WorldWideScience

Sample records for cell inactivation rates

  1. GCR Transport in the Brain: Assessment of Self-Shielding, Columnar Damage, and Nuclear Reactions on Cell Inactivation Rates

    Science.gov (United States)

    Shavers, M. R.; Atwell, W.; Cucinotta, F. A.; Badhwar, G. D. (Technical Monitor)

    1999-01-01

    Radiation shield design is driven by the need to limit radiation risks while optimizing risk reduction with launch mass/expense penalties. Both limitation and optimization objectives require the development of accurate and complete means for evaluating the effectiveness of various shield materials and body-self shielding. For galactic cosmic rays (GCR), biophysical response models indicate that track structure effects lead to substantially different assessments of shielding effectiveness relative to assessments based on LET-dependent quality factors. Methods for assessing risk to the central nervous system (CNS) from heavy ions are poorly understood at this time. High-energy and charge (HZE) ion can produce tissue events resulting in damage to clusters of cells in a columnar fashion, especially for stopping heavy ions. Grahn (1973) and Todd (1986) have discussed a microlesion concept or model of stochastic tissue events in analyzing damage from HZE's. Some tissues, including the CNS, maybe sensitive to microlesion's or stochastic tissue events in a manner not illuminated by either conventional dosimetry or fluence-based risk factors. HZE ions may also produce important lateral damage to adjacent cells. Fluences of high-energy proton and alpha particles in the GCR are many times higher than HZE ions. Behind spacecraft and body self-shielding the ratio of protons, alpha particles, and neutrons to HZE ions increases several-fold from free-space values. Models of GCR damage behind shielding have placed large concern on the role of target fragments produced from tissue atoms. The self-shielding of the brain reduces the number of heavy ions reaching the interior regions by a large amount and the remaining light particle environment (protons, neutrons, deuterons. and alpha particles) may be the greatest concern. Tracks of high-energy proton produce nuclear reactions in tissue, which can deposit doses of more than 1 Gv within 5 - 10 cell layers. Information on rates of

  2. X Inactivation and Progenitor Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ruben Agrelo

    2011-04-01

    Full Text Available In mammals, silencing of one of the two X chromosomes is necessary to achieve dosage compensation. The 17 kb non-coding RNA called Xist triggers X inactivation. Gene silencing by Xist can only be achieved in certain contexts such as in cells of the early embryo and in certain hematopoietic progenitors where silencing factors are present. Moreover, these epigenetic contexts are maintained in cancer progenitors in which SATB1 has been identified as a factor related to Xist-mediated chromosome silencing.

  3. Pathogen Inactivation of red cells: challenges and opportunities

    Institute of Scientific and Technical Information of China (English)

    Stephen J. Wagner

    2006-01-01

    @@ Introduction Virus inactivation methods for blood have been explored as a means to further reduce the risk from tested agents and to decrease the risk of emerging or variant agents for whom no deferral or effective screening methods are available. Although inactivation methods promise to reduce transfusion-related infectious disease risk, these methods are not perfect. Most techniques for pathogen reduction will not kill bacterial spores, or inactivate bacterial endotoxin, prion protein, or certain non-enveloped viruses whose tightly packed capsid proteins prevent access of the virucidal agent to its nucleic acid target. In addition,various inactivation methods have been known to decrease blood cell yield, affect blood cell recovery or survival, and may pose risk to recipients or blood center workers. My presentation today will review two methods for pathogen inactivation of red cells.

  4. High Heating Rates Affect Greatly the Inactivation Rate of Escherichia coli

    Science.gov (United States)

    Huertas, Juan-Pablo; Aznar, Arantxa; Esnoz, Arturo; Fernández, Pablo S.; Iguaz, Asunción; Periago, Paula M.; Palop, Alfredo

    2016-01-01

    Heat resistance of microorganisms can be affected by different influencing factors. Although, the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20°C/min but the impact of much higher heating rates is unclear. The aim of this research was to explore the effect of different heating rates, such as those currently achieved in the heat exchangers used in the food industry, on the heat resistance of Escherichia coli. A pilot plant tubular heat exchanger and a thermoresistometer Mastia were used for this purpose. Results showed that fast heating rates had a deep impact on the thermal resistance of E. coli. Heating rates between 20 and 50°C/min were achieved in the heat exchanger, which were much slower than those around 20°C/s achieved in the thermoresistometer. In all cases, these high heating rates led to higher inactivation than expected: in the heat exchanger, for all the experiments performed, when the observed inactivation had reached about seven log cycles, the predictions estimated about 1 log cycle of inactivation; in the thermoresistometer these differences between observed and predicted values were even more than 10 times higher, from 4.07 log cycles observed to 0.34 predicted at a flow rate of 70 mL/min and a maximum heating rate of 14.7°C/s. A quantification of the impact of the heating rates on the level of inactivation achieved was established. These results point out the important effect that the heating rate has on the thermal resistance of E. coli, with high heating rates resulting in an additional sensitization to heat and therefore an effective food safety strategy in terms of food processing.

  5. High Heating Rates Affect Greatly the Inactivation Rate of Escherichia coli.

    Science.gov (United States)

    Huertas, Juan-Pablo; Aznar, Arantxa; Esnoz, Arturo; Fernández, Pablo S; Iguaz, Asunción; Periago, Paula M; Palop, Alfredo

    2016-01-01

    Heat resistance of microorganisms can be affected by different influencing factors. Although, the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20°C/min but the impact of much higher heating rates is unclear. The aim of this research was to explore the effect of different heating rates, such as those currently achieved in the heat exchangers used in the food industry, on the heat resistance of Escherichia coli. A pilot plant tubular heat exchanger and a thermoresistometer Mastia were used for this purpose. Results showed that fast heating rates had a deep impact on the thermal resistance of E. coli. Heating rates between 20 and 50°C/min were achieved in the heat exchanger, which were much slower than those around 20°C/s achieved in the thermoresistometer. In all cases, these high heating rates led to higher inactivation than expected: in the heat exchanger, for all the experiments performed, when the observed inactivation had reached about seven log cycles, the predictions estimated about 1 log cycle of inactivation; in the thermoresistometer these differences between observed and predicted values were even more than 10 times higher, from 4.07 log cycles observed to 0.34 predicted at a flow rate of 70 mL/min and a maximum heating rate of 14.7°C/s. A quantification of the impact of the heating rates on the level of inactivation achieved was established. These results point out the important effect that the heating rate has on the thermal resistance of E. coli, with high heating rates resulting in an additional sensitization to heat and therefore an effective food safety strategy in terms of food processing. PMID:27563300

  6. High Heating Rates Affect Greatly the Inactivation Rate of Escherichia coli

    Science.gov (United States)

    Huertas, Juan-Pablo; Aznar, Arantxa; Esnoz, Arturo; Fernández, Pablo S.; Iguaz, Asunción; Periago, Paula M.; Palop, Alfredo

    2016-01-01

    Heat resistance of microorganisms can be affected by different influencing factors. Although, the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20°C/min but the impact of much higher heating rates is unclear. The aim of this research was to explore the effect of different heating rates, such as those currently achieved in the heat exchangers used in the food industry, on the heat resistance of Escherichia coli. A pilot plant tubular heat exchanger and a thermoresistometer Mastia were used for this purpose. Results showed that fast heating rates had a deep impact on the thermal resistance of E. coli. Heating rates between 20 and 50°C/min were achieved in the heat exchanger, which were much slower than those around 20°C/s achieved in the thermoresistometer. In all cases, these high heating rates led to higher inactivation than expected: in the heat exchanger, for all the experiments performed, when the observed inactivation had reached about seven log cycles, the predictions estimated about 1 log cycle of inactivation; in the thermoresistometer these differences between observed and predicted values were even more than 10 times higher, from 4.07 log cycles observed to 0.34 predicted at a flow rate of 70 mL/min and a maximum heating rate of 14.7°C/s. A quantification of the impact of the heating rates on the level of inactivation achieved was established. These results point out the important effect that the heating rate has on the thermal resistance of E. coli, with high heating rates resulting in an additional sensitization to heat and therefore an effective food safety strategy in terms of food processing. PMID:27563300

  7. Determining the Solar Inactivation Rate of BK Polyomavirus by Molecular Beacon.

    Science.gov (United States)

    Reano, Dane C; Yates, Marylynn V

    2016-07-01

    The application of molecular beacons (MB) that bind to precise sequences of mRNA provides a near-universal approach in detecting evidence of viral replication. Here, we demonstrate the detection of BK Polyomavirus (BKPyV), an emerging indicator of microbiological water quality, by a quantum dot-based MB. The MB allowed us to rapidly characterize the inactivation rate of BKPyV following exposure to a solar simulator (kobs = 0.578 ± 0.024 h(-1), R(2) = 0.92). Results were validated through a traditional cell-culture assay with immunofluorescence detection (kobs = 0.568 ± 0.011 h(-1), R(2) = 0.97), which exhibited a strong correlation to MB data (R(2) = 0.93). Obtaining solar inactivation rates for BKPyV demonstrates the first use of a MB in characterizing a microbiological inactivation profile and helps assess the appropriateness of adopting BKPyV as an indicator organism for water quality. PMID:27269231

  8. Inactivation of cell-associated fructosyltransferase in Streptococcus salivarius.

    Science.gov (United States)

    Jacques, N A; Wittenberger, C L

    1981-01-01

    In stationary phase, 95% of the fructosyltransferase (FTase) activity of Streptococcus salivarius ATCC 25975 was found associated with the cells. Within the first 15 min after inoculation into fresh medium, the specific activity of cell-associated FTase decreased by 92% of its initial value. After this period of initial loss, the enzyme was synthesized during exponential growth until a maximum level equivalent to that present before inoculation was obtained. The inactivation of FTase was also demonstrated in a nongrowing system. Washed cell suspensions incubated at 37 degrees C in 200 mM potassium phosphate buffer (pH 6.5) containing 10 microM Cu2+ lost 80 to 95% of their FRase activity after 30 min. This loss could be prevented by the addition of histidine, cysteine, or Ca2+ to the suspension mixture. A factor(s) essential for the inactivation of cell-associated FTase could itself be preferentially inactivated by heating cells at 40 degrees C for periods of up to 3 h, or by storage of cells at 0 to 4 degrees C for several days in a low-ionic-strength, low-pH, potassium phosphate buffer. Treatment of cells with the N-acetylmuramidase enzyme M-1, in the presence of 0.5 M melezitose, resulted in the release of FTase from the cell. The released enzyme was recovered in the supernatant fraction after centrifugation at 160,000 x g for 90 min. Comparison of solubilized active and inactivated FTase preparations by polyacrylamide gel electrophoresis demonstrated that the inactivation of cell-associated FTase activity was associated with the loss of specific protein bands. PMID:7309680

  9. Comparison between conformational change and inactivation rates of aminoacylase during denaturation in urea solutions

    Institute of Scientific and Technical Information of China (English)

    王洪睿; 王希成; 张彤; 周海梦

    1995-01-01

    The kinetic method of the substrate reaction in the presence of mactivator previously described by Tsou has been applied to the determination of inactivation rates of aminoacylase during denaturation in urea solutions. The protective effect of substrate on the inactivation of aminoacylase by urea has been investigated. Simultaneously, the comparison between conformational change and inactivation rates of enzyme in the urea solutions of different concentrations has been studied. Results obtained show that the inactivation rate constants of the enzyme are larger than the rate constants of conformational changes. The present results show that the active site of metal enzyme-aminoacylase is also located in a limited and flexible region of the molecule that is more sensitive to denaturants than the enzyme as a whole.

  10. Cell inactivation by diverse ions along their tracks

    CERN Document Server

    Kundrát, P; Hromcikova, H; Kundrat, Pavel; Lokajicek, Milos; Hromcikova, Hana

    2004-01-01

    Irradiation of cell monolayers by monoenergetic ions has made it possible to establish survival curves at individual values of linear energy transfer. The two-step model of radiobiological mechanism proposed recently by Judas and Lokajicek (Judas L., Lokajicek M., 2001: Cell inactivation by ionizing particles and the shapes of survival curves. J. Theor. Biol. 210 (1), 15-21., doi:10.1006/jtbi.2001.2283) has then enabled to show that some significant deviations from the generally used linear-quadratic model should exist at higher values of linear energy transfer, which has been also demonstrated experimentally. However, the new model has been expressed in the form being applicable rightfully to low-dose parts of survival curves only. It has been now reformulated to be applicable in analyses of whole survival curves. Inactivation probabilities after different numbers of particles traversing cell nuclei (chromosomal systems) may be then derived from experimental data. Analyses of published data obtained in irrad...

  11. Voltage dependence of rate functions for Na+ channel inactivation within a membrane

    CERN Document Server

    Vaccaro, Samuel R

    2015-01-01

    The inactivation of a Na+ channel occurs when the activation of the charged S4 segment of domain IV, with rate functions $\\alpha_{i}$ and $\\beta_{i}$, is followed by the binding of an intracellular hydrophobic motif which blocks conduction through the ion pore, with rate functions $\\gamma_{i}$ and $\\delta_{i}$. During a voltage clamp of the Na+ channel, the solution of the master equation for inactivation reduces to the relaxation of a rate equation when the binding of the inactivation motif is rate limiting ($\\alpha_{i} \\gg \\gamma_{i}$ and $\\beta_{i} \\gg \\delta_{i}$). The voltage dependence of the derived forward rate function for Na+ channel inactivation has an exponential dependence on the membrane potential for small depolarizations and approaches a constant value for larger depolarizations, whereas the voltage dependence of the backward rate function is exponential, and each rate has a similar form to the Hodgkin-Huxley empirical rate functions for Na+ channel inactivation in the squid axon.

  12. Inactivation cross section of yeast cells irradiated by heavy ions

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Inactivation cross sections for haploid yeast cell strain211a have been calculated as 1-hit detector based on the tracktheory in an extended target mode and a numerical calculation ofradial dose distribution. In the calculations, characteristic dose D0 is a fitted parameter which is obtained to be 42 Gy, and "radius"of hypothetical target a0 is chosen to be 0.5μm which is about the sizeof nucleus of yeast cells for obtaining an overall agreement withexperimental cross sections. The results of the calculations are inagreement with the experimental data in high LET (linear energy transfer) including the thindown region.

  13. Atmospheric-pressure air microplasma jets in aqueous media for the inactivation of Pseudomonas fluorescens cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xianhui; Yang, Si-ze [Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Liu, Dongping [Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Song, Ying [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Sun, Yue [School of Physics, Changchun University of Science and Technology, Changchun 130022 (China)

    2013-05-15

    The hollow fiber-based cold air microplasma jet array running at atmospheric pressure has been designed to inactivate Pseudomonas fluorescens (P. fluorescens) cells in vitro in aqueous media. The influences of electrode configurations, air flow rate, and applied voltage on the discharge characteristics of the single microplasma jet operating in aqueous media are presented, and the bactericidal efficiency of the hollow fibers-based and large-volume microplasma jet array is reported. Optical emission spectroscopy is utilized to identify excited species during the antibacterial testing of plasma in solutions. These well-aligned and rather stable air microplasma jets containing a variety of short-lived species, such as OH and O radicals and charged particles, are in direct contact with aqueous media and are very effective in killing P. fluorescens cells in aqueous media. This design shows its potential application for atmospheric pressure air plasma inactivation of bacteria cells in aqueous media.

  14. Atmospheric-pressure air microplasma jets in aqueous media for the inactivation of Pseudomonas fluorescens cells

    Science.gov (United States)

    Zhang, Xianhui; Liu, Dongping; Song, Ying; Sun, Yue; Yang, Si-ze

    2013-05-01

    The hollow fiber-based cold air microplasma jet array running at atmospheric pressure has been designed to inactivate Pseudomonas fluorescens (P. fluorescens) cells in vitro in aqueous media. The influences of electrode configurations, air flow rate, and applied voltage on the discharge characteristics of the single microplasma jet operating in aqueous media are presented, and the bactericidal efficiency of the hollow fibers-based and large-volume microplasma jet array is reported. Optical emission spectroscopy is utilized to identify excited species during the antibacterial testing of plasma in solutions. These well-aligned and rather stable air microplasma jets containing a variety of short-lived species, such as OH and O radicals and charged particles, are in direct contact with aqueous media and are very effective in killing P. fluorescens cells in aqueous media. This design shows its potential application for atmospheric pressure air plasma inactivation of bacteria cells in aqueous media.

  15. Thrombin-specific inactivation of endothelial cell derived plasminogen activator

    International Nuclear Information System (INIS)

    Although thrombin (T) has diverse functions in the overall hemostatic mechanism, relatively little is known about its direct effect on components of the fibrinolytic enzyme system. The authors have investigated the interaction of T with plasminogen activators (PA) derived from bovine aortic endothelial cells (EC) in culture (2-5th passage, preconfluent monolayers). Varying concentrations of purified bovine or human thrombin were added to EC-conditioned media (CM). CM + T mixtures were assayed at various times for PA activity using purified plasminogen and a sensitive 125I-fibrinogenolytic or caseinolytic assay. T (5 nM), but not plasmin or trypsin at equivalent concentrations, resulted in a time-dependent inhibition of the PA activity in CM. T had no effect on the PA activity of urokinase, streptokinase or preformed plasmin. The ability of T to inactivate the EC-derived PA was abolished by prior treatment of T with active site-directed reagents. SDS-PAGE and zymography with copolymerized fibrinogen and plasminogen revealed further specificity in that only one of the multiple-molecular weight forms of PA present in EC-CM was inactivated by T. The authors conclude that in a highly specific fashion, T inactivates the predominant PA present in EC-CM by limited proteolysis. Thus, another potentially important function of T is suggested which may have particular significance in the temporal regulation of coagulation and fibrinolysis at the blood-endothelium interface

  16. Influence of temperature and drying rate on the dehydration inactivation of Lactobacillus plantarum.

    NARCIS (Netherlands)

    Linders, L.J.M.; Meerdink, G.; Riet, van 't K.

    1996-01-01

    The objective of this work was to study the influence of drying temperature and drying rate on the dehydration inactivation of Lactobacillus plantarum. Drying methods with different temperatures and different characteristic drying times were used. Residual activities of 70-85% were realized after co

  17. Heavy ion effects on mammalian cells: Inactivation measurements with different cell lines

    International Nuclear Information System (INIS)

    In track segment experiments, the inactivation of different mammalian cells by heavy charged particles between helium and uranium in the energy range between 1 and 1000 MeV/u has been measured at the heavy ion accelerator Unilac, Darmstadt, the Tandem Van de Graaf, Heidelberg and the Bevalac, Berkeley. The inactivation cross sections calculated from the final slope of the dose effect curves are given as a function of the particle energy and the LET. (orig.)

  18. Inactivation cross sectiopn of yeast cells irradiated by heavy ions

    Institute of Scientific and Technical Information of China (English)

    ZHANGChunxiang; LUODaling

    1999-01-01

    Inactivation cross sections for haploid yeast cell strain 211a have been calculated as 1-ht detector based on the track theory in an extended target mode and a numerical calculation of radial dose distribution.In the calculations,characteristic dose D0 is a fitted parameter which is obtained to be 42Gy,and “radius” of hypothetical target a0 is chosen to be 0.5μm which is about the size of nucleus of yeast cells for obtaining an overall agreement with experimental cross sections.The results of the calculations are in agreement with the experimental data in igh LEF(linear energy transfer)including the thindown region.

  19. Estimation of radiation cell inactivation probability model parameters by experimental survival curves

    International Nuclear Information System (INIS)

    A simple method of estimation of probability irradiated cells inactivation model parameters ''a'' and ''b'' is described. The examples of this estimation are considered for bacteria, yeast and mammalian cells

  20. Sodium channel gating in clonal pituitary cells. The inactivation step is not voltage dependent

    OpenAIRE

    1989-01-01

    We have determined the time course of Na channel inactivation in clonal pituitary (GH3) cells by comparing records before and after the enzymatic removal of inactivation. The cells were subjected to whole- cell patch clamp, with papain included in the internal medium. Inactivation was slowly removed over the course of 10 min, making it possible to obtain control records before the enzyme acted. Papain caused a large (4-100x) increase in current magnitude for small depolarizations (near -40 mV...

  1. Perfluorooctanesulfonate Mediates Renal Tubular Cell Apoptosis through PPARgamma Inactivation.

    Directory of Open Access Journals (Sweden)

    Li-Li Wen

    Full Text Available Perfluorinated chemicals (PFCs are ubiquitously distributed in the environments including stainless pan-coating, raincoat, fire extinguisher, and semiconductor products. The PPAR family has been shown to contribute to the toxic effects of PFCs in thymus, immune and excretory systems. Herein, we demonstrated that perfluorooctanesulfonate (PFOS caused cell apoptosis through increasing ratio of Bcl-xS/xL, cytosolic cytochrome C, and caspase 3 activation in renal tubular cells (RTCs. In addition, PFOS increased transcription of inflammatory cytokines (i.e., TNFα, ICAM1, and MCP1 by NFκB activation. Conversely, PFOS reduced the mRNA levels of antioxidative enzymes, such as glutathione peroxidase, catalase, and superoxide dismutase, as a result of reduced PPARγ transactivational activity by using reporter and chromatin immuoprecipitation (ChIP assays. PFOS reduced the protein interaction between PPARγ and PPARγ coactivator-1 alpha (PGC1α by PPARγ deacetylation through Sirt1 upregulation, of which the binding of PPARγ and PGC1α to a peroxisome proliferator response element (PPRE in the promoter regions of these antioxidative enzymes was alleviated in the ChIP assay. Furthermore, Sirt1 also deacetylated p53 and then increased the binding of p53 to Bax, resulting in increased cytosolic cytochrome C. The effect of PPARγ inactivation by PFOS was validated using the PPARγ antagonist GW9662, whereas the adverse effects of PFOS were prevented by PPARγ overexpression and activators, rosiglitozone and L-carnitine, in RTCs. The in vitro finding of protective effect of L-carnitine was substantiated in vivo using Balb/c mice model subjected to PFOS challenge. Altogether, we provide in vivo and in vitro evidence for the protective mechanism of L-carnitine in eliminating PFOS-mediated renal injury, at least partially, through PPARγ activation.

  2. Use of integrated cell culture-PCR to evaluate the effectiveness of poliovirus inactivation by chlorine.

    Science.gov (United States)

    Blackmer, F; Reynolds, K A; Gerba, C P; Pepper, I L

    2000-05-01

    Current standards, based on cell culture assay, indicate that poliovirus is inactivated by 0.5 mg of free chlorine per liter after 2 min; however, integrated cell culture-PCR detected viruses for up to 8 min of exposure to the same chlorine concentration, requiring 10 min for complete inactivation. Thus, the contact time for chlorine disinfection of poliovirus is up to five times greater than previously thought.

  3. Inactivation kinetics and pharmacology distinguish two calcium currents in mouse pancreatic B-cells

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, W.F.; Satin, L.S.; Cook, D.L. (Univ. of Washington School of Medicine, Seattle (USA))

    1991-02-01

    Voltage-dependent calcium currents were studied in cultured adult mouse pancreatic B-cells using the whole-cell voltage-clamp technique. When calcium currents were elicited with 10-sec depolarizing command pulses, the time course of inactivation was well fit by the sum of two exponentials. The more rapidly-inactivating component had a time constant of 75 +/- 5 msec at 0 mV and displayed both calcium influx- and voltage-dependent inactivation, while the more slowly-inactivating component had a time constant of 2750 +/- 280 msec at 0 mV and inactivated primarily via voltage. The fast component was subject to greater steady-state inactivation at holding potentials between -100 and -40 mV and activated at a lower voltage threshold. This component was also significantly reduced by nimodipine (0.5 microM) when a holding potential of -100 mV was used, whereas the slow component was unaffected. In contrast, the slow component was greatly increased by replacing external calcium with barium, while the fast component was unchanged. Cadmium (1-10 microM) displayed a voltage-dependent block of calcium currents consistent with a greater effect on the high-threshold, more-slowly inactivating component. Taken together, the data suggest that cultured mouse B-cells, as with other insulin-secreting cells we have studied, possess at least two distinct calcium currents. The physiological significance of two calcium currents having distinct kinetic and steady-state inactivation characteristics for B-cell burst firing and insulin secretion is discussed.

  4. Living with an imperfect cell wall: compensation of femAB inactivation in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Bierbaum Gabriele

    2007-09-01

    Full Text Available Abstract Background Synthesis of the Staphylococcus aureus peptidoglycan pentaglycine interpeptide bridge is catalyzed by the nonribosomal peptidyl transferases FemX, FemA and FemB. Inactivation of the femAB operon reduces the interpeptide to a monoglycine, leading to a poorly crosslinked peptidoglycan. femAB mutants show a reduced growth rate and are hypersusceptible to virtually all antibiotics, including methicillin, making FemAB a potential target to restore β-lactam susceptibility in methicillin-resistant S. aureus (MRSA. Cis-complementation with wild type femAB only restores synthesis of the pentaglycine interpeptide and methicillin resistance, but the growth rate remains low. This study characterizes the adaptations that ensured survival of the cells after femAB inactivation. Results In addition to slow growth, the cis-complemented femAB mutant showed temperature sensitivity and a higher methicillin resistance than the wild type. Transcriptional profiling paired with reporter metabolite analysis revealed multiple changes in the global transcriptome. A number of transporters for sugars, glycerol, and glycine betaine, some of which could serve as osmoprotectants, were upregulated. Striking differences were found in the transcription of several genes involved in nitrogen metabolism and the arginine-deiminase pathway, an alternative for ATP production. In addition, microarray data indicated enhanced expression of virulence factors that correlated with premature expression of the global regulators sae, sarA, and agr. Conclusion Survival under conditions preventing normal cell wall formation triggered complex adaptations that incurred a fitness cost, showing the remarkable flexibility of S. aureus to circumvent cell wall damage. Potential FemAB inhibitors would have to be used in combination with other antibiotics to prevent selection of resistant survivors.

  5. Syringotoxin pore formation and inactivation in human red blood cell and model bilayer lipid membranes.

    Science.gov (United States)

    Szabó, Zsófia; Gróf, Pál; Schagina, Ludmila V; Gurnev, Philip A; Takemoto, Jon Y; Mátyus, Edit; Blaskó, Katalin

    2002-12-23

    The effect of syringotoxin (ST), a member of the cyclic lipodepsipeptides family (CLPs) produced by Pseudomonas syringae pv. syringae on the membrane permeability of human red blood cells (RBCs) and model bilayer lipid membranes (BLMs) was studied and compared to that of two recently investigated CLPs, syringomycin E (SRE) and syringopeptin 22A (SP22A) [Biochim. Biophys. Acta 1466 (2000) 79 and Bioelectrochemistry 52 (2000) 161]. The permeability-increasing effect of ST on RBCs was the least among the three CLPs. A time-dependent ST pore inactivation was observed on RBCs at 20 and 37 degrees C but not at 8 degrees C. From the kinetic model worked out parameters as permeability coefficient of RBC membrane for 86Rb(+) and pores mean lifetime were calculated. A shorter pores mean lifetime was calculated at 37 degrees C then at 20 degrees C, which gave us an explanation for the unusual slower rate of tracer efflux measured at 37 degrees C then that at 20 degrees C. The results obtained on BLM showed that the pore inactivation was due to a decrease in the number of pores but not to a change of their dwell time or conductance.

  6. Detailed analysis of the cell-inactivation mechanism by accelerated protons and light ions

    CERN Document Server

    Kundrát, P

    2006-01-01

    Published survival data for V79 cells irradiated by monoenergetic protons, helium-3, carbon, and oxygen ions and for CHO cells irradiated by carbon ions have been analyzed using the probabilistic two-stage model of cell inactivation. Three different classes of DNA damages formed by traversing particles have been distinguished, namely severe single-track damages which might lead to cell inactivation directly, less severe damages where cell inactivation is caused by their combinations, and damages of negligible severity that can be repaired easily. Probabilities of single ions to form these damages have been assessed in dependence on their linear energy transfer (LET) values. Damage induction probabilities increase with atomic number and LET. While combined damages play crucial role at lower LET values, single-track damages dominate in high-LET regions. The yields of single-track lethal damages for protons have been compared with the Monte Carlo estimates of complex DNA lesions, indicating that lethal events co...

  7. Transient inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle.

    Science.gov (United States)

    Pajcini, Kostandin V; Corbel, Stephane Y; Sage, Julien; Pomerantz, Jason H; Blau, Helen M

    2010-08-01

    An outstanding biological question is why tissue regeneration in mammals is limited, whereas urodele amphibians and teleost fish regenerate major structures, largely by cell cycle reentry. Upon inactivation of Rb, proliferation of postmitotic urodele skeletal muscle is induced, whereas in mammalian muscle this mechanism does not exist. We postulated that a tumor suppressor present in mammals but absent in regenerative vertebrates, the Ink4a product ARF (alternative reading frame), is a regeneration suppressor. Concomitant inactivation of Arf and Rb led to mammalian muscle cell cycle reentry, loss of differentiation properties, and upregulation of cytokinetic machinery. Single postmitotic myocytes were isolated by laser micro-dissection-catapulting, and transient suppression of Arf and Rb yielded myoblast colonies that retained the ability to differentiate and fuse into myofibers upon transplantation in vivo. These results show that differentiation of mammalian cells is reversed by inactivation of Arf and Rb and support the hypothesis that Arf evolved at the expense of regeneration. PMID:20682446

  8. Control of insulin receptor level in 3T3 cells: effect of insulin-induced down-regulation and dexamethasone-induced up-regulation on rate of receptor inactivation.

    OpenAIRE

    Knutson, V P; Ronnett, G V; Lane, M D

    1982-01-01

    Chronic exposure of 3T3 mouse fibroblasts to insulin or to the glucocorticoid dexamethasone induces down-regulation and up-regulation, respectively, of cell-surface and total cellular insulin binding capacity. Both processes are reversed upon withdrawal of the inducer. Scatchard analysis of insulin binding for receptors in the down- and up-regulated states indicates that the changes in binding capacity result primarily from alterations in insulin receptor level. That these alterations in tota...

  9. Cell-Type Specific Inactivation of Hippocampal CA1 Disrupts Location-Dependent Object Recognition in the Mouse

    Science.gov (United States)

    Haettig, Jakob; Sun, Yanjun; Wood, Marcelo A.; Xu, Xiangmin

    2013-01-01

    The allatostatin receptor (AlstR)/ligand inactivation system enables potent regulation of neuronal circuit activity. To examine how different cell types participate in memory formation, we have used this system through Cre-directed, cell-type specific expression in mouse hippocampal CA1 in vivo and examined functional effects of inactivation of…

  10. Influence of high-pressure-low-temperature treatment on the inactivation of Bacillus subtilis cells.

    NARCIS (Netherlands)

    T. Shen; G. Urrutia Benet; S. Brul; D. Knorr

    2005-01-01

    High pressure inactivation processes, especially at subzero temperatures, were performed on Bacillus subtilis vegetative cells at various pressure, temperature and time combinations. Whilst atmospheric pressure, lowering the temperature for various periods to as low as 45 -C was found to have minor

  11. Epigenetic inactivation and aberrant transcription of CSMD1 in squamous cell carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Scholnick Steven B

    2005-09-01

    Full Text Available Abstract Background The p23.2 region of human chromosome 8 is frequently deleted in several types of epithelial cancer and those deletions appear to be associated with poor prognosis. Cub and Sushi Multiple Domains 1 (CSMD1 was positionally cloned as a candidate for the 8p23 suppressor but point mutations in this gene are rare relative to the frequency of allelic loss. In an effort to identify alternative mechanisms of inactivation, we have characterized CSMD1 expression and epigenetic modifications in head and neck squamous cell carcinoma cell lines. Results Only one of the 20 cell lines examined appears to express a structurally normal CSMD1 transcript. The rest express transcripts which either lack internal exons, terminate abnormally or initiate at cryptic promoters. None of these truncated transcripts is predicted to encode a functional CSMD1 protein. Cell lines that express little or no CSMD1 RNA exhibit DNA methylation of a specific region of the CpG island surrounding CSMD1's first exon. Conclusion Correlating methylation patterns and expression suggests that it is modification of the genomic DNA preceding the first exon that is associated with gene silencing and that methylation of CpG dinucleotides further 3' does not contribute to inactivation of the gene. Taken together, the cell line data suggest that epigenetic silencing and aberrant splicing rather than point mutations may be contributing to the reduction in CSMD1 expression in squamous cancers. These mechanisms can now serve as a focus for further analysis of primary squamous cancers.

  12. Recombinant fusion protein of albumin-retinol binding protein inactivates stellate cells

    International Nuclear Information System (INIS)

    Highlights: ► We designed novel recombinant albumin-RBP fusion proteins. ► Expression of fusion proteins inactivates pancreatic stellate cells (PSCs). ► Fusion proteins are successfully internalized into and inactivate PSCs. ► RBP moiety mediates cell specific uptake of fusion protein. -- Abstract: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I–III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumindomainIII (R-III) and albumindomainI-RBP-albuminIII (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises of stellate cell inactivation-inducing moiety and targeting moiety, which may lead to the development of effective anti

  13. Inactivation, DNA double strand break induction and their rejoining in bacterial cells irradiated with heavy ions

    Science.gov (United States)

    Schaefer, M.; Zimmermann, H.; Schmitz, C.

    1994-01-01

    Besides inactivation one of the major interests in our experiments is to study the primary damage in the DNA double strand breaks (DSB) after heavy ion irradiation. These damages lead not only to cell death but also under repair activities to mutations. In further experiments we have investigated the inactivation with two different strains of Deinococcus radiodurans (R1, Rec 30) and the induction of DSB as well as the rejoining of DSB in stationary cells of E. coli (strain B/r) irradiated with radiations of different quality. In the latter case irradiations were done so that the cell survival was roughly at the same level. We measured the DSB using the pulse field gelelectrophoresis which allows to separate between intact (circular) and damaged (linear) DNA. The irradiated cells were transferred to NB medium and incubated for different times to allow rejoining.

  14. One pyrimidine dimer inactivates expression of a transfected gene in xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    The authors have developed a host cell reactivation assay of DNA repair utilizing UV-treated plasmid vectors. The assay primarily reflects cellular repair of transcriptional activity of damaged DNA measured indirectly as enzyme activity of the transfected genes. They studied three plasmids (pSV2cat, 5020 base pairs; pSV2catSVgpt, 7268 base pairs; and pRSVcat, 5027 base pairs) with different sizes and promoters carrying the bacterial cat gene (CAT, chloramphenicol acetyltransferase) in a construction that permits cat expression in human cells. All human simian virus 40-transformed cells studied expressed high levels of the transfected cat gene. UV treatment of the plasmids prior to transfection resulted in differential decrease in CAT activity in different cell lines. With pSV2catSVgpt, UV inactivation of CAT expression was greater in the xeroderma pigmentosum group A and D lines than in the other human cell lines tested. The D0 of the CAT inactivation curve was 50 J X m-2 for pSV2cat and for pRSVcat in the xeroderma pigmentosum group A cells. The similarity of the D0 data in the xeroderma pigmentosum group A cells for three plasmids of different size and promoters implies they all have similar UV-inactivation target size. UV-induced pyrimidine dimer formation in the plasmids was quantified by assay of the number of UV-induced T4 endonuclease V-sensitive sites. In the most sensitive xeroderma pigmentosum cells, with all three plasmids, one UV-induced pyrimidine dimer inactivates a target of about 2 kilobases, close to the size of the putative CAT mRNA

  15. NG2 targets tumorigenic Rb inactivation in Pit1-lineage pituitary cells.

    Science.gov (United States)

    Tateno, Toru; Nakano-Tateno, Tae; Ezzat, Shereen; Asa, Sylvia L

    2016-05-01

    The proteoglycan neuron-glial antigen 2 (NG2) is expressed by oligodendrocyte progenitors, pericytes, and some cancerous cells where it is implicated in tumor development. We examined mice with NG2-driven pRb inactivation. Unexpectedly, NG2-Cre:pRb(flox/flox) mice developed pituitary tumors with high penetrance. Adenohypophysial neoplasms developed initially as multifocal lesions; by 1 year, large tumors showed brain invasion. Immunohistochemistry identified these as Pit1-lineage neoplasms, with variable immunoreactivity for growth hormone, prolactin, thyrotropin, and α-subunit of glycoprotein hormones. Other than modest hyperprolactinemia, circulating hormone levels were not elevated. To determine the role of NG2 in the pituitary, we investigated NG2 expression. Immunoreactivity was identified in anterior and posterior lobes but not in the intermediate lobe of the mouse pituitary; in the adenohypophysis, folliculostellate cells had the strongest NG2 immunoreactivity but showed no proliferation in response to Rb inactivation. Pit1-positive adenohypophysial cells were positive for NG2, but corticotroph and gonadotroph cells were negative. RT-PCR revealed NG2 expression in normal human pituitary and human pituitary tumors; immunohistochemistry localized NG2 in nontumorous human adenohypophysis with strongest positivity in folliculostellate cells, and in tumors of all types except corticotrophs. Functional studies in GH4 mammosomatotrophs showed that NG2 increases prolactin (PRL), reduces growth hormone (GH) expression, and enhances cell adhesion without influencing proliferation. In conclusion, NG2-driven pRb inactivation results in pituitary tumors that mimic endocrinologically inactive Pit1-lineage human pituitary tumors. This model identifies a role for NG2 in pituitary cell-type-specific functions and unmasks a protective role from Rb inactivation in folliculostellate cells; it can be used for further research, including preclinical testing of novel therapies

  16. A key inactivation factor of HeLa cell viability by a plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Takehiko; Yokoyama, Mayo [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Johkura, Kohei, E-mail: sato@ifs.tohoku.ac.jp [Department of Histology and Embryology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621 (Japan)

    2011-09-21

    Recently, a plasma flow has been applied to medical treatment using effects of various kinds of stimuli such as chemical species, charged particles, heat, light, shock wave and electric fields. Among them, the chemical species are known to cause an inactivation of cell viability. However, the mechanisms and key factors of this event are not yet clear. In this study, we focused on the effect of H{sub 2}O{sub 2} in plasma-treated culture medium because it is generated in the culture medium and it is also chemically stable compared with free radicals generated by the plasma flow. To elucidate the significance of H{sub 2}O{sub 2}, we assessed the differences in the effects of plasma-treated medium and H{sub 2}O{sub 2}-added medium against inactivation of HeLa cell viability. These two media showed comparable effects on HeLa cells in terms of the survival ratios, morphological features of damage processes, permeations of H{sub 2}O{sub 2} into the cells, response to H{sub 2}O{sub 2} decomposition by catalase and comprehensive gene expression. The results supported that among chemical species generated in a plasma-treated culture medium, H{sub 2}O{sub 2} is one of the main factors responsible for inactivation of HeLa cell viability. (fast track communication)

  17. HDAC1 inactivation induces mitotic defect and caspase-independent autophagic cell death in liver cancer.

    Directory of Open Access Journals (Sweden)

    Hong Jian Xie

    Full Text Available Histone deacetylases (HDACs are known to play a central role in the regulation of several cellular properties interlinked with the development and progression of cancer. Recently, HDAC1 has been reported to be overexpressed in hepatocellular carcinoma (HCC, but its biological roles in hepatocarcinogenesis remain to be elucidated. In this study, we demonstrated overexpression of HDAC1 in a subset of human HCCs and liver cancer cell lines. HDAC1 inactivation resulted in regression of tumor cell growth and activation of caspase-independent autophagic cell death, via LC3B-II activation pathway in Hep3B cells. In cell cycle regulation, HDAC1 inactivation selectively induced both p21(WAF1/Cip1 and p27(Kip1 expressions, and simultaneously suppressed the expression of cyclin D1 and CDK2. Consequently, HDAC1 inactivation led to the hypophosphorylation of pRb in G1/S transition, and thereby inactivated E2F/DP1 transcription activity. In addition, we demonstrated that HDAC1 suppresses p21(WAF1/Cip1 transcriptional activity through Sp1-binding sites in the p21(WAF1/Cip1 promoter. Furthermore, sustained suppression of HDAC1 attenuated in vitro colony formation and in vivo tumor growth in a mouse xenograft model. Taken together, we suggest the aberrant regulation of HDAC1 in HCC and its epigenetic regulation of gene transcription of autophagy and cell cycle components. Overexpression of HDAC1 may play a pivotal role through the systemic regulation of mitotic effectors in the development of HCC, providing a particularly relevant potential target in cancer therapy.

  18. CSR1 induces cell death through inactivation of CPSF3.

    Science.gov (United States)

    Zhu, Z-H; Yu, Y P; Shi, Y-K; Nelson, J B; Luo, J-H

    2009-01-01

    CSR1 (cellular stress response 1), a newly characterized tumor-suppressor gene, undergoes hypermethylation in over 30% of prostate cancers. Re-expression of CSR1 inhibits cell growth and induces cell death, but the mechanism by which CSR1 suppresses tumor growth is not clear. In this study, we screened a prostate cDNA library using a yeast two-hybrid system and found that the cleavage and polyadenylation-specific factor 3 (CPSF3), an essential component for converting heteronuclear RNA to mRNA, binds with high affinity to the CSR1 C terminus. Further analyses determined that the binding motifs for CPSF3 are located between amino acids 440 and 543. The interaction between CSR1 and CPSF3 induced CPSF3 translocation from the nucleus to the cytoplasm, resulting in inhibition of polyadenylation both in vitro and in vivo. Downregulation of CPSF3 using small interfering RNA induced cell death in a manner similar to CSR1 expression. A CSR1 mutant unable to bind to CPSF3 did not alter CPSF3 subcellular distribution, did not inhibit its polyadenylation activity and did not induce cell death. In summary, CSR1 appears to induce cell death through a novel mechanism by hijacking a critical RNA processing enzyme. PMID:18806823

  19. Real time, in situ observation of the photocatalytic inactivation of Saccharomyces cerevisiae cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingtao [School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Xiaoxin [Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Qi, E-mail: qili@imr.ac.cn [Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Shang, Jian Ku [Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2015-04-01

    An in situ microscopy technique was developed to observe in real time the photocatalytic inactivation process of Saccharomyces cerevisiae (S. cerevisiae) cells by palladium-modified nitrogen-doped titanium oxide (TiON/PdO) under visible light illumination. The technique was based on building a photocatalytic micro-reactor on the sample stage of a fluorescence/phase contrast microscopy capable of simultaneously providing the optical excitation to activate the photocatalyst in the micro-reactor and the illumination to acquire phase contrast images of the cells undergoing the photocatalytic inactivation process. Using TiON/PdO as an example, the technique revealed for the first time the vacuolar activities inside S. cerevisiae cells subjected to a visible light photocatalytic inactivation. The vacuoles responded to the photocatalytic attack by the first expansion of the vacuolar volume and then contraction, before the vacuole disappeared and the cell structure collapsed. Consistent with the aggregate behavior observed from the cell culture experiments, the transition in the vacuolar volume provided clear evidence that photocatalytic disinfection of S. cerevisiae cells started with an initiation period in which cells struggled to offset the photocatalytic damage and moved rapidly after the photocatalytic damage overwhelmed the defense mechanisms of the cells against oxidative attack. - Highlights: • Palladium-modified nitrogen-doped titanium oxidephotocatalyst (TiON/PdO) • Effective visible-light photocatalytic disinfection of yeast cells by TiON/PdO • Real time, in situ observation technique was developed for photocatalytic disinfection. • The fluorescence/phase contrast microscope with a photocatalytic micro-reactor • Yeast cell disinfection happened before the cell structure collapsed.

  20. CSR1 induces cell death through inactivation of CPSF3

    OpenAIRE

    Zhu, Z-H; Yu, YP; Shi, Y-K; Nelson, JB; Luo, J-H

    2008-01-01

    CSR1 (cellular stress response 1), a newly characterized tumor-suppressor gene, undergoes hypermethylation in over 30% of prostate cancers. Re-expression of CSR1 inhibits cell growth and induces cell death, but the mechanism by which CSR1 suppresses tumor growth is not clear. In this study, we screened a prostate cDNA library using a yeast two-hybrid system and found that the cleavage and polyadenylation-specific factor 3 (CPSF3), an essential component for converting heteronuclear RNA to mRN...

  1. Inactivation of ultraviolet repair in normal and xeroderma pigmentosum cells by methyl methanesulfonate

    International Nuclear Information System (INIS)

    Excision repair of ultraviolet damage in the DNA of normal and xeroderma pigmentosum (Groups C, D, and variant) cells was inactivated by exposure of cells to methyl methanesulfonate immediately before irradiation independent of the presence of 0 to 10% fetal calf serum. The inactivation could be represented by a semilog relationship between the amount of repair and methyl methanesulfonate concentration up to approximately 5 mM. The inactivation can be considered to occur as the result of alkylation of a large (about 10(6) daltons) repair enzyme complex, and the dose required to reduce repair to 37% for most cells types was between 4 and 7 mM. No consistent, large difference in sensitivity to methyl methanesulfonate was found in any xeroderma pigmentosum complementation group compared to normal cells, implying that reduced repair in these groups may be caused by small inherited changes in the amino acid composition (i.e., point mutations or small deletions) rather than by losses of major components of the repair enzyme complex

  2. Probabilistic two-stage model of cell inactivation by ionizing particles

    CERN Document Server

    Kundrát, P

    2004-01-01

    Model of biological effects of ionizing particles, especially of protons and other ions, is proposed. The model is based on distinguishing the single-particle and collective effects of the underlying radiobiological mechanism. The probabilities of individual particles to form severe damages to DNA, their synergetic or saturation combinations, and the effect of cellular repair system are taken into account. The model enables to describe linear, parabolic and more complex curves, including those exhibiting low-dose hypersensitivity phenomena, in a systematic way. Global shape as well as detailed structure of survival curves might be represented, which is crucial if different fractionation schemes in radiotherapy should be assessed precisely. Experimental cell-survival data for inactivation of V79 cells by low-energy protons have been analyzed and corresponding detailed characteristics of the inactivation mechanism have been derived for this case.

  3. Transient inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle

    OpenAIRE

    Pajcini, Kostandin V.; Corbel, Stephane Y.; Sage, Julien; Pomerantz, Jason H; Blau, Helen M

    2010-01-01

    An outstanding biological question is why tissue regeneration in mammals is limited, whereas urodele amphibians and teleost fish regenerate major structures, largely by cell cycle reentry. Upon inactivation of Rb, proliferation of postmitotic urodele skeletal muscle is induced, whereas in mammalian muscle this mechanism does not exist. We postulated that a tumor suppressor present in mammals but absent in regenerative vertebrates, the Ink4a product ARF (alternative reading frame), is a regene...

  4. Gene Inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 Suspension Cells.

    Science.gov (United States)

    Mercx, Sébastien; Tollet, Jérémie; Magy, Bertrand; Navarre, Catherine; Boutry, Marc

    2016-01-01

    Plant suspension cells are interesting hosts for the heterologous production of pharmacological proteins such as antibodies. They have the advantage to facilitate the containment and the application of good manufacturing practices. Furthermore, antibodies can be secreted to the extracellular medium, which makes the purification steps much simpler. However, improvements are still to be made regarding the quality and the production yield. For instance, the inactivation of proteases and the humanization of glycosylation are both important targets which require either gene silencing or gene inactivation. To this purpose, CRISPR-Cas9 is a very promising technique which has been used recently in a series of plant species, but not yet in plant suspension cells. Here, we sought to use the CRISPR-Cas9 system for gene inactivation in Nicotiana tabacum BY-2 suspension cells. We transformed a transgenic line expressing a red fluorescent protein (mCherry) with a binary vector containing genes coding for Cas9 and three guide RNAs targeting mCherry restriction sites, as well as a bialaphos-resistant (bar) gene for selection. To demonstrate gene inactivation in the transgenic lines, the mCherry gene was PCR-amplified and analyzed by electrophoresis. Seven out of 20 transformants displayed a shortened fragment, indicating that a deletion occurred between two target sites. We also analyzed the transformants by restriction fragment length polymorphism and observed that the three targeted restriction sites were hit. DNA sequencing of the PCR fragments confirmed either deletion between two target sites or single nucleotide deletion. We therefore conclude that CRISPR-Cas9 can be used in N. tabacum BY2 cells. PMID:26870061

  5. Living with an imperfect cell wall: compensation of femAB inactivation in Staphylococcus aureus.

    OpenAIRE

    Bierbaum Gabriele; Harris Llinos G; Majcherczyk Paul A; Schäfer Juliane; Kotte Oliver; Jansen Andrea; Hübscher Judith; Heinemann Matthias; Berger-Bächi Brigitte

    2007-01-01

    Abstract Background Synthesis of the Staphylococcus aureus peptidoglycan pentaglycine interpeptide bridge is catalyzed by the nonribosomal peptidyl transferases FemX, FemA and FemB. Inactivation of the femAB operon reduces the interpeptide to a monoglycine, leading to a poorly crosslinked peptidoglycan. femAB mutants show a reduced growth rate and are hypersusceptible to virtually all antibiotics, including methicillin, making FemAB a potential target to restore β-lactam susceptibility in met...

  6. Comparison of protection from homologous cell-free vs cell-associated SIV challenge afforded by inactivated whole SIV vaccines.

    NARCIS (Netherlands)

    J.L. Heeney (Jonathan); P. de Vries (Petra); R. Dubbes (Rob); W. Koornstra (Willem); H. Niphuis; P. ten Haaft (Peter); J. Boes (Jolande); M.E.M. Dings (Marlinda); B. Morein (Bror); A.D.M.E. Osterhaus (Ab)

    1992-01-01

    textabstractThis study attempted to determine if SIV vaccines could protect against challenge with peripheral blood mononuclear cells (PBMCs) from an SIV infected rhesus monkey. Mature Macaca mulatta were vaccinated four times with formalin inactivated SIVmac32H administered in MDP adjuvant (n = 8)

  7. Denbinobin induces apoptosis in human lung adenocarcinoma cells via Akt inactivation, Bad activation, and mitochondrial dysfunction.

    Science.gov (United States)

    Kuo, Chen-Tzu; Hsu, Ming-Jen; Chen, Bing-Chang; Chen, Chien-Chih; Teng, Che-Ming; Pan, Shiow-Lin; Lin, Chien-Huang

    2008-02-28

    Increasing evidence demonstrated that denbinobin, isolated from Ephemerantha lonchophylla, exert cytotoxic effects in cancer cells. The purpose of this study was to investigate whether denbinobin induces apoptosis and the apoptotic mechanism of denbinobin in human lung adenocarcinoma cells (A549). Denbinobin (1-20microM) caused cell death in a concentration-dependent manner. Flow cytometric analysis and annexin V labeling demonstrated that denbinobin increased the percentage of apoptotic cells. A549 cells treated with denbinobin showed typical characteristics of apoptosis including morphological changes and DNA fragmentation. Denbinobin induced caspase 3 activation, and N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD-fmk), a broad-spectrum caspase inhibitor, prevented denbinobin-induced cell death. Denbinobin induced the loss of the mitochondrial membrane potential and the release of mitochondrial apoptotic proteins including cytochrome c, second mitochondria derived activator of caspase (Smac), and apoptosis-inducing factor (AIF). In addition, denbinobin-induced Bad activation was accompanied by the dissociation of Bad with 14-3-3 and the association of Bad with Bcl-xL. Furthermore, denbinobin induced Akt inactivation in a time-dependent manner. Transfection of A549 cells with both wild-type and constitutively active Akt significantly suppressed denbinobin-induced Bad activation and cell apoptosis. These results suggest that Akt inactivation, followed by Bad activation, mitochondrial dysfunction, caspase 3 activation, and AIF release, contributes to denbinobin-induced cell apoptosis. PMID:18262737

  8. Psoralen/UV inactivation of HIV-1-infected cells for use in cytologic and immunologic procedures

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.J.; Klaniecki, J.; Hanson, C.V. (Oncogen Corporation, Seattle, WA (USA))

    1990-04-01

    A rapid procedure for the inactivation of HIV-1-infected cells using psoralen and ultraviolet (UV) light is described. Exposure of HIV-1-infected cells to 5 micrograms/ml psoralen followed by UV irradiation (320-380 nm) for 5 minutes yields cells that are noninfectious as assessed by extended infectivity assays. The psoralen/UV inactivation procedure described is effective with cells chronically or acutely infected with HIV-1 and is unaffected by cell densities up to 12 x 10(6)/ml. At 5 micrograms/ml psoralen does little damage to cellular permeability as shown by the ability of treated cells to exclude trypan blue and propidium iodide. Psoralen/UV treatment of HIV-1-infected cells does not cause a significant decrease in the reactivity of HIV-1 core and envelope antigens or cellular antigens to monoclonal antibodies. Experiments are presented demonstrating the use of these cells for flow cytometry studies and for cell surface labeling using the lactoperoxidase {sup 125}I iodination procedure.

  9. Recombinant fusion protein of albumin-retinol binding protein inactivates stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soyoung; Park, Sangeun; Kim, Suhyun [Laboratory of Cellular Oncology, Korea University Graduate School of Medicine, Ansan, Gyeonggi do 425-707 (Korea, Republic of); Lim, Chaeseung [Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 152-703 (Korea, Republic of); Kim, Jungho [Department of Life Science, Sogang University, Seoul 121-742 (Korea, Republic of); Cha, Dae Ryong [Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Gyeonggi do 425-020 (Korea, Republic of); Oh, Junseo, E-mail: ohjs@korea.ac.kr [Laboratory of Cellular Oncology, Korea University Graduate School of Medicine, Ansan, Gyeonggi do 425-707 (Korea, Republic of)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer We designed novel recombinant albumin-RBP fusion proteins. Black-Right-Pointing-Pointer Expression of fusion proteins inactivates pancreatic stellate cells (PSCs). Black-Right-Pointing-Pointer Fusion proteins are successfully internalized into and inactivate PSCs. Black-Right-Pointing-Pointer RBP moiety mediates cell specific uptake of fusion protein. -- Abstract: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I-III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumin{sup domain} {sup III} (R-III) and albumin{sup domain} {sup I}-RBP-albumin{sup III} (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises

  10. Inactivation of glutathione peroxidase activity contributes to UV-induced squamous cell carcinoma formation.

    Science.gov (United States)

    Walshe, Jennifer; Serewko-Auret, Magdalena M; Teakle, Ngari; Cameron, Sarina; Minto, Kelly; Smith, Louise; Burcham, Philip C; Russell, Terry; Strutton, Geoffrey; Griffin, Anthony; Chu, Fong-Fong; Esworthy, Stephen; Reeve, Vivienne; Saunders, Nicholas A

    2007-05-15

    Cutaneous squamous cell carcinomas (CSCC) are a common malignancy of keratinocytes that arise in sites of the skin exposed to excessive UV radiation. In the present study, we show that human SCC cell lines, preneoplastic solar keratoses (SK), and CSCC are associated with perturbations in glutathione peroxidase (GPX) activity and peroxide levels. Specifically, we found that two of three SKs and four of five CSCCs, in vivo, were associated with decreased GPX activity and all SKs and CSCCs were associated with an elevated peroxide burden. Given the association of decreased GPX activity with CSCC, we examined the basis for the GPX deficiency in the CSCCs. Our data indicated that GPX was inactivated by a post-translational mechanism and that GPX could be inactivated by increases in intracellular peroxide levels. We next tested whether the decreased peroxidase activity coupled with an elevated peroxidative burden might contribute to CSCC formation in vivo. This was tested in Gpx1(-/-) and Gpx2(-/-) mice exposed to solar-simulated UV radiation. These studies showed that Gpx2 deficiency predisposed mice to UV-induced CSCC formation. These results suggest that inactivation of GPX2 in human skin may be an early event in UV-induced SCC formation. PMID:17510403

  11. Identification of antiviralrelevant genes in the cultured fish cells induced by UV-inactivated virus

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    UV-inactivated grass carp hemorrhage virus (GCHV) can induce high titer of interferon in cultured CAB (crucian carp (Carassius auratus L.) blastulae) cells, and thus defend host cells against the virus invasion. The mechanism is proposed that an antiviral state should be established in the host cells by activating expression of a set of antivi-ral-relevant genes. In this study, suppressive subtractive hy-bridization is applied to constructing a subtracted cDNA library with mRNAs isolated from UV-inactivated GCHV infected and mock-infected CAB cells. 272 differential cDNA fragments are identified by both PCR and dot blot from the subtractive cDNA library. Sequencing analysis reveals 69 genes, including 46 known gene homologues, and 23 unknown putative genes. The known genes include the genes involved in interferon signaling pathways, such as Stat1 and Jak1, the antiviral genes, such as Mx and Viperin, and a set of interferon-stimulated genes observed in mammalian cells. Most of the unknown putative genes contain AU-rich ele-ment in their sequences. Differential expressions of these genes are further confirmed by virtual Northern blot and RT-PCR. The data imply that UV-inactivated GCHV is not only able to induce production of interferon in the infected CAB cells, but also leads to the expression of a series of antiviral-relevant genes or immune-relevant genes, and therefore reveals that the signaling pathway of interferon system and antiviral mechanism in fish are similar to those in mammals.

  12. p31comet-Induced Cell Death Is Mediated by Binding and Inactivation of Mad2.

    Directory of Open Access Journals (Sweden)

    Hyun-Jin Shin

    Full Text Available Mad2, a key component of the spindle checkpoint, is closely associated with chromosomal instability and poor prognosis in cancer. p31comet is a Mad2-interacting protein that serves as a spindle checkpoint silencer at mitosis. In this study, we showed that p31comet-induced apoptosis and senescence occur via counteraction of Mad2 activity. Upon retroviral transduction of p31comet, the majority of human cancer cell lines tested lost the ability to form colonies in a low-density seeding assay. Cancer cells with p31comet overexpression underwent distinct apoptosis and/or senescence, irrespective of p53 status, confirming the cytotoxicity of p31comet. Interestingly, both cytotoxic and Mad2 binding activities were eliminated upon deletion of the C-terminal 30 amino acids of p31comet. Point mutation or deletion of the region affecting Mad2 binding additionally abolished cytotoxic activity. Consistently, wild-type Mad2 interacting with p31comet, but not its non-binding mutant, inhibited cell death, indicating that the mechanism of p31comet-induced cell death involves Mad2 inactivation. Our results clearly suggest that the regions of p31comet affecting interactions with Mad2, including the C-terminus, are essential for induction of cell death. The finding that p31comet-induced cell death is mediated by interactions with Mad2 that lead to its inactivation is potentially applicable in anticancer therapy.

  13. An evolved ribosome-inactivating protein targets and kills human melanoma cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Green David E

    2010-02-01

    Full Text Available Abstract Background Few treatment options exist for patients with metastatic melanoma, resulting in poor prognosis. One standard treatment, dacarbazine (DTIC, shows low response rates ranging from 15 to 25 percent with an 8-month median survival time. The development of targeted therapeutics with novel mechanisms of action may improve patient outcome. Ribosome-inactivating proteins (RIPs such as Shiga-like Toxin 1 (SLT-1 represent powerful scaffolds for developing selective anticancer agents. Here we report the discovery and properties of a single chain ribosome-inactivating protein (scRIP derived from the cytotoxic A subunit of SLT-1 (SLT-1A, harboring the 7-amino acid peptide insertion IYSNKLM (termed SLT-1AIYSNKLM allowing the toxin variant to selectively target and kill human melanoma cells. Results SLT-1AIYSNKLM was able to kill 7 of 8 human melanoma cell lines. This scRIP binds to 518-A2 human melanoma cells with a dissociation constant of 18 nM, resulting in the blockage of protein synthesis and apoptosis in such cells. Biodistribution and imaging studies of radiolabeled SLT-1AIYSNKLM administered intravenously into SCID mice bearing a human melanoma xenograft indicate that SLT-1AIYSNKLM readily accumulates at the tumor site as opposed to non-target tissues. Furthermore, the co-administration of SLT-1AIYSNKLM with DTIC resulted in tumor regression and greatly increased survival in this mouse xenograft model in comparison to DTIC or SLT-1AIYSNKLM treatment alone (115 day median survival versus 46 and 47 days respectively; P values IYSNKLM is stable in serum and its intravenous administration resulted in modest immune responses following repeated injections in CD1 mice. Conclusions These results demonstrate that the evolution of a scRIP template can lead to the discovery of novel cancer cell-targeted compounds and in the case of SLT-1AIYSNKLM can specifically kill human melanoma cells in vitro and in vivo.

  14. Induction of DNA double-strand breaks by ionizing radiation of different quality and their relevance for cell inactivation

    International Nuclear Information System (INIS)

    By investigation of the production of DNA strand breaks and of DNA release from the nuclear membrane complex in Chinese hamster cells using different radiation qualities from 1 to 360 keV/μm, partly also under hypoxic conditions, and by relating the results to the induction of chromosome aberrations and to cell inactivation it has become possible to find connections between the induction of molecular lesions and the expression of this damage on the cellular level. From the studies follows that DNA pieces are cut off from the nuclear membrane complex by DNA double-strand breaks (DSB). The share and size of the released pieces depends on radiation dose and quality as well as on the oxygen conditions. The lesions can partly be repaired. In connection with the DSB rates the results of the DNA release studies led to the conclusion that the DNA in the cells must be organized in superstructure units (MASSUs) with a DNA mass of about 2 x 109 g/mol, which are associated to the nuclear membrane in attachment points. The numerical relations show that for a 37% survival probability about 90 DSB per genome are required with sparsely ionizing radiation; this number declines to about 40 by use of more densely ionizing radiation up to 150 keV/μm, and increases again with further rise of the ionization density. Hence, for cell inactivation not simply a certain number of DSB per cell is required but rather seems their cooperation within a small structure section of the DNA to be relevant. These critical structures are with high probability the MASSUs. An irrepairable release of DNA from such a structure unit can bring about a chromosome break detectable in the metaphase and finally lead to cell inactivation. DSB turned out to be the essential lethal events in bacteria as well. The relatively small differences to the eukaryotic cells in the position of the maximum of radiation sensitivity on the LET scale and in the lesion sensitivity towards DSB let suggest that a common critical

  15. Effect of using heat-inactivated serum with the Abbott human T-cell lymphotropic virus type III antibody test.

    OpenAIRE

    Jungkind, D. L.; DiRenzo, S A; Young, S J

    1986-01-01

    The Abbott enzyme immunoassay (Abbott Laboratories, North Chicago, Ill.) for human T-cell lymphotropic virus type III (HTLV-III) antibody was evaluated to determine the effect of using heat-inactivated (56 degrees C for 30 min) serum as the sample. Each of 58 nonreactive serum samples gave a higher A492 value when tested after heat inactivation. Ten of the samples became reactive after heating. Heat-inactivated serum should not be used in the current Abbott HTLV-III antibody test, because thi...

  16. Glycolysis inhibition inactivates ABC transporters to restore drug sensitivity in malignant cells.

    Directory of Open Access Journals (Sweden)

    Ayako Nakano

    Full Text Available Cancer cells eventually acquire drug resistance largely via the aberrant expression of ATP-binding cassette (ABC transporters, ATP-dependent efflux pumps. Because cancer cells produce ATP mostly through glycolysis, in the present study we explored the effects of inhibiting glycolysis on the ABC transporter function and drug sensitivity of malignant cells. Inhibition of glycolysis by 3-bromopyruvate (3BrPA suppressed ATP production in malignant cells, and restored the retention of daunorubicin or mitoxantrone in ABC transporter-expressing, RPMI8226 (ABCG2, KG-1 (ABCB1 and HepG2 cells (ABCB1 and ABCG2. Interestingly, although side population (SP cells isolated from RPMI8226 cells exhibited higher levels of glycolysis with an increased expression of genes involved in the glycolytic pathway, 3BrPA abolished Hoechst 33342 exclusion in SP cells. 3BrPA also disrupted clonogenic capacity in malignant cell lines including RPMI8226, KG-1, and HepG2. Furthermore, 3BrPA restored cytotoxic effects of daunorubicin and doxorubicin on KG-1 and RPMI8226 cells, and markedly suppressed subcutaneous tumor growth in combination with doxorubicin in RPMI8226-implanted mice. These results collectively suggest that the inhibition of glycolysis is able to overcome drug resistance in ABC transporter-expressing malignant cells through the inactivation of ABC transporters and impairment of SP cells with enhanced glycolysis as well as clonogenic cells.

  17. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Takeda-Watanabe, Ai; Kitada, Munehiro; Kanasaki, Keizo [Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa (Japan); Koya, Daisuke, E-mail: koya0516@kanazawa-med.ac.jp [Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa (Japan)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer SIRT1 inactivation decreases autophagy in THP-1 cell. Black-Right-Pointing-Pointer Inhibition of autophagy induces inflammation. Black-Right-Pointing-Pointer SIRT1 inactivation induces inflammation through NF-{kappa}B activation. Black-Right-Pointing-Pointer The p62/Sqstm1 accumulation by impairment of autophagy is related to NF-{kappa}B activation. Black-Right-Pointing-Pointer SIRT1 inactivation is involved in the activation of mTOR and decreased AMPK activation. -- Abstract: Inflammation plays a crucial role in atherosclerosis. Monocytes/macrophages are some of the cells involved in the inflammatory process in atherogenesis. Autophagy exerts a protective effect against cellular stresses like inflammation, and it is regulated by nutrient-sensing pathways. The nutrient-sensing pathway includes SIRT1, a NAD{sup +}-dependent histone deacetylase, which is implicated in the regulation of a variety of cellular processes including inflammation and autophagy. The mechanism through which the dysfunction of SIRT1 contributes to the regulation of inflammation in relation to autophagy in monocytes/macrophages is unclear. In the present study, we demonstrate that treatment with 2-[(2-Hydroxynaphthalen-1-ylmethylene)amino]-N-(1-phenethyl)benzamide (Sirtinol), a chemical inhibitor of SIRT1, induces the overexpression of inflammation-related genes such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-6 through nuclear factor (NF)-{kappa}B signaling activation, which is associated with autophagy dysfunction, as shown through p62/Sqstm1 accumulation and decreased expression of light chain (LC) 3 II in THP-1 cells. The autophagy inhibitor, 3-methyladenine, also induces inflammation-related NF-{kappa}B activation. In p62/Sqstm1 knockdown cells, Sirtinol-induced inflammation through NF-{kappa}B activation is blocked. In addition, inhibition of SIRT1 is involved in the activation of the mammalian target of rapamycin (mTOR) pathway and

  18. Cryptococcus neoformans capsule protects cell from oxygen reactive species generated by antimicrobial photodynamic inactivation

    Science.gov (United States)

    Prates, Renato Araujo; Hamblin, Michael R.; Kato, Ilka T.; Fuchs, Beth; Mylonakis, Eleytherios; Simões Ribeiro, Martha; Tegos, George

    2011-03-01

    Antimicrobial photodynamic inactivation (APDI) is based on the utilization of substances that can photosensitize biological tissues and are capable of being activated in the presence of light. Cryptococcus neoformans is an yeast surrounded by a capsule composed primarily of glucoronoxylomannan that plays an important role in its virulence. This yeast causes infection on skin, lungs and brain that can be associated with neurological sequelae and neurosurgical interventions, and its conventional treatment requires prolonged antifungal therapy, which presents important adverse effects. The aim of this study was to evaluate the protective effect of Cryptococcus neoformans capsule against reactive oxygen species generated by APDI. Cryptococcus neoformans KN99α, which is a strain able to produce capsule, and CAP59 that does not present capsule production were submitted to APDI using methylene blue (MB), rose bengal (RB), and pL-ce6 as photosensitizers (PS). Then microbial inactivation was evaluated by counting colony form units following APDI and confocal laser scanning microscopy (CLSM) illustrated localization as well as the preferential accumulation of PS into the fungal cells. C. neoformans KN99α was more resistant to APDI than CAP59 for all PSs tested. CLSM showed incorporation of MB and RB into the cytoplasm and a preferential uptake in mitochondria. A nuclear accumulation of MB was also observed. Contrarily, pL-ce6 appears accumulated in cell wall and cell membrane and minimal florescence was observed inside the fungal cells. In conclusion, the ability of C. neoformans to form capsule enhances survival following APDI.

  19. Differential mechanism of Escherichia coli Inactivation by (+-limonene as a function of cell physiological state and drug's concentration.

    Directory of Open Access Journals (Sweden)

    Beatriz Chueca

    Full Text Available (+-limonene is a lipophilic antimicrobial compound, extracted from citrus fruits' essential oils, that is used as a flavouring agent and organic solvent by the food industry. A recent study has proposed a common and controversial mechanism of cell death for bactericidal antibiotics, in which hydroxyl radicals ultimately inactivated cells. Our objective was to determine whether the mechanism of Escherichia coli MG1655 inactivation by (+-limonene follows that of bactericidal antibiotics. A treatment with 2,000 μL/L (+-limonene inactivated 4 log10 cycles of exponentially growing E. coli cells in 3 hours. On one hand, an increase of cell survival in the ΔacnB mutant (deficient in a TCA cycle enzyme, or in the presence of 2,2'-dipyridyl (inhibitor of Fenton reaction by iron chelation, thiourea, or cysteamine (hydroxyl radical scavengers was observed. Moreover, the ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage was more sensitive to (+-limonene. Thus, this indirect evidence indicates that the mechanism of exponentially growing E. coli cells inactivation by 2,000 μL/L (+-limonene is due to the TCA cycle and Fenton-mediated hydroxyl radical formation that caused oxidative DNA damage, as observed for bactericidal drugs. However, several differences have been observed between the proposed mechanism for bactericidal drugs and for (+-limonene. In this regard, our results demonstrated that E. coli inactivation was influenced by its physiological state and the drug's concentration: experiments with stationary-phase cells or 4,000 μL/L (+-limonene uncovered a different mechanism of cell death, likely unrelated to hydroxyl radicals. Our research has also shown that drug's concentration is an important factor influencing the mechanism of bacterial inactivation by antibiotics, such as kanamycin. These results might help in improving and spreading the use of (+-limonene as an antimicrobial compound, and in clarifying the

  20. Culture of human cell lines by a pathogen-inactivated human platelet lysate.

    Science.gov (United States)

    Fazzina, R; Iudicone, P; Mariotti, A; Fioravanti, D; Procoli, A; Cicchetti, E; Scambia, G; Bonanno, G; Pierelli, L

    2016-08-01

    Alternatives to the use of fetal bovine serum (FBS) have been investigated to ensure xeno-free growth condition. In this study we evaluated the efficacy of human platelet lysate (PL) as a substitute of FBS for the in vitro culture of some human cell lines. PL was obtained by pools of pathogen inactivated human donor platelet (PLT) concentrates. Human leukemia cell lines (KG-1, K562, JURKAT, HL-60) and epithelial tumor cell lines (HeLa and MCF-7) were cultured with either FBS or PL. Changes in cell proliferation, viability, morphology, surface markers and cell cycle were evaluated for each cell line. Functional characteristics were analysed by drug sensitivity test and cytotoxicity assay. Our results demonstrated that PL can support growth and expansion of all cell lines, although the cells cultured in presence of PL experienced a less massive proliferation compared to those grown with FBS. We found a comparable percentage of viable specific marker-expressing cells in both conditions, confirming lineage fidelity in all cultures. Functionality assays showed that cells in both FBS- and PL-supported cultures maintained their normal responsiveness to adriamycin and NK cell-mediated lysis. Our findings indicate that PL is a feasible serum substitute for supporting growth and propagation of haematopoietic and epithelial cell lines with many advantages from a perspective of process standardization, ethicality and product safety. PMID:25944665

  1. Irreversible APC(Cdh1) Inactivation Underlies the Point of No Return for Cell-Cycle Entry.

    Science.gov (United States)

    Cappell, Steven D; Chung, Mingyu; Jaimovich, Ariel; Spencer, Sabrina L; Meyer, Tobias

    2016-06-30

    Proliferating cells must cross a point of no return before they replicate their DNA and divide. This commitment decision plays a fundamental role in cancer and degenerative diseases and has been proposed to be mediated by phosphorylation of retinoblastoma (Rb) protein. Here, we show that inactivation of the anaphase-promoting complex/cyclosome (APC(Cdh1)) has the necessary characteristics to be the point of no return for cell-cycle entry. Our study shows that APC(Cdh1) inactivation is a rapid, bistable switch initiated shortly before the start of DNA replication by cyclin E/Cdk2 and made irreversible by Emi1. Exposure to stress between Rb phosphorylation and APC(Cdh1) inactivation, but not after APC(Cdh1) inactivation, reverted cells to a mitogen-sensitive quiescent state, from which they can later re-enter the cell cycle. Thus, APC(Cdh1) inactivation is the commitment point when cells lose the ability to return to quiescence and decide to progress through the cell cycle.

  2. MEK1 inactivates Myt1 to regulate Golgi membrane fragmentation and mitotic entry in mammalian cells.

    Science.gov (United States)

    Villeneuve, Julien; Scarpa, Margherita; Ortega-Bellido, Maria; Malhotra, Vivek

    2013-01-01

    The pericentriolar stacks of Golgi cisternae are separated from each other in G2 and fragmented extensively during mitosis. MEK1 is required for Golgi fragmentation in G2 and for the entry of cells into mitosis. We now report that Myt1 mediates MEK1's effects on the Golgi complex. Knockdown of Myt1 by siRNA increased the efficiency of Golgi complex fragmentation by mitotic cytosol in permeabilized and intact HeLa cells. Myt1 knockdown eliminated the requirement of MEK1 in Golgi fragmentation and alleviated the delay in mitotic entry due to MEK1 inhibition. The phosphorylation of Myt1 by MEK1 requires another kinase but is independent of RSK, Plk, and CDK1. Altogether our findings reveal that Myt1 is inactivated by MEK1 mediated phosphorylation to fragment the Golgi complex in G2 and for the entry of cells into mitosis. It is known that Myt1 inactivation is required for CDK1 activation. Myt1 therefore is an important link by which MEK1 dependent fragmentation of the Golgi complex in G2 is connected to the CDK1 mediated breakdown of Golgi into tubules and vesicles in mitosis.

  3. A poxvirus protein that binds to and inactivates IL-18, and inhibits NK cell response.

    Science.gov (United States)

    Born, T L; Morrison, L A; Esteban, D J; VandenBos, T; Thebeau, L G; Chen, N; Spriggs, M K; Sims, J E; Buller, R M

    2000-03-15

    IL-18 induces IFN-gamma and NK cell cytotoxicity, making it a logical target for viral antagonism of host defense. We demonstrate that the ectromelia poxvirus p13 protein, bearing homology to the mammalian IL-18 binding protein, binds IL-18, and inhibits its activity in vitro. Binding of IL-18 to the viral p13 protein was compared with binding to the cellular IL-18R. The dissociation constant of p13 for murine IL-18 is 5 nM, compared with 0.2 nM for the cellular receptor heterodimer. Mice infected with a p13 deletion mutant of ectromelia virus had elevated cytotoxicity for YAC-1 tumor cell targets compared with control animals. Additionally, the p13 deletion mutant virus exhibited decreased levels of infectivity. Our data suggest that inactivation of IL-18, and subsequent impairment of NK cell cytotoxicity, may be one mechanism by which ectromelia evades the host immune response. PMID:10706717

  4. Inactivation of Caliciviruses

    Directory of Open Access Journals (Sweden)

    Raymond Nims

    2013-03-01

    Full Text Available The Caliciviridae family of viruses contains clinically important human and animal pathogens, as well as vesivirus 2117, a known contaminant of biopharmaceutical manufacturing processes employing Chinese hamster cells. An extensive literature exists for inactivation of various animal caliciviruses, especially feline calicivirus and murine norovirus. The caliciviruses are susceptible to wet heat inactivation at temperatures in excess of 60 °C with contact times of 30 min or greater, to UV-C inactivation at fluence ≥30 mJ/cm2, to high pressure processing >200 MPa for >5 min at 4 °C, and to certain photodynamic inactivation approaches. The enteric caliciviruses (e.g.; noroviruses display resistance to inactivation by low pH, while the non-enteric species (e.g.; feline calicivirus are much more susceptible. The caliciviruses are inactivated by a variety of chemicals, including alcohols, oxidizing agents, aldehydes, and β-propiolactone. As with inactivation of viruses in general, inactivation of caliciviruses by the various approaches may be matrix-, temperature-, and/or contact time-dependent. The susceptibilities of the caliciviruses to the various physical and chemical inactivation approaches are generally similar to those displayed by other small, non-enveloped viruses, with the exception that the parvoviruses and circoviruses may require higher temperatures for inactivation, while these families appear to be more susceptible to UV-C inactivation than are the caliciviruses.

  5. Heterozygous inactivation of the Nf1 gene in myeloid cells enhances neointima formation via a rosuvastatin-sensitive cellular pathway.

    Science.gov (United States)

    Stansfield, Brian K; Bessler, Waylan K; Mali, Raghuveer; Mund, Julie A; Downing, Brandon; Li, Fang; Sarchet, Kara N; DiStasi, Matthew R; Conway, Simon J; Kapur, Reuben; Ingram, David A

    2013-03-01

    Mutations in the NF1 tumor suppressor gene cause Neurofibromatosis type 1 (NF1). Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity. Some NF1 patients develop cardiovascular disease, which represents an underrecognized disease complication and contributes to excess morbidity and mortality. Specifically, NF1 patients develop arterial occlusion resulting in tissue ischemia and sudden death. Murine studies demonstrate that heterozygous inactivation of Nf1 (Nf1(+/-)) in bone marrow cells enhances neointima formation following arterial injury. Macrophages infiltrate Nf1(+/-) neointimas, and NF1 patients have increased circulating inflammatory monocytes in their peripheral blood. Therefore, we tested the hypothesis that heterozygous inactivation of Nf1 in myeloid cells is sufficient for neointima formation. Specific ablation of a single copy of the Nf1 gene in myeloid cells alone mobilizes a discrete pro-inflammatory murine monocyte population via a cell autonomous and gene-dosage dependent mechanism. Furthermore, lineage-restricted heterozygous inactivation of Nf1 in myeloid cells is sufficient to reproduce the enhanced neointima formation observed in Nf1(+/-) mice when compared with wild-type controls, and homozygous inactivation of Nf1 in myeloid cells amplified the degree of arterial stenosis after arterial injury. Treatment of Nf1(+/-) mice with rosuvastatin, a stain with anti-inflammatory properties, significantly reduced neointima formation when compared with control. These studies identify neurofibromin-deficient myeloid cells as critical cellular effectors of Nf1(+/-) neointima formation and propose a potential therapeutic for NF1 cardiovascular disease. PMID:23197650

  6. Inactivation of nucleolin leads to nucleolar disruption, cell cycle arrest and defects in centrosome duplication

    Directory of Open Access Journals (Sweden)

    Thiry Marc

    2007-08-01

    Full Text Available Abstract Background Nucleolin is a major component of the nucleolus, but is also found in other cell compartments. This protein is involved in various aspects of ribosome biogenesis from transcription regulation to the assembly of pre-ribosomal particles; however, many reports suggest that it could also play an important role in non nucleolar functions. To explore nucleolin function in cell proliferation and cell cycle regulation we used siRNA to down regulate the expression of nucleolin. Results We found that, in addition to the expected effects on pre-ribosomal RNA accumulation and nucleolar structure, the absence of nucleolin results in a cell growth arrest, accumulation in G2, and an increase of apoptosis. Numerous nuclear alterations, including the presence of micronuclei, multiple nuclei or large nuclei are also observed. In addition, a large number of mitotic cells showed a defect in the control of centrosome duplication, as indicated by the presence of more than 2 centrosomes per cell associated with a multipolar spindle structure in the absence of nucleolin. This phenotype is very similar to that obtained with the inactivation of another nucleolar protein, B23. Conclusion Our findings uncovered a new role for nucleolin in cell division, and highlight the importance of nucleolar proteins for centrosome duplication.

  7. Evaluating the effectiveness of an inactivated vaccine from Anaplasma marginale derived from tick cell culture.

    Science.gov (United States)

    Lasmar, Pedro Veloso Facury; Carvalho, Antônio Último de; Facury Filho, Elias Jorge; Bastos, Camila Valgas; Ribeiro, Múcio Flávio Barbosa

    2012-01-01

    The protective efficacy of an inactivated vaccine from Anaplasma marginale that was cultured in tick cells (IDE8) for use against bovine anaplasmosis was evaluated. Five calves (Group 1) were inoculated subcutaneously, at 21-day intervals, with three doses of vaccine containing 3 × 10(9) A. marginale initial bodies. Five control calves received saline solution alone (Group 2). Thirty-two days after the final inoculation, all the calves were challenged with approximately 3 × 10(5) erythrocytes infected with A. marginale high-virulence isolate (UFMG2). The Group 1 calves seroconverted 14 days after the second dose of vaccine. After the challenge, all the animals showed patent rickettsemia. There was no significant difference (p > 0.05) between the Group 1 and 2 calves during the incubation period, patency period or convalescence period. All the animals required treatment to prevent death. The results suggest that the inactivated vaccine from A. marginale produced in IDE8 induced seroconversion in calves, but was not effective for preventing anaplasmosis induced by the UFMG2 isolate under the conditions of this experiment. PMID:22832750

  8. Photodynamic pathogen inactivation in red cell concentrates with the silicon phthalocyanine Pc 4

    Science.gov (United States)

    Ben-Hur, Ehud; Chan, Wai-Shun; Yim, Zachary; Zuk, Maria M.; Dayal, Vinay; Roth, Nathan; Heldman, Eli; Lazlo, A.; Valeri, C. R.; Horowitz, Bernard

    2000-03-01

    The silicon phthalocyanine Pc 4, a photosensitizer activated with red light, has been studied for pathogen inactivation in red blood cell concentrates (RBCC). Pc 4 targets the envelope of pathogenic viruses such as HIV. To protect RBC during the process two main approaches are used: 1) Inclusion of quenches of reactive oxygen species produced during treatment. Tocopherol succinate was found to be most effective for this purpose. 2) Formulation of Pc 4, a lipophilic compound, in liposomes that reduce its binding to RBC but not to viruses. As a light source we used a light emitting diode array emitting at 660-680 nm. An efficient mixing device ensures homogeneous light exposure during treatment of intact RBCC. Treatment of RBCC with 5 (mu) M Pc 4 a d light results in the inactivation of >= 5.5 log10 HIV, >= 6.6 log10 VSV, and >= 5 log10 of PRV and BVDV. Parasites that can be transmitted by blood transfusion are even more sensitive than viruses. Following treatment, RBCC can be stored for 28 days at 4 degrees C with hemolysis below 1 percent. Baboon RBC circulate with an acceptable 24 hour recovery and half-life. Genetic toxicological studies of Pc 4 with or without light exposure are negative. We conclude that a process using Pc 4 and red light can potentially reduce the risk of transmitting pathogens in RBCC used for transfusion.

  9. Single-cell analyses of X Chromosome inactivation dynamics and pluripotency during differentiation

    Science.gov (United States)

    Chen, Geng; Schell, John Paul; Benitez, Julio Aguila; Petropoulos, Sophie; Yilmaz, Marlene; Reinius, Björn; Alekseenko, Zhanna; Shi, Leming; Hedlund, Eva; Lanner, Fredrik; Sandberg, Rickard; Deng, Qiaolin

    2016-01-01

    Pluripotency, differentiation, and X Chromosome inactivation (XCI) are key aspects of embryonic development. However, the underlying relationship and mechanisms among these processes remain unclear. Here, we systematically dissected these features along developmental progression using mouse embryonic stem cells (mESCs) and single-cell RNA sequencing with allelic resolution. We found that mESCs grown in a ground state 2i condition displayed transcriptomic profiles diffused from preimplantation mouse embryonic cells, whereas EpiStem cells closely resembled the post-implantation epiblast. Sex-related gene expression varied greatly across distinct developmental states. We also identified novel markers that were highly enriched in each developmental state. Moreover, we revealed that several novel pathways, including PluriNetWork and Focal Adhesion, were responsible for the delayed progression of female EpiStem cells. Importantly, we “digitalized” XCI progression using allelic expression of active and inactive X Chromosomes and surprisingly found that XCI states exhibited profound variability in each developmental state, including the 2i condition. XCI progression was not tightly synchronized with loss of pluripotency and increase of differentiation at the single-cell level, although these processes were globally correlated. In addition, highly expressed genes, including core pluripotency factors, were in general biallelically expressed. Taken together, our study sheds light on the dynamics of XCI progression and the asynchronicity between pluripotency, differentiation, and XCI. PMID:27486082

  10. Factors affecting the infectivity of tissues from pigs with classical swine fever: thermal inactivation rates and oral infectious dose.

    Science.gov (United States)

    Cowan, Lucie; Haines, Felicity J; Everett, Helen E; Crudgington, Bentley; Johns, Helen L; Clifford, Derek; Drew, Trevor W; Crooke, Helen R

    2015-03-23

    Outbreaks of classical swine fever are often associated with ingestion of pig meat or products derived from infected pigs. Assessment of the disease risks associated with material of porcine origin requires knowledge on the likely amount of virus in the original material, how long the virus may remain viable within the resulting product and how much of that product would need to be ingested to result in infection. Using material from pigs infected with CSFV, we determined the viable virus concentrations in tissues that comprise the majority of pork products. Decimal reduction values (D values), the time required to reduce the viable virus load by 90% (or 1 log10), were determined at temperatures of relevance for chilling, cooking, composting and ambient storage. The rate of CSFV inactivation varied in different tissues. At lower temperatures, virus remained viable for substantially longer in muscle and serum compared to lymphoid and fat tissues. To enable estimation of the temperature dependence of inactivation, the temperature change required to change the D values by 90% (Z values) were determined as 13 °C, 14 °C, 12 °C and 10 °C for lymph node, fat, muscle and serum, respectively. The amount of virus required to infect 50% of pigs by ingestion was determined by feeding groups of animals with moderately and highly virulent CSFV. Interestingly, the virulent virus did not initiate infection at a lower dose than the moderately virulent strain. Although higher than for intranasal inoculation, the amount of virus required for infection via ingestion is present in only a few grams of tissue from infected animals.

  11. Selective inhibition of a slow-inactivating voltage-dependent K+ channel in rat PC12 cells by hypoxia.

    Science.gov (United States)

    Conforti, L; Millhorn, D E

    1997-07-15

    1. Electrophysiological (single-channel patch clamp) and molecular biological experiments (reverse transcriptase-polymerase chain reaction) were performed to attempt to identify the O2-sensitive K+ channel in rat phaeochromocytoma (PC12) cells. 2. Four types of K+ channels were recorded in PC12 cells: a small-conductance K+ channel (14 pS), a calcium-activated K+ channel (KCa; 102 pS) and two K+ channels with similar conductance (20 pS). These last two channels differed in their time-dependent inactivation: one was a slow-inactivating channel, while the other belonged to the family of fast transient K+ channels. 3. The slow-inactivating 20 pS K+ channel was inhibited by hypoxia. Exposure to hypoxia produced a 50% reduction in channel activity (number of active channels in the patch x open probability). Hypoxia had no effect on the 20 pS transient K+ channels, whereas reduced O2 stimulated the KCa channels. 4. The genes encoding the alpha-subunits of slow-inactivating K+ channels for two members of the Shaker subfamily of K+ channels (Kv1.2 and Kv1.3) together with the Kv2.1, Kv3.1 and Kv3.2 channel genes were identified in PC12 cells. 5. The expression of the Shaker Kv1.2, but none of the other K+ channel genes, increased in cells exposed to prolonged hypoxia (18 h). The same cells were more responsive to a subsequent exposure to hypoxia (35% inhibition of K+ current measured in whole-cell voltage clamp) compared with the cells maintained in normoxia (19% inhibition). 6. These results indicate that the O2-sensitive K+ channel in PC12 cells is a 20 pS slow-inactivating K+ channel that is upregulated by hypoxia. This channel appears to belong to the Shaker subfamily of voltage-gated K+ channels. PMID:9263911

  12. Variations of X chromosome inactivation occur in early passages of female human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Tamar Dvash

    Full Text Available X chromosome inactivation (XCI is a dosage compensation mechanism essential for embryonic development and cell physiology. Human embryonic stem cells (hESCs derived from inner cell mass (ICM of blastocyst stage embryos have been used as a model system to understand XCI initiation and maintenance. Previous studies of undifferentiated female hESCs at intermediate passages have shown three possible states of XCI; 1 cells in a pre-XCI state, 2 cells that already exhibit XCI, or 3 cells that never undergo XCI even upon differentiation. In this study, XCI status was assayed in ten female hESC lines between passage 5 and 15 to determine whether XCI variations occur in early passages of hESCs. Our results show that three different states of XCI already exist in the early passages of hESC. In addition, we observe one cell line with skewed XCI and preferential expression of X-linked genes from the paternal allele, while another cell line exhibits random XCI. Skewed XCI in undifferentiated hESCs may be due to clonal selection in culture instead of non-random XCI in ICM cells. We also found that XIST promoter methylation is correlated with silencing of XIST transcripts in early passages of hESCs, even in the pre-XCI state. In conclusion, XCI variations already take place in early passages of hESCs, which may be a consequence of in vitro culture selection during the derivation process. Nevertheless, we cannot rule out the possibility that XCI variations in hESCs may reflect heterogeneous XCI states in ICM cells that stochastically give rise to hESCs.

  13. Extending Bragg peak of heavy ion beam and melanoma cell inactivation measurement

    Institute of Scientific and Technical Information of China (English)

    LiQiang; WeiZeng-Quan; 等

    1998-01-01

    A rotating range modulator was designed and manufactured.which is applied to extend Bragg peak of heavy ion beam.Bragg curves of 75MeV/u 16O and 75MeV/u 12C ion beams through this range modulator were measured respectively and two evident spread-out Bragg peaks corresponding to the modulated beams above are shown.In addition,inactivation effect of the modulated 75MeV/u 16O ion beam at nine different penetration depths on melanoma cells(B16) was measured.Results indicate that lethal effects at the spread-out Bragg peak region are larger than at the plateau of the particle beam entrance.

  14. DNA double strand breaks as the critical type of damage with regard to inactivation of cells through ionizing radiation

    International Nuclear Information System (INIS)

    This report presents the results of an investigation into the effects of ionizing radiation on eukaryotic cells, aimed at revealing the molecular mechanisms leading to cell inactivation as a result of ionizing radiation. The quantitative determination of radiation-induced double strand breaks (DSB) is done via sedimentation of the DNA released from the cells in a neutral saccharose gradient in a preparative ultracentrifuge. The 'experimental mass spectrum' of DNA molecules thus obtained, the mean number of DSB per cell is calculated using a special computer program which simulates the stochastic induction of DSB in the DNA of non-irradiated cells and links the 'simulated' mass spectrum with the 'experimental' one on the basis of the least square fit. The experimental and theoretical studies with the eukaryote yeast on the whole allow insight into the relation between energy absorption and the inactivation of irradiated cells. (orig./MG)

  15. Epstein-Barr virus infection in vitro can rescue germinal center B cells with inactivated immunoglobulin genes.

    Science.gov (United States)

    Chaganti, Sridhar; Bell, Andrew I; Pastor, Noelia Begue; Milner, Anne E; Drayson, Mark; Gordon, John; Rickinson, Alan B

    2005-12-15

    Immunoglobulin genotyping of Epstein-Barr virus (EBV)-positive posttransplantation lymphoproliferative disease has suggested that such lesions often arise from atypical post-germinal center B cells, in some cases carrying functionally inactivated immunoglobulin genes. To investigate whether EBV can rescue cells that are failed products of the somatic hypermutation process occurring in germinal centers (GCs), we isolated GC cells from tonsillar cell suspensions and exposed them to EBV in vitro. Screening more than 100 EBV-transformed cell lines of GC origin identified 6 lines lacking surface immunoglobulin, a phenotype never seen among lines derived from circulating naive or memory B cells. Furthermore, 3 of the 6 surface immunoglobulin-negative GC lines carried inactivating mutations in the immunoglobulin H (IgH) variable gene sequence. The ability of EBV to rescue aberrant products of the germinal center reaction in vitro strengthens the probability that a parallel activity contributes to EBV's lymphomagenic potential in vivo.

  16. Pdx1 inactivation restricted to the intestinal epithelium in mice alters duodenal gene expression in enterocytes and enteroendocrine cells.

    Science.gov (United States)

    Chen, Chin; Fang, Rixun; Davis, Corrine; Maravelias, Charalambos; Sibley, Eric

    2009-12-01

    Null mutant mice lacking the transcription factor pancreatic and duodenal homeobox 1 (Pdx1) are apancreatic and survive only a few days after birth. The role of Pdx1 in regulating intestinal gene expression has therefore yet to be determined in viable mice with normal pancreatic development. We hypothesized that conditional inactivation of Pdx1 restricted to the intestinal epithelium would alter intestinal gene expression and cell differentiation. Pdx1(flox/flox);VilCre mice with intestine-specific Pdx1 inactivation were generated by crossing a transgenic mouse strain expressing Cre recombinase, driven by a mouse villin 1 gene promoter fragment, with a mutant mouse strain homozygous for loxP site-flanked Pdx1. Pdx1 protein is undetectable in all epithelial cells in the intestinal epithelium of Pdx1(flox/flox);VilCre mice. Goblet cell number and mRNA abundance for mucin 3 and mucin 13 genes in the proximal small intestine are comparable between Pdx1(flox/flox);VilCre and control mice. Similarly, Paneth cell number and expression of Paneth cell-related genes Defa1, Defcr-rs1, and Mmp7 in the proximal small intestine remain statistically unchanged by Pdx1 inactivation. Although the number of enteroendocrine cells expressing chromogranin A/B, gastric inhibitory polypeptide (Gip), or somatostatin (Sst) is unaffected in the Pdx1(flox/flox);VilCre mice, mRNA abundance for Gip and Sst is significantly reduced in the proximal small intestine. Conditional Pdx1 inactivation attenuates intestinal alkaline phosphatase (IAP) activity in the duodenal epithelium, consistent with an average 91% decrease in expression of the mouse enterocyte IAP gene, alkaline phosphatase 3 (a novel Pdx1 target candidate), in the proximal small intestine following Pdx1 inactivation. We conclude that Pdx1 is necessary for patterning appropriate gene expression in enterocytes and enteroendocrine cells of the proximal small intestine. PMID:19808654

  17. Effect of cytochrome P450 and aldo-keto reductase inhibitors on progesterone inactivation in primary bovine hepatic cell cultures.

    Science.gov (United States)

    Lemley, C O; Wilson, M E

    2010-10-01

    Progesterone is required for maintenance of pregnancy, and peripheral concentrations of progesterone are affected by both production and inactivation. Hepatic cytochrome P450 (EC 1.14.14.1) and aldo-keto reductase (EC 1.1.1.145-151) enzymes play a pivotal role in the first step of steroid inactivation, which involves the addition of hydroxyl groups to various sites of the cyclopentanoperhydrophenanthrene nucleus. The current objective was to discern the proportional involvement of hepatic progesterone inactivating enzymes on progesterone decay using specific enzyme inhibitors. Ticlopidine, diltiazem, curcumin, dicumarol, and naproxen were used because of their selective inhibition of cytochrome P450s, aldo-keto reductases, and glucuronosyltransferases. Liver biopsies were collected from 6 lactating Holstein dairy cows, and cells were dissociated using a nonperfusion technique. Confluent wells were preincubated for 4 h with enzyme inhibitor and then challenged with progesterone for 1 h. Cell viability was unaffected by inhibitor treatment and averaged 84±1%. In control wells, 50% of the progesterone had been inactivated after a 1-h challenge with 5 ng/mL of progesterone. Preincubation with curcumin, ticlopidine, or naproxen caused the greatest reduction in progesterone inactivation compared with controls and averaged 77, 39, or 37%, respectively. Hydroxylation of 4-nitrophenol to 4-nitrocatechol in intact cells was inhibited by approximately 65% after treatment with curcumin or ticlopidine. Glucuronidation of phenol red or 4-nitrocatechol in intact cells was inhibited by treatment with curcumin, dicumarol, or naproxen. In cytoplasmic preparations, aldo-keto reductase 1C activity was inhibited by curcumin, dicumarol, or naproxen treatment. Microsomal cytochrome P450 2C activity was inhibited by treatment with curcumin or ticlopidine, whereas cytochrome P450 3A activity was inhibited by treatment with curcumin or diltiazem. The contribution of cytochrome P450 2C and

  18. Variation in RNA virus mutation rates across host cells.

    Directory of Open Access Journals (Sweden)

    Marine Combe

    2014-01-01

    Full Text Available It is well established that RNA viruses exhibit higher rates of spontaneous mutation than DNA viruses and microorganisms. However, their mutation rates vary amply, from 10(-6 to 10(-4 substitutions per nucleotide per round of copying (s/n/r and the causes of this variability remain poorly understood. In addition to differences in intrinsic fidelity or error correction capability, viral mutation rates may be dependent on host factors. Here, we assessed the effect of the cellular environment on the rate of spontaneous mutation of the vesicular stomatitis virus (VSV, which has a broad host range and cell tropism. Luria-Delbrück fluctuation tests and sequencing showed that VSV mutated similarly in baby hamster kidney, murine embryonic fibroblasts, colon cancer, and neuroblastoma cells (approx. 10(-5 s/n/r. Cell immortalization through p53 inactivation and oxygen levels (1-21% did not have a significant impact on viral replication fidelity. This shows that previously published mutation rates can be considered reliable despite being based on a narrow and artificial set of laboratory conditions. Interestingly, we also found that VSV mutated approximately four times more slowly in various insect cells compared with mammalian cells. This may contribute to explaining the relatively slow evolution of VSV and other arthropod-borne viruses in nature.

  19. Inactivation of the von Hippel-Lindau tumour suppressor gene induces Neuromedin U expression in renal cancer cells

    OpenAIRE

    Shukla Deepa; Esteban Miguel A; Harten Sarah K; Ashcroft Margaret; Maxwell Patrick H

    2011-01-01

    Abstract Background 209 000 new cases of renal carcinoma are diagnosed each year worldwide and new therapeutic targets are urgently required. The great majority of clear cell renal cancer involves inactivation of VHL, which acts as a gatekeeper tumour suppressor gene in renal epithelial cells. However how VHL exerts its tumour suppressor function remains unclear. A gene expression microarray comparing RCC10 renal cancer cells expressing either VHL or an empty vector was used to identify novel...

  20. Mechanisms of Escherichia coli inactivation by several disinfectants.

    Science.gov (United States)

    Cho, Min; Kim, Jaeeun; Kim, Jee Yeon; Yoon, Jeyong; Kim, Jae-Hong

    2010-06-01

    The objective of this study was to elucidate dominant mechanisms of inactivation, i.e. surface attack versus intracellular attack, during application of common water disinfectants such as ozone, chlorine dioxide, free chlorine and UV irradiation. Escherichia coli was used as a representative microorganism. During cell inactivation, protein release, lipid peroxidation, cell permeability change, damage in intracellular enzyme and morphological change were comparatively examined. For the same level of cell inactivation by chemical disinfectants, cell surface damage was more pronounced with strong oxidant such as ozone while damage in inner cell components was more apparent with weaker oxidant such as free chlorine. Chlorine dioxide showed the inactivation mechanism between these two disinfectants. The results suggest that the mechanism of cell inactivation is primarily related to the reactivity of chemical disinfectant. In contrast to chemical disinfectants, cell inactivation by UV occurred without any changes measurable with the methods employed. Understanding the differences in inactivation mechanisms presented herein is critical to identify rate-limiting steps involved in the inactivation process as well as to develop more effective disinfection strategies.

  1. Inhibition of telomere recombination by inactivation of KEOPS subunit Cgi121 promotes cell longevity.

    Directory of Open Access Journals (Sweden)

    Jing Peng

    2015-03-01

    Full Text Available DNA double strand break (DSB is one of the major damages that cause genome instability and cellular aging. The homologous recombination (HR-mediated repair of DSBs plays an essential role in assurance of genome stability and cell longevity. Telomeres resemble DSBs and are competent for HR. Here we show that in budding yeast Saccharomyces cerevisiae telomere recombination elicits genome instability and accelerates cellular aging. Inactivation of KEOPS subunit Cgi121 specifically inhibits telomere recombination, and significantly extends cell longevity in both telomerase-positive and pre-senescing telomerase-negative cells. Deletion of CGI121 in the short-lived yku80(tel mutant restores lifespan to cgi121Δ level, supporting the function of Cgi121 in telomeric single-stranded DNA generation and thus in promotion of telomere recombination. Strikingly, inhibition of telomere recombination is able to further slow down the aging process in long-lived fob1Δ cells, in which rDNA recombination is restrained. Our study indicates that HR activity at telomeres interferes with telomerase to pose a negative impact on cellular longevity.

  2. Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors.

    Science.gov (United States)

    Modlich, Ute; Navarro, Susana; Zychlinski, Daniela; Maetzig, Tobias; Knoess, Sabine; Brugman, Martijn H; Schambach, Axel; Charrier, Sabine; Galy, Anne; Thrasher, Adrian J; Bueren, Juan; Baum, Christopher

    2009-11-01

    Gene transfer vectors may cause clonal imbalance and even malignant cell transformation by insertional upregulation of proto-oncogenes. Lentiviral vectors (LV) with their preferred integration in transcribed genes are considered less genotoxic than gammaretroviral vectors (GV) with their preference for integration next to transcriptional start sites and regulatory gene regions. Using a sensitive cell culture assay and a series of self-inactivating (SIN) vectors, we found that the lentiviral insertion pattern was approximately threefold less likely than the gammaretroviral to trigger transformation of primary hematopoietic cells. However, lentivirally induced mutants also showed robust replating, in line with the selection for common insertion sites (CIS) in the first intron of the Evi1 proto-oncogene. This potent proto-oncogene thus represents a CIS for both GV and LV, despite major differences in their integration mechanisms. Altering the vectors' enhancer-promoter elements had a greater effect on safety than the retroviral insertion pattern. Clinical grade LV expressing the Wiskott-Aldrich syndrome (WAS) protein under control of its own promoter had no transforming potential. Mechanistic studies support the conclusion that enhancer-mediated gene activation is the major cause for insertional transformation of hematopoietic cells, opening rational strategies for risk prevention.

  3. Kinetic model of Nav1.5 channel provides a subtle insight into slow inactivation associated excitability in cardiac cells.

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    Full Text Available Voltage-gated sodium channel Nav1.5 has been linked to the cardiac cell excitability and a variety of arrhythmic syndromes including long QT, Brugada, and conduction abnormalities. Nav1.5 exhibits a slow inactivation, corresponding to a duration-dependent bi-exponential recovery, which is often associated with various arrhythmia syndromes. However, the gating mechanism of Nav1.5 and the physiological role of slow inactivation in cardiac cells remain elusive. Here a 12-state two-step inactivation Markov model was successfully developed to depict the gating kinetics of Nav1.5. This model can simulate the Nav1.5 channel in not only steady state processes, but also various transient processes. Compared with the simpler 8-state model, this 12-state model is well-behaved in simulating and explaining the processes of slow inactivation and slow recovery. This model provides a good framework for further studying the gating mechanism and physiological role of sodium channel in excitable cells.

  4. Development of an algorithm for production of inactivated arbovirus antigens in cell culture.

    Science.gov (United States)

    Goodman, C H; Russell, B J; Velez, J O; Laven, J J; Nicholson, W L; Bagarozzi, D A; Moon, J L; Bedi, K; Johnson, B W

    2014-11-01

    Arboviruses are medically important pathogens that cause human disease ranging from a mild fever to encephalitis. Laboratory diagnosis is essential to differentiate arbovirus infections from other pathogens with similar clinical manifestations. The Arboviral Diseases Branch (ADB) reference laboratory at the CDC Division of Vector-Borne Diseases (DVBD) produces reference antigens used in serological assays such as the virus-specific immunoglobulin M antibody-capture enzyme-linked immunosorbent assay (MAC-ELISA). Antigen production in cell culture has largely replaced the use of suckling mice; however, the methods are not directly transferable. The development of a cell culture antigen production algorithm for nine arboviruses from the three main arbovirus families, Flaviviridae, Togaviridae, and Bunyaviridae, is described here. Virus cell culture growth and harvest conditions were optimized, inactivation methods were evaluated, and concentration procedures were compared for each virus. Antigen performance was evaluated by the MAC-ELISA at each step of the procedure. The antigen production algorithm is a framework for standardization of methodology and quality control; however, a single antigen production protocol was not applicable to all arboviruses and needed to be optimized for each virus.

  5. Noggin inactivation affects the number and differentiation potential of muscle progenitor cells in vivo.

    Science.gov (United States)

    Costamagna, Domiziana; Mommaerts, Hendrik; Sampaolesi, Maurilio; Tylzanowski, Przemko

    2016-01-01

    Inactivation of Noggin, a secreted antagonist of Bone Morphogenetic Proteins (BMPs), in mice leads, among others, to severe malformations of the appendicular skeleton and defective skeletal muscle fibers. To determine the molecular basis of the phenotype, we carried out a histomorphological and molecular analysis of developing muscles Noggin(-/-) mice. We show that in 18.5 dpc embryos there is a marked reduction in muscle fiber size and a failure of nuclei migration towards the cell membrane. Molecularly, the absence of Noggin results in an increased BMP signaling in muscle tissue as shown by the increase in SMAD1/5/8 phosphorylation, concomitant with the induction of BMP target genes such as Id1, 2, 3 as well as Msx1. Finally, upon removal of Noggin, the number of mesenchymal Pax7(+) muscle precursor cells is reduced and they are more prone to differentiate into adipocytes in vitro. Thus, our results highlight the importance of Noggin/BMP balance for myogenic commitment of early fetal progenitor cells. PMID:27573479

  6. Inactivation of encapsulated cells and their therapeutic effects by means of TGL triple-fusion reporter/biosafety gene.

    Science.gov (United States)

    Santos, Edorta; Larzabal, Leyre; Calvo, Alfonso; Orive, Gorka; Pedraz, José Luis; Hernández, Rosa Ma

    2013-01-01

    The immobilization of cells within alginate-poly-l-lysine-alginate (APA) microcapsules has been demonstrated to be an effective technology design for long term delivery of therapeutic products. Despite promising advances, biosafety aspects still remain to be improved. Here, we describe a complete characterization of the strategy based on TGL triple-fusion reporter gene--which codifies for Herpes Simplex virus type 1 thymidine-kinase (HSV1-TK), green fluorescent protein (GFP) and Firefly Luciferase--(SFG(NES)TGL) to inactivate encapsulated cells and their therapeutic effects. Myoblasts genetically engineered to secrete erythropoietin (EPO) were retroviraly transduced with the SFG(NES)TGL plasmid to further characterize their ganciclovir (GCV)-mediated inactivation process. GCV sensitivity of encapsulated cells was 100-fold lower when compared to cells plated onto 2D surfaces. However, the number of cells per capsule and EPO secretion decayed to less than 15% at the same time that proliferation was arrested after 14 days of GCV treatment in vitro. In vivo, ten days of GCV treatment was enough to restore the increased hematocrit levels of mice implanted with encapsulated TGL-expressing and EPO-secreting cells. Altogether, these results show that TGL triple-fusion reporter gene may be a good starting point in the search of a suitable biosafety strategy to inactivate encapsulated cells and control their therapeutic effects. PMID:23174140

  7. Differential Adsorption of Ochratoxin A and Anthocyanins by Inactivated Yeasts and Yeast Cell Walls during Simulation of Wine Aging

    OpenAIRE

    Leonardo Petruzzi; Antonietta Baiano; Antonio De Gianni; Milena Sinigaglia; Maria Rosaria Corbo; Antonio Bevilacqua

    2015-01-01

    The adsorption of ochratoxin A (OTA) by yeasts is a promising approach for the decontamination of musts and wines, but some potential competitive or interactive phenomena between mycotoxin, yeast cells, and anthocyanins might modify the intensity of the phenomenon. The aim of this study was to examine OTA adsorption by two strains of Saccharomyces cerevisiae (the wild strain W13, and the commercial isolate BM45), previously inactivated by heat, and a yeast cell wall preparation. Experiments w...

  8. X-chromosome inactivation in Rett Syndrome human induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Aaron YL Cheung

    2012-03-01

    Full Text Available Rett Syndrome (RTT is a neurodevelopmental disorder that affects girls due primarily to heterozygous mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MECP2. Random X-chromosome inactivation (XCI results in cellular mosaicism in which some cells express wild-type MECP2 while other cells express mutant MECP2. The generation of patient-specific human induced Pluripotent Stem cells (hiPSCs facilitates the production of RTT-hiPSC-derived neurons in vitro to investigate disease mechanisms and identify novel drug treatments. The generation of RTT-hiPSCs has been reported by many laboratories, however, the XCI status of RTT-hiPSCs has been inconsistent. Some report RTT-hiPSCs retain the inactive X-chromosome (post-XCI of the founder somatic cell allowing isogenic RTT-hiPSCs that express only the wild-type or mutant MECP2 allele to be isolated from the same patient. Post-XCI RTT-hiPSCs-derived neurons retain this allele-specific expression pattern of wild-type or mutant MECP2. Conversely, others report RTT-hiPSCs in which the inactive X-chromosome of the founder somatic cell reactivates (pre-XCI upon reprogramming into RTT-hiPSCs. Pre-XCI RTT-hiPSC-derived neurons exhibit random XCI resulting in cellular mosaicism with respect to wild-type and mutant MECP2 expression. Here we review and attempt to interpret the inconsistencies in XCI status of RTT-hiPSCs generated to date by comparison to other pluripotent systems in vitro and in vivo and the methods used to analyze XCI. Finally, we discuss the relative strengths and weaknesses of post- and pre-XCI hiPSCs in the context of RTT, and other X-linked and autosomal disorders for translational medicine.

  9. Pulsed Electric Field inactivation of microbial cells: the use of ceramic layers to increase the efficiency of treatment

    Science.gov (United States)

    Pizzichemi, M.

    2009-12-01

    The impact of Pulsed Electric Fields (PEF) on bacteria and plant or animal cells has been investigated since the early 1960s. High electric fields pulses (20-70 kV/cm, 1-10 μs) are reported to cause rupture of the cellular lipid membrane, through the mechanism of irreversible electroporation. Quantitative description of cell inactivation kinetics is based on the analysis of stability of lipid bilayers under electric fields and the thermal fluctuations associated with the production of pores. PEF has been successfully applied to inactivation of both Gram-positive and Gram-negative bacteria in many sorts of liquids, such as milk, fruit juices and liquid eggs. In all these media, the level of inactivation could reach the 5 Logs for an approximate range of pulses of 100-200, and an energy consumption of ˜ 10-100 kJ/kg. The advantages of PEF are the superior maintenance of functional and nutritional levels (if compared to traditional thermal treatment), continuous treatment and short processing times, while the current high costs of this technique make it more suitable for treatment of expensive media. We present a solution to the problem of volumes in PEF treatment through the use of high permittivity ceramics, while retaining the same inactivation efficiency and improving the duration of the electrodes.

  10. Pulsed Electric Field inactivation of microbial cells: the use of ceramic layers to increase the efficiency of treatment

    International Nuclear Information System (INIS)

    The impact of Pulsed Electric Fields (PEF) on bacteria and plant or animal cells has been investigated since the early 1960s. High electric fields pulses (20-70 kV/cm, 1-10 μs) are reported to cause rupture of the cellular lipid membrane, through the mechanism of irreversible electroporation. Quantitative description of cell inactivation kinetics is based on the analysis of stability of lipid bilayers under electric fields and the thermal fluctuations associated with the production of pores. PEF has been successfully applied to inactivation of both Gram-positive and Gram-negative bacteria in many sorts of liquids, such as milk, fruit juices and liquid eggs. In all these media, the level of inactivation could reach the 5 Logs for an approximate range of pulses of 100-200, and an energy consumption of ∼ 10-100 kJ/kg. The advantages of PEF are the superior maintenance of functional and nutritional levels (if compared to traditional thermal treatment), continuous treatment and short processing times, while the current high costs of this technique make it more suitable for treatment of expensive media. We present a solution to the problem of volumes in PEF treatment through the use of high permittivity ceramics, while retaining the same inactivation efficiency and improving the duration of the electrodes.

  11. Effective immunotherapy of weakly immunogenic solid tumours using a combined immunogene therapy and regulatory T-cell inactivation.

    LENUS (Irish Health Repository)

    Whelan, M C

    2012-01-31

    Obstacles to effective immunotherapeutic anti-cancer approaches include poor immunogenicity of the tumour cells and the presence of tolerogenic mechanisms in the tumour microenvironment. We report an effective immune-based treatment of weakly immunogenic, growing solid tumours using a locally delivered immunogene therapy to promote development of immune effector responses in the tumour microenvironment and a systemic based T regulatory cell (Treg) inactivation strategy to potentiate these responses by elimination of tolerogenic or immune suppressor influences. As the JBS fibrosarcoma is weakly immunogenic and accumulates Treg in its microenvironment with progressive growth, we used this tumour model to test our combined immunotherapies. Plasmids encoding GM-CSF and B7-1 were electrically delivered into 100 mm(3) tumours; Treg inactivation was accomplished by systemic administration of anti-CD25 antibody (Ab). Using this approach, we found that complete elimination of tumours was achieved at a level of 60% by immunogene therapy, 25% for Treg inactivation and 90% for combined therapies. Moreover, we found that these responses were immune transferable, systemic, tumour specific and durable. Combined gene-based immune effector therapy and Treg inactivation represents an effective treatment for weakly antigenic solid growing tumours and that could be considered for clinical development.

  12. Pulsed Electric Field inactivation of microbial cells: the use of ceramic layers to increase the efficiency of treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pizzichemi, M. [Physics Department, University of Milano - Bicocca (Italy)

    2009-12-15

    The impact of Pulsed Electric Fields (PEF) on bacteria and plant or animal cells has been investigated since the early 1960s. High electric fields pulses (20-70 kV/cm, 1-10 mus) are reported to cause rupture of the cellular lipid membrane, through the mechanism of irreversible electroporation. Quantitative description of cell inactivation kinetics is based on the analysis of stability of lipid bilayers under electric fields and the thermal fluctuations associated with the production of pores. PEF has been successfully applied to inactivation of both Gram-positive and Gram-negative bacteria in many sorts of liquids, such as milk, fruit juices and liquid eggs. In all these media, the level of inactivation could reach the 5 Logs for an approximate range of pulses of 100-200, and an energy consumption of approx 10-100 kJ/kg. The advantages of PEF are the superior maintenance of functional and nutritional levels (if compared to traditional thermal treatment), continuous treatment and short processing times, while the current high costs of this technique make it more suitable for treatment of expensive media. We present a solution to the problem of volumes in PEF treatment through the use of high permittivity ceramics, while retaining the same inactivation efficiency and improving the duration of the electrodes.

  13. A model for the induction of DNA damages and their evolution into cell clonogenic inactivation

    International Nuclear Information System (INIS)

    The dependence of the initial production of DNA damages on radiation quality was examined by using a proposed new model on the basis of target theory. For the estimation of DNA damage-production by different radiation qualities, five possible modes of radiation action, including both direct and indirect effects, were assumed inside a target the molecular structure of which was defined to consist of 10 base-pairs of DNA surrounded by water molecules. The induction of DNA damage was modeled on the basis of comparisons between the primary ionization mean free path and the distance between pairs of ionized atoms, such distance being characteristic on the mode of radiation action. The OH radicals per average energy to produce an ion pair on the nanosecond time scale was estimated and used for indirect action. Assuming a relation between estimated yields of DNA damages and experimental inactivation cross sections for AT-cells, the present model enabled the quantitative reproduction of experimental results for AT-cell killing under aerobic or hypoxic conditions. The results suggest a higher order organization of DNA in a way that there will be at least two types of water environment, one filling half the space surrounding DNA with a depth of 3.7-4.3 nm and the other filling all space with a depth 4.6-4.9 nm. (author)

  14. Reactive oxygen species in plasma against E. coli cells survival rate

    Science.gov (United States)

    Zhou, Ren-Wu; Zhang, Xian-Hui; Zong, Zi-Chao; Li, Jun-Xiong; Yang, Zhou-Bin; Liu, Dong-Ping; Yang, Si-Ze

    2015-08-01

    In this paper, we report on the contrastive analysis of inactivation efficiency of E. coli cells in solution with different disinfection methods. Compared with the hydrogen peroxide solution and the ozone gas, the atmospheric-pressure He plasma can completely kill the E. coli cells in the shortest time. The inactivation efficiency of E. coli cells in solution can be well described by using the chemical reaction rate model. X-ray photoelectron spectroscopy (XPS) analysis shows that the C-O or C=O content of the inactivated E. coli cell surface by plasma is predominantly increased, indicating the quantity of oxygen-containing species in plasma is more than those of two other methods, and then the C-C or C-H bonds can be broken, leading to the etching of organic compounds. Analysis also indicates that plasma-generated species can play a crucial role in the inactivation process by their direct reactions or the decompositions of reactive species, such as ozone into OH radicals in water, then reacting with E. coli cells. Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2014J01025), the National Natural Science Foundation of China (Grant No. 11275261), and the Funds from the Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance, China.

  15. Mechanism of photocatalytic bacterial inactivation on TiO2 films involving cell-wall damage and lysis

    OpenAIRE

    C. Pulgarin; Kiwi, J.; Nadtochenko, V.

    2012-01-01

    This article addresses the cell wall damage of Escherichia coil (from now on E. coil) by TiO2 suspensions. The dynamics of TiO2 photocatalysis by thin films layers is described. The films were characterized by FTIR spectroscopy and atomic force microscopy (AFM). The E coil complete inactivation is shown to be due to the partial damage of the cell-wall components (peroxidation). A small increase in the cell wall disorder concomitant with a decrease of the cell wall functional groups leads to h...

  16. On the origin of the deviation from the first order kinetics in inactivation of microbial cells by pulsed electric fields

    CERN Document Server

    Lebovka, N I

    2003-01-01

    A computer model was developed for estimation of the kinetics of microbial inactivation by pulsed electric field. The model is based on the electroporation theory of individual membrane damage, where spherical cell geometry and distribution of cell sizes are assumed. The variation of microbial cell sizes was assumed to follow a statistical probability distribution of the Gaussian type. Surviving kinetics was approximated by Weibull equation. The dependencies of two Weibull parameters (shape textit{n} and time $tau $, respectively) versus electric field intensity E and width of cell diameters distribution was studied.

  17. Microbial Inactivation by Ultrasound Assisted Supercritical Fluids

    Science.gov (United States)

    Benedito, Jose; Ortuño, Carmen; Castillo-Zamudio, Rosa Isela; Mulet, Antonio

    A method combining supercritical carbon dioxide (SC-CO2) and high power ultrasound (HPU) has been developed and tested for microbial/enzyme inactivation purposes, at different process conditions for both liquid and solid matrices. In culture media, using only SC-CO2, the inactivation rate of E. coli and S. cerevisiae increased with pressure and temperature; and the total inactivation (7-8 log-cycles) was attained after 25 and 140 min of SC-CO2 (350 bar, 36 °C) treatment, respectively. Using SC-CO2+HPU, the time for the total inactivation of both microorganisms was reduced to only 1-2 min, at any condition selected. The SC-CO2+HPU inactivation of both microorganisms was slower in juices (avg. 4.9 min) than in culture media (avg. 1.5 min). In solid samples (chicken, turkey ham and dry-cured pork cured ham) treated with SC-CO2 and SC-CO2+HPU, the inactivation rate of E. coli increased with temperature. The application of HPU to the SC-CO2 treatments accelerated the inactivation rate of E. coli and that effect was more pronounced in treatments with isotonic solution surrounding the solid food samples. The application of HPU enhanced the SC-CO2 inactivation mechanisms of microorganisms, generating a vigorous agitation that facilitated the CO2 solubilization and the mass transfer process. The cavitation generated by HPU could damage the cell walls accelerating the extraction of vital constituents and the microbial death. Thus, using the combined technique, reasonable industrial processing times and mild process conditions could be used which could result into a cost reduction and lead to the minimization in the food nutritional and organoleptic changes.

  18. Inactivation of Ricin Toxin by Nanosecond Pulsed Electric Fields Including Evidences from Cell and Animal Toxicity

    Science.gov (United States)

    Wei, Kai; Li, Wei; Gao, Shan; Ji, Bin; Zang, Yating; Su, Bo; Wang, Kaile; Yao, Maosheng; Zhang, Jue; Wang, Jinglin

    2016-01-01

    Ricin is one of the most toxic and easily produced plant protein toxin extracted from the castor oil plant, and it has been classified as a chemical warfare agent. Here, nanosecond pulsed electric fields (nsPEFs) at 30 kV/cm (pulse durations: 10 ns, 100 ns, and 300 ns) were applied to inactivating ricin up to 4.2 μg/mL. To investigate the efficacy, cells and mice were tested against the ricin treated by the nsPEFs via direct intraperitoneal injection and inhalation exposure. Results showed that nsPEFs treatments can effectively reduce the toxicity of the ricin. Without the nsPEFs treatment, 100% of mice were killed upon the 4 μg ricin injection on the first day, however 40% of the mice survived the ricin treated by the nsPEFs. Compared to injection, inhalation exposure even with higher ricin dose required longer time to observe mice fatality. Pathological observations revealed damages to heart, lung, kidney, and stomach after the ricin exposure, more pronounced for lung and kidney including severe bleeding. Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) and circular dichroism (CD) analyses revealed that although the primary structure of ricin was not altered, its secondary structures (beta-sheet and beta-turn) underwent transition upon the nsPEFs treatment.

  19. Spontaneous squamous cell carcinoma induced by the somatic inactivation of retinoblastoma and Trp53 tumor suppressors.

    Science.gov (United States)

    Martínez-Cruz, Ana Belén; Santos, Mirentxu; Lara, M Fernanda; Segrelles, Carmen; Ruiz, Sergio; Moral, Marta; Lorz, Corina; García-Escudero, Ramón; Paramio, Jesús M

    2008-02-01

    Squamous cell carcinomas (SCC) represent the most aggressive type of nonmelanoma skin cancer. Although little is known about the causal alterations of SCCs, in organ-transplanted patients the E7 and E6 oncogenes of human papillomavirus, targeting the p53- and pRb-dependent pathways, have been widely involved. Here, we report the functional consequences of the simultaneous elimination of Trp53 and retinoblastoma (Rb) genes in epidermis using Cre-loxP system. Loss of p53, but not pRb, produces spontaneous tumor development, indicating that p53 is the predominant tumor suppressor acting in mouse epidermis. Although the simultaneous inactivation of pRb and p53 does not aggravate the phenotype observed in Rb-deficient epidermis in terms of proliferation and/or differentiation, spontaneous SCC development is severely accelerated in doubly deficient mice. The tumors are aggressive and undifferentiated and display a hair follicle origin. Detailed analysis indicates that the acceleration is mediated by premature activation of the epidermal growth factor receptor/Akt pathway, resulting in increased proliferation in normal and dysplastic hair follicles and augmented tumor angiogenesis. The molecular characteristics of this model provide valuable tools to understand epidermal tumor formation and may ultimately contribute to the development of therapies for the treatment of aggressive squamous cancer. PMID:18245467

  20. Inactivation of Ricin Toxin by Nanosecond Pulsed Electric Fields Including Evidences from Cell and Animal Toxicity.

    Science.gov (United States)

    Wei, Kai; Li, Wei; Gao, Shan; Ji, Bin; Zang, Yating; Su, Bo; Wang, Kaile; Yao, Maosheng; Zhang, Jue; Wang, Jinglin

    2016-01-05

    Ricin is one of the most toxic and easily produced plant protein toxin extracted from the castor oil plant, and it has been classified as a chemical warfare agent. Here, nanosecond pulsed electric fields (nsPEFs) at 30 kV/cm (pulse durations: 10 ns, 100 ns, and 300 ns) were applied to inactivating ricin up to 4.2 μg/mL. To investigate the efficacy, cells and mice were tested against the ricin treated by the nsPEFs via direct intraperitoneal injection and inhalation exposure. Results showed that nsPEFs treatments can effectively reduce the toxicity of the ricin. Without the nsPEFs treatment, 100% of mice were killed upon the 4 μg ricin injection on the first day, however 40% of the mice survived the ricin treated by the nsPEFs. Compared to injection, inhalation exposure even with higher ricin dose required longer time to observe mice fatality. Pathological observations revealed damages to heart, lung, kidney, and stomach after the ricin exposure, more pronounced for lung and kidney including severe bleeding. Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) and circular dichroism (CD) analyses revealed that although the primary structure of ricin was not altered, its secondary structures (beta-sheet and beta-turn) underwent transition upon the nsPEFs treatment.

  1. Inactivation of SAG E3 ubiquitin ligase blocks embryonic stem cell differentiation and sensitizes leukemia cells to retinoid acid.

    Directory of Open Access Journals (Sweden)

    Mingjia Tan

    Full Text Available Sensitive to Apoptosis Gene (SAG, also known as RBX2 (RING box protein-2, is the RING component of SCF (SKP1, Cullin, and F-box protein E3 ubiquitin ligase. Our previous studies have demonstrated that SAG is an anti-apoptotic protein and an attractive anti-cancer target. We also found recently that Sag knockout sensitized mouse embryonic stem cells (mES to radiation and blocked mES cells to undergo endothelial differentiation. Here, we reported that compared to wild-type mES cells, the Sag(-/- mES cells were much more sensitive to all-trans retinoic acid (RA-induced suppression of cell proliferation and survival. While wild-type mES cells underwent differentiation upon exposure to RA, Sag(-/- mES cells were induced to death via apoptosis instead. The cell fate change, reflected by cellular stiffness, can be detected as early as 12 hrs post RA exposure by AFM (Atomic Force Microscopy. We then extended this novel finding to RA differentiation therapy of leukemia, in which the resistance often develops, by testing our hypothesis that SAG inhibition would sensitize leukemia to RA. Indeed, we found a direct correlation between SAG overexpression and RA resistance in multiple leukemia lines. By using MLN4924, a small molecule inhibitor of NEDD8-Activating Enzyme (NAE, that inactivates SAG-SCF E3 ligase by blocking cullin neddylation, we were able to sensitize two otherwise resistant leukemia cell lines, HL-60 and KG-1 to RA. Mechanistically, RA sensitization by MLN4924 was mediated via enhanced apoptosis, likely through accumulation of pro-apoptotic proteins NOXA and c-JUN, two well-known substrates of SAG-SCF E3 ligase. Taken together, our study provides the proof-of-concept evidence for effective treatment of leukemia patients by RA-MLN4924 combination.

  2. STUDIES ON THE BACTERIOPHAGE OF D'HERELLE : V. EFFECT OF ELECTROLYTES ON THE RATE OF INACTIVATION OF BACTERIOPHAGE BY ALCOHOL.

    Science.gov (United States)

    Bronfenbrenner, J J; Korb, C

    1926-01-01

    Addition of neutral salts to the lytic filtrate results in an increased rate of inactivation of the latter when alcohol is added to it. This effect of salts is the more marked the higher the valency of the cation. Conversely, removal by dialysis of salts originally present in the lytic filtrate tends to render lytic agent less sensitive to alcohol. Restitution of the original salt content to the dialyzed filtrate tends to bring the sensitiveness to alcohol in the dialyzed filtrate to the level of the non-dialyzed control. It appears, therefore, that inactivation of the lytic agent by alcohol depends directly on the rate of precipitation of the coagulable constituents of the medium, and is not the result of a direct toxic action of alcohol on "bacteriophagum intestinale." Considered in association with our earlier findings, these results speak in favor of the chemical nature of the agent of transmissible lysis.

  3. C3b covalently bound to IgG demonstrates a reduced rate of inactivation by factors H and I

    OpenAIRE

    1984-01-01

    We have prepared C3b covalently linked to IgG via a hydroxylamine- sensitive bond between the C3b alpha' chain and sites predominantly, but not exclusively, located in the IgG heavy chain. This C3b species displays relative resistance to inactivation by factors H and I when compared with free C3b. This resistance appears to be due entirely to reduced affinity of C3b-IgG for factor H. Resistance to inactivation is not conferred on C3b by binding to another serum glycoprotein of similar size, c...

  4. Α-MMC and MAP30, two ribosome-inactivating proteins extracted from Momordica charantia, induce cell cycle arrest and apoptosis in A549 human lung carcinoma cells.

    Science.gov (United States)

    Fan, Xiang; He, Lingli; Meng, Yao; Li, Gangrui; Li, Linli; Meng, Yanfa

    2015-05-01

    α‑Momorcharin (α‑MMC) and momordica anti‑human immunodeficiency virus protein (MAP30), produced by Momordica charantia, are ribosome‑inactivating proteins, which have been reported to exert inhibitory effects on cultured tumor cells. In order to further elucidate the functions of these agents, the present study aimed to investigate the effects of α‑MMC and MAP30 on cell viability, the induction of apoptosis, cell cycle arrest, DNA integrity and superoxide dismutase (SOD) activity. α‑MMC and MAP30 were purified from bitter melon seeds using ammonium sulfate precipitation in combination with sulfopropyl (SP)‑sepharose fast flow, sephacryl S‑100 and macro‑Cap‑SP chromatography. MTT, flow cytometric and DNA fragmentation analyses were then used to determine the effects of α‑MMC and MAP30 on human lung adenocarcinoma epithelial A549 cells. The results revealed that A549 cells were sensitive to α‑MMC and MAP30 cytotoxicity assays in vitro. Cell proliferation was significantly suppressed following α‑MMC and MAP30 treatment in a dose‑ and time‑dependent manner; in addition, the results indicated that MAP30 had a more potent anti‑tumor activity compared with that of α‑MMC. Cell cycle arrest in S phase and a significantly increased apoptotic rate were observed following treatment with α‑MMC and MAP30. Furthermore, DNA integrity analysis revealed that the DNA of A549 cells was degraded following treatment with α‑MMC and MAP30 for 48 h. The pyrogallol autoxidation method and nitrotetrazolium blue chloride staining were used to determine SOD activity, the results of which indicated that α‑MMC and MAP30 did not possess SOD activity. In conclusion, the results of the present study indicated that α‑MMC and MAP30 may have potential as novel therapeutic agents for the prophylaxis and treatment of cancer. PMID:25573293

  5. Matrine inhibits proliferation and induces apoptosis of human colon cancer LoVo cells by inactivating Akt pathway.

    Science.gov (United States)

    Zhang, Shujun; Cheng, Binglin; Li, Hali; Xu, Wei; Zhai, Bo; Pan, Shangha; Wang, Lei; Liu, Ming; Sun, Xueying

    2014-01-01

    The present study has investigated the anti-tumor activity and the underlying mechanisms of matrine on human colon cancer LoVo cells. Matrine inhibited the proliferation of the cells in dose- and time-dependent manners. The concentration required for 50 % inhibition (IC50) was 1.15, 0.738, and 0.414 mg/ml, when cell were incubated with matrine for 24, 48, and 72 h, respectively. Matrine induced cell cycle arrest at G1 phase by downregulating cyclin D1 and upregulating p27 and p21. Matrine induced cell apoptosis by reducing the ratio of Bcl-2/Bax and increasing the activation of caspase-9 in a dose-dependent manner. Matrine displayed its anti-tumor activity by inactivating Akt, the upstream factor of the above proteins. Matrine significantly reduced the protein levels of pAkt, and increased the protein levels of other downstream factors, pBad and pGSK-3β. Specific inhibition of pAkt induced cell apoptosis, and synergized with matrine to inhibit the proliferation of LoVo cells; whereas activation of Akt neutralized the inhibitory effect of matrine on cell proliferation. The present study has demonstrated that matrine inhibits proliferation and induces apoptosis of human colon cancer LoVo cells by inactivating Akt pathway, indicating matrine may be a potential anti-cancer agent for colon cancer.

  6. Poly(ethylene glycol-cholesterol inhibits L-type Ca2+ channel currents and augments voltage-dependent inactivation in A7r5 cells.

    Directory of Open Access Journals (Sweden)

    Rikuo Ochi

    Full Text Available Cholesterol distributes at a high density in the membrane lipid raft and modulates ion channel currents. Poly(ethylene glycol cholesteryl ether (PEG-cholesterol is a nonionic amphipathic lipid consisting of lipophilic cholesterol and covalently bound hydrophilic PEG. PEG-cholesterol is used to formulate lipoplexes to transfect cultured cells, and liposomes for encapsulated drug delivery. PEG-cholesterol is dissolved in the external leaflet of the lipid bilayer, and expands it to flatten the caveolae and widen the gap between the two leaflets. We studied the effect of PEG-cholesterol on whole cell L-type Ca(2+ channel currents (I(Ca,L recorded from cultured A7r5 arterial smooth muscle cells. The pretreatment of cells with PEG-cholesterol decreased the density of ICa,L and augmented the voltage-dependent inactivation with acceleration of time course of inactivation and negative shift of steady-state inactivation curve. Methyl-β-cyclodextrin (MβCD is a cholesterol-binding oligosaccharide. The enrichment of cholesterol by the MβCD:cholesterol complex (cholesterol (MβCD caused inhibition of I(Ca,L but did not augment voltage-dependent inactivation. Incubation with MβCD increased I(Ca,L, slowed the time course of inactivation and shifted the inactivation curve to a positive direction. Additional pretreatment by a high concentration of MβCD of the cells initially pretreated with PEG-cholesterol, increased I(Ca,L to a greater level than the control, and removed the augmented voltage-dependent inactivation. Due to the enhancement of the voltage-dependent inactivation, PEG-cholesterol inhibited window I(Ca,L more strongly as compared with cholesterol (MβCD. Poly(ethylene glycol conferred to cholesterol the efficacy to induce sustained augmentation of voltage-dependent inactivation of I(Ca,L.

  7. Peripheral blood complete remission after splenic irradiation in Mantle-Cell Lymphoma with 11q22-23 deletion and ATM inactivation

    International Nuclear Information System (INIS)

    Mantle Cell Lymphoma (MCL) is a well-known histological and clinical subtype of B-cell non-Hodgkin's Lymphomas. It is usually characterized by an aggressive disease course, presenting with advanced stage disease at diagnosis and with low response rates to therapy. However few cases of indolent course MCL have been described. We herein report a case of MCL with splenomegaly and peripheral blood involvement as main clinical features. The patient underwent moderate dose splenic radiation therapy and achieved spleen downsizing and peripheral blood complete remission. Splenic irradiation has been extensively used in the past as palliative treatment in several lymphoproliferative disorders and a systemic effect and sometimes peripheral blood complete remissions have been observed. Mainly advocated mechanisms responsible for this phenomenon are considered direct radiation-induced apoptotic cell death, immune modulation via proportional changes of lymphocyte subsets due to known differences in intrinsic radiosensitivity and a radiation-induced cytokine release. The peculiar intrinsic radiosensitivity pattern of lymphoid cells could probably be explained by well-defined individual genetic and molecular features. In this context, among NHLs, MCL subtype has the highest rate of ATM (Ataxia Teleangiectasia Mutated) inactivation. While the ATM gene is thought to play a key-role in detecting radiation-induced DNA damage (expecially Double Strand Breaks), recent in vitro data support the hypothesis that ATM loss may actually contribute to the radiosensitivity of MCL cells. ATM status was retrospectively investigated in our patient, with the tool of Fluorescence In Situ Hybridization, showing a complete inactivation of a single ATM allele secondary to the deletion of chromosomal region 11q22-23. The presence of this kind of cytogenetic aberration may be regarded in the future as a potential predictive marker of radiation response

  8. Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring

    Science.gov (United States)

    Chu, Chih-Ken; Tu, Yi-Chou; Hsiao, Jen-Hung; Yu, Jian-He; Yu, Chih-Kang; Chen, Shih-Yang; Tseng, Po-Hao; Chen, Shuai; Kiang, Yean-Woei; Yang, C. C.

    2016-03-01

    We demonstrate effective inactivation of oral cancer cells SAS through a combination of photothermal therapy (PTT) and photodynamic therapy (PDT) effects based on localized surface plasmon resonance (LSPR) around 1064 nm in wavelength of a Au nanoring (NRI) under femtosecond (fs) laser illumination. The PTT effect is caused by the LSPR-enhanced absorption of the Au NRI. The PDT effect is generated by linking the Au NRI with the photosensitizer of sulfonated aluminum phthalocyanines (AlPcS) for producing singlet oxygen through the LSPR-enhanced two-photon absorption (TPA) excitation of AlPcS. The laser threshold intensity for cancer cell inactivation with the applied Au NRI linked with AlPcS is significantly lower when compared to that with the Au NRI not linked with AlPcS. The comparison of inactivation threshold intensity between the cases of fs and continuous laser illuminations at the same wavelength and with the same average power confirms the crucial factor of TPA under fs laser illumination for producing the PDT effect.

  9. Incompatibility of lyophilized inactivated polio vaccine with liquid pentavalent whole-cell-pertussis-containing vaccine.

    Science.gov (United States)

    Kraan, Heleen; Ten Have, Rimko; van der Maas, Larissa; Kersten, Gideon; Amorij, Jean-Pierre

    2016-08-31

    A hexavalent vaccine containing diphtheria toxoid, tetanus toxoid, whole cell pertussis, Haemophilius influenza type B, hepatitis B and inactivated polio vaccine (IPV) may: (i) increase the efficiency of vaccination campaigns, (ii) reduce the number of injections thereby reducing needlestick injuries, and (iii) ensure better protection against pertussis as compared to vaccines containing acellular pertussis antigens. An approach to obtain a hexavalent vaccine might be reconstituting lyophilized polio vaccine (IPV-LYO) with liquid pentavalent vaccine just before intramuscular delivery. The potential limitations of this approach were investigated including thermostability of IPV as measured by D-antigen ELISA and rat potency, the compatibility of fluid and lyophilized IPV in combination with thimerosal and thimerosal containing hexavalent vaccine. The rat potency of polio type 3 in IPV-LYO was 2 to 3-fold lower than standardized on the D-antigen content, suggesting an alteration of the polio type 3 D-antigen particle by lyophilization. Type 1 and 2 had unaffected antigenicity/immunogenicity ratios. Alteration of type 3 D-antigen could be detected by showing reduced thermostability at 45°C compared to type 3 in non-lyophilized liquid controls. Reconstituting IPV-LYO in the presence of thimerosal (TM) resulted in a fast temperature dependent loss of polio type 1-3 D-antigen. The presence of 0.005% TM reduced the D-antigen content by ∼20% (polio type 2/3) and ∼60% (polio type 1) in 6h at 25°C, which are WHO open vial policy conditions. At 37°C, D-antigen was diminished even faster, suggesting that very fast, i.e., immediately after preparation, intramuscular delivery of the conceived hexavalent vaccine would not be a feasible option. Use of the TM-scavenger, l-cysteine, to bind TM (or mercury containing TM degradation products), resulted in a hexavalent vaccine mixture in which polio D-antigen was more stable. PMID:27470209

  10. Inactivation of TGFβ receptors in stem cells drives cutaneous squamous cell carcinoma

    Science.gov (United States)

    Cammareri, Patrizia; Rose, Aidan M.; Vincent, David F.; Wang, Jun; Nagano, Ai; Libertini, Silvana; Ridgway, Rachel A.; Athineos, Dimitris; Coates, Philip J.; McHugh, Angela; Pourreyron, Celine; Dayal, Jasbani H. S.; Larsson, Jonas; Weidlich, Simone; Spender, Lindsay C.; Sapkota, Gopal P.; Purdie, Karin J.; Proby, Charlotte M.; Harwood, Catherine A.; Leigh, Irene M.; Clevers, Hans; Barker, Nick; Karlsson, Stefan; Pritchard, Catrin; Marais, Richard; Chelala, Claude; South, Andrew P.; Sansom, Owen J.; Inman, Gareth J.

    2016-01-01

    Melanoma patients treated with oncogenic BRAF inhibitors can develop cutaneous squamous cell carcinoma (cSCC) within weeks of treatment, driven by paradoxical RAS/RAF/MAPK pathway activation. Here we identify frequent TGFBR1 and TGFBR2 mutations in human vemurafenib-induced skin lesions and in sporadic cSCC. Functional analysis reveals these mutations ablate canonical TGFβ Smad signalling, which is localized to bulge stem cells in both normal human and murine skin. MAPK pathway hyperactivation (through BrafV600E or KrasG12D knockin) and TGFβ signalling ablation (through Tgfbr1 deletion) in LGR5+ve stem cells enables rapid cSCC development in the mouse. Mutation of Tp53 (which is commonly mutated in sporadic cSCC) coupled with Tgfbr1 deletion in LGR5+ve cells also results in cSCC development. These findings indicate that LGR5+ve stem cells may act as cells of origin for cSCC, and that RAS/RAF/MAPK pathway hyperactivation or Tp53 mutation, coupled with loss of TGFβ signalling, are driving events of skin tumorigenesis. PMID:27558455

  11. Inactivation of TGFβ receptors in stem cells drives cutaneous squamous cell carcinoma.

    Science.gov (United States)

    Cammareri, Patrizia; Rose, Aidan M; Vincent, David F; Wang, Jun; Nagano, Ai; Libertini, Silvana; Ridgway, Rachel A; Athineos, Dimitris; Coates, Philip J; McHugh, Angela; Pourreyron, Celine; Dayal, Jasbani H S; Larsson, Jonas; Weidlich, Simone; Spender, Lindsay C; Sapkota, Gopal P; Purdie, Karin J; Proby, Charlotte M; Harwood, Catherine A; Leigh, Irene M; Clevers, Hans; Barker, Nick; Karlsson, Stefan; Pritchard, Catrin; Marais, Richard; Chelala, Claude; South, Andrew P; Sansom, Owen J; Inman, Gareth J

    2016-01-01

    Melanoma patients treated with oncogenic BRAF inhibitors can develop cutaneous squamous cell carcinoma (cSCC) within weeks of treatment, driven by paradoxical RAS/RAF/MAPK pathway activation. Here we identify frequent TGFBR1 and TGFBR2 mutations in human vemurafenib-induced skin lesions and in sporadic cSCC. Functional analysis reveals these mutations ablate canonical TGFβ Smad signalling, which is localized to bulge stem cells in both normal human and murine skin. MAPK pathway hyperactivation (through Braf(V600E) or Kras(G12D) knockin) and TGFβ signalling ablation (through Tgfbr1 deletion) in LGR5(+ve) stem cells enables rapid cSCC development in the mouse. Mutation of Tp53 (which is commonly mutated in sporadic cSCC) coupled with Tgfbr1 deletion in LGR5(+ve) cells also results in cSCC development. These findings indicate that LGR5(+ve) stem cells may act as cells of origin for cSCC, and that RAS/RAF/MAPK pathway hyperactivation or Tp53 mutation, coupled with loss of TGFβ signalling, are driving events of skin tumorigenesis. PMID:27558455

  12. p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD

    DEFF Research Database (Denmark)

    Harada, H; Andersen, Jens S.; Mann, M;

    2001-01-01

    Cytokines often deliver simultaneous, yet distinct, cell growth and cell survival signals. The 70-kDa ribosomal protein S6 kinase (p70S6K) is known to regulate cell growth by inducing protein synthesis components. We purified membrane-based p70S6K as a kinase responsible for site......-specific phosphorylation of BAD, which inactivates this proapoptotic molecule. Rapamycin inhibited mitochondrial-based p70S6K, which prevented phosphorylation of Ser-136 on BAD and blocked cell survival induced by insulin-like growth factor 1 (IGF-1). Moreover, IGF-1-induced phosphorylation of BAD Ser-136 was abolished in...... p70S6K-deficient cells. Thus, p70S6K is itself a dual pathway kinase, signaling cell survival as well as growth through differential substrates which include mitochondrial BAD and the ribosomal subunit S6, respectively....

  13. pRb inactivation in mammary cells reveals common mechanisms for tumor initiation and progression in divergent epithelia.

    Directory of Open Access Journals (Sweden)

    Karl Simin

    2004-02-01

    Full Text Available Retinoblastoma 1 (pRb and the related pocket proteins, retinoblastoma-like 1 (p107 and retinoblastoma-like 2 (p130 (pRb(f, collectively, play a pivotal role in regulating eukaryotic cell cycle progression, apoptosis, and terminal differentiation. While aberrations in the pRb-signaling pathway are common in human cancers, the consequence of pRb(f loss in the mammary gland has not been directly assayed in vivo. We reported previously that inactivating these critical cell cycle regulators in divergent cell types, either brain epithelium or astrocytes, abrogates the cell cycle restriction point, leading to increased cell proliferation and apoptosis, and predisposing to cancer. Here we report that mouse mammary epithelium is similar in its requirements for pRb(f function; Rb(f inactivation by T(121, a fragment of SV40 T antigen that binds to and inactivates pRb(f proteins, increases proliferation and apoptosis. Mammary adenocarcinomas form within 16 mo. Most apoptosis is regulated by p53, which has no impact on proliferation, and heterozygosity for a p53 null allele significantly shortens tumor latency. Most tumors in p53 heterozygous mice undergo loss of the wild-type p53 allele. We show that the mechanism of p53 loss of heterozygosity is not simply the consequence of Chromosome 11 aneuploidy and further that chromosomal instability subsequent to p53 loss is minimal. The mechanisms for pRb and p53 tumor suppression in the epithelia of two distinct tissues, mammary gland and brain, are indistinguishable. Further, this study has produced a highly penetrant breast cancer model based on aberrations commonly observed in the human disease.

  14. Inactivation of TGFβ receptors in stem cells drives cutaneous squamous cell carcinoma

    NARCIS (Netherlands)

    Cammareri, Patrizia; Rose, Aidan M; Vincent, David F; Wang, Jun; Nagano, Ai; Libertini, Silvana; Ridgway, Rachel A; Athineos, Dimitris; Coates, Philip J; McHugh, Angela; Pourreyron, Celine; Dayal, Jasbani H S; Larsson, Jonas; Weidlich, Simone; Spender, Lindsay C; Sapkota, Gopal P; Purdie, Karin J; Proby, Charlotte M; Harwood, Catherine A; Leigh, Irene M; Clevers, Hans; Barker, Nick; Karlsson, Stefan; Pritchard, Catrin; Marais, Richard; Chelala, Claude; South, Andrew P; Sansom, Owen J; Inman, Gareth J

    2016-01-01

    Melanoma patients treated with oncogenic BRAF inhibitors can develop cutaneous squamous cell carcinoma (cSCC) within weeks of treatment, driven by paradoxical RAS/RAF/MAPK pathway activation. Here we identify frequent TGFBR1 and TGFBR2 mutations in human vemurafenib-induced skin lesions and in spora

  15. MECHANISM OF FUSARIUM TRICINCTUM (CORDA) SACC. SPORE INACTIVATION BY CHLORINE DIOXIDE

    OpenAIRE

    Zhao Chen

    2015-01-01

    The mechanism of Fusarium tricinctum (Corda) Sacc. spore inactivation by chlorine dioxide (ClO2) was investigated. During F. tricinctum spore inactivation by ClO2, protein, DNA, and metal ion leakage, enzyme activity, and cell ultrastructure were examined. Protein and DNA leakages were not detected, while there were metal ion leakages of K+, Ca2+, and Mg2+, which were well-correlated with the inactivation rate. The enzyme activities of glucose-6-phosphate dehydrogenase, citrate synthase, and ...

  16. Living with an imperfect cell wall : compensation of femAB inactivation in Staphylococcus aureus

    NARCIS (Netherlands)

    Hübscher, Judith; Jansen, Andrea; Kotte, Oliver; Schäfer, Juliane; Majcherczyk, Paul A.; Harris, Llinos G.; Bierbaum, Gabriele; Heinemann, Matthias; Berger-Bächi, Brigitte

    2007-01-01

    Background: Synthesis of the Staphylococcus aureus peptidoglycan pentaglycine interpeptide bridge is catalyzed by the nonribosomal peptidyl transferases FemX, FemA and FemB. Inactivation of the femAB operon reduces the interpeptide to a monoglycine, leading to a poorly crosslinked peptidoglycan. fem

  17. Par-3 partitioning defective 3 homolog (C. elegans and androgen-induced prostate proliferative shutoff associated protein genes are mutationally inactivated in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Ivanov Igor

    2009-09-01

    Full Text Available Abstract Background Gene identification by nonsense-mediated mRNA decay inhibition (GINI has proven its usefulness in identifying mutant genes in cancer cell lines. An increase in transcription in response to NMD inhibition of a subset of genes is a major cause of false positives when genes are selected for sequencing analysis. To distinguish between mRNA accumulations caused by stress response-induced transcription and nonsense-containing mRNA stabilizations is a challenge in identifying mutant genes using GINI. Methods To identify potential tumor-suppressor genes mutated in prostate cancer cell lines, we applied a version of GINI that involves inhibition of NMD in two steps. In the first step, NMD is inhibited in duplicate tissue-culture plates. During this step, both the substrate for NMD and stress-response mRNA transcripts are accumulated in cells. In the second step, transcription is inhibited in both plates and NMD is inhibited in one plate and released in the second plate. Microarray analysis of gene-expression profiles in both plates after the second step detects only the differences in mRNA degradation but not in mRNA accumulation. Results Analyzing gene expression profile alterations in 22RV1 and LNCaP prostate cancer cells following NMD inhibition we selected candidates for sequencing analysis in both cell lines. Sequencing identified inactivating mutations in both alleles of the PARD3 and AS3 genes in the LNCaP and 22RV1 cells, respectively. Introduction of a wild-type PARD3 cDNA into the LNCaP cells resulted in a higher proliferation rate in tissue culture, a higher adhesion of LNCaP cells to the components of extracellular matrix and impaired the growth of the LNCaP cells in soft agar and in a three-dimensional cell-culture. Conclusion The mutational inactivation in a prostate cancer cell line of the PARD3 gene involved in asymmetric cell division and maintenance of cell-polarity suggests that the loss of cell-polarity contributes

  18. Matrine-induced apoptosis of human nasopharyngeal carcinoma cells via in vitro vascular endothelial growth factor-A/extracellular signal-regulated kinase1/2 pathway inactivation.

    Science.gov (United States)

    Xie, M; He, G; Wang, R; Shi, S; Chen, J; Ye, Y; Xie, L; Yi, X; Tang, A

    2014-07-01

    Matrine, a main active extract from Sophora flavescens Ait, has been demonstrated to exert anticancer effects on various cancer cell lines, such as malignant melanoma, breast cancer, and lung cancer. However, it is currently unclear whether matrine could also elicit an inhibitory effect on growth of nasopharyngeal carcinoma (NPC), let alone the possible molecular mechanisms. Therefore, in a previous study, we investigated matrine-induced proliferation inhibition and apoptosis in NPC cells. It was shown that proliferation of human NPC cells (CNE1 and CNE2) was significantly diminished by matrine in a dose- and time-dependent manner, and apoptosis was induced in both 2 NPC cells, particularly in CNE2 cells. Moreover, the increased apoptosis rate in matrine-treated CNE2 cells confirmed the proapoptotic activity of matrine. We further found that matrine treatment dose- and time-dependently reduced the levels of vascular endothelial growth factor-A (VEGF-A), and inactivated extracellular signal-regulated kinase1/2 (ERK1/2), followed by increased expression of downstream target caspase-3. Overall, we conclude that matrine could induce apoptosis of human NPC cells via VEGF-A/ERK1/2 pathway, which supports the potential use of matrine in clinically treating NPC.

  19. Inactivation of the von Hippel-Lindau tumour suppressor gene induces Neuromedin U expression in renal cancer cells

    Directory of Open Access Journals (Sweden)

    Shukla Deepa

    2011-07-01

    Full Text Available Abstract Background 209 000 new cases of renal carcinoma are diagnosed each year worldwide and new therapeutic targets are urgently required. The great majority of clear cell renal cancer involves inactivation of VHL, which acts as a gatekeeper tumour suppressor gene in renal epithelial cells. However how VHL exerts its tumour suppressor function remains unclear. A gene expression microarray comparing RCC10 renal cancer cells expressing either VHL or an empty vector was used to identify novel VHL regulated genes. Findings NMU (Neuromedin U is a neuropeptide that has been implicated in energy homeostasis and tumour progression. Here we show for the first time that VHL loss-of-function results in dramatic upregulation of NMU expression in renal cancer cells. The effect of VHL inactivation was found to be mediated via activation of Hypoxia Inducible Factor (HIF. Exposure of VHL expressing RCC cells to either hypoxia or dimethyloxalylglycine resulted in HIF activation and increased NMU expression. Conversely, suppression of HIF in VHL defective RCC cells via siRNA of HIF-α subunits or expression of Type 2C mutant VHLs reduced NMU expression levels. We also show that renal cancer cells express a functional NMU receptor (NMUR1, and that NMU stimulates migration of renal cancer cells. Conclusions These findings suggest that NMU may act in an autocrine fashion, promoting progression of kidney cancer. Hypoxia and HIF expression are frequently observed in many non-renal cancers and are associated with a poor prognosis. Our study raises the possibility that HIF may also drive NMU expression in non-renal tumours.

  20. Photodynamic inactivation of rubella virus enhances recombination with a latent virus of a baby hamster kidney cell line BHK21

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Nobuto; Urade, Masahiro (Hahnemann Univ. School of Medicine, Philadelphia, PA (USA))

    1989-09-01

    Rubella virus is very sensitive to photodynamic action. When tested with 1.2 x 10{sup -5} M toluidine blue and 8 W fluorescent lamp at a fluence of 11 W/m{sup 2}, inactivation kinetics showed a linear single hit curve with a k value of 1.48 min{sup -1}. Photodynamic inactivation of rubella virus greatly enhanced recombination with a latent virus (R-virus) of baby hamster kidney BHK21 cells. In contrast, no hybrids were detected in lysates of the cells infected with either UV-treated or untreated rubella virus. Therefore, hybrid viruses were readily detected only in lysates of BHK21 cells infected with photodynamically treated rubella virus. Photodynamic damage of rubella virus genomes generated a new hybrid type (hybrid type 3) in addition to a previously described type 2 hybrid (formerly designated as HPV-RV variant). Although both of these hybrid types carry the CF antigens of rubella virus, plaque forming ability of type 3 hybrid is neutralized neither by anti-rubella serum nor by anti-latent virus serum while type 2 hybrid is neutralized by anti-latent virus serum. (author).

  1. NIH 3T3 cells malignantly transformed by mot—2 show inactivation and cytoplasmic sequestration of the p53 protein

    Institute of Scientific and Technical Information of China (English)

    WADHWA; SYUICHITAKANO; 等

    1999-01-01

    In previous studies we have reported that a high level of expression of mot-2 protein results in malignant transformation of NIH 3T3 cells as analyzed by anchorage independent growth and nude mice assays [Kaul et al.,Oncogene,17,907-11,1998].Mot-2 was found to interact with tumor suppressor protein p53.The transient overexpression of mot-2 was inhibitory to transcriptional activation function of p53 [Wadhwa et al.,J.Biol.Chem.,273,2958691,1998].We demonstrate here that mot-2 transfected stable clone of NIH 3T3 that showed malignant properties indeed show inactivation of p53 function as assayed by exogenous p53 dependent reporter.The expression level of p53 in response to UV-irradiation was lower in NIH 3T3/mot-2 as compared to NIH 3T3 cells and also exhibited delay in reachingpeak.Furthermore,upon serum starvation p53 was seen to translocate to the nucleus in NIH 3T3,but not in its mot-3 derivative.The data suggests that mot-2 mediated cytoplasmic sequestration and inactivation of p53 may operate,at least in part,for malignant phenotype of NIH 3T3/mot-2 cells.

  2. INACTIVATION OF CRYPTOSPORIDIUM PARVUM OOCYSTS WITH OZONE

    Science.gov (United States)

    Ozone inactivation rates for Cryptosporidium parvum (C. parvum) oocysts were determined with an in-vitro excystation method based on excysted sporozoite counts. Results were consistent with published animal infectivity data for the same C. parvum strain. The inactivation kinetics...

  3. Targeted light-inactivation of the Ki-67 protein using theranostic liposomes leads to death of proliferating cells

    Science.gov (United States)

    Rahmanzadeh, Ramtin; Rai, Prakash; Gerdes, Johannes; Hasan, Tayyaba

    2010-02-01

    Nanomedicine is beginning to impact the treatment of several diseases and current research efforts include development of integrated nano-constructs (theranostics) which serve as probes for imaging and therapy in addition to delivering macromolecules intracellularly. In cancer, there is a vital unmet need for effective alternative treatments with high specificity and low systemic toxicity. This can be achieved by targeting key molecular markers associated with cancer cells with reduced effective drug doses. Here, we show an innovative proof-of-principle approach for efficient killing of proliferating ovarian cancer cells by inactivating a protein associated with cell proliferation namely, the nuclear Ki-67 protein (pKi-67), using nanotechnology-based photodynamic therapy (PDT). Antibodies against pKi-67 are widely used as prognostic tools for tumor diagnosis. In this work, anti pKi-67 antibodies were first conjugated to fluorescein isothiocyanate (FITC) and then encapsulated inside liposomes. After incubation of OVCAR-5 ovarian cancer cells with these liposomes, confocal microscopy confirmed the localization of the antibodies to the nucleoli of the cells. Irradiation with a 488 nm laser led to a significant loss of cell viability. The specificity of this approach for pKi-67 positive cells was demonstrated in confluent human lung fibroblasts (MRC-5) where only a small population of cells stain positive for pKi-67 and only minimal cell death was observed. Taken together, our findings suggest that pKi-67 targeted with nano-platform is an attractive therapeutic target in cancer therapy.

  4. Inactivation of the central nucleus of the amygdala blocks classical conditioning but not conditioning-specific reflex modification of rabbit heart rate.

    Science.gov (United States)

    Burhans, Lauren B; Schreurs, Bernard G

    2013-02-01

    Heart rate (HR) conditioning in rabbits is a widely used model of classical conditioning of autonomic responding that is noted for being similar to the development of conditioned heart rate slowing (bradycardia) in humans. We have shown previously that in addition to HR changes to a tone conditioned stimulus (CS), the HR reflex itself can undergo associative change called conditioning-specific reflex modification (CRM) that manifests when tested in the absence of the CS. Because CRM resembles the conditioned bradycardic response to the CS, we sought to determine if HR conditioning and CRM share a common neural substrate. The central nucleus of the amygdala (CeA) is a critical part of the pathway through which conditioned bradycardia is established. To test whether the CeA is also involved in the acquisition and/or expression of CRM, we inactivated the CeA with muscimol during HR conditioning or CRM testing. CeA inactivation blocked HR conditioning without completely preventing CRM acquisition or expression. These results suggest that the CeA may therefore only play a modulatory role in CRM. Theories on the biological significance of conditioned bradycardia suggest that it may represent a state of hypervigilance that facilitates the detection of new and changing contingencies in the environment. We relate these ideas to our results and discuss how they may be relevant to the hypersensitivity observed in fear conditioning disorders like post-traumatic stress.

  5. Arsenic Trioxide Inhibits Cell Growth and Induces Apoptosis through Inactivation of Notch Signaling Pathway in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Zhiwei Wang

    2012-08-01

    Full Text Available Arsenic trioxide has been reported to inhibit cell growth and induce apoptotic cell death in many human cancer cells including breast cancer. However, the precise molecular mechanisms underlying the anti-tumor activity of arsenic trioxide are still largely unknown. In the present study, we assessed the effects of arsenic trioxide on cell viability and apoptosis in breast cancer cells. For mechanistic studies, we used multiple cellular and molecular approaches such as MTT assay, apoptosis ELISA assay, gene transfection, RT-PCR, Western blotting, and invasion assays. For the first time, we found a significant reduction in cell viability in arsenic trioxide-treated cells in a dose-dependent manner, which was consistent with induction of apoptosis and also associated with down-regulation of Notch-1 and its target genes. Taken together, our findings provide evidence showing that the down-regulation of Notch-1 by arsenic trioxide could be an effective approach, to cause down-regulation of Bcl-2, and NF-κB, resulting in the inhibition of cell growth and invasion as well as induction of apoptosis. These results suggest that the anti-tumor activity of arsenic trioxide is in part mediated through a novel mechanism involving inactivation of Notch-1 and its target genes. We also suggest that arsenic trioxide could be further developed as a potential therapeutic agent for the treatment of breast cancer.

  6. Increasing the endogenous NO level causes catalase inactivation and reactivation of intercellular apoptosis signaling specifically in tumor cells.

    Science.gov (United States)

    Bauer, Georg

    2015-12-01

    Tumor cells generate extracellular superoxide anions and are protected against intercellular apoptosis-inducing HOCl- and NO/peroxynitrite signaling through the expression of membrane-associated catalase. This enzyme decomposes H2O2 and thus prevents HOCl synthesis. It efficiently interferes with NO/peroxynitrite signaling through oxidation of NO and decomposition of peroxynitrite. The regulatory potential of catalase at the crosspoint of ROS and RNS chemical biology, as well as its high local concentration on the outside of the cell membrane of tumor cells, establish tight control of intercellular signaling and thus prevent tumor cell apoptosis. Therefore, inhibition of catalase or its inactivation by singlet oxygen reactivate intercellular apoptosis-inducing signaling. Nitric oxide and peroxynitrite are connected with catalase in multiple and meaningful ways, as (i) NO can be oxidated by compound I of catalase, (ii) NO can reversibly inhibit catalase, (iii) peroxynitrite can be decomposed by catalase and (iv) the interaction between peroxynitrite and H2O2 leads to the generation of singlet oxygen that inactivates catalase. Therefore, modulation of the concentration of free NO through addition of arginine, inhibition of arginase, induction of NOS expression or inhibition of NO dioxygenase triggers an autoamplificatory biochemical cascade that is based on initial formation of singlet oxygen, amplification of superoxide anion/H2O2 and NO generation through singlet oxygen dependent stimulation of the FAS receptor and caspase-8. Finally, singlet oxygen is generated at sufficiently high concentration to inactivate protective catalase and to reactivate intercellular apoptosis-inducing ROS signaling. This regulatory network allows to establish several pathways for synergistic interactions, like the combination of modulators of NO metabolism with enhancers of superoxide anion generation, modulators of NO metabolism that act at different targets and between modulators of

  7. p53功能失活在食管鳞癌中的表达及意义%Significance of Functional Inactivation of p53 in Esophageal Squamous Cell Carcinoma

    Institute of Scientific and Technical Information of China (English)

    李小东; 戎铁华; 傅剑华; 龙浩

    2001-01-01

    目的:建立一种评价肿瘤生物学特性的新方法棗p53功能失活检测法,并探讨p53功能失活与食管鳞癌TNM分期(tumor,nodes,metastasisstaging)和组织学分级的关系。方法:采用p53功能测定法对45例新鲜食管鳞癌组织和正常食管组织进行p53功能检测(p53基因突变检测作为对照),将检测结果与患者的TNM分期和组织学分级进行统计学分析。结果:p53功能失活率为64%,明显高于p53基因突变率49%。p53功能失活和食管鳞癌的TNM分期有关,分期越高,p53功能失活率越高;p53功能失活和食管鳞癌的组织学分级有关,分级越高,p53功能失活率越高。结论:p53功能失活有望成为一种评价食管鳞癌生物学特性的新指标;p53功能失活与食管鳞癌的TNM分期和组织学分级有关。%Objective: The current study was designed to establish a new method to evaluate biological activity of carcinoma— functional status of p53, and investigate the relationship between functional inactivation of p53 and the TNM(tumor,nodes,metastasis) staging or histological classification of squamous cell carcinoma of esophagus. Methods: A total of 45 samples of fresh esophageal tissues of squamous cell carcinoma and normal esophageal tissues were examined for functional inactivation of p53 by detection of functional inactivation of p53 ( comparison with detection of p53 gene mutation ) . Then the analyses of detected results and the TNM stagings or the histological classifications of the carcinoma were statistically analyzed in SPSS. Results: The rate of functional inactivation of p53 (64% ) seemed to be obviously higher than that of p53 gene mutation (49% ) with a significant difference (P=0.046). There was a significant relationship between functional inactivation of p53 and the TNM staging of esophageal squamous cell carcinoma. Its rate tended to be increased with the advance of the TNM staging; there was a significant

  8. Ionizing irradiation not only inactivates clonogenic potential in primary normal human diploid lens epithelial cells but also stimulates cell proliferation in a subset of this population.

    Directory of Open Access Journals (Sweden)

    Yuki Fujimichi

    Full Text Available Over the past century, ionizing radiation has been known to induce cataracts in the crystalline lens of the eye, but its mechanistic underpinnings remain incompletely understood. This study is the first to report the clonogenic survival of irradiated primary normal human lens epithelial cells and stimulation of its proliferation. Here we used two primary normal human cell strains: HLEC1 lens epithelial cells and WI-38 lung fibroblasts. Both strains were diploid, and a replicative lifespan was shorter in HLEC1 cells. The colony formation assay demonstrated that the clonogenic survival of both strains decreases similarly with increasing doses of X-rays. A difference in the survival between two strains was actually insignificant, although HLEC1 cells had the lower plating efficiency. This indicates that the same dose inactivates the same fraction of clonogenic cells in both strains. Intriguingly, irradiation enlarged the size of clonogenic colonies arising from HLEC1 cells in marked contrast to those from WI-38 cells. Such enhanced proliferation of clonogenic HLEC1 cells was significant at ≥2 Gy, and manifested as increments of ≤2.6 population doublings besides sham-irradiated controls. These results suggest that irradiation of HLEC1 cells not only inactivates clonogenic potential but also stimulates proliferation of surviving uniactivated clonogenic cells. Given that the lens is a closed system, the stimulated proliferation of lens epithelial cells may not be a homeostatic mechanism to compensate for their cell loss, but rather should be regarded as abnormal. This is because these findings are consistent with the early in vivo evidence documenting that irradiation induces excessive proliferation of rabbit lens epithelial cells and that suppression of lens epithelial cell divisions inhibits radiation cataractogenesis in frogs and rats. Thus, our in vitro model will be useful to evaluate the excessive proliferation of primary normal human lens

  9. Transient removal of alkaline zones after excitation of Chara cells is associated with inactivation of high conductance in the plasmalemma.

    Science.gov (United States)

    Bulychev, Alexander A; Krupenina, Natalia A

    2009-08-01

    The action potential (AP) of excitable plant cells is a multifunctional physiological signal. Its generation in characean algae suppresses the pH banding for 15-30 min and enhances the heterogeneity of spatial distribution of photosynthetic activity. This suppression is largely due to the cessation of H(+) influx (OH(-) efflux) in the alkaline cell regions. Measurements of local pH and membrane conductance in individual space-clamped alkaline zones (small cell areas bathed in an isolated pool of external medium) showed that the AP generation is followed by the transient disappearance of alkaline zone in parallel with a large decrease in membrane conductance. These changes, specific to alkaline zones, were only observed under continuous illumination following a relaxation period of at least 15 min after previous excitation. The excitation of dark-adapted cells produced no conductance changes in the post-excitation period. The results indicate that the origin of alkaline zones in characean cells is not due to operation of electroneutral H(+)/HCO(3)(-) symport or OH(-)/HCO(3)(-) antiport. It is concluded that the membrane excitation is associated with inactivation of plasmalemma high conductance in the alkaline cell regions. PMID:19820298

  10. Inactivation of Bacteria using Combined Effects of Magnetic Field, Low Pressure and Ultra Low Frequency Plasma Discharges (ULFP)

    International Nuclear Information System (INIS)

    Inactivating viable cells at very short application times has been studied using Ultra Low Frequency Plasma (ULFP) at one Kilo Hertz, using an RF source. The targeted fashion is to inactivate Escherichia coli (E. coli) in the absence and in the presence of magnetic field. Adding oxygen (O2) to argon (Ar) in the discharge leads to a complete bacterial inactivation, where the inactivation rate increased as the concentration of O2 increases. Analyses of the experimental data of the initial and final densities of viable cells, using survival curves, showed a dramatic inhibitory effect of plasma discharge to the residual survival of microbial ratio due to the influence of the magnetic field.

  11. Inactivation of E. Coli cell viability and DNA Photo-breakage by Pulsed Nitrogen Laser Radiation

    International Nuclear Information System (INIS)

    The mutagenic and lethal effect of nitrogen laser radiation: 337.1 nm wave length, 1.5 millijoul pulse energy, 10 nanosecond pulse with and pulse repetition rate range from 1 to 50 Pulse/ second was evaluated on E. Coli cells. Results indicated that irradiation of E. coli JMP39 with pulse repetition of 8 , 16 , 32 pulse/sec, for 1, 5 , 10, 25 min respectively led to a significant decrease in cell count proportional to irradiation dose with significant increase in lacmutation frequency accompanied with some mutations in pattern of antibiotic resistance. The effect of nitrogen laser on the genomic content of the strain JMP39 was also studied by irradiating the total DNA with 30 pulse/second for 1 ,5, 15 , 30 min then subjected to both agarose gel electrophoresis and scanning spectrophotometry. The first technique revealed to DNA photo breakage and significant decrease in DNA absorbency was noticed by scanning spectrophotometry. This could be attributed to photo-decomposition resulted from multi-photo-excitation of UV-Laser pulses

  12. Production of inactivated influenza H5N1 vaccines from MDCK cells in serum-free medium.

    Directory of Open Access Journals (Sweden)

    Alan Yung-Chih Hu

    Full Text Available BACKGROUND: Highly pathogenic influenza viruses pose a constant threat which could lead to a global pandemic. Vaccination remains the principal measure to reduce morbidity and mortality from such pandemics. The availability and surging demand for pandemic vaccines needs to be addressed in the preparedness plans. This study presents an improved high-yield manufacturing process for the inactivated influenza H5N1 vaccines using Madin-Darby canine kidney (MDCK cells grown in a serum-free (SF medium microcarrier cell culture system. PRINCIPAL FINDING: The current study has evaluated the performance of cell adaptation switched from serum-containing (SC medium to several commercial SF media. The selected SF medium was further evaluated in various bioreactor culture systems for process scale-up evaluation. No significant difference was found in the cell growth in different sizes of bioreactors studied. In the 7.5 L bioreactor runs, the cell concentration reached to 2.3 × 10(6 cells/mL after 5 days. The maximum virus titers of 1024 Hemagglutinin (HA units/50 µL and 7.1 ± 0.3 × 10(8 pfu/mL were obtained after 3 days infection. The concentration of HA antigen as determined by SRID was found to be 14.1 µg/mL which was higher than those obtained from the SC medium. A mouse immunogenicity study showed that the formalin-inactivated purified SF vaccine candidate formulated with alum adjuvant could induce protective level of virus neutralization titers similar to those obtained from the SC medium. In addition, the H5N1 viruses produced from either SC or SF media showed the same antigenic reactivity with the NIBRG14 standard antisera. CONCLUSIONS: The advantages of this SF cell-based manufacturing process could reduce the animal serum contamination, the cost and lot-to-lot variation of SC medium production. This study provides useful information to manufacturers that are planning to use SF medium for cell-based influenza vaccine production.

  13. Induction of Apoptosis in Hormone-resistant Human Prostate Cancer PC3 Cells by Inactivated Sendai Virus

    Institute of Scientific and Technical Information of China (English)

    GAO Hui; GONG Xiao Cheng; CHEN Ze Dong; XU Xiao Shuang; ZHANG Quan; XU Xiang Ming

    2014-01-01

    ObjectiveInactivated Sendai virus particle [hemagglutinating virus of Japan envelope (HVJ-E)] has a potential oncolytic effect due to its ability to induce apoptosis in tumor cells. However, the molecular mechanism of apoptosis induction in cancer cellsmediated by HVJ-E has not been fully elucidated.This paper aims to investigate the underlying mechanism of apoptosis induction by HVJ-E in prostate cancer cells (PC3). MethodsPC3 cells were treated with HVJ-E at various MOI, and theninterferon-β (IFN-β) production, and the cell viability and apoptosis were detected by ELISA, MTT-based assay and flow cytometry, respectively. Next, the roles of Jak-Stat, MAPK and Akt pathways played in HVJ-E-induced apoptosis in PC3 cells were analyzed by immunoblot assay. To further evaluate the cytotoxic effect of HVJ-E on PC3 cells, HVJ-E was intratumorally injected into prostate cancers on BALB/c-nude mice, and the tumor volume was monitored for 36 days. ResultsHVJ-E induced IFN-β production and activatedJak-Stat signaling pathway, which resulted in the activation of caspase-8, caspase-3, and PARP in PC3 prostate cancer cells post HVJ-E treatment. Furthermore, we observed for the first time that p38 and Jnk MAPKs in PC3 cells contributed to HVJ-E-induced apoptosis. In addition,intratumoralHVJ-E treatmentdisplayed a directinhibitoryeffect in anin vivo BALB/cnude mouseprostate cancermodel. ConclusionOur findingshaveprovided novel insights into the underlying mechanismsby whichHVJ-E induces apoptosisin tumor cells.

  14. Von Hippel-Lindau (VHL inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors.

    Directory of Open Access Journals (Sweden)

    Lee E Moore

    2011-10-01

    Full Text Available Renal tumor heterogeneity studies have utilized the von Hippel-Lindau VHL gene to classify disease into molecularly defined subtypes to examine associations with etiologic risk factors and prognosis. The aim of this study was to provide a comprehensive analysis of VHL inactivation in clear cell renal tumors (ccRCC and to evaluate relationships between VHL inactivation subgroups with renal cancer risk factors and VHL germline single nucleotide polymorphisms (SNPs. VHL genetic and epigenetic inactivation was examined among 507 sporadic RCC/470 ccRCC cases using endonuclease scanning and using bisulfite treatment and Sanger sequencing across 11 CpG sites within the VHL promoter. Case-only multivariate analyses were conducted to identify associations between alteration subtypes and risk factors. VHL inactivation, either through sequence alterations or promoter methylation in tumor DNA, was observed among 86.6% of ccRCC cases. Germline VHL SNPs and a haplotype were associated with promoter hypermethylation in tumor tissue (OR = 6.10; 95% CI: 2.28-16.35, p = 3.76E-4, p-global = 8E-5. Risk of having genetic VHL inactivation was inversely associated with smoking due to a higher proportion of wild-type ccRCC tumors [former: OR = 0.70 (0.20-1.31 and current: OR = 0.56 (0.32-0.99; P-trend = 0.04]. Alteration prevalence did not differ by histopathologic characteristics or occupational exposure to trichloroethylene. ccRCC cases with particular VHL germline polymorphisms were more likely to have VHL inactivation through promoter hypermethylation than through sequence alterations in tumor DNA, suggesting that the presence of these SNPs may represent an example of facilitated epigenetic variation (an inherited propensity towards epigenetic variation in renal tissue. A proportion of tumors from current smokers lacked VHL alterations and may represent a biologically distinct clinical entity from inactivated cases.

  15. Responses of rat R-1 cells to low dose rate gamma radiation and multiple daily dose fractions

    International Nuclear Information System (INIS)

    Multifraction irradiation may offer the same therapeutic gain as continuous irradiation. Therefore, a comparison of the efficacy of low dose rate irradiation and multifraction irradiation was the main objective of the experiments to be described. Both regimens were tested on rat rhabdomyosarcoma (R-1) cells in vitro and in vivo. Exponentially growing R-1 cells were treated in vitro by a multifraction irradiation procedure with dose fractions of 2 Gy gamma radiation and time intervals of 1 to 3 h. The dose rate was 1.3 Gy.min-1. The results indicate that multifractionation of the total dose is more effective with respect to cell inactivation than continuous irradiation. (Auth.)

  16. Antihepatic Fibrosis Effect of Active Components Isolated from Green Asparagus (Asparagus officinalis L.) Involves the Inactivation of Hepatic Stellate Cells.

    Science.gov (United States)

    Zhong, Chunge; Jiang, Chunyu; Xia, Xichun; Mu, Teng; Wei, Lige; Lou, Yuntian; Zhang, Xiaoshu; Zhao, Yuqing; Bi, Xiuli

    2015-07-01

    Green asparagus (Asparagus officinalis L.) is a vegetable with numerous nutritional properties. In the current study, a total of 23 compounds were isolated from green asparagus, and 9 of these compounds were obtained from this genus for the first time. Preliminary data showed that the ethyl acetate (EtOAc)-extracted fraction of green asparagus exerted a stronger inhibitory effect on the growth of t-HSC/Cl-6 cells, giving an IC50 value of 45.52 μg/mL. The biological activities of the different compounds isolated from the EtOAc-extracted fraction with respect to antihepatic fibrosis were investigated further. Four compounds, C3, C4, C10, and C12, exhibited profound inhibitory effect on the activation of t-HSC/Cl-6 cells induced by TNF-α. The activation t-HSC/Cl-6 cells, which led to the production of fibrotic matrix (TGF-β1, activin C) and accumulation of TNF-α, was dramatically decreased by these compounds. The mechanisms by which these compounds inhibited the activation of hepatic stellate cells appeared to be associated with the inactivation of TGF-β1/Smad signaling and c-Jun N-terminal kinases, as well as the ERK phosphorylation cascade.

  17. Antihepatic Fibrosis Effect of Active Components Isolated from Green Asparagus (Asparagus officinalis L.) Involves the Inactivation of Hepatic Stellate Cells.

    Science.gov (United States)

    Zhong, Chunge; Jiang, Chunyu; Xia, Xichun; Mu, Teng; Wei, Lige; Lou, Yuntian; Zhang, Xiaoshu; Zhao, Yuqing; Bi, Xiuli

    2015-07-01

    Green asparagus (Asparagus officinalis L.) is a vegetable with numerous nutritional properties. In the current study, a total of 23 compounds were isolated from green asparagus, and 9 of these compounds were obtained from this genus for the first time. Preliminary data showed that the ethyl acetate (EtOAc)-extracted fraction of green asparagus exerted a stronger inhibitory effect on the growth of t-HSC/Cl-6 cells, giving an IC50 value of 45.52 μg/mL. The biological activities of the different compounds isolated from the EtOAc-extracted fraction with respect to antihepatic fibrosis were investigated further. Four compounds, C3, C4, C10, and C12, exhibited profound inhibitory effect on the activation of t-HSC/Cl-6 cells induced by TNF-α. The activation t-HSC/Cl-6 cells, which led to the production of fibrotic matrix (TGF-β1, activin C) and accumulation of TNF-α, was dramatically decreased by these compounds. The mechanisms by which these compounds inhibited the activation of hepatic stellate cells appeared to be associated with the inactivation of TGF-β1/Smad signaling and c-Jun N-terminal kinases, as well as the ERK phosphorylation cascade. PMID:26089141

  18. Effects of inactivated porcine epidemic diarrhea virus on porcine monocyte-derived dendritic cells and intestinal dendritic cells.

    Science.gov (United States)

    Gao, Qi; Zhao, Shanshan; Qin, Tao; Yin, Yinyan; Yu, Qinghua; Yang, Qian

    2016-06-01

    Porcine epidemic diarrhea (PED) is a serious infection in neonatal piglets. As the causative agent of PED, porcine epidemic diarrhea virus (PEDV) results in acute diarrhea and dehydration with high mortality rates in swine. Dendritic cells (DCs) are highly effective antigen-presenting cells to uptake and present viral antigens to T cells, which then initiate a distinct immune response. In this study, our results show that the expression of Mo-DCs surface markers such as SWC3a(+)CD1a(+), SWC3a(+)CD80/86(+) and SWC3a(+)SLA-II-DR(+) is increased after incubation with UV-PEDV for 24h. Mo-DCs incubated with UV-PEDV produce higher levels of IL-12 and INF-γ compared to mock-infected Mo-DCs. Interactions between Mo-DCs and UV-PEDV significantly stimulate T-cell proliferation in vitro. Consistent with these results, there is an enhancement in the ability of porcine intestinal DCs to activate T-cell proliferation in vivo. We conclude that UV-PEDV may be a useful and safe vaccine to trigger adaptive immunity. PMID:27234553

  19. Effect of temperature on the formation and inactivation of syringomycin E pores in human red blood cells and bimolecular lipid membranes.

    Science.gov (United States)

    Agner, G; Kaulin, Y A; Schagina, L V; Takemoto, J Y; Blasko, K

    2000-06-01

    The effects of temperature on the formation and inactivation of syringomycin E (SRE) pores were investigated with human red blood cells (RBCs) and lipid bilayer membranes (BLMs). SRE enhanced the RBC membrane permeability of 86Rb and monomeric hemoglobin in a temperature dependent manner. The kinetics of 86Rb and hemoglobin effluxes were measured at different temperatures and pore formation was found to be only slightly affected, while inactivation was strongly influenced by temperature. At 37 degrees C, SRE pore inactivation began 15 min after and at 20 degrees C, 40 min after SRE addition. At 6 degrees C, below the phase transition temperature of the major lipid components of the RBC membrane, no inactivation occurred for as long as 90 min. With BLMs, SRE induced a large current that remained stable at 14 degrees C, but at 23 degrees C it decreased over time while the single channel conductance and dwell time did not change. The results show that the temperature dependent inactivation of SRE pores is due to a decrease in the number of open pores.

  20. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling.

  1. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  2. Inactivation of Hela cancer cells by an atmospheric pressure cold plasma jet∗%大气压冷等离子体射流灭活子宫颈癌Hela细胞

    Institute of Scientific and Technical Information of China (English)

    黄骏†; 陈维; 李辉; 王鹏业; 杨思泽

    2013-01-01

    An inactivation mechanism study on Hela cancer cells by means of an atmospheric pressure cold plasma jet is presented. Cell morphology is observed under an inverted microscope after plasma treatment. The neutral red uptake assay provides quantitative evaluations of cell viability under different conditions. The effect of the inactivation efficiency of Hela cancer cells in the argon (900 mL/min) with addition of different amount of oxygen (1%, 2%, 4%, 8%) into atmospheric pressure cold plasma jet is discussed under the fixed power 18 W. Results show that 2% O2 addition provides the best inactivation efficiency, and the survival rate can be reduced to 7%after 180 s treatment. When the oxygen addition exceeds 2%, the inactivation efficiency gradually weakens. The effect is not so good as that in pure argon plasma when the oxygen addition arrives at 8%. According to the emission spectrum of the plasmum, it is concluded that the reactive oxygen species in the plasma play a key role in cancer cell inactivation process.%  研究了大气压冷等离子体射流对子宫颈癌Hela细胞的灭活机制。在倒置显微镜下观察不同等离子体处理条件下的细胞形态,并通过中性红吸收测试定量测定各个条件下的细胞存活率。将功率维持在18 W,在900 mL/min氩等离子体中添入氧气的百分含量分别为1%,2%,4%和8%的条件下处理Hela细胞,探讨活性气体氧气在惰性气体氩气中的百分含量对Hela癌细胞灭活效率的影响,发现添加2%氧气时,氩/氧等离子体灭活效果最佳,处理180 s后细胞存活率可降至7%。当继续添加氧超过2%时,灭活效果逐渐减弱,直至8%时,其效果反而不如单纯氩等离子体。通过测量等离子体发射光谱,结果表明活性氧自由基在癌细胞灭活过程中可能起关键作用。

  3. Study on Toxicity Reduction and Potency Induction in Whole-cell Pertussis Vaccine by Developing a New Optimal Inactivation Condition Processed on Bordetella pertussis

    Science.gov (United States)

    Mohammadpour Dounighi, Naser; Razzaghi-Abyane, Mehdi; Nofeli, Mojtaba; Zolfagharian, Hossein; Shahcheraghi, Fereshteh

    2016-01-01

    Background Whooping cough is caused by Bordetella pertussis, and it remains a public health concern. Whole-cell pertussis vaccines have been commonly employed for expanded immunization. There is no doubt of the efficacy of whole cell pertussis vaccine, but it is necessary to improve the vaccine to decrease its toxicity. Objectives In this study, an inactivation process of dealing with pertussis bacteria is optimized in order to decrease the bacteria content in human doses of vaccines and reduce the vaccine’s toxicity. Materials and Methods The bacterial suspensions of pertussis strains 509 and 134 were divided into 21 sample parts from F1 to F21 and inactivated under different conditions. The inactivated suspensions of both strains were tested for opacity, non-viability, agglutination, purity, and sterility; the same formulation samples that passed quality tests were then pooled together. The pool of inactivated suspensions were analyzed for sterility, agglutination, opacity, specific toxicity, and potency. Results The harvest of both bacterial strains showed purity. The opacity of various samples were lost under different treatment conditions by heat from 8% to 12%, formaldehyde 6% to 8%, glutaraldehyde 6% to 8%, and thimerosal 5% to 8%. Tests on suspensions after inactivation and on pooled suspensions showed inactivation conditions not degraded agglutinins of both strains. The samples of F2, F4, F8, F12, F15, and F17 passed the toxicity test. The potency (ED50) of these samples showed following order F17 > F12 > F8 > F15, F4 > F2, and F17 revealed higher potency compared to other formulations. Conclusions It can be concluded that F17 showed desirable outcomes in the toxicity test and good immunogenicity with a low bacterial number content. Consequently, lower adverse effects and good immunogenicity are foreseeable for vaccine preparation with this method. PMID:27679704

  4. MECHANISM OF FUSARIUM TRICINCTUM (CORDA SACC. SPORE INACTIVATION BY CHLORINE DIOXIDE

    Directory of Open Access Journals (Sweden)

    Zhao Chen

    2015-06-01

    Full Text Available The mechanism of Fusarium tricinctum (Corda Sacc. spore inactivation by chlorine dioxide (ClO2 was investigated. During F. tricinctum spore inactivation by ClO2, protein, DNA, and metal ion leakage, enzyme activity, and cell ultrastructure were examined. Protein and DNA leakages were not detected, while there were metal ion leakages of K+, Ca2+, and Mg2+, which were well-correlated with the inactivation rate. The enzyme activities of glucose-6-phosphate dehydrogenase, citrate synthase, and phosphofructokinase were inhibited and were also well-correlated with the inactivation rate. Electron micrographs showed the ultrastructural modifications of spores and demonstrated that spores were heavily distorted and collapsed from their regular structure. Spore surface damage and disruption in inner components was also severe. The metal ion leakage, the inhibition of enzyme activities, and the damage of spore structure were significant in F. tricinctum spore inactivation by ClO2.

  5. Genetic Inactivation of ATRX Leads to a Decrease in the Amount of Telomeric Cohesin and Level of Telomere Transcription in Human Glioma Cells.

    Science.gov (United States)

    Eid, Rita; Demattei, Marie-Véronique; Episkopou, Harikleia; Augé-Gouillou, Corinne; Decottignies, Anabelle; Grandin, Nathalie; Charbonneau, Michel

    2015-08-01

    Mutations in ATRX (alpha thalassemia/mental retardation syndrome X-linked), a chromatin-remodeling protein, are associated with the telomerase-independent ALT (alternative lengthening of telomeres) pathway of telomere maintenance in several types of cancer, including human gliomas. In telomerase-positive glioma cells, we found by immunofluorescence that ATRX localized not far from the chromosome ends but not exactly at the telomere termini. Chromatin immunoprecipitation (ChIP) experiments confirmed a subtelomeric localization for ATRX, yet short hairpin RNA (shRNA)-mediated genetic inactivation of ATRX failed to trigger the ALT pathway. Cohesin has been recently shown to be part of telomeric chromatin. Here, using ChIP, we showed that genetic inactivation of ATRX provoked diminution in the amount of cohesin in subtelomeric regions of telomerase-positive glioma cells. Inactivation of ATRX also led to diminution in the amount of TERRAs, noncoding RNAs resulting from transcription of telomeric DNA, as well as to a decrease in RNA polymerase II (RNAP II) levels at the telomeres. Our data suggest that ATRX might establish functional interactions with cohesin on telomeric chromatin in order to control TERRA levels and that one or the other or both of these events might be relevant to the triggering of the ALT pathway in cancer cells that exhibit genetic inactivation of ATRX. PMID:26055325

  6. Pharmacology of the human cell voltage-dependent cation channel. Part II: inactivation and blocking

    DEFF Research Database (Denmark)

    Bennekou, Poul; Barksmann, Trine L.; Kristensen, Berit I.;

    2004-01-01

    Human red cells; Nonselective voltage-dependent cation channel; NSVDC channel; Thiol group reagents......Human red cells; Nonselective voltage-dependent cation channel; NSVDC channel; Thiol group reagents...

  7. Identification of Key Factors Involved in the Biosorption of Patulin by Inactivated Lactic Acid Bacteria (LAB Cells.

    Directory of Open Access Journals (Sweden)

    Ling Wang

    Full Text Available The purpose of this study was to identify the key factors involved in patulin adsorption by heat-inactivated lactic acid bacteria (LAB cells. For preventing bacterial contamination, a sterilization process was involved in the adsorption process. The effects of various physical, chemical, and enzymatic pre-treatments, simultaneous treatments, and post-treatments on the patulin adsorption performances of six LAB strains were evaluated. The pre-treated cells were characterized by scanning electron microscopy (SEM. Results showed that the removal of patulin by viable cells was mainly based on adsorption or degradation, depending on the specific strain. The adsorption abilities were widely increased by NaOH and esterification pre-treatments, and reduced by trypsin, lipase, iodate, and periodate pre-treatments. Additionally, the adsorption abilities were almost maintained at pH 2.2-4.0, and enhanced significantly at pH 4.0-6.0. The effects of sodium and magnesium ions on the adsorption abilities at pH 4 were slight and strain-specific. A lower proportion of patulin was released from the strain with higher adsorption ability. Analyses revealed that the physical structure of peptidoglycan was not a principal factor. Vicinal OH and carboxyl groups were not involved in patulin adsorption, while alkaline amino acids, thiol and ester compounds were important for patulin adsorption. Additionally, besides hydrophobic interaction, electrostatic interaction also participated in patulin adsorption, which was enhanced with the increase in pH (4.0-6.0.

  8. Bacillus amyloliquefaciens SQR9 induces dendritic cell maturation and enhances the immune response against inactivated avian influenza virus

    Science.gov (United States)

    Huang, Lulu; Qin, Tao; Yin, YinYan; Gao, Xue; Lin, Jian; Yang, Qian; Yu, Qinghua

    2016-01-01

    The objective of this study was to evaluate the stimulatory effects of Bacillus amyloliquefaciens SQR9 on dendritic cells (DCs) and to verify its ability to enhance the immune response by modulating DC maturation. The results demonstrated that B. amyloliquefaciens SQR9 can adhere to the nasal epithelium and be taken up by DCs in the nasal mucosa, thereby inducing DC maturation and resulting in increased CD80, CD86, CD40 and MHCII expression and cytokine secretion. The frequencies of CD4+ and CD8+ T cells and CD69+ memory T cells were increased in spleens after nasal immunization with virus plus B. amyloliquefaciens SQR9 compared to immunization with inactivated H9N2 AIV alone. Moreover, the levels of sIgA in the nasal cavity, the trachea, and the lung and the levels of IgG, IgG1, and IgG2a in serum were significantly increased in mice administered WIV plus SQR9 compared to mice administered H9N2 WIV alone. The results of this study demonstrated that B. amyloliquefaciens SQR9 can stimulate DC maturation to effectively induce an immune response. In conclusion, an effective immune response may result from the uptake of H9N2 by DCs in the nasal mucosa, thereby stimulating DC maturation and migration to cervical lymph nodes to initiate immune response. PMID:26892720

  9. Retinoic acid facilitates inactivated transmissible gastroenteritis virus induction of CD8(+) T-cell migration to the porcine gut.

    Science.gov (United States)

    Chen, Xiaojuan; Tu, Chongzhi; Qin, Tao; Zhu, Liqi; Yin, Yinyan; Yang, Qian

    2016-01-01

    The digestive tract is the entry site for transmissible gastroenteritis virus (TGEV). TGEV transmission can be prevented if local immunity is established with increased lymphocytes. The current parenteral mode of vaccination stimulates systemic immunity well, but it does not induce sufficient mucosal immunity. Retinoic acid (RA) plays an important role in the induction of cells that imprint gut-homing molecules. We examined whether RA assist parenteral vaccination of pigs could improve mucosal immunity. We demonstrated that elevated numbers of gut-homing CD8(+) T cells (which express α4β7 and CCR9 molecules) were presented in porcine inguinal lymph nodes and were recruited to the small intestine by RA. Intestinal mucosal immunity (IgA titre) and systemic immunity (serum IgG titre) were enhanced by RA. Therefore, we hypothesized that RA could induce DCs to form an immature mucosal phenotype and could recruit them to the small intestinal submucosa. Porcine T-cells expressed β7 integrin and CCR9 receptors and migrated to CCL25 by a mechanism that was dependent of activation by RA-pretreated DCs, rather than direct activation by RA. Together, our results provide powerful evidence that RA can assist whole inactivated TGEV (WI-TGEV) via subcutaneous (s.c.) immunization to generate intestinal immunity, and offer new vaccination strategies against TGEV. PMID:27080036

  10. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    Science.gov (United States)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  11. Glycolysis Inhibition Inactivates ABC Transporters to Restore Drug Sensitivity in Malignant Cells

    OpenAIRE

    Ayako Nakano; Daisuke Tsuji; Hirokazu Miki; Qu Cui; Salah Mohamed El Sayed; Akishige Ikegame; Asuka Oda; Hiroe Amou; Shingen Nakamura; Takeshi Harada; Shiro Fujii; Kumiko Kagawa; Kyoko Takeuchi; Akira Sakai; Shuji Ozaki

    2011-01-01

    Cancer cells eventually acquire drug resistance largely via the aberrant expression of ATP-binding cassette (ABC) transporters, ATP-dependent efflux pumps. Because cancer cells produce ATP mostly through glycolysis, in the present study we explored the effects of inhibiting glycolysis on the ABC transporter function and drug sensitivity of malignant cells. Inhibition of glycolysis by 3-bromopyruvate (3BrPA) suppressed ATP production in malignant cells, and restored the retention of daunorubic...

  12. Neuropeptide Y1 receptor inhibits cell growth through inactivating mitogen-activated protein kinase signal pathway in human hepatocellular carcinoma.

    Science.gov (United States)

    Lv, Xiufang; Zhao, Fengbo; Huo, Xisong; Tang, Weidong; Hu, Baoying; Gong, Xiu; Yang, Juan; Shen, Qiujin; Qin, Wenxin

    2016-07-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers, and its incidence is increasing worldwide. Neuropeptide Y (NPY) broadly expressed in the central and peripheral nervous system. It participates in multiple physiological and pathological processes through specific receptors. Evidences are accumulating that NPY is involved in development and progression in neuro- or endocrine-related cancers. However, little is known about the potential roles and underlying mechanisms of NPY receptors in HCC. In this study, we analyzed the expression of NPY receptors by real-time polymerase chain reaction, Western blot, and immunohistochemical staining. Correlation between NPY1R levels and clinicopathological characteristics, and survival of HCC patients were explored, respectively. Cell proliferation was researched by CCK-8 in vitro, and tumor growth was studied by nude mice xenografts in vivo. We found that mRNA and protein level of NPY receptor Y1 subtype (NPY1R) significantly decreased in HCC tissues. Low expression of NPY1R closely correlated with poor prognosis in HCC patients. Proliferation of HCC cells was significantly inhibited by recombinant NPY protein in vitro. This inhibitory effect could be blocked by selected NPY1R antagonist BIBP3226. Furthermore, overexpression of NPY1R could significantly inhibit HCC cell proliferation. Knockdown of NPY1R promoted cell multiplication in vitro and increased tumorigenicity and tumor growth in vivo. NPY1R was found to participate in the inhibition of cell proliferation via inactivating mitogen-activated protein kinase signal pathway in HCC cells. Collectively, NPY1R plays an inhibitory role in tumor growth and may be a promising therapeutic target for HCC. PMID:27262566

  13. Cucurmosin induces apoptosis of BxPC-3 human pancreatic cancer cells via inactivation of the EGFR signaling pathway.

    Science.gov (United States)

    Zhang, Baoming; Huang, Heguang; Xie, Jieming; Xu, Chunsen; Chen, Minghuang; Wang, Congfei; Yang, Aiqin; Yin, Qiang

    2012-03-01

    Pancreatic cancer remains the fourth most common cause of cancer-related death in the United States. Potent therapeutic strategies are urgently needed for pancreatic cancer. Cucurmosin is a novel type 1 ribosome-inactivating protein (RIP) isolated from the sarcocarp of Cucurbita moschata (pumpkin). Due to its cytotoxicity, cucurmosin can inhibit tumor cell proliferation through induction of apoptosis on tumor cells, but the specific mechanism is still unclear. We explored the function of cucurmosin in BxPC-3 pancreatic cancer cells using multiple cellular and molecular approaches such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry, reverse transcription polymerase chain reaction (RT-PCR), Western blotting and transmission electron microscopy for observing typical changes and formation of apoptotic bodies. We found that cucurmosin inhibited the proliferation of BxPC-3 cells in a time- and dose-dependent manner, and increased the cell population in the G0-G1 phase. With increasing concentration of cucurmosin, the expression of EGFR, p-PI3K, Akt, p-Akt, mTOR, p-mTOR, P70S6K-α, p-P70S6K-α, 4E-BP1 and p-4E-BP1 at the protein level was decreased, whereas the expression of p-Bad and caspase-9 was elevated. However, the mRNA expression of EGFR did not change. These findings suggest that cucurmosin can down-regulate the expression of EGFR by targeting. Cucurmosin induces the apoptosis of BxPC-3 pancreatic cancer cells via the PI3K/Akt/mTOR signaling pathway.

  14. Matrine induces apoptosis in human acute myeloid leukemia cells via the mitochondrial pathway and Akt inactivation.

    Directory of Open Access Journals (Sweden)

    Shenghui Zhang

    Full Text Available Acute myeloid leukemia (AML is a hematological malignancy characterized by a rapid increase in the number of immature myeloid cells in bone marrow. Despite recent advances in the treatment, AML remains an incurable disease. Matrine, a major component extracted from Sophora flavescens Ait, has been demonstrated to exert anticancer effects on various cancer cell lines. However, the effects of matrine on AML remain largely unknown. Here we investigated its anticancer effects and underlying mechanisms on human AML cells in vitro and in vivo. The results showed that matrine inhibited cell viability and induced cell apoptosis in AML cell lines as well as primary AML cells from patients with AML in a dose- and time-dependent manner. Matrine induced apoptosis by collapsing the mitochondrial membrane potential, inducing cytochrome c release from mitochondria, reducing the ratio of Bcl-2/Bax, increasing activation of caspase-3, and decreasing the levels of p-Akt and p-ERK1/2. The apoptotic effects of matrine on AML cells were partially blocked by a caspase-3 inhibitor Z-DEVD-FMK and a PI3K/Akt activator IGF-1, respectively. Matrine potently inhibited in vivo tumor growth following subcutaneous inoculation of HL-60 cells in SCID mice. These findings indicate that matrine can inhibit cell proliferation and induce apoptosis of AML cells and may be a novel effective candidate as chemotherapeutic agent against AML.

  15. Graptopetalum paraguayense ameliorates chemical-induced rat hepatic fibrosis in vivo and inactivates stellate cells and Kupffer cells in vitro.

    Directory of Open Access Journals (Sweden)

    Li-Jen Su

    Full Text Available BACKGROUND: Graptopetalum paraguayense (GP is a folk herbal medicine with hepatoprotective effects that is used in Taiwan. The aim of this study was to evaluate the hepatoprotective and antifibrotic effects of GP on experimental hepatic fibrosis in both dimethylnitrosamine (DMN- and carbon tetrachloride (CCl(4-induced liver injury rats. METHODS: Hepatic fibrosis-induced rats were fed with the methanolic extract of GP (MGP by oral administration every day. Immunohistochemistry, biochemical assays, and Western blot analysis were performed. The effects of MGP on the expression of fibrotic markers and cytokines in the primary cultured hepatic stellate cells (HSCs and Kupffer cells, respectively, were evaluated. RESULTS: Oral administration of MGP significantly alleviated DMN- or CCl(4-induced liver inflammation and fibrosis. High levels of alanine transaminase, aspartate transaminase, bilirubin, prothrombin activity and mortality rates also decreased in rats treated with MGP. There were significantly decreased hydroxyproline levels in therapeutic rats compared with those of the liver-damaged rats. Collagen I and alpha smooth muscle actin (α-SMA expression were all reduced by incubation with MGP in primary cultured rat HSCs. Furthermore, MGP induced apoptotic cell death in activated HSCs. MGP also suppressed lipopolysaccharide-stimulated rat Kupffer cell activation by decreasing nitric oxide, tumor necrosis factor-α and interleukin-6 production, and increasing interleukin-10 expression. CONCLUSIONS: The results show that the administration of MGP attenuated toxin-induced hepatic damage and fibrosis in vivo and inhibited HSC and Kupffer cell activation in vitro, suggesting that MGP might be a promising complementary or alternative therapeutic agent for liver inflammation and fibrosis.

  16. EGFR inhibition evokes innate drug resistance in lung cancer cells by preventing Akt activity and thus inactivating Ets-1 function.

    Science.gov (United States)

    Phuchareon, Janyaporn; McCormick, Frank; Eisele, David W; Tetsu, Osamu

    2015-07-21

    Nonsmall cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. About 14% of NSCLCs harbor mutations in epidermal growth factor receptor (EGFR). Despite remarkable progress in treatment with tyrosine kinase inhibitors (TKIs), only 5% of patients achieve tumor reduction >90%. The limited primary responses are attributed partly to drug resistance inherent in the tumor cells before therapy begins. Recent reports showed that activation of receptor tyrosine kinases (RTKs) is an important determinant of this innate drug resistance. In contrast, we demonstrate that EGFR inhibition promotes innate drug resistance despite blockade of RTK activity in NSCLC cells. EGFR TKIs decrease both the mitogen-activated protein kinase (MAPK) and Akt protein kinase pathways for a short time, after which the Ras/MAPK pathway becomes reactivated. Akt inhibition selectively blocks the transcriptional activation of Ets-1, which inhibits its target gene, dual specificity phosphatase 6 (DUSP6), a negative regulator specific for ERK1/2. As a result, ERK1/2 is activated. Furthermore, elevated c-Src stimulates Ras GTP-loading and activates Raf and MEK kinases. These observations suggest that not only ERK1/2 but also Akt activity is essential to maintain Ets-1 in an active state. Therefore, despite high levels of ERK1/2, Ets-1 target genes including DUSP6 and cyclins D1, D3, and E2 remain suppressed by Akt inhibition. Reduction of DUSP6 in combination with elevated c-Src renews activation of the Ras/MAPK pathway, which enhances cell survival by accelerating Bim protein turnover. Thus, EGFR TKIs evoke innate drug resistance by preventing Akt activity and inactivating Ets-1 function in NSCLC cells.

  17. Acquisition of Chemoresistance and Other Malignancy-related Features of Colorectal Cancer Cells Are Incremented by Ribosome-inactivating Stress.

    Science.gov (United States)

    Oh, Chang-Kyu; Lee, Seung Joon; Park, Seong-Hwan; Moon, Yuseok

    2016-05-01

    Colorectal cancer (CRC) as an environmental disease is largely influenced by accumulated epithelial stress from diverse environmental causes. We are exposed to ribosome-related insults, including ribosome-inactivating stress (RIS), from the environment, dietary factors, and medicines, but their physiological impacts on the chemotherapy of CRC are not yet understood. Here we revealed the effects of RIS on chemosensitivity and other malignancy-related properties of CRC cells. First, RIS led to bidirectional inhibition of p53-macrophage inhibitory cytokine 1 (MIC-1)-mediated death responses in response to anticancer drugs by either enhancing ATF3-linked antiapoptotic signaling or intrinsically inhibiting MIC-1 and p53 expression, regardless of ATF3. Second, RIS enhanced the epithelial-mesenchymal transition and biogenesis of cancer stem-like cells in an ATF3-dependent manner. These findings indicate that gastrointestinal exposure to RIS interferes with the efficacy of chemotherapeutics, mechanistically implying that ATF3-linked malignancy and chemoresistance can be novel therapeutic targets for the treatment of environmentally aggravated cancers.

  18. A critical appraisal of Ixiaro® – a cell-derived inactivated vaccine for Japanese encephalitis

    Directory of Open Access Journals (Sweden)

    Taff Jones

    2009-11-01

    Full Text Available Taff JonesClinical Testing Laboratories, Medimmune, Mountain View, CA, USAAbstract: Japanese encephalitis is a disease prevalent across a huge swathe of southeast Asia. The number of reported cases of the disease is increasing in countries that do not have a vaccination program, but in contrast, is decreasing in countries that have implemented mass vaccination programs. Clearly vaccination is having some impact, and although visitors to the area are generally thought to be at low risk, vaccination is recommended for those staying 1 month or longer. Until recently, the only licensed vaccine available to them, JE-VAX®, was made from virus propagated in mouse brain, and among Western Hemisphere recipients of this vaccine, many side effects and adverse events were reported, and production of the vaccine was discontinued in 2007. A new vaccine, Ixiaro®, has recently been licensed. The vaccine comprises inactivated virus, previously propagated in Vero cells, adsorbed onto an alum adjuvant. In extensive clinical trials in both adult and pediatric populations, Ixiaro® has proven non-inferior to JE-VAX® in terms of immunogenicity and seroconversion, but with an improved safety and tolerability profile compared with JE-VAX®.Keywords: vero cells, JEV, vaccine

  19. Revealing mechanisms of selective, concentration-dependent potentials of 4-hydroxy-2-nonenal to induce apoptosis in cancer cells through inactivation of membrane-associated catalase.

    Science.gov (United States)

    Bauer, Georg; Zarkovic, Neven

    2015-04-01

    Tumor cells generate extracellular superoxide anions and are protected against superoxide anion-mediated intercellular apoptosis-inducing signaling by the expression of membrane-associated catalase. 4-Hydroxy-2-nonenal (4-HNE), a versatile second messenger generated during lipid peroxidation, has been shown to induce apoptosis selectively in malignant cells. The findings described in this paper reveal the strong, concentration-dependent potential of 4-HNE to specifically inactivate extracellular catalase of tumor cells both indirectly and directly and to consequently trigger apoptosis in malignant cells through superoxide anion-mediated intercellular apoptosis-inducing signaling. Namely, 4-HNE caused apoptosis selectively in NOX1-expressing tumor cells through inactivation of their membrane-associated catalase, thus reactivating subsequent intercellular signaling through the NO/peroxynitrite and HOCl pathways, followed by the mitochondrial pathway of apoptosis. Concentrations of 4-HNE of 1.2 µM and higher directly inactivated membrane-associated catalase of tumor cells, whereas at lower concentrations, 4-HNE triggered a complex amplificatory pathway based on initial singlet oxygen formation through H2O2 and peroxynitrite interaction. Singlet-oxygen-dependent activation of the FAS receptor and caspase-8 increased superoxide anion generation by NOX1 and amplification of singlet oxygen generation, which allowed singlet-oxygen-dependent inactivation of catalase. 4-HNE and singlet oxygen cooperate in complex autoamplificatory loops during this process. The finding of these novel anticancer pathways may be useful for understanding the role of 4-HNE in the control of malignant cells and for the optimization of ROS-dependent therapeutic approaches including antioxidant treatments.

  20. T cell inactivation by poxviral B22 family proteins increases viral virulence.

    Directory of Open Access Journals (Sweden)

    Dina Alzhanova

    2014-05-01

    Full Text Available Infections with monkeypox, cowpox and weaponized variola virus remain a threat to the increasingly unvaccinated human population, but little is known about their mechanisms of virulence and immune evasion. We now demonstrate that B22 proteins, encoded by the largest genes of these viruses, render human T cells unresponsive to stimulation of the T cell receptor by MHC-dependent antigen presentation or by MHC-independent stimulation. In contrast, stimuli that bypass TCR-signaling are not inhibited. In a non-human primate model of monkeypox, virus lacking the B22R homologue (MPXVΔ197 caused only mild disease with lower viremia and cutaneous pox lesions compared to wild type MPXV which caused high viremia, morbidity and mortality. Since MPXVΔ197-infected animals displayed accelerated T cell responses and less T cell dysregulation than MPXV US2003, we conclude that B22 family proteins cause viral virulence by suppressing T cell control of viral dissemination.

  1. Epigenetic inactivation of secreted frizzled-related protein 2 in esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Xiao-Wen Hao; Sheng-Tao Zhu; Yuan-Long He; Peng Li; Yong-Jun Wang; Shu-Tian Zhang

    2012-01-01

    AIM: To investigate the expression and methylation status of the secreted frizzled-related protein 2 (SFRP2) in esophageal squamous cell carcinoma (ESCC) and explore its role in ESCC carcinogenesis.METHODS: Seven ESCC cell lines (KYSE 30, KYSE150, KYSE410, KYSE510, EC109, EC9706 and TE-1) and one immortalized human esophageal epithelial cell line (Het-1A), 20 ESCC tissue samples and 20 paired adjacent non-tumor esophageal epithelial tissues were analyzed in this study. Reverse-transcription polymerase chain reaction (RT-PCR) was employed to investigate the expression of SFRP2 in cell lines, primary ESCC tumor tissue, and paired adjacent normal tissue. Methylation status was evaluated by methylation-specific PCR and bisulfite sequencing. The correlation between expression and promoter methylation of the SFRP2 gene was confirmed with treatment of 5-aza-2'-deoxycytidine. To assess the potential role of SFRP2 in ESCC, we established stable SFRP2-transfected cells and examined them with regard to cell proliferation, colony formation, apoptosis and cell cycle in vivo and in vitro.RESULTS: SFRP2 mRNA was expressed in the immortalized normal esophageal epithelial cell line but not in seven ESCC cell lines. By methylation-specific PCR, complete methylation was detected in three cell lines with silenced SFRP2 expression, and extensive methylation was observed in the other four ESCC cell lines. 5-aza-2'-deoxycytidine could restore the expression of SFRP2 mRNA in the three ESCC cell lines lacking SFRP2 expression. SFRP2 mRNA expression was obviously lower in primary ESCC tissue than in adjacent normal tissue (0.939 ± 0.398 vs 1.51 ± 0.399, P < 0.01). SFRP2 methylation was higher in tumor tissue than in paired normal tissue (95% vs 65%, P < 0.05). The DNA methylation status of the SFRP2 correlated inversely with the SFRP2 expression. To assess the potential role of SFRP2 in ESCC, we established stable SFRP2 transfectants and control counterparts by introducing pcDNA3.1/v5 his

  2. Bounds on bacterial cell growth rates

    CERN Document Server

    Landy, Jonathan

    2013-01-01

    Recent experiments have shown that rod-like bacteria in nutrient-rich media grow in length at an exponential rate. Here, I point out that it is the elongated shape of these bacteria that allows for this behavior. Further, I show that when a bacterium's growth is limited by some nutrient -- taken in by the cell through a diffusion-to-capture process -- its growth is suppressed: In three-dimensional geometries, the length $L$ is bounded by $\\log L \\lesssim t^{1/2}$, while in two dimensions the length is bounded by a power-law form. Fits of experimental growth curves to these predicted, sub-exponential forms could allow for direct measures of quantities relating to cellular metabolic rates.

  3. Epigenetic inactivation of SPINT2 is associated with tumor suppressive function in esophageal squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Dongli [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); The Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Fan, Qingxia [The Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Chen, Xinfeng; Li, Feng [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Wang, Liping [The Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Huang, Lan [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Dong, Wenjie; Chen, Xiaoqi [The Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Zhang, Zhen [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Liu, Jinyan; Wang, Fei [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); The School of Life Sciences, Zhengzhou University, Zhengzhou 450052, Henan (China); Wang, Meng [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); The Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Zhang, Bin [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); The Department of Hematology/Oncology, School of Medicine, Northwestern University, Chicago 60611 (United States); and others

    2014-03-10

    Hepatocyte growth factor activator inhibitor type 2 (SPINT2), a Kunitz-type serine proteinase inhibitor, has been identified as a putative tumor suppressor gene silenced by promoter methylation. We aimed to investigate whether SPINT2 might act as an esophageal squamous cell carcinoma (ESCC) tumor suppressor gene. Four ESCC cell lines, Fifty-two ESCC tissues and twenty-nine neighboring non-cancerous tissues were included in this study. The expression of SPINT2 was monitored by real time PCR. Bisulfite genomic sequencing and methylation-specific PCR were used to analyze methylation status. The effect of SPINT2 on cell proliferation and apoptosis in EC109 and EC9706 cells was observed by CCK-8 assay and flow cytometric analysis. We found that silencing of SPINT2 was associated with promoter methylation in ESCC cell lines. The densely methylated SPINT2 promoter region was confirmed by bisulfite genomic sequencing. Ectopic expression of SPINT2 inhibited cell proliferation through inducing cell apoptosis in vitro. Furthermore, methylation-specific PCR analysis revealed that SPINT2 promoter methylation was prominent in carcinoma tissues (52.08%) compared with neighboring non-cancerous tissues (22.58%). Kaplan–Meier analysis showed that patients with SPINT2 hypermethylation had shorter survival time. The tumor suppressor gene of SPINT2 is commonly silenced by promoter hypermethylation in human ESCC and SPINT2 hypermethylation is correlated with poor overall survival, implicating SPINT2 is an underlying prognostic marker for human ESCC. - Highlights: • We firstly found SPINT2 gene may be transcriptionally repressed by promoter hypermethylation in ESCC cells. • SPINT2 overexpressing cells induced proliferation inhibition through promoting apoptosis. • mRNA expression of SPINT2 was significantly higher in ESCC tissues than in neighboring non-cancerous tissues. • Promoter hypermethylation of SPINT2 is significantly linked to TNM stage and poor overall survival.

  4. PARD3 Inactivation in Lung Squamous Cell Carcinomas Impairs STAT3 and Promotes Malignant Invasion

    OpenAIRE

    Bonastre, Ester; Verdura, Sara; Zondervan, Ilse; Facchinetti, Federica; Lantuejoul, Sylvie; Chiara, Maria Dolores; Rodrigo, Juan Pablo; Carretero, Julian; Condom, Enric; Vidal, Agustin; Sidransky, David; Villanueva, Alberto; Roz, Luca; Brambilla, Elisabeth; Savola, Suvi

    2015-01-01

    Correct apicobasal polarization and intercellular adhesions are essential for the appropriate development of normal epithelia. Here, we investigated the contribution of the cell polarity regulator PARD3 to the development of lung squamous cell carcinomas (LSCC). Tumor-specific PARD3 alterations were found in 8% of LSCCs examined, placing PARD3 among the most common tumor suppressor genes in this malignancy. Most PAR3-mutant proteins exhibited a relative reduction in the ability to mediate for...

  5. Conditional inactivation of PDCD2 induces p53 activation and cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Celine J. Granier

    2014-08-01

    Full Text Available PDCD2 (programmed cell death domain 2 is a highly conserved, zinc finger MYND domain-containing protein essential for normal development in the fly, zebrafish and mouse. The molecular functions and cellular activities of PDCD2 remain unclear. In order to better understand the functions of PDCD2 in mammalian development, we have examined PDCD2 activity in mouse blastocyst embryos, as well as in mouse embryonic stem cells (ESCs and embryonic fibroblasts (MEFs. We have studied mice bearing a targeted PDCD2 locus functioning as a null allele through a splicing gene trap, or as a conditional knockout, by deletion of exon2 containing the MYND domain. Tamoxifen-induced knockout of PDCD2 in MEFs, as well as in ESCs, leads to defects in progression from the G1 to the S phase of cell cycle, associated with increased levels of p53 protein and p53 target genes. G1 prolongation in ESCs was not associated with induction of differentiation. Loss of entry into S phase of the cell cycle and marked induction of nuclear p53 were also observed in PDCD2 knockout blastocysts. These results demonstrate a unique role for PDCD2 in regulating the cell cycle and p53 activation during early embryonic development of the mouse.

  6. Sanguinarine Induces Apoptosis of Human Oral Squamous Cell Carcinoma KB Cells via Inactivation of the PI3K/Akt Signaling Pathway.

    Science.gov (United States)

    Lee, Tae Kyung; Park, Cheol; Jeong, Soon-Jeong; Jeong, Moon-Jin; Kim, Gi-Young; Kim, Wun-Jae; Choi, Yung Hyun

    2016-08-01

    Preclinical Research Sanguinarine, an alkaloid isolated from the root of Sanguinaria canadensis and other plants of the Papaveraceae family, selectively induces apoptotic cell death in a variety of human cancer cells, but its mechanism of action requires further elaboration. The present study investigated the pro-apoptotic effects of sanguinarine in human oral squamous cell carcinoma KB cells. Sanguinarine treatment increased DR5/TRAILR2 (death receptor 5/TRAIL receptor 2) expression and enhanced the activation of caspase-8 and cleavage of its substrate, Bid. Sanguinarine also induced the mitochondrial translocation of pro-apoptotic Bax, mitochondrial dysfunction, cytochrome c release to the cytosol, and activation of caspase-9 and -3. However, a pan-caspase inhibitor, z-VAD-fmk, reversed the growth inhibition and apoptosis induced by sanguinarine. Sanguinarine also suppressed the phosphorylation of phosphoinositide 3-kinase (PI3K) and Akt in KB cells, while co-treatment of cells with sanguinarine and a PI3K inhibitor revealed synergistic apoptotic effects. However, pharmacological inhibition of AMP-activated protein kinase and mitogen-activated protein kinases did not reduce or enhance sanguinarine-induced growth inhibition and apoptosis. Collectively, these findings indicate that the pro-apoptotic effects of sanguinarine in KB cells may be regulated by a caspase-dependent cascade via activation of both intrinsic and extrinsic signaling pathways and inactivation of PI3K/Akt signaling. Drug Dev Res 77 : 227-240, 2016.   © 2016 Wiley Periodicals, Inc. PMID:27363951

  7. Photocatalytic Inactivation Effect of Gold-Doped TiO2 (Au/TiO2 Nanocomposites on Human Colon Carcinoma LoVo Cells

    Directory of Open Access Journals (Sweden)

    Juan Xu

    2007-01-01

    Full Text Available The photocatalytic inactivation effecting of gold-doped TiO2 (Au/TiO2 nanocomposites on human colon carcinoma LoVo cells was investigated for the first time. The Au/TiO2 samples containing different amounts of Au (1–4 wt% were prepared by deposition-precipitation (DP method. These synthesized Au/TiO2 nanocomposites were characterized by transmission electron microscopy (TEM and inductively coupled plasma atomic emission spectroscopy. It was found that the photocatalytic inactivation effect of TiO2 nanoparticles on LoVo cancer cells could be greatly improved by the surface modification of Au nanoparticles. Furthermore, the loading amount of Au on the surface of TiO2 nanoparticles affects the photocatalytic inactivation efficiency strongly, and it was found that the most efficient nanocomposites were TiO2 nanoparticles doped with 2 wt% Au. When 50 μg/mL 2 wt% Au/TiO2 nanocomposites were used, all of the LoVo cancer cells were killed under the irradiation of UV light (λmax = 365 nm, Intensity = 1.8 mW/cm2 within 100 minutes. But for 50 μg/mL TiO2 nanoparticles, only 40% cancer cells were killed under the same condition.

  8. Inactivation of Escherichia coli in broth and sausage by combined high pressure and Lactobacillus casei cell extract.

    Science.gov (United States)

    Chung, Hyun-Jung; Yousef, Ahmed E

    2010-10-01

    The purpose of this study was to investigate the effect of combined high pressure and Lactobacillus casei cell extract (CE) on Escherichia coli O157 strains with variation in pressure resistance in broth and sausage. Pressure-resistant (O157:H7 and O157:H12) and -sensitive (O157-M1 and O157-M2) E. coli strains were used. Pressure treatment at 350 MPa for 20 min in broth caused 1.1-1.2 logs reduction in O157:H12 and O157:H7 and 4.1-5.5 logs reduction in the O157-M1 and O157-M2. When high pressure was treated in the presence of CE (32 CEAU/mL), the combination treatment caused a significant inactivation in the pressure-resistant O157:H7 strains resulting in the viability loss of 4.3-4.6 logs and the synergistic effect increased with increase in treatment time (p high pressure treatment. The synergy between high pressure processing and Lb. casei OSY-LB6A CE against pressure-resistant E. coli O157 strains suggests the feasibility of using this combination to minimize the risk of transmission of E. coli O157 by food.

  9. Systems biology modeling reveals a possible mechanism of the tumor cell death upon oncogene inactivation in EGFR addicted cancers.

    Directory of Open Access Journals (Sweden)

    Jian-Ping Zhou

    Full Text Available Despite many evidences supporting the concept of "oncogene addiction" and many hypotheses rationalizing it, there is still a lack of detailed understanding to the precise molecular mechanism underlying oncogene addiction. In this account, we developed a mathematic model of epidermal growth factor receptor (EGFR associated signaling network, which involves EGFR-driving proliferation/pro-survival signaling pathways Ras/extracellular-signal-regulated kinase (ERK and phosphoinositol-3 kinase (PI3K/AKT, and pro-apoptotic signaling pathway apoptosis signal-regulating kinase 1 (ASK1/p38. In the setting of sustained EGFR activation, the simulation results show a persistent high level of proliferation/pro-survival effectors phospho-ERK and phospho-AKT, and a basal level of pro-apoptotic effector phospho-p38. The potential of p38 activation (apoptotic potential due to the elevated level of reactive oxygen species (ROS is largely suppressed by the negative crosstalk between PI3K/AKT and ASK1/p38 pathways. Upon acute EGFR inactivation, the survival signals decay rapidly, followed by a fast increase of the apoptotic signal due to the release of apoptotic potential. Overall, our systems biology modeling together with experimental validations reveals that inhibition of survival signals and concomitant release of apoptotic potential jointly contribute to the tumor cell death following the inhibition of addicted oncogene in EGFR addicted cancers.

  10. Inactivation of CDK2 is synthetically lethal to MYCN over-expressing cancer cells

    NARCIS (Netherlands)

    J.J. Molenaar; M.E. Ebus; D. Geerts; J. Koster; F. Lamers; L.J. Valentijn; E.M. Westerhout; R. Versteeg; H.N. Caron

    2009-01-01

    Two genes have a synthetically lethal relationship when the silencing or inhibiting of 1 gene is only lethal in the context of a mutation or activation of the second gene. This situation offers an attractive therapeutic strategy, as inhibition of such a gene will only trigger cell death in tumor cel

  11. Coagulation Factor Xa inhibits cancer cell migration via LIMK1-mediated cofilin inactivation

    NARCIS (Netherlands)

    Borensztajn, Keren; Peppelenbosch, Maikel P.; Spek, C. Arnold

    2010-01-01

    Previously, we showed that activated coagulation factor X (FXa) inhibits migration of breast, lung and colon cancer cells. We showed that the effect of FXa on migration was protease-activated receptor (PAR)-1-dependent, but the subsequent cellular signaling routes remained elusive. In the current ma

  12. Repair-deficient xeroderma pigmentosum cells made UV light resistant by fusion with X-ray-inactivated Chinese hamster cells.

    OpenAIRE

    Karentz, D; Cleaver, J.E.

    1986-01-01

    Xeroderma pigmentosum (XP) is an autosomal recessive human disease, characterized by an extreme sensitivity to sunlight, caused by the inability of cells to repair UV light-induced damage to DNA. Cell fusion was used to transfer fragments of Chinese hamster ovary (CHO) chromosomes into XP cells. The hybrid cells exhibited UV resistance and DNA repair characteristics comparable to those expressed by CHO cells, and their DNA had greater homology with CHO DNA than did the DNA from XP cells. Cont...

  13. Heat Inactivation of Garlic (Allium sativum) Extract Abrogates Growth Inhibition of HeLa Cells.

    Science.gov (United States)

    Chintapalli, Renuka; Murray, Matthew J J; Murray, James T

    2016-07-01

    The potential anticancer properties of garlic (Allium sativum) may depend on the method of preparation and its storage. Storage of garlic has not been thoroughly investigated to determine whether anticancer properties are retained. Garlic was prepared and processed to mimic normal options for storage and preparation for consumption. Cytotoxicity was determined by crystal violet assay and mechanisms of cytotoxicity were established by microscopy, SDS-PAGE, and Western immunoblotting. Significant (P garlic. Depending on the method of storage, garlic extract induced either type I or type II programmed cell death, detectable by caspase 9 cleavage, or Poly (adenosine diphosphate-ribose) polymerase (PARP) cleavage and LC3-II accumulation, respectively. The conflicting literature on the anticancer properties of garlic may be explained by differences in processing and storage. This study has highlighted that the potency of the antiproliferative properties of cooked garlic, compared to the uncooked form, is diminished in HeLa cells. PMID:27176674

  14. T cell-specific inactivation of mouse CD2 by CRISPR/Cas9.

    Science.gov (United States)

    Beil-Wagner, Jane; Dössinger, Georg; Schober, Kilian; vom Berg, Johannes; Tresch, Achim; Grandl, Martina; Palle, Pushpalatha; Mair, Florian; Gerhard, Markus; Becher, Burkhard; Busch, Dirk H; Buch, Thorsten

    2016-01-01

    The CRISPR/Cas9 system can be used to mutate target sequences by introduction of double-strand breaks followed by imprecise repair. To test its use for conditional gene editing we generated mice transgenic for CD4 promoter-driven Cas9 combined with guide RNA targeting CD2. We found that within CD4(+) and CD8(+) lymphocytes from lymph nodes and spleen 1% and 0.6% were not expressing CD2, respectively. T cells lacking CD2 carryied mutations, which confirmed that Cas9 driven by cell-type specific promoters can edit genes in the mouse and may thus allow targeted studies of gene function in vivo. PMID:26903281

  15. Modelling the mechanism of cell inactivation by light ions at different energy values

    CERN Document Server

    Kundrát, P; Lokajícek, M; Kundrat, Pavel; Hromcikova, Hana; Lokajicek, Milos

    2004-01-01

    For efficient application of protons and light ions in radiotherapy, detailed knowledge and realistic models of the corresponding radiobiological mechanism are necessary. Basic characteristics of this mechanism have been represented within a probabilistic two-stage model. The processes that occur immediately after the traversals of individual particles and the response of cell to the total damage formed by all the particles have been distinguished. The model involves a probabilistic description of DNA damage formation and repair processes, too.

  16. Small unilamellar liposomes as a membrane model for cell inactivation by cold atmospheric plasma treatment

    Science.gov (United States)

    Maheux, S.; Frache, G.; Thomann, J. S.; Clément, F.; Penny, C.; Belmonte, T.; Duday, D.

    2016-09-01

    Cold atmospheric plasma is thought to be a promising tool for numerous biomedical applications due to its ability to generate a large diversity of reactive species in a controlled way. In some cases, it can also generate pulsed electric fields at the zone of treatment, which can induce processes such as electroporation in cell membranes. However, the interaction of these reactive species and the pulse electric field with cells in a physiological medium is very complex, and we still need a better understanding in order to be useful for future applications. A way to reach this goal is to work with model cell membranes such as liposomes, with the simplest physiological liquid and in a controlled atmosphere in order to limit the number of parallel reactions and processes. In this paper, where this approach has been chosen, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) small unilamellar vesicles (SUV) have been synthesized in a phosphate buffered aqueous solution, and this solution has been treated by a nanosecond pulsed plasma jet under a pure nitrogen atmosphere. It is only the composition of the plasma gas that has been changed in order to generate different cocktails of reactive species. After the quantification of the main plasma reactive species in the phosphate buffered saline (PBS) solution, structural, surface charge state, and chemical modifications generated on the plasma treated liposomes, due to the interaction with the plasma reactive species, have been carefully characterized. These results allow us to further understand the effect of plasma reactive species on model cell membranes in physiological liquids. The permeation through the liposomal membrane and the reaction of plasma reactive species with molecules encapsulated inside the liposomes have also been evaluated. New processes of degradation are finally presented and discussed, which come from the specific conditions of plasma treatment under the pure nitrogen atmosphere.

  17. Ozone exposure of human tracheal epithelial cells inactivates cyclooxygenase and increases 15-HETE production.

    Science.gov (United States)

    Alpert, S E; Walenga, R W

    1995-12-01

    We assessed the immediate and prolonged effects of ozone on arachidonic acid (AA) metabolism by primary cultured human tracheal epithelial (TE) cells. TE monolayers were exposed at a gas-fluid interface to air or 0.1, 0.25, or 0.5 ppm ozone (15 min air, then 45 min air/ozone), and serially collected effluents were analyzed by thin-layer chromatography (TLC) and/or high-performance liquid chromatography. Release of prostaglandin E2 (PGE2) and AA, but not 15-hydroxyeicosatetraenoic acid (15-HETE) or its metabolites, was detected from cultures prelabeled with [14C]AA. PGE2 production, measured by immunoassay, was nearly constant during air exposure. In contrast, PGE2 increased two- to threefold during the first 15-min exposure to all concentrations of ozone, but then progressively declined to 78 +/- 17, 57 +/- 12 (P ozone. Ozone did not induce a new spectrum of AA metabolites; only PGE2, lesser amounts of PGF2 alpha, and 15-HETE were present in media and cell extracts of air- or ozone-exposed cultures provided with 30 microM exogenous AA. However, cyclooxygenase (CO) activity (PGE2 produced from 30 microM AA) decreased to 82 +/- 9, 53 +/- 8 (P ozone, whereas 15-HETE production was unimpaired. When cells exposed to 0.5 ppm ozone were maintained for up to 6 h in 5% CO2-air, spontaneous PGE2 production remained decreased and recovery of CO activity was extremely slow. TLC analysis of lipid extracts from [14C]AA-labeled cells revealed a nearly twofold increase in free intracellular 15-HETE, and hydrolysis of phospholipids demonstrated increased esterified 15-HETE. Exposure of human TE cells to ozone leads to a transient increase followed by prolonged decrease in PGE2 production and increased intracellular retention of 15-HETE. Loss of the bronchodilator and anti-inflammatory properties of epithelial PGE2, with or without increased 15-HETE, might contribute to ozone-induced airway dysfunction. PMID:8572235

  18. Phytochemicals in lowbush wild blueberry inactivate Escherichia coli O157:H7 by damaging its cell membrane.

    Science.gov (United States)

    Lacombe, Alison; Tadepalli, Shravani; Hwang, Chen-An; Wu, Vivian C H

    2013-11-01

    The antimicrobial activity and model of action of polyphenolic compounds extracted from lowbush wild blueberries (LWB) were studied against Escherichia coli O157:H7. Polyphenols in LWB were extracted using 80% vol/vol methanol and designated as total blueberry phenolics (TBP). The fraction was further separated by a C-18 Sep-Pak cartridge into monomeric phenolics acids (MPA) and anthocyanins plus proanthocyanidins (A&P). The A&P fraction was further separated into anthocyanins and proanthocyanidins using a LH-20 Sephadex column. Each fraction was diluted in 0.85% wt/vol NaCl, inoculated with E. coli O157:H7 to achieve 8 log colony-forming units (CFU)/mL, and incubated at 25 °C for 1 h. The survival populations of E. coli O157:H7 in the phenolic fractions were determined by a viable cell counts method. The permeability of the cell membrane of E. coli O157:H7 was determined using LIVE/DEAD viability assay, and the damage was visualized by using transmission electron microscopy (TEM). Significant (pproanthocyanidins (0.15 g/L GAE), A&P (0.45 g/L GAE), anthocyanins (0.65 g/L GAE), and TBP (0.14 g/L GAE). TEM confirmed the inactivation and increased membrane permeability of E. coli O157:H7. This study demonstrated the antimicrobial effect of polyphenols from LWB against E. coli O157:H7 and the probable mode of action. PMID:23944751

  19. Inactivation of Akt by arsenic trioxide induces cell death via mitochondrial-mediated apoptotic signaling in SGC-7901 human gastric cancer cells.

    Science.gov (United States)

    Gao, Yan-Hui; Zhang, Hao-Peng; Yang, Shu-Meng; Yang, Yue; Ma, Yu-Yan; Zhang, Xin-Yu; Yang, Yan-Mei

    2014-04-01

    Arsenic trioxide (As2O3) has been recognized as a potential chemotherapeutic agent, yet the details concerning its mechanism of action in solid cancers remain undetermined. The present study assessed the role of Akt in the cell death induced by As2O3. The MTT assay showed that As2O3 suppressed the proliferation of SGC-7901 cells in a dose- and time-dependent manner. Characteristic apoptotic changes were observed in the As2O3‑treated cells by Hoechst 33342 staining, and FACS analysis showed that As2O3 caused dose-dependent apoptotic cell death. As2O3 activated caspase-3 and -9, and PARP cleavage in a dose-dependent manner. Compromised mitochondrial membrane potential and an increased protein level of Bax indicated involvement of mitochondia. As2O3 decreased the levels of p-Akt (Ser473), p-Akt (Thr308) and p-GSK-3β (Ser9), suggesting that As2O3 inactivated Akt kinase. In addition, LY294002 (a PI3 kinase inhibitor) augmented the apoptosis induced by As2O3. These results demonstrated that inhibition of PI3K/Akt signaling was involved in As2O3-induced apoptosis of gastric cancer SGC-7901 cells. PMID:24482137

  20. Treated domestic sewage: kinetics of Escherichia coli and total coliform inactivation by oxidation with hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Gean Delise L. P. Vargas

    2013-01-01

    Full Text Available Hydrogen peroxide has been used for decades in developed countries as an oxidizing agent in the treatment of water, domestic sewage and industrial effluents. This study evaluated the influence of the concentration of H2O2 and pH on the inactivation of Escherichia coli cells and the disinfection of sewage treated. The results showed that the inactivation rate increased with pH and H2O2. The presence of other contaminants dissolved in the effluent is probably the cause of these differences, because E. coli inactivation in synthetic wastewater was found to be much faster than in the real treated domestic sewage.

  1. The inactivation of Arx in pancreatic α-cells triggers their neogenesis and conversion into functional β-like cells.

    Directory of Open Access Journals (Sweden)

    Monica Courtney

    2013-10-01

    Full Text Available Recently, it was demonstrated that pancreatic new-born glucagon-producing cells can regenerate and convert into insulin-producing β-like cells through the ectopic expression of a single gene, Pax4. Here, combining conditional loss-of-function and lineage tracing approaches, we show that the selective inhibition of the Arx gene in α-cells is sufficient to promote the conversion of adult α-cells into β-like cells at any age. Interestingly, this conversion induces the continuous mobilization of duct-lining precursor cells to adopt an endocrine cell fate, the glucagon(+ cells thereby generated being subsequently converted into β-like cells upon Arx inhibition. Of interest, through the generation and analysis of Arx and Pax4 conditional double-mutants, we provide evidence that Pax4 is dispensable for these regeneration processes, indicating that Arx represents the main trigger of α-cell-mediated β-like cell neogenesis. Importantly, the loss of Arx in α-cells is sufficient to regenerate a functional β-cell mass and thereby reverse diabetes following toxin-induced β-cell depletion. Our data therefore suggest that strategies aiming at inhibiting the expression of Arx, or its molecular targets/co-factors, may pave new avenues for the treatment of diabetes.

  2. Adjuvant effects of invariant NKT cell ligand potentiates the innate and adaptive immunity to an inactivated H1N1 swine influenza virus vaccine in pigs.

    Science.gov (United States)

    Dwivedi, Varun; Manickam, Cordelia; Dhakal, Santosh; Binjawadagi, Basavaraj; Ouyang, Kang; Hiremath, Jagadish; Khatri, Mahesh; Hague, Jacquelyn Gervay; Lee, Chang Won; Renukaradhya, Gourapura J

    2016-04-15

    Pigs are considered as the source of some of the emerging human flu viruses. Inactivated swine influenza virus (SwIV) vaccine has been in use in the US swine herds, but it failed to control the flu outbreaks. The main reason has been attributed to lack of induction of strong local mucosal immunity in the respiratory tract. Invariant natural killer T (iNKT) cell is a unique T cell subset, and activation of iNKT cell using its ligand α-Galactosylceramide (α-GalCer) has been shown to potentiate the cross-protective immunity to inactivated influenza virus vaccine candidates in mice. Recently, we discovered iNKT cell in pig and demonstrated its activation using α-GalCer. In this study, we evaluated the efficacy of an inactivated H1N1 SwIV coadministered with α-GalCer intranasally against a homologous viral challenge. Our results demonstrated the potent adjuvant effects of α-GalCer in potentiating both innate and adaptive immune responses to SwIV Ags in the lungs of pigs, which resulted in reduction in the lung viral load by 3 logs compared to without adjuvant. Immunologically, in the lungs of pigs vaccinated with α-GalCer an increased virus specific IgA response, IFN-α secretion and NK cell-cytotoxicity was observed. In addition, iNKT cell-stimulation enhanced the secretion of Th1 cytokines (IFN-γ and IL-12) and reduced the production of immunosuppressive cytokines (IL-10 and TGF-β) in the lungs of pigs⋅ In conclusion, we demonstrated for the first time iNKT cell adjuvant effects in pigs to SwIV Ags through augmenting the innate and adaptive immune responses in the respiratory tract.

  3. Glucose-induced repression of PPARalpha gene expression in pancreatic beta-cells involves PP2A activation and AMPK inactivation

    DEFF Research Database (Denmark)

    Ravnskjaer, Kim; Boergesen, Michael; Dalgaard, Louise T;

    2006-01-01

    Tight regulation of fatty acid metabolism in pancreatic beta-cells is important for beta-cell viability and function. Chronic exposure to elevated concentrations of fatty acid is associated with beta-cell lipotoxicity. Glucose is known to repress fatty acid oxidation and hence to augment the toxi......Tight regulation of fatty acid metabolism in pancreatic beta-cells is important for beta-cell viability and function. Chronic exposure to elevated concentrations of fatty acid is associated with beta-cell lipotoxicity. Glucose is known to repress fatty acid oxidation and hence to augment...... but not AMPKalpha1 using RNAi suppressed PPARalpha expression, thereby mimicking the effect of glucose. These results indicate that activation of protein phosphatase 2A and subsequent inactivation of AMPK is necessary for glucose repression of PPARalpha expression in pancreatic beta-cells....

  4. Inactivation and reactivation of B. megatherium phage.

    Science.gov (United States)

    NORTHROP, J H

    1955-11-20

    Preparation of Reversibly Inactivated (R.I.) Phage.- If B. megatherium phage (of any type, or in any stage of purification) is suspended in dilute salt solutions at pH 5-6, it is completely inactivated; i.e., it does not form plaques, or give rise to more phage when mixed with a sensitive organism (Northrop, 1954). The inactivation occurs when the phage is added to the dilute salt solution. If a suspension of the inactive phage in pH 7 peptone is titrated to pH 5 and allowed to stand, the activity gradually returns. The inactivation is therefore reversible. Properties of R.I. Phage.- The R.I. phage is adsorbed by sensitive cells at about the same rate as the active phage. It kills the cells, but no active phage is produced. The R.I. phage therefore has the properties of phage "ghosts" (Herriott, 1951) or of colicines (Gratia, 1925), or phage inactivated by ultraviolet light (Luria, 1947). The R.I. phage is sedimented in the centrifuge at the same rate as active phage. It is therefore about the same size as the active phage. The R.I. phage is most stable in pH 7, 5 per cent peptone, and may be kept in this solution for weeks at 0 degrees C. The rate of digestion of R.I. phage by trypsin, chymotrypsin, or desoxyribonuclease is about the same as that of active phage (Northrop, 1955 a). Effect of Various Substances on the Formation of R.I. Phage.- There is an equilibrium between R.I. phage and active phage. The R.I. form is the stable one in dilute salt solution, pH 5 to 6.5 and at low temperature (6.5, in dilute salt solution, the R.I. phage changes to the active form. The cycle, active right harpoon over left harpoon inactive phage, may be repeated many times at 0 degrees C. by changing the pH of the solution back and forth between pH 7 and pH 6. Irreversible inactivation is caused by distilled water, some heavy metals, concentrated urea or quanidine solutions, and by l-arginine. Reversible inactivation is prevented by all salts tested (except those causing

  5. The Inactivation of Arx in Pancreatic alpha-Cells Triggers Their Neogenesis and Conversion into Functional beta-Like Cells

    OpenAIRE

    Monica Courtney; Elisabet Gjernes; Noémie Druelle; Christophe Ravaud; Andhira Vieira; Nouha Ben-Othman; Anja Pfeifer; Fabio Avolio; Gunter Leuckx; Sandra Lacas-Gervais; Fanny Burel-Vandenbos; Damien Ambrosetti; Jacob Hecksher-Sorensen; Philippe Ravassard; Harry Heimberg

    2013-01-01

    Recently, it was demonstrated that pancreatic new-born glucagon-producing cells can regenerate and convert into insulinproducing beta-like cells through the ectopic expression of a single gene, Pax4. Here, combining conditional loss-of-function and lineage tracing approaches, we show that the selective inhibition of the Arx gene in alpha-cells is sufficient to promote the conversion of adult alpha-cells into beta-like cells at any age. Interestingly, this conversion induces the continuous mob...

  6. Inactivation of TGFβ receptor II signalling in pancreatic epithelial cells promotes acinar cell proliferation, acinar-to-ductal metaplasia and fibrosis during pancreatitis.

    Science.gov (United States)

    Grabliauskaite, Kamile; Saponara, Enrica; Reding, Theresia; Bombardo, Marta; Seleznik, Gitta M; Malagola, Ermanno; Zabel, Anja; Faso, Carmen; Sonda, Sabrina; Graf, Rolf

    2016-02-01

    Determining signalling pathways that regulate pancreatic regeneration following pancreatitis is critical for implementing therapeutic interventions. In this study we elucidated the molecular mechanisms underlying the effects of transforming growth factor-β (TGFβ) in pancreatic epithelial cells during tissue regeneration. To this end, we conditionally inactivated TGFβ receptor II (TGFβ-RII) using a Cre-LoxP system under the control of pancreas transcription factor 1a (PTF1a) promoter, specific for the pancreatic epithelium, and evaluated the molecular and cellular changes in a mouse model of cerulein-induced pancreatitis. We show that TGFβ-RII signalling does not mediate the initial acinar cell damage observed at the onset of pancreatitis. However, TGFβ-RII signalling not only restricts acinar cell replication during the regenerative phase of the disease but also limits ADM formation in vivo and in vitro in a cell-autonomous manner. Analyses of molecular mechanisms underlying the observed phenotype revealed that TGFβ-RII signalling stimulates the expression of cyclin-dependent kinase inhibitors and intersects with the EGFR signalling axis. Finally, TGFβ-RII ablation in epithelial cells resulted in increased infiltration of inflammatory cells in the early phases of pancreatitis and increased activation of pancreatic stellate cells in the later stages of pancreatitis, thus highlighting a TGFβ-based crosstalk between epithelial and stromal cells regulating the development of pancreatic inflammation and fibrosis. Collectively, our data not only contribute to clarifying the cellular processes governing pancreatic tissue regeneration, but also emphasize the conserved role of TGFβ as a tumour suppressor, both in the regenerative process following pancreatitis and in the initial phases of pancreatic cancer.

  7. Inactivation of TGFβ receptor II signalling in pancreatic epithelial cells promotes acinar cell proliferation, acinar-to-ductal metaplasia and fibrosis during pancreatitis.

    Science.gov (United States)

    Grabliauskaite, Kamile; Saponara, Enrica; Reding, Theresia; Bombardo, Marta; Seleznik, Gitta M; Malagola, Ermanno; Zabel, Anja; Faso, Carmen; Sonda, Sabrina; Graf, Rolf

    2016-02-01

    Determining signalling pathways that regulate pancreatic regeneration following pancreatitis is critical for implementing therapeutic interventions. In this study we elucidated the molecular mechanisms underlying the effects of transforming growth factor-β (TGFβ) in pancreatic epithelial cells during tissue regeneration. To this end, we conditionally inactivated TGFβ receptor II (TGFβ-RII) using a Cre-LoxP system under the control of pancreas transcription factor 1a (PTF1a) promoter, specific for the pancreatic epithelium, and evaluated the molecular and cellular changes in a mouse model of cerulein-induced pancreatitis. We show that TGFβ-RII signalling does not mediate the initial acinar cell damage observed at the onset of pancreatitis. However, TGFβ-RII signalling not only restricts acinar cell replication during the regenerative phase of the disease but also limits ADM formation in vivo and in vitro in a cell-autonomous manner. Analyses of molecular mechanisms underlying the observed phenotype revealed that TGFβ-RII signalling stimulates the expression of cyclin-dependent kinase inhibitors and intersects with the EGFR signalling axis. Finally, TGFβ-RII ablation in epithelial cells resulted in increased infiltration of inflammatory cells in the early phases of pancreatitis and increased activation of pancreatic stellate cells in the later stages of pancreatitis, thus highlighting a TGFβ-based crosstalk between epithelial and stromal cells regulating the development of pancreatic inflammation and fibrosis. Collectively, our data not only contribute to clarifying the cellular processes governing pancreatic tissue regeneration, but also emphasize the conserved role of TGFβ as a tumour suppressor, both in the regenerative process following pancreatitis and in the initial phases of pancreatic cancer. PMID:26510396

  8. Repair-deficient xeroderma pigmentosum cells made UV light resistant by fusion with X-ray-inactivated Chinese hamster cells

    International Nuclear Information System (INIS)

    Xeroderma pigmentosum (XP) is an autosomal recessive human disease, characterized by an extreme sensitivity to sunlight, caused by the inability of cells to repair UV light-induced damage to DNA. Cell fusion was used to transfer fragments of Chinese hamster ovary (CHO) chromosomes into XP cells. The hybrid cells exhibited UV resistance and DNA repair characteristics comparable to those expressed by CHO cells, and their DNA had greater homology with CHO DNA than did the DNA from XP cells. Control experiments consisted of fusion of irradiated and unirradiated XP cells and repeated exposure of unfused XP cells to UV doses used for hybrid selection. These treatments did not result in an increase in UV resistance, repair capability, or homology with CHO DNA. The hybrid cell lines do not, therefore, appear to be XP revertants. The establishment of these stable hybrid cell lines is an initial step toward identifying and cloning CHO DNA repair genes that complement the XP defect in human cells. The method should also be applicable to cloning genes for other diseases, such as ataxia-telangiectasia and Fanconi's anemia

  9. X-Chromosome Inactivation Analysis in Different Cell Types and Induced Pluripotent Stem Cells Elucidates the Disease Mechanism in a Rare Case of Mucopolysaccharidosis Type II in a Female.

    Science.gov (United States)

    Řeboun, M; Rybová, J; Dobrovolný, R; Včelák, J; Veselková, T; Štorkánová, G; Mušálková, D; Hřebíček, M; Ledvinová, J; Magner, M; Zeman, J; Pešková, K; Dvořáková, L

    2016-01-01

    Mucopolysaccharidosis type II (MPS II) is an X-linked lysosomal storage disorder resulting from deficiency of iduronate-2-sulphatase activity. The disease manifests almost exclusively in males; only 16 symptomatic heterozygote girls have been reported so far. We describe the results of X-chromosome inactivation analysis in a 5-year-old girl with clinically severe disease and heterozygous mutation p.Arg468Gln in the IDS gene. X inactivation analysed at three X-chromosome loci showed extreme skewing (96/4 to 99/1) in two patient's cell types. This finding correlated with exclusive expression of the mutated allele. Induced pluripotent stem cells (iPSC) generated from the patient's peripheral blood demonstrated characteristic pluripotency markers, deficiency of enzyme activity, and mutation in the IDS gene. These cells were capable of differentiation into other cell types (cardiomyocytes, neurons). In MPS II iPSC clones, the X inactivation ratio remained highly skewed in culture conditions that led to partial X inactivation reset in Fabry disease iPSC clones. Our data, in accordance with the literature, suggest that extremely skewed X inactivation favouring the mutated allele is a crucial condition for manifestation of MPS II in females. This suggests that the X inactivation status and enzyme activity have a prognostic value and should be used to evaluate MPS II in females. For the first time, we show generation of iPSC from a symptomatic MPS II female patient that can serve as a cellular model for further research of the pathogenesis and treatment of this disease. PMID:27187040

  10. Direct and indirect inactivation of tumor cell protective catalase by salicylic acid and anthocyanidins reactivates intercellular ROS signaling and allows for synergistic effects.

    Science.gov (United States)

    Scheit, Katrin; Bauer, Georg

    2015-03-01

    Salicylic acid and anthocyanidins are known as plant-derived antioxidants, but also can provoke paradoxically seeming prooxidant effects in vitro. These prooxidant effects are connected to the potential of salicylic acid and anthocyanidins to induce apoptosis selectively in tumor cells in vitro and to inhibit tumor growth in animal models. Several epidemiological studies have shown that salicylic acid and its prodrug acetylsalicylic acid are tumor-preventive for humans. The mechanism of salicylic acid- and anthocyanidin-dependent antitumor effects has remained enigmatic so far. Extracellular apoptosis-inducing reactive oxygen species signaling through the NO/peroxynitrite and the HOCl signaling pathway specifically induces apoptosis in transformed cells. Tumor cells have acquired resistance against intercellular reactive oxygen species signaling through expression of membrane-associated catalase. Here, we show that salicylic acid and anthocyanidins inactivate tumor cell protective catalase and thus reactive apoptosis-inducing intercellular reactive oxygen species signaling of tumor cells and the mitochondrial pathway of apoptosis Salicylic acid inhibits catalase directly through its potential to transform compound I of catalase into the inactive compound II. In contrast, anthocyanidins provoke a complex mechanism for catalase inactivation that is initiated by anthocyanidin-mediated inhibition of NO dioxygenase. This allows the formation of extracellular singlet oxygen through the reaction between H(2)O(2) and peroxynitrite, amplification through a caspase8-dependent step and subsequent singlet oxygen-mediated inactivation of catalase. The combination of salicylic acid and anthocyanidins allows for a remarkable synergistic effect in apoptosis induction. This effect may be potentially useful to elaborate novel therapeutic approaches and crucial for the interpretation of epidemiological results related to the antitumor effects of secondary plant compounds.

  11. Observations on the Inactivation Efficacy of a MALDI-TOF MS Chemical Extraction Method on Bacillus anthracis Vegetative Cells and Spores.

    Directory of Open Access Journals (Sweden)

    Simon A Weller

    Full Text Available A chemical (ethanol; formic acid; acetonitrile protein extraction method for the preparation of bacterial samples for matrix assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS identification was evaluated for its ability to inactivate bacterial species. Initial viability tests (with and without double filtration of the extract through 0.2 μM filters, indicated that the method could inactivate Escherichia coli MRE 162 and Klebsiella pneumoniae ATCC 35657, with or without filtration, but that filtration was required to exclude viable, avirulent, Bacillus anthracis UM23CL2 from extracts. Multiple, high stringency, viability experiments were then carried out on entire filtered extracts prepared from virulent B. anthracis Vollum vegetative cells and spores ranging in concentration from 10(6-10(8 cfu per extract. B. anthracis was recovered in 3/18 vegetative cell extracts and 10/18 spore extracts. From vegetative cell extracts B. anthracis was only recovered from extracts that had undergone prolonged Luria (L-broth (7 day and L-agar plate (a further 7 days incubations. We hypothesise that the recovery of B. anthracis in vegetative cell extracts is due to the escape of individual sub-lethally injured cells. We discuss our results in view of working practises in clinical laboratories and in the context of recent inadvertent releases of viable B. anthracis.

  12. Observations on the Inactivation Efficacy of a MALDI-TOF MS Chemical Extraction Method on Bacillus anthracis Vegetative Cells and Spores.

    Science.gov (United States)

    Weller, Simon A; Stokes, Margaret G M; Lukaszewski, Roman A

    2015-01-01

    A chemical (ethanol; formic acid; acetonitrile) protein extraction method for the preparation of bacterial samples for matrix assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) identification was evaluated for its ability to inactivate bacterial species. Initial viability tests (with and without double filtration of the extract through 0.2 μM filters), indicated that the method could inactivate Escherichia coli MRE 162 and Klebsiella pneumoniae ATCC 35657, with or without filtration, but that filtration was required to exclude viable, avirulent, Bacillus anthracis UM23CL2 from extracts. Multiple, high stringency, viability experiments were then carried out on entire filtered extracts prepared from virulent B. anthracis Vollum vegetative cells and spores ranging in concentration from 10(6)-10(8) cfu per extract. B. anthracis was recovered in 3/18 vegetative cell extracts and 10/18 spore extracts. From vegetative cell extracts B. anthracis was only recovered from extracts that had undergone prolonged Luria (L)-broth (7 day) and L-agar plate (a further 7 days) incubations. We hypothesise that the recovery of B. anthracis in vegetative cell extracts is due to the escape of individual sub-lethally injured cells. We discuss our results in view of working practises in clinical laboratories and in the context of recent inadvertent releases of viable B. anthracis. PMID:26633884

  13. How reduction of theta rhythm by medial septum inactivation may covary with disruption of entorhinal grid cell responses due to reduced cholinergic transmission

    Directory of Open Access Journals (Sweden)

    Praveen K. Pilly

    2013-10-01

    Full Text Available Oscillations in the coordinated firing of brain neurons have been proposed to play important roles in perception, cognition, attention, learning, navigation, and sensory-motor control. The network theta rhythm has been associated with properties of spatial navigation, as has the firing of entorhinal grid cells and hippocampal place cells. Two recent studies reduced the theta rhythm by inactivating the medial septum (MS and demonstrated a correlated reduction in the characteristic hexagonal spatial firing patterns of grid cells. These results, along with properties of intrinsic membrane potential oscillations (MPOs in slice preparations of entorhinal cells, have been interpreted to support oscillatory interference models of grid cell firing. The current article shows that an alternative self-organizing map model of grid cells can explain these data about intrinsic and network oscillations without invoking oscillatory interference. In particular, the adverse effects of MS inactivation on grid cells can be understood in terms of how the concomitant reduction in cholinergic inputs may increase the conductances of leak potassium (K+ and slow and medium after-hyperpolarization (sAHP and mAHP channels. This alternative model can also explain data that are problematic for oscillatory interference models, including how knockout of the HCN1 gene in mice, which flattens the dorsoventral gradient in MPO frequency and resonance frequency, does not affect the development of the grid cell dorsoventral gradient of spatial scales, and how hexagonal grid firing fields in bats can occur even in the absence of theta band modulation. These results demonstrate how models of grid cell self-organization can provide new insights into the relationship between brain learning, oscillatory dynamics, and navigational behaviors.

  14. Genetic inactivation of Cdk7 leads to cell cycle arrest and induces premature aging due to adult stem cell exhaustion

    OpenAIRE

    Ganuza, Miguel; Sáiz-Ladera, Cristina; Cañamero, Marta; Gómez, Gonzalo; Schneider, Ralph; Blasco, María A.; Pisano, David; Paramio, Jesús M.; Santamaría, David; Barbacid, Mariano

    2012-01-01

    Employing a conditionally inactive gene trap allele, Cdk7's function in regulating cellular proliferation by Cdk1/2-phosphorylation is convincingly dissected from alternative notions on CTD-phosphorylation of RNA Pol II. Premature aging phenotypes caused by stem cell depletion lend the necessary functional support.

  15. Inactivation of the transforming growth factor beta type II receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Hougaard, S; Nørgaard, P; Abrahamsen, N;

    1999-01-01

    Transforming growth factor beta (TGF-beta) exerts a growth inhibitory effect on many cell types through binding to two types of receptors, the type I and II receptors. Resistance to TGF-beta due to lack of type II receptor (RII) has been described in some cancer types including small cell lung...... cancer (SCLC). The purpose of this study was to examine the cause of absent RII expression in SCLC cell lines. Northern blot analysis showed that RII RNA expression was very weak in 16 of 21 cell lines. To investigate if the absence of RII transcript was due to mutations, we screened the poly-A tract...... of the mutation, which has not previously been observed in RII, has been linked to exposure to benzo[a]-pyrene, a component of cigarette smoke. Since RII has been mapped to chromosome 3p22 and nearby loci are often hypermethylated in SCLC, it was examined whether the lack of RII expression was due...

  16. RhoE interferes with Rb inactivation and regulates the proliferation and survival of the U87 human glioblastoma cell line

    International Nuclear Information System (INIS)

    Rho GTPases are important regulators of actin cytoskeleton, but they are also involved in cell proliferation, transformation and oncogenesis. One of this proteins, RhoE, inhibits cell proliferation, however the mechanism that regulates this effect remains poorly understood. Therefore, we undertook the present study to determine the role of RhoE in the regulation of cell proliferation. For this purpose we generated an adenovirus system to overexpress RhoE in U87 glioblastoma cells. Our results show that RhoE disrupts actin cytoskeleton organization and inhibits U87 glioblastoma cell proliferation. Importantly, RhoE expressing cells show a reduction in Rb phosphorylation and in cyclin D1 expression. Furthermore, RhoE inhibits ERK activation following serum stimulation of quiescent cells. Based in these findings, we propose that RhoE inhibits ERK activation, thereby decreasing cyclin D1 expression and leading to a reduction in Rb inactivation, and that this mechanism is involved in the RhoE-induced cell growth inhibition. Moreover, we also demonstrate that RhoE induces apoptosis in U87 cells and also in colon carcinoma and melanoma cells. These results indicate that RhoE plays an important role in the regulation of cell proliferation and survival, and suggest that this protein may be considered as an oncosupressor since it is capable to induce apoptosis in several tumor cell lines

  17. Inactivated properties of activated carbon-supported TiO2 nanoparticles for bacteria and kinetic study

    Institute of Scientific and Technical Information of China (English)

    LI Youji; MA Mingyuan; WANG Xiaohu; WANG Xiaohua

    2008-01-01

    The activated carbon-supported TiO2 nanoparticles (TiO2/AC) were prepared by a properly controlled sol-gel method. The effects of activated carbons (AC) support on inactivated properties of TiO2 nanoparticles were evaluated by photocatalytic inactivation experiments ofEscherichia coli. The key factors affecting the inactivation efficiency were investigated, including electric power of lamp, temperature, and pH values. The results show that the TiO2/AC composites have high inactivation properties of E. coli in comparison with pure TiO2 powder. The kinetics of photocatalytic inactivation of E. coli was found to follow a pseudo-first order rate law for TiO2/AC composites, and kinetic behavior could be described in terms of a modified Langmuir-Hinshelwood model. The values of the adsorption equilibrium constants for the bacteria, Kc, and for the rate constants, kr, were certainly depended on TiO2 content. At 47 variety of parameters shows significant effects on inactivation rate. The outer layer of bacteria decomposed first resulting in inactivation of cell, and with further illumination, the cells nearly decomposed.

  18. Light parameters influence cell viability in antifungal photodynamic therapy in a fluence and rate fluence-dependent manner

    Science.gov (United States)

    Prates, Renato A.; da Silva, Eriques G.; Yamada, Aécio M.; Suzuki, Luis C.; Paula, Claudete R.; Ribeiro, Martha S.

    2009-05-01

    The aim of this study was to investigate the influence of light parameters on yeast cells. It has been proposed for many years that photodynamic therapy (PDT) can inactivate microbial cells. A number of photosensitizer and light sources were reported in different light parameters and in a range of dye concentrations. However, much more knowledge concerning the importance of fluence, fluence rate and exposure time are required for a better understanding of the photodynamic efficiency. Suspensions (106 CFU/mL) of Candida albicans, Candida krusei, and Cryptococcus neoformans var. grubii were used. Two fluence rates, 100 and 300 mW/cm2 were compared at 3, 6, and 9 min of irradiation, resulting fluences from 18 to 162 J/cm2. The light source was a laser emitting at λ = 660 nm with output power adjusted at 30 and 90 mW. As photosensitizer, one hundred-μM methylene blue was used. Temperature was monitored to verify possible heat effect and reactive oxygen species (ROS) formation was evaluated. The same fluence in different fluence rates showed dissimilar levels of inactivation on yeast cells as well as in ROS formation. In addition, the increase of the fluence rate showed an improvement on cell photoinactivation. PDT was efficient against yeast cells (6 log reduction), and no significant temperature increase was observed. Fluence per se should not be used as an isolate parameter to compare photoinactivation effects on yeast cells. The higher fluence rate was more effective than the lower one. Furthermore, an adequate duration of light exposure cannot be discarded.

  19. Advanced modular self-inactivating lentiviral expression vectors for multigene interventions in mammalian cells and in vivo transduction

    OpenAIRE

    Mitta, Barbara; Rimann, Markus; Ehrengruber, Markus U.; Ehrbar, Martin; Djonov, Valentin; Kelm, Jens; Fussenegger, Martin

    2002-01-01

    In recent years, lentiviral expression systems have gained an unmatched reputation among the gene therapy community for their ability to deliver therapeutic transgenes into a wide variety of difficult-to-transfect/transduce target tissues (brain, hematopoietic system, liver, lung, retina) without eliciting significant humoral immune responses. We have cloned a construction kit-like self-inactivating lentiviral expression vector family which is compatible to state-of-the-art packaging and pseu...

  20. Pseudomonas aeruginosa pyocyanin causes airway goblet cell hyperplasia and metaplasia and mucus hypersecretion by inactivating the transcriptional factor FoxA2.

    Science.gov (United States)

    Hao, Yonghua; Kuang, Zhizhou; Walling, Brent E; Bhatia, Shikha; Sivaguru, Mayandi; Chen, Yin; Gaskins, H Rex; Lau, Gee W

    2012-03-01

    The redox-active exotoxin pyocyanin (PCN) can be recovered in 100 µM concentrations in the sputa of bronchiectasis patients chronically infected with Pseudomonas aeruginosa (PA). However, the importance of PCN within bronchiectatic airways colonized by PA remains unrecognized. Recently, we have shown that PCN is required for chronic PA lung infection in mice, and that chronic instillation of PCN induces goblet cell hyperplasia (GCH), pulmonary fibrosis, emphysema and influx of immune cells in mouse airways. Many of these pathological features are strikingly similar to the mouse airways devoid of functional FoxA2, a transcriptional repressor of GCH and mucus biosynthesis. In this study, we postulate that PCN causes and exacerbates GCH and mucus hypersecretion in bronchiectatic airways chronically infected by PA by inactivating FoxA2. We demonstrate that PCN represses the expression of FoxA2 in mouse airways and in bronchial epithelial cells cultured at an air-liquid interface or conventionally, resulting in GCH, increased MUC5B mucin gene expression and mucus hypersecretion. Immunohistochemical and inhibitor studies indicate that PCN upregulates the expression of Stat6 and EGFR, both of which in turn repress the expression of FoxA2. These studies demonstrate that PCN induces GCH and mucus hypersecretion by inactivating FoxA2.

  1. The inactivation of Chlorella spp. with dielectric barrier discharge in gas-liquid mixture

    Science.gov (United States)

    Song, Dan; Sun, Bing; Zhu, Xiaomei; Yan, Zhiyu; Liu, Hui; Liu, Yongjun

    2013-03-01

    The inactivation of Chlorella spp. with high voltage and frequency pulsed dielectric barrier discharge in hybrid gas-liquid reactor with a suspension electrode was studied experimentally. In the hybrid gas-liquid reactor, a steel plate was used as high voltage electrode while a quartz plate as a dielectric layer, another steel plate placing in the aqueous solution worked as a whole ground electrode. A suspension electrode is installed near the surface of solution between high voltage and ground electrode to make the dielectric barrier discharge uniform and stable, the discharge gap was between the quartz plate and the surface of the water. The effect of peak voltage, treatment time, the initial concentration of Chlorella spp. and conductivity of solution on the inactivation rate of Chlorella spp. was investigated, and the inactivation mechanism of Chlorella spp. preliminarily was studied. Utilizing this system inactivation of Chlorella spp., the inactivation rate increased with increasing of peak voltage, treatment time and electric conductivity. It was found that the inactivation rate of Chlorella spp. arrived at 100% when the initial concentration was 4 × 106 cells mL-1, and the optimum operation condition required a peak voltage of 20 kV, a treatment time of 10 min and a frequency of 7 kHz. Though the increasing of initial concentration of the Chlorella spp. contributed to the addition of interaction probability between the Chlorella spp. and O3, H2O2, high-energy electrons, UV radiation and other active substances, the total inactivation number raise, but the inactivation rate of the Chlorella spp. decreased.

  2. Inactivated E. coli transformed with plasmids that produce dsRNA against infectious salmon anemia virus hemagglutinin show antiviral activity when added to infected ASK cells.

    Directory of Open Access Journals (Sweden)

    Katherine eGarcía

    2015-04-01

    Full Text Available Infectious salmon anemia virus (ISAV has caused great losses to the Chilean salmon industry, and the success of prevention and treatment strategies is uncertain. The use of RNA interference (RNAi is a promising approach because during the replication cycle, the ISAV genome must be transcribed to mRNA in the cytoplasm. We explored the capacity of E. coli transformed with plasmids that produce double-stranded RNA (dsRNA to induce antiviral activity when added to infected ASK cells. We transformed the non-pathogenic Escherichia coli HT115 (DE3 with plasmids that expressed highly conserved regions of the ISAV genes encoding the nucleoprotein (NP, fusion (F, hemagglutinin (HE and matrix (M proteins as dsRNA, which is the precursor of the RNAi mechanism. The inactivated transformed bacteria carrying dsRNA were tested for their capacity to silence the target ISAV genes, and the dsRNA that were able to inhibit gene expression were subsequently tested for their ability to attenuate the cytopathic effect (CPE and reduce the viral load. Of the four target genes tested, inactivated E. coli transformed with plasmids producing dsRNA targeting HE showed antiviral activity when added to infected ASK cells.

  3. Diallyl trisulfide inhibits angiogenic features of human umbilical vein endothelial cells by causing Akt inactivation and down-regulation of VEGF and VEGF-R2.

    Science.gov (United States)

    Xiao, Dong; Li, Mengfeng; Herman-Antosiewicz, Anna; Antosiewicz, Jedrzej; Xiao, Hui; Lew, Karen L; Zeng, Yan; Marynowski, Stanley W; Singh, Shivendra V

    2006-01-01

    We have shown recently that diallyl trisulfide (DATS), a cancer-chemopreventive constituent of garlic, inactivates Akt to trigger mitochondrial translocation of proapoptotic protein BAD in human prostate cancer cells. Because Akt activation is implicated in the promotion of endothelial cell survival and angiogenesis, we hypothesized that DATS may inhibit angiogenesis. In the present study, we tested this hypothesis using human umbilical vein endothelial cells (HUVECs) as a model. Survival of HUVECs was reduced significantly in the presence of DATS in a concentration-dependent manner, with an IC50 of approximately 4 microM. The DATS-mediated suppression of HUVEC survival was associated with apoptosis induction characterized by accumulation of subdiploid cells, cytoplasmic histone-associated DNA fragmentation, and cleavage of caspase-3 and poly-(ADP-ribose)-polymerase. The DATS-induced DNA fragmentation was significantly attenuated in the presence of pan-caspase inhibitor zVAD-fmk and specific inhibitors of caspase-9 (zLEHD-fmk) and caspase-8 (zIETD-fmk). DATS treatment inhibited the formation of capillary-like tube structure and migration by HUVECs in association with suppression of vascular endothelial growth factor (VEGF) secretion and VEGF receptor-2 protein level and inactivation of Akt kinase. DATS treatment also caused activation of extracellular signal-regulated kinase 1/2 (ERK1/2) but not c-Jun NH2-terminal kinase (JNK) or p38 mitogen-activated protein kinase (p38MAPK).DATS-mediatedapoptosis induction and inhibition of HUVEC tube formation was partially but statistically significantly attenuated by pharmacologic inhibition of ERK1/2 but not JNK or p38MAPK. The present study demonstrates, for the first time, that DATS has the ability to inhibit angiogenic features of human endothelial cells. PMID:16965246

  4. Tendon cell outgrowth rates and morphology associated with kevlar-49.

    Science.gov (United States)

    Zimmerman, M; Gordon, K E

    1988-12-01

    A rat tendon cell model was used to evaluate the in vitro biocompatibility of kevlar-49. The cell response to kevlar was compared to carbon AS-4 and nylon sutures. Three trials were run and cell growth rates were statistically similar for all the materials tested. A separate experiment was conducted in which the same fiber materials were placed in the same Petri dish. Again, the rates were similar for each material. Finally, the cells were observed with a scanning electron microscope, and the three classic cell morphologies associated with this tendon cell model were observed. Also, cellular attachment to the fiber and cellular encapsulation of the fiber were identical for the three materials tested. Kevlar-49 proved to be comparable to carbon AS4 and nylon sutures in terms of cellular response and cell outgrowth rates.

  5. Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion.

    Science.gov (United States)

    Li, Yangyang; Wang, Cheng; Liu, Xinye; Song, Jian; Li, Hongjian; Sui, Zhipeng; Zhang, Ming; Fang, Shuang; Chu, Jinfang; Xin, Mingming; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2016-04-01

    Heterosis has been widely used in agriculture, but the underlying molecular principles are still largely unknown. During seed germination, we observed that maize (Zea mays) hybrid B73/Mo17 was less sensitive than its parental inbred lines to exogenous abscisic acid (ABA), and endogenous ABA content in hybrid embryos decreased more rapidly than in the parental inbred lines. ZmABA8ox1b, an ABA inactivation gene, was consistently more highly up-regulated in hybrid B73/Mo17 than in its parental inbred lines at early stages of seed germination. Moreover, ectopic expression of ZmABA8ox1b obviously promoted seed germination in Arabidopsis Remarkably, microscopic observation revealed that cell expansion played a major role in the ABA-mediated maize seed germination heterosis, which could be attributed to the altered expression of cell wall-related genes. PMID:27034328

  6. Antiproliferative Action of Conjugated Linoleic Acid on Human MCF-7 Breast Cancer Cells Mediated by Enhancement of Gap Junctional Intercellular Communication through Inactivation of NF-κB

    Directory of Open Access Journals (Sweden)

    Md. Abdur Rakib

    2013-01-01

    Full Text Available The major conjugated linoleic acid (CLA isomers, c9,t11-CLA and t10,c12-CLA, have anticancer effects; however, the exact mechanisms underlying these effects are unknown. Evidence suggests that reversal of reduced gap junctional intercellular communication (GJIC in cancer cells inhibits cell growth and induces cell death. Hence, we determined that CLA isomers enhance GJIC in human MCF-7 breast cancer cells and investigated the underlying molecular mechanisms. The CLA isomers significantly enhanced GJIC of MCF-7 cells at 40 μM concentration, whereas CLA inhibited cell growth and induced caspase-dependent apoptosis. CLA increased connexin43 (Cx43 expression both at the transcriptional and translational levels. CLA inhibited nuclear factor-κB (NF-κB activity and enhanced reactive oxygen species (ROS generation. No significant difference was observed in the efficacy of c9,t11-CLA and t10,c12-CLA. These results suggest that the anticancer effect of CLA is associated with upregulation of GJIC mediated by enhanced Cx43 expression through inactivation of NF-κB and generation of ROS in MCF-7 cells.

  7. Guizhi Fuling Wan, a Traditional Chinese Herbal Formula, Sensitizes Cisplatin-Resistant Human Ovarian Cancer Cells through Inactivation of the PI3K/AKT/mTOR Pathway

    Directory of Open Access Journals (Sweden)

    Li Han

    2016-01-01

    Full Text Available The aim of the study was to explore the possible mechanisms that Guizhi Fuling Wan (GFW enhances the sensitivity of the SKOV3/DDP ovarian cancer cells and the resistant xenograft tumours to cisplatin. Rat medicated sera containing GFW were prepared by administering GFW to rats, and the primary bioactive constituents of the sera were gallic acid, paeonol, and paeoniflorin analysed by HPLC/QqQ MS. Cell counting kit-8 analysis was shown that coincubation of the sera with cisplatin/paclitaxel enhanced significantly the cytotoxic effect of cisplatin or paclitaxel in SKOV3/DDP cells. The presence of the rat medicated sera containing GFW resulted in an increase in rhodamine 123 accumulation by flow cytometric assays and a decrease in the protein levels of P-gp, phosphorylation of AKT at Ser473, and mTOR in a dose-dependent manner in SKOV3/DDP cells by western blot analysis, but the sera had no effect on the protein levels of PI3K p110α and total AKT. The low dose of GFW enhanced the anticancer efficacy of cisplatin and paclitaxel treatment in resistant SKOV3/DDP xenograft tumours. GFW could sensitize cisplatin-resistant SKOV3/DDP cells by inhibiting the protein level and function of P-gp, which may be medicated through inactivation of the PI3K/AKT/mTOR pathway.

  8. Alpharetroviral self-inactivating vectors produced by a superinfection-resistant stable packaging cell line allow genetic modification of primary human T lymphocytes.

    Science.gov (United States)

    Labenski, Verena; Suerth, Julia D; Barczak, Elke; Heckl, Dirk; Levy, Camille; Bernadin, Ornellie; Charpentier, Emmanuelle; Williams, David A; Fehse, Boris; Verhoeyen, Els; Schambach, Axel

    2016-08-01

    Primary human T lymphocytes represent an important cell population for adoptive immunotherapies, including chimeric-antigen and T-cell receptor applications, as they have the capability to eliminate non-self, virus-infected and tumor cells. Given the increasing numbers of clinical immunotherapy applications, the development of an optimal vector platform for genetic T lymphocyte engineering, which allows cost-effective high-quality vector productions, remains a critical goal. Alpharetroviral self-inactivating vectors (ARV) have several advantages compared to other vector platforms, including a more random genomic integration pattern and reduced likelihood for inducing aberrant splicing of integrated proviruses. We developed an ARV platform for the transduction of primary human T lymphocytes. We demonstrated functional transgene transfer using the clinically relevant herpes-simplex-virus thymidine kinase variant TK.007. Proof-of-concept of alpharetroviral-mediated T-lymphocyte engineering was shown in vitro and in a humanized transplantation model in vivo. Furthermore, we established a stable, human alpharetroviral packaging cell line in which we deleted the entry receptor (SLC1A5) for RD114/TR-pseudotyped ARVs to prevent superinfection and enhance genomic integrity of the packaging cell line and viral particles. We showed that superinfection can be entirely prevented, while maintaining high recombinant virus titers. Taken together, this resulted in an improved production platform representing an economic strategy for translating the promising features of ARVs for therapeutic T-lymphocyte engineering. PMID:27162078

  9. The glucose metabolite methylglyoxal inhibits expression of the glucose transporter genes by inactivating the cell surface glucose sensors Rgt2 and Snf3 in yeast.

    Science.gov (United States)

    Roy, Adhiraj; Hashmi, Salman; Li, Zerui; Dement, Angela D; Cho, Kyu Hong; Kim, Jeong-Ho

    2016-03-01

    Methylglyoxal (MG) is a cytotoxic by-product of glycolysis. MG has inhibitory effect on the growth of cells ranging from microorganisms to higher eukaryotes, but its molecular targets are largely unknown. The yeast cell-surface glucose sensors Rgt2 and Snf3 function as glucose receptors that sense extracellular glucose and generate a signal for induction of expression of genes encoding glucose transporters (HXTs). Here we provide evidence that these glucose sensors are primary targets of MG in yeast. MG inhibits the growth of glucose-fermenting yeast cells by inducing endocytosis and degradation of the glucose sensors. However, the glucose sensors with mutations at their putative ubiquitin-acceptor lysine residues are resistant to MG-induced degradation. These results suggest that the glucose sensors are inactivated through ubiquitin-mediated endocytosis and degraded in the presence of MG. In addition, the inhibitory effect of MG on the glucose sensors is greatly enhanced in cells lacking Glo1, a key component of the MG detoxification system. Thus the stability of these glucose sensors seems to be critically regulated by intracellular MG levels. Taken together, these findings suggest that MG attenuates glycolysis by promoting degradation of the cell-surface glucose sensors and thus identify MG as a potential glycolytic inhibitor.

  10. Preferential amplification of CD8 effector-T cells after transcutaneous application of an inactivated influenza vaccine: a randomized phase I trial.

    Directory of Open Access Journals (Sweden)

    Behazine Combadière

    Full Text Available BACKGROUND: Current conventional vaccination approaches do not induce potent CD8 T-cell responses for fighting mostly variable viral diseases such as influenza, avian influenza viruses or HIV. Following our recent study on vaccine penetration by targeting of vaccine to human hair follicular ducts surrounded by Langerhans cells, we tested in the first randomized Phase-Ia trial based on hair follicle penetration (namely transcutaneous route the induction of virus-specific CD8 T cell responses. METHODS AND FINDINGS: We chose the inactivated influenza vaccine - a conventional licensed tetanus/influenza (TETAGRIP vaccine - to compare the safety and immunogenicity of transcutaneous (TC versus IM immunization in two randomized controlled, multi-center Phase I trials including 24 healthy-volunteers and 12 HIV-infected patients. Vaccination was performed by application of inactivated influenza vaccine according to a standard protocol allowing the opening of the hair duct for the TC route or needle-injection for the IM route. We demonstrated that the safety of the two routes was similar. We showed the superiority of TC application, but not the IM route, to induce a significant increase in influenza-specific CD8 cytokine-producing cells in healthy-volunteers and in HIV-infected patients. However, these routes did not differ significantly for the induction of influenza-specific CD4 responses, and neutralizing antibodies were induced only by the IM route. The CD8 cell response is thus the major immune response observed after TC vaccination. CONCLUSIONS: This Phase Ia clinical trial (Manon05 testing an anti-influenza vaccine demonstrated that vaccines designed for antibody induction by the IM route, generate vaccine-specific CD8 T cells when administered transcutaneously. These results underline the necessity of adapting vaccination strategies to control complex infectious diseases when CD8 cellular responses are crucial. Our work opens up a key area for the

  11. Advanced glycation end products accelerate ischemia/reperfusion injury through receptor of advanced end product/nitrative thioredoxin inactivation in cardiac microvascular endothelial cells.

    Science.gov (United States)

    Liu, Yi; Ma, Yanzhuo; Wang, Rutao; Xia, Chenhai; Zhang, Rongqing; Lian, Kun; Luan, Ronghua; Sun, Lu; Yang, Lu; Lau, Wayne B; Wang, Haichang; Tao, Ling

    2011-10-01

    The advanced glycation end products (AGEs) are associated with increased cardiac endothelial injury. However, no causative link has been established between increased AGEs and enhanced endothelial injury after ischemia/reperfusion. More importantly, the molecular mechanisms by which AGEs may increase endothelial injury remain unknown. Adult rat cardiac microvascular endothelial cells (CMECs) were isolated and incubated with AGE-modified bovine serum albumin (BSA) or BSA. After AGE-BSA or BSA preculture, CMECs were subjected to simulated ischemia (SI)/reperfusion (R). AGE-BSA increased SI/R injury as evidenced by enhanced lactate dehydrogenase release and caspase-3 activity. Moreover, AGE-BSA significantly increased SI/R-induced oxidative/nitrative stress in CMECs (as measured by increased inducible nitric oxide synthase expression, total nitric oxide production, superoxide generation, and peroxynitrite formation) and increased SI/R-induced nitrative inactivation of thioredoxin-1 (Trx-1), an essential cytoprotective molecule. Supplementation of EUK134 (peroxynitrite decomposition catalyst), human Trx-1, or soluble receptor of advanced end product (sRAGE) (a RAGE decoy) in AGE-BSA precultured cells attenuated SI/R-induced oxidative/nitrative stress, reduced SI/R-induced Trx-1 nitration, preserved Trx-1 activity, and reduced SI/R injury. Our results demonstrated that AGEs may increase SI/R-induced endothelial injury by increasing oxidative/nitrative injury and subsequent nitrative inactivation of Trx-1. Interventions blocking RAGE signaling or restoring Trx activity may be novel therapies to mitigate endothelial ischemia/reperfusion injury in the diabetic population.

  12. Mechanism of inactivation of alanine racemase by beta, beta, beta-trifluoroalanine

    International Nuclear Information System (INIS)

    The alanine racemases are a group of PLP-dependent bacterial enzymes that catalyze the racemization of alanine, providing D-alanine for cell wall synthesis. Inactivation of the alanine racemases from the Gram-negative organism Salmonella typhimurium and Gram-positive organism Bacillus stearothermophilus with beta, beta, beta-trifluoroalanine has been studied. The inactivation occurs with the same rate constant as that for formation of a broad 460-490-nm chromophore. Loss of two fluoride ions per mole of inactivated enzyme and retention of [1-14C]trifluoroalanine label accompany inhibition, suggesting a monofluoro enzyme adduct. Partial denaturation (1 M guanidine) leads to rapid return of the initial 420-nm chromophore, followed by a slower (t1/2 approximately 30 min-1 h) loss of the fluoride ion and 14CO2 release. At this point, reduction by NaB3H4 and tryptic digestion yield a single radiolabeled peptide. Purification and sequencing of the peptide reveals that lysine-38 is covalently attached to the PLP cofactor. A mechanism for enzyme inactivation by trifluoroalanine is proposed and contrasted with earlier results on monohaloalanines, in which nucleophilic attack of released aminoacrylate on the PLP aldimine leads to enzyme inactivation. For trifluoroalanine inactivation, nucleophilic attack of lysine-38 on the electrophilic beta-difluoro-alpha, beta-unsaturated imine provides an alternative mode of inhibition for these enzymes

  13. Optimization of the isolation and expansion method of human mediastinal-adipose tissue derived mesenchymal stem cells with virally inactivated GMP-grade platelet lysate.

    Science.gov (United States)

    Siciliano, Camilla; Ibrahim, Mohsen; Scafetta, Gaia; Napoletano, Chiara; Mangino, Giorgio; Pierelli, Luca; Frati, Giacomo; De Falco, Elena

    2015-01-01

    Mesenchymal stem cells (MSCs) are adult multipotent cells currently employed in several clinical trials due to their immunomodulating, angiogenic and repairing features. The adipose tissue is certainly considered an eligible source of MSCs. Recently, putative adipose tissue derived MSCs (ADMSCs) have been isolated from the mediastinal depots. However, very little is known about the properties, the function and the potential of human mediastinal ADMSCs (hmADMSCs). However, the lack of standardized methodologies to culture ADMSCs prevents comparison across. Herein for the first time, we report a detailed step by step description to optimize the isolation and the expansion methodology of hmADMSCs using a virally inactivated good manufacturing practice (GMP)-grade platelet lysate, highlighting the critical aspects of the procedure and providing useful troubleshooting suggestions. Our approach offers a reproducible system which could provide standardization across laboratories. Moreover, our system is time and cost effective, and it can provide a reproducible source of adipose stem cells to enable future studies to unravel new insights regard this promising stem cell population. PMID:24306273

  14. Inactivation of certain insect pathogens by ultraviolet radiation

    International Nuclear Information System (INIS)

    The UV-sensitivity of two baculoviruses (granulosis virus, nuclear polyhedrosis virus) and two entomopathogenic microorganisms (Bacillus thuringiensis, Beauveria bassiana) was determined by radiation tests. In the far UV (254 nm) the stability, measured at an inactivation rate of 99%, was in declining order: nuclear polyhedra >= conidia of B. bassiana > granula > spores of B. thuringiensis >= vegetative cells of B. thuringiensis. In the near UV (285-380 nm) the following order could be found: conidia of B. bassiana >= nuclear polyhedra > spores of B. thuringiensis >= granula > vegetative cells of B. thuringiensis. Far UV had a much higher germicidal effect for all pathogens tested than near UV. (orig.)

  15. Inactivation of certain insect pathogens by ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Krieg, A.; Groener, A.; Huber, J.; Zimmermann, G.

    1981-01-01

    The UV-sensitivity of two baculoviruses (granulosis virus, nuclear polyhedrosis virus) and two entomopathogenic microorganisms (Bacillus thuringiensis, Beauveria bassiana) was determined by radiation tests. In the far UV (254 nm) the stability, measured at an inactivation rate of 99%, was in declining order: nuclear polyhedra >= conidia of B. bassiana > granula > spores of B. thuringiensis >= vegetative cells of B. thuringiensis. In the near UV (285-380 nm) the following order could be found: conidia of B. bassiana >= nuclear polyhedra > spores of B. thuringiensis >= granula > vegetative cells of B. thuringiensis. Far UV had a much higher germicidal effect for all pathogens tested than near UV.

  16. Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to Escherichia coli: Membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death.

    Science.gov (United States)

    Liu, Gesheng; Zhang, Shuai; Yang, Kun; Zhu, Lizhong; Lin, Daohui

    2016-07-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are two widely used polyfluorinated compounds (PFCs) and are persistent in the environment. This study for the first time systematically investigated their toxicities and the underlying mechanisms to Escherichia coli. Much higher toxicity was observed for PFOA than PFOS, with the 3 h half growth inhibition concentrations (IC50) determined to be 10.6 ± 1.0 and 374 ± 3 mg L(-1), respectively, while the bacterial accumulation of PFOS was much greater than that of PFOA. The PFC exposures disrupted cell membranes as evidenced by the dose-dependent variations of cell structures (by transmission electron microscopy observations), surface properties (electronegativity, hydrophobicity, and membrane fluidity), and membrane compositions (by gas chromatogram and Fourier transform infrared spectroscopy analyses). The increases in the contents of intracellular reactive oxygen species (ROS) and malondialdehyde and the activity of superoxide dismutase indicated the increment of oxidative stress induced by the PFCs in the bacterial cells. The fact that the cell growth inhibition was mitigated by the addition of ROS scavenger (N-acetyl cysteine) further evidenced the important role of oxidative damage in the toxicities of PFOS and PFOA. Eighteen genes involved in cell division, membrane instability, oxidative stress, and DNA damage of the exposed cells were up or down expressed, indicating the DNA damage by the PFCs. The toxicities of PFOS and PFOA to E. coli were therefore ascribed to the membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death. The difference in the bactericidal effect between PFOS and PFOA was supposed to be related to their different dominating toxicity mechanisms, i.e., membrane disruption and oxidative damage, respectively. The outcomes will shed new light on the assessment of ecological effects of PFCs. PMID:27155098

  17. Effects of Bacterial Inactivation Methods on Downstream Proteomic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Andy; Merkley, Eric D.; Clowers, Brian H.; Hutchison, Janine R.; Kreuzer, Helen W.

    2015-05-01

    Inactivation of pathogenic microbial samples is often necessary for the protection of researchers and to comply with local and federal regulations. By its nature, biological inactivation causes changes to microbial samples, potentially affecting observed experimental results. While inactivation induced damage to materials such as DNA has been evaluated, the effect of various inactivation strategies on proteomic data, to our knowledge, has not been discussed. To this end, we inactivated samples of Yersinia pestis and Escherichia coli by autoclave, ethanol, or irradiation treatment to determine how inactivation changes liquid chromatography tandem mass spectrometry data quality as well as apparent protein content of cells. Proteomic datasets obtained from aliquots of samples inactivated by different methods were highly similar, with Pearson correlation coefficients ranging from 0.822 to 0.985 and 0.816 to 0.985 for E. coli and Y. pestis, respectively, suggesting that inactivation had only slight impacts on the set of proteins identified. In addition, spectral quality metrics such as distributions of various database search algorithm scores remained constant across inactivation methods, indicating that inactivation does not appreciably degrade spectral quality. Though overall changes resulting from inactivation were small, there were detectable trends. For example, one-sided Fischer exact tests determined that periplasmic proteins decrease in observed abundance after sample inactivation by autoclaving (α = 1.71x10-2 for E. coli, α = 4.97x10-4 for Y. pestis) and irradiation (α = 9.43x10-7 for E. coli, α = 1.21x10-5 for Y. pestis) when compared to controls that were not inactivated. Based on our data, if sample inactivation is necessary, we recommend inactivation with ethanol treatment with secondary preference given to irradiation.

  18. Gestational Diabetes Mellitus From Inactivation of Prolactin Receptor and MafB in Islet β-Cells.

    Science.gov (United States)

    Banerjee, Ronadip R; Cyphert, Holly A; Walker, Emily M; Chakravarthy, Harini; Peiris, Heshan; Gu, Xueying; Liu, Yinghua; Conrad, Elizabeth; Goodrich, Lisa; Stein, Roland W; Kim, Seung K

    2016-08-01

    β-Cell proliferation and expansion during pregnancy are crucial for maintaining euglycemia in response to increased metabolic demands placed on the mother. Prolactin and placental lactogen signal through the prolactin receptor (PRLR) and contribute to adaptive β-cell responses in pregnancy; however, the in vivo requirement for PRLR signaling specifically in maternal β-cell adaptations remains unknown. We generated a floxed allele of Prlr, allowing conditional loss of PRLR in β-cells. In this study, we show that loss of PRLR signaling in β-cells results in gestational diabetes mellitus (GDM), reduced β-cell proliferation, and failure to expand β-cell mass during pregnancy. Targeted PRLR loss in maternal β-cells in vivo impaired expression of the transcription factor Foxm1, both G1/S and G2/M cyclins, tryptophan hydroxylase 1 (Tph1), and islet serotonin production, for which synthesis requires Tph1. This conditional system also revealed that PRLR signaling is required for the transient gestational expression of the transcription factor MafB within a subset of β-cells during pregnancy. MafB deletion in maternal β-cells also produced GDM, with inadequate β-cell expansion accompanied by failure to induce PRLR-dependent target genes regulating β-cell proliferation. These results unveil molecular roles for PRLR signaling in orchestrating the physiologic expansion of maternal β-cells during pregnancy. PMID:27217483

  19. Cerebrovascular accidents in sickle cell disease: rates and risk factors.

    Science.gov (United States)

    Ohene-Frempong, K; Weiner, S J; Sleeper, L A; Miller, S T; Embury, S; Moohr, J W; Wethers, D L; Pegelow, C H; Gill, F M

    1998-01-01

    Cerebrovascular accident (CVA) is a major complication of sickle cell disease. The incidence and mortality of and risk factors for CVA in sickle cell disease patients in the United States have been reported only in small patient samples. The Cooperative Study of Sickle Cell Disease collected clinical data on 4,082 sickle cell disease patients enrolled from 1978 to 1988. Patients were followed for an average of 5.2 +/- 2.0 years. Age-specific prevalence and incidence rates of CVA in patients with the common genotypes of sickle cell disease were determined, and the effects of hematologic and clinical events on the risk of CVA were analyzed. The highest rates of prevalence of CVA (4.01%) and incidence (0.61 per 100 patient-years) were in sickle cell anemia (SS) patients, but CVA occurred in all common genotypes. The incidence of infarctive CVA was lowest in SS patients 20 to 29 years of age and higher in children and older patients. Conversely, the incidence of hemorrhagic stroke in SS patients was highest among patients aged 20 to 29 years. Across all ages the mortality rate was 26% in the 2 weeks after hemorrhagic stroke. No deaths occurred after infarctive stroke. Risk factors for infarctive stroke included prior transient ischemic attack, low steady-state hemoglobin concentration and rate of and recent episode of acute chest syndrome, and elevated systolic blood pressure. Hemorrhagic stroke was associated with low steady-state hemoglobin and high leukocyte count.

  20. The epigenetic modifier CHD5 functions as a novel tumor suppressor for renal cell carcinoma and is predominantly inactivated by promoter CpG methylation

    Science.gov (United States)

    Du, Zhenfang; Li, Lili; Huang, Xin; Jin, Jie; Huang, Suming; Zhang, Qian; Tao, Qian

    2016-01-01

    Renal cell carcinoma (RCC) is the most common urological cancer with steadily increasing incidence. A series of tumor suppressor genes (TSGs) have been identified methylated in RCC as potential epigenetic biomarkers. We identified a 1p36.3 TSG candidate CHD5 as a methylated target in RCC through epigenome study. As the role of CHD5 in RCC pathogenesis remains elusive, we further studied its expression and molecular functions in RCC cells. We found that CHD5 was broadly expressed in most normal genitourinary tissues including kidney, but frequently silenced or downregulated by promoter CpG methylation in 78% of RCC cell lines and 44% (24/55) of primary tumors. In addition, CHD5 mutations appear to be rare in RCC tumors through genome database mining. In methylated/silenced RCC cell lines, CHD5 expression could be restored with azacytidine demethylation treatment. Ectopic expression of CHD5 in RCC cells significantly inhibited their clonogenicity, migration and invasion. Moreover, we found that CHD5, as a chromatin remodeling factor, suppressed the expression of multiple targets including oncogenes (MYC, MDM2, STAT3, CCND1, YAP1), epigenetic master genes (Bmi-1, EZH2, JMJD2C), as well as epithelial-mesenchymal transition and stem cell markers (SNAI1, FN1, OCT4). Further chromatin immunoprecipitation (ChIP) assays confirmed the binding of CHD5 to target gene promoters. Thus, we demonstrate that CHD5 functions as a novel TSG for RCC, but is predominantly inactivated by promoter methylation in primary tumors. PMID:26943038

  1. Matrine Suppresses Proliferation and Invasion of SGC7901 Cells through Inactivation of PI3K/Akt/uPA Pathway.

    Science.gov (United States)

    Peng, Xiaochun; Zhou, Dawei; Wang, Xianwang; Hu, Zhifan; Yan, Yan; Huang, Jiangrong

    2016-09-01

    This study was to examine the inhibitory effect of matrine on the proliferation and metastasis of gastric cancer cells, and to explore the possible mechanisms involved in these processes. MTT was used to evaluate the proliferation ability of SGC7901 cells. A two and three-dimensional cell migration assay were performed to determine the effect of matrine on the migration of SGC7901 cells. Then, the changes of the uPA protein and other possible signal molecules were detected by western blot. We found that the proliferation ability of SGC 7901 cells was suppressed by matrine (pmatrine when compared to the control in a two-dimensional cell migration assay. In addition, SGC7901cells treated with matrine (50μg/ml) migrated less than the control cells in a three-dimensional cell migration assay. At the meantime, the decreased uPA protein expression in SGC7901 cells treated with matrine was observed, and the PI3K/Akt pathway was inhibited. These results suggested that matrine can inhibit the proliferation and metastasis of gastric cancer cells through the PI3K/Akt/uPA pathway, indicating that matrine might be a potential molecular target for treatment of gastric carcinoma.

  2. Prevention of allergic rhinitis by ginger and the molecular basis of immunosuppression by 6-gingerol through T cell inactivation.

    Science.gov (United States)

    Kawamoto, Yoshiyuki; Ueno, Yuki; Nakahashi, Emiko; Obayashi, Momoko; Sugihara, Kento; Qiao, Shanlou; Iida, Machiko; Kumasaka, Mayuko Y; Yajima, Ichiro; Goto, Yuji; Ohgami, Nobutaka; Kato, Masashi; Takeda, Kozue

    2016-01-01

    The incidence of allergies has recently been increasing worldwide. Immunoglobulin E (IgE)-mediated hypersensitivity is central to the pathogenesis of asthma, hay fever and other allergic diseases. Ginger (Zingiber officinale Roscoe) and its extracts have been valued for their medical properties including antinausea, antiinflammation, antipyresis and analgesia properties. In this study, we investigated the antiallergic effects of ginger and 6-gingerol, a major compound of ginger, using a mouse allergy model and primary/cell line culture system. In mice with ovalbumin (OVA)-induced allergic rhinitis, oral administration of 2% ginger diet reduced the severity of sneezing and nasal rubbing by nasal sensitization of OVA and suppressed infiltration of mast cells in nasal mucosa and secretion of OVA-specific IgE in serum. 6-Gingerol inhibited the expression of not only Th2 cytokines but also Th1 cytokines in OVA-sensitized spleen cells. Accordingly, 6-gingerol suppressed in vitro differentiation of both Th1 cells and Th2 cells from naïve T cells. In addition, 6-gingerol suppressed both superantigen staphylococcal enterotoxin B (SEB)- and anti-CD3-induced T cell proliferation. 6-Gingerol also abrogated PMA plus ionomycin- and SEB-induced IL-2 production in T cells, suggesting that 6-gingerol affected T cell receptor-mediated signal transduction rather than the antigen-presentation process. Indeed, 6-gingerol inhibited the phosphorylation of MAP kinases, calcium release and nuclear localization of c-fos and NF-κB by PMA and ionomycin stimulation. Thus, our results demonstrate that 6-gingerol suppresses cytokine production for T cell activation and proliferation, thereby not causing B cell and mast cell activation and resulting in prevention or alleviation of allergic rhinitis symptoms. PMID:26403321

  3. Turnover rates of B cells, T cells, and NK cells in simian immunodeficiency virus-infected and uninfected rhesus macaques

    NARCIS (Netherlands)

    Boer, R.J. de; Mohri, H.; Ho, D.D.; Perelson, A.S.

    2003-01-01

    We determined average cellular turnover rates by fitting mathematical models to 5-bromo-2'-deoxyuridine measurements in SIV-infected and uninfected rhesus macaques. The daily turnover rates of CD4(+) T cells, CD4(-) T cells, CD20(+) B cells, and CD16(+) NK cells in normal uninfected rhesus macaques

  4. A self-inactivating retrovector incorporating the IL-2 promoter for activation-induced transgene expression in genetically engineered T-cells

    Directory of Open Access Journals (Sweden)

    Lejeune Laurence

    2006-11-01

    Full Text Available Abstract Background T-cell activation leads to signaling pathways that ultimately result in induction of gene transcription from the interleukin-2 (IL-2 promoter. We hypothesized that the IL-2 promoter or its synthetic derivatives can lead to T-cell specific, activation-induced transgene expression. Our objective was to develop a retroviral vector for stable and activation-induced transgene expression in T-lymphocytes. Results First, we compared the transcriptional potency of the full-length IL-2 promoter with that of a synthetic promoter composed of 3 repeats of the Nuclear Factor of Activated T-Cells (NFAT element following activation of transfected Jurkat T-cells expressing the large SV40 T antigen (Jurkat TAg. Although the NFAT3 promoter resulted in a stronger induction of luciferase reporter expression post stimulation, the basal levels of the IL-2 promoter-driven reporter expression were much lower indicating that the IL-2 promoter can serve as a more stringent activation-dependent promoter in T-cells. Based on this data, we generated a self-inactivating retroviral vector with the full-length human IL-2 promoter, namely SINIL-2pr that incorporated the enhanced green fluorescent protein (EGFP fused to herpes simplex virus thymidine kinase as a reporter/suicide "bifunctional" gene. Subsequently, Vesicular Stomatitis Virus-G Protein pseudotyped retroparticles were generated for SINIL-2pr and used to transduce the Jurkat T-cell line and the ZAP-70-deficient P116 cell line. Flow cytometry analysis showed that EGFP expression was markedly enhanced post co-stimulation of the gene-modified cells with 1 μM ionomycin and 10 ng/ml phorbol 12-myristate 13-acetate (PMA. This activation-induced expression was abrogated when the cells were pretreated with 300 nM cyclosporin A. Conclusion These results demonstrate that the SINIL-2pr retrovector leads to activation-inducible transgene expression in Jurkat T-cell lines. We propose that this design can be

  5. Comparison of the effect of rose bengal- and eosin Y-mediated photodynamic inactivation on planktonic cells and biofilms of Candida albicans.

    Science.gov (United States)

    Freire, Fernanda; Costa, Anna Carolina Borges Pereira; Pereira, Cristiane Aparecida; Beltrame Junior, Milton; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso

    2014-05-01

    Candida albicans is an opportunistic yeast that can cause oral candidosis through the formation of a biofilm, an important virulence factor that compromises the action of antifungal agents. The objective of this study was to compare the effect of rose bengal (RB)- and eosin Y (EY)-mediated photodynamic inactivation (PDI) using a green light-emitting diode (LED; 532 ± 10 nm) on planktonic cells and biofilms of C. albicans (ATCC 18804). Planktonic cultures were treated with photosensitizers at concentrations ranging from 0.78 to 400 μM, and biofilms were treated with 200 μM of photosensitizers. The number of colony-forming unit per milliliter (CFU/mL) was compared by analysis of variance and Tukey's test (P ≤ 0.05). After treatment, one biofilm specimen of the control and PDI groups were examined by scanning electron microscopy. The photosensitizers (6.25, 25, 50, 200, and 400 μM of EY, and 6.25 μM of RB or higher) significantly reduced the number of CFU/mL in the PDI groups when compared to the control group. With respect to biofilm formation, RB- and EY-mediated PDI promoted reductions of 0.22 log10 and 0.45 log10, respectively. Scanning electron microscopy showed that the two photosensitizers reduced fungal structures. In conclusion, EY- and RB-mediated PDI using LED irradiation significantly reduced C. albicans planktonic cells and biofilms.

  6. Hydrazine vapor inactivates Bacillus spores

    Science.gov (United States)

    Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.

    2016-05-01

    NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 ± 0.50 h at 25 °C and 2.85 ± 0.13 h at 35 °C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count.

  7. The action of microsecond-pulsed plasma-activated media on the inactivation of human lung cancer cells

    Science.gov (United States)

    Kumar, Naresh; Park, Ji Hoon; Jeon, Su Nam; Park, Bong Sang; Choi, Eun Ha; Attri, Pankaj

    2016-03-01

    In the present work, we have generated reactive species (RS) through microsecond-pulsed plasma (MPP) in the cell culture media using a Marx generator with point-point electrodes of approximately 0.06 J discharge energy/pulse. RS generated in culture media through MPP have a selective action between growth of the H460 lung cancer cells and L132 normal lung cells. We observed that MPP-activated media (MPP-AM) induced apoptosis on H460 lung cancer cells through an oxidative DNA damage cascade. Additionally, we studied the apoptosis-related mRNA expression, DNA oxidation and polymerase-1 (PARP-1) cleaved analysis from treated cancer cells. The result proves that radicals generated through MPP play a pivotal role in the activation of media that induces the selective killing effect.

  8. The biological effect of large single doses: a possible role for non-targeted effects in cell inactivation.

    Directory of Open Access Journals (Sweden)

    Marlon R Veldwijk

    Full Text Available BACKGROUND AND PURPOSE: Novel radiotherapy techniques increasingly use very large dose fractions. It has been argued that the biological effect of large dose fractions may differ from that of conventional fraction sizes. The purpose was to study the biological effect of large single doses. MATERIAL AND METHODS: Clonogenic cell survival of MCF7 and MDA-MB-231 cells was determined after direct X-ray irradiation, irradiation of feeder cells, or transfer of conditioned medium (CM. Cell-cycle distributions and the apoptotic sub-G1 fraction were measured by flow cytometry. Cytokines in CM were quantified by a cytokine antibody array. γH2AX foci were detected by immunofluorescence microscopy. RESULTS: The surviving fraction of MCF7 cells irradiated in vitro with 12 Gy showed an 8.5-fold decrease (95% c.i.: 4.4-16.3; P<0.0001 when the density of irradiated cells was increased from 10 to 50×10(3 cells per flask. Part of this effect was due to a dose-dependent transferrable factor as shown in CM experiments in the dose range 5-15 Gy. While no effect on apoptosis and cell cycle distribution was observed, and no differentially expressed cytokine could be identified, the transferable factor induced prolonged expression of γH2AX DNA repair foci at 1-12 h. CONCLUSIONS: A dose-dependent non-targeted effect on clonogenic cell survival was found in the dose range 5-15 Gy. The dependence of SF on cell numbers at high doses would represent a "cohort effect" in vivo. These results support the hypothesis that non-targeted effects may contribute to the efficacy of very large dose fractions in radiotherapy.

  9. Assessing Photocatalytic Oxidation Using Modified TiO 2 Nanomaterials for Virus Inactivation in Drinking Water: Mechanisms and Application

    Science.gov (United States)

    Liga, Michael Vincent

    Photocatalytic oxidation is an alternative water treatment method under consideration for disinfecting water. Chlorine disinfection can form harmful byproducts, and some viruses (e.g. adenoviruses) are resistant to other alternative disinfection methods. Photocatalytic oxidation using nano-sized photocatalytic particles (e.g. TiO2, fullerene) holds promise; however, it is limited by its low efficiency and long required treatment times. This research focuses on improving virus inactivation by photocatalytic oxidation by modifying catalysts for improved activity, by analyzing virus inactivation kinetics, and by elucidating the inactivation mechanisms of adenovirus serotype 2 (AdV2) and bacteriophage MS2. Modifying TiO2 with silver (nAg/TiO2) or silica (SiO2-TiO2) improves the inactivation kinetics of bacteriophage MS2 by a factor of 3-10. nAg/ TiO2 increases hydroxyl radical (HO·) production while SiO2 increases the adsorption of MS2 to TiO 2. These results suggest that modifying the photocatalyst surface to increase contaminant adsorption is an important improvement strategy along with increasing HO· production. The inactivation kinetics of AdV2 by P25 TiO2 is much slower than the MS2 inactivation kinetics and displays a strong shoulder, which is not present in the MS2 kinetics. nAg/TiO2 initially improves the inactivation rate of AdV2. SiO2-TiO2 reduces the AdV2 inactivation kinetics since adsorption is not significantly enhanced, as it is with MS2. Amino-C60 is highly effective for AdV2 inactivation under visible light irradiation, making it a good material for use in solar disinfection systems. The efficacy of amino-fullerene also demonstrates that singlet oxygen is effective for AdV2 inactivation. When exposed to irradiated TiO2, AdV2 hexon proteins are heavily damaged resulting in the release of DNA. DNA damage is also present but may occur after capsids break. With MS2, the host interaction protein is rapidly damaged, but not the coat protein. The kinetics

  10. Protein kinase C-delta inactivation inhibits the proliferation and survival of cancer stem cells in culture and in vivo

    International Nuclear Information System (INIS)

    A subpopulation of tumor cells with distinct stem-like properties (cancer stem-like cells, CSCs) may be responsible for tumor initiation, invasive growth, and possibly dissemination to distant organ sites. CSCs exhibit a spectrum of biological, biochemical, and molecular features that are consistent with a stem-like phenotype, including growth as non-adherent spheres (clonogenic potential), ability to form a new tumor in xenograft assays, unlimited self-renewal, and the capacity for multipotency and lineage-specific differentiation. PKCδ is a novel class serine/threonine kinase of the PKC family, and functions in a number of cellular activities including cell proliferation, survival or apoptosis. PKCδ has previously been validated as a synthetic lethal target in cancer cells of multiple types with aberrant activation of Ras signaling, using both genetic (shRNA and dominant-negative PKCδ mutants) and small molecule inhibitors. In contrast, PKCδ is not required for the proliferation or survival of normal cells, suggesting the potential tumor-specificity of a PKCδ-targeted approach. shRNA knockdown was used validate PKCδ as a target in primary cancer stem cell lines and stem-like cells derived from human tumor cell lines, including breast, pancreatic, prostate and melanoma tumor cells. Novel and potent small molecule PKCδ inhibitors were employed in assays monitoring apoptosis, proliferation and clonogenic capacity of these cancer stem-like populations. Significant differences among data sets were determined using two-tailed Student’s t tests or ANOVA. We demonstrate that CSC-like populations derived from multiple types of human primary tumors, from human cancer cell lines, and from transformed human cells, require PKCδ activity and are susceptible to agents which deplete PKCδ protein or activity. Inhibition of PKCδ by specific genetic strategies (shRNA) or by novel small molecule inhibitors is growth inhibitory and cytotoxic to multiple types of human

  11. Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minh Truong; Kim, Hyung Gyun; Khanal, Tilak; Choi, Jae Ho [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Kim, Dong Hee [Department of Pathology, College of Oriental Medicine, Daejeon University, Daejeon (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2013-09-01

    Resistance to therapy is the major obstacle to more effective cancer treatment. Heme oxygenase-1 (HO-1) is often highly up-regulated in tumor tissues, and its expression is further increased in response to therapies. It has been suggested that inhibition of HO-1 expression is a potential therapeutic approach to sensitize tumors to chemotherapy and radiotherapy. In this study, we tested the hypothesis that the anti-tumor effects of metformin are mediated by suppression of HO-1 expression in cancer cells. Our results indicate that metformin strongly suppresses HO-1 mRNA and protein expression in human hepatic carcinoma HepG2, cervical cancer HeLa, and non-small-cell lung cancer A549 cells. Metformin also markedly reduced Nrf2 mRNA and protein levels in whole cell lysates and suppressed tert-butylhydroquinone (tBHQ)-induced Nrf2 protein stability and antioxidant response element (ARE)-luciferase activity in HepG2 cells. We also found that metformin regulation of Nrf2 expression is mediated by a Keap1-independent mechanism and that metformin significantly attenuated Raf-ERK signaling to suppress Nrf2 expression in cancer cells. Inhibition of Raf-ERK signaling by PD98059 decreased Nrf2 mRNA expression in HepG2 cells, confirming that the inhibition of Nrf2 expression is mediated by an attenuation of Raf-ERK signaling in cancer cells. The inactivation of AMPK by siRNA, DN-AMPK or the pharmacological AMPK inhibitor compound C, revealed that metformin reduced HO-1 expression in an AMPK-independent manner. These results highlight the Raf-ERK-Nrf2 axis as a new molecular target in anticancer therapy in response to metformin treatment. - Highlights: • Metformin inhibits HO-1 expression in cancer cells. • Metformin attenuates Raf-ERK-Nrf2 signaling. • Suppression of HO-1 by metformin is independent of AMPK. • HO-1 inhibition contributes to anti-proliferative effects of metformin.

  12. Matrine inhibits the growth and induces apoptosis of osteosarcoma cells in vitro by inactivating the Akt pathway.

    Science.gov (United States)

    Xu, Gong-Ping; Zhao, Wei; Zhuang, Jin-Peng; Zu, Jia-Ning; Wang, Duan-Yang; Han, Fei; Zhang, Zhi-Peng; Yan, Jing-Long

    2015-03-01

    Matrine, a natural product, has been demonstrated to be a promising chemotherapeutic drug for some cancers. Using flow cytometric analysis of the cell cycle and apoptosis, we found that matrine inhibited the proliferation and induced apoptosis in the human osteosarcoma (OS) cell lines MG63, HOS, U2OS, and SAOS2 in vitro in a dose-dependent manner. We therefore assessed the role of the serine/threonine kinase Akt in the regulation of matrine-mediated cell growth inhibition and apoptosis induction in human OS cell lines. After treatment for 48 h, matrine induced G0/G1-stage cell cycle arrest in MG63, U2OS, and SAOS2 cells associated with an increase in the expression of p27(Kip1) and a decrease in the expression of Akt, glycogen synthase kinase 3 (GSK3)-β (Ser9), and cyclin D1. Furthermore, the pro-apoptotic factor Bax was upregulated. Overall, our findings suggest that matrine may be an effective anti-osteosarcoma drug due to its ability to inhibit proliferation and induce apoptosis in OS cells, possibly through the involvement of Akt signaling.

  13. Combination treatment with paclitaxel and doxorubicin inhibits growth of human esophageal squamous cancer cells by inactivation of Akt.

    Science.gov (United States)

    Lee, Hwan Hee; Ye, Shuai; Li, Xiu Juan; Lee, Kwang Bok; Park, Man Hee; Kim, Soo Mi

    2014-01-01

    Despite the fact that paclitaxel and doxorubicin are widely used as chemotherapy agents against several types of cancer, their combined effects on esophageal squamous cell carcinoma (ESCC) have never been fully elucidated. The present study was designed to investigate the biological effects of paclitaxel and doxorubicin in ESCC cells. Combination treatment with paclitaxel and doxorubicin significantly inhibited the proliferation of TE-12 cells in a dose-and time-dependent manner compared to treatment with paclitaxel or doxorubicin alone. FACS analysis showed that the percentage of cells in the G2/M phase was significantly increased at 12 h after treatment with the combination. Increased p-cdc2, p-Wee1 and p53 protein levels were observed, while Akt activation was suppressed by combination treatment with paclitaxel and doxorubicin. In addition, treatment with paclitaxel plus doxorubicin significantly increased apoptosis as indicated by increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-7 and -9 levels. These results suggest that combination treatment with paclitaxel and doxorubicin induced G2/M cell cycle arrest and apoptosis in human ESCC cells by suppressing Akt activity. These findings highlight the potent apoptotic effect of combination therapy with paclitaxel and doxorubicin in ESCC cells and the potential clinical benefits of these two drugs in esophageal cancer. PMID:24247637

  14. RASSF1A Suppresses Cell Migration through Inactivation of HDAC6 and Increase of Acetylated α-Tubulin

    OpenAIRE

    Jung, Hae-Yun; Jung, Jun Seok; Whang, Young Mi; Kim, Yeul Hong

    2013-01-01

    Purpose The RAS association domain family protein 1 (RASSF1) has been implicated in a tumor-suppressive function through the induction of acetylated α-tubulin and modulation of cell migration. However, the mechanisms of how RASSF1A is associated with acetylation of α-tubulin for controlling cell migration have not yet been elucidated. In this study, we found that RASSF1A regulated cell migration through the regulation of histon deacetylase 6 (HDAC6), which functions as a tubulin deacetylase. ...

  15. Inactivation of GDP-fucose transporter gene (Slc35c1) in CHO cells by ZFNs, TALENs and CRISPR-Cas9 for production of fucose-free antibodies.

    Science.gov (United States)

    Chan, Kah Fai; Shahreel, Wahyu; Wan, Corrine; Teo, Gavin; Hayati, Noor; Tay, Shi Jie; Tong, Wen Han; Yang, Yuansheng; Rudd, Pauline M; Zhang, Peiqing; Song, Zhiwei

    2016-03-01

    Removal of core fucose from N-glycans attached to human IgG1 significantly enhances its affinity for the receptor FcγRIII and thereby dramatically improves its antibody-dependent cellular cytotoxicity activity. While previous works have shown that inactivation of fucosyltransferase 8 results in mutants capable of producing fucose-free antibodies, we report here the use of genome editing techniques, namely ZFNs, TALENs and the CRISPR-Cas9, to inactivate the GDP-fucose transporter (SLC35C1) in Chinese hamster ovary (CHO) cells. A FACS approach coupled with a fucose-specific lectin was developed to rapidly isolate SLC35C1-deficient cells. Mass spectrometry analysis showed that both EPO-Fc produced in mutants arising from CHO-K1 and anti-Her2 antibody produced in mutants arising from a pre-existing antibody-producing CHO-HER line lacked core fucose. Lack of functional SLC35C1 in these cells does not affect cell growth or antibody productivity. Our data demonstrate that inactivating Slc35c1 gene represents an alternative approach to generate CHO cells for production of fucose-free antibodies.

  16. Dimethyl sulfoxide inactivates the anticancer effect of cisplatin against human myelogenous leukemia cell lines in in vitro assays

    OpenAIRE

    Rahul Raghavan; Sanith Cheriyamundath; Joseph Madassery

    2015-01-01

    Objectives: To investigate the effect of DMSO on cisplatin induced cytotoxicity (invitro) against K562 (Human mylogenous leukemia) cell line and to study the cisplatin-DMSO adduct formation using UV-spectrophotometer. Materials and methods: Effect of DMSO on the cytotoxicity of cisplatin was studied in K562 (Chronic mylogenous leukemia) cell line by MTT assay. Cisplatin-DMSO adduct formation was studied by continuously monitoring the increase in absorption peaks for 30 minutes using UV-s...

  17. Rate dependence of swelling in lithium-ion cells

    Energy Technology Data Exchange (ETDEWEB)

    Oh, KY; Siegel, JB; Secondo, L; Kim, SU; Samad, NA; Qin, JW; Anderson, D; Garikipati, K; Knobloch, A; Epureanu, BI; Monroe, CW; Stefanopoulou, A

    2014-12-01

    Swelling of a commercial 5 Ah lithium-ion cell with a nickel/manganese/cobalt-oxide cathode is investigated as a function of the charge state and the charge/discharge rate. In combination with sensitive displacement measurements, knowledge of the electrode configuration within this prismatic cell's interior allows macroscopic deformations of the casing to be correlated to electrochemical and mechanical transformations in individual anode/separator/cathode layers. Thermal expansion and interior charge state are both found to cause significant swelling. At low rates, where thermal expansion is negligible, the electrode sandwich dilates by as much as 1.5% as the charge state swings from 0% to 100% because of lithium-ion intercalation. At high rates a comparably large residual swelling was observed at the end of discharge. Thermal expansion caused by joule heating at high discharge rate results in battery swelling. The changes in displacement with respect to capacity at low rate correlate well with the potential changes known to accompany phase transitions in the electrode materials. Although the potential response changes minimally with the C-rate, the extent of swelling varies significantly, suggesting that measurements of swelling may provide a sensitive gauge for characterizing dynamic operating states. (C) 2014 Elsevier B.V. All rights reserved.

  18. Cdc7-Dbf4 Kinase Overexpression in Multiple Cancers and Tumor Cell Lines Is Correlated with p53 Inactivation

    Directory of Open Access Journals (Sweden)

    Dorine Bonte

    2008-09-01

    Full Text Available Cdc7 is a conserved serine/threonine kinase essential for the initiation of DNA replication, likely by activating the MCM DNA helicase at the G1- to S-phase transition. Cdc7 kinase activity requires association with its regulatory subunit Dbf4/activator of S-phase kinase. Cdc7-Dbf4 is also downstream of the conserved Ataxia telangectasia and RAD3-related kinase that responds to stalled replication forks or DNA damage. In this study, we found that Cdc7 protein was very low or undetectable in normal tissues and cell lines but had increased expression in ∼50% of the 62 human tumor cell lines we examined. Most cell lines with increased Cdc7 protein levels also had increased Dbf4 abundance, and some tumor cell lines had extra copies of the DBF4 gene. A high expression of Cdc7 protein was also detected in primary breast, colon, and lung tumors but not in the matched normal tissues. We also found a high correlation between p53 loss and increased CDC7 and DBF4 expression in primary breast cancers (P = 3.6 × 10−9 and 1.8 × 10−10, respectively and in the cancer cell lines we studied. Therefore, increased Cdc7-Dbf4 abundance may be a common occurrence in human malignancies.

  19. Targeting EMP3 suppresses proliferation and invasion of hepatocellular carcinoma cells through inactivation of PI3K/Akt pathway.

    Science.gov (United States)

    Hsieh, Yi-Hsien; Hsieh, Shu-Ching; Lee, Chien-Hsing; Yang, Shun-Fa; Cheng, Chun-Wen; Tang, Meng-Ju; Lin, Chia-Liang; Lin, Chu-Liang; Chou, Ruey-Hwang

    2015-10-27

    Epithelial membrane protein-3 (EMP3), a typical member of the epithelial membrane protein (EMP) family, is epigenetically silenced in some cancer types, and has been proposed to be a tumor suppressor gene. However, its effects on tumor suppression are controversial and its roles in development and malignancy of hepatocellular carcinoma (HCC) remain unclear. In the present study, we found that EMP3 was highly expressed in the tumorous tissues comparing to the matched normal tissues, and negatively correlated with differentiated degree of HCC patients. Knockdown of EMP3 significantly reduced cell proliferation, arrested cell cycle at G1 phase, and inhibited the motility and invasiveness in accordance with the decreased expression and activity of urokinase plasminogen activator (uPA) and matrix metalloproteinase 9 (MMP-9) in HCC cells. The in vivo tumor growth of HCC was effectively suppressed by knockdown of EMP3 in a xenograft mouse model. The EMP3 knockdown-reduced cell proliferation and invasion were attenuated by inhibition of phosphatidylinositol 3-kinase (PI3K) or knockdown of Akt, and rescued by overexpression of Akt in HCC cells. Clinical positive correlations of EMP3 with p85 regulatory subunit of PI3K, p-Akt, uPA, as well as MMP-9 were observed in the tissue sections from HCC patients. Here, we elucidated the tumor progressive effects of EMP3 through PI3K/Akt pathway and uPA/MMP-9 cascade in HCC cells. The findings provided a new insight into EMP3, which might be a potential molecular target for diagnosis and treatment of HCC. PMID:26472188

  20. Berberine and a Berberis lycium extract inactivate Cdc25A and induce {alpha}-tubulin acetylation that correlate with HL-60 cell cycle inhibition and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Musa [Department of Plant Sciences, Quaid-i-Azam University Islamabad (Pakistan); Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14 (Austria); Giessrigl, Benedikt; Vonach, Caroline; Madlener, Sibylle [Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Prinz, Sonja [Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14 (Austria); Herbaceck, Irene; Hoelzl, Christine [Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a (Austria); Bauer, Sabine; Viola, Katharina [Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Mikulits, Wolfgang [Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a (Austria); Quereshi, Rizwana Aleem [Department of Plant Sciences, Quaid-i-Azam University Islamabad (Pakistan); Knasmueller, Siegfried; Grusch, Michael [Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a (Austria); Kopp, Brigitte [Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14 (Austria); Krupitza, Georg, E-mail: georg.krupitza@meduniwien.ac.at [Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2010-01-05

    Berberis lycium Royle (Berberidacea) from Pakistan and its alkaloids berberine and palmatine have been reported to possess beneficial pharmacological properties. In the present study, the anti-neoplastic activities of different B. lycium root extracts and the major constituting alkaloids, berberine and palmatine were investigated in p53-deficient HL-60 cells. The strongest growth inhibitory and pro-apoptotic effects were found in the n-butanol (BuOH) extract followed by the ethyl acetate (EtOAc)-, and the water (H{sub 2}O) extract. The chemical composition of the BuOH extract was analyzed by TLC and quantified by HPLC. 11.1 {mu}g BuOH extract (that was gained from 1 mg dried root) contained 2.0 {mu}g berberine and 0.3 {mu}g/ml palmatine. 1.2 {mu}g/ml berberine inhibited cell proliferation significantly, while 0.5 {mu}g/ml palmatine had no effect. Berberine and the BuOH extract caused accumulation of HL-60 cells in S-phase. This was preceded by a strong activation of Chk2, phosphorylation and degradation of Cdc25A, and the subsequent inactivation of Cdc2 (CDK1). Furthermore, berberine and the extract inhibited the expression of the proto-oncogene cyclin D1. Berberine and the BuOH extract induced the acetylation of {alpha}-tubulin and this correlated with the induction of apoptosis. The data demonstrate that berberine is a potent anti-neoplastic compound that acts via anti-proliferative and pro-apoptotic mechanisms independent of genotoxicity.

  1. Development of an inactivated iridovirus vaccine against turbot viral reddish body syndrome

    Science.gov (United States)

    Fan, Tingjun; Hu, Xiuzhong; Wang, Liyan; Geng, Xiaofen; Jiang, Guojian; Yang, Xiuxia; Yu, Miaomiao

    2012-03-01

    Turbot ( Scophthalmus maximus L.) reddish body iridovirus (TRBIV) was propagated in turbot fin cells (TF cells) and inactivated as the TRBIV vaccine with its protection efficiency evaluated in this study. TF cells were cultured in 10% bovine calf serum (BCS)-containing MEM medium (pH7.0) at 22°C, in which TRBIV propagated to a titer as high as 105.6 TCID50 mL-1. The TRBIV was inactivated with 0.1% formalin and formulated with 0.5% aluminum hydroxide. The inactivated vaccine caused neither cytopathogenic effect (CPE) on TF cells nor pathogenic effect on turbots. After being administered with the vaccine twice via muscle injection, the turbot developed high-tittered TRBIV neutralizing antibodies in a dose-dependent manner. The vaccine protected the turbot from dying with an immunoprotection rate of 83.3% as was determined via subcutaneous vaccination in the laboratory and 90.5% via bath vaccination in turbot farms, respectively. The inactivated vaccine was very immunogenic, efficiently preventing turbot from death. It holds the potential of being applied in aquaculture.

  2. Development of an Inactivated Iridovirus Vaccine Against Turbot Viral Reddish Body Syndrome

    Institute of Scientific and Technical Information of China (English)

    FAN Tingjun; HU Xiuzhong; WANG Liyan; GENG Xiaofen; JIANG Guojian; YANG Xiuxia; YU Miaomiao

    2012-01-01

    Turbot (Scophthalmus maximus L.) reddish body iridovirus (TRBIV) was propagated in turbot fin cells (TF cells) and inactivated as the TRBIV vaccine with its protection efficiency evaluated in this study.TF cells were cultured in 10% bovine calf serum (BCS)-containing MEM medium (pH7.0) at 22 ℃,in which TRBIV propagated to a titer as high as 105.6 TCID50 mL-1.The TRBIV was inactivated with 0.1% formalin and formulated with 0.5% aluminum hydroxide.The inactivated vaccine caused neither cytopathogenic effect (CPE) on TF cells nor pathogenic effect on turbots.After being administered with the vaccine twice via muscle injection,the turbot developed high-tittered TRBIV neutralizing antibodies in a dose-dependent manner.The vaccine protected the turbot from dying with an immunoprotection rate of 83.3% as was determined via subcutaneous vaccination in the laboratory and 90.5% via bath vaccination in turbot farms,respectively.The inactivated vaccine was very immunogenic,efficiently preventing turbot from death.It holds the potential of being applied in aquaculture.

  3. Gold Nanoparticle-Photosensitizer Conjugate Based Photodynamic Inactivation of Biofilm Producing Cells: Potential for Treatment of C. albicans Infection in BALB/c Mice.

    Directory of Open Access Journals (Sweden)

    Mohd Asif Sherwani

    Full Text Available Photodynamic therapy (PDT has been found to be effective in inhibiting biofilm producing organisms. We investigated the photodynamic effect of gold nanoparticle (GNP conjugated photosensitizers against Candida albicans biofilm. We also examined the photodynamic efficacy of photosensitizer (PS conjugated GNPs (GNP-PS to treat skin and oral C. albicans infection in BALB/c mice.The biomimetically synthesized GNPs were conjugated to photosensitizers viz. methylene blue (MB or toluidine blue O (TB. The conjugation of PSs with GNPs was characterized by spectroscopic and microscopic techniques. The efficacy of gold nanoparticle conjugates against C. albicans biofilm was demonstrated by XTT assay and microscopic studies. The therapeutic efficacy of the combination of the GNP conjugates against cutaneous C. albicans infection was examined in mouse model by enumerating residual fungal burden and histopathological studies.The GNP-PS conjugate based PDT was found to effectively kill both C. albicans planktonic cells and biofilm populating hyphal forms. The mixture of GNPs conjugated to two different PSs significantly depleted the hyphal C. albicans burden against superficial skin and oral C. albicans infection in mice.The GNP-PS conjugate combination exhibits synergism in photodynamic inactivation of C. albicans. The GNP conjugate based PDT can be employed effectively in treatment of cutaneous C. albicans infections in model animals. The antibiofilm potential of PDT therapy can also be exploited in depletion of C. albicans on medical appliances such as implants and catheters etc.

  4. Thermal inactivation of Escherichia coli O157:H7 and non-O157 shiga toxin-producing Escherichia coli cells in mechanically tenderized veal.

    Science.gov (United States)

    Luchansky, John B; Porto-Fett, Anna C S; Shoyer, Bradley A; Thippareddi, Harshavardhan; Amaya, Jesus R; Lemler, Michael

    2014-07-01

    Preflattened veal cutlets (ca. 71.5 g, ca. 0.32 cm thick) were surface inoculated with ca. 6.8 log CFU/g of a multistrain cocktail of Escherichia coli O157:H7 (ECOH) or a cocktail made of single strains of serogroups O26, O45, O103, O104, O111, O121, and O145 of Shiga toxin-producing E. coli (STEC) cells and then were mechanically tenderized by passing once through a "Sir Steak" tenderizer. For each cooking time, in each of at least three trials, three inoculated and tenderized cutlets, with and without breading, were individually cooked in 15 or 30 ml of canola oil for 0.0, 0.75, 1.0, 1.25, 1.5, 1.75, or 2.25 min per side on an electric skillet set at 191.5°C. The temperatures of the meat and of the skillet were monitored and recorded using a type J thermocouple. Regardless of the breading or volume of oil used to cook the meat, the longer the cooking times, the higher was the internal temperature of the meat, along with a greater reduction of both ECOH and STEC. The average final internal temperature of the meat at the approximate geometric center ranged from 56.8 to 93.1°C. Microbial reductions of ca. 2.0 to 6.7 log CFU/g and ca. 2.6 to 6.2 log CFU/g were achieved for ECOH and STEC, respectively. Our data also revealed no differences in thermal inactivation of ECOH relative to the volume of oil used to cook nonbreaded cutlets. However, when cooking breaded cutlets, the use of more (30 ml) compared with less (15 ml) cooking oil resulted in greater reductions in pathogen numbers. To deliver about a 5.0-log reduction of ECOH and STEC, and to achieve the recommended internal temperature of 71.1°C, it was necessary to cook mechanically tenderized veal cutlets for at least 1.5 min per side on a preheated electric skillet set at 191.5°C and containing 15 ml of cooking oil. These data also established that cooking times and temperatures effective for inactivating serotype O157:H7 strains of E. coli in tenderized veal are equally effective against the additional six

  5. Effect of Deep-Frying or Conventional Oven Cooking on Thermal Inactivation of Shiga Toxin-Producing Cells of Escherichia coli in Meatballs.

    Science.gov (United States)

    Porto-Fett, Anna C S; Oliver, Michelle; Daniel, Marciauna; Shoyer, Bradley A; Stahler, Laura J; Shane, Laura E; Kassama, Lamin S; Jackson-Davis, Armitra; Luchansky, John B

    2016-05-01

    We investigated the effects of deep-frying or oven cooking on inactivation of Shiga toxin-producing cells of Escherichia coli (STEC) in meatballs. Finely ground veal and/or a finely ground beef-pork-veal mixture were inoculated (ca. 6.5 log CFU/g) with an eight-strain, genetically marked cocktail of rifampin-resistant STEC strains (STEC-8; O111:H, O45:H2, O103:H2, O104:H4, O121:H19, O145:NM, O26:H11, and O157:H7). Inoculated meat was mixed with liquid whole eggs and seasoned bread crumbs, shaped by hand into 40-g balls, and stored at -20°C (i.e., frozen) or at 4°C (i.e., fresh) for up to 18 h. Meatballs were deep-fried (canola oil) or baked (convection oven) for up to 9 or 20 min at 176.7°C (350°F), respectively. Cooked and uncooked samples were homogenized and plated onto sorbitol MacConkey agar with rifampin (100 μg/ml) followed by incubation of plates at 37°C for ca. 24 h. Up to four trials and three replications for each treatment for each trial were conducted. Deep-frying fresh meatballs for up to 5.5 min or frozen meatballs for up to 9.0 min resulted in reductions of STEC-8 ranging from ca. 0.7 to ≥6.1 log CFU/g. Likewise, reductions of ca. 0.7 to ≥6.1 log CFU/g were observed for frozen and fresh meatballs that were oven cooked for 7.5 to 20 min. This work provides new information on the effect of prior storage temperature (refrigerated or frozen), as well as subsequent cooking via deep-frying or baking, on inactivation of STEC-8 in meatballs prepared with beef, pork, and/or veal. These results will help establish guidelines and best practices for cooking raw meatballs at both food service establishments and in the home. PMID:27296418

  6. Inactivation of Escherichia coli phage by pulsed electric field treatment and analysis of inactivation mechanism

    Science.gov (United States)

    Tanino, Takanori; Yoshida, Tomoki; Sakai, Kazuki; Ohshima, Takayuki

    2013-03-01

    Inactivation of bacteriophage by pulsed electric field (PEF) treatment, one of the effective procedures for bacteria nonthermal inactivation, was studied. Model phage particles Escherichia coli bacteriophages M13mp18 and λ phage, were successfully inactivated by PEF treatment. The survival ratios of both bacteriophages decreased depending on the PEF treatment time when applied peak voltage was 5 or 7 kV, and the survival ratios after 12 min PEF treatment were 10-4 - 10-5. Electrophoresis analyses of biological molecules of inactivated λ phage detected no degradation of total protein and genomic DNA. These results suggested that the factor of phage inactivation by PEF treatment was not based on the degradation of protein or DNA, but on the destruction of phage particle structure. Sensitivity of E. coli phage to PEF treatment was compared with that of E. coli cell. Phage and MV1184 cell were treated with same condition PEF at 5 kV, respectively. After 12 min treatment, the survival ration of λ phage and MV1184 were 4.0 × 10-5 and 1.7 × 10-3, respectively. The survival ratio of phage was lower than that of MV1184. E. coli cell is more tolerant to inactivation with PEF treatment than coli phage.

  7. Carnosic acid induces apoptosis associated with mitochondrial dysfunction and Akt inactivation in HepG2 cells.

    Science.gov (United States)

    Xiang, Qisen; Ma, Yunfang; Dong, Jilin; Shen, Ruiling

    2015-02-01

    Carnosic acid (CA), a phenolic diterpene isolated from rosemary, shows potential benefits in health promotion and disease prevention. In the present study, the cytotoxic and apoptotic-inducing effects of CA on human hepatocellular carcinoma HepG2 cells were investigated. The MTT assay results indicated that CA decreased cell viability in HepG2 cells in a dose-dependent manner. Treatment with CA caused a rapid Caspase-3 activation and subsequently proteolytic cleavage of poly (ADP-ribose) polymerase (PARP), both of which were markers of cells undergoing apoptosis. CA also dissipated mitochondrial membrane potential and decreased the ratio of Bcl-2/Bax protein, which mediated cytosolic translocation of cytochrome c from the mitochondria. Furthermore, CA reduced the phosphorylation of Akt, which was partially inhibited by insulin, an activator of phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway. In conclusion, our data suggest that the mitochondrial dysfunction and deactivation of Akt may contribute to the apoptosis-inducing effects of CA. PMID:25265205

  8. Dose dependence of the oxygen enhancement ratio (OER) in radiation inactivation of Chinese hamster V79-171 cells

    International Nuclear Information System (INIS)

    The dose dependence of the oxygen enhancement ratio (OER) has been examined through multiple measurements of the response of Chinese hamster V79-171 cells to low and high doses of radiation under aerobic and hypoxic conditions. In this series of experiments the cells were maintained at 37 degrees C throughout the gassing and irradiation periods, to simulate normal physiological conditions. Flow cytometry and cell sorting techniques were used to facilitate accurate measurement of cell survival throughout the dose range, but particularly at low dose. The OER was found to decrease significantly at low dose, qualitatively confirming earlier reports from this laboratory, though the decrease was somewhat smaller in the present series. This difference may be a temperature effect since in the earlier experiments irradiation was at 0 degree C. This report shows that the OER decreases from a value of 2.87 ± 0.16 (standard deviation of mean) at S = 0.01 to 2.36 ± 0.19 at S = 0.80. Both alpha and beta are altered by the presence of oxygen. The OER is presented as a function of dose in nitrogen

  9. Mechanism-based inactivation of serine transhydroxymethylases by D-fluoroalanine and related amino acids.

    Science.gov (United States)

    Wang, E A; Kallen, R; Walsh, C

    1981-07-10

    Serine transhydroxymethylase, from lamb or rabbit liver, is known to catalyze slow transamination of D-alanine, but not of L-amino acids, in a tetrahydrofolate-independent reaction. Both enzymes will process the D-isomer of beta-fluoroalanine for alpha, beta-elimination of HF to yield an aminoacrylate-pyridoxal-P-enzyme intermediate. This intermediate partitions between harmless hydrolysis to pyruvate, NH4+, and active enzyme-pyridoxal-P (catalytic turnover) and suicidal enzyme alkylation by covalent modification with an average partition ratio of 40-60 turnovers/inactivation event/monomer unit of this tetrameric enzyme. Enzyme inactivation occurs with stoichiometric incorporation of radioactive label from D-[1,2-14C]fluoroalanine. Titration of enzymic cysteinyl --SH groups with 5,5'-dithiobis(2-nitrobenzoate) indicates loss of 1 --SH group on inactivation. Acid hydrolysis of radioactive-inactive enzyme confirms cysteine residue modification. Treatment of inactive enzyme with 6 M urea, then KBH4, followed by acid hydrolysis yields two radioactive compounds, lanthionine and S-carboxyhydroxyethylcysteine, in about equal amounts. The addition of tetrahydrofolate stimulates both pyruvate production and inactivation to equal extents with about a 200-fold rate acceleration at 0.5 mM tetrahydrofolate to turnover numbers of approximately 120 min-1. The Km for D-fluoroalanine is high, 10-60 mM, and this low substrate affinity suggests D-fluoroalanine will not be a useful in vivo agent for selective inactivation of liver cell serine transhydroxymethylases.

  10. Numerical evaluation of lactoperoxidase inactivation during continuous pulsed electric field processing.

    Science.gov (United States)

    Buckow, Roman; Semrau, Julius; Sui, Qian; Wan, Jason; Knoerzer, Kai

    2012-01-01

    A computational fluid dynamics (CFD) model describing the flow, electric field and temperature distribution of a laboratory-scale pulsed electric field (PEF) treatment chamber with co-field electrode configuration was developed. The predicted temperature increase was validated by means of integral temperature studies using thermocouples at the outlet of each flow cell for grape juice and salt solutions. Simulations of PEF treatments revealed intensity peaks of the electric field and laminar flow conditions in the treatment chamber causing local temperature hot spots near the chamber walls. Furthermore, thermal inactivation kinetics of lactoperoxidase (LPO) dissolved in simulated milk ultrafiltrate were determined with a glass capillary method at temperatures ranging from 65 to 80 °C. Temperature dependence of first order inactivation rate constants was accurately described by the Arrhenius equation yielding an activation energy of 597.1 kJ mol(-1). The thermal impact of different PEF processes on LPO activity was estimated by coupling the derived Arrhenius model with the CFD model and the predicted enzyme inactivation was compared to experimental measurements. Results indicated that LPO inactivation during combined PEF/thermal treatments was largely due to thermal effects, but 5-12% enzyme inactivation may be related to other electro-chemical effects occurring during PEF treatments.

  11. Met inactivation by S-allylcysteine suppresses the migration and invasion of nasopharyngeal cancer cells induced by hepatocyte growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, O Yeon; Hwang, Hye Sook; Lee, Bok Soon; Oh, Young Taek; Kim, Chul Ho; Chun, Mi Son [Ajou University School of Medicine, Suwon (Korea, Republic of)

    2015-12-15

    Past studies have reported that S-allylcysteine (SAC) inhibits the migration and invasion of cancer cells through the restoration of E-cadherin, the reduction of matrix metalloproteinase (MMP) and Slug protein expression, and inhibition of the production of reactive oxygen species (ROS). Furthermore, evidence is emerging that shows that ROS induced by radiation could increase Met activation. Following on these reports of SAC and Met, we investigated whether SAC could suppress Met activation. Wound healing, invasion, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT), soft agar colony forming, western blotting, and gelatin zymography assays were performed in the human nasopharyngeal cancer cell lines HNE1 and HONE1 treated with SAC (0, 10, 20, or 40 mM) and hepatocyte growth factor (HGF). This study showed that SAC could suppress the migration and invasion of HNE1 and HONE1 cell lines by inhibiting p-Met. An increase of migration and invasion induced by HGF and its decrease in a dose dependent manner by SAC in wound healing and invasion assays was observed. The reduction of p-Met by SAC was positively correlated with p-focal adhesion kinase (p-FAK) and p-extracellular related kinase (p-ERK in both cell lines). SAC reduced Slug, MMP2, and MMP9 involved in migration and invasion with the inhibition of Met-FAK signaling. These results suggest that SAC inhibited not only Met activation but also the downstream FAK, Slug, and MMP expression. Finally, SAC may be a potent anticancer compound for nasopharyngeal cancer treated with radiotherapy.

  12. Inactivation of a GAL4-Like Transcription Factor Improves Cell Fitness and Product Yield in Glycoengineered Pichia pastoris Strains

    Science.gov (United States)

    Argyros, Rebecca; Bukowski, John; Nelson, Stephanie; Sharkey, Nathan; Kim, Sehoon; Copeland, Victoria; Davidson, Robert C.; Chen, Ronghua; Zhuang, Jun; Sethuraman, Natarajan; Stadheim, Terrance A.

    2014-01-01

    With a completely reengineered and humanized glycosylation pathway, glycoengineered Pichia pastoris has emerged as a promising production host for the manufacture of therapeutic glycoproteins. However, the extensive genetic modifications have also negatively affected the overall fitness levels of the glycoengineered host cells. To make glycoengineered Pichia strains more compatible with a scalable industrial fermentation process, we sought to identify genetic solutions to broadly improve cell robustness during fermentation. In this study, we report that mutations within the Pichia pastoris ATT1 (PpATT1) gene (a homolog of the Saccharomyces cerevisiae GAL4 [ScGAL4] transcriptional activator) dramatically increased the cellular fitness levels of glycoengineered Pichia strains. We demonstrate that deletion of the PpATT1 gene enabled glycoengineered Pichia strains to improve their thermal tolerance levels, reduce their cell lysis defects, and greatly improve fermentation robustness. The extension of the duration of fermentation enabled the PpATT1-modified glycoengineered Pichia strains to increase their product yields significantly without any sacrifice in product quality. Because the ATT1 gene could be deleted from any Pichia strains, including empty hosts and protein-expressing production strains alike, we suggest that the findings described in this study are broadly applicable to any Pichia strains used for the production of therapeutic proteins, including monoclonal antibodies, Fc fusions, peptides, hormones, and growth factors. PMID:25344235

  13. Human T-cell leukemia virus type 1 (HTLV-1 tax requires CADM1/TSLC1 for inactivation of the NF-κB inhibitor A20 and constitutive NF-κB signaling.

    Directory of Open Access Journals (Sweden)

    Rajeshree Pujari

    2015-03-01

    Full Text Available Persistent activation of NF-κB by the Human T-cell leukemia virus type 1 (HTLV-1 oncoprotein, Tax, is vital for the development and pathogenesis of adult T-cell leukemia (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. K63-linked polyubiquitinated Tax activates the IKK complex in the plasma membrane-associated lipid raft microdomain. Tax also interacts with TAX1BP1 to inactivate the NF-κB negative regulatory ubiquitin-editing A20 enzyme complex. However, the molecular mechanisms of Tax-mediated IKK activation and A20 protein complex inactivation are poorly understood. Here, we demonstrated that membrane associated CADM1 (Cell adhesion molecule1 recruits Ubc13 to Tax, causing K63-linked polyubiquitination of Tax, and IKK complex activation in the membrane lipid raft. The c-terminal cytoplasmic tail containing PDZ binding motif of CADM1 is critical for Tax to maintain persistent NF-κB activation. Finally, Tax failed to inactivate the NF-κB negative regulator ubiquitin-editing enzyme A20 complex, and activate the IKK complex in the lipid raft in absence of CADM1. Our results thus indicate that CADM1 functions as a critical scaffold molecule for Tax and Ubc13 to form a cellular complex with NEMO, TAX1BP1 and NRP, to activate the IKK complex in the plasma membrane-associated lipid rafts, to inactivate NF-κB negative regulators, and maintain persistent NF-κB activation in HTLV-1 infected cells.

  14. Mechanism of Inactivation in Voltage-Gated Na(+) Channels.

    Science.gov (United States)

    Gawali, V S; Todt, H

    2016-01-01

    Voltage-gated Na(+) channels (VGSCs) initiate action potentials thereby giving rise to rapid transmission of electrical signals along cell membranes and between cells. Depolarization of the cell membrane causes VGSCs to open but also gives rise to a nonconducting state termed inactivation. Inactivation of VGSCs serves a critical physiologic function as it determines the extent of excitability of neurons and of muscle cells. Depending on the time course of development and removal of inactivation both "fast-" and "slow"-inactivated states have been described. Evidence from mutagenesis studies suggests that fast inactivation is produced by a block of the internal vestibule by a tethered inactivation particle that has been mapped to the internal linker between domains III and IV. The motion of this linker may be regulated by parts of the internal C-terminus. The molecular mechanism of slow inactivation is less clear. However, aside from a high number of mutagenesis studies, the recent availability of 3D structures of crystallized prokaryotic VGSCs offers insights into the molecular motions associated with slow inactivation. One possible scenario is that slow movements of the voltage sensors are transmitted to the external vestibule giving rise to a conformational change of this region. This molecular rearrangement is transmitted to the S6 segments giving rise to collapse of the internal vestibule. PMID:27586291

  15. Functional Inactivation of Putative Photosynthetic Electron Acceptor Ferredoxin C2 (FdC2) Induces Delayed Heading Date and Decreased Photosynthetic Rate in Rice

    Science.gov (United States)

    Ruan, Banpu; Kang, Shujing; He, Lei; Zhang, Sen; Dong, Guojun; Hu, Jiang; Zeng, Dali; Zhang, Guangheng; Gao, Zhenyu; Ren, Deyong; Hu, Xingming; Chen, Guang; Guo, Longbiao; Qian, Qian; Zhu, Li

    2015-01-01

    Ferredoxin (Fd) protein as unique electron acceptor, involved in a variety of fundamental metabolic and signaling processes, which is indispensable for plant growth. The molecular mechanisms of Fd such as regulation of electron partitioning, impact of photosynthetic rate and involvement in the carbon fixing remain elusive in rice. Here we reported a heading date delay and yellowish leaf 1 (hdy1) mutant derived from Japonica rice cultivar “Nipponbare” subjected to EMS treatment. In the paddy field, the hdy1 mutant appeared at a significantly late heading date and had yellow-green leaves during the whole growth stage. Further investigation indicated that the abnormal phenotype of hdy1 was connected with depressed pigment content and photosynthetic rate. Genetic analysis results showed that the hdy1 mutant phenotype was caused by a single recessive nuclear gene mutation. Map-based cloning revealed that OsHDY1 is located on chromosome 3 and encodes an ortholog of the AtFdC2 gene. Complementation and overexpression, transgenic plants exhibited the mutant phenotype including head date, leaf color and the transcription levels of the FdC2 were completely rescued by transformation with OsHDY1. Real-time PCR revealed that the expression product of OsHDY1 was detected in almost all of the organs except root, whereas highest expression levels were observed in seeding new leaves. The lower expression levels of HDY1 and content of iron were detected in hdy1 than WT’s. The FdC2::GFP was detected in the chloroplasts of rice. Real-time PCR results showed that the expression of many photosynthetic electron transfer related genes in hdy1 were higher than WT. Our results suggest that OsFdC2 plays an important role in photosynthetic rate and development of heading date by regulating electron transfer and chlorophyll content in rice. PMID:26598971

  16. Functional Inactivation of Putative Photosynthetic Electron Acceptor Ferredoxin C2 (FdC2 Induces Delayed Heading Date and Decreased Photosynthetic Rate in Rice.

    Directory of Open Access Journals (Sweden)

    Juan Zhao

    Full Text Available Ferredoxin (Fd protein as unique electron acceptor, involved in a variety of fundamental metabolic and signaling processes, which is indispensable for plant growth. The molecular mechanisms of Fd such as regulation of electron partitioning, impact of photosynthetic rate and involvement in the carbon fixing remain elusive in rice. Here we reported a heading date delay and yellowish leaf 1 (hdy1 mutant derived from Japonica rice cultivar "Nipponbare" subjected to EMS treatment. In the paddy field, the hdy1 mutant appeared at a significantly late heading date and had yellow-green leaves during the whole growth stage. Further investigation indicated that the abnormal phenotype of hdy1 was connected with depressed pigment content and photosynthetic rate. Genetic analysis results showed that the hdy1 mutant phenotype was caused by a single recessive nuclear gene mutation. Map-based cloning revealed that OsHDY1 is located on chromosome 3 and encodes an ortholog of the AtFdC2 gene. Complementation and overexpression, transgenic plants exhibited the mutant phenotype including head date, leaf color and the transcription levels of the FdC2 were completely rescued by transformation with OsHDY1. Real-time PCR revealed that the expression product of OsHDY1 was detected in almost all of the organs except root, whereas highest expression levels were observed in seeding new leaves. The lower expression levels of HDY1 and content of iron were detected in hdy1 than WT's. The FdC2::GFP was detected in the chloroplasts of rice. Real-time PCR results showed that the expression of many photosynthetic electron transfer related genes in hdy1 were higher than WT. Our results suggest that OsFdC2 plays an important role in photosynthetic rate and development of heading date by regulating electron transfer and chlorophyll content in rice.

  17. Ovarian small cell carcinoma of hypercalcemic type - evidence of germline origin and SMARCA4 gene inactivation. a pilot study.

    Science.gov (United States)

    Kupryjańczyk, J; Dansonka-Mieszkowska, A; Moes-Sosnowska, J; Plisiecka-Hałasa, J; Szafron, L; Podgórska, A; Rzepecka, I K; Konopka, B; Budziłowska, A; Rembiszewska, A; Grajkowska, W; Spiewankiewicz, B

    2013-12-01

    Ovarian tumors from two patients, compatible by histological and immunohistochemical criteria with small cell carcinoma of hypercalcemic type (SCCHT) (WT1+, EMA dispersed+, synaptophysin+ or dispersed+), were extensively sampled in order to find clues to their histogenesis. Subsequently, small foci of immature teratoma were found in both of them (in 1/122 and in 3/80 tumor sections). In one case, microfoci of yolk sac tumor were also present within the teratoma area as well as in the background of the small cell tumor population - in the primary tumor and in omental metastasis. We found a resemblance of the microscopic patterns of SCCHT and atypical teratoid/rhabdoid tumor (AT/RT) of the central nervous system, and this prompted us to evaluate INI-1 and SMARCA4 immunohistochemical expression, because their alternative loss is regarded as a molecular hallmark of AT/RT. INI-1 expression was retained, while that of SMARCA4 was lost. We therefore analyzed tumor DNA by PCR amplification and sequencing for mutations in the SMARCA4 gene (NG_011556.1), which were identified in both tumors (c.2184_2206del; nonsense c.3277C>T - both in one tumor; nonsense c.3760G>T in another tumor). These data suggest that SCCHT is most likely an embryonal tumor originating from immature teratoma and related to malignant rhabdoid tumor. Further analyses are necessary to determine whether the tumors diagnosed as SCCHT constitute a homogeneous group or represent more than one entity. PMID:24375037

  18. Targeted genetic inactivation of N-acetylglucosaminyltransferase-IVa impairs insulin secretion from pancreatic beta cells and evokes type 2 diabetes.

    Science.gov (United States)

    Ohtsubo, Kazuaki

    2010-01-01

    The biological significance of protein N-glycosylation has been elucidated using a mouse model bearing a genetic mutation of N-acetylglucosaminyltransferases (GnTs), which initiate the formation of specific branch structures on the mannose core of N-glycans. These glycosylation defects evoked a variety of abnormalities and disorders in specific cell types, tissues, and the whole body, reflecting functional requirements. N-Acetylglucosaminyltransferase-IVa (GnT-IVa) initiates the GlcNAcbeta1-4 branch synthesis on the Manalpha1-3 arm of the N-glycan core thereby increasing N-glycan branch complexity. To investigate the physiological function of GnT-IVa, we engineered and characterized GnT-IVa-deficient mice. GnT-IVa-deficient mice showed a metabolic disorder subsequently diagnosed as type 2 diabetes. In this chapter, methods for characterizing GnT-IVa-deficient mice by physiological analyses to detect metabolic alterations and biochemical analyses using primary isolated pancreatic beta cells are summarized and discussed.

  19. The rate of spontaneous mutations in human myeloid cells

    Energy Technology Data Exchange (ETDEWEB)

    Araten, David J., E-mail: david.araten@nyumc.org [Division of Hematology, Department of Veterans Affairs New York Harbor Healthcare System (United States); Division of Hematology, Department of Medicine, NYU School of Medicine and the NYU Langone Cancer Center (United States); Krejci, Ondrej [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); DiTata, Kimberly [Division of Hematology, Department of Medicine, NYU School of Medicine and the NYU Langone Cancer Center (United States); Wunderlich, Mark [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); Sanders, Katie J.; Zamechek, Leah [Division of Hematology, Department of Medicine, NYU School of Medicine and the NYU Langone Cancer Center (United States); Mulloy, James C. [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States)

    2013-09-15

    Highlights: • We provide the first measurement of the mutation rate (μ) in human myeloid cells. • μ is measured to be 3.6–23 × 10{sup −7} per cell division. • The AML-ETO and MLL-AF9 fusions do not seem to increase μ. • Cooperating mutations in NRAS, FLT3 and p53 not seem to increase μ. • Hypermutability may be required to explain leukemogenesis. - Abstract: The mutation rate (μ) is likely to be a key parameter in leukemogenesis, but historically, it has been difficult to measure in humans. The PIG-A gene has some advantages for the detection of spontaneous mutations because it is X-linked, and therefore only one mutation is required to disrupt its function. Furthermore, the PIG-A-null phenotype is readily detected by flow cytometry. Using PIG-A, we have now provided the first in vitro measurement of μ in myeloid cells, using cultures of CD34+ cells that are transduced with either the AML-ETO or the MLL-AF9 fusion genes and expanded with cytokines. For the AML-ETO cultures, the median μ value was ∼9.4 × 10{sup −7} (range ∼3.6–23 × 10{sup −7}) per cell division. In contrast, few spontaneous mutations were observed in the MLL-AF9 cultures. Knockdown of p53 or introduction of mutant NRAS or FLT3 alleles did not have much of an effect on μ. Based on these data, we provide a model to predict whether hypermutability must occur in the process of leukemogenesis.

  20. Place Cell Rate Remapping by CA3 Recurrent Collaterals

    Science.gov (United States)

    Solstad, Trygve; Yousif, Hosam N.; Sejnowski, Terrence J.

    2014-01-01

    Episodic-like memory is thought to be supported by attractor dynamics in the hippocampus. A possible neural substrate for this memory mechanism is rate remapping, in which the spatial map of place cells encodes contextual information through firing rate variability. To test whether memories are stored as multimodal attractors in populations of place cells, recent experiments morphed one familiar context into another while observing the responses of CA3 cell ensembles. Average population activity in CA3 was reported to transition gradually rather than abruptly from one familiar context to the next, suggesting a lack of attractive forces associated with the two stored representations. On the other hand, individual CA3 cells showed a mix of gradual and abrupt transitions at different points along the morph sequence, and some displayed hysteresis which is a signature of attractor dynamics. To understand whether these seemingly conflicting results are commensurate with attractor network theory, we developed a neural network model of the CA3 with attractors for both position and discrete contexts. We found that for memories stored in overlapping neural ensembles within a single spatial map, position-dependent context attractors made transitions at different points along the morph sequence. Smooth transition curves arose from averaging across the population, while a heterogeneous set of responses was observed on the single unit level. In contrast, orthogonal memories led to abrupt and coherent transitions on both population and single unit levels as experimentally observed when remapping between two independent spatial maps. Strong recurrent feedback entailed a hysteretic effect on the network which diminished with the amount of overlap in the stored memories. These results suggest that context-dependent memory can be supported by overlapping local attractors within a spatial map of CA3 place cells. Similar mechanisms for context-dependent memory may also be found in

  1. Place cell rate remapping by CA3 recurrent collaterals.

    Directory of Open Access Journals (Sweden)

    Trygve Solstad

    2014-06-01

    Full Text Available Episodic-like memory is thought to be supported by attractor dynamics in the hippocampus. A possible neural substrate for this memory mechanism is rate remapping, in which the spatial map of place cells encodes contextual information through firing rate variability. To test whether memories are stored as multimodal attractors in populations of place cells, recent experiments morphed one familiar context into another while observing the responses of CA3 cell ensembles. Average population activity in CA3 was reported to transition gradually rather than abruptly from one familiar context to the next, suggesting a lack of attractive forces associated with the two stored representations. On the other hand, individual CA3 cells showed a mix of gradual and abrupt transitions at different points along the morph sequence, and some displayed hysteresis which is a signature of attractor dynamics. To understand whether these seemingly conflicting results are commensurate with attractor network theory, we developed a neural network model of the CA3 with attractors for both position and discrete contexts. We found that for memories stored in overlapping neural ensembles within a single spatial map, position-dependent context attractors made transitions at different points along the morph sequence. Smooth transition curves arose from averaging across the population, while a heterogeneous set of responses was observed on the single unit level. In contrast, orthogonal memories led to abrupt and coherent transitions on both population and single unit levels as experimentally observed when remapping between two independent spatial maps. Strong recurrent feedback entailed a hysteretic effect on the network which diminished with the amount of overlap in the stored memories. These results suggest that context-dependent memory can be supported by overlapping local attractors within a spatial map of CA3 place cells. Similar mechanisms for context-dependent memory may

  2. Mutual inactivation of Notch receptors and ligands facilitates developmental patterning.

    Directory of Open Access Journals (Sweden)

    David Sprinzak

    2011-06-01

    Full Text Available Developmental patterning requires juxtacrine signaling in order to tightly coordinate the fates of neighboring cells. Recent work has shown that Notch and Delta, the canonical metazoan juxtacrine signaling receptor and ligand, mutually inactivate each other in the same cell. This cis-interaction generates mutually exclusive sending and receiving states in individual cells. It generally remains unclear, however, how this mutual inactivation and the resulting switching behavior can impact developmental patterning circuits. Here we address this question using mathematical modeling in the context of two canonical pattern formation processes: boundary formation and lateral inhibition. For boundary formation, in a model motivated by Drosophila wing vein patterning, we find that mutual inactivation allows sharp boundary formation across a broader range of parameters than models lacking mutual inactivation. This model with mutual inactivation also exhibits robustness to correlated gene expression perturbations. For lateral inhibition, we find that mutual inactivation speeds up patterning dynamics, relieves the need for cooperative regulatory interactions, and expands the range of parameter values that permit pattern formation, compared to canonical models. Furthermore, mutual inactivation enables a simple lateral inhibition circuit architecture which requires only a single downstream regulatory step. Both model systems show how mutual inactivation can facilitate robust fine-grained patterning processes that would be difficult to implement without it, by encoding a difference-promoting feedback within the signaling system itself. Together, these results provide a framework for analysis of more complex Notch-dependent developmental systems.

  3. Mucosal SIV vaccines comprising inactivated virus particles and bacterial adjuvants induce CD8+T-regulatory cells that suppress SIV positive CD4+cell activation and prevent SIV infection in the macaque model.

    Directory of Open Access Journals (Sweden)

    Jean Marie eAndrieu

    2014-06-01

    Full Text Available A new paradigm of mucosal vaccination against HIV infection has been investigated in the macaque model. A vaccine consisting of inactivated SIVmac239 particles together with a living bacterial adjuvant (either the Calmette & Guerin bacillus, lactobacillus plantarum or Lactobacillus rhamnosus was administered to macaques via the vaginal or oral/intragastic route. In contrast to all established human and veterinary vaccines, these three vaccine regimens did not elicit SIV-specific antibodies nor cytotoxic T-lymphocytes but induced a previously unrecognized population of non-cytolytic MHCIb/E-restricted CD8+T regulatory cells that suppressed the activation of SIV positive CD4+ T-lymphocytes. SIV reverse transcription was thereby blocked in inactivated CD4+ T-cells; the initial burst of virus replication was prevented and the vaccinated macaques were protected from a challenge infection. Three to 14 months after intragastric immunization, 24 macaques were challenged intrarectally with a high dose of SIVmac239 or with the heterologous strain SIV B670 (both strains grown on macaques PBMC. Twenty-three of these animals were found to be protected for up to 48 months while all 24 control macaques became infected. This protective effect against SIV challenge together with the concomitant identification of a robust ex-vivo correlate of protection suggests a new approach for developing an HIV vaccine in humans. The induction of this new class of CD8+ T regulatory cells could also possibly be used therapeutically for suppressing HIV replication in infected patients and this novel tolerogenic vaccine paradigm may have potential applications for treating a wide range of immune disorders and is likely to may have profound implications across immunology generally.

  4. Validation of γ-radiation and ultraviolet as a new inactivators for foot and mouth disease virus in comparison with the traditional methods

    Directory of Open Access Journals (Sweden)

    Safy El din Mahdy

    2015-09-01

    Full Text Available Aim: The present work deals with different methods for foot and mouth disease virus (FMDV inactivation for serotypes O/pan Asia, A/Iran05, and SAT-2/2012 by heat, gamma radiation, and ultraviolet (UV in comparison with the traditional methods and their effects on the antigenicity of viruses for production of inactivated vaccines. Materials and Methods: FMDV types O/pan Asia, A/Iran05, and SAT-2/2012 were propagated in baby hamster kidney 21 (BHK21 and titrated then divided into five parts; the first part inactivated with heat, the second part inactivated with gamma radiation, the third part inactivated with UV light, the fourth part inactivated with binary ethylamine, and the last part inactivated with combination of binary ethylamine and formaldehyde (BEI+FA. Evaluate the method of inactivation via inoculation in BHK21, inoculation in suckling baby mice and complement fixation test then formulate vaccine using different methods of inactivation then applying the quality control tests to evaluate each formulated vaccine. Results: The effect of heat, gamma radiation, and UV on the ability of replication of FMDV "O/pan Asia, A/Iran05, and SAT-2/2012" was determined through BHK cell line passage. Each of the 9 virus aliquots titer 108 TCID50 (3 for each strain were exposed to 37, 57, and 77°C for 15, 30, and 45 min. Similarly, another 15 aliquots (5 for each strain contain 1 mm depth of the exposed samples in petri-dish was exposed to UV light (252.7 nm wavelength: One foot distance for 15, 30, 45, 60, and 65 min. Different doses of gamma radiation (10, 20, 25, 30, 35, 40, 45, 50, 55, and 60 KGy were applied in a dose rate 0.551 Gy/s for each strain and repeated 6 times for each dose. FMDV (O/pan Asia, A/Iran05, and SAT-2/2012 were inactivated when exposed to heat ≥57°C for 15 min. The UV inactivation of FMDV (O/pan Asia and SAT-2 was obtained within 60 min and 65 min for type A/Iran05. The ideal dose for inactivation of FMDV (O/pan Asia, A

  5. Validation of γ-radiation and ultraviolet as a new inactivators for foot and mouth disease virus in comparison with the traditional methods

    Science.gov (United States)

    Mahdy, Safy El din; Hassanin, Amr Ismail; Gamal El-Din, Wael Mossad; Ibrahim, Ehab El-Sayed; Fakhry, Hiam Mohamed

    2015-01-01

    Aim: The present work deals with different methods for foot and mouth disease virus (FMDV) inactivation for serotypes O/pan Asia, A/Iran05, and SAT-2/2012 by heat, gamma radiation, and ultraviolet (UV) in comparison with the traditional methods and their effects on the antigenicity of viruses for production of inactivated vaccines. Materials and Methods: FMDV types O/pan Asia, A/Iran05, and SAT-2/2012 were propagated in baby hamster kidney 21 (BHK21) and titrated then divided into five parts; the first part inactivated with heat, the second part inactivated with gamma radiation, the third part inactivated with UV light, the fourth part inactivated with binary ethylamine, and the last part inactivated with combination of binary ethylamine and formaldehyde (BEI+FA). Evaluate the method of inactivation via inoculation in BHK21, inoculation in suckling baby mice and complement fixation test then formulate vaccine using different methods of inactivation then applying the quality control tests to evaluate each formulated vaccine. Results: The effect of heat, gamma radiation, and UV on the ability of replication of FMDV “O/pan Asia, A/Iran05, and SAT-2/2012” was determined through BHK cell line passage. Each of the 9 virus aliquots titer 108 TCID50 (3 for each strain) were exposed to 37, 57, and 77°C for 15, 30, and 45 min. Similarly, another 15 aliquots (5 for each strain) contain 1 mm depth of the exposed samples in petri-dish was exposed to UV light (252.7 nm wavelength: One foot distance) for 15, 30, 45, 60, and 65 min. Different doses of gamma radiation (10, 20, 25, 30, 35, 40, 45, 50, 55, and 60 KGy) were applied in a dose rate 0.551 Gy/s for each strain and repeated 6 times for each dose. FMDV (O/pan Asia, A/Iran05, and SAT-2/2012) were inactivated when exposed to heat ≥57°C for 15 min. The UV inactivation of FMDV (O/pan Asia and SAT-2) was obtained within 60 min and 65 min for type A/Iran05. The ideal dose for inactivation of FMDV (O/pan Asia, A/Iran05

  6. [Inactivation of T4 phage in water environment using proteinase].

    Science.gov (United States)

    Lü, Wen-zhou; Yang, Qing-xiang; Zhang, Yu; Yang, Min; Zhu, Chun-fang

    2004-09-01

    The inactivation effectiveness of proteinase to viruses was investigated by using T4 phage as a model virus. The results showed that the inactivation effectiveness of proteinase to T4 phage was obvious. In the optimum conditions and 67.5 u/mL concentration, the inactivation rate of proteinase K to T4 phage in sterilized water and in sewage achieved 99.4% and 49.4% respectively in an hour, and achieved >99.9% and 81.1% in three hours. The inactivation rate of the industrial proteinase 1398 to T4 phage in sterilized water achieved 74.4% in an hour. The effects of pH and temperature on the inactivation effectiveness was not evident.

  7. Multi-Layered TiO2 Films towards Enhancement of Escherichia coli Inactivation

    Directory of Open Access Journals (Sweden)

    Sorachon Yoriya

    2016-09-01

    Full Text Available Crystalline TiO2 has shown its great photocatalytic properties in bacterial inactivation. This work presents a design fabrication of low-cost, layered TiO2 films assembled reactors and a study of their performance for a better understanding to elucidate the photocatalytic effect on inactivation of E. coli in water. The ability to reduce the number of bacteria in water samples for the layered TiO2 composing reactors has been investigated as a function of time, while varying the parameters of light sources, initial concentration of bacteria, and ratios of TiO2 film area and volume of water. Herein, the layered TiO2 films have been fabricated on the glass plates by thermal spray coating prior to screen printing, allowing a good adhesion of the films. Surface topology and crystallographic phase of TiO2 for the screen-printed active layer have been characterized, resulting in the ratio of anatase:rutile being 80:20. Under exposure to sunlight and a given condition employed in this study, the optimized film area:water volume of 1:2.62 has shown a significant ability to reduce the E. coli cells in water samples. The ratio of surface area of photocatalytic active base to volume of water medium is believed to play a predominant role facilitating the cells inactivation. The kinetic rate of inactivation and its behavior are also described in terms of adsorption of reaction species at different contact times.

  8. Inflammation-induced radioresistance is mediated by ROS-dependent inactivation of protein phosphatase 1 in non-small cell lung cancer cells.

    Science.gov (United States)

    Kim, Wanyeon; Youn, HyeSook; Kang, ChulHee; Youn, BuHyun

    2015-09-01

    Inflammation plays a pivotal role in modulating the radiation responsiveness of tumors. We determined that an inflammation response prior to irradiation contributes to radiotherapy resistance in non-small cell lung cancer (NSCLC) cells. In the clonogenic survival assay, activation of the inflammation response by lipopolysaccharide (LPS) decreased the degree of radiosensitivity in NCI-H460 cells (relatively radiosensitive cells), but had no effect in A549 cells (relatively radioresistant cells). LPS-induced radioresistance of NCI-H460 cells was also confirmed with a xenograft mouse model. The radioresistant effect observed in NCI-H460 cells was correlated with inhibition of apoptotic cell death due to reduced Caspase 3/7 activity. Moreover, we found that the levels of reactive oxygen species (ROS) were synergistically elevated in NCI-H460 cells by treatment with LPS and radiation. Increased ROS generation negatively affected the activity of protein phosphatase 1 (PP1). Decreased PP1 activity did not lead to Bad dephosphorylation, consequently resulting in the inhibition of irradiation-induced mitochondrial membrane potential loss and apoptosis. We confirmed that pre-treatment with a PP1 activator and LPS sensitized NCI-H460 cells to radiation. Taken together, our findings provided evidence that PP1 activity is critical for radiosensitization in NSCLC cells and PP1 activators can serve as promising radiosensitizers to improve therapeutic efficacy. PMID:26033480

  9. Application of gaseous ozone for inactivation of Bacillus subtilis spores.

    Science.gov (United States)

    Aydogan, Ahmet; Gurol, Mirat D

    2006-02-01

    The effectiveness of gaseous ozone (O3) as a disinfectant was tested on Bacillus subtilis spores, which share the same physiological characteristics as Bacillus anthracis spores that cause the anthrax disease. Spores dried on surfaces of different carrier material were exposed to O3 gas in the range of 500-5000 ppm and at relative humidity (RH) of 70-95%. Gaseous O3 was found to be very effective against the B. subtilis spores, and at O3 concentrations as low as 3 mg/L (1500 ppm), approximately 3-log inactivation was obtained within 4 hr of exposure. The inactivation curves consisted of a short lag phase followed by an exponential decrease in the number of surviving spores. Prehydration of the bacterial spores has eliminated the initial lag phase. The inactivation rate increased with increasing O3 concentration but not >3 mg/L. The inactivation rate also increased with increase in RH. Different survival curves were obtained for various surfaces used to carry spores. Inactivation rates of spores on glass, a vinyl floor tile, and office paper were nearly the same. Whereas cut pile carpet and hardwood flooring surfaces resulted in much lower inactivation rates, another type of carpet (loop pile) showed significant enhancement in the inactivation of the spores. PMID:16568801

  10. CHLORINE INACTIVATION OF CATEGORY "A" BIO-TERRORISM AGENTS

    Science.gov (United States)

    This poster presents information on the inactivation of select bioterrorist agents. Information will be presented on chlorine disinfection of vegetative cells of Brucella suis, Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis and endos...

  11. Cancer Cell Growth Inhibitory Effect of Bee Venom via Increase of Death Receptor 3 Expression and Inactivation of NF-kappa B in NSCLC Cells

    Directory of Open Access Journals (Sweden)

    Kyung Eun Choi

    2014-07-01

    Full Text Available Our previous findings have demonstrated that bee venom (BV has anti-cancer activity in several cancer cells. However, the effects of BV on lung cancer cell growth have not been reported. Cell viability was determined with trypan blue uptake, soft agar formation as well as DAPI and TUNEL assay. Cell death related protein expression was determined with Western blotting. An EMSA was used for nuclear factor kappaB (NF-κB activity assay. BV (1–5 μg/mL inhibited growth of lung cancer cells by induction of apoptosis in a dose dependent manner in lung cancer cell lines A549 and NCI-H460. Consistent with apoptotic cell death, expression of DR3 and DR6 was significantly increased. However, deletion of DRs by small interfering RNA significantly reversed BV induced cell growth inhibitory effects. Expression of pro-apoptotic proteins (caspase-3 and Bax was concomitantly increased, but the NF-κB activity and expression of Bcl-2 were inhibited. A combination treatment of tumor necrosis factor (TNF-like weak inducer of apoptosis, TNF-related apoptosis-inducing ligand, docetaxel and cisplatin, with BV synergistically inhibited both A549 and NCI-H460 lung cancer cell growth with further down regulation of NF-κB activity. These results show that BV induces apoptotic cell death in lung cancer cells through the enhancement of DR3 expression and inhibition of NF-κB pathway.

  12. Inactivation of Chikungunya virus by 1,5 iodonapthyl azide

    Directory of Open Access Journals (Sweden)

    Sharma Anuj

    2012-12-01

    Full Text Available Abstract Background Chikungunya virus (CHIKV is an arthropod borne alphavirus of the family Togaviridae. CHIKV is a reemerging virus for which there is no safe prophylactic vaccine. A live attenuated strain of CHIKV, CHIK181/25, was previously demonstrated to be highly immunogenic in humans, however, it showed residual virulence causing transient arthralgia. Findings In this study, we demonstrate the complete inactivation of CHIKV181/25 by 1,5 iodonapthyl azide (INA. No cytopathic effect and virus replication was observed in cells infected with the INA-inactivated CHIKV. However, a reduction in the INA-inactivated CHIK virus-antibody binding capacity was observed by western blot analysis. Conclusion INA completely inactivated CHIKV and can further be explored for developing an inactivated-CHIKV vaccine.

  13. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Chen, Jyh-Cheng; Wang, Tai-Jing; Zheng, Hao-Yu; Chen, Wen-Ching; Chang, Po-Yuan; Lin, Yun-Wei

    2016-04-01

    Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 μM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC.

  14. Absence of correlation between rates of cell wall turnover and autolysis shown by Bacillus subtilis mutants.

    OpenAIRE

    Vitković, L; Cheung, H. Y.; Freese, E

    1984-01-01

    Bacillus subtilis mutants with reduced rates of cell wall autolysis reached a constant rate of wall turnover after a longer lag than the standard strain but eventually showed the same turnover rate. In reverse, a turnover-deficient mutant autolysed at a slightly higher rate than the standard strain. Consequently, there is no correlation between the rates of cell wall turnover and autolysis.

  15. Influence of cell detachment on the respiration rate of tumor and endothelial cells.

    Directory of Open Access Journals (Sweden)

    Pierre Danhier

    Full Text Available Cell detachment is a procedure routinely performed in cell culture and a necessary step in many biochemical assays including the determination of oxygen consumption rates (OCR in vitro. In vivo, cell detachment has been shown to exert profound metabolic influences notably in cancer but also in other pathologies, such as retinal detachment for example. In the present study, we developed and validated a new technique combining electron paramagnetic resonance (EPR oximetry and the use of cytodex 1 and collagen-coated cytodex 3 dextran microbeads, which allowed the unprecedented comparison of the OCR of adherent and detached cells with high sensitivity. Hence, we demonstrated that both B16F10 melanoma cells and human umbilical vein endothelial cells (HUVEC experience strong OCR decrease upon trypsin or collagenase treatments. The reduction of cell oxygen consumption was more pronounced with a trypsin compared to a collagenase treatment. Cells remaining in suspension also encounter a marked intracellular ATP depletion and an increase in the lactate production/glucose uptake ratio. These findings highlight the important influence exerted by cell adhesion/detachment on cell respiration, which can be probed with the unprecedented experimental assay that was developed and validated in this study.

  16. Maintenance of mesenchymal stem cells culture due to the cells with reduced attachment rate

    Directory of Open Access Journals (Sweden)

    Shuvalova N. S.

    2013-01-01

    Full Text Available Aim. The classic detachment techniques lead to changes in cells properties. We offer a simple method of cultivating the population of cells that avoided an influence on the surface structures. Methods. Mesenchymal stem cells (MSC from human umbilical cord matrix were obtained and cultivated in standard conditions. While substituting the culture media by a fresh portion, the conditioned culture medium, where the cells were maintained for three days, was transferred to other culture flacks with addition of serum and growth factors. Results. In the flacks, one day after medium transfer, we observed attached cells with typical MSC morphology. The cultures originated from these cells had the same rate of surface markers expression and clonogenic potential as those replated by standard methods. Conclusions. MSC culture, derived by preserving the cells with reduced attachment ability, actually has the properties of «parent» passage. Using this method with accepted techniques of cells reseeding would allow maintaining the cells that avoided an impact on the cell surface proteins.

  17. Direct relationship between the level of p53 stabilization induced by rRNA synthesis-inhibiting drugs and the cell ribosome biogenesis rate.

    Science.gov (United States)

    Scala, F; Brighenti, E; Govoni, M; Imbrogno, E; Fornari, F; Treré, D; Montanaro, L; Derenzini, M

    2016-02-25

    Many drugs currently used in chemotherapy work by hindering the process of ribosome biogenesis. In tumors with functional p53, the inhibition of ribosome biogenesis may contribute to the efficacy of this treatment by inducing p53 stabilization. As the level of stabilized p53 is critical for the induction of cytotoxic effects, it seems useful to highlight those cancer cell characteristics that can predict the degree of p53 stabilization following the treatment with inhibitors of ribosome biogenesis. In the present study we exposed a series of p53 wild-type human cancer cell lines to drugs such as actinomycin D (ActD), doxorubicin, 5-fluorouracil and CX-5461, which hinder ribosomal RNA (rRNA) synthesis. We found that the amount of stabilized p53 was directly related to the level of ribosome biogenesis in cells before the drug treatment. This was due to different levels of inactivation of the ribosomal proteins-MDM2 pathway of p53 digestion. Inhibition of rRNA synthesis always caused cell cycle arrest, independent of the ribosome biogenesis rate of the cells, whereas apoptosis occurred only in cells with a high rDNA transcription rate. The level of p53 stabilization induced by drugs acting in different ways from the inhibition of ribosome biogenesis, such as hydroxyurea (HU) and nutlin-3, was independent of the level of ribosome biogenesis in cells and always lower than that occurring after the inhibition of rRNA synthesis. Interestingly, in cells with a low ribosome biogenesis rate, the combined treatment with ActD and HU exerted an additive effect on p53 stabilization. These results indicated that (i) drugs inhibiting ribosome biogenesis may be highly effective in p53 wild-type cancers with a high ribosome biogenesis rate, as they induce apoptotic cell death, and (ii) the combination of drugs capable of stabilizing p53 through different mechanisms may be useful for treating cancers with a low ribosome biogenesis rate. PMID:25961931

  18. Chemotherapeutic drugs sensitize human renal cell carcinoma cells to ABT-737 by a mechanism involving the Noxa-dependent inactivation of Mcl-1 or A1

    Directory of Open Access Journals (Sweden)

    Zantl Niko

    2010-06-01

    Full Text Available Abstract Background Human renal cell carcinoma (RCC is very resistant to chemotherapy. ABT-737 is a novel inhibitor of anti-apoptotic proteins of the Bcl-2 family that has shown promise in various preclinical tumour models. Results We here report a strong over-additive pro-apoptotic effect of ABT-737 and etoposide, vinblastine or paclitaxel but not 5-fluorouracil in cell lines from human RCC. ABT-737 showed very little activity as a single agent but killed RCC cells potently when anti-apoptotic Mcl-1 or, unexpectedly, A1 was targeted by RNAi. This potent augmentation required endogenous Noxa protein since RNAi directed against Noxa but not against Bim or Puma reduced apoptosis induction by the combination of ABT-737 and etoposide or vinblastine. At the level of mitochondria, etoposide-treatment had a similar sensitizing activity and allowed for ABT-737-induced release of cytochrome c. Conclusions Chemotherapeutic drugs can overcome protection afforded by Mcl-1 and A1 through endogenous Noxa protein in RCC cells, and the combination of such drugs with ABT-737 may be a promising strategy in RCC. Strikingly, A1 emerged in RCC cell lines as a protein of similar importance as the well-established Mcl-1 in protection against apoptosis in these cells.

  19. Efficacy of an inactivated genotype 2b porcine epidemic diarrhea virus vaccine in neonatal piglets.

    Science.gov (United States)

    Baek, Pil-Soo; Choi, Hwan-Won; Lee, Sunhee; Yoon, In-Joong; Lee, Young Ju; Lee, Du Sik; Lee, Seungyoon; Lee, Changhee

    2016-06-01

    Massive outbreaks of porcine epidemic diarrhea virus (PEDV) recurred in South Korea in 2013-2014 and affected approximately 40% of the swine breeding herds across the country, incurring a tremendous financial impact on producers and consumers. Despite the nationwide use of commercially available attenuated and inactivated vaccines in South Korea, PEDV has continued to plague the domestic pork industry, raising concerns regarding their protective efficacies and the need for new vaccine development. In a previous study, we isolated and serially cultivated a Korean PEDV epidemic strain, KOR/KNU-141112/2014, in Vero cells. With the availability of a cell culture-propagated PEDV strain, we are able to explore vaccination and challenge studies on pigs. Therefore, the aim of the present study was to produce an inactivated PEDV vaccine using the KNU-141112 strain and evaluate its effectiveness in neonatal piglets. Pregnant sows were immunized intramuscularly with the inactivated adjuvanted monovalent vaccine at six and three weeks prior to farrowing. Six-day-old piglets born to vaccinated or unvaccinated sows were challenged with the homogeneous KNU-141112 virus. The administration of the inactivated vaccine to sows greatly increased the survival rate of piglets challenged with the virulent strain, from 0% to approximately 92% (22/24), and significantly reduced diarrhea severity including viral shedding in feces. In addition, litters from unvaccinated sows continued to lose body weight throughout the experiment, whereas litters from vaccinated sows started recovering their daily weight gain at 7 days after the challenge. Furthermore, strong neutralizing antibody responses to PEDV were verified in immunized sows and their offspring, but were absent in the unvaccinated controls. Altogether, our data demonstrated that durable lactogenic immunity was present in dams administrated with the inactivated vaccine and subsequently conferred critical passive immune protection to

  20. γ-ray dose rate effect in DNA double-strand break repair deficient murine cells

    International Nuclear Information System (INIS)

    Objective: To analyze the dose rate effect and potentially lethal damage repair in DNA double-strand break repair deficient murine cells (SCID) irradiated by γ-ray. Methods: The wild type (CB.17+/+) and SCID cells were exposed to γ-ray at high and low dose rates. The high dose rate exposure was fractionated into two equal doses at 24 h intervals. The survival rates of irradiated cells were calculated by clone-forming analysis. Results: When γ-ray was given to wild type (CB.17+/+) cells in two fractions at 24 h intervals, the survival rate was significantly higher than that when the same total dose was given singly. In contrast, there was no difference in the survival rates between the single and fractionated exposure in SCID cells. SCID cells were more sensitive than CB.17+/+ cells to both low and high dose rates γ-ray exposure for cell killing. The survival rate by low dose rate exposure was significantly higher than that by high dose rate exposure, not only in CB.17+/+ cells but also in SCID cells. Conclusions: SCID cells are deficient in repairing γ-ray induced double-strand breaks. There is dose rate effect in both SCID and CB.17+/+ cells

  1. Sucrose density gradient centrifugation and cross-flow filtration methods for the production of arbovirus antigens inactivated by binary ethylenimine

    Directory of Open Access Journals (Sweden)

    Chuan Teck F

    2004-01-01

    Full Text Available Abstract Background Sucrose density gradient centrifugation and cross-flow filtration methods have been developed and standardised for the safe and reproducible production of inactivated arbovirus antigens which are appropriate for use in diagnostic serological applications. Methods To optimise the maximum titre of growth during the propagation of arboviruses, the multiplicity of infection and choice of cell line were investigated using stocks of Ross River virus and Barmah Forest virus grown in both mosquito and mammalian cell lines. To standardise and improve the efficacy of the inactivation of arboviral suspensions, stocks of Ross River virus, Barmah Forest virus, Japanese encephalitis virus, Murray Valley encephalitis virus and Alfuy virus were chemically inactivated using binary ethylenimine at a final concentration of 3 mM. Aliquots were then taken at hourly intervals and crude inactivation rates were determined for each virus using a plaque assay. To ensure complete inactivation, the same aliquots were each passaged 3 times in Aedes albopictus C6/36 cells and the presence of viral growth was detected using an immunofluorescent assay. For larger quantities of viral suspensions, centrifugation on an isopycnic sucrose density gradient or cross-flow filtration was used to produce concentrated, pure antigens or partially concentrated, semi-purified antigens respectively. Results The results of the propagation experiments suggested that the maximum viral titres obtained for both Ross River virus and Barmah Forest virus were affected by the incubation period and choice of cell line, rather than the use of different multiplicity of infection values. Results of the binary ethylenimine inactivation trial suggested that standardised periods of 5 or 8 hours would be suitable to ensure effective and complete inactivation for a number of different arboviral antigens. Conclusion Two methods used to prepare inactivated arbovirus antigens have been

  2. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-10-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with /sup 60/CO gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of /sup 60/CO radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose per rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. The authors found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents.

  3. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-10-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with /sup 60/Co gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of /sup 60/Co radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose per rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. We found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents.

  4. Scaling of number, size, and metabolic rate of cells with body size in mammals

    OpenAIRE

    Savage, M; Allen, Andrew P.; Brown, James H.; Gillooly, James F; Herman, Alexander B.; Woodruff, William H.; West, Geoffrey B.

    2007-01-01

    The size and metabolic rate of cells affect processes from the molecular to the organismal level. We present a quantitative, theoretical framework for studying relationships among cell volume, cellular metabolic rate, body size, and whole-organism metabolic rate that helps reveal the feedback between these levels of organization. We use this framework to show that average cell volume and average cellular metabolic rate cannot both remain constant with changes in body size because of the well ...

  5. Retraction: "Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-κB signaling pathways" by Wang et al.

    Science.gov (United States)

    2016-08-01

    The above article, published online on January 5, 2010 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Gary S. Stein, and Wiley Periodicals, Inc. The retraction has been agreed following an investigation from Wayne State University involving the first author and the corresponding author that found Figure 5A to be inappropriately manipulated. REFERENCE Wang Z, Li Y, Banerjee S, Kong D, Ahmad A, Nogueira V, Hay N, Sarkar FH. 2010. Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-κB signaling pathways. J Cell Biochem 109:726-736; doi: 10.1002/jcb.22451.

  6. Retraction: "Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-κB signaling pathways" by Wang et al.

    Science.gov (United States)

    2016-08-01

    The above article, published online on January 5, 2010 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Gary S. Stein, and Wiley Periodicals, Inc. The retraction has been agreed following an investigation from Wayne State University involving the first author and the corresponding author that found Figure 5A to be inappropriately manipulated. REFERENCE Wang Z, Li Y, Banerjee S, Kong D, Ahmad A, Nogueira V, Hay N, Sarkar FH. 2010. Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-κB signaling pathways. J Cell Biochem 109:726-736; doi: 10.1002/jcb.22451. PMID:27301887

  7. Pretreatment With Inactivated Bacillus Calmette-Guerin Increases CD4+CD25+ Regulatory T Cell Function and Decreases Functional and Structural Effects of Asthma Induction in a Rat Asthma Model.

    Science.gov (United States)

    Gong, Ping; Li, Yun; Tan, Yu-Pin; Li, Hong

    2016-04-01

    Bacillus Calmette-Guerin (BCG) has been shown to have therapeutic effects on asthma through CD4+CD25+ regulatory T cells (Tregs). We sought to assess pretreatment with inactivated BCG on CD4+CD25+ Tregs and its functional and structural effects in rat asthma model. The rat asthma model was established using ovalbumin (OVA) sensitization and challenge. Ten rats were pretreated with BCG prior to OVA and received continued BCG injections during OVA challenge (BCG+OVA group), 10 rats were treated with OVA alone (OVA group), and 10 rats were treated with saline (control group). After 9 weeks, histamine dihydrochloride effect on airway resistance was measured. Number of CD4+CD25+ Tregs was measured by flow cytometry, expression of Foxp3 and CTLA-4 mRNA was measured, and serum TGF-β levels were determined. Differential cell count in bronchoalveolar lavage fluid (BALF) was determined, and lung tissue was processed and stained with hematoxylin and eosin, Masson's trichrome, and alcine blue and periodic acid Schiff's reaction to evaluate inflammatory cell infiltration, collagen deposition, and presence of goblet cells, respectively. BCG treatment led to an increase in CD4+CD25+ Tregs, as well as an increase in Foxp3 and CTLA-4 expression and serum TGF-β levels. In addition, we observed a decrease in histamine dihydrochloride-induced airway resistance, a decrease in inflammatory leukocytes in BALF, and a decrease in airway remodeling indicators in BCG+OVA-treated rats compared with OVA-treated rats. Intradermally injected inactivated BCG has the potential to improve airway inflammation, airway resistance, and airway remodeling through a mechanism that may involve CD4+CD25+ Tregs. PMID:26495900

  8. Estimation of the rate of energy production of rat mast cells in vitro

    DEFF Research Database (Denmark)

    Johansen, Torben

    1983-01-01

    Rat mast cells were treated with glycolytic and respiratory inhibitors. The rate of adenosine triphosphate depletion of cells incubated with both types of inhibitors and the rate of lactate produced in presence of antimycin A and glucose were used to estimate the rate of oxidative and glycolytic...

  9. Closed state-coupled C-type inactivation in BK channels.

    Science.gov (United States)

    Yan, Jiusheng; Li, Qin; Aldrich, Richard W

    2016-06-21

    Ion channels regulate ion flow by opening and closing their pore gates. K(+) channels commonly possess two pore gates, one at the intracellular end for fast channel activation/deactivation and the other at the selectivity filter for slow C-type inactivation/recovery. The large-conductance calcium-activated potassium (BK) channel lacks a classic intracellular bundle-crossing activation gate and normally show no C-type inactivation. We hypothesized that the BK channel's activation gate may spatially overlap or coexist with the C-type inactivation gate at or near the selectivity filter. We induced C-type inactivation in BK channels and studied the relationship between activation/deactivation and C-type inactivation/recovery. We observed prominent slow C-type inactivation/recovery in BK channels by an extreme low concentration of extracellular K(+) together with a Y294E/K/Q/S or Y279F mutation whose equivalent in Shaker channels (T449E/K/D/Q/S or W434F) caused a greatly accelerated rate of C-type inactivation or constitutive C-inactivation. C-type inactivation in most K(+) channels occurs upon sustained membrane depolarization or channel opening and then recovers during hyperpolarized membrane potentials or channel closure. However, we found that the BK channel C-type inactivation occurred during hyperpolarized membrane potentials or with decreased intracellular calcium ([Ca(2+)]i) and recovered with depolarized membrane potentials or elevated [Ca(2+)]i Constitutively open mutation prevented BK channels from C-type inactivation. We concluded that BK channel C-type inactivation is closed state-dependent and that its extents and rates inversely correlate with channel-open probability. Because C-type inactivation can involve multiple conformational changes at the selectivity filter, we propose that the BK channel's normal closing may represent an early conformational stage of C-type inactivation.

  10. Inactivation of E. Coli in Water Using Photocatalytic, Nanostructured Films Synthesized by Aerosol Routes

    Directory of Open Access Journals (Sweden)

    Pratim Biswas

    2013-03-01

    Full Text Available TiO2 nanostructured films were synthesized by an aerosol chemical vapor deposition (ACVD method with different controlled morphologies: columnar, granular, and branched structures for the photocatalytic inactivation of Escherichia coli (E. coli in water. Effects of film morphology and external applied voltage on inactivation rate were investigated. As-prepared films were characterized using scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffractometry (XRD, and UV-VIS. Photocatalytic and photoelectrochemical inactivation of E. coli using as-prepared TiO2 films were performed under irradiation of UVA light (note: UVA has a low efficiency to inactivate E. coli. Inactivation rate constants for each case were obtained from their respective inactivation curve through a 2 h incubation period. Photocatalytic inactivation rate constants of E. coli are 0.02/min (using columnar films, and 0.08/min (using branched films. The inactivation rate constant for the columnar film was enhanced by 330% by applied voltage on the film while that for the branched film was increased only by 30%. Photocatalytic microbial inactivation rate of the columnar and the branched films were also compared taking into account their different surface areas. Since the majority of the UV radiation that reaches the Earth’s surface is UVA, this study provides an opportunity to use sunlight to efficiently decontaminate drinking water.

  11. Population Dynamics of Viral Inactivation

    Science.gov (United States)

    Freeman, Krista; Li, Dong; Behrens, Manja; Streletzky, Kiril; Olsson, Ulf; Evilevitch, Alex

    We have investigated the population dynamics of viral inactivation in vitrousing time-resolved cryo electron microscopy combined with light and X-ray scattering techniques. Using bacteriophage λ as a model system for pressurized double-stranded DNA viruses, we found that virions incubated with their cell receptor eject their genome in a stochastic triggering process. The triggering of DNA ejection occurs in a non synchronized manner after the receptor addition, resulting in an exponential decay of the number of genome-filled viruses with time. We have explored the characteristic time constant of this triggering process at different temperatures, salt conditions, and packaged genome lengths. Furthermore, using the temperature dependence we determined an activation energy for DNA ejections. The dependences of the time constant and activation energy on internal DNA pressure, affected by salt conditions and encapsidated genome length, suggest that the triggering process is directly dependent on the conformational state of the encapsidated DNA. The results of this work provide insight into how the in vivo kinetics of the spread of viral infection are influenced by intra- and extra cellular environmental conditions. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1252522.

  12. Dose-rate effect for DNA damage induced by ionizing radiation in human tumor cells

    International Nuclear Information System (INIS)

    The effect of dose rate on clonogenic cell survival and DNA double-strand breaks (DSBs) has been examined in a human bladder carcinoma cell line, RT112, treated with ionizing radiation. Cell survival changed markedly over the range of dose rates used (0.01-1.28 Gy/min) with the curves becoming shallower and straighter as the dose rate was lowered. Similarly, the number of DSBs measured by pulsed-field gel electrophoresis (PFGE) immediately after irradiation varied with dose rate. Fewer DSBs were detectable after low-dose-rate irradiation. However, when a 4-h repair period was allowed after irradiation, cells treated at all dose rates exhibited approximately the same amount of damage. The final level of unrejoined DSBs, as detected by PFGE, therefore does not correlate with cell survival at different dose rates. 16 refs., 2 figs

  13. Early Telomerase Inactivation Accelerates Aging Independently of Telomere Length

    OpenAIRE

    Xie, Zhengwei; Jay, Kyle A.; Smith, Dana L.; Zhang, Yi; Liu, Zairan; Zheng, Jiashun; Tian, Ruilin; Li, Hao; Blackburn, Elizabeth

    2015-01-01

    Telomerase is required for long-term telomere maintenance and protection. Using single budding yeast mother cell analyses we found that, even Early after Telomerase Inactivation (ETI), yeast mother cells show transient DNA Damage Response (DDR) episodes, stochastically altered cell cycle dynamics, and accelerated mother cell aging. The acceleration of ETI mother cell aging was not explained by increased reactive oxygen species (ROS), Sir protein perturbation, or deprotected telomeres. ETI occ...

  14. The responses of I beta cells to increases in the rate of lung inflation.

    Science.gov (United States)

    Marino, P L; Davies, R O; Pack, A I

    1981-08-31

    The activity of inspiratory cells in the region of the nucleus of the tractus solitarius (NTS) was recorded extracellularly in paralyzed, artificially ventilated cats either during chloralose-urethane anesthesia or following midcollicular decerebration. Twenty-three of the 68 inspiratory cells recorded in the region of the NTS were classified as I beta cells on the basis of their response to withholding lung inflation. The dynamic sensitivity of I beta cells was determined by studying their response to increases in the rate of lung inflation at constant peak volume. The I beta cells in this study showed 3 distinct patterns of response to increases in the rate of inflation. Five cells showed no change in firing pattern (fixed firing pattern). Ten cells showed an increase in the rate of rise of cell activity but no change in peak frequency (low dynamic sensitivity). Eight cells showed increases in both the rate of rise of cell activity and peak frequency (high dynamic sensitivity). It was concluded that I beta cells are not a functionally homogeneous population, at least in terms of their dynamic sensitivity. Cells showing fixed firing patterns have the characteristics of off-switch neurons. Cells with low levels of dynamic sensitivity may receive afferents from pulmonary stretch receptors. Cells showing a high degree of dynamic sensitivity may receive afferents from rapidly adapting receptors. The fact that I beta cells are not a functionally homogeneous population may explain the many divergent observations reported from studies of these cells.

  15. Dose-rate effects in mammalian cells in culture. III. Comparison of cell killing and cell proliferation during continuous irradiation for six different cell lines

    International Nuclear Information System (INIS)

    The effects of continuous irradiation over a wide range of dose rates were studied for six different mammalian cell lines in regard to cell survival and proliferation. Cell lines were chosen in which such characteristics as population doubling time, chromosome number, DNA content, acute dose-survival curve parameters, and division delay were as diverse as possible. There was no correlation between the minimum dose rate necessary to stop cell population growth and any of the above listed characteristics, with the exception of division delay following acute doses. In general, the longer the division delay (min/rad), the lower the dose rate required to stop cell population growth. The effects of cell-cycle redistribution during continuous irradiaton in regard to cell survival were dramatic. In some cases a reduction in dose rate resulted in an increase in cell killing for a given total dose. This occurred only when dose rates were sufficient to stop cell population growth and after exposure times sufficient to allow for the occurrence of cell-cycle redistribution

  16. Genistein down-regulates Notch-1 expression and inactivates Hedgehog signaling pathway in pancreatic cancer cells%三羟异黄酮抑制胰腺癌细胞Notch-1和Hedgehog信号通路活性

    Institute of Scientific and Technical Information of China (English)

    廖宇圣; 范学科; 覃华; 张翠芳; 陈芬; 高慧涛; 赵秋

    2008-01-01

    Objective To investigate the effect of genistein on Notch-1, SHH and HHIP gene expression and on the cell cycle and proliferation of of BxPC3 cells. Methods Human pancreatic cancer cell line BxPC3 was cultured. The BxPC3 cells were treated with genistein and then the total RNA and protein were extracted. RT-PCR was used to detect the expression of Notch-1 mRNA, SHH mRNA and HHIP mRNA. Noteh-1 and SHH protein was determined by western blotting. MTT assay was used to detect proliferation of BxPC3 cells. The cell cycle of BxPC3 cells was measured by Propidium iodide (PI) and flow cytometry. Results The inhibiting rate was 67.17%±2.32% when BxPC3 cell lines were treated by 20μg/ml genistein for 48 hours. Notch-1 mRNA was down-regulated from 2.454±0.068 to 1.304±O.169 ; SHH mRNA was down-regulated from 0.959±0.023 to O.472±0.077 ; HHIP mRNA was up-regulated from 0.625±O.158 to 1.761±0.121. Notch-1 protein expression was down-regulated from 1.361±0.109 to 0.760±0.114; SHH protein expression was down-regulated from 0.265±0.018 to 0.129±0.013. (52.77±9.47)% cells were hindered in G2/M stage. Conclusions Genistein could down-regulate Notch-1 expression and inactivate Hedgehog signaling pathway and inhibit the proliferation of pancreatic cancer cells.%目的 探讨三羟异黄酮对胰腺癌BxPC3细胞Notch-1和Hedgehog信号通路分子SHH和HHIP表达以及对细胞周期和增殖的影响.方法 体外培养胰腺癌BxPC3细胞,三羟异黄酮作用BxPC3细胞后,提取总RNA和蛋白质.RT-PCR方法检测Notch-1 mNRA、SHH mRNA和HHIP mRNA表达,Western blotting方法检测Notch-1和SHH蛋白的表达.MTT方法检测BxPC3细胞的增值,流式细胞术和PI单染法分析细胞的周期.结果 20μg/ml的三羟异黄酮处理BxPC3 48 h后,细胞增殖抑制率为(67.17±2.32)%.Notch-1 mRNA表达从2.454±0.068下调到1.304±0.169;SHH mRNA表达从0.959±0.023下调到0.472±0.077;而HHIP mRNA表达从0.625±0.158增加到1.761±0.121.Notch-1蛋白表达从1

  17. Kinetics of inactivation of indicator pathogens during thermophilic anaerobic digestion.

    Science.gov (United States)

    Popat, Sudeep C; Yates, Marylynn V; Deshusses, Marc A

    2010-12-01

    Thermophilic anaerobic sludge digestion is a promising process to divert waste to beneficial use, but an important question is the required temperature and holding time to achieve a given degree of pathogen inactivation. In this study, the kinetics of inactivation of Ascaris suum and vaccine strain poliovirus type 1 (PVS-1), selected as indicators for helminth ova and enteric viruses respectively, were determined during anaerobic digestion at temperatures ranging from 51 to 56 °C. Inactivation of both indicator organisms was fast with greater than two log reductions achieved within 2 h for A. suum and three log reductions for PVS-1, suggesting that the current U.S. regulations are largely conservative. The first-order inactivation rate constants k followed Arrhenius relationship with activation energies of 105 and 39 KJ mol(-1) for A. suum and PVS-1, respectively indicating that A. suum was more sensitive to temperature. Although inactivation was fast, the presence of compounds in the sludge that are known to be protective of pathogen inactivation was observed, suggesting that composition-dependent time-temperature relationships are necessary. PMID:20692678

  18. In vitro study of the effect of virus inactivated plasma on the function of human CIK cells%病毒灭活血浆对人CIK细胞功能影响的体外实验研究

    Institute of Scientific and Technical Information of China (English)

    姚仁南; 陈玲; 刘军权; 周忠海; 陈娜云; 陈复兴

    2012-01-01

    目的 利用CIK细胞(细胞因子诱导的杀伤细胞)来研究亚甲蓝光化学法病毒灭活血浆是否会对免疫细胞产生影响.方法 对10名健康献血者外周血单个核细胞分别采用病毒灭活血浆和新鲜冰冻血浆培养人CIK细胞,观察2组培养体系中CIK细胞的扩增情况;用流式细胞仪(FCM)检测CIK细胞CD3+ CD56+表达;检测经白藜芦醇终浓度为0.8 μmol/L诱导48 h后的CIK细胞穿孔素和颗粒酶B的含量变化;以及用乳酸脱氢酶法测定CIK细胞杀伤SGC-7901细胞活性.结果 新鲜冰冻血浆与病毒灭活血浆比较培养5、10、15 d CIK细胞的增殖倍数,分别为17.62±1.88、26.31±1.95、46.05±2.86与18.10±1.73、25.97±1.55、45.82±1.15,CD3+ CD56+的表达分别为(12.37±1.38)%、(17.39±2.81)%、(24.3±1.72)%与(11.46±1.35)%、(18.36±1.96)%、(24.08±2.21)%,在促进CIK细胞的增殖以及CD3+ CD56+的表达上,2组无统计学意义(P>0.05);经白藜芦醇终浓度为0.8 μmol/L诱导培养48 h后,新鲜冰冻血浆与病毒灭活血浆培养的CIK细胞穿孔素、颗粒酶B、杀伤活性分别为(37.17±1.95)%、(38.79±1.91)%、(46.05±2.86)%和(32.04±1.92)%、(33.50±1.17)%、(45.82±1.15)%,2组无统计学意义(P>0.05).结论 病毒灭活血浆对人CIK细胞的增殖、细胞穿孔素和颗粒酶B含量变化以及体外杀伤功能均无明显影响.%Objective To study whether the immune cells could be affected by the virus inactivated plasma,which u-sing methylene blue light chemical method,via CIK cells. Methods The peripheral mononuclear cells of 10 healthy blood donors were used to culture human CIK by using virus inactivated plasma and fresh frozen plasma. And the amplification of CIK cells was observed in the two groups. The CD3 + CD56 + expression on CIK cells was detected via flow cytometry( FCM).The variation of perforin and granzyme B content, which were induced by Resveratrol with a final concentration of 0. 8

  19. Modeling-independent elucidation of inactivation pathways in recombinant and native A-type Kv channels.

    Science.gov (United States)

    Fineberg, Jeffrey D; Ritter, David M; Covarrubias, Manuel

    2012-11-01

    A-type voltage-gated K(+) (Kv) channels self-regulate their activity by inactivating directly from the open state (open-state inactivation [OSI]) or by inactivating before they open (closed-state inactivation [CSI]). To determine the inactivation pathways, it is often necessary to apply several pulse protocols, pore blockers, single-channel recording, and kinetic modeling. However, intrinsic hurdles may preclude the standardized application of these methods. Here, we implemented a simple method inspired by earlier studies of Na(+) channels to analyze macroscopic inactivation and conclusively deduce the pathways of inactivation of recombinant and native A-type Kv channels. We investigated two distinct A-type Kv channels expressed heterologously (Kv3.4 and Kv4.2 with accessory subunits) and their native counterparts in dorsal root ganglion and cerebellar granule neurons. This approach applies two conventional pulse protocols to examine inactivation induced by (a) a simple step (single-pulse inactivation) and (b) a conditioning step (double-pulse inactivation). Consistent with OSI, the rate of Kv3.4 inactivation (i.e., the negative first derivative of double-pulse inactivation) precisely superimposes on the profile of the Kv3.4 current evoked by a single pulse because the channels must open to inactivate. In contrast, the rate of Kv4.2 inactivation is asynchronous, already changing at earlier times relative to the profile of the Kv4.2 current evoked by a single pulse. Thus, Kv4.2 inactivation occurs uncoupled from channel opening, indicating CSI. Furthermore, the inactivation time constant versus voltage relation of Kv3.4 decreases monotonically with depolarization and levels off, whereas that of Kv4.2 exhibits a J-shape profile. We also manipulated the inactivation phenotype by changing the subunit composition and show how CSI and CSI combined with OSI might affect spiking properties in a full computational model of the hippocampal CA1 neuron. This work unambiguously

  20. Viscoelastic cell mechanics and actin remodelling are dependent on the rate of applied pressure.

    Directory of Open Access Journals (Sweden)

    Priyanka Pravincumar

    Full Text Available BACKGROUND: Living cells are subjected to external and internal mechanical stresses. The effects of these stresses on the deformation and subsequent biological response of the cells remains unclear. This study tested the hypothesis that the rate at which pressure (or stress is applied influence the viscoelastic properties of the cell associated with differences in the dynamics of the actin cytoskeleton. PRINCIPAL FINDING: Micropipette aspiration was used to determine the instantaneous and equilibrium moduli and the viscosity of isolated chondrocytes based on the standard linear solid (SLS model and a variation of this incorporating Boltzmann superposition. Cells were visualised for 180 seconds following aspiration to 7 cmH(2O at 0.35, 0.70 and 5.48 cmH(2O/sec. Cell recovery was then examined for a further 180 seconds once the pressure had been removed. Reducing the rate of application of pressure reduced the levels of cell deformation and recovery associated with a significant increase in modulus and viscosity. Using GFP transfection and confocal microscopy, we show that chondrocyte deformation involves distortion, disassembly and subsequent reassembly of the cortical actin cytoskeleton. At faster pressure rates, cell deformation produced an increase in cell volume associated with membrane bleb formation. GFP-actin transfection inhibited the pressure rate dependent variation in cell mechanics indicating that this behaviour is regulated by GFP-sensitive actin dynamics. CONCLUSION: We suggest that slower rates of aspiration pressure enable greater levels of cortical actin distortion. This is partially inhibited by GFP or faster aspiration rates leading to membrane bleb formation and an increase in cell volume. Thus the rate of application of pressure regulates the viscoelastic mechanical properties of living cells through pressure rate sensitive differences in actin dynamics. Therefore cells appear softer when aspirated at a faster rate in

  1. Effect of feed and bleed rate on hybridoma cells in an acoustic perfusion bioreactor: Metabolic analysis

    NARCIS (Netherlands)

    Dalm, M.C.F.; Lamers, P.P.; Cuijten, S.M.R.; Tjeerdsma, A.M.; Grunsven, van W.M.J.; Tramper, J.; Martens, D.E.

    2007-01-01

    For the development of optimal perfusion processes, insight into the effect of feed and bleed rate on cell growth, productivity, and metabolism is essential. In the here presented study the effect of the feed and bleed rate on cell metabolism was investigated using metabolic flux analysis. Under all

  2. Rate of renal cell carcinoma subtypes in different races

    Directory of Open Access Journals (Sweden)

    Alexander Sankin

    2011-02-01

    Full Text Available PURPOSE: We sought to identify racial differences among histological subtypes of renal cell carcinoma (RCC between black and non-black patients in an equal-access health care system. MATERIALS AND METHODS: We established a multi-institutional, prospective database of patients undergoing partial or radical nephrectomy between January 1, 2000 and Sept 31, 2009. For the purposes of this study, data captured included age at diagnosis, race, tumor size, presence of lymphovascular invasion, presence of capsular invasion, margin status, and tumor histology. RESULTS: 204 kidney tumors were identified (Table-1. Of these, 117 (57.4% were in black patients and 87 (42.6% were in non-black patients. Age at surgery ranged from 37 to 87 with a median of 62. Tumor size ranged from 1.0 to 22.0 cm with a median of 5.0 cm. Overall, tumors were composed of clear cell RCC in 97 cases (47.5%, papillary RCC in 65 cases (31.9%, chromophobe RCC in 13 cases (6.4%, collecting duct/medullary RCC in 2 cases (1.0%, RCC with multiple histological subtypes in 8 cases (3.9%, malignant tumors of other origin in 6 cases (2.9%, and benign histology in 13 cases (6.4%. Among black patients, papillary RCC was seen in 56 cases (47.9%, compared to 9 cases (10.3% among non-black patients (p < 0.001 (Table-2. Clear cell RCC was present in 38 (32.5% of black patients and in 59 (67.8% of non-blacks (p < 0.001. CONCLUSIONS: In our study, papillary RCC had a much higher occurrence among black patients compared to non-black patients. This is the first study to document such a great racial disparity among RCC subtypes.

  3. Circuits and methods for determination and control of signal transition rates in electrochemical cells

    Science.gov (United States)

    Jamison, David Kay

    2016-04-12

    A charge/discharge input is for respectively supplying charge to, or drawing charge from, an electrochemical cell. A transition modifying circuit is coupled between the charge/discharge input and a terminal of the electrochemical cell and includes at least one of an inductive constituent, a capacitive constituent and a resistive constituent selected to generate an adjusted transition rate on the terminal sufficient to reduce degradation of a charge capacity characteristic of the electrochemical cell. A method determines characteristics of the transition modifying circuit. A degradation characteristic of the electrochemical cell is analyzed relative to a transition rate of the charge/discharge input applied to the electrochemical cell. An adjusted transition rate is determined for a signal to be applied to the electrochemical cell that will reduce the degradation characteristic. At least one of an inductance, a capacitance, and a resistance is selected for the transition modifying circuit to achieve the adjusted transition rate.

  4. Oxygen analyzers: failure rates and life spans of galvanic cells.

    Science.gov (United States)

    Meyer, R M

    1990-07-01

    Competing technologies exist for measuring oxygen concentrations in breathing circuits. Over a 4-year period, two types of oxygen analyzers were studied prospectively in routine clinical use to determine the incidence and nature of malfunctions. Newer AC-powered galvanic analyzers (North American Dräger O2med) were compared with older, battery-powered polarographic analyzers (Ohmeda 201) by recording all failures and necessary repairs. The AC-powered galvanic analyzer had a significantly lower incidence of failures (0.12 +/- 0.04 failures per machine-month) than the battery-powered polarographic analyzer (4.0 +/- 0.3 failures per machine-month). Disposable capsules containing the active galvanic cells lasted 12 +/- 7 months. Although the galvanic analyzers tended to remain out of service longer, awaiting the arrival of costly parts, the polarographic analyzers were more expensive to keep operating when calculations included the cost of time spent on repairs. Stocking galvanic capsules would have decreased the amount of time the galvanic analyzers were out of service, while increasing costs. In conclusion, galvanic oxygen analyzers appear capable of delivering more reliable service at a lower overall cost. By keeping the galvanic capsules exposed to room air during periods of storage, it should be possible to prolong their life span, further decreasing the cost of using them. In addition, recognizing the aberrations in their performance that warn of the exhaustion of the galvanic cells should permit timely recording and minimize downtime.

  5. Effect of acriflavine on ultraviolet inactivation of Acholeplasma laidlawii

    International Nuclear Information System (INIS)

    An increased sensitivity to inactivation was observed when ultraviolet light-irradiated Acholeplasma laidlawii cells were plated on medium containing either acriflavine or chloramphenicol. Chloramphenicol reduced liquid holding recovery (dark repair) to about 10 percent of that in untreated irradiated cells. In acriflavine treated cells no dark repair could be observed and there was a progressive degradation of cell DNA during holding. While the primary effect of acriflavine may be to inhibit excision repair, since ultraviolet-irradiated Mycoplasma gallisepticum (cells which lack an excision repair machanism) show a slight increase in inactivation when plated on medium containing acriflavine, the dye must also have some other effects on ultraviolet repair processes. Acriflavine treatment of A. laidlawii cells before ultraviolet irradiation has a protective effect, as seen by an increased cell survival. (Auth.)

  6. Effects of diltiazem and propafenone on the inactivation and recovery kinetics of fKvl.4 channel currents expressed in Xenopus oocytes

    Institute of Scientific and Technical Information of China (English)

    Dong ZHANG; Shi-min WANG; Hui CHEN; Xue-jun JIANG; Sheng-ping CHAO

    2011-01-01

    Alm: TO investigate the effects of diltiazem. an L-type calcium channel blocker, and propafenone, a sodium channel blocker,on the inactivation and recovery kinetics of fKvl.4.a potassium channel that generates the cardiac transient outward potassium current.Methods:The cRNA for fKv1.4△N.an N-rerminal deleted mutant of the flerret Kvl.4 potassium channel.was injected into Xenopusoocytes to express the fKv1.4△N channel in these cells. Currents were recorded using a two electrode voltage clamp technique. Results: Diltiazem(10 to 1000 μmol/L)inhibited the fKv1.4△N channel in a frequency-dependent,voltage-dependent,and concerttration-dependent manneh Suggesting an open channel block.The ICso was 241.04±23.06 μmol/L for the fKvl.4&N channel(at+50mY).and propafenone(10 to 500 μmol/L)showed a similar effect(IC50=103.68±10.13 μmol/L).After application of diltiazem and propafenone, fKv1.4AN inactivation was bi-exponential.with a faster drug-induced inactivation and a slower C-type inactivation.Diltiazem increased the C-type inactivation rate and slowed recovery in fKv1.4△N channels.Howeve, propafenone had no effect on either the slow inactivation time constant or the recovery.Conclusion:Diltiazem and propafenone accelerate the inactivation of the Kvl.4AN channeI by binding to the open state of the channel.Unlike propafenone, diltiazem slows the recovery of the Kv1.4AN channel.

  7. Dose-rate effects and chronological changes of chromosome aberration rates in spleen cells from mice that are chronically exposed to gamma-ray at low dose rates

    International Nuclear Information System (INIS)

    Dose-rate effects have not been examined in the low dose-rate regions of less than 60-600 mGy/h. Mice were chronically exposed to gamma-ray at 20 mGy/day (approximately 1 mGy/h) up to 700 days and at 1 mGy/day (approximately 0.05 mGy/h) for 500 days under SPF conditions. Chronological changes of chromosome aberration rates in spleen cells were observed along with accumulated doses at both low dose-rates. Unstable aberrations increased in a biphasic manner within 0-2 Gy and 4-14 Gy in 20 mGy/day irradiation. They slightly increased up to 0.5 Gy in 1 mGy/day irradiation. Chromosome aberration rates at 20 mGy/day and 1 mGy/day were compared at the same total doses of 0.5 Gy and 0.25 Gy. They were 2.0 vs. 0.53, and 1.0 vs. 0.47 respectively. Thus, dose-rate effects were observed in these low dose-rate regions. (author)

  8. Surface water disinfection by chlorination and advanced oxidation processes: Inactivation of an antibiotic resistant E. coli strain and cytotoxicity evaluation.

    Science.gov (United States)

    Miranda, Andreza Costa; Lepretti, Marilena; Rizzo, Luigi; Caputo, Ivana; Vaiano, Vincenzo; Sacco, Olga; Lopes, Wilton Silva; Sannino, Diana

    2016-06-01

    The release of antibiotics into the environment can result in antibiotic resistance (AR) spread, which in turn can seriously affect human health. Antibiotic resistant bacteria have been detected in different aquatic environments used as drinking water source. Water disinfection may be a possible solution to minimize AR spread but conventional processes, such as chlorination, result in the formation of dangerous disinfection by-products. In this study advanced oxidation processes (AOPs), namely H2O2/UV, TiO2/UV and N-TiO2/UV, have been compared with chlorination in the inactivation of an AR Escherichia coli (E. coli) strain in surface water. TiO2 P25 and nitrogen doped TiO2 (N-TiO2), prepared by sol-gel method at two different synthesis temperatures (0 and -20°C), were investigated in heterogeneous photocatalysis experiments. Under the investigated conditions, chlorination (1.0mgL(-1)) was the faster process (2.5min) to achieve total inactivation (6 Log). Among AOPs, H2O2/UV resulted in the best inactivation rate: total inactivation (6 Log) was achieved in 45min treatment. Total inactivation was not observed (4.5 Log), also after 120min treatment, only for N-doped TiO2 synthesized at 0°C. Moreover, H2O2/UV and chlorination processes were evaluated in terms of cytotoxicity potential by means of 3-(4,5-dime-thylthiazol-2-yl)-2,5-diphenylte-trazolium colorimetric test on a human-derived cell line and they similarly affected HepG2 cells viability. PMID:26945469

  9. Surface water disinfection by chlorination and advanced oxidation processes: Inactivation of an antibiotic resistant E. coli strain and cytotoxicity evaluation.

    Science.gov (United States)

    Miranda, Andreza Costa; Lepretti, Marilena; Rizzo, Luigi; Caputo, Ivana; Vaiano, Vincenzo; Sacco, Olga; Lopes, Wilton Silva; Sannino, Diana

    2016-06-01

    The release of antibiotics into the environment can result in antibiotic resistance (AR) spread, which in turn can seriously affect human health. Antibiotic resistant bacteria have been detected in different aquatic environments used as drinking water source. Water disinfection may be a possible solution to minimize AR spread but conventional processes, such as chlorination, result in the formation of dangerous disinfection by-products. In this study advanced oxidation processes (AOPs), namely H2O2/UV, TiO2/UV and N-TiO2/UV, have been compared with chlorination in the inactivation of an AR Escherichia coli (E. coli) strain in surface water. TiO2 P25 and nitrogen doped TiO2 (N-TiO2), prepared by sol-gel method at two different synthesis temperatures (0 and -20°C), were investigated in heterogeneous photocatalysis experiments. Under the investigated conditions, chlorination (1.0 mg L(-1)) was the faster process (2.5 min) to achieve total inactivation (6 Log). Among AOPs, H2O2/UV resulted in the best inactivation rate: total inactivation (6 Log) was achieved in 45 min treatment. Total inactivation was not observed (4.5 Log), also after 120 min treatment, only for N-doped TiO2 synthesized at 0°C. Moreover, H2O2/UV and chlorination processes were evaluated in terms of cytotoxicity potential by means of 3-(4,5-dime-thylthiazol-2-yl)-2,5-diphenylte-trazolium colorimetric test on a human-derived cell line and they similarly affected HepG2 cells viability.

  10. Flow rate calibration for absolute cell counting rationale and design.

    Science.gov (United States)

    Walker, Clare; Barnett, David

    2006-05-01

    There is a need for absolute leukocyte enumeration in the clinical setting, and accurate, reliable (and affordable) technology to determine absolute leukocyte counts has been developed. Such technology includes single platform and dual platform approaches. Derivations of these counts commonly incorporate the addition of a known number of latex microsphere beads to a blood sample, although it has been suggested that the addition of beads to a sample may only be required to act as an internal quality control procedure for assessing the pipetting error. This unit provides the technical details for undertaking flow rate calibration that obviates the need to add reference beads to each sample. It is envisaged that this report will provide the basis for subsequent clinical evaluations of this novel approach. PMID:18770842

  11. Inactivation of Acinetobacter baumannii Biofilms on Polystyrene, Stainless Steel, and Urinary Catheters by Octenidine Dihydrochloride

    Science.gov (United States)

    Narayanan, Amoolya; Nair, Meera S.; Karumathil, Deepti P.; Baskaran, Sangeetha A.; Venkitanarayanan, Kumar; Amalaradjou, Mary Anne Roshni

    2016-01-01

    Acinetobacter baumannii is a major nosocomial pathogen causing human infections with significant mortality rates. In most cases, infections are acquired through exposure to A. baumannii biofilms that persist on contaminated hospital equipment and surfaces. Thus, it is imperative to develop effective measures for controlling A. baumannii biofilms in nosocomial settings. This study investigated the efficacy of octenidine dihydrochloride (OH), a new generation disinfectant for reducing A. baumannii biofilms on polystyrene, stainless steel and catheters. OH at 0.3% (5 mM), 0.6% (10 mM), and 0.9% (15 mM) was effective in significantly inactivating A. baumannii biofilms on all tested surfaces (P < 0.05). Furthermore, OH was equally effective in inactivating biofilms of multidrug resistant and drug susceptible A. baumannii isolates. In addition, confocal imaging revealed the predominance of dead cells in the OH-treated samples in comparison to the control. Further, scanning electron microscopy of biofilms formed on catheters revealed that OH treatment significantly reduced A. baumannii biofilm populations in corroboration with our antibiofilm assay. These data underscore the efficacy of OH in inactivating A. baumannii biofilms, thereby suggesting its potential use as a disinfectant or a catheter lock solution to control A. baumannii infections. PMID:27375572

  12. Inactivation of Acinetobacter baumannii Biofilms on Polystyrene, Stainless Steel, and Urinary Catheters by Octenidine Dihydrochloride.

    Science.gov (United States)

    Narayanan, Amoolya; Nair, Meera S; Karumathil, Deepti P; Baskaran, Sangeetha A; Venkitanarayanan, Kumar; Amalaradjou, Mary Anne Roshni

    2016-01-01

    Acinetobacter baumannii is a major nosocomial pathogen causing human infections with significant mortality rates. In most cases, infections are acquired through exposure to A. baumannii biofilms that persist on contaminated hospital equipment and surfaces. Thus, it is imperative to develop effective measures for controlling A. baumannii biofilms in nosocomial settings. This study investigated the efficacy of octenidine dihydrochloride (OH), a new generation disinfectant for reducing A. baumannii biofilms on polystyrene, stainless steel and catheters. OH at 0.3% (5 mM), 0.6% (10 mM), and 0.9% (15 mM) was effective in significantly inactivating A. baumannii biofilms on all tested surfaces (P < 0.05). Furthermore, OH was equally effective in inactivating biofilms of multidrug resistant and drug susceptible A. baumannii isolates. In addition, confocal imaging revealed the predominance of dead cells in the OH-treated samples in comparison to the control. Further, scanning electron microscopy of biofilms formed on catheters revealed that OH treatment significantly reduced A. baumannii biofilm populations in corroboration with our antibiofilm assay. These data underscore the efficacy of OH in inactivating A. baumannii biofilms, thereby suggesting its potential use as a disinfectant or a catheter lock solution to control A. baumannii infections.

  13. Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology.

    Science.gov (United States)

    Fernández, A; Noriega, E; Thompson, A

    2013-02-01

    Cold atmospheric gas plasma treatment (CAP) is an alternative approach for the decontamination of fresh and minimally processed food. In this study, the effects of growth phase, growth temperature and chemical treatment regime on the inactivation of Salmonella enterica serovar Typhimurium (S. Typhimurium) by Nitrogen CAP were examined. Furthermore, the efficacy of CAP treatment for decontaminating lettuce and strawberry surfaces and potato tissue inoculated with S. Typhimurium was evaluated. It was found that the rate of inactivation of S. Typhimurium was independent of the growth phase, growth temperature and chemical treatment regime. Under optimal conditions, a 2 min treatment resulted in a 2.71 log-reduction of S. Typhimurium viability on membrane filters whereas a 15 min treatment was necessary to achieve 2.72, 1.76 and 0.94 log-reductions of viability on lettuce, strawberry and potato, respectively. We suggest that the differing efficiency of CAP treatment on the inactivation of S. Typhimurium on these different types of fresh foods is a consequence of their surface features. Scanning electron microscopy of the surface structures of contaminated samples of lettuce, strawberry and potato revealed topographical features whereby S. Typhimurium cells could be protected from the active species generated by plasma.

  14. Linoleic acid derivative DCP-LA ameliorates stress-induced depression-related behavior by promoting cell surface 5-HT1A receptor translocation, stimulating serotonin release, and inactivating GSK-3β.

    Science.gov (United States)

    Kanno, Takeshi; Tanaka, Akito; Nishizaki, Tomoyuki

    2015-04-01

    Impairment of serotonergic neurotransmission is the major factor responsible for depression and glycogen synthase kinase 3β (GSK-3β) participates in serotonergic transmission-mediated signaling networks relevant to mental illnesses. In the forced-swim test to assess depression-like behavior, the immobility time for mice with restraint stress was significantly longer than that for nonstressed control mice. Postsynaptic cell surface localization of 5-HT1A receptor, but not 5-HT2A receptor, in the hypothalamus for mice with restraint stress was significantly reduced as compared with that for control mice, which highly correlated to prolonged immobility time, i.e., depression-like behavior. The linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) restored restraint stress-induced reduction of cell surface 5-HT1A receptor and improved depression-like behavior in mice with restraint stress. Moreover, DCP-LA stimulated serotonin release from hypothalamic slices and cancelled restraint stress-induced reduction of GSK-3β phosphorylation at Ser9. Taken together, the results of the present study indicate that DCP-LA could ameliorate depression-like behavior by promoting translocation of 5-HT1A receptor to the plasma membrane on postsynaptic cells, stimulating serotonin release, and inactivating GSK-3β. PMID:24788685

  15. Linoleic acid derivative DCP-LA ameliorates stress-induced depression-related behavior by promoting cell surface 5-HT1A receptor translocation, stimulating serotonin release, and inactivating GSK-3β.

    Science.gov (United States)

    Kanno, Takeshi; Tanaka, Akito; Nishizaki, Tomoyuki

    2015-04-01

    Impairment of serotonergic neurotransmission is the major factor responsible for depression and glycogen synthase kinase 3β (GSK-3β) participates in serotonergic transmission-mediated signaling networks relevant to mental illnesses. In the forced-swim test to assess depression-like behavior, the immobility time for mice with restraint stress was significantly longer than that for nonstressed control mice. Postsynaptic cell surface localization of 5-HT1A receptor, but not 5-HT2A receptor, in the hypothalamus for mice with restraint stress was significantly reduced as compared with that for control mice, which highly correlated to prolonged immobility time, i.e., depression-like behavior. The linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) restored restraint stress-induced reduction of cell surface 5-HT1A receptor and improved depression-like behavior in mice with restraint stress. Moreover, DCP-LA stimulated serotonin release from hypothalamic slices and cancelled restraint stress-induced reduction of GSK-3β phosphorylation at Ser9. Taken together, the results of the present study indicate that DCP-LA could ameliorate depression-like behavior by promoting translocation of 5-HT1A receptor to the plasma membrane on postsynaptic cells, stimulating serotonin release, and inactivating GSK-3β.

  16. Antiproliferative Action of Conjugated Linoleic Acid on Human MCF-7 Breast Cancer Cells Mediated by Enhancement of Gap Junctional Intercellular Communication through Inactivation of NF-κB

    OpenAIRE

    Rakib, Md. Abdur; Lee, Won Sup; Kim, Gon Sup; Han, Jae Hee; Kim, Jeong Ok; Ha, Yeong Lae

    2013-01-01

    The major conjugated linoleic acid (CLA) isomers, c9,t11-CLA and t10,c12-CLA, have anticancer effects; however, the exact mechanisms underlying these effects are unknown. Evidence suggests that reversal of reduced gap junctional intercellular communication (GJIC) in cancer cells inhibits cell growth and induces cell death. Hence, we determined that CLA isomers enhance GJIC in human MCF-7 breast cancer cells and investigated the underlying molecular mechanisms. The CLA isomers significantly en...

  17. Antiproliferative Action of Conjugated Linoleic Acid on Human MCF-7 Breast Cancer Cells Mediated by Enhancement of Gap Junctional Intercellular Communication through Inactivation of NF- κ B

    OpenAIRE

    Md. Abdur Rakib; Won Sup Lee; Gon Sup Kim; Jae Hee Han; Jeong Ok Kim; Yeong Lae Ha

    2013-01-01

    The major conjugated linoleic acid (CLA) isomers, c9,t11-CLA and t10,c12-CLA, have anticancer effects; however, the exact mechanisms underlying these effects are unknown. Evidence suggests that reversal of reduced gap junctional intercellular communication (GJIC) in cancer cells inhibits cell growth and induces cell death. Hence, we determined that CLA isomers enhance GJIC in human MCF-7 breast cancer cells and investigated the underlying molecular mechanisms. The CLA isomers significantly en...

  18. Cells Sensing Mechanical Cues: Stiffness Influences the Lifetime of Cell-Extracellular Matrix Interactions by Affecting the Loading Rate.

    Science.gov (United States)

    Jiang, Li; Sun, Zhenglong; Chen, Xiaofei; Li, Jing; Xu, Yue; Zu, Yan; Hu, Jiliang; Han, Dong; Yang, Chun

    2016-01-26

    The question of how cells sense substrate mechanical cues has gained increasing attention among biologists. By introducing contour-based data analysis to single-cell force spectroscopy, we identified a loading-rate threshold for the integrin α2β1-DGEA bond beyond which a dramatic increase in bond lifetime was observed. On the basis of mechanical cues (elasticity or topography), the effective spring constant of substrates k is mapped to the loading rate r under actomyosin pulling speed v, which, in turn, affects the lifetime of the integrin-ligand bond. Additionally, downregulating v with a low-dose blebbistatin treatment promotes the neuronal lineage specification of mesenchymal stem cells on osteogenic stiff substrates. Thus, sensing of the loading rate is central to how cells sense mechanical cues that affect cell-extracellular matrix interactions and stem cell differentiation.

  19. Role of NADH oxidase in the oxidative inactivation of Streptococcus salivarius fructosyltransferase.

    Science.gov (United States)

    Abbe, K; Takahashi-Abbe, S; Schoen, R A; Wittenberger, C L

    1986-01-01

    A cell-associated fructosyltransferase produced by Streptococcus salivarius was irreversibly inactivated in a time-dependent manner when resting or permeabilized cell suspensions were incubated with low concentrations (less than 1.0 microM) of copper. In addition to copper, the inactivation was dependent on oxygen and on a fermentable carbon source (endogenous intracellular polysaccharide or glucose). In starved, permeabilized cell suspensions, the fermentable carbon source could be replaced by NADH but not by NADPH or ATP. Of several other S. salivarius enzymes tested, only fructosyltransferase was inactivated under these conditions. The available evidence indicated that NADH oxidase is the enzyme responsible for fructosyltransferase inactivation. Results from oxygen radical scavenger studies implicated one or more species of oxygen radicals and hydrogen peroxide in the inactivation reaction. PMID:3759237

  20. Cell tropism predicts long-term nucleotide substitution rates of mammalian RNA viruses.

    Directory of Open Access Journals (Sweden)

    Allison L Hicks

    2014-01-01

    Full Text Available The high rates of RNA virus evolution are generally attributed to replication with error-prone RNA-dependent RNA polymerases. However, these long-term nucleotide substitution rates span three orders of magnitude and do not correlate well with mutation rates or selection pressures. This substitution rate variation may be explained by differences in virus ecology or intrinsic genomic properties. We generated nucleotide substitution rate estimates for mammalian RNA viruses and compiled comparable published rates, yielding a dataset of 118 substitution rates of structural genes from 51 different species, as well as 40 rates of non-structural genes from 28 species. Through ANCOVA analyses, we evaluated the relationships between these rates and four ecological factors: target cell, transmission route, host range, infection duration; and three genomic properties: genome length, genome sense, genome segmentation. Of these seven factors, we found target cells to be the only significant predictors of viral substitution rates, with tropisms for epithelial cells or neurons (P<0.0001 as the most significant predictors. Further, one-tailed t-tests showed that viruses primarily infecting epithelial cells evolve significantly faster than neurotropic viruses (P<0.0001 and P<0.001 for the structural genes and non-structural genes, respectively. These results provide strong evidence that the fastest evolving mammalian RNA viruses infect cells with the highest turnover rates: the highly proliferative epithelial cells. Estimated viral generation times suggest that epithelial-infecting viruses replicate more quickly than viruses with different cell tropisms. Our results indicate that cell tropism is a key factor in viral evolvability.

  1. Odontogenic ameloblast-associated protein (ODAM) inhibits growth and migration of human melanoma cells and elicits PTEN elevation and inactivation of PI3K/AKT signaling

    International Nuclear Information System (INIS)

    The Odontogenic Ameloblast-associated Protein (ODAM) is expressed in a wide range of normal epithelial, and neoplastic tissues, and we have posited that ODAM serves as a novel prognostic biomarker for breast cancer and melanoma. Transfection of ODAM into breast cancer cells yields suppression of cellular growth, motility, and in vivo tumorigenicity. Herein we have extended these studies to the effects of ODAM on cultured melanoma cell lines. The A375 and C8161 melanoma cell lines were stably transfected with ODAM and assayed for properties associated with tumorigenicity including cell growth, motility, and extracellular matrix adhesion. In addition, ODAM–transfected cells were assayed for signal transduction via AKT which promotes cell proliferation and survival in many neoplasms. ODAM expression in A375 and C8161 cells strongly inhibited cell growth and motility in vitro, increased cell adhesion to extracellular matrix, and yielded significant cytoskeletal/morphologic rearrangement. Furthermore, AKT activity was downregulated by ODAM expression while an increase was noted in expression of the PTEN (phosphatase and tensin homolog on chromosome 10) tumor suppressor gene, an antagonist of AKT activation. Increased PTEN in ODAM-expressing cells was associated with increases in PTEN mRNA levels and de novo protein synthesis. Silencing of PTEN expression yielded recovery of AKT activity in ODAM-expressing melanoma cells. Similar PTEN elevation and inhibition of AKT by ODAM was observed in MDA-MB-231 breast cancer cells while ODAM expression had no effect in PTEN-deficient BT-549 breast cancer cells. The apparent anti-neoplastic effects of ODAM in cultured melanoma and breast cancer cells are associated with increased PTEN expression, and suppression of AKT activity. This association should serve to clarify the clinical import of ODAM expression and any role it may serve as an indicator of tumor behavior

  2. The biological effect of 125I seed continuous low dose rate irradiation in CL187 cells

    Directory of Open Access Journals (Sweden)

    Zhuang Hong-Qing

    2009-01-01

    Full Text Available Abstract Background To investigate the effectiveness and mechanism of 125I seed continuous low-dose-rate irradiation on colonic cell line CL187 in vitro. Methods The CL187 cell line was exposed to radiation of 60Coγ ray at high dose rate of 2 Gy/min and 125I seed at low dose rate of 2.77 cGy/h. Radiation responses to different doses and dose rates were evaluated by colony-forming assay. Under 125I seed low dose rate irradiation, a total of 12 culture dishes were randomly divided into 4 groups: Control group, and 2, 5, and 10 Gy irradiation groups. At 48 h after irradiation, apoptosis was detected by Annexin and Propidium iodide (PI staining. Cell cycle arrests were detected by PI staining. In order to investigate the influence of low dose rate irradiation on the MAPK signal transduction, the expression changes of epidermal growth factor receptor (EGFR and Raf under continuous low dose rate irradiation (CLDR and/or EGFR monoclonal antibodies were determined by indirect immunofluorescence. Results The relative biological effect (RBE for 125I seeds compared with 60Co γ ray was 1.41. Apoptosis rates of CL187 cancer cells were 13.74% ± 1.63%, 32.58% ± 3.61%, and 46.27% ± 3.82% after 2 Gy, 5 Gy, and 10 Gy irradiation, respectively; however, the control group apoptosis rate was 1.67% ± 0.19%. G2/M cell cycle arrests of CL187 cancer cells were 42.59% ± 3.21%, 59.84% ± 4.96%, and 34.61% ± 2.79% after 2 Gy, 5 Gy, and 10 Gy irradiation, respectively; however, the control group apoptosis rate was 26.44% ± 2.53%. P 2/M cell cycle arrest. After low dose rate irradiation, EGFR and Raf expression increased, but when EGFR was blocked by a monoclonal antibody, EGFR and Raf expression did not change. Conclusion 125I seeds resulted in more effective inhibition than 60Co γ ray high dose rate irradiation in CL187 cells. Apoptosis following G2/M cell cycle arrest was the main mechanism of cell-killing effects under low dose rate irradiation. CLDR could

  3. Ribosome Inactivating Proteins from Plants Inhibiting Viruses

    Institute of Scientific and Technical Information of China (English)

    Inderdeep Kaur; R C Gupta; Munish Puri

    2011-01-01

    Many plants contain ribosome inactivating proteins (RIPs) with N-glycosidase activity,which depurinate large ribosomal RNA and arrest protein synthesis.RIPs so far tested inhibit replication of mRNA as well as DNA viruses and these proteins,isolated from plants,are found to be effective against a broad range of viruses such as human immunodeficiency virus (HIV),hepatitis B virus (HBV) and herpes simplex virus (HSV).Most of the research work related to RIPs has been focused on antiviral activity against HIV; however,the exact mechanism of antiviral activity is still not clear.The mechanism of antiviral activity was thought to follow inactivation of the host cell ribosome,leading to inhibition of viral protein translation and host cell death.Enzymatic activity of RIPs is not hmited to depurination of the large rRNA,in addition they can depurinate viral DNA as well as RNA.Recently,Phase Ⅰ/Ⅱ clinical trials have demonstrated the potential use of RIPs for treating patients with HIV disease.The aim of this review is to focus on various RIPs from plants associated with anti-HIV activity.

  4. In vitro studies of chlorin e6-assisted photodynamic inactivation of Helicobacter pylori

    Science.gov (United States)

    Simon, C.; Mohrbacher, C.; Hüttenberger, D.; Bauer-Marschall, Ina; Krickhahn, C.; Stachon, A.; Foth, H.-J.

    2014-03-01

    Helicobacter pylori (HP), a gram-negative microaerophilic bacterium located in gastric mucosa, plays an im- portant role in gastro carcinogenesis. Due to the increasing emergence of antibiotic resistance, photodynamic inactivation of bacteria presents a new approach to treat bacterial infections, like HP. In vitro experiments were performed to determine the irradiation conditions for a complete inactivation of HP with the photosensitizer Chlorin e6 (Ce6). The HP strain CCUG 38770 (Culture Collection, University of Gothenburg, Sweden) was routinely cultured under microaerophilic conditions, suspended in sodium chloride, incubated with Ce6 and irradiated briefly with red light of the appropriate wavelength of λ = 660 nm. Series of measurements of different Ce6-concentrations (0.1 μM - 100 μM) were carried out, whereby the incubation time was kept constant at 1 min. The absorbed energy dose has been selected in varying the irradiation time (1 s - 300 s) and the power density (4.5 mW/cm2 - 31 mW/cm2 ). Quantification of inactivation was performed by enumeration of the grown colonies. In addition, the accumulation of Ce6 in HP cells was studied more precisely by uorescence spectroscopy. With a Ce6 concentration of 100 μM and a power density of 9 mW cm2 , a 6-log10 reduction in the survival rate of HP was achieved within 30 seconds of irradiation. In conclusion the most relevant factor for the inactivation of HP is the exposure time of irradiation, followed by the concentration of Ce6 and the light intensity. Further studies with HP strains obtained from patient specimens are under current investigation.

  5. Preferential amplification of CD8 effector-T cells after transcutaneous application of an inactivated influenza vaccine: a randomized phase I trial.

    OpenAIRE

    Combadière, Behazine; Vogt, Annika; Mahé, Brice; Costagliola, Dominique; Hadam, Sabrina; Bonduelle, Olivia; Sterry, Wolfram; Staszewski, Shlomo; Schaefer, Hans; van der Werf, Sylvie; Katlama, Christine; Autran, Brigitte; Blume-Peytavi, Ulrike

    2010-01-01

    BACKGROUND: Current conventional vaccination approaches do not induce potent CD8 T-cell responses for fighting mostly variable viral diseases such as influenza, avian influenza viruses or HIV. Following our recent study on vaccine penetration by targeting of vaccine to human hair follicular ducts surrounded by Langerhans cells, we tested in the first randomized Phase-Ia trial based on hair follicle penetration (namely transcutaneous route) the induction of virus-specific CD8 T cell responses....

  6. Protection against Japanese encephalitis by inactivated vaccines.

    Science.gov (United States)

    Hoke, C H; Nisalak, A; Sangawhipa, N; Jatanasen, S; Laorakapongse, T; Innis, B L; Kotchasenee, S; Gingrich, J B; Latendresse, J; Fukai, K

    1988-09-01

    Encephalitis caused by Japanese encephalitis virus occurs in annual epidemics throughout Asia, making it the principal cause of epidemic viral encephalitis in the world. No currently available vaccine has demonstrated efficacy in preventing this disease in a controlled trial. We performed a placebo-controlled, blinded, randomized trial in a northern Thai province, with two doses of monovalent (Nakayama strain) or bivalent (Nakayama plus Beijing strains) inactivated, purified Japanese encephalitis vaccine made from whole virus derived from mouse brain. We examined the effect of these vaccines on the incidence and severity of Japanese encephalitis and dengue hemorrhagic fever, a disease caused by a closely related flavivirus. Between November 1984 and March 1985, 65,224 children received two doses of monovalent Japanese encephalitis vaccine (n = 21,628), bivalent Japanese encephalitis vaccine (n = 22,080), or tetanus toxoid placebo (n = 21,516), with only minor side effects. The cumulative attack rate for encephalitis due to Japanese encephalitis virus was 51 per 100,000 in the placebo group and 5 per 100,000 in each vaccine group. The efficacy in both vaccine groups combined was 91 percent (95 percent confidence interval, 70 to 97 percent). Attack rates for dengue hemorrhagic fever declined, but not significantly. The severity of cases of dengue was also reduced. We conclude that two doses of inactivated Japanese encephalitis vaccine, either monovalent or bivalent, protect against encephalitis due to Japanese encephalitis virus and may have a limited beneficial effect on the severity of dengue hemorrhagic fever.

  7. Influence of the total gas flow rate on high rate growth microcrystalline silicon films and solar cells

    Institute of Scientific and Technical Information of China (English)

    Han Xiao-Yan; Hou Guo-Fu; Zhang Xiao-Dan; Wei Chang-Chun; Li Gui-Jun; Zhang De-Kun; Chen Xin-Liang; Sun Jian; Zhang Jian-Jun; Zhao Ying; Geng Xin-Hua

    2009-01-01

    This paper reports that high-rate-deposition of microcrystalline silicon solar cells was performed by very-high-frequency plasma-enhanced chemical vapor deposition.These solar cells,whose intrinsic μc-Si:H layers were prepared by using a different total gas flow rate (Ftotal),behave much differently in performance,although their intrinsic layers have similar crystalline volume fraction,opto-electronic properties and a deposition rate of~1.0 nm/s.The influence of Ftotal on the micro-structural properties was analyzed by Raman and Fourier transformed infrared measurements.The results showed that the vertical uniformity and the compact degree of μc-Si:H thin films were improved with increasing Ftotal.The variation of the microstructure was regarded as the main reason for the difference of the J-V parameters.Combined with optical emission spectroscopy,we found that the gas temperature plays an important role in determining the microstructure of thin films.With Ftotal of 300 sccm,a conversion efficiency of 8.11% has been obtained for the intrinsic layer deposited at 8.5 (A)/s (1 (A)=0.1 nm).

  8. Dephosphorylation and inactivation of NPR2 guanylyl cyclase in granulosa cells contributes to the LH-induced decrease in cGMP that causes resumption of meiosis in rat oocytes.

    Science.gov (United States)

    Egbert, Jeremy R; Shuhaibar, Leia C; Edmund, Aaron B; Van Helden, Dusty A; Robinson, Jerid W; Uliasz, Tracy F; Baena, Valentina; Geerts, Andreas; Wunder, Frank; Potter, Lincoln R; Jaffe, Laurinda A

    2014-09-01

    In mammals, the meiotic cell cycle of oocytes starts during embryogenesis and then pauses. Much later, in preparation for fertilization, oocytes within preovulatory follicles resume meiosis in response to luteinizing hormone (LH). Before LH stimulation, the arrest is maintained by diffusion of cyclic (c)GMP into the oocyte from the surrounding granulosa cells, where it is produced by the guanylyl cyclase natriuretic peptide receptor 2 (NPR2). LH rapidly reduces the production of cGMP, but how this occurs is unknown. Here, using rat follicles, we show that within 10 min, LH signaling causes dephosphorylation and inactivation of NPR2 through a process that requires the activity of phosphoprotein phosphatase (PPP)-family members. The rapid dephosphorylation of NPR2 is accompanied by a rapid phosphorylation of the cGMP phosphodiesterase PDE5, an enzyme whose activity is increased upon phosphorylation. Later, levels of the NPR2 agonist C-type natriuretic peptide decrease in the follicle, and these sequential events contribute to the decrease in cGMP that causes meiosis to resume in the oocyte.

  9. X-Chromosome Inactivation Counting and Choice: Change or Design

    NARCIS (Netherlands)

    K. Monkhorst (Kim)

    2008-01-01

    textabstractPlacental mammalian female cells have two X chromosomes. One of these chromosomes is randomly inactivated in each nucleus so that females are functionally mosaic for genes expressed from their X chromosomes. The evolutionary basis for this phenomenon is based on the fact that females wou

  10. Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice.

    Science.gov (United States)

    Patrat, Catherine; Okamoto, Ikuhiro; Diabangouaya, Patricia; Vialon, Vivian; Le Baccon, Patricia; Chow, Jennifer; Heard, Edith

    2009-03-31

    In mammals, X-chromosome dosage compensation is achieved by inactivating one of the two X chromosomes in females. In mice, X inactivation is initially imprinted, with inactivation of the paternal X (Xp) chromosome occurring during preimplantation development. One theory is that the Xp is preinactivated in female embryos, because of its previous silence during meiosis in the male germ line. The extent to which the Xp is active after fertilization and the exact time of onset of X-linked gene silencing have been the subject of debate. We performed a systematic, single-cell transcriptional analysis to examine the activity of the Xp chromosome for a panel of X-linked genes throughout early preimplantation development in the mouse. Rather than being preinactivated, we found the Xp to be fully active at the time of zygotic gene activation, with silencing beginning from the 4-cell stage onward. X-inactivation patterns were, however, surprisingly diverse between genes. Some loci showed early onset (4-8-cell stage) of X inactivation, and some showed extremely late onset (postblastocyst stage), whereas others were never fully inactivated. Thus, we show that silencing of some X-chromosomal regions occurs outside of the usual time window and that escape from X inactivation can be highly lineage specific. These results reveal that imprinted X inactivation in mice is far less concerted than previously thought and highlight the epigenetic diversity underlying the dosage compensation process during early mammalian development. PMID:19273861

  11. FAST TRACK COMMUNICATION: Selective inactivation of human immunodeficiency virus with subpicosecond near-infrared laser pulses

    Science.gov (United States)

    Tsen, K. T.; Tsen, Shaw-Wei D.; Hung, Chien-Fu; Wu, T.-C.; Kiang, Juliann G.

    2008-06-01

    We demonstrate for the first time that human immunodeficiency virus (HIV) can be inactivated by irradiation with subpicosecond near-infrared laser pulses at a moderate laser power density. By comparing the threshold laser power density for the inactivation of HIV with those of human red blood cells and mouse dendritic cells, we conclude that it is plausible to use the ultrashort pulsed laser to selectively inactivate blood-borne pathogens such as HIV while leaving sensitive materials like human red blood cells unharmed. This finding has important implications in the development of a new laser technology for disinfection of viral pathogens in blood products and in the clinic.

  12. Chronic oxidative stress causes estrogen-independent aggressive phenotype, and epigenetic inactivation of estrogen receptor alpha in MCF-7 breast cancer cells.

    Science.gov (United States)

    Mahalingaiah, Prathap Kumar S; Ponnusamy, Logeswari; Singh, Kamaleshwar P

    2015-08-01

    The role of chronic oxidative stress in the development and aggressive growth of estrogen receptor (ER)-positive breast cancer is well known; however, the mechanistic understanding is not clear. Estrogen-independent growth is one of the features of aggressive subtype of breast cancer. Therefore, the objective of this study was to evaluate the effect of oxidative stress on estrogen sensitivity and expression of nuclear estrogen receptors in ER-positive breast cancer cells. MCF-7 cells chronically exposed to hydrogen peroxide were used as a cell model in this study, and their growth in response to 17-β estradiol was evaluated by cell viability, cell cycle, and cell migration analysis. Results were further confirmed at molecular level by analysis of gene expressions at transcript and protein levels. Histone H3 modifications, expression of epigenetic regulatory genes, and the effect of DNA demethylation were also analyzed. Loss of growth in response to estrogen with a decrease in ERα expression was observed in MCF-7 cells adapted to chronic oxidative stress. Increases in mtTFA and NRF1 in these cells further suggested the role of mitochondria-dependent redox-sensitive growth signaling as an alternative pathway to estrogen-dependent growth. Changes in expression of epigenetic regulatory genes, levels of histone H3 modifications as well as significant restorations of both ERα expression and estrogen response by 5-Aza-2'-deoxycytidine further confirmed the epigenetic basis for estrogen-independent growth in these cells. In conclusion, results of this study suggest that chronic oxidative stress can convert estrogen-dependent nonaggressive breast cancer cells into estrogen-independent aggressive form potentially by epigenetic mechanism.

  13. Apoptosis induced by 7-difluoromethoxyl-5,4'-di-n-octyl genistein via the inactivation of FoxM1 in ovarian cancer cells.

    Science.gov (United States)

    Ning, Yingxia; Li, Qingxiu; Xiang, Honglin; Liu, Fei; Cao, Jianguo

    2012-06-01

    Genistein, 5,7,4'-trihydroxylisoflavone, a major component of soybean products, has been reported to possess anticancer activities. We examined the antitumor effects of 7-difluoromethoxyl-5,4'-di-n-octylgenistein (DFOG), a novel synthetic genistein derivative, on human ovarian cancer cells as well as the molecular mechanism. The growth-inhibitory effects of genistein and DFOG were determined using MTT assay and clonogenic assay in CoC1 and SKOV3 human ovarian cancer cells. Apoptotic activities of DFOG were observed using histone/DNA ELISA assay and flow cytometry with propidium iodide (PI) staining. Multiple molecular techniques, such as RT-PCR, western blot analysis, siRNA and cDNA transfection were used to explore the molecular mechanism. We demonstrated that nine of the genistein derivatives had a more effective antitumor activity than genistein. Among the afore-mentioned derivatives, DFOG presented with the strongest activity against CoC1 and SKOV3 cells in vitro. DFOG and genistein inhibited the growth of CoC1 and SKOV3 cells, accompanied by cell cycle arrest in the G2/M phase. DFOG caused apoptotic cell death with concomitant attenuation of Forkhead box protein M1 (FoxM1) and its downstream genes, such as survivin, cdc25B, cyclin B, and increased p27KIP1. Downregulation of FoxM1 by siRNA followed by DFOG treatment resulted in enhanced cell growth inhibition and induction of apoptosis. Upregulation of FoxM1 by cDNA transfection attenuated DFOG-induced cell growth inhibition and apoptotic cell death. Our results show that the molecular role of FoxM1 in mediating the biological effects of DFOG and genistein in human ovarian cancer cells suggests that FoxM1 could be a novel target for the treatment of human ovarian cancer.

  14. Mucosal SIV vaccines comprising inactivated virus particles and bacterial adjuvants induce CD8+T-regulatory cells that suppress SIV positive CD4+cell activation and prevent SIV infection in the macaque model.

    OpenAIRE

    Jean Marie eAndrieu; song echen; Chunhui eLAI; weizhong eguo; Wei eLu

    2014-01-01

    A new paradigm of mucosal vaccination against HIV infection has been investigated in the macaque model. A vaccine consisting of inactivated SIVmac239 particles together with a living bacterial adjuvant (either the Calmette & Guerin bacillus, lactobacillus plantarum or Lactobacillus rhamnosus) was administered to macaques via the vaginal or oral/intragastic route. In contrast to all established human and veterinary vaccines, these three vaccine regimens did not elicit SIV-specific antibodies n...

  15. Mucosal SIV Vaccines Comprising Inactivated Virus Particles and Bacterial Adjuvants Induce CD8+ T-Regulatory Cells that Suppress SIV-Positive CD4+ T-Cell Activation and Prevent SIV Infection in the Macaque Model

    OpenAIRE

    Andrieu, Jean-Marie; Chen, Song; Lai, Chunhui; Guo, Weizhong; Lu, Wei

    2014-01-01

    A new paradigm of mucosal vaccination against human immunodeficiency virus (HIV) infection has been investigated in the macaque model. A vaccine consisting of inactivated simian immunodeficiency virus (SIV)mac239 particles together with a living bacterial adjuvant (either the Calmette and Guerin bacillus, Lactobacillus plantarum or Lactobacillus rhamnosus) was administered to macaques via the vaginal or oral/intragastric route. In contrast to all established human and veterinary vaccines, the...

  16. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Science.gov (United States)

    Damodaran, Shima P; Eberhard, Stephan; Boitard, Laurent; Rodriguez, Jairo Garnica; Wang, Yuxing; Bremond, Nicolas; Baudry, Jean; Bibette, Jérôme; Wollman, Francis-André

    2015-01-01

    To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers) and a significant subpopulation of slowly dividing cells (slow-growers). These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes. PMID:25760649

  17. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Shima P Damodaran

    Full Text Available To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers and a significant subpopulation of slowly dividing cells (slow-growers. These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.

  18. 病毒灭活血浆对人γδT细胞功能影响的实验研究%Experimental study of virus inactivated plasma for human γδT cell function influence

    Institute of Scientific and Technical Information of China (English)

    姚仁南; 陈玲; 陈娜云; 刘军权; 周忠海; 陈复兴; 孙阳

    2012-01-01

    Objective To study the influence of virus inactivated plasma for human γδT cell growth and function. Methods The isopentenyl pyrophosphate assay were used to amplify human peripheral blood γδT cells in vitro. The γδT cells were cultured with 10 % virus inactivated plasma and 10 % fresh frozen plasma,the amplification factors were detected at culture before,after 5 days and 10 days; The flow cytometry were detected cell surface markers,Granzyme B,perform and CD107a of γδT cultured after 10 days. Results The 10 % fresh frozen plasma and virus inactivated plasma on human γδT cells cultured by amplification at 10 days,which were increased from 3.12 % to 80.46 % and 81.18 %,5 days and 10 days of cell proliferation multiples were 11.65 ± 211,38.21 ± 157 and 11.77 ± 2.13,37.11 ± 1.81,respectively. The expression of CD107a,perform and Granzyme B were 90.54 % ± 1.99 % ,23.47 % ± 3.18 %,35.47 % ± 2.42 % and 90.22 % ± 2.21 %,22.58 % ± 3.41 %,34.63 % ± 2.22 %,respectively. There was no statistically significant difference between 2 groups (P > 0.05). Conclusion It is demonstrated that the virus inactivated plasma in certain concentration of human γδT cell growth and proliferation,Granzyme B,perform and CD107a expression and fresh frozen plasma have no obvious difference.%目的 探讨病毒灭活血浆对人γδT细胞生长和功能的影响.方法 取人外周血γδT细胞,用异戊烯焦磷酸法体外扩增.用10%病毒灭活血浆和10%新鲜冰冻血浆分别培养γδT细胞,分别检测培养前、培养5d和10d后的扩增倍数;用流式细胞术分别检测培养10d后的γδT细胞表面标记,即颗粒酶B、穿孔素和CD107a的表达等.结果 10%新鲜冰冻血浆和10%病毒灭活血浆对人γδT细胞培养10d时,由扩增前的3.12%增加到80.46%和81.18%,5d和10d的细胞增殖倍数分别为11.65±2.11、38.21±1.57和11.77±2.13、37.11±1.81,CD107a、穿孔素、颗粒酶B含量表达分别为90.54%±1.99

  19. Inactivation of Anopheles gambiae Glutathione Transferase ε2 by Epiphyllocoumarin

    Directory of Open Access Journals (Sweden)

    Patience Marimo

    2016-01-01

    Full Text Available Glutathione transferases (GSTs are part of a major family of detoxifying enzymes that can catalyze the reductive dehydrochlorination of dichlorodiphenyltrichloroethane (DDT. The delta and epsilon classes of insect GSTs have been implicated in conferring resistance to this insecticide. In this study, the inactivation of Anopheles gambiae GSTε2 by epiphyllocoumarin (Tral 1 was investigated. Recombinant AgGSTε2 was expressed in Escherichia coli cells containing a pET3a-AGSTε2 plasmid and purified by affinity chromatography. Tral 1 was shown to inactivate GSTε2 both in a time-dependent manner and in a concentration-dependent manner. The half-life of GSTε2 in the presence of 25 μM ethacrynic acid (ETA was 22 minutes and with Tral 1 was 30 minutes, indicating that Tral 1 was not as efficient as ETA as an inactivator. The inactivation parameters kinact and KI were found to be 0.020 ± 0.001 min−1 and 7.5 ± 2.1 μM, respectively, after 90 minutes of incubation. Inactivation of GSTε2 by Tral 1 implies that Tral 1 covalently binds to this enzyme in vitro and would be expected to exhibit time-dependent effects on the enzyme in vivo. Tral 1, therefore, would produce irreversible effects when used together with dichlorodiphenyltrichloroethane (DDT in malaria control programmes where resistance is mediated by GSTs.

  20. Inactivation and safety testing of Middle East Respiratory Syndrome Coronavirus.

    Science.gov (United States)

    Kumar, Mia; Mazur, Steven; Ork, Britini L; Postnikova, Elena; Hensley, Lisa E; Jahrling, Peter B; Johnson, Reed; Holbrook, Michael R

    2015-10-01

    Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a recently emerged virus that has caused a number of human infections and deaths, primarily in the Middle East. The transmission of MERS-CoV to humans has been proposed to be as a result of contact with camels, but evidence of human-to-human transmission also exists. In order to work with MERS-CoV in a laboratory setting, the US Centers for Disease Control and Prevention (CDC) has determined that MERS-CoV should be handled at a biosafety level (BSL) 3 (BSL-3) biocontainment level. Many processes and procedures used to characterize MERS-CoV and to evaluate samples from MERS-CoV infected animals are more easily and efficiently completed at BSL-2 or lower containment. In order to complete experimental work at BSL-2, demonstration or proof of inactivation is required before removal of specimens from biocontainment laboratories. In the studies presented here, we evaluated typical means of inactivating viruses prior to handling specimens at a lower biocontainment level. We found that Trizol, AVL buffer and gamma irradiation were effective at inactivating MERS-CoV, that formaldehyde-based solutions required at least 30 min of contact time in a cell culture system while a mixture of methanol and acetone required 60 min to inactivate MERS-CoV. Together, these data provide a foundation for safely inactivating MERS-CoV, and potentially other coronaviruses, prior to removal from biocontainment facilities. PMID:26190637

  1. Inverse dose rate effect in tumour cells measured by the comet assay

    International Nuclear Information System (INIS)

    Reduction of the dose rate of low LET radiation from high (Gy/min) to low (Gy/h) usually leads to a reduced effect as measured by the survival methods. If the dose rate is reduced, cells are able to repair sublethal damage even during irradiation. During the last few years a comet assay has been widely used to measure DNA damage induction and repair in single cells. In our study we used the alkaline version of the comet assay for comparison of high (0.833 Gy/min) and low dose rate (0.0707 Gy/min) effects on DNA damage and repair in R1 rat rhabdomyosarcoma and Me45 human malignant melanoma cells. Cells gathered from exponential culture by trypsynization were suspended in a growth medium and irradiated at room temperature, with 5 Gy of photons X generated by linear accelerator at both dose rates. Comets were analysed automatically using self-made software for measurement of percentage DNA in the tail, and tail moment and inertia. Our results show that tail inertia is the best parameter expressing DNA damage and repair. Although the level of DNA damage induced by low dose rate was comparable with that induced by a high dose rate, the damage induced by the low dose rate are repair more slowly than after high dose rate irradiation. This inverse dose rate effect suggest that nature of damage can differ in both groups. (author)

  2. Inactivation of citrus tristeza virus by gamma ray irradiation

    International Nuclear Information System (INIS)

    The total exposure of gamma ray and the intensity of gamma ray per hour for the inactivation of citrus tristeza virus (CTV) and also the effect on citrus tissues are described. The budwoods of Morita navel orange infected with a severe seedling-yellow strain of CTV were irradiated with gamma ray from a 60Co source for 20 -- 52 hours. The buds or small tissue pieces of the irradiated budwoods were subsequently grafted onto Mexcan lime. CTV was easily inactivated by the irradiation from 10 to 18 kR for from 20 to 52 hours. The higher the total exposure, the higher the rate of inactivation. The CTV in the budwoods was almost inactivated after the irradiation with 20 kR. When the total exposure to gamma ray on budwoods was the same, CTV was more efficiently inactivated by the irradiation for long period with low intensity of gamma ray per hour than that for short period with high intensity per hour. Gamma ray irradiation was effective to eliminate CTV from citrus tissues. (Mori, K.)

  3. Effective Chemical Inactivation of Ebola Virus

    Science.gov (United States)

    Haddock, Elaine; Feldmann, Friederike

    2016-01-01

    Reliable inactivation of specimens before removal from high-level biocontainment is crucial for safe operation. To evaluate efficacy of methods of chemical inactivation, we compared in vitro and in vivo approaches using Ebola virus as a surrogate pathogen. Consequently, we have established parameters and protocols leading to reliable and effective inactivation. PMID:27070504

  4. Combined ozone and ultraviolet inactivation of Escherichia coli.

    Science.gov (United States)

    Magbanua, Benjamin S; Savant, Gaurav; Truax, Dennis D

    2006-01-01

    The kinetics of Escherichia coli inactivation using ozone and ultraviolet (UV) radiation, separately and simultaneously, was evaluated at 25 degrees C in buffered (pH 6.0, 7.0 and 8.0), demand-free media. While ozone was found to be a stronger disinfectant than UV radiation, using both simultaneously was more effective than using them individually. Inactivation kinetics was pseudo first-order for the three treatment processes, while the disinfection rate was a linear function of the disinfectant dose. The synergism observed in microbial inactivation when the disinfectant processes were combined was illustrated by estimates of kinetic model parameters. This synergy was attributed to the generation of hydroxyl radicals via ozone photolysis. Subsequently, dosage calculations, as based on disinfectant level and exposure time, indicated that the simultaneous use of UV and ozone could substantially reduce their individual doses.

  5. Exposure of DNA and Bacillus subtilis spores to simulated martian environments: use of quantitative PCR (qPCR) to measure inactivation rates of DNA to function as a template molecule.

    Science.gov (United States)

    Fajardo-Cavazos, Patricia; Schuerger, Andrew C; Nicholson, Wayne L

    2010-05-01

    Several NASA and ESA missions are planned for the next decade to investigate the possibility of present or past life on Mars. Evidence of extraterrestrial life will likely rely on the detection of biomolecules, which highlights the importance of preventing forward contamination not only with viable microorganisms but also with biomolecules that could compromise the validity of life-detection experiments. The designation of DNA as a high-priority biosignature makes it necessary to evaluate its persistence in extraterrestrial environments and the effects of those conditions on its biological activity. We exposed DNA deposited on spacecraft-qualified aluminum coupons to a simulated martian environment for periods ranging from 1 minute to 1 hour and measured its ability to function as a template for replication in a quantitative polymerase chain reaction (qPCR) assay. We found that inactivation of naked DNA or DNA extracted from exposed spores of Bacillus subtilis followed a multiphasic UV-dose response and that a fraction of DNA molecules retained functionality after 60 minutes of exposure to simulated full-spectrum solar radiation in martian atmospheric conditions. The results indicate that forward-contaminant DNA could persist for considerable periods of time at the martian surface. PMID:20528195

  6. Activation and inactivation of the volume-sensitive taurine leak pathway in NIH3T3 fibroblasts and Ehrlich Lettre ascites cells

    DEFF Research Database (Denmark)

    Lambert, Ian Henry

    2007-01-01

    Hypotonic exposure provokes the mobilization of arachidonic acid, production of ROS, and a transient increase in taurine release in Ehrlich Lettre cells. The taurine release is potentiated by H(2)O(2) and the tyrosine phosphatase inhibitor vanadate and reduced by the phospholipase A(2) (PLA(2......)) inhibitors bromoenol lactone (BEL) and manoalide, the 5-lipoxygenase (5-LO) inhibitor ETH-615139, the NADPH oxidase inhibitor diphenyl iodonium (DPI), and antioxidants. Thus, swelling-induced taurine efflux in Ehrlich Lettre cells involves Ca(2+)-independent (iPLA(2))/secretory PLA(2) (sPLA(2)) plus 5-LO...... activity and modulation by ROS. Vanadate and H(2)O(2) stimulate arachidonic acid mobilization and vanadate potentiates ROS production in Ehrlich Lettre cells and NIH3T3 fibroblasts under hypotonic conditions. However, vanadate-induced potentiation of the volume-sensitive taurine efflux is, in both cell...

  7. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology.

    Science.gov (United States)

    Zhao, Yu; Li, Yang; Mao, Shuangshuang; Sun, Wei; Yao, Rui

    2015-11-02

    Three-dimensional (3D) cell printing technology has provided a versatile methodology to fabricate cell-laden tissue-like constructs and in vitro tissue/pathological models for tissue engineering, drug testing and screening applications. However, it still remains a challenge to print bioinks with high viscoelasticity to achieve long-term stable structure and maintain high cell survival rate after printing at the same time. In this study, we systematically investigated the influence of 3D cell printing parameters, i.e. composition and concentration of bioink, holding temperature and holding time, on the printability and cell survival rate in microextrusion-based 3D cell printing technology. Rheological measurements were utilized to characterize the viscoelasticity of gelatin-based bioinks. Results demonstrated that the bioink viscoelasticity was increased when increasing the bioink concentration, increasing holding time and decreasing holding temperature below gelation temperature. The decline of cell survival rate after 3D cell printing process was observed when increasing the viscoelasticity of the gelatin-based bioinks. However, different process parameter combinations would result in the similar rheological characteristics and thus showed similar cell survival rate after 3D bioprinting process. On the other hand, bioink viscoelasticity should also reach a certain point to ensure good printability and shape fidelity. At last, we proposed a protocol for 3D bioprinting of temperature-sensitive gelatin-based hydrogel bioinks with both high cell survival rate and good printability. This research would be useful for biofabrication researchers to adjust the 3D bioprinting process parameters quickly and as a referable template for designing new bioinks.

  8. Reciprocal inhibition and slow calcium decay in perigeniculate interneurons explain changes of spontaneous firing of thalamic cells caused by cortical inactivation

    OpenAIRE

    Rogala, Jacek; Waleszczyk, Wioletta J; Łęski, Szymon; Wróbel, Andrzej; Wójcik, Daniel K.

    2012-01-01

    The role of cortical feedback in the thalamocortical processing loop has been extensively investigated over the last decades. With an exception of several cases, these searches focused on the cortical feedback exerted onto thalamo-cortical relay (TC) cells of the dorsal lateral geniculate nucleus (LGN). In a previous, physiological study, we showed in the cat visual system that cessation of cortical input, despite decrease of spontaneous activity of TC cells, increased spontaneous firing of t...

  9. Preferential amplification of CD8 effector-T cells after transcutaneous application of an inactivated influenza vaccine: a randomized phase I trial.

    OpenAIRE

    Behazine Combadière; Annika Vogt; Brice Mahé; Dominique Costagliola; Sabrina Hadam; Olivia Bonduelle; Wolfram Sterry; Shlomo Staszewski; Hans Schaefer; Sylvie van der Werf; Christine Katlama; Brigitte Autran; Ulrike Blume-Peytavi

    2010-01-01

    International audience BACKGROUND: Current conventional vaccination approaches do not induce potent CD8 T-cell responses for fighting mostly variable viral diseases such as influenza, avian influenza viruses or HIV. Following our recent study on vaccine penetration by targeting of vaccine to human hair follicular ducts surrounded by Langerhans cells, we tested in the first randomized Phase-Ia trial based on hair follicle penetration (namely transcutaneous route) the induction of virus-spec...

  10. Interleukin-32α inactivates JAK2/STAT3 signaling and reverses interleukin-6-induced epithelial-mesenchymal transition, invasion, and metastasis in pancreatic cancer cells.

    Science.gov (United States)

    Chen, Jingfeng; Wang, Silu; Su, Jiadong; Chu, Guanyu; You, Heyi; Chen, Zongjing; Sun, Hongwei; Chen, Bicheng; Zhou, Mengtao

    2016-01-01

    Interleukin (IL)-32 is a newly discovered cytokine that has multifaceted roles in inflammatory bowel disease, cancer, and autoimmune diseases and participates in cell apoptosis, cancer cell growth inhibition, accentuation of inflammation, and angiogenesis. Here, we investigated the potential effects of IL-32α on epithelial-mesenchymal transition, metastasis, and invasion, and the JAK2/STAT3 signaling pathway in pancreatic cancer cells. The human pancreatic cancer cell lines PANC-1 and SW1990 were used. Epithelial-mesenchymal transition-related markers, including E-cadherin, N-cadherin, Vimentin, Snail, and Zeb1, as well as extracellular matrix metalloproteinases (MMPs), including MMP2, MMP7, and MMP9, were detected by immunofluorescence, Western blotting, and real-time polymerase chain reaction. The activation of JAK2/STAT3 signaling proteins was detected by Western blotting. Wound healing assays, real-time polymerase chain reaction, and Western blotting were performed to assess cell migration and invasion. The effects of IL-32α on the IL-6-induced activation of JAK2/STAT3 were also evaluated. In vitro, we found that IL-32α inhibits the expressions of the related markers N-cadherin, Vimentin, Snail, and Zeb1, as well as JAK2/STAT3 proteins, in a dose-dependent manner in pancreatic cancer cell lines. Furthermore, E-cadherin expression was increased significantly after IL-32α treatment. IL-32α downregulated the expression of MMPs, including MMP2, MMP7, and MMP9, and decreased wound healing in pancreatic cancer cells. These consistent changes were also found in IL-6-induced pancreatic cancer cells following IL-32α treatment. This study showed that reversion of epithelial-mesenchymal transition, inhibition of invasiveness and metastasis, and activation of the JAK2/STAT3 signaling pathway could be achieved through the application of exogenous IL-32α. PMID:27471397

  11. Inactivation of the forkhead transcription factor FoxO3 is essential for PKB-mediated survival of hematopoietic progenitor cells by kit ligand

    DEFF Research Database (Denmark)

    Engström, Maria; Karlsson, Richard; Jönsson, Jan-Ingvar

    2003-01-01

    OBJECTIVE: Kit ligand (KL) is a major survival factor for hematopoietic stem cells. Although anti-apoptotic bcl-2 family members are expressed in these cells, the survival effects by KL appear to involve other mechanisms. Survival signals can also be elicited by the activation of phosphatidylinos...... of hematopoietic progenitors. Because forkhead proteins are involved in controlling apoptosis and cell-cycle progression, this may be one important mechanism by which survival of hematopoietic progenitors is mediated.......OBJECTIVE: Kit ligand (KL) is a major survival factor for hematopoietic stem cells. Although anti-apoptotic bcl-2 family members are expressed in these cells, the survival effects by KL appear to involve other mechanisms. Survival signals can also be elicited by the activation......, immunofluorescence, and subcellular fractionation, we analyzed the effects of KL on PKB and different forkhead family members in two factor-dependent cell lines, FDCP-mix and FDC-P1, as well as primary mouse bone marrow-derived Lin(-) progenitors. Forced overexpression of triple mutated form of FoxO3 by retroviral...

  12. Mechanisms of appearance of the Pasteur effect in Saccharomyces cerevisiae: inactivation of sugar transport systems.

    Science.gov (United States)

    Lagunas, R; Dominguez, C; Busturia, A; Sáez, M J

    1982-10-01

    Saccharomyces cerevisiae does not show a noticeable Pasteur effect (activation of sugar catabolism by anaerobiosis) when growing with an excess of sugar and nitrogen source, but it does do so after exhaustion of the nitrogen source in the medium (resting state). We have found that this different behavior of growing and resting S. cerevisiae seems due to differences in the contribution of respiration to catabolism under both states. Growing S. cerevisiae respired only 3 to 20% of the catabolized sugar, depending on the sugar present; the remainder was fermented. In contrast, resting S. cerevisiae respired as much as 25 to 100% of the catabolized sugar. These results suggest that a shift to anaerobiosis would have much greater energetic consequences in resting than in growing S. cerevisiae. In resting S. cerevisiae anaerobiosis would strongly decrease the formation of ATP; as a consequence, various regulatory mechanisms would switch on, producing the observed increase of the rate of glycolysis. The greater significance that respiration reached in resting cells was not due to an increase of the respiratory capacity itself, but to a loss of fermentation which turned respiration into the main catabolic pathway. The main mechanism involved in the loss of fermentation observed during nitrogen starvation was a progressive inactivation of the sugar transport systems that reduced the rate of fermentation to less than 10% of the value observed in growing cells. Inactivation of the sugar transports seems a consequence of the turnover of the sugar carriers whose apparent half-lives were 2 to 7 h.

  13. Inactivation of the WNT5A Alternative Promoter B Is Associated with DNA Methylation and Histone Modification in Osteosarcoma Cell Lines U2OS and SaOS-2.

    Directory of Open Access Journals (Sweden)

    Himani Vaidya

    Full Text Available WNT5A is a secreted ligand involved in Wnt pathway signaling and has a role in cell movement and differentiation. Altered WNT5A expression is associated with various cancers, although in most studies the focus has been on only one of the known WNT5A isoforms. In this study, we analyzed expression from two of the major WNT5A promoters, termed promoter A and promoter B, in normal human osteoblasts, SaOS-2 and U2OS osteosarcoma cell lines, and osteosarcoma tumor tissue. We found that both promoters A and B are active in normal osteoblasts with nearly 11-fold more promoter B than A transcripts. Promoter B but not promoter A transcripts are decreased or nearly undetectable in the SaOS-2 and U2OS cell lines and osteosarcoma tumor tissues. Transient transfection of promoter A and promoter B reporter constructs confirmed that SaOS-2 cells have the necessary factors to transcribe both promoters. Bisulfite sequencing analysis revealed that three CpG enriched regions upstream of the promoter B exon 1βare highly methylated in both SaOS-2 and U2OS cells. The CpG island sub-region R6 located in promoter B exon 1β was approximately 51% methylated in SaOS-2 and 25% methylated in U2OS. Region 3 was approximately 28% methylated in normal osteoblasts, whereas the others were unmethylated. Promoter B was re-activated by treatment of SaOS-2 cells with 1 μM 5-azacytidine, which was associated with only a small insignificant change in methylation of sub-region R6. ChIP analysis of U2OS and SaOS-2 cells indicated that the promoter B region is less enriched in the active histone mark H3K4me3, in comparison to promoter A and that there is increased enrichment of the repressive mark H3K27me3 in association with the promoter B genomic region in the cell line SaOS-2. These findings show that epigenetic inactivation of the WNT5A promoter B involves both DNA methylation and histone modifications and suggest that differential expression of the WNT5A alternative promoters A

  14. Inactivation of the WNT5A Alternative Promoter B Is Associated with DNA Methylation and Histone Modification in Osteosarcoma Cell Lines U2OS and SaOS-2.

    Science.gov (United States)

    Vaidya, Himani; Rumph, Candie; Katula, Karen S

    2016-01-01

    WNT5A is a secreted ligand involved in Wnt pathway signaling and has a role in cell movement and differentiation. Altered WNT5A expression is associated with various cancers, although in most studies the focus has been on only one of the known WNT5A isoforms. In this study, we analyzed expression from two of the major WNT5A promoters, termed promoter A and promoter B, in normal human osteoblasts, SaOS-2 and U2OS osteosarcoma cell lines, and osteosarcoma tumor tissue. We found that both promoters A and B are active in normal osteoblasts with nearly 11-fold more promoter B than A transcripts. Promoter B but not promoter A transcripts are decreased or nearly undetectable in the SaOS-2 and U2OS cell lines and osteosarcoma tumor tissues. Transient transfection of promoter A and promoter B reporter constructs confirmed that SaOS-2 cells have the necessary factors to transcribe both promoters. Bisulfite sequencing analysis revealed that three CpG enriched regions upstream of the promoter B exon 1βare highly methylated in both SaOS-2 and U2OS cells. The CpG island sub-region R6 located in promoter B exon 1β was approximately 51% methylated in SaOS-2 and 25% methylated in U2OS. Region 3 was approximately 28% methylated in normal osteoblasts, whereas the others were unmethylated. Promoter B was re-activated by treatment of SaOS-2 cells with 1 μM 5-azacytidine, which was associated with only a small insignificant change in methylation of sub-region R6. ChIP analysis of U2OS and SaOS-2 cells indicated that the promoter B region is less enriched in the active histone mark H3K4me3, in comparison to promoter A and that there is increased enrichment of the repressive mark H3K27me3 in association with the promoter B genomic region in the cell line SaOS-2. These findings show that epigenetic inactivation of the WNT5A promoter B involves both DNA methylation and histone modifications and suggest that differential expression of the WNT5A alternative promoters A and B is a

  15. Proteasome-independent pathway for activation of CD8+T cells by dendritic cells pulsed with inactivated foot-and-mouth disease virus%负载灭活口蹄疫病毒树突状细胞活化CD8+T细胞的非蛋白酶体依赖途径

    Institute of Scientific and Technical Information of China (English)

    王若; 张丽; 张雷; 李娜; 张悦; 孟明; 王家鑫

    2011-01-01

    To study the activating pathways of CD8+ T cells by dendritic cells(DCs) pulsed with the inactivated foot-and-mouth disease virus(FMDV),monocyte-derived dendritic cells(MoDCs) treated with inhibitor were pulsed with the inactivated FMDV and co-cultured with CD8+T cells.FMDV-pulsed MoDCs co-cultured with CD8+ T cells served as control.The levels of IFN-γ in supernatant were determined at indicated time points with indirect ELISA.CD8+T cells co-cultured with MoDCs pulsed with the inactivated FMDV released great amount of IFN-γ at 9th hour post-co-cultured and declined gradually, reached the lowest level at 24 h.At 48th hour post-co-cultured,CD8+ T cells recovered their vigorous release of IFN-γwith inactivated FMDV-pulsed MoDCs' stimulation.While the release of IFN-γ from control CD8+ T cells was significantly lower at 9th hour(P<0.01) ,and the lowest level of IFN-γ was detected at 48th hour(P<0.01).Remarkably,the control CD8+ T cells released the highest level of IFN-γ at 24th hour post-co-cultured.These results indicated that MoDCs process inactivated FMDV antigens either in proteasome-independent pathway or in proteasome-dependent pathway and cross-present antigen to CD8+ T cells,leading to the release of IFN-γ.%为研究树突状细胞加工和呈递灭活口蹄疫病毒(FMDV)抗原并活化CD8+T细胞的途径,用灭活FMDV负载经抑制剂预处理的小鼠单核细胞源树突状细胞(MoDCs),与CD8+T细胞共培养,对照为负载FMDV的正常MoDCs与CD8+T细胞.收集上清液,检测γ干扰素(IFN-γ)的含量.结果显示,试验组CD8+T细胞在共培养的第9小时分泌大量IFN-γ,然后逐渐下降.至第24小时,CD8+T细胞分泌IFN-γ的量降至最低,随后逐渐升高,在第48小时,CD8+T细胞分泌IFN-γ的量升至最高.对照组CD8+T细胞在共培养的第9小时的IFN-γ分泌量显著低于试验组(P<0.01);随后逐渐升高,并在共培养的第24小时达到高峰,而后逐步下降,至第48小时,CD8+T

  16. Cell segmentation for division rate estimation in computerized video time-lapse microscopy

    Science.gov (United States)

    He, Weijun; Wang, Xiaoxu; Metaxas, Dimitris; Mathew, Robin; White, Eileen

    2007-02-01

    The automated estimation of cell division rate plays an important role in the evaluation of a gene function in high throughput biomedical research. Using Computerized Video Time-Lapse (CVTL) microcopy , it is possible to follow a large number of cells in their physiological conditions for several generations. However analysis of this large volume data is complicated due to cell to cell contacts in a high density population. We approach this problem by segmenting out cells or cell clusters through a learning method. The feature of a pixel is represented by the intensity and gradient information in a small surrounding sub-window. Curve evolution techniques are used to accurately find the cell or cell cluster boundary. With the assumption that the average cell size is the same in each frame, we can use the cell area to estimate the cell division rate. Our segmentation results are compared to manually-defined ground truth. Both recall and precision measures for segmentation accuracy are above 95%.

  17. Inactivation of Bacillus Subtilis by Atomic Oxygen Radical Anion

    Institute of Scientific and Technical Information of China (English)

    LI Longchun; WANG Lian; YU Zhou; LV Xuanzhong; LI Quanxin

    2007-01-01

    UAtomic oxygen radical anion (O- ) is one of the most active oxygen species, and has extremely high oxidation ability toward small-molecules of hydrocarbons. However, to our knowledge, little is known about the effects of O- on cells of micro-organisms. This work showed that O- could quickly react with the Bacillus subtilis cells and seriously damage the cell walls a s well as their other contents, leading to a fast and irreversible inactivation. SEM micrographs revealed that the cell structures were dramatically destroyed by their exposure to O-. The inactivation efficiencies of B. subtilis depend on the O-- intensity, the initial population of cells and the treatment temperature, but not on the pH in the range of our investigation. For a cell concentration of 106 cfu/ml, the number of survived cells dropped from 106 cfu/ml to 103 cfu/ml after about five-minute irradiation by an O- flux in an intensity of 233 nA/cm2 under a dry argon environment (30 ℃, 1 atm, exposed size: 1.8 cm2). The inactivation mechanism of micro-organisms induced by O- is also discussed.

  18. Kinetic modeling of Sendai virus fusion with PC-12 cells. Effect of pH and temperature on fusion and viral inactivation

    OpenAIRE

    Lima, Maria da Conceição Pedroso de; Ramalho-Santos, João; Martins, Maria de Fátima; Carvalho, Arsélio Pato de; Bairos, Vasco; Nir, Shlomo

    1992-01-01

    We have studied the fusion activity of Sendai virus, a lipid-enveloped paramyxovirus, towards a line of adherent cells designated PC-12. Fusion was monitored by the dequenching of octadecylrhodamine, a fluorescent non-exchangeable probe. The results were analysed with a mass action kinetic model which could explain and predict the kinetics of virus2013cell fusion. When the temperature was lowered from 37°C to 25°C, a sharp inhibition of the fusion process was observed, probably reflecting a c...

  19. Purification and characterization of Moschatin, a novel type Ⅰ ribosome-inactivating protein from the mature seeds of pumpkin (Cucurbita moschata),and preparation of its immunotoxin against human melanoma cells

    Institute of Scientific and Technical Information of China (English)

    CHAO TONG; HENG YU FAN; DA YUAN CHEN; XIANG FEN SONG; HEIDE SCHATTEN; QING YUAN SUN

    2003-01-01

    A novel ribosome-inactivating protein designated Moschatin from the mature seeds of pumpkin (Cucurbita moschata) has been successively purified to homogeneity, using ammonium sulfate precipitation, CM-cellulose 52 column chromatography, Blue Sepharose CL-6B Affinity column chromatography and FPLC size-exclusion column chromatography. Moschatin is a type 1 RIP with a pI of 9.4 and molecular weight of~29 kD. It is a rRNA Nglycosidase and potently blocked the protein synthesis in the rabbit reticulocyte lysate with a IC50 of 0.26 nM. Using the anti-human melanoma McAb Ng76, a novel immunotoxin Moschatin-Ng76 was prepared successfully and it efficiently inhibited the growth of targeted melanoma cells M21 with a IC50 of 0.04 nM, 1500 times lower than that of free Moschatin. The results implied that Moschatin could be used as a new potential anticancer agent.

  20. Purification and characterization of Moschatin, a novel type I ribosome-inactivating protein from the mature seeds of pumpkin (Cucurbita moschata), and preparation of its immunotoxin against human melanoma cells.

    Science.gov (United States)

    Xia, Heng Chuan; Li, Feng; Li, Zhen; Zhang, Zu Chuan

    2003-10-01

    A novel ribosome-inactivating protein designated Moschatin from the mature seeds of pumpkin (Cucurbita moschata) has been successively purified to homogeneity, using ammonium sulfate precipitation, CM-cellulose 52 column chromatography, Blue Sepharose CL-6B Affinity column chromatography and FPLC size-exclusion column chromatography. Moschatin is a type 1 RIP with a pI of 9.4 and molecular weight of approximately 29 kD. It is a rRNA N-glycosidase and potently blocked the protein synthesis in the rabbit reticulocyte lysate with a IC50 of 0.26 nM. Using the anti-human melanoma McAb Ng76, a novel immunotoxin Moschatin-Ng76 was prepared successfully and it efficiently inhibited the growth of targeted melanoma cells M21 with a IC50 of 0.04 nM, 1500 times lower than that of free Moschatin. The results implied that Moschatin could be used as a new potential anticancer agent.

  1. Naringin inhibits the invasion and migration of human glioblastoma cell via downregulation of MMP-2 and MMP-9 expression and inactivation of p38 signaling pathway.

    Science.gov (United States)

    Aroui, Sonia; Najlaoui, Feten; Chtourou, Yassine; Meunier, Annie-Claire; Laajimi, Amel; Kenani, Abderraouf; Fetoui, Hamadi

    2016-03-01

    Gliomas are the most common and malignant primary brain tumors. They are associated with a poor prognosis despite the availability of multiple therapeutic options. Naringin, a common dietary flavonoid abundantly present in fruits and vegetables, is believed to possess strong anti-proliferative and anti-cancer properties. However, there are no reports describing its effects on the invasion and migration of glioblastoma cell lines. Our results showed that the treatment of U251 glioma cell lines with different concentrations of naringin inhibited the invasion and migration of these cells. In addition, we revealed a decrease in the levels of matrix metalloproteinases (MMP-2) and (MMP-9) expression as well as proteinase activity in U251 glioma cells. In contrast, the expression of tissue inhibitor of metalloproteinases (TIMP-1) and (TIMP-2) was increased. Furthermore, naringin treatment decreased significantly the phosphorylated level of p38. Combined treatment with a p38 inhibitor (SB203580) resulted in the synergistic reduction of MMP-2 and MMP-9 expressions correlated with an increase of TIMP-1 and TIMP-2 expressions and the anti-invasive properties. However, p38 chemical activator (anisomycin) could block these effects produced by naringin, suggesting a direct downregulation of the p38 signaling pathway. These data suggest that naringin may have therapeutic potential for controlling invasiveness of malignant gliomas by inhibiting of p38 signal transduction pathways. PMID:26474590

  2. [Effect of Segestria florentina spider venom on the mechanism of inactivation of sodium channels].

    Science.gov (United States)

    Usmanov, P B; Kalikulov, D; Nasledov, G A; Tashmukhamedov, B A

    1985-01-01

    It was shown that Segestria florentina spider venom mainly reduces the rate and amount of sodium inactivation. This effect is likely to be responsible for the prolongation of the action potential. PMID:2413900

  3. The Ethanol Extract of Fructus trichosanthis Promotes Fetal Hemoglobin Production via p38 MAPK Activation and ERK Inactivation in K562 Cells

    Directory of Open Access Journals (Sweden)

    Hui Li

    2011-01-01

    Full Text Available Pharmacological stimulation of fetal hemoglobin (HbF expression may be a promising approach for the treatment of beta-thalassemia. In this study, the effects of Fructus trichosanthis (FT were investigated in human erythroleukemic K562 cells for their gamma-globin mRNA and HbF-induction activities. The role of signaling pathways, including extracellular regulated protein kinase (ERK and p38 mitogen-activated protein kinase (MAPK, was also investigated. It was found that the ethanol extract of FT significantly increased gamma-globin mRNA and HbF levels, determined by real-time reverse transcription polymerase chain reaction and enzyme linked immunosorbent assay, respectively, in dose- and time-dependent manner. Total Hb (THb levels were also elevated in the concentrations without cytotoxicity (<80 μg mL−1. Pre-treatment with p38 MAPK inhibitor SB203580 blocked the stimulatory effects of FT extract in total and HbF induction. In contrast, no change in HbF was observed when treated with ERK inhibitor PD98059. Furthermore, FT ethanol extract activated p38 MAPK and inhibited ERK signaling pathways in K562 cells, as revealed in western blotting analysis. In addition, SB203580 significantly abolished p38 MAPK activation when the cells were treated with FT. In summary, the ethanol extract of FT was found to be a potent inducer of HbF synthesis in K562 cells. The present data delineated the role of ERK and p38 MAPK signaling as molecular targets for pharmacologic stimulation of HbF production upon FT treatment.

  4. Inactivation of Escherichia coli planktonic cells by multi-walled carbon nanotubes in suspensions: Effect of surface functionalization coupled with medium nutrition level.

    Science.gov (United States)

    Chi, Mu-Fan; Wu, Wei-Ling; Du, Yuchin; Chin, Ching-Ju M; Lin, Chu-Ching

    2016-11-15

    While earlier studies have identified the antibacterial activity of carbon nanotubes (CNTs) and proposed that cell membrane damage by direct contact with CNTs is likely the main toxicity mechanism, the relative importance of chemical versus physical properties of CNTs in controlling their bacterial cytotoxicity is understudied. Given that CNT is commonly modified via acid treatment to enhance its dispersivity and surface chemistry, in this study commercially available multi-walled carbon nanotubes (MWCNTs) with high purity were processed carefully by acid reflux, resulting in differences in surface charge of MWCNTs without altering their physical properties. The surface condition of MWCNTs was also modified by adsorption of organic matter to compare bacterial toxicity of functionalized and non-functionalized MWCNTs in suspensions. Results show that although overall electrostatic repulsion and steric obstruction resulted from surface modifications led to elevated dispersivity of MWCNTs and mitigated toxicity on planktonic Escherichia coli cultures, no correlation between the dispersivity and bacterial toxicity of MWCNTs was observed, suggesting that dispersity alone may not be a proper index to estimate the CNT antibacterial effect on planktonic cells in the aqueous phase. In addition, viability recovery of MWCNT-treated cells was observed to be nutrition level-dependent, implying that availability of proper nutrients may be another important factor to be considered when assessing the ecotoxicity of CNTs in the aquatic system. PMID:27450343

  5. Genetic architecture of skewed X inactivation in the laboratory mouse.

    Directory of Open Access Journals (Sweden)

    John D Calaway

    Full Text Available X chromosome inactivation (XCI is the mammalian mechanism of dosage compensation that balances X-linked gene expression between the sexes. Early during female development, each cell of the embryo proper independently inactivates one of its two parental X-chromosomes. In mice, the choice of which X chromosome is inactivated is affected by the genotype of a cis-acting locus, the X-chromosome controlling element (Xce. Xce has been localized to a 1.9 Mb interval within the X-inactivation center (Xic, yet its molecular identity and mechanism of action remain unknown. We combined genotype and sequence data for mouse stocks with detailed phenotyping of ten inbred strains and with the development of a statistical model that incorporates phenotyping data from multiple sources to disentangle sources of XCI phenotypic variance in natural female populations on X inactivation. We have reduced the Xce candidate 10-fold to a 176 kb region located approximately 500 kb proximal to Xist. We propose that structural variation in this interval explains the presence of multiple functional Xce alleles in the genus Mus. We have identified a new allele, Xce(e present in Mus musculus and a possible sixth functional allele in Mus spicilegus. We have also confirmed a parent-of-origin effect on X inactivation choice and provide evidence that maternal inheritance magnifies the skewing associated with strong Xce alleles. Based on the phylogenetic analysis of 155 laboratory strains and wild mice we conclude that Xce(a is either a derived allele that arose concurrently with the domestication of fancy mice but prior the derivation of most classical inbred strains or a rare allele in the wild. Furthermore, we have found that despite the presence of multiple haplotypes in the wild Mus musculus domesticus has only one functional Xce allele, Xce(b. Lastly, we conclude that each mouse taxa examined has a different functional Xce allele.

  6. The effect of age at exposure on the inactivating mechanisms and relative contributions of key tumor suppressor genes in radiation-induced mouse T-cell lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Sunaoshi, Masaaki [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Department of Biological Sciences, College of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 (Japan); Amasaki, Yoshiko; Hirano-Sakairi, Shinobu; Blyth, Benjamin J. [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Morioka, Takamitsu [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kaminishi, Mutsumi [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shang, Yi [Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Nishimura, Mayumi; Shimada, Yoshiya [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Tachibana, Akira [Department of Biological Sciences, College of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 (Japan); and others

    2015-09-15

    Highlights: • T-cell lymphoma incidence, latency and weight did not change with age at exposure. • Lymphomas had frequent loss of heterozygosity on chromosomes 4, 11 and 19. • These lesions targeted the Cdkn2a, Ikaros and Pten tumor suppressor genes. • Age at exposure may influence which tumor suppressor genes are lost in each tumor. • The mechanisms of tumor suppressor gene loss were different at each locus. - Abstract: Children are considered more sensitive to radiation-induced cancer than adults, yet any differences in genomic alterations associated with age-at-exposure and their underlying mechanisms remain unclear. We assessed genome-wide DNA copy number and mutation of key tumor suppressor genes in T-cell lymphomas arising after weekly irradiation of female B6C3F1 mice with 1.2 Gy X-rays for 4 consecutive weeks starting during infancy (1 week old), adolescence (4 weeks old) or as young adults (8 weeks old). Although T-cell lymphoma incidence was similar, loss of heterozygosity at Cdkn2a on chromosome 4 and at Ikaros on chromosome 11 was more frequent in the two older groups, while loss at the Pten locus on chromosome 19 was more frequent in the infant-irradiated group. Cdkn2a and Ikaros mutation/loss was a common feature of the young adult-irradiation group, with Ikaros frequently (50%) incurring multiple independent hits (including deletions and mutations) or suffering a single hit predicted to result in a dominant negative protein (such as those lacking exon 4, an isoform we have designated Ik12, which lacks two DNA binding zinc-finger domains). Conversely, Pten mutations were more frequent after early irradiation (60%) than after young adult-irradiation (30%). Homozygous Pten mutations occurred without DNA copy number change after irradiation starting in infancy, suggesting duplication of the mutated allele by chromosome mis-segregation or mitotic recombination. Our findings demonstrate that while deletions on chromosomes 4 and 11 affecting Cdkn2

  7. The effect of age at exposure on the inactivating mechanisms and relative contributions of key tumor suppressor genes in radiation-induced mouse T-cell lymphomas

    International Nuclear Information System (INIS)

    Highlights: • T-cell lymphoma incidence, latency and weight did not change with age at exposure. • Lymphomas had frequent loss of heterozygosity on chromosomes 4, 11 and 19. • These lesions targeted the Cdkn2a, Ikaros and Pten tumor suppressor genes. • Age at exposure may influence which tumor suppressor genes are lost in each tumor. • The mechanisms of tumor suppressor gene loss were different at each locus. - Abstract: Children are considered more sensitive to radiation-induced cancer than adults, yet any differences in genomic alterations associated with age-at-exposure and their underlying mechanisms remain unclear. We assessed genome-wide DNA copy number and mutation of key tumor suppressor genes in T-cell lymphomas arising after weekly irradiation of female B6C3F1 mice with 1.2 Gy X-rays for 4 consecutive weeks starting during infancy (1 week old), adolescence (4 weeks old) or as young adults (8 weeks old). Although T-cell lymphoma incidence was similar, loss of heterozygosity at Cdkn2a on chromosome 4 and at Ikaros on chromosome 11 was more frequent in the two older groups, while loss at the Pten locus on chromosome 19 was more frequent in the infant-irradiated group. Cdkn2a and Ikaros mutation/loss was a common feature of the young adult-irradiation group, with Ikaros frequently (50%) incurring multiple independent hits (including deletions and mutations) or suffering a single hit predicted to result in a dominant negative protein (such as those lacking exon 4, an isoform we have designated Ik12, which lacks two DNA binding zinc-finger domains). Conversely, Pten mutations were more frequent after early irradiation (60%) than after young adult-irradiation (30%). Homozygous Pten mutations occurred without DNA copy number change after irradiation starting in infancy, suggesting duplication of the mutated allele by chromosome mis-segregation or mitotic recombination. Our findings demonstrate that while deletions on chromosomes 4 and 11 affecting Cdkn2

  8. Antitumor mechanisms when pRb and p53 are genetically inactivated.

    Science.gov (United States)

    Zhu, L; Lu, Z; Zhao, H

    2015-08-27

    pRb and p53 are the two major tumor suppressors. Their inactivation is frequent when cancers develop and their reactivation is rationale of most cancer therapeutics. When pRb and p53 are genetically inactivated, cells irreparably lose the antitumor mechanisms afforded by them. Cancer genome studies document recurrent genetic inactivation of RB1 and TP53, and the inactivation becomes more frequent in more advanced cancers. These findings may explain why more advanced cancers are more likely to resist current therapies. Finding successful treatments for more advanced and multi-therapy-resistant cancers will depend on finding antitumor mechanisms that remain effective when pRb and p53 are genetically inactivated. Here, we review studies that have begun to make progress in this direction.

  9. Mixed effects modeling of proliferation rates in cell-based models: consequence for pharmacogenomics and cancer.

    Directory of Open Access Journals (Sweden)

    Hae Kyung Im

    2012-02-01

    Full Text Available The International HapMap project has made publicly available extensive genotypic data on a number of lymphoblastoid cell lines (LCLs. Building on this resource, many research groups have generated a large amount of phenotypic data on these cell lines to facilitate genetic studies of disease risk or drug response. However, one problem that may reduce the usefulness of these resources is the biological noise inherent to cellular phenotypes. We developed a novel method, termed Mixed Effects Model Averaging (MEM, which pools data from multiple sources and generates an intrinsic cellular growth rate phenotype. This intrinsic growth rate was estimated for each of over 500 HapMap cell lines. We then examined the association of this intrinsic growth rate with gene expression levels and found that almost 30% (2,967 out of 10,748 of the genes tested were significant with FDR less than 10%. We probed further to demonstrate evidence of a genetic effect on intrinsic growth rate by determining a significant enrichment in growth-associated genes among genes targeted by top growth-associated SNPs (as eQTLs. The estimated intrinsic growth rate as well as the strength of the association with genetic variants and gene expression traits are made publicly available through a cell-based pharmacogenomics database, PACdb. This resource should enable researchers to explore the mediating effects of proliferation rate on other phenotypes.

  10. Inactivation of the Autolysis-Related Genes lrgB and yycI in Staphylococcus aureus Increases Cell Lysis-Dependent eDNA Release and Enhances Biofilm Development In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Cristiana Ossaille Beltrame

    Full Text Available Staphylococcus aureus ica-independent biofilms are multifactorial in nature, and various bacterial proteins have been associated with biofilm development, including fibronectin-binding proteins A and B, protein A, surface protein SasG, proteases, and some autolysins. The role of extracellular DNA (eDNA has also been demonstrated in some S. aureus biofilms. Here, we constructed a Tn551 library, and the screening identified two genes that affected biofilm formation, lrgB and yycI. The repressive effect of both genes on the development of biofilm was also confirmed in knockout strains constructed by allelic recombination. In contrast, the superexpression of either lrgB or yycI by a cadmium-inducible promoter led to a decrease in biofilm accumulation. Indeed, a significant increase in the cell-lysis dependent eDNA release was detected when lrgB or yycI were inactivated, explaining the enhanced biofilm formed by these mutants. In fact, lrgB and yycI genes belong to distinct operons that repress bacterial autolysis through very different mechanisms. LrgB is associated with the synthesis of phage holin/anti-holin analogues, while YycI participates in the activation/repression of the two-component system YycGF (WalKR. Our in vivo data suggest that autolysins activation lead to increased bacterial virulence in the foreign body animal model since a higher number of attached cells was recovered from the implanted catheters inoculated with lrgB or yycI knockout mutants.

  11. Nasopharyngeal carriage rate of Streptococcus pneumoniae in Ugandan children with sickle cell disease

    Directory of Open Access Journals (Sweden)

    Kateete David P

    2012-01-01

    Full Text Available Abstract Background Nasopharyngeal carriage of Streptococcus pneumoniae is a determinant for invasive pneumococcal disease, which often complicates homozygous sickle cell disease. Here, we determined the nasopharyngeal carriage rate of S. pneumoniae in Ugandan children with homozygous sickle cell disease, who attended the outpatient Sickle Cell Clinic at Mulago National Referral hospital in Kampala, Uganda. Results S. pneumoniae occurred in 27 of the 81 children with homozygous sickle cell disease (giving a carriage rate of 33%, 27/81. Twenty three children were previously hospitalized of whom S. pneumoniae occurred in only two (9%, 2/23, while among the 58 who were not previously hospitalized it occurred in 25 (43%, 25/58, χ2 = 8.8, p = 0.003, meaning there is an association between high carriage rate and no hospitalization. Two children previously immunized with the pneumococcal conjugate vaccine did not carry the organism. Prior antimicrobial usage was reported in 53 children (65%, 53/81. There was high resistance of pneumococci to penicillin (100%, 27/27 and trimethoprime-sulfamethoxazole (97%, 26/27, but low resistance to other antimicrobials. Of the 70 children without sickle cell disease, S. pneumoniae occurred in 38 (54%, 38/70 of whom 43 were males and 27 females (53% males, 23/43, and 56% females, 15/27. Conclusion Nasopharyngeal carriage of penicillin resistant pneumococci in Ugandan children with homozygous sickle cell disease is high. While nasopharyngeal carriage of S. pneumoniae is a determinant for invasive pneumococcal disease, pneumococcal bacteremia is reportedly low in Ugandan children with sickle cell disease. Studies on the contribution of high carriage rates to invasive pneumococcal disease in these children will be helpful. This is the first report on pneumococcal carriage rate in Ugandan children with sickle cell disease.

  12. Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic growth in the heterocyst-forming cyanobacterium Anabaena.

    Science.gov (United States)

    Burnat, Mireia; Flores, Enrique

    2014-10-01

    Arginine decarboxylase produces agmatine, and arginase and agmatinase are ureohydrolases that catalyze the production of ornithine and putrescine from arginine and agmatine, respectively, releasing urea. In the genome of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, ORF alr2310 putatively encodes an ureohydrolase. Cells of Anabaena supplemented with [(14) C]arginine took up and catabolized this amino acid generating a set of labeled amino acids that included ornithine, proline, and glutamate. In an alr2310 deletion mutant, an agmatine spot appeared and labeled glutamate increased with respect to the wild type, suggesting that Alr2310 is an agmatinase rather than an arginase. As determined in cell-free extracts, agmatinase activity could be detected in the wild type but not in the mutant. Thus, alr2310 is the Anabaena speB gene encoding agmatinase. The ∆alr2310 mutant accumulated large amounts of cyanophycin granule polypeptide, lacked nitrogenase activity, and did not grow diazotrophically. Growth tests in solid media showed that agmatine is inhibitory for Anabaena, especially under diazotrophic conditions, suggesting that growth of the mutant is inhibited by non-metabolized agmatine. Measurements of incorporation of radioactivity from [(14) C]leucine into macromolecules showed, however, a limited inhibition of protein synthesis in the ∆alr2310 mutant. Analysis of an Anabaena strain producing an Alr2310-GFP (green fluorescent protein) fusion showed expression in vegetative cells but much less in heterocysts, implying compartmentalization of the arginine decarboxylation pathway in the diazotrophic filaments of this heterocyst-forming cyanobacterium.

  13. Applicability of photodynamic antimicrobial chemotherapy as an alternative to inactivate fish pathogenic bacteria in aquaculture systems.

    Science.gov (United States)

    Arrojado, Cátia; Pereira, Carla; Tomé, João P C; Faustino, Maria A F; Neves, Maria G P M S; Tomé, Augusto C; Cavaleiro, José A S; Cunha, Angela; Calado, Ricardo; Gomes, Newton C M; Almeida, Adelaide

    2011-10-01

    Aquaculture activities are increasing worldwide, stimulated by the progressive reduction of natural fish stocks in the oceans. However, these activities also suffer heavy production and financial losses resulting from fish infections caused by microbial pathogens, including multidrug resistant bacteria. Therefore, strategies to control fish infections are urgently needed, in order to make aquaculture industry more sustainable. Antimicrobial photodynamic therapy (aPDT) has emerged as an alternative to treat diseases and prevent the development of antibiotic resistance by pathogenic bacteria. The aim of this work was to evaluate the applicability of aPDT to inactivate pathogenic fish bacteria. To reach this objective a cationic porphyrin Tri-Py(+)-Me-PF was tested against nine pathogenic bacteria isolated from a semi-intensive aquaculture system and against the cultivable bacteria of the aquaculture system. The ecological impact of aPDT in the aquatic environment was also tested on the natural bacterial community, using the overall bacterial community structure and the cultivable bacteria as indicators. Photodynamic inactivation of bacterial isolates and of cultivable bacteria was assessed counting the number of colonies. The impact of aPDT in the overall bacterial community structure of the aquaculture water was evaluated by denaturing gel gradient electrophoresis (DGGE). The results showed that, in the presence of Tri-Py(+)-Me-PF, the growth of bacterial isolates was inhibited, resulting in a decrease of ≈7-8 log after 60-270 min of irradiation. Cultivable bacteria were also considerably affected, showing decreases up to the detection limit (≈2 log decrease on cell survival), but the inactivation rate varied significantly with the sampling period. The DGGE fingerprint analyses revealed changes in the bacterial community structure caused by the combination of aPDT and light. The results indicate that aPDT can be regarded as a new approach to control fish

  14. In situ studies of microbial inactivation during high pressure processing

    Science.gov (United States)

    Maldonado, Jose Antonio; Schaffner, Donald W.; Cuitiño, Alberto M.; Karwe, Mukund V.

    2016-01-01

    High pressure processing (HPP) has been shown to reduce microbial concentration in foods. The mechanisms of microbial inactivation by HPP have been associated with damage to cell membranes. The real-time response of bacteria to HPP was measured to elucidate the mechanisms of inactivation, which can aid in designing more effective processes. Different pressure cycling conditions were used to expose Enterobacter aerogenes cells to HPP. Propidium iodide (PI) was used as a probe, which fluoresces after penetrating cells with damaged membranes and binding with nucleic acids. A HPP vessel with sapphire windows was used for measuring fluorescence in situ. Membrane damage was detected during pressurization and hold time, but not during depressurization. The drop in fluorescence was larger than expected after pressure cycles at higher pressure and longer times. This indicated possible reversible disassociation of ribosomes resulting in additional binding of PI to exposed RNA under pressure and its release after depressurization.

  15. Kinsenoside screening with a microfluidic chip attenuates gouty arthritis through inactivating NF-κB signaling in macrophages and protecting endothelial cells

    Science.gov (United States)

    Han, Qiao; Bing, Wang; Di, Yin; Hua, Li; Shi-he, Li; Yu-hua, Zheng; Xiu-guo, Han; Yu-gang, Wang; Qi-ming, Fan; Shih-mo, Yang; Ting-ting, Tang

    2016-01-01

    Gouty arthritis is a rheumatic disease that is characterized by the deposition of monosodium urate (MSU) in synovial joints cause by the increased serum hyperuricemia. This study used a three-dimensional (3D) flowing microfluidic chip to screen the effective candidate against MSU-stimulated human umbilical vein endothelial cell (HUVEC) damage, and found kinsenoside (Kin) to be the leading active component of Anoectochilus roxburghi, one of the Chinese medicinal plant widely used in the treatment of gouty arthritis clinically. Cell viability and apoptosis of HUVECs were evaluated, indicating that direct Kin stimulation and conditioned medium (CM) from Kin-treated macrophages both negatively modulated with MSU crystals. Additionally, Kin was capable of attenuating MSU-induced activation of nuclear factor-κB/mitogen-activated protein kinase (NF-κB/MAPK) signaling, targeting IκB kinase-α (IKKα) and IKKβ kinases of macrophages and influencing the expressions of NF-κB downstream cytokines and subsequent HUVEC bioactivity. Inflammasome NLR pyrin domain-containing 3 (NALP3) and toll-like receptor 2 (TLR2) were also inhibited after Kin treatment. Also, Kin downregulated CD14-mediated MSU crystals uptake in macrophages. In vivo study with MSU-injected ankle joints further revealed the significant suppression of inflammatory infiltration and endothelia impairment coupled with alleviation of ankle swelling and nociceptive response via Kin treatments. Taken together, these data implicated that Kin was the most effective candidate from Anoectochilus roxburghi to treat gouty arthritis clinically. PMID:27584788

  16. Collision rates for rare cell capture in periodic obstacle arrays strongly depend on density of cell suspension.

    Science.gov (United States)

    Cimrák, I

    2016-11-01

    Recently, computational modelling has been successfully used for determination of collision rates for rare cell capture in periodic obstacle arrays. The models were based on particle advection simulations where the cells were advected according to velocity field computed from two dimensional Navier-Stokes equations. This approach may be used under the assumption of very dilute cell suspensions where no mutual cell collisions occur. We use the object-in-fluid framework to demonstrate that even with low cell-to-fluid ratio, the optimal geometry of the obstacle array significantly changes. We show computational simulations for ratios of 3.5, 6.9 and 10.4% determining the optimal geometry of the periodic obstacle arrays. It was already previously demonstrated that cells in periodic obstacle arrays follow trajectories in two modes: the colliding mode and the zig-zag mode. The colliding mode maximizes the cell-obstacle collision frequency. Our simulations reveal that for dilute suspensions and for suspensions with cell-to-fluid ratio 3.5%, there is a range of column shifts for which the cells follow colliding trajectories. However we showed, that for 6.9 and 10.4%, the cells never follow colliding trajectories. PMID:27023645

  17. Comparative effects of ohmic, induction cooker, and electric stove heating on soymilk trypsin inhibitor inactivation.

    Science.gov (United States)

    Lu, Lu; Zhao, Luping; Zhang, Caimeng; Kong, Xiangzhen; Hua, Yufei; Chen, Yeming

    2015-03-01

    During thermal treatment of soymilk, a rapid incorporation of Kunitz trypsin inhibitor (KTI) into protein aggregates by covalent (disulfide bond, SS) and/or noncovalent interactions with other proteins is responsible for its fast inactivation of trypsin inhibitor activity (TIA). In contrast, the slow cleavage of a single Bowman-Birk inhibitor (BBI) peptide bond is responsible for its slow inactivation of TIA and chymotrypsin inhibitor activity (CIA). In this study, the effects of Ohmic heating (220 V, 50 Hz) on soymilk TIA and CIA inactivation were examined and compared to induction cooker and electric stove heating with similar thermal histories. It was found that: (1) TIA and CIA inactivation was slower from 0 to 3 min, and faster after 3 min as compared to induction cooker and electric stove. (2) The thiol (SH) loss rate was slower from 0 to 3 min, and similar to induction cooker and electric stove after 3 min. (3) Ohmic heating slightly increased protein aggregate formation. (4) In addition to the cleavage of one BBI peptide bond, an additional reaction might occur to enhance BBI inactivation. (5) Ohmic heating was more energy-efficient for TIA and CIA inactivation. (6) TIA and CIA inactivation was accelerated with increasing electric voltage (110, 165, and 220 V) of Ohmic heating. It is likely that the enhanced inactivation of TIA by Ohmic heating is due to its combined electrochemical and thermal effects.

  18. Proliferation rates of bovine primary muscle cells relate to liveweight and carcase weight in cattle.

    Science.gov (United States)

    Coles, Chantal A; Wadeson, Jenny; Leyton, Carolina P; Siddell, Jason P; Greenwood, Paul L; White, Jason D; McDonagh, Matthew B

    2015-01-01

    Muscling in cattle is largely influenced by genetic background, ultimately affecting beef yield and is of major interest to the beef industry. This investigation aimed to determine whether primary skeletal muscle cells isolated from different breeds of cattle with a varying genetic potential for muscling differ in their myogenic proliferative capacity. Primary skeletal muscle cells were isolated and cultured from the Longissimus muscle (LM) of 6 month old Angus, Hereford and Wagyu X Angus cattle. Cells were assessed for rate of proliferation and gene expression of PAX7, MYOD, MYF5, and MYOG. Proliferation rates were found to differ between breeds of cattle whereby myoblasts from Angus cattle were found to proliferate at a greater rate than those of Hereford and Wagyu X Angus during early stages of growth (5-20 hours in culture) in vitro (P cattle (P cattle (P cattle.

  19. Inactivation of dinoflagellate Scrippsiella trochoidea in synthetic ballast water by reactive species generated from dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Tang Qiong; Jiang Wenju; Yang Zhishan [Institute of Architecture and Environment, Sichuan University, Chengdu 610065 (China); Zhang Yi; Lim Tuti Mariana, E-mail: TMLim@ntu.edu.s [Institute of Environmental Science and Engineering, Nanyang Technology University, Innovation Center, Block 2, Unit 237, 18 Nanyang Drive, 637723 Singapore (Singapore)

    2009-05-07

    The inactivation of dinoflagellate Scrippsiella trochoidea in synthetic ballast water by a dielectric barrier discharge (DBD) system was investigated. The OH{sup .} radical, ozone and hydrogen peroxide generated from the DBD system were measured. Before and after the treatment, the viability of dinoflagellate S. trochoidea was evaluated by analyzing chlorophyll a, protein and saccharide content and morphology of the cells, as well as the pH of the cell culture media. The results show OH{sup .} radical was the major reactive species when humid air was used. The inactivation of S. trochoidea was found to be dependent on the applied voltage and the gas flow rate, and was completed within 4 min at a gas flow rate of 7 L min{sup -1} and an applied voltage of 20 kV. The change of chlorophyll a, protein and saccharide concentrations of S. trochoidea and the morphology of the cells indicates that the reactive species generated from the DBD system can break up the cells via oxidation.

  20. Effect of radiation dose-rate on hematopoietic cell engraftment in adult zebrafish.

    Directory of Open Access Journals (Sweden)

    Tiffany J Glass

    Full Text Available Although exceptionally high radiation dose-rates are currently attaining clinical feasibility, there have been relatively few studies reporting the biological consequences of these dose-rates in hematopoietic cell transplant (HCT. In zebrafish models of HCT, preconditioning before transplant is typically achieved through radiation alone. We report the comparison of outcomes in adult zebrafish irradiated with 20 Gy at either 25 or 800 cGy/min in the context of experimental HCT. In non-transplanted irradiated fish we observed no substantial differences between dose-rate groups as assessed by fish mortality, cell death in the kidney, endogenous hematopoietic reconstitution, or gene expression levels of p53 and ddb2 (damage-specific DNA binding protein 2 in the kidney. However, following HCT, recipients conditioned with the higher dose rate showed significantly improved donor-derived engraftment at 9 days post transplant (p ≤ 0.0001, and improved engraftment persisted at 31 days post transplant. Analysis for sdf-1a expression, as well as transplant of hematopoietic cells from cxcr4b -/- zebrafish, (odysseus, cumulatively suggest that the sdf-1a/cxcr4b axis is not required of donor-derived cells for the observed dose-rate effect on engraftment. Overall, the adult zebrafish model of HCT indicates that exceptionally high radiation dose-rates can impact HCT outcome, and offers a new system for radiobiological and mechanistic interrogation of this phenomenon. Key words: Radiation dose rate, Total Marrow Irradiation (TMI, Total body irradiation (TBI, SDF-1, Zebrafish, hematopoietic cell transplant.

  1. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate.

    Science.gov (United States)

    Sokolova, Ekaterina; Spruijt, Evan; Hansen, Maike M K; Dubuc, Emilien; Groen, Joost; Chokkalingam, Venkatachalam; Piruska, Aigars; Heus, Hans A; Huck, Wilhelm T S

    2013-07-16

    Liquid-liquid phase transitions in complex mixtures of proteins and other molecules produce crowded compartments supporting in vitro transcription and translation. We developed a method based on picoliter water-in-oil droplets to induce coacervation in Escherichia coli cell lysate and follow gene expression under crowded and noncrowded conditions. Coacervation creates an artificial cell-like environment in which the rate of mRNA production is increased significantly. Fits to the measured transcription rates show a two orders of magnitude larger binding constant between DNA and T7 RNA polymerase, and five to six times larger rate constant for transcription in crowded environments, strikingly similar to in vivo rates. The effect of crowding on interactions and kinetics of the fundamental machinery of gene expression has a direct impact on our understanding of biochemical networks in vivo. Moreover, our results show the intrinsic potential of cellular components to facilitate macromolecular organization into membrane-free compartments by phase separation. PMID:23818642

  2. Global Dynamics of a Virus Dynamical Model with Cell-to-Cell Transmission and Cure Rate

    Science.gov (United States)

    Zhang, Tongqian; Meng, Xinzhu; Zhang, Tonghua

    2015-01-01

    The cure effect of a virus model with both cell-to-cell transmission and cell-to-virus transmission is studied. By the method of next generation matrix, the basic reproduction number is obtained. The locally asymptotic stability of the virus-free equilibrium and the endemic equilibrium is considered by investigating the characteristic equation of the model. The globally asymptotic stability of the virus-free equilibrium is proved by constructing suitable Lyapunov function, and the sufficient condition for the globally asymptotic stability of the endemic equilibrium is obtained by constructing suitable Lyapunov function and using LaSalle invariance principal. PMID:26504489

  3. Global Dynamics of a Virus Dynamical Model with Cell-to-Cell Transmission and Cure Rate

    Directory of Open Access Journals (Sweden)

    Tongqian Zhang

    2015-01-01

    Full Text Available The cure effect of a virus model with both cell-to-cell transmission and cell-to-virus transmission is studied. By the method of next generation matrix, the basic reproduction number is obtained. The locally asymptotic stability of the virus-free equilibrium and the endemic equilibrium is considered by investigating the characteristic equation of the model. The globally asymptotic stability of the virus-free equilibrium is proved by constructing suitable Lyapunov function, and the sufficient condition for the globally asymptotic stability of the endemic equilibrium is obtained by constructing suitable Lyapunov function and using LaSalle invariance principal.

  4. High-rate lithium/manganese dioxide batteries; the double cell concept

    Energy Technology Data Exchange (ETDEWEB)

    Drews, J. [LITRONIK Batterietechnologie GmbH und Co., Pirna (Germany); Wolf, R. [LITRONIK Batterietechnologie GmbH und Co., Pirna (Germany); Fehrmann, G. [LITRONIK Batterietechnologie GmbH und Co., Pirna (Germany); Staub, R. [LITRONIK Batterietechnologie GmbH und Co., Pirna (Germany)

    1997-03-01

    An implantable defibrillator battery has to provide pulse-power capabilities as well as high energy density. Low self-discharge rates are mandatory and an ability to check the state of charge is required. To accomplish these requirements, a lithium/manganese dioxide battery with a modified active cathode mass has been developed. Usage of a double cell design increases significantly the battery performance within an implantable defibrillator. The design features of a high-rate, pulse-power, manganese dioxide double cell are described. (orig.)

  5. Inactivation of genes coding for mitochondrial Nd7 and Nd9 complex I subunits in Chlamydomonas reinhardtii. Impact of complex I loss on respiration and energetic metabolism.

    Science.gov (United States)

    Massoz, Simon; Larosa, Véronique; Plancke, Charlotte; Lapaille, Marie; Bailleul, Benjamin; Pirotte, Dorothée; Radoux, Michèle; Leprince, Pierre; Coosemans, Nadine; Matagne, René F; Remacle, Claire; Cardol, Pierre

    2014-11-01

    In Chlamydomonas, unlike in flowering plants, genes coding for Nd7 (NAD7/49 kDa) and Nd9 (NAD9/30 kDa) core subunits of mitochondrial respiratory-chain complex I are nucleus-encoded. Both genes possess all the features that facilitate their expression and proper import of the polypeptides in mitochondria. By inactivating their expression by RNA interference or insertional mutagenesis, we show that both subunits are required for complex I assembly and activity. Inactivation of complex I impairs the cell growth rate, reduces the respiratory rate, leads to lower intracellular ROS production and lower expression of ROS scavenging enzymes, and is associated to a diminished capacity to concentrate CO2 without compromising photosynthetic capacity. PMID:24316185

  6. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate

    OpenAIRE

    Sokolova, Ekaterina; Spruijt, Evan; Hansen, Maike M. K.; Dubuc, Emilien; Groen, Joost; Chokkalingam, Venkatachalam; Piruska, Aigars; Heus, Hans A.; Huck, Wilhelm T. S.

    2013-01-01

    Liquid–liquid phase transitions in complex mixtures of proteins and other molecules produce crowded compartments supporting in vitro transcription and translation. We developed a method based on picoliter water-in-oil droplets to induce coacervation in Escherichia coli cell lysate and follow gene expression under crowded and noncrowded conditions. Coacervation creates an artificial cell-like environment in which the rate of mRNA production is increased significantly. Fits to the measured tran...

  7. MK615 attenuates Porphyromonas gingivalis lipopolysaccharide-induced pro-inflammatory cytokine release via MAPK inactivation in murine macrophage-like RAW264.7 cells.

    Science.gov (United States)

    Morimoto, Yoko; Kikuchi, Kiyoshi; Ito, Takashi; Tokuda, Masayuki; Matsuyama, Takashi; Noma, Satoshi; Hashiguchi, Teruto; Torii, Mitsuo; Maruyama, Ikuro; Kawahara, Ko-Ichi

    2009-11-01

    The Japanese apricot, known as Ume in Japanese, has been a traditional Japanese medicine for centuries, and is a familiar and commonly consumed food. The health benefits of Ume are now being widely recognized and have been strengthened by recent studies showing that MK615, an extract of compounds from Ume, has strong anticancer and anti-inflammatory effects. However, the potential role of MK615 in the periodontal field remains unknown. Here, we found that MK615 significantly reduced the production of pro-inflammatory mediators (tumor necrosis factor-alpha and interleukin-6) induced by Porphyromonas gingivalis lipopolysaccharide (LPS), a major etiological agent in localized chronic periodontitis, in murine macrophage-like RAW264.7 cells. MK615 markedly inhibited the phosphorylation of ERK1/2, p38MAPK, and JNK, which is associated with pro-inflammatory mediator release pathways. Moreover, MK615 completely blocked LPS-triggered NF-kappaB activation. The present results suggest that MK615 has potential as a therapeutic agent for treating inflammatory diseases such as periodontitis. PMID:19706286

  8. Model cerebellar granule cells can faithfully transmit modulated firing rate signals

    Directory of Open Access Journals (Sweden)

    Christian eRössert

    2014-10-01

    Full Text Available A crucial assumption of many high-level system models of the cerebellum is that information in the granular layer is encoded in a linear manner. However, granule cells are known for their non-linear and resonant synaptic and intrinsic properties that could potentially impede linear signal transmission.In this modelling study we analyse how electrophysiological granule cell properties and spike sampling influence information coded by firing rate modulation, assuming no signal-related, i.e. uncorrelated inhibitory feedback (open-loop mode.A detailed one-compartment granule cell model was excited in simulation by either direct current or mossy-fibre synaptic inputs. Vestibular signals were represented as tonic inputs to the flocculus modulated at frequencies up to 20 Hz (approximate upper frequency limit of vestibular-ocular reflex, VOR. Model outputs were assessed using estimates of both the transfer function, and the fidelity of input-signal reconstruction measured as variance-accounted-for.The detailed granule cell model with realistic mossy-fibre synaptic inputs could transmit information faithfully and linearly in the frequency range of the vestibular-ocular reflex. This was achieved most simply if the model neurons had a firing rate at least twice the highest required frequency of modulation, but lower rates were also adequate provided a population of neurons was utilized, especially in combination with push-pull coding. The exact number of neurons required for faithful transmission depended on the precise values of firing rate and noise. The model neurons were also able to combine excitatory and inhibitory signals linearly, and could be replaced by a simpler (modified integrate-and-fire neuron in the case of high tonic firing rates.These findings suggest that granule cells can in principle code modulated firing-rate inputs in a linear manner, and are thus consistent with the high-level adaptive-filter model of the cerebellar microcircuit.

  9. Investigation of Battery/Ultracapacitor Energy Storage Rating for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Khaligh, A.; Rasmussen, Peter Omand

    2008-01-01

    Combining high energy density batteries and high power density ultracapacitors in Fuel Cell Hybrid Electric Vehicles (FCHEV) results in a high efficient, high performance, low size, and light system. Often the batteries are rated with respect to their energy requirement in order to reduce...... their volume and mass. This does not prevent deep discharges of the batteries, which is critical to their lifetime. In this paper, the ratings of the batteries and ultracapacitors in a FCHEV are investigated. Comparison of system volume, mass, efficiency, and battery lifetime due to the rating of the energy...

  10. Inactivation of Pseudomonas aeruginosa biofilm by dense phase carbon dioxide.

    Science.gov (United States)

    Mun, Sungmin; Jeong, Jin-Seong; Kim, Jaeeun; Lee, Youn-Woo; Yoon, Jeyong

    2009-01-01

    Dense phase carbon dioxide (DPCD) is one of the most promising techniques available to control microorganisms as a non-thermal disinfection method. However, no study on the efficiency of biofilm disinfection using DPCD has been reported. The efficiency of DPCD in inactivating Pseudomonas aeruginosa biofilm, which is known to have high antimicrobial resistance, was thus investigated. P. aeruginosa biofilm, which was not immersed in water but was completely wet, was found to be more effectively inactivated by DPCD treatment, achieving a 6-log reduction within 7 min. The inactivation efficiency increased modestly with increasing pressure and temperature. This study also reports that the water-unimmersed condition is one of the most important operating parameters in achieving efficient biofilm control by DPCD treatment. In addition, observations by confocal laser scanning microscopy revealed that DPCD treatment not only inactivated biofilm cells on the glass coupons but also caused detachment of the biofilm following weakening of its structure as a result of the DPCD treatment; this is an added benefit of DPCD treatment.

  11. Growth and thermal inactivation of Listeria monocytogenes in cabbage and cabbage juice.

    Science.gov (United States)

    Beuchat, L R; Brackett, R E; Hao, D Y; Conner, D E

    1986-10-01

    Studies were done to determine the interacting effects of pH, NaCl, temperature, and time on growth, survival, and death of two strains of Listeria monocytogenes. Viable population of the organism steadily declined in heat-sterilized cabbage stored at 5 degrees C for 42 days. In contrast, the organism grew on raw cabbage during the first 25 days of a 64-day storage period at 5 degrees C. Growth was observed in heat-sterilized unclarified cabbage juice containing less than or equal to 5% NaCl and tryptic phosphate broth containing less than or equal to 10% NaCl. Rates of thermal inactivation increased as pH of clarified cabbage juice heating medium was decreased from 5.6 to 4.0. At 58 degrees C (pH 5.6), 4 X 10(6) cells/mL were reduced to undetectable levels within 10 min. Thermal inactivation rates in clarified cabbage juice (pH 5.6) were not significantly influenced by the presence of up to 2% NaCl; however, heat-stressed cells had increased sensitivity to NaCl in tryptic soy agar recovery medium. Cold enrichment of heat-stressed cells at 5 degrees C for 21 days enhanced resuscitation. Results indicate that L. monocytogenes can proliferate on refrigerated (5 degrees C) raw cabbage which, in turn, may represent a hazard to health of the consumer. Heat pasteurization treatments normally given to cabbage juice or sauerkraut would be expected to kill any L. monocytogenes cells which may be present.

  12. Activators and repressors: A balancing act for X-inactivation.

    Science.gov (United States)

    Goodrich, Leeanne; Panning, Barbara; Leung, Karen Nicole

    2016-08-01

    In early female embryos X-chromosome inactivation occurs concomitant with up regulation of the non-coding RNA, Xist, on the future inactive X-chromosome. Up regulation of Xist and coating of the future inactive X is sufficient to induce silencing. Therefore unlocking the mechanisms of X-chromosome inactivation requires thorough understanding of the transcriptional regulators, both activators and repressors, which control Xist. Mouse pluripotent embryonic stem cells, which have two active X chromosomes, provide a tractable ex vivo model system for studying X-chromosome inactivation, since this process is triggered by differentiation signals in these cultured cells. Yet there are significant discrepancies found between ex vivo analyses in mouse embryonic stem cells and in vivo studies of early embryos. In this review we elaborate on potential models of how Xist is up regulated on a single X chromosome in female cells and how ex vivo and in vivo analyses enlighten our understanding of the activators and repressors that control this non-coding RNA gene.

  13. Sputtered Gum metal thin films showing bacterial inactivation and biocompatibility.

    Science.gov (United States)

    Achache, S; Alhussein, A; Lamri, S; François, M; Sanchette, F; Pulgarin, C; Kiwi, J; Rtimi, S

    2016-10-01

    Super-elastic Titanium based thin films Ti-23Nb-0.7Ta-2Zr-(O) (TNTZ-O) and Ti-24Nb-(N) (TN-N) (at.%) were deposited by direct current magnetron sputtering (DCMS) in different reactive atmospheres. The effects of oxygen doping (TNTZ-O) and/or nitrogen doping (TN-N) on the microstructure, mechanical properties and biocompatibility of the as-deposited coatings were investigated. Nano-indentation measurements show that, in both cases, 1sccm of reactive gas in the mixture is necessary to reach acceptable values of hardness and Young's modulus. Mechanical properties are considered in relation to the films compactness, the compressive stress and the changes in the grain size. Data on Bacterial inactivation and biocompatibility are reported in this study. The biocompatibility tests showed that O-containing samples led to higher cells proliferation. Bacterial inactivation was concomitant with the observed pH and surface potential changes under light and in the dark. The increased cell fluidity leading to bacterial lysis was followed during the bacterial inactivation time. The increasing cell wall fluidity was attributed to the damage of the bacterial outer cell which losing its capacity to regulate the ions exchange in and out of the bacteria. PMID:27434155

  14. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  15. Hypoxic culture conditions induce increased metabolic rate and collagen gene expression in ACL-derived cells.

    Science.gov (United States)

    Kowalski, Tomasz J; Leong, Natalie L; Dar, Ayelet; Wu, Ling; Kabir, Nima; Khan, Adam Z; Eliasberg, Claire D; Pedron, Andrew; Karayan, Ashant; Lee, Siyoung; Di Pauli von Treuheim, Theodor; Jiacheng, Jin; Wu, Ben M; Evseenko, Denis; McAllister, David R; Petrigliano, Frank A

    2016-06-01

    There has been substantial effort directed toward the application of bone marrow and adipose-derived mesenchymal stromal cells (MSCs) in the regeneration of musculoskeletal tissue. Recently, resident tissue-specific stem cells have been described in a variety of mesenchymal structures including ligament, tendon, muscle, cartilage, and bone. In the current study, we systematically characterize three novel anterior cruciate ligament (ACL)-derived cell populations with the potential for ligament regeneration: ligament-forming fibroblasts (LFF: CD146(neg) , CD34(neg) CD44(pos) , CD31(neg) , CD45(neg) ), ligament perivascular cells (LPC: CD146(pos) CD34(neg) CD44(pos) , CD31(neg) , CD45(neg) ) and ligament interstitial cells (LIC: CD34(pos) CD146(neg) , CD44(pos) , CD31(neg) , CD45(neg) )-and describe their proliferative and differentiation potential, collagen gene expression and metabolism in both normoxic and hypoxic environments, and their trophic potential in vitro. All three groups of cells (LIC, LPC, and LFF) isolated from adult human ACL exhibited progenitor cell characteristics with regard to proliferation and differentiation potential in vitro. Culture in low oxygen tension enhanced the collagen I and III gene expression in LICs (by 2.8- and 3.3-fold, respectively) and LFFs (by 3- and 3.5-fold, respectively) and increased oxygen consumption rate and extracellular acidification rate in LICs (by 4- and 3.5-fold, respectively), LFFs (by 5.5- and 3-fold, respectively), LPCs (by 10- and 4.5-fold, respectively) as compared to normal oxygen concentration. In summary, this study demonstrates for the first time the presence of three novel progenitor cell populations in the adult ACL that demonstrate robust proliferative and matrix synthetic capacity; these cells may play a role in local ligament regeneration, and consequently represent a potential cell source for ligament engineering applications. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc

  16. Immunogenicity and protective effects of inactivated Singapore grouper iridovirus (SGIV) vaccines in orange-spotted grouper, Epinephelus coioides.

    Science.gov (United States)

    Ou-yang, Zhengliang; Wang, Peiran; Huang, Xiaohong; Cai, Jia; Huang, Youhua; Wei, Shina; Ji, Huasong; Wei, Jingguang; Zhou, Yongcan; Qin, Qiwei

    2012-10-01

    Vaccination is one of the best methods against viral diseases. In this study, experimental inactivated Singapore grouper iridovirus (SGIV) vaccines were prepared, and immunogenicity and protection against virus infection of the vaccines were investigated in orange-spotted grouper, Epinephelus coioides. Two kinds of vaccines, including β-propiolactone (BPL) inactivated virus at 4°C for 12 h and formalin inactivated virus at 4°C for 12 d, was highly protective against the challenge at 30-day post-vaccination and produced relative percent of survival rates of 91.7% and 100%, respectively. These effective vaccinations induced potent innate immune responses mediated by pro-inflammatory cytokines and type I interferon (IFN)-stimulated genes (ISGs). It is noteworthy that ISGs, such as Mx and ISG15, were up-regulated only in the effective vaccine groups, which suggested that type I IFN system may be the functional basis of early anti-viral immunity. Moreover, effective vaccination also significantly up-regulated of the expression of MHC class I gene and produced substantial amount of specific serum antibody at 4 weeks post-vaccination. Taken together, our results clearly demonstrated that effective vaccination in grouper induced an early, nonspecific antiviral immunity, and later, a specific immune response involving both humoral and cell-mediated immunity.

  17. Identification of biomolecule mass transport and binding rate parameters in living cells by inverse modeling

    Directory of Open Access Journals (Sweden)

    Shirmohammadi Adel

    2006-10-01

    Full Text Available Abstract Background Quantification of in-vivo biomolecule mass transport and reaction rate parameters from experimental data obtained by Fluorescence Recovery after Photobleaching (FRAP is becoming more important. Methods and results The Osborne-Moré extended version of the Levenberg-Marquardt optimization algorithm was coupled with the experimental data obtained by the Fluorescence Recovery after Photobleaching (FRAP protocol, and the numerical solution of a set of two partial differential equations governing macromolecule mass transport and reaction in living cells, to inversely estimate optimized values of the molecular diffusion coefficient and binding rate parameters of GFP-tagged glucocorticoid receptor. The results indicate that the FRAP protocol provides enough information to estimate one parameter uniquely using a nonlinear optimization technique. Coupling FRAP experimental data with the inverse modeling strategy, one can also uniquely estimate the individual values of the binding rate coefficients if the molecular diffusion coefficient is known. One can also simultaneously estimate the dissociation rate parameter and molecular diffusion coefficient given the pseudo-association rate parameter is known. However, the protocol provides insufficient information for unique simultaneous estimation of three parameters (diffusion coefficient and binding rate parameters owing to the high intercorrelation between the molecular diffusion coefficient and pseudo-association rate parameter. Attempts to estimate macromolecule mass transport and binding rate parameters simultaneously from FRAP data result in misleading conclusions regarding concentrations of free macromolecule and bound complex inside the cell, average binding time per vacant site, average time for diffusion of macromolecules from one site to the next, and slow or rapid mobility of biomolecules in cells. Conclusion To obtain unique values for molecular diffusion coefficient and

  18. The tarantula toxin jingzhaotoxin-XI (κ-theraphotoxin-Cj1a) regulates the activation and inactivation of the voltage-gated sodium channel Nav1.5.

    Science.gov (United States)

    Tang, Cheng; Zhou, Xi; Huang, Yin; Zhang, Yunxiao; Hu, Zhaotun; Wang, Meichi; Chen, Ping; Liu, Zhonghua; Liang, Songping

    2014-12-15

    Specific peptide toxins interact with voltage-gated sodium channels by regulating the activation or inactivation of targeted channels. However, few toxins possessing dual effects have been identified. In the present study, we showed that jingzhaotoxin-XI/κ-theraphotoxin-Cj1a (JZTX-XI), a 34-residue peptide from the venom of the Chinese spider Chilobrachys jingzhao, inhibits the sodium conductance (IC50 = 124 ± 26 nM) and slows the fast inactivation (EC50 = 1.18 ± 0.2 μM) of Nav1.5 expressed in Chinese hamster ovary (CHO-K1) cells. JZTX-XI significantly shifted the activation to more depolarized voltages and decreased the deactivation of Nav1.5 currents upon extreme depolarization, but only slightly affected voltage-dependence of steady-state inactivation. In addition, JZTX-XI caused an approximately five-fold decrease in the rate of recovery from inactivation and an approximately 1.9-fold reduction in the closed-state inactivation rate. Our data suggest that JZTX-XI integrates the functions of site 3 toxins (α-scorpion toxins) with site 4 toxins (β-scorpion and spider toxins) by targeting multiple sites on Nav1.5. The unique properties displayed by JZTX-XI in its inhibitory activity on Nav1.5 suggest that its mechanism of action is distinct from those of site 3 and site 4 toxins, making JZTX-XI a useful probe for investigating the gating mechanism of Nav1.5 and toxin-channel interactions. PMID:25240294

  19. Inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine.

    OpenAIRE

    Berman, D.; Hoff, J C

    1984-01-01

    The kinetics of inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine were studied at 5 degrees C with a purified preparation of single virions and a preparation of cell-associated virions. Inactivation of the virus preparations with chlorine and chlorine dioxide was studied at pH 6 and 10. The monochloramine studies were done at pH 8. With 0.5 mg of chlorine per liter at pH 6, more than 4 logs (99.99%) of the single virions were inactivated in less than 15 s...

  20. Inactivation of Microcystis aeruginosa using dielectric barrier discharge low-temperature plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Sichuan [School of Life Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Jierong [Department of Environmental Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Gang [BMEI CO., LTD, Beijing 100027 (China); Li, Xiaoyong [School of Science, Xi' an Jiaotong University, Xi' an 710049 (China); Ma, Yun [School of Life Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); College of Chemistry and Chemical Engineering, Xi' an Shiyou University, Xi' an 710065 (China)

    2013-05-13

    The efficiency of Microcystis aeruginosa plasma inactivation was investigated using dielectric barrier discharge low-temperature plasma. The inactivation efficiency was characterized in terms of optical density. The influence of electrical and physicochemical parameters on M. aeruginosa inactivation was studied to determine the optimal experimental conditions. The influence of active species was studied. The proliferation of the M. aeruginosa cells was significantly decreased under plasma exposure. The morphologic changes in M. aeruginosa were characterized under scanning electron microscopy. These results suggest that the low-temperature plasma technology is a promising method for water pollution control.

  1. Biological cell irradiation at ultrahigh dose rate employing laser driven protons

    Energy Technology Data Exchange (ETDEWEB)

    Doria, D.; Kakolee, K. F.; Kar, S. [Centre for Plasma Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); School of Physics and Astronomy, University of Birmingham, B15 2TT (United Kingdom); and others

    2012-07-09

    The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen's University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 10{sup 9}Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4{+-}0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.

  2. Biological cell irradiation at ultrahigh dose rate employing laser driven protons

    Science.gov (United States)

    Doria, D.; Kakolee, K. F.; Kar, S.; Litt, S. K.; Fiorini, F.; Ahmed, H.; Green, S.; Jeynes, JC. G.; Kavanagh, J.; Kirby, D.; Kirkby, K. J.; Lewis, C. L.; Merchant, M. J.; Nersisyan, G.; Prasad, R.; Prise, K. M.; Schettino, G.; Zepf, M.; Borghesi, M.

    2012-07-01

    The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen's University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 109Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4±0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.

  3. Chemical inactivation of recombinant vaccinia viruses and the effects on antigenicity and immunogenicity of recombinant simian immunodeficiency virus envelope glycoproteins.

    NARCIS (Netherlands)

    E.G.J. Hulskotte (Ellen); M.E.M. Dings (Marlinda); S.G. Norley (Stephen); A.D.M.E. Osterhaus (Albert)

    1997-01-01

    textabstractThe efficiency of paraformaldehyde (PFA) and binary ethylenimine (BEI) in inactivating recombinant vaccinia virus (rVV), present in baby hamster kidney cells expressing simian immunodeficiency virus envelope glycoproteins (SIV-Env), was measured in a series of inactivation studies. Both

  4. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    Science.gov (United States)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  5. Multi-Cell Random Beamforming: Achievable Rate and Degrees of Freedom Region

    CERN Document Server

    Nguyen, Hieu Duy; Hui, Hon Tat

    2012-01-01

    Random beamforming (RBF) is a practically favorable transmission scheme for multiuser multi-antenna downlink systems since it requires only partial channel state information (CSI) at the transmitter. Under the conventional single-cell setup, RBF is known to achieve the optimal sum-capacity scaling law as the number of users goes to infinity, thanks to the multiuser diversity effect that eliminates the inter-user interference. In this paper, we extend the study on RBF to a more practical multi-cell downlink system subject to the additional inter-cell interference (ICI). First, we consider the case of finite user's signal-to-noise ratio (SNR). We derive a closed-form expression of the achievable sum rate with the multi-cell RBF, based upon which we show the asymptotic sum-rate scaling law as the number of users goes to infinity. Next, we consider the high-SNR regime and for a tractable analysis assume that the number of users in each cell scales in a certain order with the per-cell SNR. Under this setup, we cha...

  6. Effect of cell size and shear stress on bacterium growth rate

    Science.gov (United States)

    Fadlallah, Hadi; Jarrahi, Mojtaba; Herbert, Éric; Peerhossaini, Hassan; PEF Team

    2015-11-01

    Effect of shear stress on the growth rate of Synechocystis and Chlamydomonas cells is studied. An experimental setup was prepared to monitor the growth rate of the microorganisms versus the shear rate inside a clean room, under atmospheric pressure and 20 °C temperature. Digital magnetic agitators are placed inside a closed chamber provided with airflow, under a continuous uniform light intensity over 4 weeks. In order to study the effect of shear stress on the growth rate, different frequencies of agitation are tested, 2 vessels filled with 150 ml of each specie were placed on different agitating system at the desired frequency. The growth rate is monitored daily by measuring the optical density and then correlate it to the cellular concentration. The PH was adjusted to 7 in order to maintain the photosynthetic activity. Furthermore, to measure the shear stress distribution, the flow velocity field was measured using PIV. Zones of high and low shear stress were identified. Results show that the growth rate is independent of the shear stress magnitude, mostly for Synechocystis, and with lower independency for Chlamydomonas depending on the cell size for each species.

  7. BHK cell lines with increased rates of gene amplification are hypersensitive to ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Giulotto, E.; Bertoni, L.; Attolini, C.; Rainaldi, G.; Anglana, M. (Dipartimento di Genetica e Microbiologia Adriano Buzzati-Traverso, Pavia (Italy))

    1991-04-15

    Four cell lines (MP1, -4, -5, -7), isolated from baby hamster kidney cells after simultaneous selection with N-(phosphonacetyl)-L-aspartate and methotrexate, have previously been shown to amplify their DNA at an increased rate. We now show that all four lines are hypersensitive to killing by UV light and mitomycin C. At high doses of UV light or mitomycin C, the MP lines survived less than 10% or less than 5% as well as parental cells, respectively. After UV irradiation, inhibition of DNA and RNA synthesis was greater in MP than in parental cells, and recovery was slower or absent. A 2- to 3.5-fold increase in the frequency of UV-induced sister chromatid exchange was also seen in the four cell lines. In MP5, unscheduled DNA replication after treatment with UV light was only approximately 70% as great as in parental cells and the other MP lines. In MP4 and MP7 cells S phase was elongated. Although their individual properties confirm that the four cell lines are independent, their common properties suggest a relationship between tolerance of DNA damage and gene amplification.

  8. BHK cell lines with increased rates of gene amplification are hypersensitive to ultraviolet light

    International Nuclear Information System (INIS)

    Four cell lines (MP1, -4, -5, -7), isolated from baby hamster kidney cells after simultaneous selection with N-(phosphonacetyl)-L-aspartate and methotrexate, have previously been shown to amplify their DNA at an increased rate. We now show that all four lines are hypersensitive to killing by UV light and mitomycin C. At high doses of UV light or mitomycin C, the MP lines survived less than 10% or less than 5% as well as parental cells, respectively. After UV irradiation, inhibition of DNA and RNA synthesis was greater in MP than in parental cells, and recovery was slower or absent. A 2- to 3.5-fold increase in the frequency of UV-induced sister chromatid exchange was also seen in the four cell lines. In MP5, unscheduled DNA replication after treatment with UV light was only approximately 70% as great as in parental cells and the other MP lines. In MP4 and MP7 cells S phase was elongated. Although their individual properties confirm that the four cell lines are independent, their common properties suggest a relationship between tolerance of DNA damage and gene amplification

  9. Optimization of the medium perfusion rate in a packed-bed bioreactor charged with CHO cells.

    Science.gov (United States)

    Meuwly, F; von Stockar, U; Kadouri, A

    2004-09-01

    In the present study, the optimal medium perfusion rate to be used for the continuous culture of a recombinant CHO cell line in a packed-bed bioreactor made of Fibra-Cel((R)) disk carriers was determined. A first-generation process had originally been designed with a high perfusion rate, in order to rapidly produce material for pre-clinical and early clinical trials. It was originally operated with a perfusion of 2.6 vvd during production phase in order to supply the high cell density (2.5x10(7) cell ml(-1) of packed-bed) with sufficient fresh medium. In order to improve the economics of this process, a reduction of the medium perfusion rate by -25% and -50% was investigated at small-scale. The best option was then implemented at pilot scale in order to further produce material for clinical trials with an improved second-generation process. With a -25% reduction of the perfusion rate, the volumetric productivity was maintained compared to the first-generation process, but a -30% loss of productivity was obtained when the medium perfusion rate was further reduced to -50% of its original level. The protein quality under reduced perfusion rate conditions was analyzed for purity, N-glycan sialylation level, abundance of dimers or aggregates, and showed that the quality of the final drug substance was comparable to that obtained in reference conditions. Finally, a reduction of -25% medium perfusion was implemented at pilot scale in the second-generation process, which enabled to maintain the same productivity and the same quality of the molecule, while reducing costs of media, material and manpower of the production process. For industrial applications, it is recommended to test whether and how far the perfusion rate can be decreased during the production phase - provided that the product is not sensitive to residence time - with the benefits of reduced cost of goods and to simplify manufacturing operations. PMID:19003257

  10. pH-dependent inactivation of DT-diaphorase by mitomycin C and porfiromycin.

    Science.gov (United States)

    Siegel, D; Beall, H; Kasai, M; Arai, H; Gibson, N W; Ross, D

    1993-12-01

    Mitomycin C and porfiromycin were found to inactivate rat hepatic DT-diaphorase. Inactivation was pH dependent; little inactivation was detected at pH 5.8, but inactivation increased as the pH was raised to 7.8. Inactivation was concentration and time dependent and displayed pseudo-first-order kinetics. Inactivation was NADH dependent, indicating that reductive metabolism was necessary for inhibition. [3H]Mitomycin C was covalently bound to DT-diaphorase during inhibition, and the stoichiometry for inactivation of DT-diaphorase by mitomycin C was approximately 0.8 nmol of mitomycin C bound/nmol of enzyme. A higher molecular mass product (60 kDa) was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis of DT-diaphorase preincubated with NADH and mitomycin C at pH 7.8, suggesting that mitomycin C is capable of cross-linking DT-diaphorase. The kinetics of inhibition, requirement for NADH for inhibition, covalent binding of [3H] mitomycin C to DT-diaphorase, and approximate 1:1 stoichiometry suggest that this inactivation process may be mechanism based. Inhibition of DT-diaphorase by mitomycin C and porfiromycin is not limited to a cell-free system and could also be observed in HT-29 cells in culture at pH 7.2. Bioactivation of mitomycin C or porfiromycin by DT-diaphorase is favored at lower pH, whereas at higher pH values enzyme alkylation and inactivation of DT-diaphorase occur. These data suggest that the success of attempts to exploit the elevated DT-diaphorase content of certain human tumors for improved chemotherapeutic response using mitomycin C or porfiromycin will depend on intracellular pH. PMID:8264549

  11. Photodynamic inactivation of contaminated blood with Staphylococcus aureus

    Science.gov (United States)

    Corrêa, Thaila Q.; Inada, Natalia M.; Pratavieira, Sebastião.; Blanco, Kate C.; Kurachi, Cristina; Bagnato, Vanderlei S.

    2016-03-01

    The presence of bacteria in the bloodstream can trigger a serious systemic inflammation and lead to sepsis that cause septic shock and death. Studies have shown an increase in the incidence of sepsis over the years and it is mainly due to the increased resistance of microorganisms to antibiotics, since these drugs are still sold and used improperly. The bacterial contamination of blood is also a risk to blood transfusions. Thus, bacteria inactivation in blood is being studied in order to increase the security of the blood supply. The purpose of this study was to decontaminate the blood using the photodynamic inactivation (PDI). Human blood samples in the presence of Photogem® were illuminated at an intensity of 30 mW/cm2, and light doses of 10 and 15 J/cm2. Blood counts were carried out for the quantitative evaluation and blood smears were prepared for qualitative and morphological evaluation by microscopy. The results showed normal viability values for the blood cells analyzed. The light doses showed minimal morphological changes in the membrane of red blood cells, but the irradiation in the presence of the photosensitizer caused hemolysis in red blood cells at the higher concentrations of the photosensitizer. Experiments with Staphylococcus aureus, one of the responsible of sepsis, showed 7 logs10 of photodynamic inactivation with 50 μg/mL and 15 J/cm2 and 1 log10 of this microorganism in a co-culture with blood.

  12. 应用硫酸鱼精蛋白处理蔗糖密度梯度超速离心高度纯化流行性乙型脑炎灭活疫苗(非洲绿猴肾细胞)%Purification of Inactivated Japanese Encephalitis Vaccine from Vero Cell by Protamine Sulfate and Sucrose Density Gradient Ultracentrifugation

    Institute of Scientific and Technical Information of China (English)

    杨国松; 韦娟; 姜建; 丁志芬

    2011-01-01

    Objective To prepare a purified inactivated Japanese encephalitis vaccine (JEV) by ultracentrifugation. Methods Japanese encephalitis supernatant was collected from bioreactor. After concentrated by ultra-filtration and inactivated by formaldehyde, the inactivated virus suspension was treated with protamine sulfate and purified by sucrose density gradient ultracentrifugation. The sucrose was removed by ultra-filtration. Results The residual of vero cells deaxyribonucleic acid(DNA) was reduced to 10pg/dose and total protein content was reduced to lμg/dose, the host cell protein was decreased to 15ng/dose, and satisfied recovery was obtained. Conclusion A purified inactivated JEV was prepared by optimizing condition of protamine sulfate treatment and sucrose density gradient ultracentrifugation purification.%目的 通过离心试验,制备出一种高纯度的流行性乙型脑炎(乙脑)灭活纯化疫苗(非洲绿猴肾细胞)[Purified Inactivated Japanese Encephalitis Vaccine (Vero Cell),JEV].方法 生物反应器培养的Vero细胞乙脑病毒液,超滤浓缩、甲醛灭活后,应用硫酸鱼精蛋白处理,再经过高速离心,蔗糖密度梯度超速离心纯化,超滤除糖,配制成JEV(Vero细胞).结果 经检测,疫苗中Vero细胞脱氧核糖核酸残留量≤10pg(皮克,Picogram)/剂,蛋白含量≤1μg(微克)/剂,宿主蛋白残留量≤30ng(纳克,Nanogram)/ml,并获得较高的抗原回收率.结论 经过优化硫酸鱼精蛋白处理和蔗糖密度梯度超速离心纯化,制得了高纯度的JEV(Vero细胞).

  13. Rate equation model of phototransduction into the membranous disks of mouse rod cells

    CERN Document Server

    Takamoto, Rei; Awazu, Akinori

    2015-01-01

    A theoretical model was developed to investigate the rod phototransduction process in the mouse. In particular, we explored the biochemical reactions of several chemical components that contribute to the signaling process into/around the membranous disks in the outer segments of the rod cells. We constructed a rate equation model incorporating the molecular crowding effects of rhodopsin according to experimental results, which may hinder the diffusion of molecules on the disk mem- brane. The present model could effectively reproduce and explain the mechanisms of the following phenomena observed in experiments. First, the activations and relaxation of the wild-type mouse rod cell progressed more slowly than those of mutant cells containing half the amount of rhodopsin on the disk membrane. Second, the strong photoactivated state of the cell was sustained for a longer period when the light stimuli were strong. Finally, the lifetime of photoactivation exhibited a logarithmic increase with increasing light streng...

  14. Importance of dose-rate and cell proliferation in the evaluation of biological experimental results

    Science.gov (United States)

    Curtis, S. B.

    1994-01-01

    The nuclei of cells within the bodies of astronauts traveling on extended missions outside the geomagnetosphere will experience single traversals of particles with high Linear Energy Transfer (LET) (e.g., one iron ion per one hundred years, on average) superimposed on a background of tracks with low LET (approximately one proton every two to three days, and one helium ion per month). In addition, some cell populations within the body will be proliferating, thus possibly providing increasing numbers of cells with 'initiated' targets for subsequent radiation hits. These temporal characteristics are not generally reproduced in laboratory experimental protocols. Implications of the differences in the temporal patterns of radiation delivery between conventionally designed radiation biology experiments and the pattern to be experienced in space are examined and the importance of dose-rate and cell proliferation are pointed out in the context of radiation risk assessment on long mission in space.

  15. X chromosome inactivation: Activation of Silencing

    NARCIS (Netherlands)

    I.H. Jonkers (Iris)

    2009-01-01

    textabstractX chromosome inactivation is a process that ensures equal expression of the X chromosomes between males, which have one X and one Y chromosome, and females, which have two X chromosomes, in mammals. Females initiate inactivation of one of their two X chromosomes early during embryogenesi

  16. Viral inactivation in hemotherapy: systematic review on inactivators with action on nucleic acids

    Directory of Open Access Journals (Sweden)

    Patricia Marial Sobral

    2012-01-01

    Full Text Available The aim of this study was to conduct a systematic review on the photoinactivators used in hemotherapy, with action on viral genomes. The SciELO, Science Direct, PubMed and Lilacs databases were searched for articles. The inclusion criterion was that these should be articles on inactivators with action on genetic material that had been published between 2000 and 2010. The key words used in identifying such articles were "hemovigilance", "viral inactivation", "photodynamics", "chemoprevention" and "transfusion safety". Twenty-four articles on viral photoinactivation were found with the main photoinactivators covered being: methylene blue, amotosalen HCl, S-303 frangible anchor linker effector (FRALE, riboflavin and inactin. The results showed that methylene blue has currently been studied least, because it diminishes coagulation factors and fibrinogen. Riboflavin has been studied most because it is a photoinactivator of endogenous origin and has few collateral effects. Amotosalen HCl is effective for platelets and is also used on plasma, but may cause changes both to plasma and to platelets, although these are not significant for hemostasis. S-303 FRALE may lead to neoantigens in erythrocytes and is less indicated for red-cell treatment; in such cases, PEN 110 is recommended. Thus, none of the methods for pathogen reduction is effective for all classes of agents and for all blood components, but despite the high cost, these photoinactivators may diminish the risk of blood-transmitted diseases.

  17. Effects of Proton Radiation Dose, Dose Rate and Dose Fractionation on Hematopoietic Cells in Mice

    OpenAIRE

    Ware, J.H.; Sanzari, J.; Avery, S.; Sayers, C; Krigsfeld, G.; Nuth, M.; Wan, X. S.; Rusek, A.; Kennedy, A R

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05–0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals...

  18. The Effect of Prolonged Culture of Chromosomally Abnormal Human Embryos on The Rate of Diploid Cells

    Directory of Open Access Journals (Sweden)

    Masood Bazrgar

    2016-12-01

    Full Text Available Background: A decrease in aneuploidy rate following a prolonged co-culture of human blastocysts has been reported. As co-culture is not routinely used in assisted reproductive technology, the present study aimed to evaluate the effect of the prolonged single culture on the rate of diploid cells in human embryos with aneuploidies. Materials and Methods: In this cohort study, we used fluorescence in situ hybridization (FISH to reanalyze surplus blastocysts undergoing preimplantation genetic diagnosis (PGD on day 3 postfertilization. They were randomly studied on days 6 or 7 following fertilization. Results: Of the 30 analyzed blastocysts, mosaicism was observed in 26(86.6%, while 2(6.7% were diploid, and 2(6.7% were triploid. Of those with mosaicism, 23(88.5% were determined to be diploid-aneuploid and 3(11.5% were aneuploid mosaic. The total frequency of embryos with more than 50% diploid cells was 33.3% that was lower on day 7 in comparison with the related value on day 6 (P<0.05; however, there were no differences when the embryos were classified according to maternal age, blastocyst developmental stage, total cell number on day 3, and embryo quality. Conclusion: Although mosaicism is frequently observed in blastocysts, the prolonged single culture of blastocysts does not seem to increase the rate of normal cells.

  19. Video-rate processing in tomographic phase microscopy of biological cells using CUDA.

    Science.gov (United States)

    Dardikman, Gili; Habaza, Mor; Waller, Laura; Shaked, Natan T

    2016-05-30

    We suggest a new implementation for rapid reconstruction of three-dimensional (3-D) refractive index (RI) maps of biological cells acquired by tomographic phase microscopy (TPM). The TPM computational reconstruction process is extremely time consuming, making the analysis of large data sets unreasonably slow and the real-time 3-D visualization of the results impossible. Our implementation uses new phase extraction, phase unwrapping and Fourier slice algorithms, suitable for efficient CPU or GPU implementations. The experimental setup includes an external off-axis interferometric module connected to an inverted microscope illuminated coherently. We used single cell rotation by micro-manipulation to obtain interferometric projections from 73 viewing angles over a 180° angular range. Our parallel algorithms were implemented using Nvidia's CUDA C platform, running on Nvidia's Tesla K20c GPU. This implementation yields, for the first time to our knowledge, a 3-D reconstruction rate higher than video rate of 25 frames per second for 256 × 256-pixel interferograms with 73 different projection angles (64 × 64 × 64 output). This allows us to calculate additional cellular parameters, while still processing faster than video rate. This technique is expected to find uses for real-time 3-D cell visualization and processing, while yielding fast feedback for medical diagnosis and cell sorting. PMID:27410107

  20. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    Directory of Open Access Journals (Sweden)

    Liliana Costa

    2012-06-01

    Full Text Available Photodynamic inactivation (PDI has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  1. Photodynamic inactivation of mammalian viruses and bacteriophages.

    Science.gov (United States)

    Costa, Liliana; Faustino, Maria Amparo F; Neves, Maria Graça P M S; Cunha, Angela; Almeida, Adelaide

    2012-07-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  2. The development of the cell cryopreservation protocol with controlled rate thawing.

    Science.gov (United States)

    Gurina, Tatyana M; Pakhomov, Alexandr V; Polyakova, Anna L; Legach, Evgeniy I; Bozhok, Galyna A

    2016-06-01

    Thawing in the water bath is often considered as a standard procedure. The thermal history of samples thawed in this way is poorly controlled, but cryopreservation and banking of cell-based products require standardization, automation and safety of all the technological stages including thawing. The programmable freezers allow implementation of the controlled cooling as well as the controlled thawing. As the cell damage occurs during the phase transformation that takes place in the cryoprotectant medium in the process of freezing-thawing, the choice of warming rates within the temperature intervals of transformations is very important. The goal of the study was to investigate the influence of warming rates within the intervals of the phase transformations in the DMSO-based cryoprotectant medium on the cell recovery and to develop a cryopreservation protocol with controlled cooling and warming rates. The temperature intervals of phase transformations such as melting of the eutectic mixture of the cryoprotectant solution (MEMCS), melting of the eutectic salt solution (MESS), melting of the main ice mass (MMIM), recrystallization before MEMCS, recrystallization before MESS and recrystallization before MMIM were determined by thermo-mechanical analysis. The biological experiments were performed on the rat testicular interstitial cells (TIC). The highest levels of the cell recovery and metabolic activity after cryopreservation were obtained using the protocol with the high (20 °C/min) warming rate in the temperature intervals of crystallization of the eutectics as well as recrystallizations and the low (1 °C/min) warming rate in the temperature intervals of melting of the eutectics as well as MMIM. The total cell recovery was 65.3 ± 2.1 %, the recovery of the 3-beta-HSD-positive (Leydig) cells was 82.9 ± 1.8 %, the MTT staining was 32.5 ± 0.9 % versus 42.1 ± 1.7 %; 57.4 ± 2.1 % and 24.0 ± 1.1 % respectively, when compared to the thawing in

  3. Relationship of HepG2 cell sensitivity to continuous low dose-rate irradiation with ATM phosphorylation

    Institute of Scientific and Technical Information of China (English)

    Quelin Mei; Jianyong Yang; Duanming Du; Zaizhong Cheng; Pengcheng liu

    2008-01-01

    Objective: To investigate the change of ATM phosphorylation in HepG2 cells and its effect on HepG2 cell survival under a continuous low dose-rate irradiation.Methods: HepG2 cells were exposed to equivalent doses of irradiation delivered at either a continuous low dose-rate (7.76 cGy/h) or a high dose-rate (4500 cGy/h).The ATM phosphorylated proteins and surviving fraction of HepG2 cell after low dose-rate irradiation were compared with that after equivalent doses of high dose-rate irradiation.Results: The phosphorylation of ATM protein was maximal at 0.5 Gy irradiation delivered at either a high dose-rate or a continuous low dose-rate.As the radiation dose increased, the phosphorylation of ATM protein decreased under continuous low dose-rate irradiation.However, the phosphorylation of ATM protein was remained stable under high dose-rate irradiation.When the phosphorylation of ATM protein under continuous low dose-rate irradiation was equal to that under high dose-rate irradiation, there was no significant difference in the surviving fraction of HepG2 cells between two ir-radiation methods (P>0.05).When the phosphorylation of ATM protein significantly decreased after continuous low dose-rate irradiation compared with that after high dose-rate irradiation, increased amounts of cell killing was found in low dose-rate irradiation (P<0.01).Conclusion: Continuous low dose-rate irradiation increases HepG2 cells radiosensitivity compared with high dose-rate irradiation.The increased amounts of cell killing following continuous low dose-rate exposures are associated with reduced ATM phosphorylated protein.

  4. A high rate of telomeric sister chromatid exchange occurs in chronic lymphocytic leukaemia B-cells.

    Science.gov (United States)

    Medves, Sandrine; Auchter, Morgan; Chambeau, Laetitia; Gazzo, Sophie; Poncet, Delphine; Grangier, Blandine; Verney, Aurélie; Moussay, Etienne; Ammerlaan, Wim; Brisou, Gabriel; Morjani, Hamid; Géli, Vincent; Palissot, Valérie; Berchem, Guy; Salles, Gilles; Wenner, Thomas

    2016-07-01

    Cancer cells protect their telomere ends from erosion through reactivation of telomerase or by using the Alternative Lengthening of Telomere (ALT) mechanism that depends on homologous recombination. Chronic lymphocytic leukaemia (CLL) B cells are characterized by almost no telomerase activity, shelterin deregulation and telomere fusions. To characterize telomeric maintenance mechanisms in B-CLL patients, we measured their telomere length, telomerase expression and the main hallmarks of the ALT activity i.e. C-circle concentration, an extra-chromosomal telomere repeat (ECTR), and the level of telomeric sister chromatid exchange (T-SCE) rate. Patients showed relative homogenous telomere length although almost no TERT transcript and nearly no C-circle were evidenced. Nevertheless, compared with normal B cells, B-CLL cells showed an increase in T-SCE rate that was correlated with a strong down-regulation of the topoisomerase III alpha (TOP3A) expression, involved in the dissolution of Holliday Junctions (HJ), together with an increased expression of SLX1A, SLX4, MUS81 and GEN1, involved in the resolution of HJ. Altogether, our results suggest that the telomere maintenance mechanism of B-CLL cells do not preferentially use telomerase or ALT. Rather, the rupture of the dissolvasome/resolvasome balance may increase telomere shuffling that could homogenize telomere length, slowing telomere erosion in this disease. PMID:26970083

  5. Frequency sweep rate dependence on the dielectrophoretic response of polystyrene beads and red blood cells

    Science.gov (United States)

    Adams, T. N. G.; Leonard, K. M.; Minerick, A. R.

    2013-01-01

    Alternating current (AC) dielectrophoresis (DEP) experiments for biological particles in microdevices are typically done at a fixed frequency. Reconstructing the DEP response curve from static frequency experiments is laborious, but essential to ascertain differences in dielectric properties of biological particles. Our lab explored the concept of sweeping the frequency as a function of time to rapidly determine the DEP response curve from fewer experiments. For the purpose of determining an ideal sweep rate, homogeneous 6.08 μm polystyrene (PS) beads were used as a model system. Translatability of the sweep rate approach to ∼7 μm red blood cells (RBC) was then verified. An Au/Ti quadrapole electrode microfluidic device was used to separately subject particles and cells to 10Vpp AC electric fields at frequencies ranging from 0.010 to 2.0 MHz over sweep rates from 0.00080 to 0.17 MHz/s. PS beads exhibited negative DEP assembly over the frequencies explored due to Maxwell-Wagner interfacial polarizations. Results demonstrate that frequency sweep rates must be slower than particle polarization timescales to achieve reliable incremental polarizations; sweep rates near 0.00080 MHz/s yielded DEP behaviors very consistent with static frequency DEP responses for both PS beads and RBCs. PMID:24396548

  6. Buffer AVL Alone Does Not Inactivate Ebola Virus in a Representative Clinical Sample Type.

    Science.gov (United States)

    Smither, Sophie J; Weller, Simon A; Phelps, Amanda; Eastaugh, Lin; Ngugi, Sarah; O'Brien, Lyn M; Steward, Jackie; Lonsdale, Steve G; Lever, Mark S

    2015-10-01

    Rapid inactivation of Ebola virus (EBOV) is crucial for high-throughput testing of clinical samples in low-resource, outbreak scenarios. The EBOV inactivation efficacy of Buffer AVL (Qiagen) was tested against marmoset serum (EBOV concentration of 1 × 10(8) 50% tissue culture infective dose per milliliter [TCID50 · ml(-1)]) and murine blood (EBOV concentration of 1 × 10(7) TCID50 · ml(-1)) at 4:1 vol/vol buffer/sample ratios. Posttreatment cell culture and enzyme-linked immunosorbent assay (ELISA) analysis indicated that treatment with Buffer AVL did not inactivate EBOV in 67% of samples, indicating that Buffer AVL, which is designed for RNA extraction and not virus inactivation, cannot be guaranteed to inactivate EBOV in diagnostic samples. Murine blood samples treated with ethanol (4:1 [vol/vol] ethanol/sample) or heat (60°C for 15 min) also showed no viral inactivation in 67% or 100% of samples, respectively. However, combined Buffer AVL and ethanol or Buffer AVL and heat treatments showed total viral inactivation in 100% of samples tested. The Buffer AVL plus ethanol and Buffer AVL plus heat treatments were also shown not to affect the extraction of PCR quality RNA from EBOV-spiked murine blood samples. PMID:26179307

  7. Capsid protein oxidation in feline calicivirus using an electrochemical inactivation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shionoiri, Nozomi; Nogariya, Osamu; Tanaka, Masayoshi; Matsunaga, Tadashi; Tanaka, Tsuyoshi, E-mail: tsuyo@cc.tuat.ac.jp

    2015-02-11

    Highlights: • Feline calicivirus was inactivated electrochemically by a factor of >5 log. • The electrochemical treatment was performed at 0.9 V (vs. Ag/AgCl) for 15 min. • Electrochemical treatment caused oxidation of viral proteins. • Oxidation of viral proteins can lead to loss of viral structural integrity. - Abstract: Pathogenic viral infections are an international public health concern, and viral disinfection has received increasing attention. Electrochemical treatment has been used for treatment of water contaminated by bacteria for several decades, and although in recent years several reports have investigated viral inactivation kinetics, the mode of action of viral inactivation by electrochemical treatment remains unclear. Here, we demonstrated the inactivation of feline calicivirus (FCV), a surrogate for human noroviruses, by electrochemical treatment in a developed flow-cell equipped with a screen-printed electrode. The viral infectivity titer was reduced by over 5 orders of magnitude after 15 min of treatment at 0.9 V vs. Ag/AgCl. Proteomic study of electrochemically inactivated virus revealed oxidation of peptides located in the viral particles; oxidation was not observed in the non-treated sample. Furthermore, transmission electron microscopy revealed that viral particles in the treated sample had irregular structures. These results suggest that electrochemical treatment inactivates FCV via oxidation of peptides in the structural region, causing structural deformation of virus particles. This first report of viral protein damage through electrochemical treatment will contribute to broadening the understanding of viral inactivation mechanisms.

  8. Buffer AVL Alone Does Not Inactivate Ebola Virus in a Representative Clinical Sample Type.

    Science.gov (United States)

    Smither, Sophie J; Weller, Simon A; Phelps, Amanda; Eastaugh, Lin; Ngugi, Sarah; O'Brien, Lyn M; Steward, Jackie; Lonsdale, Steve G; Lever, Mark S

    2015-10-01

    Rapid inactivation of Ebola virus (EBOV) is crucial for high-throughput testing of clinical samples in low-resource, outbreak scenarios. The EBOV inactivation efficacy of Buffer AVL (Qiagen) was tested against marmoset serum (EBOV concentration of 1 × 10(8) 50% tissue culture infective dose per milliliter [TCID50 · ml(-1)]) and murine blood (EBOV concentration of 1 × 10(7) TCID50 · ml(-1)) at 4:1 vol/vol buffer/sample ratios. Posttreatment cell culture and enzyme-linked immunosorbent assay (ELISA) analysis indicated that treatment with Buffer AVL did not inactivate EBOV in 67% of samples, indicating that Buffer AVL, which is designed for RNA extraction and not virus inactivation, cannot be guaranteed to inactivate EBOV in diagnostic samples. Murine blood samples treated with ethanol (4:1 [vol/vol] ethanol/sample) or heat (60°C for 15 min) also showed no viral inactivation in 67% or 100% of samples, respectively. However, combined Buffer AVL and ethanol or Buffer AVL and heat treatments showed total viral inactivation in 100% of samples tested. The Buffer AVL plus ethanol and Buffer AVL plus heat treatments were also shown not to affect the extraction of PCR quality RNA from EBOV-spiked murine blood samples.

  9. X inactivation in females with X-linked Charcot-Marie-Tooth disease.

    LENUS (Irish Health Repository)

    Murphy, Sinéad M

    2012-07-01

    X-linked Charcot-Marie-Tooth disease (CMT1X) is the second most common inherited neuropathy, caused by mutations in gap junction beta-1 (GJB1). Males have a uniformly moderately severe phenotype while females have a variable phenotype, suggested to be due to X inactivation. We aimed to assess X inactivation pattern in females with CMT1X and correlate this with phenotype using the CMT examination score to determine whether the X inactivation pattern accounted for the variable phenotype in females with CMT1X. We determined X inactivation pattern in 67 females with CMT1X and 24 controls using the androgen receptor assay. We were able to determine which X chromosome carried the GJB1 mutation in 30 females. There was no difference in X inactivation pattern between patients and controls. In addition, there was no correlation between X inactivation pattern in blood and phenotype. A possible explanation for these findings is that the X inactivation pattern in Schwann cells rather than in blood may explain the variable phenotype in females with CMT1X.

  10. Dynamics of gene silencing during X inactivation using allele-specific RNA-seq

    NARCIS (Netherlands)

    Marks, Hendrik; Kerstens, Hindrik H D; Barakat, Tahsin Stefan; Splinter, Erik; Dirks, René A M; van Mierlo, Guido; Joshi, Onkar; Wang, Shuang-Yin; Babak, Tomas; Albers, Cornelis A; Kalkan, Tüzer; Smith, Austin; Jouneau, Alice; de Laat, Wouter; Gribnau, Joost; Stunnenberg, Hendrik G

    2015-01-01

    BACKGROUND: During early embryonic development, one of the two X chromosomes in mammalian female cells is inactivated to compensate for a potential imbalance in transcript levels with male cells, which contain a single X chromosome. Here, we use mouse female embryonic stem cells (ESCs) with non-rand

  11. Investigation of Low-Pressure Ultraviolet Radiation on Inactivation of Rhabitidae Nematode from Water

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Dehghani

    2013-03-01

    Full Text Available Background: Rhabditidae is a family of free-living nematodes. Free living nematodes due to their active movement and resistance to chlorination, do not remove in conventional water treatment processes thus can be entered to distribution systems and cause adverse health effects. Ultraviolet radiation (UV can be used as a method of inactivating for these organisms. This cross sectional study was done to investigate the efficiency of ultraviolet lamp in the inactivation of free living nematode in water.Methods: The effects of radation time, turbidity, pH and temperature were invistigated in this study. Ultraviolet lamp used in this study was a 11 W lamp and intensity of this lamp was 24 µw / cm2.Results: Radiation time required to achieve 100% efficiency for larvae nematode and adults was 9 and 10 minutes respectively. There was a significant correlation between the increase in radiation time, temperature rise and turbidity reduction with inactivation efficiency of lamp (P<0.001. Increase of turbidity up 25 NTU decreased inactivation efficiency of larvae and adult nematodes from 100% to 66% and 100% to 64% respectively. Change in pH range from 6 to 9 did not affect the efficiency of inactivation. With increasing temperature inactivation rate increased. Also the effect of the lamp on inactivation of larvae nematod was mor than adults.Conclusions: It seems that with requiring the favorable conditions low-pressure ultraviolet radiation systems can be used for disinfection of water containing Rhabitidae nematode.

  12. Flow rate dependency of critical wall shear stress in a radial-flow cell

    DEFF Research Database (Denmark)

    Detry, J.G.; Jensen, Bo Boye Busk; Sindic, M.;

    2009-01-01

    In the present work, a radial-flow cell was used to study the removal of starch particle aggregates from several solid substrates (glass, stainless steel, polystyrene and PTFE) in order to determine the critical wall shear stress value for each case. The particle aggregates were formed by aspersion...... of a water or ethanol suspension of starch granules on the surfaces. Depending on the substrate and on the suspending liquid, the aggregates differed in size and shape. Aggregate removal was studied at two flow rates. At the lower flow rate (Re-inlet = 955), the values of critical wall shear stress...

  13. Escherichia coli inactivation by pressurized CO2 treatment methods at room temperature: Critical issues.

    Science.gov (United States)

    Zhang, Yongji; Huang, Doudou; Zhou, Lingling

    2016-05-01

    This study aims to increase the inactivation efficiency of CO2 against Escherichia coli under mild conditions to facilitate the application of pressurized CO2 technology in water disinfection. Based on an aerating-cycling apparatus, three different treatment methods (continuous aeration, continuous reflux, and simultaneous aeration and reflux) were compared for the same temperature, pressure (0.3-0.7MPa), initial concentration, and exposure time (25min). The simultaneous aeration and reflux treatment (combined method) was shown to be the best method under optimum conditions, which were determined to be 0.7MPa, room temperature, and an exposure time of 10min. This treatment achieved 5.1-log reduction after 25min of treatment at the pressure of 0.3MPa and 5.73-log reduction after 10min at 0.7MPa. Log reductions of 4.4 and 5.0 occurred at the end of continuous aeration and continuous reflux treatments at 0.7MPa, respectively. Scanning electron microscopy (SEM) images suggested that cells were ruptured after the simultaneous aeration and reflux treatment and the continuous reflux treatment. The increase of the solubilization rate of CO2 due to intense hydraulic conditions led to a rapid inactivation effect. It was found that the reduction of intracellular pH caused by CO2 led to a more lethal bactericidal effect. PMID:27155435

  14. Untargeted plasma metabolite profiling reveals the broad systemic consequences of xanthine oxidoreductase inactivation in mice.

    Directory of Open Access Journals (Sweden)

    Qiuying Chen

    Full Text Available A major challenge in systems biology is integration of molecular findings for individual enzyme activities into a cohesive high-level understanding of cellular metabolism and physiology/pathophysiology. However, meaningful prediction for how a perturbed enzyme activity will globally impact metabolism in a cell, tissue or intact organisms is precluded by multiple unknowns, including in vivo enzymatic rates, subcellular distribution and pathway interactions. To address this challenge, metabolomics offers the potential to simultaneously survey changes in thousands of structurally diverse metabolites within complex biological matrices. The present study assessed the capability of untargeted plasma metabolite profiling to discover systemic changes arising from inactivation of xanthine oxidoreductase (XOR, an enzyme that catalyzes the final steps in purine degradation. Using LC-MS coupled with a multivariate statistical data analysis platform, we confidently surveyed >3,700 plasma metabolites (50-1,000 Da for differential expression in XOR wildtype vs. mice with inactivated XOR, arising from gene deletion or pharmacological inhibition. Results confirmed the predicted derangements in purine metabolism, but also revealed unanticipated perturbations in metabolism of pyrimidines, nicotinamides, tryptophan, phospholipids, Krebs and urea cycles, and revealed kidney dysfunction biomarkers. Histochemical studies confirmed and characterized kidney failure in xor-nullizygous mice. These findings provide new insight into XOR functions and demonstrate the power of untargeted metabolite profiling for systemic discovery of direct and indirect consequences of gene mutations and drug treatments.

  15. Photothermal inactivation of bacteria on plasmonic nanostructures

    Science.gov (United States)

    Santos, Greggy M.; Ibañez de Santi Ferrara, Felipe; Zhao, Fusheng; Rodrigues, Debora F.; Shih, Wei-Chuan

    2016-03-01

    Hospital-acquired bacterial infections are frequently associated with the pathogenic biofilms on surfaces of devices and instruments used in medical procedures. The utilization of thermal plasmonic agents is an innovative approach for sterilizing hospital equipment and for in vivo therapeutic treatment of bacterial infection. A photothermal inactivation technique via array of nanoporous gold disks (NPGDs) has been developed by irradiating near infrared (NIR) light onto deposited bacterial cells (Escherichia coli, Bacillus subtilis, Exiguobacterium AT1B) on the surface of metal nanostructure. The physical and photothermal properties of the NPGD substrate were investigated using topographical scanning electron microscopy (SEM) and thermographic infrared imaging. Bacterial viability studies on NPGD substrates irradiated with and without NIR light were evaluated using a fluorescence-based two-component stain assay. The results show that the heat generated from the NPGD substrate promotes high cell death counts (~100%) at short exposure durations (<25 s) even for thermally-resistant bacterial strains. The photothermal effects on NPGD substrate can lead to point-of-care applications.

  16. Cold plasma inactivation of chronic wound bacteria.

    Science.gov (United States)

    Mohd Nasir, N; Lee, B K; Yap, S S; Thong, K L; Yap, S L

    2016-09-01

    Cold plasma is partly ionized non-thermal plasma generated at atmospheric pressure. It has been recognized as an alternative approach in medicine for sterilization of wounds, promotion of wound healing, topical treatment of skin diseases with microbial involvement and treatment of cancer. Cold plasma used in wound therapy inhibits microbes in chronic wound due to its antiseptic effects, while promoting healing by stimulation of cell proliferation and migration of wound relating skin cells. In this study, two types of plasma systems are employed to generate cold plasma: a parallel plate dielectric barrier discharge and a capillary-guided corona discharge. Parameters such as applied voltage, discharge frequency, treatment time and the flow of the carrier gas influence the cold plasma chemistry and therefore change the composition and concentration of plasma species that react with the target sample. Chronic wound that fails to heal often infected by multidrug resistant organisms makes them recalcitrant to healing. Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (Pseudomonas aeruginosa) are two common bacteria in infected and clinically non-infected wounds. The efficacies of the cold plasma generated by the two designs on the inactivation of three different isolates of MRSA and four isolates of P. aeruginosa are reported here.

  17. Cold plasma inactivation of chronic wound bacteria.

    Science.gov (United States)

    Mohd Nasir, N; Lee, B K; Yap, S S; Thong, K L; Yap, S L

    2016-09-01

    Cold plasma is partly ionized non-thermal plasma generated at atmospheric pressure. It has been recognized as an alternative approach in medicine for sterilization of wounds, promotion of wound healing, topical treatment of skin diseases with microbial involvement and treatment of cancer. Cold plasma used in wound therapy inhibits microbes in chronic wound due to its antiseptic effects, while promoting healing by stimulation of cell proliferation and migration of wound relating skin cells. In this study, two types of plasma systems are employed to generate cold plasma: a parallel plate dielectric barrier discharge and a capillary-guided corona discharge. Parameters such as applied voltage, discharge frequency, treatment time and the flow of the carrier gas influence the cold plasma chemistry and therefore change the composition and concentration of plasma species that react with the target sample. Chronic wound that fails to heal often infected by multidrug resistant organisms makes them recalcitrant to healing. Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (Pseudomonas aeruginosa) are two common bacteria in infected and clinically non-infected wounds. The efficacies of the cold plasma generated by the two designs on the inactivation of three different isolates of MRSA and four isolates of P. aeruginosa are reported here. PMID:27046340

  18. Temperature effect on proliferation and differentiation of satellite cells from turkeys with different growth rates.

    Science.gov (United States)

    Clark, D L; Coy, C S; Strasburg, G M; Reed, K M; Velleman, S G

    2016-04-01

    Poultry selected for growth have an inefficient thermoregulatory system and are more sensitive to temperature extremes. Satellite cells are precursors to skeletal muscle and mediate all posthatch muscle growth. Their physiological functions are affected by temperature. The objective of the current study was to determine how temperature affects satellite cells isolated from the pectoralis major (p. major) muscle (breast muscle) of turkeys selected for increased 16 wk body weight (F line) in comparison to a randombred control line (RBC2) from which the F line originated. Pectoralis major muscle satellite cells were thermally challenged by culturing between 33°C and 43°C to analyze the effects of cold and heat on proliferation and differentiation as compared to control temperature of 38°C. Expression levels of myogenic regulatory factors: myogenic differentiation factor 1 (MYOD1) and myogenin (MYOG) were quantified by quantitative polymerase chain reaction (qPCR). At all sampling times, proliferation increased at a linear rate across temperature in both the RBC2 and F lines. Differentiation also increased at a linear rate across temperature from 33 to 41°C at all sampling times in both the F and RBC2 lines. Satellite cells isolated from F line turkeys were more sensitive to both hot and cold temperatures as proliferation and differentiation increased to a greater extent across temperature (33 to 43°C) when compared with the RBC2 line. Expression of MYOD1 and MYOG increased as temperatures increased from 33 to 41°C at all sampling times in both the F and RBC2 lines. These results demonstrate that satellite cell function is sensitive to both cold and hot temperatures and p. major muscle satellite cells from F line turkeys are more sensitive to temperature extremes than RBC2 satellite cells.

  19. Relaxation rates of low-field gas-phase ^129Xe storage cells

    Science.gov (United States)

    Limes, Mark; Saam, Brian

    2010-10-01

    A study of longitudinal nuclear relaxation rates T1 of ^129Xe and Xe-N2 mixtures in a magnetic field of 3.8 mT is presented. In this regime, intrinsic spin relaxation is dominated by the intramolecular spin-rotation interaction due to persistent xenon dimers, a mechanism that can be quelled by introducing large amounts of N2 into the storage cell. Extrinsic spin relaxation is dominated by the wall-relaxation rate, which is the primary quantity of interest for the various low-field storage cells and coatings that we have tested. Previous group work has shown that extremely long gas-phase relaxation times T1 can be obtained, but only at large magnetic fields and low xenon densities. The current work is motivated by the practical benefits of retaining hyperpolarized ^129Xe for extended periods of time in a small magnetic field.

  20. Study on Cell Error Rate of a Satellite ATM System Based on CDMA

    Institute of Scientific and Technical Information of China (English)

    赵彤宇; 张乃通

    2003-01-01

    In this paper, the cell error rate (CER) of a CDMA-based satellite ATM system is analyzed. Two fading models, i.e. the partial fading model and the total fading model are presented according to multi-path propagation fading and shadow effect. Based on the total shadow model, the relation of CER vs. the number of subscribers at various elevations under 2D-RAKE receiving and non-diversity receiving is got. The impact on cell error rate with pseudo noise (PN) code length is also considered. The result that the maximum likelihood combination of multi-path signal would not improve the system performance when multiple access interference (MAI) is small, on the contrary the performance may be even worse is abtained.

  1. CO desorption rate dependence on CO partial pressure over platinum fuel cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Davies, J.C.; Nielsen, R.M.; Thomsen, L.B.; Chorkendorff, I. [Interdisciplinary Center for Catalysis (ICAT), Department of Physics, Department of Chemical Engineering, Technical University of Denmark, Building 312, DK-2800 Lyngby (Denmark); Logadottir, A.; Lodziana, Z.; Noerskov, J.K. [Center for Atomic-Scale Materials Physics (CAMP), Department of Physics, Technical University of Denmark, Building 307, DK-2800 Lyngby (Denmark); Li, W.X.; Hammer, B. [Interdisciplinary Nanoscience Center and Institute of Physics and Astronomy, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C (Denmark); Longwitz, S.R.; Schnadt, J.; Vestergaard, E.K.; Vang, R.T.; Besenbacher, F. [Center for Atomic-Scale Materials Physics (CAMP), Interdisciplinary Nanoscience Center, and Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark)

    2004-12-01

    Carbon monoxide adsorption on high area platinum fuel cell catalysts was investigated. Isotopic exchange experiments were performed to determine the exchange rate (k) of CO under different partial pressures of CO (p{sub CO}) in argon. A linear dependence of ln(k) with ln(p{sub CO}) was observed. This pressure dependence of the rate of exchange is explained by considering a change in surface coverage of CO with different CO pressures and a subsequent reduction in the CO binding energy as demonstrated by Density Functional Theory (DFT) calculations. High Pressure Scanning Tunneling Microscopy (HP STM) studies on the Pt(111) surface have also displayed a pressure dependency of the coverage consistent with this data. The relevance of these observations to the Polymer Electrolyte Membrane Fuel Cell (PEMFC) anode reaction is discussed. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  2. Raman spectroscopy of Bacillus thuringiensis physiology and inactivation

    Science.gov (United States)

    Morrow, J. B.; Almeida, J.; Cole, K. D.; Reipa, V.

    2012-12-01

    The ability to detect spore contamination and inactivation is relevant to developing and determining decontamination strategy success for food and water safety. This study was conducted to develop a systematic comparison of nondestructive vibrational spectroscopy techniques (Surface-Enhanced Raman Spectroscopy, SERS, and normal Raman) to determine indicators of Bacillus thuringiensis physiology (spore, vegetative, outgrown, germinated and inactivated spore forms). SERS was found to provide better resolution of commonly utilized signatures of spore physiology (dipicolinic acid at 1006 cm-1 and 1387 cm-1) compared to normal Raman and native fluorescence indigenous to vegetative and outgrown cell samples was quenched in SERS experiment. New features including carotenoid pigments (Raman features at 1142 cm-1, 1512 cm-1) were identified for spore cell forms. Pronounced changes in the low frequency region (300 cm-1 to 500 cm-1) in spore spectra occurred upon germination and inactivation (with both free chlorine and by autoclaving) which is relevant to guiding decontamination and detection strategies using Raman techniques.

  3. Chemical addressability of ultraviolet-inactivated viral nanoparticles (VNPs.

    Directory of Open Access Journals (Sweden)

    Chris Rae

    Full Text Available BACKGROUND: Cowpea Mosaic Virus (CPMV is increasingly being used as a nanoparticle platform for multivalent display of molecules via chemical bioconjugation to the capsid surface. A growing variety of applications have employed the CPMV multivalent display technology including nanoblock chemistry, in vivo imaging, and materials science. CPMV nanoparticles can be inexpensively produced from experimentally infected cowpea plants at high yields and are extremely stable. Although CPMV has not been shown to replicate in mammalian cells, uptake in mammalian cells does occur in vitro and in vivo. Thus, inactivation of the virus RNA genome is important for biosafety considerations, however the surface characteristics and chemical reactivity of the particles must be maintained in order to preserve chemical and structural functionality. METHODOLOGY/PRINCIPAL FINDINGS: Short wave (254 nm UV irradiation was used to crosslink the RNA genome within intact particles. Lower doses of UV previously reported to inactivate CPMV infectivity inhibited symptoms on inoculated leaves but did not prohibit systemic virus spread in plants, whereas higher doses caused aggregation of the particles and an increase in chemical reactivity further indicating broken particles. Intermediate doses of 2.0-2.5 J/cm(2 were shown to maintain particle structure and chemical reactivity, and cellular binding properties were similar to CPMV-WT. CONCLUSIONS: These studies demonstrate that it is possible to inactivate CPMV infectivity while maintaining particle structure and function, thus paving the way for further development of CPMV nanoparticles for in vivo applications.

  4. Experience-dependent firing rate remapping generates directional selectivity in hippocampal place cells

    Directory of Open Access Journals (Sweden)

    Zaneta eNavratilova

    2012-02-01

    Full Text Available When rodents engage in irregular foraging in an open field environment, hippocampal principal cells exhibit place-specific firing that is statistically independent of the direction of traverse through the place field. When the path is restricted to a track, however, in-field rates differ substantially in opposite directions. Frequently, the representations of the track in the two directions are essentially orthogonal. We show that this directionally selective firing is not hard-wired, but develops through experience-dependent plasticity. During the rats’ first pass in each direction, place fields were highly directionally symmetric, whereas over subsequent laps, the firing rates in the two directions gradually but substantially diverged. We conclude that, even on a restricted track, place cell firing is initially determined by allocentric position, and only later, the within-field firing rates change in response to differential sensory information or behavioral cues in the two directions. In agreement with previous data, place fields near local cues, such as textures on the track, developed less directionality than place fields on a uniform part of the track, possibly because the local cues reduced the net difference in sensory input at a given point. Directionality also developed in an open environment without physical restriction of the animal’s path, when rats learned to run along a specified path. In this case, directionality developed later than on the running track, only after the rats began to run in a stereotyped manner. Although the average population firing rates exhibited little if any change over laps in either direction, the direction-specific firing rates in a given place field were up- or down-regulated with about equal probability and magnitude, which was independent in the two directions, suggesting some form of competitive mechanism (e.g., LTP/LTD acting coherently on the set of synapses conveying external information to

  5. Inactivation of microorganisms for high pressures in the wine industry

    International Nuclear Information System (INIS)

    In order to evaluate experimentally the capacity of N2 and CO2 under pressure to inactivate wild yeasts, which remain in the Puntalarga vineyard grape, musts were exposed to hyperbaric treatment with these gases. At the end of the pascalization (after 2 hours), CO2 at 15 degrades Celsius under pressures from 1 to 5 MPa, reached high inactivation percentages of yeast cells (> 90%). Contrary to CO2 treatment the use of N2 at 15 degrades Celsius at 4 and 10 MPa failed to exert microbicide effect in a same treatment time. While CO2 gas with high solubility in water has the potential to reduce microbial loads in musts, N2 gas with low solubility in water have not effect on the survival of the pathogenic microorganisms in these juices

  6. Evaluation of the treatment of both sides of raw chicken breasts with an atmospheric pressure plasma jet for the inactivation of Escherichia coli.

    Science.gov (United States)

    Yong, Hae In; Kim, Hyun-Joo; Park, Sanghoo; Choe, Wonho; Oh, Mi Wha; Jo, Cheorun

    2014-08-01

    Atmospheric pressure plasma (APP) is an emerging nonthermal microbial inactivation technique. In this study, agar and raw chicken breast were inoculated with Escherichia coli and treated with an APP jet based on cold arc plasma. The aim of this study was to investigate the optimum conditions for the plasma treatment of an APP jet in order to maximize the efficiency of E. coli inactivation. The combination of N2+O2 (10 standard cubic centimeters per minute) and a longer treatment time (10 min) resulted in the highest inactivation of E. coli on agar plates with an optimum treatment distance of 20 mm. The samples in dry and wet conditions showed similar reductions in E. coli count when one side of the samples was treated at a given treatment time. Treating both sides-2.5 min on each side-resulted in a higher growth inhibition of E. coli than treatment of a single side only for 5 min. However, there was no significant difference between one-side treated samples (10 min) and both-sides treated samples (5+5 min). When the concentration of E. coli in the chicken breast sample was 10(4) colony-forming units (CFU)/g, the reduction rate of the E. coli was the highest, followed by 10(5), 10(6), and 10(7) CFU/g; however, no difference was found between 10(3) and 10(4) CFU/g. In conclusion, various treatment conditions may affect the inactivation efficiency of E. coli. In the present study, the optimum condition was determined as the treatment distance of 20 mm and longer treatment time (10 min) with the addition of oxygen to the nitrogen gas flow. Furthermore, the cell concentration of sample was an important parameter for the efficacy of the inactivation process.

  7. A first-generation X-inactivation profile of the human X chromosome.

    Science.gov (United States)

    Carrel, L; Cottle, A A; Goglin, K C; Willard, H F

    1999-12-01

    In females, most genes on the X chromosome are generally assumed to be transcriptionally silenced on the inactive X as a result of X inactivation. However, particularly in humans, an increasing number of genes are known to "escape" X inactivation and are expressed from both the active (Xa) and inactive (Xi) X chromosomes; such genes reflect different molecular and epigenetic responses to X inactivation and are candidates for phenotypes associated with X aneuploidy. To identify genes that escape X inactivation and to generate a first-generation X-inactivation profile of the X, we have evaluated the expression of 224 X-linked genes and expressed sequence tags by reverse-transcription-PCR analysis of a panel of multiple independent mouse/human somatic cell hybrids containing a normal human Xi but no Xa. The resulting survey yields an initial X-inactivation profile that is estimated to represent approximately 10% of all X-linked transcripts. Of the 224 transcripts tested here, 34 (three of which are pseudoautosomal) were expressed in as many as nine Xi hybrids and thus appear to escape inactivation. The genes that escape inactivation are distributed nonrandomly along the X; 31 of 34 such transcripts map to Xp, implying that the two arms of the X are epigenetically and/or evolutionarily distinct and suggesting that genetic imbalance of Xp may be more severe clinically than imbalance of Xq. A complete X-inactivation profile will provide information relevant to clinical genetics and genetic counseling and should yield insight into the genomic and epigenetic organization of the X chromosome.

  8. Very fast (and safe) inactivation of foot-and-mouth disease virus and enteroviruses by a combination of binary ethyleneimine and formaldehyde.

    Science.gov (United States)

    Barteling, S J; Cassim, N I

    2004-01-01

    For FMD vaccine production, inactivation of the FMD virus is the most critical step. Formerly, from 1940 onwards, the virus was inactivated with formaldehyde. This inactivation was relatively slow, about 0.2 - 0.3 log 10 per hour. Because formaldehyde not only reacts with the virus produced but with many other components in the medium, such as proteins and amino acids, its concentration can become rate-limiting and inactivation plots may show tailing-off, resulting in residual infectivity. Many of the bad stories of post-vaccination outbreaks date back to the use of formaldehyde-inactivated vaccines (e.g. the outbreaks in France in 1981 and in Eastern Germany causing the Danish outbreak in 1982). Much faster and safer inactivation was obtained with aziridines and in the 1980s binary ethyleneimine (BEI) was introduced in practically all vaccine production laboratories. If inactivation plots are made of every production batch, as is now required by the European Pharmacopoeia, and these plots show proper inactivation rates, vaccines can considered to be completely safe. Under optimal conditions, inactivation rates are in the range of 0.5 - 1.0 log 10 per hour. In general, the inactivation takes 40-48 hours,which will guarantee complete inactivation of all virus particles in a batch. Since formaldehyde (FA), the 'classical' inactivating agent, inactivates at a rate of 0.3 logs per hour only, a significant contribution of FA to the inactivation of BEI can hardly be expected. However, here it is shown that FA added during the BEI-inactivation process strongly augments inactivation rates with a hundred to thousand-times (to 2.5-3.5 logs per hour). This will enable inactivation during a working day or just overnight with even higher safety levels of the vaccines. Also, it is known that formaldehyde cross-links viral proteins which will stabilise the antigen. The short inactivation times will limit proteolytic destruction of 146 S antigen and increase antigen yields. It is

  9. Co-variation of metabolic rates and cell-size in coccolithophores

    Directory of Open Access Journals (Sweden)

    G. Aloisi

    2015-04-01

    Full Text Available Coccolithophores are sensitive recorders of environmental change. The size of their coccosphere varies in the ocean along gradients of environmental conditions and provides a key for understanding the fate of this important phytoplankton group in the future ocean. But interpreting field changes in coccosphere size in terms of laboratory observations is hard, mainly because the marine signal reflects the response of multiple morphotypes to changes in a combination of environmental variables. In this paper I examine the large corpus of published laboratory experiments with coccolithophores looking for relations between environmental conditions, metabolic rates and cell size (a proxy for coccosphere size. I show that growth, photosynthesis, and to a lesser extent calcification, co-vary with cell size when pCO2, irradiance, temperature, nitrate, phosphate and iron conditions change. With the exception of phosphate and temperature, a change from limiting to non-limiting conditions always results in an increase in cell size. An increase in phosphate or temperature produces the opposite effect. The magnitude of the coccosphere size changes observed in the laboratory is comparable to that observed in the ocean. If the biological reasons behind the environment-metabolism-size link are understood, it will be possible to use coccosphere size changes in the modern ocean and in marine sediments to investigate the fate of coccolithophores in the future ocean. This reasoning can be extended to the size of coccoliths if, as recent experiments are starting to show, coccolith size reacts to environmental change proportionally to coccosphere size. I introduce a simple model that simulates the growth rate and the size of cells forced by nitrate and phosphate concentrations. By considering a simple rule that allocates the energy flow from nutrient acquisition to cell structure (biomass and cell maturity (biological complexity, eventually leading to cell division

  10. Determination of Interfacial Charge-Transfer Rate Constants in Perovskite Solar Cells.

    Science.gov (United States)

    Pydzińska, Katarzyna; Karolczak, Jerzy; Kosta, Ivet; Tena-Zaera, Ramon; Todinova, Anna; Idígoras, Jesus; Anta, Juan A; Ziółek, Marcin

    2016-07-01

    A simple protocol to study the dynamics of charge transfer to selective contacts in perovskite solar cells, based on time-resolved laser spectroscopy studies, in which the effect of bimolecular electron-hole recombination has been eliminated, is proposed. Through the proposed procedure, the interfacial charge-transfer rate constants from methylammonium lead iodide perovskite to different contact materials can be determined. Hole transfer is faster for CuSCN (rate constant 0.20 ns(-1) ) than that for 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD; 0.06 ns(-1) ), and electron transfer is faster for mesoporous (0.11 ns(-1) ) than that for compact (0.02 ns(-1) ) TiO2 layers. Despite more rapid charge separation, the photovoltaic performance of CuSCN cells is worse than that of spiro-OMeTAD cells; this is explained by faster charge recombination in CuSCN cells, as revealed by impedance spectroscopy. The proposed direction of studies should be one of the key strategies to explore efficient hole-selective contacts as an alternative to spiro-OMeTAD. PMID:27253726

  11. CD55 is a key complement regulatory protein that counteracts complement-mediated inactivation of Newcastle Disease Virus.

    Science.gov (United States)

    Rangaswamy, Udaya S; Cotter, Christopher R; Cheng, Xing; Jin, Hong; Chen, Zhongying

    2016-08-01

    Newcastle disease virus (NDV) is being developed as an oncolytic virus for virotherapy. In this study we analysed the regulation of complement-mediated inactivation of a recombinant NDV in different host cells. NDV grown in human cells was less sensitive to complement-mediated virus inactivation than NDV grown in embryonated chicken eggs. Additionally, NDV produced from HeLa-S3 cells is more resistant to complement than NDV from 293F cells, which correlated with higher expression and incorporation of complement regulatory proteins (CD46, CD55 and CD59) into virions from HeLa-S3 cells. Further analysis of the recombinant NDVs individually expressing the three CD molecules showed that CD55 is the most potent in counteracting complement-mediated virus inactivation. The results provide important information on selecting NDV manufacture substrate to mitigate complement-mediated virus inactivation.

  12. Sewage bacteriophage inactivation by cationic porphyrins: influence of light parameters.

    Science.gov (United States)

    Costa, Liliana; Carvalho, Carla M B; Faustino, Maria A F; Neves, Maria G P M S; Tomé, João P C; Tomé, Augusto C; Cavaleiro, José A S; Cunha, Angela; Almeida, Adelaide

    2010-08-01

    Photodynamic therapy has been used to inactivate microorganisms through the use of targeted photosensitizers. Although the photoinactivation of microorganisms has already been studied under different conditions, a systematic evaluation of irradiation characteristics is still limited. The goal of this study was to test how the light dose, fluence rate and irradiation source affect the viral photoinactivation of a T4-like sewage bacteriophage. The experiments were carried out using white PAR light delivered by fluorescent PAR lamps (40 W m(-2)), sun light (600 W m(-2)) and an halogen lamp (40-1690 W m(-2)). Phage suspensions and two cationic photosensitizers (Tetra-Py(+)-Me, Tri-Py(+)-Me-PF) at concentrations of 0.5, 1.0 and 5.0 microM were used. The results showed that the efficacy of the bacteriophage photoinactivation is correlated not only with the sensitizer and its concentration but also with the light source, energy dose and fluence rate applied. Both photosensitizers at 5.0 microM were able to inactivate the T4-like phage to the limit of detection for each light source and fluence rate. However, depending of the light parameters, different irradiation times are required. The efficiency of photoinactivation is dependent on the spectral emission distribution of the light sources used. Considering the same light source and a fixed light dose applied at different fluence rates, phage inactivation was significantly higher when low fluence rates were used. In this way, the light source, fluence rate and total light dose play an important role in the effectiveness of the antimicrobial photodynamic therapy and should always be considered when establishing an optimal antimicrobial protocol. PMID:20563346

  13. Trypsin-Sensitive, Rapid Inactivation of a Calcium-Activated Potassium Channel

    Science.gov (United States)

    Solaro, Christopher R.; Lingle, Christopher J.

    1992-09-01

    Most calcium-activated potassium channels couple changes in intracellular calcium to membrane excitability by conducting a current with a probability that depends directly on submembrane calcium concentration. In rat adrenal chromaffin cells, however, a large conductance, voltage- and calcium-activated potassium channel (BK) undergoes rapid inactivation, suggesting that this channel has a physiological role different than that of other BK channels. The inactivation of the BK channel, like that of the voltage-gated Shaker B potassium channel, is removed by trypsin digestion and channels are blocked by the Shaker B amino-terminal inactivating domain. Thus, this BK channel shares functional and possibly structural homologies with other inactivating voltage-gated potassium channels.

  14. Fetal calf serum heat inactivation and lipopolysaccharide contamination influence the human T lymphoblast proteome and phosphoproteome

    Directory of Open Access Journals (Sweden)

    Rahman Hazir

    2011-11-01

    Full Text Available Abstract Background The effects of fetal calf serum (FCS heat inactivation and bacterial lipopolysaccharide (LPS contamination on cell physiology have been studied, but their effect on the proteome of cultured cells has yet to be described. This study was undertaken to investigate the effects of heat inactivation of FCS and LPS contamination on the human T lymphoblast proteome. Human T lymphoblastic leukaemia (CCRF-CEM cells were grown in FCS, either non-heated, or heat inactivated, having low ( Results A total of four proteins (EIF3M, PRS7, PSB4, and SNAPA were up-regulated when CCRF-CEM cells were grown in media supplemented with heat inactivated FCS (HE as compared to cells grown in media with non-heated FCS (NHE. Six proteins (TCPD, ACTA, NACA, TCTP, ACTB, and ICLN displayed a differential phosphorylation pattern between the NHE and HE groups. Compared to the low concentration LPS group, regular levels of LPS resulted in the up-regulation of three proteins (SYBF, QCR1, and SUCB1. Conclusion The present study provides new information regarding the effect of FCS heat inactivation and change in FCS-LPS concentration on cellular protein expression, and post-translational modification in human T lymphoblasts. Both heat inactivation and LPS contamination of FCS were shown to modulate the expression and phosphorylation of proteins involved in basic cellular functions, such as protein synthesis, cytoskeleton stability, oxidative stress regulation and apoptosis. Hence, the study emphasizes the need to consider both heat inactivation and LPS contamination of FCS as factors that can influence the T lymphoblast proteome.

  15. Uric acid substantially enhances the free radical-induced inactivation of alcohol dehydrogenase.

    Science.gov (United States)

    Kittridge, K J; Willson, R L

    1984-05-01

    Lactate dehydrogenase (LDH) and yeast alcohol dehydrogenase ( YADH ) are inactivated when attacked by hydroxy free radicals (OH). Organic molecules with a high rate constant of reaction with OH such as ascorbate or urate can compete with the enzymes for these strongly oxidising radicals. However, although 10(-3)M ascorbate can substantially protect both LDH and YADH from OH attack, in the presence of 10(-3)M urate only LDH is protected. In the case of YADH an even greater degree of inactivation than with OH occurs. The extent of inactivation is considerably reduced when oxygen is absent, in agreement with a urate peroxy radical perhaps being partly responsible for the increased inactivation of the enzyme.

  16. Rate of temperature reduction at cryopreservation primordial germ cells (PGC of three Indonesian native chicken.

    Directory of Open Access Journals (Sweden)

    Tatan Kostaman

    2011-10-01

    Full Text Available Primordial germ cells (PGCs are original cells of spermatogonia in the testes or oogonia in the ovary. PGCs in poultry can be harvested and stored in the liquid nitrogen and can be used for conservation as genetic materials of poultry. The objective of this study was to obtain the optimal rate of temperature reduction on PGCs quality from three different Indonesian native chicken after thawing. Fertile eggs obtained from native chicken were incubated for 56 hours to obtain embryo at stage of 14-16. PGCs were isolated from the blood using modified Nycodenz Gradient Centrifugation technique. There after they were kept in a straw and equilibrated for 15 minutes at 5oC and frozen at the rate of temperature reduction of 0.3, 0.5, and 1oC per minute using embryo freezing machine (FHK Fujihara: ET-1. After the temperature reached -30oC, then they were plunged directly into the liquid nitrogen. Recovery rate and viability of PGCs after freezing and thawing were measured. The results of this study showed that the average recovery rate of PGCs that have been frozen at rate of temperature reduction of 1, 0.5, and 0.3oC per minute were 35.6, 43.9, and 44.9% respectively. However the rate of temperature reduction of 0.5 and 0.3oC per minute did not significantly affect the recovery rate. The average percentage of viability of PGCs that were frozen at the rate of 1, 0.5 and 0.3oC per minute were respectively 62.6, 77.5, and 77.4%. It seems that the viability followed the trend of recovery rates where the 1oC per minute reduction was the lowest quality compared to the other two treatments. It is concluded that the reduction of 0.5 or 0.3oC per minute are considered as the ideal temperature reduction when native chicken PGCs are frozen.

  17. Genetic stability of a Vero-cell-derived, inactivated Japanese encephalitis vaccine (P3 strain)%乙型脑炎Vero细胞灭活疫苗毒株的遗传稳定性

    Institute of Scientific and Technical Information of China (English)

    张海燕; 曹晗; 王俊荣; 张名; 梁疆莉; 马艳; 顾琴; 杨卉娟; 孙明波

    2014-01-01

    Objective To investigate genetic stability of P3 strain of Vero cell derived inactivated Japanese encephalitis vaccine.Methods The nucleotide and amino acid sequences of E protein of Japanese encephalitis virus (JEV) P3 strain at different culture period including the mouse brain one passage seed,master seed,working seed the vaccine lot in addition to its 5 passages lot were determined,while the E gene and protein sequences were compared with JEV wide stain (AF036919) from the GenBank.Furthermore,the master seed,working seed,vaccine lot and its 5 passages lot of P3 stain were determined for virus titer,antigen concentration and the vaccine potency.Results The E gene and protein sequences of the above 5 passages of vaccine strain prepared for JEV vaccine showed no difference with homologies of 100%.When the 5 passages of vaccine stain compared with those JEV wide stain (AF036919),the gene sequence at E9,E10,E324,E330,E1223,E1338 showed difference with homologies of 99.73%.No silent mutation were investigated except the amino acid mutation at aE408 (L→S) but was no virulence-associated sites with homologies of 99.80%.The virus titers of the master seed,working seed,vaccine lot and its 5 passages lot of P3 stain were higher than 8.0 lgLD50/ml,while the antigen concentrations and the vaccine potency showed no difference.Conclusion The virus seed bank of P3 strain for Vero cell derived inactivated Japanese encephalitis vaccine showed high genetic stable.%目的 研究流行性乙型脑炎Vero细胞灭活疫苗毒种(P3毒株)在生产过程中的遗传稳定性,为疫苗的安全性和免疫原性评价提供依据.方法 检测P3毒株鼠脑传代一代毒株、主种子、工作种子、疫苗及疫苗续传5代后病毒E蛋白基因核苷酸及氨基酸序列,并与GenBank中乙脑病毒P3株(AF036919)进行比对分析,同时比较主种子、工作种子、疫苗及疫苗续传5代后毒株的病毒滴度、抗原含量及效价.结果 以上5代次病毒

  18. Immune response and protection in gibel carp, Carassius gibelio, after vaccination with β-propiolactone inactivated cyprinid herpesvirus 2.

    Science.gov (United States)

    Zhang, Linlin; Ma, Jie; Fan, Yuding; Zhou, Yong; Xu, Jin; Liu, Wenzhi; Gu, Zemao; Zeng, Lingbing

    2016-02-01

    Herpesviral haematopoietic necrosis (HVHN) of gibel carp (Carassius gibelio) is a newly emerged infectious disease caused by cyprinid herpesvirus 2 (CyHV-2) and has caused huge economic losses in aquaculture operations. Currently, no effective methods are available for the control of the disease. In this study, β-propiolactone inactivated cyprinid herpesvirus 2 (CyHV-2) vaccine was prepared, and the immune response and protection in cultured gibel carp after vaccination was thoroughly investigated. This included blood cell counting and classification, phagocytic activity, lysozyme and superoxide dismutase activity, neutralizing antibody titration, immune gene expression analysis, and determination of the relative percent survival in vaccinated gibel carp. The results of blood cell counts indicated that the numbers of the red and white blood cells in the peripheral blood of immunized gibel carp increased significantly at day 4 and day 7 after vaccination (p component C3 were significantly up-regulated in the immunized group. The challenge test demonstrated that the immunized group had a relative survival rate of 71.4%. These results indicate that the inactivated CyHV-2 vaccine induced both non-specific and specific anti-viral immune responses that resulted in significant protection against HVHN disease and mortality in gibel carp. PMID:26772479

  19. Parametric control of collision rates and capture rates in geometrically enhanced differential immunocapture (GEDI) microfluidic devices for rare cell capture.

    Science.gov (United States)

    Smith, James P; Lannin, Timothy B; Syed, Yusef; Santana, Steven M; Kirby, Brian J

    2014-02-01

    The enrichment and isolation of rare cells from complex samples, such as circulating tumor cells (CTCs) from whole blood, is an important engineering problem with widespread clinical applications. One approach uses a microfluidic obstacle array with an antibody surface functionalization to both guide cells into contact with the capture surface and to facilitate adhesion; geometrically enhanced differential immunocapture is a design strategy in which the array is designed to promote target cell–obstacle contact and minimize other interactions (Gleghorn et al. 2010; Kirby et al. 2012). We present a simulation that uses capture experiments in a simple Hele-Shaw geometry (Santana et al. 2012) to inform a target-cell-specific capture model that can predict capture probability in immunocapture microdevices of any arbitrary complex geometry. We show that capture performance is strongly dependent on the array geometry, and that it is possible to select an obstacle array geometry that maximizes capture efficiency (by creating combinations of frequent target cell–obstacle collisions and shear stress low enough to support capture), while simultaneously enhancing purity by minimizing nonspecific adhesion of both smaller contaminant cells (with infrequent cell–obstacle collisions) and larger contaminant cells (by focusing those collisions into regions of high shear stress).

  20. Ribosome Inactivating Proteins from Rosaceae

    Directory of Open Access Journals (Sweden)

    Chenjing Shang

    2016-08-01

    Full Text Available Ribosome-inactivating proteins (RIPs are widespread among higher plants of different taxonomic orders. In this study, we report on the RIP sequences found in the genome/transcriptome of several important Rosaceae species, including many economically important edible fruits such as apple, pear, peach, apricot, and strawberry. All RIP domains from Rosaceae share high sequence similarity with conserved residues in the catalytic site and the carbohydrate binding sites. The genomes of Malus domestica and Pyrus communis contain both type 1 and type 2 RIP sequences, whereas for Prunus mume, Prunus persica, Pyrus bretschneideri, and Pyrus communis a complex set of type 1 RIP sequences was retrieved. Heterologous expression and purification of the type 1 as well as the type 2 RIP from apple allowed to characterize the biological activity of the proteins. Both RIPs from Malus domestica can inhibit protein synthesis. Furthermore, molecular modelling suggests that RIPs from Rosaceae possess three-dimensional structures that are highly similar to the model proteins and can bind to RIP substrates. Screening of the recombinant type 2 RIP from apple on a glycan array revealed that this type 2 RIP interacts with terminal sialic acid residues. Our data suggest that the RIPs from Rosaceae are biologically active proteins.

  1. Ribosome Inactivating Proteins from Rosaceae.

    Science.gov (United States)

    Shang, Chenjing; Rougé, Pierre; Van Damme, Els J M

    2016-01-01

    Ribosome-inactivating proteins (RIPs) are widespread among higher plants of different taxonomic orders. In this study, we report on the RIP sequences found in the genome/transcriptome of several important Rosaceae species, including many economically important edible fruits such as apple, pear, peach, apricot, and strawberry. All RIP domains from Rosaceae share high sequence similarity with conserved residues in the catalytic site and the carbohydrate binding sites. The genomes of Malus domestica and Pyrus communis contain both type 1 and type 2 RIP sequences, whereas for Prunus mume, Prunus persica, Pyrus bretschneideri, and Pyrus communis a complex set of type 1 RIP sequences was retrieved. Heterologous expression and purification of the type 1 as well as the type 2 RIP from apple allowed to characterize the biological activity of the proteins. Both RIPs from Malus domestica can inhibit protein synthesis. Furthermore, molecular modelling suggests that RIPs from Rosaceae possess three-dimensional structures that are highly similar to the model proteins and can bind to RIP substrates. Screening of the recombinant type 2 RIP from apple on a glycan array revealed that this type 2 RIP interacts with terminal sialic acid residues. Our data suggest that the RIPs from Rosaceae are biologically active proteins.

  2. Protective efficacy of heat-inactivated B. thailandensis, B. mallei or B. pseudomallei against experimental melioidosis and glanders.

    Science.gov (United States)

    Sarkar-Tyson, Mitali; Smither, Sophie J; Harding, S V; Atkins, Timothy P; Titball, Richard W

    2009-07-16

    Burkholderia pseudomallei and Burkholderia mallei are gram-negative bacilli that are the causative agents of melioidosis and glanders, respectively. Both humans and animals are susceptible to both diseases. There is currently no vaccine available for the prevention of disease. We report the protective efficacy of heat-inactivated Burkholderia thailandensis, B. mallei or B. pseudomallei cells as vaccines against murine melioidosis and glanders. Immunisation with heat-inactivated B. pseudomallei cells provided the highest levels of protection against either melioidosis or glanders. These studies indicate the longer term potential for heat-inactivated bacteria to be developed as vaccines against melioidosis and glanders.

  3. Physical inactivation and stabilization of sludges

    International Nuclear Information System (INIS)

    High temperature conditioning of sludge is a stabilization process that insures sterilization. Both thermal pasteurization and irradiation are inactivation processes. Viruses and parasites are inactivated at 70-800C. Total bacterial destruction requires higher temperatures and/or detention time. Radio sensitivity of pathogens and pertinent treatment parameters are examined. If sludge is to be land disposed, disinfection requires irradiation doses ranging 500 Krad; if cattle feeding is considered, the required dose is 1 Mrad

  4. Proteolytic inactivation of cytokines by Pseudomonas aeruginosa.

    OpenAIRE

    Parmely, M; Gale, A; Clabaugh, M.; Horvat, R; Zhou, W W

    1990-01-01

    Pseudomonas aeruginosa alkaline protease and elastase are thought to contribute to bacterial invasiveness, tissue damage, and immune suppression in animals and patients infected with the bacterium. This study examined the ability of the two proteases to inactivate a number of cytokines that mediate immune and inflammatory responses. Human recombinant gamma interferon (rIFN-gamma) and human recombinant tumor necrosis factor alpha were inactivated by both proteases. Murine rIFN-gamma was relati...

  5. RHOA inactivation enhances Wnt signaling and promotes colorectal cancer

    Science.gov (United States)

    Rodrigues, Paulo; Macaya, Irati; Bazzocco, Sarah; Mazzolini, Rocco; Andretta, Elena; Dopeso, Higinio; Mateo-Lozano, Silvia; Bilić, Josipa; Cartón-García, Fernando; Nieto, Rocio; Suárez-López, Lucia; Afonso, Elsa; Landolfi, Stefania; Hernandez-Losa, Javier; Kobayashi, Kazuto; Cajal, Santiago Ramón y; Tabernero, Josep; Tebbutt, Niall C.; Mariadason, John M.; Schwartz, Simo; Arango, Diego

    2014-01-01

    Activation of the small GTPase RHOA has strong oncogenic effects in many tumor types, although its role in colorectal cancer remains unclear. Here we show that RHOA inactivation contributes to colorectal cancer progression/metastasis, largely through the activation of Wnt/β-catenin signaling. RhoA inactivation in the murine intestine accelerates the tumorigenic process and in human colon cancer cells leads to the redistribution of β-catenin from the membrane to the nucleus and enhanced Wnt/β-catenin signaling, resulting in increased proliferation, invasion and de-differentiation. In mice, RHOA inactivation contributes to colon cancer metastasis and reduced RHOA levels were observed at metastatic sites compared to primary human colon tumors. Therefore, we have identified a new mechanism of activation of Wnt/β-catenin signaling and characterized the role of RHOA as a novel tumor suppressor in colorectal cancer. These results constitute a shift from the current paradigm and demonstrate that RHO GTPases can suppress tumor progression and metastasis. PMID:25413277

  6. Photosensitized inactivation of infectious blood-borne human parasites

    Science.gov (United States)

    Judy, Millard M.; Sogandares-Bernal, Franklin M.; Matthews, James Lester

    1995-05-01

    Blood-borne viruses and protozoan parasites that are infectious to humans pose risk world-wide of infection transmission through blood and blood product transfusion. Blood-borne infectious viruses include human immunodeficiency virus (HIV-I), which causes AIDS; hepatitis C virus, which can cause chronic hepatitis; and cytomegalovirus, which can be dangerous to immunocompromised patients, e.g., the newborn, transplant recipients, and AIDS patients. Infectious blood-borne protozoan parasites include Trypanosoma cruzi, which causes Chagas' disease, endemic throughout Central and South America; the Trypanosoma species causing African sleeping sickness endemic in Central Africa; and Plasmodium falciparum, which causes malignant and increasingly drug- resistant human malaria prevalent throughout the tropics. Some researchers have focused on using photosensitizers to inactivate HIV-I and other viruses in whole blood, packed red cells, and platelet concentrates without compromising blood product function. Our group previously has reported photosensitized in vitro inactivation of P. falciparum and the mouse malaria organism Plasmodium berghei in whole blood using hematoporphyrin derivative (HPD) and of T. cruzi using benzoporphyrin derivatives BPDMA and BPDDA, dihematoporphyrin ether (DHE), and hydroxyethylvinyldeuteroporphyrin (HEVD). These results suggest that continued investigation is warranted to evaluate the potential for photosensitized inactivation of blood-borne parasites in blood banking.

  7. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces

    Energy T