molecular techniques, nanoscale mechanical and immunological approaches led to the identification of mannose and fucose residues on the SpaCBA pili. These glycans on the pili are recognized by human dendritic cells via the C-type lectin receptor DC-SIGN, a key carbohydrate-dependent immune tailoring pattern recognition receptor. This specific lectin-sugar interaction is moreover of functional importance and modulated the cytokine response of dendritic cells. This provides insight into the direct role bacterial glycoproteins can play in the immunomodulation of the host. Modification of the complex heterotrimeric pili of a model probiotic and microbiota isolate with mannose and fucose is of importance for the functional interaction with the host immune lectin receptor DC-SIGN on human dendritic cells. Our findings shed light on the yet underappreciated role of glycoconjugates in bacteria-host interactions. PMID:26985831

  13. Probiotic Gut Microbiota Isolate Interacts with Dendritic Cells via Glycosylated Heterotrimeric Pili.

    Directory of Open Access Journals (Sweden)

    Hanne L P Tytgat

    Full Text Available Mapping of the microbial molecules underlying microbiota-host interactions is key to understand how microbiota preserve mucosal homeostasis. A pivotal family of such bacterial molecules are pili. Pili are proteinaceous cell wall appendages with a well-documented role in adhesion, whilst their role in immune interaction with the host is less established. Gram-positive pili are often posttranslationally modified by sortase-specific cleavage reactions and the formation of intramolecular peptide bonds. Here we report glycosylation as a new level of posttranslational modification of sortase-dependent pili of a beneficial microbiota species and its role in immune modulation. We focused on the SpaCBA pili of the model probiotic and beneficial human gut microbiota isolate Lactobacillus rhamnosus GG. A unique combination of molecular techniques, nanoscale mechanical and immunological approaches led to the identification of mannose and fucose residues on the SpaCBA pili. These glycans on the pili are recognized by human dendritic cells via the C-type lectin receptor DC-SIGN, a key carbohydrate-dependent immune tailoring pattern recognition receptor. This specific lectin-sugar interaction is moreover of functional importance and modulated the cytokine response of dendritic cells. This provides insight into the direct role bacterial glycoproteins can play in the immunomodulation of the host. Modification of the complex heterotrimeric pili of a model probiotic and microbiota isolate with mannose and fucose is of importance for the functional interaction with the host immune lectin receptor DC-SIGN on human dendritic cells. Our findings shed light on the yet underappreciated role of glycoconjugates in bacteria-host interactions.

  14. Probiotic Gut Microbiota Isolate Interacts with Dendritic Cells via Glycosylated Heterotrimeric Pili

    Science.gov (United States)

    Tytgat, Hanne L. P.; van Teijlingen, Nienke H.; Sullan, Ruby May A.; Douillard, François P.; Rasinkangas, Pia; Messing, Marcel; Reunanen, Justus; Satokari, Reetta; Vanderleyden, Jos; Dufrêne, Yves F.; Geijtenbeek, Teunis B. H.; de Vos, Willem M.; Lebeer, Sarah

    2016-01-01

    Mapping of the microbial molecules underlying microbiota-host interactions is key to understand how microbiota preserve mucosal homeostasis. A pivotal family of such bacterial molecules are pili. Pili are proteinaceous cell wall appendages with a well-documented role in adhesion, whilst their role in immune interaction with the host is less established. Gram-positive pili are often posttranslationally modified by sortase-specific cleavage reactions and the formation of intramolecular peptide bonds. Here we report glycosylation as a new level of posttranslational modification of sortase-dependent pili of a beneficial microbiota species and its role in immune modulation. We focused on the SpaCBA pili of the model probiotic and beneficial human gut microbiota isolate Lactobacillus rhamnosus GG. A unique combination of molecular techniques, nanoscale mechanical and immunological approaches led to the identification of mannose and fucose residues on the SpaCBA pili. These glycans on the pili are recognized by human dendritic cells via the C-type lectin receptor DC-SIGN, a key carbohydrate-dependent immune tailoring pattern recognition receptor. This specific lectin-sugar interaction is moreover of functional importance and modulated the cytokine response of dendritic cells. This provides insight into the direct role bacterial glycoproteins can play in the immunomodulation of the host. Modification of the complex heterotrimeric pili of a model probiotic and microbiota isolate with mannose and fucose is of importance for the functional interaction with the host immune lectin receptor DC-SIGN on human dendritic cells. Our findings shed light on the yet underappreciated role of glycoconjugates in bacteria-host interactions. PMID:26985831

  15. Flexible polyacrylamide substrata for the analysis of mechanical interactions at cell-substratum adhesions

    Science.gov (United States)

    Beningo, Karen A.; Lo, Chun-Min; Wang, Yu-Li

    2002-01-01

    We have described a powerful tool for the study of mechanical interactions between cells and their physical environment. Although the approach has already been used in a variety of ways to measure traction forces and to characterize active and passive responses of cultured cells to mechanical stimulation, it can be extended easily and combined with other microscopic approaches, including fluorescent analog imaging (Beningo et al., 2001), photobleaching, calcium imaging, micromanipulation, and electrophysiology. This method will be particularly useful for studying the functions of various components at focal adhesions, and the effects of mechanical forces on focal adhesion-mediated signal transduction. In addition, the method can be extended to a 3D setting, e.g., by sandwiching cultured cells between two layers of polyacrylamide to create an environment mimicking that in the tissue of a multicellular organism. Whereas chemical interactions between cells and the environment have been investigated extensively, many important questions remain as to the role of physical forces in cellular functions and the interplay between chemical and physical mechanisms of communication. The present approach, as well as other approaches capable of probing physical interactions, should fill in this important gap in the near future.

  16. Interactions and effects of BSA-functionalized single-walled carbon nanotubes on different cell lines

    Science.gov (United States)

    Muzi, Laura; Tardani, Franco; La Mesa, Camillo; Bonincontro, Adalberto; Bianco, Alberto; Risuleo, Gianfranco

    2016-04-01

    Functionalized carbon nanotubes (CNTs) have shown great promise in several biomedical contexts, spanning from drug delivery to tissue regeneration. Thanks to their unique size-related properties, single-walled CNTs (SWCNTs) are particularly interesting in these fields. However, their use in nanomedicine requires a clear demonstration of their safety in terms of tissue damage, toxicity and pro-inflammatory response. Thus, a better understanding of the cytotoxicity mechanisms, the cellular interactions and the effects that these materials have on cell survival and on biological membranes is an important first step for an appropriate assessment of their biocompatibility. In this study we show how bovine serum albumin (BSA) is able to generate homogeneous and stable dispersions of SWCNTs (BSA-CNTs), suggesting their possible use in the biomedical field. On the other hand, this study wishes to shed more light on the impact and the interactions of protein-stabilized SWCNTs with two different cell types exploiting multidisciplinary techniques. We show that BSA-CNTs are efficiently taken up by cells. We also attempt to describe the effect that the interaction with cells has on the dielectric characteristics of the plasma membrane and ion flux using electrorotation. We then focus on the BSA-CNTs’ acute toxicity using different cellular models. The novel aspect of this work is the evaluation of the membrane alterations that have been poorly investigated to date.

  17. Identification of Cell Cycle Dependent Interaction Partners of the Septins by Quantitative Mass Spectrometry.

    Science.gov (United States)

    Renz, Christian; Oeljeklaus, Silke; Grinhagens, Sören; Warscheid, Bettina; Johnsson, Nils; Gronemeyer, Thomas

    2016-01-01

    The septins are a conserved family of GTP-binding proteins that, in the baker's yeast, assemble into a highly ordered array of filaments at the mother bud neck. These filaments undergo significant structural rearrangements during the cell cycle. We aimed at identifying key components that are involved in or regulate the transitions of the septins. By combining cell synchronization and quantitative affinity-purification mass-spectrometry, we performed a screen for specific interaction partners of the septins at three distinct stages of the cell cycle. A total of 83 interaction partners of the septins were assigned. Surprisingly, we detected DNA-interacting/nuclear proteins and proteins involved in ribosome biogenesis and protein synthesis predominantly present in alpha-factor arrested that do not display an assembled septin structure. Furthermore, two distinct sets of regulatory proteins that are specific for cells at S-phase with a stable septin collar or at mitosis with split septin rings were identified. Complementary methods like SPLIFF and immunoprecipitation allowed us to more exactly define the spatial and temporal characteristics of selected hits of the AP-MS screen. PMID:26871441

  18. Hydrophobic interaction governs unspecific adhesion of staphylococci: a single cell force spectroscopy study.

    Science.gov (United States)

    Thewes, Nicolas; Loskill, Peter; Jung, Philipp; Peisker, Henrik; Bischoff, Markus; Herrmann, Mathias; Jacobs, Karin

    2014-01-01

    Unspecific adhesion of bacteria is usually the first step in the formation of biofilms on abiotic surfaces, yet it is unclear up to now which forces are governing this process. Alongside long-ranged van der Waals and electrostatic forces, short-ranged hydrophobic interaction plays an important role. To characterize the forces involved during approach and retraction of an individual bacterium to and from a surface, single cell force spectroscopy is applied: A single cell of the apathogenic species Staphylococcus carnosus isolate TM300 is used as bacterial probe. With the exact same bacterium, hydrophobic and hydrophilic surfaces can be probed and compared. We find that as far as 50 nm from the surface, attractive forces can already be recorded, an indication of the involvement of long-ranged forces. Yet, comparing the surfaces of different surface energy, our results corroborate the model that large, bacterial cell wall proteins are responsible for adhesion, and that their interplay with the short-ranged hydrophobic interaction of the involved surfaces is mainly responsible for adhesion. The ostensibly long range of the attraction is a result of the large size of the cell wall proteins, searching for contact via hydrophobic interaction. The model also explains the strong (weak) adhesion of S. carnosus to hydrophobic (hydrophilic) surfaces. PMID:25247133

  19. Hydrophobic interaction governs unspecific adhesion of staphylococci: a single cell force spectroscopy study

    Directory of Open Access Journals (Sweden)

    Nicolas Thewes

    2014-09-01

    Full Text Available Unspecific adhesion of bacteria is usually the first step in the formation of biofilms on abiotic surfaces, yet it is unclear up to now which forces are governing this process. Alongside long-ranged van der Waals and electrostatic forces, short-ranged hydrophobic interaction plays an important role. To characterize the forces involved during approach and retraction of an individual bacterium to and from a surface, single cell force spectroscopy is applied: A single cell of the apathogenic species Staphylococcus carnosus isolate TM300 is used as bacterial probe. With the exact same bacterium, hydrophobic and hydrophilic surfaces can be probed and compared. We find that as far as 50 nm from the surface, attractive forces can already be recorded, an indication of the involvement of long-ranged forces. Yet, comparing the surfaces of different surface energy, our results corroborate the model that large, bacterial cell wall proteins are responsible for adhesion, and that their interplay with the short-ranged hydrophobic interaction of the involved surfaces is mainly responsible for adhesion. The ostensibly long range of the attraction is a result of the large size of the cell wall proteins, searching for contact via hydrophobic interaction. The model also explains the strong (weak adhesion of S. carnosus to hydrophobic (hydrophilic surfaces.

  20. Multi-scale cell/surface interaction on modified titanium aluminum vanadium surfaces

    Science.gov (United States)

    Chen, Jianbo

    This dissertation presents a series of experimental studies of the effects of multi-scale cell/surface interactions on modified Ti-6Al-4V surfaces. These include laser-grooved surfaces; porous structures and RGD-coated laser-grooved surfaces. A nano-second DPSS UV lasers with a Gaussian pulse energy profile was used to introduce the desired micro-groove geometries onto Ti-6Al-4V surfaces. This was done without inducing micro-cracks or significant changes in surface chemistry within the heat affected zones. The desired 8-12 mum groove depths and widths were achieved by the control of pulse frequency, scan speed, and the lens focal length that controls spot size. The interactions between human osteosarcoma (HOS) cells and laser-grooved Ti-6Al-4V surfaces were investigated after 48 hours of cell culture. The cell behavior, including cell spreading, alignment and adhesion, was elucidated using scanning electronic microscopy (SEM), immuno-fluorescence staining and enzymatic detachment. Contact guidance was shown to increase as grooved spacing decreased. For the range of micro-groove geometries studied, micro-grooves with groove spacings of 20 mum provided the best combination of cell orientation and adhesion. Short-term adhesion experiments (15 mins to 1 day) also revealed that there is a positive correlation between cell orientation and cell adhesion. Contact guidance on the micro-grooved surfaces is shown to be enhanced by nano- and micro-scale asperities that provide sites for the attachment of lamellopodia during cell locomotion and spreading. Contact guidance is also promoted by the geometrical confinement provided by laser grooves. An experimental study of initial cell spreading and ingrowth into Ti-6Al-4V porous structures was also carried out on porous structures with different pore sizes and geometries. A combination of SEM, the tetrazolium salt (MTT) colorimetric assay and enzymatic detachment were used to study cell spreading and adhesion. The extent of cell

  1. A single-molecule force spectroscopy study of the interactions between lectins and carbohydrates on cancer and normal cells

    Science.gov (United States)

    Zhao, Weidong; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Wang, Hongda

    2013-03-01

    The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells.The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c3nr00553d

  2. The Cell Wall Protein Ecm33 of Candida albicans is Involved in Chronological Life Span, Morphogenesis, Cell Wall Regeneration, Stress Tolerance, and Host–Cell Interaction

    Science.gov (United States)

    Gil-Bona, Ana; Reales-Calderon, Jose A.; Parra-Giraldo, Claudia M.; Martinez-Lopez, Raquel; Monteoliva, Lucia; Gil, Concha

    2016-01-01

    Ecm33 is a glycosylphosphatidylinositol-anchored protein in the human pathogen Candida albicans. This protein is known to be involved in fungal cell wall integrity (CWI) and is also critical for normal virulence in the mouse model of hematogenously disseminated candidiasis, but its function remains unknown. In this work, several phenotypic analyses of the C. albicans ecm33/ecm33 mutant (RML2U) were performed. We observed that RML2U displays the inability of protoplast to regenerate the cell wall, activation of the CWI pathway, hypersensitivity to temperature, osmotic and oxidative stresses and a shortened chronological lifespan. During the exponential and stationary culture phases, nuclear and actin staining revealed the possible arrest of the cell cycle in RML2U cells. Interestingly, a “veil growth,” never previously described in C. albicans, was serendipitously observed under static stationary cells. The cells that formed this structure were also observed in cornmeal liquid cultures. These cells are giant, round cells, without DNA, and contain large vacuoles, similar to autophagic cells observed in other fungi. Furthermore, RML2U was phagocytozed more than the wild-type strain by macrophages at earlier time points, but the damage caused to the mouse cells was less than with the wild-type strain. Additionally, the percentage of RML2U apoptotic cells after interaction with macrophages was fewer than in the wild-type strain. PMID:26870022

  3. Central muscarinic cholinergic activation alters interaction between splenic dendritic cell and CD4+CD25- T cells in experimental colitis.

    Directory of Open Access Journals (Sweden)

    Peris Munyaka

    Full Text Available BACKGROUND: The cholinergic anti-inflammatory pathway (CAP is based on vagus nerve (VN activity that regulates macrophage and dendritic cell responses in the spleen through alpha-7 nicotinic acetylcholine receptor (a7nAChR signaling. Inflammatory bowel disease (IBD patients present dysautonomia with decreased vagus nerve activity, dendritic cell and T cell over-activation. The aim of this study was to investigate whether central activation of the CAP alters the function of dendritic cells (DCs and sequential CD4+/CD25-T cell activation in the context of experimental colitis. METHODS: The dinitrobenzene sulfonic acid model of experimental colitis in C57BL/6 mice was used. Central, intracerebroventricular infusion of the M1 muscarinic acetylcholine receptor agonist McN-A-343 was used to activate CAP and vagus nerve and/or splenic nerve transection were performed. In addition, the role of α7nAChR signaling and the NF-kB pathway was studied. Serum amyloid protein (SAP-A, colonic tissue cytokines, IL-12p70 and IL-23 in isolated splenic DCs, and cytokines levels in DC-CD4+CD25-T cell co-culture were determined. RESULTS: McN-A-343 treatment reduced colonic inflammation associated with decreased pro-inflammatory Th1/Th17 colonic and splenic cytokine secretion. Splenic DCs cytokine release was modulated through α7nAChR and the NF-kB signaling pathways. Cholinergic activation resulted in decreased CD4+CD25-T cell priming. The anti-inflammatory efficacy of central cholinergic activation was abolished in mice with vagotomy or splenic neurectomy. CONCLUSIONS: Suppression of splenic immune cell activation and altered interaction between DCs and T cells are important aspects of the beneficial effect of brain activation of the CAP in experimental colitis. These findings may lead to improved therapeutic strategies in the treatment of IBD.

  4. Stability analysis of simple models for immune cells interacting with normal pathogens and immune system retroviruses.

    Science.gov (United States)

    Reibnegger, G; Fuchs, D; Hausen, A; Werner, E R; Werner-Felmayer, G; Dierich, M P; Wachter, H

    1989-01-01

    A mathematical analysis is presented for several simple dynamical systems that might be considered as crude descriptions for the situation when an immune system retrovirus, immune cells, and normal autonomously replicating pathogens interact. By stability analysis of the steady-state solutions, the destabilizing effect of the immune system retrovirus is described. The qualitative behavior of the solutions depending on the system parameters is analyzed in terms of trajectories moving in a phase space in which the axes are defined by the population numbers of the interacting biological entities. PMID:2522657

  5. DEMOCRITUS: An adaptive particle in cell (PIC) code for object-plasma interactions

    Science.gov (United States)

    Lapenta, Giovanni

    2011-06-01

    A new method for the simulation of plasma materials interactions is presented. The method is based on the particle in cell technique for the description of the plasma and on the immersed boundary method for the description of the interactions between materials and plasma particles. A technique to adapt the local number of particles and grid adaptation are used to reduce the truncation error and the noise of the simulations, to increase the accuracy per unit cost. In the present work, the computational method is verified against known results. Finally, the simulation method is applied to a number of specific examples of practical scientific and engineering interest.

  6. Comparing the epidermal growth factor interaction with four different cell lines: intriguing effects imply strong dependency of cellular context.

    Directory of Open Access Journals (Sweden)

    Hanna Björkelund

    Full Text Available The interaction of the epidermal growth factor (EGF with its receptor (EGFR is known to be complex, and the common over-expression of EGF receptor family members in a multitude of tumors makes it important to decipher this interaction and the following signaling pathways. We have investigated the affinity and kinetics of (125I-EGF binding to EGFR in four human tumor cell lines, each using four culturing conditions, in real time by use of LigandTracer®.Highly repeatable and precise measurements show that the overall apparent affinity of the (125I-EGF - EGFR interaction is greatly dependent on cell line at normal culturing conditions, ranging from K(D ≈ 200 pM on SKBR3 cells to K(D≈8 nM on A431 cells. The (125I-EGF - EGFR binding curves (irrespective of cell line have strong signs of multiple simultaneous interactions. Furthermore, for the cell lines A431 and SKOV3, gefitinib treatment increases the (125I-EGF - EGFR affinity, in particular when the cells are starved. The (125I-EGF - EGFR interaction on cell line U343 is sensitive to starvation while as on SKBR3 it is insensitive to gefitinib and starvation.The intriguing pattern of the binding characteristics proves that the cellular context is important when deciphering how EGF interacts with EGFR. From a general perspective, care is advisable when generalizing ligand-receptor interaction results across multiple cell-lines.

  7. A new approach to follow a single extracellular vesicle-cell interaction using optical tweezers.

    Science.gov (United States)

    Prada, Ilaria; Amin, Ladan; Furlan, Roberto; Legname, Giuseppe; Verderio, Claudia; Cojoc, Dan

    2016-01-01

    Extracellular vesicles (EVs) are spherical membrane structures released by most cells. These highly conserved mediators of intercellular communication carry proteins, lipids, and nucleic acids, and transfer these cellular components between cells by different mechanisms, such as endocytosis, macropinocytosis, or fusion. However, the temporal and spatial dynamics of vesicle-cell interactions still remain largely unexplored. Here we used optical tweezers to drive single EVs produced by microglial cells onto the surface of astrocytes or microglia in primary culture. By visualizing single EV-cell contacts, we observed that microglial vesicles displayed different motilities on the surface of astrocytes compared with microglia. After contact, EVs positioned on astrocytes displayed some minor oscillatory motion around the point of adhesion, while vesicles dragged to microglia displayed quite regular directional movement on the plasma membrane. Both the adhesion and motion of vesicles on glial cells were strongly reduced by cloaking phosphatidylserine (PS) residues, which are externalized on the vesicle membrane and act as determinants for vesicle recognition by target cells. These data identify optical manipulation as a powerful tool to monitor in vitro vesicle-cell dynamics with high temporal and spatial resolution and to determine in a quantitative manner the contribution of surface receptors/extracellular protein ligands to the contact. PMID:26757810

  8. AIF downregulation and its interaction with STK3 in renal cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Shengqiang Xu

    Full Text Available Apoptosis-inducing factor (AIF plays a crucial role in caspase-independent programmed cell death by triggering chromatin condensation and DNA fragmentation. Therefore, it might be involved in cell homeostasis and tumor development. In this study, we report significant AIF downregulation in the majority of renal cell carcinomas (RCC. In a group of RCC specimens, 84% (43 out of 51 had AIF downregulation by immunohistochemistry stain. Additional 10 kidney tumors, including an oxyphilic adenoma, also had significant AIF downregulation by Northern blot analysis. The mechanisms of the AIF downregulation included both AIF deletion and its promoter methylation. Forced expression of AIF in RCC cell lines induced massive apoptosis. Further analysis revealed that AIF interacted with STK3, a known regulator of apoptosis, and enhanced its phosphorylation at Thr180. These results suggest that AIF downregulation is a common event in kidney tumor development. AIF loss may lead to decreased STK3 activity, defective apoptosis and malignant transformation.

  9. The Paracoccidioides cell wall: past and present layers towards understanding interaction with the host

    Directory of Open Access Journals (Sweden)

    RosanaPuccia

    2011-12-01

    Full Text Available The cell wall of pathogenic fungi plays import roles in interaction with the host, so that its composition and structure may determine the course of infection. Here we present an overview of the current and past knowledge on the cell wall constituents of Paracoccidioides brasiliensis and P. lutzii. These are temperature-dependent dimorphic fungi that cause paracoccidioidomycosis, a systemic granulomatous and debilitating disease. Focus is given on cell wall carbohydrate and protein contents, their immune-stimulatory features, adhesion properties, drug target characteristics, and morphological phase specificity. We offer a journey towards the future understanding of the dynamic life that takes place in the cell wall and of the changes that it may suffer when living in the human host.

  10. Continuous macroscopic limit of a discrete stochastic model for interaction of living cells

    CERN Document Server

    Alber, M; Lushnikov, P M; Newman, S A; Alber, Mark; Chen, Nan; Lushnikov, Pavel M.; Newman, Stuart A.

    2007-01-01

    In the development of multiscale biological models it is crucial to establish a connection between discrete microscopic or mesoscopic stochastic models and macroscopic continuous descriptions based on cellular density. In this paper a continuous limit of a two-dimensional Cellular Potts Model (CPM) with excluded volume is derived, describing cells moving in a medium and reacting to each other through both direct contact and long range chemotaxis. The continuous macroscopic model is obtained as a Fokker-Planck equation describing evolution of the cell probability density function. All coefficients of the general macroscopic model are derived from parameters of the CPM and a very good agreement is demonstrated between CPM Monte Carlo simulations and numerical solution of the macroscopic model. It is also shown that in the absence of contact cell-cell interactions, the obtained model reduces to the classical macroscopic Keller-Segel model. General multiscale approach is demonstrated by simulating spongy bone for...

  11. Green Fluorescent Protein-Tagged Retroviral Envelope Protein for Analysis of Virus-Cell Interactions

    Science.gov (United States)

    Spitzer, Dirk; Dittmar, Kurt E. J.; Rohde, Manfred; Hauser, Hansjörg; Wirth, Dagmar

    2003-01-01

    Fluorescent retroviral envelope (Env) proteins were developed for direct visualization of viral particles. By fusing the enhanced green fluorescent protein (eGFP) to the N terminus of the amphotropic 4070A envelope protein, extracellular presentation of eGFP was achieved. Viruses incorporated the modified Env protein and efficiently infected cells. We used the GFP-tagged viruses for staining retrovirus receptor-positive cells, thereby circumventing indirect labeling techniques. By generating cells which conditionally expressed the GFP-tagged Env protein, we could confirm an inverse correlation between retroviral Env expression and infectivity (superinfection). eGFP-tagged virus particles are suitable for monitoring the dynamics of virus-cell interactions. PMID:12719600

  12. Functional interaction between TRP4 and CFTR in mouse aorta endothelial cells

    Directory of Open Access Journals (Sweden)

    Droogmans Guy

    2001-05-01

    Full Text Available Abstract Background This study describes the functional interaction between the putative Ca2+ channel TRP4 and the cystic fibrosis transmembrane conductance regulator, CFTR, in mouse aorta endothelium (MAEC. Results MAEC cells express CFTR transcripts as shown by RT-PCR analysis. Application of a phosphorylating cocktail activated a Cl- current with characteristics similar to those of CFTR mediated currents in other cells types (slow activation by cAMP, absence of rectification, block by glibenclamide. The current is present in trp4 +/+ MAEC, but not in trp4 -/- cells, although the expression of CFTR seems unchanged in the trp4 deficient cells as judged from RT-PCR analysis. Conclusions It is concluded that TRP4 is necessary for CFTR activation in endothelium, possibly by providing a scaffold for the formation of functional CFTR channels.

  13. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells

    International Nuclear Information System (INIS)

    Primary cells are ideal for in vitro toxicity studies since they closely resemble tissue environment. Here, we report a detailed study on the in vitro interactions of 7-20 nm spherical silver nanoparticles (SNP) with primary fibroblasts and primary liver cells isolated from Swiss albino mice. The intended use of silver nanoparticles is in the form of a topical antimicrobial gel formulation for the treatment of burns and wounds. Upon exposure to SNP for 24 h, morphology of primary fibroblasts and primary liver cells remained unaltered up to 25 μg/mL and 100 μg/mL SNP, respectively, although with minor decrease in confluence. IC50 values for primary fibroblasts and primary liver cells as revealed by XTT assay were 61 μg/mL and 449 μg/mL, respectively. Ultra-thin sections of primary cells exposed to 1/2 IC50 SNP for 24 h, visualized under Transmission electron microscope showed the presence of dark, electron dense, spherical aggregates inside the mitochondria, and cytoplasm, probably representing the intracellular SNP. When the cells were challenged with ∼ 1/2 IC50 concentration of SNP (i.e. 30 μg/mL and 225 μg/mL for primary fibroblasts and primary liver cells, respectively), enhancement of GSH (∼ 1.2 fold) and depletion of lipid peroxidation (∼ 1.4 fold) were seen in primary fibroblasts which probably protect the cells from functional damage. In case of primary liver cells; increased levels of SOD (∼ 1.4 fold) and GSH ( 1.1 fold) as compared to unexposed cells were observed. Caspase-3 activity assay indicated that the SNP concentrations required for the onset of apoptosis were found to be much lower (3.12 μg/mL in primary fibroblasts, 12.5 μg/mL in primary liver cells) than the necrotic concentration (100 μg/mL in primary fibroblasts, 500 μg/mL in primary liver cells). These observations were confirmed by CLSM studies by exposure of cells to 1/2 IC50 SNP (resulting in apoptosis) and 2x IC50) cells (resulting in necrosis). These results clearly

  14. Decellularized matrix from tumorigenic human mesenchymal stem cells promotes neovascularization with galectin-1 dependent endothelial interaction.

    Directory of Open Access Journals (Sweden)

    Jorge S Burns

    Full Text Available BACKGROUND: Acquisition of a blood supply is fundamental for extensive tumor growth. We recently described vascular heterogeneity in tumours derived from cell clones of a human mesenchymal stem cell (hMSC strain (hMSC-TERT20 immortalized by retroviral vector mediated human telomerase (hTERT gene expression. Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+ and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative qRT-PCR analysis revealed similar mRNA levels for genes encoding the angiogenic cytokines VEGF and Angiopoietin-1 in both clones. However, clone-BD11 produced a denser extracellular matrix that supported stable ex vivo capillary morphogenesis of human endothelial cells and promoted in vivo neovascularization. Proteomic characterization of the -BD11 decellularized matrix identified 50 extracellular angiogenic proteins, including galectin-1. siRNA knock down of galectin-1 expression abrogated the ex vivo interaction between decellularized -BD11 matrix and endothelial cells. More stable shRNA knock down of galectin-1 expression did not prevent -BD11 tumorigenesis, but greatly reduced endothelial migration into -BD11 cell xenografts. CONCLUSIONS: Decellularized hMSC matrix had significant angiogenic potential with at least 50 angiogenic cell surface and extracellular proteins, implicated in attracting endothelial cells, their adhesion and activation to form tubular structures. hMSC -BD11 surface galectin-1

  15. Surface modified superparamagnetic nanoparticles: Interaction with fibroblasts in primary cell culture

    International Nuclear Information System (INIS)

    Highlights: • An inorganic layer before an organic material shell onto MNPs improves cell viability. • The coating type and the concentration of nanoparticles directly affect cell viability. • Modified magnetite nanoparticles with organic and inorganic materials was developed. - Abstract: The development of a variety of medical applications such as drug delivery, cell labeling, and medical imaging have been possible owing to the unique features exhibited by magnetic nanoparticles. Nanoparticle–cell interaction is related to the surface aspects of nanoparticle, which may be described based on their chemistry or inorganic/organic characteristics. The coating on particle surface reduces the inter-particle interactions and provides properties such as biocompatibility. Among the coating materials used for nanoparticles employed in biomedical applications, oleic acid is one of the most utilized due to its biocompatibility. However, a major drawback with this naturally occurring fatty acid is that it is easily oxidized by cells and this reduces their performance in biomedical applications. In order to avoid the direct contact of the cell with the magnetite particle, coating with an inorganic material prior to the oleic acid shell would be effective. This would retard the magnetite dissociation thereby improve the cell viability. Here we report our investigation on the effect of surface modified magnetite nanoparticles (MNPs) on the cell viability using primary cultures incubated with those particles. We prepared magnetite nanoparticles by chemical co-precipitation method; nanoparticle surface was first modified by silanol condensation followed by chemisorption of oleic acid. All nanostructures have a particle size less than 100 nm, depending on the material coating and superparamagnetic behavior. The saturated magnetizations (Ms) of the magnetite samples coated with oleic acid (MAO; 49.15 emu/g) and double shell silica-oleic acid (MSAO; 46.16 emu/g) are lower

  16. Involvement of platelet-tumor cell interaction in immune evasion. Potential role of podocalyxin-like protein 1

    Directory of Open Access Journals (Sweden)

    SusanaLarrucea

    2014-09-01

    Full Text Available Besides their essential role in hemostasis and thrombosis, platelets are involved in the onset of cancer metastasis by interacting with tumor cells. Platelets release secretory factors that promote tumor growth, angiogenesis, and metastasis. Furthermore, the formation of platelet-tumor cell aggregates in the bloodstream provides cancer cells with an immune escape mechanism by protecting circulating malignant cells from immune-mediated lysis by natural killer (NK cells. Platelet-tumor cell interaction is accomplished by specific adhesion molecules, including integrins, selectins, and their ligands. Podocalyxin-like protein 1 (PCLP1 is a selectin ligand protein which overexpression has been associated with several aggressive cancers. PCLP1 expression enhances cell adherence to platelets in an integrin-dependent process and through the interaction with P-selectin expressed on activated platelets. However, the involvement of PCLP1-induced tumor-platelet interaction in tumor immune evasion still remains unexplored. The identification of selectin ligands involved in the interaction of platelets with tumor cells may provide help for the development of effective therapies to restrain cancer cell dissemination. This article summarizes the current knowledge on molecules that participate in platelet-tumor cell interaction as well as discusses the potential role of PCLP1 as a molecule implicated in tumor immune evasion.

  17. Release of metabolic enzymes by Giardia in response to interaction with intestinal epithelial cells.

    Science.gov (United States)

    Ringqvist, Emma; Palm, J E Daniel; Skarin, Hanna; Hehl, Adrian B; Weiland, Malin; Davids, Barbara J; Reiner, David S; Griffiths, William J; Eckmann, Lars; Gillin, Frances D; Svärd, Staffan G

    2008-06-01

    Giardia lamblia, an important cause of diarrheal disease, resides in the small intestinal lumen in close apposition to epithelial cells. Since the disease mechanisms underlying giardiasis are poorly understood, elucidating the specific interactions of the parasite with the host epithelium is likely to provide clues to understanding the pathogenesis. Here we tested the hypothesis that contact of Giardia lamblia with intestinal epithelial cells might lead to release of specific proteins. Using established co-culture models, intestinal ligated loops and a proteomics approach, we identified three G. lamblia proteins (arginine deiminase, ornithine carbamoyl transferase and enolase), previously recognized as immunodominant antigens during acute giardiasis. Release was stimulated by cell-cell interactions, since only small amounts of arginine deiminase and enolase were detected in the medium after culturing of G. lamblia alone. The secreted G. lamblia proteins were localized to the cytoplasm and the inside of the plasma membrane of trophozoites. Furthermore, in vitro studies with recombinant arginine deiminase showed that the secreted Giardia proteins can disable host innate immune factors such as nitric oxide production. These results indicate that contact of Giardia with epithelial cells triggers metabolic enzyme release, which might facilitate effective colonization of the human small intestine. PMID:18359106

  18. Interaction between Calcium and Actin in Guard Cell and Pollen Signaling Networks

    Directory of Open Access Journals (Sweden)

    Dong-Hua Chen

    2013-10-01

    Full Text Available Calcium (Ca2+ plays important roles in plant growth, development, and signal transduction. It is a vital nutrient for plant physical design, such as cell wall and membrane, and also serves as a counter-cation for biochemical, inorganic, and organic anions, and more particularly, its concentration change in cytosol is a ubiquitous second messenger in plant physiological signaling in responses to developmental and environmental stimuli. Actin cytoskeleton is well known for its importance in cellular architecture maintenance and its significance in cytoplasmic streaming and cell division. In plant cell system, the actin dynamics is a process of polymerization and de-polymerization of globular actin and filamentous actin and that acts as an active regulator for calcium signaling by controlling calcium evoked physiological responses. The elucidation of the interaction between calcium and actin dynamics will be helpful for further investigation of plant cell signaling networks at molecular level. This review mainly focuses on the recent advances in understanding the interaction between the two aforementioned signaling components in two well-established model systems of plant, guard cell, and pollen.

  19. [Theodor Huzella and the initiation of research on the interactions between cells and the extracellular matrix].

    Science.gov (United States)

    Robert, Ladislas; Labat-Robert, Jacqueline; Michel Robert, Alexandre

    2012-01-01

    Interactions between cells and the surrounding "biomatrix", mediated by receptors as integrins or the elastin receptor is the most important topic in up to date research on connective tissues. Looking for the origin of this concept, one finds the pioneering work of Theodor Huzella, professor of histology-embryology at the Medical University of Budapest during pre-world war II decades. Using time-laps micro-cinematography in reflected light, he visualized the important role of connective tissue fibers, prepared in his laboratory, for the oriented migration of normal and malignant cells. His theoretical explanations, attributing an "active" role to the elasticity of the argyrophilic fibrous network in the coordination of cell societies, can now be reinterpreted in the light of recent work on the mechanotransduction of "messages" from the extracellular matrix to the cell inside. We propose a succinct review of Huzella's work and theories reinterpreted in the light of up-to-date knowledge on cell-matrix interactions. PMID:22748046

  20. Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide

    Science.gov (United States)

    Freudenthal, Bret D.; Beard, William A.; Perera, Lalith; Shock, David D.; Kim, Taejin; Schlick, Tamar; Wilson, Samuel H.

    2015-01-01

    Oxidative stress promotes genomic instability and human diseases. A common oxidized nucleoside is 8-oxo-7,8-dihydro-2'-deoxyguanosine, which is found both in DNA (8-oxo-G) and as a free nucleotide (8-oxo-dGTP). Nucleotide pools are especially vulnerable to oxidative damage. Therefore cells encode an enzyme (MutT/MTH1) that removes free oxidized nucleotides. This cleansing function is required for cancer cell survival and to modulate Escherichia coli antibiotic sensitivity in a DNA polymerase (pol)-dependent manner. How polymerases discriminate between damaged and non-damaged nucleotides is not well understood. This analysis is essential given the role of oxidized nucleotides in mutagenesis, cancer therapeutics, and bacterial antibiotics. Even with cellular sanitizing activities, nucleotide pools contain enough 8-oxo-dGTP to promote mutagenesis. This arises from the dual coding potential where 8-oxo-dGTP(anti) base pairs with cytosine and 8-oxo-dGTP(syn) uses its Hoogsteen edge to base pair with adenine. Here we use time-lapse crystallography to follow 8-oxo-dGTP insertion opposite adenine or cytosine with human pol β, to reveal that insertion is accommodated in either the syn- or anti-conformation, respectively. For 8-oxo-dGTP(anti) insertion, a novel divalent metal relieves repulsive interactions between the adducted guanine base and the triphosphate of the oxidized nucleotide. With either templating base, hydrogen-bonding interactions between the bases are lost as the enzyme reopens after catalysis, leading to a cytotoxic nicked DNA repair intermediate. Combining structural snapshots with kinetic and computational analysis reveals how 8-oxo-dGTP uses charge modulation during insertion that can lead to a blocked DNA repair intermediate.

  1. Effect of DNA methylation on protein-DNA interaction of HL-60 cells

    Institute of Scientific and Technical Information of China (English)

    何忠效; 白坚石; 张昱

    1999-01-01

    HL-60 cells have been induced with differentiation index 16 % by S-adenosyl-L-rnethionine (SAM) as inducer in the presence of optimum conceptration of 10 μmol/L. The methylation level of genorne DNA determined by HPLC is increased during cell differentiation. When restriction endonuclease Hae Ⅲ, Sma I, Sal I, XhoI and Hind Ⅲ which are sensitive to 5-methylcytosine were used to cleave the genorne DNA, a resistance effect was found. The interaction between DNA and DNA binding proteins is changed by using gel retarding test.

  2. Bimolecular Fluorescence Complementation to Assay the Interactions of Ubiquitylation Enzymes in Living Yeast Cells.

    Science.gov (United States)

    Blaszczak, Ewa; Prigent, Claude; Rabut, Gwenaël

    2016-01-01

    Ubiquitylation is a versatile posttranslational protein modification catalyzed through the concerted action of ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s). These enzymes form transient complexes with each other and their modification substrates and determine the nature of the ubiquitin signals attached to their substrates. One challenge in the field of protein ubiquitylation is thus to identify the E2-E3 pairs that function in the cell. In this chapter, we describe the use of bimolecular fluorescence complementation to assay E2-E3 interactions in living cells, using budding yeast as a model organism. PMID:27613039

  3. Lipidomics Analyses Reveal Temporal and Spatial Lipid Organization and Uncover Daily Oscillations in Intracellular Organelles.

    Science.gov (United States)

    Aviram, Rona; Manella, Gal; Kopelman, Naama; Neufeld-Cohen, Adi; Zwighaft, Ziv; Elimelech, Meytar; Adamovich, Yaarit; Golik, Marina; Wang, Chunyan; Han, Xianlin; Asher, Gad

    2016-05-19

    Cells have evolved mechanisms to handle incompatible processes through temporal organization by circadian clocks and by spatial compartmentalization within organelles defined by lipid bilayers. Recent advances in lipidomics have led to identification of plentiful lipid species, yet our knowledge regarding their spatiotemporal organization is lagging behind. In this study, we quantitatively characterized the nuclear and mitochondrial lipidome in mouse liver throughout the day, upon different feeding regimens, and in clock-disrupted mice. Our analyses revealed potential connections between lipid species within and between lipid classes. Remarkably, we uncovered diurnal oscillations in lipid accumulation in the nucleus and mitochondria. These oscillations exhibited opposite phases and readily responded to feeding time. Furthermore, we found that the circadian clock coordinates the phase relation between the organelles. In summary, our study provides temporal and spatial depiction of lipid organization and reveals the presence and coordination of diurnal rhythmicity in intracellular organelles. PMID:27161994

  4. Microscopy Images as Interactive Tools in Cell Modeling and Cell Biology Education

    Science.gov (United States)

    Araujo-Jorge, Tania C.; Cardona, Tania S.; Mendes, Claudia L. S.; Henriques-Pons, Andrea; Meirelles, Rosane M. S.; Coutinho, Claudia M. L. M.; Aguiar, Luiz Edmundo V.; Meirelles, Maria de Nazareth L.; de Castro, Solange L.; Barbosa, Helene S.; Luz, Mauricio R. M. P.

    2004-01-01

    The advent of genomics, proteomics, and microarray technology has brought much excitement to science, both in teaching and in learning. The public is eager to know about the processes of life. In the present context of the explosive growth of scientific information, a major challenge of modern cell biology is to popularize basic concepts of…

  5. Silicon nanocrystals and nanodiamonds in live cells: photoluminescence characteristics, cytotoxicity and interaction with cell cytoskeleton

    Czech Academy of Sciences Publication Activity Database

    Fučíková, A.; Valenta, J.; Pelant, Ivan; Hubálek Kalbáčová, M.; Brož, A.; Rezek, Bohuslav; Kromka, Alexander; Bakaeva, Zulfiya

    2014-01-01

    Roč. 4, č. 20 (2014), s. 10334-10342. ISSN 2046-2069 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GA202/09/2078 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : silicon nanocrystals * nanodiamonds * live cells * photoluminescence Subject RIV: BO - Biophysics Impact factor: 3.840, year: 2014

  6. PD-L1 interacts specifically with B7-1 to inhibit T cell proliferation

    OpenAIRE

    Butte, Manish J.; Keir, Mary E.; Phamduy, Theresa B.; Freeman, Gordon J; Sharpe, Arlene H.

    2007-01-01

    Pathways in the B7:CD28 family regulate T cell activation and tolerance. B7 dependent responses in CD28/CTLA-4-/- T cells together with reports of stimulatory and inhibitory functions for PD-L1 and PD-L2 have suggested additional receptors for these B7 family members. We show that B7-1 and PD-L1 interact with an affinity intermediate to that of B7-1:CD28 and B7-1:CTLA-4. The PD-L1:B7-1 interface overlaps with the B7-1:CTLA-4 and PD-L1:PD-1 interfaces. We show that the interaction of B7-1 with...

  7. Identifying the common interaction networks of amoeboid motility and cancer cell metastasis

    Directory of Open Access Journals (Sweden)

    Ahmed H. Zeitoun

    2012-06-01

    Full Text Available The recently analyzed genome of Naegleria gruberi, a free-living amoeboflagellate of the Heterolobosea clade, revealed a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal-, motility- and signaling-genes. This protist, which diverged from other eukaryotic lineages over a billion years ago, possesses the ability for both amoeboid and flagellar motility. In a phylogenomic comparison of two free living eukaryotes with large proteomic datasets of three metastatic tumour entities (malignant melanoma, breast- and prostate-carcinoma, we find common proteins with potential importance for cell motility and cancer cell metastasis. To identify the underlying signaling modules, we constructed for each tumour type a protein-protein interaction network including these common proteins. The connectivity within this interactome revealed specific interactions and pathways which constitute prospective points of intervention for novel anti-metastatic tumour therapies.

  8. The effect of alpha-thalassemia on cord blood red cell indices and interaction with sickle cell gene

    International Nuclear Information System (INIS)

    Alpha-thalassemia is known to be prevalent in the Eastern region of Saudi Arabia. There are no large scale reports regarding the effect of alpha-thalassemia on red cell indices of cord blood from Saudi Arabia. Similarly, there are reports regarding the interaction of alpha-thalassemia and the sickle-cell gene in relation to red cell indices in cord blood. To address these issues, we undertook a study on neonatal cold blood samples. In a prospective study, cord blood samples from 504 neonates from the Qatif area of the Eastern Province of Saudi Arabia were analyzed for complete blood counts (CBC) and cellulose acetate Hb electrophoresis. Hb S was confirmed by citrate agar Hb electrophoresis. There were 243 case samples with normal Hb electrophoresis (Hb A 27.2+- 7% and Hb F 72.6+-7.7%). Their mean Hb (g/dL), RBC (x10/L), Hct (%), MCV (pg), MCHC (g/dL), RDW-SD (fl) and RDW-CV (%) were 15.05+-1.6, 4.5+-0.5, 47.4+-5.3, 106+-8, 33.6+-2.3, 31.8+-1.7, 69.2+-9.5 and 17.9+-1.7, respectively. There were 136 cases with alpha-thalassemia trait (alphaTT), 57 cases with sickle cell trait (SCT) and 50 cases of sickle cell trait with alplha-thalassemia trait (SCT/ alphaTT). There were ten cases of Hb H disease (6 definite), including one with sickle cell disease (SCD) and two with SCT, Hb Bart's 23.9%-43.6%; four probable with Hb Bart's 10.9%-16.1% and one with SCT. The effect on red cell parameters in Hb H disease were most pronounced. In addition, there seven cases of SCD, four of whom had coexistent alpha-thalassemia trait (SCD/alphaTT). The prevalence of alpha-thalassemia in this cohort of Saudi population was 39.99%. Hb H disease appeared as common as SCD. Sickle cell gene was seen in 23.4% of neonatal samples. Apha-thalassemia gene significantly reduces MCH, MCV, RDW-SD, Hct, Hb and increase RBC count in both normal or sickle cell trait neonates. Generally, the variation of red cell parameters is directly proportional to the amount of Hb Bart's in the cord blood. Sickle cell

  9. Activating Mutations in β-Catenin in Colon Cancer Cells Alter Their Interaction with Macrophages; the Role of Snail

    OpenAIRE

    Kaler, Pawan; Augenlicht, Leonard; Klampfer, Lidija

    2012-01-01

    Background Tumor cells become addicted to both activated oncogenes and to proliferative and pro-survival signals provided by the abnormal tumor microenvironment. Although numerous soluble factors have been identified that shape the crosstalk between tumor cells and stroma, it has not been established how oncogenic mutations in the tumor cells alter their interaction with normal cells in the tumor microenvironment. Principal Findings We showed that the isogenic HCT116 and Hke-3 cells, which di...

  10. Characterizing natural hydrogel for reconstruction of three-dimensional lymphoid stromal network to model T-cell interactions.

    Science.gov (United States)

    Kim, Jiwon; Wu, Biming; Niedzielski, Steven M; Hill, Matthew T; Coleman, Rhima M; Ono, Akira; Shikanov, Ariella

    2015-08-01

    Hydrogels have been used in regenerative medicine because they provide a three-dimensional environment similar to soft tissues, allow diffusion of nutrients, present critical biological signals, and degrade via endogenous enzymatic mechanisms. Herein, we developed in vitro system mimicking cell-cell and cell-matrix interactions in secondary lymphoid organs (SLOs). Existing in vitro culture systems cannot accurately represent the complex interactions happening between T-cells and stromal cells in immune response. To model T-cell interaction in SLOs in vitro, we encapsulated stromal cells in fibrin, collagen, or fibrin-collagen hydrogels and studied how different mechanical and biological properties affect stromal network formation. Overall, fibrin supplemented with aprotinin was superior to collagen and fibrin-collagen in terms of network formation and promotion of T-cell penetration. After 8 days of culture, stromal networks formed through branching and joining with other adjacent cell populations. T-cells added to the newly formed stromal networks migrated and attached to stromal cells, similar to the T-cell zones of the lymph nodes in vivo. Our results suggest that the constructed three-dimensional lymphoid stromal network can mimic the in vivo environment and allow the modeling of T-cell interaction in SLOs. PMID:25649205

  11. Interactions of 3 nm, 8 nm, and 15 nm gold particles with human alveolar epithelial cells : a microscopy study

    OpenAIRE

    Böse, Katharina

    2013-01-01

    The inhalation of nanoparticles can cause interactions with pulmonary structures. Human alveolar epithelial cells type II organize the alveolar epithelium and thus can be regarded as barrier against pulmonary nanoparticle uptake. Within the present work, interactions of differently sized gold nanoparticles with A549 cells, a model for type II human alveolar epithelial cells, were studied. The intracellular location of the fluorescently labeled gold particles was analyzed by STED (stimulated e...

  12. Gene expression profiling in host-pathogen interactions and identification of the molecular mechanisms involved in dendrictic cells activation

    OpenAIRE

    Torri,, M.

    2009-01-01

    In this thesis we used a functional genomic approach to study host-pathogen interactions [1]. We analyzed the interaction from the host point of view and in particular from the dendritic cells point of view. Dendritic cells (DCs) constitute a heterogeneous group of antigen-presenting leukocytes important in activation of both innate and adaptive immunity [2]. In the first part of this thesis we explored the possibility to use dendritic cell transcriptomes to generate biomarkers of inflamma...

  13. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions

    OpenAIRE

    Zhang, Wei; Sileika, Tadas S.; Chen, Cheng; Liu, Yang; Lee, Jisun; Packman, Aaron I.

    2011-01-01

    Biofilms are microbial communities growing on surfaces, and are ubiquitous in nature, in bioreactors, and in human infection. Coupling between physical, chemical, and biological processes is known to regulate the development of biofilms; however, current experimental systems do not provide sufficient control of environmental conditions to enable detailed investigations of these complex interactions. We developed a novel planar flow cell that supports biofilm growth under complex two-dimension...

  14. Analysis of the Interactions of Botanical Extract Combinations Against the Viability of Prostate Cancer Cell Lines

    OpenAIRE

    Adams, Lynn S.; Seeram, Navindra P.; Hardy, Mary L.; Catherine Carpenter; David Heber

    2006-01-01

    Herbal medicines are often combinations of botanical extracts that are assumed to have additive or synergistic effects. The purpose of this investigation was to compare the effect of individual botanical extracts with combinations of extracts on prostate cell viability. We then modeled the interactions between botanical extracts in combination isobolographically. Scutellaria baicalensis, Rabdosia rubescens, Panax-pseudo ginseng, Dendranthema morifolium, Glycyrrhiza uralensis and Serenoa re...

  15. Candida species differ in their interactions with immature human gastrointestinal epithelial cells

    OpenAIRE

    Falgier, Christina; Kegley, Sara; Podgorski, Heather; Heisel, Timothy; Storey, Kathleen; Bendel, Catherine M.; Gale, Cheryl A.

    2011-01-01

    Life-threatening gastrointestinal (GI) diseases of prematurity are highly associated with systemic candidiasis. This implicates the premature GI tract as an important site for invasion by Candida. Invasive interactions of Candida spp. with immature enterocytes have heretofore not been analyzed. Using a primary immature human enterocyte line, we compared the ability of multiple isolates of different Candida spp. to penetrate, injure, and induce a cytokine response from host cells. Of all the C...

  16. Review Article: The weak interactive characteristic of resonance cells and broadband effect of metamaterials

    OpenAIRE

    Xiaopeng Zhao; Kun Song

    2014-01-01

    Metamaterials are artificial media designed to control electromagnetic wave propagation. Due to resonance, most present-day metamaterials inevitably suffer from narrow bandwidth, extremely limiting their practical applications. On the basis of tailored properties, a metamaterial within which each distinct unit cell resonates at its inherent frequency and has almost no coupling effect with the other ones, termed as weak interaction system, can be formulated. The total response of a weak intera...

  17. ON THE INTERACTIONS BETWEEN CELLULOSE AND XYLAN, A BIOMIMETIC SIMULATION OF THE HARDWOOD CELL WALL

    OpenAIRE

    Sofia Dammström; Lennart Salmén; Paul Gatenholm

    2009-01-01

    The plant cell wall exhibits a hierarchical structure, in which the organization of the constituents on different levels strongly affects the mechanical properties and the performance of the material. In this work, the interactions between cellulose and xylan in a model system consisting of a bacterial cellulose/glucuronoxylan (extracted from aspen, Populus tremula) have been studied and compared to that of a delignified aspen fiber material. The properties of the materials were analyzed usin...

  18. Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes.

    Science.gov (United States)

    Fleischer, Candace C; Payne, Christine K

    2014-08-19

    The use of nanoparticles (NPs) in biology and medicine requires a molecular-level understanding of how NPs interact with cells in a physiological environment. A critical difference between well-controlled in vitro experiments and in vivo applications is the presence of a complex mixture of extracellular proteins. It has been established that extracellular serum proteins present in blood will adsorb onto the surface of NPs, forming a "protein corona". Our goal was to understand how this protein layer affected cellular-level events, including NP binding, internalization, and transport. A combination of microscopy, which provides spatial resolution, and spectroscopy, which provides molecular information, is necessary to probe protein-NP-cell interactions. Initial experiments used a model system composed of polystyrene NPs functionalized with either amine or carboxylate groups to provide a cationic or anionic surface, respectively. Serum proteins adsorb onto the surface of both cationic and anionic NPs, forming a net anionic protein-NP complex. Although these protein-NP complexes have similar diameters and effective surface charges, they show the exact opposite behavior in terms of cellular binding. In the presence of bovine serum albumin (BSA), the cellular binding of BSA-NP complexes formed from cationic NPs is enhanced, whereas the cellular binding of BSA-NP complexes formed from anionic NPs is inhibited. These trends are independent of NP diameter or cell type. Similar results were obtained for anionic quantum dots and colloidal gold nanospheres. Using competition assays, we determined that BSA-NP complexes formed from anionic NPs bind to albumin receptors on the cell surface. BSA-NP complexes formed from cationic NPs are redirected to scavenger receptors. The observation that similar NPs with identical protein corona compositions bind to different cellular receptors suggested that a difference in the structure of the adsorbed protein may be responsible for the

  19. Multiscale Modeling of Cell Interaction in Angiogenesis: From the Micro- to Macro-scale

    Science.gov (United States)

    Pillay, Samara; Maini, Philip; Byrne, Helen

    Solid tumors require a supply of nutrients to grow in size. To this end, tumors induce the growth of new blood vessels from existing vasculature through the process of angiogenesis. In this work, we use a discrete agent-based approach to model the behavior of individual endothelial cells during angiogenesis. We incorporate crowding effects through volume exclusion, motility of cells through biased random walks, and include birth and death processes. We use the transition probabilities associated with the discrete models to determine collective cell behavior, in terms of partial differential equations, using a Markov chain and master equation framework. We find that the cell-level dynamics gives rise to a migrating cell front in the form of a traveling wave on the macro-scale. The behavior of this front depends on the cell interactions that are included and the extent to which volume exclusion is taken into account in the discrete micro-scale model. We also find that well-established continuum models of angiogenesis cannot distinguish between certain types of cell behavior on the micro-scale. This may impact drug development strategies based on these models.

  20. Human ovarian tumor cell interactions with extracellular matrix: development of a model to study tumor cell invasion

    International Nuclear Information System (INIS)

    In order to investigate the mechanisms involved in ovarian carcinoma cell implantation and the associated tumor cell-host interactions, a model system was developed employing a mesothelial cell line grown on bovine corneal endothelial cell extracellular matrix (ECM), in an attempt to reconstruct the mesothelium in vitro. Morphologic alterations of the reconstructed mesothelium induced by OCC were observed using immunohistochemical staining, light and electron microscopy. A relationship was observed between extracellular β-N-acetylhexosaminidase activity and (1) the ability of OCC to morphologically degrade ECM; (2) the capacity of OCC to degrade [3H]-glucosamine radiolabelled ECM. The rate of accumulation of extracellular hexosaminidase in cell free-conditioned medium was progressive and closely paralleled the rate of OCC mediated release of [3H]-glucosamine from ECM. Purified hexosaminidase (placental and/or OCC) was observed to directly hydrolzye [3H]-glucosamine radiolabelled structurally intact ECM (up to 70% radiolabel) and resulted in the cumulative release of free [3H]-N-acetylglucosamine

  1. Taurolidine antiadhesive properties on interaction with E. coli; its transformation in biological environment and interaction with bacteria cell wall.

    Directory of Open Access Journals (Sweden)

    Francesco Caruso

    Full Text Available The taurine amino-acid derivative, taurolidine, bis-(1,1-dioxoperhydro-1,2,4-thiabiazinyl-4methane, shows broad antibacterial action against gram-positive and gram-negative bacteria, mycobacteria and some clinically relevant fungi. It inhibits, in vitro, the adherence of Escherichia coli and Staphylococcus aureus to human epithelial and fibroblast cells. Taurolidine is unstable in aqueous solution and breaks down into derivatives which are thought to be responsible for the biological activity. To understand the taurolidine antibacterial mechanism of action, we provide the experimental single crystal X-ray diffraction results together with theoretical methods to characterize the hydrolysis/decomposition reactions of taurolidine. The crystal structure features two independent molecules linked through intermolecular H-bonds with one of them somewhat positively charged. Taurolidine in a biological environment exists in equilibrium with taurultam derivatives and this is described theoretically as a 2-step process without an energy barrier: formation of cationic taurolidine followed by a nucleophilic attack of O(hydroxyl on the exocyclic C(methylene. A concerted mechanism describes the further hydrolysis of the taurolidine derivative methylol-taurultam. The interaction of methylol-taurultam with the diaminopimelic NH(2 group in the E. coli bacteria cell wall (peptidoglycan has a negative DeltaG value (-38.2 kcal/mol but a high energy barrier (45.8 kcal/mol suggesting no reactivity. On the contrary, taurolidine docking into E. coli fimbriae protein, responsible for bacteria adhesion to the bladder epithelium, shows it has higher affinity than mannose (the natural substrate, whereas methylol-taurultam and taurultam are less tightly bound. Since taurolidine is readily available because it is administered in high doses after peritonitis surgery, it may successfully compete with mannose explaining its effectiveness against bacterial infections at

  2. Layilin, a cell surface hyaluronan receptor, interacts with merlin and radixin

    International Nuclear Information System (INIS)

    Layilin is a widely expressed integral membrane hyaluronan receptor, originally identified as a binding partner of talin located in membrane ruffles. We have identified merlin, the neurofibromatosis type 2 tumor suppressor protein and radixin, as other interactors with the carboxy-terminal domain of layilin. We show that the carboxy-terminal domain of layilin is capable of binding to the amino-terminal domain of radixin. An interdomain interaction between the amino- and the carboxy-terminal domains of radixin inhibits its ability to bind to layilin. In the presence of acidic phospholipids, the interdomain interaction of radixin is inhibited and layilin can bind to full-length radixin. In contrast, layilin binds both full-length and amino-terminal merlin-GST fusion proteins without a requirement for phospholipids. Furthermore, layilin antibody can immunoprecipitate merlin, confirming association in vivo between these two proteins, which also display similar subcellular localizations in ruffling membranes. No interaction was observed between layilin and ezrin or layilin and moesin. These findings expand the known binding partners of layilin to include other members of the talin/band 4.1/ERM (ezrin, radixin, and moesin) family of cytoskeletal-membrane linker molecules. This in turn suggests that layilin may mediate signals from extracellular matrix to the cell cytoskeleton via interaction with different intracellular binding partners and thereby be involved in the modulation of cortical structures in the cell

  3. 0610009K11Rik, a testis-specific and germ cell nuclear receptor-interacting protein

    International Nuclear Information System (INIS)

    Using an in silico approach, a putative nuclear receptor-interacting protein 0610009K11Rik was identified in mouse testis. We named this gene testis-specific nuclear receptor-interacting protein-1 (Tnrip-1). Tnrip-1 was predominantly expressed in the testis of adult mouse tissues. Expression of Tnrip-1 in the testis was regulated during postnatal development, with robust expression in 14-day-old or older testes. In situ hybridization analyses showed that Tnrip-1 is highly expressed in pachytene spermatocytes and spermatids. Consistent with its mRNA expression, Tnrip-1 protein was detected in adult mouse testes. Immunohistochemical studies showed that Tnrip-1 is a nuclear protein and mainly expressed in pachytene spermatocytes and round spermatids. Moreover, co-immunoprecipitation analyses showed that endogenous Tnrip-1 protein can interact with germ cell nuclear receptor (GCNF) in adult mouse testes. Our results suggest that Tnrip-1 is a testis-specific and GCNF-interacting protein which may be involved in the modulation of GCNF-mediated gene transcription in spermatogenic cells within the testis

  4. Fibrocyte and T cell interactions promote disease pathogenesis in rheumatoid arthritis.

    Science.gov (United States)

    Galligan, Carole L; Keystone, Edward C; Fish, Eleanor N

    2016-05-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease. We previously identified a circulating cell population, fibrocytes, which is activated early in disease. As RA is characterized by the formation of autoantibodies and autoreactive T cells, which often precede symptom onset, the objective of these studies was to characterize fibrocyte activation in the context of T cell activation. Multidimensional flow cytometry was used to characterize the activation status of peripheral blood (PB) fibrocytes and T cells derived from RA patients with different levels of disease activity. Compared to healthy controls, fibrocytes from RA patients exhibited increased activation, denoted as elevated levels of phosphorylation of STAT3 and NF-κB. RA patients had higher numbers of circulating activated Th17 cells and Tregs compared with healthy controls, Th17 cell numbers being higher in patients with moderate to high disease activity. Additionally, increased numbers of FOXP3+ RORγt+ double positive CD4+ T cells were observed in RA patients with more severe disease. Our data confirm that circulating fibrocytes are expanded in RA and that there is a direct correlation between the increase in number of activated fibrocytes and increased number of CD4+ T cells. Moreover, our data suggest that interactions between circulating fibrocytes and activated T cells may promote disease activity. Specifically, we provide in vitro evidence that mouse-derived CD4+ T cells produce GM-CSF which induces fibrocyte proliferation. In turn, activated fibrocytes produce IL-6, promoting Th17 polarization. PMID:26948996

  5. Interactions between cells with distinct mutations in c-MYC and Pten in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Jongchan Kim

    2009-07-01

    Full Text Available In human somatic tumorigenesis, mutations are thought to arise sporadically in individual cells surrounded by unaffected cells. This contrasts with most current transgenic models where mutations are induced synchronously in entire cell populations. Here we have modeled sporadic oncogene activation using a transgenic mouse in which c-MYC is focally activated in prostate luminal epithelial cells. Focal c-MYC expression resulted in mild pathology, but prostate-specific deletion of a single allele of the Pten tumor suppressor gene cooperated with c-MYC to induce high grade prostatic intraepithelial neoplasia (HGPIN/cancer lesions. These lesions were in all cases associated with loss of Pten protein expression from the wild type allele. In the prostates of mice with concurrent homozygous deletion of Pten and focal c-MYC activation, double mutant (i.e. c-MYC+;Pten-null cells were of higher grade and proliferated faster than single mutant (Pten-null cells within the same glands. Consequently, double mutant cells outcompeted single mutant cells despite the presence of increased rates of apoptosis in the former. The p53 pathway was activated in Pten-deficient prostate cells and tissues, but c-MYC expression shifted the p53 response from senescence to apoptosis by repressing the p53 target gene p21(Cip1. We conclude that c-MYC overexpression and Pten deficiency cooperate to promote prostate tumorigenesis, but a p53-dependent apoptotic response may present a barrier to further progression. Our results highlight the utility of inducing mutations focally to model the competitive interactions between cell populations with distinct genetic alterations during tumorigenesis.

  6. Effects of the protein corona on liposome-liposome and liposome-cell interactions.

    Science.gov (United States)

    Corbo, Claudia; Molinaro, Roberto; Taraballi, Francesca; Toledano Furman, Naama E; Sherman, Michael B; Parodi, Alessandro; Salvatore, Francesco; Tasciotti, Ennio

    2016-01-01

    A thorough understanding of interactions occurring at the interface between nanocarriers and biological systems is crucial to predict and interpret their biodistribution, targeting, and efficacy, and thus design more effective drug delivery systems. Upon intravenous injection, nanoparticles are coated by a protein corona (PC). This confers a new biological identity on the particles that largely determines their biological fate. Liposomes have great pharmaceutical versatility, so, as proof of concept, their PC has recently been implicated in the mechanism and efficiency of their internalization into the cell. In an attempt to better understand the interactions between nanocarriers and biological systems, we analyzed the plasma proteins adsorbed on the surface of multicomponent liposomes. Specifically, we analyzed the physical properties and ultrastructure of liposome/PC complexes and the aggregation process that occurs when liposomes are dispersed in plasma. The results of combined confocal microscopy and flow cytometry experiments demonstrated that the PC favors liposome internalization by both macrophages and tumor cells. This work provides insights into the effects of the PC on liposomes' physical properties and, consequently, liposome-liposome and liposome-cell interactions. PMID:27445473

  7. Effects of the protein corona on liposome–liposome and liposome–cell interactions

    Science.gov (United States)

    Corbo, Claudia; Molinaro, Roberto; Taraballi, Francesca; Toledano Furman, Naama E; Sherman, Michael B; Parodi, Alessandro; Salvatore, Francesco; Tasciotti, Ennio

    2016-01-01

    A thorough understanding of interactions occurring at the interface between nanocarriers and biological systems is crucial to predict and interpret their biodistribution, targeting, and efficacy, and thus design more effective drug delivery systems. Upon intravenous injection, nanoparticles are coated by a protein corona (PC). This confers a new biological identity on the particles that largely determines their biological fate. Liposomes have great pharmaceutical versatility, so, as proof of concept, their PC has recently been implicated in the mechanism and efficiency of their internalization into the cell. In an attempt to better understand the interactions between nanocarriers and biological systems, we analyzed the plasma proteins adsorbed on the surface of multicomponent liposomes. Specifically, we analyzed the physical properties and ultrastructure of liposome/PC complexes and the aggregation process that occurs when liposomes are dispersed in plasma. The results of combined confocal microscopy and flow cytometry experiments demonstrated that the PC favors liposome internalization by both macrophages and tumor cells. This work provides insights into the effects of the PC on liposomes’ physical properties and, consequently, liposome–liposome and liposome–cell interactions. PMID:27445473

  8. Extracellular matrix of smooth muscle cells: interaction of collagen type V with heparan sulfate proteoglycan

    Energy Technology Data Exchange (ETDEWEB)

    Gay, S.; Hoeoek, M.; Gay, R.E.; Magargal, W.W.; Reynertson, R.H.

    1986-03-05

    Alteration in the extracellular matrix produced by smooth muscle cells may play a role in the development of atherosclerotic lesions. Consequently the authors have initiated studies on the structural organization of the extracellular matrix produced by cultured smooth muscle cells. Immunohisotological examination of this matrix using well-characterized mono- and polyclonal antibodies showed a partial codistribution of heparan sulfate (HS) proteoglycans with a number of different matrix components including collagen types I, III, IV, V and VI, laminin and fibronectin. Subsequent binding studies between isolated matrix proteins and HS showed that the polysaccharide interacts strongly with type V collagen and to a lesser extent with fibronectin as well as collagen types III and VI. The interaction between type V and HS was readily inhibited by heparin and highly sulfated HS but not be dermatan sulfate, chondroitin sulfate or HS with a low sulfate content. Furthermore, (/sup 35/S)-HS proteoglycans isolated from cultured smooth muscle cells could be adsorbed on a column of sepharose conjugated with native type V collagen and eluted in a salt gradient. Hence, the interaction between type V and HS may play a major part in stabilizing the extracellular matrix of the vessel wall.

  9. Extracellular matrix of smooth muscle cells: interaction of collagen type V with heparan sulfate proteoglycan

    International Nuclear Information System (INIS)

    Alteration in the extracellular matrix produced by smooth muscle cells may play a role in the development of atherosclerotic lesions. Consequently the authors have initiated studies on the structural organization of the extracellular matrix produced by cultured smooth muscle cells. Immunohisotological examination of this matrix using well-characterized mono- and polyclonal antibodies showed a partial codistribution of heparan sulfate (HS) proteoglycans with a number of different matrix components including collagen types I, III, IV, V and VI, laminin and fibronectin. Subsequent binding studies between isolated matrix proteins and HS showed that the polysaccharide interacts strongly with type V collagen and to a lesser extent with fibronectin as well as collagen types III and VI. The interaction between type V and HS was readily inhibited by heparin and highly sulfated HS but not be dermatan sulfate, chondroitin sulfate or HS with a low sulfate content. Furthermore, [35S]-HS proteoglycans isolated from cultured smooth muscle cells could be adsorbed on a column of sepharose conjugated with native type V collagen and eluted in a salt gradient. Hence, the interaction between type V and HS may play a major part in stabilizing the extracellular matrix of the vessel wall

  10. Direct interaction of endogenous Kv channels with syntaxin enhances exocytosis by neuroendocrine cells.

    Directory of Open Access Journals (Sweden)

    Dafna Singer-Lahat

    Full Text Available K(+ efflux through voltage-gated K(+ (Kv channels can attenuate the release of neurotransmitters, neuropeptides and hormones by hyperpolarizing the membrane potential and attenuating Ca(2+ influx. Notably, direct interaction between Kv2.1 channels overexpressed in PC12 cells and syntaxin has recently been shown to facilitate dense core vesicle (DCV-mediated release. Here, we focus on endogenous Kv2.1 channels and show that disruption of their interaction with native syntaxin after ATP-dependent priming of the vesicles by Kv2.1 syntaxin-binding peptides inhibits Ca(2+ -triggered exocytosis of DCVs from cracked PC12 cells in a specific and dose-dependent manner. The inhibition cannot simply be explained by the impairment of the interaction of syntaxin with its SNARE cognates. Thus, direct association between endogenous Kv2.1 and syntaxin enhances exocytosis and in combination with the Kv2.1 inhibitory effect to hyperpolarize the membrane potential, could contribute to the known activity dependence of DCV release in neuroendocrine cells and in dendrites where Kv2.1 commonly expresses and influences release.

  11. Lack of interaction between digoxin and quinidine in cultured heart cells

    International Nuclear Information System (INIS)

    Previous investigations have raised the possibility that the digoxin-quinidine interaction is associated with a reduction in the positive inotropic effect of digoxin due to displacement of digoxin from cardiac as well as skeletal muscle. To circumvent some of the complexities presented by intact animal models, this interaction was investigated in cultured chick embryo ventricular cells. Quinidine, even at relatively high concentrations (10(-4)--2 x 10(-3) M), did not significantly affect positive inotropic effects of digoxin and did not protect against cellular contracture induced by toxic digoxin concentrations, despite preincubation of cells with quinidine for 60 min. The effects of digoxin on monovalent cation transport, as judged by active uptake of the K analog 86Rb, were also not altered by 10(-4) M to 2 x 10(-3) M quinidine. These data suggest that quinidine does not displace digoxin from Na, K adenosine triphosphatase binding sites in this preparation. Although these data must be extrapolated to the intact animal with caution, our findings suggest that changes in digoxin clearance are more likely of primary importance in the digoxin-quinidine interaction, and indicate that the approximately 2-fold increase in serum digoxin concentration observed after addition of quinidine would be expected to have direct effects on myocardial cells comparable with those seen with increased digoxin concentration in the absence of quinidine

  12. Analysis of the Interactions of Botanical Extract Combinations Against the Viability of Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Lynn S. Adams

    2006-01-01

    Full Text Available Herbal medicines are often combinations of botanical extracts that are assumed to have additive or synergistic effects. The purpose of this investigation was to compare the effect of individual botanical extracts with combinations of extracts on prostate cell viability. We then modeled the interactions between botanical extracts in combination isobolographically. Scutellaria baicalensis, Rabdosia rubescens, Panax-pseudo ginseng, Dendranthema morifolium, Glycyrrhiza uralensis and Serenoa repens were collected, taxonomically identified and extracts prepared. Effects of the extracts on cell viability were quantitated in prostate cell lines using a luminescent ATP cell viability assay. Combinations of two botanical extracts of the four most active extracts were tested in the 22Rv1 cell line and their interactions assessed using isobolographic analysis. Each extract significantly inhibited the proliferation of prostate cell lines in a time- and dose-dependent manner except repens. The most active extracts, baicalensis, D. morifolium, G. uralensis and R. rubescens were tested as two-extract combinations. baicalensis and D. morifolium when combined were additive with a trend toward synergy, whereas D. morifolium and R. rubescens together were additive. The remaining two-extract combinations showed antagonism. The four extracts together were significantly more effective than the two-by-two combinations and the individual extracts alone. Combining the four herbal extracts significantly enhanced their activity in the cell lines tested compared with extracts alone. The less predictable nature of the two-way combinations suggests a need for careful characterization of the effects of each individual herb based on their intended use.

  13. P-selectin glycoprotein ligand-1 forms dimeric interactions with E-selectin but monomeric interactions with L-selectin on cell surfaces.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available Interactions of selectins with cell surface glycoconjugates mediate the first step of the adhesion and signaling cascade that recruits circulating leukocytes to sites of infection or injury. P-selectin dimerizes on the surface of endothelial cells and forms dimeric bonds with P-selectin glycoprotein ligand-1 (PSGL-1, a homodimeric sialomucin on leukocytes. It is not known whether leukocyte L-selectin or endothelial cell E-selectin are monomeric or oligomeric. Here we used the micropipette technique to analyze two-dimensional binding of monomeric or dimeric L- and E-selectin with monomeric or dimeric PSGL-1. Adhesion frequency analysis demonstrated that E-selectin on human aortic endothelial cells supported dimeric interactions with dimeric PSGL-1 and monomeric interactions with monomeric PSGL-1. In contrast, L-selectin on human neutrophils supported monomeric interactions with dimeric or monomeric PSGL-1. Our work provides a new method to analyze oligomeric cross-junctional molecular binding at the interface of two interacting cells.

  14. Haemophilus haemolyticus interaction with host cells is different to nontypeable Haemophilus influenzae and prevents NTHi association with epithelial cells

    Directory of Open Access Journals (Sweden)

    Janessa Lea Pickering

    2016-05-01

    Full Text Available Nontypeable Haemophilus influenzae (NTHi is an opportunistic pathogen that resides in the upper respiratory tract and contributes to a significant burden of respiratory related diseases in children and adults. Haemophilus haemolyticus is a respiratory tract commensal that can be misidentified as NTHi due to high levels of genetic relatedness. There are reports of invasive disease from H. haemolyticus, which further blurs the species boundary with NTHi. To investigate differences in pathogenicity between these species, we optimized an in vitro epithelial cell model to compare the interaction of 10 H. haemolyticus strains with 4 NTHi and 4 H. influenzae-like haemophili. There was inter- and intra-strain variability but overall, H. haemolyticus had reduced capacity to attach to and invade nasopharyngeal and bronchoalveolar epithelial cell lines (D562 and A549 within 3h when compared with NTHi. H. haemolyticus was cytotoxic to both cell lines at 24h, whereas NTHi was not. Nasopharyngeal epithelium challenged with some H. haemolyticus strains released high levels of inflammatory mediators IL-6 and IL-8, whereas NTHi did not elicit an inflammatory response despite higher levels of cell association and invasion. Furthermore, peripheral blood mononuclear cells stimulated with H. haemolyticus or NTHi released similar and high levels of IL-6, IL-8, IL-10, IL-1β and TNFα when compared with unstimulated cells but only NTHi elicited an IFNγ response.Due to the relatedness of H. haemolyticus and NTHi, we hypothesized that H. haemolyticus may compete with NTHi for colonization of the respiratory tract. We observed that in vitro pre-treatment of epithelial cells with H. haemolyticus significantly reduced NTHi attachment, suggesting interference or competition between the two species is possible and warrants further investigation. In conclusion, H. haemolyticus interacts differently with host cells compared to NTHi, with different immunostimulatory and

  15. Uncovering transcriptional regulation of metabolism by using metabolic network topology

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb; Nielsen, Jens

    2005-01-01

    Cellular response to genetic and environmental perturbations is often reflected and/or mediated through changes in the metabolism, because the latter plays a key role in providing Gibbs free energy and precursors for biosynthesis. Such metabolic changes are often exerted through transcriptional...... changes induced by complex regulatory mechanisms coordinating the activity of different metabolic pathways. It is difficult to map such global transcriptional responses by using traditional methods, because many genes in the metabolic network have relatively small changes at their transcription level. We...... therefore developed an algorithm that is based on hypothesis-driven data analysis to uncover the transcriptional regulatory architecture of metabolic networks. By using information on the metabolic network topology from genome-scale metabolic reconstruction, we show that it is possible to reveal patterns in...

  16. DOES UNCOVERED INTEREST RATE PARITY HOLD IN TURKEY?

    Directory of Open Access Journals (Sweden)

    Ozcan Karahan

    2012-01-01

    Full Text Available Most of the earlier empirical studies focusing on developed countries failed to give evidence in favor of the Uncovered Interest Rate Parity (UIP. After intensive financial liberalization processes and mostly preferred free exchange rate regimes, a new area of research starts to involve the investigation whether UIP holds for developing economies differently. Accordingly, we tested the UIP for Turkey’s monthly interest rate and exchange rate data between 2002 and 2011. We run conventional regressions in the form of Ordinary Least Squares (OLS and used a simple Generalized Autoregressive Conditional Heteroskedasticity (GARCH analysis. The empirical results of both methods do not support the validity of UIP for Turkey. Thus, together with most of the earlier empirical studies focusing on developed countries and detecting the invalidity of UIP, we can argue that the experience of Turkey and developed economies are not different.

  17. Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model

    Directory of Open Access Journals (Sweden)

    Qi Yuan(Alan

    2010-01-01

    Full Text Available Abstract The problem of uncovering transcriptional regulation by transcription factors (TFs based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ( status and Estrogen Receptor negative ( status, respectively.

  18. Uncover the Ideology Behind News Reports Through Transitivity Analysis

    Institute of Scientific and Technical Information of China (English)

    董亚男

    2015-01-01

    When people read the reports relating to Occupy Central from different news papers, they get completely different feelings towards the event. To find out how this phenomenon happened, this paper is going to apply transitivity analysis to the news reports. The reports are selected from China Daily, CNN and BBC respectively. To have a deep application of this method, only verbal process wil be taken into consideration. This paper wil discuss the proportion of verbal process from the two sides (Occupy Central people as one side and people against them as the other), the message delivered by the verbal process, the sequence and the transformation of verbal process. The purpose is to uncover the ideology hidden behind the seemingly objective news reports through transitivity analysis.

  19. Uncovering Quantum Correlations with Time-Multiplexed Click Detection

    Science.gov (United States)

    Sperling, J.; Bohmann, M.; Vogel, W.; Harder, G.; Brecht, B.; Ansari, V.; Silberhorn, C.

    2015-07-01

    We report on the implementation of a time-multiplexed click detection scheme to probe quantum correlations between different spatial optical modes. We demonstrate that such measurement setups can uncover nonclassical correlations in multimode light fields even if the single mode reductions are purely classical. The nonclassical character of correlated photon pairs, generated by a parametric down-conversion, is immediately measurable employing the theory of click counting instead of low-intensity approximations with photoelectric detection models. The analysis is based on second- and higher-order moments, which are directly retrieved from the measured click statistics, for relatively high mean photon numbers. No data postprocessing is required to demonstrate the effects of interest with high significance, despite low efficiencies and experimental imperfections. Our approach shows that such novel detection schemes are a reliable and robust way to characterize quantum-correlated light fields for practical applications in quantum communications.

  20. The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration

    DEFF Research Database (Denmark)

    Voena, Claudia; Conte, Chiara; Ambrogio, Chiara; Boeri Erba, Elisabetta; Boccalatte, Francesco; Mohammed, Shabaz; Jensen, Ole N; Palestro, Giorgio; Inghirami, Giorgio; Chiarle, Roberto

    2007-01-01

    , leading to increased cell growth, resistance to apoptosis, and changes in morphology and migration of transformed cells. To search for new NPM-ALK interacting molecules, we developed a mass spectrometry-based proteomic approach in HEK293 cells expressing an inducible NPM-ALK and identified the tyrosine...