WorldWideScience

Sample records for cell interactions uncovered

  1. Hepatitis C virus host cell interactions uncovered

    DEFF Research Database (Denmark)

    Gottwein, Judith; Bukh, Jens

    2007-01-01

      Insights into virus-host cell interactions as uncovered by Randall et al. (1) in a recent issue of PNAS further our understanding of the hepatitis C virus (HCV) life cycle, persistence, and pathogenesis and might lead to the identification of new therapeutic targets. HCV persistently infects 180...

  2. Uncovering transcriptional interactions via an adaptive fuzzy logic approach

    Directory of Open Access Journals (Sweden)

    Chen Chung-Ming

    2009-12-01

    Full Text Available Abstract Background To date, only a limited number of transcriptional regulatory interactions have been uncovered. In a pilot study integrating sequence data with microarray data, a position weight matrix (PWM performed poorly in inferring transcriptional interactions (TIs, which represent physical interactions between transcription factors (TF and upstream sequences of target genes. Inferring a TI means that the promoter sequence of a target is inferred to match the consensus sequence motifs of a potential TF, and their interaction type such as AT or RT is also predicted. Thus, a robust PWM (rPWM was developed to search for consensus sequence motifs. In addition to rPWM, one feature extracted from ChIP-chip data was incorporated to identify potential TIs under specific conditions. An interaction type classifier was assembled to predict activation/repression of potential TIs using microarray data. This approach, combining an adaptive (learning fuzzy inference system and an interaction type classifier to predict transcriptional regulatory networks, was named AdaFuzzy. Results AdaFuzzy was applied to predict TIs using real genomics data from Saccharomyces cerevisiae. Following one of the latest advances in predicting TIs, constrained probabilistic sparse matrix factorization (cPSMF, and using 19 transcription factors (TFs, we compared AdaFuzzy to four well-known approaches using over-representation analysis and gene set enrichment analysis. AdaFuzzy outperformed these four algorithms. Furthermore, AdaFuzzy was shown to perform comparably to 'ChIP-experimental method' in inferring TIs identified by two sets of large scale ChIP-chip data, respectively. AdaFuzzy was also able to classify all predicted TIs into one or more of the four promoter architectures. The results coincided with known promoter architectures in yeast and provided insights into transcriptional regulatory mechanisms. Conclusion AdaFuzzy successfully integrates multiple types of

  3. Challenging muscle homeostasis uncovers novel chaperone interactions in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Anna eFrumkin

    2014-11-01

    Full Text Available Proteome stability is central to cellular function and the lifespan of an organism. This is apparent in muscle cells, where incorrect folding and assembly of the sarcomere contributes to disease and aging. Apart from the myosin-assembly factor UNC-45, the complete network of chaperones involved in assembly and maintenance of muscle tissue is currently unknown. To identify additional factors required for sarcomere quality control, we performed genetic screens based on suppressed or synthetic motility defects in Caenorhabditis elegans. In addition to ethyl methyl sulfonate-based mutagenesis, we employed RNAi-mediated knockdown of candidate chaperones in unc-45 temperature-sensitive mutants and screened for impaired movement at permissive conditions. This approach confirmed the cooperation between UNC-45 and Hsp90. Moreover, the screens identified three novel co-chaperones, CeHop (STI-1, CeAha1 (C01G10.8 and Cep23 (ZC395.10, required for muscle integrity. The specific identification of Hsp90 and Hsp90 co-chaperones highlights the physiological role of Hsp90 in myosin folding. Our work thus provides a clear example of how a combination of mild perturbations to the proteostasis network can uncover specific quality control modules.

  4. Transcriptional Derepression Uncovers Cryptic Higher-Order Genetic Interactions.

    Directory of Open Access Journals (Sweden)

    Matthew B Taylor

    2015-10-01

    Full Text Available Disruption of certain genes can reveal cryptic genetic variants that do not typically show phenotypic effects. Because this phenomenon, which is referred to as 'phenotypic capacitance', is a potential source of trait variation and disease risk, it is important to understand how it arises at the genetic and molecular levels. Here, we use a cryptic colony morphology trait that segregates in a yeast cross to explore the mechanisms underlying phenotypic capacitance. We find that the colony trait is expressed when a mutation in IRA2, a negative regulator of the Ras pathway, co-occurs with specific combinations of cryptic variants in six genes. Four of these genes encode transcription factors that act downstream of the Ras pathway, indicating that the phenotype involves genetically complex changes in the transcriptional regulation of Ras targets. We provide evidence that the IRA2 mutation reveals the phenotypic effects of the cryptic variants by disrupting the transcriptional silencing of one or more genes that contribute to the trait. Supporting this role for the IRA2 mutation, deletion of SFL1, a repressor that acts downstream of the Ras pathway, also reveals the phenotype, largely due to the same cryptic variants that were detected in the IRA2 mutant cross. Our results illustrate how higher-order genetic interactions among mutations and cryptic variants can result in phenotypic capacitance in specific genetic backgrounds, and suggests these interactions might reflect genetically complex changes in gene expression that are usually suppressed by negative regulation.

  5. Uncovering Factors Related to Pancreatic Beta-Cell Function

    OpenAIRE

    Curran, Aoife M.; Ryan, Miriam F.; Drummond, Elaine; Gibney, Eileen R.; Gibney, Michael J.; Roche, Helen M.; Brennan, Lorraine

    2016-01-01

    Aim: The incidence of type 2 diabetes has increased rapidly on a global scale. Beta-cell dysfunction contributes to the overall pathogenesis of type 2 diabetes. However, factors contributing to beta-cell function are not clear. The aims of this study were (i) to identify factors related to pancreatic beta-cell function and (ii) to perform mechanistic studies in vitro. Methods: Three specific measures of beta-cell function were assessed for 110 participants who completed an oral glucose tolera...

  6. Uncovering Factors Related to Pancreatic Beta-Cell Function.

    Science.gov (United States)

    Curran, Aoife M; Ryan, Miriam F; Drummond, Elaine; Gibney, Eileen R; Gibney, Michael J; Roche, Helen M; Brennan, Lorraine

    2016-01-01

    The incidence of type 2 diabetes has increased rapidly on a global scale. Beta-cell dysfunction contributes to the overall pathogenesis of type 2 diabetes. However, factors contributing to beta-cell function are not clear. The aims of this study were (i) to identify factors related to pancreatic beta-cell function and (ii) to perform mechanistic studies in vitro. Three specific measures of beta-cell function were assessed for 110 participants who completed an oral glucose tolerance test as part of the Metabolic Challenge Study. Anthropometric and biochemical parameters were assessed as potential modulators of beta-cell function. Subsequent in vitro experiments were performed using the BRIN-BD11 pancreatic beta-cell line. Validation of findings were performed in a second human cohort. Waist-to-hip ratio was the strongest anthropometric modulator of beta-cell function, with beta-coefficients of -0.33 (p = 0.001) and -0.30 (p = 0.002) for beta-cell function/homeostatic model assessment of insulin resistance (HOMA-IR), and disposition index respectively. Additionally, the resistin-to-adiponectin ratio (RA index) emerged as being strongly associated with beta-cell function, with beta-coefficients of -0.24 (p = 0.038) and -0.25 (p = 0.028) for beta-cell function/HOMA-IR, and disposition index respectively. Similar results were obtained using a third measure for beta-cell function. In vitro experiments revealed that the RA index was a potent regulator of acute insulin secretion where a high RA index (20ng ml-1 resistin, 5nmol l-1 g-adiponectin) significantly decreased insulin secretion whereas a low RA index (10ng ml-1 resistin, 10nmol l-1 g-adiponectin) significantly increased insulin secretion. The RA index was successfully validated in a second human cohort with beta-coefficients of -0.40 (p = 0.006) and -0.38 (p = 0.008) for beta-cell function/ HOMA-IR, and disposition index respectively. Waist-to-hip ratio and RA index were identified as significant modulators of

  7. Uncovering Factors Related to Pancreatic Beta-Cell Function.

    Directory of Open Access Journals (Sweden)

    Aoife M Curran

    Full Text Available The incidence of type 2 diabetes has increased rapidly on a global scale. Beta-cell dysfunction contributes to the overall pathogenesis of type 2 diabetes. However, factors contributing to beta-cell function are not clear. The aims of this study were (i to identify factors related to pancreatic beta-cell function and (ii to perform mechanistic studies in vitro.Three specific measures of beta-cell function were assessed for 110 participants who completed an oral glucose tolerance test as part of the Metabolic Challenge Study. Anthropometric and biochemical parameters were assessed as potential modulators of beta-cell function. Subsequent in vitro experiments were performed using the BRIN-BD11 pancreatic beta-cell line. Validation of findings were performed in a second human cohort.Waist-to-hip ratio was the strongest anthropometric modulator of beta-cell function, with beta-coefficients of -0.33 (p = 0.001 and -0.30 (p = 0.002 for beta-cell function/homeostatic model assessment of insulin resistance (HOMA-IR, and disposition index respectively. Additionally, the resistin-to-adiponectin ratio (RA index emerged as being strongly associated with beta-cell function, with beta-coefficients of -0.24 (p = 0.038 and -0.25 (p = 0.028 for beta-cell function/HOMA-IR, and disposition index respectively. Similar results were obtained using a third measure for beta-cell function. In vitro experiments revealed that the RA index was a potent regulator of acute insulin secretion where a high RA index (20ng ml-1 resistin, 5nmol l-1 g-adiponectin significantly decreased insulin secretion whereas a low RA index (10ng ml-1 resistin, 10nmol l-1 g-adiponectin significantly increased insulin secretion. The RA index was successfully validated in a second human cohort with beta-coefficients of -0.40 (p = 0.006 and -0.38 (p = 0.008 for beta-cell function/ HOMA-IR, and disposition index respectively.Waist-to-hip ratio and RA index were identified as significant modulators

  8. Transcriptome atlas of eight liver cell types uncovers effects of ...

    Indian Academy of Sciences (India)

    College of Life Science and Technology, Xinjiang University, 14# Shengli Road, Urumqi 830046, Xinjiang, People's Republic of China; Key Laboratory for Cell Differentiation Regulation, Henan Normal University, 46# East of Construction Road, Xinxiang 453007, People's Republic of China; College of Life Science, Henan ...

  9. Seeing the forest through the trees: uncovering phenomic complexity through interactive network visualization.

    Science.gov (United States)

    Warner, Jeremy L; Denny, Joshua C; Kreda, David A; Alterovitz, Gil

    2015-03-01

    Our aim was to uncover unrecognized phenomic relationships using force-based network visualization methods, based on observed electronic medical record data. A primary phenotype was defined from actual patient profiles in the Multiparameter Intelligent Monitoring in Intensive Care II database. Network visualizations depicting primary relationships were compared to those incorporating secondary adjacencies. Interactivity was enabled through a phenotype visualization software concept: the Phenomics Advisor. Subendocardial infarction with cardiac arrest was demonstrated as a sample phenotype; there were 332 primarily adjacent diagnoses, with 5423 relationships. Primary network visualization suggested a treatment-related complication phenotype and several rare diagnoses; re-clustering by secondary relationships revealed an emergent cluster of smokers with the metabolic syndrome. Network visualization reveals phenotypic patterns that may have remained occult in pairwise correlation analysis. Visualization of complex data, potentially offered as point-of-care tools on mobile devices, may allow clinicians and researchers to quickly generate hypotheses and gain deeper understanding of patient subpopulations. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Uncovering new strong dynamics via topological interactions at the 100 TeV collider

    DEFF Research Database (Denmark)

    Molinaro, Emiliano; Sannino, Francesco; Thomsen, Anders Eller

    2017-01-01

    In models of composite Higgs dynamics, new composite pseudoscalars can interact with the Higgs and electroweak gauge bosons via anomalous interactions, stemming from the topological sector of the underlying theory. We show that a future 100 TeV proton-proton collider (FCC-pp) will be able to test...

  11. Uncovering Viral Protein-Protein Interactions and their Role in Arenavirus Life Cycle

    Directory of Open Access Journals (Sweden)

    Nora López

    2012-09-01

    Full Text Available The Arenaviridae family includes widely distributed pathogens that cause severe hemorrhagic fever in humans. Replication and packaging of their single-stranded RNA genome involve RNA recognition by viral proteins and a number of key protein-protein interactions. Viral RNA synthesis is directed by the virus-encoded RNA dependent-RNA polymerase (L protein and requires viral RNA encapsidation by the Nucleoprotein. In addition to the role that the interaction between L and the Nucleoprotein may have in the replication process, polymerase activity appears to be modulated by the association between L and the small multifunctional Z protein. Z is also a structural component of the virions that plays an essential role in viral morphogenesis. Indeed, interaction of the Z protein with the Nucleoprotein is critical for genome packaging. Furthermore, current evidence suggests that binding between Z and the viral envelope glycoprotein complex is required for virion infectivity, and that Z homo-oligomerization is an essential step for particle assembly and budding. Efforts to understand the molecular basis of arenavirus life cycle have revealed important details on these viral protein-protein interactions that will be reviewed in this article.

  12. Uncovering packaging features of co-regulated modules based on human protein interaction and transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    He Weiming

    2010-07-01

    Full Text Available Abstract Background Network co-regulated modules are believed to have the functionality of packaging multiple biological entities, and can thus be assumed to coordinate many biological functions in their network neighbouring regions. Results Here, we weighted edges of a human protein interaction network and a transcriptional regulatory network to construct an integrated network, and introduce a probabilistic model and a bipartite graph framework to exploit human co-regulated modules and uncover their specific features in packaging different biological entities (genes, protein complexes or metabolic pathways. Finally, we identified 96 human co-regulated modules based on this method, and evaluate its effectiveness by comparing it with four other methods. Conclusions Dysfunctions in co-regulated interactions often occur in the development of cancer. Therefore, we focussed on an example co-regulated module and found that it could integrate a number of cancer-related genes. This was extended to causal dysfunctions of some complexes maintained by several physically interacting proteins, thus coordinating several metabolic pathways that directly underlie cancer.

  13. Distilling a Visual Network of Retinitis Pigmentosa Gene-Protein Interactions to Uncover New Disease Candidates.

    Directory of Open Access Journals (Sweden)

    Daniel Boloc

    Full Text Available Retinitis pigmentosa (RP is a highly heterogeneous genetic visual disorder with more than 70 known causative genes, some of them shared with other non-syndromic retinal dystrophies (e.g. Leber congenital amaurosis, LCA. The identification of RP genes has increased steadily during the last decade, and the 30% of the cases that still remain unassigned will soon decrease after the advent of exome/genome sequencing. A considerable amount of genetic and functional data on single RD genes and mutations has been gathered, but a comprehensive view of the RP genes and their interacting partners is still very fragmentary. This is the main gap that needs to be filled in order to understand how mutations relate to progressive blinding disorders and devise effective therapies.We have built an RP-specific network (RPGeNet by merging data from different sources: high-throughput data from BioGRID and STRING databases, manually curated data for interactions retrieved from iHOP, as well as interactions filtered out by syntactical parsing from up-to-date abstracts and full-text papers related to the RP research field. The paths emerging when known RP genes were used as baits over the whole interactome have been analysed, and the minimal number of connections among the RP genes and their close neighbors were distilled in order to simplify the search space.In contrast to the analysis of single isolated genes, finding the networks linking disease genes renders powerful etiopathological insights. We here provide an interactive interface, RPGeNet, for the molecular biologist to explore the network centered on the non-syndromic and syndromic RP and LCA causative genes. By integrating tissue-specific expression levels and phenotypic data on top of that network, a more comprehensive biological view will highlight key molecular players of retinal degeneration and unveil new RP disease candidates.

  14. Uncovering Trophic Interactions in Arthropod Predators through DNA Shotgun-Sequencing of Gut Contents.

    Directory of Open Access Journals (Sweden)

    Débora P Paula

    Full Text Available Characterizing trophic networks is fundamental to many questions in ecology, but this typically requires painstaking efforts, especially to identify the diet of small generalist predators. Several attempts have been devoted to develop suitable molecular tools to determine predatory trophic interactions through gut content analysis, and the challenge has been to achieve simultaneously high taxonomic breadth and resolution. General and practical methods are still needed, preferably independent of PCR amplification of barcodes, to recover a broader range of interactions. Here we applied shotgun-sequencing of the DNA from arthropod predator gut contents, extracted from four common coccinellid and dermapteran predators co-occurring in an agroecosystem in Brazil. By matching unassembled reads against six DNA reference databases obtained from public databases and newly assembled mitogenomes, and filtering for high overlap length and identity, we identified prey and other foreign DNA in the predator guts. Good taxonomic breadth and resolution was achieved (93% of prey identified to species or genus, but with low recovery of matching reads. Two to nine trophic interactions were found for these predators, some of which were only inferred by the presence of parasitoids and components of the microbiome known to be associated with aphid prey. Intraguild predation was also found, including among closely related ladybird species. Uncertainty arises from the lack of comprehensive reference databases and reliance on low numbers of matching reads accentuating the risk of false positives. We discuss caveats and some future prospects that could improve the use of direct DNA shotgun-sequencing to characterize arthropod trophic networks.

  15. Exploring relationships of human-automation interaction consequences on pilots: uncovering subsystems.

    Science.gov (United States)

    Durso, Francis T; Stearman, Eric J; Morrow, Daniel G; Mosier, Kathleen L; Fischer, Ute; Pop, Vlad L; Feigh, Karen M

    2015-05-01

    We attempted to understand the latent structure underlying the systems pilots use to operate in situations involving human-automation interaction (HAI). HAI is an important characteristic of many modern work situations. Of course, the cognitive subsystems are not immediately apparent by observing a functioning system, but correlations between variables may reveal important relations. The current report examined pilot judgments of 11 HAI dimensions (e.g., Workload, Task Management, Stress/Nervousness, Monitoring Automation, and Cross-Checking Automation) across 48 scenarios that required airline pilots to interact with automation on the flight deck. We found three major clusters of the dimensions identifying subsystems on the flight deck: a workload subsystem, a management subsystem, and an awareness subsystem. Relationships characterized by simple correlations cohered in ways that suggested underlying subsystems consistent with those that had previously been theorized. Understanding the relationship among dimensions affecting HAI is an important aspect in determining how a new piece of automation designed to affect one dimension will affect other dimensions as well. © 2014, Human Factors and Ergonomics Society.

  16. Using earthquakes to uncover the Earth's inner secrets: interactive exhibits for geophysical education

    Directory of Open Access Journals (Sweden)

    C. Nostro

    2005-01-01

    Full Text Available The Educational & Outreach Group (E&O Group of the Istituto Nazionale di Geofisica e Vulcanologia (INGV designed a portable museum to bring on the road educational activities focused on seismology, seismic hazard and Earth science. This project was developed for the first edition of the Science Festival organized in Genoa, Italy, in 2003. The museum has been mainly focused to school students of all ages and explains the main topics of geophysics through posters, movie and slide presentations, and exciting interactive experiments. This new INGV museum has been remarkably successful, being visited by more than 8000 children and adults during the 10 days of the Science Festival. It is now installed at the INGV headquarters in Rome and represents the main attraction during the visits of the schools all year round.

  17. Uncovering the Layers of Design Processes of a Global Undergraduate Engineering Course: An Interactional Ethnographic Approach

    Science.gov (United States)

    Joo, Jenna (Ji Eun)

    This dissertation presents an ethnographic study of an instructor's design logic and thinking underlying a global, multi-country undergraduate engineering design course. The study analyzed how, in what ways, and for what purposes, he continually defined and reformulated what counted as (Heap, 1991) "new" learning opportunities and outcomes for engineering design thinking in the 21st century, through his interactions with globally distributed groups of students and teaching teams (i.e., US, India, Israel, China and South Korea). By examining what was discursively made present to students in moment-by-moment and over-time, I identified the processes and practices that members of the class needed to know, understand, produce and engage in (Heath & Street, 2008) to develop their capacities to work in intercultural contexts on local design problems. Discourse analysis guided by an Interactional Ethnographic logic-in-use (Birdwhistell, 1977), grounded in a social construction of knowledge perspective (i.e., Green, Skukauskaite, and Baker, 2012; Castanheira, Crawford, Dixon and Green, 2001), framed the ways in which I examined the work of participants, what they oriented to and were held accountable for, and how what counted as this "new" instructional approach was socially constructed (Heap, 1991; Bloome & Egan-Robertson, 1993, Castanheira et al, 2001). This inquiry process required consideration of multimodal texts available to students in different technology-enabled educational contexts, public (re)presentations of this developing program as well as the construction of transcripts. From this perspective, texts were spoken, written and/or published works (Bakhtin, 1986) constructed by key actors (the designer, the support team, a teaching assistant and students). The analyses made visible how the instructor's discourse focused students on taking a problem-oriented approach to resolving challenges in working interculturally on a common task (e.g., the design thinking

  18. Opportunities and Challenges of Implementing Instructional Games in Mathematics Classrooms: Examining the Quality of Teacher-Student Interactions during the Cover-Up and Un-Cover Games

    Science.gov (United States)

    Heshmati, Saeideh; Kersting, Nicole; Sutton, Taliesin

    2018-01-01

    This study explored the design and implementation of the Cover-up and Un-cover games, two manipulative-based fraction games, in 14 fifth-grade classrooms. We examined how the fraction concepts were integrated into the game design and explored the nature of teacher-student interactions during games using lesson videos. Our examination showed that…

  19. X-ray computed tomography uncovers root-root interactions: quantifying spatial relationships between interacting root systems in three dimensions

    Directory of Open Access Journals (Sweden)

    Alexander Martin Paya

    2015-04-01

    Full Text Available Research in the field of plant biology has recently demonstrated that inter- and intra-specific interactions belowground can dramatically alter root growth. Our aim was to answer questions related to the effect of inter- vs. intra-specific interactions on the growth and utilization of undisturbed space by fine roots within three dimensions (3D using micro X-ray computed tomography. To achieve this, Populus tremuloides (quaking aspen and Picea mariana (black spruce seedlings were planted into containers as either solitary individuals, or inter-/intra-specific pairs, allowed to grow for two months, and 3D metrics developed in order to quantify their use of belowground space. In both aspen and spruce, inter-specific root interactions produced a shift in the vertical distribution of the root system volume, and deepened the average position of root tips when compared to intra-specifically growing seedlings. Inter-specific interactions also increased the minimum distance between root tips belonging to the same root system. There was no effect of belowground interactions on the radial distribution of roots, or the directionality of lateral root growth for either species. In conclusion, we found that significant differences were observed more often when comparing controls (solitary individuals and paired seedlings (inter- or intra-specific, than when comparing inter- and intra-specifically growing seedlings. This would indicate that competition between neighboring seedlings was more responsible for shifting fine root growth in both species than was neighbor identity. However, significant inter- vs. intra-specific differences were observed, which further emphasizes the importance of biological interactions in competition studies.

  20. Uncovering the roles of long non-coding RNAs in cancer stem cells

    Directory of Open Access Journals (Sweden)

    Xiaoxing Huang

    2017-02-01

    Full Text Available Abstract Cancer has been a major public health problem that has threatened human life worldwide throughout history. The main causes that contribute to the poor prognosis of cancer are metastasis and recurrence. Cancer stem cells are a group of tumor cells that possess self-renewal and differentiation ability, which is a vital cause of cancer metastasis and recurrence. Long non-coding RNAs refer to a class of RNAs that are longer than 200 nt and have no potential to code proteins, some of which can be specifically expressed in different tissues and different tumors. Long non-coding RNAs have great biological significance in the occurrence and progression of cancers. However, how long non-coding RNAs interact with cancer stem cells and then affect cancer metastasis and recurrence is not yet clear. Therefore, this review aims to summarize recent studies that focus on how long non-coding RNAs impact tumor occurrence and progression by affecting cancer stem cell self-renewal and differentiation in liver cancer, prostate cancer, breast cancer, and glioma.

  1. Uncovering Wnt signaling mechanisms in control of cell migration in C. elegans

    NARCIS (Netherlands)

    Mentink, R.A.

    2014-01-01

    Morphogens such as Wnt proteins play a central role in embryonic patterning by providing positional information to cells in developing tissues. In recent years, it has become clear that such morphogenic gradients also contribute to the guidance of migrating cells and axons in the developing nervous

  2. Small molecule inhibitors uncover synthetic genetic interactions of human flap endonuclease 1 (FEN1 with DNA damage response genes.

    Directory of Open Access Journals (Sweden)

    Thomas A Ward

    Full Text Available Flap endonuclease 1 (FEN1 is a structure selective endonuclease required for proficient DNA replication and the repair of DNA damage. Cellularly active inhibitors of this enzyme have previously been shown to induce a DNA damage response and, ultimately, cell death. High-throughput screens of human cancer cell-lines identify colorectal and gastric cell-lines with microsatellite instability (MSI as enriched for cellular sensitivity to N-hydroxyurea series inhibitors of FEN1, but not the PARP inhibitor olaparib or other inhibitors of the DNA damage response. This sensitivity is due to a synthetic lethal interaction between FEN1 and MRE11A, which is often mutated in MSI cancers through instabilities at a poly(T microsatellite repeat. Disruption of ATM is similarly synthetic lethal with FEN1 inhibition, suggesting that disruption of FEN1 function leads to the accumulation of DNA double-strand breaks. These are likely a result of the accumulation of aberrant replication forks, that accumulate as a consequence of a failure in Okazaki fragment maturation, as inhibition of FEN1 is toxic in cells disrupted for the Fanconi anemia pathway and post-replication repair. Furthermore, RAD51 foci accumulate as a consequence of FEN1 inhibition and the toxicity of FEN1 inhibitors increases in cells disrupted for the homologous recombination pathway, suggesting a role for homologous recombination in the resolution of damage induced by FEN1 inhibition. Finally, FEN1 appears to be required for the repair of damage induced by olaparib and cisplatin within the Fanconi anemia pathway, and may play a role in the repair of damage associated with its own disruption.

  3. Neurotoxin localization to ectodermal gland cells uncovers an alternative mechanism of venom delivery in sea anemones.

    Science.gov (United States)

    Moran, Yehu; Genikhovich, Grigory; Gordon, Dalia; Wienkoop, Stefanie; Zenkert, Claudia; Ozbek, Suat; Technau, Ulrich; Gurevitz, Michael

    2012-04-07

    Jellyfish, hydras, corals and sea anemones (phylum Cnidaria) are known for their venomous stinging cells, nematocytes, used for prey and defence. Here we show, however, that the potent Type I neurotoxin of the sea anemone Nematostella vectensis, Nv1, is confined to ectodermal gland cells rather than nematocytes. We demonstrate massive Nv1 secretion upon encounter with a crustacean prey. Concomitant discharge of nematocysts probably pierces the prey, expediting toxin penetration. Toxin efficiency in sea water is further demonstrated by the rapid paralysis of fish or crustacean larvae upon application of recombinant Nv1 into their medium. Analysis of other anemone species reveals that in Anthopleura elegantissima, Type I neurotoxins also appear in gland cells, whereas in the common species Anemonia viridis, Type I toxins are localized to both nematocytes and ectodermal gland cells. The nematocyte-based and gland cell-based envenomation mechanisms may reflect substantial differences in the ecology and feeding habits of sea anemone species. Overall, the immunolocalization of neurotoxins to gland cells changes the common view in the literature that sea anemone neurotoxins are produced and delivered only by stinging nematocytes, and raises the possibility that this toxin-secretion mechanism is an ancestral evolutionary state of the venom delivery machinery in sea anemones.

  4. Tissue-Specific Gain of RTK Signalling Uncovers Selective Cell Vulnerability during Embryogenesis.

    Directory of Open Access Journals (Sweden)

    Yannan Fan

    Full Text Available The successive events that cells experience throughout development shape their intrinsic capacity to respond and integrate RTK inputs. Cellular responses to RTKs rely on different mechanisms of regulation that establish proper levels of RTK activation, define duration of RTK action, and exert quantitative/qualitative signalling outcomes. The extent to which cells are competent to deal with fluctuations in RTK signalling is incompletely understood. Here, we employ a genetic system to enhance RTK signalling in a tissue-specific manner. The chosen RTK is the hepatocyte growth factor (HGF receptor Met, an appropriate model due to its pleiotropic requirement in distinct developmental events. Ubiquitously enhanced Met in Cre/loxP-based Rosa26(stopMet knock-in context (Del-R26(Met reveals that most tissues are capable of buffering enhanced Met-RTK signalling thus avoiding perturbation of developmental programs. Nevertheless, this ubiquitous increase of Met does compromise selected programs such as myoblast migration. Using cell-type specific Cre drivers, we genetically showed that altered myoblast migration results from ectopic Met expression in limb mesenchyme rather than in migrating myoblasts themselves. qRT-PCR analyses show that ectopic Met in limbs causes molecular changes such as downregulation in the expression levels of Notum and Syndecan4, two known regulators of morphogen gradients. Molecular and functional studies revealed that ectopic Met expression in limb mesenchyme does not alter HGF expression patterns and levels, but impairs HGF bioavailability. Together, our findings show that myoblasts, in which Met is endogenously expressed, are capable of buffering increased RTK levels, and identify mesenchymal cells as a cell type vulnerable to ectopic Met-RTK signalling. These results illustrate that embryonic cells are sensitive to alterations in the spatial distribution of RTK action, yet resilient to fluctuations in signalling levels of an

  5. Magic bullets to fight resistance : Uncovering how peptide-antibiotics break down the bacterial cell envelope

    NARCIS (Netherlands)

    Medeiros-Silva, J.|info:eu-repo/dai/nl/288254600; Jekhmane, S.|info:eu-repo/dai/nl/412782715; Breukink, E.|info:eu-repo/dai/nl/120305100; Weingarth, M.|info:eu-repo/dai/nl/330985655

    The rapid rise of resistant bacteria urgently calls for novel antibiotics that are robust to resistance development. Ideal templates could be peptide-antibiotics that destroy the bacterial cell wall by binding to its membrane-anchored precursor lipid II at irreplaceable phosphate groups. Indeed,

  6. Uncovering MicroRNA Regulatory Hubs that Modulate Plasma Cell Differentiation.

    Science.gov (United States)

    Tsai, Dong-Yan; Hung, Kuo-Hsuan; Lin, I-Ying; Su, Shin-Tang; Wu, Shih-Ying; Chung, Cheng-Han; Wang, Tong-Cheng; Li, Wen-Hsiung; Shih, Arthur Chun-Chieh; Lin, Kuo-I

    2015-12-11

    Using genome-wide approaches, we studied the microRNA (miRNA) expression profile during human plasma cell (PC) differentiation induced by stimulation of human blood B cells with T follicular helper cell-dependent signals. Combining the profiles of differentially expressed genes in PC differentiation with gene ontology (GO) analysis revealed that a significant group of genes involved in the transcription factor (TF) activity was preferentially changed. We thus focused on studying the effects of differentially expressed miRNAs on several key TFs in PC differentiation. Cohorts of differentially expressed miRNAs cooperating as miRNA hubs were predicted and validated to modulate key TFs, including a down-regulated miRNA hub containing miR-101-3p, -125b-5p, and -223-3p contributing to induction of PRDM1 as well as an up-regulated miRNA hub containing miR-34a-5p, -148a-3p, and -183-5p suppressing BCL6, BACH2, and FOXP1. Induced expression of NF-κB and PRDM1 during PC differentiation controlled the expression of up- and down-regulated miRNA hubs, respectively. Co-expression of miR-101-3p, -125b-5p, and -223-3p in stimulated B cells showed synergistic effects on inhibition of PC formation, which can be rescued by re-introduction of PRDM1. Together, we catalogue the complex roadmap of miRNAs and their functional interplay in collaboratively directing PC differentiation.

  7. Silencing the Majority of Cerebellar Granule Cells Uncovers Their Essential Role in Motor Learning and Consolidation

    Directory of Open Access Journals (Sweden)

    Elisa Galliano

    2013-04-01

    Full Text Available Cerebellar granule cells (GCs account for more than half of all neurons in the CNS of vertebrates. Theoretical work has suggested that the abundance of GCs is advantageous for sparse coding during memory formation. Here, we minimized the output of the majority of GCs by selectively eliminating their CaV2.1 (P/Q-type Ca2+ channels, which mediate the bulk of their neurotransmitter release. This resulted in reduced GC output to Purkinje cells (PCs and stellate cells (SCs as well as in impaired long-term plasticity at GC-PC synapses. As a consequence modulation amplitude and regularity of simple spike (SS output were affected. Surprisingly, the overall motor performance was intact, whereas demanding motor learning and memory consolidation tasks were compromised. Our findings indicate that a minority of functionally intact GCs is sufficient for the maintenance of basic motor performance, whereas acquisition and stabilization of sophisticated memories require higher numbers of normal GCs controlling PC firing.

  8. Induced Pluripotent Stem Cell Models of Progranulin-Deficient Frontotemporal Dementia Uncover Specific Reversible Neuronal Defects

    Directory of Open Access Journals (Sweden)

    Sandra Almeida

    2012-10-01

    Full Text Available The pathogenic mechanisms of frontotemporal dementia (FTD remain poorly understood. Here we generated multiple induced pluripotent stem cell lines from a control subject, a patient with sporadic FTD, and an FTD patient with a novel heterozygous GRN mutation (progranulin [PGRN] S116X. In neurons and microglia differentiated from PGRN S116X induced pluripotent stem cells, the levels of intracellular and secreted PGRN were reduced, establishing patient-specific cellular models of PGRN haploinsufficiency. Through a systematic screen of inducers of cellular stress, we found that PGRN S116X neurons, but not sporadic FTD neurons, exhibited increased sensitivity to staurosporine and other kinase inhibitors. Moreover, the serine/threonine kinase S6K2, a component of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways, was specifically downregulated in PGRN S116X neurons. Both increased sensitivity to kinase inhibitors and reduced S6K2 were rescued by PGRN expression. Our findings identify cell-autonomous, reversible defects in patient neurons with PGRN deficiency, and provide a compelling model for studying PGRN-dependent pathogenic mechanisms and testing potential therapies.

  9. Raman spectroscopy uncovers biochemical tissue-related features of extracellular vesicles from mesenchymal stromal cells.

    Science.gov (United States)

    Gualerzi, Alice; Niada, Stefania; Giannasi, Chiara; Picciolini, Silvia; Morasso, Carlo; Vanna, Renzo; Rossella, Valeria; Masserini, Massimo; Bedoni, Marzia; Ciceri, Fabio; Bernardo, Maria Ester; Brini, Anna Teresa; Gramatica, Furio

    2017-08-29

    Extracellular vesicles (EVs) from mesenchymal stromal cells (MSC) are emerging as valuable therapeutic agents for tissue regeneration and immunomodulation, but their clinical applications have so far been limited by the technical restraints of current isolation and characterisation procedures. This study shows for the first time the successful application of Raman spectroscopy as label-free, sensitive and reproducible means of carrying out the routine bulk characterisation of MSC-derived vesicles before their use in vitro or in vivo, thus promoting the translation of EV research to clinical practice. The Raman spectra of the EVs of bone marrow and adipose tissue-derived MSCs were compared with human dermal fibroblast EVs in order to demonstrate the ability of the method to distinguish the vesicles of the three cytotypes automatically with an accuracy of 93.7%. Our data attribute a Raman fingerprint to EVs from undifferentiated and differentiated cells of diverse tissue origin, and provide insights into the biochemical characteristics of EVs from different sources and into the differential contribution of sphingomyelin, gangliosides and phosphatidilcholine to the Raman spectra themselves.

  10. Inositol Pyrophosphate Profiling of Two HCT116 Cell Lines Uncovers Variation in InsP8 Levels.

    Directory of Open Access Journals (Sweden)

    Chunfang Gu

    Full Text Available The HCT116 cell line, which has a pseudo-diploid karotype, is a popular model in the fields of cancer cell biology, intestinal immunity, and inflammation. In the current study, we describe two batches of diverged HCT116 cells, which we designate as HCT116NIH and HCT116UCL. Using both gel electrophoresis and HPLC, we show that HCT116UCL cells contain 6-fold higher levels of InsP8 than HCT116NIH cells. This observation is significant because InsP8 is one of a group of molecules collectively known as 'inositol pyrophosphates' (PP-InsPs-highly 'energetic' and conserved regulators of cellular and organismal metabolism. Variability in the cellular levels of InsP8 within divergent HCT116 cell lines could have impacted the phenotypic data obtained in previous studies. This difference in InsP8 levels is more remarkable for being specific; levels of other inositol phosphates, and notably InsP6 and 5-InsP7, are very similar in both HCT116NIH and HCT116UCL lines. We also developed a new HPLC procedure to record 1-InsP7 levels directly (for the first time in any mammalian cell line; 1-InsP7 comprised <2% of total InsP7 in HCT116NIH and HCT116UCL lines. The elevated levels of InsP8 in the HCT116UCL lines were not due to an increase in expression of the PP-InsP kinases (IP6Ks and PPIP5Ks, nor to a decrease in the capacity to dephosphorylate InsP8. We discuss how the divergent PP-InsP profiles of the newly-designated HCT116NIH and HCT116UCL lines should be considered an important research opportunity: future studies using these two lines may uncover new features that regulate InsP8 turnover, and may also yield new directions for studying InsP8 function.

  11. Uncovering stem cell differentiation factors for salivary gland regeneration by quantitative analysis of differential proteomes.

    Directory of Open Access Journals (Sweden)

    Yun-Jong Park

    Full Text Available Severe xerostomia (dry mouth compromises the quality of life in patients with Sjögren's syndrome or radiation therapy for head and neck cancer. A clinical management of xerostomia is often unsatisfactory as most interventions are palliative with limited efficacy. Following up our previous study demonstrating that mouse BM-MSCs are capable of differentiating into salivary epithelial cells in a co-culture system, we further explored the molecular basis that governs the MSC reprogramming by utilizing high-throughput iTRAQ-2D-LC-MS/MS-based proteomics. Our data revealed the novel induction of pancreas-specific transcription factor 1a (PTF1α, muscle, intestine and stomach expression-1 (MIST-1, and achaete-scute complex homolog 3 (ASCL3 in 7 day co-cultured MSCs but not in control MSCs. More importantly, a common notion of pancreatic-specific expression of PTF1 α was challenged for the first time by our verification of PTF1 α expression in the mouse salivary glands. Furthermore, a molecular network simulation of our selected putative MSC reprogramming factors demonstrated evidence for their perspective roles in salivary gland development. In conclusion, quantitative proteomics with extensive data analyses narrowed down a set of MSC reprograming factors potentially contributing to salivary gland regeneration. Identification of their differential/synergistic impact on MSC conversion warrants further investigation.

  12. Oxidative Stress Challenge Uncovers Trichloroacetaldehyde Hydrate-Induced Mitoplasticity in Autistic and Control Lymphoblastoid Cell Lines.

    Science.gov (United States)

    Frye, Richard Eugene; Rose, Shannon; Wynne, Rebecca; Bennuri, Sirish C; Blossom, Sarah; Gilbert, Kathleen M; Heilbrun, Lynne; Palmer, Raymond F

    2017-06-30

    Mitoplasticity occurs when mitochondria adapt to tolerate stressors. Previously we hypothesized that a subset of lymphoblastoid cell lines (LCLs) from children with autistic disorder (AD) show mitoplasticity (AD-A), presumably due to previous environmental exposures; another subset of AD LCLs demonstrated normal mitochondrial activity (AD-N). To better understand mitoplasticity in the AD-A LCLs we examined changes in mitochondrial function using the Seahorse XF96 analyzer in AD and Control LCLs after exposure to trichloroacetaldehyde hydrate (TCAH), an in vivo metabolite of the environmental toxicant and common environmental pollutant trichloroethylene. To better understand the role of reactive oxygen species (ROS) in mitoplasticity, TCAH exposure was followed by acute exposure to 2,3-dimethoxy-1,4-napthoquinone (DMNQ), an agent that increases ROS. TCAH exposure by itself resulted in a decline in mitochondrial respiration in all LCL groups. This effect was mitigated when TCAH was followed by acute DMNQ exposure but this varied across LCL groups. DMNQ did not affect AD-N LCLs, while it neutralized the detrimental effect of TCAH in Control LCLs and resulted in a increase in mitochondrial respiration in AD-A LCLs. These data suggest that acute increases in ROS can activate mitochondrial protective pathways and that AD-A LCLs are better able to activate these protective pathways.

  13. Networking for proteins : A yeast two-hybrid and RNAi profiling approach to uncover C. elegans cell polarity regulators

    NARCIS (Netherlands)

    Koorman, T.

    2016-01-01

    Cell polarity is a near universal trait of life and guides many aspects of animal development. Although a number of key polarity proteins have been identified, many interactions with proteins acting downstream likely remain to be elucidated. Mutations in polarity proteins or deregulation of polarity

  14. Uncovering interactions in Plackett-Burman screening designs applied to analytical systems. A Monte Carlo ant colony optimization approach.

    Science.gov (United States)

    Olivieri, Alejandro C; Magallanes, Jorge F

    2012-08-15

    Screening of relevant factors using Plackett-Burman designs is usual in analytical chemistry. It relies on the assumption that factor interactions are negligible; however, failure of recognizing such interactions may lead to incorrect results. Factor associations can be revealed by feature selection techniques such as ant colony optimization. This method has been combined with a Monte Carlo approach, developing a new algorithm for assessing both main and interaction terms when analyzing the influence of experimental factors through a Plackett-Burman design of experiments. The results for both simulated and analytically relevant experimental systems show excellent agreement with previous approaches, highlighting the importance of considering potential interactions when conducting a screening search. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Novel Genes Affecting the Interaction between the Cabbage Whitefly and Arabidopsis Uncovered by Genome-Wide Association Mapping.

    Science.gov (United States)

    Broekgaarden, Colette; Bucher, Johan; Bac-Molenaar, Johanna; Keurentjes, Joost J B; Kruijer, Willem; Voorrips, Roeland E; Vosman, Ben

    2015-01-01

    Plants have evolved a variety of ways to defend themselves against biotic attackers. This has resulted in the presence of substantial variation in defense mechanisms among plants, even within a species. Genome-wide association (GWA) mapping is a useful tool to study the genetic architecture of traits, but has so far only had limited exploitation in studies of plant defense. Here, we study the genetic architecture of defense against the phloem-feeding insect cabbage whitefly (Aleyrodes proletella) in Arabidopsis thaliana. We determined whitefly performance, i.e. the survival and reproduction of whitefly females, on 360 worldwide selected natural accessions and subsequently performed GWA mapping using 214,051 SNPs. Substantial variation for whitefly adult survival and oviposition rate (number of eggs laid per female per day) was observed between the accessions. We identified 39 candidate SNPs for either whitefly adult survival or oviposition rate, all with relatively small effects, underpinning the complex architecture of defense traits. Among the corresponding candidate genes, i.e. genes in linkage disequilibrium (LD) with candidate SNPs, none have previously been identified as a gene playing a role in the interaction between plants and phloem-feeding insects. Whitefly performance on knock-out mutants of a number of candidate genes was significantly affected, validating the potential of GWA mapping for novel gene discovery in plant-insect interactions. Our results show that GWA analysis is a very useful tool to gain insight into the genetic architecture of plant defense against herbivorous insects, i.e. we identified and validated several genes affecting whitefly performance that have not previously been related to plant defense against herbivorous insects.

  16. Inhibition of class IA PI3K enzymes in non-small cell lung cancer cells uncovers functional compensation among isoforms.

    Science.gov (United States)

    Stamatkin, Christopher; Ratermann, Kelley L; Overley, Colleen W; Black, Esther P

    2015-01-01

    Deregulation of the phosphatidylinositol 3-kinase (PI3K) pathway is central to many human malignancies while normal cell proliferation requires pathway functionality. Although inhibitors of the PI3K pathway are in clinical trials or approved for therapy, an understanding of the functional activities of pathway members in specific malignancies is needed. In lung cancers, the PI3K pathway is often aberrantly activated by mutation of genes encoding EGFR, KRAS, and PIK3CA proteins. We sought to understand whether class IA PI3K enzymes represent rational therapeutic targets in cells of non-squamous lung cancers by exploring pharmacological and genetic inhibitors of PI3K enzymes in a non-small cell lung cancer (NSCLC) cell line system. We found that class IA PI3K enzymes were expressed in all cell lines tested, but treatment of NSCLC lines with isoform-selective inhibitors (A66, TGX-221, CAL-101 and IC488743) had little effect on cell proliferation or prolonged inhibition of AKT activity. Inhibitory pharmacokinetic and pharmacodynamic responses were observed using these agents at non-isoform selective concentrations and with the pan-class I (ZSTK474) agent. Response to pharmacological inhibition suggested that PI3K isoforms may functionally compensate for one another thus limiting efficacy of single agent treatment. However, combination of ZSTK474 and an EGFR inhibitor (erlotinib) in NSCLC resistant to each single agent reduced cellular proliferation. These studies uncovered unanticipated cellular responses to PI3K isoform inhibition in NSCLC that does not correlate with PI3K mutations, suggesting that patients bearing tumors with wildtype EGFR and KRAS are unlikely to benefit from inhibitors of single isoforms but may respond to pan-isoform inhibition.

  17. PREFACE: Cell-substrate interactions Cell-substrate interactions

    Science.gov (United States)

    Gardel, Margaret; Schwarz, Ulrich

    2010-05-01

    One of the most striking achievements of evolution is the ability to build cellular systems that are both robust and dynamic. Taken by themselves, both properties are obvious requirements: robustness reflects the fact that cells are there to survive, and dynamics is required to adapt to changing environments. However, it is by no means trivial to understand how these two requirements can be implemented simultaneously in a physical system. The long and difficult quest to build adaptive materials is testimony to the inherent difficulty of this goal. Here materials science can learn a lot from nature, because cellular systems show that robustness and dynamics can be achieved in a synergetic fashion. For example, the capabilities of tissues to repair and regenerate are still unsurpassed in the world of synthetic materials. One of the most important aspects of the way biological cells adapt to their environment is their adhesive interaction with the substrate. Numerous aspects of the physiology of metazoan cells, including survival, proliferation, differentiation and migration, require the formation of adhesions to the cell substrate, typically an extracellular matrix protein. Adhesions guide these diverse processes both by mediating force transmission from the cell to the substrate and by controlling biochemical signaling pathways. While the study of cell-substrate adhesions is a mature field in cell biology, a quantitative biophysical understanding of how the interactions of the individual molecular components give rise to the rich dynamics and mechanical behaviors observed for cell-substrate adhesions has started to emerge only over the last decade or so. The recent growth of research activities on cell-substrate interactions was strongly driven by the introduction of new physical techniques for surface engineering into traditional cell biological work with cell culture. For example, microcontact printing of adhesive patterns was used to show that cell fate depends

  18. Cell surface engineering to control cellular interactions

    OpenAIRE

    Custódio, Catarina A.; Mano, João F.

    2016-01-01

    Cell surface composition determines all interactions of the cell with its environment, thus cell functions such as adhesion, migration and cell–cell interactions can potentially be controlled by engineering and manipulating the cell membrane. Cell membranes present a rich repertoire of molecules, therefore a versatile ground for modification. However the complex and dynamic nature of the cell surface is also a major challenge for cell surface engineering that should also involve strategies co...

  19. Focal adhesions and cell-matrix interactions

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1988-01-01

    Focal adhesions are areas of cell surfaces where specializations of cytoskeletal, membrane and extracellular components combine to produce stable cell-matrix interactions. The morphology of these adhesions and the components identified in them are discussed together with possible mechanisms...

  20. Interactions between semiconductor nanowires and living cells.

    Science.gov (United States)

    Prinz, Christelle N

    2015-06-17

    Semiconductor nanowires are increasingly used for biological applications and their small dimensions make them a promising tool for sensing and manipulating cells with minimal perturbation. In order to interface cells with nanowires in a controlled fashion, it is essential to understand the interactions between nanowires and living cells. The present paper reviews current progress in the understanding of these interactions, with knowledge gathered from studies where living cells were interfaced with vertical nanowire arrays. The effect of nanowires on cells is reported in terms of viability, cell-nanowire interface morphology, cell behavior, changes in gene expression as well as cellular stress markers. Unexplored issues and unanswered questions are discussed.

  1. ChiPPI: a novel method for mapping chimeric protein-protein interactions uncovers selection principles of protein fusion events in cancer.

    Science.gov (United States)

    Frenkel-Morgenstern, Milana; Gorohovski, Alessandro; Tagore, Somnath; Sekar, Vaishnovi; Vazquez, Miguel; Valencia, Alfonso

    2017-07-07

    Fusion proteins, comprising peptides deriving from the translation of two parental genes, are produced in cancer by chromosomal aberrations. The expressed fusion protein incorporates domains of both parental proteins. Using a methodology that treats discrete protein domains as binding sites for specific domains of interacting proteins, we have cataloged the protein interaction networks for 11 528 cancer fusions (ChiTaRS-3.1). Here, we present our novel method, chimeric protein-protein interactions (ChiPPI) that uses the domain-domain co-occurrence scores in order to identify preserved interactors of chimeric proteins. Mapping the influence of fusion proteins on cell metabolism and pathways reveals that ChiPPI networks often lose tumor suppressor proteins and gain oncoproteins. Furthermore, fusions often induce novel connections between non-interactors skewing interaction networks and signaling pathways. We compared fusion protein PPI networks in leukemia/lymphoma, sarcoma and solid tumors finding distinct enrichment patterns for each disease type. While certain pathways are enriched in all three diseases (Wnt, Notch and TGF β), there are distinct patterns for leukemia (EGFR signaling, DNA replication and CCKR signaling), for sarcoma (p53 pathway and CCKR signaling) and solid tumors (FGFR and EGFR signaling). Thus, the ChiPPI method represents a comprehensive tool for studying the anomaly of skewed cellular networks produced by fusion proteins in cancer. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs.

    Science.gov (United States)

    Hayashi, Tetsutaro; Ozaki, Haruka; Sasagawa, Yohei; Umeda, Mana; Danno, Hiroki; Nikaido, Itoshi

    2018-02-12

    Total RNA sequencing has been used to reveal poly(A) and non-poly(A) RNA expression, RNA processing and enhancer activity. To date, no method for full-length total RNA sequencing of single cells has been developed despite the potential of this technology for single-cell biology. Here we describe random displacement amplification sequencing (RamDA-seq), the first full-length total RNA-sequencing method for single cells. Compared with other methods, RamDA-seq shows high sensitivity to non-poly(A) RNA and near-complete full-length transcript coverage. Using RamDA-seq with differentiation time course samples of mouse embryonic stem cells, we reveal hundreds of dynamically regulated non-poly(A) transcripts, including histone transcripts and long noncoding RNA Neat1. Moreover, RamDA-seq profiles recursive splicing in >300-kb introns. RamDA-seq also detects enhancer RNAs and their cell type-specific activity in single cells. Taken together, we demonstrate that RamDA-seq could help investigate the dynamics of gene expression, RNA-processing events and transcriptional regulation in single cells.

  3. Using the zebrafish lateral line to uncover novel mechanisms of action and prevention in drug-induced hair cell death.

    Science.gov (United States)

    Stawicki, Tamara M; Esterberg, Robert; Hailey, Dale W; Raible, David W; Rubel, Edwin W

    2015-01-01

    The majority of hearing loss and balance disorders are caused by the permanent loss of mechanosensory hair cells of the inner ear. Identification of genes and compounds that modulate susceptibility to hair cell death is frequently confounded by the difficulties of assaying for such complex phenomena in mammalian models. The zebrafish has emerged as a powerful animal model for genetic and chemical screening in many contexts. Several characteristics of the zebrafish, such as its small size and external location of mechanosensory hair cells within the lateral line sensory organ, uniquely position it as an ideal model organism for the study of hair cell toxicity. We have used this model to screen for genes and compounds that affect hair cell survival during ototoxin exposure and have identified agents that would not be expected to play a role in this process based on a priori knowledge of their function. The identification of such agents yields better understanding of hair cell death and holds promise to stem hearing loss and balance disorders in the human population.

  4. Global analysis of transcription in castration-resistant prostate cancer cells uncovers active enhancers and direct androgen receptor targets.

    Science.gov (United States)

    Toropainen, Sari; Niskanen, Einari A; Malinen, Marjo; Sutinen, Päivi; Kaikkonen, Minna U; Palvimo, Jorma J

    2016-09-19

    Androgen receptor (AR) is a male sex steroid-activated transcription factor (TF) that plays a critical role in prostate cancers, including castration-resistant prostate cancers (CRPC) that typically express amplified levels of the AR. CRPC-derived VCaP cells display an excessive number of chromatin AR-binding sites (ARBs) most of which localize to distal inter- or intragenic regions. Here, we analyzed direct transcription programs of the AR in VCaP cells using global nuclear run-on sequencing (GRO-seq) and integrated the GRO-seq data with the ARB and VCaP cell-specific TF-binding data. Androgen immediately activated transcription of hundreds of protein-coding genes, including IGF-1 receptor and EGF receptor. Androgen also simultaneously repressed transcription of a large number of genes, including MYC. As functional enhancers have been postulated to produce enhancer-templated non-coding RNAs (eRNAs), we also analyzed the eRNAs, which revealed that only a fraction of the ARBs reside at functional enhancers. Activation of these enhancers was most pronounced at the sites that also bound PIAS1, ERG and HDAC3, whereas binding of HDAC3 and PIAS1 decreased at androgen-repressed enhancers. In summary, our genome-wide data of androgen-regulated enhancers and primary target genes provide new insights how the AR can directly regulate cellular growth and control signaling pathways in CPRC cells.

  5. Transcriptome sequencing uncovers novel long noncoding and small nucleolar RNAs dysregulated in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Zou, Angela E; Ku, Jonjei; Honda, Thomas K; Yu, Vicky; Kuo, Selena Z; Zheng, Hao; Xuan, Yinan; Saad, Maarouf A; Hinton, Andrew; Brumund, Kevin T; Lin, Jonathan H; Wang-Rodriguez, Jessica; Ongkeko, Weg M

    2015-06-01

    Head and neck squamous cell carcinoma persists as one of the most common and deadly malignancies, with early detection and effective treatment still posing formidable challenges. To expand our currently sparse knowledge of the noncoding alterations involved in the disease and identify potential biomarkers and therapeutic targets, we globally profiled the dysregulation of small nucleolar and long noncoding RNAs in head and neck tumors. Using next-generation RNA-sequencing data from 40 pairs of tumor and matched normal tissues, we found 2808 long noncoding RNA (lncRNA) transcripts significantly differentially expressed by a fold change magnitude ≥2. Meanwhile, RNA-sequencing analysis of 31 tumor-normal pairs yielded 33 significantly dysregulated small nucleolar RNAs (snoRNA). In particular, we identified two dramatically down-regulated lncRNAs and one down-regulated snoRNA whose expression levels correlated significantly with overall patient survival, suggesting their functional significance and clinical relevance in head and neck cancer pathogenesis. We confirmed the dysregulation of these noncoding RNAs in head and neck cancer cell lines derived from different anatomic sites, and determined that ectopic expression of the two lncRNAs inhibited key EMT and stem cell genes and reduced cellular proliferation and migration. As a whole, noncoding RNAs are pervasively dysregulated in head and squamous cell carcinoma. The precise molecular roles of the three transcripts identified warrants further characterization, but our data suggest that they are likely to play substantial roles in head and neck cancer pathogenesis and are significantly associated with patient survival. © 2015 Zou et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  6. Silac mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function

    OpenAIRE

    Krüger, M.; Moser, M.; Ussar, S.; Thievessen, I.; Luber, C.A.; Forner, F.; Schmidt, S.; Zanivan, S.; Fässler, R.; Mann, M.

    2008-01-01

    Stable isotope labeling by amino acids in cell culture (SILAC) has become a versatile tool for quantitative, mass spectrometry (MS)-based proteomics. Here, we completely label mice with a diet containing either the natural or the 13C6-substituted version of lysine. Mice were labeled over four generations with the heavy diet, and development, growth, and behavior were not affected. MS analysis of incorporation levels allowed for the determination of incorporation rates of proteins from blood c...

  7. Uncovering the cultivable microbial diversity of costa rican beetles and its ability to break down plant cell wall components.

    Directory of Open Access Journals (Sweden)

    Gabriel Vargas-Asensio

    Full Text Available Coleopterans are the most diverse insect order described to date. These organisms have acquired an array of survival mechanisms through their evolution, including highly efficient digestive systems. Therefore, the coleopteran intestinal microbiota constitutes an important source of novel plant cell wall-degrading enzymes with potential biotechnological applications. We isolated and described the cultivable fungi, actinomycetes and aerobic eubacteria associated with the gut of larvae and adults from six different beetle families colonizing decomposing logs in protected Costa Rican ecosystems. We obtained 611 isolates and performed phylogenetic analyses using the ITS region (fungi and 16S rDNA (bacteria. The majority of fungal isolates belonged to the order Hypocreales (26% of 169 total, while the majority of actinomycetes belonged to the genus Streptomyces (86% of 241 total. Finally, we isolated 201 bacteria spanning 19 different families belonging into four phyla: Firmicutes, α, β and γ-proteobacteria. Subsequently, we focused on microbes isolated from Passalid beetles to test their ability to degrade plant cell wall polymers. Highest scores in these assays were achieved by a fungal isolate (Anthostomella sp., two Streptomyces and one Bacillus bacterial isolates. Our study demonstrates that Costa Rican beetles harbor several types of cultivable microbes, some of which may be involved in symbiotic relationships that enable the insect to digest complex polymers such as lignocellulose.

  8. Functional Genomics Uncover the Biology behind the Responsiveness of Head and Neck Squamous Cell Cancer Patients to Cetuximab.

    Science.gov (United States)

    Bossi, Paolo; Bergamini, Cristiana; Siano, Marco; Cossu Rocca, Maria; Sponghini, Andrea P; Favales, Federica; Giannoccaro, Marco; Marchesi, Edoardo; Cortelazzi, Barbara; Perrone, Federica; Pilotti, Silvana; Locati, Laura D; Licitra, Lisa; Canevari, Silvana; De Cecco, Loris

    2016-08-01

    To identify the tumor portrait of the minority of head and neck squamous cell carcinoma (HNSCC) patients with recurrent-metastatic (RM) disease who upon treatment with platinum-based chemotherapy plus cetuximab present a long-lasting response. The gene expression of pretreatment samples from 40 HNSCC-RM patients, divided in two groups [14 long-progression-free survival (PFS) and 26 short-PFS (median = 19 and 3 months, respectively)], was associated with PFS and was challenged against a dataset from metastatic colon cancer patients treated with cetuximab. For biologic analysis, we performed functional and subtype association using gene set enrichment analysis, associated biology across all currently available HNSCC signatures, and inferred drug sensitivity using data from the Cancer Genomic Project. The identified genomic profile exhibited a significant predictive value that was essentially confirmed in the single publicly available dataset of cetuximab-treated patients. The main divergence between long- and short-PFS groups was based on developmental/differentiation status. The long-PFS patients are characterized by basal subtype traits such as strong EGFR signaling phenotype and hypoxic differentiation, further validated by the significantly higher association with the hypoxia metagene. The short-PFS patients presented a strong activation of RAS signaling confirmed in an in vitro model of two isogenic HNSCC cell lines sensitive or resistant to cetuximab. The predicted drug sensitivity for all four EGFR inhibitors was higher in long- versus short-PFS patients (P range: biology behind response to platinum-based chemotherapy plus cetuximab in RM-HNSCC cancer and may have translational implications improving treatment selection. Clin Cancer Res; 22(15); 3961-70. ©2016 AACRSee related commentary by Chau and Hammerman, p. 3710. ©2016 American Association for Cancer Research.

  9. Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells.

    Science.gov (United States)

    Guijarro, Néstor; Campiña, José M; Shen, Qing; Toyoda, Taro; Lana-Villarreal, Teresa; Gómez, Roberto

    2011-07-07

    Among the third-generation photovoltaic devices, much attention is being paid to the so-called Quantum Dot sensitized Solar Cells (QDSCs). The currently poor performance of QDSCs seems to be efficiently patched by the ZnS treatment, increasing the output parameters of the devices, albeit its function remains rather unclear. Here new insights into the role of the ZnS layer on the QDSC performance are provided, revealing simultaneously the most active recombination pathways. Optical and AFM characterization confirms that the ZnS deposit covers, at least partially, both the TiO(2) nanoparticles and the QDs (CdSe). Photoanodes submitted to the ZnS treatment before and/or after the introduction of colloidal CdSe QDs were studied by electrochemical impedance spectroscopy, cyclic voltammetry and photocurrent experiments. The corresponding results prove that the passivation of the CdSe QDs rather than the blockage of the TiO(2) surface is the main factor leading to the efficiency improvement. In addition, a study of the ultrafast carrier dynamics by means of the Lens-Free Heterodyne Detection Transient Grating technique indicates that the ZnS shell also increases the rate of electron transfer. The dual role of the ZnS layer should be kept in mind in the quest for new modifiers for enhancing the performance of QDSCs. This journal is © the Owner Societies 2011

  10. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control.

    Science.gov (United States)

    Pinzon-Morales, Ruben-Dario; Hirata, Yutaka

    2015-01-01

    The cerebellar granule cells (GCs) have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to support motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN) to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF), an unstable two-wheel balancing robot (2 DOFs), and a simulation model of a quadcopter (6 DOFs). Results showed that adequate control was maintained with a relatively small number of GCs (< 200) in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs). It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights). Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections).

  11. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control

    Directory of Open Access Journals (Sweden)

    Ruben Dario Pinzon Morales

    2015-05-01

    Full Text Available The cerebellar granule cells (GCs have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to textcolor{red}{support} motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF, an unstable two-wheel balancing robot (2 DOFs, and a simulation model of a quadcopter (6 DOFs. Results showed that adequate control was maintained with a relatively small number of GCs ($<$ 200 in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs. It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights. Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections.

  12. Construction of differential mRNA-lncRNA crosstalk networks based on ceRNA hypothesis uncover key roles of lncRNAs implicated in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Yang, Shuang; Ning, Qianqian; Zhang, Guobin; Sun, Hong; Wang, Zhen; Li, Yixue

    2016-12-27

    Increasing evidence has indicated that lncRNAs acting as competing endogenous RNAs (ceRNAs) play crucial roles in tumorigenesis, metastasis and diagnosis of cancer. However, the function of lncRNAs as ceRNAs involved in esophageal squamous cell carcinoma (ESCC) is still largely unknown. In this study, clinical implications of two intrinsic subtypes of ESCC were identified based on expression profiles of lncRNA and mRNA. ESCC subtype-specific differential co-expression networks between mRNAs and lncRNAs were constructed to reveal dynamic changes of their crosstalks mediated by miRNAs during tumorigenesis. Several well-known cancer-associated lncRNAs as the hubs of the two networks were firstly proposed in ESCC. Based on the ceRNA mechanism, we illustrated that the"loss" of miR-186-mediated PVT1-mRNA and miR-26b-mediated LINC00240-mRNA crosstalks were related to the two ESCC subtypes respectively. In addition, crosstalks between LINC00152 and EGFR, LINC00240 and LOX gene family were identified, which were associated with the function of "response to wounding" and "extracellular matrix-receptor interaction". Furthermore, functional cooperation of multiple lncRNAs was discovered in the two differential mRNA-lncRNA crosstalk networks. These together systematically uncovered the roles of lncRNAs as ceRNAs implicated in ESCC.

  13. Mast Cell Activation Disease and Microbiotic Interactions.

    Science.gov (United States)

    Afrin, Lawrence B; Khoruts, Alexander

    2015-05-01

    This article reviews the diagnostically challenging presentation of mast cell activation disease (MCAD) and current thoughts regarding interactions between microbiota and MCs. A search for all studies on interactions between mast cells, mast cell activation disease, and microbiota published on pubmed.gov and scholar.google.com between 1960 and 2015 was conducted using the search terms mast cell, mastocyte, mastocytosis, mast cell activation, mast cell activation disease, mast cell activation syndrome, microbiome, microbiota. A manual review of the references from identified studies was also conducted. Studies were excluded if they were not accessible electronically or by interlibrary loan. Research increasingly is revealing essential involvement of MCs in normal human biology and in human disease. Via many methods, normal MCs-present sparsely in every tissue-sense their environment and reactively exert influences that, directly and indirectly, locally and remotely, improve health. The dysfunctional MCs of the "iceberg" of MCAD, on the other hand, sense abnormally, react abnormally, activate constitutively, and sometimes (in mastocytosis, the "tip" of the MCAD iceberg) even proliferate neoplastically. MCAD causes chronic multisystem illness generally, but not necessarily, of an inflammatory ± allergic theme and with great variability in behavior among patients and within any patient over time. Furthermore, the range of signals to which MCs respond and react include signals from the body's microbiota, and regardless of whether an MCAD patient has clonal mastocytosis or the bulk of the iceberg now known as MC activation syndrome (also suspected to be clonal but without significant MC proliferation), dysfunctional MCs interact as dysfunctionally with those microbiota as they interact with other human tissues, potentially leading to many adverse consequences. Interactions between microbiota and MCs are complex at baseline. The potential for both pathology and benefit

  14. Efficient Capture of Cancer Cells by Their Replicated Surfaces Reveals Multiscale Topographic Interactions Coupled with Molecular Recognition.

    Science.gov (United States)

    Wang, Wenshuo; Cui, Haijun; Zhang, Pengchao; Meng, Jingxin; Zhang, Feilong; Wang, Shutao

    2017-03-29

    Cell-surface topographic interactions can direct the design of biointerfaces, which have been widely used in isolation of circulating tumor cells or fundamental cell biological research. By using three kinds of cancer cell-replicated surfaces with differentiated structures, we uncover that multiscale-cooperative topographic interactions (at both nanoscale and microscale) coupled with molecular recognition enable efficient and specific isolation of cancer cells. The cell replicas precisely inherit the structural features from the original cancer cells, providing not only preferable structures for matching with cancer cells but also a unique platform to interrogate whether certain cancer cells can optimally match with their own replicated surfaces. The results reveal that cancer cells do not show preferential recognitions to their respective replicas, while the capture agent-modified surfaces with hierarchical structures exhibit improved cancer cell capture efficiencies. Two levels of topographic interactions between cancer cells and cell replica surfaces exist. Nanoscale filopodia on cancer cells can topographically interact with different nanostructures on replica surfaces. In addition, microscale concave/convex on surfaces provide suitable sites for trapping cancer cells. This study may promote smart design of multiscale biofunctional materials that can specifically recognize cancer cells.

  15. Harnessing cell-material interaction to control cell fate: design ...

    Indian Academy of Sciences (India)

    Rajat K Das

    2017-10-26

    Oct 26, 2017 ... Harnessing cell-material interaction to control cell fate: design principle of advanced functional hydrogel materials. †. RAJAT K DAS. ∗. Materials Science Centre, Indian Institute of Technology, Kharagpur, West Bengal, India. E-mail: rajat@matsc.iitkgp.ernet.in. MS received 15 August 2017; revised 29 ...

  16. Electromechanical Nanogenerator-Cell Interaction Modulates Cell Activity.

    Science.gov (United States)

    Murillo, Gonzalo; Blanquer, Andreu; Vargas-Estevez, Carolina; Barrios, Lleonard; Ibáñez, Elena; Nogués, Carme; Esteve, Jaume

    2017-06-01

    Noninvasive methods for in situ electrical stimulation of human cells open new frontiers to future bioelectronic therapies, where controlled electrical impulses could replace the use of chemical drugs for disease treatment. Here, this study demonstrates that the interaction of living cells with piezoelectric nanogenerators (NGs) induces a local electric field that self-stimulates and modulates their cell activity, without applying an additional chemical or physical external stimulation. When cells are cultured on top of the NGs, based on 2D ZnO nanosheets, the electromechanical NG-cell interactions stimulate the motility of macrophages and trigger the opening of ion channels present in the plasma membrane of osteoblast-like cells (Saos-2) inducing intracellular calcium transients. In addition, excellent cell viability, proliferation, and differentiation are validated. This in situ cell-scale electrical stimulation of osteoblast-like cells can be extrapolated to other excitable cells such as neurons or muscle cells, paving the way for future bioelectronic medicines based on cell-targeted electrical impulses. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Different cell fates from cell-cell interactions: core architectures of two-cell bistable networks.

    Science.gov (United States)

    Rouault, Hervé; Hakim, Vincent

    2012-02-08

    The acquisition of different fates by cells that are initially in the same state is central to development. Here, we investigate the possible structures of bistable genetic networks that can allow two identical cells to acquire different fates through cell-cell interactions. Cell-autonomous bistable networks have been previously sampled using an evolutionary algorithm. We extend this evolutionary procedure to take into account interactions between cells. We obtain a variety of simple bistable networks that we classify into major subtypes. Some have long been proposed in the context of lateral inhibition through the Notch-Delta pathway, some have been more recently considered and others appear to be new and based on mechanisms not previously considered. The results highlight the role of posttranscriptional interactions and particularly of protein complexation and sequestration, which can replace cooperativity in transcriptional interactions. Some bistable networks are entirely based on posttranscriptional interactions and the simplest of these is found to lead, upon a single parameter change, to oscillations in the two cells with opposite phases. We provide qualitative explanations as well as mathematical analyses of the dynamical behaviors of various created networks. The results should help to identify and understand genetic structures implicated in cell-cell interactions and differentiation. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Meta-scale mountain grassland observatories uncover commonalities as well as specific interactions among plant and non-rhizosphere soil bacterial communities.

    Science.gov (United States)

    Yashiro, Erika; Pinto-Figueroa, Eric; Buri, Aline; Spangenberg, Jorge E; Adatte, Thierry; Niculita-Hirzel, Helene; Guisan, Antoine; van der Meer, Jan Roelof

    2018-04-10

    Interactions between plants and bacteria in the non-rhizosphere soil are rarely assessed, because they are less direct and easily masked by confounding environmental factors. By studying plant vegetation alliances and soil bacterial community co-patterning in grassland soils in 100 sites across a heterogeneous mountain landscape in the western Swiss Alps, we obtained sufficient statistical power to disentangle common co-occurrences and weaker specific interactions. Plant alliances and soil bacterial communities tended to be synchronized in community turnover across the landscape, largely driven by common underlying environmental factors, such as soil pH or elevation. Certain alliances occurring in distinct, local, environmental conditions were characterized by co-occurring specialist plant and bacterial species, such as the Nardus stricta and Thermogemmatisporaceae. In contrast, some generalist taxa, like Anthoxanthum odoratum and 19 Acidobacteria species, spanned across multiple vegetation alliances. Meta-scale analyses of soil bacterial community composition and vegetation surveys, complemented with local edaphic measurements, can thus prove useful to identify the various types of plant-bacteria interactions and the environments in which they occur.

  19. Cell Biology of Astrocyte-Synapse Interactions.

    Science.gov (United States)

    Allen, Nicola J; Eroglu, Cagla

    2017-11-01

    Astrocytes, the most abundant glial cells in the mammalian brain, are critical regulators of brain development and physiology through dynamic and often bidirectional interactions with neuronal synapses. Despite the clear importance of astrocytes for the establishment and maintenance of proper synaptic connectivity, our understanding of their role in brain function is still in its infancy. We propose that this is at least in part due to large gaps in our knowledge of the cell biology of astrocytes and the mechanisms they use to interact with synapses. In this review, we summarize some of the seminal findings that yield important insight into the cellular and molecular basis of astrocyte-neuron communication, focusing on the role of astrocytes in the development and remodeling of synapses. Furthermore, we pose some pressing questions that need to be addressed to advance our mechanistic understanding of the role of astrocytes in regulating synaptic development. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity

    Directory of Open Access Journals (Sweden)

    Michael J. Molumby

    2016-05-01

    Full Text Available Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs, have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron’s dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes.

  1. Nerve growth factor interactions with mast cells.

    Science.gov (United States)

    Kritas, S K; Caraffa, A; Antinolfi, P; Saggini, A; Pantalone, A; Rosati, M; Tei, M; Speziali, A; Saggini, R; Pandolfi, F; Cerulli, G; Conti, P

    2014-01-01

    Neuropeptides are involved in neurogenic inflammation where there is vasodilation and plasma protein extravasion in response to this stimulus. Nerve growth factor (NGF), identified by Rita Levi Montalcini, is a neurotrophin family compound which is important for survival of nociceptive neurons during their development. Therefore, NGF is an important neuropeptide which mediates the development and functions of the central and peripheral nervous system. It also exerts its proinflammatory action, not only on mast cells but also in B and T cells, neutrophils and eosinophils. Human mast cells can be activated by neuropeptides to release potent mediators of inflammation, and they are found throughout the body, especially near blood vessels, epithelial tissue and nerves. Mast cells generate and release NGF after degranulation and they are involved in iperalgesia, neuroimmune interactions and tissue inflammation. NGF is also a potent degranulation factor for mast cells in vitro and in vivo, promoting differentiation and maturation of these cells and their precursor, acting as a co-factor with interleukin-3. In conclusion, these studies are focused on cross-talk between neuropeptide NGF and inflammatory mast cells.

  2. Well-Controlled Cell-Trapping Systems for Investigating Heterogeneous Cell-Cell Interactions.

    Science.gov (United States)

    Kamiya, Koki; Abe, Yuta; Inoue, Kosuke; Osaki, Toshihisa; Kawano, Ryuji; Miki, Norihisa; Takeuchi, Shoji

    2018-03-01

    Microfluidic systems have been developed for patterning single cells to study cell-cell interactions. However, patterning multiple types of cells to understand heterogeneous cell-cell interactions remains difficult. Here, it is aimed to develop a cell-trapping device to assemble multiple types of cells in the well-controlled order and morphology. This device mainly comprises a parylene sheet for assembling cells and a microcomb for controlling the cell-trapping area. The cell-trapping area is controlled by moving the parylene sheet on an SU-8 microcomb using tweezers. Gentle downward flow is used as a driving force for the cell-trapping. The assembly of cells on a parylene sheet with round and line-shaped apertures is demonstrated. The cell-cell contacts of the trapped cells are then investigated by direct cell-cell transfer of calcein via connexin nanopores. Finally, using the device with a system for controlling the cell-trapping area, three different types of cells in the well-controlled order are assembled. The correct cell order rate obtained using the device is 27.9%, which is higher than that obtained without the sliding parylene system (0.74%). Furthermore, the occurrence of cell-cell contact between the three cell types assembled is verified. This cell-patterning device will be a useful tool for investigating heterogeneous cell-cell interactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Harnessing cell-material interaction to control cell fate: design ...

    Indian Academy of Sciences (India)

    Physical (topography, stiffness) and chemical instructions encoded in the extracellular environment govern cell behaviour. Understanding these interactions as they operate in native extracellular matrix and capturing the complexity of the spatiotemporal presentation of multiple such signals in synthetic scaffolds is a key to ...

  4. Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix

    DEFF Research Database (Denmark)

    Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard

    2018-01-01

    Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component...... of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper....... First, a ma terial equivalent to the ductile cast iron matrix is manufactured and subjected to dilato- metric and high-temperature tensile tests. Subsequently, a two-scale hierarchical top-down model is devised, calibrated on the basis of the collected data and used to simulate the interaction between...

  5. Interaction of Staphylococci with Human B cells.

    Directory of Open Access Journals (Sweden)

    Tyler K Nygaard

    Full Text Available Staphylococcus aureus is a leading cause of human infections worldwide. The pathogen produces numerous molecules that can interfere with recognition and binding by host innate immune cells, an initial step required for the ingestion and subsequent destruction of microbes by phagocytes. To better understand the interaction of this pathogen with human immune cells, we compared the association of S. aureus and S. epidermidis with leukocytes in human blood. We found that a significantly greater proportion of B cells associated with S. epidermidis relative to S. aureus. Complement components and complement receptors were important for the binding of B cells with S. epidermidis. Experiments using staphylococci inactivated by ultraviolet radiation and S. aureus isogenic deletion mutants indicated that S. aureus secretes molecules regulated by the SaeR/S two-component system that interfere with the ability of human B cells to bind this bacterium. We hypothesize that the relative inability of B cells to bind S. aureus contributes to the microbe's success as a human pathogen.

  6. Innate lymphoid cells, possible interaction with microbiota.

    Science.gov (United States)

    Moro, Kazuyo; Koyasu, Shigeo

    2015-01-01

    Recent studies have identified novel lymphocyte subsets named innate lymphoid cells (ILCs) lacking antigen-specific receptors. ILCs are present in a wide variety of epithelial compartments and occupy an intermediate position between acquired immune cells and myeloid cells. ILCs are now classified into three groups: group 1 ILC, group 2 ILC, and group 3 ILC based on their cytokine production patterns that correspond to the helper T cell subsets Th1, Th2, and Th17, respectively. ILCs play important roles in protection against various invading microbes including multicellular parasites, and in the maintenance of homeostasis and repair of epithelial layers. Excessive activation of ILCs, however, leads to various inflammatory disease conditions. ILCs have thus attracted interests of many researchers in the fields of infectious immunity, inflammatory diseases, and allergic diseases. Because epithelial cells sense alterations in environmental cues, it is important to understand the functional interaction between epithelial cells, ILCs, and environmental factors such as commensal microbiota. We discuss in this review developmental pathways of ILCs, their functions, and contribution of commensal microbiota to the differentiation and function of ILCs.

  7. Interaction of Staphylococci with Human B cells

    Science.gov (United States)

    Nygaard, Tyler K.; Kobayashi, Scott D.; Freedman, Brett; Porter, Adeline R.; Voyich, Jovanka M.; Otto, Michael; Schneewind, Olaf; DeLeo, Frank R.

    2016-01-01

    Staphylococcus aureus is a leading cause of human infections worldwide. The pathogen produces numerous molecules that can interfere with recognition and binding by host innate immune cells, an initial step required for the ingestion and subsequent destruction of microbes by phagocytes. To better understand the interaction of this pathogen with human immune cells, we compared the association of S. aureus and S. epidermidis with leukocytes in human blood. We found that a significantly greater proportion of B cells associated with S. epidermidis relative to S. aureus. Complement components and complement receptors were important for the binding of B cells with S. epidermidis. Experiments using staphylococci inactivated by ultraviolet radiation and S. aureus isogenic deletion mutants indicated that S. aureus secretes molecules regulated by the SaeR/S two-component system that interfere with the ability of human B cells to bind this bacterium. We hypothesize that the relative inability of B cells to bind S. aureus contributes to the microbe’s success as a human pathogen. PMID:27711145

  8. The Molecular Interaction of CAR and JAML Recruits the Central Cell Signal Transducer PI3K

    Energy Technology Data Exchange (ETDEWEB)

    Verdino, Petra; Witherden, Deborah A.; Havran, Wendy L.; Wilson, Ian A. (Scripps)

    2010-11-15

    Coxsackie and adenovirus receptor (CAR) is the primary cellular receptor for group B coxsackieviruses and most adenovirus serotypes and plays a crucial role in adenoviral gene therapy. Recent discovery of the interaction between junctional adhesion molecule-like protein (JAML) and CAR uncovered important functional roles in immunity, inflammation, and tissue homeostasis. Crystal structures of JAML ectodomain (2.2 angstroms) and its complex with CAR (2.8 angstroms) reveal an unusual immunoglobulin-domain assembly for JAML and a charged interface that confers high specificity. Biochemical and mutagenesis studies illustrate how CAR-mediated clustering of JAML recruits phosphoinositide 3-kinase (P13K) to a JAML intracellular sequence motif as delineated for the {alpha}{beta} T cell costimulatory receptor CD28. Thus, CAR and JAML are cell signaling receptors of the immune system with implications for asthma, cancer, and chronic nonhealing wounds.

  9. Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix

    Science.gov (United States)

    Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard; Thorborg, Jesper; Tiedje, Niels; Hattel, Jesper

    2018-02-01

    Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper. First, a material equivalent to the ductile cast iron matrix is manufactured and subjected to dilatometric and high-temperature tensile tests. Subsequently, a two-scale hierarchical top-down model is devised, calibrated on the basis of the collected data and used to simulate the interaction between the graphite particles and the matrix during manufacturing of the industrial part considered in the XRD study. The model indicates that, besides the viscoplastic deformation of the matrix, the effect of the inelastic deformation of the graphite has to be considered to explain the magnitude of the XRD strain. Moreover, the model shows that the large elastic strain perturbations recorded with XRD close to the graphite-matrix interface are not artifacts due to e.g. sharp gradients in chemical composition, but correspond to residual stress concentrations induced by the conical sectors forming the internal structure of the graphite particles. In contrast to common belief, these results thus suggest that ductile cast iron parts cannot be considered, in general, as stress-free at the microstructural scale.

  10. Numerical analysis on cell-cell interaction of red blood cells during sedimentation

    Science.gov (United States)

    Shi, Xing

    2017-07-01

    The long-range hydrodynamic interaction among red blood cells plays an important role on the macroscopic behaviors, however, the molecular interaction at such scale is much weaker. In this paper, the sedimentations under external body force of two red blood cells are numerical simulated to investigate the hydrodynamic interaction between cells. The flow is solved by lattice Boltzmann method and the membrane of red blood cell is model by the spring model where the fluid-membrane interaction is coupled by fictitious domain method. It is found that the cells have the tendency to aggregate and may be aligned in a line along the sediment direction. Compared to the properties of a single cell under the same conditions, the sediment velocity of red blood cell group is larger; the leading cell deforms less and the following cell endures larger deformation.

  11. Interactions of Model Cell Membranes with Nanoparticles

    Science.gov (United States)

    D'Angelo, S. M.; Camesano, T. A.; Nagarajan, R.

    2011-12-01

    The same properties that give nanoparticles their enhanced function, such as high surface area, small size, and better conductivity, can also alter the cytotoxicity of nanomaterials. Ultimately, many of these nanomaterials will be released into the environment, and can cause cytotoxic effects to environmental bacteria, aquatic organisms, and humans. Previous results from our laboratory suggest that nanoparticles can have a detrimental effect on cells, depending on nanoparticle size. It is our goal to characterize the properties of nanomaterials that can result in membrane destabilization. We tested the effects of nanoparticle size and chemical functionalization on nanoparticle-membrane interactions. Gold nanoparticles at 2, 5,10, and 80 nm were investigated, with a concentration of 1.1x1010 particles/mL. Model cell membranes were constructed of of L-α-phosphatidylcholine (egg PC), which has negatively charged lipid headgroups. A quartz crystal microbalance with dissipation (QCM-D) was used to measure frequency changes at different overtones, which were related to mass changes corresponding to nanoparticle interaction with the model membrane. In QCM-D, a lipid bilayer is constructed on a silicon dioxide crystal. The crystals, oscillate at different harmonic frequencies depending upon changes in mass or energy dissipation. When mass is added to the crystal surface, such as through addition of a lipid vesicle solution, the frequency change decreases. By monitoring the frequency and dissipation, we could verify that a supported lipid bilayer (SLB) formed on the silica surface. After formation of the SLB, the nanoparticles can be added to the system, and the changes in frequency and dissipation are monitored in order to build a mechanistic understanding of nanoparticle-cell membrane interactions. For all of the smaller nanoparticles (2, 5, and 10 nm), nanoparticle addition caused a loss of mass from the lipid bilayer, which appears to be due to the formation of holes

  12. Nanog interact with CDK6 to regulates astrocyte cells proliferation following spinal cord injury

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Jun [Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu (China); Department of Orthopaedics, Xishan People' s Hospital, Wuxi, Jiangsu (China); Ni, Yingjie; Xu, Lin; Xu, Hongliang [Department of Orthopaedics, Xishan People' s Hospital, Wuxi, Jiangsu (China); Cai, Zhengdong, E-mail: caizhengdongsh@163.com [Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu (China)

    2016-01-22

    Previous research had reported transcription factors Nanog expressed in pluripotent embryonic stem cells (ESCS) that played an important role in regulating the cell proliferation. Nanog levels are frequently elevated in ESCS, but the role in the spinal cord was not clear. To examine the biological relevance of Nanog, we studied its properties in spinal cord injury model. The expression of Nanog and PCNA was gradually increased and reached a peak at 3 day by western blot analysis. The expression of Nanog was further analyzed by immunohistochemistry. Double immunofluorescent staining uncovered that Nanog can co-labeled with PCNA and GFAP in the spinal cord tissue. In vitro, Nanog can promote the proliferation of astrocyte cell by Fluorescence Activating Cell Sorter (FACS) and CCK8. Meanwhile, the cell-cycle protein CDK6 could interact with Nanog in the spinal cord tissue. Taken together, these data suggested that both Nanog may play important roles in spinal cord pathophysiology via interact with CDK6.

  13. Nanog interact with CDK6 to regulates astrocyte cells proliferation following spinal cord injury

    International Nuclear Information System (INIS)

    Gu, Jun; Ni, Yingjie; Xu, Lin; Xu, Hongliang; Cai, Zhengdong

    2016-01-01

    Previous research had reported transcription factors Nanog expressed in pluripotent embryonic stem cells (ESCS) that played an important role in regulating the cell proliferation. Nanog levels are frequently elevated in ESCS, but the role in the spinal cord was not clear. To examine the biological relevance of Nanog, we studied its properties in spinal cord injury model. The expression of Nanog and PCNA was gradually increased and reached a peak at 3 day by western blot analysis. The expression of Nanog was further analyzed by immunohistochemistry. Double immunofluorescent staining uncovered that Nanog can co-labeled with PCNA and GFAP in the spinal cord tissue. In vitro, Nanog can promote the proliferation of astrocyte cell by Fluorescence Activating Cell Sorter (FACS) and CCK8. Meanwhile, the cell-cycle protein CDK6 could interact with Nanog in the spinal cord tissue. Taken together, these data suggested that both Nanog may play important roles in spinal cord pathophysiology via interact with CDK6.

  14. Anthocyanins influence tannin-cell wall interactions.

    Science.gov (United States)

    Bautista-Ortín, Ana Belén; Martínez-Hernández, Alejandro; Ruiz-García, Yolanda; Gil-Muñoz, Rocío; Gómez-Plaza, Encarna

    2016-09-01

    The rate of tannin extraction was studied in a vinification of red grapes and the results compared with another vinification made with white grapes fermented as for typical red wine, in the presence of skins and seeds. Even though the grapes presented a quite similar skin and seed tannin content, the differences in tannin concentration between both vinifications was very large, despite the fact that the only apparent difference between the phenolic composition of both wines was the anthocyanin content. This suggests that anthocyanins play an important role in tannin extractability, perhaps because they affect the extent of the tannin-cell wall interaction, a factor that largely controls the resulting quantity of tannins in wines. To confirm this observation, the effect of anthocyanins on the tannin extractability from grape seeds and skin and on the interaction between tannins and grape cell walls suspended in model solutions were studied. The results indicated that anthocyanins favored skin and seed tannin extraction and that there is a competition for the adsorption sites between anthocyanins and tannins that increases the tannin content when anthocyanins are present. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Uncovering Interaction Patterns in Mobile Outdoor Gaming

    NARCIS (Netherlands)

    Orellana, D.A.; Wachowicz, M.; Andrienko, G.; Andrienko, N.

    2009-01-01

    Significant advances in recreation planning have been achieved thanks to the mobile technology and the ubiquitous computation. Today it is possible to know the real time position of a group of individuals participating in an outdoor game, and to obtain a large amount of data about their movements.

  16. Uncovering Black Womanhood in Engineering

    Science.gov (United States)

    Gibson, Sheree L.; Espino, Michelle M.

    2016-01-01

    Despite the growing research that outlines the experiences of Blacks and women undergraduates in engineering, little is known about Black women in this field. The purpose of this qualitative study was to uncover how eight Black undergraduate women in engineering understood their race and gender identities in a culture that can be oppressive to…

  17. Uncovering undetected hypoglycemic events

    Directory of Open Access Journals (Sweden)

    Unger J

    2012-03-01

    Full Text Available Jeff UngerCatalina Research Institute, Chino, CA, USAAbstract: Hypoglycemia is the rate-limiting factor that often prevents patients with diabetes from safely and effectively achieving their glycemic goals. Recent studies have reported that severe hypoglycemia is associated with a significant increase in the adjusted risks of major macrovascular events, major microvascular events, and mortality. Minor hypoglycemic episodes can also have serious implications for patient health, psychological well being, and adherence to treatment regimens. Hypoglycemic events can impact the health economics of the patient, their employer, and third-party payers. Insulin treatment is a key predictor of hypoglycemia, with one large population-based study reporting an overall prevalence of 7.1% (type 1 diabetes mellitus and 7.3% (type 2 diabetes mellitus in insulin-treated patients, compared with 0.8% in patients with type 2 diabetes treated with an oral sulfonylurea. Patients with type 1 diabetes typically experience symptomatic hypoglycemia on average twice weekly and severe hypoglycemia once annually. The progressive loss of islet cell function in patients with type 2 diabetes results in a higher risk of both symptomatic and unrecognized hypoglycemia over time. Patients with diabetes who become hypoglycemic are also more susceptible to developing defective counter-regulation, also known as hypoglycemia awareness autonomic failure, which is life-threatening and must be aggressively addressed. In patients unable to recognize hypoglycemia symptoms, frequent home monitoring or use of continuous glucose sensors are critical. Primary care physicians play a key role in the prevention and management of hypoglycemia in patients with diabetes, particularly in those requiring intensive insulin therapy, yet physicians are often unaware of the multitude of consequences of hypoglycemia or how to deal with them. Careful monitoring, adherence to guidelines, and use of optimal

  18. Free-zone electrophoresis of animal cells. 1: Experiments on cell-cell interactions

    Science.gov (United States)

    Todd, P. W.; Hjerten, S.

    1985-01-01

    The electrophoretically migrating zones wasa monitored. The absence of fluid flows in the direction of migration permits direct measurement of electrophoretic velocities of any material. Sedimentation is orthogonal to electrokinetic motion and the effects of particle-particle interaction on electrophoretic mobility is studied by free zone electrophoresis. Fixed erythrocytes at high concentrations, mixtures of fixed erythrocytes from different animal species, and mixtures of cultured human cells were studied in low ionic strength buffers. The electrophoretic velocity of fixed erythrocytes was not altered by increasing cell concentration or by the mixing of erythrocytes from different species. When zones containing cultured human glial cells and neuroblastoma cells are permitted to interact during electrophoresis, altered migration patterns occur. It is found that cell-cell interactions depends upon cell type.

  19. Are The Chemical Bonding Interactions in Halide Perovskite Solar Cells Cooperative?

    Science.gov (United States)

    Varadwaj, Pradeep; Varadwaj, Arpita; Yamashita, Koichi

    Designing novel photo-sensitive and -responsive light harvesting solar cell materials is an important area of nanoscience and technologies mainly because these can transform the light energy directly or indirectly into electricity. Examples of a few of them, inter alia, include dye-sensitized solar cells, organic solar cells and halide perovskite solar cells. Methylammonium lead iodide (CH3NH3PbI3) organic-inorganic hybrid perovskite is one of the highly valued photocatalysts reported till date, which is comparable in its strength with the inorganic cesium lead iodide (CsPbI3) perovskite solar cell especially for energy conversion. The study thus has focused on the fundamental understanding of the geometrical, electronic and energetic properties of the CH3NH3PbI3 and CsPbI3 nanoclusters, obtained using density functional theory calculations. The main aim towards this end was to uncover the consequences of additivity, or non-additive cooperative binding, in the intermolecular chemical bonding interactions examined for these nanoclusters. The results obtained are compared with the current state-of-the-art, and will be discussed in detail.

  20. Cell-cell interactions mediate cytoskeleton organization and collective endothelial cell chemotaxis.

    Science.gov (United States)

    Shamloo, Amir

    2014-09-01

    This study investigates the role of cell-cell and cell-ligand interactions in cytoskeleton organization of endothelial cells (ECs) and their directional migration within a microfluidic device. The migration of ECs in response to a biochemical factor was studied. Mathematical analysis of the cell migration pathways and cellular cytoskeleton revealed that directional migration, migration persistence length, migration speed, and cytoskeletal stress fiber alignment can be mediated by the level of cell contacts as well as the presence or absence of a biochemical polarizing factor. It was shown that in the presence of a biochemical polarizing factor, higher cell density and more frequent cell contacts has a reinforcing effect on collective cell chemotaxis. In contrast, in the absence of a polarizing factor, high cell density can decrease or suppress the ability of the cells to migrate. Also, the correlation of actin stress fiber organization and alignment with directional migration of ECs was investigated. It was shown that in the presence of a biochemical polarizing factor, stress fibers within the cytoskeleton of ECs can be significantly aligned parallel to the gradient direction when the cells have higher level of contacts. The results also show that the organization and alignment of actin stress fibers is mediated by cell adhesion junctions during collective cell migration and introduce cell-cell interactions as a key factor during collective cell chemotaxis. © 2014 Wiley Periodicals, Inc.

  1. Stochasticity and Spatial Interaction Govern Stem Cell Differentiation Dynamics

    Science.gov (United States)

    Smith, Quinton; Stukalin, Evgeny; Kusuma, Sravanti; Gerecht, Sharon; Sun, Sean X.

    2015-07-01

    Stem cell differentiation underlies many fundamental processes such as development, tissue growth and regeneration, as well as disease progression. Understanding how stem cell differentiation is controlled in mixed cell populations is an important step in developing quantitative models of cell population dynamics. Here we focus on quantifying the role of cell-cell interactions in determining stem cell fate. Toward this, we monitor stem cell differentiation in adherent cultures on micropatterns and collect statistical cell fate data. Results show high cell fate variability and a bimodal probability distribution of stem cell fraction on small (80-140 μm diameter) micropatterns. On larger (225-500 μm diameter) micropatterns, the variability is also high but the distribution of the stem cell fraction becomes unimodal. Using a stochastic model, we analyze the differentiation dynamics and quantitatively determine the differentiation probability as a function of stem cell fraction. Results indicate that stem cells can interact and sense cellular composition in their immediate neighborhood and adjust their differentiation probability accordingly. Blocking epithelial cadherin (E-cadherin) can diminish this cell-cell contact mediated sensing. For larger micropatterns, cell motility adds a spatial dimension to the picture. Taken together, we find stochasticity and cell-cell interactions are important factors in determining cell fate in mixed cell populations.

  2. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions.

    NARCIS (Netherlands)

    Nolte-'t Hoen, E.N.M.|info:eu-repo/dai/nl/261632175; Buermans, H.P.; Waasdorp, M.; Stoorvogel, W.|info:eu-repo/dai/nl/074352385; Wauben, M.H.M.|info:eu-repo/dai/nl/112675735; `t Hoen, P.A.C.

    2012-01-01

    Cells release RNA-carrying vesicles and membrane-free RNA/protein complexes into the extracellular milieu. Horizontal vesicle-mediated transfer of such shuttle RNA between cells allows dissemination of genetically encoded messages, which may modify the function of target cells. Other studies used

  3. Quantitative and Qualitative Analysis of Bone Marrow CD8(+) T Cells from Different Bones Uncovers a Major Contribution of the Bone Marrow in the Vertebrae.

    Science.gov (United States)

    Geerman, Sulima; Hickson, Sarah; Brasser, Giso; Pascutti, Maria Fernanda; Nolte, Martijn A

    2015-01-01

    Bone marrow (BM) plays an important role in the long-term maintenance of memory T cells. Yet, BM is found in numerous bones throughout the body, which are not equal in structure, as they differ in their ratio of cortical and trabecular bone. This implies that BM cells within different bones are subjected to different microenvironments, possibly leading to differences in their frequencies and function. To address this, we examined BM from murine tibia, femur, pelvis, sternum, radius, humerus, calvarium, and the vertebrae and analyzed the presence of effector memory (TEM), central memory (TCM), and naïve (TNV) CD8(+) T cells. During steady-state conditions, the frequency of the total CD8(+) T cell population was comparable between all bones. Interestingly, most CD8(+) T cells were located in the vertebrae, as it contained the highest amount of BM cells. Furthermore, the frequencies of TEM, TCM, and TNV cells were similar between all bones, with a majority of TNV cells. Additionally, CD8(+) T cells collected from different bones similarly expressed the key survival receptors IL-7Rα and IL-15Rβ. We also examined BM for memory CD8(+) T cells with a tissue-resident memory phenotype and observed that approximately half of all TEM cells expressed the retention marker CD69. Remarkably, in the memory phase of acute infection with the lymphocytic choriomeningitis virus (LCMV), we found a massive compositional change in the BM CD8(+) T cell population, as the TEM cells became the dominant subset at the cost of TNV cells. Analysis of Ki-67 expression established that these TEM cells were in a quiescent state. Finally, we detected higher frequencies of LCMV-specific CD8(+) T cells in BM compared to spleen and found that BM in its entirety contained fivefold more LCMV-specific CD8(+) T cells. In conclusion, although infection with LCMV caused a dramatic change in the BM CD8(+) T cell population, this did not result in noticeable differences between BM collected from different

  4. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions.

    Science.gov (United States)

    Nolte-'t Hoen, Esther N M; Buermans, Henk P J; Waasdorp, Maaike; Stoorvogel, Willem; Wauben, Marca H M; 't Hoen, Peter A C

    2012-10-01

    Cells release RNA-carrying vesicles and membrane-free RNA/protein complexes into the extracellular milieu. Horizontal vesicle-mediated transfer of such shuttle RNA between cells allows dissemination of genetically encoded messages, which may modify the function of target cells. Other studies used array analysis to establish the presence of microRNAs and mRNA in cell-derived vesicles from many sources. Here, we used an unbiased approach by deep sequencing of small RNA released by immune cells. We found a large variety of small non-coding RNA species representing pervasive transcripts or RNA cleavage products overlapping with protein coding regions, repeat sequences or structural RNAs. Many of these RNAs were enriched relative to cellular RNA, indicating that cells destine specific RNAs for extracellular release. Among the most abundant small RNAs in shuttle RNA were sequences derived from vault RNA, Y-RNA and specific tRNAs. Many of the highly abundant small non-coding transcripts in shuttle RNA are evolutionary well-conserved and have previously been associated to gene regulatory functions. These findings allude to a wider range of biological effects that could be mediated by shuttle RNA than previously expected. Moreover, the data present leads for unraveling how cells modify the function of other cells via transfer of specific non-coding RNA species.

  5. Local cell metrics: a novel method for analysis of cell-cell interactions

    Directory of Open Access Journals (Sweden)

    Chen Chien-Chiang

    2009-10-01

    Full Text Available Abstract Background The regulation of many cell functions is inherently linked to cell-cell contact interactions. However, effects of contact interactions among adherent cells can be difficult to detect with global summary statistics due to the localized nature and noise inherent to cell-cell interactions. The lack of informatics approaches specific for detecting cell-cell interactions is a limitation in the analysis of large sets of cell image data, including traditional and combinatorial or high-throughput studies. Here we introduce a novel histogram-based data analysis strategy, termed local cell metrics (LCMs, which addresses this shortcoming. Results The new LCM method is demonstrated via a study of contact inhibition of proliferation of MC3T3-E1 osteoblasts. We describe how LCMs can be used to quantify the local environment of cells and how LCMs are decomposed mathematically into metrics specific to each cell type in a culture, e.g., differently-labelled cells in fluorescence imaging. Using this approach, a quantitative, probabilistic description of the contact inhibition effects in MC3T3-E1 cultures has been achieved. We also show how LCMs are related to the naïve Bayes model. Namely, LCMs are Bayes class-conditional probability functions, suggesting their use for data mining and classification. Conclusion LCMs are successful in robust detection of cell contact inhibition in situations where conventional global statistics fail to do so. The noise due to the random features of cell behavior was suppressed significantly as a result of the focus on local distances, providing sensitive detection of cell-cell contact effects. The methodology can be extended to any quantifiable feature that can be obtained from imaging of cell cultures or tissue samples, including optical, fluorescent, and confocal microscopy. This approach may prove useful in interpreting culture and histological data in fields where cell-cell interactions play a critical

  6. Cell shape recognition by colloidal cell imprints: energy of the cell-imprint interaction.

    Science.gov (United States)

    Borovička, Josef; Stoyanov, Simeon D; Paunov, Vesselin N

    2015-09-01

    The results presented in this study are aimed at the theoretical estimate of the interactions between a spherical microbial cell and the colloidal cell imprints in terms of the Derjaguin, Landau, Vervey, and Overbeek (DLVO) surface forces. We adapted the Derjaguin approximation to take into account the geometry factor in the colloidal interaction between a spherical target particle and a hemispherical shell at two different orientations with respect to each other. We took into account only classical DLVO surface forces, i.e., the van der Waals and the electric double layer forces, in the interaction of a spherical target cell and a hemispherical shell as a function of their size ratio, mutual orientation, distance between their surfaces, their respective surface potentials, and the ionic strength of the aqueous solution. We found that the calculated interaction energies are several orders higher when match and recognition between the target cell and the target cell imprint is achieved. Our analysis revealed that the recognition effect of the hemispherical shell towards the target microsphere comes from the greatly increased surface contact area when a full match of their size and shape is produced. When the interaction between the surfaces of the hemishell and the target cell is attractive, the recognition greatly amplifies the attraction and this increases the likelihood of them to bind strongly. However, if the surface interaction between the cell and the imprint is repulsive, the shape and size match makes this interaction even more repulsive and thus decreases the likelihood of binding. These results show that the surface chemistry of the target cells and their colloidal imprints is very important in controlling the outcome of the interaction, while the shape recognition only amplifies the interaction. In the case of nonmonotonous surface-to-surface interaction we discovered some interesting interplay between the effects of shape match and surface chemistry

  7. Kermit interacts with Gαo, Vang, and motor proteins in Drosophila planar cell polarity.

    Directory of Open Access Journals (Sweden)

    Chen Lin

    Full Text Available In addition to the ubiquitous apical-basal polarity, epithelial cells are often polarized within the plane of the tissue--the phenomenon known as planar cell polarity (PCP. In Drosophila, manifestations of PCP are visible in the eye, wing, and cuticle. Several components of the PCP signaling have been characterized in flies and vertebrates, including the heterotrimeric Go protein. However, Go signaling partners in PCP remain largely unknown. Using a genetic screen we uncover Kermit, previously implicated in G protein and PCP signaling, as a novel binding partner of Go. Through pull-down and genetic interaction studies, we find that Kermit interacts with Go and another PCP component Vang, known to undergo intracellular relocalization during PCP establishment. We further demonstrate that the activity of Kermit in PCP differentially relies on the motor proteins: the microtubule-based dynein and kinesin motors and the actin-based myosin VI. Our results place Kermit as a potential transducer of Go, linking Vang with motor proteins for its delivery to dedicated cellular compartments during PCP establishment.

  8. Cell Adhesions: Actin-Based Modules that Mediate Cell-Extracellular Matrix and Cell-Cell Interactions

    Science.gov (United States)

    Bachir, Alexia; Horwitz, Alan Rick; Nelson, W. James; Bianchini, Julie M.

    2018-01-01

    Cell adhesions link cells to the extracellular matrix (ECM) and to each other, and depend on interactions with the actin cytoskeleton. Both cell-ECM and cell-cell adhesion sites contain discrete, yet overlapping functional modules. These modules establish physical association with the actin cytoskeleton, locally modulate actin organization and dynamics, and trigger intracellular signaling pathways. Interplay between these modules generates distinct actin architectures that underlie different stages, types, and functions of cell-ECM and cell-cell adhesions. Actomyosin contractility is required to generate mature, stable adhesions, as well as sense and translate the mechanical properties of the cellular environment to changes in cell organization and behavior. In this chapter we discuss the organization and function of different adhesion modules and how they interact with the actin cytoskeleton. We highlight the molecular mechanisms of mechanotransduction in adhesions, and how adhesion molecules mediate crosstalk between cell-ECM and cell-cell adhesion sites. PMID:28679638

  9. A map of directional genetic interactions in a metazoan cell.

    Science.gov (United States)

    Fischer, Bernd; Sandmann, Thomas; Horn, Thomas; Billmann, Maximilian; Chaudhary, Varun; Huber, Wolfgang; Boutros, Michael

    2015-03-06

    Gene-gene interactions shape complex phenotypes and modify the effects of mutations during development and disease. The effects of statistical gene-gene interactions on phenotypes have been used to assign genes to functional modules. However, directional, epistatic interactions, which reflect regulatory relationships between genes, have been challenging to map at large-scale. Here, we used combinatorial RNA interference and automated single-cell phenotyping to generate a large genetic interaction map for 21 phenotypic features of Drosophila cells. We devised a method that combines genetic interactions on multiple phenotypes to reveal directional relationships. This network reconstructed the sequence of protein activities in mitosis. Moreover, it revealed that the Ras pathway interacts with the SWI/SNF chromatin-remodelling complex, an interaction that we show is conserved in human cancer cells. Our study presents a powerful approach for reconstructing directional regulatory networks and provides a resource for the interpretation of functional consequences of genetic alterations.

  10. Uncovering Aberrant Mutant PKA Function with Flow Cytometric FRET

    Directory of Open Access Journals (Sweden)

    Shin-Rong Lee

    2016-03-01

    Full Text Available Biology has been revolutionized by tools that allow the detection and characterization of protein-protein interactions (PPIs. Förster resonance energy transfer (FRET-based methods have become particularly attractive as they allow quantitative studies of PPIs within the convenient and relevant context of living cells. We describe here an approach that allows the rapid construction of live-cell FRET-based binding curves using a commercially available flow cytometer. We illustrate a simple method for absolutely calibrating the cytometer, validating our binding assay against the gold standard isothermal calorimetry (ITC, and using flow cytometric FRET to uncover the structural and functional effects of the Cushing-syndrome-causing mutation (L206R on PKA’s catalytic subunit. We discover that this mutation not only differentially affects PKAcat’s binding to its multiple partners but also impacts its rate of catalysis. These findings improve our mechanistic understanding of this disease-causing mutation, while illustrating the simplicity, general applicability, and power of flow cytometric FRET.

  11. Cell Phone Roulette and "Consumer Interactive" Quality

    Science.gov (United States)

    Navarro, Peter

    2005-01-01

    Under current policies, cell phone consumers face a lower probability of finding the best carrier for their usage patterns than winning at roulette. Corroborating survey data consistently show significant dissatisfaction among cell phone users, network performance is a major issue, and customer "churn" is high. This problem may be traced to a new…

  12. Deep sequencing of RNA from three different extracellular vesicle (EV subtypes released from the human LIM1863 colon cancer cell line uncovers distinct miRNA-enrichment signatures.

    Directory of Open Access Journals (Sweden)

    Hong Ji

    Full Text Available Secreted microRNAs (miRNAs enclosed within extracellular vesicles (EVs play a pivotal role in intercellular communication by regulating recipient cell gene expression and affecting target cell function. Here, we report the isolation of three distinct EV subtypes from the human colon carcinoma cell line LIM1863--shed microvesicles (sMVs and two exosome populations (immunoaffinity isolated A33-exosomes and EpCAM-exosomes. Deep sequencing of miRNA libraries prepared from parental LIM1863 cells/derived EV subtype RNA yielded 254 miRNA identifications, of which 63 are selectively enriched in the EVs--miR-19a/b-3p, miR-378a/c/d, and miR-577 and members of the let-7 and miR-8 families being the most prominent. Let-7a-3p*, let-7f-1-3p*, miR-451a, miR-574-5p*, miR-4454 and miR-7641 are common to all EV subtypes, and 6 miRNAs (miR-320a/b/c/d, miR-221-3p, and miR-200c-3p discern LIM1863 exosomes from sMVs; miR-98-5p was selectively represented only in sMVs. Notably, A33-Exos contained the largest number (32 of exclusively-enriched miRNAs; 14 of these miRNAs have not been reported in the context of CRC tissue/biofluid analyses and warrant further examination as potential diagnostic markers of CRC. Surprisingly, miRNA passenger strands (star miRNAs for miR-3613-3p*, -362-3p*, -625-3p*, -6842-3p* were the dominant strand in A33-Exos, the converse to that observed in parental cells. This finding suggests miRNA biogenesis may be interlinked with endosomal/exosomal processing.

  13. Biomaterial surface proteomic signature determines interaction with epithelial cells.

    Science.gov (United States)

    Abdallah, Mohamed-Nur; Tran, Simon D; Abughanam, Ghada; Laurenti, Marco; Zuanazzi, David; Mezour, Mohamed A; Xiao, Yizhi; Cerruti, Marta; Siqueira, Walter L; Tamimi, Faleh

    2017-05-01

    Cells interact with biomaterials indirectly through extracellular matrix (ECM) proteins adsorbed onto their surface. Accordingly, it could be hypothesized that the surface proteomic signature of a biomaterial might determine its interaction with cells. Here, we present a surface proteomic approach to test this hypothesis in the specific case of biomaterial-epithelial cell interactions. In particular, we determined the surface proteomic signature of different biomaterials exposed to the ECM of epithelial cells (basal lamina). We revealed that the biomaterial surface chemistry determines the surface proteomic profile, and subsequently the interaction with epithelial cells. In addition, we found that biomaterials with surface chemistries closer to that of percutaneous tissues, such as aminated PMMA and aminated PDLLA, promoted higher selective adsorption of key basal lamina proteins (laminins, nidogen-1) and subsequently improved their interactions with epithelial cells. These findings suggest that mimicking the surface chemistry of natural percutaneous tissues can improve biomaterial-epithelial integration, and thus provide a rationale for the design of improved biomaterial surfaces for skin regeneration and percutaneous medical devices. Failure of most biomaterials originates from the inability to predict and control the influence of their surface properties on biological phenomena, particularly protein adsorption, and cellular behaviour, which subsequently results in unfavourable host response. Here, we introduce a surface-proteomic screening approach using a label-free mass spectrometry technique to decipher the adsorption profile of extracellular matrix (ECM) proteins on different biomaterials, and correlate it with cellular behaviour. We demonstrated that the way a biomaterial selectively interacts with specific ECM proteins of a given tissue seems to determine the interactions between the cells of that tissue and biomaterials. Accordingly, this approach can

  14. Spatiotemporal control of cell-cell reversible interactions using molecular engineering

    Science.gov (United States)

    Shi, Peng; Ju, Enguo; Yan, Zhengqing; Gao, Nan; Wang, Jiasi; Hou, Jianwen; Zhang, Yan; Ren, Jinsong; Qu, Xiaogang

    2016-10-01

    Manipulation of cell-cell interactions has potential applications in basic research and cell-based therapy. Herein, using a combination of metabolic glycan labelling and bio-orthogonal click reaction, we engineer cell membranes with β-cyclodextrin and subsequently manipulate cell behaviours via photo-responsive host-guest recognition. With this methodology, we demonstrate reversible manipulation of cell assembly and disassembly. The method enables light-controllable reversible assembly of cell-cell adhesion, in contrast with previously reported irreversible effects, in which altered structure could not be reused. We also illustrate the utility of the method by designing a cell-based therapy. Peripheral blood mononuclear cells modified with aptamer are effectively redirected towards target cells, resulting in enhanced cell apoptosis. Our approach allows precise control of reversible cell-cell interactions and we expect that it will promote further developments of cell-based therapy.

  15. Neoantigen landscape dynamics during human melanoma-T cell interactions

    DEFF Research Database (Denmark)

    Verdegaal, Els M. E.; De Miranda, Noel F. C. C.; Visser, Marten

    2016-01-01

    is constant over time is unclear. Here we analyse the stability of neoantigen-specific T-cell responses and the antigens they recognize in two patients with stage IV melanoma treated by adoptive T-cell transfer. The T-cell-recognized neoantigens can be selectively lost from the tumour cell population, either...... by overall reduced expression of the genes or loss of the mutant alleles. Notably, loss of expression of T-cell-recognized neoantigens was accompanied by development of neoantigen-specific T-cell reactivity in tumour-infiltrating lymphocytes. These data demonstrate the dynamic interactions between cancer...

  16. Biotic-Abiotic Nanoscale Interactions in Biological Fuel Cells

    Science.gov (United States)

    2014-03-28

    such as ATP. This strategy, called oxidative phosphorylation, is embraced by all respiratory microorganisms. Most eukaryotes and many prokaryotes are...AFRL-OSR-VA-TR-2014-0087 (YIP-10) BIOTIC-ABIOTIC NANOSCALE INTERACTIONS IN BIOLOGICAL FUEL CELLS Mohamed El-Naggar UNIVERSITY OF SOUTHERN CALIFORNIA...Interactions in Biological Fuel Cells Award Number: FA9550-10-1-0144 Start Date: 04/15/2010 Program Manager: Patrick O. Bradshaw, PhD Air

  17. Interaction of Proteins Identified in Human Thyroid Cells

    Science.gov (United States)

    Pietsch, Jessica; Riwaldt, Stefan; Bauer, Johann; Sickmann, Albert; Weber, Gerhard; Grosse, Jirka; Infanger, Manfred; Eilles, Christoph; Grimm, Daniela

    2013-01-01

    Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains. PMID:23303277

  18. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms.

    Science.gov (United States)

    Wei, Min; Li, Song; Le, Weidong

    2017-10-25

    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  19. Human immunodeficiencies related to APC/T cell interaction

    Directory of Open Access Journals (Sweden)

    Marinos eKallikourdis

    2015-08-01

    Full Text Available The primary event for initiating adaptive immune responses is the encounter between T lymphocytes and antigen presenting cells (APC in the T cell area of secondary lymphoid organs and the formation of highly organized inter-cellular junctions referred to as the immune synapses. In vivo live-cell imaging of APC-T cell interactions combined to functional studies unveiled that T cell fate is dictated, in large part, by the stability of the initial contact. Immune cell interaction is equally important during delivery of T cell help to B cells and for the killing of target cells by cytotoxic T cells and NK cells. The critical role of contact dynamics and synapse stability on the immune response is well illustrated by human immune deficiencies in which disease pathogenesis is linked to altered adhesion or defective cross-talk between the synaptic partners. Here we will discuss in details the mechanisms of defective APC-T cell communications in Wiskott-Aldrich syndrome (WAS and in warts, hypogammaglobulinemia, infections, myelokathexis syndrome (WHIM. In addition, we will summarize the evidences pointing to a compromised conjugate formation in WIP deficiency, DOCK8 deficiency and X-linked lymphoproliferative syndrome.

  20. Micromanipulation of endothelial cells: Ultrasound-microbubble-cell interaction

    NARCIS (Netherlands)

    van Wamel, Annemieke; Bouakaz, Ayache; Versluis, Michel; de Jong, N.

    2004-01-01

    Ultrasound (US) in combination with contrast microbubbles has been shown to alter the permeability of cell membranes without affecting cell viability. This permeabilisation feature is used to design new drug delivery systems using US and contrast agents. The underlying mechanisms are still unknown.

  1. Harnessing cell-material interaction to control cell fate: design ...

    Indian Academy of Sciences (India)

    Rajat K Das

    2017-10-26

    Oct 26, 2017 ... advancement in engineered hydrogel materials as such scaffold to control cell fate. Keywords. Extracellular matrix; hydrogel .... vided useful model systems to identify principles that would help design synthetic ..... tool to generate nanoscale periodic patterns that influ- enced stem cell differentiation.

  2. Mast cell: an emerging partner in immune interaction

    Directory of Open Access Journals (Sweden)

    Giorgia eGri

    2012-05-01

    Full Text Available Mast cells (MCs are currently recognized as effector cells in many settings of the immune response, including host defense, immune regulation, allergy, chronic inflammation and autoimmune diseases. MC pleiotropic functions reflect their ability to secrete a wide spectrum of preformed or newly synthesized biologically active products with pro-inflammatory, anti-inflammatory and/or immunosuppressive properties, in response to multiple signals. Moreover, the modulation of MC effector phenotypes relies on the interaction of a wide variety of membrane molecules involved in cell-cell or cell-extracellular-matrix interaction. The delivery of co-stimulatory signals allow MC to specifically communicate with immune cells belonging to both innate and acquired immunity, as well as with non-immune tissue-specific cell types. This article reviews and discuss the evidence that MC membrane-expressed molecules play a central role in regulating MC priming and activation and in modulation of innate and adaptive immune response not only against host injury, but also in peripheral tolerance and tumor-surveillance or -escape. The complex expression of MC surface molecules may be regarded as a measure of connectivity, with altered patterns of cell-cell interaction representing functionally distinct MC state. We will focalize our attention on role and functions of recently discovered molecules involved in the cross-talk of MCs with other immune partners.

  3. Interactive cell segmentation based on phase contrast optics.

    Science.gov (United States)

    Su, Hang; Su, Zhou; Zheng, Shibao; Yang, Hua; Wei, Sha

    2014-01-01

    Cell segmentation in phase contrast microscopy images lays a crucial foundation for numerous subsequent computer-aided cell image analysis, but it encounters many unsolved challenges due to image qualities and artifacts caused by phase contrast optics. Addressing the unsolved challenges, the authors propose an interactive cell segmentation scheme over phase retardation features. After partitioning the images into phase homogeneous atoms, human annotations are propagated to unlabeled atoms over an affinity graph that is learned based on discrimination analysis. Then, an active query strategy is proposed for which the most informative unlabeled atom is selected for annotation, which is also propagated to the other unlabeled atoms. Cell segmentation converges to quality results after several rounds of interactions involving both the user's intentions and characteristics of image features. Experimental results demonstrate that cells with different optical properties are well segmented via the proposed approach.

  4. Interactions between chitosan and cells measured by AFM

    International Nuclear Information System (INIS)

    Hsiao, Sheng-Wen; Thien, Doan Van Hong; Ho, Ming-Hua; Hsieh, Hsyue-Jen; Li, Chung-Hsing; Hung, Chang-Hsiang; Li, Hsi-Hsin

    2010-01-01

    Chitosan, a biocompatible material that has been widely used in bone tissue engineering, is believed to have a high affinity to osteoblastic cells. This research is the first to prove this hypothesis. By using atomic force microscopy (AFM) with a chitosan-modified cantilever, quantitative evaluation of the interforce between chitosan and cells was carried out. A chitosan tip functionalized with Arg-Gly-Asp (RGD) was also used to measure the interforce between RGD-chitosan and osteoblastic cells. This research concluded by examining cell adhesion and spreading of chitosan substrates as further characterization of the interactions between cells and chitosan. The force measured by AFM showed that the interforce between chitosan and osteoblasts was the highest (209 nN). The smallest adhesion force (61.8 nN) appeared between chitosan and muscle fibroblasts, which did not demonstrate any osteoblastic properties. This result proved that there was a significant interaction between chitosan and bone cells, and correlated with the observations of cell attachment and spreading. The technique developed in this research directly quantified the adhesion between chitosan and cells. This is the first study to demonstrate that specific interaction exists between chitosan and osteoblasts.

  5. Interactions between chitosan and cells measured by AFM

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Sheng-Wen; Thien, Doan Van Hong; Ho, Ming-Hua [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan (China); Hsieh, Hsyue-Jen [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Li, Chung-Hsing [Division of Orthodontics and Pediatric Dentistry, Department of Dentistry, Tri-Service General Hospital, Taipei, Taiwan (China); Hung, Chang-Hsiang [Department of Dentistry, Kinmen Hospital Department of Health, Taiwan (China); Li, Hsi-Hsin, E-mail: mhho@mail.ntust.edu.t [Deputy Superintendent, Kinmen Hospital Department of Health, Taiwan (China)

    2010-10-01

    Chitosan, a biocompatible material that has been widely used in bone tissue engineering, is believed to have a high affinity to osteoblastic cells. This research is the first to prove this hypothesis. By using atomic force microscopy (AFM) with a chitosan-modified cantilever, quantitative evaluation of the interforce between chitosan and cells was carried out. A chitosan tip functionalized with Arg-Gly-Asp (RGD) was also used to measure the interforce between RGD-chitosan and osteoblastic cells. This research concluded by examining cell adhesion and spreading of chitosan substrates as further characterization of the interactions between cells and chitosan. The force measured by AFM showed that the interforce between chitosan and osteoblasts was the highest (209 nN). The smallest adhesion force (61.8 nN) appeared between chitosan and muscle fibroblasts, which did not demonstrate any osteoblastic properties. This result proved that there was a significant interaction between chitosan and bone cells, and correlated with the observations of cell attachment and spreading. The technique developed in this research directly quantified the adhesion between chitosan and cells. This is the first study to demonstrate that specific interaction exists between chitosan and osteoblasts.

  6. New advances in probing cell-extracellular matrix interactions.

    Science.gov (United States)

    Liu, Allen P; Chaudhuri, Ovijit; Parekh, Sapun H

    2017-05-22

    The extracellular matrix (ECM) provides structural and biochemical support to cells within tissues. An emerging body of evidence has established that the ECM plays a key role in cell mechanotransduction - the study of coupling between mechanical inputs and cellular phenotype - through either mediating transmission of forces to the cells, or presenting mechanical cues that guide cellular behaviors. Recent progress in cell mechanotransduction research has been facilitated by advances of experimental tools, particularly microtechnologies, engineered biomaterials, and imaging and analytical methods. Microtechnologies have enabled the design and fabrication of controlled physical microenvironments for the study and measurement of cell-ECM interactions. Advances in engineered biomaterials have allowed researchers to develop synthetic ECMs that mimic tissue microenvironments and investigate the impact of altered physicochemical properties on various cellular processes. Finally, advanced imaging and spectroscopy techniques have facilitated the visualization of the complex interaction between cells and ECM in vitro and in living tissues. This review will highlight the application of recent innovations in these areas to probing cell-ECM interactions. We believe cross-disciplinary approaches, combining aspects of the different technologies reviewed here, will inspire innovative ideas to further elucidate the secrets of ECM-mediated cell control.

  7. Heterochrony as Diachronically Modified Cell-Cell Interactions

    Directory of Open Access Journals (Sweden)

    John S. Torday

    2016-01-01

    Full Text Available Heterochrony is an enabling concept in evolution theory that metaphorically captures the mechanism of biologic change due to mechanisms of growth and development. The spatio-temporal patterns of morphogenesis are determined by cell-to-cell signaling mediated by specific soluble growth factors and their cognate receptors on nearby cells of different germline origins. Subsequently, down-stream production of second messengers generates patterns of form and function. Environmental upheavals such as Romer’s hypothesized drying up of bodies of water globally caused the vertebrate water-land transition. That transition caused physiologic stress, modifying cell-cell signaling to generate terrestrial adaptations of the skeleton, lung, skin, kidney and brain. These tissue-specific remodeling events occurred as a result of the duplication of the Parathyroid Hormone-related Protein Receptor (PTHrPR gene, expressed in mesodermal fibroblasts in close proximity to ubiquitously expressed endodermal PTHrP, amplifying this signaling pathway. Examples of how and why PTHrPR amplification affected the ontogeny, phylogeny, physiology and pathophysiology of the lung are used to substantiate and further our understanding through insights to the heterochronic mechanisms of evolution, such as the fish swim bladder evolving into the vertebrate lung, interrelated by such functional homologies as surfactant and mechanotransduction. Instead of the conventional description of this phenomenon, lung evolution can now be understood as adaptive changes in the cellular-molecular signaling mechanisms underlying its ontogeny and phylogeny.

  8. Interactions of Condensed Tannins with Saccharomyces cerevisiae Yeast Cells and Cell Walls: Tannin Location by Microscopy.

    Science.gov (United States)

    Mekoue Nguela, Julie; Vernhet, Aude; Sieczkowski, Nathalie; Brillouet, Jean-Marc

    2015-09-02

    Interactions between grape tannins/red wine polyphenols and yeast cells/cell walls was previously studied within the framework of red wine aging and the use of yeast-derived products as an alternative to aging on lees. Results evidenced a quite different behavior between whole cells (biomass grown to elaborate yeast-derived products, inactivated yeast, and yeast inactivated after autolysis) and yeast cell walls (obtained from mechanical disruption of the biomass). Briefly, whole cells exhibited a high capacity to irreversibly adsorb grape and wine tannins, whereas only weak interactions were observed for cell walls. This last point was quite unexpected considering the literature and called into question the real role of cell walls in yeasts' ability to fix tannins. In the present work, tannin location after interactions between grape and wine tannins and yeast cells and cell walls was studied by means of transmission electron microscopy, light epifluorescence, and confocal microscopy. Microscopy observations evidenced that if tannins interact with cell walls, and especially cell wall mannoproteins, they also diffuse freely through the walls of dead cells to interact with their plasma membrane and cytoplasmic components.

  9. Targeting the Adipocyte Tumor Cell Interaction in Prostate Cancer Treatment

    Science.gov (United States)

    2015-10-01

    performed in task 4.1. Task 7. 3D Organotypic cultures to study the adipocyte-PCa cell interaction in vitro (Months 30-36; Diaz-Meco & Moscat). This...Targeting Metabolic Reprograming in Cancer” Centro Nacional de Biotecnologia, Madrid, Spain, 2015. Speaker (Moscat) “Cell Death and Survival Networks...PCa, we profited from a recently devel- oped technology for creating 3D prostate organoid cultures (Gao et al., 2014; Karthaus et al., 2014). Murine

  10. Sox2 and Lef-1 interact with Pitx2 to regulate incisor development and stem cell renewal.

    Science.gov (United States)

    Sun, Zhao; Yu, Wenjie; Sanz Navarro, Maria; Sweat, Mason; Eliason, Steven; Sharp, Thad; Liu, Huan; Seidel, Kerstin; Zhang, Li; Moreno, Myriam; Lynch, Thomas; Holton, Nathan E; Rogers, Laura; Neff, Traci; Goodheart, Michael J; Michon, Frederic; Klein, Ophir D; Chai, Yang; Dupuy, Adam; Engelhardt, John F; Chen, Zhi; Amendt, Brad A

    2016-11-15

    Sox2 marks dental epithelial stem cells (DESCs) in both mammals and reptiles, and in this article we demonstrate several Sox2 transcriptional mechanisms that regulate dental stem cell fate and incisor growth. Conditional Sox2 deletion in the oral and dental epithelium results in severe craniofacial defects, including impaired dental stem cell proliferation, arrested incisor development and abnormal molar development. The murine incisor develops initially but is absorbed independently of apoptosis owing to a lack of progenitor cell proliferation and differentiation. Tamoxifen-induced inactivation of Sox2 demonstrates the requirement of Sox2 for maintenance of the DESCs in adult mice. Conditional overexpression of Lef-1 in mice increases DESC proliferation and creates a new labial cervical loop stem cell compartment, which produces rapidly growing long tusk-like incisors, and Lef-1 epithelial overexpression partially rescues the tooth arrest in Sox2 conditional knockout mice. Mechanistically, Pitx2 and Sox2 interact physically and regulate Lef-1, Pitx2 and Sox2 expression during development. Thus, we have uncovered a Pitx2-Sox2-Lef-1 transcriptional mechanism that regulates DESC homeostasis and dental development. © 2016. Published by The Company of Biologists Ltd.

  11. Stem cell autotomy and niche interaction in different systems.

    Science.gov (United States)

    Dorn, David C; Dorn, August

    2015-07-26

    The best known cases of cell autotomy are the formation of erythrocytes and thrombocytes (platelets) from progenitor cells that reside in special niches. Recently, autotomy of stem cells and its enigmatic interaction with the niche has been reported from male germline stem cells (GSCs) in several insect species. First described in lepidopterans, the silkmoth, followed by the gipsy moth and consecutively in hemipterans, foremost the milkweed bug. In both, moths and the milkweed bug, GSCs form finger-like projections toward the niche, the apical cells (homologs of the hub cells in Drosophila). Whereas in the milkweed bug the projection terminals remain at the surface of the niche cells, in the gipsy moth they protrude deeply into the singular niche cell. In both cases, the projections undergo serial retrograde fragmentation with progressing signs of autophagy. In the gipsy moth, the autotomized vesicles are phagocytized and digested by the niche cell. In the milkweed bug the autotomized vesicles accumulate at the niche surface and disintegrate. Autotomy and sprouting of new projections appears to occur continuously. The significance of the GSC-niche interactions, however, remains enigmatic. Our concept on the signaling relationship between stem cell-niche in general and GSC and niche (hub cells and cyst stem cells) in particular has been greatly shaped by Drosophila melanogaster. In comparing the interactions of GSCs with their niche in Drosophila with those in species exhibiting GSC autotomy it is obvious that additional or alternative modes of stem cell-niche communication exist. Thus, essential signaling pathways, including niche-stem cell adhesion (E-cadherin) and the direction of asymmetrical GSC division - as they were found in Drosophila - can hardly be translated into the systems where GSC autotomy was reported. It is shown here that the serial autotomy of GSC projections shows remarkable similarities with Wallerian axonal destruction, developmental axon

  12. Stem cell autotomy and niche interaction in different systems

    Science.gov (United States)

    Dorn, David C; Dorn, August

    2015-01-01

    The best known cases of cell autotomy are the formation of erythrocytes and thrombocytes (platelets) from progenitor cells that reside in special niches. Recently, autotomy of stem cells and its enigmatic interaction with the niche has been reported from male germline stem cells (GSCs) in several insect species. First described in lepidopterans, the silkmoth, followed by the gipsy moth and consecutively in hemipterans, foremost the milkweed bug. In both, moths and the milkweed bug, GSCs form finger-like projections toward the niche, the apical cells (homologs of the hub cells in Drosophila). Whereas in the milkweed bug the projection terminals remain at the surface of the niche cells, in the gipsy moth they protrude deeply into the singular niche cell. In both cases, the projections undergo serial retrograde fragmentation with progressing signs of autophagy. In the gipsy moth, the autotomized vesicles are phagocytized and digested by the niche cell. In the milkweed bug the autotomized vesicles accumulate at the niche surface and disintegrate. Autotomy and sprouting of new projections appears to occur continuously. The significance of the GSC-niche interactions, however, remains enigmatic. Our concept on the signaling relationship between stem cell-niche in general and GSC and niche (hub cells and cyst stem cells) in particular has been greatly shaped by Drosophila melanogaster. In comparing the interactions of GSCs with their niche in Drosophila with those in species exhibiting GSC autotomy it is obvious that additional or alternative modes of stem cell-niche communication exist. Thus, essential signaling pathways, including niche-stem cell adhesion (E-cadherin) and the direction of asymmetrical GSC division - as they were found in Drosophila - can hardly be translated into the systems where GSC autotomy was reported. It is shown here that the serial autotomy of GSC projections shows remarkable similarities with Wallerian axonal destruction, developmental axon

  13. Engineering systems for the generation of patterned co-cultures for controlling cell-cell interactions.

    Science.gov (United States)

    Kaji, Hirokazu; Camci-Unal, Gulden; Langer, Robert; Khademhosseini, Ali

    2011-03-01

    Inside the body, cells lie in direct contact or in close proximity to other cell types in a tightly controlled architecture that often regulates the resulting tissue function. Therefore, tissue engineering constructs that aim to reproduce the architecture and the geometry of tissues will benefit from methods of controlling cell-cell interactions with microscale resolution. We discuss the use of microfabrication technologies for generating patterned co-cultures. In addition, we categorize patterned co-culture systems by cell type and discuss the implications of regulating cell-cell interactions in the resulting biological function of the tissues. Patterned co-cultures are a useful tool for fabricating tissue engineered constructs and for studying cell-cell interactions in vitro, because they can be used to control the degree of homotypic and heterotypic cell-cell contact. In addition, this approach can be manipulated to elucidate important factors involved in cell-matrix interactions. Patterned co-culture strategies hold significant potential to develop biomimetic structures for tissue engineering. It is expected that they would create opportunities to develop artificial tissues in the future. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine. 2010 Elsevier B.V. All rights reserved.

  14. Inverting adherent cells for visualizing ECM interactions at the basal cell side

    International Nuclear Information System (INIS)

    Gudzenko, Tetyana; Franz, Clemens M.

    2013-01-01

    Interactions with the extracellular matrix (ECM) govern a wide range of cellular functions, including survival, migration and invasion. However, in adherent cells these interactions occur primarily on the basal cell side, making them inaccessible to high-resolution, surface-scanning imaging techniques such as atomic force microscopy (AFM) or scanning electron microscopy (SEM). Here we describe a fast and reliable method for inverting adherent cells, exposing the basal cell membrane for direct analysis by AFM or SEM in combination with fluorescence microscopy. Cells including their matrix adhesion sites remain intact during the inversion process and are transferred together with the complete array of basally associated ECM proteins. Molecular features of ECM proteins, such as the characteristic 67 nm collagen D-periodicity, are well preserved after inversion. To demonstrate the versatility of the method, we compared basal interactions of fibroblasts with fibrillar collagen I and fibronectin matrices. While fibroblasts remodel the fibronectin layer exclusively from above, they actively invade even thin collagen layers by contacting individual collagen nanofibrils both basally and apically through a network of cellular extensions. Cell–matrix entanglement coincides with enhanced cell spreading and flattening, indicating that nanoscale ECM interactions govern macroscopic changes in cell morphology. The presented cell inversion technique can thus provide novel insight into nanoscale cell–matrix interactions at the basal cell side. - Highlights: ► We present a novel method for inverting adherent cells to expose the basal cell side. ► Basal cell sides can be imaged at high resolution by AFM and SEM. ► Cells can be inverted together with the underlying extracellular matrix. ► AFM images of inverted cells provide a nanoscale look at basal cell–ECM interactions

  15. Influence of Cell-Cell Interactions on the Population Growth Rate in a Tumor

    Science.gov (United States)

    Chen, Yong

    2017-12-01

    The understanding of the macroscopic phenomenological models of the population growth at a microscopic level is important to predict the population behaviors emerged from the interactions between the individuals. In this work, we consider the influence of the population growth rate R on the cell-cell interaction in a tumor system and show that, in most cases especially small proliferative probabilities, the regulative role of the interaction will be strengthened with the decline of the intrinsic proliferative probabilities. For the high replication rates of an individual and the cooperative interactions, the proliferative probability almost has no effect. We compute the dependences of R on the interactions between the cells under the approximation of the nearest neighbor in the rim of an avascular tumor. Our results are helpful to qualitatively understand the influence of the interactions between the individuals on the growth rate in population systems. Supported by the National Natural Science Foundation of China under Grant Nos. 11675008 and 21434001

  16. Cell In Situ Zymography: Imaging Enzyme-Substrate Interactions.

    Science.gov (United States)

    Chhabra, Aastha; Rani, Vibha

    2017-01-01

    Zymography has long been used for the detection of substrate-specific enzyme activity. In situ zymography (ISZ), an adaptation from the conventional substrate zymography, is a widely employed technique useful for the detection, localization, and estimation of enzyme-substrate interactions in tissues. Here, we describe a protocol to detect 'in position' matrix metalloproteinase (MMP) activity in cells utilizing H9c2 cardiomyoblasts as a model. This technique is primarily adopted from the method used for histological sections and is termed as 'Cell in situ Zymography'. It is a simple, sensitive, and quantifiable methodology to assess the functional activity of an enzyme 'on site/in position' in cell culture.

  17. Interactions of periodontal pathogens with megakaryocytic cells and platelets

    Science.gov (United States)

    Andrews, A.M.; Haywood-Small, S.; Smith, T.; Stafford, P.

    2017-01-01

    ABSTRACT Introduction: Cardiovascular disease (CVD) is a leading cause of morbidity, accounting for around 17.3 million deaths worldwide. Recent studies have linked periodontitis to CVD with the periodonto-pathogens Porphyromonas gingivalis and Tannerella forsythia thought to contribute and exacerbate atherosclerosis through interactions with platelets. To date, while platelet activation following challenge with periodonto-pathogens has been reported, the underlying mechanisms of these interactions are yet to be elucidated. The aim of this study is to determine how periodonto-pathogens interact with platelets using both megakaryocytic cells and isolated platelets. Methods: To characterise expression levels of surface markers including ubiquitously expressed platelet-specific markers (CD41, CD42b) and platelet activation markers (CD62P, PAC-1), a multi-colour flow cytometry panel was developed using undifferentiated megakaryocytic cells CHRF-288-11 before validation using platelets isolated from healthy donors. Changes in levels of surface markers following bacterial challenge both with megakaryocytic cells and isolated platelets were determined using flow cytometry. Interaction with pathogens was visualised by platelet aggregometry and fluorescence microscopy using pathogen-specific antibodies. Results and conclusions: Both pathogens invaded megakaryocytic cells as visualised by immunofluorescence microscopy. The pathogens also bound platelets causing increased levels of aggregation and upregulated expression of activation markers including in CD62P in flow cytometric assays.

  18. Interactions between Plant Extracts and Cell Viability Indicators ...

    African Journals Online (AJOL)

    Interactions between Plant Extracts and Cell Viability. Indicators during Cytotoxicity Testing: Implications for. Ethnopharmacological Studies. Sze Mun Chan1, Kong Soo Khoo2 and Nam Weng Sit1*. 1Department of Biomedical Science, 2Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman,.

  19. Interaction of dermatologically relevant nanoparticles with skin cells and skin.

    Science.gov (United States)

    Vogt, Annika; Rancan, Fiorenza; Ahlberg, Sebastian; Nazemi, Berouz; Choe, Chun Sik; Darvin, Maxim E; Hadam, Sabrina; Blume-Peytavi, Ulrike; Loza, Kateryna; Diendorf, Jörg; Epple, Matthias; Graf, Christina; Rühl, Eckart; Meinke, Martina C; Lademann, Jürgen

    2014-01-01

    The investigation of nanoparticle interactions with tissues is complex. High levels of standardization, ideally testing of different material types in the same biological model, and combinations of sensitive imaging and detection methods are required. Here, we present our studies on nanoparticle interactions with skin, skin cells, and biological media. Silica, titanium dioxide and silver particles were chosen as representative examples for different types of skin exposure to nanomaterials, e.g., unintended environmental exposure (silica) versus intended exposure through application of sunscreen (titanium dioxide) or antiseptics (silver). Because each particle type exhibits specific physicochemical properties, we were able to apply different combinations of methods to examine skin penetration and cellular uptake, including optical microscopy, electron microscopy, X-ray microscopy on cells and tissue sections, flow cytometry of isolated skin cells as well as Raman microscopy on whole tissue blocks. In order to assess the biological relevance of such findings, cell viability and free radical production were monitored on cells and in whole tissue samples. The combination of technologies and the joint discussion of results enabled us to look at nanoparticle-skin interactions and the biological relevance of our findings from different angles.

  20. Interaction of dermatologically relevant nanoparticles with skin cells and skin

    Directory of Open Access Journals (Sweden)

    Annika Vogt

    2014-12-01

    Full Text Available The investigation of nanoparticle interactions with tissues is complex. High levels of standardization, ideally testing of different material types in the same biological model, and combinations of sensitive imaging and detection methods are required. Here, we present our studies on nanoparticle interactions with skin, skin cells, and biological media. Silica, titanium dioxide and silver particles were chosen as representative examples for different types of skin exposure to nanomaterials, e.g., unintended environmental exposure (silica versus intended exposure through application of sunscreen (titanium dioxide or antiseptics (silver. Because each particle type exhibits specific physicochemical properties, we were able to apply different combinations of methods to examine skin penetration and cellular uptake, including optical microscopy, electron microscopy, X-ray microscopy on cells and tissue sections, flow cytometry of isolated skin cells as well as Raman microscopy on whole tissue blocks. In order to assess the biological relevance of such findings, cell viability and free radical production were monitored on cells and in whole tissue samples. The combination of technologies and the joint discussion of results enabled us to look at nanoparticle–skin interactions and the biological relevance of our findings from different angles.

  1. Nuclear envelope and genome interactions in cell fate

    Science.gov (United States)

    Talamas, Jessica A.; Capelson, Maya

    2015-01-01

    The eukaryotic cell nucleus houses an organism’s genome and is the location within the cell where all signaling induced and development-driven gene expression programs are ultimately specified. The genome is enclosed and separated from the cytoplasm by the nuclear envelope (NE), a double-lipid membrane bilayer, which contains a large variety of trans-membrane and associated protein complexes. In recent years, research regarding multiple aspects of the cell nucleus points to a highly dynamic and coordinated concert of efforts between chromatin and the NE in regulation of gene expression. Details of how this concert is orchestrated and how it directs cell differentiation and disease are coming to light at a rapid pace. Here we review existing and emerging concepts of how interactions between the genome and the NE may contribute to tissue specific gene expression programs to determine cell fate. PMID:25852741

  2. Nexavar/Stivarga and Viagra Interact to Kill Tumor Cells

    Science.gov (United States)

    Tavallai, Mehrad; Hamed, Hossein A.; Roberts, Jane L.; Cruickshanks, Nichola; Chuckalovcak, John; Poklepovic, Andrew; Booth, Laurence

    2015-01-01

    We determined whether the multi‐kinase inhibitor sorafenib or its derivative regorafenib interacted with phosphodiesterase 5 (PDE5) inhibitors such as Viagra (sildenafil) to kill tumor cells. PDE5 and PDGFRα/β were over‐expressed in liver tumors compared to normal liver tissue. In multiple cell types in vitro sorafenib/regorafenib and PDE5 inhibitors interacted in a greater than additive fashion to cause tumor cell death, regardless of whether cells were grown in 10 or 100% human serum. Knock down of PDE5 or of PDGFRα/β recapitulated the effects of the individual drugs. The drug combination increased ROS/RNS levels that were causal in cell killing. Inhibition of CD95/FADD/caspase 8 signaling suppressed drug combination toxicity. Knock down of ULK‐1, Beclin1, or ATG5 suppressed drug combination lethality. The drug combination inactivated ERK, AKT, p70 S6K, and mTOR and activated JNK. The drug combination also reduced mTOR protein expression. Activation of ERK or AKT was modestly protective whereas re‐expression of an activated mTOR protein or inhibition of JNK signaling almost abolished drug combination toxicity. Sildenafil and sorafenib/regorafenib interacted in vivo to suppress xenograft tumor growth using liver and colon cancer cells. From multiplex assays on tumor tissue and plasma, we discovered that increased FGF levels and ERBB1 and AKT phosphorylation were biomarkers that were directly associated with lower levels of cell killing by ‘rafenib + sildenafil. Our data are now being translated into the clinic for further determination as to whether this drug combination is a useful anti‐tumor therapy for solid tumor patients. J. Cell. Physiol. 230: 2281–2298, 2015. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:25704960

  3. Detecting protein-protein interactions in living cells

    DEFF Research Database (Denmark)

    Gottschalk, Marie; Bach, Anders; Hansen, Jakob Lerche

    2009-01-01

    -terminal of the NMDA receptor and PDZ2 of PSD-95 were fused to green fluorescent protein (GFP) and Renilla luciferase (Rluc) and expressed in COS7 cells. A robust and specific BRET signal was obtained by expression of the appropriate partner proteins and subsequently, the assay was used to evaluate a Tat......The PDZ domain mediated interaction between the NMDA receptor and its intracellular scaffolding protein, PSD-95, is a potential target for treatment of ischemic brain diseases. We have recently developed a number of peptide analogues with improved affinity for the PDZ domains of PSD-95 compared...... to the endogenous C-terminal peptide of the NMDA receptor, as evaluated by a cell-free protein-protein interaction assay. However, it is important to address both membrane permeability and effect in living cells. Therefore a bioluminescence resonance energy transfer (BRET) assay was established, where the C...

  4. Interactions of Cells with Magnetic Nanowires and Micro Needles

    KAUST Repository

    Perez, Jose E.

    2017-12-01

    The use of nanowires, nano and micro needles in biomedical applications has markedly increased in the past years, mainly due to attractive properties such as biocompatibility and simple fabrication. Specifically, these structures have shown promise in applications including cell separation, tumor cell capture, intracellular delivery, cell therapy, cancer treatment and as cell growth scaffolds. The work proposed here aims to study two platforms for different applications: a vertical magnetic nanowire array for mesenchymal stem cell differentiation and a micro needle platform for intracellular delivery. First, a thorough evaluation of the cytotoxicity of nanowires was done in order to understand how a biological system interacts with high aspect ratio structures. Nanowires were fabricated through pulsed electrodeposition and characterized by electron microscopy, vibrating sample magnetometry and energy dispersive X-ray spectroscopy. Studies of biocompatibility, cell death, cell membrane integrity, nanowire internalization and intracellular dissolution were all performed in order to characterize the cell response. Results showed a variable biocompatibility depending on nanowire concentration and incubation time, with cell death resulting from an apoptotic pathway arising after internalization. A vertical array of nanowires was then used as a scaffold for the differentiation of human mesenchymal stem cells. Using fluorescence and electron microscopy, the interactions between the dense array of nanowires and the cells were analyzed, as well as the biocompatibility of the array and its effects on cell differentiation. A magnetic field was additionally applied on the substrate to observe a possible differentiation. Stem cells grown on this scaffold showed a cytoskeleton and focal adhesion reorganization, and later expressed the osteogenic marker osteopontin. The application of a magnetic field counteracted this outcome. Lastly, a micro needle platform was fabricated

  5. Dynamic flux of microvesicles modulate parasite-host cell interaction of Trypanosoma cruzi in eukaryotic cells.

    Science.gov (United States)

    Ramirez, M I; Deolindo, P; de Messias-Reason, I J; Arigi, Emma A; Choi, H; Almeida, I C; Evans-Osses, I

    2017-04-01

    Extracellular vesicles released from pathogens may alter host cell functions. We previously demonstrated the involvement of host cell-derived microvesicles (MVs) during early interaction between Trypanosoma cruzi metacyclic trypomastigote (META) stage and THP-1 cells. Here, we aim to understand the contribution of different parasite stages and their extracellular vesicles in the interaction with host cells. First, we observed that infective host cell-derived trypomastigote (tissue culture-derived trypomastigote [TCT]), META, and noninfective epimastigote (EPI) stages were able to induce different levels of MV release from THP-1 cells; however, only META and TCT could increase host cell invasion. Fluorescence resonance energy transfer microscopy revealed that THP-1-derived MVs can fuse with parasite-derived MVs. Furthermore, MVs derived from the TCT-THP-1 interaction showed a higher fusogenic capacity than those from META- or EPI-THP-1 interaction. However, a higher presence of proteins from META (25%) than TCT (12%) or EPI (5%) was observed in MVs from parasite-THP-1 interaction, as determined by proteomics. Finally, sera from patients with chronic Chagas disease at the indeterminate or cardiac phase differentially recognized antigens in THP-1-derived MVs resulting only from interaction with infective stages. The understanding of intracellular trafficking and the effect of MVs modulating the immune system may provide important clues about Chagas disease pathophysiology. © 2016 John Wiley & Sons Ltd.

  6. Control of the adrenocortical cell cycle: interaction between FGF2 and ACTH

    Directory of Open Access Journals (Sweden)

    H.A. Armelin

    1999-07-01

    Full Text Available FGF2 elicits a strong mitogenic response in the mouse Y-1 adrenocortical tumor cell line, that includes a rapid and transient activation of the ERK-MAPK cascade and induction of the c-Fos protein. ACTH, itself a very weak mitogen, blocks the mitogenic response effect of FGF2 in the early and middle G1 phase, keeping both ERK-MAPK activation and c-Fos induction at maximal levels. Probing the mitogenic response of Y-1 cells to FGF2 with ACTH is likely to uncover reactions underlying the effects of this hormone on adrenocortical cell growth.

  7. Tensor GSVD of Patient- and Platform-Matched Tumor and Normal DNA Copy-Number Profiles Uncovers Chromosome Arm-Wide Patterns of Tumor-Exclusive Platform-Consistent Alterations Encoding for Cell Transformation and Predicting Ovarian Cancer Survival

    Science.gov (United States)

    Sankaranarayanan, Preethi; Schomay, Theodore E.; Aiello, Katherine A.; Alter, Orly

    2015-01-01

    The number of large-scale high-dimensional datasets recording different aspects of a single disease is growing, accompanied by a need for frameworks that can create one coherent model from multiple tensors of matched columns, e.g., patients and platforms, but independent rows, e.g., probes. We define and prove the mathematical properties of a novel tensor generalized singular value decomposition (GSVD), which can simultaneously find the similarities and dissimilarities, i.e., patterns of varying relative significance, between any two such tensors. We demonstrate the tensor GSVD in comparative modeling of patient- and platform-matched but probe-independent ovarian serous cystadenocarcinoma (OV) tumor, mostly high-grade, and normal DNA copy-number profiles, across each chromosome arm, and combination of two arms, separately. The modeling uncovers previously unrecognized patterns of tumor-exclusive platform-consistent co-occurring copy-number alterations (CNAs). We find, first, and validate that each of the patterns across only 7p and Xq, and the combination of 6p+12p, is correlated with a patient’s prognosis, is independent of the tumor’s stage, the best predictor of OV survival to date, and together with stage makes a better predictor than stage alone. Second, these patterns include most known OV-associated CNAs that map to these chromosome arms, as well as several previously unreported, yet frequent focal CNAs. Third, differential mRNA, microRNA, and protein expression consistently map to the DNA CNAs. A coherent picture emerges for each pattern, suggesting roles for the CNAs in OV pathogenesis and personalized therapy. In 6p+12p, deletion of the p21-encoding CDKN1A and p38-encoding MAPK14 and amplification of RAD51AP1 and KRAS encode for human cell transformation, and are correlated with a cell’s immortality, and a patient’s shorter survival time. In 7p, RPA3 deletion and POLD2 amplification are correlated with DNA stability, and a longer survival. In Xq

  8. Ionizing radiation induces heritable disruption of epithelial cell interactions

    Science.gov (United States)

    Park, Catherine C.; Henshall-Powell, Rhonda L.; Erickson, Anna C.; Talhouk, Rabih; Parvin, Bahram; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Chatterjee, A. (Principal Investigator)

    2003-01-01

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, beta-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization.

  9. Hypergravity Effects on Dendritic Cells and Vascular Wall Interactions

    Science.gov (United States)

    Bellik, L.; Parenti, A.; Ledda, F.; Basile, V.; Romano, G.; Fusi, F.; Monici, M.

    2009-01-01

    Dendritic cells (DCs), the most potent antigen-presenting cells inducing specific immune responses, are involved in the pathogenesis of atherosclerosis. In this inflammatory disease, DCs increase in number, being particularly abundant in the shoulder regions of plaques. Since the exposure to altered gravitational conditions results in a significant impairment of the immune function, the aim of this study was to investigate the effects of hypergravity on both the function of DCs and their interactions with the vascular wall cells. Monocytes from peripheral blood mononuclear cells of healthy volunteers were sorted by CD14+ magnetic beads selection, cultured for 6 days in medium supplemented with GM-CSF and IL-4, followed by a further maturation stimulus. DC phenotype, assessed by flow cytometry, showed a high expression of the specific DC markers CD80, CD86, HLA-DR and CD83. The DCs obtained were then exposed to hypergravitational stimuli and their phenotype, cytoskeleton, ability to activate lymphocytes and interaction with vascular wall cells were investigated. The findings showed that the exposure to hypergravity conditions resulted in a significant impairment of DC cytoskeletal organization, without affecting the expression of DC markers. Moreover, an increase in DC adhesion to human vascular smooth muscle cells and in their ability to activate lymphocytes was observed.

  10. Membrane dynamics and interactions in measles virus dendritic cell infections.

    Science.gov (United States)

    Avota, Elita; Koethe, Susanne; Schneider-Schaulies, Sibylle

    2013-02-01

    Viral entry, compartmentalization and transmission depend on the formation of membrane lipid/protein microdomains concentrating receptors and signalosomes. Dendritic cells (DCs) are prime targets for measles virus (MV) infection, and this interaction promotes immune activation and generalized immunosuppression, yet also MV transport to secondary lymphatics where transmission to T cells occurs. In addition to MV trapping, DC-SIGN interaction can enhance MV uptake by activating cellular sphingomyelinases and, thereby, vertical surface transport of its entry receptor CD150. To exploit DCs as Trojan horses for transport, MV promotes DC maturation accompanied by mobilization, and restrictions of viral replication in these cells may support this process. MV-infected DCs are unable to support formation of functional immune synapses with conjugating T cells and signalling via viral glycoproteins or repulsive ligands (such as semaphorins) plays a key role in the induction of T-cell paralysis. In the absence of antigen recognition, MV transmission from infected DCs to T cells most likely involves formation of polyconjugates which concentrate viral structural proteins, viral receptors and with components enhancing either viral uptake or conjugate stability. Because DCs barely support production of infectious MV particles, these organized interfaces are likely to represent virological synapses essential for MV transmission. © 2012 Blackwell Publishing Ltd.

  11. Uncovering signal transduction networks from high-throughput data by integer linear programming.

    Science.gov (United States)

    Zhao, Xing-Ming; Wang, Rui-Sheng; Chen, Luonan; Aihara, Kazuyuki

    2008-05-01

    Signal transduction is an important process that transmits signals from the outside of a cell to the inside to mediate sophisticated biological responses. Effective computational models to unravel such a process by taking advantage of high-throughput genomic and proteomic data are needed to understand the essential mechanisms underlying the signaling pathways. In this article, we propose a novel method for uncovering signal transduction networks (STNs) by integrating protein interaction with gene expression data. Specifically, we formulate STN identification problem as an integer linear programming (ILP) model, which can be actually solved by a relaxed linear programming algorithm and is flexible for handling various prior information without any restriction on the network structures. The numerical results on yeast MAPK signaling pathways demonstrate that the proposed ILP model is able to uncover STNs or pathways in an efficient and accurate manner. In particular, the prediction results are found to be in high agreement with current biological knowledge and available information in literature. In addition, the proposed model is simple to be interpreted and easy to be implemented even for a large-scale system.

  12. Nanoscale tissue engineering: spatial control over cell-materials interactions

    International Nuclear Information System (INIS)

    Wheeldon, Ian; Farhadi, Arash; Bick, Alexander G; Khademhosseini, Ali; Jabbari, Esmaiel

    2011-01-01

    Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness these interactions through nanoscale biomaterials engineering in order to study and direct cellular behavior. Here, we review two- and three-dimensional (2- and 3D) nanoscale tissue engineering technologies, and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffold technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D. However, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and that can control the temporal changes in the cellular microenvironment. (topical review)

  13. Nanoscale tissue engineering: spatial control over cell-materials interactions

    Science.gov (United States)

    Wheeldon, Ian; Farhadi, Arash; Bick, Alexander G.; Jabbari, Esmaiel; Khademhosseini, Ali

    2011-01-01

    Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness the interactions through nanoscale biomaterials engineering in order to study and direct cellular behaviors. Here, we review the nanoscale tissue engineering technologies for both two- and three-dimensional studies (2- and 3D), and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffolds technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D, however, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and the temporal changes in cellular microenvironment. PMID:21451238

  14. Cell-substrate interaction with cell-membrane-stress dependent adhesion.

    Science.gov (United States)

    Jiang, H; Yang, B

    2012-01-10

    Cell-substrate interaction is examined in a two-dimensional mechanics model. The cell and substrate are treated as a shell and an elastic solid, respectively. Their interaction through adhesion is treated using nonlinear springs. Compared to previous cell mechanics models, the present model introduces a cohesive force law that is dependent not only on cell-substrate distance but also on internal cell-membrane stress. It is postulated that a living cell would establish focal adhesion sites with density dependent on the cell-membrane stress. The formulated mechanics problem is numerically solved using coupled finite elements and boundary elements for the cell and the substrate, respectively. The nodes in the adhesion zone from either side are linked by the cohesive springs. The specific cases of a cell adhering to a homogeneous substrate and a heterogeneous bimaterial substrate are examined. The analyses show that the substrate stiffness affects the adhesion behavior significantly and regulates the direction of cell adhesion, in good agreement with the experimental results in the literature. By introducing a reactive parameter (i.e., cell-membrane stress) linking biological responses of a living cell to a mechanical environment, the present model offers a unified mechanistic vehicle for characterization and prediction of living cell responses to various kinds of mechanical stimuli including local extracellular matrix and neighboring cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Cell-matrix and cell-cell interactions of human gingival fibroblasts on three-dimensional nanofibrous gelatin scaffolds.

    Science.gov (United States)

    Sachar, Ashneet; Strom, T Amanda; San Miguel, Symone; Serrano, Maria J; Svoboda, Kathy K H; Liu, Xiaohua

    2014-11-01

    An in-depth understanding of the interactions between cells and three-dimensional (3D) matrices (scaffolds) is pivotal to the development of novel biomaterials for tissue regeneration. However, it remains a challenge to find suitable biomimetic substrates and tools to observe cell-material and cell-cell interactions on 3D matrices. In the present study, we developed biomimetic nanofibrous 3D gelatin scaffolds (3D-NF-GS) and utilized confocal microscopy combined with a quantitative analysis approach to explore cell-matrix and cell-cell interactions on the 3D-NF-GS. Human gingival fibroblasts (HGFs) migrated throughout the 3D-NF-GS by 5 days and formed stable focal adhesions by 14 days. The focal adhesions were detected using integrin-β1, phospho-paxillin and vinculin expression, which were quantified from specific wavelength photon data generated using a spectral separation confocal microscope. As the cells became more confluent after 14 days of culture, cell-cell communication via gap junctions increased significantly. Collagen I matrix production by HGFs on 3D-NF-GS was visualized and quantified using a novel approach incorporating TRITC label in the scaffolds. Based on confocal microscopy, this study has developed qualitative and quantitative methods to study cell-matrix and cell-cell interactions on biomimetic 3D matrices, which provides valuable insights for the development of appropriate scaffolds for tissue regeneration. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Fungal glycan interactions with epithelial cells in allergic airway disease.

    Science.gov (United States)

    Roy, René M; Klein, Bruce S

    2013-08-01

    Human exposure to fungi results in a wide range of health outcomes, from invasive disease or allergy to immune tolerance. Inhaled fungi contact airway epithelial cells as an early event, and this host:fungal interaction can shape the eventual immunological outcome. Emerging evidence points to exposure to fungal cell wall carbohydrates in the development of allergic airway disease. Herein, we describe determinants of fungal allergenicity, and review the responses of airway epithelial cells to fungal carbohydrates. A greater understanding of the recognition of and response to fungal carbohydrates by airway epithelial cells may lead to the development of targeted therapies that ameliorate allergic airway disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Altered host cell-bacteria interaction due to nanoparticle interaction with a bacterial biofilm.

    Science.gov (United States)

    Raftery, Tara D; Lindler, Heidi; McNealy, Tamara L

    2013-02-01

    Nanoparticle (NP) use in everyday applications creates the potential for NPs to enter the environment where, in aquatic systems, they are likely to settle on substrates and interact with microbial communities. Legionella pneumophila biofilms are found as part of microbial communities in both natural and man-made environments, especially in man-made cooling systems. The bacterium is the causative agent of Legionnaires' disease. Legionella requires a host cell for replication in the environment, and amoebae commonly serve as this host cell. Our previous work demonstrated significant changes in Legionella biofilm morphology after exposure to 0.7 μg/L gold NPs (AuNPs). Here, we investigate how these morphology changes alter host-bacteria interactions using Acanthamoeba polyphaga as a model. Host-bacteria-NP interactions are affected by NP characteristics. Biofilms exposed to 4- and 18-nm, citrate-capped, spherical AuNPs significantly altered the grazing ability of A. polyphaga, which was not observed in biofilms exposed to 24-nm polystyrene beads. Uptake and replication of NP-exposed planktonic L. pneumophila within A. polyphaga were not altered regardless of NP size or core chemistry. Nanomaterial effects on the interaction of benthic organisms and bacteria may be directly or, as shown here, indirectly dependent on bacterial morphology. NP contamination therefore may alter interactions in a normal ecosystem function.

  18. Particle dynamics and particle-cell interaction in microfluidic systems

    Science.gov (United States)

    Stamm, Matthew T.

    Particle-laden flow in a microchannel resulting in aggregation of microparticles was investigated to determine the dependence of the cluster growth rate on the following parameters: suspension void fraction, shear strain rate, and channel-height to particle-diameter ratio. The growth rate of an average cluster was found to increase linearly with suspension void fraction, and to obey a power-law relationships with shear strain rate as S 0.9 and channel-height to particle-diameter ratio as (h/d )--3.5. Ceramic liposomal nanoparticles and silica microparticles were functionalized with antibodies that act as targeting ligands. The bio-functionality and physical integrity of the cerasomes were characterized. Surface functionalization allows cerasomes to deliver drugs with selectivity and specificity that is not possible using standard liposomes. The functionalized particle-target cell binding process was characterized using BT-20 breast cancer cells. Two microfluidic systems were used; one with both species in suspension, the other with cells immobilized inside a microchannel and particle suspension as the mobile phase. Effects of incubation time, particle concentration, and shear strain rate on particle-cell binding were investigated. With both species in suspension, the particle-cell binding process was found to be reasonably well-described by a first-order model. Particle desorption and cellular loss of binding affinity in time were found to be negligible; cell-particle-cell interaction was identified as the limiting mechanism in particle-cell binding. Findings suggest that separation of a bound particle from a cell may be detrimental to cellular binding affinity. Cell-particle-cell interactions were prevented by immobilizing cells inside a microchannel. The initial stage of particle-cell binding was investigated and was again found to be reasonably well-described by a first-order model. For both systems, the time constant was found to be inversely proportional to

  19. Organization of physical interactomes as uncovered by network schemas.

    Science.gov (United States)

    Banks, Eric; Nabieva, Elena; Chazelle, Bernard; Singh, Mona

    2008-10-01

    Large-scale protein-protein interaction networks provide new opportunities for understanding cellular organization and functioning. We introduce network schemas to elucidate shared mechanisms within interactomes. Network schemas specify descriptions of proteins and the topology of interactions among them. We develop algorithms for systematically uncovering recurring, over-represented schemas in physical interaction networks. We apply our methods to the S. cerevisiae interactome, focusing on schemas consisting of proteins described via sequence motifs and molecular function annotations and interacting with one another in one of four basic network topologies. We identify hundreds of recurring and over-represented network schemas of various complexity, and demonstrate via graph-theoretic representations how more complex schemas are organized in terms of their lower-order constituents. The uncovered schemas span a wide range of cellular activities, with many signaling and transport related higher-order schemas. We establish the functional importance of the schemas by showing that they correspond to functionally cohesive sets of proteins, are enriched in the frequency with which they have instances in the H. sapiens interactome, and are useful for predicting protein function. Our findings suggest that network schemas are a powerful paradigm for organizing, interrogating, and annotating cellular networks.

  20. Modelling of Yeast Mating Reveals Robustness Strategies for Cell-Cell Interactions.

    Directory of Open Access Journals (Sweden)

    Weitao Chen

    2016-07-01

    Full Text Available Mating of budding yeast cells is a model system for studying cell-cell interactions. Haploid yeast cells secrete mating pheromones that are sensed by the partner which responds by growing a mating projection toward the source. The two projections meet and fuse to form the diploid. Successful mating relies on precise coordination of dynamic extracellular signals, signaling pathways, and cell shape changes in a noisy background. It remains elusive how cells mate accurately and efficiently in a natural multi-cell environment. Here we present the first stochastic model of multiple mating cells whose morphologies are driven by pheromone gradients and intracellular signals. Our novel computational framework encompassed a moving boundary method for modeling both a-cells and α-cells and their cell shape changes, the extracellular diffusion of mating pheromones dynamically coupled with cell polarization, and both external and internal noise. Quantification of mating efficiency was developed and tested for different model parameters. Computer simulations revealed important robustness strategies for mating in the presence of noise. These strategies included the polarized secretion of pheromone, the presence of the α-factor protease Bar1, and the regulation of sensing sensitivity; all were consistent with data in the literature. In addition, we investigated mating discrimination, the ability of an a-cell to distinguish between α-cells either making or not making α-factor, and mating competition, in which multiple a-cells compete to mate with one α-cell. Our simulations were consistent with previous experimental results. Moreover, we performed a combination of simulations and experiments to estimate the diffusion rate of the pheromone a-factor. In summary, we constructed a framework for simulating yeast mating with multiple cells in a noisy environment, and used this framework to reproduce mating behaviors and to identify strategies for robust cell-cell

  1. Uncover the recruiter in you!

    CERN Multimedia

    2013-01-01

    2013 saw the launch of the one-day training course "Selecting the best person for CERN". So far, 10 courses have taken place and over 100 participants have taken part in this interactive, hands on experience.   The course has been met with much enthusiasm and positive feedback, with participants not only feeling better prepared and organised for the recruitment boards, but also equipped with concrete tools on how to prepare and conduct an effective selection interview. Following on from this success, further sessions are planned in 2014: we look forward to welcoming recruiting supervisors and board members who are likely to take part in a recruitment process, whether for LD or LD2IC, and who are interested in finding out more about how to get the most out of this important process! To enrol to this course, please follow this link: "Selecting the best person for CERN".

  2. Sandwich-like Microenvironments to Harness Cell/Material Interactions

    Science.gov (United States)

    Ballester-Beltrán, José; Lebourg, Myriam; Salmerón-Sánchez, Manuel

    2015-01-01

    Cell culture has been traditionally carried out on bi-dimensional (2D) substrates where cells adhere using ventral receptors to the biomaterial surface. However in vivo, most of the cells are completely surrounded by the extracellular matrix (ECM), resulting in a three-dimensional (3D) distribution of receptors. This may trigger differences in the outside-in signaling pathways and thus in cell behavior. This article shows that stimulating the dorsal receptors of cells already adhered to a 2D substrate by overlaying a film of a new material (a sandwich-like culture) triggers important changes with respect to standard 2D cultures. Furthermore, the simultaneous excitation of ventral and dorsal receptors shifts cell behavior closer to that found in 3D environments. Additionally, due to the nature of the system, a sandwich-like culture is a versatile tool that allows the study of different parameters in cell/material interactions, e.g., topography, stiffness and different protein coatings at both the ventral and dorsal sides. Finally, since sandwich-like cultures are based on 2D substrates, several analysis procedures already developed for standard 2D cultures can be used normally, overcoming more complex procedures needed for 3D systems. PMID:26274867

  3. Interaction of Cryptococcus neoformans extracellular vesicles with the cell wall.

    Science.gov (United States)

    Wolf, Julie M; Espadas-Moreno, Javier; Luque-Garcia, Jose L; Casadevall, Arturo

    2014-12-01

    Cryptococcus neoformans produces extracellular vesicles containing a variety of cargo, including virulence factors. To become extracellular, these vesicles not only must be released from the plasma membrane but also must pass through the dense matrix of the cell wall. The greatest unknown in the area of fungal vesicles is the mechanism by which these vesicles are released to the extracellular space given the presence of the fungal cell wall. Here we used electron microscopy techniques to image the interactions of vesicles with the cell wall. Our goal was to define the ultrastructural morphology of the process to gain insights into the mechanisms involved. We describe single and multiple vesicle-leaving events, which we hypothesized were due to plasma membrane and multivesicular body vesicle origins, respectively. We further utilized melanized cells to "trap" vesicles and visualize those passing through the cell wall. Vesicle size differed depending on whether vesicles left the cytoplasm in single versus multiple release events. Furthermore, we analyzed different vesicle populations for vesicle dimensions and protein composition. Proteomic analysis tripled the number of proteins known to be associated with vesicles. Despite separation of vesicles into batches differing in size, we did not identify major differences in protein composition. In summary, our results indicate that vesicles are generated by more than one mechanism, that vesicles exit the cell by traversing the cell wall, and that vesicle populations exist as a continuum with regard to size and protein composition. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Contextual interactions in a generalized energy model of complex cells.

    Science.gov (United States)

    Dellen, Babette K; Clark, John W; Wessel, Ralf

    2009-01-01

    We propose a generalized energy model of complex cells to describe modulatory contextual influences on the responses of neurons in the primary visual cortex (V1). Many orientation-selective cells in V1 respond to contrast of orientation and motion of stimuli exciting the classical receptive field (CRF) and the non-CRF, or surround. In the proposed model, a central spatiotemporal filter, defining the CRF, is nonlinearly combined with a spatiotemporal filter extending into the non-CRF. These filters are assumed to describe simple-cell responses, while the nonlinear combination of their responses describes the responses of complex cells. This mathematical operation accounts for the inherent nonlinearity of complex cells, such as phase independence and frequency doubling, and for nonlinear interactions between stimuli in the CRF and surround of the cell, including sensitivity to feature contrast. If only the CRF of the generalized complex cell is stimulated by a drifting grating, the model reduces to the standard energy model. The theoretical predictions of the model are supported by computer simulations and compared with experimental data from V1.

  5. Crotamine and crotoxin interact with tumor cells and trigger cell death

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Marcella Araugio; Pujatti, Priscilla Brunelli; Santos, Raquel Gouvea dos [Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN-MG, Belo Horizonte, MG (Brazil)]. E-mails: maso@cdtn.br; santosr@cdtn.br; Dias, Consuelo Latorre Fortes [Fundacao Ezequiel Dias FUNED, Belo Horizonte, MG (Brazil); Chavez Olortegui, Carlos Delfin [Universidade Federal de Minas Gerais UFMG, Belo Horizonte, MG (Brazil). Inst. de Ciencias Biologicas; Santos, Wagner Gouvea dos [Medical College of Virginia, Richmond, VA (United States). Neurosurgery Dept.

    2007-07-01

    Crotoxin (Crtx) and Crotamine (Crota) are polypeptides isolated from Crotalus durissus terrificus snake venom (CV). Previous reports have been shown therapeutic effects of Crotalus durissus terrificus venom and Crtx on skin, breast and lung tumours, although, the mechanisms of this antitumoral effect are still unknown. The aim of this work was to investigate the antitumoral effect of Crtx and Crota on brain tumours cells (GH3 and RT2) in vitro and their capacity of interaction with these tumour cells membranes. Cell survival after Crtx and Crota treatment was evaluated by MTT assay in different times post-treatment and apoptosis was evaluated by DAPI staining. In order to evaluate the specific interaction of Crtx and Crota, these polypeptides were radiolabelled, using {sup 125}I as radiotracer and binding assays were performed. The results were compared with the binding in nontumoral brain tissue. Crtx and Crota induced apoptosis on both tumour cells lineages but, Crota was more powerful than Crtx 90% and 20% cell death for RT2 cells; 80% and 20% cell death for GH3 cells, respectively). Both {sup 125}I-Crtx and {sup 125}I-Crota bound specifically in glioblastoma membranes. Nonetheless, CV polypeptides recognised glioblastoma cells with higher specificity than normal brain tissue. These results suggest that the Crtx and Crota interactions with the plasmatic membrane of tumour cells may be the first step of the cascade of signalling that trigger their antitumoral effect. (author)

  6. Crotamine and crotoxin interact with tumor cells and trigger cell death

    International Nuclear Information System (INIS)

    Soares, Marcella Araugio; Pujatti, Priscilla Brunelli; Santos, Raquel Gouvea dos; Dias, Consuelo Latorre Fortes; Chavez Olortegui, Carlos Delfin; Santos, Wagner Gouvea dos

    2007-01-01

    Crotoxin (Crtx) and Crotamine (Crota) are polypeptides isolated from Crotalus durissus terrificus snake venom (CV). Previous reports have been shown therapeutic effects of Crotalus durissus terrificus venom and Crtx on skin, breast and lung tumours, although, the mechanisms of this antitumoral effect are still unknown. The aim of this work was to investigate the antitumoral effect of Crtx and Crota on brain tumours cells (GH3 and RT2) in vitro and their capacity of interaction with these tumour cells membranes. Cell survival after Crtx and Crota treatment was evaluated by MTT assay in different times post-treatment and apoptosis was evaluated by DAPI staining. In order to evaluate the specific interaction of Crtx and Crota, these polypeptides were radiolabelled, using 125 I as radiotracer and binding assays were performed. The results were compared with the binding in nontumoral brain tissue. Crtx and Crota induced apoptosis on both tumour cells lineages but, Crota was more powerful than Crtx 90% and 20% cell death for RT2 cells; 80% and 20% cell death for GH3 cells, respectively). Both 125 I-Crtx and 125 I-Crota bound specifically in glioblastoma membranes. Nonetheless, CV polypeptides recognised glioblastoma cells with higher specificity than normal brain tissue. These results suggest that the Crtx and Crota interactions with the plasmatic membrane of tumour cells may be the first step of the cascade of signalling that trigger their antitumoral effect. (author)

  7. Un/covering: Making Disability Identity Legible

    Directory of Open Access Journals (Sweden)

    Heather Dawn Evans

    2017-03-01

    Full Text Available This article examines one aspect of disability identity among people with non-apparent or "invisible" disabilities: the decision to emphasize, remind others about, or openly acknowledge impairment in social settings. I call this process "un/covering," and situate this concept in the sociological and Disability Studies literature on disability stigma, passing, and covering. Drawing on interviews with people who have acquired a non-apparent impairment through chronic illness or injury, I argue that decisions to un/cover (after a disability disclosure has already been made play a pivotal role for this group in developing a strong, positive disability identity and making that identity legible to others. Decisions to pass, cover, or un/cover are ongoing decisions that stitch together the fabric of each person's daily life experiences, thus serving as primary mechanisms for identity negotiation and management.

  8. Interactions of light and gravity in Chara internodal cells

    Science.gov (United States)

    Staves, Mark P.; Whitsit, Kimberly; Yeung, Edward

    2005-08-01

    The "shoots" of Chara corallina are composed of large (ca. 2-5 cm length and 0.5 mm diameter) internodal cells alternating with smaller, node-forming cells. We find that these shoots are both negatively gravitropic as well as positively phototropic. Differential growth in response to both gravity and light typically takes place in the two most apical (youngest) internodal cells, however the plants can be manipulated so that all curvature takes place in a single cell. We grew Chara in aquaria filled with artificial pond water with their rhizoids in 35 mm film canisters containing soil. Thus, it was easy to reorient the axis of the plant with respect to gravity. Experimental plants were allowed to develop to a stage where they had one or two visible internodal cells. In the absence of light, internodal cells are negatively gravitropic. If gravistimulated (horizontal) internodal cells are illuminated with white light from above, gravity and light act together and more rapid curvature ensues. If however, gravistimulated internodal cells are illuminated from below, gravity and light act antagonistically and light can overcome the gravity signal. We find that gravistimulated cells illuminated from below will bend up (i.e. negatively gravitropic and negatively phototropic) at light intensities below ca. 1 μmol m-2 s-1 whereas they curve downward (positively gravitropic and positively phototropic) at higher light intensities. Preliminary studies indicate that both blue and green light stimulate phototropism whereas red light is not effective. Chara thus provides a system in which a single, statolith-free cell responds to both light and gravity and in which the interactions of the light- and gravity-induced signal transduction pathways can be investigated.

  9. Uncovering the FUTREX-6100XL prediction equation for the percentage body fat.

    Science.gov (United States)

    Fthenakis, Zacharias G; Balaska, Dimitra; Zafiropulos, Vassilis

    2012-10-01

    Based on the near infra-red (NIR) interactance method, the FUTREX company has developed a series of instruments, for the estimation of the body fat percentage (%BF). %BF is estimated through prediction equations incorporated in the instruments, which for the newest models (FUTREX-6100XL and FUTREX-6100A/ZL) are proprietary and they are not published anywhere. This missing knowledge may lead to several misunderstandings and confusion and degrades those instruments to 'black boxes'. The present work uncovers and presents the prediction equation of FUTREX-6100/XL and discusses the contribution of each term of that equation to the %BF. Furthermore, this study presents the method used, which can be used to uncover equations incorporated in other instruments. This method is based on the idea of firstly uncovering the dependence of the equation on each parameter separately and then combining those dependencies to uncover the unknown equation.

  10. Insights into significant pathways and gene interaction networks in peripheral blood mononuclear cells for early diagnosis of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Jian Xin Jiang

    2016-01-01

    Conclusions: Using identified DEGs, significantly changed biological processes such as nucleic acid metabolic process and KEGG pathways such as cytokine-cytokine receptor interaction in PBMCs of HCC patients were identified. In addition, several important hub genes, for example, CUL4A, and interleukin (IL 8 were also uncovered.

  11. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Millaku, Agron, E-mail: agron.mi@hotmail.com [Limnos-Company for Applied Ecology Ltd, Podlimbarskega 31, 1000 Ljubljana (Slovenia); Drobne, Damjana [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia); Centre of Excellence, Advanced Materials and Technologies for the Future (CO NAMASTE), Jamova cesta 39, 1000 Ljubljana (Slovenia); Centre of Excellence, Nanoscience and Nanotechnology (Nanocentre), Jamova cesta 39, 1000 Ljubljana (Slovenia); Torkar, Matjaz [Institute of Metals and Technology IMT, Lepi pot 11, 1000 Ljubljana (Slovenia); Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, 1000 Ljubljana (Slovenia); Novak, Sara [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia); Remškar, Maja [Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, 1000 Ljubljana (Slovenia); Pipan-Tkalec, Živa [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia)

    2013-09-15

    Graphical abstract: Scanning electron microscopy is particularly well suited to the observation of nanofibre/cell interaction in the endothelial cells lining the hepatopancreas. (a) Tungsten oxide nanofibres, (b) test organism Porcellio scaber and schematic appearance of digestive tubes, (c) digestive tube (hepatopancreas) prepared for SEM investigation, (d) digestive gland cells (C) with nanofibres (NF) embedded in the cell membrane and (e) nanofibres inserted deeply in the cells and damaged nanofibres due to peristalsis. -- Highlights: • Tungsten oxide nanofibres react physically with digestive gland epithelial cells in Porcellio scaber. • Physical peristaltic forces of lead to insertion of nanofibres into the cells. • No toxic responses as measured by conventional toxicity biomarkers were detected. • Physical interactions were observed in a majority of the investigated animals. -- Abstract: We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells.

  12. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells

    International Nuclear Information System (INIS)

    Millaku, Agron; Drobne, Damjana; Torkar, Matjaz; Novak, Sara; Remškar, Maja; Pipan-Tkalec, Živa

    2013-01-01

    Graphical abstract: Scanning electron microscopy is particularly well suited to the observation of nanofibre/cell interaction in the endothelial cells lining the hepatopancreas. (a) Tungsten oxide nanofibres, (b) test organism Porcellio scaber and schematic appearance of digestive tubes, (c) digestive tube (hepatopancreas) prepared for SEM investigation, (d) digestive gland cells (C) with nanofibres (NF) embedded in the cell membrane and (e) nanofibres inserted deeply in the cells and damaged nanofibres due to peristalsis. -- Highlights: • Tungsten oxide nanofibres react physically with digestive gland epithelial cells in Porcellio scaber. • Physical peristaltic forces of lead to insertion of nanofibres into the cells. • No toxic responses as measured by conventional toxicity biomarkers were detected. • Physical interactions were observed in a majority of the investigated animals. -- Abstract: We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells

  13. Secondary structure of cell-penetrating peptides during interaction with fungal cells.

    Science.gov (United States)

    Gong, Zifan; Ikonomova, Svetlana P; Karlsson, Amy J

    2018-03-01

    Cell-penetrating peptides (CPPs) are peptides that cross cell membranes, either alone or while carrying molecular cargo. Although their interactions with mammalian cells have been widely studied, much less is known about their interactions with fungal cells, particularly at the biophysical level. We analyzed the interactions of seven CPPs (penetratin, Pep-1, MPG, pVEC, TP-10, MAP, and cecropin B) with the fungal pathogen Candida albicans using experiments and molecular simulations. Circular dichroism (CD) of the peptides revealed a structural transition from a random coil or weak helix to an α-helix occurs for all peptides when the solvent is changed from aqueous to hydrophobic. However, CD performed in the presence of C. albicans cells showed that proximity to the cell membrane is not necessarily sufficient to induce this structural transition, as penetratin, Pep-1, and MPG did not display a structural shift in the presence of cells. Monte Carlo simulations were performed to further probe the molecular-level interaction with the cell membrane, and these simulations suggested that pVEC, TP-10, MAP, and cecropin B strongly penetrate into the hydrophobic domain of the membrane lipid bilayer, inducing a transition to an α-helical conformation. In contrast, penetratin, Pep-1 and MPG remained in the hydrophilic region without a shift in conformation. The experimental data and MC simulations combine to explain how peptide structure affects their interaction with cells and their mechanism of translocation into cells (direct translocation vs. endocytosis). Our work also highlights the utility of combining biophysical experiments, biological experiments, and molecular modeling to understand biological phenomena. © 2017 The Protein Society.

  14. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Dudás, József; Fullár, Alexandra; Romani, Angela; Pritz, Christian; Kovalszky, Ilona; Hans Schartinger, Volker; Mathias Sprinzl, Georg; Riechelmann, Herbert

    2013-01-01

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factor κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells

  15. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Dudás, József, E-mail: jozsef.dudas@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Fullár, Alexandra, E-mail: fullarsz@gmail.com [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest (Hungary); Romani, Angela, E-mail: angela.romani@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Pritz, Christian, E-mail: christian.pritz@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Kovalszky, Ilona, E-mail: koval@korb1.sote.hu [1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest (Hungary); Hans Schartinger, Volker, E-mail: volker.schartinger@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Mathias Sprinzl, Georg, E-mail: georg.sprinzl@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Riechelmann, Herbert, E-mail: herbert.riechelmann@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria)

    2013-04-01

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factor κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells.

  16. Interaction of Low Temperature Plasmas with Prokaryotic and Eukaryotic Cells

    Science.gov (United States)

    Laroussi, Mounir

    2008-10-01

    Due to promising possibilities for their use in medical applications such as wound healing, surface modification of biocompatible materials, and the sterilization of reusable heat-sensitive medical instruments, low temperature plasmas and plasma jets are making big strides as a technology that can potentially be used in medicine^1-2. At this stage of research, fundamental questions about the effects of plasma on prokaryotic and eukaryotic cells are still not completely answered. An in-depth understanding of the pathway whereby cold plasma interact with biological cells is necessary before real applications can emerge. In this paper, first an overview of non-equilibrium plasma sources (both low and high pressures) will be presented. Secondly, the effects of plasma on bacterial cells will be discussed. Here, the roles of the various plasma agents in the inactivation process will be outlined. In particular, the effects of UV and that of various reactive species (O3, O, OH) are highlighted. Thirdly, preliminary findings on the effects of plasma on few types of eukaryotic cells will be presented. How plasma affects eukaryotic cells, such as mammalian cells, is very important in applications where the viability/preservation of the cells could be an issue (such as in wound treatment). Another interesting aspect is the triggering of apoptosis (programmed cell death). Some investigators have claimed that plasma is able to induce apoptosis in some types of cancer cells. If successfully replicated, this can open up a novel method of cancer treatment. In this talk however, I will briefly focus more on the wound healing potential of cold plasmas. ^1E. A. Blakely, K. A. Bjornstad, J. E. Galvin, O. R. Monteiro, and I. G. Brown, ``Selective Neuron Growth on Ion Implanted and Plasma Deposited Surfaces'', In Proc. IEEE Int. Conf. Plasma Sci., (2002), p. 253. ^2M. Laroussi, ``Non-thermal Decontamination of Biological Media by Atmospheric Pressure Plasmas: Review, Analysis, and

  17. Targeting proliferating cell nuclear antigen and its protein interactions induces apoptosis in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Rebekka Müller

    Full Text Available Multiple myeloma is a hematological cancer that is considered incurable despite advances in treatment strategy during the last decade. Therapies targeting single pathways are unlikely to succeed due to the heterogeneous nature of the malignancy. Proliferating cell nuclear antigen (PCNA is a multifunctional protein essential for DNA replication and repair that is often overexpressed in cancer cells. Many proteins involved in the cellular stress response interact with PCNA through the five amino acid sequence AlkB homologue 2 PCNA-interacting motif (APIM. Thus inhibiting PCNA's protein interactions may be a good strategy to target multiple pathways simultaneously. We initially found that overexpression of peptides containing the APIM sequence increases the sensitivity of cancer cells to contemporary therapeutics. Here we have designed a cell-penetrating APIM-containing peptide, ATX-101, that targets PCNA and show that it has anti-myeloma activity. We found that ATX-101 induced apoptosis in multiple myeloma cell lines and primary cancer cells, while bone marrow stromal cells and primary healthy lymphocytes were much less sensitive. ATX-101-induced apoptosis was caspase-dependent and cell cycle phase-independent. ATX-101 also increased multiple myeloma cells' sensitivity against melphalan, a DNA damaging agent commonly used for treatment of multiple myeloma. In a xenograft mouse model, ATX-101 was well tolerated and increased the anti-tumor activity of melphalan. Therefore, targeting PCNA by ATX-101 may be a novel strategy in multiple myeloma treatment.

  18. Spatial Evolutionary Games of Interaction among Generic Cancer Cells

    DEFF Research Database (Denmark)

    Bach, Lars Arve; Sumpter, David J.T.; Alsner, Jan

    2003-01-01

    Evolutionary game models of cellular interactions have shown that heterogeneity in the cellular genotypic composition is maintained through evolution to stable coexistence of growth-promoting and non-promoting cell types. We generalise these mean-field models and relax the assumption of perfect...... mixing of cells by instead implementing an individual-based model that includes the stochastic and spatial effects likely to occur in tumours. The scope for coexistence of genotypic strategies changed with the inclusion of explicit space and stochasticity. The spatial models show some interesting...... deviations from their mean-field counterparts, for example the possibility of altruistic (paracrine) cell strategies to thrive. Such effects can however, be highly sensitive to model implementation and the more realistic models with semi-synchronous and stochastic updating do not show evolution of altruism...

  19. Systematic analysis of human cells lacking ATG8 proteins uncovers roles for GABARAPs and the CCZ1/MON1 regulator C18orf8/RMC1 in macro and selective autophagic flux.

    Science.gov (United States)

    Pontano Vaites, Laura; Paulo, Joao A; Huttlin, Edward L; Harper, J Wade

    2017-10-16

    Selective and macro autophagy sequester specific organelles/substrates or bulk cytoplasm, respectively, inside autophagosomes as cargo for delivery to lysosomes. The mammalian ATG8 orthologues (MAP1LC3A/B/C and GABARAP/L1/L2) are ubiquitin (UB)-like proteins conjugated to the autophagosome membrane and are thought to facilitate cargo receptor recruitment, vesicle maturation, and lysosomal fusion. To elucidate the molecular functions of the ATG8 proteins, we engineered cells lacking genes for each subfamily as well as all six mammalian ATG8s. Loss of GABARAPs alone attenuates autophagic flux basally and in response to macro or selective autophagic stimuli including PARKIN-dependent mitophagy, and cells lacking all ATG8 proteins accumulate cytoplasmic UB aggregates, which are resolved following ectopic expression of individual GABARAPs. Autophagosomes from cells lacking GABARAPs had reduced lysosomal content by quantitative proteomics, consistent with fusion defects, but accumulated regulators of late endosome (LE)/autophagosome maturation. Through interaction proteomics of proteins accumulating in GABARAP/L1/L2-deficient cells, we identified C18orf8/RMC1 as a new subunit of the CCZ1-MON1 RAB7 guanine exchange factor (GEF) that positively regulates RAB7 recruitment to LE/autophagosomes. This work defines unique roles for GABARAP and LC3 subfamilies in macro and selective autophagy and demonstrates how analysis of autophagic machinery in the absence of flux can identify new regulatory circuits. Copyright © 2017 American Society for Microbiology.

  20. Putative interaction of brush cells with bicarbonate secreting cells in the proximal corpus mucosa

    Directory of Open Access Journals (Sweden)

    Julia Anna-Maria Eberle

    2013-07-01

    Full Text Available The gastric epithelium is protected from the highly acidic luminal content by alkaline mucus which is secreted from specialized epithelial cells. In the stomach of mice strong secretion of alkaline fluid was observed at the gastric groove, the border between corpus and fundus mucosa. Since this region is characterized by numerous brush cells it was proposed that these cells might secrete alkaline solution as suggested for brush cells in the bile duct. In fact, it was found that in this region multiple cells express elements which are relevant for the secretion of bicarbonate, including carbonic anhydrase (CAII, the cystic fibrosis transmembrane conductance regulator (CFTR and the Na+/H+ exchanger (NHE1. However, this cell population was distinct from brush cells which express the TRP-channel TRPM5 and are considered as putative sensory cells. The location of both cell populations in close proximity implies the possibility for a paracrine interaction. This view was substantiated by the finding that brush cells express prostaglandin synthase-1 (COX-1 and the neighbouring cells a specific receptor type for prostaglandins. The notion that brush cells may be able to sense a local acidification was supported by the observation that they express the channel PKD1L3 which contributes to the acid responsiveness of gustatory sensory cells. The results support the concept that brush cells may sense the luminal content and influence via prostaglandins the secretion of alkaline solution.

  1. Uncovering Heart Failure in Type 2 Diabetes

    NARCIS (Netherlands)

    Boonman-de Winter, L.J.M.

    2015-01-01

    In existing disease-management-programs for type 2 diabetes there is no routine attention for uncovering latent or early stages of cardiovascular diseases, including heart failure. Between February 2009 and March 2010, 605 patients aged 60 years or over with type 2 diabetes in the south-west of the

  2. An Interactive Exercise To Learn Eukaryotic Cell Structure and Organelle Function.

    Science.gov (United States)

    Klionsky, Daniel J.; Tomashek, John J.

    1999-01-01

    Describes a cooperative, interactive problem-solving exercise for studying eukaryotic cell structure and function. Highlights the dynamic aspects of movement through the cell. Contains 15 references. (WRM)

  3. Electron microscopy study of antioxidant interaction with bacterial cells

    Science.gov (United States)

    Plotnikov, Oleg P.; Novikova, Olga V.; Konnov, Nikolai P.; Korsukov, Vladimir N.; Gunkin, Ivan F.; Volkov, Uryi P.

    2000-10-01

    To maintain native microorganisms genotype and phenotype features a lyophylization technique is widely used. However in this case cells are affected by influences of vacuum and low temperature that cause a part of the cells population to be destruction. Another factor reduced microorganisms vitality is formation of reactive oxygen forms that damage certain biological targets (such as DNA, membranes etc.) Recently to raise microorganism's resistance against adverse condition natural and synthetic antioxidants are used. Antioxidant- are antagonists of free radicals. Introduction of antioxidants in protective medium for lyophylization increase bacteria storage life about 2,0-4,8 fold in comparison with reference samples. In the article the main results of our investigation of antioxidants interaction with microorganism cells is described. As bacteria cells we use vaccine strain yersinia pestis EV, that were grown for 48 h at 28 degree(s)C on the Hottinger agar (pH 7,2). Antioxidants are inserted on the agar surface in specimen under test. To investigate a localization of antioxidants for electron microscopy investigation, thallium organic antioxidants were used. The thallium organic compounds have an antioxidant features if thallium is in low concentration (about 1(mu) g/ml). The localization of the thallium organic antioxidants on bacteria Y. pestis EV is visible in electron microscopy images, thallium being heavy metal with high electron density. The negatively stained bacteria and bacteria thin sections with thallium organic compounds were investigated by means of transmission electron microscopy. The localization of the thallium organic compounds is clearly visible in electron micrographs as small dark spots with size about 10-80nm. Probably mechanisms of interaction of antioxidants with bacteria cells are discussed.

  4. Sustained interaction: the new normal for stem cell repositories?

    Science.gov (United States)

    Isasi, Rosario; Knoppers, Bartha M; Lomax, Geoffrey

    2011-11-01

    Stem cell repositories, similar to many areas in human scientific research, must balance the interests of the individuals who donate their time and samples to science with the interests of scientific progress. This article seeks to explore how sustained interaction with stem cell donors can advance key donor interests (autonomy and privacy) while also increasing the scientific utility of stem cell lines. The ability to trace stem cell lines to their respective donors - underpinned by robust informed consent - enables donors to gain access to information regarding research outcomes and the uses of their biological samples, while also supporting basic and clinical research by providing a means for quality and safety controls. Measures to recontact donors and also to enable donors to withdraw from research should be well designed to ensure donors' preferences are respected while mitigating negative consequences resulting from limited data availability or compromised sample quality. To guarantee the integrity of research while respecting donors' autonomy and preferences, stem cell repositories require a prospective approach to informed consent.

  5. ESA uncovers Geminga's `hot spot'

    Science.gov (United States)

    2004-07-01

    16 July 2004 Astronomers using ESA’s X-ray observatory XMM-Newton have detected a small, bright ‘hot spot’ on the surface of the neutron star called Geminga, 500 light-years away. The hot spot is the size of a football field and is caused by the same mechanism producing Geminga’s X-ray tails. This discovery identifies the missing link between the X-ray and gamma-ray emission from Geminga. hi-res Size hi-res: 1284 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot This figure shows the effects of charged particles accelerated in the magnetosphere of Geminga. Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of particles kicked out by Geminga’s strong magnetic field, trail the neutron star as it moves about in space. Panel (b) shows how electrically charged particles interact with Geminga’s magnetic field. For example, if electrons (blue) are kicked out by the star, positrons (in red) hit the star’s magnetic poles like in an ‘own goal’. Panel (c) illustrates the size of Geminga’s magnetic field (blue) compared to that of the star itself at the centre (purple). The magnetic field is tilted with respect to Geminga’s rotation axis (red). Panel (d) shows the magnetic poles of Geminga, where charged particles hit the surface of the star, creating a two-million degrees hot spot, a region much hotter than the surroundings. As the star spins on its rotation axis, the hot spot comes into view and then disappears, causing the periodic colour change seen by XMM-Newton. An animated version of the entire sequence can be found at: Click here for animated GIF [low resolution, animated GIF, 5536 KB] Click here for AVI [high resolution, AVI with DIVX compression, 19128 KB] hi-res Size hi-res: 371 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot, panel (a) Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of

  6. Interaction of large DNA viruses with dendritic cells.

    Science.gov (United States)

    Jenne, L; Thumann, P; Steinkasserer, A

    2001-12-01

    Dendritic cells (DC) with their unique capacity to prime naïve T cells are crucial in the induction of immunological responses, including anti-tumoral and anti-viral immunity. DC based immunotherapies are thus currently considered a particularly promising approach for cellular immunotherapy. The cloning of tumor associated antigens (TAAs) together with the possibility of manipulating viral genomes by biotechnological techniques has sparked the interest of using genetically modified viruses to transduce DC in order to achieve antigenic expression of TAA with the aim of inducing a protective immune response. An increasing number of modified viral vectors has been designed for gene therapy purposes and consecutively has been used for the ex vivo transduction of DC. It has been shown that viral vectors genetically engineered to express TAA or immune modifiers like cytokines or costimulatory molecules can lead to a high level of transgene expression. Furthermore, these studies have also revealed that viruses have developed several immune evasion mechanisms specifically targeting DC. Therefore, analysing the interactions of viruses with DC is crucial for the development of new viral vectors suitable for the transduction of DC. In this report we describe the interaction of two large DNA viruses, herpes simplex virus type 1 (HSV-1) and vaccinia virus (VV), with DC generated from peripheral blood mononuclear cells.

  7. Identification of a novel role for dematin in regulating red cell membrane function by modulating spectrin-actin interaction.

    Science.gov (United States)

    Koshino, Ichiro; Mohandas, Narla; Takakuwa, Yuichi

    2012-10-12

    The membrane skeleton plays a central role in maintaining the elasticity and stability of the erythrocyte membrane, two biophysical features critical for optimal functioning and survival of red cells. Many constituent proteins of the membrane skeleton are phosphorylated by various kinases, and phosphorylation of β-spectrin by casein kinase and of protein 4.1R by PKC has been documented to modulate erythrocyte membrane mechanical stability. In this study, we show that activation of endogenous PKA by cAMP decreases membrane mechanical stability and that this effect is mediated primarily by phosphorylation of dematin. Co-sedimentation assay showed that dematin facilitated interaction between spectrin and F-actin, and phosphorylation of dematin by PKA markedly diminished this activity. Quartz crystal microbalance measurement revealed that purified dematin specifically bound the tail region of the spectrin dimer in a saturable manner with a submicromolar affinity. Pulldown assay using recombinant spectrin fragments showed that dematin, but not phospho-dematin, bound to the tail region of the spectrin dimer. These findings imply that dematin contributes to the maintenance of erythrocyte membrane mechanical stability by facilitating spectrin-actin interaction and that phosphorylation of dematin by PKA can modulate these effects. In this study, we have uncovered a novel functional role for dematin in regulating erythrocyte membrane function.

  8. Identification of a Novel Role for Dematin in Regulating Red Cell Membrane Function by Modulating Spectrin-Actin Interaction*

    Science.gov (United States)

    Koshino, Ichiro; Mohandas, Narla; Takakuwa, Yuichi

    2012-01-01

    The membrane skeleton plays a central role in maintaining the elasticity and stability of the erythrocyte membrane, two biophysical features critical for optimal functioning and survival of red cells. Many constituent proteins of the membrane skeleton are phosphorylated by various kinases, and phosphorylation of β-spectrin by casein kinase and of protein 4.1R by PKC has been documented to modulate erythrocyte membrane mechanical stability. In this study, we show that activation of endogenous PKA by cAMP decreases membrane mechanical stability and that this effect is mediated primarily by phosphorylation of dematin. Co-sedimentation assay showed that dematin facilitated interaction between spectrin and F-actin, and phosphorylation of dematin by PKA markedly diminished this activity. Quartz crystal microbalance measurement revealed that purified dematin specifically bound the tail region of the spectrin dimer in a saturable manner with a submicromolar affinity. Pulldown assay using recombinant spectrin fragments showed that dematin, but not phospho-dematin, bound to the tail region of the spectrin dimer. These findings imply that dematin contributes to the maintenance of erythrocyte membrane mechanical stability by facilitating spectrin-actin interaction and that phosphorylation of dematin by PKA can modulate these effects. In this study, we have uncovered a novel functional role for dematin in regulating erythrocyte membrane function. PMID:22927433

  9. Real-time sensing of epithelial cell-cell and cell-substrate interactions by impedance spectroscopy on porous substrates

    International Nuclear Information System (INIS)

    Mondal, D.; RoyChaudhuri, C.; Pal, D.

    2015-01-01

    Oxidized porous silicon (PS) is a common topographical biocompatible substrate that potentially provides a distinct in vitro environment for better understanding of in vivo behavior. But in the reported studies on oxidized PS, cell-cell and cell-substrate interactions have been detected only by fluorescent labeling. This paper is the first attempt to investigate real-time sensing of these interactions on HaCaT cells by label-free impedance spectroscopy on oxidized PS of two pore diameters (50 and 500 nm). One of the major requirements for successful impedance spectroscopy measurement is to restrict the channeling of electric field lines through the pores. To satisfy this criterion, we have designed the pore depths after analyzing the penetration of the medium by using computational fluid dynamics simulation. A distributed electrical model was also developed for estimating the various cellular attributes by considering a pseudorandom distribution of pores. It is observed from the impedance measurements and from the model that the proliferation rate increases for 50 nm pores but decreases for 500 nm pores compared to that for planar substrates. The rate of decrease in cell substrate separation (h) in the initial stage is more than the rate of increase in cell-cell junction resistance (R b ) corresponding to the initial adhesion phase of cells. It is observed that R b and h are higher for 50 nm pores than those for planar substrates, corresponding to the fact that substrates more conducive toward cell adhesion encourage cell-cell interactions than direct cell-substrate interactions. Thus, the impedance spectroscopy coupled with the proposed theoretical framework for PS substrates can sense and quantify the cellular interactions

  10. Interactions between endothelial progenitor cells (EPC) and titanium implant surfaces.

    Science.gov (United States)

    Ziebart, Thomas; Schnell, Anne; Walter, Christian; Kämmerer, Peer W; Pabst, Andreas; Lehmann, Karl M; Ziebart, Johanna; Klein, Marc O; Al-Nawas, Bilal

    2013-01-01

    Endothelial cells play an important role in peri-implant angiogenesis during early bone formation. Therefore, interactions between endothelial progenitor cells (EPCs) and titanium dental implant surfaces are of crucial interest. The aim of our in vitro study was to investigate the reactions of EPCs in contact with different commercially available implant surfaces. EPCs from buffy coats were isolated by Ficoll density gradient separation. After cell differentiation, EPC were cultured for a period of 7 days on different titanium surfaces. The test surfaces varied in roughness and hydrophilicity: acid-etched (A), sand-blasted-blasted and acid-etched (SLA), hydrophilic A (modA), and hydrophilic SLA (modSLA). Plastic and fibronectin-coated plastic surfaces served as controls. Cell numbers and morphology were analyzed by confocal laser scanning microscopy. Secretion of vascular endothelial growth factor (VEGF)-A was measured by enzyme-linked immunosorbent assay and expressions of iNOS and eNOS were investigated by real-time polymerase chain reaction. Cell numbers were higher in the control groups compared to the cells of titanium surfaces. Initially, hydrophilic titanium surfaces (modA and modSLA) showed lower cell numbers than hydrophobic surfaces (A and SLA). After 7 days smoother surfaces (A and modA) showed increased cell numbers compared to rougher surfaces (SLA and modSLA). Cell morphology of A, modA, and control surfaces was characterized by a multitude of pseudopodia and planar cell soma architecture. SLA and modSLA promoted small and plump cell soma with little quantity of pseudopodia. The lowest VEGF level was measured on A, the highest on modSLA. The highest eNOS and iNOS expressions were found on modA surfaces. The results of this study demonstrate that biological behaviors of EPCs can be influenced by different surfaces. The modSLA surface promotes an undifferentiated phenotype of EPCs that has the ability to secrete growth factors in great quantities. In

  11. Quantitative genetic-interaction mapping in mammalian cells

    Science.gov (United States)

    Roguev, Assen; Talbot, Dale; Negri, Gian Luca; Shales, Michael; Cagney, Gerard; Bandyopadhyay, Sourav; Panning, Barbara; Krogan, Nevan J

    2013-01-01

    Mapping genetic interactions (GIs) by simultaneously perturbing pairs of genes is a powerful tool for understanding complex biological phenomena. Here we describe an experimental platform for generating quantitative GI maps in mammalian cells using a combinatorial RNA interference strategy. We performed ~11,000 pairwise knockdowns in mouse fibroblasts, focusing on 130 factors involved in chromatin regulation to create a GI map. Comparison of the GI and protein-protein interaction (PPI) data revealed that pairs of genes exhibiting positive GIs and/or similar genetic profiles were predictive of the corresponding proteins being physically associated. The mammalian GI map identified pathways and complexes but also resolved functionally distinct submodules within larger protein complexes. By integrating GI and PPI data, we created a functional map of chromatin complexes in mouse fibroblasts, revealing that the PAF complex is a central player in the mammalian chromatin landscape. PMID:23407553

  12. Human eosinophil–airway smooth muscle cell interactions

    Directory of Open Access Journals (Sweden)

    J. Margaret Hughes

    2000-01-01

    Full Text Available Eosinophils are present throughout the airway wall of asthmatics. The nature of the interaction between human airway smooth muscle cells (ASMC and eosinophils was investigated in this study. We demonstrated, using light microscopy, that freshly isolated eosinophils from healthy donors rapidly attach to ASMC in vitro. Numbers of attached eosinophils were highest at 2 h, falling to 50% of maximum by 20 h. Eosinophil attachment at 2 h was reduced to 72% of control by anti-VCAM-1, and to 74% at 20 h by anti-ICAM-1. Pre-treatment of ASMC for 24 h with TNF-α, 10 nM, significantly increased eosinophil adhesion to 149 and 157% of control after 2 and 20 h. These results provide evidence that eosinophil interactions with ASMC involve VCAM-1 and ICAM-1 and are modulated by TNF-α.

  13. Ultrastructural interaction between spermatozoon and human oviductal cells in vitro.

    Science.gov (United States)

    Vigil, Pilar; Salgado, Ana María; Cortés, Manuel E

    2012-04-01

    The oviduct is an important organ for successful mammalian reproduction. In this work, human oviducts were inseminated and their explants analyzed using scanning electron microscopy in order to study, at a finer ultrastructual level, the interaction between spermatozoon and oviduct in vitro. Results show unequivocally a spermatozoon tightly attached through the acrosomal region of its head to several cilia of the human tubal epithelial cells. This finding proves that spermatozoa do indeed adhere to the endosalpinx, a fact of utmost relevance for the physiology of the reproductive process, since it supports the idea of a spermatozoa reservoir being formed in the oviduct, which is also briefly discussed.

  14. Interaction of Human Tumor Viruses with Host Cell Surface Receptors and Cell Entry

    Directory of Open Access Journals (Sweden)

    Georgia Schäfer

    2015-05-01

    Full Text Available Currently, seven viruses, namely Epstein-Barr virus (EBV, Kaposi’s sarcoma-associated herpes virus (KSHV, high-risk human papillomaviruses (HPVs, Merkel cell polyomavirus (MCPyV, hepatitis B virus (HBV, hepatitis C virus (HCV and human T cell lymphotropic virus type 1 (HTLV-1, have been described to be consistently associated with different types of human cancer. These oncogenic viruses belong to distinct viral families, display diverse cell tropism and cause different malignancies. A key to their pathogenicity is attachment to the host cell and entry in order to replicate and complete their life cycle. Interaction with the host cell during viral entry is characterized by a sequence of events, involving viral envelope and/or capsid molecules as well as cellular entry factors that are critical in target cell recognition, thereby determining cell tropism. Most oncogenic viruses initially attach to cell surface heparan sulfate proteoglycans, followed by conformational change and transfer of the viral particle to secondary high-affinity cell- and virus-specific receptors. This review summarizes the current knowledge of the host cell surface factors and molecular mechanisms underlying oncogenic virus binding and uptake by their cognate host cell(s with the aim to provide a concise overview of potential target molecules for prevention and/or treatment of oncogenic virus infection.

  15. Three-factor models versus time series models: quantifying time-dependencies of interactions between stimuli in cell biology and psychobiology for short longitudinal data.

    Science.gov (United States)

    Frank, Till D; Kiyatkin, Anatoly; Cheong, Alex; Kholodenko, Boris N

    2017-06-01

    Signal integration determines cell fate on the cellular level, affects cognitive processes and affective responses on the behavioural level, and is likely to be involved in psychoneurobiological processes underlying mood disorders. Interactions between stimuli may subjected to time effects. Time-dependencies of interactions between stimuli typically lead to complex cell responses and complex responses on the behavioural level. We show that both three-factor models and time series models can be used to uncover such time-dependencies. However, we argue that for short longitudinal data the three factor modelling approach is more suitable. In order to illustrate both approaches, we re-analysed previously published short longitudinal data sets. We found that in human embryonic kidney 293 cells cells the interaction effect in the regulation of extracellular signal-regulated kinase (ERK) 1 signalling activation by insulin and epidermal growth factor is subjected to a time effect and dramatically decays at peak values of ERK activation. In contrast, we found that the interaction effect induced by hypoxia and tumour necrosis factor-alpha for the transcriptional activity of the human cyclo-oxygenase-2 promoter in HEK293 cells is time invariant at least in the first 12-h time window after stimulation. Furthermore, we applied the three-factor model to previously reported animal studies. In these studies, memory storage was found to be subjected to an interaction effect of the beta-adrenoceptor agonist clenbuterol and certain antagonists acting on the alpha-1-adrenoceptor / glucocorticoid-receptor system. Our model-based analysis suggests that only if the antagonist drug is administer in a critical time window, then the interaction effect is relevant. © The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  16. Signaling by Small GTPases at Cell-Cell junctions: Protein Interactions Building Control and Networks.

    Science.gov (United States)

    Braga, Vania

    2017-09-11

    A number of interesting reports highlight the intricate network of signaling proteins that coordinate formation and maintenance of cell-cell contacts. We have much yet to learn about how the in vitro binding data is translated into protein association inside the cells and whether such interaction modulates the signaling properties of the protein. What emerges from recent studies is the importance to carefully consider small GTPase activation in the context of where its activation occurs, which upstream regulators are involved in the activation/inactivation cycle and the GTPase interacting partners that determine the intracellular niche and extent of signaling. Data discussed here unravel unparalleled cooperation and coordination of functions among GTPases and their regulators in supporting strong adhesion between cells. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  17. A three-dimensional finite element model for the mechanics of cell-cell interactions.

    Science.gov (United States)

    Viens, Denis; Brodland, G Wayne

    2007-10-01

    Technical challenges, including significant ones associated with cell rearrangement, have hampered the development of three-dimensional finite element models for the mechanics of embryonic cells. These challenges have been overcome by a new formulation in which the contents of each cell, assumed to have a viscosity mu, are modeled using a system of orthogonal dashpots. This approach overcomes a stiffening artifact that affects more traditional models, in which space-filling viscous elements are used to model the cytoplasm. Cells are assumed to be polyhedral in geometry, and each n-sided polygonal face is subdivided into n triangles with a common node at the face center so that it needs not remain flat. A constant tension gamma is assumed to act along each cell-cell interface, and cell rearrangements occur through one of two complementary topological transformations. The formulation predicts mechanical interactions between pairs of similar or dissimilar cells that are consistent with experiments, two-dimensional simulations, contact angle theory, and intracellular pressure calculations. Simulations of the partial engulfment of one tissue type by another show that the formulation is able to model aggregates of several hundred cells without difficulty. Simulations carried out using this formulation suggest new experimental approaches for measuring cell surface tensions and interfacial tensions. The formulation holds promise as a tool for gaining insight into the mechanics of isolated or aggregated embryonic cells and for the design and interpretation of experiments that involve them.

  18. Requirement for Interactions of Natural Killer T Cells and Myeloid Derived Suppressor Cells for Transplantation Tolerance

    Science.gov (United States)

    Hongo, David; Tang, Xiaobin; Baker, Jeanette; Engleman, Edgar G.; Strober, Samuel

    2014-01-01

    The goal of the study was to elucidate the cellular and molecular mechanisms by which a clinically applicable immune tolerance regimen of combined bone marrow and heart transplants in mice results in mixed chimerism and graft acceptance. The conditioning regimen of lymphoid irradiation and anti-T cell antibodies changed the balance of cells in the lymphoid tissues to create a tolerogenic microenvironment favoring the increase of natural killer T (NKT) cells, CD4+CD25+ Tregs, and Gr-1+CD11b+ myeloid derived suppressor cells (MDSCs), over conventional T cells. The depletion of MDSCs abrogated chimerism and tolerance, and add back of these purified cells was restorative. The conditioning regimen activated the MDSCs as judged by the increased expression of arginase-1, IL-4Rα, and PDL1, and the activated cells gained the capacity to suppress the proliferation of conventional T cells to alloantigens in the mixed leukocyte reaction. MDSC activation was dependent on the presence of host invariant NKT cells. The conditioning regimen polarized the host invariant NKT cells toward IL-4 secretion, and MDSC activation was dependent on IL-4. In conclusion, there was a requirement for MDSCs for chimerism and tolerance, and their suppressive function was dependent on their interactions with NKT cells and IL-4. PMID:25311657

  19. Hypertonic saline impedes tumor cell-endothelial cell interaction by reducing adhesion molecule and laminin expression.

    LENUS (Irish Health Repository)

    Shields, Conor J

    2012-02-03

    BACKGROUND: Hypertonic saline infusion dampens inflammatory responses and suppresses neutrophil-endothelial interaction by reducing adhesion molecule expression. This study tested the hypothesis that hypertonic saline attenuates tumor cell adhesion to the endothelium through a similar mechanism. METHODS: Human colon cancer cells (LS174T) were transfected with green fluorescent protein and exposed to lipopolysaccharide, tumor necrosis factor-alpha, and interleukin-6 under hypertonic and isotonic conditions for 1 and 4 hours. Confluent human umbilical vein endothelial cells were similarly exposed. Cellular apoptosis and expression of adhesion molecules and laminin were measured by flow cytometry. Tumor cell adhesion to endothelium and laminin was assessed with fluorescence microscopy. Data are represented as mean +\\/- standard error of mean, and an ANOVA test was performed to gauge statistical significance, with P <.05 considered significant. RESULTS: Hypertonic exposure significantly reduced tumor cell adhesion despite the presence of the perioperative cell stressors (42 +\\/- 2.9 vs 172.5 +\\/- 12.4, P <.05), attenuated tumor cell beta-1 integrin (14.43 vs 23.84, P <.05), and endothelial cell laminin expression (22.78 +\\/- 2.2 vs 33.74 +\\/- 2.4, P <.05), but did not significantly alter cell viability. CONCLUSION: Hypertonic saline significantly attenuates tumor cell adhesion to endothelium by inhibiting adhesion molecule and laminin expression. This may halt the metastatic behavior of tumor cells shed at surgery.

  20. A co-culture device with a tunable stiffness to understand combinatorial cell-cell and cell-matrix interactions.

    Science.gov (United States)

    Rao, Nikhil; Grover, Gregory N; Vincent, Ludovic G; Evans, Samantha C; Choi, Yu Suk; Spencer, Katrina H; Hui, Elliot E; Engler, Adam J; Christman, Karen L

    2013-11-01

    Cell behavior on 2-D in vitro cultures is continually being improved to better mimic in vivo physiological conditions by combining niche cues including multiple cell types and substrate stiffness, which are well known to impact cell phenotype. However, no system exists in which a user can systematically examine cell behavior on a substrate with a specific stiffness (elastic modulus) in culture with a different cell type, while maintaining distinct cell populations. We demonstrate the modification of a silicon reconfigurable co-culture system with a covalently linked hydrogel of user-defined stiffness. This device allows the user to control whether two separate cell populations are in contact with each other or only experience paracrine interactions on substrates of controllable stiffness. To illustrate the utility of this device, we examined the role of substrate stiffness combined with myoblast co-culture on adipose derived stem cell (ASC) differentiation and found that the presence of myoblasts and a 10 kPa substrate stiffness increased ASC myogenesis versus co-culture on stiff substrates. As this example highlights, this technology better controls the in vitro microenvironment, allowing the user to develop a more thorough understanding of the combined effects of cell-cell and cell-matrix interactions.

  1. Uncovering student ideas in physical science

    CERN Document Server

    Keeley, Page

    2014-01-01

    If you and your students can't get enough of a good thing, Volume 2 of Uncovering Student Ideas in Physical Science is just what you need. The book offers 39 new formative assessment probes, this time with a focus on electric charge, electric current, and magnets and electromagnetism. It can help you do everything from demystify electromagnetic fields to explain the real reason balloons stick to the wall after you rub them on your hair.

  2. Osteoblast-Prostate Cancer Cell Interaction in Prostate Cancer Bone Metastases

    National Research Council Canada - National Science Library

    Navone, Nora

    2001-01-01

    .... This suggests that prostate cancer cells interact with cells from the osteoblastic lineage. To understand the molecular bases of prostatic bone metastases, we established two prostate cancer cell lines, MDA PCa 2a and MDA PCa 2b (1...

  3. Familial Brugada syndrome uncovered by hyperkalaemic diabetic ketoacidosis

    NARCIS (Netherlands)

    Postema, Pieter G.; Vlaar, Alexander P. J.; DeVries, J. Hans; Tan, Hanno L.

    2011-01-01

    We describe a case of diabetic ketoacidosis with concomitant hyperkalaemia that uncovered a typical Brugada syndrome electrocardiogram (ECG). Further provocation testing in the patient and his son confirmed familial Brugada syndrome. Diabetic ketoacidosis with hyperkalaemia may uncover an

  4. Interaction of KSHV with Host Cell Surface Receptors and Cell Entry

    Directory of Open Access Journals (Sweden)

    Mohanan Valiya Veettil

    2014-10-01

    Full Text Available Virus entry is a complex process characterized by a sequence of events. Since the discovery of KSHV in 1994, tremendous progress has been made in our understanding of KSHV entry into its in vitro target cells. KSHV entry is a complex multistep process involving viral envelope glycoproteins and several cell surface molecules that is utilized by KSHV for its attachment and entry. KSHV has a broad cell tropism and the attachment and receptor engagement on target cells have an important role in determining the cell type-specific mode of entry. KSHV utilizes heparan sulfate, integrins and EphrinA2 molecules as receptors which results in the activation of host cell pre-existing signal pathways that facilitate the subsequent cascade of events resulting in the rapid entry of virus particles, trafficking towards the nucleus followed by viral and host gene expression. KSHV enters human fibroblast cells by dynamin dependant clathrin mediated endocytosis and by dynamin independent macropinocytosis in dermal endothelial cells. Once internalized into endosomes, fusion of the viral envelope with the endosomal membranes in an acidification dependent manner results in the release of capsids which subsequently reaches the nuclear pore vicinity leading to the delivery of viral DNA into the nucleus. In this review, we discuss the principal mechanisms that enable KSHV to interact with the host cell surface receptors as well as the mechanisms that are required to modulate cell signaling machinery for a successful entry.

  5. Interaction of KSHV with Host Cell Surface Receptors and Cell Entry

    Science.gov (United States)

    Veettil, Mohanan Valiya; Bandyopadhyay, Chirosree; Dutta, Dipanjan; Chandran, Bala

    2014-01-01

    Virus entry is a complex process characterized by a sequence of events. Since the discovery of KSHV in 1994, tremendous progress has been made in our understanding of KSHV entry into its in vitro target cells. KSHV entry is a complex multistep process involving viral envelope glycoproteins and several cell surface molecules that is utilized by KSHV for its attachment and entry. KSHV has a broad cell tropism and the attachment and receptor engagement on target cells have an important role in determining the cell type-specific mode of entry. KSHV utilizes heparan sulfate, integrins and EphrinA2 molecules as receptors which results in the activation of host cell pre-existing signal pathways that facilitate the subsequent cascade of events resulting in the rapid entry of virus particles, trafficking towards the nucleus followed by viral and host gene expression. KSHV enters human fibroblast cells by dynamin dependant clathrin mediated endocytosis and by dynamin independent macropinocytosis in dermal endothelial cells. Once internalized into endosomes, fusion of the viral envelope with the endosomal membranes in an acidification dependent manner results in the release of capsids which subsequently reaches the nuclear pore vicinity leading to the delivery of viral DNA into the nucleus. In this review, we discuss the principal mechanisms that enable KSHV to interact with the host cell surface receptors as well as the mechanisms that are required to modulate cell signaling machinery for a successful entry. PMID:25341665

  6. Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells

    Directory of Open Access Journals (Sweden)

    Park Tae

    2008-12-01

    Full Text Available Abstract Background Acinetobacter baumannii is a nosocomial pathogen of increasing importance, but the pathogenic mechanism of this microorganism has not been fully explored. This study investigated the potential of A. baumannii to invade epithelial cells and determined the role of A. baumannii outer membrane protein A (AbOmpA in interactions with epithelial cells. Results A. baumannii invaded epithelial cells by a zipper-like mechanism, which is associated with microfilament- and microtubule-dependent uptake mechanisms. Internalized bacteria were located in the membrane-bound vacuoles. Pretreatment of recombinant AbOmpA significantly inhibited the adherence to and invasion of A. baumannii in epithelial cells. Cell invasion of isogenic AbOmpA- mutant significantly decreased as compared with wild-type bacteria. In a murine pneumonia model, wild-type bacteria exhibited a severe lung pathology and induced a high bacterial burden in blood, whereas AbOmpA- mutant was rarely detected in blood. Conclusion A. baumannii adheres to and invades epithelial cells. AbOmpA plays a major role in the interactions with epithelial cells. These findings contribute to the understanding of A. baumannii pathogenesis in the early stage of bacterial infection.

  7. Heparan sulfate proteoglycans: structure, protein interactions and cell signaling

    Directory of Open Access Journals (Sweden)

    Juliana L. Dreyfuss

    2009-09-01

    Full Text Available Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.Proteoglicanos de heparam sulfato são encontrados tanto superfície celular quanto na matriz extracelular em todas as espécies animais. Esta revisão tem enfoque nas características estruturais dos proteoglicanos de heparam sulfato e nas interações destes proteoglicanos com proteínas que levam à sinalização celular. As cadeias de heparam sulfato, devido a sua variedade estrutural, são capazes de se ligar e interagir com ampla gama de proteínas, como fatores de crescimento, quimiocinas, morfógenos, componentes da matriz extracelular, enzimas, entreoutros. Existe uma especificidade estrutural que direciona as interações dos heparam sulfatos e proteínas alvo. Esta especificidade está relacionada com a estrutura da cadeia do polissacarídeo e os motivos conservados da cadeia polipeptídica das proteínas envolvidas nesta interação. Os heparam

  8. Salmonella serovar-specific interaction with jejunal epithelial cells.

    Science.gov (United States)

    Razzuoli, Elisabetta; Amadori, Massimo; Lazzara, Fabrizio; Bilato, Dania; Ferraris, Monica; Vito, Guendalina; Ferrari, Angelo

    2017-08-01

    Gut is often a receptacle for many different pathogens in feed and/or the environment, such as Salmonella spp. The current knowledge about pathogenicity of Salmonella is restricted to few serotypes, whereas other important ones like S. Coeln, S. Thompson, S. Veneziana, have not been investigated yet in human and animal models. Therefore, the aim of our work was to verify the ability of widespread environmental Salmonella strains to penetrate and modulate innate immunity in pig intestinal IPEC-J2 cells. Our results outline the different ability of Salmonella strains to modulate innate immunity; the expression of the IFN-β gene was increased by S. Typhimurium, S. Ablogame and S. Diarizonae 2, that also caused an inflammatory response in terms of Interleukin (IL)-1β and/or IL-8 gene espression. In particular, IL-8 gene expression and protein release were significantly modulated by 5 Salmonella strains out of 7. Interestingly, S. Typhimurium, S. Coeln and S. Thompson strains, characterized by a peculiar ability to penetrate into IPEC-J2 cells, up-regulated both IL-8 and TNF-α gene expression. Accordingly, blocking IL-8 was shown to decrease the penetration of S. Typhimurium. On the contrary, S. Diarizonae strain 1, showing lesser invasion of IPEC-J2 cells, down-regulated the p38-MAPK pathway, and it did not induce an inflammatory response. Our results confirm that IPEC-J2 cells are a useful model to evaluate host-gut pathogen interaction and indicate IL-8 and TNF-α as possible predictive markers of invasiveness of Salmonella strains in enterocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Persistent Polyclonal B Cell Lymphocytosis B Cells Can Be Activated through CD40-CD154 Interaction

    Directory of Open Access Journals (Sweden)

    Emmanuelle Dugas-Bourdages

    2014-01-01

    Full Text Available Persistent polyclonal B cell lymphocytosis (PPBL is a rare disorder, diagnosed primarily in adult female smokers and characterized by an expansion of CD19+CD27+IgM+ memory B cells, by the presence of binucleated lymphocytes, and by a moderate elevation of serum IgM. The clinical course is usually benign, but it is not known whether or not PPBL might be part of a process leading to the emergence of a malignant proliferative disorder. In this study we sought to investigate the functional response of B cells from patients with PPBL by use of an optimal memory B cell culture model based on the CD40-CD154 interaction. We found that the proliferation of PPBL B cells was almost as important as that of B cells from normal controls, resulting in high immunoglobulin secretion with in vitro isotypic switching. We conclude that the CD40-CD154 activation pathway is functional in the memory B cell population of PPBL patients, suggesting that the disorder may be due to either a dysfunction of other cells in the microenvironment or a possible defect in another B cell activation pathway.

  10. Stem cell-paved biobridges facilitate stem transplant and host brain cell interactions for stroke therapy.

    Science.gov (United States)

    Duncan, Kelsey; Gonzales-Portillo, Gabriel S; Acosta, Sandra A; Kaneko, Yuji; Borlongan, Cesar V; Tajiri, Naoki

    2015-10-14

    Distinguished by an infarct core encased within a penumbra, stroke remains a primary source of mortality within the United States. While our scientific knowledge regarding the pathology of stroke continues to improve, clinical treatment options for patients suffering from stroke are extremely limited. Tissue plasminogen activator (tPA) remains the sole FDA-approved drug proven to be helpful following stroke. However, due to the need to administer the drug within 4.5h of stroke onset its usefulness is constrained to less than 5% of all patients suffering from ischemic stroke. One experimental therapy for the treatment of stroke involves the utilization of stem cells. Stem cell transplantation has been linked to therapeutic benefit by means of cell replacement and release of growth factors; however the precise means by which this is accomplished has not yet been clearly delineated. Using a traumatic brain injury model, we recently demonstrated the ability of transplanted mesenchymal stromal cells (MSCs) to form a biobridge connecting the area of injury to the neurogenic niche within the brain. We hypothesize that MSCs may also have the capacity to create a similar biobridge following stroke; thereby forming a conduit between the neurogenic niche and the stroke core and peri-infarct area. We propose that this biobridge could assist and promote interaction of host brain cells with transplanted stem cells and offer more opportunities to enhance the effectiveness of stem cell therapy in stroke. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Physical View on the Interactions Between Cancer Cells and the Endothelial Cell Lining During Cancer Cell Transmigration and Invasion

    Science.gov (United States)

    Mierke, Claudia T.

    There exist many reviews on the biological and biochemical interactions of cancer cells and endothelial cells during the transmigration and tissue invasion of cancer cells. For the malignant progression of cancer, the ability to metastasize is a prerequisite. In particular, this means that certain cancer cells possess the property to migrate through the endothelial lining into blood or lymph vessels, and are possibly able to transmigrate through the endothelial lining into the connective tissue and follow up their invasion path in the targeted tissue. On the molecular and biochemical level the transmigration and invasion steps are well-defined, but these signal transduction pathways are not yet clear and less understood in regards to the biophysical aspects of these processes. To functionally characterize the malignant transformation of neoplasms and subsequently reveal the underlying pathway(s) and cellular properties, which help cancer cells to facilitate cancer progression, the biomechanical properties of cancer cells and their microenvironment come into focus in the physics-of-cancer driven view on the metastasis process of cancers. Hallmarks for cancer progression have been proposed, but they still lack the inclusion of specific biomechanical properties of cancer cells and interacting surrounding endothelial cells of blood or lymph vessels. As a cancer cell is embedded in a special environment, the mechanical properties of the extracellular matrix also cannot be neglected. Therefore, in this review it is proposed that a novel hallmark of cancer that is still elusive in classical tumor biological reviews should be included, dealing with the aspect of physics in cancer disease such as the natural selection of an aggressive (highly invasive) subtype of cancer cells displaying a certain adhesion or chemokine receptor on their cell surface. Today, the physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present

  12. Uncovering the dynamics of interaction in development cooperation

    DEFF Research Database (Denmark)

    Fejerskov, Adam Moe; Lundsgaarde, Erik; Cold-Ravnkilde, Signe

    The rising prominence of new state and non-state actors in international politics has stimulated extensive discussion in the social sciences over the last decade and development cooperation has been a central arena for conceptualising the encounter between old and new powers. This working paper...... critically reflects on the substantial body of scholarship that seeks to document the characteristics of new actors in international development and chart the consequences of their engagement for global development governance. This review underlines the importance of questioning the homogeneity of actor...... constellations, relationships and ideas. Specifically, it addresses the extent to which the commonly-used binary concepts of development cooperation provider groups adequately capture relevant distinctions among the actors and add analytical value to research on development cooperation. The paper advocates...

  13. Cytokines, hepatic cell profiling and cell interactions during bone marrow cell therapy for liver fibrosis in cholestatic mice.

    Directory of Open Access Journals (Sweden)

    Daphne Pinheiro

    Full Text Available Bone marrow cells (BMC migrate to the injured liver after transplantation, contributing to regeneration through multiple pathways, but mechanisms involved are unclear. This work aimed to study BMC migration, characterize cytokine profile, cell populations and proliferation in mice with liver fibrosis transplanted with GFP+ BMC. Confocal microscopy analysis showed GFP+ BMC near regions expressing HGF and SDF-1 in the fibrotic liver. Impaired liver cell proliferation in fibrotic groups was restored after BMC transplantation. Regarding total cell populations, there was a significant reduction in CD68+ cells and increased Ly6G+ cells in transplanted fibrotic group. BMC contributed to the total populations of CD144, CD11b and Ly6G cells in the fibrotic liver, related to an increment of anti-fibrotic cytokines (IL-10, IL-13, IFN-γ and HGF and reduction of pro-inflammatory cytokines (IL-17A and IL-6. Therefore, HGF and SDF-1 may represent important chemoattractants for transplanted BMC in the injured liver, where these cells can give rise to populations of extrahepatic macrophages, neutrophils and endothelial progenitor cells that can interact synergistically with other liver cells towards the modulation of an anti-fibrotic cytokine profile promoting the onset of liver regeneration.

  14. Transport by populations of fast and slow kinesins uncovers novel family-dependent motor characteristics important for in vivo function.

    Science.gov (United States)

    Arpağ, Göker; Shastry, Shankar; Hancock, William O; Tüzel, Erkan

    2014-10-21

    Intracellular cargo transport frequently involves multiple motor types, either having opposite directionality or having the same directionality but different speeds. Although significant progress has been made in characterizing kinesin motors at the single-molecule level, predicting their ensemble behavior is challenging and requires tight coupling between experiments and modeling to uncover the underlying motor behavior. To understand how diverse kinesins attached to the same cargo coordinate their movement, we carried out microtubule gliding assays using pairwise mixtures of motors from the kinesin-1, -2, -3, -5, and -7 families engineered to have identical run lengths and surface attachments. Uniform motor densities were used and microtubule gliding speeds were measured for varying proportions of fast and slow motors. A coarse-grained computational model of gliding assays was developed and found to recapitulate the experiments. Simulations incorporated published force-dependent velocities and run lengths, along with mechanical interactions between motors bound to the same microtubule. The simulations show that the force-dependence of detachment is the key parameter that determines gliding speed in multimotor assays, while motor compliance, surface density, and stall force all play minimal roles. Simulations also provide estimates for force-dependent dissociation rates, suggesting that kinesin-1 and the mitotic motors kinesin-5 and -7 maintain microtubule association against loads, whereas kinesin-2 and -3 readily detach. This work uncovers unexpected motor behavior in multimotor ensembles and clarifies functional differences between kinesins that carry out distinct mechanical tasks in cells.

  15. Study of the adhesion interaction using 51Cr labelling method between the myeloma cell lines and the endothelial cells

    International Nuclear Information System (INIS)

    Zhang Xueguang; Wang Jiangfang; Mao Zijun

    1995-06-01

    Using 51 Cr labelled multiple myeloma (MM) cell lines U266/XG-7, the regulatory effect of cytokines on the adhesive interaction between myeloma-cell lines U266/XG-7 and the endothelial cells, and the effects of these cytokines on expression of adhesion molecules and secretion of other cytokines were studied. The experimental results were as follows: (1) IL-6 and IL-6 Rgp 130-associated growth factors (such as GM-CSF) are not only myeloma cell growth factors, but also can enhance the adhesion between MM cells and endothelial cells and thus facilitated the metastasis of tumor cells. (2) Cytokines could induce increase in the expression of CD54 and CD44 on the endothelial cells and the secretion of IL-6 and TNF by the endothelial cells. On the other hand, the adhesion could also cause the change of CD11a, CD54, CD44 and VLA-4 on surface of myeloma cells XG-7. Finally, the interaction between MM cells and stromal cells from murine bone marrow could rapidly induce autocrine of IL-6 in human IL-6-dependent MM cells. (3) The interaction between stromal cells and tumor cells regulated by the cytokines and adhesion molecules was a key element in the pathogenesis and development of human MM. Among these factors, VLA-4 might be one of the molecules involved in U266/XG-7-EC interaction. (5 tabs., 8 figs.)

  16. Structural characteristics of an antigen required for its interaction with Ia and recognition by T cells

    DEFF Research Database (Denmark)

    Sette, A; Buus, S; Colon, S

    1987-01-01

    A detailed analysis of the residues within an immunogenic peptide that endow it with the capacity to interact with Ia and to be recognized by T cells is presented. Ia interacts with only a few of the peptide residues and overall exhibits a very broad specificity. Some residues appear to interact...... both with Ia and with T cells, leading to a model in which a peptide antigen is 'sandwiched' between Ia and the T-cell receptor....

  17. [Impact of stromal interaction molecule 1 silencing on cell cycle of endothelial progenitor cells].

    Science.gov (United States)

    Kuang, Chun-Yan; Huang, Lan; Yu, Yang; Deng, Meng-Yang; Wang, Kui; Qian, De-Hui

    2011-07-01

    To investigate the effect of stromal interaction molecule 1 (STIM1) silencing on EPCs cell cycle. Rat bone marrow derived endothelial progenitor cells (EPCs) were isolated and cultured in L-DMEM with 20% FBS. Ad-si/rSTIM1 and Ad-hSTIM1 were then transfected into EPCs and the expression of STIM1 mRNA was detected by RT-PCR. The cell cycle was determined using flow cytometry analysis and intracellular free Ca2+ was measured using LSCM. Co-immunoprecipitation was performed to examine the interaction between STIM1 and TRPC1. Protein levels of inositol 1, 4, 5-trisphosphate were analyzed with ELISA assay. Forty-eight hours after transfection, the expression of STIM1 mRNA was significantly downregulated (0.37 +/- 0.02 vs. 1.00 +/- 0.02, P si/rSTIM1 group compared with control group. The cell cycle was arrested at G1 phase [(90.91 +/- 1.10)% vs. (77.10 +/- 0.56)%, P si/rSTIM1. However, cotransfection of Ad-hSTIM1 with Ad-si/rSTIM1 significantly reversed these responses. Interestingly, co-immunoprecipitation study showed that STIM1 co-precipitated with TRPC1, and IP3 levels measured by ELISA were similar among three groups (P > 0.05). siRNA-mediated knockdown of STIM1 inhibited EPCs proliferation by reducing intracellular free Ca2+ through TRPC1-SOC signaling pathway.

  18. Exploration of the pathways and interaction network involved in bladder cancer cell line with knockdown of Opa interacting protein 5.

    Science.gov (United States)

    He, Xuefeng; Ding, Xiang; Wen, Duangai; Hou, Jianquan; Ping, Jigen; He, Jun

    2017-09-01

    In our previous study, we displayed that knockdown of Opa interacting protein 5 (OIP5) inhibited cell growth, disturbed cell cycle and increased cell apoptosis in bladder cancer (BC) cell line. Our present study aimed to explore the underlying pathways and interaction network involved in the roles of OIP5 in BC. Microarray analysis was conducted to obtain mRNA expression profiling of OIP5 knockdown (shOIP5) and control (shCtrl) BC cell lines. Bioinformatics analyses were performed including differentially expressed mRNAs (DEGs) identification, protein-protein interaction network construction, biological functions of prediction and ingenuity pathways analysis (IPA). Western Blotting (WB) was subjected to validate the protein expression levels of candidate DEGs in shOIP5 BC cell line. Respective 255 up- and 184 down-regulated DEGs were identified in shOIP5 group compared with shCtrl group. In the PPI network, CAND1 and MYC had the highest connectivity with DEGs. 439 DEGs were significantly enriched in inflammatory response, regulation of cell proliferation, Toll-like receptor signaling pathway, cytokine-cytokine receptor interaction and bladder cancer. In the disease and function enrichment, DEGs were obviously involved in cellular movement, cellular growth and proliferation, cancer, inflammatory response, cell death and survival. In the OIP5 regulatory network, CDH2, IRS1, IRAK3, ID1, TNF, IL6, ITGA6, MYC and SOD2 interacted with OIP5. The WB validation results were compatible with our bioinformatics analyses. OIP5 interaction network might function as an oncogene in BC progression based on aberrant inflammatory responses. Our study might provide valuable information for investigation of tumorigenesis mechanism in BC. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    Science.gov (United States)

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  20. Tuning Nb–Pt Interactions To Facilitate Fuel Cell Electrocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Ghoshal, Shraboni [Northeastern; amp, Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States; Jia, Qingying [Northeastern; amp, Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States; Bates, Michael K. [Northeastern; amp, Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States; Li, Jingkun [Northeastern; amp, Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States; Xu, Chunchuan [Ford Motor Company, Dearborn, Michigan 48121, United States; Gath, Kerrie [Ford Motor Company, Dearborn, Michigan 48121, United States; Yang, Jun [Ford Motor Company, Dearborn, Michigan 48121, United States; Waldecker, James [Ford Motor Company, Dearborn, Michigan 48121, United States; Che, Haiying [Shanghai; Liang, Wentao [Department; Meng, Guangnan [ULVAC Technologies, Inc., 401; Ma, Zi-Feng [Shanghai; Mukerjee, Sanjeev [Northeastern; amp, Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States

    2017-06-30

    High stability, availability of multiple oxidation states, and accessibility within a wide electrochemical window are the prime features of Nb that make it a favorable candidate for electrocatalysis, especially when it is combined with Pt. However, Nb has been used as a support in the form of oxides in all previously reported Pt–Nb electrocatalysts, and no Pt–Nb alloying phase has been demonstrated hitherto. Herein, we report a multifunctional Pt–Nb composite (PtNb/NbOx-C) where Nb exists both as an alloying component with Pt and as an oxide support and is synthesized by means of a simple wet chemical method. In this work, the Pt–Nb alloy phase has been firmly verified with the help of multiple spectroscopic methods. This allows for the experimental evidence of the theoretical prediction that Pt–Nb alloy interactions improve the oxygen reduction reaction (ORR) activity of Pt. In addition, such a combination of multiphase Nb brings up myriad features encompassing increased ORR durability, immunity to phosphate anion poisoning, enhanced hydrogen oxidation reaction (HOR) activity, and oxidative carbon monoxide (CO) stripping, making this electrocatalyst useful in multiple fuel cell systems.

  1. Uncovering growth-suppressive MicroRNAs in lung cancer

    DEFF Research Database (Denmark)

    Liu, Xi; Sempere, Lorenzo F; Galimberti, Fabrizio

    2009-01-01

    PURPOSE: MicroRNA (miRNA) expression profiles improve classification, diagnosis, and prognostic information of malignancies, including lung cancer. This study uncovered unique growth-suppressive miRNAs in lung cancer. EXPERIMENTAL DESIGN: miRNA arrays were done on normal lung tissues...... and adenocarcinomas from wild-type and proteasome degradation-resistant cyclin E transgenic mice to reveal repressed miRNAs in lung cancer. Real-time and semiquantitative reverse transcription-PCR as well as in situ hybridization assays validated these findings. Lung cancer cell lines were derived from each......-malignant human lung tissue bank. RESULTS: miR-34c, miR-145, and miR-142-5p were repressed in transgenic lung cancers. Findings were confirmed by real-time and semiquantitative reverse transcription-PCR as well as in situ hybridization assays. Similar miRNA profiles occurred in human normal versus malignant lung...

  2. Neural cell adhesion molecule differentially interacts with isoforms of the fibroblast growth factor receptor

    DEFF Research Database (Denmark)

    Christensen, Claus; Berezin, Vladimir; Bock, Elisabeth

    2011-01-01

    The fibroblast growth factor receptor (FGFR) can be activated through direct interactions with various fibroblast growth factors or through a number of cell adhesion molecules, including the neural cell adhesion molecule (NCAM). We produced recombinant proteins comprising the ligand...

  3. Promoted cell and material interaction on atmospheric pressure plasma treated titanium

    International Nuclear Information System (INIS)

    Han, Inho; Vagaska, Barbora; Seo, Hyok Jin; Kang, Jae Kyeong; Kwon, Byeong-Ju; Lee, Mi Hee; Park, Jong-Chul

    2012-01-01

    Surface carbon contamination is a natural phenomenon. However, it interferes with cell-biomaterial interaction. In order to eliminate the interference, atmospheric pressure plasma treatment was employed. Dielectric barrier discharge treatment of titanium surface for less than 10 min turned titanium super-hydrophilic. Adsorption of fibronectin which is the major cell adhesive protein increased after plasma treatment. Cell attachment parameters of osteoblast cells such as population, cell area, perimeter, Feret's diameter and cytoskeleton development were also enhanced. Cell proliferation increased on the plasma treated titanium. In conclusion, dielectric barrier discharge type atmospheric pressure plasma system is effective to modify titanium surface and the modified titanium promotes cell and material interactions.

  4. Cell-Autonomous Defects in Thymic Epithelial Cells Disrupt Endothelial-Perivascular Cell Interactions in the Mouse Thymus

    Science.gov (United States)

    Bryson, Jerrod L.; Griffith, Ann V.; Hughes III, Bernard; Saito, Fumi; Takahama, Yousuke; Richie, Ellen R.; Manley, Nancy R.

    2013-01-01

    The thymus is composed of multiple stromal elements comprising specialized stromal microenvironments responsible for the development of self-tolerant and self-restricted T cells. Here, we investigated the ontogeny and maturation of the thymic vasculature. We show that endothelial cells initially enter the thymus at E13.5, with PDGFR-β+ mesenchymal cells following at E14.5. Using an allelic series of the thymic epithelial cell (TEC) specific transcription factor Foxn1, we showed that these events are delayed by 1–2 days in Foxn1 Δ/Δ mice, and this phenotype was exacerbated with reduced Foxn1 dosage. At subsequent stages there were fewer capillaries, leaky blood vessels, disrupted endothelium - perivascular cell interactions, endothelial cell vacuolization, and an overall failure of vascular organization. The expression of both VEGF-A and PDGF-B, which are both primarily expressed in vasculature-associated mesenchyme or endothelium in the thymus, were reduced at E13.5 and E15.5 in Foxn1 Δ/Δ mice compared with controls. These data suggest that Foxn1 is required in TECs both to recruit endothelial cells and for endothelial cells to communicate with thymic mesenchyme, and for the differentiation of vascular-associated mesenchymal cells. These data show that Foxn1 function in TECs is required for normal thymus size and to generate the cellular and molecular environment needed for normal thymic vascularization. These data further demonstrate a novel TEC-mesenchyme-endothelial interaction required for proper fetal thymus organogenesis. PMID:23750244

  5. Cell-autonomous defects in thymic epithelial cells disrupt endothelial-perivascular cell interactions in the mouse thymus.

    Directory of Open Access Journals (Sweden)

    Jerrod L Bryson

    Full Text Available The thymus is composed of multiple stromal elements comprising specialized stromal microenvironments responsible for the development of self-tolerant and self-restricted T cells. Here, we investigated the ontogeny and maturation of the thymic vasculature. We show that endothelial cells initially enter the thymus at E13.5, with PDGFR-β(+ mesenchymal cells following at E14.5. Using an allelic series of the thymic epithelial cell (TEC specific transcription factor Foxn1, we showed that these events are delayed by 1-2 days in Foxn1 (Δ/Δ mice, and this phenotype was exacerbated with reduced Foxn1 dosage. At subsequent stages there were fewer capillaries, leaky blood vessels, disrupted endothelium - perivascular cell interactions, endothelial cell vacuolization, and an overall failure of vascular organization. The expression of both VEGF-A and PDGF-B, which are both primarily expressed in vasculature-associated mesenchyme or endothelium in the thymus, were reduced at E13.5 and E15.5 in Foxn1 (Δ/Δ mice compared with controls. These data suggest that Foxn1 is required in TECs both to recruit endothelial cells and for endothelial cells to communicate with thymic mesenchyme, and for the differentiation of vascular-associated mesenchymal cells. These data show that Foxn1 function in TECs is required for normal thymus size and to generate the cellular and molecular environment needed for normal thymic vascularization. These data further demonstrate a novel TEC-mesenchyme-endothelial interaction required for proper fetal thymus organogenesis.

  6. 5-Fluorouracil-radiation interactions in human colon adenocarcinoma cells

    International Nuclear Information System (INIS)

    Buchholz, Daniel J.; Lepek, Katherine J.; Rich, Tyvin A.; Murray, David

    1995-01-01

    Purpose: To determine the effect of cellular proliferation and cell cycle stage on the ability of postirradiation 5-fluorouracil (5-FU) to radiosensitize cultured human colon adenocarcinoma Clone A cells. Methods and Materials: Cell survival curves were generated for irradiated: (a) log- and plateau-phase Clone A cells; and (b) Clone A cells separated by centrifugal elutriation into the various phases of the cell cycle; with and without postirradiation treatment with 100 μg/ml 5-FU. Results: Postirradiation treatment with 5-FU sensitized proliferating cells to a greater degree than it sensitized cells growing in plateau phase. The β component of cell kill in log-phase cells was increased by a factor of 1.5 with a sensitizer enhancement ratio of 1.21 at the 0.01 survival level. Plateau-phase cells showed less radiosensitization (sensitizer enhancement ratio of 1.13 at the 0.01 survival level); however, there was a mild increase in both α and β kill in plateau-phase cells. Elutriated G 1 cells were the most radiosensitive, independent of treatment with 5-FU. The phase of the cell cycle had little effect on the ability of fluorouracil to radiosensitize Clone A cells. Conclusion: Proliferating cells are more susceptible to radiosensitization with 5-FU than plateau-phase cells are, but this effect appears to be independent of the phase of the cell cycle

  7. Spatiotemporal control of cell–cell reversible interactions using molecular engineering

    Science.gov (United States)

    Shi, Peng; Ju, Enguo; Yan, Zhengqing; Gao, Nan; Wang, Jiasi; Hou, Jianwen; Zhang, Yan; Ren, Jinsong; Qu, Xiaogang

    2016-01-01

    Manipulation of cell–cell interactions has potential applications in basic research and cell-based therapy. Herein, using a combination of metabolic glycan labelling and bio-orthogonal click reaction, we engineer cell membranes with β-cyclodextrin and subsequently manipulate cell behaviours via photo-responsive host-guest recognition. With this methodology, we demonstrate reversible manipulation of cell assembly and disassembly. The method enables light-controllable reversible assembly of cell–cell adhesion, in contrast with previously reported irreversible effects, in which altered structure could not be reused. We also illustrate the utility of the method by designing a cell-based therapy. Peripheral blood mononuclear cells modified with aptamer are effectively redirected towards target cells, resulting in enhanced cell apoptosis. Our approach allows precise control of reversible cell–cell interactions and we expect that it will promote further developments of cell-based therapy. PMID:27708265

  8. Cell Receptor-Basement Membrane Interactions in Health and Disease: a Kidney-Centric View

    Science.gov (United States)

    Borza, Corina M.; Chen, Xiwu; Zent, Roy; Pozzi, Ambra

    2016-01-01

    Cell-extracellular matrix (ECM) interactions are essential for tissue development, homeostasis, and response to injury. Basement membranes (BMs) are specialized ECMs that separate epithelial or endothelial cells from stromal components and interact with cells via cellular receptors, including integrins and discoidin domain receptors. Disruption of cell-BM interactions due to either injury or genetic defects in either the ECM components or cellular receptors often lead to irreversible tissue injury and loss of organ function. Animal models that lack specific BM components or receptors either globally or in selective tissues have been used to help with our understanding of the molecular mechanisms whereby cell-BM interactions regulate organ function in physiological and pathological conditions. We review recently published work on animal models that explore how cell-BM interactions regulate kidney homeostasis in both health and disease. PMID:26610916

  9. Requirement of Interaction between Mast Cells and Skin Dendritic Cells to Establish Contact Hypersensitivity

    Science.gov (United States)

    Otsuka, Atsushi; Kubo, Masato; Honda, Tetsuya; Egawa, Gyohei; Nakajima, Saeko; Tanizaki, Hideaki; Kim, Bongju; Matsuoka, Satoshi; Watanabe, Takeshi; Nakae, Susumu; Miyachi, Yoshiki; Kabashima, Kenji

    2011-01-01

    The role of mast cells (MCs) in contact hypersensitivity (CHS) remains controversial. This is due in part to the use of the MC-deficient Kit W/Wv mouse model, since Kit W/Wv mice congenitally lack other types of cells as a result of a point mutation in c-kit. A recent study indicated that the intronic enhancer (IE) for Il4 gene transcription is essential for MCs but not in other cell types. The aim of this study is to re-evaluate the roles of MCs in CHS using mice in which MCs can be conditionally and specifically depleted. Transgenic Mas-TRECK mice in which MCs are depleted conditionally were newly generated using cell-type specific gene regulation by IE. Using this mouse, CHS and FITC-induced cutaneous DC migration were analyzed. Chemotaxis assay and cytoplasmic Ca2+ imaging were performed by co-culture of bone marrow-derived MCs (BMMCs) and bone marrow-derived dendritic cells (BMDCs). In Mas-TRECK mice, CHS was attenuated when MCs were depleted during the sensitization phase. In addition, both maturation and migration of skin DCs were abrogated by MC depletion. Consistently, BMMCs enhanced maturation and chemotaxis of BMDC in ICAM-1 and TNF-α dependent manners Furthermore, stimulated BMDCs increased intracellular Ca2+ of MC upon direct interaction and up-regulated membrane-bound TNF-α on BMMCs. These results suggest that MCs enhance DC functions by interacting with DCs in the skin to establish the sensitization phase of CHS. PMID:21980488

  10. Requirement of interaction between mast cells and skin dendritic cells to establish contact hypersensitivity.

    Directory of Open Access Journals (Sweden)

    Atsushi Otsuka

    Full Text Available The role of mast cells (MCs in contact hypersensitivity (CHS remains controversial. This is due in part to the use of the MC-deficient Kit (W/Wv mouse model, since Kit (W/Wv mice congenitally lack other types of cells as a result of a point mutation in c-kit. A recent study indicated that the intronic enhancer (IE for Il4 gene transcription is essential for MCs but not in other cell types. The aim of this study is to re-evaluate the roles of MCs in CHS using mice in which MCs can be conditionally and specifically depleted. Transgenic Mas-TRECK mice in which MCs are depleted conditionally were newly generated using cell-type specific gene regulation by IE. Using this mouse, CHS and FITC-induced cutaneous DC migration were analyzed. Chemotaxis assay and cytoplasmic Ca²⁺ imaging were performed by co-culture of bone marrow-derived MCs (BMMCs and bone marrow-derived dendritic cells (BMDCs. In Mas-TRECK mice, CHS was attenuated when MCs were depleted during the sensitization phase. In addition, both maturation and migration of skin DCs were abrogated by MC depletion. Consistently, BMMCs enhanced maturation and chemotaxis of BMDC in ICAM-1 and TNF-α dependent manners Furthermore, stimulated BMDCs increased intracellular Ca²⁺ of MC upon direct interaction and up-regulated membrane-bound TNF-α on BMMCs. These results suggest that MCs enhance DC functions by interacting with DCs in the skin to establish the sensitization phase of CHS.

  11. Interactive Visual Analysis for Organic Photovoltaic Solar Cells

    KAUST Repository

    Abouelhassan, Amal A.

    2017-12-05

    Organic Photovoltaic (OPV) solar cells provide a promising alternative for harnessing solar energy. However, the efficient design of OPV materials that achieve better performance requires support by better-tailored visualization tools than are currently available, which is the goal of this thesis. One promising approach in the OPV field is to control the effective material of the OPV device, which is known as the Bulk-Heterojunction (BHJ) morphology. The BHJ morphology has a complex composition. Current BHJ exploration techniques deal with the morphologies as black boxes with no perception of the photoelectric current in the BHJ morphology. Therefore, this method depends on a trial-and-error approach and does not efficiently characterize complex BHJ morphologies. On the other hand, current state-of-the-art methods for assessing the performance of BHJ morphologies are based on the global quantification of morphological features. Accordingly, scientists in OPV research are still lacking a sufficient understanding of the best material design. To remove these limitations, we propose a new approach for knowledge-assisted visual exploration and analysis in the OPV domain. We develop new techniques for enabling efficient OPV charge transport path analysis. We employ, adapt, and develop techniques from scientific visualization, geometric modeling, clustering, and visual interaction to obtain new designs of visualization tools that are specifically tailored for the needs of OPV scientists. At the molecular scale, the user can use semantic rules to define clusters of atoms with certain geometric properties. At the nanoscale, we propose a novel framework for visual characterization and exploration of local structure-performance correlations. We also propose a new approach for correlating structural features to performance bottlenecks. We employ a visual feedback strategy that allows scientists to make intuitive choices about fabrication parameters. We furthermore propose a

  12. Surface modification for interaction study with bacteria and preosteoblast cells

    Science.gov (United States)

    Song, Qing

    Surface modification plays a pivotal role in bioengineering. Polymer coatings can provide biocompatibility and biofunctionalities to biomaterials through surface modification. In this dissertation, initiated chemical vapor deposition (iCVD) was utilized to coat two-dimensional (2D) and three-dimensional (3D) substrates with differently charged polyelectrolytes in order to generate antimicrobial and osteocompatible biomaterials. ICVD is a modified CVD technique that enables surface modification in an all-dry condition without substrate damage and solvent contamination. The free-radical polymerization allows the vinyl polymers to conformally coat on various micro- and nano-structured substrates and maintains the delicate structure of the functional groups. The vapor deposition of polycations provided antimicrobial activity to planar and porous substrates through destroying the negatively charged bacterial membrane and brought about high contact-killing efficiency (99.99%) against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli. Additionally, the polyampholytes synthesized by iCVD exhibited excellent antifouling performance against the adhesion of Gram-positive Listeria innocua and Gram-negative E. coli in phosphate buffered saline (PBS). Their antifouling activities were attributed to the electrostatic interaction and hydration layers that served as physical and energetic barriers to prevent bacterial adhesion. The contact-killing and antifouling polymers synthesized by iCVD can be applied to surface modification of food processing equipment and medical devices with the aim of reducing foodborne diseases and medical infections. Moreover, the charged polyelectrolyte modified 2D polystyrene surfaces displayed good osteocompatibility and enhanced osteogenesis of preosteoblast cells than the un-modified polystyrene surface. In order to promote osteoinduction of hydroxyapatite (HA) scaffolds, bioinspired polymer-controlled mineralization was conducted

  13. Stimulatory interactions between human coronary smooth muscle cells and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Sara Paccosi

    Full Text Available Despite inflammatory and immune mechanisms participating to atherogenesis and dendritic cells (DCs driving immune and non-immune tissue injury response, the interactions between DCs and vascular smooth muscle cells (VSMCs possibly relevant to vascular pathology including atherogenesis are still unclear. To address this issue, immature DCs (iDCs generated from CD14+ cells isolated from healthy donors were matured either with cytokines (mDCs, or co-cultured (ccDCs with human coronary artery VSMCs (CASMCs using transwell chambers. Co-culture induced DC immunophenotypical and functional maturation similar to cytokines, as demonstrated by flow cytometry and mixed lymphocyte reaction. In turn, factors from mDCs and ccDCs induced CASMC migration. MCP-1 and TNFα, secreted from DCs, and IL-6 and MCP-1, secreted from CASMCs, were primarily involved. mDCs adhesion to CASMCs was enhanced by CASMC pre-treatment with IFNγ and TNFα ICAM-1 and VCAM-1 were involved, since the expression of specific mRNAs for these molecules increased and adhesion was inhibited by neutralizing antibodies to the counter-receptors CD11c and CD18. Adhesion was also inhibited by CASMC pre-treatment with the HMG-CoA-reductase inhibitor atorvastatin and the PPARγ agonist rosiglitazone, which suggests a further mechanism for the anti-inflammatory action of these drugs. Adhesion of DCs to VSMCs was shown also in vivo in rat carotid 7 to 21 days after crush and incision injury. The findings indicate that DCs and VSMCs can interact with reciprocal stimulation, possibly leading to perpetuate inflammation and vascular wall remodelling, and that the interaction is enhanced by a cytokine-rich inflammatory environment and down-regulated by HMGCoA-reductase inhibitors and PPARγ agonists.

  14. Radiation Interaction with Therapeutic Drugs and Cell Membranes

    International Nuclear Information System (INIS)

    Martin, Diana I.; Manaila, Elena N.; Matei, Constantin I.; Iacob, Nicusor I.; Ighigeanu, Daniel I.; Craciun, Gabriela D.; Moisescu, Mihaela I.; Savopol, Tudor D.; Kovacs, Eugenia A.; Cinca, Sabin A.; Margaritescu, Irina D.

    2007-01-01

    This transient permeabilized state of the cell membrane, named the 'cell electroporation' (CE) can be used to increase cells uptake of drugs that do not readily pass cell membrane, thus enabling their cytotoxicity. The anticancer drugs, such as bleomycin (BL) and cisplatin, are the most candidates for the combined use with ionizing and non-ionizing radiation fields. The methods and installations for the cell electroporation by electron beam (EB) and microwave (MW) irradiation are presented. The viability tests of the human leukocytes under EB and MW exposure with/without the BL in the cell cultures are discussed

  15. From single cells to tissues: interactions between the matrix and human breast cells in real time.

    Directory of Open Access Journals (Sweden)

    Clifford Barnes

    Full Text Available Mammary gland morphogenesis involves ductal elongation, branching, and budding. All of these processes are mediated by stroma--epithelium interactions. Biomechanical factors, such as matrix stiffness, have been established as important factors in these interactions. For example, epithelial cells fail to form normal acinar structures in vitro in 3D gels that exceed the stiffness of a normal mammary gland. Additionally, heterogeneity in the spatial distribution of acini and ducts within individual collagen gels suggests that local organization of the matrix may guide morphogenesis. Here, we quantified the effects of both bulk material stiffness and local collagen fiber arrangement on epithelial morphogenesis.The formation of ducts and acini from single cells and the reorganization of the collagen fiber network were quantified using time-lapse confocal microscopy. MCF10A cells organized the surrounding collagen fibers during the first twelve hours after seeding. Collagen fiber density and alignment relative to the epithelial surface significantly increased within the first twelve hours and were a major influence in the shaping of the mammary epithelium. The addition of Matrigel to the collagen fiber network impaired cell-mediated reorganization of the matrix and increased the probability of spheroidal acini rather than branching ducts. The mechanical anisotropy created by regions of highly aligned collagen fibers facilitated elongation and branching, which was significantly correlated with fiber organization. In contrast, changes in bulk stiffness were not a strong predictor of this epithelial morphology.Localized regions of collagen fiber alignment are required for ductal elongation and branching suggesting the importance of local mechanical anisotropy in mammary epithelial morphogenesis. Similar principles may govern the morphology of branching and budding in other tissues and organs.

  16. Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase-CD26 interaction.

    Science.gov (United States)

    Ginés, Silvia; Mariño, Marta; Mallol, Josefa; Canela, Enric I; Morimoto, Chikao; Callebaut, Christian; Hovanessian, Ara; Casadó, Vicent; Lluis, Carmen; Franco, Rafael

    2002-01-01

    The extra-enzymic function of cell-surface adenosine deaminase (ADA), an enzyme mainly localized in the cytosol but also found on the cell surface of monocytes, B cells and T cells, has lately been the subject of numerous studies. Cell-surface ADA is able to transduce co-stimulatory signals in T cells via its interaction with CD26, an integral membrane protein that acts as ADA-binding protein. The aim of the present study was to explore whether ADA-CD26 interaction plays a role in the adhesion of lymphocyte cells to human epithelial cells. To meet this aim, different lymphocyte cell lines (Jurkat and CEM T) expressing endogenous, or overexpressing human, CD26 protein were tested in adhesion assays to monolayers of colon adenocarcinoma human epithelial cells, Caco-2, which express high levels of cell-surface ADA. Interestingly, the adhesion of Jurkat and CEM T cells to a monolayer of Caco-2 cells was greatly dependent on CD26. An increase by 50% in the cell-to-cell adhesion was found in cells containing higher levels of CD26. Incubation with an anti-CD26 antibody raised against the ADA-binding site or with exogenous ADA resulted in a significant reduction (50-70%) of T-cell adhesion to monolayers of epithelial cells. The role of ADA-CD26 interaction in the lymphocyte-epithelial cell adhesion appears to be mediated by CD26 molecules that are not interacting with endogenous ADA (ADA-free CD26), since SKW6.4 (B cells) that express more cell-surface ADA showed lower adhesion than T cells. Adhesion stimulated by CD26 and ADA is mediated by T cell lymphocyte function-associated antigen. A role for ADA-CD26 interaction in cell-to-cell adhesion was confirmed further in integrin activation assays. FACS analysis revealed a higher expression of activated integrins on T cell lines in the presence of increasing amounts of exogenous ADA. Taken together, these results suggest that the ADA-CD26 interaction on the cell surface has a role in lymphocyte-epithelial cell adhesion. PMID

  17. Microfluidic cell microarray platform for high throughput analysis of particle-cell interactions.

    Science.gov (United States)

    Tong, Ziqiu; Rajeev, Gayathri; Guo, Keying; Ivask, Angela; McCormick, Scott; Lombi, Enzo; Priest, Craig; Voelcker, Nicolas H

    2018-03-02

    With the advances in nanotechnology, particles with various size, shape, surface chemistry and composition can be easily produced. Nano- and microparticles have been extensively explored in many industrial and clinical applications. Ensuring that the particles themselves are not possessing any toxic effects to the biological system is of paramount importance. This paper describes a proof of concept method in which a microfluidic system is used in conjunction with a cell microarray technique aiming to streamline the analysis of particle-cell interaction in a high throughput manner. Polymeric microparticles, with different particle surface functionalities, were firstly used to investigate the efficiency of particle-cell adhesion under dynamic flow. Silver nanoparticles (AgNPs,10 nm in diameter) perfused at different concentrations (0 to 20 μg/ml) in parallel streams over the cells in the microchannel exhibited higher toxicity compared to the static culture in the 96 well plate format. This developed microfluidic system can be easily scaled up to accommodate larger number of microchannels for high throughput analysis of potential toxicity of a wide range of particles in a single experiment.

  18. Ho:YAG laser: intervertebral disk cell interaction using three-dimensional cell culture system

    Science.gov (United States)

    Sato, Masato; Ishihara, Miya; Arai, Tsunenori; Asazuma, Takashi; Kikuchi, Toshiyuki; Kikuchi, Makoto; Fujikawa, Kyosuke

    2000-06-01

    The purpose of this study is to evaluate the influence on the intervertebral disc cells after laser irradiation using three- dimensional culture system and to clarify the optimum Ho:YAG laser irradiation condition on percutaneous laser disc decompression (PLDD) for lumbar disc herniation. Since the Ho:YAG laser ablation is characterized by water-vapor bubble dynamics, not only thermal effect but also acoustic effect on cell metabolism might occur in the intervertebral disc. We studied the disc cell reaction from the metabolic point of view to investigate photothermal and photoacoustic effects on three-dimensional cultured disc cell. Intervertebral discs were obtained from female 30 Japanese white rabbits weighing about 1 kg. A pulsed Ho:YAG laser (wavelength: 2.1 micrometer, pulse width: about 200 microseconds) was delivered through a 200 micrometer-core diameter single silica glass fiber. We used the Ho:YAG laser irradiation fluence ranging from 60 to approximately 800 J/cm2 at the fiber end. To investigate acoustic effect, the acoustic transducer constructed with polyvinylidene fluoride (PVdF) film and acoustic absorber was used to detect the stress wave. Thermocouple and thermography were used to investigate thermal effect. Concerning damage of plasma membrane and ability of matrix synthesis, thermal effect might mainly affect cell reaction in total energy of 54 J (closed to practically used condition), but in 27 J, acoustic effect might contribute to it. We found that total energy was key parameter among the optimum condition, so that temperature and/or stress wave may influence Ho:YAG laser-disc cell interactions.

  19. Interaction of localized convection cells in the bioconvection of Euglena gracilis

    Science.gov (United States)

    Iima, Makoto; Yamaguchi, Takayuki

    2016-11-01

    Euglena gracilis is a unicellular flagellated photosynthetic alga. The suspension of Euglena has behavioral responses to light, which causes a macroscopic localized bioconvection pattern when illuminated from below. One of the fundamental structures of this is a pair of convection cells, and high cell density region exists in the middle of the pair. Experimental studies show various types of interaction in the localized convection cells; bound state, collision, etc. We performed numerical simulation of a hydrodynamic model of this system, and show results of the interactions. Long-range interaction due to the conservation of cell number and merging process of two localized structures will be discussed. KAKENHI.

  20. Hypoxia-inducible factor-1α perpetuates synovial fibroblast interactions with T cells and B cells in rheumatoid arthritis.

    Science.gov (United States)

    Hu, Fanlei; Liu, Hongjiang; Xu, Liling; Li, Yingni; Liu, Xu; Shi, Lianjie; Su, Yin; Qiu, Xiaoyan; Zhang, Xia; Yang, Yuqin; Zhang, Jian; Li, Zhanguo

    2016-03-01

    Synovial fibroblast hyperplasia, T-cell hyperactivity, B-cell overactivation, and the self-perpetuating interactions among these cell types are major characteristics of rheumatoid arthritis (RA). The inflamed joints of RA patients are hypoxic, with upregulated expression of hypoxia-inducible factor-1α (HIF-1α) in RA synovial fibroblasts (RASFs). It remains unknown whether HIF-1α regulates interactions between RASFs and T cells and B cells. We report here that HIF-1α promotes the expression of inflammatory cytokines IL-6, IL-8, TNF-α, and IL-1β, and cell-cell contact mediators IL-15, vascular cell adhesion molecule (VCAM)-1, thrombospondin (TSP)-1, and stromal cell-derived factor (SDF)-1 in RASFs. Furthermore, HIF-1α perpetuates RASF-mediated inflammatory Th1- and Th17-cell expansion while differentially inhibiting regulatory B10 and innate-like B cells, leading to increased IFN-γ, IL-17, and IgG production and decreased protective natural IgM secretion. Our findings suggest that HIF-1α perpetuates the interactions between RASFs and T cells and B cells to induce inflammatory cytokine and autoantibody production, thus exacerbating the severity of RA. Targeting HIF-1α may provide new therapeutic strategies for overcoming this persistent disease. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Cytotoxicity against MCF-7 breast cancer cell line and interaction ...

    African Journals Online (AJOL)

    N6-furfuryladenine (kinetin) is a cytokinin growth factor with several biological effects observed in human cells and fruit flies. Kinetin exists naturally in the DNA of almost all organisms tested so far, including human cells and various plants. The cytotoxicity effect of kinetin on MCF-7 breast cancer cell lines was measured by ...

  2. Relevance of mast cell-nerve interactions in intestinal nociception

    NARCIS (Netherlands)

    van Diest, Sophie A.; Stanisor, Oana I.; Boeckxstaens, Guy E.; de Jonge, Wouter J.; van den Wijngaard, René M.

    2012-01-01

    Cross-talk between the immune- and nervous-system is considered an important biological process in health and disease. Because mast cells are often strategically placed between nerves and surrounding (immune)cells they may function as important intermediate cells. This review summarizes the current

  3. CMEIAS-Aided Microscopy of the Spatial Ecology of Individual Bacterial Interactions Involving Cell-to-Cell Communication within Biofilms

    Directory of Open Access Journals (Sweden)

    Frank B. Dazzo

    2012-05-01

    Full Text Available This paper describes how the quantitative analytical tools of CMEIAS image analysis software can be used to investigate in situ microbial interactions involving cell-to-cell communication within biofilms. Various spatial pattern analyses applied to the data extracted from the 2-dimensional coordinate positioning of individual bacterial cells at single-cell resolution indicate that microbial colonization within natural biofilms is not a spatially random process, but rather involves strong positive interactions between communicating cells that influence their neighbors’ aggregated colonization behavior. Geostatistical analysis of the data provide statistically defendable estimates of the micrometer scale and interpolation maps of the spatial heterogeneity and local intensity at which these microbial interactions autocorrelate with their spatial patterns of distribution. Including in situ image analysis in cell communication studies fills an important gap in understanding the spatially dependent microbial ecophysiology that governs the intensity of biofilm colonization and its unique architecture.

  4. CMEIAS-aided microscopy of the spatial ecology of individual bacterial interactions involving cell-to-cell communication within biofilms.

    Science.gov (United States)

    Dazzo, Frank B

    2012-01-01

    This paper describes how the quantitative analytical tools of CMEIAS image analysis software can be used to investigate in situ microbial interactions involving cell-to-cell communication within biofilms. Various spatial pattern analyses applied to the data extracted from the 2-dimensional coordinate positioning of individual bacterial cells at single-cell resolution indicate that microbial colonization within natural biofilms is not a spatially random process, but rather involves strong positive interactions between communicating cells that influence their neighbors' aggregated colonization behavior. Geostatistical analysis of the data provide statistically defendable estimates of the micrometer scale and interpolation maps of the spatial heterogeneity and local intensity at which these microbial interactions autocorrelate with their spatial patterns of distribution. Including in situ image analysis in cell communication studies fills an important gap in understanding the spatially dependent microbial ecophysiology that governs the intensity of biofilm colonization and its unique architecture.

  5. Dynamic Flow Impacts Cell-Particle Interactions: Sedimentation and Particle Shape Effects.

    Science.gov (United States)

    Björnmalm, Mattias; Faria, Matthew; Chen, Xi; Cui, Jiwei; Caruso, Frank

    2016-10-17

    The interaction of engineered particles with biological systems determines their performance in biomedical applications. Although standard static cell cultures remain the norm for in vitro studies, modern models mimicking aspects of the dynamic in vivo environment have been developed. Herein, we investigate fundamental cell-particle interactions under dynamic flow conditions using a simple and self-contained device together with standard multiwell cell culture plates. We engineer two particle systems and evaluate their cell interactions under dynamic flow, and we compare the results to standard static cell cultures. We find substantial differences between static and dynamic flow conditions and attribute these to particle shape and sedimentation effects. These results demonstrate how standard static assays can be complemented by dynamic flow assays for a more comprehensive understanding of fundamental cell-particle interactions.

  6. Cutting edge: Bcl6-interacting corepressor contributes to germinal center T follicular helper cell formation and B cell helper function.

    Science.gov (United States)

    Yang, Jessica A; Tubo, Noah J; Gearhart, Micah D; Bardwell, Vivian J; Jenkins, Marc K

    2015-06-15

    CD4(+) germinal center (GC)-T follicular helper (Tfh) cells help B cells become long-lived plasma cells and memory cells. The transcriptional repressor Bcl6 plays a key role in GC-Tfh formation by inhibiting the expression of genes that promote differentiation into other lineages. We determined whether BCOR, a component of a Polycomb repressive complex that interacts with the Bcl6 BTB domain, influences GC-Tfh differentiation. T cell-targeted BCOR deficiency led to a substantial loss of peptide:MHC class II-specific GC-Tfh cells following Listeria monocytogenes infection and a 2-fold decrease following immunization with a peptide in CFA. The reduction in GC-Tfh cells was associated with diminished plasma cell and GC B cell formation. Thus, T cell-expressed BCOR is critical for optimal GC-Tfh cell differentiation and humoral immunity. Copyright © 2015 by The American Association of Immunologists, Inc.

  7. Effect of Interaction between Chromatin Loops on Cell-to-Cell Variability in Gene Expression.

    Directory of Open Access Journals (Sweden)

    Tuoqi Liu

    2016-05-01

    Full Text Available According to recent experimental evidence, the interaction between chromatin loops, which can be characterized by three factors-connection pattern, distance between regulatory elements, and communication form, play an important role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effect that addresses the question of how changes in these factors affect variability at the expression level in a systematic rather than case-by-case fashion. Here we make such an effort, based on a mechanic model that maps three fundamental patterns for two interacting DNA loops into a 4-state model of stochastic transcription. We first show that in contrast to side-by-side loops, nested loops enhance mRNA expression and reduce expression noise whereas alternating loops have just opposite effects. Then, we compare effects of facilitated tracking and direct looping on gene expression. We find that the former performs better than the latter in controlling mean expression and in tuning expression noise, but this control or tuning is distance-dependent, remarkable for moderate loop lengths, and there is a limit loop length such that the difference in effect between two communication forms almost disappears. Our analysis and results justify the facilitated chromatin-looping hypothesis.

  8. Effects of vanadium complexes on cell growth of human leukemia cells and protein-DNA interactions.

    Science.gov (United States)

    Lampronti, Ilaria; Bianchi, Nicoletta; Borgatti, Monica; Fabbri, Enrica; Vizziello, Leonardo; Khan, Mahmud Tareq Hassan; Ather, Arjumand; Brezena, Dan; Tahir, Mohammad Mahroof; Gambari, Roberto

    2005-07-01

    Vanadium complexes are known to possess potent insulin-mimetic effects, high affinity for several enzymes and anticancer activity, which deserve increasing attention for application to biomedical sciences. Different vanadium complexes have been found to be more effective than the simple vanadium-(IV) and -(V) salts in experiments performed both in vitro and in vivo. Application of polyoxometalates as potential drugs against Herpes Simplex Virus and AIDS have also increased the interest to study the association between vanadium containing species and proteins. The aim of our research was to investigate the in vitro antiproliferative activity of a variety of vanadium-containing compounds, and study their ability to interfere with the molecular interactions between GATA-1 and NF-kappaB transcription factors and target DNA elements, employing electrophoretic mobility shift assays. All of the used vanadium compounds were found to exhibit antiproliferative activity, despite with differences in efficacy. Inhibition of K562 cell growth was not associated with differentiation, but with activation of apoptosis. Vanadium complexes with a +5 oxidation state and their discrete anionic units appear essential for the respective effects on K562 cells; a +4 oxidation state appears to be important in inhibiting transcription factors/DNA interactions.

  9. Cell-Biomaterial Mechanical Interaction in the Framework of Tissue Engineering: Insights, Computational Modeling and Perspectives

    Science.gov (United States)

    Sanz-Herrera, Jose A.; Reina-Romo, Esther

    2011-01-01

    Tissue engineering is an emerging field of research which combines the use of cell-seeded biomaterials both in vitro and/or in vivo with the aim of promoting new tissue formation or regeneration. In this context, how cells colonize and interact with the biomaterial is critical in order to get a functional tissue engineering product. Cell-biomaterial interaction is referred to here as the phenomenon involved in adherent cells attachment to the biomaterial surface, and their related cell functions such as growth, differentiation, migration or apoptosis. This process is inherently complex in nature involving many physico-chemical events which take place at different scales ranging from molecular to cell body (organelle) levels. Moreover, it has been demonstrated that the mechanical environment at the cell-biomaterial location may play an important role in the subsequent cell function, which remains to be elucidated. In this paper, the state-of-the-art research in the physics and mechanics of cell-biomaterial interaction is reviewed with an emphasis on focal adhesions. The paper is focused on the different models developed at different scales available to simulate certain features of cell-biomaterial interaction. A proper understanding of cell-biomaterial interaction, as well as the development of predictive models in this sense, may add some light in tissue engineering and regenerative medicine fields. PMID:22174660

  10. Imaging of human glioblastoma cells and their interactions with mesenchymal stem cells in the zebrafish (Danio rerio) embryonic brain

    International Nuclear Information System (INIS)

    Vittori, Milos; Breznik, Barbara; Gredar, Tajda; Hrovat, Katja; Bizjak Mali, Lilijana; Lah, Tamara T

    2016-01-01

    An attractive approach in the study of human cancers is the use of transparent zebrafish (Danio rerio) embryos, which enable the visualization of cancer progression in a living animal. We implanted mixtures of fluorescently labeled glioblastoma (GBM) cells and bonemarrow-derived mesenchymal stem cells (MSCs) into zebrafish embryos to study the cellular pathways of their invasion and the interactions between these cells in vivo. By developing and applying a carbocyanine-dye-compatible clearing protocol for observation of cells in deep tissues, we showed that U87 and U373 GBM cells rapidly aggregated into tumor masses in the ventricles and midbrain hemispheres of the zebrafish embryo brain, and invaded the central nervous system, often using the ventricular system and the central canal of the spinal cord. However, the GBM cells did not leave the central nervous system. With co-injection of differentially labeled cultured GBM cells and MSCs, the implanted cells formed mixed tumor masses in the brain. We observed tight associations between GBM cells and MSCs, and possible cell-fusion events. GBM cells and MSCs used similar invasion routes in the central nervous system. This simple model can be used to study the molecular pathways of cellular processes in GBM cell invasion, and their interactions with various types of stromal cells in double or triple cell co-cultures, to design anti-GBM cell therapies that use MSCs as vectors

  11. Aquatic flower-inspired cell culture platform with simplified medium exchange process for facilitating cell-surface interaction studies.

    Science.gov (United States)

    Hong, Hyeonjun; Park, Sung Jea; Han, Seon Jin; Lim, Jiwon; Kim, Dong Sung

    2016-02-01

    Establishing fundamentals for regulating cell behavior with engineered physical environments, such as topography and stiffness, requires a large number of cell culture experiments. However, cell culture experiments in cell-surface interaction studies are generally labor-intensive and time-consuming due to many experimental tasks, such as multiple fabrication processes in sample preparation and repetitive medium exchange in cell culture. In this work, a novel aquatic flower-inspired cell culture platform (AFIP) is presented. AFIP aims to facilitate the experiments on the cell-surface interaction studies, especially the medium exchange process. AFIP was devised to capture and dispense cell culture medium based on interactions between an elastic polymer substrate and a liquid medium. Thus, the medium exchange can be performed easily and without the need of other instruments, such as a vacuum suction and pipette. An appropriate design window of AFIP, based on scaling analysis, was identified to provide a criterion for achieving stability in medium exchange as well as various surface characteristics of the petal substrates. The developed AFIP, with physically engineered petal substrates, was also verified to exchange medium reliably and repeatedly. A closed structure capturing the medium was sustained stably during cell culture experiments. NIH3T3 proliferation results also demonstrated that AFIP can be applied to the cell-surface interaction studies as an alternative to the conventional method.

  12. Tolerogenic interactions between CD8+ dendritic cells and NKT cells prevent rejection of bone marrow and organ grafts.

    Science.gov (United States)

    Hongo, David; Tang, Xiaobin; Zhang, Xiangyue; Engleman, Edgar G; Strober, Samuel

    2017-03-23

    The combination of total lymphoid irradiation and anti-T-cell antibodies safely induces immune tolerance to combined hematopoietic cell and organ allografts in humans. Our mouse model required host natural killer T (NKT) cells to induce tolerance. Because NKT cells normally depend on signals from CD8 + dendritic cells (DCs) for their activation, we used the mouse model to test the hypothesis that, after lymphoid irradiation, host CD8 + DCs play a requisite role in tolerance induction through interactions with NKT cells. Selective deficiency of either CD8 + DCs or NKT cells abrogated chimerism and organ graft acceptance. After radiation, the CD8 + DCs increased expression of surface molecules required for NKT and apoptotic cell interactions and developed suppressive immune functions, including production of indoleamine 2,3-deoxygenase. Injection of naive mice with apoptotic spleen cells generated by irradiation led to DC changes similar to those induced by lymphoid radiation, suggesting that apoptotic body ingestion by CD8 + DCs initiates tolerance induction. Tolerogenic CD8 + DCs induced the development of tolerogenic NKT cells with a marked T helper 2 cell bias that, in turn, regulated the differentiation of the DCs and suppressed rejection of the transplants. Thus, reciprocal interactions between CD8 + DCs and invariant NKT cells are required for tolerance induction in this system that was translated into a successful clinical protocol. © 2017 by The American Society of Hematology.

  13. Sustained response with ixekizumab treatment of moderate-to-severe psoriasis with scalp involvement: results from three phase 3 trials (UNCOVER-1, UNCOVER-2, UNCOVER-3).

    Science.gov (United States)

    Reich, Kristian; Leonardi, Craig; Lebwohl, Mark; Kerdel, Francisco; Okubo, Yukari; Romiti, Ricardo; Goldblum, Orin; Dennehy, Ellen B; Kerr, Lisa; Sofen, Howard

    2017-06-01

    Scalp is a frequently affected and difficult-to-treat area in psoriasis patients. We assessed the efficacy of ixekizumab in the treatment of patients with scalp psoriasis over 60 weeks using the Psoriasis Scalp Severity Index (PSSI). In three Phase 3, multicenter, double-blind, placebo-controlled trials, patients with moderate-to-severe psoriasis in UNCOVER-1 (N = 1296), UNCOVER-2 (N = 1224) and UNCOVER-3 (N = 1346) were randomized to subcutaneous 80 mg ixekizumab every two weeks (Q2W) or every four weeks (Q4W) after a 160 mg starting dose, or placebo through Week 12. Additional UNCOVER-2 and UNCOVER-3 cohorts were randomized to 50 mg bi-weekly etanercept through Week 12. Patients entering the open-label long-term extension (LTE) (UNCOVER-3) received ixekizumab Q4W; UNCOVER-1 and UNCOVER-2 included a blinded maintenance period in which static physician global assessment (sPGA) 0/1 responders were re-randomized to placebo, ixekizumab Q4W, or 80 mg ixekizumab every 12 weeks (Q12W) through Week 60. In patients with moderate-to-severe psoriasis with baseline scalp involvement, PSSI 90 and 100 were achieved at Week 12 in higher percentages of patients treated with ixekizumab Q2W (81.7% and 74.6%) or ixekizumab Q4W (75.6% and 68.9%) compared with patients treated with placebo (7.6% and 6.7%; p psoriasis in patients with moderate-to-severe psoriasis, with most patients achieving complete or near-complete resolution of scalp psoriasis and maintaining this response over 60 weeks.

  14. Determination of apical membrane polarity in mammary epithelial cell cultures: The role of cell-cell, cell-substratum, and membrane-cytoskeleton interactions

    Energy Technology Data Exchange (ETDEWEB)

    Parry, G.; Beck, J.C.; Moss, L.; Bartley, J. (Lawrence Berkeley Lab., CA (United States)); Ojakian, G.K. (State Univ. of New York, Brooklyn (United States))

    1990-06-01

    The membrane glycoprotein, PAS-O, is a major differentiation antigen on mammary epithelial cells and is located exclusively in the apical domain of the plasma membrane. The authors have used 734B cultured human mammary carcinoma cells as a model system to study the role of tight junctions, cell-substratum contacts, and submembranous cytoskeletal elements in restricting PAS-O to the apical membrane. Immunofluorescence and immunoelectronmicroscopy experiments demonstrated that while tight junctions demarcate PAS-O distribution in confluent cultures, apical polarity could be established at low culture densities when cells could not form tight junctions with neighboring cells. They suggest, then, that interactions between vitronectin and its receptor, are responsible for establishment of membrane domains in the absence of tight junctions. The role of cytoskeletal elements in restricting PAS-O distribution was examined by treating cultures with cytochalasin D, colchicine, or acrylamide. Cytochalasin D led to a redistribution of PAS0O while colchicine and acrylamide did not. They hypothesize that PAS-O is restricted to the apical membrane by interactions with a microfilament network and that the cytoskeletal organization is dependent upon cell-cell and cell-substratum interactions.

  15. Uncovering Indicators of Commercial Sexual Exploitation.

    Science.gov (United States)

    Bounds, Dawn; Delaney, Kathleen R; Julion, Wrenetha; Breitenstein, Susan

    2017-07-01

    It is estimated that annually 100,000 to 300,000 youth are at risk for sex trafficking; a commercial sex act induced by force, fraud, or coercion, or any such act where the person induced to perform such an act is younger than 18 years of age. Increasingly, such transactions are occurring online via Internet-based sites that serve the commercial sex industry. Commercial sex transactions involving trafficking are illegal; thus, Internet discussions between those involved must be veiled. Even so, transactions around sex trafficking do occur. Within these transactions are innuendos that provide one avenue for detecting potential activity. The purpose of this study is to identify linguistic indicators of potential commercial sexual exploitation within the online comments of men posted on an Internet site. Six hundred sixty-six posts from five Midwest cities and 363 unique members were analyzed via content analysis. Three main indicators were found: the presence of youth or desire for youthfulness, presence of pimps, and awareness of vulnerability. These findings begin a much-needed dialogue on uncovering online risks of commercial sexual exploitation and support the need for further research on Internet indicators of sex trafficking.

  16. Hydraulic behaviour of a partially uncovered core

    International Nuclear Information System (INIS)

    Fischer, K.; Hafner, W.

    1989-10-01

    A critical review of experimental data and theoretical models relevant to the thermohydraulic processes in a partially uncovered core has been performed. Presently available optimized thermohydraulic codes should be able to predict swell level elevations within an error band of ± 0.5 m. Rod temperature rising velocities could be predicted within an error bandwidth of ± 10%, provided the correct rod heat capacity is given. A general statement about the accuracy of predicted rod temperatures is not possible because the errors increase with simulation time. Highest errors are expected for long transients with low heating rates and low steam velocities. As a result, three areas for additional research are suggested: - a high-pressure test at 120 bar to complete the void correlation data base, - a low steam flow - low power experiment to improve heat transfer correlations, - a numerical investigation of three-dimensional effects in the reactor core with unequally heated rod bundles. For the present state of 1-dimensional experiments and models, suggestions for a satisfactory modeling have been derived. The suggested further work could improve the modelling capabilities and the code reliability for some limiting cases like high pressure boil-off, low-power long-term steam cooling, and unequal heating of neighbouring bundles considerably

  17. Uncovering missing links with cold ends

    Science.gov (United States)

    Zhu, Yu-Xiao; Lü, Linyuan; Zhang, Qian-Ming; Zhou, Tao

    2012-11-01

    To evaluate the performance of prediction of missing links, the known data are randomly divided into two parts, the training set and the probe set. We argue that this straightforward and standard method may lead to terrible bias, since in real biological and information networks, missing links are more likely to be links connecting low-degree nodes. We therefore study how to uncover missing links with low-degree nodes, namely links in the probe set are of lower degree products than a random sampling. Experimental analysis on ten local similarity indices and four disparate real networks reveals a surprising result that the Leicht-Holme-Newman index [E.A. Leicht, P. Holme, M.E.J. Newman, Vertex similarity in networks, Phys. Rev. E 73 (2006) 026120] performs the best, although it was known to be one of the worst indices if the probe set is a random sampling of all links. We further propose an parameter-dependent index, which considerably improves the prediction accuracy. Finally, we show the relevance of the proposed index to three real sampling methods: acquaintance sampling, random-walk sampling and path-based sampling.

  18. Parvin overexpression uncovers tissue-specific genetic pathways and disrupts F-actin to induce apoptosis in the developing epithelia in Drosophila.

    Directory of Open Access Journals (Sweden)

    Maria Chountala

    Full Text Available Parvin is a putative F-actin binding protein important for integrin-mediated cell adhesion. Here we used overexpression of Drosophila Parvin to uncover its functions in different tissues in vivo. Parvin overexpression caused major defects reminiscent of metastatic cancer cells in developing epithelia, including apoptosis, alterations in cell shape, basal extrusion and invasion. These defects were closely correlated with abnormalities in the organization of F-actin at the basal epithelial surface and of integrin-matrix adhesion sites. In wing epithelium, overexpressed Parvin triggered increased Rho1 protein levels, predominantly at the basal side, whereas in the developing eye it caused a rough eye phenotype and severely disrupted F-actin filaments at the retina floor of pigment cells. We identified genes that suppressed these Parvin-induced dominant effects, depending on the cell type. Co-expression of both ILK and the apoptosis inhibitor DIAP1 blocked Parvin-induced lethality and apoptosis and partially ameliorated cell delamination in epithelia, but did not rescue the elevated Rho1 levels, the abnormal organization of F-actin in the wing and the assembly of integrin-matrix adhesion sites. The rough eye phenotype was suppressed by coexpression of either PTEN or Wech, or by knock-down of Xrp1. Two main conclusions can be drawn from our studies: (1, high levels of cytoplasmic Parvin are toxic in epithelial cells; (2 Parvin in a dose dependent manner affects the organization of actin cytoskeleton in both wing and eye epithelia, independently of its role as a structural component of the ILK-PINCH-Parvin complex that mediates the integrin-actin link. Thus, distinct genetic interactions of Parvin occur in different cell types and second site modifier screens are required to uncover such genetic circuits.

  19. Studying host cell protein interactions with monoclonal antibodies using high throughput protein A chromatography.

    Science.gov (United States)

    Sisodiya, Vikram N; Lequieu, Joshua; Rodriguez, Maricel; McDonald, Paul; Lazzareschi, Kathlyn P

    2012-10-01

    Protein A chromatography is typically used as the initial capture step in the purification of monoclonal antibodies produced in Chinese hamster ovary (CHO) cells. Although exploiting an affinity interaction for purification, the level of host cell proteins in the protein A eluent varies significantly with different feedstocks. Using a batch binding chromatography method, we performed a controlled study to assess host cell protein clearance across both MabSelect Sure and Prosep vA resins. We individually spiked 21 purified antibodies into null cell culture fluid generated with a non-producing cell line, creating mock cell culture fluids for each antibody with an identical composition of host cell proteins and antibody concentration. We demonstrated that antibody-host cell protein interactions are primarily responsible for the variable levels of host cell proteins in the protein A eluent for both resins when antibody is present. Using the additives guanidine HCl and sodium chloride, we demonstrated that antibody-host cell protein interactions may be disrupted, reducing the level of host cell proteins present after purification on both resins. The reduction in the level of host cell proteins differed between antibodies suggesting that the interaction likely varies between individual antibodies but encompasses both an electrostatic and hydrophobic component. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Western blotting as a method for studying cell-biomaterial interactions : The role of protein collection

    NARCIS (Netherlands)

    van Kooten, T.G.; Klein, CL; Kirkpatrick, CJ

    2001-01-01

    Research of cell-biomaterial interactions is building on knowledge and methods available in cell and molecular biology. Western blotting is one of the options to characterize protein expression in cell populations. Method transfer to biomaterial model systems is not trivial because of the structure

  1. BCL6 interacting corepressor contributes to germinal center T follicular helper cell formation and B cell helper function

    Science.gov (United States)

    Yang, Jessica A.; Tubo, Noah J.; Gearhart, Micah D.; Bardwell, Vivian J.; Jenkins, Marc K.

    2015-01-01

    CD4+ germinal center (GC) T follicular helper (GC-Tfh) cells help B cells become long-lived plasma cells and memory cells. The transcriptional repressor BCL6 plays a key role in GC-Tfh formation by inhibiting the expression of genes that promote differentiation into other lineages. We determined whether BCOR, a component of a Polycomb repressive complex that interacts with the BCL6 BTB domain, influences GC-Tfh differentiation. T cell-targeted BCOR deficiency led to a substantial loss of peptide:MHCII-specific GC-Tfh cells following Listeria monocytogenes infection and a 2-fold decrease following immunization with a peptide in CFA. The reduction in GC-Tfh cells was associated with diminished plasma cell and GC B cell formation. Thus, T cell-expressed BCOR is critical for optimal GC-Tfh differentiation and humoral immunity. PMID:25964495

  2. The thymic orchestration involving Aire, miRNAs and cell-cell interactions during the induction of central tolerance

    OpenAIRE

    Geraldo eAleixo Passos; DANIELLA AREAS MENDES-DA-CRUZ; Ernna Hérida Oliveira

    2015-01-01

    Developing thymocytes interact sequentially with two distinct structures within the thymus: the cortex and medulla. Surviving single-positive and double-positive thymocytes from the cortex migrate into the medulla, where they interact with medullary thymic epithelial cells (mTECs). These cells ectopically express a vast set of peripheral tissue antigens (PTAs), a property termed promiscuous gene expression that is associated with the presentation of PTAs by mTECs to thymocytes. Thymocyte clon...

  3. KLK5 induces shedding of DPP4 from circulatory Th17 cells in type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Titli Nargis

    2017-11-01

    Conclusions: Our study provides mechanistic insights into the molecular interaction between KLK5 and DPP4 as well as CD4+ T cell derived KLK5 mediated enzymatic cleavage of DPP4 from cell surface. Thus, our study uncovers a hitherto unknown cellular source and mechanism behind enhanced plasma DPP4 activity in T2DM.

  4. Enhancing whole-tumor cell vaccination by engaging innate immune system through NY-ESO-1/dendritic cell interactions.

    Science.gov (United States)

    Xu, Le; Zheng, Junying; Nguyen, David H; Luong, Quang T; Zeng, Gang

    2013-10-01

    NY-ESO-1 is a cancer/germline antigen (Ag) with distinctively strong immunogenicity. We have previously demonstrated that NY-ESO-1 serves as an endogenous adjuvant by engaging dendritic cell (DC)-surface receptors of calreticulin (CRT) and toll-like receptor (TLR) 4. In the present study, NY-ESO-1 was investigated for its immunomodulatory roles as a molecular adjuvant in whole-tumor cell vaccines using the Renca kidney cancer model. Renca cells were genetically engineered to express NY-ESO-1 on the cell surface to enhance direct interactions with DC. The effect of ectopic cell-surface expression of NY-ESO-1 was investigated on tumor immunogenicity, DC activation, cytotoxic T lymphocytes against model tumor-associated Ags, and the effectiveness of the modified tumor cells as a therapeutic whole-cell vaccine. Cell-surface expression of NY-ESO-1 was able to reduce the tumor growth of Renca cells in BALB/c mice, although the modification did not alter cell proliferation rate in vitro. Directly engaging the innate immune system through NY-ESO-1 facilitated the interaction of tumor cells with DC, leading to enhanced DC activation and subsequent tumor-specific T-cell priming. When used as a therapeutic whole-cell vaccine, Renca cells with NY-ESO-1 on the surface mediated stronger inhibitory effects on tumor growth and metastasis compared with parental Renca or Renca cells expressing a control protein GFP on the surface. Augmented antitumor efficacy correlated with increased CD8 T-cell infiltration into tumors and decreased myeloid-derived suppressor cells and regulatory T cells in the spleen. As a cancer/germline Ag and as an immunomodulatory adjuvant through engaging innate immune receptors, NY-ESO-1 offers a unique opportunity for improved whole-tumor cell vaccinations upon the classic GM-CSF-engineered cell vaccines.

  5. Herpes Simplex Virus 1 Interaction with Myeloid Cells In Vivo.

    Science.gov (United States)

    Shivkumar, Maitreyi; Lawler, Clara; Milho, Ricardo; Stevenson, Philip G

    2016-10-01

    Herpes simplex virus 1 (HSV-1) enters mice via olfactory epithelial cells and then colonizes the trigeminal ganglia (TG). Most TG nerve endings are subepithelial, so this colonization implies subepithelial viral spread, where myeloid cells provide an important line of defense. The outcome of infection of myeloid cells by HSV-1 in vitro depends on their differentiation state; the outcome in vivo is unknown. Epithelial HSV-1 commonly infected myeloid cells, and Cre-Lox virus marking showed nose and lung infections passing through LysM-positive (LysM(+)) and CD11c(+) cells. In contrast, subcapsular sinus macrophages (SSMs) exposed to lymph-borne HSV-1 were permissive only when type I interferon (IFN-I) signaling was blocked; normally, their infection was suppressed. Thus, the outcome of myeloid cell infection helped to determine the HSV-1 distribution: subepithelial myeloid cells provided a route of spread from the olfactory epithelium to TG neurons, while SSMs blocked systemic spread. Herpes simplex virus 1 (HSV-1) infects most people and can cause severe disease. This reflects its persistence in nerve cells that connect to the mouth, nose, eye, and face. Established infection seems impossible to clear. Therefore, we must understand how it starts. This is difficult in humans, but mice show HSV-1 entry via the nose and then spread to its preferred nerve cells. We show that this spread proceeds in part via myeloid cells, which normally function in host defense. Myeloid infection was productive in some settings but was efficiently suppressed by interferon in others. Therefore, interferon acting on myeloid cells can stop HSV-1 spread, and enhancing this defense offers a way to improve infection control. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Biomaterials Influence Macrophage-Mesenchymal Stem Cell Interaction In Vitro

    NARCIS (Netherlands)

    N. Grotenhuis (Nienke); S.F. De Witte (Samantha Fh); G.J.V.M. van Osch (Gerjo); Y. Bayon (Yves); J.F. Lange (Johan); Y.M. Bastiaansen-Jenniskens (Yvonne)

    2016-01-01

    textabstractBackground: Macrophages and mesenchymal stem cells (MSCs) are important cells in wound healing. We hypothesized that the cross-talk between macrophages and adipose tissue-derived MSCs (ASCs) is biomaterial dependent, thereby influencing processes involved in wound healing. Materials and

  7. Imaging protein-protein interactions in living cells

    NARCIS (Netherlands)

    Hink, M.A.; Bisseling, T.; Visser, A.J.W.G.

    2002-01-01

    The complex organization of plant cells makes it likely that the molecular behaviour of proteins in the test tube and the cell is different. For this reason, it is essential though a challenge to study proteins in their natural environment. Several innovative microspectroscopic approaches provide

  8. Bubble-cell interactions with laser-activated polymeric microcapsules

    Science.gov (United States)

    Versluis, Michel; Lajoinie, Guillaume; van Rooij, Tom; Skachkov, Ilya; Kooiman, Klazina; de Jong, Nico; Physics of Fluids Group, University of Twente Team; Biomedical Engineering, Erasmus MC Team

    2015-11-01

    Polymeric microcapsules that are made light-absorbing by the addition of a dye in their shell can generate cavitation microbubbles with spatiotemporal control when irradiated by a pulsed laser. These particles less than 3 μm in size can circulate through the body, bind to tissues and are expected to be readily detected, even if a single cavitation bubble is produced. In this paper, we study the impact of such cavitation bubbles on a cell monolayer and quantify it in terms of cell poration and cell viability. Two capsules formulations were used; the first one encapsulates a low boiling point oil and induced less cell damage than the second that was loaded with a high boiling point oil. We also report the generation of stable bubbles by the first capsule formulation that completely absorb the cells in their close vicinity. Physics of Fluid group MIRA Institute for Biomedical Technology and Technical Medicine MESA+ Institute for Nanotechnology.

  9. Sulfated polysaccharides from marine sponges (Porifera): an ancestor cell-cell adhesion event based on the carbohydrate-carbohydrate interaction.

    Science.gov (United States)

    Vilanova, Eduardo; Coutinho, Cristiano C; Mourão, Paulo A S

    2009-08-01

    Marine sponges (Porifera) are ancient and simple eumetazoans. They constitute key organisms in the evolution from unicellular to multicellular animals. We now demonstrated that pure sulfated polysaccharides from marine sponges are responsible for the species-specific cell-cell interaction in these invertebrates. This conclusion was based on the following observations: (1) each species of marine sponge has a single population of sulfated polysaccharide, which differ among the species in their sugar composition and sulfate content; (2) sulfated polysaccharides from sponge interact with each other in a species-specific way, as indicated by an affinity chromatography assay, and this interaction requires calcium; (3) homologous, but not heterologous, sulfated polysaccharide inhibits aggregation of dissociated sponge cells; (4) we also observed a parallel between synthesis of the sulfated polysaccharide and formation of large aggregates of sponge cells, known as primmorphs. Once aggregation reached a plateau, the demand for the de novo synthesis of sulfated polysaccharides ceased. Heparin can mimic the homologous sulfated polysaccharide on the in vitro interaction and also as an inhibitor of aggregation of the dissociated sponge cells. However, this observation is not relevant for the biology of the sponge since heparin is not found in the invertebrate. In conclusion, marine sponges display an ancestor event of cell-cell adhesion, based on the calcium-dependent carbohydrate-carbohydrate interaction.

  10. Cellular interactions via conditioned media induce in vivo nephron generation from tubular epithelial cells or mesenchymal stem cells

    International Nuclear Information System (INIS)

    Machiguchi, Toshihiko; Nakamura, Tatsuo

    2013-01-01

    Highlights: •We have attempted in vivo nephron generation using conditioned media. •Vascular and tubular cells do cross-talks on cell proliferation and tubular changes. •Tubular cells suppress these changes in mesenchymal stem cells. •Tubular cells differentiate mesenchymal stem cells into tubular cells. •Nephrons can be created from implanted tubular cells or mesenchymal stem cells. -- Abstract: There are some successful reports of kidney generation by utilizing the natural course of kidney development, namely, the use of an artificially treated metanephros, blastocyst or ureteric bud. Under a novel concept of cellular interactions via conditioned media (CMs), we have attempted in vivo nephron generation from tubular epithelial cells (TECs) or mesenchymal stem cells (MSCs). Here we used 10× CMs of vascular endothelial cells (VECs) and TECs, which is the first to introduce a CM into the field of organ regeneration. We first present stimulative cross-talks induced by these CMs between VECs and TECs on cell proliferation and morphological changes. In MSCs, TEC-CM suppressed these changes, however, induced cytokeratin expression, indicating the differentiation of MSCs into TECs. As a result, glomerular and tubular structures were created following the implantation of TECs or MSCs with both CMs. Our findings suggest that the cellular interactions via CMs might induce in vivo nephron generation from TECs or MSCs. As a promoting factor, CMs could also be applied to the regeneration of other organs and tissues

  11. Evolvement of cell-substrate interaction over time for cells cultivated on a 3-aminopropyltriethoxysilane (γ-APTES) modified silicon dioxide (SiO2) surface

    Science.gov (United States)

    Hsu, Chung-Ping; Hsu, Po-Yen; Wu, You-Lin; Hsu, Wan-Yun; Lin, Jing-Jenn

    2012-09-01

    Since cell-substrate interaction is directly related to the traction force of the cell, the cell property can be judged from the imprint it leaves on the soft substrate surface onto which the cell is cultured. In this letter, the evolvement of the cell-substrate interaction over time was observed by cultivating cells on a 3-aminopropyltriethoxysilane (γ-APTES) modified silicon dioxide (SiO2) surface for different periods of time. The cell-substrate interaction property as a function of time can then be found from the post-cell-removal surface morphology profiles determined by atomic force microscopy (AFM). Different surface morphology profiles were found between normal cells and cancer cells. It was found that the cancer cells tend to form deeper trenches along the circumference of the imprints, while the normal cells do not. In addition, our results indicated that normal cells involve cell-substrate interaction mechanisms that are different from those for cancer cells.

  12. Quantitative analysis of ChIP-seq data uncovers dynamic and sustained H3K4me3 and H3K27me3 modulation in cancer cells under hypoxia.

    Science.gov (United States)

    Adriaens, Michiel E; Prickaerts, Peggy; Chan-Seng-Yue, Michelle; van den Beucken, Twan; Dahlmans, Vivian E H; Eijssen, Lars M; Beck, Timothy; Wouters, Bradly G; Voncken, Jan Willem; Evelo, Chris T A

    2016-01-01

    A comprehensive assessment of the epigenetic dynamics in cancer cells is the key to understanding the molecular mechanisms underlying cancer and to improving cancer diagnostics, prognostics and treatment. By combining genome-wide ChIP-seq epigenomics and microarray transcriptomics, we studied the effects of oxygen deprivation and subsequent reoxygenation on histone 3 trimethylation of lysine 4 (H3K4me3) and lysine 27 (H3K27me3) in a breast cancer cell line, serving as a model for abnormal oxygenation in solid tumors. A priori, epigenetic markings and gene expression levels not only are expected to vary greatly between hypoxic and normoxic conditions, but also display a large degree of heterogeneity across the cell population. Where traditionally ChIP-seq data are often treated as dichotomous data, the model and experiment here necessitate a quantitative, data-driven analysis of both datasets. We first identified genomic regions with sustained epigenetic markings, which provided a sample-specific reference enabling quantitative ChIP-seq data analysis. Sustained H3K27me3 marking was located around centromeres and intergenic regions, while sustained H3K4me3 marking is associated with genes involved in RNA binding, translation and protein transport and localization. Dynamic marking with both H3K4me3 and H3K27me3 (hypoxia-induced bivalency) was found in CpG-rich regions at loci encoding factors that control developmental processes, congruent with observations in embryonic stem cells. In silico -identified epigenetically sustained and dynamic genomic regions were confirmed through ChIP-PCR in vitro, and obtained results are corroborated by published data and current insights regarding epigenetic regulation.

  13. Tumor-stem cells interactions by fluorescence imaging

    Science.gov (United States)

    Meleshina, Aleksandra V.; Cherkasova, Elena I.; Sergeeva, Ekaterina; Turchin, Ilya V.; Kiseleva, Ekaterina V.; Dashinimaev, Erdem B.; Shirmanova, Marina V.; Zagaynova, Elena V.

    2013-02-01

    Recently, great deal of interest is investigation the function of the stem cells (SC) in tumors. In this study, we studied «recipient-tumor- fluorescent stem cells » system using the methods of in vivo imaging and laser scanning microscopy (LSM). We used adipose-derived adult stem (ADAS) cells of human lentiviral transfected with the gene of fluorescent protein Turbo FP635. ADAS cells were administrated into nude mice with transplanted tumor HeLa Kyoto (human cervical carcinoma) at different stages of tumor growth (0-8 days) intravenously or into tumor. In vivo imaging was performed on the experimental setup for epi - luminescence bioimaging (IAP RAS, Nizhny Novgorod). The results of the imaging showed localization of fluorophore tagged stem cells in the spleen on day 5-9 after injection. The sensitivity of the technique may be improved by spectral separation autofluorescence and fluorescence of stem cells. We compared the results of in vivo imaging and confocal laser scanning microscopy (LSM 510 META, Carl Zeiss, Germany). Internal organs of the animals and tumor tissue were investigated. It was shown that with i.v. injection of ADAS, bright fluorescent structures with spectral characteristics corresponding to TurboFP635 protein are locally accumulated in the marrow, lungs and tumors of animals. These findings indicate that ADAS cells integrate in the animal body with transplanted tumor and can be identified by fluorescence bioimaging techniques in vivo and ex vivo.

  14. Loss of niche-satellite cell interactions in syndecan-3 null mice alters muscle progenitor cell homeostasis improving muscle regeneration.

    Science.gov (United States)

    Pisconti, Addolorata; Banks, Glen B; Babaeijandaghi, Farshad; Betta, Nicole Dalla; Rossi, Fabio M V; Chamberlain, Jeffrey S; Olwin, Bradley B

    2016-01-01

    The skeletal muscle stem cell niche provides an environment that maintains quiescent satellite cells, required for skeletal muscle homeostasis and regeneration. Syndecan-3, a transmembrane proteoglycan expressed in satellite cells, supports communication with the niche, providing cell interactions and signals to maintain quiescent satellite cells. Syndecan-3 ablation unexpectedly improves regeneration in repeatedly injured muscle and in dystrophic mice, accompanied by the persistence of sublaminar and interstitial, proliferating myoblasts. Additionally, muscle aging is improved in syndecan-3 null mice. Since syndecan-3 null myofiber-associated satellite cells downregulate Pax7 and migrate away from the niche more readily than wild type cells, syxndecan-3 appears to regulate satellite cell homeostasis and satellite cell homing to the niche. Manipulating syndecan-3 provides a promising target for development of therapies to enhance muscle regeneration in muscular dystrophies and in aged muscle.

  15. Trichomonas vaginalis and Tritrichomonas foetus: interaction with fibroblasts and muscle cells - new insights into parasite-mediated host cell cytotoxicity

    Directory of Open Access Journals (Sweden)

    Ricardo Chaves Vilela

    2012-09-01

    Full Text Available Trichomonas vaginalis and Tritrichomonas foetus are parasitic, flagellated protists that inhabit the urogenital tract of humans and bovines, respectively. T. vaginalis causes the most prevalent non-viral sexually transmitted disease worldwide and has been associated with an increased risk for human immunodeficiency virus-1 infection in humans. Infections by T. foetus cause significant losses to the beef industry worldwide due to infertility and spontaneous abortion in cows. Several studies have shown a close association between trichomonads and the epithelium of the urogenital tract. However, little is known concerning the interaction of trichomonads with cells from deeper tissues, such as fibroblasts and muscle cells. Published parasite-host cell interaction studies have reported contradictory results regarding the ability of T. foetus and T. vaginalis to interact with and damage cells of different tissues. In this study, parasite-host cell interactions were examined by culturing primary human fibroblasts obtained from abdominal biopsies performed during plastic surgeries with trichomonads. In addition, mouse 3T3 fibroblasts, primary chick embryo myogenic cells and L6 muscle cells were also used as models of target cells. The parasite-host cell cultures were processed for scanning and transmission electron microscopy and were tested for cell viability and cell death. JC-1 staining, which measures mitochondrial membrane potential, was used to determine whether the parasites induced target cell damage. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling staining was used as an indicator of chromatin damage. The colorimetric crystal violet assay was performed to ana-lyse the cytotoxicity induced by the parasite. The results showed that T. foetus and T. vaginalis adhered to and were cytotoxic to both fibroblasts and muscle cells, indicating that trichomonas infection of the connective and muscle tissues is likely to occur; such

  16. Interactions between the intestinal microbiota and innate lymphoid cells.

    Science.gov (United States)

    Chen, Vincent L; Kasper, Dennis L

    2014-01-01

    The mammalian intestine must manage to contain 100 trillion intestinal bacteria without inducing inappropriate immune responses to these microorganisms. The effects of the immune system on intestinal microorganisms are numerous and well-characterized, and recent research has determined that the microbiota influences the intestinal immune system as well. In this review, we first discuss the intestinal immune system and its role in containing and maintaining tolerance to commensal organisms. We next introduce a category of immune cells, the innate lymphoid cells, and describe their classification and function in intestinal immunology. Finally, we discuss the effects of the intestinal microbiota on innate lymphoid cells.

  17. Interaction of ethidium and tetraphenylphosphonium cations with Salmonella enterica cells

    Directory of Open Access Journals (Sweden)

    Valeryia Mikalayeva

    2017-01-01

    Conclusions: Results of our experiments indicate that ionic strength of the incubation medium influence the selectivity, the medium temperature and the assay conditions impact the kinetics of efflux. The lower accumulated amount and the weaker fluorescence of Et+ registered in slightly acidic medium indicate that ΔΨ plays a role in the accumulation of this indicator cation. The bound amount of Et+ to the de-energized or permeabilized cells considerably varies depending on the conditions and methods of de-energization or permeabilization of cells. Tris/EDTA permeabilization of the cells does not inhibit the efflux.

  18. Antigen availability determines CD8⁺ T cell-dendritic cell interaction kinetics and memory fate decisions.

    Science.gov (United States)

    Henrickson, Sarah E; Perro, Mario; Loughhead, Scott M; Senman, Balimkiz; Stutte, Susanne; Quigley, Michael; Alexe, Gabriela; Iannacone, Matteo; Flynn, Michael P; Omid, Shaida; Jesneck, Jonathan L; Imam, Sabrina; Mempel, Thorsten R; Mazo, Irina B; Haining, W Nicholas; von Andrian, Ulrich H

    2013-09-19

    T cells are activated by antigen (Ag)-bearing dendritic cells (DCs) in lymph nodes in three phases. The duration of the initial phase of transient, serial DC-T cell interactions is inversely correlated with Ag dose. The second phase, characterized by stable DC-T cell contacts, is believed to be necessary for full-fledged T cell activation. Here we have shown that this is not the case. CD8⁺ T cells interacting with DCs presenting low-dose, short-lived Ag did not transition to phase 2, whereas higher Ag dose yielded phase 2 transition. Both antigenic constellations promoted T cell proliferation and effector differentiation but yielded different transcriptome signatures at 12 hr and 24 hr. T cells that experienced phase 2 developed long-lived memory, whereas conditions without stable contacts yielded immunological amnesia. Thus, T cells make fate decisions within hours after Ag exposure, resulting in long-term memory or abortive effector responses, correlating with T cell-DCs interaction kinetics. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Stromal–epithelial cell interactions and alteration of branching morphogenesis in macromastic mammary glands

    Science.gov (United States)

    Zhong, Aimei; Wang, Guohua; Yang, Jie; Xu, Qijun; Yuan, Quan; Yang, Yanqing; Xia, Yun; Guo, Ke; Horch, Raymund E; Sun, Jiaming

    2014-01-01

    True macromastia is a rare but disabling condition characterized by massive breast growth. The aetiology and pathogenic mechanisms for this disorder remain largely unexplored because of the lack of in vivo or in vitro models. Previous studies suggested that regulation of epithelial cell growth and development by oestrogen was dependent on paracrine growth factors from the stroma. In this study, a co-culture model containing epithelial and stromal cells was used to investigate the interactions of these cells in macromastia. Epithelial cell proliferation and branching morphogenesis were measured to assess the effect of macromastic stromal cells on epithelial cells. We analysed the cytokines secreted by stromal cells and identified molecules that were critical for effects on epithelial cells. Our results indicated a significant increase in cell proliferation and branching morphogenesis of macromastic and non-macromastic epithelial cells when co-cultured with macromastic stromal cells or in conditioned medium from macromastic stromal cells. Hepatocyte growth factor (HGF) is a key factor in epithelial–stromal interactions of macromastia-derived cell cultures. Blockade of HGF with neutralizing antibodies dramatically attenuated epithelial cell proliferation in conditioned medium from macromastic stromal cells. The epithelial–stromal cell co-culture model demonstrated reliability for studying interactions of mammary stromal and epithelial cells in macromastia. In this model, HGF secreted by macromastic stromal cells was found to play an important role in modifying the behaviour of co-cultured epithelial cells. This model allows further studies to investigate basic cellular and molecular mechanisms in tissue from patients with true breast hypertrophy. PMID:24720804

  20. Understanding Peptide Dendrimer Interactions with Model Cell Membrane Mimics

    DEFF Research Database (Denmark)

    Lind, Tania Kjellerup

    few new drugs have been marketed over the last decades, making it impossible to keep pace with the disturbing levels of multi-drug resistant bacteria. Research in the area of novel drugs, which are less prone to induce resistance, and in-depth knowledge on their uptake mechanisms is thus of paramount...... and neutron reection. The application of several complementary surface-sensitive techniques allowed for systematically addressing the interface-related processes and gain insights into different aspects of the interaction. BALY was found to interact via a uidity-dependent mechanism. It inserted into the outer...

  1. The Ultrastructural Dynamics of Parasite-Host Cell Interactions as ...

    African Journals Online (AJOL)

    layered pellicle, conoid, polar ring, microtubules and rhoptries. The parasites can be maintained continuously in vitro in a variety of mammalian cell lines and their requirements for growth have been previously established. Evidence of active host ...

  2. Contextual interactions in a generalized energy model of complex cells

    OpenAIRE

    Dellen, Babette; Clark, John W.; Wessel, Ralf

    2009-01-01

    We propose a generalized energy model of complex cells to describe modulatory contextual influences on the responses of neurons in the primary visual cortex (V1). Many orientationselective cells in V1 respond to contrast of orientation and motion of stimuli exciting the classical receptive field (CRF) and the non-CRF, or surround. In the proposed model, a central spatiotemporal filter, defining the CRF, is nonlinearly combined with a spatiotemporal filter extending into the non- ...

  3. Interaction of multi-functional silver nanoparticles with living cells

    International Nuclear Information System (INIS)

    Sur, Ilknur; Cam, Dilek; Kahraman, Mehmet; Culha, Mustafa; Baysal, Asli

    2010-01-01

    Silver nanoparticles (AgNPs) are widely used in household products and in medicine due to their antibacterial and to wound healing properties. In recent years, there is also an effort for their use in biomedical imaging and photothermal therapy. The primary reason behind the effort for their utility in biomedicine and therapy is their unique plasmonic properties and easy surface chemistry for a variety of functionalizations. In this study, AgNPs modified with glucose, lactose, oligonucleotides and combinations of these ligands are investigated for their cytotoxicity and cellular uptake in living non-cancer (L929) and cancer (A549) cells. It is found that the chemical nature of the ligand strongly influences the toxicity and cellular uptake into the model cells. While the lactose-and glucose-modified AgNPs enter the L929 cells at about the same rate, a significant increase in the rate of lactose-modified AgNPs into the A549 cells is observed. The binding of oligonucleotides along with the carbohydrate on the AgNP surfaces influences the differential uptake rate pattern into the cells. The cytotoxicity study with the modified AgNPs reveals that only naked AgNPs influence the viability of the A549 cells. The findings of this study may provide the key to developing effective applications in medicine such as cancer therapy.

  4. Physiopathology of blood platelets: a model system for studies of cell-to-cell interaction. Progress report, November 1, 1979-October 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    This report covers the studies on basic mechanisms of cellular interactions, utilizing platelets as a model system and, when possible, concentrating on the influence that environmental factors (nutritional, metabolic, cellular, immunologic and others) have on them. The four major sections include: platelet interaction with tumor cells; a model for the study of cell-to-cell interaction; interaction of platelets with vessel walls; and platelet interactions with immune proteins.

  5. Enthalpy-driven interactions with sulfated glycosaminoglycans promote cell membrane penetration of arginine peptides.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Nadai, Ryo; Kimura, Hitoshi; Nishitsuji, Kazuchika; Uchimura, Kenji; Sakai-Kato, Kumiko; Kawakami, Kohsaku; Shigenaga, Akira; Kawakami, Toru; Otaka, Akira; Hojo, Hironobu; Sakashita, Naomi; Saito, Hiroyuki

    2016-06-01

    The first step of cell membrane penetration of arginine peptides is thought to occur via electrostatic interactions between positive charges of arginine residues and negative charges of sulfated glycosaminoglycans (GAGs) on the cell surface. However, the molecular interaction of arginine peptides with GAG still remains unclear. Here, we compared the interactions of several arginine peptides of Tat, R8, and Rev and their analogues with heparin in relation to the cell membrane penetration efficiency. The high-affinity binding of arginine peptides to heparin was shown to be driven by large favorable enthalpy contributions, possibly reflecting multidentate hydrogen bondings of arginine residues with sulfate groups of heparin. Interestingly, the lysine peptides in which all arginine residues are substituted with lysine residues exhibited negligible binding enthalpy despite of their considerable binding to heparin. In CHO-K1 cells, arginine peptides exhibited a great cell-penetrating ability whereas their corresponding lysine peptides did not penetrate into cells. The degree of cell penetration of arginine peptides markedly decreased by the chlorate treatment of cells which prevents the sulfation of GAG chains. Significantly, the cell penetration efficiency of arginine peptides was found to be correlated with the favorable enthalpy of binding to heparin. These results suggest that the enthalpy-driven strong interaction with sulfated GAGs such as heparan sulfate plays a critical role in the efficient cell membrane penetration of arginine peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. BCL6 interacting corepressor contributes to germinal center T follicular helper cell formation and B cell helper function

    OpenAIRE

    Yang, Jessica A.; Tubo, Noah J.; Gearhart, Micah D.; Bardwell, Vivian J.; Jenkins, Marc K.

    2015-01-01

    CD4+ germinal center (GC) T follicular helper (GC-Tfh) cells help B cells become long-lived plasma cells and memory cells. The transcriptional repressor BCL6 plays a key role in GC-Tfh formation by inhibiting the expression of genes that promote differentiation into other lineages. We determined whether BCOR, a component of a Polycomb repressive complex that interacts with the BCL6 BTB domain, influences GC-Tfh differentiation. T cell-targeted BCOR deficiency led to a substantial loss of pept...

  7. B Cells Promote Th1- Skewed NKT Cell Response by CD1d-TCR Interaction

    OpenAIRE

    Shin, Jung Hoon; Park, Se-Ho

    2013-01-01

    CD1d expressing dendritic cells (DCs) are good glyco-lipid antigen presenting cells for NKT cells. However, resting B cells are very weak stimulators for NKT cells. Although ?-galactosylceramide (?-GalCer) loaded B cells can activate NKT cells, it is not well defined whether B cells interfere NKT cell stimulating activity of DCs. Unexpectedly, we found in this study that B cells can promote Th1-skewed NKT cell response, which means a increased level of IFN-? by NKT cells, concomitant with a d...

  8. [The interaction of alkylating derivatives of oligodeoxyribonucleotides and their methylphosphonate analogs with Mycoplasma cells].

    Science.gov (United States)

    Panchenko, L P; Egorov, O V; Raĭt, A S; Ivanova, E M; Amirkhanov, N V; Zarytova, V F; Vlasov, V V; Skripal', I G

    1991-01-01

    Alkylating derivatives of decathymidylates and methylphosphonate analogs of oligodeoxyribonucleotides (MPAO) were studied for their interaction with cells of Acholeplasma laidlawii PG-8, Mycoplasma capricolum California Kid, M. pneumoniae FH and phytopathogenic strain (St. 118). It is shown that MPAO of octa- and hexadecathymidylates as well as decathymidylates 3'-terminal modified by phenazine and cholesterol groupings are sorbed by mycoplasma cells and can penetrate inside the cells. Efficiency of binding of alkylating derivatives and MPAO with mycoplasma cells depends on interaction time of reagents, their concentration in the reaction mixture and temperature.

  9. Immunofluorescent characterization of non-myelinating Schwann cells and their interactions with immune cells in mouse mesenteric lymph node

    Directory of Open Access Journals (Sweden)

    Zhongli Shi

    2017-08-01

    Full Text Available The central nervous system (CNS influences the immune system in a general fashion by regulating the systemic concentration of humoral substances, whereas the autonomic nervous system communicates specifically with the immune system according to local interactions. Data concerning the mechanisms of this bidirectional crosstalk of the peripheral nervous system (PNS and immune system remain limited. To gain a better understanding of local interactions of the PNS and immune system, we have used immunofluorescent staining of glial fibrillary acidic protein (GFAP, coupled with confocal microscopy, to investigate the non-myelinating Schwann cell (NMSC-immune cell interactions in mouse mesenteric lymph nodes. Our results demonstrate i the presence of extensive NMSC processes and even of cell bodies in each compartment of the mouse mesenteric lymph node; ii close associations/interactions of NMSC processes with blood vessels (including high endothelial venules and the lymphatic vessel/sinus; iii close contacts/associations of NMSC processes with various subsets of dendritic cells (such as CD4+CD11c+, CD8+CD11c+ dendritic cells, macrophages (F4/80+ and CD11b+ macrophages, and lymphocytes. Our novel findings concerning the distribution of NMSCs and NMSC-immune cell interactions inside the mouse lymph node should help to elucidate the mechanisms through which the PNS affects cellular- and humoral-mediated immune responses or vice versa in health and disease.

  10. Macrophage traits in cancer cells are induced by macrophage-cancer cell fusion and cannot be explained by cellular interaction.

    Science.gov (United States)

    Shabo, Ivan; Midtbö, Kristine; Andersson, Henrik; Åkerlund, Emma; Olsson, Hans; Wegman, Pia; Gunnarsson, Cecilia; Lindström, Annelie

    2015-11-20

    Cell fusion is a natural process in normal development and tissue regeneration. Fusion between cancer cells and macrophages generates metastatic hybrids with genetic and phenotypic characteristics from both maternal cells. However, there are no clinical markers for detecting cell fusion in clinical context. Macrophage-specific antigen CD163 expression in tumor cells is reported in breast and colorectal cancers and proposed being caused by macrophages-cancer cell fusion in tumor stroma. The purpose of this study is to examine the cell fusion process as a biological explanation for macrophage phenotype in breast. Monocytes, harvested from male blood donor, were activated to M2 macrophages and co-cultured in ThinCert transwell system with GFP-labeled MCF-7 cancer cells. MCF7/macrophage hybrids were generated by spontaneous cell fusion, isolated by fluorescence-activated cell sorting and confirmed by fluorescence microscopy, short tandem repeats analysis and flow cytometry. CD163 expression was evaluated in breast tumor samples material from 127 women by immunohistochemistry. MCF-7/macrophage hybrids were generated spontaneously at average rate of 2 % and showed phenotypic and genetic traits from both maternal cells. CD163 expression in MCF-7 cells could not be induced by paracrine interaction with M2-activated macrophages. CD163 positive cancer cells in tumor sections grew in clonal collection and a cutoff point >25 % of positive cancer cells was significantly correlated to disease free and overall survival. In conclusion, macrophage traits in breast cancer might be caused by cell fusion rather than explained by paracrine cellular interaction. These data provide new insights into the role of cell fusion in breast cancer and contributes to the development of clinical markers to identify cell fusion.

  11. Human mammary progenitor cell fate decisions are productsof interactions with combinatorial microenvironments

    DEFF Research Database (Denmark)

    LaBarge, Mark A.; Nelson, Celeste M.; Villadsen, René

    2009-01-01

    factors, ECM, and other cells, as well as physical properties of the ECM. To understand regulation of fate decisions, therefore, would require a means of understanding carefully choreographed combinatorial interactions. Here we used microenvironment protein microarrays to functionally identify...

  12. Single-cell protein secretomic signatures as potential correlates to tumor cell lineage evolution and cell-cell interaction

    Directory of Open Access Journals (Sweden)

    Minsuk eKwak

    2013-02-01

    Full Text Available Secreted proteins including cytokines, chemokines and growth factors represent important functional regulators mediating a range of cellular behavior and cell-cell paracrine/autocrine signaling, e.g. in the immunological system, tumor microenvironment or stem cell niche. Detection of these proteins is of great value not only in basic cell biology but also for diagnosis and therapeutic monitoring of human diseases such as cancer. However, due to co-production of multiple effector proteins from a single cell, referred to as polyfunctionality, it is biologically informative to measure a panel of secreted proteins, or secretomic signature, at the level of single cells. Recent evidence further indicates that a genetically-identical cell population can give rise to diverse phenotypic differences. It is known that cytokines, for example, in the immune system define the effector functions and lineage differentiation of immune cells. In this Perspective Article, we hypothesize that protein secretion profile may represent a universal measure to identify the definitive correlate in the larger context of cellular functions to dissect cellular heterogeneity and evolutionary lineage relationship in human cancer.

  13. The Importance of Physiologically Relevant Cell Lines for Studying Virus–Host Interactions

    Directory of Open Access Journals (Sweden)

    David Hare

    2016-11-01

    Full Text Available Viruses interact intimately with the host cell at nearly every stage of replication, and the cell model that is chosen to study virus infection is critically important. Although primary cells reflect the phenotype of healthy cells in vivo better than cell lines, their limited lifespan makes experimental manipulation challenging. However, many tumor-derived and artificially immortalized cell lines have defects in induction of interferon-stimulated genes and other antiviral defenses. These defects can affect virus replication, especially when cells are infected at lower, more physiologically relevant, multiplicities of infection. Understanding the selective pressures and mechanisms underlying the loss of innate signaling pathways is helpful to choose immortalized cell lines without impaired antiviral defense. We describe the trials and tribulations we encountered while searching for an immortalized cell line with intact innate signaling, and how directed immortalization of primary cells avoids many of the pitfalls of spontaneous immortalization.

  14. Hyaluronan-CD44 Interactions Decrease the Metastatic Potential of Breast Cancer Cells

    Science.gov (United States)

    2008-06-01

    cancer cells in vivo. This study focuses on understanding the mechanisms by which CD44 inhibits breast cancer cell invasion. We have found that the differential interaction between CD44 and soluble or embedded Hyaluronan leads to differential phosphorylation of ERK and Pak. These differentially activated signaling pathways molecularly govern a phenotypic switch between invasiveness or proliferation. Additionally, this interactions also leads to decreased transcription of the metalloprotease MMP9 when on collagen IV gels but not collagen I gels. Together, these mechanisms

  15. Study of interaction of GNR with glioblastoma cells

    Science.gov (United States)

    Hole, Arti; Cardoso-Avila, P. E.; Sridharan, Sangita; Sahu, Aditi; Nair, Jyothi; Dongre, Harsh; Goda, Jayant S.; Sawant, Sharada; Dutt, Shilpee; Pichardo-Molina, J. L.; Murali Krishna, C.

    2018-01-01

    Radiation resistance is one of the major causes of recurrence and failure of radiotherapy. Different methods have been used to increase the efficacy of radiation therapy and at the same time restrict the radiation resistivity. From last few years nanoparticles have played a key role in the enhancement of radiosensitization. The densely packed nanoparticles can selectively scatter or absorb the high radiations, which allow better targeting of cellular components within the tumor hence resulting in increased radiation damage to the cancer cells. Glioblastoma multiforme (GBM) is one of the highly radioresistant brain cancer. Current treatment methods are surgical resection followed by concurrent chemo and radiation therapy. In this study we have used in-house engineered gold nano rodes (GNR) and analyzed their effect on U-87MG cell lines. MTT assay was employed to determine the cytotoxic concentration of the nanoparticles. Raman spectroscopy was used to analyze the effect of gold nanoparticles on glioma cells, which was followed by transmission electron microscopic examinations to visualize their cellular penetration. Our data shows that GNR were able to penetrate the cells and induce cytotoxicity at the concentration of 198 μM as determined by MTT assay at 24 post GNP treatment. Additionally, we show that Raman spectroscopy, could classify spectra between untreated and cells treated with nanoparticles. Taken together, this study shows GNR penetration and cytotoxicity in glioma cells thereby providing a rationale to use them in cancer therapeutics. Future studies will be carried out to study the biological activity of the formulation as a radiosensitizer in GBM.

  16. Hyaluronan Tumor Cell Interactions in Prostate Cancer Growth and Survival

    Science.gov (United States)

    2008-12-01

    used in the funded award. These studies have a direct bearing on changes in the original design of studies to use prostate cancer cell lines in these...ran-dependent mitotic spindle assembly. Cell. 127:539-52. Maxwell, C.A., J.J. Keats, M. Crainie, X. Sun , T. Yen, E. Shibuya, M. Hendzel, G. Chan...prognostic factor, loss of p21, identifies a subgroup of MMR-proficient tumors with a high incidence of microsatellite instability that has a particularly

  17. Cell-material interactions in tendon tissue engineering.

    Science.gov (United States)

    Lin, Junxin; Zhou, Wenyan; Han, Shan; Bunpetch, Varitsara; Zhao, Kun; Liu, Chaozhong; Yin, Zi; Ouyang, Hongwei

    2018-04-01

    The interplay between cells and materials is a fundamental topic in biomaterial-based tissue regeneration. One of the principles for biomaterial development in tendon regeneration is to stimulate tenogenic differentiation of stem cells. To this end, efforts have been made to optimize the physicochemical and bio-mechanical properties of biomaterials for tendon tissue engineering. However, recent progress indicated that innate immune cells, especially macrophages, can also respond to the material cues and undergo phenotypical changes, which will either facilitate or hinder tissue regeneration. This process has been, to some extent, neglected by traditional strategies and may partially explain the unsatisfactory outcomes of previous studies; thus, more researchers have turned their focus on developing and designing immunoregenerative biomaterials to enhance tendon regeneration. In this review, we will first summarize the effects of material cues on tenogenic differentiation and paracrine secretion of stem cells. A brief introduction will also be made on how material cues can be manipulated for the regeneration of tendon-to-bone interface. Then, we will discuss the characteristics and influences of macrophages on the repair process of tendon healing and how they respond to different materials cues. These principles may benefit the development of novel biomaterials provided with combinative bioactive cues to activate tenogenic differentiation of stem cells and pro-resolving macrophage phenotype. The progress achieved with the rapid development of biomaterial-based strategies for tendon regeneration has not yielded broad benefits to clinical patients. In addition to the interplay between stem cells and biomaterials, the innate immune response to biomaterials also plays a determinant role in tissue regeneration. Here, we propose that fine-tuning of stem cell behaviors and alternative activation of macrophages through material cues may lead to effective tendon

  18. The interaction of bacterial magnetosomes and human liver cancer cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pingping, E-mail: wangpp@mail.iee.ac.cn [Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Chuanfang [Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Changyou [Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Yue; Pan, Weidong; Song, Tao [Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-04-01

    As the biogenic magnetic nanomaterial, bacterial magnetic nanoparticles, namely magnetosomes, provide many advantages for potential biomedical applications. As such, interactions among magnetosomes and target cells should be elucidated to develop their bioapplications and evaluate their biocompatibilities. In this study, the interaction of magnetosomes and human liver cancer HepG2 cells was examined. Prussian blue staining revealed numerous stained particles in or on the cells. Intracellular iron concentrations, measured through inductively coupled plasma optical emission spectroscopy, increased with the increasing concentration of the magnetosomes. Transmission electron microscopy images showed that magnetosomes could be internalized in cells, mainly encapsulated in membrane vesicles, such as endosomes and lysosomes, and partly found as free particles in the cytosol. Some of the magnetosomes on cellular surfaces were encapsulated through cell membrane ruffling, which is the initiating process of endocytosis. Applying low temperature treatment and using specific endocytic inhibitors, we validated that macropinocytosis and clathrin-mediated endocytosis were involved in magnetosome uptake by HepG2 cells. Consequently, we revealed the interaction and intrinsic endocytic mechanisms of magnetosomes and HepG2 cells. This study provides a basis for the further research on bacterial magnetosome applications in liver diseases. - Highlights: • Bacterial magnetosomes interact with HepG2 cells in a dose-dependent manner. • Magnetosomes are wrapped by membrane ruffling on cell surface. • Internalized magnetosomes mainly localize in endosomes and lysosomes. • Macropinocytosis and CME are involved in the cellular uptake of magnetosomes.

  19. Near-Field Interaction of Closed Cells for Metamaterial Creation

    Directory of Open Access Journals (Sweden)

    Mironchev Aleksandr

    2016-01-01

    Full Text Available This article presents the results of numerical and computer modeling of the flat closed conductor with different variants of arrangement. The interaction of the conductors is examined and the results of active and reactive part of the Poynting vector for each structure is presented. According to the results the model with identical parameters for each element was built and examined for the presence of metamaterial properties.

  20. The physical and functional interaction of NDRG2 with MSP58 in cells

    International Nuclear Information System (INIS)

    Zhang Jing; Liu Junye; Li Xia; Li Fuyang; Wang Lifeng; Zhang Jian; Liu Xinping; Shen Lan; Liu Na; Deng Yanchun; Yang Angang; Han Hua; Zhao Mujun; Yao Libo

    2007-01-01

    NDRG2, a member of N-Myc downstream regulated gene family, exerts the important functions in cell differentiation and tumor suppression. Although the ectopic expressed Ndrg2 inhibits the proliferation of tumor cells, its intracellular signal transduction pathway is hardly known. Here, we identified MSP58, a 58-kDa microspherule protein, as an interacting partner of human Ndrg2 by using yeast two-hybrid screening. The interaction was confirmed by glutathione S-transferase pull-down assay in vitro and by co-immune-precipitation assay in vivo. The forkhead associated domain of MSP58 is essential for its interaction with Ndrg2. Ndrg2 could co-localize with MSP58 in nuclear of HeLa cell during cell stress. Furthermore, the modulation of Ndrg2 level influences the cell cycle process together with MSP58. In conclusion, the findings offered a novel insight into the physiological roles of Ndrg2

  1. A systems model for immune cell interactions unravels the mechanism of inflammation in human skin.

    Directory of Open Access Journals (Sweden)

    Najl V Valeyev

    2010-12-01

    Full Text Available Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes.

  2. Genome-wide analysis of E. coli cell-gene interactions

    DEFF Research Database (Denmark)

    Cardinale, S.; Cambray, G.

    2017-01-01

    modulate expression indirectly through an effect on cell size, putting forward the existence of a generic Size-Expression interaction in the model prokaryote Escherichia coli. Results: The Size-Expression interaction was quantified by inserting a dual fluorescent reporter gene construct into each...

  3. Novel Real-Time Proximity Assay for Characterizing Multiple Receptor Interactions on Living Cells.

    Science.gov (United States)

    Bondza, Sina; Björkelund, Hanna; Nestor, Marika; Andersson, Karl; Buijs, Jos

    2017-12-19

    Cellular receptor activity is often controlled through complex mechanisms involving interactions with multiple molecules, which can be soluble ligands and/or other cell surface molecules. In this study, we combine a fluorescence-based technology for real-time interaction analysis with fluorescence quenching to create a novel time-resolved proximity assay to study protein-receptor interactions on living cells. This assay extracts the binding kinetics and affinity for two proteins if they bind in proximity on the cell surface. One application of real-time proximity interaction analysis is to study relative levels of receptor dimerization. The method was primarily evaluated using the HER2 binding antibodies Trastuzumab and Pertuzumab and two EGFR binding antibodies including Cetuximab. Using Cetuximab and Trastuzumab, proximity of EGFR and HER2 was investigated before and after treatment of cells with the tyrosine-kinase inhibitor Gefitinib. Treated cells displayed 50% increased proximity signal, whereas the binding characteristics of the two antibodies were not significantly affected, implying an increase in the EGFR-HER2 dimer level. These results demonstrate that real-time proximity interaction analysis enables determination of the interaction rate constants and affinity of two ligands while simultaneously quantifying their relative colocalization on living cells.

  4. B Cells Promote Th1- Skewed NKT Cell Response by CD1d-TCR Interaction.

    Science.gov (United States)

    Shin, Jung Hoon; Park, Se-Ho

    2013-10-01

    CD1d expressing dendritic cells (DCs) are good glyco-lipid antigen presenting cells for NKT cells. However, resting B cells are very weak stimulators for NKT cells. Although α-galactosylceramide (α-GalCer) loaded B cells can activate NKT cells, it is not well defined whether B cells interfere NKT cell stimulating activity of DCs. Unexpectedly, we found in this study that B cells can promote Th1-skewed NKT cell response, which means a increased level of IFN-γ by NKT cells, concomitant with a decreased level of IL-4, in the circumstance of co-culture of DCs and B Cells. Remarkably, the response promoted by B cells was dependent on CD1d expression of B cells.

  5. Regulation of IL-6 and IL-8 production by reciprocal cell-to-cell interactions between tumor cells and stromal fibroblasts through IL-1α in ameloblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Fuchigami, Takao [Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Kibe, Toshiro [Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Koyama, Hirofumi; Kishida, Shosei; Iijima, Mikio [Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Nishizawa, Yoshiaki [Kagoshima University Faculty of Medicine, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Hijioka, Hiroshi; Fujii, Tomomi [Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Ueda, Masahiro [Natural Science Centre for Research and Education, Kagoshima University, 1-21-24 Koorimoto, Kagoshima 890-8580 (Japan); Nakamura, Norifumi [Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Kiyono, Tohru [Department of Virology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuouku, Tokyo 104-0045 (Japan); Kishida, Michiko, E-mail: kmichiko@m2.kufm.kagoshima-u.ac.jp [Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan)

    2014-09-05

    Highlights: • We studied the interaction between tumor cells and fibroblasts in ameloblastoma. • AM-3 ameloblastoma cells secreted significantly high IL-1α levels. • IL-1α derived from AM-3 cells promoted IL-6 and IL-8 secretion of fibroblasts. • IL-6 and IL-8 activated the cellular motility and proliferation of AM-3 cells. - Abstract: Ameloblastoma is an odontogenic benign tumor that occurs in the jawbone, which invades bone and reoccurs locally. This tumor is treated by wide surgical excision and causes various problems, including changes in facial countenance and mastication disorders. Ameloblastomas have abundant tumor stroma, including fibroblasts and immune cells. Although cell-to-cell interactions are considered to be involved in the pathogenesis of many diseases, intercellular communications in ameloblastoma have not been fully investigated. In this study, we examined interactions between tumor cells and stromal fibroblasts via soluble factors in ameloblastoma. We used a human ameloblastoma cell line (AM-3 ameloblastoma cells), human fibroblasts (HFF-2 fibroblasts), and primary-cultured fibroblasts from human ameloblastoma tissues, and analyzed the effect of ameloblastoma-associated cell-to-cell communications on gene expression, cytokine secretion, cellular motility and proliferation. AM-3 ameloblastoma cells secreted higher levels of interleukin (IL)-1α than HFF-2 fibroblasts. Treatment with conditioned medium from AM-3 ameloblastoma cells upregulated gene expression and secretion of IL-6 and IL-8 of HFF-2 fibroblasts and primary-cultured fibroblast cells from ameloblastoma tissues. The AM3-stimulated production of IL-6 and IL-8 in fibroblasts was neutralized by pretreatment of AM-3 cells with anti-IL-1α antibody and IL-1 receptor antagonist. Reciprocally, cellular motility of AM-3 ameloblastoma cells was stimulated by HFF-2 fibroblasts in IL-6 and IL-8 dependent manner. In conclusion, ameloblastoma cells and stromal fibroblasts behave

  6. Interaction of low density lipoproteins with rat liver cells

    NARCIS (Netherlands)

    L. Harkes (Leendert)

    1985-01-01

    textabstractThe most marked conclusion is the establishment of the important role of non-parenchymal cells in the catabolism of the low density lipoproteins by the rat liver. Because the liver is responsible for 70-80% of the removal of LDL from blood this conclusion can be extended to total

  7. Snake venom metalloproteinases and disintegrins: interactions with cells

    Directory of Open Access Journals (Sweden)

    Kamiguti A.S.

    1998-01-01

    Full Text Available Metalloproteinases and disintegrins are important components of most viperid and crotalid venoms. Large metalloproteinases referred to as MDC enzymes are composed of an N-terminal Metalloproteinase domain, a Disintegrin-like domain and a Cys-rich C-terminus. In contrast, disintegrins are small non-enzymatic RGD-containing cysteine-rich polypeptides. However, the disintegrin region of MDC enzymes bears a high degree of structural homology to that of the disintegrins, although it lacks the RGD motif. Despite these differences, both components share the property of being able to recognize integrin cell surface receptors and thereby to inhibit integrin-dependent cell reactions. Recently, several membrane-bound MDC enzymes, closely related to soluble venom MDC enzymes, have been described in mammalian cells. This group of membrane-anchored mammalian enzymes is also called the ADAM family of proteins due to the structure revealing A Disintegrin And Metalloproteinase domains. ADAMs are involved in the shedding of molecules from the cell surface, a property which is also shared by some venom MDC enzymes.

  8. Modelling spatio-temporal interactions within the cell

    Indian Academy of Sciences (India)

    Prakash

    data exists on cell signalling pathways and networks. Various groups (Bhalla and Iyengar 1999; Wiley et al 2003; .... sensitivity analysis to study the role of different parameters. Feedback and feedforward regulation in the network ..... For temporal dynamics Gillespie's algorithm. (Gillespie 1977) is efficient for computing the ...

  9. Cell Physiology and Interactions of Biomaterials and Matrices

    Czech Academy of Sciences Publication Activity Database

    Hunkeler, D.; Vaňková, Radomíra

    2003-01-01

    Roč. 28, č. 6 (2003), s. 193-197 ISSN 0032-3918 R&D Projects: GA MŠk OC 840.20 Institutional research plan: CEZ:AV0Z5038910 Keywords : Biomaterials * Cell physiology * Encapsulation Subject RIV: CE - Biochemistry

  10. Menage a trois: Borrelia, dendritic cells, and tick saliva interactions

    NARCIS (Netherlands)

    Mason, Lauren M. K.; Veerman, Christiaan C.; Geijtenbeek, Teunis B. H.; Hovius, Joppe W. R.

    2014-01-01

    Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis, is inoculated into the skin during an lxodes tick bite where it is recognised and captured by dendritic cells (DCs). However, considering the propensity of Borrelia to disseminate, it would appear that DCs fall short in

  11. Podocyte and Parietal Epithelial Cell Interactions in Health and Disease.

    Science.gov (United States)

    Al Hussain, Turki; Al Mana, Hadeel; Hussein, Maged H; Akhtar, Mohammed

    2017-01-01

    The glomerulus has 3 resident cells namely mesangial cells that produce the mesangial matrix, endothelial cells that line the glomerular capillaries, and podocytes that cover the outer surface of the glomerular basement membrane. Parietal epithelial cells (PrECs), which line the Bowman's capsule are not part of the glomerular tuft but may have an important role in the normal function of the glomerulus. A significant progress has been made in recent years regarding our understanding of the role and function of these cells in normal kidney and in kidneys with various types of glomerulopathy. In crescentic glomerulonephritis necrotizing injury of the glomerular tuft results in activation and leakage of fibrinogen which provides the trigger for excessive proliferation of PrECs giving rise to glomerular crescents. In cases of collapsing glomerulopathy, podocyte injury causes collapse of the glomerular capillaries and activation and proliferation of PrECs, which accumulate within the urinary space in the form of pseudocrescents. Many of the noninflammatory glomerular lesions such as focal segmental glomerulosclerosis and global glomerulosclerosis also result from podocyte injury which causes variable loss of podocytes. In these cases podocyte injury leads to activation of PrECs that extend on to the glomerular tuft where they cause segmental and/or global sclerosis by producing excess matrix, resulting in obliteration of the capillary lumina. In diabetic nephropathy, in addition to increased matrix production in the mesangium and glomerular basement membranes, increased loss of podocytes is an important determinant of long-term prognosis. Contrary to prior belief there is no convincing evidence for an active podocyte proliferation in any of the above mentioned glomerulopathies.

  12. Interactions between human NK cells and macrophages in response to Salmonella infection.

    Science.gov (United States)

    Lapaque, Nicolas; Walzer, Thierry; Méresse, Stéphane; Vivier, Eric; Trowsdale, John

    2009-04-01

    NK cells play a key role in host resistance to a range of pathogenic microorganisms, particularly during the initial stages of infection. NK cell interactions with cells infected with viruses and parasites have been studied extensively, but human bacterial infections have not been given the same attention. We studied crosstalk between human NK cells and macrophages infected with intracellular Salmonella. These macrophages activated NK cells, resulting in secretion of IFN-gamma and degranulation. Reciprocally, NK cell activation led to a dramatic reduction in numbers of intramacrophagic live bacteria. We identified three elements in the interaction of NK cells with infected macrophages. First, communication between NK cells and infected macrophages was contact-dependent. The second requirement was IL-2- and/or IL-15-dependent priming of NK cells to produce IFN-gamma. The third was activation of NK cells by IL-12 and IL-18, which were secreted by the Salmonella-infected macrophages. Adhesion molecules and IL-12Rbeta2 were enriched in the contact zone between NK cells and macrophages, consistent with contact- and IL-12/IL-18-dependent NK activation. Our results suggest that, in humans, bacterial clearance is consistent with a model invoking a "ménage à trois" involving NK cells, IL-2/IL-15-secreting cells, and infected macrophages.

  13. NLM Grantee's "HealthMap" Helps Uncover Measles Vaccination Gap

    Science.gov (United States)

    ... courtesy of NLM NLM Grantee's "HealthMap" Helps Uncover Measles Vaccination Gap Inadequate vaccine coverage is likely a driving force behind the ongoing Disneyland measles outbreak, according to calculations by a research team ...

  14. Current Understanding of Physicochemical Mechanisms for Cell Membrane Penetration of Arginine-rich Cell Penetrating Peptides: Role of Glycosaminoglycan Interactions.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Saito, Hiroyuki

    2018-01-01

    Arginine-rich cell penetrating peptides (CPPs) are very promising drug carriers to deliver membrane-impermeable pharmaceuticals, such as siRNA, bioactive peptides and proteins. CPPs directly penetrate into cells across cell membranes via a spontaneous energy-independent process, in which CPPs appear to interact with acidic lipids in the outer leaflet of the cell membrane. However, acidic lipids represent only 10 to 20% of the total membrane lipid content and in mammalian cell membranes they are predominantly located in the inner leaflet. Alternatively, CPPs favorably bind in a charge density- dependent manner to negatively charged, sulfated glycosaminoglycans (GAGs), such as heparan sulfate and chondroitin sulfate, which are abundant on the cell surface and are involved in many biological functions. We have recently demonstrated that the interaction of CPPs with sulfated GAGs plays a critical role in their direct cell membrane penetration: the favorable enthalpy contribution drives the high-affinity binding of arginine-rich CPPs to sulfated GAGs, initiating an efficient cell membrane penetration. The favorable enthalpy gain is presumably mainly derived from a unique property of the guanidino group of arginine residues forming multidentate hydrogen bonding with sulfate and carboxylate groups in GAGs. Such interactions can be accompanied with charge neutralization of arginine-rich CPPs, promoting their partition into cell membranes. This review summarizes the current understanding of the physicochemical mechanism for lipid membrane penetration of CPPs, and discusses the role of the GAG interactions on the cell membrane penetration of CPPs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Histological Architecture Underlying Brain-Immune Cell-Cell Interactions and the Cerebral Response to Systemic Inflammation.

    Science.gov (United States)

    Shimada, Atsuyoshi; Hasegawa-Ishii, Sanae

    2017-01-01

    Although the brain is now known to actively interact with the immune system under non-inflammatory conditions, the site of cell-cell interactions between brain parenchymal cells and immune cells has been an open question until recently. Studies by our and other groups have indicated that brain structures such as the leptomeninges, choroid plexus stroma and epithelium, attachments of choroid plexus, vascular endothelial cells, cells of the perivascular space, circumventricular organs, and astrocytic endfeet construct the histological architecture that provides a location for intercellular interactions between bone marrow-derived myeloid lineage cells and brain parenchymal cells under non-inflammatory conditions. This architecture also functions as the interface between the brain and the immune system, through which systemic inflammation-induced molecular events can be relayed to the brain parenchyma at early stages of systemic inflammation during which the blood-brain barrier is relatively preserved. Although brain microglia are well known to be activated by systemic inflammation, the mechanism by which systemic inflammatory challenge and microglial activation are connected has not been well documented. Perturbed brain-immune interaction underlies a wide variety of neurological and psychiatric disorders including ischemic brain injury, status epilepticus, repeated social defeat, and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Proinflammatory status associated with cytokine imbalance is involved in autism spectrum disorders, schizophrenia, and depression. In this article, we propose a mechanism connecting systemic inflammation, brain-immune interface cells, and brain parenchymal cells and discuss the relevance of basic studies of the mechanism to neurological disorders with a special emphasis on sepsis-associated encephalopathy and preterm brain injury.

  16. The interaction of inflammatory cells in granuloma faciale

    Directory of Open Access Journals (Sweden)

    Takeshi Nakahara

    2010-11-01

    Full Text Available Granuloma faciale (GF is a rare chronic inflammatory skin disease characterized by single or multiple reddish-brown cutaneous plaques or nodules. Although this condition is benign, its clinical course is extremely chronic with poor response to therapy. The typical histopathological features of GF include vasculitis with mixed cellular infiltration; however, its etiopathogenesis remains unknown. Here, we describe the case of a 76-year-old man with GF resistant to topical steroids. Biopsy of the lesion revealed i dense mixed inflammatory cellular infiltrates of lymphocytes, histiocytes, neutrophils, and eosino­phils, ii mild perivascular nuclear dust and swollen endothelium of blood vessels, and iii a narrow Grenz zone beneath the epidermis. Immunohistochemical staining demonstrated mixed cellular infiltrates intermixed with CD1a+ dendritic cells, CD68+ histiocytes, and CD4+ and CD8+ T cells.

  17. HPMA and HEMA copolymer bead interactions with eukaryotic cells

    Directory of Open Access Journals (Sweden)

    Cristina D. Vianna-Soares

    2004-09-01

    Full Text Available Two different hydrophilic acrylate beads were prepared via aqueous suspension polymerization. Beads produced of a hydroxypropyl methacrylate (HPMA and ethyleneglycol methacrylate (EDMA copolymer were obtained using a polyvinyl alcohol suspending medium. Copolymers of 2hydroxyethyl methacrylate (HEMA, methyl methacrylate (MMA and ethyleneglycol methacrylate (EDMA beads were obtained using magnesium hydroxide as the suspending agent. Following characterization by scanning electron microscopy (SEM, nitrogen sorption analysis (NSA and mercury intrusion porosimetry (MIP, the beads were cultured with monkey fibroblasts (COS7 to evaluate their ability to support cell growth, attachment and adhesion. Cell growth behavior onto small HPMA/EDMA copolymer beads and large HEMA/MMA/EDMA copolymer beads is evaluated regarding their hidrophilicity/hidrophobicity and surface roughness.

  18. Interaction of airway epithelial cells (A549) with spores and mycelium of Aspergillus fumigatus

    NARCIS (Netherlands)

    Zhang, ZH; Liu, RY; Noordhoek, JA; Kauffman, HF

    2005-01-01

    Objective. To study the interaction of airway epithelial cell line A549 with fragments of mycelium, spores of Aspergitlus fumigatus in vitro and to determine if toll-like receptors (TLRs) are involved in the process. Methods. A549 cells were exposed to fragments of A. fumigatus mycelium, zymosan and

  19. Host-microbe interactions in stem cell transplantation: recognizing Candida in infection and inflammation.

    NARCIS (Netherlands)

    Velden, W.J.F.M. van der; Plantinga, T.S.; Donnelly, J.P.; Kullberg, B.J.; Blijlevens, N.M.A.; Netea, M.G.

    2010-01-01

    Host-pathogen interactions at epithelial barriers play an important role in health and disease. This also applies to the clinical setting of stem cell transplantation (SCT) in which deregulated sensing of microbes and their cell wall components by pattern recognition receptors (PRRs) can contribute

  20. Red Cell Indexes Made Easy Using an Interactive Animation: Do Students and Their Scores Concur?

    Science.gov (United States)

    Kachroo, Upasana; Vinod, Elizabeth; Balasubramanian, Sivakumar; W., Jesi; Prince, Neetu

    2018-01-01

    A good understanding of red cell indexes can aid medical students in a considerable manner, serving as a basis to unravel both concepts in red cell physiology and abnormalities associated with the same. In this study, we tried to assess whether an interactive animation was helpful in improving student comprehension and understanding of red cell…

  1. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions

    DEFF Research Database (Denmark)

    Schwarz, Sandra; West, T Eoin; Boyer, Frédéric

    2010-01-01

    fluorescens and Serratia proteamaculans-leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking T6SS-1 were rapidly...

  2. MUC1 (CD227) interacts with lck tyrosine kinase in Jurkat lymphoma cells and normal T cells.

    Science.gov (United States)

    Mukherjee, P; Tinder, T L; Basu, G D; Gendler, S J

    2005-01-01

    MUC1 (CD227) is a large transmembrane epithelial mucin glycoprotein, which is aberrantly overexpressed in most adenocarcinomas and is a target for immune therapy for epithelial tumors. Recently, MUC1 has been detected in a variety of hematopoietic cell malignancies including T and B cell lymphomas and myelomas; however, its function in these cells is not clearly defined. Using the Jurkat T cell lymphoma cell line and normal human T cells, we demonstrate that MUC1 is not only expressed in these cells but is also phosphorylated upon T cell receptor (TCR) ligation and associates with the Src-related T cell tyrosine kinase, p56lck. Upon TCR-mediated activation of Jurkat cells, MUC1 is found in the low-density membrane fractions, where linker of T cell activation is contained. Abrogation of MUC1 expression in Jurkat cells by MUC1-specific small interfering RNA resulted in defects in TCR-mediated downstream signaling events associated with T cell activation. These include reduction in Ca2+ influx and extracellular signal-regulated kinase 1/2 phosphorylation, leading to a decrease in CD69 expression, proliferation, and interleukin-2 production. These results suggest a regulatory role of MUC1 in modulating proximal signal transduction events through its interaction with proteins of the activation complex.

  3. Impact of processing on the noncovalent interactions between procyanidin and apple cell wall.

    Science.gov (United States)

    Le Bourvellec, Carine; Watrelot, Aude A; Ginies, Christian; Imberty, Anne; Renard, Catherine M G C

    2012-09-19

    Procyanidins can bind cell wall material in raw product, and it could be supposed that the same mechanism of retention of procyanidins by apple cell walls takes place in cooked products. To evaluate the influence of cell wall composition and disassembly during cooking on the cell walls' capacity to interact with procyanidins, four cell wall materials differing in their protein contents and physical characteristics were prepared: cell wall with proteins, cell wall devoid of protein, and two processed cell walls differing by their drying method. Protein contents varied from 23 to 99 mg/g and surface areas from 1.26 to 3.16 m(2)/g. Apple procyanidins with an average polymerization degree of 8.7 were used. The adsorption of apple procyanidins on solid cell wall material was quantified using the Langmuir isotherm formulation. The protein contents in cell wall material had no effect on procyanidin/cell wall interactions, whereas modification of the cell wall material by boiling, which reduces pectin content, and drying decreased the apparent affinity and increased the apparent saturation levels when constants were expressed relative to cell wall weight. However, boiling and drying increased apparent saturation levels and had no effect on apparent affinity when the same data were expressed per surface units. Isothermal titration calorimetry indicated strong affinity (K(a) = 1.4 × 10(4) M(-1)) between pectins solubilized by boiling and procyanidins. This study higllights the impact of highly methylated pectins and drying, that is, composition and structure of cell wall in the cell wall/procyanidin interactions.

  4. Stromal cells expressing hedgehog-interacting protein regulate the proliferation of myeloid neoplasms

    International Nuclear Information System (INIS)

    Kobune, M; Iyama, S; Kikuchi, S; Horiguchi, H; Sato, T; Murase, K; Kawano, Y; Takada, K; Ono, K; Kamihara, Y; Hayashi, T; Miyanishi, K; Sato, Y; Takimoto, R; Kato, J

    2012-01-01

    Aberrant reactivation of hedgehog (Hh) signaling has been described in a wide variety of human cancers including cancer stem cells. However, involvement of the Hh-signaling system in the bone marrow (BM) microenvironment during the development of myeloid neoplasms is unknown. In this study, we assessed the expression of Hh-related genes in primary human CD34 + cells, CD34 + blastic cells and BM stromal cells. Both Indian Hh (Ihh) and its signal transducer, smoothened (SMO), were expressed in CD34 + acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS)-derived cells. However, Ihh expression was relatively low in BM stromal cells. Remarkably, expression of the intrinsic Hh-signaling inhibitor, human Hh-interacting protein (HHIP) in AML/MDS-derived stromal cells was markedly lower than in healthy donor-derived stromal cells. Moreover, HHIP expression levels in BM stromal cells highly correlated with their supporting activity for SMO + leukemic cells. Knockdown of HHIP gene in stromal cells increased their supporting activity although control cells marginally supported SMO + leukemic cell proliferation. The demethylating agent, 5-aza-2′-deoxycytidine rescued HHIP expression via demethylation of HHIP gene and reduced the leukemic cell-supporting activity of AML/MDS-derived stromal cells. This indicates that suppression of stromal HHIP could be associated with the proliferation of AML/MDS cells

  5. Interaction between thymic cells and hemopoietic stem cells. Enhanced repopulation of the irradiated thymus

    International Nuclear Information System (INIS)

    Daculsi, Richard; Legrand, Elisabeth; Duplan, J.-F.

    1977-01-01

    In irradiated mice engrafted with hemopoietic cells, the thymus is repopulated more rapidly by bone marrow-derived than by spleen-derived cells. Admixing thymic cells with restorative suspension stimulates the thymic repopulation by spleen-derived cells whereas it has no effect on the repopulation by bone marrow-derived cells [fr

  6. Interaction of insect trypanosomatids with mosquitoes, sand fly and the respective insect cell lines.

    Science.gov (United States)

    Fampa, Patrícia; Corrêa-da-Silva, Miguel S; Lima, Dinair C; Oliveira, Sandra M P; Motta, Maria Cristina M; Saraiva, Elvira M B

    2003-09-15

    Interaction experiments between hematophagous insects and monoxenous trypanosomatids have become relevant, once cases of human infection involving these protozoa have been reported. Moreover, investigations related to the interaction of insects with trypanosomatids that harbour an endosymbiotic bacterium and thereby lack the paraflagellar rod structure are important to elucidate the role of this structure in the adhesion process. In this work, we compared the interaction of endosymbiont-bearing trypanosomatids and their aposymbiotic counterpart strains (without endosymbionts) with cell lines of Anopheles gambiae, Aedes albopictus and Lutzomyia longipalpis and with explanted guts of the respective insects. Endosymbiont-bearing strains interacted better with insect cells and guts when compared with aposymbiotic strains. In vitro binding assays revealed that the trypanosomatids interacted with the gut epithelial cells via flagellum and cell body. Flagella attached to the insect gut were enlarged, containing electrondense filaments between the axoneme and flagellar membrane at the point of adhesion. Interactions involving the flagellum lacking paraflagellar rod structure were mainly observed close to tight junctions, between epithelial cells. Endosymbiont-bearing trypanosomatids were able to colonise Aedes aegypti guts after protozoa feeding.

  7. Interaction of human endothelial cells and nickel-titanium materials modified with silicon ions

    Energy Technology Data Exchange (ETDEWEB)

    Lotkov, Aleksandr I., E-mail: lotkov@ispms.tsc.ru; Kashin, Oleg A., E-mail: okashin@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Kudryavtseva, Yuliya A., E-mail: yulia-k1970@mail.ru; Antonova, Larisa V., E-mail: antonova.la@mail.ru; Matveeva, Vera G., E-mail: matveeva-vg@mail.ru; Sergeeva, Evgeniya A., E-mail: sergeewa.ew@yandex.ru [Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, 650002 (Russian Federation); Kudryashov, Andrey N., E-mail: kudryashov@angioline.ru [Angioline Interventional Device Ltd, Novosibirsk, 630090 (Russian Federation)

    2015-10-27

    The paper studies the influence of chemical and phase compositions of NiTi surface layers modified with Si ions by plasma immersion implantation on their interaction with endothelial cells. It is shown that certain technological modes of Si ion implantation enhance the adhesion, proliferation, and viability of endothelial cells. It is found that the Si-modified NiTi surface is capable of stimulating the formation of capillary-like structures in the cell culture.

  8. SU-F-SPS-08: Measuring the Interaction Of DDR Cell Receptors and Extracellular Matrix Collagen in Prostate Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, J; Sarkar, A; Hoffmann, P [Wayne State University, Detroit, MI (United States); Suhail, A; Fridman, R [Wayne State University School of Medicine, Detroit, MI (United States)

    2016-06-15

    Purpose: Discoidin domain receptors (DDR) have recently been recognized as important players in cancer progression. DDRs are cell receptors that interact with collagen, an extracellular matrix (ECM) protein. However the detailed mechanism of their interaction is unclear. Here we attempted to examine their interaction in terms of structural (surface topography), mechanical (rupture force), and kinetic (binding probability) information on the single molecular scale with the use of atomic force microscopy (AFM). Methods: The Quantitative Nano-mechanical property Mapping (QNM) mode of AFM allowed to assess the cells in liquid growth media at their optimal physiological while being viable. Human benign prostate hyperplasia (BPH-1) cell line was genetically regulated to suppress DDR expression (DDR- cells) and was compared with naturally DDR expressing cells (DDR+). Results: Binding force measurements (n = 1000) were obtained before and after the two groups were treated with fibronectin (FN), an integrin-inhibiting antibody to block the binding of integrin. The quantification indicates that cells containing DDR bind with collagen at a most probable force of 80.3–83.0 ±7.6 pN. The probability of them binding is 0.167 when other interactions (mainly due to integrin-collagen binding) are minimized. Conclusion: Together with further force measurements at different pulling speeds will determine dissociation rate, binding distance and activation barrier. These parameters in benign cells provides some groundwork in understanding DDR’s behavior in various cell microenvironments such as in malignant tumor cells. Funding supported by Richard Barber Interdisciplinary Research Program of Wayne State University.

  9. Revealing the sequence of interactions of PuroA peptide with Candida albicans cells by live-cell imaging

    Science.gov (United States)

    Shagaghi, Nadin; Bhave, Mrinal; Palombo, Enzo A.; Clayton, Andrew H. A.

    2017-03-01

    To determine the mechanism(s) of action of antimicrobial peptides (AMPs) it is desirable to provide details of their interaction kinetics with cellular, sub-cellular and molecular targets. The synthetic peptide, PuroA, displays potent antimicrobial activities which have been attributed to peptide-induced membrane destabilization, or intracellular mechanisms of action (DNA-binding) or both. We used time-lapse fluorescence microscopy and fluorescence lifetime imaging microscopy (FLIM) to directly monitor the localization and interaction kinetics of a FITC- PuroA peptide on single Candida albicans cells in real time. Our results reveal the sequence of events leading to cell death. Within 1 minute, FITC-PuroA was observed to interact with SYTO-labelled nucleic acids, resulting in a noticeable quenching in the fluorescence lifetime of the peptide label at the nucleus of yeast cells, and cell-cycle arrest. A propidium iodide (PI) influx assay confirmed that peptide translocation itself did not disrupt the cell membrane integrity; however, PI entry occurred 25-45 minutes later, which correlated with an increase in fractional fluorescence of pores and an overall loss of cell size. Our results clarify that membrane disruption appears to be the mechanism by which the C. albicans cells are killed and this occurs after FITC-PuroA translocation and binding to intracellular targets.

  10. Drug/Cell-line Browser: interactive canvas visualization of cancer drug/cell-line viability assay datasets.

    Science.gov (United States)

    Duan, Qiaonan; Wang, Zichen; Fernandez, Nicolas F; Rouillard, Andrew D; Tan, Christopher M; Benes, Cyril H; Ma'ayan, Avi

    2014-11-15

    Recently, several high profile studies collected cell viability data from panels of cancer cell lines treated with many drugs applied at different concentrations. Such drug sensitivity data for cancer cell lines provide suggestive treatments for different types and subtypes of cancer. Visualization of these datasets can reveal patterns that may not be obvious by examining the data without such efforts. Here we introduce Drug/Cell-line Browser (DCB), an online interactive HTML5 data visualization tool for interacting with three of the recently published datasets of cancer cell lines/drug-viability studies. DCB uses clustering and canvas visualization of the drugs and the cell lines, as well as a bar graph that summarizes drug effectiveness for the tissue of origin or the cancer subtypes for single or multiple drugs. DCB can help in understanding drug response patterns and prioritizing drug/cancer cell line interactions by tissue of origin or cancer subtype. DCB is an open source Web-based tool that is freely available at: http://www.maayanlab.net/LINCS/DCB CONTACT: avi.maayan@mssm.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Cellulose-hemicellulose interaction in wood secondary cell-wall

    Science.gov (United States)

    Zhang, Ning; Li, Shi; Xiong, Liming; Hong, Yu; Chen, Youping

    2015-12-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose.

  12. Cellulose-hemicellulose interaction in wood secondary cell-wall

    International Nuclear Information System (INIS)

    Zhang, Ning; Li, Shi; Hong, Yu; Chen, Youping; Xiong, Liming

    2015-01-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose. (paper)

  13. Interactions of Neuromodulators with Cells of the Immune System

    Science.gov (United States)

    1991-06-20

    treatments. lizan blood platelet,: were isolatod y low trifuged at 0 S for 15 *in. and the aupernatan u..ained was ed centrifugation and surface...deprimers copetar to 51 and 3’ ends Stain’tng for altered cation bindig, g the copper sulfate/potassiumI ofI-e laeta C squne.Th PEres onpout0ee f~ynd tecne...this ed nt antigen Impet hemocyanin (KLH). H"nl does not ptide in T 11 development and unction we have effsot fhs -total -n mber of spleen cells or

  14. An optimized in vitro model of the respiratory tract wall to study particle cell interactions.

    Science.gov (United States)

    Blank, Fabian; Rothen-Rutishauser, Barbara M; Schurch, Samuel; Gehr, Peter

    2006-01-01

    As a part of the respiratory tissue barrier, lung epithelial cells play an important role against the penetration of the body by inhaled particulate foreign materials. In most cell culture models, which are designed to study particle-cell interactions, the cells are immersed in medium. This does not reflect the physiological condition of lung epithelial cells which are exposed to air, separated from it only by a very thin liquid lining layer with a surfactant film at the air-liquid interface. In this study, A549 epithelial cells were grown on microporous membranes in a two chamber system. After the formation of a confluent monolayer the cells were exposed to air. The morphology of the cells and the expression of tight junction proteins were studied with confocal laser scanning and transmission electron microscopy. Air-exposed cells maintained monolayer structure for 2 days, expressed tight junctions and developed transepithelial electrical resistance. Surfactant was produced and released at the apical side of the air-exposed epithelial cells. In order to study particle-cell interactions fluorescent 1 microm polystyrene particles were sprayed over the epithelial surface. After 4 h, 8.8% of particles were found inside the epithelium. This fraction increased to 38% after 24 h. During all observations, particles were always found in the cells but never between them. In this study, we present an in vitro model of the respiratory tract wall consisting of air-exposed lung epithelial cells covered by a liquid lining layer with a surfactant film to study particle-cell interactions.

  15. Interaction of gold nanoparticles with proteins and cells

    International Nuclear Information System (INIS)

    Wang, Pengyang; Liu, Wei; Wang, Xin; Wang, Liming; Hou, Xiaoyang; Chen, Chunying

    2015-01-01

    Gold nanoparticles (Au NPs) possess many advantages such as facile synthesis, controllable size and shape, good biocompatibility, and unique optical properties. Au NPs have been widely used in biomedical fields, such as hyperthermia, biocatalysis, imaging, and drug delivery. The broad application range may result in hazards to the environment and human health. Therefore, it is important to predict safety and evaluate therapeutic efficiency of Au NPs. It is necessary to establish proper approaches for the study of toxicity and biomedical effects. In this review, we first focus on the recent progress in biological effects of Au NPs at the molecular and cellular levels, and then introduce key techniques to study the interaction between Au NPs and proteins. Knowledge of the biomedical effects of Au NPs is significant for the rational design of functional nanomaterials and will help predict their safety and potential applications. (focus issue review)

  16. Emerging functions as host cell factors - an encyclopedia of annexin-pathogen interactions.

    Science.gov (United States)

    Kuehnl, Alexander; Musiol, Agnes; Raabe, Carsten A; Rescher, Ursula

    2016-10-01

    Emerging infectious diseases and drug-resistant infectious agents call for the development of innovative antimicrobial strategies. With pathogenicity now considered to arise from the complex and bi-directional interplay between a microbe and the host, host cell factor targeting has emerged as a promising approach that might overcome the limitations of classical antimicrobial drug development and could open up novel and efficient therapeutic strategies. Interaction with and modulation of host cell membranes is a recurrent theme in the host-microbe relationship. In this review, we provide an overview of what is currently known about the role of the Ca2+ dependent, membrane-binding annexin protein family in pathogen-host interactions, and discuss their emerging functions as host cell derived auxiliary proteins in microbe-host interactions and host cell targets.

  17. The pestivirus Erns glycoprotein interacts with E2 in both infected cells and mature virions

    International Nuclear Information System (INIS)

    Lazar, Catalin; Zitzmann, Nicole; Dwek, Raymond A.; Branza-Nichita, Norica

    2003-01-01

    E rns is a pestivirus envelope glycoprotein indispensable for virus attachment and infection of target cells. Unlike the other two envelope proteins E1 and E2, E rns lacks a transmembrane domain and a vast quantity is secreted into the medium of infected cells. The protein is also present in fractions of pure pestivirus virions, raising the important and intriguing question regarding the mechanism of its attachment to the pestivirus envelope. In this study a direct interaction between E rns and E2 glycoproteins was demonstrated in both pestivirus-infected cells and mature virions. By co- and sequential immunoprecipitation we showed that an E rns -E2 heterodimer is assembled very early after translation of the viral polyprotein and before its processing is completed. Our results suggest that E rns is attached to the pestivirus envelope via a direct interaction with E2 and explain the role of E rns in the initial virus-target cell interaction

  18. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments

    Energy Technology Data Exchange (ETDEWEB)

    LaBarge, Mark A; Nelson, Celeste M; Villadsen, Rene; Fridriksdottir, Agla; Ruth, Jason R; Stampfer, Martha R; Petersen, Ole W; Bissell, Mina J

    2008-09-19

    In adult tissues, multi-potent progenitor cells are some of the most primitive members of the developmental hierarchies that maintain homeostasis. That progenitors and their more mature progeny share identical genomes, suggests that fate decisions are directed by interactions with extrinsic soluble factors, ECM, and other cells, as well as physical properties of the ECM. To understand regulation of fate decisions, therefore, would require a means of understanding carefully choreographed combinatorial interactions. Here we used microenvironment protein microarrays to functionally identify combinations of cell-extrinsic mammary gland proteins and ECM molecules that imposed specific cell fates on bipotent human mammary progenitor cells. Micropatterned cell culture surfaces were fabricated to distinguish between the instructive effects of cell-cell versus cell-ECM interactions, as well as constellations of signaling molecules; and these were used in conjunction with physiologically relevant 3 dimensional human breast cultures. Both immortalized and primary human breast progenitors were analyzed. We report on the functional ability of those proteins of the mammary gland that maintain quiescence, maintain the progenitor state, and guide progenitor differentiation towards myoepithelial and luminal lineages.

  19. Paracrine interactions of cancer-associated fibroblasts, macrophages and endothelial cells: tumor allies and foes.

    Science.gov (United States)

    Ronca, Roberto; Van Ginderachter, Jo A; Turtoi, Andrei

    2018-01-01

    Tumor stroma is composed of many cellular subtypes, of which the most abundant are fibroblasts, macrophages and endothelial cells. During the process of tissue injury, these three cellular subtypes must coordinate their activity to efficiently contribute to tissue regeneration. In tumor, this mechanism is hijacked by cancer cells, which rewire the interaction of stromal cells to benefit tumor development. The present review aims at summarizing most relevant information concerning both pro-tumorigenic and anti-tumorigenic actions implicating the three stromal cell subtypes as well as their mutual interactions. Although stromal cells are generally regarded as tumor-supportive and at will manipulated by cancer cells, several novel studies point at many defaults in cancer cell-mediated stromal reprograming. Indeed, parts of initial tissue-protective and homeostatic functions of the stromal cells remain in place even after tumor development. Both tumor-supportive and tumor-suppressive functions have been well described for macrophages, whereas similar results are emerging for fibroblasts and endothelial cells. Recent success of immunotherapies have finally brought the long awaited proof that stroma is key for efficient tumor targeting. However, a better understanding of paracrine stromal interactions is needed in order to encourage drug development not only aiming at disruption of tumor-supportive communication but also re-enforcing, existing, tumor-suppressive mechanisms.

  20. Gold nanoparticle interactions with endothelial cells cultured under physiological conditions.

    Science.gov (United States)

    Freese, C; Anspach, L; Deller, R C; Richards, S-J; Gibson, M I; Kirkpatrick, C J; Unger, R E

    2017-03-28

    PEGylated gold nanoparticles (AuNPs) have an extended circulation time after intravenous injection in vivo and exhibit favorable properties for biosensing, diagnostic imaging, and cancer treatment. No impact of PEGylated AuNPs on the barrier forming properties of endothelial cells (ECs) has been reported, but recent studies demonstrated that unexpected effects on erythrocytes are observed. Almost all studies to date have been with static-cultured ECs. Herein, ECs maintained under physiological cyclic stretch and flow conditions and used to generate a blood-brain barrier model were exposed to 20 nm PEGylated AuNPs. An evaluation of toxic effects, cell stress, the release profile of pro-inflammatory cytokines, and blood-brain barrier properties showed that even under physiological conditions no obvious effects of PEGylated AuNPs on ECs were observed. These findings suggest that 20 nm-sized, PEGylated AuNPs may be a useful tool for biomedical applications, as they do not affect the normal function of healthy ECs after entering the blood stream.

  1. Interactions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages

    Directory of Open Access Journals (Sweden)

    Marie-Pierre eChapot-Chartier

    2014-05-01

    Full Text Available Lactic acid bacteria (LAB are Gram positive bacteria widely used in the production of fermented food in particular cheese and yoghurts. Bacteriophage infections during fermentation processes have been for many years a major industrial concern and have stimulated numerous research efforts. Better understanding of the molecular mechanisms of bacteriophage interactions with their host bacteria is required for the development of efficient strategies to fight against infections. The bacterial cell wall plays key roles in these interactions. First, bacteriophages must adsorb at the bacterial surface through specific interactions with receptors that are cell wall components. At next step, phages must overcome the barrier constituted by cell wall peptidoglycan to inject DNA inside bacterial cell. Also at the end of the infection cycle, phages synthesize endolysins able to hydrolyze peptidoglycan and lyse bacterial cells to release phage progeny. In the last decade, concomitant development of genomics and structural analysis of cell wall components allowed considerable advances in the knowledge of their structure and function in several model LAB. Here, we describe the present knowledge on the structure of the cell wall glycopolymers of the best characterized LAB emphasizing their structural variations and we present the available data regarding their role in bacteria-phage specific interactions at the different steps of the infection cycle.

  2. A cell-based method for screening RNA-protein interactions: identification of constitutive transport element-interacting proteins.

    Directory of Open Access Journals (Sweden)

    Robert L Nakamura

    Full Text Available We have developed a mammalian cell-based screening platform to identify proteins that assemble into RNA-protein complexes. Based on Tat-mediated activation of the HIV LTR, proteins that interact with an RNA target elicit expression of a GFP reporter and are captured by fluorescence activated cell sorting. This "Tat-hybrid" screening platform was used to identify proteins that interact with the Mason Pfizer monkey virus (MPMV constitutive transport element (CTE, a structured RNA hairpin that mediates the transport of unspliced viral mRNAs from the nucleus to the cytoplasm. Several hnRNP-like proteins, including hnRNP A1, were identified and shown to interact with the CTE with selectivity in the reporter system comparable to Tap, a known CTE-binding protein. In vitro gel shift and pull-down assays showed that hnRNP A1 is able to form a complex with the CTE and Tap and that the RGG domain of hnRNP A1 mediates binding to Tap. These results suggest that hnRNP-like proteins may be part of larger export-competent RNA-protein complexes and that the RGG domains of these proteins play an important role in directing these binding events. The results also demonstrate the utility of the screening platform for identifying and characterizing new components of RNA-protein complexes.

  3. Cinematographic analysis of vascular smooth muscle cell interactions with extracellular matrix.

    Science.gov (United States)

    Absher, M; Baldor, L

    1991-01-01

    The interactions of vascular smooth muscle cells with growth modulators and extracellular matrix molecules may play a role in the proliferation and migration of these cells after vascular injury and during the development of atherosclerosis. Time-lapse cinematographic techniques have been used to study cell division and migration of bovine carotid artery smooth muscle cells in response to matrix molecules consisting of solubilized basement membrane (Matrigel) and type I collagen. When cells were grown adjacent to Matrigel, both migration and cell proliferation were increased and interdivision time was shortened. Cells grown in Matrigel or in type I collagen had markedly reduced migration rates but interdivision time was not altered. Further, diffusible components of the Matrigel were found to stimulate proliferation of the smooth muscle cells.

  4. Blood on the tracks: hematopoietic stem cell-endothelial cell interactions in homing and engraftment.

    Science.gov (United States)

    Perlin, Julie R; Sporrij, Audrey; Zon, Leonard I

    2017-08-01

    Cells of the hematopoietic system undergo rapid turnover. Each day, humans require the production of about one hundred billion new blood cells for proper function. Hematopoietic stem cells (HSCs) are rare cells that reside in specialized niches and are required throughout life to produce specific progenitor cells that will replenish all blood lineages. There is, however, an incomplete understanding of the molecular and physical properties that regulate HSC migration, homing, engraftment, and maintenance in the niche. Endothelial cells (ECs) are intimately associated with HSCs throughout the life of the stem cell, from the specialized endothelial cells that give rise to HSCs, to the perivascular niche endothelial cells that regulate HSC homeostasis. Recent studies have dissected the unique molecular and physical properties of the endothelial cells in the HSC vascular niche and their role in HSC biology, which may be manipulated to enhance hematopoietic stem cell transplantation therapies.

  5. MPQ-cytometry: a magnetism-based method for quantification of nanoparticle-cell interactions.

    Science.gov (United States)

    Shipunova, V O; Nikitin, M P; Nikitin, P I; Deyev, S M

    2016-07-07

    Precise quantification of interactions between nanoparticles and living cells is among the imperative tasks for research in nanobiotechnology, nanotoxicology and biomedicine. To meet the challenge, a rapid method called MPQ-cytometry is developed, which measures the integral non-linear response produced by magnetically labeled nanoparticles in a cell sample with an original magnetic particle quantification (MPQ) technique. MPQ-cytometry provides a sensitivity limit 0.33 ng of nanoparticles and is devoid of a background signal present in many label-based assays. Each measurement takes only a few seconds, and no complicated sample preparation or data processing is required. The capabilities of the method have been demonstrated by quantification of interactions of iron oxide nanoparticles with eukaryotic cells. The total amount of targeted nanoparticles that specifically recognized the HER2/neu oncomarker on the human cancer cell surface was successfully measured, the specificity of interaction permitting the detection of HER2/neu positive cells in a cell mixture. Moreover, it has been shown that MPQ-cytometry analysis of a HER2/neu-specific iron oxide nanoparticle interaction with six cell lines of different tissue origins quantitatively reflects the HER2/neu status of the cells. High correlation of MPQ-cytometry data with those obtained by three other commonly used in molecular and cell biology methods supports consideration of this method as a prospective alternative for both quantifying cell-bound nanoparticles and estimating the expression level of cell surface antigens. The proposed method does not require expensive sophisticated equipment or highly skilled personnel and it can be easily applied for rapid diagnostics, especially under field conditions.

  6. The role of particle-to-cell interactions in dictating nanoparticle aided magnetophoretic separation of microalgal cells

    Science.gov (United States)

    Toh, Pey Yi; Ng, Bee Wah; Ahmad, Abdul Latif; Chieh, Derek Chan Juinn; Lim, Jitkang

    2014-10-01

    Successful application of a magnetophoretic separation technique for harvesting biological cells often relies on the need to tag the cells with magnetic nanoparticles. This study investigates the underlying principle behind the attachment of iron oxide nanoparticles (IONPs) onto microalgal cells, Chlorella sp. and Nannochloropsis sp., in both freshwater and seawater, by taking into account the contributions of various colloidal forces involved. The complex interplay between van der Waals (vdW), electrostatic (ES) and Lewis acid-base interactions (AB) in dictating IONP attachment was studied under the framework of extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis. Our results showed that ES interaction plays an important role in determining the net interaction between the Chlorella sp. cells and IONPs in freshwater, while the AB and vdW interactions play a more dominant role in dictating the net particle-to-cell interaction in high ionic strength media (>=100 mM NaCl), such as seawater. XDLVO predicted effective attachment between cells and surface functionalized IONPs (SF-IONPs) with an estimated secondary minimum of -3.12 kT in freshwater. This prediction is in accordance with the experimental observation in which 98.89% of cells can be magnetophoretically separated from freshwater with SF-IONPs. We have observed successful magnetophoretic separation of microalgal cells from freshwater and/or seawater for all the cases as long as XDLVO analysis predicts particle attachment. For both the conditions, no pH adjustment is required for particle-to-cell attachment.Successful application of a magnetophoretic separation technique for harvesting biological cells often relies on the need to tag the cells with magnetic nanoparticles. This study investigates the underlying principle behind the attachment of iron oxide nanoparticles (IONPs) onto microalgal cells, Chlorella sp. and Nannochloropsis sp., in both freshwater and seawater, by taking into account the

  7. Engineering genetic circuit interactions within and between synthetic minimal cells

    Science.gov (United States)

    Adamala, Katarzyna P.; Martin-Alarcon, Daniel A.; Guthrie-Honea, Katriona R.; Boyden, Edward S.

    2017-05-01

    Genetic circuits and reaction cascades are of great importance for synthetic biology, biochemistry and bioengineering. An open question is how to maximize the modularity of their design to enable the integration of different reaction networks and to optimize their scalability and flexibility. One option is encapsulation within liposomes, which enables chemical reactions to proceed in well-isolated environments. Here we adapt liposome encapsulation to enable the modular, controlled compartmentalization of genetic circuits and cascades. We demonstrate that it is possible to engineer genetic circuit-containing synthetic minimal cells (synells) to contain multiple-part genetic cascades, and that these cascades can be controlled by external signals as well as inter-liposomal communication without crosstalk. We also show that liposomes that contain different cascades can be fused in a controlled way so that the products of incompatible reactions can be brought together. Synells thus enable a more modular creation of synthetic biology cascades, an essential step towards their ultimate programmability.

  8. Size Matters: How Scaling Affects the Interaction between Grid and Border Cells

    Directory of Open Access Journals (Sweden)

    Diogo Santos-Pata

    2017-07-01

    Full Text Available Many hippocampal cell types are characterized by a progressive increase in scale along the dorsal-to-ventral axis, such as in the cases of head-direction, grid and place cells. Also located in the medial entorhinal cortex (MEC, border cells would be expected to benefit from such scale modulations. However, this phenomenon has not been experimentally observed. Grid cells in the MEC of mammals integrate velocity related signals to map the environment with characteristic hexagonal tessellation patterns. Due to the noisy nature of these input signals, path integration processes tend to accumulate errors as animals explore the environment, leading to a loss of grid-like activity. It has been suggested that border-to-grid cells' associations minimize the accumulated grid cells' error when rodents explore enclosures. Thus, the border-grid interaction for error minimization is a suitable scenario to study the effects of border cell scaling within the context of spatial representation. In this study, we computationally address the question of (i border cells' scale from the perspective of their role in maintaining the regularity of grid cells' firing fields, as well as (ii what are the underlying mechanisms of grid-border associations relative to the scales of both grid and border cells. Our results suggest that for optimal contribution to grid cells' error minimization, border cells should express smaller firing fields relative to those of the associated grid cells, which is consistent with the hypothesis of border cells functioning as spatial anchoring signals.

  9. Unbiased chromatin accessibility profiling by RED-seq uncovers unique features of nucleosome variants in vivo.

    Science.gov (United States)

    Chen, Poshen B; Zhu, Lihua J; Hainer, Sarah J; McCannell, Kurtis N; Fazzio, Thomas G

    2014-12-15

    Differential accessibility of DNA to nuclear proteins underlies the regulation of numerous cellular processes. Although DNA accessibility is primarily determined by the presence or absence of nucleosomes, differences in nucleosome composition or dynamics may also regulate accessibility. Methods for mapping nucleosome positions and occupancies genome-wide (MNase-seq) have uncovered the nucleosome landscapes of many different cell types and organisms. Conversely, methods specialized for the detection of large nucleosome-free regions of chromatin (DNase-seq, FAIRE-seq) have uncovered numerous gene regulatory elements. However, these methods are less successful in measuring the accessibility of DNA sequences within nucelosome arrays. Here we probe the genome-wide accessibility of multiple cell types in an unbiased manner using restriction endonuclease digestion of chromatin coupled to deep sequencing (RED-seq). Using this method, we identified differences in chromatin accessibility between populations of cells, not only in nucleosome-depleted regions of the genome (e.g., enhancers and promoters), but also within the majority of the genome that is packaged into nucleosome arrays. Furthermore, we identified both large differences in chromatin accessibility in distinct cell lineages and subtle but significant changes during differentiation of mouse embryonic stem cells (ESCs). Most significantly, using RED-seq, we identified differences in accessibility among nucleosomes harboring well-studied histone variants, and show that these differences depend on factors required for their deposition. Using an unbiased method to probe chromatin accessibility genome-wide, we uncover unique features of chromatin structure that are not observed using more widely-utilized methods. We demonstrate that different types of nucleosomes within mammalian cells exhibit different degrees of accessibility. These findings provide significant insight into the regulation of DNA accessibility.

  10. Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms.

    Science.gov (United States)

    Sugano, Marika; Morisaki, Hirobumi; Negishi, Yoichi; Endo-Takahashi, Yoko; Kuwata, Hirotaka; Miyazaki, Takashi; Yamamoto, Matsuo

    2016-01-01

    Although oral infectious diseases have been attributed to bacteria, drug treatments remain ineffective because bacteria and their products exist as biofilms. Cationic liposomes have been suggested to electrostatically interact with the negative charge on the bacterial surface, thereby improving the effects of conventional drug therapies. However, the electrostatic interaction between oral bacteria and cationic liposomes has not yet been examined in detail. The aim of the present study was to examine the behavior of cationic liposomes and Streptococcus mutans in planktonic cells and biofilms. Liposomes with or without cationic lipid were prepared using a reverse-phase evaporation method. The zeta potentials of conventional liposomes (without cationic lipid) and cationic liposomes were -13 and 8 mV, respectively, and both had a mean particle size of approximately 180 nm. We first assessed the interaction between liposomes and planktonic bacterial cells with a flow cytometer. We then used a surface plasmon resonance method to examine the binding of liposomes to biofilms. We confirmed the binding behavior of liposomes with biofilms using confocal laser scanning microscopy. The interactions between cationic liposomes and S. mutans cells and biofilms were stronger than those of conventional liposomes. Microscopic observations revealed that many cationic liposomes interacted with the bacterial mass and penetrated the deep layers of biofilms. In this study, we demonstrated that cationic liposomes had higher affinity not only to oral bacterial cells, but also biofilms than conventional liposomes. This electrostatic interaction may be useful as a potential drug delivery system to biofilms.

  11. Tailoring the Interfacial Chemical Interaction for High-Efficiency Perovskite Solar Cells.

    Science.gov (United States)

    Zuo, Lijian; Chen, Qi; De Marco, Nicholas; Hsieh, Yao-Tsung; Chen, Huajun; Sun, Pengyu; Chang, Sheng-Yung; Zhao, Hongxiang; Dong, Shiqi; Yang, Yang

    2017-01-11

    The ionic nature of perovskite photovoltaic materials makes it easy to form various chemical interactions with different functional groups. Here, we demonstrate that interfacial chemical interactions are a critical factor in determining the optoelectronic properties of perovskite solar cells. By depositing different self-assembled monolayers (SAMs), we introduce different functional groups onto the SnO 2 surface to form various chemical interactions with the perovskite layer. It is observed that the perovskite solar cell device performance shows an opposite trend to that of the energy level alignment theory, which shows that chemical interactions are the predominant factor governing the interfacial optoelectronic properties. Further analysis verifies that proper interfacial interactions can significantly reduce trap state density and facilitate the interfacial charge transfer. Through use of the 4-pyridinecarboxylic acid SAM, the resulting perovskite solar cell exhibits striking improvements to the reach the highest efficiency of 18.8%, which constitutes an ∼10% enhancement compared to those without SAMs. Our work highlights the importance of chemical interactions at perovskite/electrode interfaces and paves the way for further optimizing performances of perovskite solar cells.

  12. Symmetric interactions within a homogeneous starburst cell network can lead to robust asymmetries in dendrites of starburst amacrine cells.

    Science.gov (United States)

    Münch, Thomas A; Werblin, Frank S

    2006-07-01

    Starburst amacrine cells in the mammalian retina respond asymmetrically to movement along their dendrites; centrifugal movement elicits stronger responses in each dendrite than centripetal movement. It has been suggested that the asymmetrical response can be attributed to intrinsic properties of the processes themselves. But starburst cells are known to release and have receptors for both GABA and acetylcholine. We tested whether interactions within the starburst cell network can contribute to their directional response properties. In a computational model of interacting starburst amacrine cells, we simulated the response of individual dendrites to moving light stimuli. By setting the model parameters for "synaptic connection strength" (cs) to positive or negative values, overlapping starburst dendrites could either excite or inhibit each other. For some values of cs, we observed a very robust inward/outward asymmetry of the starburst dendrites consistent with the reported physiological findings. This is the case, for example, if a starburst cell receives inhibition from other starburst cells located in its surround. For other values of cs, individual dendrites can respond best either to inward movement or respond symmetrically. A properly wired network of starburst cells can therefore account for the experimentally observed asymmetry of their response to movement, independent of any internal biophysical or biochemical properties of starburst cell dendrites.

  13. Interplays between the cell wall and phytohormones in interaction between plants and necrotrophic pathogens.

    Science.gov (United States)

    Nafisi, Majse; Fimognari, Lorenzo; Sakuragi, Yumiko

    2015-04-01

    The plant cell wall surrounds every cell in plants. During microbial infection, the cell wall provides a dynamic interface for interaction with necrotrophic phytopathogens as a rich source of carbohydrates for the growth of pathogens, as a physical barrier restricting the progression of the pathogens, and as an integrity sensory system that can activate intracellular signaling cascades and ultimately lead to a multitude of inducible host defense responses. Studies over the last decade have provided evidence of interplays between the cell wall and phytohormone signaling. This review summarizes the current state of knowledge about the cell wall-phytohormone interplays, with the focus on auxin, cytokinin, brassinosteroids, and abscisic acid, and discuss how they impact the outcome of plant-necrotrophic pathogen interaction. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Interaction of alpha-2-macroglobulin and HSV-1 during infection of neuronal cells.

    Science.gov (United States)

    Alonso, M; Dimitrijevic, A; Recuero, M; Serrano, E; Valdivieso, F; López-Guerrero, J A

    2001-12-01

    We describe the effect of pretreatment with alpha-2-macroglobulin (A2M) on the susceptibility of the human neuroblastoma SKNMC cell line to infection by herpes virus type 1 (HSV-1). ELISA and co-immunoprecipitation experiments confirmed the A2M-HSV-1 interaction in vitro. Indirect immunofluorescence shows that A2M exacerbated the cytopathic effect induced after HSV-1 infection. However, A2M-pretreated SKNMC cells notably produced fewer HSV-1 particles than did the untreated cells, suggesting that A2M could induce a restrictive infection. Furthermore, high levels of HSV-1 and A2M induced the production of nitric oxide (NO) in SKNMC. Preliminary results suggest that A2M might induce apoptosis in HSV-1-infected cells. These findings affirm the conclusion that A2M may interact directly with HSV-1 and modulate the course of the infection in SKNMC human neuroblastoma cells.

  15. Pigment cell interactions and differential xanthophore recruitment underlying zebrafish stripe reiteration and Danio pattern evolution.

    Science.gov (United States)

    Patterson, Larissa B; Bain, Emily J; Parichy, David M

    2014-11-06

    Fishes have diverse pigment patterns, yet mechanisms of pattern evolution remain poorly understood. In zebrafish, Danio rerio, pigment-cell autonomous interactions generate dark stripes of melanophores that alternate with light interstripes of xanthophores and iridophores. Here, we identify mechanisms underlying the evolution of a uniform pattern in D. albolineatus in which all three pigment cell classes are intermingled. We show that in this species xanthophores differentiate precociously over a wider area, and that cis regulatory evolution has increased expression of xanthogenic Colony Stimulating Factor-1 (Csf1). Expressing Csf1 similarly in D. rerio has cascading effects, driving the intermingling of all three pigment cell classes and resulting in the loss of stripes, as in D. albolineatus. Our results identify novel mechanisms of pattern development and illustrate how pattern diversity can be generated when a core network of pigment-cell autonomous interactions is coupled with changes in pigment cell differentiation.

  16. Gold nanoparticles functionalized with angiogenin-mimicking peptides modulate cell membrane interactions.

    Science.gov (United States)

    Cucci, Lorena M; Munzone, Alessia; Naletova, Irina; Magrì, Antonio; La Mendola, Diego; Satriano, Cristina

    2018-04-16

    Angiogenin is a protein crucial in angiogenesis, and it is overexpressed in many cancers and downregulated in neurodegenerative diseases, respectively. The protein interaction with actin, through the loop encompassing the 60-68 residues, is an essential step in the cellular cytoskeleton reorganization. This, in turn, influences the cell proliferation and migration processes. In this work, hybrid nanoassemblies of gold nanoparticles with angiogenin fragments containing the 60-68 sequence were prepared and characterized in their interaction with both model membranes of supported lipid bilayers (SLBs) and cellular membranes of cancer (neuroblastoma) and normal (fibroblasts) cell lines. The comparison between physisorption and chemisorption mechanisms was performed by the parallel investigation of the 60-68 sequence and the peptide analogous containing an extra cysteine residue. Moreover, steric hindrance and charge effects were considered with a third analogous peptide sequence, conjugated with a fluorescent carboxyfluorescein (Fam) moiety. The hybrid nanobiointerface was characterized by means of ultraviolet-visible, atomic force microscopy and circular dichroism, to scrutinize plasmonic changes, nanoparticles coverage and conformational features, respectively. Lateral diffusion measurements on SLBs "perturbed" by the interaction with the gold nanoparticles-peptides point to a stronger membrane interaction in comparison with the uncoated nanoparticles. Cell viability and proliferation assays indicate a slight nanotoxicity in neuroblastoma cells and a proliferative activity in fibroblasts. The actin staining confirms different levels of interaction between the hybrid assemblies and the cell membranes.

  17. Toxicological interactions of silver nanoparticles and non-essential metals in human hepatocarcinoma cell line.

    Science.gov (United States)

    Miranda, Renata Rank; Bezerra, Arandi Ginane; Oliveira Ribeiro, Ciro Alberto; Randi, Marco Antônio Ferreira; Voigt, Carmen Lúcia; Skytte, Lilian; Rasmussen, Kaare Lund; Kjeldsen, Frank; Filipak Neto, Francisco

    2017-04-01

    Toxicological interaction represents a challenge to toxicology, particularly for novel contaminants. There are no data whether silver nanoparticles (AgNPs), present in a wide variety of products, can interact and modulate the toxicity of ubiquitous contaminants, such as nonessential metals. In the current study, we investigated the toxicological interactions of AgNP (size=1-2nm; zeta potential=-23mV), cadmium and mercury in human hepatoma HepG2 cells. The results indicated that the co-exposures led to toxicological interactions, with AgNP+Cd being more toxic than AgNP+Hg. Early (2-4h) increases of ROS (DCF assay) and mitochondrial O 2 - levels (Mitosox® assay) were observed in the cells co-exposed to AgNP+Cd/Hg, in comparison to control and individual contaminants, but the effect was partially reverted in AgNP+Hg at the end of 24h-exposure. In addition, decreases of mitochondrial metabolism (MTT), cell viability (neutral red uptake assay), cell proliferation (crystal violet assay) and ABC-transporters activity (rhodamine accumulation assay) were also more pronounced in the co-exposure groups. Foremost, co-exposure to AgNP and metals potentiated cell death (mainly by necrosis) and Hg 2+ (but not Cd 2+ ) intracellular levels (ICP-MS). Therefore, toxicological interactions seem to increase the toxicity of AgNP, cadmium and mercury. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Cell-surface interactions involving immobilized magnetite nanoparticles on flat magnetic substrates.

    Science.gov (United States)

    Loichen, Juliane; Hartmann, Uwe

    2009-09-01

    A new method to affect cells by cell-surface interaction is introduced. Biocompatible magnetic nanobeads are deposited onto a biocompatible magnetic thin layer. The particles are composed of small magnetite crystals embedded in a matrix which can be functionalized by different molecules, proteins or growth factors. The magnetic interaction between surface and beads prevents endocytosis if the setup is utilized for cell culturing. The force acting between particles and magnetic layer is calculated by a magnetostatic approach. Biocompatibility is ensured by using garnet layers which turned out to be nontoxic and stable under culturing conditions. The garnet thin films exhibit spatially and temporally variable magnetic domain configurations in changing external magnetic fields and depending on their thermal pretreatment. Several patterns and bead deposition methods as well as the cell-surface interactions were analyzed. In some cases the cells show directed growth. Theoretical considerations explaining particular cell behavior on this magnetic material involve calculations of cell growth on elastic substrates and bending of cell membranes.

  19. Evaluation of cell interaction with polymeric biomaterials based on hyaluronic acid and chitosan.

    Science.gov (United States)

    do Nascimento, Mônica Helena Monteiro; Ferreira, Mariselma; Malmonge, Sônia Maria; Lombello, Christiane Bertachini

    2017-05-01

    Tissue engineering involves the development of new materials or devices capable of specific interactions with biological tissues, searching the use of biocompatible materials as scaffolds for in vitro cell growth, and functional tissue development, that is subsequently implanted into patient. The aim of the current study was to evaluate the initial aspects of cell interaction with the polymeric biomaterials blends based on hyaluronic acid with chitosan. The hypothesis approach involves synthesis and analysis of swelling and thermal degradation (thermal gravimetric analysis) of the polymer blend; and Vero cell interaction with the biomaterial, through analysis of cytotoxicity, adhesion and cell morphology. The blend resulted in a biomaterial with a high swelling ratio that can allow nutrient distribution and absorption. The thermal gravimetric analysis results showed that the blend had two stages of degradation at temperatures very close to those observed for pure polymers, confirming that the physical mixing of hydrogels occurred, resulting in the presence of both hyaluronic acid and chitosan in the blend. The evaluation of indirect cytotoxicity showed that the blend was non cytotoxic for Vero cells, and the quantitative analysis performed with the MTT could verify a cell viability of 98%. The cells cultured on the blend showed adhesion, spreading and proliferation on this biomaterial, distinguished from the pattern of the control cells. These results showed that the blends produced from hyaluronic acid and chitosan hydrogels are promising for applications in tissue engineering, aiming at future cartilaginous tissue.

  20. PIAS1-FAK Interaction Promotes the Survival and Progression of Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jerfiz D. Constanzo

    2016-05-01

    Full Text Available The sequence of genomic alterations acquired by cancer cells during tumor progression and metastasis is poorly understood. Focal adhesion kinase (FAK is a non-receptor tyrosine kinase that integrates cytoskeleton remodeling, mitogenic signaling and cell survival. FAK has previously been reported to undergo nuclear localization during cell migration, cell differentiation and apoptosis. However, the mechanism behind FAK nuclear accumulation and its contribution to tumor progression has remained elusive. We report that amplification of FAK and the SUMO E3 ligase PIAS1 gene loci frequently co-occur in non-small cell lung cancer (NSCLC cells, and that both gene products are enriched in a subset of primary NSCLCs. We demonstrate that endogenous FAK and PIAS1 proteins interact in the cytoplasm and the cell nucleus of NSCLC cells. Ectopic expression of PIAS1 promotes proteolytic cleavage of the FAK C-terminus, focal adhesion maturation and FAK nuclear localization. Silencing of PIAS1 deregulates focal adhesion turnover, increases susceptibility to apoptosis in vitro and impairs tumor xenograft formation in vivo. Nuclear FAK in turn stimulates gene transcription favoring DNA repair, cell metabolism and cytoskeleton regulation. Consistently, ablation of FAK by CRISPR/Cas9 editing, results in basal DNA damage, susceptibility to ionizing radiation and impaired oxidative phosphorylation. Our findings provide insight into a mechanism regulating FAK cytoplasm-nuclear distribution and demonstrate that FAK activity in the nucleus promotes NSCLC survival and progression by increasing cell-ECM interaction and DNA repair regulation.

  1. Mutual interaction of Basophils and T cells in chronic inflammatory diseases

    Directory of Open Access Journals (Sweden)

    Marika eSarfati

    2015-08-01

    Full Text Available Basophils are, together with mast cells, typical innate effector cells of allergen-induced IgE-dependent allergic diseases. Both cell types express the high affinity receptor for IgE (FcεR1, release histamine, inflammatory mediators and cytokines following FcεR1 cross-linking. Basophils are rare granulocytes in blood, lymphoid and non-lymphoid tissues and the difficulties to detect and isolate these cells has hampered the study of their biology and the understanding of their possible role in pathology. Furthermore, the existence of other FcεR1-expressing cells, including professional Ag-presenting dendritic cells, generated some controversy regarding the ability of basophils to express MHC Class II molecules, present Ag and drive naïve T cell differentiation into Th2 cells. The focus of this review is to present the recent advances on the interactions between basophils and peripheral blood and tissue memory Th1, Th2 and Th17 cells, as well as their potential role in IgE-independent non allergic chronic inflammatory disorders, including human inflammatory bowel diseases. Basophils interactions with the innate players of IgE-dependent allergic inflammation, particularly innate lymphoid cells, will also be considered. The previously unrecognized function for basophils in skewing adaptive immune responses opens novel perspectives for the understanding of their contribution to the pathogenesis of inflammatory diseases.

  2. Quantifying rates of cell migration and cell proliferation in co-culture barrier assays reveals how skin and melanoma cells interact during melanoma spreading and invasion.

    Science.gov (United States)

    Haridas, Parvathi; Penington, Catherine J; McGovern, Jacqui A; McElwain, D L Sean; Simpson, Matthew J

    2017-06-21

    Malignant spreading involves the migration of cancer cells amongst other native cell types. For example, in vivo melanoma invasion involves individual melanoma cells migrating through native skin, which is composed of several distinct subpopulations of cells. Here, we aim to quantify how interactions between melanoma and fibroblast cells affect the collective spreading of a heterogeneous population of these cells in vitro. We perform a suite of circular barrier assays that includes: (i) monoculture assays with fibroblast cells; (ii) monoculture assays with SK-MEL-28 melanoma cells; and (iii) a series of co-culture assays initiated with three different ratios of SK-MEL-28 melanoma cells and fibroblast cells. Using immunostaining, detailed cell density histograms are constructed to illustrate how the two subpopulations of cells are spatially arranged within the spreading heterogeneous population. Calibrating the solution of a continuum partial differential equation to the experimental results from the monoculture assays allows us to estimate the cell diffusivity and the cell proliferation rate for the melanoma and the fibroblast cells, separately. Using the parameter estimates from the monoculture assays, we then make a prediction of the spatial spreading in the co-culture assays. Results show that the parameter estimates obtained from the monoculture assays lead to a reasonably accurate prediction of the spatial arrangement of the two subpopulations in the co-culture assays. Overall, the spatial pattern of spreading of the melanoma cells and the fibroblast cells is very similar in monoculture and co-culture conditions. Therefore, we find no clear evidence of any interactions other than cell-to-cell contact and crowding effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Transcriptome atlas of eight liver cell types uncovers effects of ...

    Indian Academy of Sciences (India)

    2010-12-06

    Dec 6, 2010 ... Arch. Pathol. 12, 186–202. Huang J. F. and Thurmond R. L. 2008 The new biology of histamine receptors. Curr. Allergy Asthma Rep. 8, 21–27. Irizarry R. A., Bolstad B. M., Collin F., Cope L. M., Hobbs B. and. Speed T. P. 2003 Summaries of affymetrix genechip probe level data. Nucleic Acids Res. 31, e15.

  4. The cell-cell interaction between tumor-associated macrophages and small cell lung cancer cells is involved in tumor progression via STAT3 activation.

    Science.gov (United States)

    Iriki, Toyohisa; Ohnishi, Koji; Fujiwara, Yukio; Horlad, Hasita; Saito, Yoichi; Pan, Cheng; Ikeda, Koei; Mori, Takeshi; Suzuki, Makoto; Ichiyasu, Hidenori; Kohrogi, Hirotsugu; Takeya, Motohiro; Komohara, Yoshihiro

    2017-04-01

    Small cell lung cancer (SCLC) is an aggressive tumor with a poor prognosis. It is well known that various stromal cells, including macrophages, play a role in tumor progression in several types of malignant tumors; however, the significance of tumor-associated macrophages (TAMs) in SCLC has not been fully elucidated. Signal transducer and activator of transcription 3 (STAT3) is a molecule well-known to be related to tumor progression. In the present study, we investigated the relationship of TAMs and SCLC cells to test the hypothesis that TAMs induce tumor progression in SCLC via STAT3 activation. We performed immunohistochemical analysis using surgically resected tumor specimens and in vitro co-culture experiments using human SCLC cell lines and human monocyte-derived macrophages. We first demonstrated via immunostaining that STAT3 activation in tumor cells was predominantly observed in the peripheral areas of tumor nests existing near TAMs in stroma. The indirect co-culture of SCLC cells and macrophages induced STAT3 activation in both cell types, and macrophage-derived culture supernatant (CS) significantly activated STAT3 in SCLC cells. Macrophage-derived CS induced tumor cell proliferation and invasion via STAT3 activation. In addition, chemo-resistance and sphere formation were also increased by macrophage-derived CS. Macrophage-derived interleukin-6 and CC chemokine ligand 4 (CCL4/MIP-1β) were suggested to be associated with STAT3 activation in SCLC cells. CS-induced STAT3 activation in SCLC cells was suppressed by anti-IL-6 receptor antibody, but not by anti-CCL4/MIP-1β antibody. These results suggest that TAMs are likely involved in SCLC progression via STAT3 activation and TAM-derived IL-6 is indicated to be one of molecules related to STAT3 activation in SCLC cells. Thus, the cell-cell interaction between TAMs and SCLC cells might be a target for therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Lipid raft association restricts CD44-ezrin interaction and promotion of breast cancer cell migration.

    LENUS (Irish Health Repository)

    Donatello, Simona

    2012-12-01

    Cancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells. Specifically, in nonmigrating cells, CD44 and ezrin localized to different membranous compartments: CD44 predominantly in rafts, and ezrin in nonraft compartments. After the induction of migration (either nonspecific or CD44-driven), CD44 affiliation with lipid rafts was decreased. This was accompanied by increased coprecipitation of CD44 and active (threonine-phosphorylated) ezrin-radixin-moesin (ERM) proteins in nonraft compartments and increased colocalization of CD44 with the nonraft protein, transferrin receptor. Pharmacological raft disruption using methyl-β-cyclodextrin also increased CD44-ezrin coprecipitation and colocalization, further suggesting that CD44 interacts with ezrin outside rafts during migration. Conversely, promoting CD44 retention inside lipid rafts by pharmacological inhibition of depalmitoylation virtually abolished CD44-ezrin interactions. However, transient single or double knockdown of flotillin-1 or caveolin-1 was not sufficient to increase cell migration over a short time course, suggesting complex crosstalk mechanisms. We propose a new model for CD44-dependent breast cancer cell migration, where CD44 must relocalize outside lipid rafts to drive cell migration. This could have implications for rafts as pharmacological targets to down-regulate cancer cell migration.

  6. The interaction of bacterial magnetosomes and human liver cancer cells in vitro

    Science.gov (United States)

    Wang, Pingping; Chen, Chuanfang; Chen, Changyou; Li, Yue; Pan, Weidong; Song, Tao

    2017-04-01

    As the biogenic magnetic nanomaterial, bacterial magnetic nanoparticles, namely magnetosomes, provide many advantages for potential biomedical applications. As such, interactions among magnetosomes and target cells should be elucidated to develop their bioapplications and evaluate their biocompatibilities. In this study, the interaction of magnetosomes and human liver cancer HepG2 cells was examined. Prussian blue staining revealed numerous stained particles in or on the cells. Intracellular iron concentrations, measured through inductively coupled plasma optical emission spectroscopy, increased with the increasing concentration of the magnetosomes. Transmission electron microscopy images showed that magnetosomes could be internalized in cells, mainly encapsulated in membrane vesicles, such as endosomes and lysosomes, and partly found as free particles in the cytosol. Some of the magnetosomes on cellular surfaces were encapsulated through cell membrane ruffling, which is the initiating process of endocytosis. Applying low temperature treatment and using specific endocytic inhibitors, we validated that macropinocytosis and clathrin-mediated endocytosis were involved in magnetosome uptake by HepG2 cells. Consequently, we revealed the interaction and intrinsic endocytic mechanisms of magnetosomes and HepG2 cells. This study provides a basis for the further research on bacterial magnetosome applications in liver diseases.

  7. Adhesive interaction measured between AFM probe and lung epithelial type II cells

    International Nuclear Information System (INIS)

    Leonenko, Zoya; Finot, Eric; Amrein, Matthias

    2007-01-01

    The toxicity of inhaled nanoparticles entering the body through the lung is thought to be initially defined by the electrostatic and adhesive interaction of the particles with lung's wall. Here, we investigated the first step of the interaction of nanoparticles with lung epithelial cells using atomic force microscope (AFM) as a force apparatus. Nanoparticles were modeled by the apex of the AFM tip and the forces of interaction between the tip and the cell analyzed over time. The adhesive force and work of adhesion strongly increased for the first 100 s of contact and then leveled out. During this time, the tip was penetrating deeply into the cell. It first crossed a stiff region of the cell and then entered a much more compliant cell region. The work of adhesion and its progression over time were not dependent on the load with which the tip was brought into contact with the cell. We conclude that the initial thermodynamic aspects and the time course of the uptake of nanoparticles by lung epithelial cells can be studied using our experimental approach. It is discussed how the potential health threat posed by nanoparticles of different size and surface characteristics can be evaluated using the method presented

  8. Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Nir eOsherov

    2012-09-01

    Full Text Available Aspergillus fumigatus is an opportunistic environmental mold that can cause severe allergic responses in atopic individuals and poses a life-threatening risk for severely immunocompromised patients. Infection is caused by inhalation of fungal spores (conidia into the lungs. The initial point of contact between the fungus and the host is a monolayer of lung epithelial cells. Understanding how these cells react to fungal contact is crucial to elucidating the pathobiology of Aspergillus-related disease states. The experimental systems, both in vitro and in vivo, used to study these interactions, are described. Distinction is made between bronchial and alveolar epithelial cells. The experimental findings suggest that lung epithelial cells are more than just innocent bystanders or a purely physical barrier against infection. They can be better described as an active extension of our innate immune system, operating as a surveillance mechanism that can specifically identify fungal spores and activate an offensive response to block infection. This response includes the internalization of adherent conidia and the release of cytokines, antimicrobial peptides and reactive oxygen species. In the case of allergy, lung epithelial cells can dampen an over-reactive immune response by releasing anti-inflammatory compounds such as kinurenine. This review summarizes our current knowledge regarding the interaction of A. fumigatus with lung epithelial cells. A better understanding of the interactions between A. fumigatus and lung epithelial cells has therapeutic implications, as stimulation or inhibition of the epithelial response may alter disease outcome.

  9. Imaging the microanatomy of astrocyte-T-cell interactions in immune-mediated inflammation

    Directory of Open Access Journals (Sweden)

    Carlos eBarcia

    2013-04-01

    Full Text Available The role of astrocytes in the immune-mediated inflammatory response in the brain is more prominent than previously thought. Astrocytes become reactive in response to neuro-inflammatory stimuli through multiple pathways, contributing significantly to the machinery that modifies the parenchymal environment. In particular, astrocytic signaling induces the establishment of critical relationships with infiltrating blood cells, such as lymphocytes, which is a fundamental process for an effective immune response. The interaction between astrocytes and T-cells involves complex modifications to both cell types, which undergo micro-anatomical changes and the redistribution of their binding and secretory domains. These modifications are critical for different immunological responses, such as for the effectiveness of the T-cell response, for the specific infiltration of these cells and their homing in the brain parenchyma, and for their correct apposition with antigen-presenting cells to form immunological synapses. In this article, we review the current knowledge of the interactions between T-cells and astrocytes in the context of immune-mediated inflammation in the brain, based on the micro-anatomical imaging of these appositions by high-resolution confocal microscopy and three-dimensional rendering. The study of these dynamic interactions using detailed technical approaches contributes to understanding the function of astrocytes in inflammatory responses and paves the way for new therapeutic strategies.

  10. Selective control of human glioma cell proliferation by specific cell interaction.

    Science.gov (United States)

    MacDonald, C M; Freshney, R I; Hart, E; Graham, D I

    1985-01-01

    Cells cultured from anaplastic astrocytoma (Kernohan and Sayre, grades III and IV) will proliferate on confluent monolayers of normal glia, while cells cultured from normal brain will not. The growth of a cell line containing a high proportion of well-differentiated glioma cells (G-CCM) was partially inhibited, though not as much as normal glia, while the growth of a cell line made up of less differentiated cells (G-UVW) was enhanced by the normal glia. Although non-glial confluent monolayers also inhibited the growth of normal glia, this was less specific, as one normal glial line (N-DUT) grew on fibroblasts and intestinal epithelium, although it was unable to do so on normal glia. It is suggested that this may be a useful method for examining reduced density limitation of growth, discriminating between normal and malignant glia, and for separating glioma cells from contaminating normal cells.

  11. Unraveling the complex behavior of AgNPs driving NP-Cell interactions and toxicity to algal cells

    DEFF Research Database (Denmark)

    Malysheva, Anzhela; Voelcker, Nicolas; Holm, Peter Engelund

    2016-01-01

    - and intracellular Ag by chemically etching AgNPs on the surface of algal cells and used dark field microscopy for their imaging. We observed that positively charged branched polyethilenimine (bPEI)-coated AgNPs tend to aggregate in the presence of algae and interact with test vessels and algal cells, while citrate......-coated AgNPs have a tendency to dissolve. On the other hand, with large variation of half-maximum effective concentration (EC50) across tested NPs (5.4 to 300 ngAg mL(-1)), Ag internalized by the algal cells at EC50 was similar (0.8 to 3.6 ngAg mL(-1)) for all AgNP types. These data show that while sorption...... to the vessels, dissolution, and aggregation impact on the distribution of AgNPs in the test system and on interactions with algal cells, AgNP toxicity is strongly correlated with the NP-cell surface interaction and internalization of Ag....

  12. Toxicological interactions of silver nanoparticles and non-essential metals in human hepatocarcinoma cell line

    DEFF Research Database (Denmark)

    Miranda, Renata Rank; Bezerra, Arandi Ginane; Ribeiro, Ciro Alberto Oliveira

    2017-01-01

    . In the current study, we investigated the toxicological interactions of AgNP (size=1-2nm; zeta potential=-23mV), cadmium and mercury in human hepatoma HepG2 cells. The results indicated that the co-exposures led to toxicological interactions, with AgNP+Cd being more toxic than AgNP+Hg. Early (2-4h) increases...

  13. In vitro evaluation of the interactions between human corneal endothelial cells and extracellular matrix proteins

    International Nuclear Information System (INIS)

    Choi, Jin San; Kim, Eun Young; Kim, Min Jeong; Giegengack, Matthew; Khan, Faraaz A; Soker, Shay; Khang, Gilson

    2013-01-01

    The corneal endothelium is the innermost cell layer of the cornea and rests on Descemet's membrane consisting of various extracellular matrix (ECM) proteins which can directly affect the cellular behaviors such as cell adhesion, proliferation, polarity, morphogenesis and function. The objective of this study was to investigate the interactions between the ECM environment and human corneal endothelial cells (HCECs), with the ultimate goal to improve cell proliferation and function in vitro. To evaluate the interaction of HCECs with ECM proteins, cells were seeded on ECM-coated tissue culture dishes, including collagen type I (COL I), collagen type IV (COL IV), fibronectin (FN), FNC coating mix (FNC) and laminin (LM). Cell adhesion and proliferation of HCECs on each substratum and expression of CEC markers were studied. The results showed that HCECs plated on the COL I, COL IV, FN and FNC-coated plates had enhanced cell adhesion initially; the number for COL I, COL IV, FN and FNC was significantly higher than the control (P < 0.05). In addition, cells grown on ECM protein-coated dishes showed more compact cellular morphology and CEC marker expression compared to cells seeded on uncoated dishes. Collectively, our results suggest that an adequate ECM protein combination can provide a long-term culture environment for HCECs for corneal endothelium transplantation. (paper)

  14. Proteasome inhibitor carfilzomib interacts synergistically with histone deacetylase inhibitor vorinostat in Jurkat T-leukemia cells.

    Science.gov (United States)

    Gao, Minjie; Gao, Lu; Tao, Yi; Hou, Jun; Yang, Guang; Wu, Xiaosong; Xu, Hongwei; Tompkins, Van S; Han, Ying; Wu, Huiqun; Zhan, Fenghuang; Shi, Jumei

    2014-06-01

    In the present study, we investigated the interactions between proteasome inhibitor carfilzomib (CFZ) and histone deacetylase inhibitor vorinostat in Jurkat T-leukemia cells. Coexposure of cells to minimally lethal concentrations of CFZ with very low concentration of vorinostat resulted in synergistic antiproliferative effects and enhanced apoptosis in Jurkat T-leukemia cells, accompanied with the sharply increased reactive oxygen species (ROS), the striking decrease in the mitochondrial membrane potential (MMP), the increased release of cytochrome c, the enhanced activation of caspase-9 and -3, and the cleavage of PARP. The combined treatment of Jurkat cells pre-treated with ROS scavengers N-acetylcysteine (NAC) significantly blocked the loss of mitochondrial membrane potential, suggesting that ROS generation was a former event of the loss of mitochondrial membrane potential. Furthermore, NAC also resulted in a marked reduction in apoptotic cells, indicating a critical role for increased ROS generation by combined treatment. In addition, combined treatment arrested the cell cycle in G2-M phase. These results imply that CFZ interacted synergistically with vorinostat in Jurkat T-leukemia cells, which raised the possibility that the combination of carfilzomib with vorinostat may represent a novel strategy in treating T-cell Leukemia. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  15. Biomaterial-stem cell interactions and their impact on stem cell response

    NARCIS (Netherlands)

    Oziemlak-Schaap, Aneta M.; Kuhn, Philipp T.; van Kooten, Theo G.; van Rijn, Patrick

    2014-01-01

    In this review, current research in the field of biomaterial properties for directing stem cells are discussed and placed in a critical perspective. Regenerative medicine, in which stem cells play a crucial role, has become an interdisciplinary field between cell biology and materials science. New

  16. Interaction between adipose tissue-derived mesenchymal stem cells and regulatory T-cells

    NARCIS (Netherlands)

    A.U. Engela (Anja); C.C. Baan (Carla); A. Peeters (Anna); W. Weimar (Willem); M.J. Hoogduijn (Martin)

    2013-01-01

    textabstractMesenchymal stem cells (MSCs) exhibit immunosuppressive capabilities, which have evoked interest in their application as cell therapy in transplant patients. So far it has been unclear whether allogeneic MSCs and host regulatory T-cells (Tregs) functionally influence each other. We

  17. Interaction of the CdSe quantum dots with plant cell walls.

    Science.gov (United States)

    Djikanović, Daniela; Kalauzi, Aleksandar; Jeremić, Milorad; Xu, Jianmin; Mićić, Miodrag; Whyte, Jeffrey D; Leblanc, Roger M; Radotić, Ksenija

    2012-03-01

    There is an increasing application of quantum dots (QDs) in plant science, as markers for the cells or their cell walls (CWs). In a plant cell the CW is a first target place for external agents. We studied interaction of CdSe QDs with CWs isolated from a conifer -Picea omorika (Panč) Purkynĕ branch. Binding of CdSe QDs was followed by using fluorescence microscopy, fluorescence and FT-IR spectroscopy. The aim of the study was to see whether the QDs induce structural changes in the CW, as well as to find out which kind of interactions between QDs and CWs occur and to which particular constituent polymers QDs preferably bind. The isolated CW is an appropriate object for study of the interactions with nanoparticles. The results show that in the CW, CdSe predominantly binds to cellulose, via OH groups and to lignin, via the conjugated CC/C-C chains. The differences in interaction of wet and dry CWs with QDs/chloroform were also studied. In the reaction of the dry CW sample with QDs/chloroform, hydrophobic interactions are dominant. When water was added after QDs/chloroform, hydrophilic interactions enable a partial reconstruction of the CC chains. The results have an implication on the use of the QDs in plant bio-imaging. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Cadmium-nickel toxicity interactions towards a bacterium, filamentous fungi, and a cultured mammalian cell line

    Energy Technology Data Exchange (ETDEWEB)

    Babich, H.; Shopsis, C.; Borenfreund, E.

    1986-10-01

    The response of the biota to exposure to individual metals may differ from its response to multiple metals, as mixtures of metals may interact antagonistically or synergistically in their resultant toxicity. The present study evaluated the effects of a combination of Cd and Ni on the freshwater bacterium, Aeromonas hydrophila, the terrestrial fungi, Trichodema viride and Aspergillus niger, and the mammalian cell line, BALB/c mouse 3T3 fibroblasts. This particular spectrum of target cells was selected because studies in the literature show a wide variety of possible interactions between Cd and Ni in their combined toxicities towards bacteria cyanobacteria, slime molds, isolated rat hepatocytes, and rats.

  19. Regulation of IL-6 and IL-8 production by reciprocal cell-to-cell interactions between tumor cells and stromal fibroblasts through IL-1α in ameloblastoma.

    Science.gov (United States)

    Fuchigami, Takao; Kibe, Toshiro; Koyama, Hirofumi; Kishida, Shosei; Iijima, Mikio; Nishizawa, Yoshiaki; Hijioka, Hiroshi; Fujii, Tomomi; Ueda, Masahiro; Nakamura, Norifumi; Kiyono, Tohru; Kishida, Michiko

    2014-09-05

    Ameloblastoma is an odontogenic benign tumor that occurs in the jawbone, which invades bone and reoccurs locally. This tumor is treated by wide surgical excision and causes various problems, including changes in facial countenance and mastication disorders. Ameloblastomas have abundant tumor stroma, including fibroblasts and immune cells. Although cell-to-cell interactions are considered to be involved in the pathogenesis of many diseases, intercellular communications in ameloblastoma have not been fully investigated. In this study, we examined interactions between tumor cells and stromal fibroblasts via soluble factors in ameloblastoma. We used a human ameloblastoma cell line (AM-3 ameloblastoma cells), human fibroblasts (HFF-2 fibroblasts), and primary-cultured fibroblasts from human ameloblastoma tissues, and analyzed the effect of ameloblastoma-associated cell-to-cell communications on gene expression, cytokine secretion, cellular motility and proliferation. AM-3 ameloblastoma cells secreted higher levels of interleukin (IL)-1α than HFF-2 fibroblasts. Treatment with conditioned medium from AM-3 ameloblastoma cells upregulated gene expression and secretion of IL-6 and IL-8 of HFF-2 fibroblasts and primary-cultured fibroblast cells from ameloblastoma tissues. The AM3-stimulated production of IL-6 and IL-8 in fibroblasts was neutralized by pretreatment of AM-3 cells with anti-IL-1α antibody and IL-1 receptor antagonist. Reciprocally, cellular motility of AM-3 ameloblastoma cells was stimulated by HFF-2 fibroblasts in IL-6 and IL-8 dependent manner. In conclusion, ameloblastoma cells and stromal fibroblasts behave interactively via these cytokines to create a microenvironment that leads to the extension of ameloblastomas. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Effects of ionizing radiation on cell-matrix interactions at the single molecule level

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, Florian

    2015-04-20

    Single molecule microscopy is a technology that allows for accurate assessment of the location and motion of single fluorescent molecules, even in the context of observations on living biological samples. In the present thesis, a flexible analysis tool for single molecule data as obtained in biological experiments was established. The development of a tool to faithfully detect and localize diffraction-limited images of individual fluorescent probes was necessary since data acquired under cell cultivation conditions that account for a three-dimensional microenvironment as experienced physiologically by cells in native tissue poses a challenge not faced ordinarily. After design, implementation, quantitative tests using simulations for comparisons and verification, and evaluation of the different steps of the analysis procedure including local background estimation, local noise estimation, de-noising approaches, detection, localization, and post-processing, analysis capabilities were utilized to evaluate the impact of x-ray irradiation on the plasma membrane architecture of U2OS human osteosarcoma cells as assessed by tracking individual fluorescent lipid-mimetic dye molecules diffusing in the outer membrane leaflet. It was shown that lateral diffusion in the plasma membrane is well described as two-phase anomalous subdiffusion and presence of 3D extracellular matrix leads to lower anomalous exponents of the fast fraction in comparison to monolayer cell culture. Interestingly, even high single-dose (25 Gy) treatments known to induce membrane-mediated apoptosis in tumor microvessel endothelium via membrane viscosity enhancing ceramide generation were not observed to alter membrane architecture in U2OS cells which can be related to amplifying, feedback-driven redox-signaling in the endothelium absent in U2OS. In summary, the sensitive and accurate framework developed in this thesis to assess minute changes of plasma membrane located dynamic processes did not uncover a

  1. CellWhere: graphical display of interaction networks organized on subcellular localizations.

    Science.gov (United States)

    Zhu, Lu; Malatras, Apostolos; Thorley, Matthew; Aghoghogbe, Idonnya; Mer, Arvind; Duguez, Stéphanie; Butler-Browne, Gillian; Voit, Thomas; Duddy, William

    2015-07-01

    Given a query list of genes or proteins, CellWhere produces an interactive graphical display that mimics the structure of a cell, showing the local interaction network organized into subcellular locations. This user-friendly tool helps in the formulation of mechanistic hypotheses by enabling the experimental biologist to explore simultaneously two elements of functional context: (i) protein subcellular localization and (ii) protein-protein interactions or gene functional associations. Subcellular localization terms are obtained from public sources (the Gene Ontology and UniProt-together containing several thousand such terms) then mapped onto a smaller number of CellWhere localizations. These localizations include all major cell compartments, but the user may modify the mapping as desired. Protein-protein interaction listings, and their associated evidence strength scores, are obtained from the Mentha interactome server, or power-users may upload a pre-made network produced using some other interactomics tool. The Cytoscape.js JavaScript library is used in producing the graphical display. Importantly, for a protein that has been observed at multiple subcellular locations, users may prioritize the visual display of locations that are of special relevance to their research domain. CellWhere is at http://cellwhere-myology.rhcloud.com. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Regulation of acquired immunity by gamma delta T-cell/dendritic-cell interactions.

    Science.gov (United States)

    Shrestha, Niraj; Ida, James A; Lubinski, A Steven; Pallin, Maria; Kaplan, Gilla; Haslett, Patrick A J

    2005-12-01

    In humans, innate immune recognition of mycobacteria, including Mycobacterium tuberculosis and Mycobacterium leprae, involves toll-like receptor-2 (TLR-2), expressed on immature dendritic cells (DCs), and the T-cell gammadelta receptor expressed by a subpopulation of T cells that utilize Vdelta2 (Vdelta2 T cells). To investigate modulatory relationships between these host-cell populations in a microbial context, in vitro experiments were performed with human DCs and Vdelta2 T cells stimulated with model TLR-2 ligands and phosphoantigens, respectively. We observed that TLR-2-stimulated DCs enhanced interferon-gamma (IFN-gamma) production by Vdelta2 T cells; conversely, activated Vdelta2 T cells enhanced TLR-2-induced DC maturation via soluble factors including IFN-gamma, which costimulated interleukin-12 (IL-12) p70 secretion by DCs. Exposure of DCs to activated Vdelta2 T cells was critical for Th1 T-cell priming when TLR-2 stimulation was limiting. These results suggest that Vdelta2 T cells may play an adjuvant role in priming protective antimycobacterial immunity when TLR-2 stimulation is lacking, as may occur if the infectious inoculum is small, or if the pathogen is an intrinsically weak activator of DCs.

  3. Interactions of tumour-derived micro(nano)vesicles with human gastric cancer cells.

    Science.gov (United States)

    Stec, Małgorzata; Szatanek, Rafał; Baj-Krzyworzeka, Monika; Baran, Jarosław; Zembala, Maria; Barbasz, Jakub; Waligórska, Agnieszka; Dobrucki, Jurek W; Mytar, Bożenna; Szczepanik, Antoni; Siedlar, Maciej; Drabik, Grażyna; Urbanowicz, Barbara; Zembala, Marek

    2015-12-01

    Tumour cells release membrane micro(nano)fragments called tumour-derived microvesicles (TMV) that are believed to play an important role in cancer progression. TMV suppress/modify antitumour response of the host, but there is also some evidence for their direct interaction with cancer cells. In cancer patients TMV are present in body fluid and tumour microenvironment. The present study aimed at characterization of whole types/subpopulations, but not only exosomes, of TMV from newly established gastric cancer cell line (called GC1415) and to define their interactions with autologous cells. TMV were isolated from cell cultures supernatants by centrifugation at 50,000×g and their phenotype was determined by flow cytometry. The size of TMV was analysed by dynamic light scattering and nanoparticle tracking analysis, while morphology by transmission electron microscopy and atomic force microscopy. Interactions of TMV with cancer cells were visualized using fluorescence-activated cell sorter, confocal and atomic force microscopy, biological effects by xenografts in NOD SCID mice. Isolated TMV showed expression of CD44H, CD44v6 (hyaluronian receptors), CCR6 (chemokine receptor) and HER-2/neu molecules, exhibited different shapes and sizes (range 60-900 nm, highest frequency of particles with size range of 80-120 nm). TMV attached to autologous cancer cells within 2 h and then were internalized by them at 24 h. CD44H, CD44v6 and CCR6 molecules may play a role in attachment of TMV to cancer cells, while HER-2 associated with CD24 be involved in promoting cancer cells growth. Pre-exposure of cancer cells to TMV resulted in enhancement of tumour growth and cancer cell-induced angiogenesis in NOD SCID mice model. TMV interact directly with cancer cells serving as macro-messengers and molecular cargo transfer between gastric cancer cells resulting in enhancement of tumour growth. TMV should be considered in future as target of anticancer therapy.

  4. Molecular Understanding of Fullerene - Electron Donor Interactions in Organic Solar Cells

    KAUST Repository

    Ryno, Sean

    2016-09-13

    Organic solar cells hold promise of providing low-cost, renewable power generation, with current devices providing up to 13% power conversion efficiency. The rational design of more performant systems requires an in-depth understanding of the interactions between the electron donating and electron accepting materials within the active layers of these devices. Here, we explore works that give insight into the intermolecular interactions between electron donors and electron acceptors, and the impact of molecular orientations and environment on these interactions. We highlight, from a theoretical standpoint, the effects of intermolecular interactions on the stability of charge carriers at the donor/acceptor interface and in the bulk and how these interactions influence the nature of the charge transfer states as wells as the charge separation and charge transport processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Investigate Global Chromosomal Interaction by Hi-C in Human Naive CD4 T Cells.

    Science.gov (United States)

    Meng, Xiangzhi; Riley, Nicole; Thompson, Ryan; Sharma, Siddhartha

    2018-01-01

    Hi-C is a methodology developed to reveal chromosomal interactions from a genome-wide perspective. Here, we described a protocol for generating Hi-C sequencing libraries in resting and activated human naive CD4 T cells to investigate activation-induced chromatin structure re-arrangement in T cell activation followed by a section reviewing the general concepts of Hi-C data analysis.

  6. Compressed collagen constructs with optimized mechanical properties and cell interactions for tissue engineering applications

    DEFF Research Database (Denmark)

    Ajalloueian, Fatemeh; Nikogeorgos, Nikolaos; Ajalloueian, Ali

    2018-01-01

    In this study, we are introducing a simple, fast and reliable add-in to the technique of plastic compression (PC) to obtain collagen sheets with decreased fibrillar densities, representing improved cell-interactions and mechanical properties. Collagen hydrogels with different initial concentrations...... for plastic compression, not only a better cell environment and optimum mechanical properties are achieved, but also the application costs of this biopolymer is reduced....

  7. The cancer stem cell marker CD133 interacts with plakoglobin and controls desmoglein-2 protein levels.

    Directory of Open Access Journals (Sweden)

    Ryo Koyama-Nasu

    Full Text Available The pentaspan membrane glycoprotein CD133 (also known as prominin-1 has been widely used as a marker for both cancer and normal stem cells. However, the function of CD133 has not been elucidated. Here we describe a cancer stem cell line established from clear cell carcinoma of the ovary (CCC and show that CD133 interacts with plakoglobin (also known as γ-catenin, a desmosomal linker protein. We further demonstrate that knockdown of CD133 by RNA interference (RNAi results in the downregulation of desmoglein-2, a desmosomal cadherin, and abrogates cell-cell adhesion and tumorigenicity of CCC stem cells. We speculate that CD133 may be a promising target for cancer chemotherapy.

  8. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development.

    Directory of Open Access Journals (Sweden)

    Carolina N Perdigoto

    2016-07-01

    Full Text Available An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2 in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures.

  9. Uncovering the Repertoire of Endogenous Flaviviral Elements in Aedes Mosquito Genomes.

    Science.gov (United States)

    Suzuki, Yasutsugu; Frangeul, Lionel; Dickson, Laura B; Blanc, Hervé; Verdier, Yann; Vinh, Joelle; Lambrechts, Louis; Saleh, Maria-Carla

    2017-08-01

    Endogenous viral elements derived from nonretroviral RNA viruses have been described in various animal genomes. Whether they have a biological function, such as host immune protection against related viruses, is a field of intense study. Here, we investigated the repertoire of endogenous flaviviral elements (EFVEs) in Aedes mosquitoes, the vectors of arboviruses such as dengue and chikungunya viruses. Previous studies identified three EFVEs from Aedes albopictus cell lines and one from Aedes aegypti cell lines. However, an in-depth characterization of EFVEs in wild-type mosquito populations and individual mosquitoes in vivo has not been performed. We detected the full-length DNA sequence of the previously described EFVEs and their respective transcripts in several A. albopictus and A. aegypti populations from geographically distinct areas. However, EFVE-derived proteins were not detected by mass spectrometry. Using deep sequencing, we detected the production of PIWI-interacting RNA-like small RNAs, in an antisense orientation, targeting the EFVEs and their flanking regions in vivo The EFVEs were integrated in repetitive regions of the mosquito genomes, and their flanking sequences varied among mosquito populations. We bioinformatically predicted several new EFVEs from a Vietnamese A. albopictus population and observed variation in the occurrence of those elements among mosquitoes. Phylogenetic analysis of an A. aegypti EFVE suggested that it integrated prior to the global expansion of the species and subsequently diverged among and within populations. The findings of this study together reveal the substantial structural and nucleotide diversity of flaviviral integrations in Aedes genomes. Unraveling this diversity will help to elucidate the potential biological function of these EFVEs. IMPORTANCE Endogenous viral elements (EVEs) are whole or partial viral sequences integrated in host genomes. Interestingly, some EVEs have important functions for host fitness and

  10. Spatio-temporal Characterization of Ligand-Receptor Interactions in Blood Stem-Cell Rolling

    KAUST Repository

    Al Alwan, Bader

    2017-08-16

    One of the most important issues in the research on hematopoietic stem/progenitor cells (HSPCs) is to understand the mechanism of the homing process of these cells to the bone marrow after being transplanted into patients and establish the production of various blood cell types. The HSPCs first come in contact with the endothelial cells. This contact is known as adhesion and occurs through a multi-step paradigm ending with transmigration to the bone marrow niche. The initial step of the homing, tethering and rolling of HSPCs is mediated by P- and E-Selectins expressed on the endothelial cell surface through their interactions with the ligands expressed by HSPCs. Here we developed a novel experimental method to unravel the molecular mechanisms of the selectin-ligands interactions in vitro at the single molecule level by combining microfluidics and single-molecule fluorescence imaging. Our method enables direct visualization of the nanoscale spatiotemporal dynamics of the E-selectin-ligand (PSGL-1) interactions under conditions of shear stress acting on the cells at the molecular level in real time.

  11. Snail/Slug binding interactions with YAP/TAZ control skeletal stem cell self-renewal and differentiation.

    Science.gov (United States)

    Tang, Yi; Feinberg, Tamar; Keller, Evan T; Li, Xiao-Yan; Weiss, Stephen J

    2016-09-01

    Bone-marrow-derived skeletal stem/stromal cell (SSC) self-renewal and function are critical to skeletal development, homeostasis and repair. Nevertheless, the mechanisms controlling SSC behaviour, particularly bone formation, remain ill-defined. Using knockout mouse models that target the zinc-finger transcription factors Snail or Slug, or Snail and Slug combined, a regulatory axis has been uncovered wherein Snail and Slug cooperatively control SSC self-renewal, osteoblastogenesis and bone formation. Mechanistically, Snail/Slug regulate SSC function by forming complexes with the transcriptional co-activators YAP and TAZ in tandem with the inhibition of the Hippo-pathway-dependent regulation of YAP/TAZ signalling cascades. In turn, the Snail/Slug-YAP/TAZ axis activates a series of YAP/TAZ/TEAD and Runx2 downstream targets that control SSC homeostasis and osteogenesis. Together, these results demonstrate that SSCs mobilize Snail/Slug-YAP/TAZ complexes to control stem cell function.

  12. Proteomics-based systems biology modeling of bovine germinal vesicle stage oocyte and cumulus cell interaction.

    Directory of Open Access Journals (Sweden)

    Divyaswetha Peddinti

    Full Text Available BACKGROUND: Oocytes are the female gametes which establish the program of life after fertilization. Interactions between oocyte and the surrounding cumulus cells at germinal vesicle (GV stage are considered essential for proper maturation or 'programming' of oocytes, which is crucial for normal fertilization and embryonic development. However, despite its importance, little is known about the molecular events and pathways involved in this bidirectional communication. METHODOLOGY/PRINCIPAL FINDINGS: We used differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT on bovine GV oocyte and cumulus cells and identified 811 and 1247 proteins in GV oocyte and cumulus cells, respectively; 371 proteins were significantly differentially expressed between each cell type. Systems biology modeling, which included Gene Ontology (GO and canonical genetic pathway analysis, showed that cumulus cells have higher expression of proteins involved in cell communication, generation of precursor metabolites and energy, as well as transport than GV oocytes. Our data also suggests a hypothesis that oocytes may depend on the presence of cumulus cells to generate specific cellular signals to coordinate their growth and maturation. CONCLUSIONS/SIGNIFICANCE: Systems biology modeling of bovine oocytes and cumulus cells in the context of GO and protein interaction networks identified the signaling pathways associated with the proteins involved in cell-to-cell signaling biological process that may have implications in oocyte competence and maturation. This first comprehensive systems biology modeling of bovine oocytes and cumulus cell proteomes not only provides a foundation for signaling and cell physiology at the GV stage of oocyte development, but are also valuable for comparative studies of other stages of oocyte development at the molecular level.

  13. Tumor hypoxia modulates podoplanin/CCL21 interactions in CCR7+ NK cell recruitment and CCR7+ tumor cell mobilization.

    Science.gov (United States)

    Tejchman, Anna; Lamerant-Fayel, Nathalie; Jacquinet, Jean-Claude; Bielawska-Pohl, Aleksandra; Mleczko-Sanecka, Katarzyna; Grillon, Catherine; Chouaib, Salem; Ugorski, Maciej; Kieda, Claudine

    2017-05-09

    Podoplanin (PDPN), an O-glycosylated, transmembrane, mucin-type glycoprotein, is expressed by cancer associated fibroblasts (CAFs). In malignant transformation, PDPN is subjected to changes and its role is yet to be established. Here we show that it is involved in modulating the activity of the CCL21/CCR7 chemokine/receptor axis in a hypoxia-dependent manner. In the present model, breast cancer MDA-MB-231 cells and NKL3 cells express the surface CCR7 receptor for CCL21 chemokine which is a potent chemoattractant able to bind to PDPN. The impact of the CCL21/CCR7 axis in the molecular mechanism of the adhesion of NKL3 cells and of MDA-MB-231 breast cancer cells was reduced in a hypoxic tumor environment. In addition to its known effect on migration, CCL21/CCR7 interaction was shown to allow NK cell adhesion to endothelial cells (ECs) and its reduction by hypoxia. A PDPN expressing model of CAFs made it possible to demonstrate the same CCL21/CCR7 axis involvement in the tumor cells to CAFs recognition mechanism through PDPN binding of CCL21. PDPN was induced by hypoxia and its overexpression undergoes a reduction of adhesion, making it an anti-adhesion molecule in the absence of CCL21, in the tumor. CCL21/CCR7 modulated NK cells/ECs and MDA-MB-231 cells/CAF PDPN-dependent interactions were further shown to be linked to hypoxia-dependent microRNAs as miRs: miR-210 and specifically miR-21, miR-29b which influence PDPN expression.

  14. Uncovering randomness and success in society.

    Directory of Open Access Journals (Sweden)

    Sarika Jalan

    Full Text Available An understanding of how individuals shape and impact the evolution of society is vastly limited due to the unavailability of large-scale reliable datasets that can simultaneously capture information regarding individual movements and social interactions. We believe that the popular Indian film industry, "Bollywood", can provide a social network apt for such a study. Bollywood provides massive amounts of real, unbiased data that spans more than 100 years, and hence this network has been used as a model for the present paper. The nodes which maintain a moderate degree or widely cooperate with the other nodes of the network tend to be more fit (measured as the success of the node in the industry in comparison to the other nodes. The analysis carried forth in the current work, using a conjoined framework of complex network theory and random matrix theory, aims to quantify the elements that determine the fitness of an individual node and the factors that contribute to the robustness of a network. The authors of this paper believe that the method of study used in the current paper can be extended to study various other industries and organizations.

  15. Pharmacological inhibition of radiation induced in vitro tumor cell/endothelium cell interactions and in vivo metastasis processes

    International Nuclear Information System (INIS)

    Herzog, Melanie

    2013-01-01

    Exposure of endothelial cells with ionizing radiation (IR) or treatment with inflammatory cytokines (e. g. TNFα) induces a Rho-GTPase and NF-κB dependent activation of the expression of various cell adhesion molecules, including E-selectin. E-selectin mediates the adhesion of tumor cells (TC) to endothelial cells and is probably involved in the extravasation step of circulating tumor cells. HMG-CoA reductase inhibitors (e. g. lovastatin) inhibit the function of Rho-GTPases and thus are anticipated to attenuate Rho-regulated cell-cell-adhesion as well. This study focuses on the influence of IR and TNFα on the expression of endothelial- and/or tumor cell-specific pro-adhesive factors and whether these effects are influenced by lovastatin. To this end, the effect of IR and TNFα on cell-cell-interactions between human colon carcinoma cells (HT29) and human umbilical vein endothelial cells (HUVEC) was investigated using an ELISA-based cell adhesion-assay. Moreover, the influence of pre-treatment with lovastatin and other types of inhibitors on HUVEC-HT29 adhesion was monitored. Additionally, we investigated the effect of lovastatin on mRNA expression level of different cell adhesion molecules, metastatic factors and DNA-repair genes upon radiation exposure by qRT-PCR. To scrutinize the in vivo relevance of the data obtained, we investigated the effect of total body irradiation (TBI) on the mRNA expression of pro-adhesive factors in BALB/c mice. To analyze tumor cell extravasation, tumor cells were injected into the lateral tail vein of immundeficient mice, followed by total body irradiation (TBI, 4 Gy). After four weeks a large increase of lung metastases was monitored, which could be blocked by preatreatment of the mice with lovastatin, the Rac1-specific small-molecule inhibitor NSC23766 as well as the sLe x -mimetic glycyrrhizin. Summarizing, we provide evidence, that irradiation promotes upregulation of different cell adhesion molecules in vitro and stimulates

  16. Skin tumors Rb(eing uncovered

    Directory of Open Access Journals (Sweden)

    CLOTILDE eCOSTA

    2013-12-01

    Full Text Available The Rb1 gene was the first bona fide tumor suppressor identified and cloned more than 25 years ago. Since then, a plethora of studies have revealed the functions of pRb and the existence of a sophisticated and strictly regulated pathway that modulates such functional roles. An emerging paradox affecting Rb1 in cancer connects the relatively low number of mutations affecting Rb1 gene in specific human tumors, compared with the widely functional inactivation of pRb in most, if not in all, human cancers. The existence of a retinoblastoma family of proteins pRb, p107 and p130 and their potential unique and overlapping functions as master regulators of cell cycle progression and transcriptional modulation by similar processes, may provide potential clues to explain such conundrum. Here, we will review the development of different genetically engineered mouse models, in particular those affecting stratified epithelia, and how they have offered new avenues to understand the roles of the Rb family members and their targets in the context of tumor development and progression.

  17. Non-CpG Oligonucleotides Exert Adjuvant Effects by Enhancing Cognate B Cell-T Cell Interactions, Leading to B Cell Activation, Differentiation, and Isotype Switching

    Directory of Open Access Journals (Sweden)

    Melinda Herbáth

    2015-01-01

    Full Text Available Natural and synthetic nucleic acids are known to exert immunomodulatory properties. Notably, nucleic acids are known to modulate immune function via several different pathways and various cell types, necessitating a complex interpretation of their effects. In this study we set out to compare the effects of a CpG motif containing oligodeoxynucleotide (ODN with those of a control and an inhibitory non-CpG ODN during cognate B cell-T cell interactions. We employed an antigen presentation system using splenocytes from TCR transgenic DO11.10 mice and the ovalbumin peptide recognized by the TCR as model antigen. We followed early activation events by measuring CD69 expression, late activation by MHC class II expression, cell division and antibody production of switched, and nonswitched isotypes. We found that both of the tested non-CpG ODN exerted significant immunomodulatory effects on early T cell and on late B cell activation events. Importantly, a synergism between non-CpG effects and T cell help acting on B cells was observed, resulting in enhanced IgG production following cognate T cell-B cell interactions. We propose that non-CpG ODN may perform as better adjuvants when a strong antigen-independent immune activation, elicited by CpG ODNs, is undesirable.

  18. Non-CpG Oligonucleotides Exert Adjuvant Effects by Enhancing Cognate B Cell-T Cell Interactions, Leading to B Cell Activation, Differentiation, and Isotype Switching

    Science.gov (United States)

    Herbáth, Melinda; Papp, Krisztián; Erdei, Anna; Prechl, József

    2015-01-01

    Natural and synthetic nucleic acids are known to exert immunomodulatory properties. Notably, nucleic acids are known to modulate immune function via several different pathways and various cell types, necessitating a complex interpretation of their effects. In this study we set out to compare the effects of a CpG motif containing oligodeoxynucleotide (ODN) with those of a control and an inhibitory non-CpG ODN during cognate B cell-T cell interactions. We employed an antigen presentation system using splenocytes from TCR transgenic DO11.10 mice and the ovalbumin peptide recognized by the TCR as model antigen. We followed early activation events by measuring CD69 expression, late activation by MHC class II expression, cell division and antibody production of switched, and nonswitched isotypes. We found that both of the tested non-CpG ODN exerted significant immunomodulatory effects on early T cell and on late B cell activation events. Importantly, a synergism between non-CpG effects and T cell help acting on B cells was observed, resulting in enhanced IgG production following cognate T cell-B cell interactions. We propose that non-CpG ODN may perform as better adjuvants when a strong antigen-independent immune activation, elicited by CpG ODNs, is undesirable. PMID:26380319

  19. Interaction between mouse adenovirus type 1 and cell surface heparan sulfate proteoglycans.

    Science.gov (United States)

    Lenaerts, Liesbeth; van Dam, Wim; Persoons, Leentje; Naesens, Lieve

    2012-01-01

    Application of human adenovirus type 5 (Ad5) derived vectors for cancer gene therapy has been limited by the poor cell surface expression, on some tumor cell types, of the primary Ad5 receptor, the coxsackie-adenovirus-receptor (CAR), as well as the accumulation of Ad5 in the liver following interaction with blood coagulation factor X (FX) and subsequent tethering of the FX-Ad5 complex to heparan sulfate proteoglycan (HSPG) on liver cells. As an alternative vector, mouse adenovirus type 1 (MAV-1) is particularly attractive, since this non-human adenovirus displays pronounced endothelial cell tropism and does not use CAR as a cellular attachment receptor. We here demonstrate that MAV-1 uses cell surface heparan sulfate proteoglycans (HSPGs) as primary cellular attachment receptor. Direct binding of MAV-1 to heparan sulfate-coated plates proved to be markedly more efficient compared to that of Ad5. Experiments with modified heparins revealed that the interaction of MAV-1 to HSPGs depends on their N-sulfation and, to a lesser extent, 6-O-sulfation rate. Whereas the interaction between Ad5 and HSPGs was enhanced by FX, this was not the case for MAV-1. A slot blot assay demonstrated the ability of MAV-1 to directly interact with FX, although the amount of FX complexed to MAV-1 was much lower than observed for Ad5. Analysis of the binding of MAV-1 and Ad5 to the NCI-60 panel of different human tumor cell lines revealed the preference of MAV-1 for ovarian carcinoma cells. Together, the data presented here enlarge our insight into the HSPG receptor usage of MAV-1 and support the development of an MAV-1-derived gene vector for human cancer therapy.

  20. Interaction between mouse adenovirus type 1 and cell surface heparan sulfate proteoglycans.

    Directory of Open Access Journals (Sweden)

    Liesbeth Lenaerts

    Full Text Available Application of human adenovirus type 5 (Ad5 derived vectors for cancer gene therapy has been limited by the poor cell surface expression, on some tumor cell types, of the primary Ad5 receptor, the coxsackie-adenovirus-receptor (CAR, as well as the accumulation of Ad5 in the liver following interaction with blood coagulation factor X (FX and subsequent tethering of the FX-Ad5 complex to heparan sulfate proteoglycan (HSPG on liver cells. As an alternative vector, mouse adenovirus type 1 (MAV-1 is particularly attractive, since this non-human adenovirus displays pronounced endothelial cell tropism and does not use CAR as a cellular attachment receptor. We here demonstrate that MAV-1 uses cell surface heparan sulfate proteoglycans (HSPGs as primary cellular attachment receptor. Direct binding of MAV-1 to heparan sulfate-coated plates proved to be markedly more efficient compared to that of Ad5. Experiments with modified heparins revealed that the interaction of MAV-1 to HSPGs depends on their N-sulfation and, to a lesser extent, 6-O-sulfation rate. Whereas the interaction between Ad5 and HSPGs was enhanced by FX, this was not the case for MAV-1. A slot blot assay demonstrated the ability of MAV-1 to directly interact with FX, although the amount of FX complexed to MAV-1 was much lower than observed for Ad5. Analysis of the binding of MAV-1 and Ad5 to the NCI-60 panel of different human tumor cell lines revealed the preference of MAV-1 for ovarian carcinoma cells. Together, the data presented here enlarge our insight into the HSPG receptor usage of MAV-1 and support the development of an MAV-1-derived gene vector for human cancer therapy.

  1. Cell penetrating peptides to dissect host-pathogen protein-protein interactions in Theileria -transformed leukocytes

    KAUST Repository

    Haidar, Malak

    2017-09-08

    One powerful application of cell penetrating peptides is the delivery into cells of molecules that function as specific competitors or inhibitors of protein-protein interactions. Ablating defined protein-protein interactions is a refined way to explore their contribution to a particular cellular phenotype in a given disease context. Cell-penetrating peptides can be synthetically constrained through various chemical modifications that stabilize a given structural fold with the potential to improve competitive binding to specific targets. Theileria-transformed leukocytes display high PKA activity, but PKAis an enzyme that plays key roles in multiple cellular processes; consequently genetic ablation of kinase activity gives rise to a myriad of confounding phenotypes. By contrast, ablation of a specific kinase-substrate interaction has the potential to give more refined information and we illustrate this here by describing how surgically ablating PKA interactions with BAD gives precise information on the type of glycolysis performed by Theileria-transformed leukocytes. In addition, we provide two other examples of how ablating specific protein-protein interactions in Theileria-infected leukocytes leads to precise phenotypes and argue that constrained penetrating peptides have great therapeutic potential to combat infectious diseases in general.

  2. Prothymosin alpha interacts with free core histones in the nucleus of dividing cells.

    Science.gov (United States)

    Covelo, Guillermo; Sarandeses, Concepción S; Díaz-Jullien, Cristina; Freire, Manuel

    2006-11-01

    The acidic protein prothymosin alpha (ProTalpha), with a broad presence in mammalian cells, has been widely considered to have a role in cell division, through an unrevealed mechanism in which histones may be involved in view of their ability to interact with ProTalpha in vitro. Results of co-immunoprecipitation experiments presented here demonstrate that ProTalpha interacts in vivo with core histones in proliferating B-lymphocytes (NC-37 cells). This interaction occurs with histones H3, H2A, H2B and H4 located free in the nucleoplasm, whereas no interaction was detected with histone H1, mono-nucleosome particles or chromatin. Moreover, the core histones form part of a nuclear multiprotein complex of about 700 kDa separated by ProTalpha-Sepharose affinity, with components including H3 and H4 acetyltranferases, H3 methyltransferases, hnRNP isotypes A3, A2/B1 and R, ATP-dependent and independent DNA helicases II, beta-actin and vimentin, all co-purifying by gel filtration. This indicates that the interaction of ProTalpha with core histones in the nucleus may be related to the structural modification of histones H3 and H4, and hence to chromatin activity, raising the possibility that the other proteins in the nuclear complex may play a role in this process.

  3. Design of Cell-Matrix Interactions in Hyaluronic Acid Hydrogel Scaffolds

    Science.gov (United States)

    Segura, Tatiana

    2013-01-01

    The design of hyaluronic acid-based hydrogel scaffolds to elicit highly controlled and tunable cell response and behavior is a major field of interest in developing tissue engineering and regenerative medicine applications. This review will begin with an overview of the biological context of hyaluronic acid, knowledge needed to better understand how to engineer cell-matrix interactions in the scaffolds via the incorporation of different types of signals in order to direct and control cell behavior. Specifically, recent methods of incorporating various bioactive, mechanical, and spatial signals are reviewed, as well as novel hyaluronic acid modifications and crosslinking schemes with a focus on specificity. PMID:23899481

  4. Mapping the Complex Morphology of Cell Interactions with Nanowire Substrates Using FIB-SEM

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Købler, Carsten; Jensen, Mikkel Ravn Boye

    2013-01-01

    substrates made from silicon black (Nanograss) with low- and high nanowire density. After culturing for 72 hours the cells were fixed, heavy metal stained, embedded in resin, and processed with FIB-SEM block face imaging without removing the substrate. The sample preparation procedure, image acquisition...... a wide phenotypic variability. Depending on the substrate and cell, we observe that cells could for instance: break the nanowires and engulf them, flatten the nanowires or simply reside on top of them. Given the complexity of interactions, we have categorised our observations and created an overview map...

  5. N-cadherin-mediated interaction with multiple myeloma cells inhibits osteoblast differentiation

    NARCIS (Netherlands)

    Groen, R.W.J.; de Rooij, M.F.M.; Kocemba, K.A.; Reijmers, R.M.; de Haan-Kramer, A.; Overdijk, M.B.; Aalders, L.; Rozemuller, H.; Martens, A.C.M.; Bergsagel, P.L.; Kersten, M.J.; Pals, S.T.; Spaargaren, M.

    2011-01-01

    Background Multiple myeloma is a hematologic malignancy characterized by a clonal expansion of malignant plasma cells in the bone marrow, which is accompanied by the development of osteolytic lesions and/or diffuse osteopenia. The intricate bi-directional interaction with the bone marrow

  6. N-cadherin-mediated interaction with multiple myeloma cells inhibits osteoblast differentiation

    NARCIS (Netherlands)

    Groen, Richard W. J.; de Rooij, Martin F. M.; Kocemba, Kinga A.; Reijmers, Rogier M.; de Haan-Kramer, Anneke; Overdijk, Marije B.; Aalders, Linda; Rozemuller, Henk; Martens, Anton C. M.; Bergsagel, P. Leif; Kersten, Marie José; Pals, Steven T.; Spaargaren, Marcel

    2011-01-01

    Multiple myeloma is a hematologic malignancy characterized by a clonal expansion of malignant plasma cells in the bone marrow, which is accompanied by the development of osteolytic lesions and/or diffuse osteopenia. The intricate bi-directional interaction with the bone marrow microenvironment plays

  7. Cell interaction with modified nanotubes formed on titanium alloy Ti-6Al-4V

    Czech Academy of Sciences Publication Activity Database

    Moravec, H.; Vandrovcová, Marta; Chotová, K.; Fojt, J.; Průchová, E.; Joska, L.; Bačáková, Lucie

    2016-01-01

    Roč. 65, Aug 1 (2016), s. 313-322 ISSN 0928-4931 R&D Projects: GA ČR(CZ) GA15-01558S Institutional support: RVO:67985823 Keywords : titanium * electrochemical oxidation * hydrothermal modification * thermal treatment * protein adsorption * cell interaction Subject RIV: EI - Biotechnology ; Bionics Impact factor: 4.164, year: 2016

  8. Studying NK cell lectin receptors and their interactions using HEK293T eukaryotic expression system

    Czech Academy of Sciences Publication Activity Database

    Vaněk, O.; Celadová, P.; Kolenko, Petr; Dohnálek, Jan; Bezouška, Karel

    2009-01-01

    Roč. 276, Suppl. 1 (2009), s. 170 ISSN 1742-464X. [FEBS Congress "Life´s Molecular Interactions /34./. 04.07.2009-09.07.2009, Praha] Institutional research plan: CEZ:AV0Z40500505 Keywords : NK cell lectin receptors * HEK293T * eukaryotic expression system Subject RIV: CD - Macromolecular Chemistry

  9. Surface modification of hydrophobic polymers for improvement of endothelial cell-surface interactions

    NARCIS (Netherlands)

    Dekker, A.; Dekker, A.; Reitsma, K.; Beugeling, T.; Beugeling, T.; Bantjes, A.; Bantjes, A.; Feijen, Jan; Kirkpatrick, C.J.; van Aken, W.G.

    1992-01-01

    The aim of this study is to improve the interaction of endothelial cells with polymers used in vascular prostheses. Polytetrafluoroethylene (PTFE; Teflon) films were treated by means of nitrogen and oxygen plasmas. Depending on the plasma exposure time, modified PTFE surfaces showed water-contact

  10. The interaction between sickle cell disease and HIV infection: a systematic review

    NARCIS (Netherlands)

    Owusu, Ewurama D. A.; Visser, Benjamin J.; Nagel, Ingeborg M.; Mens, Petra F.; Grobusch, Martin P.

    2015-01-01

    Human immunodeficiency virus (HIV) and sickle cell disease (SCD) are regarded as endemic in overlapping geographic areas; however, for most countries only scarce data on the interaction between HIV and SCD and disease burden exist. HIV prevalence in SCD patients varies between 0% and 11.5% in

  11. Probiotic Gut Microbiota Isolate Interacts with Dendritic Cells via Glycosylated Heterotrimeric Pili

    NARCIS (Netherlands)

    Tytgat, Hanne L. P.; van Teijlingen, Nienke H.; Sullan, Ruby May A.; Douillard, François P.; Rasinkangas, Pia; Messing, Marcel; Reunanen, Justus; Satokari, Reetta; Vanderleyden, Jos; Dufrêne, Yves F.; Geijtenbeek, Teunis B. H.; de Vos, Willem M.; Lebeer, Sarah

    2016-01-01

    Mapping of the microbial molecules underlying microbiota-host interactions is key to understand how microbiota preserve mucosal homeostasis. A pivotal family of such bacterial molecules are pili. Pili are proteinaceous cell wall appendages with a well-documented role in adhesion, whilst their role

  12. Bright fluorescent Streptococcus pneumoniae for live cell imaging of host-pathogen interactions

    NARCIS (Netherlands)

    Kjos, Morten; Aprianto, Rieza; Fernandes, Vitor E; Andrew, Peter W; van Strijp, Jos A G; Nijland, Reindert; Veening, Jan-Willem

    2015-01-01

    Streptococcus pneumoniae is a common nasopharyngeal resident in healthy people, but at the same time one of the major causes of infectious diseases such as pneumonia, meningitis and sepsis. The shift from commensal to pathogen and its interaction with host cells is poorly understood. One of the

  13. Bright Fluorescent Streptococcus pneumoniae for Live-Cell Imaging of Host-Pathogen Interactions

    NARCIS (Netherlands)

    Kjos, Morten; Aprianto, Rieza; Fernandes, Vitor E.; Andrew, Peter W.; van Strijp, Jos A. G.; Nijland, Reindert; Veening, Jan-Willem

    Streptococcus pneumoniae is a common nasopharyngeal resident in healthy people but, at the same time, one of the major causes of infectious diseases such as pneumonia, meningitis, and sepsis. The shift from commensal to pathogen and its interaction with host cells are poorly understood. One of the

  14. Interactions between organic anions on multiple transporters in Caco-2 cells

    DEFF Research Database (Denmark)

    Grandvuinet, Anne Sophie; Steffansen, Bente

    2011-01-01

    Caco-2 cell line may be used as an overall model to predict interactions on multiple membrane transporters in the intestine. Taurocholic acid (TCA) and estrone-3-sulfate (E1S) were used as model substrates. Possible inhibitors studied were TCA, E1S, taurolithocholic acid, fluvastatin, and glipizide...

  15. Inhibition of FOXP3/NFAT interaction enhances T cell function after TCR stimulation

    NARCIS (Netherlands)

    Lozano, Teresa; Villanueva, Lorea; Durántez, Maika; Gorraiz, Marta; Ruiz, Marta; Belsúe, Virginia; Riezu-Boj, José I.; Hervás-Stubbs, Sandra; Oyarzábal, Julen; Bandukwala, Hozefa; Lourenço, Ana R.; Coffer, Paul J.; Sarobe, Pablo; Prieto, Jesús; Casares, Noelia; Lasarte, Juan J.

    2015-01-01

    Regulatory T cell (Treg) activity is modulated by a cooperative complex between the transcription factor NFAT and FOXP3, a lineage specification factor for Tregs. FOXP3/NFAT interaction is required to repress expression of IL-2, upregulate expression of the Treg markers CTLA4 and CD25, and confer

  16. Interactions between membrane-bound cellulose synthases involved in the synthesis of the secondary cell wall

    NARCIS (Netherlands)

    Timmers, J.F.P.; Vernhettes, S.; Desprez, T.; Vincken, J.P.; Visser, R.G.F.; Trindade, L.M.

    2009-01-01

    It has not yet been reported how the secondary CESA (cellulose synthase) proteins are organized in the rosette structure. A membrane-based yeast two-hybrid (MbYTH) approach was used to analyze the interactions between the CESA proteins involved in secondary cell wall synthesis of Arabidopsis and the

  17. BAFF promotes proliferation of human mesangial cells through interaction with BAFF-R.

    Science.gov (United States)

    Zheng, Nuoyan; Wang, Donxian; Ming, Hongyan; Zhang, Haiqing; Yu, Xueqing

    2015-05-15

    B cell activating factor belonging to the TNF family (BAFF) is vital for B cell survival, proliferation and activation. Evidence indicates that BAFF is systemically or locally increased in glomerulonephritis (e.g. lupus nephritis, IgA nephropathy). However, the effect of BAFF on human mesangial cells is not known. The impact of BAFF on the proliferation of a human mesangial cell line in vitro was investigated. The expression of BAFF receptor (BAFF-R) and downstream signal transduction were explored. The influence of BAFF on the expression of related genes was also studied. Our data indicated that BAFF had a proliferative effect on human mesangial cells, as supported by the results of cell proliferation assays and the inhibited expression of the pro-apoptotic gene Bim. BAFF-R was expressed on the cell membrane of human mesangial cells and blockade of BAFF/BAFF-R binding abrogated the proliferative effect of BAFF on human mesangial cells. BAFF stimulation led to rapid phosphorylation of NF-κBp65, Akt and MAPK p38 kinase in human mesangial cells, whereas it had no effect on the expression of NF-κB p100 and phosphorylation of Erk. The phosphorylation of Akt was very sensitive to blockade of BAFF/BAFF-R ligation, although activation of MAPK p38 and NF-κBp65 was not. BAFF treatment resulted in decreased expression of BAFF-R, which implied negative feedback regulation after its binding. BAFF promoted proliferation of human mesangial cells, which was mediated via BAFF-R. The BAFF/BAFF-R interaction triggered Akt, p65 and p38 activation, with Akt phosphorylation being tightly dependent on BAFF/BAFF-R interaction.

  18. Trichomonas vaginalis exosomes deliver cargo to host cells and mediate host∶parasite interactions.

    Directory of Open Access Journals (Sweden)

    Olivia Twu

    Full Text Available Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogential tract where it remains extracellular and adheres to epithelial cells. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Here, we use a combination of methodologies including cell fractionation, immunofluorescence and electron microscopy, RNA, proteomic and cytokine analyses and cell adherence assays to examine pathogenic properties of T. vaginalis. We have found that T.vaginalis produces and secretes microvesicles with physical and biochemical properties similar to mammalian exosomes. The parasite-derived exosomes are characterized by the presence of RNA and core, conserved exosomal proteins as well as parasite-specific proteins. We demonstrate that T. vaginalis exosomes fuse with and deliver their contents to host cells and modulate host cell immune responses. Moreover, exosomes from highly adherent parasite strains increase the adherence of poorly adherent parasites to vaginal and prostate epithelial cells. In contrast, exosomes from poorly adherent strains had no measurable effect on parasite adherence. Exosomes from parasite strains that preferentially bind prostate cells increased binding of parasites to these cells relative to vaginal cells. In addition to establishing that parasite exosomes act to modulate host∶parasite interactions, these studies are the first to reveal a potential role for exosomes in promoting parasite∶parasite communication and host cell colonization.

  19. Haemophilus haemolyticus Interaction with Host Cells Is Different to Nontypeable Haemophilus influenzae and Prevents NTHi Association with Epithelial Cells.

    Science.gov (United States)

    Pickering, Janessa L; Prosser, Amy; Corscadden, Karli J; de Gier, Camilla; Richmond, Peter C; Zhang, Guicheng; Thornton, Ruth B; Kirkham, Lea-Ann S

    2016-01-01

    Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen that resides in the upper respiratory tract and contributes to a significant burden of respiratory related diseases in children and adults. Haemophilus haemolyticus is a respiratory tract commensal that can be misidentified as NTHi due to high levels of genetic relatedness. There are reports of invasive disease from H. haemolyticus, which further blurs the species boundary with NTHi. To investigate differences in pathogenicity between these species, we optimized an in vitro epithelial cell model to compare the interaction of 10 H. haemolyticus strains with 4 NTHi and 4 H. influenzae-like haemophili. There was inter- and intra-species variability but overall, H. haemolyticus had reduced capacity to attach to and invade nasopharyngeal and bronchoalveolar epithelial cell lines (D562 and A549) within 3 h when compared with NTHi. H. haemolyticus was cytotoxic to both cell lines at 24 h, whereas NTHi was not. Nasopharyngeal epithelium challenged with some H. haemolyticus strains released high levels of inflammatory mediators IL-6 and IL-8, whereas NTHi did not elicit an inflammatory response despite higher levels of cell association and invasion. Furthermore, peripheral blood mononuclear cells stimulated with H. haemolyticus or NTHi released similar and high levels of IL-6, IL-8, IL-10, IL-1β, and TNFα when compared with unstimulated cells but only NTHi elicited an IFNγ response. Due to the relatedness of H. haemolyticus and NTHi, we hypothesized that H. haemolyticus may compete with NTHi for colonization of the respiratory tract. We observed that in vitro pre-treatment of epithelial cells with H. haemolyticus significantly reduced NTHi attachment, suggesting interference or competition between the two species is possible and warrants further investigation. In conclusion, H. haemolyticus interacts differently with host cells compared to NTHi, with different immunostimulatory and cytotoxic

  20. Interaction of capsaicinoids with cell membrane models does not correlate with pungency of peppers

    Science.gov (United States)

    Geraldo, Vananélia P. N.; Ziglio, Analine C.; Gonçalves, Débora; Oliveira, Osvaldo N.

    2017-04-01

    Mixed monolayers were prepared using phospholipids in order to mimic cell membranes and fractions of capsaicinoids (extracted from Malagueta, Caps-M, and Bhut Jolokia, Caps-B, peppers). According to their surface-pressure isotherms and polarization-modulated infrared reflection absorption spectra (PM-IRRAS), weak molecular-level interactions were observed between Caps and phospholipids. Both Caps-M and Caps-B penetrated into the alkyl tail region of the monolayer, interacted with the phosphate group of the phospholipids and affected hydration of their Cdbnd O groups. Since the physiological activity of Caps is not governed solely by interaction with cell membranes, it should require participation of a neuronal membrane receptor, e.g. vanilloid receptor (TRPV1).

  1. Cell/surface interactions on laser micro-textured titanium-coated silicon surfaces.

    Science.gov (United States)

    Mwenifumbo, Steven; Li, Mingwei; Chen, Jianbo; Beye, Aboubaker; Soboyejo, Wolé

    2007-01-01

    This paper examines the effects of nano-scale titanium coatings, and micro-groove/micro-grid patterns on cell/surface interactions on silicon surfaces. The nature of the cellular attachment and adhesion to the coated/uncoated micro-textured surfaces was elucidated by the visualization of the cells and relevant cytoskeletal & focal adhesion proteins through scanning electron microscopy and immunofluorescence staining. Increased cell spreading and proliferation rates are observed on surfaces with 50 nm thick Ti coatings. The micro-groove geometries have been shown to promote contact guidance, which leads to reduced scar tissue formation. In contrast, smooth surfaces result in random cell orientations and the increased possibility of scar tissue formation. Immunofluorescence cell staining experiments also reveal that the actin stress fibers are aligned along the groove dimensions, with discrete focal adhesions occurring along the ridges, within the grooves and at the ends of the cell extensions. The implications of the observed cell/surface interactions are discussed for possible applications of silicon in implantable biomedical systems.

  2. Fibrosis of Two: Epithelial Cell-Fibroblast Interactions in Pulmonary Fibrosis

    Science.gov (United States)

    Sakai, Norihiko; Tager, Andrew M.

    2013-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive and ultimately fatal accumulation of fibroblasts and extracellular matrix in the lung that distorts its architecture and compromises its function. IPF is now thought to result from wound-healing processes that, although initiated to protect the host from injurious environmental stimuli, lead to pathological fibrosis due to these processes becoming aberrant or over-exuberant. Although the environmental stimuli that trigger IPF remain to be identified, recent evidence suggests that they initially injure the alveolar epithelium. Repetitive cycles of epithelial injury and resultant alveolar epithelial cell death provoke the migration, proliferation, activation and myofibroblast differentiation of fibroblasts, causing the accumulation of these cells and the extracellular matrix that they synthesize. In turn, these activated fibroblasts induce further alveolar epithelial cell injury and death, thereby creating a vicious cycle of pro-fibrotic epithelial cell-fibroblast interactions. Though other cell types certainly make important contributions, we focus here on the “pas de deux” (steps of two), or perhaps more appropriate to IPF pathogenesis, the “folie à deux” (madness of two) of epithelial cells and fibroblasts that drives the progression of pulmonary fibrosis. We describe the signaling molecules that mediate the interactions of these cell types in their “fibrosis of two”, including transforming growth factor-β, connective tissue growth factor, sonic hedgehog, prostaglandin E2, angiotensin II and reactive oxygen species. PMID:23499992

  3. Game theory in the death galaxy: interaction of cancer and stromal cells in tumour microenvironment.

    Science.gov (United States)

    Wu, Amy; Liao, David; Tlsty, Thea D; Sturm, James C; Austin, Robert H

    2014-08-06

    Preventing relapse is the major challenge to effective therapy in cancer. Within the tumour, stromal (ST) cells play an important role in cancer progression and the emergence of drug resistance. During cancer treatment, the fitness of cancer cells can be enhanced by ST cells because their molecular signalling interaction delays the drug-induced apoptosis of cancer cells. On the other hand, competition among cancer and ST cells for space or resources should not be ignored. We explore the population dynamics of multiple myeloma (MM) versus bone marrow ST cells by using an experimental microecology that we call the death galaxy, with a stable drug gradient and connected microhabitats. Evolutionary game theory is a quantitative way to capture the frequency-dependent nature of interactive populations. Therefore, we use evolutionary game theory to model the populations in the death galaxy with the gradients of pay-offs and successfully predict the future densities of MM and ST cells. We discuss the possible clinical use of such analysis for predicting cancer progression.

  4. Structure and interactions of the human programmed cell death 1 receptor.

    Science.gov (United States)

    Cheng, Xiaoxiao; Veverka, Vaclav; Radhakrishnan, Anand; Waters, Lorna C; Muskett, Frederick W; Morgan, Sara H; Huo, Jiandong; Yu, Chao; Evans, Edward J; Leslie, Alasdair J; Griffiths, Meryn; Stubberfield, Colin; Griffin, Robert; Henry, Alistair J; Jansson, Andreas; Ladbury, John E; Ikemizu, Shinji; Carr, Mark D; Davis, Simon J

    2013-04-26

    PD-1, a receptor expressed by T cells, B cells, and monocytes, is a potent regulator of immune responses and a promising therapeutic target. The structure and interactions of human PD-1 are, however, incompletely characterized. We present the solution nuclear magnetic resonance (NMR)-based structure of the human PD-1 extracellular region and detailed analyses of its interactions with its ligands, PD-L1 and PD-L2. PD-1 has typical immunoglobulin superfamily topology but differs at the edge of the GFCC' sheet, which is flexible and completely lacks a C" strand. Changes in PD-1 backbone NMR signals induced by ligand binding suggest that, whereas binding is centered on the GFCC' sheet, PD-1 is engaged by its two ligands differently and in ways incompletely explained by crystal structures of mouse PD-1 · ligand complexes. The affinities of these interactions and that of PD-L1 with the costimulatory protein B7-1, measured using surface plasmon resonance, are significantly weaker than expected. The 3-4-fold greater affinity of PD-L2 versus PD-L1 for human PD-1 is principally due to the 3-fold smaller dissociation rate for PD-L2 binding. Isothermal titration calorimetry revealed that the PD-1/PD-L1 interaction is entropically driven, whereas PD-1/PD-L2 binding has a large enthalpic component. Mathematical simulations based on the biophysical data and quantitative expression data suggest an unexpectedly limited contribution of PD-L2 to PD-1 ligation during interactions of activated T cells with antigen-presenting cells. These findings provide a rigorous structural and biophysical framework for interpreting the important functions of PD-1 and reveal that potent inhibitory signaling can be initiated by weakly interacting receptors.

  5. Integration of statistical modeling and high-content microscopy to systematically investigate cell-substrate interactions.

    Science.gov (United States)

    Chen, Wen Li Kelly; Likhitpanichkul, Morakot; Ho, Anthony; Simmons, Craig A

    2010-03-01

    Cell-substrate interactions are multifaceted, involving the integration of various physical and biochemical signals. The interactions among these microenvironmental factors cannot be facilely elucidated and quantified by conventional experimentation, and necessitate multifactorial strategies. Here we describe an approach that integrates statistical design and analysis of experiments with automated microscopy to systematically investigate the combinatorial effects of substrate-derived stimuli (substrate stiffness and matrix protein concentration) on mesenchymal stem cell (MSC) spreading, proliferation and osteogenic differentiation. C3H10T1/2 cells were grown on type I collagen- or fibronectin-coated polyacrylamide hydrogels with tunable mechanical properties. Experimental conditions, which were defined according to central composite design, consisted of specific permutations of substrate stiffness (3-144 kPa) and adhesion protein concentration (7-520 microg/mL). Spreading area, BrdU incorporation and Runx2 nuclear translocation were quantified using high-content microscopy and modeled as mathematical functions of substrate stiffness and protein concentration. The resulting response surfaces revealed distinct patterns of protein-specific, substrate stiffness-dependent modulation of MSC proliferation and differentiation, demonstrating the advantage of statistical modeling in the detection and description of higher-order cellular responses. In a broader context, this approach can be adapted to study other types of cell-material interactions and can facilitate the efficient screening and optimization of substrate properties for applications involving cell-material interfaces. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. The uncovered parity properties of the Czech Koruna

    Czech Academy of Sciences Publication Activity Database

    Derviz, Alexis

    2002-01-01

    Roč. 11, č. 1 (2002), s. 17-37 ISSN 1210-0455 R&D Projects: GA AV ČR KSK1019101 Institutional research plan: CEZ:AV0Z1075907 Keywords : uncovered parity * asset prices * international consumption-based capital asset pricing model Subject RIV: AH - Economics

  7. Weaving Social Foundations through Dance Pedagogy: A Pedagogy of Uncovering

    Science.gov (United States)

    Barr, Sherrie; Risner, Doug

    2014-01-01

    Today's dance educators enter classrooms populated by increasingly diverse students in which teachers' pedagogical knowledge necessitates heightened understandings of race, ethnicity, social class, gender, and sexuality. Uncovering taken-for-granted assumptions, dominant stereotypes, and educational structures that reproduce social…

  8. Affinity flow fractionation of cells via transient interactions with asymmetric molecular patterns

    Science.gov (United States)

    Bose, Suman; Singh, Rishi; Hanewich-Hollatz, Mikhail; Shen, Chong; Lee, Chia-Hua; Dorfman, David M.; Karp, Jeffrey M.; Karnik, Rohit

    2013-07-01

    Flow fractionation of cells using physical fields to achieve lateral displacement finds wide applications, but its extension to surface molecule-specific separation requires labeling. Here we demonstrate affinity flow fractionation (AFF) where weak, short-range interactions with asymmetric molecular patterns laterally displace cells in a continuous, label-free process. We show that AFF can directly draw neutrophils out of a continuously flowing stream of blood with an unprecedented 400,000-fold depletion of red blood cells, with the sorted cells being highly viable, unactivated, and functionally intact. The lack of background erythrocytes enabled the use of AFF for direct enumeration of neutrophils by a downstream detector, which could distinguish the activation state of neutrophils in blood. The compatibility of AFF with capillary microfluidics and its ability to directly separate cells with high purity and minimal sample preparation will facilitate the design of simple and portable devices for point-of-care diagnostics and quick, cost-effective laboratory analysis.

  9. CellMap visualizes protein-protein interactions and subcellular localization

    Science.gov (United States)

    Dallago, Christian; Goldberg, Tatyana; Andrade-Navarro, Miguel Angel; Alanis-Lobato, Gregorio; Rost, Burkhard

    2018-01-01

    Many tools visualize protein-protein interaction (PPI) networks. The tool introduced here, CellMap, adds one crucial novelty by visualizing PPI networks in the context of subcellular localization, i.e. the location in the cell or cellular component in which a PPI happens. Users can upload images of cells and define areas of interest against which PPIs for selected proteins are displayed (by default on a cartoon of a cell). Annotations of localization are provided by the user or through our in-house database. The visualizer and server are written in JavaScript, making CellMap easy to customize and to extend by researchers and developers. PMID:29497493

  10. Affinity flow fractionation of cells via transient interactions with asymmetric molecular patterns.

    Science.gov (United States)

    Bose, Suman; Singh, Rishi; Hanewich-Hollatz, Mikhail; Shen, Chong; Lee, Chia-Hua; Dorfman, David M; Karp, Jeffrey M; Karnik, Rohit

    2013-01-01

    Flow fractionation of cells using physical fields to achieve lateral displacement finds wide applications, but its extension to surface molecule-specific separation requires labeling. Here we demonstrate affinity flow fractionation (AFF) where weak, short-range interactions with asymmetric molecular patterns laterally displace cells in a continuous, label-free process. We show that AFF can directly draw neutrophils out of a continuously flowing stream of blood with an unprecedented 400,000-fold depletion of red blood cells, with the sorted cells being highly viable, unactivated, and functionally intact. The lack of background erythrocytes enabled the use of AFF for direct enumeration of neutrophils by a downstream detector, which could distinguish the activation state of neutrophils in blood. The compatibility of AFF with capillary microfluidics and its ability to directly separate cells with high purity and minimal sample preparation will facilitate the design of simple and portable devices for point-of-care diagnostics and quick, cost-effective laboratory analysis.

  11. Immunoregulatory Effects Triggered by Lactic Acid Bacteria Exopolysaccharides: New Insights into Molecular Interactions with Host Cells

    Directory of Open Access Journals (Sweden)

    Jonathan Laiño

    2016-08-01

    Full Text Available Researchers have demonstrated that lactic acid bacteria (LAB with immunomodulatory capabilities (immunobiotics exert their beneficial effects through several molecules, including cell wall, peptidoglycan, and exopolysaccharides (EPS, that are able to interact with specific host cell receptors. EPS from LAB show a wide heterogeneity in its composition, meaning that biological properties depend on the strain and. therefore, only a part of the mechanism of action has been elucidated for these molecules. In this review, we summarize the current knowledge of the health-promoting actions of EPS from LAB with special focus on their immunoregulatory actions. In addition, we describe our studies using porcine intestinal epithelial cells (PIE cells as a model to evaluate the molecular interactions of EPS from two immunobiotic LAB strains and the host cells. Our studies showed that EPS from immunobiotic LAB have anti-inflammatory capacities in PIE cells since they are able to reduce the production of inflammatory cytokines in cells challenged with the Toll-like receptor (TLR-4-agonist lipopolysaccharide. The effects of EPS were dependent on TLR2, TLR4, and negative regulators of TLR signaling. We also reported that the radioprotective 105 (RP105/MD1 complex, a member of the TLR family, is partially involved in the immunoregulatory effects of the EPS from LAB. Our work described, for the first time, that LAB and their EPS reduce inflammation in intestinal epithelial cells in a RP105/MD1-dependent manner. A continuing challenge for the future is to reveal more effector-receptor relationships in immunobiotic-host interactions that contribute to the beneficial effects of these bacteria on mucosal immune homeostasis. A detailed molecular understanding should lead to a more rational use of immunobiotics in general, and their EPS in particular, as efficient prevention and therapies for specific immune-related disorders in humans and animals.

  12. Genome-wide analysis of E. coli cell-gene interactions.

    Science.gov (United States)

    Cardinale, S; Cambray, G

    2017-11-23

    The pursuit of standardization and reliability in synthetic biology has achieved, in recent years, a number of advances in the design of more predictable genetic parts for biological circuits. However, even with the development of high-throughput screening methods and whole-cell models, it is still not possible to predict reliably how a synthetic genetic construct interacts with all cellular endogenous systems. This study presents a genome-wide analysis of how the expression of synthetic genes is affected by systematic perturbations of cellular functions. We found that most perturbations modulate expression indirectly through an effect on cell size, putting forward the existence of a generic Size-Expression interaction in the model prokaryote Escherichia coli. The Size-Expression interaction was quantified by inserting a dual fluorescent reporter gene construct into each of the 3822 single-gene deletion strains comprised in the KEIO collection. Cellular size was measured for single cells via flow cytometry. Regression analyses were used to discriminate between expression-specific and gene-specific effects. Functions of the deleted genes broadly mapped onto three systems with distinct primary influence on the Size-Expression map. Perturbations in the Division and Biosynthesis (DB) system led to a large-cell and high-expression phenotype. In contrast, disruptions of the Membrane and Motility (MM) system caused small-cell and low-expression phenotypes. The Energy, Protein synthesis and Ribosome (EPR) system was predominantly associated with smaller cells and positive feedback on ribosome function. Feedback between cell growth and gene expression is widespread across cell systems. Even though most gene disruptions proximally affect one component of the Size-Expression interaction, the effect therefore ultimately propagates to both. More specifically, we describe the dual impact of growth on cell size and gene expression through cell division and ribosomal content

  13. Interactions Between Biological Cells and Layered Double Hydroxides: Towards Functional Materials.

    Science.gov (United States)

    Forano, Claude; Bruna, Felipe; Mousty, Christine; Prevot, Vanessa

    2018-03-08

    This review highlights the current research on the interactions between biological cells and Layered Double Hydroxides (LDH). The as-prepared biohybrid materials appear extremely attractive in diverse fields of application relating to health care, environment and energy production. We describe how thanks to the main features of biological cells and LDH layers, various strategies of assemblies can be carried out for constructing smart biofunctional materials. The interactions between the two components are described with a peculiar attention to the adsorption, biocompatibilization, LDH layer internalization, antifouling and antimicrobial properties. The most significant achievements including authors' results, involving biological cells and LDH assemblies in waste water treatment, bioremediation and bioenergy generation are specifically addressed. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Gene expression changes during Giardia-host cell interactions in serum-free medium.

    Science.gov (United States)

    Ferella, Marcela; Davids, Barbara J; Cipriano, Michael J; Birkeland, Shanda R; Palm, Daniel; Gillin, Frances D; McArthur, Andrew G; Svärd, Staffan

    2014-10-01

    Serial Analysis of Gene Expression (SAGE) was used to quantify transcriptional changes in Giardia intestinalis during its interaction with human intestinal epithelial cells (IECs, HT-29) in serum free M199 medium. Transcriptional changes were compared to those in trophozoites alone in M199 and in TYI-S-33 Giardia growth medium. In total, 90 genes were differentially expressed, mainly those involved in cellular redox homeostasis, metabolism and small molecule transport but also cysteine proteases and structural proteins of the giardin family. Only 29 genes changed their expression due to IEC interaction and the rest were due to M199 medium. Although our findings generated a small dataset, it was consistent with our earlier microarray studies performed under different interaction conditions. This study has confined the number of genes in Giardia to a small subset that specifically change their expression due to interaction with IECs. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Analysis of Carbohydrate-Carbohydrate Interactions Using Sugar-Functionalized Silicon Nanoparticles for Cell Imaging.

    Science.gov (United States)

    Lai, Chian-Hui; Hütter, Julia; Hsu, Chien-Wei; Tanaka, Hidenori; Varela-Aramburu, Silvia; De Cola, Luisa; Lepenies, Bernd; Seeberger, Peter H

    2016-01-13

    Protein-carbohydrate binding depends on multivalent ligand display that is even more important for low affinity carbohydrate-carbohydrate interactions. Detection and analysis of these low affinity multivalent binding events are technically challenging. We describe the synthesis of dual-fluorescent sugar-capped silicon nanoparticles that proved to be an attractive tool for the analysis of low affinity interactions. These ultrasmall NPs with sizes of around 4 nm can be used for NMR quantification of coupled sugars. The silicon nanoparticles are employed to measure the interaction between the cancer-associated glycosphingolipids GM3 and Gg3 and the associated kD value by surface plasmon resonance experiments. Cell binding studies, to investigate the biological relevance of these carbohydrate-carbohydrate interactions, also benefit from these fluorescent sugar-capped nanoparticles.

  16. INTERACT

    DEFF Research Database (Denmark)

    Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD

    This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions...... including puppetry and dance. However, the aesthetics of these traditions vary across cultures and carry different associative and interpretive meanings. Puppetry offers a useful frame for understanding the relationship between abstract and imitative gestures and behavior, and instantiates the complex...... interaction between a human operator and an artificial actor or agent. We can apply insights from puppetry to develop culturally-aware robots. Here we describe the development of a robotic marionette theatre wherein robotic controllers assume the role of human puppeteers. The system has been built, tested...

  17. Interactions

    DEFF Research Database (Denmark)

    The main theme of this anthology is the unique interaction between mathematics, physics and philosophy during the beginning of the 20th century. Seminal theories of modern physics and new fundamental mathematical structures were discovered or formed in this period. Significant physicists such as ......The main theme of this anthology is the unique interaction between mathematics, physics and philosophy during the beginning of the 20th century. Seminal theories of modern physics and new fundamental mathematical structures were discovered or formed in this period. Significant physicists...... such as Lorentz and Einstein as well as mathematicians such as Poincare, Minkowski, Hilbert and Weyl contributed to this development. They created the new physical theories and the mathematical disciplines that play such paramount roles in their mathematical formulations. These physicists and mathematicians were...... also key figures in the philosophical discussions of nature and science - from philosophical tendencies like logical empiricism via critical rationalism to various neo-Kantian trends....

  18. Remote control of tissue interactions via engineered photo-switchable cell surfaces.

    Science.gov (United States)

    Luo, Wei; Pulsipher, Abigail; Dutta, Debjit; Lamb, Brian M; Yousaf, Muhammad N

    2014-09-10

    We report a general cell surface molecular engineering strategy via liposome fusion delivery to create a dual photo-active and bio-orthogonal cell surface for remote controlled spatial and temporal manipulation of microtissue assembly and disassembly. Cell surface tailoring of chemoselective functional groups was achieved by a liposome fusion delivery method and quantified by flow cytometry and characterized by a new cell surface lipid pull down mass spectrometry strategy. Dynamic co-culture spheroid tissue assembly in solution and co-culture tissue multilayer assembly on materials was demonstrated by an intercellular photo-oxime ligation that could be remotely cleaved and disassembled on demand. Spatial and temporal control of microtissue structures containing multiple cell types was demonstrated by the generation of patterned multilayers for controlling stem cell differentiation. Remote control of cell interactions via cell surface engineering that allows for real-time manipulation of tissue dynamics may provide tools with the scope to answer fundamental questions of cell communication and initiate new biotechnologies ranging from imaging probes to drug delivery vehicles to regenerative medicine, inexpensive bioreactor technology and tissue engineering therapies.

  19. Remote Control of Tissue Interactions via Engineered Photo-switchable Cell Surfaces

    Science.gov (United States)

    Luo, Wei; Pulsipher, Abigail; Dutta, Debjit; Lamb, Brian M.; Yousaf, Muhammad N.

    2014-01-01

    We report a general cell surface molecular engineering strategy via liposome fusion delivery to create a dual photo-active and bio-orthogonal cell surface for remote controlled spatial and temporal manipulation of microtissue assembly and disassembly. Cell surface tailoring of chemoselective functional groups was achieved by a liposome fusion delivery method and quantified by flow cytometry and characterized by a new cell surface lipid pull down mass spectrometry strategy. Dynamic co-culture spheroid tissue assembly in solution and co-culture tissue multilayer assembly on materials was demonstrated by an intercellular photo-oxime ligation that could be remotely cleaved and disassembled on demand. Spatial and temporal control of microtissue structures containing multiple cell types was demonstrated by the generation of patterned multilayers for controlling stem cell differentiation. Remote control of cell interactions via cell surface engineering that allows for real-time manipulation of tissue dynamics may provide tools with the scope to answer fundamental questions of cell communication and initiate new biotechnologies ranging from imaging probes to drug delivery vehicles to regenerative medicine, inexpensive bioreactor technology and tissue engineering therapies. PMID:25204325

  20. Interaction of graphene-related materials with human intestinal cells: an in vitro approach

    Science.gov (United States)

    Kucki, M.; Rupper, P.; Sarrieu, C.; Melucci, M.; Treossi, E.; Schwarz, A.; León, V.; Kraegeloh, A.; Flahaut, E.; Vázquez, E.; Palermo, V.; Wick, P.

    2016-04-01

    Graphene-related materials (GRM) inherit unique combinations of physicochemical properties which offer a high potential for technological as well as biomedical applications. It is not clear which physicochemical properties are the most relevant factors influencing the behavior of GRM in complex biological environments. In this study we have focused on the interaction of GRM, especially graphene oxide (GO), and Caco-2 cells in vitro. We mimiked stomach transition by acid-treatment of two representative GRM followed by analysis of their physicochemical properties. No significant changes in the material properties or cell viability of exposed Caco-2 cells in respect to untreated GRM could be detected. Furthermore, we explored the interaction of four different GO and Caco-2 cells to identify relevant physicochemical properties for the establishment of a material property-biological response relationship. Despite close interaction with the cell surface and the formation of reactive oxygen species (ROS), no acute toxicity was found for any of the applied GO (concentration range 0-80 μg ml-1) after 24 h and 48 h exposure. Graphene nanoplatelet aggregates led to low acute toxicity at high concentrations, indicating that aggregation, the number of layers or the C/O ratio have a more pronounced effect on the cell viability than the lateral size alone.Graphene-related materials (GRM) inherit unique combinations of physicochemical properties which offer a high potential for technological as well as biomedical applications. It is not clear which physicochemical properties are the most relevant factors influencing the behavior of GRM in complex biological environments. In this study we have focused on the interaction of GRM, especially graphene oxide (GO), and Caco-2 cells in vitro. We mimiked stomach transition by acid-treatment of two representative GRM followed by analysis of their physicochemical properties. No significant changes in the material properties or cell

  1. Mathematical analysis of endothelial sibling pair cell-cell interactions using time-lapse cinematography data.

    Science.gov (United States)

    Brown, L M; Ryan, U S; Absher, M; Olazabal, B M

    1982-01-01

    The sibling pairs from two different endothelial cell cultures were analysed by time-lapse cinematography. It was shown that wounded and regular (low density seeded) cultures differed in the behaviour patterns of their siblings. The cultures differed most significantly in the minimum interdivision time (IDT) which was 27% lower for the wounded culture. In the wounded culture there was a greater correlation of IDT values between sibling pairs. IDT values recorded both for paired and for unpaired cells were shorter for the wounded than for the regular culture. The mean IDT for unpaired cells was longer than the mean IDT for paired cells in the regular culture. Thus paired cells in the regular culture, had shorter IDTs, but not as short as in the wounded culture. It was significant that in the wounded culture the first generation of siblings were very close (less than 150 microns apart) at division. Overall the behaviour differences between the two cultures resulted in a higher rate of increase in cell numbers, and thus faster repair, of the wounded monolayer.

  2. Interaction of cytotoxic agents: a rule-based system for computer-assisted cell survival analysis.

    Science.gov (United States)

    Gentile, F P; Chiatti, L; Mauro, F; Briganti, G; Floridi, A; Benassi, M

    1992-01-01

    The actual effectiveness of environmental noxious agents or anticancer drugs can be fully determined only by knowing if the effects (in the present case, the cytotoxic effects) induced by a given agent are enhanced by exposure to another (or other) agent(s). Given a certain combination of agents, it is possible to distinguish three types of interaction: (a) zero interaction or additivity; (b) positive interaction or synergism; and (c) negative interaction or antagonism. In this work, the methodological problems involved in evaluating the type and level of interaction between biologically active agents are discussed and an "intelligent" approach to the problem is proposed. In particular, a prototype of a computer-assisted rule based system, named CISA (Cytotoxic Interaction and Survival Analysis), designed in a KES environment (Knowledge Engineering System) and implemented on a personal computer, is described. By constructing isoboles based on experimental cell survival data and taking into account the relative confidence intervals, the system can indicate the appropriate combinations of dosages to be tested and finally determine the type and level of interaction. The system, which represents an attempt to administer "intelligently" the experimental data, is therefore able to identify the best strategy of analysis, to carry out the data processing and to offer suggestions to the investigator about the usefulness of the data and the planning of further experiments.

  3. CASK inhibits ECV304 cell growth and interacts with Id1

    International Nuclear Information System (INIS)

    Qi Jie; Su Yongyue; Sun Rongju; Zhang Fang; Luo Xiaofeng; Yang Zongcheng; Luo Xiangdong

    2005-01-01

    Calcium/calmodulin-dependent serine protein kinase (CASK) is generally known as a scaffold protein. Here we show that overexpression of CASK resulted in a reduced rate of cell growth, while inhibition of expression of endogenous CASK via RNA-mediated interference resulted in an increased rate of cell growth in ECV304 cells. To explore the molecular mechanism, we identified a novel CASK-interacting protein, inhibitor of differentiation 1 (Id1) with a yeast two-hybrid screening. Furthermore, endogenous CASK and Id1 proteins were co-precipitated from the lysates of ECV304 cells by immunoprecipitation. Mammalian two-hybrid protein-protein interaction assays indicated that CASK possessed a different binding activity for Id1 and its alternative splicing variant. It is known that Id proteins play important roles in regulation of cell proliferation and differentiation. Thus, we speculate that the regulation of cell growth mediated by CASK may be involved in Id1. Our findings indicate a novel function of CASK, the mechanism that remains to be further investigated

  4. Reciprocal Interactions between Multiple Myeloma Cells and Osteoprogenitor Cells Affect Bone Formation and Tumor Growth

    Science.gov (United States)

    2014-10-01

    SUBJECT TERMS Multiple Myeloma, Blood Cancer , Hematological Malignancy , Bone Metastasis, 3D Model, In vitro, silk scaffolds, osteogenic microRNAs...platform to study cancer -bone interactions. Keywords Multiple Myeloma, Blood Cancer , Hematological Malignancy , Bone Metastasis, 3D Model, In vitro...Affect Bone Formation and Tumor Growth” PRINCIPAL INVESTIGATOR: Michaela Reagan CONTRACTING ORGANIZATION: Dana-Farber Cancer Institute, Inc

  5. Effective cell-free drug screening protocol for protein-protein interaction.

    Science.gov (United States)

    Ashkenazi, Shaked; Plotnikov, Alexander; Bahat, Anat; Dikstein, Rivka

    2017-09-01

    Specific protein-protein interaction (PPI) is an essential feature of many cellular processes however, targeting these interactions by small molecules is highly challenging due to the nature of the interaction interface. Thus, screening for PPI inhibitors requires enormous number of compounds. Here we describe a simple and improved protocol designed for a search of direct PPI inhibitors. We engineered a bacterial expression system for the split-Renilla luciferase (RL) complementation assay that monitors PPI. This enables production of large quantities of the RL fusion proteins in a simple and cost effective manner that is suitable for very large screens. Subsequently, inhibitory compounds are analyzed in a similar complementation assay in living cultured mammalian cells to select for those that can penetrate cells. We applied this method to NF-κB, a family of dimeric transcription factors that plays central roles in immune responses, cell survival and aging, and its dysregulation is linked to many pathological states. This strategy led to the identification of several direct NF-κB inhibitors. As the described protocol is very straightforward and robust it may be suitable for many pairs of interacting proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The BAR domain protein PICK1 regulates cell recognition and morphogenesis by interacting with Neph proteins.

    Science.gov (United States)

    Höhne, Martin; Lorscheider, Johannes; von Bardeleben, Anna; Dufner, Matthias; Scharf, M Antonia; Gödel, Markus; Helmstädter, Martin; Schurek, Eva-Maria; Zank, Sibylle; Gerke, Peter; Kurschat, Christine; Sivritas, Sema Hayriye; Neumann-Haefelin, Elke; Huber, Tobias B; Reinhardt, H Christian; Schauss, Astrid C; Schermer, Bernhard; Fischbach, Karl-Friedrich; Benzing, Thomas

    2011-08-01

    Neph proteins are evolutionarily conserved membrane proteins of the immunoglobulin superfamily that control the formation of specific intercellular contacts. Cell recognition through these proteins is essential in diverse cellular contexts such as patterning of the compound eye in Drosophila melanogaster, neuronal connectivity in Caenorhabditis elegans, and the formation of the kidney filtration barrier in mammals. Here we identify the PDZ and BAR domain protein PICK1 (protein interacting with C-kinase 1) as a Neph-interacting protein. Binding required dimerization of PICK1, was dependent on PDZ domain protein interactions, and mediated stabilization of Neph1 at the plasma membrane. Moreover, protein kinase C (PKCα) activity facilitated the interaction through releasing Neph proteins from their binding to the multidomain scaffolding protein zonula occludens 1 (ZO-1), another PDZ domain protein. In Drosophila, the Neph homologue Roughest is essential for sorting of interommatidial precursor cells and patterning of the compound eye. RNA interference-mediated knockdown of PICK1 in the Drosophila eye imaginal disc caused a Roughest destabilization at the plasma membrane and a phenotype that resembled rst mutation. These data indicate that Neph proteins and PICK1 synergistically regulate cell recognition and contact formation.

  7. Flightless I interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling

    Science.gov (United States)

    Arora, Pamma D.; Wang, Yongqiang; Bresnick, Anne; Janmey, Paul A.; McCulloch, Christopher A.

    2015-01-01

    We examined the role of the actin-capping protein flightless I (FliI) in collagen remodeling by mouse fibroblasts. FliI-overexpressing cells exhibited reduced spreading on collagen but formed elongated protrusions that stained for myosin10 and fascin and penetrated pores of collagen-coated membranes. Inhibition of Cdc42 blocked formation of cell protrusions. In FliI-knockdown cells, transfection with constitutively active Cdc42 did not enable protrusion formation. FliI-overexpressing cells displayed increased uptake and degradation of exogenous collagen and strongly compacted collagen fibrils, which was blocked by blebbistatin. Mass spectrometry analysis of FliI immunoprecipitates showed that FliI associated with nonmuscle myosin IIA (NMMIIA), which was confirmed by immunoprecipitation. GFP-FliI colocalized with NMMIIA at cell protrusions. Purified FliI containing gelsolin-like domains (GLDs) 1–6 capped actin filaments efficiently, whereas FliI GLD 2–6 did not. Binding assays showed strong interaction of purified FliI protein (GLD 1–6) with the rod domain of NMMIIA (kD = 0.146 μM), whereas FliI GLD 2–6 showed lower binding affinity (kD = 0.8584 μM). Cells expressing FliI GLD 2–6 exhibited fewer cell extensions, did not colocalize with NMMIIA, and showed reduced collagen uptake compared with cells expressing FliI GLD 1–6. We conclude that FliI interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling in fibroblasts. PMID:25877872

  8. Localized Modeling of Biochemical and Flow Interactions during Cancer Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Julie Behr

    Full Text Available This work focuses on one component of a larger research effort to develop a simulation tool to model populations of flowing cells. Specifically, in this study a local model of the biochemical interactions between circulating melanoma tumor cells (TC and substrate adherent polymorphonuclear neutrophils (PMN is developed. This model provides realistic three-dimensional distributions of bond formation and attendant attraction and repulsion forces that are consistent with the time dependent Computational Fluid Dynamics (CFD framework of the full system model which accounts local pressure, shear and repulsion forces. The resulting full dynamics model enables exploration of TC adhesion to adherent PMNs, which is a known participating mechanism in melanoma cell metastasis. The model defines the adhesion molecules present on the TC and PMN cell surfaces, and calculates their interactions as the melanoma cell flows past the PMN. Biochemical rates of reactions between individual molecules are determined based on their local properties. The melanoma cell in the model expresses ICAM-1 molecules on its surface, and the PMN expresses the β-2 integrins LFA-1 and Mac-1. In this work the PMN is fixed to the substrate and is assumed fully rigid and of a prescribed shear-rate dependent shape obtained from micro-PIV experiments. The melanoma cell is transported with full six-degrees-of-freedom dynamics. Adhesion models, which represent the ability of molecules to bond and adhere the cells to each other, and repulsion models, which represent the various physical mechanisms of cellular repulsion, are incorporated with the CFD solver. All models are general enough to allow for future extensions, including arbitrary adhesion molecule types, and the ability to redefine the values of parameters to represent various cell types. The model presented in this study will be part of a clinical tool for development of personalized medical treatment programs.

  9. Localized Modeling of Biochemical and Flow Interactions during Cancer Cell Adhesion.

    Science.gov (United States)

    Behr, Julie; Gaskin, Byron; Fu, Changliang; Dong, Cheng; Kunz, Robert

    2015-01-01

    This work focuses on one component of a larger research effort to develop a simulation tool to model populations of flowing cells. Specifically, in this study a local model of the biochemical interactions between circulating melanoma tumor cells (TC) and substrate adherent polymorphonuclear neutrophils (PMN) is developed. This model provides realistic three-dimensional distributions of bond formation and attendant attraction and repulsion forces that are consistent with the time dependent Computational Fluid Dynamics (CFD) framework of the full system model which accounts local pressure, shear and repulsion forces. The resulting full dynamics model enables exploration of TC adhesion to adherent PMNs, which is a known participating mechanism in melanoma cell metastasis. The model defines the adhesion molecules present on the TC and PMN cell surfaces, and calculates their interactions as the melanoma cell flows past the PMN. Biochemical rates of reactions between individual molecules are determined based on their local properties. The melanoma cell in the model expresses ICAM-1 molecules on its surface, and the PMN expresses the β-2 integrins LFA-1 and Mac-1. In this work the PMN is fixed to the substrate and is assumed fully rigid and of a prescribed shear-rate dependent shape obtained from micro-PIV experiments. The melanoma cell is transported with full six-degrees-of-freedom dynamics. Adhesion models, which represent the ability of molecules to bond and adhere the cells to each other, and repulsion models, which represent the various physical mechanisms of cellular repulsion, are incorporated with the CFD solver. All models are general enough to allow for future extensions, including arbitrary adhesion molecule types, and the ability to redefine the values of parameters to represent various cell types. The model presented in this study will be part of a clinical tool for development of personalized medical treatment programs.

  10. Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations

    KAUST Repository

    Perozziello, Gerardo

    2013-07-01

    In this study, we propose a fast, simple method to biofunctionalise microfluidic systems for cellomic investigations based on micro-fluidic protocols. Many available processes either require expensive and time-consuming protocols or are incompatible with the fabrication of microfluidic systems. Our method differs from the existing since it is applicable to an assembled system, uses few microlitres of reagents and it is based on the use of microbeads. The microbeads have specific surface moieties to link the biomolecules and couple cell receptors. Furthermore, the microbeads serve as arm spacer and offer the benefit of the multi-valent interaction. Microfluidics was adapted together with topology and biochemistry surface modifications to offer the microenvironment for cellomic studies. Based on this principle, we exploit the streptavidin-biotin interaction to couple antibodies to the biofunctionalised microfluidic environment within 5 h using 200 μL of reagents and biomolecules. We selected the antibodies able to form complexes with the MHC class I (MHC-I) molecules present on the cell membrane and involved in the immune surveillance. To test the microfluidic system, tumour cell lines (RMA) were rolled across the coupled antibodies to recognise and strip MHC-I molecules. As result, we show that cell rolling performed inside a microfluidic chamber functionalised with beads and the opportune antibody facilitate the removal of MHC class I molecules. We showed that the level of median fluorescent intensity of the MHC-I molecules is 300 for cells treated in a not biofunctionalised surface. It decreased to 275 for cells treated in a flat biofunctionalised surface and to 250 for cells treated on a surface where biofunctionalised microbeads were immobilised. The cells with reduced expression of MHC-I molecules showed, after cytotoxicity tests, susceptibility 3.5 times higher than normal cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Mesenchymal-­epithelial interactions during digestive tract development and epithelial stem cell regeneration

    Science.gov (United States)

    Le Guen, Ludovic; Marchal, Stéphane; Faure, Sandrine; De Santa Barbara, Pascal

    2015-01-01

    The gastrointestinal tract develops from a simple and uniform tube into a complex organ with specific differentiation patterns along the anterior-posterior and dorso-ventral axes of asymmetry. It is derived from all three germ layers and their cross-talk is important for the regulated development of fetal and adult gastrointestinal structures and organs. Signals from the adjacent mesoderm are essential for the morphogenesis of the overlying epithelium. These mesenchymal-epithelial interactions govern the development and regionalization of the different gastrointestinal epithelia and involve most of the key morphogens and signaling pathways, such as the Hedgehog, BMPs, Notch, WNT, HOX, SOX and FOXF cascades. Moreover, the mechanisms underlying mesenchyme differentiation into smooth muscle cells influence the regionalization of the gastrointestinal epithelium through interactions with the enteric nervous system. In the neonatal and adult gastrointestinal tract, mesenchymal–epithelial interactions are essential for the maintenance of the epithelial regionalization and digestive epithelial homeostasis. Disruption of these interactions is also associated with bowel dysfunction potentially leading to epithelial tumor development. In this review, we will discuss various aspects of the mesenchymal-epithelial interactions observed during digestive epithelium development and differentiation and also during epithelial stem cell regeneration. PMID:26126787

  12. An equine infectious anemia virus variant superinfects cells through novel receptor interactions.

    Science.gov (United States)

    Brindley, Melinda A; Zhang, Baoshan; Montelaro, Ronald C; Maury, Wendy

    2008-10-01

    Wild-type strains of equine infectious anemia virus (EIAV) prevent superinfection of previously infected cells. A variant strain of virus that spontaneously arose during passage, EIAV(vMA-1c), can circumvent this mechanism in some cells, such as equine dermis (ED) cells, but not in others, such as equine endothelial cells. EIAV(vMA-1c) superinfection of ED cells results in a buildup of unintegrated viral DNA and rapid killing of the cell monolayer. Here, we examined the mechanism of resistance that is used by EIAV to prevent superinfection and explored the means by which EIAV(vMA-1c) overcomes this restriction. We found that the cellular receptor used by EIAV, equine lentivirus receptor 1 (ELR1), remains on the surface of cells chronically infected with EIAV, suggesting that wild-type EIAV interferes with superinfection by masking ELR1. The addition of soluble wild-type SU protein to the medium during infection blocked infection by wild-type strains of virus, implicating SU as the viral protein responsible for interfering with virion entry into previously infected cells. Additionally, interference of wild-type EIAV binding to ELR1 by the addition of either anti-ELR1 antibodies or the ELR1 ectodomain prevented entry of the wild-type strains of EIAV into two permissive cell populations. Many of these same interference treatments prevented EIAV(vMA-1c) infection of endothelial cells but only modestly affected the ability of EIAV(vMA-1c) to enter and kill previously infected ED cells. These findings indicate that EIAV(vMA-1c) retains the ability to use ELR1 for entry and suggest that this virus can interact with an additional, unidentified receptor to superinfect ED cells.

  13. Multi-scale cell/surface interaction on modified titanium aluminum vanadium surfaces

    Science.gov (United States)

    Chen, Jianbo

    This dissertation presents a series of experimental studies of the effects of multi-scale cell/surface interactions on modified Ti-6Al-4V surfaces. These include laser-grooved surfaces; porous structures and RGD-coated laser-grooved surfaces. A nano-second DPSS UV lasers with a Gaussian pulse energy profile was used to introduce the desired micro-groove geometries onto Ti-6Al-4V surfaces. This was done without inducing micro-cracks or significant changes in surface chemistry within the heat affected zones. The desired 8-12 mum groove depths and widths were achieved by the control of pulse frequency, scan speed, and the lens focal length that controls spot size. The interactions between human osteosarcoma (HOS) cells and laser-grooved Ti-6Al-4V surfaces were investigated after 48 hours of cell culture. The cell behavior, including cell spreading, alignment and adhesion, was elucidated using scanning electronic microscopy (SEM), immuno-fluorescence staining and enzymatic detachment. Contact guidance was shown to increase as grooved spacing decreased. For the range of micro-groove geometries studied, micro-grooves with groove spacings of 20 mum provided the best combination of cell orientation and adhesion. Short-term adhesion experiments (15 mins to 1 day) also revealed that there is a positive correlation between cell orientation and cell adhesion. Contact guidance on the micro-grooved surfaces is shown to be enhanced by nano- and micro-scale asperities that provide sites for the attachment of lamellopodia during cell locomotion and spreading. Contact guidance is also promoted by the geometrical confinement provided by laser grooves. An experimental study of initial cell spreading and ingrowth into Ti-6Al-4V porous structures was also carried out on porous structures with different pore sizes and geometries. A combination of SEM, the tetrazolium salt (MTT) colorimetric assay and enzymatic detachment were used to study cell spreading and adhesion. The extent of cell

  14. Central muscarinic cholinergic activation alters interaction between splenic dendritic cell and CD4+CD25- T cells in experimental colitis.

    Directory of Open Access Journals (Sweden)

    Peris Munyaka

    Full Text Available The cholinergic anti-inflammatory pathway (CAP is based on vagus nerve (VN activity that regulates macrophage and dendritic cell responses in the spleen through alpha-7 nicotinic acetylcholine receptor (a7nAChR signaling. Inflammatory bowel disease (IBD patients present dysautonomia with decreased vagus nerve activity, dendritic cell and T cell over-activation. The aim of this study was to investigate whether central activation of the CAP alters the function of dendritic cells (DCs and sequential CD4+/CD25-T cell activation in the context of experimental colitis.The dinitrobenzene sulfonic acid model of experimental colitis in C57BL/6 mice was used. Central, intracerebroventricular infusion of the M1 muscarinic acetylcholine receptor agonist McN-A-343 was used to activate CAP and vagus nerve and/or splenic nerve transection were performed. In addition, the role of α7nAChR signaling and the NF-kB pathway was studied. Serum amyloid protein (SAP-A, colonic tissue cytokines, IL-12p70 and IL-23 in isolated splenic DCs, and cytokines levels in DC-CD4+CD25-T cell co-culture were determined.McN-A-343 treatment reduced colonic inflammation associated with decreased pro-inflammatory Th1/Th17 colonic and splenic cytokine secretion. Splenic DCs cytokine release was modulated through α7nAChR and the NF-kB signaling pathways. Cholinergic activation resulted in decreased CD4+CD25-T cell priming. The anti-inflammatory efficacy of central cholinergic activation was abolished in mice with vagotomy or splenic neurectomy.Suppression of splenic immune cell activation and altered interaction between DCs and T cells are important aspects of the beneficial effect of brain activation of the CAP in experimental colitis. These findings may lead to improved therapeutic strategies in the treatment of IBD.

  15. Basigin null mutant male mice are sterile and exhibit impaired interactions between germ cells and Sertoli cells.

    Science.gov (United States)

    Bi, Jiajia; Li, Yanfen; Sun, Fengyun; Saalbach, Anja; Klein, Claudia; Miller, David J; Hess, Rex; Nowak, Romana A

    2013-08-15

    Basigin (BSG) is a multifunctional glycoprotein that plays an important role in male reproduction since male knockout (KO) mice are sterile. The Bsg KO testis lacks elongated spermatids and mature spermatozoa, a phenotype similar to that of alpha-mannosidase IIx (MX) KO mice. MX regulates formation of N-acetylglucosamine (GlcNAc) terminated N-glycans that participate in germ cell-Sertoli cell adhesion. Results showed that Bsg KO spermatocytes displayed normal homologous chromosome synapsis and progression through meiosis. However, only punctate expression of the round spermatid marker SP-10 in the acrosomal granule of germ cells of Bsg KO mice was detected indicating that spermatogenesis in Bsg KO mice was arrested at the early round spermatid stages. We observed a large increase in the number of germ cells undergoing apoptosis in Bsg KO testes. Using lectin blotting, we determined that GlcNAc terminated N-glycans are linked to BSG. GlcNAc terminated N-glycans were significantly reduced in Bsg KO testes. These observations indicate that BSG may act as a germ cell-Sertoli cell attachment molecule. Loss of BSG significantly reduced adhesion between GC-2 and SF7 cells. Moreover, wild type testes showed strong expression of N-cadherin (CDH2) while expression was greatly reduced in the testes of Bsg KO mice. In addition, the integrity of the blood-testis barrier (BTB) was compromised in Bsg KO testes. In conclusion, although some Bsg KO spermatogonia can undergo normal progression to the spermatocyte stage, BSG-mediated germ cell-Sertoli cell interactions appear to be necessary for integrity of the BTB and spermatocyte progression to mature spermatozoa. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. INTERACT

    DEFF Research Database (Denmark)

    Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD

    This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions...... including puppetry and dance. However, the aesthetics of these traditions vary across cultures and carry different associative and interpretive meanings. Puppetry offers a useful frame for understanding the relationship between abstract and imitative gestures and behavior, and instantiates the complex...

  17. Exploring how infrared radiation enhances the attractive interaction between a cell pair by its electromagnetic nature

    Science.gov (United States)

    Yang, Bor-Wen; Yeh, Chu; Lin, Po-Cheng; Chao, Chi-Tse

    2013-10-01

    Electromagnetic radiation can be categorized into ionizing and non-ionizing varieties. To determine the mechanism how non-ionizing radiation affects biological cells, we analyzed the difference between its thermal and electromagnetic effects. Two-beam optical tweezers were designed to demonstrate that infrared radiation could enhance the cellular interaction between red blood cells by its electromagnetic nature. An IR spot in the optical tweezers was irradiated on two RBCs to polarize them and induce electromagnetic attraction, while the other focused visible spot was used to quantify the intensity of the intercellular interaction. It was found that 0.1 mW/μm2 infrared radiation was adequate to cause pN-scale interaction between a cell pair, which was only 1/1000 of the power density used in a CD-R drive. We then set up a model to describe how non-ionizing radiation affected a cell assembly by deriving electromagnetic micro-stress transverse to its propagation axis.

  18. Interactions and effects of BSA-functionalized single-walled carbon nanotubes on different cell lines

    Science.gov (United States)

    Muzi, Laura; Tardani, Franco; La Mesa, Camillo; Bonincontro, Adalberto; Bianco, Alberto; Risuleo, Gianfranco

    2016-04-01

    Functionalized carbon nanotubes (CNTs) have shown great promise in several biomedical contexts, spanning from drug delivery to tissue regeneration. Thanks to their unique size-related properties, single-walled CNTs (SWCNTs) are particularly interesting in these fields. However, their use in nanomedicine requires a clear demonstration of their safety in terms of tissue damage, toxicity and pro-inflammatory response. Thus, a better understanding of the cytotoxicity mechanisms, the cellular interactions and the effects that these materials have on cell survival and on biological membranes is an important first step for an appropriate assessment of their biocompatibility. In this study we show how bovine serum albumin (BSA) is able to generate homogeneous and stable dispersions of SWCNTs (BSA-CNTs), suggesting their possible use in the biomedical field. On the other hand, this study wishes to shed more light on the impact and the interactions of protein-stabilized SWCNTs with two different cell types exploiting multidisciplinary techniques. We show that BSA-CNTs are efficiently taken up by cells. We also attempt to describe the effect that the interaction with cells has on the dielectric characteristics of the plasma membrane and ion flux using electrorotation. We then focus on the BSA-CNTs’ acute toxicity using different cellular models. The novel aspect of this work is the evaluation of the membrane alterations that have been poorly investigated to date.

  19. Power output of microbial fuel cell emphasizing interaction of anodic binder with bacteria

    Science.gov (United States)

    Li, Hongying; Liao, Bo; Xiong, Juan; Zhou, Xingwang; Zhi, Huozhen; Liu, Xiang; Li, Xiaoping; Li, Weishan

    2018-03-01

    Electrochemically active biofilm is necessary for the electron transfer between bacteria and anodic electrode in microbial fuel cells and selecting the type of anodic electrode material that favours formation of electrochemically active biofilm is crucial for the microbial fuel cell operation. We report a new finding that the interaction of anodic binder with bacteria plays more important role than its hydrophilicity for forming an electrochemically active biofilm, which is emphasized by applying poly(bisphenol A-co-epichorohydrin) as an anodic binder of the microbial fuel cell based on carbon nanotubes as anodic electrode and Escherichia coli as bacterium. The physical characterizations and electrochemical measurements demonstrate that poly(bisphenol A-co-epichorohydrin) exhibits a strong interaction with bacteria and thus provides the microbial fuel cell with excellent power density output. The MFC using poly(bisphenol A-co-epichorohydrin) reaches a maximum power density output of 3.8 W m-2. This value is larger than that of the MFCs using polytetrafluoroethylene that has poorer hydrophilicity, or polyvinyl alcohol that has better hydrophilicity but exhibits weaker interaction with bacteria than poly(bisphenol A-co-epichorohydrin).

  20. Reduced PDZ Interactions of Rescued ΔF508CFTR Increases Its Cell Surface Mobility*

    Science.gov (United States)

    Valentine, Cathleen D.; Lukacs, Gergely L.; Verkman, Alan S.; Haggie, Peter M.

    2012-01-01

    Deletion of phenylalanine 508 (ΔF508) in the cystic fibrosis transmembrane conductance regulator (CFTR) plasma membrane chloride channel is the most common cause of cystic fibrosis (CF). Though several maneuvers can rescue endoplasmic reticulum-retained ΔF508CFTR and promote its trafficking to the plasma membrane, rescued ΔF508CFTR remains susceptible to quality control mechanisms that lead to accelerated endocytosis, ubiquitination, and lysosomal degradation. To investigate the role of scaffold protein interactions in rescued ΔF508CFTR surface instability, the plasma membrane mobility of ΔF508CFTR was measured in live cells by quantum dot single particle tracking. Following rescue by low temperature, chemical correctors, thapsigargin, or overexpression of GRASP55, ΔF508CFTR diffusion was more rapid than that of wild-type CFTR because of reduced interactions with PDZ domain-containing scaffold proteins. Knock-down of the plasma membrane quality control proteins CHIP and Hsc70 partially restored ΔF508CFTR-scaffold association. Quantitative comparisons of CFTR cell surface diffusion and endocytosis kinetics suggested an association between reduced scaffold binding and CFTR internalization. Our surface diffusion measurements in live cells indicate defective scaffold interactions of rescued ΔF508CFTR at the cell surface, which may contribute to its defective peripheral processing. PMID:23115232

  1. Interaction of a snake venom L-amino acid oxidase with different cell types membrane.

    Science.gov (United States)

    Abdelkafi-Koubaa, Zaineb; Aissa, Imen; Morjen, Maram; Kharrat, Nadia; El Ayeb, Mohamed; Gargouri, Youssef; Srairi-Abid, Najet; Marrakchi, Naziha

    2016-01-01

    Snake venom l-amino acid oxidases are multifunctional enzymes that exhibited a wide range of pharmacological activities. Although it has been established that these activities are primarily caused by the H2O2 generated in the enzymatic reaction, the molecular mechanism, however, has not been fully investigated. In this work, LAAO interaction with cytoplasmic membranes using different cell types and Langmuir interfacial monolayers was evaluated. The Cerastes cerastes venom LAAO (CC-LAAO) did not exhibit cytotoxic activities against erythrocytes and peripheral blood mononuclear cells (PBMC). However, CC-LAAO caused cytotoxicity on several cancer cell lines and induced platelet aggregation in dose-dependent manner. Furthermore, the enzyme showed remarkable effect against Gram-positive and Gram-negative bacteria. These activities were inhibited on the addition of catalase or substrate analogs, suggesting that H2O2 liberation× is required for these effects. Binding studies revealed that CC-LAAO binds to the cell surface and enables the production of highly localized concentration of H2O2 in or near the binding interfaces. On another hand, the interaction of CC-LAAO with a mimetic phospholipid film was evaluated, for the first time, using a monomolecular film technique. Results indicated that phospholipid/CC-LAAO interactions are not involved in their binding to membrane and in their pharmacological activities. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Where in the Cell Are You? Probing HIV-1 Host Interactions through Advanced Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Brennan S. Dirk

    2016-10-01

    Full Text Available Viruses must continuously evolve to hijack the host cell machinery in order to successfully replicate and orchestrate key interactions that support their persistence. The type-1 human immunodeficiency virus (HIV-1 is a prime example of viral persistence within the host, having plagued the human population for decades. In recent years, advances in cellular imaging and molecular biology have aided the elucidation of key steps mediating the HIV-1 lifecycle and viral pathogenesis. Super-resolution imaging techniques such as stimulated emission depletion (STED and photoactivation and localization microscopy (PALM have been instrumental in studying viral assembly and release through both cell–cell transmission and cell–free viral transmission. Moreover, powerful methods such as Forster resonance energy transfer (FRET and bimolecular fluorescence complementation (BiFC have shed light on the protein-protein interactions HIV-1 engages within the host to hijack the cellular machinery. Specific advancements in live cell imaging in combination with the use of multicolor viral particles have become indispensable to unravelling the dynamic nature of these virus-host interactions. In the current review, we outline novel imaging methods that have been used to study the HIV-1 lifecycle and highlight advancements in the cell culture models developed to enhance our understanding of the HIV-1 lifecycle.

  3. Red cell indexes made easy using an interactive animation: do students and their scores concur?

    Science.gov (United States)

    Kachroo, Upasana; Vinod, Elizabeth; Balasubramanian, Sivakumar; W, Jesi; Prince, Neetu

    2018-03-01

    A good understanding of red cell indexes can aid medical students in a considerable manner, serving as a basis to unravel both concepts in red cell physiology and abnormalities associated with the same. In this study, we tried to assess whether an interactive animation was helpful in improving student comprehension and understanding of red cell indexes compared with conventional classroom teaching. Eighty-eight first-year MBBS students participated, of which 44 were assigned to group A and 44 were assigned to group B after randomization. After further creation of smaller groups, students were provided with 45 min to revise red cell indexes, after which they were required to complete a multimodal questionnaire. Group A subgroups used written material for revision, whereas group B subgroups had access to an interactive animation. After completion of the questionnaire, group A students also used the animation after which feedback was collected from all students. Efficacy of the animation to improve learning and retention was demonstrated, as group B students scored significantly higher than group A students on the questionnaire ( P = 0.0003). A clear majority of the students agreed/strongly agreed that the animation was easy to operate, conveyed important concepts efficiently, and improved their knowledge of related clinical aspects as well. From the results and feedback, we found that the animation was a simple, well-received model, which, by significantly improving student performance, corroborated our hypothesis that inclusion of interactive animation into student curriculum can advance their academic attainment, compared with didactic teaching alone.

  4. Interaction of Cowpea Mosaic Virus (CPMV) Nanoparticles with Antigen Presenting Cells In Vitro and In Vivo

    Science.gov (United States)

    Rae, Chris S.; Manchester, Marianne

    2009-01-01

    Background Plant viruses such as Cowpea mosaic virus (CPMV) are increasingly being developed for applications in nanobiotechnology including vaccine development because of their potential for producing large quantities of antigenic material in plant hosts. In order to improve efficacy of viral nanoparticles in these types of roles, an investigation of the individual cell types that interact with the particles is critical. In particular, it is important to understand the interactions of a potential vaccine with antigen presenting cells (APCs) of the immune system. CPMV was previously shown to interact with vimentin displayed on cell surfaces to mediate cell entry, but the expression of surface vimentin on APCs has not been characterized. Methodology The binding and internalization of CPMV by several populations of APCs was investigated both in vitro and in vivo by flow cytometry and fluorescence confocal microscopy. The association of the particles with mouse gastrointestinal epithelium and Peyer's patches was also examined by confocal microscopy. The expression of surface vimentin on APCs was also measured. Conclusions We found that CPMV is bound and internalized by subsets of several populations of APCs both in vitro and in vivo following intravenous, intraperitoneal, and oral administration, and also by cells isolated from the Peyer's patch following gastrointestinal delivery. Surface vimentin was also expressed on APC populations that could internalize CPMV. These experiments demonstrate that APCs capture CPMV particles in vivo, and that further tuning the interaction with surface vimentin may facilitate increased uptake by APCs and priming of antibody responses. These studies also indicate that CPMV particles likely access the systemic circulation following oral delivery via the Peyer's patch. PMID:19956734

  5. Interactions between organic anions on multiple transporters in Caco-2 cells

    DEFF Research Database (Denmark)

    Grandvuinet, Anne Sophie; Steffansen, Bente

    2011-01-01

    Caco-2 cell line may be used as an overall model to predict interactions on multiple membrane transporters in the intestine. Taurocholic acid (TCA) and estrone-3-sulfate (E1S) were used as model substrates. Possible inhibitors studied were TCA, E1S, taurolithocholic acid, fluvastatin, and glipizide......-dependent bile acid transporter and the organic solute transporter α/β, and to less extent by the organic anion transporting polypeptide 2B1. However, interactions on efflux transporters were not detected, although they were expected from the literature on the investigated compounds. Biosimulation methods may...

  6. CCL5 and CCR5 interaction promotes cell motility in human osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Shih-Wei Wang

    Full Text Available BACKGROUND: Osteosarcoma is characterized by a high malignant and metastatic potential. CCL5 (previously called RANTES was originally recognized as a product of activated T cells, and plays a crucial role in the migration and metastasis of human cancer cells. It has been reported that the effect of CCL5 is mediated via CCR receptors. However, the effect of CCL5 on migration activity and integrin expression in human osteosarcoma cells is mostly unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we found that CCL5 increased the migration and expression of αvβ3 integrin in human osteosarcoma cells. Stimulation of cells with CCL5 increased CCR5 but not CCR1 and CCR3 expression. CCR5 mAb, inhibitor, and siRNA reduced the CCL5-enhanced the migration and integrin up-regulation of osteosarcoma cells. Activations of MEK, ERK, and NF-κB pathways after CCL5 treatment were demonstrated, and CCL5-induced expression of integrin and migration activity was inhibited by the specific inhibitor and mutant of MEK, ERK, and NF-κB cascades. In addition, over-expression of CCL5 shRNA inhibited the migratory ability and integrin expression in osteosarcoma cells. CONCLUSIONS/SIGNIFICANCE: CCL5 and CCR5 interaction acts through MEK, ERK, which in turn activates NF-κB, resulting in the activations of αvβ3 integrin and contributing the migration of human osteosarcoma cells.

  7. Interactions of adriamycin and X-rays in Chinese hamster cells

    International Nuclear Information System (INIS)

    Meder, G.

    1982-01-01

    The effect of a combined ADM-and-radiation treatment of varying intervals was investigated in vitro. ADM sensitized the cells for the subsequent irradiation. This action was noticeable after 7h as a synergystic and after 2 and 3d as an additive effect of the combination treatment. Obviously, the ADM damage was inherited by the following cell generations. After 7d the sensitization of the cells could no longer be proved. From these results and those of other authors some general conclusions can be drawn. Different cell types react differently to the same kind of treatment. All forms of interaction are noticeable. Moreover, the ADM damage is obviously inherited. It must be assumed that this variability of the phenomena observed in vitro is also found in the human organism. (orig.) [de

  8. New Insights into HTLV-1 Particle Structure, Assembly, and Gag-Gag Interactions in Living Cells

    Directory of Open Access Journals (Sweden)

    Jolene L. Johnson

    2011-06-01

    Full Text Available Human T-cell leukemia virus type 1 (HTLV-1 has a reputation for being extremely difficult to study in cell culture. The challenges in propagating HTLV-1 has prevented a rigorous analysis of how these viruses replicate in cells, including the detailed steps involved in virus assembly. The details for how retrovirus particle assembly occurs are poorly understood, even for other more tractable retroviral systems. Recent studies on HTLV-1 using state-of-the-art cryo-electron microscopy and fluorescence-based biophysical approaches explored questions related to HTLV-1 particle size, Gag stoichiometry in virions, and Gag-Gag interactions in living cells. These results provided new and exciting insights into fundamental aspects of HTLV-1 particle assembly—which are distinct from those of other retroviruses, including HIV-1. The application of these and other novel biophysical approaches promise to provide exciting new insights into HTLV-1 replication.

  9. The Paracoccidioides cell wall: past and present layers towards understanding interaction with the host

    Directory of Open Access Journals (Sweden)

    Rosana ePuccia

    2011-12-01

    Full Text Available The cell wall of pathogenic fungi plays import roles in interaction with the host, so that its composition and structure may determine the course of infection. Here we present an overview of the current and past knowledge on the cell wall constituents of Paracoccidioides brasiliensis and P. lutzii. These are temperature-dependent dimorphic fungi that cause paracoccidioidomycosis, a systemic granulomatous and debilitating disease. Focus is given on cell wall carbohydrate and protein contents, their immune-stimulatory features, adhesion properties, drug target characteristics, and morphological phase specificity. We offer a journey towards the future understanding of the dynamic life that takes place in the cell wall and of the changes that it may suffer when living in the human host.

  10. Double-labelled HIV-1 particles for study of virus-cell interaction

    International Nuclear Information System (INIS)

    Lampe, Marko; Briggs, John A.G.; Endress, Thomas; Glass, Baerbel; Riegelsberger, Stefan; Kraeusslich, Hans-Georg; Lamb, Don C.; Braeuchle, Christoph; Mueller, Barbara

    2007-01-01

    Human immunodeficiency virus (HIV) delivers its genome to a host cell through fusion of the viral envelope with a cellular membrane. While the viral and cellular proteins involved in entry have been analyzed in detail, the dynamics of virus-cell fusion are largely unknown. Single virus tracing (SVT) provides the unique opportunity to visualize viral particles in real time allowing direct observation of the dynamics of this stochastic process. For this purpose, we developed a double-coloured HIV derivative carrying a green fluorescent label attached to the viral matrix protein combined with a red label fused to the viral Vpr protein designed to distinguish between complete virions and subviral particles lacking MA after membrane fusion. We present here a detailed characterization of this novel tool together with exemplary live cell imaging studies, demonstrating its suitability for real-time analyses of HIV-cell interaction

  11. Virus-cell interactions: impact on cytokine production, immune evasion and tumor growth.

    Science.gov (United States)

    Mogensen, T H; Paludan, S R

    2001-01-01

    The outcome of a viral infection ranges from benign to fatal with the clinical pictures being very diverse. This is largely due to the virus-cell interactions that occur in the infected organism. Rapidly after infection, cells initiate a first line of defense against the virus. The cells sense viruses through several mechanisms. Among these the ability to respond to accumulation of double-stranded RNA has been particularly well studied and seems to be of importance. On the other hand, the close co-existence of virus and host has allowed viruses to develop mechanisms to down-modulate the initial reaction or to exploit this proinflammatory response in its own advance. This review describes how virus infections affect cellular signal transduction and the mechanisms through which certain viruses modulate this response to dampen the immune response or prevent cell death.

  12. Comparing the epidermal growth factor interaction with four different cell lines: intriguing effects imply strong dependency of cellular context.

    Directory of Open Access Journals (Sweden)

    Hanna Björkelund

    Full Text Available The interaction of the epidermal growth factor (EGF with its receptor (EGFR is known to be complex, and the common over-expression of EGF receptor family members in a multitude of tumors makes it important to decipher this interaction and the following signaling pathways. We have investigated the affinity and kinetics of (125I-EGF binding to EGFR in four human tumor cell lines, each using four culturing conditions, in real time by use of LigandTracer®.Highly repeatable and precise measurements show that the overall apparent affinity of the (125I-EGF - EGFR interaction is greatly dependent on cell line at normal culturing conditions, ranging from K(D ≈ 200 pM on SKBR3 cells to K(D≈8 nM on A431 cells. The (125I-EGF - EGFR binding curves (irrespective of cell line have strong signs of multiple simultaneous interactions. Furthermore, for the cell lines A431 and SKOV3, gefitinib treatment increases the (125I-EGF - EGFR affinity, in particular when the cells are starved. The (125I-EGF - EGFR interaction on cell line U343 is sensitive to starvation while as on SKBR3 it is insensitive to gefitinib and starvation.The intriguing pattern of the binding characteristics proves that the cellular context is important when deciphering how EGF interacts with EGFR. From a general perspective, care is advisable when generalizing ligand-receptor interaction results across multiple cell-lines.

  13. Aberrant TAL1 activation is mediated by an interchromosomal interaction in human T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Patel, B; Kang, Y; Cui, K; Litt, M; Riberio, M S J; Deng, C; Salz, T; Casada, S; Fu, X; Qiu, Y; Zhao, K; Huang, S

    2014-02-01

    Long-range chromatin interactions control metazoan gene transcription. However, the involvement of intra- and interchromosomal interactions in development and oncogenesis remains unclear. TAL1/SCL is a critical transcription factor required for the development of all hematopoietic lineages; yet, aberrant TAL1 transcription often occurs in T-cell acute lymphoblastic leukemia (T-ALL). Here, we report that oncogenic TAL1 expression is regulated by different intra- and interchromosomal loops in normal hematopoietic and leukemic cells, respectively. These intra- and interchromosomal loops alter the cell-type-specific enhancers that interact with the TAL1 promoter. We show that human SET1 (hSET1)-mediated H3K4 methylations promote a long-range chromatin loop, which brings the +51 enhancer in close proximity to TAL1 promoter 1 in erythroid cells. The CCCTC-binding factor (CTCF) facilitates this long-range enhancer/promoter interaction of the TAL1 locus in erythroid cells while blocking the same enhancer/promoter interaction of the TAL1 locus in human T-cell leukemia. In human T-ALL, a T-cell-specific transcription factor c-Maf-mediated interchromosomal interaction brings the TAL1 promoter into close proximity with a T-cell-specific regulatory element located on chromosome 16, activating aberrant TAL1 oncogene expression. Thus, our study reveals a novel molecular mechanism involving changes in three-dimensional chromatin interactions that activate the TAL1 oncogene in human T-cell leukemia.

  14. Decellularized matrix from tumorigenic human mesenchymal stem cells promotes neovascularization with galectin-1 dependent endothelial interaction.

    Directory of Open Access Journals (Sweden)

    Jorge S Burns

    Full Text Available BACKGROUND: Acquisition of a blood supply is fundamental for extensive tumor growth. We recently described vascular heterogeneity in tumours derived from cell clones of a human mesenchymal stem cell (hMSC strain (hMSC-TERT20 immortalized by retroviral vector mediated human telomerase (hTERT gene expression. Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+ and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative qRT-PCR analysis revealed similar mRNA levels for genes encoding the angiogenic cytokines VEGF and Angiopoietin-1 in both clones. However, clone-BD11 produced a denser extracellular matrix that supported stable ex vivo capillary morphogenesis of human endothelial cells and promoted in vivo neovascularization. Proteomic characterization of the -BD11 decellularized matrix identified 50 extracellular angiogenic proteins, including galectin-1. siRNA knock down of galectin-1 expression abrogated the ex vivo interaction between decellularized -BD11 matrix and endothelial cells. More stable shRNA knock down of galectin-1 expression did not prevent -BD11 tumorigenesis, but greatly reduced endothelial migration into -BD11 cell xenografts. CONCLUSIONS: Decellularized hMSC matrix had significant angiogenic potential with at least 50 angiogenic cell surface and extracellular proteins, implicated in attracting endothelial cells, their adhesion and activation to form tubular structures. hMSC -BD11 surface galectin-1

  15. Characterization of the Giardia intestinalis secretome during interaction with human intestinal epithelial cells: The impact on host cells.

    Science.gov (United States)

    Ma'ayeh, Showgy Y; Liu, Jingyi; Peirasmaki, Dimitra; Hörnaeus, Katarina; Bergström Lind, Sara; Grabherr, Manfred; Bergquist, Jonas; Svärd, Staffan G

    2017-12-01

    Giardia intestinalis is a non-invasive protozoan parasite that causes giardiasis in humans, the most common form of parasite-induced diarrhea. Disease mechanisms are not completely defined and very few virulence factors are known. To identify putative virulence factors and elucidate mechanistic pathways leading to disease, we have used proteomics to identify the major excretory-secretory products (ESPs) when Giardia trophozoites of WB and GS isolates (assemblages A and B, respectively) interact with intestinal epithelial cells (IECs) in vitro. The main parts of the IEC and parasite secretomes are constitutively released proteins, the majority of which are associated with metabolism but several proteins are released in response to their interaction (87 and 41 WB and GS proteins, respectively, 76 and 45 human proteins in response to the respective isolates). In parasitized IECs, the secretome profile indicated effects on the cell actin cytoskeleton and the induction of immune responses whereas that of Giardia showed anti-oxidation, proteolysis (protease-associated) and induction of encystation responses. The Giardia secretome also contained immunodominant and glycosylated proteins as well as new candidate virulence factors and assemblage-specific differences were identified. A minor part of Giardia ESPs had signal peptides (29% for both isolates) and extracellular vesicles were detected in the ESPs fractions, suggesting alternative secretory pathways. Microscopic analyses showed ESPs binding to IECs and partial internalization. Parasite ESPs reduced ERK1/2 and P38 phosphorylation and NF-κB nuclear translocation. Giardia ESPs altered gene expression in IECs, with a transcriptional profile indicating recruitment of immune cells via chemokines, disturbances in glucose homeostasis, cholesterol and lipid metabolism, cell cycle and induction of apoptosis. This is the first study identifying Giardia ESPs and evaluating their effects on IECs. It highlights the importance of

  16. Characterization of the Giardia intestinalis secretome during interaction with human intestinal epithelial cells: The impact on host cells.

    Directory of Open Access Journals (Sweden)

    Showgy Y Ma'ayeh

    2017-12-01

    Full Text Available Giardia intestinalis is a non-invasive protozoan parasite that causes giardiasis in humans, the most common form of parasite-induced diarrhea. Disease mechanisms are not completely defined and very few virulence factors are known.To identify putative virulence factors and elucidate mechanistic pathways leading to disease, we have used proteomics to identify the major excretory-secretory products (ESPs when Giardia trophozoites of WB and GS isolates (assemblages A and B, respectively interact with intestinal epithelial cells (IECs in vitro.The main parts of the IEC and parasite secretomes are constitutively released proteins, the majority of which are associated with metabolism but several proteins are released in response to their interaction (87 and 41 WB and GS proteins, respectively, 76 and 45 human proteins in response to the respective isolates. In parasitized IECs, the secretome profile indicated effects on the cell actin cytoskeleton and the induction of immune responses whereas that of Giardia showed anti-oxidation, proteolysis (protease-associated and induction of encystation responses. The Giardia secretome also contained immunodominant and glycosylated proteins as well as new candidate virulence factors and assemblage-specific differences were identified. A minor part of Giardia ESPs had signal peptides (29% for both isolates and extracellular vesicles were detected in the ESPs fractions, suggesting alternative secretory pathways. Microscopic analyses showed ESPs binding to IECs and partial internalization. Parasite ESPs reduced ERK1/2 and P38 phosphorylation and NF-κB nuclear translocation. Giardia ESPs altered gene expression in IECs, with a transcriptional profile indicating recruitment of immune cells via chemokines, disturbances in glucose homeostasis, cholesterol and lipid metabolism, cell cycle and induction of apoptosis.This is the first study identifying Giardia ESPs and evaluating their effects on IECs. It highlights the

  17. Comparative surface energetic study of Matrigel®and collagen I interactions with endothelial cells.

    Science.gov (United States)

    Hill, Michael J; Sarkar, Debanjan

    2017-07-01

    Understanding of the surface energetic aspects of the spontaneously deposited proteins on biomaterial surfaces and how this influences cell adhesion and differentiation is an area of regenerative medicine that has not received adequate attention. Current controversies surround the role of the biomaterial substratum surface chemistry, the range of influence of said substratum, and the effects of different surface energy components of the protein interface. Endothelial cells (ECs) are a highly important cell type for regenerative medicine applications, such as tissue engineering, and In-vivo they interact with collagen I based stromal tissue and basement membranes producing different behavioral outcomes. The surface energetic properties of these tissue types and how they control EC behavior is not well known. In this work we studied the surface energetic properties of collagen I and Matrigel ® on various previously characterized substratum polyurethanes (PU) via contact angle analysis and examined the subsequent EC network forming characteristics. A combinatorial surface energy approach was utilized that compared Zisman's critical surface tension, Kaelble's numerical method, and van Oss-Good-Chaudhury theory (vOGCT). We found that the unique, rapid network forming characteristics of ECs on Matrigel ® could be attributed to the apolar or monopolar basic interfacial characteristics according to Zisman/Kaelble or vOGCT, respectively. We also found a lack of significant substratum influence on EC network forming characteristics for Matrigel ® but collagen I showed a distinct influence where more apolar PU substrata tended to produce higher Lewis acid character collagen I interfaces which led to a greater interaction with ECs. Collagen I interfaces on more polar PU substrata lacked Lewis acid character and led to similar EC network characteristics as Matrigel ® . We hypothesized that bipolar character of the protein film favored cell-substratum over cell-cell adhesive

  18. Silicon nanocrystals and nanodiamonds in live cells: photoluminescence characteristics, cytotoxicity and interaction with cell cytoskeleton

    Czech Academy of Sciences Publication Activity Database

    Fučíková, A.; Valenta, J.; Pelant, Ivan; Hubálek Kalbáčová, M.; Brož, A.; Rezek, Bohuslav; Kromka, Alexander; Bakaeva, Zulfiya

    2014-01-01

    Roč. 4, č. 20 (2014), s. 10334-10342 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GA202/09/2078 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : silicon nanocrystals * nanodiamonds * live cells * photoluminescence Subject RIV: BO - Biophysics Impact factor: 3.840, year: 2014

  19. Applications of snake venom components to modulate integrin activities in cell-matrix interactions

    Science.gov (United States)

    Marcinkiewicz, Cezary

    2013-01-01

    Snake venom proteins are broadly investigated in the different areas of life science. Direct interaction of these compounds with cells may involve a variety of mechanisms that result in diverse cellular responses leading to the activation or blocking of physiological functions of the cell. In this review, the snake venom components interacting with integrins will be characterized in context of their effect on cellular response. Currently, two major families of snake venom proteins are considered as integrin-binding molecules. The most attention has been devoted to the disintegrin family, which binds certain types of integrins through specific motifs recognized as a tri-peptide structurally localized on an integrin-binding loop. Other snake venom integrin-binding proteins belong to the C-type lectin family. Snake venom molecules bind to the cellular integrins resulting in a modulation of cell signaling and in consequence, the regulation of cell proliferation, migration and apoptosis. Therefore, snake venom research on the integrin-binding molecules may have significance in biomedicine and basic cell biology. PMID:23811033

  20. Structural Insights into Protein-Protein Interactions Involved in Bacterial Cell Wall Biogenesis

    Directory of Open Access Journals (Sweden)

    Federica Laddomada

    2016-04-01

    Full Text Available The bacterial cell wall is essential for survival, and proteins that participate in its biosynthesis have been the targets of antibiotic development efforts for decades. The biosynthesis of its main component, the peptidoglycan, involves the coordinated action of proteins that are involved in multi-member complexes which are essential for cell division (the “divisome” and/or cell wall elongation (the “elongasome”, in the case of rod-shaped cells. Our knowledge regarding these interactions has greatly benefitted from the visualization of different aspects of the bacterial cell wall and its cytoskeleton by cryoelectron microscopy and tomography, as well as genetic and biochemical screens that have complemented information from high resolution crystal structures of protein complexes involved in divisome or elongasome formation. This review summarizes structural and functional aspects of protein complexes involved in the cytoplasmic and membrane-related steps of peptidoglycan biosynthesis, with a particular focus on protein-protein interactions whereby disruption could lead to the development of novel antibacterial strategies.

  1. Comprehensive studies on the interactions between chitosan nanoparticles and some live cells

    International Nuclear Information System (INIS)

    Zheng Aiping; Liu Huixue; Yuan Lan; Meng Meng; Wang Jiancheng; Zhang Xuan; Zhang Qiang

    2011-01-01

    As more and more oral formulations of nanoparticles are used in clinical contexts, a comprehensive study on the mechanisms of interaction between polymer nanoparticles and live cells seems merited. Such a study was conducted and the results were compared to the polymer itself in order to demonstrate different kinds of effects that are brought into the cell by polymer and its nanoparticles, especially the effects on the biomembrane. Several techniques, including surface plasmon resonance (SPR), Fourier transformed infrared spectroscopy (FTIR), Raman spectroscopy, fluorescence polarization spectroscopy (FP), flow cytometry (FCM) with quantitative analysis, and confocal images with antibody staining were employed toward this end. The cytotoxicity in vitro was also evaluated. Chitosan (CS), a polycationic polymer, was used to prepare the nanoparticles. We demonstrate that chitosan nanoparticles (CS-NP) induce strong alterations in the distribution of membrane proteins, fluidity of membrane lipids, and general membrane structure. Furthermore, the uptake of CS-NP into Caco-2 cells was found to have a similar mechanism to that of CS molecules, but the differences in degree were noted. These results indicate that positive charge and nanoscale size were the factors that most significantly affected the interactions between the nanoparticles of polycationic polymers and live cells. However, no difference in cytotoxicity toward the Caco-2 cells was found between CS and CS-NP. This supports the idea that CS-NP is an effective and safe carrier for oral drug delivery.

  2. Aire knockdown in medullary thymic epithelial cells affects Aire protein, deregulates cell adhesion genes and decreases thymocyte interaction.

    Science.gov (United States)

    Pezzi, Nicole; Assis, Amanda Freire; Cotrim-Sousa, Larissa Cotrim; Lopes, Gabriel Sarti; Mosella, Maritza Salas; Lima, Djalma Sousa; Bombonato-Prado, Karina F; Passos, Geraldo Aleixo

    2016-09-01

    We demonstrate that even a partial reduction of Aire mRNA levels by siRNA-induced Aire knockdown (Aire KD) has important consequences to medullary thymic epithelial cells (mTECs). Aire knockdown is sufficient to reduce Aire protein levels, impair its nuclear location, and cause an imbalance in large-scale gene expression, including genes that encode cell adhesion molecules. These genes drew our attention because adhesion molecules are implicated in the process of mTEC-thymocyte adhesion, which is critical for T cell development and the establishment of central self-tolerance. Accordingly, we consider the following: 1) mTECs contribute to the elimination of self-reactive thymocytes through adhesion; 2) Adhesion molecules play a crucial role during physical contact between these cells; and 3) Aire is an important transcriptional regulator in mTECs. However, its role in controlling mTEC-thymocyte adhesion remains unclear. Because Aire controls adhesion molecule genes, we hypothesized that the disruption of its expression could influence mTEC-thymocyte interaction. To test this hypothesis, we used a murine Aire(+) mTEC cell line as a model system to reproduce mTEC-thymocyte adhesion in vitro. Transcriptome analysis of the mTEC cell line revealed that Aire KD led to the down-modulation of more than 800 genes, including those encoding for proteins involved in cell adhesion, i.e., the extracellular matrix constituent Lama1, the CAM family adhesion molecules Vcam1 and Icam4, and those that encode peripheral tissue antigens. Thymocytes co-cultured with Aire KD mTECs had a significantly reduced capacity to adhere to these cells. This finding is the first direct evidence that Aire also plays a role in controlling mTEC-thymocyte adhesion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions.

    Directory of Open Access Journals (Sweden)

    Sandra Schwarz

    2010-08-01

    Full Text Available Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs of Burkholderia thailandensis (B. thai in eukaryotic and bacterial cell interactions. Consistent with phylogenetic analyses comparing the distribution of the B. thai T6SSs with well-characterized bacterial and eukaryotic cell-targeting T6SSs, we found that T6SS-5 plays a critical role in the virulence of the organism in a murine melioidosis model, while a strain lacking the other four T6SSs remained as virulent as the wild-type. The function of T6SS-5 appeared to be specialized to the host and not related to an in vivo growth defect, as ΔT6SS-5 was fully virulent in mice lacking MyD88. Next we probed the role of the five systems in interbacterial interactions. From a group of 31 diverse bacteria, we identified several organisms that competed less effectively against wild-type B. thai than a strain lacking T6SS-1 function. Inactivation of T6SS-1 renders B. thai greatly more susceptible to cell contact-induced stasis by Pseudomonas putida, Pseudomonas fluorescens and Serratia proteamaculans-leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking T6SS-1 were rapidly displaced in mixed biofilms with P. putida, whereas wild-type cells persisted and overran the competitor. Our data show that T6SSs within a single organism can have distinct functions in eukaryotic versus bacterial cell interactions. These systems are likely to be a decisive factor in the survival of bacterial cells of one species in intimate association with those of another, such as in polymicrobial communities present both in the environment and in many infections.

  4. The effect of alpha-thalassemia on cord blood red cell indices and interaction with sickle cell gene

    International Nuclear Information System (INIS)

    Quadri, Mohammad I.; Islam, Sherief I.A.M.; Nasserullah, Z.

    2000-01-01

    Alpha-thalassemia is known to be prevalent in the Eastern region of Saudi Arabia. There are no large scale reports regarding the effect of alpha-thalassemia on red cell indices of cord blood from Saudi Arabia. Similarly, there are reports regarding the interaction of alpha-thalassemia and the sickle-cell gene in relation to red cell indices in cord blood. To address these issues, we undertook a study on neonatal cold blood samples. In a prospective study, cord blood samples from 504 neonates from the Qatif area of the Eastern Province of Saudi Arabia were analyzed for complete blood counts (CBC) and cellulose acetate Hb electrophoresis. Hb S was confirmed by citrate agar Hb electrophoresis. There were 243 case samples with normal Hb electrophoresis (Hb A 27.2+- 7% and Hb F 72.6+-7.7%). Their mean Hb (g/dL), RBC (x10/L), Hct (%), MCV (pg), MCHC (g/dL), RDW-SD (fl) and RDW-CV (%) were 15.05+-1.6, 4.5+-0.5, 47.4+-5.3, 106+-8, 33.6+-2.3, 31.8+-1.7, 69.2+-9.5 and 17.9+-1.7, respectively. There were 136 cases with alpha-thalassemia trait (alphaTT), 57 cases with sickle cell trait (SCT) and 50 cases of sickle cell trait with alplha-thalassemia trait (SCT/ alphaTT). There were ten cases of Hb H disease (6 definite), including one with sickle cell disease (SCD) and two with SCT, Hb Bart's 23.9%-43.6%; four probable with Hb Bart's 10.9%-16.1% and one with SCT. The effect on red cell parameters in Hb H disease were most pronounced. In addition, there seven cases of SCD, four of whom had coexistent alpha-thalassemia trait (SCD/alphaTT). The prevalence of alpha-thalassemia in this cohort of Saudi population was 39.99%. Hb H disease appeared as common as SCD. Sickle cell gene was seen in 23.4% of neonatal samples. Apha-thalassemia gene significantly reduces MCH, MCV, RDW-SD, Hct, Hb and increase RBC count in both normal or sickle cell trait neonates. Generally, the variation of red cell parameters is directly proportional to the amount of Hb Bart's in the cord blood. Sickle cell

  5. The thymic orchestration involving Aire, miRNAs and cell-cell interactions during the induction of central tolerance

    Directory of Open Access Journals (Sweden)

    Geraldo eAleixo Passos

    2015-07-01

    Full Text Available Developing thymocytes interact sequentially with two distinct structures within the thymus: the cortex and medulla. Surviving single-positive and double-positive thymocytes from the cortex migrate into the medulla, where they interact with medullary thymic epithelial cells (mTECs. These cells ectopically express a vast set of peripheral tissue antigens (PTAs, a property termed promiscuous gene expression that is associated with the presentation of PTAs by mTECs to thymocytes. Thymocyte clones that have a high affinity for PTAs are eliminated by apoptosis in a process termed negative selection, which is essential for tolerance induction. The Aire gene is an important factor that controls the expression of a large set of PTAs. In addition to PTAs, Aire also controls the expression of miRNAs in mTECs. These miRNAs are important in the organization of the thymic architecture and act as posttranscriptional controllers of PTAs. Herein, we discuss recent discoveries and highlight open questions regarding the m