WorldWideScience

Sample records for cell immunological synapse

  1. The immunological synapse

    DEFF Research Database (Denmark)

    Klemmensen, Thomas; Pedersen, Lars Ostergaard; Geisler, Carsten

    2003-01-01

    distinct 3-dimensional supramolecular structure at the T cell/APC interface has been suggested to be involved in the information transfer. Due to its functional analogy to the neuronal synapse, the structure has been termed the "immunological synapse" (IS). Here, we review molecular aspects concerning IS...

  2. Subcellular dynamics of T cell immunological synapses and kinapses in lymph nodes

    OpenAIRE

    Azar, Georges A.; Lemaître, Fabrice; Robey, Ellen A.; Bousso, Philippe

    2010-01-01

    In vitro studies have revealed that T cell activation occurs during the formation of either dynamic or stable interactions with antigen-presenting cells (APC), and the respective cell junctions have been referred to as immunological kinapses and synapses. However, the relevance and molecular dynamics of kinapses and synapses remain to be established in vivo. Using two-photon imaging, we tracked the distribution of LAT-EGFP molecules during antigen recognition by activated CD4+ T cells in lymp...

  3. Understanding the Structure and Function of the Immunological Synapse

    OpenAIRE

    Dustin, Michael L.; Chakraborty, Arup K.; Shaw, Andrey S

    2010-01-01

    The immunological synapse has been an area of very active scientific interest over the last decade. Surprisingly, much about the synapse remains unknown or is controversial.  Here we review some of these current issues in the field:  how the synapse is defined, its potential role in T-cell function, and our current understanding about how the synapse is formed.

  4. Resolving dynamics of cell signaling via real-time imaging of the immunological synapse.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Mark A.; Pfeiffer, Janet R. (University of New Mexico, Albuquerque, NM); Wilson, Bridget S. (University of New Mexico, Albuquerque, NM); Timlin, Jerilyn Ann; Thomas, James L. (University of New Mexico, Albuquerque, NM); Lidke, Keith A. (University of New Mexico, Albuquerque, NM); Spendier, Kathrin (University of New Mexico, Albuquerque, NM); Oliver, Janet M. (University of New Mexico, Albuquerque, NM); Carroll-Portillo, Amanda (University of New Mexico, Albuquerque, NM); Aaron, Jesse S.; Mirijanian, Dina T.; Carson, Bryan D.; Burns, Alan Richard; Rebeil, Roberto

    2009-10-01

    This highly interdisciplinary team has developed dual-color, total internal reflection microscopy (TIRF-M) methods that enable us to optically detect and track in real time protein migration and clustering at membrane interfaces. By coupling TIRF-M with advanced analysis techniques (image correlation spectroscopy, single particle tracking) we have captured subtle changes in membrane organization that characterize immune responses. We have used this approach to elucidate the initial stages of cell activation in the IgE signaling network of mast cells and the Toll-like receptor (TLR-4) response in macrophages stimulated by bacteria. To help interpret these measurements, we have undertaken a computational modeling effort to connect the protein motion and lipid interactions. This work provides a deeper understanding of the initial stages of cellular response to external agents, including dynamics of interaction of key components in the signaling network at the 'immunological synapse,' the contact region of the cell and its adversary.

  5. The mature activating natural killer cell immunologic synapse is formed in distinct stages.

    Science.gov (United States)

    Orange, Jordan S; Harris, K Eliza; Andzelm, Milena M; Valter, Markus M; Geha, Raif S; Strominger, Jack L

    2003-11-25

    Natural killer (NK) cells form a structure at their interface with a susceptible target cell called the activating NK cell immunologic synapse (NKIS). The mature activating NKIS contains a central and peripheral supramolecular activation cluster (SMAC), and includes polarized surface receptors, filamentous actin (F-actin) and perforin. Evaluation of the NKIS in human NK cells revealed CD2, CD11a, CD11b and F-actin in the peripheral SMAC (pSMAC) with perforin in the central SMAC. The accumulation of F-actin and surface receptors was rapid and depended on Wiskott-Aldrich syndrome protein-driven actin polymerization. The accumulation at and arrangement of these molecules in the pSMAC was not affected by microtubule depolymerization. The polarization of perforin, however was slower and required intact actin, Wiskott-Aldrich syndrome protein, and microtubule function. Thus the process of CD2, CD11a, CD11b, and F-actin accumulation in the pSMAC and perforin accumulation in the central SMAC of the NKIS are sequential processes with distinct cytoskeletal requirements. PMID:14612578

  6. Comparative Anatomy of Phagocytic and immunological Synapses

    OpenAIRE

    Niedergang, Florence; Di Bartolo, Vincenzo; Alcover, Andrés

    2016-01-01

    The generation of phagocytic cups and immunological synapses are crucial events of the innate and adaptive immune responses, respectively. They are triggered by distinct immune receptors and performed by different cell types. However, growing experimental evidence shows that a very close series of molecular and cellular events control these two processes. Thus, the tight and dynamic interplay between receptor signaling, actin and microtubule cytoskeleton, and targeted vesicle traffic are all ...

  7. Quantal concept of T-cell activation: adhesion domains as immunological synapses

    Science.gov (United States)

    Sackmann, Erich

    2011-06-01

    Adhesion micro-domains (ADs) formed during encounters of lymphocytes with antigen-presenting cells (APC) mediate the genetic expression of quanta of cytokines interleukin-2 (IL-2). The IL-2-induced activation of IL-2 receptors promotes the stepwise progression of the T-cells through the cell cycle, hence their name, immunological synapses. The ADs form short-lived reaction centres controlling the recruitment of activators of the biochemical pathway (the kinases Lck and ZAP) while preventing the access of inhibitors (phosphatase CD45) through steric repulsion forces. CD45 acts as the generator of adhesion domains and, through its role as a spacer protein, also as the promoter of the reaction. In a second phase of T-cell-APC encounters, long-lived global reaction spaces (called supramolecular activation complexes (SMAC)) form by talin-mediated binding of the T-cell integrin (LFA-1) to the counter-receptor ICAM-1, resulting in the formation of ring-like tight adhesion zones (peripheral SMAC). The ADs move to the centre of the intercellular adhesion zone forming the central SMAC, which serve in the recycling of the AD. We propose that cell stimulation is triggered by integrating the effect evoked by the short-lived adhesion domains. Similar global reaction platforms are formed by killer cells to destruct APC. We present a testable mechanical model showing that global reaction spaces (SMAC or dome-like contacts between cytotoxic cells and APC) form by self-organization through delayed activation of the integrin-binding affinity and stabilization of the adhesion zones by F-actin recruitment. The mechanical stability and the polarization of the adhering T-cells are mediated by microtubule-actin cross-talk.

  8. Quantal concept of T-cell activation: adhesion domains as immunological synapses

    Energy Technology Data Exchange (ETDEWEB)

    Sackmann, Erich, E-mail: sackmann@ph.tum.de [Physics Department E22, Technical University Munich, D-85748 Garching (Germany)

    2011-06-15

    Adhesion micro-domains (ADs) formed during encounters of lymphocytes with antigen-presenting cells (APC) mediate the genetic expression of quanta of cytokines interleukin-2 (IL-2). The IL-2-induced activation of IL-2 receptors promotes the stepwise progression of the T-cells through the cell cycle, hence their name, immunological synapses. The ADs form short-lived reaction centres controlling the recruitment of activators of the biochemical pathway (the kinases Lck and ZAP) while preventing the access of inhibitors (phosphatase CD45) through steric repulsion forces. CD45 acts as the generator of adhesion domains and, through its role as a spacer protein, also as the promoter of the reaction. In a second phase of T-cell-APC encounters, long-lived global reaction spaces (called supramolecular activation complexes (SMAC)) form by talin-mediated binding of the T-cell integrin (LFA-1) to the counter-receptor ICAM-1, resulting in the formation of ring-like tight adhesion zones (peripheral SMAC). The ADs move to the centre of the intercellular adhesion zone forming the central SMAC, which serve in the recycling of the AD. We propose that cell stimulation is triggered by integrating the effect evoked by the short-lived adhesion domains. Similar global reaction platforms are formed by killer cells to destruct APC. We present a testable mechanical model showing that global reaction spaces (SMAC or dome-like contacts between cytotoxic cells and APC) form by self-organization through delayed activation of the integrin-binding affinity and stabilization of the adhesion zones by F-actin recruitment. The mechanical stability and the polarization of the adhering T-cells are mediated by microtubule-actin cross-talk.

  9. Recruitment of dynein to the Jurkat immunological synapse

    OpenAIRE

    Combs, Jeffrey; Kim, Soo Jin; Tan, Sarah; Ligon, Lee A.; Holzbaur, Erika L.F.; Kuhn, Jeffrey; Poenie, Martin

    2006-01-01

    Binding of T cells to antigen-presenting cells leads to the formation of the immunological synapse, translocation of the microtubule-organizing center (MTOC) to the synapse, and focused secretion of effector molecules. Here, we show that upon activation of Jurkat cells microtubules project from the MTOC to a ring of the scaffolding protein ADAP, localized at the synapse. Loss of ADAP, but not lymphocyte function-associated antigen 1, leads to a severe defect in MTOC polarization at the immuno...

  10. Fish oil disrupts MHC class II lateral organization on the B-cell side of the immunological synapse independent of B-T cell adhesion.

    Science.gov (United States)

    Rockett, Benjamin Drew; Melton, Mark; Harris, Mitchel; Bridges, Lance C; Shaikh, Saame Raza

    2013-11-01

    Fish oil-enriched long chain n-3 polyunsaturated fatty acids disrupt the molecular organization of T-cell proteins in the immunological synapse. The impact of fish oil derived n-3 fatty acids on antigen-presenting cells, particularly at the animal level, is unknown. We previously demonstrated B-cells isolated from mice fed with fish oil-suppressed naïve CD4(+) T-cell activation. Therefore, here we determined the mechanistic effects of fish oil on murine B-cell major histocompatibility complex (MHC) class II molecular distribution using a combination of total internal reflection fluorescence, Förster resonance energy transfer and confocal imaging. Fish oil had no impact on presynaptic B-cell MHC II clustering. Upon conjugation with transgenic T-cells, fish-oil suppressed MHC II accumulation at the immunological synapse. As a consequence, T-cell protein kinase C theta (PKCθ) recruitment to the synapse was also diminished. The effects were independent of changes in B-T cell adhesion, as measured with microscopy, flow cytometry and static cell adhesion assays with select immune ligands. Given that fish oil can reorganize the membrane by lowering membrane cholesterol levels, we then compared the results with fish oil to cholesterol depletion using methyl-B-cyclodextrin (MβCD). MβCD treatment of B-cells suppressed MHC II and T-cell PKCθ recruitment to the immunological synapse, similar to fish oil. Overall, the results reveal commonality in the mechanism by which fish oil manipulates protein lateral organization of B-cells compared to T-cells. Furthermore, the data establish MHC class II lateral organization on the B-cell side of the immunological synapse as a novel molecular target of fish oil. PMID:23791516

  11. Microtubule dynamics and signal transduction at the immunological synapse: new partners and new connections

    OpenAIRE

    Lasserre, Rémi; Alcover, Andrés

    2012-01-01

    Antigen recognition induces T-cell polarization towards antigen presenting cells, generating the immunological synapse at the cell interface. Now, microtubule-mediated polarized vesicle transport is shown to be required for the organization of a signalling-competent synapse and hence T-cell activation.

  12. New views of the human NK cell immunological synapse: recent advances enabled by super- and high- resolution imaging techniques

    Directory of Open Access Journals (Sweden)

    Emily M. Mace

    2013-01-01

    Full Text Available Imaging technology has undergone rapid growth with the development of super resolution microscopy, which enables resolution below the diffraction barrier of light (~200 nm. In addition, new techniques for single molecule imaging are being added to the cell biologist’s arsenal. Immunologists have exploited these techniques to advance understanding of NK biology, particularly that of the immune synapse. The immune synapse’s relatively small size and complex architecture combined with its exquisitely controlled signaling milieu have made it a challenge to visualize. In this review we highlight and discuss new insights into NK cell immune synapse formation and regulation revealed by cutting edge imaging techniques, including super resolution microscopy and high resolution total internal reflection microscopy and Förster resonance energy transfer.

  13. Elastohydrodynamics and kinetics of protein patterning in the immunological synapse

    CERN Document Server

    Carlson, Andreas

    2015-01-01

    The cellular basis for the adaptive immune response during antigen recognition relies on a specialized protein interface known as the immunological synapse (IS). Understanding the biophysical basis for protein patterning by deciphering the quantitative rules for their formation and motion is an important aspect of characterizing immune cell recognition and thence the rules for immune system activation. We propose a minimal mathematical model for the physical basis of membrane protein patterning in the IS, which encompass membrane mechanics, protein binding kinetics and motion, and fluid flow in the synaptic cleft. Our theory leads to simple predictions for the spatial and temporal scales of protein cluster formation, growth and arrest as a function of membrane stiffness, rigidity and kinetics of the adhesive proteins, and the fluid in the synaptic cleft. Numerical simulations complement these scaling laws by quantifying the nucleation, growth and stabilization of proteins domains on the size of the cell. Dire...

  14. Effects of the Geometry of the Immunological Synapse on the Delivery of Effector Molecules

    OpenAIRE

    Coombs, Daniel; Goldstein, Byron

    2004-01-01

    Recent experiments focusing on the function of the immunological synapse formed between a T cell and an antigen-presenting cell raise many questions about its purpose. We examine the proposal that the close apposition of the cell membranes in the central region of the synapse acts to focus T-cell secretions on the target cell, thus reducing the effect on nearby cells. We show that the efficiency of targeted T-cell responses to closely apposed cells is only weakly dependent on the distance bet...

  15. Hair cell ribbon synapses

    OpenAIRE

    Moser, Tobias; Brandt, Andreas; Lysakowski, Anna

    2006-01-01

    Hearing and balance rely on the faithful synaptic coding of mechanical input by the auditory and vestibular hair cells of the inner ear. Mechanical deflection of their stereocilia causes the opening of mechanosensitive channels, resulting in hair cell depolarization, which controls the release of glutamate at ribbon-type synapses. Hair cells have a compact shape with strong polarity. Mechanoelectrical transduction and active membrane turnover associated with stereociliar renewal dominate the ...

  16. ZAP-70 kinase regulates HIV cell-to-cell spread and virological synapse formation

    OpenAIRE

    Sol-Foulon, Nathalie; Sourisseau, Marion; Porrot, Françoise; Thoulouze, Maria-Isabel; Trouillet, Céline; Nobile, Cinzia; Blanchet, Fabien; Di Bartolo, Vincenzo; Noraz, Nelly; Taylor, Naomi; Alcover, Andres; Hivroz, Claire; Schwartz, Olivier

    2007-01-01

    HIV efficiently spreads in lymphocytes, likely through virological synapses (VSs). These cell–cell junctions share some characteristics with immunological synapses, but cellular proteins required for their constitution remain poorly characterized. We have examined here the role of ZAP-70, a key kinase regulating T-cell activation and immunological synapse formation, in HIV replication. In lymphocytes deficient for ZAP-70, or expressing a kinase-dead mutant of the protein, HIV replication was ...

  17. NK cell survival mediated through the regulatory synapse with human DCs requires IL-15Rα

    OpenAIRE

    Brilot, Fabienne; Strowig, Till; Roberts, Susanne M.; Arrey, Frida; Münz, Christian

    2007-01-01

    DCs activate NK cells during innate immune responses to viral infections. However, the composition and kinetics of the immunological synapse mediating this interaction are largely unknown. Here, we report the rapid formation of an immunological synapse between human resting NK cells and mature DCs. Although inhibitory NK cell receptors were polarized to this synapse, where they are known to protect mature DCs from NK cell lysis, the NK cell also received activation signals that induced mobili...

  18. Temporal dynamics in an immunological synapse: Role of thermal fluctuations in signaling

    Science.gov (United States)

    Bush, Daniel R.; Chattopadhyay, Amit K.

    2015-07-01

    The article analyzes the contribution of stochastic thermal fluctuations in the attachment times of the immature T-cell receptor TCR: peptide-major-histocompatibility-complex pMHC immunological synapse bond. The key question addressed here is the following: how does a synapse bond remain stabilized in the presence of high-frequency thermal noise that potentially equates to a strong detaching force? Focusing on the average time persistence of an immature synapse, we show that the high-frequency nodes accompanying large fluctuations are counterbalanced by low-frequency nodes that evolve over longer time periods, eventually leading to signaling of the immunological synapse bond primarily decided by nodes of the latter type. Our analysis shows that such a counterintuitive behavior could be easily explained from the fact that the survival probability distribution is governed by two distinct phases, corresponding to two separate time exponents, for the two different time regimes. The relatively shorter timescales correspond to the cohesion:adhesion induced immature bond formation whereas the larger time reciprocates the association:dissociation regime leading to TCR:pMHC signaling. From an estimate of the bond survival probability, we show that, at shorter timescales, this probability PΔ(τ ) scales with time τ as a universal function of a rescaled noise amplitude D/Δ2, such that PΔ(τ ) ˜τ-(Δ/√{D }+1/2 ) ,Δ being the distance from the mean intermembrane (T cell:Antigen Presenting Cell) separation distance. The crossover from this shorter to a longer time regime leads to a universality in the dynamics, at which point the survival probability shows a different power-law scaling compared to the one at shorter timescales. In biological terms, such a crossover indicates that the TCR:pMHC bond has a survival probability with a slower decay rate than the longer LFA-1:ICAM-1 bond justifying its stability.

  19. Quantifying Signaling-Induced Reorientation of TCR's During Immunological Synapse Formation

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; Irvine, D J; Davis, M M; Krummel, M F

    2002-10-17

    Productive T cell recognition of antigen-presenting cells (APCs) is normally accompanied by the formation of a cell-cell contact called the 'immunological synapse.' Our understanding of the steps leading up to this formation has been limited by the absence of tools for analyzing 3D surfaces and surface distributions as they change over time. Here we use a 3D fluorescence quantitation method to show that T cell receptors are recruited in bulk within the first minute after the onset of activation and with velocities ranging from 0.04 to 0.1 {micro}m/s; a speed significantly greater than unrestricted diffusion. Our method reveals a second feature of this reorientation: a conformational change as the T cell pushes more total membrane into the interface creating a larger contact area for additional receptors. Analysis of individual T cell receptor velocities using a single-particle tracking method confirms our velocity measurement. This method should permit the quantitation of other dynamic membrane events and the associated movement of cell-surface molecules.

  20. CD229 (Ly9) lymphocyte cell surface receptor interacts homophilically through its N-terminal domain and relocalizes to the immunological synapse

    NARCIS (Netherlands)

    Romero, [No Value; Zapater, N; Calvo, M; Kalko, SG; de la Fuente, MA; Tovar, [No Value; Ockeloen, C; Pizcueta, P; Engel, P

    2005-01-01

    CD229 is a member of the CD150 family of the Ig superfamily expressed on T and B cells. Receptors of this family regulate cytokine production and cytotoxicity of lymphocytes and NK cells. The cytoplasmic tail of CD229 binds to SAP, a protein that is defective in X-linked lymphoproliferative syndrome

  1. The variable hinge region of novel PKCs determines localization to distinct regions of the immunological synapse.

    Directory of Open Access Journals (Sweden)

    Roshni Basu

    Full Text Available The immunological synapse (IS formed between a T cell and its cognate antigen-presenting cell (APC enables the directional secretion of cytolytic and inflammatory molecules. Synaptic architecture is established in part by a two-step cascade of novel protein kinase C (nPKC isozymes. PKCε and PKCη arrive at the IS first, and occupy the entire synaptic membrane. Then, PKCθ accumulates in a smaller zone at the center of the contact. We investigated the molecular basis for this differential recruitment behavior using chimeric nPKC constructs and total internal reflection fluorescence microscopy. Our studies revealed that the V3 linker just N-terminal to the kinase domain plays a crucial role in specifying nPKC localization. Substitution of this linker switched the scope and the kinetics of PKCθ accumulation to that of PKCε and PKCη, and vice versa. Although the V3 was necessary for synaptic compartmentalization, it was not sufficient, as the tandem C1 domains were also required to mediate membrane association. Together, these results suggest a model whereby the V3 linker controls nPKC sub-compartmentalization after initial C1 domain-mediated accumulation at the IS.

  2. NKp46 clusters at the immune synapse and regulates NK cell polarization

    Directory of Open Access Journals (Sweden)

    Uzi eHadad

    2015-09-01

    Full Text Available Natural killer cells play an important role in first-line defense against tumor and virus-infected cells. The activity of NK cells is tightly regulated by a repertoire of cell-surface expressed inhibitory and activating receptors. NKp46 is a major NK cell activating receptor that is involved in the elimination of target cells. NK cells form different types of synapses that result in distinct functional outcomes: cytotoxic, inhibitory, and regulatory. Recent studies revealed that complex integration of NK receptor signaling controls cytoskeletal rearrangement and other immune synapse-related events. However the distinct nature by which NKp46 participates in NK immunological synapse formation and function remains unknown. In this study we determined that NKp46 forms microclusters structures at the immune synapse between NK cells and target cells. Over-expression of human NKp46 is correlated with increased accumulation of F-actin mesh at the immune synapse. Concordantly, knock-down of NKp46 in primary human NK cells decreased recruitment of F-actin to the synapse. Live cell imaging experiments showed a linear correlation between NKp46 expression and lytic granules polarization to the immune synapse. Taken together, our data suggest that NKp46 signaling directly regulates the NK lytic immune synapse from early formation to late function.

  3. The Dendritic Cell Synapse: A Life Dedicated to T Cell Activation.

    Science.gov (United States)

    Benvenuti, Federica

    2016-01-01

    T-cell activation within immunological synapses is a complex process whereby different types of signals are transmitted from antigen-presenting cells to T cells. The molecular strategies developed by T cells to interpret and integrate these signals have been systematically dissected in recent years and are now in large part understood. On the other side of the immune synapse, dendritic cells (DCs) participate actively in synapse formation and maintenance by remodeling of membrane receptors and intracellular content. However, the details of such changes have been only partially characterized. The DCs actin cytoskeleton has been one of the first systems to be identified as playing an important role in T-cell priming and some of the underlying mechanisms have been elucidated. Similarly, the DCs microtubule cytoskeleton undergoes major spatial changes during synapse formation that favor polarization of the DCs subcellular space toward the interacting T cell. Recently, we have begun to investigate the trafficking machinery that controls polarized delivery of endosomal vesicles at the DC-T immune synapse with the aim of understanding the functional relevance of polarized secretion of soluble factors during T-cell priming. Here, we will review the current knowledge of events occurring in DCs during synapse formation and discuss the open questions that still remain unanswered. PMID:27014259

  4. Proteomic studies of a single CNS synapse type: the parallel fiber/purkinje cell synapse.

    Directory of Open Access Journals (Sweden)

    Fekrije Selimi

    2009-04-01

    Full Text Available Precise neuronal networks underlie normal brain function and require distinct classes of synaptic connections. Although it has been shown that certain individual proteins can localize to different classes of synapses, the biochemical composition of specific synapse types is not known. Here, we have used a combination of genetically engineered mice, affinity purification, and mass spectrometry to profile proteins at parallel fiber/Purkinje cell synapses. We identify approximately 60 candidate postsynaptic proteins that can be classified into 11 functional categories. Proteins involved in phospholipid metabolism and signaling, such as the protein kinase MRCKgamma, are major unrecognized components of this synapse type. We demonstrate that MRCKgamma can modulate maturation of dendritic spines in cultured cortical neurons, and that it is localized specifically to parallel fiber/Purkinje cell synapses in vivo. Our data identify a novel synapse-specific signaling pathway, and provide an approach for detailed investigations of the biochemical complexity of central nervous system synapse types.

  5. Structure and function of the hair cell ribbon synapse.

    OpenAIRE

    Nouvian, R.; Beutner, D.; Parsons, T D; Moser, T.

    2006-01-01

    Faithful information transfer at the hair cell afferent synapse requires synaptic transmission to be both reliable and temporally precise. The release of neurotransmitter must exhibit both rapid on and off kinetics to accurately follow acoustic stimuli with a periodicity of 1 ms or less. To ensure such remarkable temporal fidelity, the cochlear hair cell afferent synapse undoubtedly relies on unique cellular and molecular specializations. While the electron microscopy hallmark of the hair cel...

  6. B cells and immunological tolerance.

    Science.gov (United States)

    Manjarrez-Orduño, Nataly; Quách, Tâm D; Sanz, Iñaki

    2009-02-01

    Work from multiple groups continues to provide additional evidence for the powerful and highly diverse roles, both protective and pathogenic, that B cells play in autoimmune diseases. Similarly, it has become abundantly clear that antibody-independent functions may account for the opposing influences that B cells exercise over other arms of the immune response and ultimately over autoimmunity itself. Finally, it is becoming apparent that the clinical impact of B-cell depletion therapy may be, to a large extent, determined by the functional balance between different B-cell subsets that may be generated by this therapeutic intervention. In this review, we postulate that our perspective of B-cell tolerance and our experimental approach to its understanding are fundamentally changed by this view of B cells. Accordingly, we first discuss current knowledge of B-cell tolerance conventionally defined as the censoring of autoantibody-producing B cells (with an emphasis on human B cells). Therefore, we discuss a different model that contemplates B cells not only as targets of tolerance but also as mediators of tolerance. This model is based on the notion that the onset of clinical autoimmune disease may require a B-cell gain-of-pathogenic function (or a B-cell loss-of-regulatory-function) and that accordingly, disease remission may depend on the restoration of the physiological balance between B-cell pathogenic and protective functions. PMID:19148217

  7. Feedforward lateral inhibition in retinal bipolar cells: input-output relation of the horizontal cell-depolarizing bipolar cell synapse.

    OpenAIRE

    Yang, X. L.; S. M. Wu

    1991-01-01

    Lateral inhibition is the ubiquitous strategy used by visual neurons for spatial resolution throughout the animal kingdom. It has been a puzzle whether lateral inputs in retinal bipolar cells are mediated by the horizontal cell (HC)-cone feedback synapse, by the HC-bipolar cell feedforward synapse, or by both. By blocking the central inputs of the depolarizing bipolar cells (DBCs) with L-2-amino-4-phosphonobutyrate, we were able to eliminate the contribution of the feedback synapse and to dem...

  8. Close contact fluctuations: the seeding of signalling domains in the immunological synapse

    CERN Document Server

    Chattopadhyay, A K; Burroughs, Nigel J; Chattopadhyay, Amit K

    2006-01-01

    We analyse the size and density of thermally induced regions of close contact in cell:cell contact interfaces within a harmonic potential approximation, estimating these regions to be below one-tenth of a micron across. Our calculations indicate that as the distance between the close contact threshold depth and the mean membrane-membrane separation increases, the density of close contact patches decreases exponentially while there is only a minimal variation in their mean size. The technique developed can be used to calculate the probability of first crossing in reflection symmetry violating systems.

  9. Neuron-NG2 Cell Synapses: Novel Functions for Regulating NG2 Cell Proliferation and Differentiation

    Directory of Open Access Journals (Sweden)

    Qian-Kun Yang

    2013-01-01

    Full Text Available NG2 cells are a population of CNS cells that are distinct from neurons, mature oligodendrocytes, astrocytes, and microglia. These cells can be identified by their NG2 proteoglycan expression. NG2 cells have a highly branched morphology, with abundant processes radiating from the cell body, and express a complex set of voltage-gated channels, AMPA/kainate, and GABA receptors. Neurons notably form classical and nonclassical synapses with NG2 cells, which have varied characteristics and functions. Neuron-NG2 cell synapses could fine-tune NG2 cell activities, including the NG2 cell cycle, differentiation, migration, and myelination, and may be a novel potential therapeutic target for NG2 cell-related diseases, such as hypoxia-ischemia injury and periventricular leukomalacia. Furthermore, neuron-NG2 cell synapses may be correlated with the plasticity of CNS in adulthood with the synaptic contacts passing onto their progenies during proliferation, and synaptic contacts decrease rapidly upon NG2 cell differentiation. In this review, we highlight the characteristics of classical and nonclassical neuron-NG2 cell synapses, the potential functions, and the fate of synaptic contacts during proliferation and differentiation, with the emphasis on the regulation of the NG2 cell cycle by neuron-NG2 cell synapses and their potential underlying mechanisms.

  10. Immunological characteristics of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Cíntia de Vasconcellos Machado

    2013-01-01

    Full Text Available Although bone marrow is the main source, mesenchymal stem cells have already been isolated from various other tissues, such as the liver, pancreas, adipose tissue, peripheral blood and dental pulp. These plastic adherent cells are morphologically similar to fibroblasts and have a high proliferative potential. This special group of cells possesses two essential characteristics: self-renewal and differentiation, with appropriate stimuli, into various cell types. Mesenchymal stem cells are considered immunologically privileged, since they do not express costimulatory molecules, required for complete T cell activation, on their surface. Several studies have shown that these cells exert an immunosuppressive effect on cells from both innate and acquired immunity systems. Mesenchymal stem cells can regulate the immune response in vitro by inhibiting the maturation of dendritic cells, as well as by suppressing the proliferation and function of T and B lymphocytes and natural killer cells. These special properties of mesenchymal stem cells make them a promising strategy in the treatment of immune mediated disorders, such as graft-versus-host disease and autoimmune diseases, as well as in regenerative medicine. The understanding of immune regulation mechanisms of mesenchymal stem cells, and also those involved in the differentiation of these cells in various lineages is primordial for their successful and safe application in different areas of medicine.

  11. Antibody to a molecular marker of cell position inhibits synapse formation in retina.

    OpenAIRE

    Trisler, D.; Bekenstein, J; Daniels, M P

    1986-01-01

    A topographic gradient of TOP molecules in retina can be used to identify neuron position. Antibody to TOP from hybridoma cells that were injected into in vivo embryo eyes diffused into the retina and bound in a topographic gradient of [antibody.TOP] ([Ab.TOP]) complexes. Synapse formation in retina was inhibited in the presence of anti-TOP antibody. This suggests that TOP is involved in synapse formation and that recognition of position by neurons is necessary for normal synapse formation.

  12. The regulated secretory pathway in CD4(+ T cells contributes to human immunodeficiency virus type-1 cell-to-cell spread at the virological synapse.

    Directory of Open Access Journals (Sweden)

    Clare Jolly

    2011-09-01

    Full Text Available Direct cell-cell spread of Human Immunodeficiency Virus type-1 (HIV-1 at the virological synapse (VS is an efficient mode of dissemination between CD4(+ T cells but the mechanisms by which HIV-1 proteins are directed towards intercellular contacts is unclear. We have used confocal microscopy and electron tomography coupled with functional virology and cell biology of primary CD4(+ T cells from normal individuals and patients with Chediak-Higashi Syndrome and report that the HIV-1 VS displays a regulated secretion phenotype that shares features with polarized secretion at the T cell immunological synapse (IS. Cell-cell contact at the VS re-orientates the microtubule organizing center (MTOC and organelles within the HIV-1-infected T cell towards the engaged target T cell, concomitant with polarization of viral proteins. Directed secretion of proteins at the T cell IS requires specialized organelles termed secretory lysosomes (SL and we show that the HIV-1 envelope glycoprotein (Env localizes with CTLA-4 and FasL in SL-related compartments and at the VS. Finally, CD4(+ T cells that are disabled for regulated secretion are less able to support productive cell-to-cell HIV-1 spread. We propose that HIV-1 hijacks the regulated secretory pathway of CD4(+ T cells to enhance its dissemination.

  13. Germinal center B cells recognize antigen through a specialized immune synapse architecture.

    Science.gov (United States)

    Nowosad, Carla R; Spillane, Katelyn M; Tolar, Pavel

    2016-07-01

    B cell activation is regulated by B cell antigen receptor (BCR) signaling and antigen internalization in immune synapses. Using large-scale imaging across B cell subsets, we found that, in contrast with naive and memory B cells, which gathered antigen toward the synapse center before internalization, germinal center (GC) B cells extracted antigen by a distinct pathway using small peripheral clusters. Both naive and GC B cell synapses required proximal BCR signaling, but GC cells signaled less through the protein kinase C-β-NF-κB pathway and produced stronger tugging forces on the BCR, thereby more stringently regulating antigen binding. Consequently, GC B cells extracted antigen with better affinity discrimination than naive B cells, suggesting that specialized biomechanical patterns in B cell synapses regulate T cell-dependent selection of high-affinity B cells in GCs. PMID:27183103

  14. Proteomic studies of a single CNS synapse type: the parallel fiber/purkinje cell synapse.

    OpenAIRE

    Fekrije Selimi; Cristea, Ileana M.; Elizabeth Heller; Brian T Chait; Nathaniel Heintz

    2009-01-01

    Author Summary The brain is composed of many different types of neurons that form very specific connections: synapses are formed with specific cellular partners and on precise subcellular domains. It has been proposed that different combinations of molecules encode the specificity of neuronal connections, implying the existence of a “molecular synaptic code.” To test this hypothesis, we describe a new experimental strategy that allows systematic identification of the protein composition for i...

  15. Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses

    DEFF Research Database (Denmark)

    Benninger, Richard K P; Vanherberghen, Bruno; Young, Stephen;

    2009-01-01

    We have applied fluorescence imaging of two-photon linear dichroism to measure the subresolution organization of the cell membrane during formation of the activating (cytolytic) natural killer (NK) cell immune synapse (IS). This approach revealed that the NK cell plasma membrane is convoluted into...... absent from the center of the mature synapse. Understanding the role of such extensive membrane ruffling in the assembly of cytolytic synapses is an intriguing new goal....

  16. Motor axon synapses on renshaw cells contain higher levels of aspartate than glutamate.

    Directory of Open Access Journals (Sweden)

    Dannette S Richards

    Full Text Available Motoneuron synapses on spinal cord interneurons known as Renshaw cells activate nicotinic, AMPA and NMDA receptors consistent with co-release of acetylcholine and excitatory amino acids (EAA. However, whether these synapses express vesicular glutamate transporters (VGLUTs capable of accumulating glutamate into synaptic vesicles is controversial. An alternative possibility is that these synapses release other EAAs, like aspartate, not dependent on VGLUTs. To clarify the exact EAA concentrated at motor axon synapses we performed a quantitative postembedding colloidal gold immunoelectron analysis for aspartate and glutamate on motor axon synapses (identified by immunoreactivity to the vesicular acetylcholine transporter; VAChT contacting calbindin-immunoreactive (-IR Renshaw cell dendrites. The results show that 71% to 80% of motor axon synaptic boutons on Renshaw cells contained aspartate immunolabeling two standard deviations above average neuropil labeling. Moreover, VAChT-IR synapses on Renshaw cells contained, on average, aspartate immunolabeling at 2.5 to 2.8 times above the average neuropil level. In contrast, glutamate enrichment was lower; 21% to 44% of VAChT-IR synapses showed glutamate-IR two standard deviations above average neuropil labeling and average glutamate immunogold density was 1.7 to 2.0 times the neuropil level. The results were not influenced by antibody affinities because glutamate antibodies detected glutamate-enriched brain homogenates more efficiently than aspartate antibodies detecting aspartate-enriched brain homogenates. Furthermore, synaptic boutons with ultrastructural features of Type I excitatory synapses were always labeled by glutamate antibodies at higher density than motor axon synapses. We conclude that motor axon synapses co-express aspartate and glutamate, but aspartate is concentrated at higher levels than glutamate.

  17. Long-Term Depression at Parallel Fiber to Golgi Cell Synapses

    OpenAIRE

    Robberechts, Quinten; Wijnants, Mike; Giugliano, Michele; De Schutter, Erik

    2010-01-01

    Golgi cells (GoCs) are the primary inhibitory interneurons of the granular layer of the cerebellum. Their inhibition of granule cells is central to operate the relay of excitatory inputs to the cerebellar cortex. Parallel fibers (PFs) establish synapses to the GoCs in the molecular layer; these synapses contain AMPA, N-methyl-d-aspartate (NMDA), and mostly group II metabotropic glutamate receptors. Long-term changes in the efficacy of synaptic transmission at the PF-GoC synapse have not been ...

  18. Similar GABAA receptor subunit composition in somatic and axon initial segment synapses of hippocampal pyramidal cells.

    Science.gov (United States)

    Kerti-Szigeti, Katalin; Nusser, Zoltan

    2016-01-01

    Hippocampal pyramidal cells (PCs) express many GABAAR subunit types and receive GABAergic inputs from distinct interneurons. Previous experiments revealed input-specific differences in α1 and α2 subunit densities in perisomatic synapses, suggesting distinct IPSC decay kinetics. However, IPSC decays evoked by axo-axonic, parvalbumin- or cholecystokinin-expressing basket cells were found to be similar. Using replica immunogold labeling, here we show that all CA1 PC somatic and AIS synapses contain the α1, α2, β1, β2, β3 and γ2 subunits. In CA3 PCs, 90% of the perisomatic synapses are immunopositive for the α1 subunit and all synapses are positive for the remaining five subunits. Somatic synapses form unimodal distributions based on their immunoreactivity for these subunits. The α2 subunit densities in somatic synapses facing Cav2.1 (i.e. parvalbumin) or Cav2.2 (cholecystokinin) positive presynaptic active zones are comparable. We conclude that perisomatic synapses made by three distinct interneuron types have similar GABAA receptor subunit content. PMID:27537197

  19. Investigating complex I deficiency in Purkinje cells and synapses in patients with mitochondrial disease

    Science.gov (United States)

    Chrysostomou, Alexia; Grady, John P.; Laude, Alex; Taylor, Robert W.; Turnbull, Doug M.

    2015-01-01

    Aims Cerebellar ataxia is common in patients with mitochondrial disease, and despite previous neuropathological investigations demonstrating vulnerability of the olivocerebellar pathway in patients with mitochondrial disease, the exact neurodegenerative mechanisms are still not clear. We use quantitative quadruple immunofluorescence to enable precise quantification of mitochondrial respiratory chain protein expression in Purkinje cell bodies and their synaptic terminals in the dentate nucleus. Methods We investigated NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13 protein expression in 12 clinically and genetically defined patients with mitochondrial disease and ataxia and 10 age‐matched controls. Molecular genetic analysis was performed to determine heteroplasmy levels of mutated mitochondrial DNA in Purkinje cell bodies and inhibitory synapses. Results Our data reveal that complex I deficiency is present in both Purkinje cell bodies and their inhibitory synapses which surround dentate nucleus neurons. Inhibitory synapses are fewer and enlarged in patients which could represent a compensatory mechanism. Mitochondrial DNA heteroplasmy demonstrated similarly high levels of mutated mitochondrial DNA in cell bodies and synapses. Conclusions This is the first study to use a validated quantitative immunofluorescence technique to determine complex I expression in neurons and presynaptic terminals, evaluating the distribution of respiratory chain deficiencies and assessing the degree of morphological abnormalities affecting synapses. Respiratory chain deficiencies detected in Purkinje cell bodies and their synapses and structural synaptic changes are likely to contribute to altered cerebellar circuitry and progression of ataxia. PMID:26337858

  20. Calcium-dependent synaptic vesicle trafficking underlies indefatigable release at the hair cell afferent fiber synapse

    OpenAIRE

    Schnee, M.E.; Santos-Sacchi, J; Castellano-Muñoz, M.; Kong, J-H.; Ricci, A.J.

    2011-01-01

    Sensory hair cell ribbon synapses respond to graded stimulation in a linear, indefatigable manner, requiring that vesicle trafficking to synapses is rapid and non rate limiting. Real time monitoring of vesicle fusion identified two release components. The first was saturable with both release rate and magnitude varying linearly with Ca2+, however the magnitude was too small to account for sustained afferent firing rates. A second superlinear release component required recruitment, in a Ca2+-d...

  1. The Cell Death Pathway Regulates Synapse Elimination through Cleavage of Gelsolin in Caenorhabditis elegans Neurons

    Directory of Open Access Journals (Sweden)

    Lingfeng Meng

    2015-06-01

    Full Text Available Synapse elimination occurs in development, plasticity, and disease. Although the importance of synapse elimination has been documented in many studies, the molecular mechanisms underlying this process are unclear. Here, using the development of C. elegans RME neurons as a model, we have uncovered a function for the apoptosis pathway in synapse elimination. We find that the conserved apoptotic cell death (CED pathway and axonal mitochondria are required for the elimination of transiently formed clusters of presynaptic components in RME neurons. This function of the CED pathway involves the activation of the actin-filament-severing protein, GSNL-1. Furthermore, we show that caspase CED-3 cleaves GSNL-1 at a conserved C-terminal region and that the cleaved active form of GSNL-1 promotes its actin-severing ability. Our data suggest that activation of the CED pathway contributes to selective elimination of synapses through disassembly of the actin filament network.

  2. Immunology

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    3.1 Autoimmume disease 2006019 The study of inhibitory peptides on T cell activation in rheumatoid arthritis LI Xia(李霞) , Dept Rheumatol & Immunol, People’s Hosp, Peking Univ, Beijing 100044. Natl Med J China 2005;85(24) :1679 -1682. Objective:To study the inhibitory role of altered HA308 -317 peptides in T cell responses in patients with rheumatoid arthritis (RA). Methods :Peripheral blood mononuclear cells (PBMC) were obtained from 27 HLA -

  3. Both pre- and postsynaptic activity of Nsf prevents degeneration of hair-cell synapses.

    Directory of Open Access Journals (Sweden)

    Weike Mo

    Full Text Available Vesicle fusion contributes to the maintenance of synapses in the nervous system by mediating synaptic transmission, release of neurotrophic factors, and trafficking of membrane receptors. N-ethylmaleimide-sensitive factor (NSF is indispensible for dissociation of the SNARE-complex following vesicle fusion. Although NSF function has been characterized extensively in vitro, the in vivo role of NSF in vertebrate synaptogenesis is relatively unexplored. Zebrafish possess two nsf genes, nsf and nsfb. Here, we examine the function of either Nsf or Nsfb in the pre- and postsynaptic cells of the zebrafish lateral line organ and demonstrate that Nsf, but not Nsfb, is required for maintenance of afferent synapses in hair cells. In addition to peripheral defects in nsf mutants, neurodegeneration of glutamatergic synapses in the central nervous system also occurs in the absence of Nsf function. Expression of an nsf transgene in a null background indicates that stabilization of synapses requires Nsf function in both hair cells and afferent neurons. To identify potential targets of Nsf-mediated fusion, we examined the expression of genes implicated in stabilizing synapses and found that transcripts for multiple genes including brain-derived neurotrophic factor (bdnf were significantly reduced in nsf mutants. With regard to trafficking of BDNF, we observed a striking accumulation of BDNF in the neurites of nsf mutant afferent neurons. In addition, injection of recombinant BDNF protein partially rescued the degeneration of afferent synapses in nsf mutants. These results establish a role for Nsf in the maintenance of synaptic contacts between hair cells and afferent neurons, mediated in part via the secretion of trophic signaling factors.

  4. Stem Cell Niche, the Microenvironment and Immunological Crosstalk

    Institute of Scientific and Technical Information of China (English)

    Law Sujata; S. Chaudhuri

    2008-01-01

    The concept of stem cells, their physiological existence, the intricate anatomical localization, the known and the unknown functions, and their exclusive utility for the purpose of regenerative medicine, are all now encompassed within an emergent question, 'how compatible these cells are immunologically?'Indeed, the medical aspects of stem cells are dependent on a large number of queries based on the basic properties of the cells. It has greatly been emphasized to probe into the basic research on stem cells before any successful therapeutic attempts are made. One of the intricate aspects of the adult stem cells is its immunological behavior in relation to the microenvironmental associates, the stromal ceils in the presence of a suitable target.

  5. Immunology: Exhausted T cells perk up

    Science.gov (United States)

    Williams, Matthew A.; Bevan, Michael J.

    2006-02-01

    During persistent infections, the immune cells responsible for killing infected cells and maintaining inflammation gradually stop functioning, allowing the pathogen to thrive. But can this process be reversed?

  6. Immunological considerations in in utero hematopoetic stem cell transplantation (IUHCT).

    Science.gov (United States)

    Loewendorf, Andrea I; Csete, Marie; Flake, Alan

    2014-01-01

    In utero hematopoietic stem cell transplantation (IUHCT) is an attractive approach and a potentially curative surgery for several congenital hematopoietic diseases. In practice, this application has succeeded only in the context of Severe Combined Immunodeficiency Disorders. Here, we review potential immunological hurdles for the long-term establishment of chimerism and discuss relevant models and findings from both postnatal hematopoietic stem cell transplantation and IUHCT. PMID:25610396

  7. Immunological functions of liver sinusoidal endothelial cells.

    Science.gov (United States)

    Knolle, Percy A; Wohlleber, Dirk

    2016-05-01

    Liver sinusoidal endothelial cells (LSECs) line the liver sinusoids and separate passenger leukocytes in the sinusoidal lumen from hepatocytes. LSECs further act as a platform for adhesion of various liver-resident immune cell populations such as Kupffer cells, innate lymphoid cells or liver dendritic cells. In addition to having an extraordinary scavenger function, LSECs possess potent immune functions, serving as sentinel cells to detect microbial infection through pattern recognition receptor activation and as antigen (cross)-presenting cells. LSECs cross-prime naive CD8 T cells, causing their rapid differentiation into memory T cells that relocate to secondary lymphoid tissues and provide protection when they re-encounter the antigen during microbial infection. Cross-presentation of viral antigens by LSECs derived from infected hepatocytes triggers local activation of effector CD8 T cells and thereby assures hepatic immune surveillance. The immune function of LSECs complements conventional immune-activating mechanisms to accommodate optimal immune surveillance against infectious microorganisms while preserving the integrity of the liver as a metabolic organ. PMID:27041636

  8. The Role of Treg Cells in the Cancer Immunological Response

    Directory of Open Access Journals (Sweden)

    Stephen M. Ansell

    2009-01-01

    Full Text Available Problem statement: T cell-mediated immunosuppression has been observed for decades without clarification as to which factor was responsible for this observation. The identification of CD4+CD25+ regulatory T (Treg cells represents a milestone in the filed of immunology and provides an explanation for T-cell-mediated immunosuppression. Although Treg cells were originally identified for their ability to prevent organ-specific autoimmune disease in mice, emerging evidence suggests that Treg cells play a pivotal role in tumor immunity and contribute to tumor growth and progression, thereby having an important impact on the outcome of cancer patients. Approach: This article reviewed the medical literature to describe how Treg cells affect anti-tumor immunity. Results: Treg cells suppressed anti-tumor immunity by inhibiting the effector functions of tumor-specific T cells and NK cells. Importantly, tumor cells played an active role in recruiting and generating Treg cells and creating a suppressive tumor microenvironment. Strategies to deplete Treg cells or inhibit their function had yielded promising results by enhancing anti-tumor immunity in experimental studies as well as clinical practice. Conclusion: A better understanding of the pathophysiology of Treg cells not only increased our knowledge in a variety of aspects of immunology but also potentially benefited cancer patients.

  9. Immunological control of adult neural stem cells

    OpenAIRE

    Gonzalez-Perez, Oscar; Quiñones-Hinojosa, Alfredo; Garcia-Verdugo, Jose Manuel

    2010-01-01

    Adult neurogenesis occurs only in discrete regions of adult central nervous system: the subventricular zone and the subgranular zone. These areas are populated by adult neural stem cells (aNSC) that are regulated by a number of molecules and signaling pathways, which control their cell fate choices, survival and proliferation rates. For a long time, it was believed that the immune system did not exert any control on neural proliferative niches. However, it has been observed that many patholog...

  10. Immunological Analyses of Leukemia Stem Cells.

    Science.gov (United States)

    Naka, Kazuhito; Takihara, Yoshihiro

    2016-01-01

    Traditionally, the intracellular localization and expression levels of specific proteins in CML Leukemia stem cells (LSCs) have been evaluated by fluorescence immunohistochemistry (FIHC). More recently, Duolink(®) in situ PLA technology has opened up a new and more quantitative way to evaluate signal transduction, posttranslational modification, and protein-protein interaction at the single-stem-cell level. This novel methodology, which employs two antibody-based probes, has already increased our understanding of the biology of the rare CML LSC population. In the future, the use of this approach may contribute to the development of novel therapeutics aimed at eradicating CML LSCs in CML patients. PMID:27581137

  11. Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells.

    Science.gov (United States)

    Siembab, Valerie C; Gomez-Perez, Laura; Rotterman, Travis M; Shneider, Neil A; Alvarez, Francisco J

    2016-06-15

    Motor function in mammalian species depends on the maturation of spinal circuits formed by a large variety of interneurons that regulate motoneuron firing and motor output. Interneuron activity is in turn modulated by the organization of their synaptic inputs, but the principles governing the development of specific synaptic architectures unique to each premotor interneuron are unknown. For example, Renshaw cells receive, at least in the neonate, convergent inputs from sensory afferents (likely Ia) and motor axons, raising the question of whether they interact during Renshaw cell development. In other well-studied neurons, such as Purkinje cells, heterosynaptic competition between inputs from different sources shapes synaptic organization. To examine the possibility that sensory afferents modulate synaptic maturation on developing Renshaw cells, we used three animal models in which afferent inputs in the ventral horn are dramatically reduced (ER81(-/-) knockout), weakened (Egr3(-/-) knockout), or strengthened (mlcNT3(+/-) transgenic). We demonstrate that increasing the strength of sensory inputs on Renshaw cells prevents their deselection and reduces motor axon synaptic density, and, in contrast, absent or diminished sensory afferent inputs correlate with increased densities of motor axons synapses. No effects were observed on other glutamatergic inputs. We conclude that the early strength of Ia synapses influences their maintenance or weakening during later development and that heterosynaptic influences from sensory synapses during early development regulates the density and organization of motor inputs on mature Renshaw cells. J. Comp. Neurol. 524:1892-1919, 2016. © 2016 Wiley Periodicals, Inc. PMID:26660356

  12. Immunological aspects of liver cell transplantation

    OpenAIRE

    Oldhafer, Felix; Bock, Michael; Falk, Christine S.; Florian W R Vondran

    2016-01-01

    Within the field of regenerative medicine, the liver is of major interest for adoption of regenerative strategies due to its well-known and unique regenerative capacity. Whereas therapeutic strategies such as liver resection and orthotopic liver transplantation (OLT) can be considered standards of care for the treatment of a variety of liver diseases, the concept of liver cell transplantation (LCTx) still awaits clinical breakthrough. Success of LCTx is hampered by insufficient engraftment/lo...

  13. Nonneuronal cells regulate synapse formation in the vestibular sensory epithelium via erbB-dependent BDNF expression

    OpenAIRE

    Gómez-Casati, Maria E; MURTIE, JOSHUA C.; Rio, Carlos; Stankovic, Konstantina; Liberman, M. Charles; Corfas, Gabriel

    2010-01-01

    Recent studies indicate that molecules released by glia can induce synapse formation. However, what induces glia to produce such signals, their identity, and their in vivo relevance remain poorly understood. Here we demonstrate that supporting cells of the vestibular organ—cells that have many characteristics of glia—promote synapse formation only when induced by neuron-derived signals. Furthermore, we identify BDNF as the synaptogenic signal produced by these nonneuronal cells. Mice in which...

  14. Efferent synapses return to inner hair cells in the aging cochlea

    OpenAIRE

    Lauer, Amanda M.; Fuchs, Paul; Ryugo, David K.; Francis, Howard W.

    2012-01-01

    Efferent innervation of the cochlea undergoes extensive modification early in development, but it is unclear if efferent synapses are modified by age, hearing loss, or both. Structural alterations in the cochlea affecting information transfer from the auditory periphery to the brain may contribute to age-related hearing deficits. We investigated changes to efferent innervation in the vicinity of inner hair cells (IHC) in young and old C57BL/6 mice using transmission electron microscopy to rev...

  15. Alcohol impairs long-term depression at the cerebellar parallel fiber-Purkinje cell synapse

    OpenAIRE

    Belmeguenai, A.; Botta, Paolo; Weber, John; Carta, Mario; De Ruiter, Martijn; De Zeeuw, Chris; Valenzuela, Fernando; Hansel, Christian

    2008-01-01

    textabstractAcute alcohol consumption causes deficits in motor coordination and gait, suggesting an involvement of cerebellar circuits, which play a role in the fine adjustment of movements and in motor learning. It has previously been shown that ethanol modulates inhibitory transmission in the cerebellum and affects synaptic transmission and plasticity at excitatory climbing fiber (CF) to Purkinje cell synapses. However, it has not been examined thus far how acute ethanol application affects...

  16. Immunologic glycosphingolipidomics and NKT cell development in mouse thymus

    DEFF Research Database (Denmark)

    Li, Yunsen; Thapa, Prakash; Hawke, David;

    2009-01-01

    Invariant NKT cells are a hybrid cell type of Natural Killer cells and T cells, whose development is dependent on thymic positive selection mediated by double positive thymocytes through their recognition of natural ligands presented by CD1d, a nonpolymorphic, non-MHC, MHC-like antigen presenting...... molecule. Genetic evidence suggested that beta-glucosylceramide derived glycosphingolipids (GSLs) are natural ligands for NKT cells. N-butyldeoxygalactonojirimycin (NB-DGJ), a drug that specifically inhibits the glucosylceramide synthase, inhibits the endogenous ligands for NKT cells. Furthermore, we and...... for identifying additional ligands for NKT cells. Our results also provide early insights into cellular lipidomics studies, with a specific focus on the important immunological functions of glycosphingolipids....

  17. The influence of Listeria monocytogenes cells on the primary immunologic response in irradiated mice

    International Nuclear Information System (INIS)

    The influence of killed Listeria monocytogenes cells on the primary immunologic response in mice irradiated with 300 or 500 R was studied. The immunologic response of the mice to sheep red blood cells used as antigen was assessed at the cellular level (by counting PFC) and humoral level. Injection of killed Listeria monocytogenes cells before irradiation of the mice diminished the immunosuppressive effect of roentgen radiation. Injection of the cells after irradiation accelerated regeneration of immunologic reactivity in the irradiated mice. (author)

  18. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog

    Science.gov (United States)

    Cochran, S. L.

    1995-01-01

    The concentrations of inorganic cations (K+, Na+, and Ca2+) bathing the isolated frog labyrinth were varied in order to assess their role in influencing and mediating synaptic transmission at the hair cell-afferent fiber synapse. Experiments employed intracellular recordings of synaptic activity from VIIIth nerve afferents. Recordings were digitized continuously at 50 kHz, and excitatory postsynaptic potentials were detected and parameters quantified by computer algorithms. Particular attention was focused on cationic effects upon excitatory postsynaptic potential frequency of occurrence and excitatory postsynaptic potential amplitude, in order to discriminate between pre- and postsynaptic actions. Because the small size of afferents preclude long term stable recordings, alterations in cationic concentrations were applied transiently and their peak effects on synaptic activity were assessed. Increases in extracellular K+ concentration of a few millimolar produced a large increase in the frequency of occurrence of excitatory postsynaptic potentials with little change in amplitude, indicating that release of transmitter from the hair cell is tightly coupled to its membrane potential. Increasing extracellular Na+ concentration resulted in an increase in excitatory postsynaptic potential amplitude with no significant change in excitatory postsynaptic potential frequency of occurrence, suggesting that the transmitter-gated subsynaptic channel conducts Na+ ions. Decreases in extracellular Ca2+ concentration had little effect upon excitatory postsynaptic potential frequency, but increased excitatory postsynaptic potential frequency and amplitude. These findings suggest that at higher concentrations Ca2+ act presynaptically to prevent transmitter release and postsynaptically to prevent Na+ influx during the generation of the excitatory postsynaptic potential. The influences of these ions on synaptic activity at this synapse are remarkably similar to those reported at the

  19. Dynamic changes in hair cell ribbon synapse induced by loss of spiral ganglion neurons in mice

    Institute of Scientific and Technical Information of China (English)

    Yuan Yasheng; Chi Fanglu

    2014-01-01

    Background Previous studies have suggested that primary degeneration of hair cells causes secondary degeneration of spiral ganglion neurons (SGNs),but the effect of SGN degeneration on hair cells has not been studied.In the adult mouse inner ear ouabain can selectively and permanently induce the degeneration of type 1 SGNs while leaving type 2 SGNs,efferent fibers,and sensory hair cells relatively intact.This study aimed to investigate the dynamic changes in hair cell ribbon synapse induced by loss of SGNs using ouabain application to the round window niche of adult mice.Methods In the analysis,24 CBA/CAJ mice aged 8-10 weeks,were used,of which 6 normal mice were used as the control group.After ouabain application in the round window niche 6 times in an hour,ABR threshold shifts at least 30 dB in the three experimental groups which had six mice for 1-week group,six for 1-month group,and six for 3-month group.All 24 animals underwent function test at 1 week and then immunostaining at 1 week,1 month,and 3 months.Results The loss of neurons was followed by degeneration of postsynaptic specializations at the afferent synapse with hair cells.One week after ouabain treatment,the nerve endings of type 1 SGNs and postsynaptic densities,as measured by Na/K ATPase and PSD-95,were affected but not entirely missing,but their partial loss had consequences for synaptic ribbons that form the presynaptic specialization at the synapse between hair cells and primary afferent neurons.Ribbon numbers in inner hair cells decreased (some of them broken and the ribbon number much decreased),and the arrangement of the synaptic ribbons had undergone a dynamic reorganization:ribbons with or without associated postsynaptic densities moved from their normal location in the basal membrane of the cell to a more apical location and the neural endings alone were also found at more apical locations without associated ribbons.After 1 month,when the neural postsynaptic densities had completed their

  20. Signaling at the inhibitory natural killer cell immune synapse regulates lipid raft polarization but not class I MHC clustering.

    Science.gov (United States)

    Fassett, M S; Davis, D M; Valter, M M; Cohen, G B; Strominger, J L

    2001-12-01

    Natural killer (NK) cell cytotoxicity is determined by a balance of positive and negative signals. Negative signals are transmitted by NK inhibitory receptors (killer immunoglobulin-like receptors, KIR) at the site of membrane apposition between an NK cell and a target cell, where inhibitory receptors become clustered with class I MHC ligands in an organized structure known as an inhibitory NK immune synapse. Immune synapse formation in NK cells is poorly understood. Because signaling by NK inhibitory receptors could be involved in this process, the human NK tumor line YTS was transfected with signal-competent and signal-incompetent KIR2DL1. The latter were generated by truncating the KIR2DL1 cytoplasmic tail or by introducing mutations in the immunoreceptor tyrosine-based inhibition motifs. The KIR2DL1 mutants retained their ability to cluster class I MHC ligands on NK cell interaction with appropriate target cells. Therefore, receptor-ligand clustering at the inhibitory NK immune synapse occurs independently of KIR2DL1 signal transduction. However, parallel examination of NK cell membrane lipid rafts revealed that KIR2DL1 signaling is critical for blocking lipid raft polarization and NK cell cytotoxicity. Moreover, raft polarization was inhibited by reagents that disrupt microtubules and actin filaments, whereas synapse formation was not. Thus, NK lipid raft polarization and inhibitory NK immune synapse formation occur by fundamentally distinct mechanisms. PMID:11724921

  1. Synapse formation and remodeling

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Synapses are specialized structures that mediate information flow between neurons and target cells,and thus are the basis for neuronal system to execute various functions,including learning and memory.There are around 1011 neurons in the human brain,with each neuron receiving thousands of synaptic inputs,either excitatory or inhibitory.A synapse is an asymmetric structure that is composed of pre-synaptic axon terminals,synaptic cleft,and postsynaptic compartments.Synapse formation involves a number of cell adhesion molecules,extracellular factors,and intracellular signaling or structural proteins.After the establishment of synaptic connections,synapses undergo structural or functional changes,known as synaptic plasticity which is believed to be regulated by neuronal activity and a variety of secreted factors.This review summarizes recent progress in the field of synapse development,with particular emphasis on the work carried out in China during the past 10 years(1999-2009).

  2. Cell source determines the immunological impact of biomimetic nanoparticles.

    Science.gov (United States)

    Evangelopoulos, Michael; Parodi, Alessandro; Martinez, Jonathan O; Yazdi, Iman K; Cevenini, Armando; van de Ven, Anne L; Quattrocchi, Nicoletta; Boada, Christian; Taghipour, Nima; Corbo, Claudia; Brown, Brandon S; Scaria, Shilpa; Liu, Xuewu; Ferrari, Mauro; Tasciotti, Ennio

    2016-03-01

    Recently, engineering the surface of nanotherapeutics with biologics to provide them with superior biocompatibility and targeting towards pathological tissues has gained significant popularity. Although the functionalization of drug delivery vectors with cellular materials has been shown to provide synthetic particles with unique biological properties, these approaches may have undesirable immunological repercussions upon systemic administration. Herein, we comparatively analyzed unmodified multistage nanovectors and particles functionalized with murine and human leukocyte cellular membrane, dubbed Leukolike Vectors (LLV), and the immunological effects that may arise in vitro and in vivo. Previously, LLV demonstrated an avoidance of opsonization and phagocytosis, in addition to superior targeting of inflammation and prolonged circulation. In this work, we performed a comprehensive evaluation of the importance of the source of cellular membrane in increasing their systemic tolerance and minimizing an inflammatory response. Time-lapse microscopy revealed LLV developed using a cellular coating derived from a murine (i.e., syngeneic) source resulted in an active avoidance of uptake by macrophage cells. Additionally, LLV composed of a murine membrane were found to have decreased uptake in the liver with no significant effect on hepatic function. As biomimicry continues to develop, this work demonstrates the necessity to consider the source of biological material in the development of future drug delivery carriers. PMID:26761780

  3. Melanoma cell lysosome secretory burst neutralizes the CTL-mediated cytotoxicity at the lytic synapse

    Science.gov (United States)

    Khazen, Roxana; Müller, Sabina; Gaudenzio, Nicolas; Espinosa, Eric; Puissegur, Marie-Pierre; Valitutti, Salvatore

    2016-01-01

    Human melanoma cells express various tumour antigens that are recognized by CD8+ cytotoxic T lymphocytes (CTLs) and elicit tumour-specific responses in vivo. However, natural and therapeutically enhanced CTL responses in melanoma patients are of limited efficacy. The mechanisms underlying CTL effector phase failure when facing melanomas are still largely elusive. Here we show that, on conjugation with CTL, human melanoma cells undergo an active late endosome/lysosome trafficking, which is intensified at the lytic synapse and is paralleled by cathepsin-mediated perforin degradation and deficient granzyme B penetration. Abortion of SNAP-23-dependent lysosomal trafficking, pH perturbation or impairment of lysosomal proteolytic activity restores susceptibility to CTL attack. Inside the arsenal of melanoma cell strategies to escape immune surveillance, we identify a self-defence mechanism based on exacerbated lysosome secretion and perforin degradation at the lytic synapse. Interfering with this synaptic self-defence mechanism might be useful in potentiating CTL-mediated therapies in melanoma patients. PMID:26940455

  4. Cell Adhesion, the Backbone of the Synapse: “Vertebrate” and “Invertebrate” Perspectives

    OpenAIRE

    Giagtzoglou, Nikolaos; Ly, Cindy V.; Bellen, Hugo J.

    2009-01-01

    Synapses are asymmetric intercellular junctions that mediate neuronal communication. The number, type, and connectivity patterns of synapses determine the formation, maintenance, and function of neural circuitries. The complexity and specificity of synaptogenesis relies upon modulation of adhesive properties, which regulate contact initiation, synapse formation, maturation, and functional plasticity. Disruption of adhesion may result in structural and functional imbalance that may lead to neu...

  5. Regulatory T Cells in HIV-Infected Immunological Nonresponders Are Increased in Blood but Depleted in Lymphoid Tissue and Predict Immunological Reconstitution

    DEFF Research Database (Denmark)

    Gaardbo, Julie C; Hartling, Hans J; Ronit, Andreas;

    2014-01-01

    BACKGROUND: HIV-infected immunological nonresponders fail to immune reconstitute despite optimal treatment. We hypothesized that regulatory T cells (Tregs) are involved in immunological reconstitution. Tregs and Treg subpopulations were measured in blood and Foxp3 cells in lymphoid tissue, and th...

  6. Spontaneous and Partial Repair of Ribbon Synapse in Cochlear Inner Hair Cells After Ototoxic Withdrawal.

    Science.gov (United States)

    Liu, Ke; Chen, DaiShi; Guo, WeiWei; Yu, Ning; Wang, XiaoYu; Ji, Fei; Hou, ZhaoHui; Yang, Wei-Yan; Yang, ShiMing

    2015-12-01

    Ototoxicity is one of the major causes of sensorineural deafness. However, it remains unclear whether sensorineural deafness is reversible after ototoxic withdrawal. Here, we report that the ribbon synapses between the inner hair cells (IHCs) and spiral ganglion nerve (SGN) fibers can be restored after ototoxic trauma. This corresponds with hearing restoration after ototoxic withdrawal. In this study, adult mice were injected daily with a low dose of gentamicin for 14 consecutive days. Immunostaining for RIBEYE/CtBP2 was used to estimate the number and size of synaptic ribbons in the cochlea. Hearing thresholds were assessed using auditory brainstem responses. Auditory temporal processing between IHCs and SGNs was evaluated by compound action potentials. We found automatic hearing restoration after ototoxicity withdrawal, which corresponded to the number and size recovery of synaptic ribbons, although both hearing and synaptic recovery were not complete. Thus, our study indicates that sensorineural deafness in mice can be reversible after ototoxic withdrawal due to an intrinsic repair of ribbon synapse in the cochlea. PMID:25377793

  7. Immunology of Stem Cells and Cancer Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng Yang

    2007-01-01

    The capacity of pluri-potent stem cells to repair the tissues in which stem cells reside holds great promise in development of novel cell replacement therapeutics for treating chronic and degenerative diseases. However,numerous reports show that stem cell therapy, even in an autologous setting, triggers lymphocyte infiltration and inflammation. Therefore, an important question to be answered is how the host immune system responds to engrafted autologous stem cells or allogeneous stem cells. In this brief review, we summarize the progress in several related areas in this field, including some of our data, in four sections: (1) immunogenicity of stem cells; (2)strategies to inhibit immune rejection to allograft stem cells; (3) immune responses to cancer stem cells; and (4)mesenchymal stem cells in immune regulation. Improvement of our understanding on these and other aspects of immune system-stem cell interplay would greatly facilitate the development of stem cell-based therapeutics for regenerative purposes.

  8. Metabotropic glutamate receptor subtypes modulating neurotransmission at parallel fibre-Purkinje cell synapses in rat cerebellum.

    Science.gov (United States)

    Neale, S A; Garthwaite, J; Batchelor, A M

    2001-07-01

    The actions of reportedly group-selective metabotropic glutamate (mGlu) receptor agonists and antagonists on neurotransmission at parallel fibre-Purkinje cell synapses in the rat cerebellum have been characterised using sharp microelectrode recording and an in vitro slice preparation. Application of the group I agonist (S)-3,5-dihydroxyphenylglycine (DHPG) or the group III selective agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4) depressed synaptic transmission in a reversible and concentration-dependent manner (EC(50)=18 and 5 microM, respectively). The depression produced by DHPG was unrelated to the depolarisation observed in some Purkinje cells. The group II agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV, 1 microM) had no effect. The effects of DHPG were inhibited by the group I-selective antagonist 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester (CPCCOEt), but not by the group II/III antagonist alpha-methyl-4-phosphonophenylglycine (MPPG). The effect of L-AP4 was inhibited by MPPG, but not by the group I/II antagonist (S)-alpha-methyl-4-carboxyphenylglycine (MCPG). By themselves, the antagonists did not affect the EPSPs, suggesting that neither receptor is activated during low frequency neurotransmission. It is concluded that, in addition to the excitatory role for group I receptors described previously, both group I and III (but not group II) mGlu receptors operate at this synapse to inhibit synaptic transmission. The specific receptor subtypes involved are likely to be mGlu1 and mGlu4. PMID:11445184

  9. Noradrenergic modulation of the parallel fiber-Purkinje cell synapse in mouse cerebellum.

    Science.gov (United States)

    Lippiello, Pellegrino; Hoxha, Eriola; Volpicelli, Floriana; Lo Duca, Giuseppina; Tempia, Filippo; Miniaci, Maria Concetta

    2015-02-01

    The signals arriving to Purkinje cells via parallel fibers are essential for all tasks in which the cerebellum is involved, including motor control, learning new motor skills and calibration of reflexes. Since learning also requires the activation of adrenergic receptors, we investigated the effects of adrenergic receptor agonists on the main plastic site of the cerebellar cortex, the parallel fiber-Purkinje cell synapse. Here we show that noradrenaline serves as an endogenous ligand for both α1-and α2-adrenergic receptors to produce synaptic depression between parallel fibers and Purkinje cells. On the contrary, PF-EPSCs were potentiated by the β-adrenergic receptor agonist isoproterenol. This short-term potentiation was postsynaptically expressed, required protein kinase A, and was mimicked by the β2-adrenoceptor agonist clenbuterol, suggesting that the β2-adrenoceptors mediate the noradrenergic facilitation of synaptic transmission between parallel fibers and Purkinje cells. Moreover, β-adrenoceptor activation lowered the threshold for cerebellar long-term potentiation induced by 1 Hz parallel fiber stimulation. The presence of both α and β adrenergic receptors on Purkinje cells suggests the existence of bidirectional mechanisms of regulation allowing the noradrenergic afferents to refine the signals arriving to Purkinje cells at particular arousal states or during learning. PMID:25218865

  10. GABABR-Dependent Long-Term Depression at Hippocampal Synapses between CB1-Positive Interneurons and CA1 Pyramidal Cells.

    Science.gov (United States)

    Jappy, Dave; Valiullina, Fliza; Draguhn, Andreas; Rozov, Andrei

    2016-01-01

    Activity induced long lasting modifications of synaptic efficacy have been extensively studied in excitatory synapses, however, long term plasticity is also a property of inhibitory synapses. Inhibitory neurons in the hippocampal CA1 region can be subdivided according to the compartment they target on the pyramidal cell. Some interneurons preferentially innervate the perisomatic area and axon hillock of the pyramidal cells while others preferentially target dendritic branches and spines. Another characteristic feature allowing functional classification of interneurons is cell type specific expression of different neurochemical markers and receptors. In the hippocampal CA1 region, nearly 90% of the interneurons expressing cannabinoid type 1 receptors (CB1R) also express cholecystokinin (CCK). Therefore, the functional presence of CB1 receptors can be used for identification of the inhibitory input from CCK positive (CCK+) interneurons to CA1 pyramidal cells. The goal of this study was to explore the nature of long term plasticity at the synapses between interneurons expressing CB1Rs (putative CCK+) and pyramidal neurons in the CA1 region of the hippocampus in vitro. We found that theta burst stimulation triggered robust long-term depression (LTD) at this synapse. The locus of LTD induction was postsynaptic and required activation of GABAB receptors. We also showed that LTD at this synaptic connection involves GABABR-dependent suppression of adenylyl cyclase and consequent reduction of PKA activity. In this respect, CB1+ to pyramidal cell synapses differ from the majority of the other hippocampal inhibitory connections where theta burst stimulation results in long-term potentiation. PMID:26858602

  11. Ethanol affects NMDA receptor signaling at climbing fiber-Purkinje cell synapses in mice and impairs cerebellar LTD

    OpenAIRE

    He, Qionger; Titley, Heather; Grasselli, Giorgio; Piochon, Claire; Hansel, Christian

    2012-01-01

    Ethanol profoundly influences cerebellar circuit function and motor control. It has recently been demonstrated that functional N-methyl-d-aspartate (NMDA) receptors are postsynaptically expressed at climbing fiber (CF) to Purkinje cell synapses in the adult cerebellum. Using whole cell patch-clamp recordings from mouse cerebellar slices, we examined whether ethanol can affect NMDA receptor signaling in mature Purkinje cells. NMDA receptor-mediated currents were isolated by bath application of...

  12. The Multiscale Systems Immunology project: software for cell-based immunological simulation

    Directory of Open Access Journals (Sweden)

    Kepler Thomas B

    2008-04-01

    Full Text Available Abstract Background Computer simulations are of increasing importance in modeling biological phenomena. Their purpose is to predict behavior and guide future experiments. The aim of this project is to model the early immune response to vaccination by an agent based immune response simulation that incorporates realistic biophysics and intracellular dynamics, and which is sufficiently flexible to accurately model the multi-scale nature and complexity of the immune system, while maintaining the high performance critical to scientific computing. Results The Multiscale Systems Immunology (MSI simulation framework is an object-oriented, modular simulation framework written in C++ and Python. The software implements a modular design that allows for flexible configuration of components and initialization of parameters, thus allowing simulations to be run that model processes occurring over different temporal and spatial scales. Conclusion MSI addresses the need for a flexible and high-performing agent based model of the immune system.

  13. IMMUNOLOGICAL MONITORING OF BIOTHERAPY FOR DISSEMINATED RENAL-CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    O. E. Molchanov

    2009-01-01

    Full Text Available Objective: to assess a role of immunomonitoring in patients with disseminated renal-cell carcinoma.  Subjects and methods. One hundred and seventy-five patients treated in 1998 to 2008 were followed up. The patients received various immunochemotherapy regimens including interleukin-2 (IL-2, interferon-α (IFN-α, Xeloda, cyclophosphamide. The immune status, including lymphocytes and their subpopulations, cytokine components (IL-1, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12; IFN-α, IFN-γ; tumor necrosis factor-α (TNF-α, immunoglobulins (IgA, IgG, IgM, complement components (C1q, C3, C3a, C4, C5a, was evaluated before treatment and at therapy-free intervals. Results.  The time course of changes in cytokines (IL-6, IL-8, IL-10; TNF-α and IFN-γ and some lymphocyte subpopulations (CD4+CD8+, CD3-CD16+CD56+, CD3+CD16+CD56+, CD4+CD25+Foxp3 greatly differs in patients who belong to different prognostic groups according to the Memorial Sloan-Kettering Cancer Center (MSKCC inclusion criteria. Multivariate analysis has shown that the levels of IL-6 (spontaneous and induced production, IL-8 (spontaneous and induced production, TNF-α (spontaneous production, IFN-γ (induced production, NK T cells (CD3+CD16+CD56+, regulatory T cells (CD4+CD25+Foxp3 affect survival. Integration of the above indices into the MSKCC scale revealed that the groups were prognostically heterogeneous. The median survival in patients with good prognosis was 36.2 months (50.3, 38.3, and 24.5 months in those with 0—1, 2—3, and more than 3 immunological factors, respectively and in those with relatively good and poor prognosis it was 15.3 (29.1, 15.3, and 18.1 months and 8.5 (12.1, 9.3, and 6.3 months months, respectively.Conclusion. The cytokine status reflects the aggressiveness of a tumor process. The cytokine level changes may be used to predict the out- come of the disease.  

  14. IMMUNOLOGICAL MONITORING OF BIOTHERAPY FOR DISSEMINATED RENAL-CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    O. E. Molchanov

    2014-08-01

    Full Text Available Objective: to assess a role of immunomonitoring in patients with disseminated renal-cell carcinoma.  Subjects and methods. One hundred and seventy-five patients treated in 1998 to 2008 were followed up. The patients received various immunochemotherapy regimens including interleukin-2 (IL-2, interferon-α (IFN-α, Xeloda, cyclophosphamide. The immune status, including lymphocytes and their subpopulations, cytokine components (IL-1, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12; IFN-α, IFN-γ; tumor necrosis factor-α (TNF-α, immunoglobulins (IgA, IgG, IgM, complement components (C1q, C3, C3a, C4, C5a, was evaluated before treatment and at therapy-free intervals. Results.  The time course of changes in cytokines (IL-6, IL-8, IL-10; TNF-α and IFN-γ and some lymphocyte subpopulations (CD4+CD8+, CD3-CD16+CD56+, CD3+CD16+CD56+, CD4+CD25+Foxp3 greatly differs in patients who belong to different prognostic groups according to the Memorial Sloan-Kettering Cancer Center (MSKCC inclusion criteria. Multivariate analysis has shown that the levels of IL-6 (spontaneous and induced production, IL-8 (spontaneous and induced production, TNF-α (spontaneous production, IFN-γ (induced production, NK T cells (CD3+CD16+CD56+, regulatory T cells (CD4+CD25+Foxp3 affect survival. Integration of the above indices into the MSKCC scale revealed that the groups were prognostically heterogeneous. The median survival in patients with good prognosis was 36.2 months (50.3, 38.3, and 24.5 months in those with 0—1, 2—3, and more than 3 immunological factors, respectively and in those with relatively good and poor prognosis it was 15.3 (29.1, 15.3, and 18.1 months and 8.5 (12.1, 9.3, and 6.3 months months, respectively.Conclusion. The cytokine status reflects the aggressiveness of a tumor process. The cytokine level changes may be used to predict the out- come of the disease.  

  15. Accelerated intoxication of GABAergic synapses by botulinum neurotoxin A disinhibits stem cell-derived neuron networks prior to network silencing

    Directory of Open Access Journals (Sweden)

    Phillip H Beske

    2015-04-01

    Full Text Available Botulinum neurotoxins (BoNTs are extremely potent toxins that specifically cleave SNARE proteins in peripheral synapses, preventing neurotransmitter release. Neuronal responses to BoNT intoxication are traditionally studied by quantifying SNARE protein cleavage in vitro or monitoring physiological paralysis in vivo. Consequently, the dynamic effects of intoxication on synaptic behaviors are not well understood. We have reported that mouse embryonic stem cell-derived neurons (ESNs are highly sensitive to BoNT based on molecular readouts of intoxication. Here we study the time-dependent changes in synapse- and network-level behaviors following addition of BoNT/A to spontaneously active networks of glutamatergic and GABAergic ESNs. Whole-cell patch-clamp recordings indicated that BoNT/A rapidly blocked synaptic neurotransmission, confirming that ESNs replicate the functional pathophysiology responsible for clinical botulism. Quantitation of spontaneous neurotransmission in pharmacologically isolated synapses revealed accelerated silencing of GABAergic synapses compared to glutamatergic synapses, which was consistent with the selective accumulation of cleaved SNAP-25 at GAD1+ presynaptic terminals at early timepoints. Different latencies of intoxication resulted in complex network responses to BoNT/A addition, involving rapid disinhibition of stochastic firing followed by network silencing. Synaptic activity was found to be highly sensitive to SNAP-25 cleavage, reflecting the functional consequences of the localized cleavage of the small subpopulation of SNAP-25 that is engaged in neurotransmitter release in the nerve terminal. Collectively these findings illustrate that use of synaptic function assays in networked neurons cultures offers a novel and highly sensitive approach for mechanistic studies of toxin:neuron interactions and synaptic responses to BoNT.

  16. Chronic Fluoxetine Induces the Enlargement of Perforant Path-Granule Cell Synapses in the Mouse Dentate Gyrus.

    Science.gov (United States)

    Kitahara, Yosuke; Ohta, Keisuke; Hasuo, Hiroshi; Shuto, Takahide; Kuroiwa, Mahomi; Sotogaku, Naoki; Togo, Akinobu; Nakamura, Kei-ichiro; Nishi, Akinori

    2016-01-01

    A selective serotonin reuptake inhibitor is the most commonly prescribed antidepressant for the treatment of major depression. However, the mechanisms underlying the actions of selective serotonin reuptake inhibitors are not fully understood. In the dentate gyrus, chronic fluoxetine treatment induces increased excitability of mature granule cells (GCs) as well as neurogenesis. The major input to the dentate gyrus is the perforant path axons (boutons) from the entorhinal cortex (layer II). Through voltage-sensitive dye imaging, we found that the excitatory neurotransmission of the perforant path synapse onto the GCs in the middle molecular layer of the mouse dentate gyrus (perforant path-GC synapse) is enhanced after chronic fluoxetine treatment (15 mg/kg/day, 14 days). Therefore, we further examined whether chronic fluoxetine treatment affects the morphology of the perforant path-GC synapse, using FIB/SEM (focused ion beam/scanning electron microscopy). A three-dimensional reconstruction of dendritic spines revealed the appearance of extremely large-sized spines after chronic fluoxetine treatment. The large-sized spines had a postsynaptic density with a large volume. However, chronic fluoxetine treatment did not affect spine density. The presynaptic boutons that were in contact with the large-sized spines were large in volume, and the volumes of the mitochondria and synaptic vesicles inside the boutons were correlated with the size of the boutons. Thus, the large-sized perforant path-GC synapse induced by chronic fluoxetine treatment contains synaptic components that correlate with the synapse size and that may be involved in enhanced glutamatergic neurotransmission. PMID:26788851

  17. Aplysia cell adhesion molecule and a novel protein kinase C activity in the postsynaptic neuron are required for presynaptic growth and initial formation of specific synapses

    OpenAIRE

    Hu, Jiang-Yuan; Chen, Yang; Bougie, Joanna K; Sossin, Wayne S.; Schacher, Samuel

    2010-01-01

    To explore the role of both Aplysia cell adhesion molecule (ApCAM) and activity of specific protein kinase C (PKC) isoforms in the initial formation of sensory neuron synapses with specific postsynaptic targets (L7 but not L11), we examined presynaptic growth, initial synapse formation, and the expression of the presynaptic neuropeptide sensorin following cell-specific reduction of ApCAM or of a novel PKC activity. Synapse formation between sensory neurons and L7 begins by 3 h after plating a...

  18. Cell Biological Mechanisms of Activity-Dependent Synapse to Nucleus Translocation of CRTC1 in Neurons

    Directory of Open Access Journals (Sweden)

    Toh Hean eCh'ng

    2015-09-01

    Full Text Available Previous studies have revealed a critical role for CREB-regulated transcriptional coactivator (CRTC1 in regulating neuronal gene expression during learning and memory. CRTC1 localizes to synapses but undergoes activity-dependent nuclear translocation to regulate the transcription of CREB target genes. Here we investigate the long-distance retrograde transport of CRTC1 in hippocampal neurons. We show that local elevations in calcium, triggered by activation of synaptic glutamate receptors and L-type voltage-gated calcium channels, initiate active, dynein-mediated retrograde transport of CRTC1 along microtubules. We identify a nuclear localization signal within CRTC1, and characterize three conserved serine residues whose dephosphorylation is required for nuclear import. Domain analysis reveals that the amino-terminal third of CRTC1 contains all of the signals required for regulated nucleocytoplasmic trafficking. We fuse this region to Dendra2 to generate a reporter construct and perform live-cell imaging coupled with local uncaging of glutamate and photoconversion to characterize the dynamics of stimulus-induced retrograde transport and nuclear accumulation.

  19. Human Immunodeficiency Virus Protein Tat Induces Synapse Loss via a Reversible Process that is Distinct from Cell Death

    OpenAIRE

    Kim, Hee Jung; Martemyanov, Kirill A.; Thayer, Stanley A.

    2008-01-01

    Human immunodeficiency virus (HIV)-1 infection of the CNS produces changes in dendritic morphology that correlate with cognitive decline in patients with HIV-1 associated dementia (HAD). Here we investigated the effects of HIV-1 transactivator of transcription (Tat), a protein released by virus-infected cells, on synapses between hippocampal neurons using an imaging-based assay that quantified clusters of the scaffolding protein postsynaptic density 95 fused to green fluorescent protein (PSD9...

  20. The urodelean Mauthner cell. Morphology of the afferent synapses to the M-cell of larval Salamandra salamandra

    Energy Technology Data Exchange (ETDEWEB)

    Cioni, C.; De Palma, F.; De Vito, L.; Stefanelli, A. [Rome, Univ. (Italy). Dipt. di Biologia Animale e dell`Uomo

    1997-12-31

    In the present work the fine morphology and the distribution of the afferent synapses to the Mauthner cell of larval Salamandra salamandra are described. The aim of the study is to characterize the synaptic bed in the larvae of this terrestrial salamander in order to compare it with that of larval axolotl and larval anurans. Four main types of afferent endings have been identified: myelinated club endings, round-vesicle end bulbs, flattened-vesicle end bulbs and spiral fibers endings. The M-cell afferent synaptology of larval stages of terrestrial amphibians is quite similar to that previously observed in larval stages of aquatic species. This fact can be related to the fundamental similarities between the larval lifestyles.

  1. The Wnt/Planar Cell Polarity Pathway Component Vangl2 Induces Synapse Formation through Direct Control of N-Cadherin

    Directory of Open Access Journals (Sweden)

    Tadahiro Nagaoka

    2014-03-01

    Full Text Available Although regulators of the Wnt/planar cell polarity (PCP pathway are widely expressed in vertebrate nervous systems, their roles at synapses are unknown. Here, we show that Vangl2 is a postsynaptic factor crucial for synaptogenesis and that it coprecipitates with N-cadherin and PSD-95 from synapse-rich brain extracts. Vangl2 directly binds N-cadherin and enhances its internalization in a Rab5-dependent manner. This physical and functional interaction is suppressed by β-catenin, which binds the same intracellular region of N-cadherin as Vangl2. In hippocampal neurons expressing reduced Vangl2 levels, dendritic spine formation as well as synaptic marker clustering is significantly impaired. Furthermore, Prickle2, another postsynaptic PCP component, inhibits the N-cadherin-Vangl2 interaction and is required for normal spine formation. These results demonstrate direct control of classic cadherin by PCP factors; this control may play a central role in the precise formation and maturation of cell-cell adhesions at the synapse.

  2. Immunological Methods for Nursing Research: From Cells to Systems

    OpenAIRE

    Morrison, Helena W.; Downs, Charles A.

    2011-01-01

    Scientists and clinicians frequently use immunological methods (IMs) to investigate complex biological phenomena. Commonly used IMs include immunocytochemistry (IC), enzyme-linked immunosorbent assays (ELISA) and flow cytometry. Each of these methodologies exploits a common principle in IMs —the binding of an antibody to its antigen. Scientists continue to develop new methodologies, such as high-throughput immunohistochemistry (IHC) and in vivo imaging techniques, which exploit antibody–antig...

  3. A virtual lymph node model to dissect the requirements for T-cell activation by synapses and kinapses

    Science.gov (United States)

    Moreau, Hélène D; Bogle, Gib; Bousso, Philippe

    2016-01-01

    The initiation of T-cell responses in lymph nodes requires T cells to integrate signals delivered by dendritic cells (DCs) during long-lasting contacts (synapses) or more transient interactions (kinapses). However, it remains extremely challenging to understand how a specific sequence of contacts established by T cells ultimately dictates T-cell fate. Here, we have coupled a computational model of T-cell migration and interactions with DCs with a real-time, flow cytometry-like representation of T-cell activation. In this model, low-affinity peptides trigger T-cell proliferation through kinapses but we show that this process is only effective under conditions of high DC densities and prolonged antigen availability. By contrast, high-affinity peptides favor synapse formation and a vigorous proliferation under a wide range of antigen presentation conditions. In line with the predictions, decreasing the DC density in vivo selectively abolished proliferation induced by the low-affinity peptide. Finally, our results suggest that T cells possess a biochemical memory of previous stimulations of at least 1–2 days. We propose that the stability of T-cell–DC interactions, apart from their signaling potency, profoundly influences the robustness of T-cell activation. By offering the ability to control parameters that are difficult to manipulate experimentally, the virtual lymph node model provides new possibilities to tackle the fundamental mechanisms that regulate T-cell responses elicited by infections or vaccines. PMID:27089942

  4. Facial stimulation induces long-term depression at cerebellar molecular layer interneuron–Purkinje cell synapses in vivo in mice

    Directory of Open Access Journals (Sweden)

    De-Lai eQiu

    2015-06-01

    Full Text Available Cerebellar long-term synaptic plasticity has been proposed to provide a cellular mechanism for motor learning. Numerous studies have demonstrated the induction and mechanisms of synaptic plasticity at parallel fiber–Purkinje cell (PF–PC, parallel fiber–molecular layer interneurons (PF–MLI and mossy fiber–granule cell (MF–GC synapses, but no study has investigated sensory stimulation-evoked synaptic plasticity at MLI–PC synapses in the cerebellar cortex of living animals. We studied the expression and mechanism of MLI–PC GABAergic synaptic plasticity induced by a train of facial stimulation in urethane-anesthetized mice by cell-attached recordings and pharmacological methods. We found that 1 Hz, but not a 2 Hz or 4 Hz, facial stimulation induced a long-term depression (LTD of GABAergic transmission at MLI–PC synapses, which was accompanied with a decrease in the stimulation-evoked pause of spike firing in PCs, but did not induce a significant change in the properties of the sensory-evoked spike events of MLIs. The MLI–PC GABAergic LTD could be prevented by blocking cannabinoid type 1 (CB1 receptors, and could be pharmacologically induced by a CB1 receptor agonist. Additionally, 1 Hz facial stimulation delivered in the presence of a metabotropic glutamate receptor 1 (mGluR1 antagonist, JNJ16259685, still induced the MLI–PC GABAergic LTD, whereas blocking N-methyl-D-aspartate (NMDA receptors during 1 Hz facial stimulation abolished the expression of MLI–PC GABAergic LTD. These results indicate that sensory stimulation can induce an endocannabinoid (eCB-dependent LTD of GABAergic transmission at MLI–PC synapses via activation of NMDA receptors in cerebellar cortical Crus II in vivo in mice. Our results suggest that the sensory stimulation-evoked MLI–PC GABAergic synaptic plasticity may play a critical role in motor learning in animals.

  5. A CMOS-compatible electronic synapse device based on Cu/SiO2/W programmable metallization cells

    Science.gov (United States)

    Chen, Wenhao; Fang, Runchen; Balaban, Mehmet B.; Yu, Weijie; Gonzalez-Velo, Yago; Barnaby, Hugh J.; Kozicki, Michael N.

    2016-06-01

    In this work, the resistance plasticity of Cu/SiO2/W programmable metallization cell devices is experimentally explored for the emulation of biological synapses. PMC devices were fabricated with foundry friendly materials using standard processes. The resistance can be continuously increased or decreased with both dc and voltage pulse programming. Impedance spectroscopy results indicate that the gradual change of resistance is attributable to the expansion or contraction of a Cu-rich layer within the device. Pulse programming experiments further show that the pulse amplitude plays a more important role in resistance change than pulse width, which is consistent with the proposed ‘dual-layer’ device model. The dense resistance-state distribution, 1 V operating voltage and inherent CMOS-compatibility suggests its potential application as electronic synapse in neuromorphic computing.

  6. Endocannabinoid release modulates electrical coupling between CCK cells connected via chemical and electrical synapses in CA1

    Directory of Open Access Journals (Sweden)

    Jonathan eIball

    2011-11-01

    Full Text Available Electrical coupling between some subclasses of interneurons is thought to promote coordinated firing that generates rhythmic synchronous activity in cortical regions. Synaptic activity of cholesystokinin (CCK interneurons which co-express cannbinoid type-1 (CB1 receptors are powerful modulators of network activity via the actions of endocannabinoids. We investigated the modulatory actions of endocannabinoids between chemically and electrically connected synapses of CCK cells using paired whole-cell recordings combined with biocytin and double immunofluorescence labelling in acute slices of rat hippocampus at P18-20 days. CA1 stratum radiatum CCK Schaffer collateral associated (SCA cells were coupled electrically with each other as well as CCK basket cells and CCK cells with axonal projections expanding to dentate gyrus. Approximately 50% of electrically coupled cells received facilitating, asynchronously released IPSPs that curtailed the steady-state coupling coefficient by 57%. Tonic CB1 receptor activity which reduces inhibition enhanced electrical coupling between cells that were connected via chemical and electrical synapses. Blocking CB1 receptors with antagonist, AM-251 (5M resulted in the synchronized release of larger IPSPs and this enhanced inhibition further reduced the steady-state coupling coefficient by 85%. Depolarization induced suppression of inhibition (DSI, maintained the asynchronicity of IPSP latency, but reduced IPSP amplitudes by 95% and enhanced the steady-state coupling coefficient by 104% and IPSP duration by 200%. However, DSI did not did not enhance electrical coupling at purely electrical synapses. These data suggest that different morphological subclasses of CCK interneurons are interconnected via gap junctions. The synergy between the chemical and electrical coupling between CCK cells probably plays a role in activity-dependent endocannabinoid modulation of rhythmic synchronization.

  7. Reduced sensory stimulation alters the molecular make-up of glutamatergic hair cell synapses in the developing cochlea.

    Science.gov (United States)

    Barclay, M; Constable, R; James, N R; Thorne, P R; Montgomery, J M

    2016-06-14

    Neural activity during early development is known to alter innervation pathways in the central and peripheral nervous systems. We sought to examine how reduced sound-induced sensory activity in the cochlea affected the consolidation of glutamatergic synapses between inner hair cells (IHC) and the primary auditory neurons as these synapses play a primary role in transmitting sound information to the brain. A unilateral conductive hearing loss was induced prior to the onset of sound-mediated stimulation of the sensory hair cells, by rupturing the tympanic membrane and dislocating the auditory ossicles in the left ear of P11 mice. Auditory brainstem responses at P15 and P21 showed a 40-50-dB increase in thresholds for frequencies 8-32kHz in the dislocated ear relative to the control ear. Immunohistochemistry and confocal microscopy were subsequently used to examine the effect of this attenuation of sound stimulation on the expression of RIBEYE, which comprises the presynaptic ribbons, Shank-1, a postsynaptic scaffolding protein, and the GluA2/3 and 4 subunits of postsynaptic AMPA receptors. Our results show that dislocation did not alter the number of pre- or postsynaptic protein puncta. However, dislocation did increase the size of RIBEYE, GluA4, GluA2/3 and Shank-1 puncta, with postsynaptic changes preceding presynaptic changes. Our data suggest that a reduction in sound stimulation during auditory development induces plasticity in the molecular make-up of IHC glutamatergic synapses, but does not affect the number of these synapses. Up-regulation of synaptic proteins with sound attenuation may facilitate a compensatory increase in synaptic transmission due to the reduced sensory stimulation of the IHC. PMID:27012610

  8. Quantitative analysis of the ribbon synapse number of cochlear inner hair cells in C57BL/6J mice using the three-dimensional modeling method.

    Science.gov (United States)

    Liu, Ke; Li, ShuNa; Jiang, XueJun

    2009-09-01

    In mammals, the ribbon synapses of cochlear inner hair cells are a synaptic structure of the first sensory nerve in the pathway of acoustical signal transmission to the acoustic center, and it is directly involved in voice coding and neurotransmitter release. It is difficult to quantitatively analyze the ribbon synaptic number only using an electron microscope, because the ribbon synaptic number is relatively limited and their location is deep. In this study, the specific presynaptic structure-RIBEYE, and non-specific postsynaptic structure-GluR 2 & 3 in C57BL/6J mouse basilar membrane samples were treated by immunofluorescent labeling. Serial section was performed on the samples using a laser scanning confocal microscope, and then the serial sections were used to build three-dimensional models using 3DS MAX software. Each fluorescein color pair indicates one synapse, so the number of ribbon synapses of inner hair cells is obtained. The spatial distribution and the number of ribbon synapses of cochlear inner hair cells were clearly shown in this experiment, and the mean number of ribbon synapses per inner hair cell was 16.10+/-1.03. Our results have demonstrated the number of ribbon synapses is accurately calculated by double immunofluorescent labeling to presynaptic and postsynaptic structures, serial sections obtained using a laser scanning confocal microscope, and three-dimensional modeling obtained using 3DS MAX software. The method above is feasible and has important significance for further exploring the mechanism of sensorineural deafness. PMID:19802738

  9. Quantitative analysis of the ribbon synapse number of cochlear inner hair cells in C57BL/6J mice using the three-dimensional modeling method

    Institute of Scientific and Technical Information of China (English)

    LIU Ke; LI ShuNa; JIANG XueJun

    2009-01-01

    In mammals, the ribbon synapses of cochlear inner hair cells are a synaptic structure of the first sensory nerve in the pathway of acoustical signal transmission to the acoustic center, and it is directly involved in voice coding and neurotransmitter release. It is difficult to quantitatively analyze the ribbon synaptic number only using an electron microscope, because the ribbon synaptic number is relatively limited and their location is deep. In this study, the specific presynaptic structure-RIBEYE, and non-specific postsynaptic structure-GluR 2 & 3 in C57BL/6J mouse basilar membrane samples were treated by immunofluorescent labeling. Serial section was performed on the samples using a laser scanning confocal microscope, and then the serial sections were used to build three-dimensional models using 3DS MAX software. Each fluorescein color pair indicates one synapse, so the number of ribbon synapses of inner hair cells is obtained. The spatial distribution and the number of ribbon synapses of cochlear inner hair cells were clearly shown in this experiment, and the mean number of ribbon synapses per inner hair cell was 16.10±1.03. Our results have demonstrated the number of ribbon synapses is accurately calculated by double immunofluorescent labeling to presynaptic and postsynaptic structures, serial sections obtained using a laser scanning confocal microscope, and three-dimensional modeling obtained using 3DS MAX software. The method above is feasible and has important significance for further exploring the mechanism of sensorineural deafness.

  10. Ethanol affects NMDA receptor signaling at climbing fiber-Purkinje cell synapses in mice and impairs cerebellar LTD.

    Science.gov (United States)

    He, Qionger; Titley, Heather; Grasselli, Giorgio; Piochon, Claire; Hansel, Christian

    2013-03-01

    Ethanol profoundly influences cerebellar circuit function and motor control. It has recently been demonstrated that functional N-methyl-(D)-aspartate (NMDA) receptors are postsynaptically expressed at climbing fiber (CF) to Purkinje cell synapses in the adult cerebellum. Using whole cell patch-clamp recordings from mouse cerebellar slices, we examined whether ethanol can affect NMDA receptor signaling in mature Purkinje cells. NMDA receptor-mediated currents were isolated by bath application of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzol[f]quinoxaline (NBQX). The remaining (D)-2-amino-5-phosphonovaleric acid ((D)-APV)-sensitive current was reduced by ethanol at concentrations as low as 10 mM. At a concentration of 50 mM ethanol, the blockade of (D)-APV-sensitive CF-excitatory postsynaptic currents was significantly stronger. Ethanol also altered the waveform of CF-evoked complex spikes by reducing the afterdepolarization. This effect was not seen when NMDA receptors were blocked by (D)-APV before ethanol wash-in. In contrast to CF synaptic transmission, parallel fiber (PF) synaptic inputs were not affected by ethanol. Finally, ethanol (10 mM) impaired long-term depression (LTD) at PF to Purkinje cell synapses as induced under control conditions by paired PF and CF activity. However, LTD induced by pairing PF stimulation with depolarizing voltage steps (substituting for CF activation) was not blocked by ethanol. These observations suggest that the sensitivity of cerebellar circuit function and plasticity to low concentrations of ethanol may be caused by an ethanol-mediated impairment of NMDA receptor signaling at CF synapses onto cerebellar Purkinje cells. PMID:23221414

  11. The Role of Treg Cells in the Cancer Immunological Response

    OpenAIRE

    Ansell, Stephen M.; Zhi-Zhang Yang

    2009-01-01

    Problem statement: T cell-mediated immunosuppression has been observed for decades without clarification as to which factor was responsible for this observation. The identification of CD4+CD25+ regulatory T (Treg) cells represents a milestone in the filed of immunology and provides an explanation for T-cell-mediated immunosuppression. Although Treg cells were originally identified for their ability to prevent organ-specific autoimmune disease in mice, emerging &#...

  12. Immunologic analyses of mouse cystathionase in normal and leukemic cells

    International Nuclear Information System (INIS)

    Rabbit antisera have been raised against mouse liver cystathionase and shown to possess enzyme neutralizing activity. Agar gel double immunodiffusion analyses demonstrated that both mouse liver cystathionase and rat liver cystathionase react with the antisera, the latter enzyme being completely cross-reactive with the former. Following radioiodination of the purified rat liver enzyme, a double antibody radioimmunoassay was developed in which greater than 90% of the labeled protein could be specifically precipitated with the anti-mouse cystathionase antibodies. In this test the purified rat liver and mouse liver enzymes were virtually indistinguishable, generating superimposable competition displacement curves on a protein mass basis. These results indicate that both enzymes are immunologically identical, thus validating the use of the rat in lieu of the murine liver enzyme as radiolabeled tracer in an assay for mouse cystathionase. In addition, competition radioimmunoassays demonstrated that the immunological reactivities of both the purified rat liver and mouse liver enzymes were equally heat sensitive. The sensitivity of the assay was determined to be 1 ng of enzyme protein/0.22 mL of assay mixture, and the assay could be used to detect the presence of enzyme protein in tissue homogenates of single mouse organs. Mouse or rat cross-reactivity with human liver cystathionase was incomplete; but, with the exception of heart and spleen, parallel radioimmunoassay competition displacement curves were obtained for cystathionase from different mouse organs including thymus. Extracts of 7-, 9-, and 10-month-old spontaneous AKR mouse thymomas were tested in the radioimmunoassay along with extracts of age-matched thymuses which were grossly tumor free. A reaction of nonidentity was observed for all of the tumor extracts while a reaction identical with that of the pure liver enzyme was found with all of the normal thymus extracts

  13. Cancer stem cell immunology: key to understanding tumorigenesis and tumor immune escape?

    OpenAIRE

    Valentin eBruttel; Jörg eWischhusen

    2014-01-01

    Cancer stem cell (CSC) biology and tumor immunology have shaped our understanding of tumorigenesis. However, we still do not fully understand why tumors can be contained but not eliminated by the immune system and whether rare CSCs are required for tumor propagation.Long latency or recurrence periods have been described for most tumors. Conceptually, this requires a subset of malignant cells which is capable of initiating tumors, but is neither eliminated by immune cells nor able to grow stra...

  14. Immunological tolerance to muscle autoantigens involves peripheral deletion of autoreactive CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Emilie Franck

    Full Text Available Muscle potentially represents the most abundant source of autoantigens of the body and can be targeted by a variety of severe autoimmune diseases. Yet, the mechanisms of immunological tolerance toward muscle autoantigens remain mostly unknown. We investigated this issue in transgenic SM-Ova mice that express an ovalbumin (Ova neo-autoantigen specifically in skeletal muscle. We previously reported that antigen specific CD4(+ T cell are immunologically ignorant to endogenous Ova in this model but can be stimulated upon immunization. In contrast, Ova-specific CD8(+ T cells were suspected to be either unresponsive to Ova challenge or functionally defective. We now extend our investigations on the mechanisms governing CD8(+ tolerance in SM-Ova mice. We show herein that Ova-specific CD8(+ T cells are not detected upon challenge with strongly immunogenic Ova vaccines even after depletion of regulatory T cells. Ova-specific CD8(+ T cells from OT-I mice adoptively transferred to SM-Ova mice started to proliferate in vivo, acquired CD69 and PD-1 but subsequently down-regulated Bcl-2 and disappeared from the periphery, suggesting a mechanism of peripheral deletion. Peripheral deletion of endogenous Ova-specific cells was formally demonstrated in chimeric SM-Ova mice engrafted with bone marrow cells containing T cell precursors from OT-I TCR-transgenic mice. Thus, the present findings demonstrate that immunological tolerance to muscle autoantigens involves peripheral deletion of autoreactive CD8(+ T cells.

  15. Innate immunological function of TH2 cells in vivo

    Science.gov (United States)

    Th2 cells produce IL-13 when stimulated by papain or house dust mites (HDM) and induce eosinophilic inflammation. This innate response of cells of the adaptive immune system is dependent on IL-33-, not T cell receptor-, based stimulation. While type 2 innate lymphoid cells (ILC2s) are the dominant ...

  16. Cellular Mechanism of Newly Synthesized Indoledione Derivative-induced Immunological Death of Tumor Cell

    OpenAIRE

    Oh, Su-Jin; Ryu, Chung-Kyu; Baek, So-Young; Lee, Hyunah

    2011-01-01

    Background EY-6 is one of the newly synthesized indoledione derivatives to induce tumor cell-specific cell death. In this study, we investigated the mechanism of immunological death induced by EY-6 at mouse colon cancer cell as well as at the normal immune cell represented by dendritic cell. Methods C57BL/6 mouse syngeneic colon cancer cell MC38 was treated with EY-6, and analyzed by MTT for viability test, flow cytometry for confirming surface expressing molecules and ELISA for detection of ...

  17. Immunological studies in sickle cell-beta zero thalassemia. Comparison with sickle cell anemia.

    Science.gov (United States)

    Donadi, E A; Falcao, R P

    1989-01-01

    Despite genetic differences, patients with S-beta zero thalassemia or sickle cell anemia present several clinical and hematological similarities. In this study we present evidence that they can also show similar immunological profiles. Both hemoglobinopathies exhibited increased total lymphocyte counts as well as B, CD4 and CD8 lymphocyte subset counts. The CD4/CD8 ratio and the determination of the activity of antibody-dependent cellular cytotoxicity were within the normal range for patients with both diseases. The levels of IgG and IgA were also increased for both conditions, but the amount of factor B of the complement system was elevated only in sickle cell anemia patients. PMID:2628234

  18. Immunologic targeting of FOXP3 in inflammatory breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Smita Nair

    Full Text Available The forkhead transcription factor FOXP3 is necessary for induction of regulatory T lymphocytes (Tregs and their immunosuppressive function. We have previously demonstrated that targeting Tregs by vaccination of mice with murine FOXP3 mRNA-transfected dendritic cells (DCs elicits FOXP3-specific T cell responses and enhances tumor immunity. It is clear that FOXP3 expression is not restricted to T-cell lineage and herein, using RT-PCR, flow cytometry, and western immunoblot we demonstrate for the first time that FOXP3 is expressed in inflammatory breast cancer (IBC cells, SUM149 (triple negative, ErbB1-activated and SUM190 (ErbB2-overexpressing. Importantly, FOXP3-specific T cells generated in vitro using human FOXP3 RNA-transfected DCs as stimulators efficiently lyse SUM149 cells. Interestingly, an isogenic model (rSUM149 derived from SUM149 with an enhanced anti-apoptotic phenotype was resistant to FOXP3-specific T cell mediated lysis. The MHC class I cellular processing mechanism was intact in both cell lines at the protein and transcription levels suggesting that the resistance to cytolysis by rSUM149 cells was not related to MHC class I expression or to the MHC class I antigen processing machinery in these cells. Our data suggest that FOXP3 may be an effective tumor target in IBC cells however increased anti-apoptotic signaling can lead to immune evasion.

  19. Immunological aspects of allogeneic and autologous mesenchymal stem cell therapies.

    Science.gov (United States)

    Hoogduijn, M J; Roemeling-van Rhijn, M; Korevaar, S S; Engela, A U; Weimar, W; Baan, C C

    2011-12-01

    Mesenchymal stem cells (MSCs) have potential for therapeutic application as an immunomodulatory and regenerative agent. The immunogenicity and survival of MSCs after infusion are, however, not clear and evidence suggests that allogeneic but also autologous MSCs disappear rapidly after infusion. This may be associated with the susceptibility of MSCs to lysis by natural killer (NK) cells, possibly a result of culture-induced stress. In the present study we examined whether NK cell-mediated lysis of MSCs could be inhibited by immunosuppressive drugs. Human MSCs were isolated from adipose tissue and expanded in culture. Peripheral blood mononuclear cells were activated with interleukin (IL)-2 (200 U/ml) and IL-15 (10 ng/ml) for 7 days. CD3(-)CD16(+)CD56(+) NK cells were then isolated by fluorescence-activated cell sorting and added to europium-labeled MSCs for 4 hr in the presence or absence of immunosuppressive drugs. Lysis of MSCs was determined by spectrophotometric measurement of europium release. Nonactivated NK cells were not capable of lysing MSCs. Cytokine-activated NK cells showed upregulated levels of granzyme B and perforin and efficiently lysed allogeneic and autologous MSCs. Addition of tacrolimus, rapamycin or sotrastaurin to the lysis assay did not inhibit MSC killing. Furthermore, preincubation of activated NK cells with the immunosuppressive drugs for 24 hr before exposure to MSCs had no effect on MSC lysis. Last, addition of the immunosuppressants before and during the activation of NK cells, reduced NK cell numbers but did not affect their capacity to lyse MSCs. We conclude that the immunosuppressive drugs tacrolimus, rapamycin, and sotrastaurin are not capable of inhibiting the lysis of allogeneic and autologous MSCs by activated NK cells. Other approaches to controlling lysis of MSCs should be investigated, as controlling lysis may determine the efficacy of MSC therapy. PMID:21732766

  20. Langerhans cell histiocytosis : A clinical and immunological study

    OpenAIRE

    Bernstrand, Cecilia

    2003-01-01

    Langerhans cell histiocytosis (LCH), previously known as histiocytosis X, eosinophilic granuloma, Hand-Schüller-Christian or Letterer-Siwe disease, is a rare disease with a reported incidence in childhood of 5.4 cases per million children per year. The disease can present at any age but young children are most often affected. It is characterized by an accumulation of abnormal and clonal Langerhans cells in various organs such as the skin, bone, lymph nodes, lungs, liver, spl...

  1. Quantitative analysis of the ribbon synapse number of cochlear inner hair cells in C57BL/6J mice using the three-dimensional modeling method

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In mammals,the ribbon synapses of cochlear inner hair cells are a synaptic structure of the first sensory nerve in the pathway of acoustical signal transmission to the acoustic center,and it is directly involved in voice coding and neurotransmitter release. It is difficult to quantitatively analyze the ribbon synaptic number only using an electron microscope,because the ribbon synaptic number is relatively limited and their location is deep. In this study,the specific presynaptic structure-RIBEYE,and non-specific postsynaptic structure-GluR 2 & 3 in C57BL/6J mouse basilar membrane samples were treated by immunofluorescent labeling. Serial section was performed on the samples using a laser scanning confocal microscope,and then the serial sections were used to build three-dimensional models using 3DS MAX software. Each fluorescein color pair indicates one synapse,so the number of ribbon synapses of inner hair cells is obtained. The spatial distribution and the number of ribbon synapses of cochlear inner hair cells were clearly shown in this experiment,and the mean number of ribbon synapses per inner hair cell was 16.10±1.03. Our results have demonstrated the number of ribbon synapses is accurately calculated by double immunofluorescent labeling to presynaptic and postsynaptic structures,serial sections obtained using a laser scanning confocal microscope,and three-dimensional modeling obtained using 3DS MAX software. The method above is feasible and has important significance for further exploring the mechanism of sensorineural deafness.

  2. The Immunology of CD1- and MR1-Restricted T Cells.

    Science.gov (United States)

    Mori, Lucia; Lepore, Marco; De Libero, Gennaro

    2016-05-20

    CD1- and MHC-related molecule-1 (MR1)-restricted T lymphocytes recognize nonpeptidic antigens, such as lipids and small metabolites, and account for a major fraction of circulating and tissue-resident T cells. They represent a readily activated, long-lasting population of effector cells and contribute to the early phases of immune response, orchestrating the function of other cells. This review addresses the main aspects of their immunological functions, including antigen and T cell receptor repertoires, mechanisms of nonpeptidic antigen presentation, and the current evidence for their participation in human and experimental diseases. PMID:26927205

  3. Designing bovine T cell vaccines via reverse immunology

    DEFF Research Database (Denmark)

    Nene, Vishvanath; Svitek, Nicholas; Toye, Philip;

    2012-01-01

    T cell responses contribute to immunity against many intracellular infections. There is, for example, strong evidence that major histocompatibility complex (MHC) class I-restricted cytotoxic T lymphocytes (CTLs) play an essential role in mediating immunity to East Coast fever (ECF), a fatal lymph...

  4. Designing bovine T-cell vaccines via reverse immunology

    Science.gov (United States)

    T-cell responses contribute to immunity against many intra-cellular infections. There is, for example, strong evidence that major histocompatibility complex (MHC) class I restricted cytotoxic T lymphocytes (CTLs) play an essential role in mediating immunity to East Coast fever (ECF), a fatal lymphop...

  5. Immunological analysis of cell-associated antigens of Bacillus anthracis.

    OpenAIRE

    Ezzell, J W; Abshire, T. G.

    1988-01-01

    Sera from Hartley guinea pigs vaccinated with a veterinary live spore anthrax vaccine were compared with sera from guinea pigs vaccinated with the human anthrax vaccine, which consists of aluminum hydroxide-adsorbed culture proteins of Bacillus anthracis V770-NP-1R. Sera from animals vaccinated with the spore vaccine recognized two major B. anthracis vegetative cell-associated proteins that were either not recognized or poorly recognized by sera from animals that received the human vaccine. T...

  6. The role of regulatory T cells in cancer immunology

    OpenAIRE

    Whiteside TL

    2015-01-01

    Theresa L Whiteside University of Pittsburgh Cancer Institute, Pittsburgh, PA, US Abstract: Regulatory T cells (Treg) are generally considered to be significant contributors to tumor escape from the host immune system. Emerging evidence suggests, however, that in some human cancers, Treg are necessary to control chronic inflammation, prevent tissue damage, and limit inflammation-associated cancer development. The dual role of Treg in cancer and underpinnings of Treg diversity are not well und...

  7. Telomere Length in Relation to Immunological Parameters in Patients with Renal Cell Carcinoma

    OpenAIRE

    Svenson, Ulrika; Grönlund, Elisabeth; Söderström, Ingegerd; Sitaram, Raviprakash T; Ljungberg, Börje; Roos, Göran

    2013-01-01

    Over the last decade, telomere length (TL) has gained attention as a potential biomarker in cancer disease. We previously reported that long blood TL was associated with a poorer outcome in patients with breast cancer and renal cell carcinoma. Based on these findings, we hypothesized that certain immunological components may have an impact on TL dynamics in cancer patients. One aim of the present study was to investigate a possible association between serum cytokines and TL of peripheral bloo...

  8. Immunology Mechanism of CD4+ CD25 T Regulatory Cells Acting on Effector T Cells

    Institute of Scientific and Technical Information of China (English)

    FENGNing-han; WUHong-fei; WUJun; ZHANGWei; SUIYuan-gen; HEHou-guang; ZHANGChun-lei; ZHENGJun-song

    2004-01-01

    Objective: To detect the inhibiting co-stimulating molecule CTLA4 and cytokines secreted by Treg cells, and explore the immunology mechanism of T regulatory cells acting on effector T cells in co-cultured system(CCS) and separating-cultured system(SCS). Methods: Detecting the percentage of CTLA4 and CD28 expressed on the Treg ceils and effector T ceils, and then adding Treg cells to mixed lymphocyte reaction(MLR) system in CCS and TransWeil Milliceil-PCF SCS, at the same time, adding or not adding anti-IL-10 or anti-TGF.II1 to the reacting systems, examining the inhibitory capacity of Treg ceils exerting on the MLR. Results: Compared with effector T cells, Treg cells expressed higher level CTLA4 and secreted much more IL-10 and TGF-β(P<0.01). The inhibitory capacity of Treg cells co-cultured with effector T ceils is much stronger than that in separating cultured group(P<0.01). Moreover, the inhibiting rate of Treg ceils exerting on effector T ceils through secretin_g IL-10 was more powerful than that through secreting TGF-β1 (P<0.01). Coaclusion: Both ceil-to-ceil contact and cytokines secretion mechanisms are involved in CD4+ CD25+ Treg ceils operating function. However, the former is more important. Intresfingly, we for the first time pointfound that IL-10 plays more powerful roles than TGF-β1 in the cytokines secretion mechanism.

  9. Regulatory T cells diminish transmission of HIV from Dendritic cells to conventional CD4+ T cells

    OpenAIRE

    Maria Eugenia Moreno-Fernandez; Joedicke, Jara J; Claire Anne Chougnet

    2014-01-01

    Formation of immunological synapses between dendritic cells (DC) and conventional CD4+ T cells (Tcon) is critical for productive immune responses. However, when DCs are HIV-infected such synapses are critical to establish HIV infection. As regulatory T cells (Treg) control DC-Tcon interactions, we inquired whether Treg might interfere with DC to Tcon HIV transmission. We developed a model, using monocyte-derived DC infected with R5-HIV, and cultured with Tcon in the presence or absence of a...

  10. IMMUNOLOGICAL MONITORING OF BIOTHERAPY FOR DISSEMINATED RENAL-CELL CARCINOMA

    OpenAIRE

    O. E. Molchanov; M. I. Karelin

    2009-01-01

    Objective: to assess a role of immunomonitoring in patients with disseminated renal-cell carcinoma.  Subjects and methods. One hundred and seventy-five patients treated in 1998 to 2008 were followed up. The patients received various immunochemotherapy regimens including interleukin-2 (IL-2), interferon-α (IFN-α), Xeloda, cyclophosphamide. The immune status, including lymphocytes and their subpopulations, cytokine components (IL-1, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12; IFN-α, IFN-γ; tumor necr...

  11. Immunological reactivity of leukemia afflicted animals under the effect of gamma-ray sterilized malignant cells

    International Nuclear Information System (INIS)

    The employment of ionizing radiation or cytostatics for the treatment of malignant neoplasms leads to the cessation of the processes of division in part of the malignant cells. Cells sterilized in this manner interact with the malignant cells that have remained alive. To elucidate some mechanisms of this interrelationships studies were undertaken on mice with transplantational leukemia L 1210. Since the intraperitoneal administration of 107 sterile leukemia cells mixed with 104 live cells results in prolongation of survival of the mice in this group as compared with mice injected with live cells only. The question arises whether immune mechanisms are involved in these phenomena. Studies on the specific immunological activity indicate that in the group treated with a mixture of sterilized and live cells the number of positive cytotoxic reactions increases as regards leukemia cells; the nonspecific immune reactivity remains unaffected. (author)

  12. Neuroprotective Effect of Osthole on Neuron Synapses in an Alzheimer's Disease Cell Model via Upregulation of MicroRNA-9.

    Science.gov (United States)

    Li, Shaoheng; Yan, Yuhui; Jiao, Yanan; Gao, Zhong; Xia, Yang; Kong, Liang; Yao, Yingjia; Tao, Zhenyu; Song, Jie; Yan, Yaping; Zhang, Guangxian; Yang, Jingxian

    2016-09-01

    Accumulation of β-amyloid peptide (Aβ) in the brain plays an important role in the pathogenesis of Alzheimer's disease (AD). It has been reported that osthole exerts its neuroprotective effect on neuronal synapses, but its exact mechanism is obscure. Recently, microRNAs have been demonstrated to play a crucial role in inducing synaptotoxicity by Aβ, implying that targeting microRNAs could be a therapeutic approach of AD. In the present study, we investigated the neuroprotective effects of osthole on a cell model of AD by transducing APP695 Swedish mutant (APP695swe, APP) into mouse cortical neurons and human SH-SY5Y cells. In this study, the cell counting kit CCK-8, apoptosis assay, immunofluorescence analysis, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction, and Western blot assay were used. We found that osthole could enhance cell viability, prevent cell death, and reverse the reduction of synaptic proteins (synapsin-1, synaptophysin, and postsynaptic density-95) in APP-overexpressed cells, which was attributed to increases in microRNA-9 (miR-9) expression and subsequent decreases in CAMKK2 and p-AMPKα expressions. These results demonstrated that osthole plays a neuroprotective activity role in part through upregulating miR-9 in AD. PMID:27394443

  13. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats

    Institute of Scientific and Technical Information of China (English)

    LIANG Peng; JIN Lian-hong; LIANG Tao; LIU En-zhong; ZHAO Shi-guang

    2006-01-01

    Background Axonal regeneration in lesioned mammalian central nervous system is abortive, and this causes permanent disabilities in individuals with spinal cord injuries. This paper studied the action of neural stem cell (NSC) in promoting corticospinal axons regeneration and synapse reformation in rats with injured spinal cord.Methods NSCs were isolated from the cortical tissue of spontaneous aborted human fetuses in accordance with the ethical request. The cells were discarded from the NSC culture to acquire NSC-conditioned medium. Sixty adult Wistar rats were randomly divided into four groups (n=15 in each): NSC graft, NSC medium, graft control and medium control groups. Microsurgical transection of the spinal cord was performed in all the rats at the T11. The NSC graft group received stereotaxic injections of NSCs suspension into both the spinal cord stumps immediately after transection; graft control group received DMEM injection. In NSC medium group,NSC-conditioned medium was administered into the spinal cord every week; NSC culture medium was administered to the medium control group. Hindlimb motor function was assessed using the BBB Locomotor Rating Scale. Regeneration of biotin dextran amine (BDA) labeled corticospinal tract was assessed. Differentiation of NSCs and the expression of synaptophysin at the distal end of the injured spinal cord were observed under a confocal microscope. Group comparisons of behavioral data were analyzed with ANOVA.Results NSCs transplantation resulted in extensive growth of corticospinal axons and locomotor recovery in adult rats after complete spinal cord transection, the mean BBB scores reached 12.5 in NSC graft group and 2.5 in graft control group (P< 0.05). There was also significant difference in BBB score between the NSC medium (11.7) and medium control groups (3.7, P< 0.05). BDA traces regenerated fibers sprouted across the lesion site and entered the caudal part of the spinal cord. Synaptophysin expression

  14. DUAL ROLES OF CANCER CELL-EXPRESSED IMMUNOGLOBULINS IN CANCER IMMUNOLOGY

    Directory of Open Access Journals (Sweden)

    Gregory Lee

    2014-01-01

    Full Text Available While the expression of immunoglobulins and T cell receptors on cancer cells has been well-established for decades, the potential roles and mechanisms of action of these cancerous antigen receptors have not been fully elucidated. A monoclonal antibody designated as RP215, which reacts specifically with the carbohydrate-associated epitope located on the heavy chain region of cancerous immunoglobulins and T cell receptors, was used as a unique probe to study the roles of antigen receptors in the immunology of cancer cells. Through extensive cell-based biological and immunological studies, it was found that both anti-antigen receptors and RP215 demonstrated similar actions on the gene regulations involved in the growth/proliferation of cancer cells, as well as on toll-like receptors involved in innate immunity. In addition, RP215-specific cancerous immunoglobulins are believed to capture or neutralize circulating antigen/antibodies which may be harmful to cancer cells within the human body. In contrast to normal B and T cells and their respective receptors in the conventional immune system, cancer cells co-express both immunoglobulins and T cell receptors and immune protection is exercised by unique mechanisms. For example, these cancer cell-expressed antigen receptors display a lack of class switching, limited hyper-mutation, aberrant glycosylations and a strong influence on the toll-like receptors of cancer cells. Therefore, it is hypothesized that both normal and cancerous immune systems may co-exist and operate simultaneously within the human body. The balance of these two immune factors for respective surveillance and protection may be relevant to the outcome of cancer immunotherapy in humans. A potential therapeutic strategy is being developed by using RP215 as a drug candidate to target cancer cells based on these observations.

  15. Retinal afferents synapse with relay cells targeting the middle temporal area in the pulvinar and lateral geniculate nuclei

    Directory of Open Access Journals (Sweden)

    Claire E Warner

    2010-02-01

    Full Text Available Considerable debate continues regarding thalamic inputs to the middle temporal area (MT of the visual cortex that bypass the primary visual cortex (V1 and the role they might have in the residual visual capability following a lesion of V1. Two specific retinothalamic projections to area MT have been speculated to relay through the medial portion of the inferior pulvinar nucleus (PIm and the koniocellular layers of the dorsal lateral geniculate nucleus (LGN. Although a number of studies have demonstrated retinal inputs to regions of the thalamus where relays to area MT have been observed, the relationship between the retinal terminals and area MT relay cells has not been established. Here we examined direct retino-recipient regions of the marmoset monkey (Callithrix jacchus pulvinar nucleus and the LGN following binocular injections of anterograde tracer, as well as area MT relay cells in these nuclei by injection of retrograde tracer into area MT. Retinal afferents were shown to synapse with area MT relay cells as demonstrated by colocalization with the presynaptic vesicle membrane protein synaptophysin. We also established the presence of direct synapes of retinal afferents on area MT relay cells within the PIm, as well as the koniocellular K1 and K3 layers of the LGN, thereby corroborating the existence of two disynaptic pathways from the retina to area MT that bypass V1.

  16. SynDB: a Synapse protein DataBase based on synapse ontology

    OpenAIRE

    Zhang, Wuxue; Zhang, Yong; Zheng, Hui; Zhang, Chen; Xiong, Wei; Olyarchuk, John G.; Walker, Michael; Xu, Weifeng; Zhao, Min; Zhao, Shuqi; Zhou, Zhuan; Wei, Liping

    2006-01-01

    A synapse is the junction across which a nerve impulse passes from an axon terminal to a neuron, muscle cell or gland cell. The functions and building molecules of the synapse are essential to almost all neurobiological processes. To describe synaptic structures and functions, we have developed Synapse Ontology (SynO), a hierarchical representation that includes 177 terms with hundreds of synonyms and branches up to eight levels deep. associated 125 additional protein keywords and 109 InterPr...

  17. Monocytoid leukemia cell line CTV-1: morphological, immunological and isoenzymatic characteristics.

    Science.gov (United States)

    Drexler, H G; Gaedicke, G; Maeda, S; Chen, P M; Minowada, J

    1986-01-01

    The human leukemia cell line CTV-1 was established from a case of acute monoblastic leukemia (AMoL). We analyzed the phenotypic marker profile of the CTV-1 cells in their original, untreated state and during induction of differentiation with the phorbolester 12-0-tetradecanoylphorbol 13-acetate (TPA). TPA led to morphological changes with signs of differentiation. Cell proliferation decreased in a dose-dependent fashion during exposure to TPA. In the surface marker analysis using a panel of 45 monoclonal antibodies (MoAbs) and several polyclonal antisera, CTV-1 cells were negative for markers of the T- and B-cell lineages, and were positive for several, but not all, myelomonocytic markers. Although the cells were reactive with the MoAb Leu-7 which identifies natural killer (NK) T-cells, no NK activity was detected. In the isoenzyme analysis of the four enzymes carboxylic esterase, acid phosphatase, hexosaminidase and lactate dehydrogenase (LDH) performed by isoelectric focusing on polyacrylamide gels, CTV-1 cells displayed isoenzyme profiles of immature myeloid cells. The overall marker profile of CTV-1 cells demonstrated cells of monocytoid origin arrested at a very early stage of differentiation, possibly close to the stage of precursor cells. As compared to other myelomonocytic cell lines, CTV-1 cells showed unusual morphological, immunological, functional and biochemical features and appeared to be relatively insensitive to treatment with TPA, although some alterations of the phenotype could be induced. PMID:3458274

  18. The immunological effect of 8-methoxypsoralen and UVA treatment on murine T-cell leukemia

    International Nuclear Information System (INIS)

    8-Methoxyproralen (8-MOP) plus long-wavelength UV radiation (UVA, 320-400 nm) have been used to treat various diseases such as cutaneous T-cell lymphoma, systemic scleroderma, rheumatoid arthritis and rejection of heart transplants. However, the immunological mechanism of this treatment remains unknown. In this report, we investigated the effect of 8-MOP/UVA on the modulation of the immunogenicity of a T-cell leukemia cell line (RL ''male'' 1 cells). The results demonstrated that the stimulator function of the in vitro 8-MOP/UVA-treated RL ''male'' 1 cells was enhanced in both RL ''male'' 1-specific allogeneic and syngeneic immune responses. Furthermore, the enhancement of the immunogenicity of the 8-MOP/UVA-treated RL ''male'' 1 cells was found to be strongly associated with the increase of intercellular adhesion molecule-1 expression on these 8-MOP/UVA-treated tumor cells. Therefore, our findings suggested that the alteration of the expression of the immune-related cell surface molecules might be an important effect of 8-MOP/UVA treatment on the elevation of the immunogenicity of the 8-MOP/UVA-treated tumor cells. (Author)

  19. Calcium microdomains near R-type calcium channels control the induction of presynaptic LTP at parallel fiber to Purkinje cell synapses

    OpenAIRE

    Myoga, Michael H.; Regehr, Wade G.

    2011-01-01

    R-type calcium channels in postsynaptic spines signal through functional calcium microdomains to regulate a calcium-calmodulin sensitive potassium channel that in turn regulates postsynaptic hippocampal LTP. Here we ask whether R-type calcium channels in presynaptic terminals also signal through calcium microdomains to control presynaptic LTP. We focus on presynaptic LTP at parallel fiber to Purkinje cell synapses in the cerebellum (PF-LTP), which is mediated by calcium/calmodulin-stimulated ...

  20. Mouse brain: an immunologically privileged site for natural resistance against lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Circolo, A.; Bianchi, R.; Nardelli, B.; Rivosecchi-Merletti, P.; Bonmassar, E.

    1982-02-01

    The present study deals with classical graft response and natural resistance against lymphoma cells in mouse brain, evaluated in terms of either survival times or extent of lymphoma cell proliferation measured by the percentage of /sup 125/lUdR uptake. The results show the following: a) CGR was easily detected in the brain of allogeneic nonirradiated recipients by using either parameter. CGR was easily abrogated by total-body irradiation and was absent in ''nude'' recipients when tested by the /sup 125/lUdR uptake technique. b) No difference in the growth patterns of H-2/sup b/ lymphoma cells was detected in the brain of irradiated histocompatible or Hh-incompatible hybrid (H-2/sup b/ / H-2/sup d/) or allogeneic (H-2/sup b/, H-2/sup i//sup 5/) mice or Hh-compatible H-2/sup h//sup 2/ hosts inoculated intracerebrally (i.c.) with the tumor. On the contrary, strong resistance to lymphoma graft was confirmed in the spleen of irradiated Hh-incompatible recipients inoculated i.v. with the tumor. c) No impairment of splenic resistance against lymphoma cells was afforded by the simultaneous administration of the same tumor into the brain, thus ruling out the possibility that the i.c. challenge with lymphoma cells abrogated NR of the host. d) Mortality studies in nonirradiated Hh-incompatible hybrid or nude mice suggested that only marginal NR could be detected in mouse brain. These data suggest that mouse brain can be considered an ''immunologically privileged'' site for NR more than for CGR, and provide the immunologic bases for explaining the successful take of xenogeneic lymphoid tumors in the brain of nude mice.

  1. Adaptation to background light enables contrast coding at rod bipolar cell synapses

    OpenAIRE

    Ke, Jiang-Bin; Wang, Yanbin V.; Borghuis, Bart G.; Cembrowski, Mark S.; Riecke, Hermann; Kath, William L.; Demb, Jonathan B; Joshua H Singer

    2013-01-01

    Rod photoreceptors contribute to vision over a ~6 log-unit range of light intensities. The wide dynamic range of rod vision is thought to depend upon light intensity-dependent switching between two parallel pathways linking rods to ganglion cells: a rod→rod bipolar (RB) cell pathway that operates at dim backgrounds and a rod→cone→cone bipolar cell pathway that operates at brighter backgrounds. We evaluated this conventional model of rod vision by recording rod-mediated light responses from ga...

  2. How do taste cells lacking synapses mediate neurotransmission? CALHM1, a voltage-gated ATP channel

    OpenAIRE

    Taruno, Akiyuki; Matsumoto, Ichiro; Ma, Zhongming; Marambaud, Philippe; Foskett, J. Kevin

    2013-01-01

    CALHM1 was recently demonstrated to be a voltage-gated ATP-permeable ion channel and to serve as a bona fide conduit for ATP release from sweet-, umami-, and bitter-sensing type II taste cells. Calhm1 is expressed in taste buds exclusively in type II cells and its product has structural and functional similarities with connexins and pannexins, two families of channel protein candidates for ATP release by type II cells. Calhm1 knockout in mice leads to loss of perception of sweet, umami, and b...

  3. Taurine Induces Proliferation of Neural Stem Cells and Synapse Development in the Developing Mouse Brain

    OpenAIRE

    Mattu Chetana Shivaraj; Guillaume Marcy; Guoliang Low; Jae Ryun Ryu; Xianfeng Zhao; Rosales, Francisco J.; Goh, Eyleen L.K.

    2012-01-01

    Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC) proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5) hippocampal progenitor cells and hippoc...

  4. Spatial relationships between GABAergic and glutamatergic synapses on the dendrites of distinct types of mouse retinal ganglion cells across development.

    Directory of Open Access Journals (Sweden)

    Adam Bleckert

    Full Text Available Neuronal output requires a concerted balance between excitatory and inhibitory (I/E input. Like other circuits, inhibitory synaptogenesis in the retina precedes excitatory synaptogenesis. How then do neurons attain their mature balance of I/E ratios despite temporal offset in synaptogenesis? To directly compare the development of glutamatergic and GABAergic synapses onto the same cell, we biolistically transfected retinal ganglion cells (RGCs with PSD95CFP, a marker of glutamatergic postsynaptic sites, in transgenic Thy1-YFPγ2 mice in which GABAA receptors are fluorescently tagged. We mapped YFPγ2 and PSD95CFP puncta distributions on three RGC types at postnatal day P12, shortly before eye opening, and at P21 when robust light responses in RGCs are present. The mature IGABA/E ratios varied among ON-Sustained (S A-type, OFF-S A-type, and bistratified direction selective (DS RGCs. These ratios were attained at different rates, before eye-opening for ON-S and OFF-S A-type, and after eye-opening for DS RGCs. At both ages examined, the IGABA/E ratio was uniform across the arbors of the three RGC types. Furthermore, measurements of the distances between neighboring PSD95CFP and YFPγ2 puncta on RGC dendrites indicate that their local relationship is established early in development, and cannot be predicted by random organization. These close spatial associations between glutamatergic and GABAergic postsynaptic sites appear to represent local synaptic arrangements revealed by correlative light and EM reconstructions of a single RGC's dendrites. Thus, although RGC types have different IGABA/E ratios and establish these ratios at separate rates, the local relationship between excitatory and inhibitory inputs appear similarly constrained across the RGC types studied.

  5. Spatial Relationships between GABAergic and Glutamatergic Synapses on the Dendrites of Distinct Types of Mouse Retinal Ganglion Cells across Development

    Science.gov (United States)

    Bleckert, Adam; Parker, Edward D.; Kang, YunHee; Pancaroglu, Raika; Soto, Florentina; Lewis, Renate; Craig, Ann Marie; Wong, Rachel O. L.

    2013-01-01

    Neuronal output requires a concerted balance between excitatory and inhibitory (I/E) input. Like other circuits, inhibitory synaptogenesis in the retina precedes excitatory synaptogenesis. How then do neurons attain their mature balance of I/E ratios despite temporal offset in synaptogenesis? To directly compare the development of glutamatergic and GABAergic synapses onto the same cell, we biolistically transfected retinal ganglion cells (RGCs) with PSD95CFP, a marker of glutamatergic postsynaptic sites, in transgenic Thy1­YFPγ2 mice in which GABAA receptors are fluorescently tagged. We mapped YFPγ2 and PSD95CFP puncta distributions on three RGC types at postnatal day P12, shortly before eye opening, and at P21 when robust light responses in RGCs are present. The mature IGABA/E ratios varied among ON-Sustained (S) A-type, OFF-S A-type, and bistratified direction selective (DS) RGCs. These ratios were attained at different rates, before eye-opening for ON-S and OFF-S A-type, and after eye-opening for DS RGCs. At both ages examined, the IGABA/E ratio was uniform across the arbors of the three RGC types. Furthermore, measurements of the distances between neighboring PSD95CFP and YFPγ2 puncta on RGC dendrites indicate that their local relationship is established early in development, and cannot be predicted by random organization. These close spatial associations between glutamatergic and GABAergic postsynaptic sites appear to represent local synaptic arrangements revealed by correlative light and EM reconstructions of a single RGC's dendrites. Thus, although RGC types have different IGABA/E ratios and establish these ratios at separate rates, the local relationship between excitatory and inhibitory inputs appear similarly constrained across the RGC types studied. PMID:23922756

  6. ASSESSMENT OF SYNAPSE FORMATION IN RAT PRIMARY NEURAL CELL CULTURE USING HIGH CONTENT MICROSCOPY.

    Science.gov (United States)

    Cell-based assays can model neurodevelopmental processes including neurite growth and synaptogenesis, and may be useful for screening and evaluation of large numbers of chemicals for developmental neurotoxicity. This work describes the use of high content screening (HCS) to dete...

  7. IMMUNOLOGICAL RESPONSE IN BOVINE LYMPH NODES STIMULATED WITH SUBUNITS VACCINES

    Directory of Open Access Journals (Sweden)

    Gabriel Andres Tafur Gomez

    2013-01-01

    Full Text Available The vaccination process belongs to the public health intervention methodologies that help prevent infections. Vaccinations performed successfully in the history of medicine reported the significance of this procedure to increase the quality of life, prevent zoonoses and improve animal production. Vaccine emergence remained without exact rules for a long time, maintaining a close relationship with pathogens. However, subunit vaccines, with a difference from the classical idea of protective immunity with microorganisms showed it is possible to trigger T-dependent responses with peptide, revealing new rules for vaccine development. This vaccination process starts by the modulation chance of adaptive immune response through peptide sequences process by APCs for immune synapse formation interceded for pMHC-TCR as a scaffold to T cells priming. In this way the immunological signal triggered by immune synapses is amplified in lymph nodes. As a consequence, T and B cells modulated by peptide activity interact between the B cell follicles region and T cell aggregates, which constitute the paracortical region of secondary lymphoid tissue to form connate unions as a prerequisite for clonal amplification and subsequent immunological memory. Indicating the knowledge of the mechanisms of immune response generated by peptides immunization is essential for understanding modulation, amplification and immune protection as demands for good subunits vaccine.

  8. THE EFFECT OF MICROWAVE AND BANDAGING TREATMENT ON SKIN IMMUNOLOGICAL CELLS IN CHRONIC LIMB LYMPHEDEMA

    Institute of Scientific and Technical Information of China (English)

    曹卫刚; 张涤生; 干季良

    2000-01-01

    Objective To clarify the characteristics of immunological reactions in skin tissues of non - filarial lymphedema patients with or without skin bacterial infection. Methods Avidin-biotin peroxidase (ABC)immunohistochemical method was used to examine the local skin tissue infiltrating inflammatory cells in 16chronic limb lymphedema patients before and after two courses of microwave and bandaging treatment. Results There was a significant increase of T lymphocyte infiltration in lymphedematous skin tissues; after two courses of microwave treatment, T lymphocyte infiltration was greatly resolved whereas the number of macrophages, which can lyse the stagnant proteins in lymphedematous tissues through proteolysis increased. Conclusion Microwave and bandaging treatment can promote regression of extremity edema by reducing chronic inflammation and enhancing the stagnant protein lysis capability in lymphedematous skin tissues.

  9. Immunological Effects of Oenothein B, an Ellagitannin Dimer, on Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Reiko Teshima

    2012-12-01

    Full Text Available Oenothein B is a unique macrocyclic ellagitannin dimer that has been found in various medicinal plants belonging to Onagraceae, Lythraceae, and Myrtaceae, with diverse biological activities. The immunological effects of tannins in terms of cytokine-release from macrophages and monocytes have been discussed, while the effects on other immunocompetent cells have been the subject of minimal investigation. We evaluated the immunomodulatory effects induced by tannin treatment in human dendritic cells (DCs, which play a critical role in the initial immune response, by measuring the changes in cytokine production, cell differentiation, and cell viability. Oenothein B showed significant down-regulation of the expression of cell surface molecules, CD1a and CD83, suggesting the inhibition of DC differentiation and/or maturation. The suppressive effect on DCs was associated with the induction of apoptosis without the activation of caspase-3/7, 8, and 9, and this was supported by the morphological features indicating significant nuclear condensation. Oenothein B also markedly suppressed the production of inflammatory cytokines, such as IL-1β and IL-6, in a dose-dependent manner. These data may, in part, be able to explain the traditional use of tannin-containing medicinal plants for the treatment of a variety of inflammatory diseases, including inflammatory bowel disease, celiac disease, and rheumatoid arthritis.

  10. IMMUNOLOGICAL METHODS

    Science.gov (United States)

    Environmental microbiology does not deal with all aspects of immunology or the immune responses per se, but instead adapts immunology-based research technologies or immunoassays for the study of microorganisms and chemical contaminants in association with the environment. The primary immunologic-bas...

  11. A systems immunology approach to plasmacytoid dendritic cell function in cytopathic virus infections.

    Directory of Open Access Journals (Sweden)

    Gennady Bocharov

    Full Text Available Plasmacytoid dendritic cell (pDC-mediated protection against cytopathic virus infection involves various molecular, cellular, tissue-scale, and organism-scale events. In order to better understand such multiscale interactions, we have implemented a systems immunology approach focusing on the analysis of the structure, dynamics and operating principles of virus-host interactions which constrain the initial spread of the pathogen. Using high-resolution experimental data sets coming from the well-described mouse hepatitis virus (MHV model, we first calibrated basic modules including MHV infection of its primary target cells, i.e. pDCs and macrophages (Mphis. These basic building blocks were used to generate and validate an integrative mathematical model for in vivo infection dynamics. Parameter estimation for the system indicated that on a per capita basis, one infected pDC secretes sufficient type I IFN to protect 10(3 to 10(4 Mphis from cytopathic viral infection. This extremely high protective capacity of pDCs secures the spleen's capability to function as a 'sink' for the virus produced in peripheral organs such as the liver. Furthermore, our results suggest that the pDC population in spleen ensures a robust protection against virus variants which substantially down-modulate IFN secretion. However, the ability of pDCs to protect against severe disease caused by virus variants exhibiting an enhanced liver tropism and higher replication rates appears to be rather limited. Taken together, this systems immunology analysis suggests that antiviral therapy against cytopathic viruses should primarily limit viral replication within peripheral target organs.

  12. Regulation of excitatory synapse development by the RhoGEF Ephexin5

    OpenAIRE

    Salogiannis, John

    2013-01-01

    The neuronal synapse is a specialized cell-cell junction that mediates communication between neurons. The formation of a synapse requires the coordinated activity of signaling molecules that can either promote or restrict synapse number and function. Tight regulation of these signaling molecules are critical to ensure that synapses form in the correct number, time and place during brain development. A number of molecular mechanisms that promote synapse formation have been elucidated, but s...

  13. Fine processes of Nestin-GFP-positive radial glia-like stem cells in the adult dentate gyrus ensheathe local synapses and vasculature.

    Science.gov (United States)

    Moss, Jonathan; Gebara, Elias; Bushong, Eric A; Sánchez-Pascual, Irene; O'Laoi, Ruadhan; El M'Ghari, Imane; Kocher-Braissant, Jacqueline; Ellisman, Mark H; Toni, Nicolas

    2016-05-01

    Adult hippocampal neurogenesis relies on the activation of neural stem cells in the dentate gyrus, their division, and differentiation of their progeny into mature granule neurons. The complex morphology of radial glia-like (RGL) stem cells suggests that these cells establish numerous contacts with the cellular components of the neurogenic niche that may play a crucial role in the regulation of RGL stem cell activity. However, the morphology of RGL stem cells remains poorly described. Here, we used light microscopy and electron microscopy to examine Nestin-GFP transgenic mice and provide a detailed ultrastructural reconstruction analysis of Nestin-GFP-positive RGL cells of the dentate gyrus. We show that their primary processes follow a tortuous path from the subgranular zone through the granule cell layer and ensheathe local synapses and vasculature in the inner molecular layer. They share the ensheathing of synapses and vasculature with astrocytic processes and adhere to the adjacent processes of astrocytes. This extensive interaction of processes with their local environment could allow them to be uniquely receptive to signals from local neurons, glia, and vasculature, which may regulate their fate. PMID:27091993

  14. Regulatory T cells: serious contenders in the promise for immunological tolerance in transplantation

    Directory of Open Access Journals (Sweden)

    Niloufar eSafinia

    2015-08-01

    Full Text Available Regulatory T cells (Tregs play an important role in immunoregulation and have been shown in animal models to promote transplantation tolerance and curb autoimmunity following their adoptive transfer. The safety and potential therapeutic efficacy of these cells has already been reported in Phase I trials of bone marrow transplantation and type I diabetes, the success of which has motivated the broadened application of these cells in solid organ transplantation. Despite major advances in the clinical translation of these cells, there are still key questions to be addressed to ensure that Tregs attest their reputation as ideal candidates for tolerance induction. In this review, we will discuss the unique traits of Tregs that have attracted such fame in the arena of tolerance induction. We will outline the protocols used for their ex vivo expansion and discuss the future directions of Treg cell therapy. In this regard, we will review the concept of Treg heterogeneity, the desire to isolate and expand a functionally superior Treg population and report on the effect of differing culture conditions. The relevance of Treg migratory capacity will also be discussed together with methods of in vivo visualization of the infused cells. Moreover, we will highlight key advances in the identification and expansion of antigen specific Tregs and discuss their significance for cell therapy application. We will also summarize the clinical parameters that are of importance, alongside cell manufacture, from the choice of immunosuppression regimens to the number of injections in order to direct the success of future efficacy trials of Treg cell therapy.Years of research in the field of tolerance have seen an accumulation of knowledge and expertise in the field of Treg biology. This perpetual progression has been the driving force behind the many successes to date and has put us now within touching distance of our ultimate success, immunological tolerance.

  15. Clinical and Immunological Effects in Patients with Advanced Non-Small Cell Lung-Cancer after Vaccination with Dendritic Cells Exposed to an Allogeneic Tumor Cell Lysate

    OpenAIRE

    Mogens H. Claesson; Ayako W. Pedersen; Pia Kvistborg; Mai-Britt Zocca; Lotte Engell-Noerregaard; Anders Mellemgaard

    2013-01-01

    Background: We evaluated the clinical and immunological effects of dendritic cell (DC) vaccination of patients with NSCLC. Autologous DCs were pulsed with a MAGE containing allogeneic melanoma cell lysate (MelCancerVac&174, Dandrit Biotech,Copenhagen,Denmark). Imiquimod cream, proleukin and celecoxib were used as adjuvants to the vaccines. The objective of the study was to evaluate specific T cell response in vitro by IFNg EliSpot. Secondary objectives were overall survival, response and qua...

  16. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine

    Science.gov (United States)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W.; Cai, Jiye

    2014-10-01

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  17. The Diversity of Cortical Inhibitory Synapses

    Directory of Open Access Journals (Sweden)

    Yoshiyuki eKubota

    2016-04-01

    Full Text Available The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their IPSP size is not uniform. Thus cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.

  18. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways

    Science.gov (United States)

    Chung, Won-Suk; Clarke, Laura E.; Wang, Gordon X.; Stafford, Benjamin K.; Sher, Alexander; Chakraborty, Chandrani; Joung, Julia; Foo, Lynette C.; Thompson, Andrew; Chen, Chinfei; Smith, Stephen J.; Barres, Ben A.

    2013-12-01

    To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes.

  19. Synapse- and Stimulus-Specific Local Translation During Long-Term Neuronal Plasticity

    OpenAIRE

    Wang, Dan Ohtan; Kim, Sang Mok; Zhao, Yali; Hwang, Hongik; Miura, Satoru K.; Sossin, Wayne S.; Martin, Kelsey C.

    2009-01-01

    Long-term memory and synaptic plasticity require changes in gene expression and yet can occur in a synapse-specific manner. mRNA localization and regulated translation at synapses are thus critical for establishing synapse specificity. Using live cell microscopy of photoconvertible fluorescent protein translational reporters, we directly visualized local translation at synapses during long-term facilitation of Aplysia sensory-motor synapses. Translation of the reporter required multiple appli...

  20. Efficient Associative Computation with Discrete Synapses.

    Science.gov (United States)

    Knoblauch, Andreas

    2016-01-01

    Neural associative networks are a promising computational paradigm for both modeling neural circuits of the brain and implementing associative memory and Hebbian cell assemblies in parallel VLSI or nanoscale hardware. Previous work has extensively investigated synaptic learning in linear models of the Hopfield type and simple nonlinear models of the Steinbuch/Willshaw type. Optimized Hopfield networks of size n can store a large number of about n(2)/k memories of size k (or associations between them) but require real-valued synapses, which are expensive to implement and can store at most C = 0.72 bits per synapse. Willshaw networks can store a much smaller number of about n(2)/k(2) memories but get along with much cheaper binary synapses. Here I present a learning model employing synapses with discrete synaptic weights. For optimal discretization parameters, this model can store, up to a factor ζ close to one, the same number of memories as for optimized Hopfield-type learning--for example, ζ = 0.64 for binary synapses, ζ = 0.88 for 2 bit (four-state) synapses, ζ = 0.96 for 3 bit (8-state) synapses, and ζ > 0.99 for 4 bit (16-state) synapses. The model also provides the theoretical framework to determine optimal discretization parameters for computer implementations or brainlike parallel hardware including structural plasticity. In particular, as recently shown for the Willshaw network, it is possible to store C(I) = 1 bit per computer bit and up to C(S) = log n bits per nonsilent synapse, whereas the absolute number of stored memories can be much larger than for the Willshaw model. PMID:26599711

  1. A phenomenological model of the synapse between the inner hair cell and auditory nerve: Long-term adaptation with power-law dynamics

    OpenAIRE

    Zilany, Muhammad S.A.; Bruce, Ian C.; Nelson, Paul C.; Carney, Laurel H.

    2009-01-01

    There is growing evidence that the dynamics of biological systems that appear to be exponential over short time courses are in some cases better described over the long-term by power-law dynamics. A model of rate adaptation at the synapse between inner hair cells and auditory-nerve (AN) fibers that includes both exponential and power-law dynamics is presented here. Exponentially adapting components with rapid and short-term time constants, which are mainly responsible for shaping onset respon...

  2. The 5th EFIS Tatra Immunology Conference on 'Molecular Determinants of T Cell Immunity' Held in the High Tatra Mountains, Slovakia, September 7-11, 2002

    Czech Academy of Sciences Publication Activity Database

    Denzel, A.; Hořejší, Václav; Hayday, A.

    2003-01-01

    Roč. 86, č. 1 (2003), s. 1-6. ISSN 0165-2478 R&D Projects: GA MŠk LN00A026 Institutional research plan: CEZ:AV0Z5052915 Keywords : immunology * conference * T-cell Subject RIV: EC - Immunology Impact factor: 1.710, year: 2003

  3. Clinical and Immunological Effects in Patients with Advanced Non-Small Cell Lung-Cancer after Vaccination with Dendritic Cells Exposed to an Allogeneic Tumor Cell Lysate*

    DEFF Research Database (Denmark)

    Engell-Noerregaard, Lotte; Kvistborg, Pia; Zocca, Mai-Britt;

    2013-01-01

    Background: We evaluated the clinical and immunological effects of dendritic cell (DC) vaccination of patients with NSCLC. Autologous DCs were pulsed with a MAGE containing allogeneic melanoma cell lysate (MelCancerVac®, Dandrit Biotech, Copenhagen, Denmark). Imiquimod cream, proleukin and......-layed effect of DC vaccination after completion of the treatment. A prospective randomized phase-IIb or -III is needed to further evaluate the use of MelCancerVac® vaccine treatment in patients with progressive NSCLC....

  4. Mfn2 is Required for Mitochondrial Development and Synapse Formation in Human Induced Pluripotent Stem Cells/hiPSC Derived Cortical Neurons

    Science.gov (United States)

    Fang, Du; Yan, Shijun; Yu, Qing; Chen, Doris; Yan, Shirley ShiDu

    2016-01-01

    Mitochondria are essential dynamic organelles for energy production. Mitochondria dynamically change their shapes tightly coupled to fission and fusion. Imbalance of fission and fusion can cause deficits in mitochondrial respiration, morphology and motility. Mfn2 (mitofusin 2), a mitochondrial membrane protein that participates in mitochondrial fusion in mammalian cells, contributes to the maintenance and operation of the mitochondrial network. Due to lack of applicable model systems, the mechanisms and involvement of mitochondria in neurogenesis in human brain cells have not been well explored. Here, by employing the human induced pluripotent stem cells (hiPSCs) differentiation system, we fully characterized mitochondrial development, neurogenesis and synapse formation in hiPSCs-derived cortical neurons. Differentiation of hiPSCs to cortical neurons with extended period demonstrates mature neurophysiology characterization and functional synaptic network formation. Mitochondrial respiration, morphology and motility in the differentiated neurons also exhibit pronounced development during differentiation. Mfn2 knock-down results in deficits in mitochondrial metabolism and network, neurogenesis and synapse formation, while Mfn2 overexpression enhances mitochondrial bioenergetics and functions, and promotes the differentiation and maturation of neurons. Together, our data indicate that Mfn2 is essential for human mitochondrial development in neuronal maturation and differentiation, which will enhance our understanding of the role of Mfn2 in neurogenesis. PMID:27535796

  5. Mfn2 is Required for Mitochondrial Development and Synapse Formation in Human Induced Pluripotent Stem Cells/hiPSC Derived Cortical Neurons.

    Science.gov (United States)

    Fang, Du; Yan, Shijun; Yu, Qing; Chen, Doris; Yan, Shirley ShiDu

    2016-01-01

    Mitochondria are essential dynamic organelles for energy production. Mitochondria dynamically change their shapes tightly coupled to fission and fusion. Imbalance of fission and fusion can cause deficits in mitochondrial respiration, morphology and motility. Mfn2 (mitofusin 2), a mitochondrial membrane protein that participates in mitochondrial fusion in mammalian cells, contributes to the maintenance and operation of the mitochondrial network. Due to lack of applicable model systems, the mechanisms and involvement of mitochondria in neurogenesis in human brain cells have not been well explored. Here, by employing the human induced pluripotent stem cells (hiPSCs) differentiation system, we fully characterized mitochondrial development, neurogenesis and synapse formation in hiPSCs-derived cortical neurons. Differentiation of hiPSCs to cortical neurons with extended period demonstrates mature neurophysiology characterization and functional synaptic network formation. Mitochondrial respiration, morphology and motility in the differentiated neurons also exhibit pronounced development during differentiation. Mfn2 knock-down results in deficits in mitochondrial metabolism and network, neurogenesis and synapse formation, while Mfn2 overexpression enhances mitochondrial bioenergetics and functions, and promotes the differentiation and maturation of neurons. Together, our data indicate that Mfn2 is essential for human mitochondrial development in neuronal maturation and differentiation, which will enhance our understanding of the role of Mfn2 in neurogenesis. PMID:27535796

  6. Synapses and Memory Storage

    OpenAIRE

    Mayford, Mark; Siegelbaum, Steven A.; Kandel, Eric R.

    2012-01-01

    The synapse is the functional unit of the brain. During the last several decades we have acquired a great deal of information on its structure, molecular components, and physiological function. It is clear that synapses are morphologically and molecularly diverse and that this diversity is recruited to different functions. One of the most intriguing findings is that the size of the synaptic response in not invariant, but can be altered by a variety of homo- and heterosynaptic factors such as ...

  7. Immunological characterization of multipotent mesenchymal stromal cells--The International Society for Cellular Therapy (ISCT) working proposal.

    OpenAIRE

    Krampera, Mauro; Galipeau, Jacques; Shi, Yufang; Tarte, Karin; Sensebe, Luc

    2013-01-01

    Cultured mesenchymal stromal cells (MSCs) possess immune regulatory properties and are already used for clinical purposes, although preclinical data (both in vitro and in vivo in animal models) are not always homogeneous and unequivocal. However, the various MSC-based clinical approaches to treat immunological diseases would be significantly validated and strengthened by using standardized immune assays aimed at obtaining shared, reproducible and consistent data. Thus, the MSC Committee of th...

  8. The molecular signature of therapeutic mesenchymal stem cells exposes the architecture of the hematopoietic stem cell niche synapse

    Directory of Open Access Journals (Sweden)

    Mancardi Gianluigi

    2007-03-01

    Full Text Available Abstract Background The hematopoietic stem cells (HSCs niche of the bone marrow is comprised of HSCs, osteoblasts, endothelial cells and a stromal component of non-hematopoietic multipotent cells of mesenchymal origin named "mesenchymal stem cells" (MSCs. Results Here we studied the global transcriptional profile of murine MSCs with immuno-therapeutic potential and compared it with that of 486 publicly available microarray datasets from 12 other mouse tissues or cell types. Principal component analysis and hierarchical clustering identified a unique pattern of gene expression capable of distinctively classifying MSCs from other tissues and cells. We then performed an analysis aimed to identify absolute and relative abundance of transcripts in all cell types. We found that the set of transcripts uniquely expressed by MSCs is enriched in transcription factors and components of the Wnt signaling pathway. The analysis of differentially expressed genes also identified a set of genes specifically involved in the HSC niche and is complemented by functional studies that confirm the findings. Interestingly, some of these genes play a role in the maintenance of HSCs in a quiescent state supporting their survival and preventing them from proliferating and differentiating. We also show that MSCs modulate T cell functions in vitro and, upon in vivo administration, ameliorate experimental autoimmune encephalomyelitis (EAE. Conclusion Altogether, these findings provide novel and important insights on the mechanisms of T cell function regulation by MSCs and help to cement the rationale for their application in the treatment of autoimmune diseases.

  9. IDO-Expressing Fibroblasts Protect Islet Beta Cells From Immunological Attack and Reverse Hyperglycemia in Non-Obese Diabetic Mice.

    Science.gov (United States)

    Zhang, Yun; Jalili, Reza B; Kilani, Ruhangiz T; Elizei, Sanam Salimi; Farrokhi, Ali; Khosravi-Maharlooei, Mohsen; Warnock, Garth L; Ao, Ziliang; Marzban, Lucy; Ghahary, Aziz

    2016-09-01

    Indoleamine 2,3-dioxygenase (IDO) induces immunological tolerance in physiological and pathological conditions. Therefore, we used dermal fibroblasts with stable IDO expression as a cell therapy to: (i) Investigate the factors determining the efficacy of this cell therapy for autoimmune diabetes in non-obese diabetic (NOD) mice; (ii) Scrutinize the potential immunological mechanisms. Newly diabetic NOD mice were randomly injected with either 10 × 10(6) (10M) or 15 × 10(6) (15M) IDO-expressing dermal fibroblasts. Blood glucose levels (BGLs), body weight, plasma kynurenine levels, insulitis severity, islet beta cell function, autoreactive CD8(+) T cells, Th17 cells and regulatory T cells (Tregs) were then investigated in these mice. IL-1β and cleaved caspase-3 levels were assessed in islets co-cultured with IDO-expressing fibroblasts. BGLs in 83% mice treated with 15M IDO-expressing fibroblasts recovered to normal up to 120 days. However, only 17% mice treated with 10M IDO-expressing cells were reversed to normoglycemia. A 15M IDO-expressing fibroblasts significantly reduced infiltrated immune cells in islets and recovered the functionality of remaining islet beta cells in NOD mice. Additionally, they successfully inhibited autoreactive CD8(+) T cells and Th17 cells as well as increased Tregs in different organs of NOD mice. Islet beta cells co-cultured with IDO-expressing fibroblasts had reduced IL-1β levels and cell apoptosis. Both cell number and IDO enzymatic activity contributes to the efficiency of IDO cell therapy. Optimized IDO-expressing fibroblasts successfully reverse the progression of diabetes in NOD mice through induction of Tregs as well as inhibition of beta cell specific autoreactive CD8(+) T cells and Th17 cells. J. Cell. Physiol. 231: 1964-1973, 2016. © 2016 Wiley Periodicals, Inc. PMID:26743772

  10. The new immunology.

    Science.gov (United States)

    Siminovitch, K A

    1992-03-01

    Among the biomedical sciences, immunology stands out as a discipline in which knowledge emanating from fundamental research has rapidly been transferred to the clinical paradigm, with consequent improvement in human health. Virtually all medical subspecialties have benefitted from diagnostic reagents and technologies provided by basic immunology. In terms of numbers of lives saved, immunologic-based therapeutic strategies, most notably vaccination, rank among the most effective measures ever achieved by medical intervention. Yet, despite immunology's profound impact on medicine and the longstanding recognition of many of the general principles and cellular components involved in immunity, until relatively recently, the operational workings of the immune system eluded precise definition. The abstract nature of the immune system rendered the field intangible or, at the very least, confusing, to the nonimmunologic medical community. However, in recent years, this situation has changed radically, as cell cloning, hybridoma, and recombinant DNA technologies have provided the means to delineate the precise immunologic cellular structures and interactions. The purpose of this review is to highlight a few of the most significant advances in immunology during the past decade, and to show how they have made possible the translation of abstract concepts of classical immunology into tangible, structural information. Striking gains in the understanding of antigen recognition, one of the most fundamental aspects of immunity, are described as an illustrative case. PMID:1640405

  11. Distinct target cell-dependent forms of short-term plasticity of the central visceral afferent synapses of the rat

    Directory of Open Access Journals (Sweden)

    Watabe Ayako M

    2010-10-01

    Full Text Available Abstract Background The visceral afferents from various cervico-abdominal sensory receptors project to the dorsal vagal complex (DVC, which is composed of the nucleus of the solitary tract (NTS, the area postrema and the dorsal motor nucleus of the vagus nerve (DMX, via the vagus and glossopharyngeal nerves and then the solitary tract (TS in the brainstem. While the excitatory transmission at the TS-NTS synapses shows strong frequency-dependent suppression in response to repeated stimulation of the afferents, the frequency dependence and short-term plasticity at the TS-DMX synapses, which also transmit monosynaptic information from the visceral afferents to the DVC neurons, remain largely unknown. Results Recording of the EPSCs activated by paired or repeated TS stimulation in the brainstem slices of rats revealed that, unlike NTS neurons whose paired-pulse ratio (PPR is consistently below 0.6, the distribution of the PPR of DMX neurons shows bimodal peaks that are composed of type I (PPR, 0.6-1.5; 53% of 120 neurons recorded and type II (PPR, Conclusions These two general types of short-term plasticity might contribute to the differential activation of distinct vago-vagal reflex circuits, depending on the firing frequency and type of visceral afferents.

  12. RNA-binding protein Hermes/RBPMS inversely affects synapse density and axon arbor formation in retinal ganglion cells in vivo.

    Science.gov (United States)

    Hörnberg, Hanna; Wollerton-van Horck, Francis; Maurus, Daniel; Zwart, Maarten; Svoboda, Hanno; Harris, William A; Holt, Christine E

    2013-06-19

    The RNA-binding protein Hermes [RNA-binding protein with multiple splicing (RBPMS)] is expressed exclusively in retinal ganglion cells (RGCs) in the CNS, but its function in these cells is not known. Here we show that Hermes protein translocates in granules from RGC bodies down the growing axons. Hermes loss of function in both Xenopus laevis and zebrafish embryos leads to a significant reduction in retinal axon arbor complexity in the optic tectum, and expression of a dominant acting mutant Hermes protein, defective in RNA-granule localization, causes similar defects in arborization. Time-lapse analysis of branch dynamics reveals that the decrease in arbor complexity is caused by a reduction in new branches rather than a decrease in branch stability. Surprisingly, Hermes depletion also leads to enhanced early visual behavior and an increase in the density of presynaptic puncta, suggesting that reduced arborization is accompanied by increased synaptogenesis to maintain synapse number. PMID:23785151

  13. Analog VLSI Circuits for Short-Term Dynamic Synapses

    Directory of Open Access Journals (Sweden)

    Shih-Chii Liu

    2003-06-01

    Full Text Available Short-term dynamical synapses increase the computational power of neuronal networks. These synapses act as additional filters to the inputs of a neuron before the subsequent integration of these signals at its cell body. In this work, we describe a model of depressing and facilitating synapses derived from a hardware circuit implementation. This model is equivalent to theoretical models of short-term synaptic dynamics in network simulations. These circuits have been added to a network of leaky integrate-and-fire neurons. A cortical model of direction-selectivity that uses short-term dynamic synapses has been implemented with this network.

  14. Up-regulation of Ras/Raf/ERK1/2 signaling in the spinal cord impairs neural cell migration, neurogenesis, synapse formation, and dendritic spine development

    Institute of Scientific and Technical Information of China (English)

    CAO Fu-jiang; ZHANG Xu; LIU Tao; LI Xia-wen; Mazar Malik; FENG Shi-qing

    2013-01-01

    Background The Ras/Raf/ERK1/2 signaling pathway controls many cellular responses such as cell proliferation,migration,differentiation,and death.In the nervous system,emerging evidence also points to a death-promoting role for ERK1/2 in both in vitro and in vivo models of neuronal death.To further investigate how Ras/Raf/ERK1/2 up-regulation may lead to the development of spinal cord injury,we developed a cellular model of Raf/ERK up-regulation by overexpressing c-Raf in cultured spinal cord neurons (SCNs) and dorsal root ganglions (DRGs).Methods DRGs and SCNs were prepared from C57BL/6J mouse pups.DRGs or SCNs were infected with Ad-Raf-1 or Ad-Null adenovirus alone.Cell adhesion assay and cell migration assay were investigated,Dil labeling was employed to examine the effect of the up-regulation of Ras/Raf/ERK1/2 signaling on the dendritic formation of spinal neurons.We used the TO-PRO-3 staining to examine the apoptotic effect of c-Raf on DRGs or SCNs.The effect on the synapse formation of neurons was measured by using immunofluorescence.Results We found that Raf/ERK up-regulation stimulates the migration of both SCNs and DRGs,and impairs the formation of excitatory synapses in SCNs.In addition,we found that Raf/ERK up-regulation inhibits the development of mature dendritic spines in SCNs.Investigating the possible mechanisms through which Raf/ERK up-regulation affects the excitatory synapse formation and dendritic spine development,we discovered that Raf/ERK up-regulation suppresses the development and maturation of SCNs.Conclusion The up-regulation of the Raf/ERK signaling pathway may contribute to the pathogenesis of spinal cord injury through both its impairment of the SCN development and causing neural circuit imbalances.

  15. Nutritional immunology: function of natural killer cells and their modulation by resveratrol for cancer prevention and treatment.

    Science.gov (United States)

    Leischner, Christian; Burkard, Markus; Pfeiffer, Matthias M; Lauer, Ulrich M; Busch, Christian; Venturelli, Sascha

    2016-01-01

    Natural killer (NK) cells as part of the innate immune system represent the first line of defence against (virus-) infected and malignantly transformed cells. The emerging field of nutritional immunology focuses on compounds featuring immune-modulating activities in particular on NK cells, which e.g. can be exploited for cancer prevention and treatment. The plant-based nutrition resveratrol is a ternary hydroxylated stilbene, which is present in many foods and beverages, respectively. In humans it comprises a large variety of distinct biological activities. Interestingly, resveratrol strongly modulates the immune response including the activity of NK cells. This review will give an overview on NK cell functions and summarize the resveratrol-mediated modulation thereof. PMID:27142426

  16. Identification of microtubular structures in diverse plant and animal cells by immunological cross-reaction revealed in immunofluorescence microscopy using antibodies against tubulin from porcine brain

    OpenAIRE

    Weber, Klaus; Osborn, Mary; Franke, Werner W.; Seib, Erinita; Scheer, Ulrich; Herth, Werner

    2010-01-01

    Antibody against tubulin from porcine brain was used to evaluate the immunological cross reactivity of tubulin from a variety of animal and plant cells. Indirect immunofluorescence microscopy revealed microtubule-containing structures including cytoplasmic microtubules, spindle microtubules, cilia and fIagella. Thus tubulin from diverse species of both mammals and plants show immunological cross-reactivity with tubulin from porcine brain. Results obtained by immunofluorescence microscopy are ...

  17. Experiment K-7-23: Effect of Spaceflight on Level and Function of Immune Cells. Part 1; Immunology Studies

    Science.gov (United States)

    Sonnenfeld, G.; Mandel, A.; Konstantinova, I. V.; Berry, W. D.; Taylor, G. R.; Lesnyak, A. T.; Fuchs, B. B.; Rakhmilevich, A. L.

    1994-01-01

    Two different experiments were carried out in this segment of the immunology protocol for samples received from rats flown on Cosmos 2044. Control groups included vivarium, synchronous and antiorthostatically suspended rats. In the first experiment, rat bone marrow cells were examined in Moscow for their response to recombinant murine colony stimulating factor-granulocyte / monocyte (CSF-GM). In the second experiment, rat spleen and bone marrow cells were stained in Moscow with a variety of antibodies directed against cell surface antigenic markers. These cells were preserved and shipped to the United States for analysis on a flow cytometer. The results of the studies indicated that bone marrow cells from flown and suspended rats showed a decreased response to CSF-GM as compared to bone marrow cells from control rats. Spleen cells from flown rats showed increased percentages of suppressor-cytotoxic-T and helper-T cells amongst the entire cell population. Bone marrow cells showed an increase in the percentage of helper-T cells in the myelogenous population and increased percentages of anti-asialo GM-1 bearing, interleukin-2 receptor bearing, pan-T and helper-T cells in the lymphocytic population. Cell populations from rats suspended antiorthostatically did not follow the same pattern of distribution of leukocytes as cell populations for flown rats. These results are similar, but not identical to, earlier results from Cosmos 1887, and confirm that space flight can have profound effects on immune system components and activities.

  18. Structural changes in pyramidal cell dendrites and synapses in the unaffected side of the sensorimotor cortex following transcranial magnetic stimulation and rehabilitation training in a rat model of focal cerebral infarct

    Institute of Scientific and Technical Information of China (English)

    Chuanyu Liu; Surong Zhou; Xuwen Sun; Zhuli Liu; Hongliang Wu; Yuanwu Mei

    2011-01-01

    Very little is known about the effects of transcranial magnetic stimulation and rehabilitation training on pyramidal cell dendrites and synapses of the contralateral, unaffected sensorimotor cortex in a rat model of focal cerebral infarct. The present study was designed to explore the mechanisms underlying improved motor function via transcranial magnetic stimulation and rehabilitation training following cerebral infarction. Results showed that rehabilitation training or transcranial magnetic stimulation alone reduced neurological impairment in rats following cerebral infarction, as well as significantly increased synaptic curvatures and post-synaptic density in the non-injured cerebral hemisphere sensorimotor cortex and narrowed the synapse cleft width. In addition, the percentage of perforated synapses increased. The combination of transcranial magnetic stimulation and rehabilitation resulted in significantly increased total dendritic length, dendritic branching points, and dendritic density in layer V pyramidal cells of the non-injured cerebral hemisphere motor cortex.These results demonstrated that transcranial magnetic stimulation and rehabilitation training altered structural parameters of pyramidal cell dendrites and synapses in the non-injured cerebral hemisphere sensorimotor cortex, thereby improving the ability to compensate for neurological functions in rats following cerebral infarction.

  19. Role of mast cell- and non-mast cell-derived inflammatory mediators in immunologic induction of synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Albuquerque A.A.C.

    1997-01-01

    Full Text Available We have previously discovered a long-lasting enhancement of synaptic transmission in mammal autonomic ganglia caused by immunological activation of ganglionic mast cells. Subsequent to mast cell activation, lipid and peptide mediators are released which may modulate synaptic function. In this study we determined whether some mast cell-derived mediators, prostaglandin D2 (PGD2; 1.0 µM, platelet aggregating factor (PAF; 0.3 µM and U44619 (a thromboxane analogue; 1.0 µM, and also endothelin-1 (ET-1; 0.5 µM induce synaptic potentiation in the guinea pig superior cervical ganglion (SCG, and compared their effects on synaptic transmission with those induced by a sensitizing antigen, ovalbumin (OVA; 10 µg/ml. The experiments were carried out on SCGs isolated from adult male guinea pigs (200-250 g actively sensitized to OVA, maintained in oxygenated Locke solution at 37oC. Synaptic potentiation was measured through alterations of the integral of the post-ganglionic compound action potential (CAP. All agents tested caused long-term (LTP; duration ³30 min or short-term (STP; <30 min potentiation of synaptic efficacy, as measured by the increase in the integral of the post-ganglionic CAP. The magnitude of mediator-induced potentiation was never the same as the antigen-induced long-term potentiation (A-LTP. The agent that best mimicked the antigen was PGD2, which induced a 75% increase in CAP integral for LTP (antigen: 94% and a 34% increase for STP (antigen: 91%. PAF-, U44619-, and ET-1-induced increases in CAP integral ranged for LTP from 34 to 47%, and for STP from 0 to 26%. These results suggest that the agents investigated may participate in the induction of A-LTP

  20. Immunological characterization of multipotent mesenchymal stromal cells--The International Society for Cellular Therapy (ISCT) working proposal.

    Science.gov (United States)

    Krampera, Mauro; Galipeau, Jacques; Shi, Yufang; Tarte, Karin; Sensebe, Luc

    2013-09-01

    Cultured mesenchymal stromal cells (MSCs) possess immune regulatory properties and are already used for clinical purposes, although preclinical data (both in vitro and in vivo in animal models) are not always homogeneous and unequivocal. However, the various MSC-based clinical approaches to treat immunological diseases would be significantly validated and strengthened by using standardized immune assays aimed at obtaining shared, reproducible and consistent data. Thus, the MSC Committee of the International Society for Cellular Therapy has decided to put forward for general discussion a working proposal for a standardized approach based on a critical view of literature data. PMID:23602578

  1. Axonal synapses utilize multiple synaptic ribbons in the mammalian retina.

    Directory of Open Access Journals (Sweden)

    Hong-Lim Kim

    Full Text Available In the mammalian retina, bipolar cells and ganglion cells which stratify in sublamina a of the inner plexiform layer (IPL show OFF responses to light stimuli while those that stratify in sublamina b show ON responses. This functional relationship between anatomy and physiology is a key principle of retinal organization. However, there are at least three types of retinal neurons, including intrinsically photosensitive retinal ganglion cells (ipRGCs and dopaminergic amacrine cells, which violate this principle. These cell types have light-driven ON responses, but their dendrites mainly stratify in sublamina a of the IPL, the OFF sublayer. Recent anatomical studies suggested that certain ON cone bipolar cells make axonal or ectopic synapses as they descend through sublamina a, thus providing ON input to cells which stratify in the OFF sublayer. Using immunoelectron microscopy with 3-dimensional reconstruction, we have identified axonal synapses of ON cone bipolar cells in the rabbit retina. Ten calbindin ON cone bipolar axons made en passant ribbon synapses onto amacrine or ganglion dendrites in sublamina a of the IPL. Compared to the ribbon synapses made by bipolar terminals, these axonal ribbon synapses were characterized by a broad postsynaptic element that appeared as a monad and by the presence of multiple short synaptic ribbons. These findings confirm that certain ON cone bipolar cells can provide ON input to amacrine and ganglion cells whose dendrites stratify in the OFF sublayer via axonal synapses. The monadic synapse with multiple ribbons may be a diagnostic feature of the ON cone bipolar axonal synapse in sublamina a. The presence of multiple ribbons and a broad postsynaptic density suggest these structures may be very efficient synapses. We also identified axonal inputs to ipRGCs with the architecture described above.

  2. Different Immunological Phenotypes Associated with Preserved CD4+ T Cell Counts in HIV-Infected Controllers and Viremic Long Term Non-Progressors

    DEFF Research Database (Denmark)

    Gaardbo, Julie Christine; Hartling, Hans J; Ronit, Andreas;

    2013-01-01

    HIV-infected controllers control viral replication and maintain normal CD4+ T cell counts. Long Term Non-Progressors (LTNP) also maintain normal CD4+ T cell counts, but have on-going viral replication. We hypothesized that different immunological mechanisms are responsible for preserved CD4+ T cell...... counts in controllers and LTNP....

  3. Investigations by Cell-Mediated Immunologic Tests and Therapeutic Trials With Thymopentin in Vaginal Mycoses

    OpenAIRE

    Werner Mendling; Ursula Koldovsky

    1996-01-01

    Objective: According to unsatisfactory therapeutic results in patients with chronically recurrent vaginal candidosis, we investigated if immunologic patient factors could be found and treated. Methods: In 42 women with chronically recurrent and 20 women with acute Candida albicans vulvovaginitis, as well as 14 women with C. glabrata vaginitis, the following investigations were carried out: identification of yeast species; quantification of T lymphocytes and their subpopulations in sera; proli...

  4. Investigation of epididymal immunology

    Institute of Scientific and Technical Information of China (English)

    CHANG Zong-Liang

    2005-01-01

    Immunology is the study of the structure and function of the immune system. The immune system consists of an earlier-stage innate immunity and a later-stage adaptive immunity. The task of the immune system is to efficiently respond to non-self antigens and the invasion of pathogens, thereby protecting the host's homeostasis. This review article discusses the structure and function of the epididymis, including the composition of the epithelial cells of the epididymis and their relationship to the immune system, through the assessment of alterations in the immune cells of the epididymis. The review also shows the anti-inflammatory properties of rat epididymal defensin and the description of the blood-epididymis barrier, immune barrier, epididymitis and pathological mechanisms of infertility in males. Taken together, we see that the epididymis possesses a close link with immunology. Finally, this review discusses the future of studies involving epididymal immunology.

  5. Inner hair cell ribbon synapse plasticity might be molecular basis of temporary hearing threshold shifts in mice.

    Science.gov (United States)

    Wang, Haolin; Zhao, Ning; Yan, Kaisheng; Liu, Xiuli; Zhang, Yue; Hong, Zhijun; Wang, Mingyu; Yin, Qing; Wu, Feifeng; Lei, Yu; Li, Xiaoyan; Shi, Lin; Liu, Ke

    2015-01-01

    Recent studies have reported that noise exposure at relatively low intensities can cause temporary threshold shifts (TTS) in hearing. However, the mechanism underlying the TTS is still on debate. Here, we report that an acoustic stimulation (100 dB SPL, white noise) induced TTS in mice, with the maximal ABR threshold elevations seen on the 4(th) day after noise exposure. On the other hand, there were no significant morphological changes in the cochlea. Further, there were paralleled changes of pre-synaptic ribbons in both the number and postsynaptic density (PSDs) during this noise exposure. The numbers of presynaptic ribbon, postsynaptic density (PSDs), and colocalized puncta correlated with the shifts of ABR thresholds. Moreover, a complete recovery of ABR thresholds and synaptic puncta was seen on the 14(th) day after the noise stimulations. Thus, our study may indicate that noise exposure can cause a decline in cochlear ribbon synapses and result in consequent hearing loss. The reduction of synaptic puncta appears reversible and may contribute to hearing restoration in mice after noise exposure. PMID:26339457

  6. Exploring the limits of optical microscopy: live cell and superresolution fluorescence microscopy of HIV-1 Transfer Between T lymphocytes Across the Virological Synapse

    Science.gov (United States)

    McNerney, Gregory Paul

    Human immunodeficiency virus 1 (HIV-1) is a human retrovirus that efficiently, albeit gradually, overruns the immune system. An already infected T lymphocyte can latch onto another T lymphocyte whereby creating a virological synapse (VS); this junction drives viral assembly and transfer to the target cell in batches in an efficient, protective manor. My Ph.D. doctoral thesis focused on studying this transmission mechanism using advanced optical imaging modalities and the fully infectious fluorescent clone HIV Gag-iGFP. T lymphocytes are non-adherent cells (˜10 um thick) and the viral transmission process is fairly dynamic, hence we employed a custom spinning disk confocal microscope that revealed many interesting characteristics of this cooperative event. This methodology has low throughput as cell contact and transfer is at random. Optical tweezers was then added to the microscope to directly initiate cell contact at will. To assess when viral maturation occurs post-transfer, an optical assay based off of Forster resonance energy transfer was developed to monitor maturation. Structured illumination microscopy was further used to image the process at higher resolution and it showed that viral particles are not entering existing degradative compartments. Non-HIV-1 applications of the optical technologies are also reviewed.

  7. No longer falling on deaf ears: mechanisms of degeneration and regeneration of cochlear ribbon synapses.

    Science.gov (United States)

    Wan, Guoqiang; Corfas, Gabriel

    2015-11-01

    Cochlear ribbon synapses are required for the rapid and precise neural transmission of acoustic signals from inner hair cells to the spiral ganglion neurons. Emerging evidence suggests that damage to these synapses represents an important form of cochlear neuropathy that might be highly prevalent in sensorineural hearing loss. In this review, we discuss our current knowledge on how ribbon synapses are damaged by noise and during aging, as well as potential strategies to promote ribbon synapse regeneration for hearing restoration. PMID:25937135

  8. Immunologic effects of whole body ultraviolet (uv) irradiation. II. Defect in splenic adherent cell antigen presentation for stimulation of T cell proliferation

    International Nuclear Information System (INIS)

    Ultraviolet (uv) irradiation has been shown to alter many parameters of the immunologic reactivity of mice. The altered responsiveness of uv-irradiated mice, as measured by delayed-type hypersensitivity (DTH) and primary in vitro plaque-forming cell (PFC) responses to T-dependent antigens, has recently been correlated with a functional defect in the splenic adherent cell population of these animals. The present studies describe a model of this altered responsiveness, which allows further clarification of the effects of external uv irradiation on the splenic antigen-presenting cell (APC) in its interactions with T cells

  9. The Clinical Potential of Circulating Tumor Cells; The Need to Incorporate a Modern “Immunological Cocktail” in the Assay

    Directory of Open Access Journals (Sweden)

    Jonathan W. Uhr

    2013-12-01

    Full Text Available The accepted clinical assay, CellSearch®, and lab-on-a-chip tests for capturing circulating tumor cells are antibody-mediated. Attempts to improve their sensitivity have relied upon physical changes in the instruments. There have been no significant advances in improving the antibody-mediated portion of the capture. Modern immunologic engineering offers major possibilities for improving the sensitivity and other features of the assay. These include obtaining univalent antibody fragments such as scFvs with picomolar binding affinity and sufficient specificity; altering them to enhance their range of potential contact with target antigens; using antibodies directed against different epitopes on epithelial, mesenchymal or organ-specific cell surface markers to allow simultaneous binding and investigating non-antibody binding molecules as substitutes for antibody. These maneuvers could markedly improve the ability of current assays to improve patient care and might result in an acceptable test for detecting cancer earlier in high risk patients.

  10. The Clinical Potential of Circulating Tumor Cells; The Need to Incorporate a Modern “Immunological Cocktail” in the Assay

    International Nuclear Information System (INIS)

    The accepted clinical assay, CellSearch®, and lab-on-a-chip tests for capturing circulating tumor cells are antibody-mediated. Attempts to improve their sensitivity have relied upon physical changes in the instruments. There have been no significant advances in improving the antibody-mediated portion of the capture. Modern immunologic engineering offers major possibilities for improving the sensitivity and other features of the assay. These include obtaining univalent antibody fragments such as scFvs with picomolar binding affinity and sufficient specificity; altering them to enhance their range of potential contact with target antigens; using antibodies directed against different epitopes on epithelial, mesenchymal or organ-specific cell surface markers to allow simultaneous binding and investigating non-antibody binding molecules as substitutes for antibody. These maneuvers could markedly improve the ability of current assays to improve patient care and might result in an acceptable test for detecting cancer earlier in high risk patients

  11. Immunology of lymphatic filariasis

    OpenAIRE

    Babu, Subash; Nutman, Thomas B.

    2014-01-01

    The immune responses to filarial parasites encompass a complex network of innate and adaptive cells whose interaction with the parasite underlies a spectrum of clinical manifestations. The predominant immunological feature of lymphatic filariasis is an antigen - specific Th2 response and an expansion of IL-10 producing CD4+ T cells that is accompanied by a muted Th1 response. This antigen specific T cell hypo-responsiveness appears to be crucial for the maintenance of the sustained, long-stan...

  12. Basic and clinical immunology

    Science.gov (United States)

    Chinen, Javier; Shearer, William T.

    2003-01-01

    Progress in immunology continues to grow exponentially every year. New applications of this knowledge are being developed for a broad range of clinical conditions. Conversely, the study of primary and secondary immunodeficiencies is helping to elucidate the intricate mechanisms of the immune system. We have selected a few of the most significant contributions to the fields of basic and clinical immunology published between October 2001 and October 2002. Our choice of topics in basic immunology included the description of T-bet as a determinant factor for T(H)1 differentiation, the role of the activation-induced cytosine deaminase gene in B-cell development, the characterization of CD4(+)CD25(+) regulatory T cells, and the use of dynamic imaging to study MHC class II transport and T-cell and dendritic cell membrane interactions. Articles related to clinical immunology that were selected for review include the description of immunodeficiency caused by caspase 8 deficiency; a case series report on X-linked agammaglobulinemia; the mechanism of action, efficacy, and complications of intravenous immunoglobulin; mechanisms of autoimmunity diseases; and advances in HIV pathogenesis and vaccine development. We also reviewed two articles that explore the possible alterations of the immune system caused by spaceflights, a new field with increasing importance as human space expeditions become a reality in the 21st century.

  13. Study on effect of ginsenoside Rg3 on immunological recovery after peripheral blood stem cell transplantation in animal experiments

    International Nuclear Information System (INIS)

    Objective: To study the effect of ginsenoside Rg3 on immunological recovery in mice after peripheral blood stem cell transplantation (PBSCT). Methods: A murine model of PBSCT was established. Ninety recipient mice were divided into 6 groups after transplantation: A, B, C, D, E, F groups, 15 mice each. They were intra-abdominally injected with Rg3 3 mg/kg, Rg3 6 mg/kg, Rg3 9 mg/kg, IL-2 and normal saline (NS), respectively. They were injected began from day 15 after PBSCT, daily for successive 15 dats per month, for a total of 3 months. The functional recovery of T and B lymphocytes was observed by the lymphocyte transformation test; and formation test of antibody, respectively, and the functional recovery of NK cell was observed by the killing test. The changes in number of T cell subpopulations, B cells and NK cells were observed by Flow cytometry (FCM). Results: For the influence of Rg3 on cyto-immunity the action of 6 mg/kg and 9 mg/kg Rg3 was much better than that of NS (P0.05). Only the combined group showed a good synergistic effect which was much better than that of other groups. For the influence on cytotoxic activity, the test groups were all better than NS group at the first month after PBSCT (P<0.05), but in the second month the cytotoxic activity of all test groups reduced gradually. However, in the third month the activity gradually recovered again, especially in Rg3 6 mg/kg, 9 mg/kg and 9 mg/kg + IL-2 groups (P<0.01). Conclusion: The combined use of ginsenoside Rg3 (high dose) and biological response modifier (BRM) improves greatly the immunological recovery of transplanted mice, and enhances greatly the immune function. The effect of combined therapy is much better than single IL-2 or Rg3 treatment. (authors)

  14. Activity-dependent long-term plasticity of afferent synapses on grafted stem/progenitor cell-derived neurons.

    OpenAIRE

    Toft Sörensen, Andreas; Rogelius, Nina; Lundberg, Cecilia; Kokaia, Merab

    2011-01-01

    Stem cell-based cell replacement therapies aiming at restoring injured or diseased brain function ultimately rely on the capability of transplanted cells to promote functional recovery. The mechanisms by which stem cell-based therapies for neurological conditions can lead to functional recovery are uncertain, but structural and functional repair appears to depend on integration of transplanted cell-derived neurons into neuronal circuitries. The nature by which stem/progenitor cell-derived neu...

  15. Glimepiride protects neurons against amyloid-β-induced synapse damage.

    Science.gov (United States)

    Osborne, Craig; West, Ewan; Nolan, William; McHale-Owen, Harriet; Williams, Alun; Bate, Clive

    2016-02-01

    Alzheimer's disease is associated with the accumulation within the brain of amyloid-β (Aβ) peptides that damage synapses and affect memory acquisition. This process can be modelled by observing the effects of Aβ on synapses in cultured neurons. The addition of picomolar concentrations of soluble Aβ derived from brain extracts triggered the loss of synaptic proteins including synaptophysin, synapsin-1 and cysteine string protein from cultured neurons. Glimepiride, a sulphonylurea used for the treatment of diabetes, protected neurons against synapse damage induced by Aβ. The protective effects of glimepiride were multi-faceted. Glimepiride treatment was associated with altered synaptic membranes including the loss of specific glycosylphosphatidylinositol (GPI)-anchored proteins including the cellular prion protein (PrP(C)) that acts as a receptor for Aβ42, increased synaptic gangliosides and altered cell signalling. More specifically, glimepiride reduced the Aβ-induced increase in cholesterol and the Aβ-induced activation of cytoplasmic phospholipase A2 (cPLA2) in synapses that occurred within cholesterol-dense membrane rafts. Aβ42 binding to glimepiride-treated neurons was not targeted to membrane rafts and less Aβ42 accumulated within synapses. These studies indicate that glimepiride modified the membrane micro-environments in which Aβ-induced signalling leads to synapse damage. In addition, soluble PrP(C), released from neurons by glimepiride, neutralised Aβ-induced synapse damage. Such observations raise the possibility that glimepiride may reduce synapse damage and hence delay the progression of cognitive decline in Alzheimer's disease. PMID:26432105

  16. Immunologic proof of DNS irradiation damages and their repair in stationary yeast cells

    International Nuclear Information System (INIS)

    In rabbits an antiserum was produced by injecting UV-irradiated denaturated calf-thymus DNS; after inhibiting unspecific bindings, a specific serological reaction with UV-induced irradiation damages could be taken as present in this antiserum. By the ammonium sulphate precipitation as immunologic method of detection, after UV-irradiation the genesis of damages at certain sites in the DNS of different yeast lineages and their repair was observed. The elemination of UV-induced DNS damages was observed after an incubation in a nutrien medium, after photo-reactivation and after combining both therapeutic treatments. The following results were obtained: the detected DNS damage (number of induced dimeres/yeast genomes) had the same degree in the four yeast lineages. Apart from the excision-negative mutante 2094 for all yeast lineages a repair efficiency of 60% could be detected. All yeast lineages presented themselves as photographically to be reactivated; however, in all cases a DNS damage of 40 to 50% remained. The examinations for the specificity of antiserum against roentgenologically irradiated DNS led to the conclusion that the antibody population of the serum consisted mainly of immunoglobulines against unchanged DNS areas. A specific immunological reaction of only about 10% could be achieved. (orig./MG)

  17. Hematopoietic stem cell transplantation induces immunologic tolerance in renal transplant patients via modulation of inflammatory and repair processes

    Directory of Open Access Journals (Sweden)

    Wu Duojiao

    2012-08-01

    Full Text Available Abstract Background Inducing donor-specific tolerance in renal transplant patients could potentially prevent allograft rejection and calcineurin inhibitor nephrotoxicity. Combined kidney and hematopoietic stem cell transplant from an HLA-matched donor is an exploratory and promising therapy to induce immune tolerance. Investigtion of molecular mechanisms involved in the disease is needed to understand the potential process of cell therapy and develop strategies to prevent this immunologic rejection. Methods We enrolled nine patients in a clinical study in which cryopreserved donor hematopoietic stem cells were infused on days 2, 4, and 6 after kidney transplantation. One month post-transplant, 4 plasma samples were collected from combined transplants (C + Tx, and 8 plasma samples from patients with kidney transplantation alone (Tx. High abundance proteins in plasma were depleted and the two-dimensional liquid chromatography-tandem mass spectrometry coupled with iTRAQ labeling was utilized to identify the protein profiling between the two groups. Clusters of up- and down-regulated protein profiles were submitted to MetaCore for the construction of transcriptional factors and regulation networks. Results and Discussion Among the 179 identified proteins, 65 proteins were found in C + Tx with at least a 2-fold change as compared with Tx. A subset of proteins related to the complement and coagulation cascade, including complement C3a,complement C5a, precrusors to fibrinogen alpha and beta chains,was significantly downregulated in C + Tx. Meanwhile, Apolipoprotein-A1(ApoA1, ApoC1, ApoA2, ApoE, and ApoB were significantly lower in Tx compared to C + Tx. Gene ontology analysis showed that the dominant processes of differentially expressed proteins were associated with the inflammatory response and positive regulation of plasma lipoprotein particle remodeling. Conclusions Thus, our study provides new insight into the molecular events in

  18. Immunological characteristics and T-cell receptor clonal diversity in children with systemic juvenile idiopathic arthritis undergoing T-cell-depleted autologous stem cell transplantation.

    Science.gov (United States)

    Wu, Qiong; Pesenacker, Anne M; Stansfield, Alka; King, Douglas; Barge, Dawn; Foster, Helen E; Abinun, Mario; Wedderburn, Lucy R

    2014-06-01

    Children with systemic Juvenile Idiopathic Arthritis (sJIA), the most severe subtype of JIA, are at risk from destructive polyarthritis and growth failure, and corticosteroids as part of conventional treatment can result in osteoporosis and growth delay. In children where there is failure or toxicity from drug therapies, disease has been successfully controlled by T-cell-depleted autologous stem cell transplantation (ASCT). At present, the immunological basis underlying remission after ASCT is unknown. Immune reconstitution of T cells, B cells, natural killer cells, natural killer T cells and monocytes, in parallel with T-cell receptor (TCR) diversity by analysis of the β variable region (TCRVb) complementarity determining region-3 (CDR3) using spectratyping and sequencing, were studied in five children with sJIA before and after ASCT. At time of follow up (mean 11.5 years), four patients remain in complete remission, while one child relapsed within 1 month of transplant. The CD8(+) TCRVb repertoire was highly oligoclonal early in immune reconstitution and re-emergence of pre-transplant TCRVb CDR3 dominant peaks was observed after transplant in certain TCRVb families. Further, re-emergence of pre-ASCT clonal sequences in addition to new sequences was identified after transplant. These results suggest that a chimeric TCR repertoire, comprising T-cell clones developed before and after transplant, can be associated with clinical remission from severe arthritis. PMID:24405357

  19. HIV Molecular Immunology 2015

    Energy Technology Data Exchange (ETDEWEB)

    Yusim, Karina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Korber, Bette Tina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Brander, Christian [Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Barouch, Dan [Beth Israel Deaconess Medical Center, Boston, MA (United States). Division of Vaccine Research; de Boer, Rob [Utrecht University, Utrecht (Netherlands). Faculty of Biology; Haynes, Barton F. [Duke Univ., Durham, NC (United States). Duke Human Vaccine Institute and Departments of Medicine, Surgery and Immunology; Koup, Richard [National Inst. of Health (NIH), Bethesda, MD (United States). Vaccine Research Center; Moore, John P. [Cornell Univ., Ithaca, NY (United States). Weill Medical College; Walker, Bruce D. [Ragon Institute, Cambridge, MA (United States); Watkins, David [Wisconsin Regional Primate Research Center, Madison, WI (United States)

    2016-04-05

    The scope and purpose of the HIV molecular immunology database: HIV Molecular Immunology is a companion volume to HIV Sequence Compendium. This publication, the 2015 edition, is the PDF version of the web-based HIV Immunology Database (http://www.hiv.lanl.gov/ content/immunology/). The web interface for this relational database has many search options, as well as interactive tools to help immunologists design reagents and interpret their results. In the HIV Immunology Database, HIV-specific B-cell and T-cell responses are summarized and annotated. Immunological responses are divided into three parts, CTL, T helper, and antibody. Within these parts, defined epitopes are organized by protein and binding sites within each protein, moving from left to right through the coding regions spanning the HIV genome. We include human responses to natural HIV infections, as well as vaccine studies in a range of animal models and human trials. Responses that are not specifically defined, such as responses to whole proteins or monoclonal antibody responses to discontinuous epitopes, are summarized at the end of each protein section. Studies describing general HIV responses to the virus, but not to any specific protein, are included at the end of each part. The annotation includes information such as cross-reactivity, escape mutations, antibody sequence, TCR usage, functional domains that overlap with an epitope, immune response associations with rates of progression and therapy, and how specific epitopes were experimentally defined. Basic information such as HLA specificities for T-cell epitopes, isotypes of monoclonal antibodies, and epitope sequences are included whenever possible. All studies that we can find that incorporate the use of a specific monoclonal antibody are included in the entry for that antibody. A single T-cell epitope can have multiple entries, generally one entry per study. Finally, maps of all defined linear epitopes relative to the HXB2 reference proteins

  20. SynDB: a Synapse protein DataBase based on synapse ontology.

    Science.gov (United States)

    Zhang, Wuxue; Zhang, Yong; Zheng, Hui; Zhang, Chen; Xiong, Wei; Olyarchuk, John G; Walker, Michael; Xu, Weifeng; Zhao, Min; Zhao, Shuqi; Zhou, Zhuan; Wei, Liping

    2007-01-01

    A synapse is the junction across which a nerve impulse passes from an axon terminal to a neuron, muscle cell or gland cell. The functions and building molecules of the synapse are essential to almost all neurobiological processes. To describe synaptic structures and functions, we have developed Synapse Ontology (SynO), a hierarchical representation that includes 177 terms with hundreds of synonyms and branches up to eight levels deep. associated 125 additional protein keywords and 109 InterPro domains with these SynO terms. Using a combination of automated keyword searches, domain searches and manual curation, we collected 14,000 non-redundant synapse-related proteins, including 3000 in human. We extensively annotated the proteins with information about sequence, structure, function, expression, pathways, interactions and disease associations and with hyperlinks to external databases. The data are stored and presented in the Synapse protein DataBase (SynDB, http://syndb.cbi.pku.edu.cn). SynDB can be interactively browsed by SynO, Gene Ontology (GO), domain families, species, chromosomal locations or Tribe-MCL clusters. It can also be searched by text (including Boolean operators) or by sequence similarity. SynDB is the most comprehensive database to date for synaptic proteins. PMID:17098931

  1. HIV Molecular Immunology 2014

    Energy Technology Data Exchange (ETDEWEB)

    Yusim, Karina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Korber, Bette Tina Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Barouch, Dan [Beth Israel Deaconess Medical Center, Boston, MA (United States); Koup, Richard [Vaccine Research Center National Institutes of Health (United States); de Boer, Rob [Utrecht Univ. (Netherlands). Dept. of Biology; Moore, John P. [Cornell Univ., Ithaca, NY (United States). Weill Medical College; Brander, Christian [Institucioi Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Haynes, Barton F. [Duke Univ., Durham, NC (United States). Duke Human Vaccine Institute and Departments of Medicine, Surgery and Immunology; Walker, Bruce D. [Ragon Institute of Massachusetts General Hospital, Cambridge, MA (United States); Harvard Univ., Cambridge, MA (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-02-03

    HIV Molecular Immunology is a companion volume to HIV Sequence Compendium. This publication, the 2014 edition, is the PDF version of the web-based HIV Immunology Database (http://www.hiv.lanl.gov/content/immunology/). The web interface for this relational database has many search options, as well as interactive tools to help immunologists design reagents and interpret their results. In the HIV Immunology Database, HIV-specific B-cell and T-cell responses are summarized and annotated. Immunological responses are divided into three parts, CTL, T helper, and antibody. Within these parts, defined epitopes are organized by protein and binding sites within each protein, moving from left to right through the coding regions spanning the HIV genome. We include human responses to natural HIV infections, as well as vaccine studies in a range of animal models and human trials. Responses that are not specifically defined, such as responses to whole proteins or monoclonal antibody responses to discontinuous epitopes, are summarized at the end of each protein section. Studies describing general HIV responses to the virus, but not to any specific protein, are included at the end of each part. The annotation includes information such as crossreactivity, escape mutations, antibody sequence, TCR usage, functional domains that overlap with an epitope, immune response associations with rates of progression and therapy, and how specific epitopes were experimentally defined. Basic information such as HLA specificities for T-cell epitopes, isotypes of monoclonal antibodies, and epitope sequences are included whenever possible. All studies that we can find that incorporate the use of a specific monoclonal antibody are included in the entry for that antibody. A single T-cell epitope can have multiple entries, generally one entry per study. Finally, maps of all defined linear epitopes relative to the HXB2 reference proteins are provided.

  2. Memory-Relevant Mushroom Body Output Synapses Are Cholinergic

    OpenAIRE

    Barnstedt, Oliver; Owald, David; Felsenberg, Johannes; Brain, Ruth; Moszynski, John-Paul; Talbot, Clifford B.; Perrat, Paola N.; Waddell, Scott

    2016-01-01

    Summary Memories are stored in the fan-out fan-in neural architectures of the mammalian cerebellum and hippocampus and the insect mushroom bodies. However, whereas key plasticity occurs at glutamatergic synapses in mammals, the neurochemistry of the memory-storing mushroom body Kenyon cell output synapses is unknown. Here we demonstrate a role for acetylcholine (ACh) in Drosophila. Kenyon cells express the ACh-processing proteins ChAT and VAChT, and reducing their expression impairs learned o...

  3. The sticky synapse

    DEFF Research Database (Denmark)

    Owczarek, Sylwia Elzbieta; Kristiansen, Lars Villiam; Walmod, Peter Schledermann

    NCAM-type proteins modulate multiple neuronal functions, including the outgrowth and guidance of neurites, the formation, maturation, and plasticity of synapses, and the induction of both long-term potentiation and long-term depression. The ectodomains of NCAM proteins have a basic structure...... cleavage of their ectodomains. Although specific aspects of NCAM proteins have changed through evolution, core structural and functional features are conserved between NCAM-type proteins in vertebrates and invertebrates, demonstrating that the functions of this class of adhesive proteins are of general...

  4. Immunologically mediated abortion (IMA).

    Science.gov (United States)

    Giacomucci, E; Bulletti, C; Polli, V; Prefetto, R A; Flamigni, C

    1994-06-01

    Roughly 20% of all clinical pregnancies evolve into "spontaneous abortions". The causes of spontaneous abortion have been determined in under 60% of the total and comprise genetic, infectious, hormonal and immunological factors. In some cases the immune tolerance mechanism may be impaired and the foetus immunologically rejected (IMA, immunologically mediated abortion). The immunological mechanism implicated depends on the time in which pregnancy loss takes place. During preimplantation and up to the end of implantation (13th day) the cell-mediated immune mechanism (potential alloimmune etiologies) is responsible for early abortion. This mechanism involves immunocompetent decidual cells (eGL, endometrial granulated lymphocytes) already present during pre-decidualization (late luteal phase) and their production of soluble factors or cytokines. Once the implantation process is over, after blastocyst penetration of the stroma and the decidual reaction of uterine tissue, IMA could be caused by cell-mediated and humoral mechanism (anti-paternal cytotoxic antibodies or autoantibody etiology), by the production of paternal anti major histocompatibility complex antibodies, or even by an autoimmune disorder leading to the production of autoantibodies (antiphospholipid antibodies, antinuclear antibodies or polyclonal B cell activation). The diagnostic work-up adopted to select IMA patients is crucial and includes primary (karyotype of both partners, toxo-test, hysterosalpingography, endometrial biopsy, thyroid function tests, serum hprolactin, luteal phase dating) and secondary (full hemochromocytometric test, search for LE cells, lupus anticoagulant, anticardiolipin, antinuclear antibodies, Rheumatoid factor, blood complement VDRL) investigations. Therapeutical approaches vary. If autoimmune disorders are demonstrated therapies with different combinations of corticosteroids, aspirin and heparin or intravenous immunoglobulin are administered. Otherwise, therapy with paternal

  5. LRIT3 is essential to localize TRPM1 to the dendritic tips of depolarizing bipolar cells and may play a role in cone synapse formation.

    Science.gov (United States)

    Neuillé, Marion; Morgans, Catherine W; Cao, Yan; Orhan, Elise; Michiels, Christelle; Sahel, José-Alain; Audo, Isabelle; Duvoisin, Robert M; Martemyanov, Kirill A; Zeitz, Christina

    2015-08-01

    Mutations in LRIT3 lead to complete congenital stationary night blindness (cCSNB). The exact role of LRIT3 in ON-bipolar cell signaling cascade remains to be elucidated. Recently, we have characterized a novel mouse model lacking Lrit3 [no b-wave 6, (Lrit3(nob6/nob6) )], which displays similar abnormalities to patients with cCSNB with LRIT3 mutations. Here we compare the localization of components of the ON-bipolar cell signaling cascade in wild-type and Lrit3(nob6/nob6) retinal sections by immunofluorescence confocal microscopy. An anti-LRIT3 antibody was generated. Immunofluorescent staining of LRIT3 in wild-type mice revealed a specific punctate labeling in the outer plexiform layer (OPL), which was absent in Lrit3(nob6/nob6) mice. LRIT3 did not co-localize with ribeye or calbindin but co-localized with mGluR6. TRPM1 staining was severely decreased at the dendritic tips of all depolarizing bipolar cells in Lrit3(nob6/nob6) mice. mGluR6, GPR179, RGS7, RGS11 and Gβ5 immunofluorescence was absent at the dendritic tips of cone ON-bipolar cells in Lrit3(nob6/nob6) mice, while it was present at the dendritic tips of rod bipolar cells. Furthermore, peanut agglutinin (PNA) labeling was severely reduced in the OPL in Lrit3(nob6/nob6) mice. This study confirmed the localization of LRIT3 at the dendritic tips of depolarizing bipolar cells in mouse retina and demonstrated the dependence of TRPM1 localization on the presence of LRIT3. As tested components of the ON-bipolar cell signaling cascade and PNA revealed disrupted localization, an additional function of LRIT3 in cone synapse formation is suggested. These results point to a possibly different regulation of the mGluR6 signaling cascade between rod and cone ON-bipolar cells. PMID:25997951

  6. Human neural progenitor cells decrease photoreceptor degeneration, normalize opsin distribution and support synapse structure in cultured porcine retina.

    Science.gov (United States)

    Mollick, Tanzina; Mohlin, Camilla; Johansson, Kjell

    2016-09-01

    Retinal neurodegenerative disorders like retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy and retinal detachment decrease retinal functionality leading to visual impairment. The pathological events are characterized by photoreceptor degeneration, synaptic disassembly, remodeling of postsynaptic neurons and activation of glial cells. Despite intense research, no effective treatment has been found for these disorders. The current study explores the potential of human neural progenitor cell (hNPC) derived factors to slow the degenerative processes in adult porcine retinal explants. Retinas were cultured for 3 days with or without hNPCs as a feeder layer and investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), immunohistochemical, western blot and quantitative real time-polymerase chain reaction (qRT-PCR) techniques. TUNEL showed that hNPCs had the capacity to limit photoreceptor cell death. Among cone photoreceptors, hNPC coculture resulted in better maintenance of cone outer segments and reduced opsin mislocalization. Additionally, maintained synaptic structural integrity and preservation of second order calbindin positive horizontal cells was also observed. However, Müller cell gliosis only seemed to be alleviated in terms of reduced Müller cell density. Our observations indicate that at 3 days of coculture, hNPC derived factors had the capacity to protect photoreceptors, maintain synaptic integrity and support horizontal cell survival. Human neural progenitor cell applied treatment modalities may be an effective strategy to help maintain retinal functionality in neurodegenerative pathologies. Whether hNPCs can independently hinder Müller cell gliosis by utilizing higher concentrations or by combination with other pharmacological agents still needs to be determined. PMID:27369448

  7. Dynamic Aspects of Synapse Formation

    OpenAIRE

    McAllister, A. Kimberley

    2007-01-01

    The mammalian central nervous system (CNS) requires the proper formation of exquisitely precise circuits to function correctly. These neuronal circuits are assembled during development by the formation of synaptic connections between thousands of differentiating neurons. Proper synapse formation during childhood provides the substrate for cognition while improper formation or function of these synapses leads to neurodevelopmental disorders, including mental retardation and autism. Recent work...

  8. Immunological and molecular biological identification of a true case of T-hairy cell leukaemia

    DEFF Research Database (Denmark)

    Demeter, J; Pálóczi, K; Földi, J;

    1990-01-01

    A hairy cell leukaemia (HCL) patient is presented in whom the peripheral blood mononuclear cells (PBMCs) carried suppressor T-cell markers (CD3+, CD2+, CD8+/CD4-, CD38+). Analysis of genomic DNA of PBMNC showed the presence of a monoclonal population of T cells, the T-cell receptor (TCR) beta-cha...... RAB-1/CD-8 in a double marker assay. Natural killer activity of PBMNCs against K562 target cells was severely reduced, while the cells were found to exert strong antibody-dependent cellular cytotoxicity. Udgivelsesdato: 1989-Oct...

  9. Molecular Mechanisms of Cell-cell Recognition

    Institute of Scientific and Technical Information of China (English)

    WANG Jia-Huai

    2004-01-01

    Cell-cell recognition is the key for multicellular organisms to survive. This recognition critically depends on protein-protein interactions from opposing cell surfaces. Recent structural investigations reveal unique features of these cell surface receptors and how they interact. These interactions are specific, but usually relatively weak, with more hydrophilic forces involved in binding. The receptors appear to have specialized ways to present their key interacting elements for ligand-binding from the cell surface. Cell-cell contacts are multivalent. A large group of cell surface molecules are engaged in interactions. Characteristic weak interactions make possible for each individual molecule pair within the group to constantly associate-dissociate-reassociate, such that the cell-cell recognition becomes a dynamic process. The immunological synapse is a good example for immune receptors to be orchestrated in performing immunological function in a collective fashion.

  10. Immunological Barriers to Stem Cell Therapy in the Central Nervous System

    OpenAIRE

    Tullis, Gregory E.; Kathleen Spears; Kirk, Mark D.

    2014-01-01

    The central nervous system is vulnerable to many neurodegenerative disorders such as Alzheimer's disease that result in the extensive loss of neuronal cells. Stem cells have the ability to differentiate into many types of cells, which make them ideal for treating such disorders. Although stem cell therapy has shown some promising results in animal models for many brain disorders it has yet to translate into the clinic. A major hurdle to the translation of stem cell therapy into the clinic is ...

  11. Immunologic testing of xeno-derived osteochondral grafts using peripheral blood mononuclear cells from healthy human donors

    Directory of Open Access Journals (Sweden)

    Targoni Oleg S

    2005-06-01

    Full Text Available Abstract Background One means of treating osteoarthritis is with autologous or allogeneic osteochondral grafts. The purpose of this study was to evaluate the innate immunological response in humans toward xeno-derived osteochondral grafts that have been partially or entirely treated by the photooxidation process. Methods The antigens tested included bovine, porcine, ovine and equine osteochondral samples that have been treated in successive steps of photooxidation. ELISPOT assays were used to evaluate the production of IL-1, IL-4, IL-6, IL-10, IL-12 and TNF-α by human monocytes in response to the antigens. Results Results indicated vigorous production of IL-1, IL-6, IL-10 and TNF-α in response to untreated bovine, porcine and equine specimens. This indicates that these samples are perceived as foreign, or stimulatory, by the human monocytes. There was no induction of IL-4 or IL-12, which is required for Th2 and Th1 immunity, respectively. In contrast, the processed bovine, porcine and equine samples did not induce significant activation of cells of the innate immune system. This occurred after the first step in processing (after cleaning in increasing strengths of ethanol. This suggests that the processing steps dramatically, if not completely, negated the immunostimulatory properties of the test sample. The results for the ovine samples indicate a reverse response. Conclusion The findings of the study suggest that photooxidized bovine, porcine or equine samples have the potential to be used as an osteochondral graft. Although the first step in processing reduced the immunological response, photooxidation is still necessary to retain the structure and mechanical integrity of the cartilage, which would allow for immediate joint resurfacing.

  12. Transplants of immunologically isolated xenogeneic chromaffin cells provide a long-term source of pain-reducing neuroactive substances.

    Science.gov (United States)

    Sagen, J; Wang, H; Tresco, P A; Aebischer, P

    1993-06-01

    Adrenal medullary chromaffin cells are a potential source of neuroactive substances for transplantation into the CNS to alleviate neurochemical deficits. In particular, work in our laboratory has suggested that adrenal medullary transplants in the spinal subarachnoid space can alleviate pain by providing sustained local delivery of catecholamines and opioid peptides. One of the major limitations for clinical application of neural transplantation is the availability of donor material in sufficient quantities. This limitation may be overcome by the use of xenogeneic donors if long-term graft rejection can be prevented. The purpose of this study was to assess whether xenogeneic chromaffin cells immunologically isolated by semipermeable membranes could survive and continue to reduce pain when transplanted into the CNS. Isolated bovine chromaffin cells were encapsulated by semipermeable polymer membranes and implanted into the rat spinal subarachnoid space. Pain sensitivity was assessed at several intervals up to 3 months following implantation. Results indicated that encapsulated bovine chromaffin cell implants, but not empty control capsules, could repeatedly reduce pain sensitivity with nicotine stimulation for the duration of the study. This response was dose related, indicating that pharmacologic integrity of the transplanted chromaffin cells is retained. The analgesia induced by encapsulated chromaffin cell implants could be attenuated by the opiate antagonist naloxone and the alpha-adrenergic antagonist phentolamine, suggesting the involvement of both opioid peptides and catecholamines in mediating this response. In addition, in vitro neurochemical studies of recultured capsules revealed sustained release of Met-enkephalin and catecholamines from encapsulated cells 3 months following implantation into the spinal subarachnoid space.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7684773

  13. Cosmos-1989 immunology studies

    Science.gov (United States)

    Sonnenfeld, Gerald

    1991-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. The number of flight experiments has been small, and the full breadth of immunological alterations occurring after space flight remains to be established. Among the major effects on immune responses after space flight that have been reported are: alterations in lymphocyte blastogenesis and natural killer cell activity, alterations in production of cytokines, changes in leukocyte sub-population distribution, and decreases in the ability in the ability of bone marrow cells to respond to colony stimulating factors. Changes have been reported in immunological parameters of both humans and rodents. The significance of these alterations in relation to resistance to infection remains to be established. The current study involved a determination of the effects of flight on Cosmos mission 2044 on leukocyte subset distribution and the sensitivity of bone marrow cells to colony stimulating factor-GM. A parallel study with antiorthostatic suspension was also carried out. The study involved repetition and expansion of studies carried out on Cosmos 1887.

  14. Recombinant T-cell receptors : An immunologic link to cancer therapy

    NARCIS (Netherlands)

    Calogero, A; de Leij, YFMH; Mulder, NH; Hospers, GAP

    2000-01-01

    Cytotoxic T cells can specifically kill target cells that express antigens recognized by the T-cell receptor. These are membrane-bound proteins that are not ubiquitous and thus are difficult to purify and study at the protein level. The advent of recombinant DNA technology has facilitated these obje

  15. Hematology and immunology studies

    Science.gov (United States)

    Kimzey, S. L.

    1977-01-01

    A coordinated series of experiments were conducted to evaluate immunologic and hemotologic system responses of Skylab crewmen to prolonged space flights. A reduced PHA responsiveness was observed on recovery, together with a reduced number of T-cells, with both values returning to normal 3 to 5 days postflight. Subnormal red cell count, hemoglobin concentration, and hematocrit values also returned gradually to preflight limits. Most pronounced changes were found in the shape of red blood cells during extended space missions with a rapid reversal of these changes upon reentry into a normal gravitational environment.

  16. Immunological characterization of proteins detected by phosphotyrosine antibodies in cells transformed by Rous sarcoma virus.

    OpenAIRE

    Linder, M E; Burr, J G

    1988-01-01

    Phosphotyrosine antibodies were used to identify tyrosine-phosphorylated proteins in Rous sarcoma virus (RSV)-transformed chicken embryo fibroblasts. A large number of tyrosine phosphoproteins were detected. A similar set of proteins was observed in RSV-transformed murine cells. An 85,000-dalton protein, however, was present in transformed avian cells but missing in transformed murine cells. Neither the 85,000-dalton protein nor any of the other tyrosine phosphoproteins appeared to be viral s...

  17. Fetal Cell Microchimerism and Cancer: A Nexus of Reproduction, Immunology and Tumor Biology

    OpenAIRE

    Kallenbach, Lisa R.; Johnson, Kirby L.; Bianchi, Diana W.

    2011-01-01

    Fetal cell microchimerism (FCM) is the persistence of fetal cells in the maternal circulation and organs following pregnancy. Proposed hypotheses regarding the function of fetal cells in the pathogenesis of maternal cancer include promotion of tumorigenesis, protection by providing immunosurveillance, and participation in tissue repair. To date, studies of FCM and cancer have been primarily descriptive and quantitative. More research is needed to understand the cellular phenotype of the micro...

  18. Psoralen/UV inactivation of HIV-1-infected cells for use in cytologic and immunologic procedures

    International Nuclear Information System (INIS)

    A rapid procedure for the inactivation of HIV-1-infected cells using psoralen and ultraviolet (UV) light is described. Exposure of HIV-1-infected cells to 5 micrograms/ml psoralen followed by UV irradiation (320-380 nm) for 5 minutes yields cells that are noninfectious as assessed by extended infectivity assays. The psoralen/UV inactivation procedure described is effective with cells chronically or acutely infected with HIV-1 and is unaffected by cell densities up to 12 x 10(6)/ml. At 5 micrograms/ml psoralen does little damage to cellular permeability as shown by the ability of treated cells to exclude trypan blue and propidium iodide. Psoralen/UV treatment of HIV-1-infected cells does not cause a significant decrease in the reactivity of HIV-1 core and envelope antigens or cellular antigens to monoclonal antibodies. Experiments are presented demonstrating the use of these cells for flow cytometry studies and for cell surface labeling using the lactoperoxidase 125I iodination procedure

  19. Immunological control of a murine gammaherpesvirus independent of CD8+ T cells

    DEFF Research Database (Denmark)

    Stevenson, P G; Cardin, R D; Christensen, Jan Pravsgaard; Doherty, P C

    Adult thymectomized C57 BL/6J mice were depleted of T cell subsets by MAb treatment either prior to, or after, respiratory challenge with murine gammaherpesvirus-68. Protection against acute infection was maintained when either the CD4+ or the CD8+ T cell population was greatly diminished, whereas...... the concurrent removal of both T cell subsets proved invariably fatal. The same depletions had little effect on mice with established infection. The results indicate firstly that both CD4+ and CD8+ T cells play a significant part in dealing with the acute infection, and secondly that virus...

  20. Assessing cell trafficking by noninvasive imaging techniques: applications in experimental tumor immunology

    International Nuclear Information System (INIS)

    Tracer methods are increasingly being exploited to examine the trafficking patterns of cells transferred into recipient models of diseases, to optimize immune cell therapies, and to assess cancer gene therapy and vaccines in various cancer models. In animal cancer models, noninvasive monitoring by imaging tumor response could significantly facilitate the development of immune cell therapies against cancer. Currently, ex vivo lymphocyte labeling is primarily done by direct labeling. Major advances in cell labeling procedures have led to the use of reporter constructs to assess gene expression in vivo. With this novel technique, the reporter gene marks the cell with a specific protein that distinguishes the cell and its cellular progeny from other cells after migration, homing and mitosis. Several in vivo imaging procedures, including positron emission tomography, single photon emission tomography and magnetic resonance imaging, have been rescaled for studies in small animals. Other methods initially used for in vitro bioluminescence and fluorescence studies have also been refined for in vivo studies. When combined, these methods allow to assess cell trafficking in a noninvasive fashion, beyond lymphocyte response to inflammation, including metastatic diffusion and stem cell transplantation

  1. IFNγ and B7-H1 in the immunology of mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Mesenchymal stem cells (MSCs) are found in multiple organs in the fetus,cord blood and adult tissues [1]. However, in adults, the bone marrow is the major source of these stem cells. MSCs surround the blood vessels of bone marrow and are also in contact with the trabeculae [2].

  2. Physiological Role of TNF in MucosalImmunology: Regulation of Macrophage/Dendritic Cell Function

    DEFF Research Database (Denmark)

    Rivollier, Aymeric Marie Christian; Marsal, J.; Agace, William Winston

    Intestinal mononuclear phagocytes, comprising macrophages(Mϕs) and dendritic cells (DCs), play important roles in the generation and the regulation of immune responses to intestinal antigens, and alterations in the development and/or the function of these cells are thought to contribute to the pa...

  3. Effect of X-ray on immunological function of human dendritic cells

    International Nuclear Information System (INIS)

    In this study, by means of immunofluorescence label, flow cytometer, 3H-TdR incorporation and MTT analysis, the immune function of dendritic cells (DCs) and T cells derived from normal human peripheral blood were investigated after X irradiation in different doses. The results show that the expressions of HLA-DR, CD86 and CD40 moleculars of DCs were up-regulated after irradiation with different doses. DCs irradiated with 0.2 Gy could allow the restoration of CD4/CD8 proportion of T cells and the increase of T cell proliferation, as well as the cytotoxicity of CTL cells. It is suggested that DCs in vitro irradiated with 0.2 Gy could significantly improve the immune function and the 0.2 Gy is a reasonable dose in clinical therapy of DCs. (authors)

  4. Immunological identification of human T cells intracranially and tracing of neuronal projections by magnetic resonance imaging

    International Nuclear Information System (INIS)

    This report describes the preparation and utilization of paramagnetically labelled proteins to trace neural projections in vivo, and to distinguish between human T cells and bovine T cells implanted into canine brain. The proteins are covalently coupled to the chelator (DTPA), then labelled with gadolinium and visualized in vivo by magnetic resonance imaging (MRI) techniques. Gadolinium labelled horseradish peroxidase (HRP) was injected into the auditory cortex of adult cats (1-7 μ1 containing 50 μg HRP per μ1) and 48-72 hours later the brain was imaged by MRI. The HRP was labelled with an average of 20 DTPA per HRP. MRI unambiguously identified the HRP injection sites and the sites of neural projections in the medical geniculate body (MGB). MGB localization of HRP-Gd was confirmed histologically demonstrating that MRI can distinguish between paramagnetically labelled protein and local environment effects in the brain (i.e. gray vs white matter). Two monoclonal antibodies against human T cells were labelled with gadolinium. The distinguished by MRI, human from bovine T cells implanted into canine brains (each implant contained 10 million cells in 40 μ1). The T1 weighted and calculated images readily identified the human T cells as a lesion of <4 mm while the bovine T cells did not yield a significant MRI signal. The ratio of DTPA to protein during the coupling procedure, affects the formation of protein aggregates by crosslinking

  5. Mobilized peripheral blood grafts include more than hematopoietic stem cells: the immunological perspective.

    Science.gov (United States)

    Saraceni, F; Shem-Tov, N; Olivieri, A; Nagler, A

    2015-07-01

    Although stem cell mobilization has been performed for more than 20 years, little is known about the effects of mobilizing agents on apheresis composition and the impact of graft cell subsets on patients' outcome. With the increasing use of plerixafor and the inclusion of poor mobilizers in autologous transplant procedures, new parameters other than CD34(+) stem cell dose are emerging; plerixafor seems to mobilize more primitive CD34(+)/CD38(-) stem cells compared with G-CSF, but their correlation with stable hematopoietic engraftment is still obscure. Immune recovery is as crucial as hematopoietic reconstitution, and higher T and natural killer cells infused within the graft have been correlated with better outcome in autologous transplant; recent studies showed increased mobilization of immune effectors with plerixafor compared with G-CSF, but further data are needed to clarify the clinical impact of these findings. In the allogeneic setting, much evidence suggests that mobilized T-cell alloreactivity is tempered by G-CSF, probably with the mediation of dendritic cells, even though no clear correlation with GVL and GVHD has been found. Plerixafor is not approved in healthy donors yet; early data suggest it might mobilize a GVHD protective balance of immune effectors, but further studies are needed to define its role in allogeneic transplant. PMID:25665044

  6. Horizontal gene transfers and cell fusions in microbiology, immunology and oncology (Review).

    Science.gov (United States)

    Sinkovics, Joseph G

    2009-09-01

    Evolving young genomes of archaea, prokaryota and unicellular eukaryota were wide open for the acceptance of alien genomic sequences, which they often preserved and vertically transferred to their descendants throughout three billion years of evolution. Established complex large genomes, although seeded with ancestral retroelements, have come to regulate strictly their integrity. However, intruding retroelements, especially the descendents of Ty3/Gypsy, the chromoviruses, continue to find their ways into even the most established genomes. The simian and hominoid-Homo genomes preserved and accommodated a large number of endogenous retroviral genomic segments. These retroelements may mature into exogenous retroviruses, or into functional new genes. Phages and viruses have been instrumental in incorporating and transferring host cell genes. These events profoundly influenced and altered the course of evolution. Horizontal (lateral) gene transfers (HGT) overwhelmed the genomes of the ancient protocells and the evolving unicellular microorganisms, actually leading to their Cambrian explosion. While the rigidly organized genomes of multicellular organisms increasingly resist H/LGT, de-differentiated cells assuming the metabolism of their onto- or phylogenetic ancestors, open up widely to the practice of H/LGT by direct transfer, or to transfers mediated by viruses, or by cell fusions. This activity is intensified in malignantly transformed cells, thus rendering these subjects receptive to therapy with oncolytic viruses and with viral vectors of tumor-suppressive or immunogenic genetic materials. Naturally formed hybrids of dendritic and tumor cells are often tolerogenic, whereas laboratory products of these unisons may be immunogenic in the hosts of origin. As human breast cancer stem cells are induced by a treacherous class of CD8+ T cells to undergo epithelial to mesenchymal (ETM) transition and to yield to malignant transformation by the omnipresent proto

  7. Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma

    OpenAIRE

    Wan, Guoqiang; Gómez-Casati, Maria E; Gigliello, Angelica R.; Liberman, M. Charles; Corfas, Gabriel

    2014-01-01

    Neurotrophin-3 (Ntf3) and brain derived neurotrophic factor (Bdnf) are critical for sensory neuron survival and establishment of neuronal projections to sensory epithelia in the embryonic inner ear, but their postnatal functions remain poorly understood. Using cell-specific inducible gene recombination in mice we found that, in the postnatal inner ear, Bbnf and Ntf3 are required for the formation and maintenance of hair cell ribbon synapses in the vestibular and cochlear epithelia, respective...

  8. Temporal profile of magnetic resonance angiography and decreased ratio of regulatory T cells after immunological adjuvant administration to mice lacking RNF213, a susceptibility gene for moyamoya disease.

    Science.gov (United States)

    Kanoke, Atsushi; Fujimura, Miki; Niizuma, Kuniyasu; Fujimura, Taku; Kakizaki, Aya; Ito, Akira; Sakata, Hiroyuki; Sato-Maeda, Mika; Kure, Shigeo; Tominaga, Teiji

    2016-07-01

    Moyamoya disease (MMD) is a chronic, occlusive cerebrovascular disease with an unknown etiology and is characterized by an abnormal vascular network at the base of the brain. Recent studies identified the RNF213 gene (RNF213) as an important susceptibility gene for MMD; however, the mechanisms underlying the RNF213 abnormality related to MMD have not yet been elucidated. We previously reported that Rnf213-deficient mice and Rnf213 p. R4828K knock-in mice did not spontaneously develop MMD, indicating the importance of secondary insults in addition to genetic factors in the pathogenesis of MMD. The most influential secondary insult is considered to be an immunological reaction because RNF213 is predominantly expressed in immunological tissues. Therefore, we herein attempted to evaluate the role of an immunological stimulation as a supplementary insult to the target disruption of RNF213 in the pathophysiology of MMD. Rnf213-deficient mice were treated with strong immunological adjuvants including muramyl dipeptide (MDP)-Lys (L18), and then underwent time-sequential magnetic resonance angiography (MRA) up to 40 weeks of age. The results obtained did not reveal any characteristic finding of MMD, and no significant difference was observed in MRA findings or the anatomy of the circle of Willis between Rnf213-deficient mice and wild-type mice after the administration of MDP-Lys (L18). The ratio of regulatory T cells after the administration of MDP-Lys (L18) was significantly decreased in Rnf213-deficient mice (p<0.01), suggesting the potential role of the RNF213 abnormality in the differentiation of regulatory T cells. Although the mechanisms underlying the development of MMD currently remain unclear, the RNF213 abnormality may compromise immunological self-tolerance, thereby contributing to the development of MMD. PMID:26972532

  9. Three-Dimensional Gradients of Cytokine Signaling between T Cells.

    Directory of Open Access Journals (Sweden)

    Kevin Thurley

    2015-04-01

    Full Text Available Immune responses are regulated by diffusible mediators, the cytokines, which act at sub-nanomolar concentrations. The spatial range of cytokine communication is a crucial, yet poorly understood, functional property. Both containment of cytokine action in narrow junctions between immune cells (immunological synapses and global signaling throughout entire lymph nodes have been proposed, but the conditions under which they might occur are not clear. Here we analyze spatially three-dimensional reaction-diffusion models for the dynamics of cytokine signaling at two successive scales: in immunological synapses and in dense multicellular environments. For realistic parameter values, we observe local spatial gradients, with the cytokine concentration around secreting cells decaying sharply across only a few cell diameters. Focusing on the well-characterized T-cell cytokine interleukin-2, we show how cytokine secretion and competitive uptake determine this signaling range. Uptake is shaped locally by the geometry of the immunological synapse. However, even for narrow synapses, which favor intrasynaptic cytokine consumption, escape fluxes into the extrasynaptic space are expected to be substantial (≥20% of secretion. Hence paracrine signaling will generally extend beyond the synapse but can be limited to cellular microenvironments through uptake by target cells or strong competitors, such as regulatory T cells. By contrast, long-range cytokine signaling requires a high density of cytokine producers or weak consumption (e.g., by sparsely distributed target cells. Thus in a physiological setting, cytokine gradients between cells, and not bulk-phase concentrations, are crucial for cell-to-cell communication, emphasizing the need for spatially resolved data on cytokine signaling.

  10. Noncoding RNAs in Cancer Immunology.

    Science.gov (United States)

    Li, Qian; Liu, Qiang

    2016-01-01

    Cancer immunology is the study of interaction between cancer cells and immune system by the application of immunology principle and theory. With the recent approval of several new drugs targeting immune checkpoints in cancer, cancer immunology has become a very attractive field of research and is thought to be the new hope to conquer cancer. This chapter introduces the aberrant expression and function of noncoding RNAs, mainly microRNAs and long noncoding RNAs, in tumor-infiltrating immune cells, and their significance in tumor immunity. It also illustrates how noncoding RNAs are shuttled between tumor cells and immune cells in tumor microenvironments via exosomes or other microvesicles to modulate tumor immunity. PMID:27376738

  11. Stability, sterility, coagulation, and immunologic studies of salmon coagulation proteins with potential use for mammalian wound healing and cell engineering.

    Science.gov (United States)

    Laidmäe, Ivo; McCormick, Margaret E; Herod, Julia L; Pastore, Jennifer J; Salum, Tiit; Sawyer, Evelyn S; Janmey, Paul A; Uibo, Raivo

    2006-12-01

    Fibrin sealants made by polymerization of fibrinogen activated by the protease thrombin have many applications in hemostasis and wound healing. In treatments of acute injury or surgical wounds, concentrated fibrin preparations mimic the initial matrix that normally prevents bleeding and acts as a scaffold for cells that initiate tissue repair. However risks of infectious disease, immunogenic reaction, and the high cost of purified human or other mammalian blood proteins limit widespread use of these materials. Purified coagulation proteins from Atlantic salmon represent a potentially safer, equally effective, and less costly alternative in part because of the low ambient temperature of these farmed animals and the absence of endogenous agents known to be infectious in mammalian hosts. This study reports rheologic measurements of lyophilized salmon fibrinogen and thrombin that demonstrate stability to prolonged storage and gamma irradiation sufficient to reduce viral loads by over five orders of magnitude. Coagulation and immunologic studies in rats and rabbits treated intraperitoneally with salmon fibrin show no deleterious effects on coagulation profiles and no cross reactivity with host fibrinogen or thrombin. The results support the potential of salmon fibrin as an alternative to mammalian proteins in clinical applications. PMID:16919721

  12. Immunological role of neuronal receptor vanilloid receptor 1 expressed on dendritic cells

    OpenAIRE

    Basu, Sreyashi; Srivastava, Pramod

    2005-01-01

    Capsaicin (CP), the pungent component of chili pepper, acts on sensory neurons to convey the sensation of pain. The CP receptor, vanilloid receptor 1 (VR1), has been shown to be highly expressed by nociceptive neurons in dorsal root and trigeminal ganglia. We demonstrate here that the dendritic cell (DC), a key cell type of the vertebrate immune system, expresses VR1. Engagement of VR1 on immature DCs such as by treatment with CP leads to maturation of DCs as measured by up-regulation of anti...

  13. Synapse-to-neuron ratio is inversely related to neuronal density in mature neuronal cultures

    OpenAIRE

    Cullen, D. Kacy; Gilroy, Meghan; Irons, Hillary R.; LaPlaca, Michelle C.

    2010-01-01

    Synapse formation is a fundamental process in neurons that occurs throughout development, maturity, and aging. Although these stages contain disparate and fluctuating numbers of mature neurons, tactics employed by neuronal networks to modulate synapse number as a function of neuronal density are not well understood. The goal of this study was to utilize an in vitro model to assess the influence of cell density and neuronal maturity on synapse number and distribution. Specifically, cerebral co...

  14. Prolonged synaptic currents increase relay neuron firing at the developing retinogeniculate synapse

    OpenAIRE

    Hauser, Jessica L.; Liu, Xiaojin; Litvina, Elizabeth Y.; Chen, Chinfei

    2014-01-01

    The retinogeniculate synapse, the connection between retinal ganglion cells (RGC) and thalamic relay neurons, undergoes robust changes in connectivity over development. This process of synapse elimination and strengthening of remaining inputs is thought to require synapse specificity. Here we show that glutamate spillover and asynchronous release are prominent features of retinogeniculate synaptic transmission during this period. The immature excitatory postsynaptic currents exhibit a slow de...

  15. Cortical synaptogenesis and excitatory synapse number are determined via a Neuroligin-1-dependent intercellular competition

    OpenAIRE

    Kwon, Hyung-Bae; Kozorovitskiy, Yevgenia; Oh, Won-Jong; Peixoto, Rui T.; Akhtar, Nazia; Saulnier, Jessica L.; Gu, Chenghua; Sabatini, Bernardo L.

    2012-01-01

    Members of the neuroligin (NL) family of cell-adhesion proteins are found at excitatory and inhibitory synapses and are mutated in some familial forms of autism spectrum disorders. Although they display synaptogenic properties in heterologous systems, a function of NLs in vivo in regulating synapse formation and synapse number has been difficult to establish. Here we show that neuroligin-1 (NL1), which is located at excitatory post-synaptic densities, does regulate activity-dependent synaptog...

  16. Immunological assays for chemokine detection in in-vitro culture of CNS cells

    OpenAIRE

    Mahajan Supriya D.; Schwartz Stanley A; Nair Madhavan P.N.

    2003-01-01

    Herein we review the various methods currently in use for determining the expression of chemokines by CNS cells in vitro. Chemokine detection assays are used in conjuction with one another to provide a comprehensive, biologically relevant assessment of the chemokines which is necessary for correct data interpretation of a specific observed biological effect. The methods described include bioassays for soluble chemokine receptors, RNA extraction, RT-PCR, Real - time quantitative PCR, gene arra...

  17. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells

    OpenAIRE

    Magri, Giuliana; Miyajima, Michio; Bascones, Sabrina; Mortha, Arthur; Puga, Irene; Cassis, Linda; Barra, Carolina M; Comerma, Laura; Chudnovskiy, Aleksey; Gentile, Maurizio; Llige, David; Cols, Montserrat; Serrano, Sergi; Aróstegui, Juan Ignacio; Juan, Manel

    2014-01-01

    Innate lymphoid cells (ILCs) regulate stromal, epithelial and immune cells, but their impact on B cells remains unclear. We identified RORγt+ ILCs nearby the marginal zone (MZ), a splenic compartment containing innate-like B cells that respond to circulating T cell-independent (TI) antigens. Spenic ILCs established a bidirectional crosstalk with MAdCAM-1+ marginal reticular cells by providing tumor necrosis factor (TNF) and lymphotoxin, and activated MZ B cells via BAFF, CD40 ligand and the N...

  18. A new Purkinje cell antibody (anti-Ca associated with subacute cerebellar ataxia: immunological characterization

    Directory of Open Access Journals (Sweden)

    Horn Sigrun

    2010-03-01

    Full Text Available Abstract We report on a newly discovered serum and cerebrospinal fluid (CSF reactivity to Purkinje cells (PCs associated with subacute inflammatory cerebellar ataxia. The patient, a previously healthy 33-year-old lady, presented with severe limb and gait ataxia, dysarthria, and diplopia two weeks after she had recovered from a common cold. Immunohistochemical studies on mouse, rat, and monkey brain sections revealed binding of a high-titer (up to 1:10,000 IgG antibody to the cerebellar molecular layer, Purkinje cell (PC layer, and white matter. The antibody is highly specific for PCs and binds to the cytoplasm as well as to the inner side of the membrane of PC somata, dendrites and axons. It is produced by B cell clones within the CNS, belongs to the IgG1 subclass, and activates complement in vitro. Western blotting of primate cerebellum extract revealed binding of CSF and serum IgG to an 80-97 kDa protein. Extensive control studies were performed to rule out a broad panel of previously described paraneoplastic and non-paraneoplastic antibodies known to be associated with cerebellar ataxia. Screening of >9000 human full length proteins by means of a protein array and additional confirmatory experiments revealed Rho GTPase activating protein 26 (ARHGAP26, GRAF, oligophrenin-1-like protein as the target antigen. Preadsorption of the patient's serum with human ARHGAP26 but not preadsorption with other proteins resulted in complete loss of PC staining. Our findings suggest a role of autoimmunity against ARHGAP26 in the pathogenesis of subacute inflammatory cerebellar ataxia, and extend the panel of diagnostic markers for this devastating disease.

  19. Handbook of immunological properties of engineered nanomaterials

    CERN Document Server

    Dobrovolskaia, Marina A

    2012-01-01

    The Handbook of Immunological Properties of Engineered Nanomaterials provides a comprehensive overview of the current literature, methodologies, and translational and regulatory considerations in the field of nanoimmunotoxicology. The main subject is the immunological properties of engineered nanomaterials. Focus areas include interactions between engineered nanomaterials and red blood cells, platelets, endothelial cells, professional phagocytes, T cells, B cells, dendritic cells, complement and coagulation systems, and plasma proteins, with discussions on nanoparticle sterility and sterilizat

  20. Immunological recovery and dose evaluation in IFN-alpha treatment of hairy cell leukemia: analysis of leukocyte differentiation antigens, NK and 2',5'-oligoadenylate synthetase activity

    DEFF Research Database (Denmark)

    Nielsen, B; Hokland, M; Justesen, J;

    1989-01-01

    A low-dose interferon (IFN)-alpha regimen for the treatment of hairy cell leukemia (HCL) was evaluated by following changes in leukocyte differentiation antigens (LDA), natural killer cell (NK) and 2',5'-oligoadenylate (2-5A) synthetase activities. Due to hairy cells' (HC) weak expression of...... treatment these effects were gradually abolished, indicating an increasing effect of IFN-alpha in vivo with time. These results shows that the different PBMNC subpopulations and important immunological functions normalize with treatment. This normalization is, however, not seen until at least after 1 year...

  1. Immunological assays for chemokine detection in in-vitro culture of CNS cells

    Directory of Open Access Journals (Sweden)

    Mahajan Supriya D.

    2003-01-01

    Full Text Available Herein we review the various methods currently in use for determining the expression of chemokines by CNS cells in vitro. Chemokine detection assays are used in conjuction with one another to provide a comprehensive, biologically relevant assessment of the chemokines which is necessary for correct data interpretation of a specific observed biological effect. The methods described include bioassays for soluble chemokine receptors, RNA extraction, RT-PCR, Real - time quantitative PCR, gene array analysis, northern blot analysis, Ribonuclease Protection assay, Flow cytometry, ELISPOT, western blot analysis, and ELISA. No single method of analysis meets the criteria for a comprehensive, biologically relevant assessment of the chemokines, therefore more than one assay might be necessary for correct data interpretation, a choice that is based on development of a scientific rationale for the method with emphasis on the reliability and relevance of the method.

  2. Clinical and immunologic outcome of patients with cartilage hair hypoplasia after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Bordon, Victoria; Gennery, Andrew R; Slatter, Mary A; Vandecruys, Els; Laureys, Genevieve; Veys, Paul; Qasim, Waseem; Waseem, Qasim; Friedrich, Wilhelm; Wulfraat, Nico M; Scherer, Franziska; Cant, Andrew J; Fischer, Alain; Cavazzana-Calvo, Marina; Cavazanna-Calvo, Marina; Bredius, Robbert G M; Notarangelo, Luigi D; Mazzolari, Evelina; Neven, Benedicte; Güngör, Tayfun; Tayfun, Güngör

    2010-07-01

    Cartilage-hair hypoplasia (CHH) is a rare autosomal recessive disease caused by mutations in the RMRP gene. Beside dwarfism, CHH has a wide spectrum of clinical manifestations including variable grades of combined immunodeficiency, autoimmune complications, and malignancies. Previous reports in single CHH patients with significant immunodeficiencies have demonstrated that allogeneic hematopoietic stem cell transplantation (HSCT) is an effective treatment for the severe immunodeficiency, while growth failure remains unaffected. Because long-term experience in larger cohorts of CHH patients after HSCT is currently unreported, we performed a European collaborative survey reporting on 16 patients with CHH and immunodeficiency who underwent HSCT. Immune dysregulation, lymphoid malignancy, and autoimmunity were important features in this cohort. Thirteen patients were transplanted in early childhood ( approximately 2.5 years). The other 3 patients were transplanted at adolescent age. Of 16 patients, 10 (62.5%) were long-term survivors, with a median follow-up of 7 years. T-lymphocyte numbers and function have normalized, and autoimmunity has resolved in all survivors. HSCT should be considered in CHH patients with severe immunodeficiency/autoimmunity, before the development of severe infections, major organ damage, or malignancy might jeopardize the outcome of HSCT and the quality of life in these patients. PMID:20375313

  3. Electrolyte-gated organic synapse transistor interfaced with neurons

    CERN Document Server

    Desbief, Simon; Casalini, Stefano; Guerin, David; Tortorella, Silvia; Barbalinardo, Marianna; Kyndiah, Adrica; Murgia, Mauro; Cramer, Tobias; Biscarini, Fabio; Vuillaume, Dominique

    2016-01-01

    We demonstrate an electrolyte-gated hybrid nanoparticle/organic synapstor (synapse-transistor, termed EGOS) that exhibits short-term plasticity as biological synapses. The response of EGOS makes it suitable to be interfaced with neurons: short-term plasticity is observed at spike voltage as low as 50 mV (in a par with the amplitude of action potential in neurons) and with a typical response time in the range of tens milliseconds. Human neuroblastoma stem cells are adhered and differentiated into neurons on top of EGOS. We observe that the presence of the cells does not alter short-term plasticity of the device.

  4. Virtual Immunology: Software for Teaching Basic Immunology

    Science.gov (United States)

    Berçot, Filipe Faria; Fidalgo-Neto, Antônio Augusto; Lopes, Renato Matos; Faggioni, Thais; Alves, Luiz Anastácio

    2013-01-01

    As immunology continues to evolve, many educational methods have found difficulty in conveying the degree of complexity inherent in its basic principles. Today, the teaching-learning process in such areas has been improved with tools such as educational software. This article introduces "Virtual Immunology," a software program available…

  5. Fundamentals of vaccine immunology

    Directory of Open Access Journals (Sweden)

    Angela S Clem

    2011-01-01

    Full Text Available From a literature review of the current literature, this article provides an introduction to vaccine immunology including a primer on the components of the immune system, passive vs. active immunization, the mechanism(s by which immunizations stimulate(s immunity, and the types of vaccines available. Both the innate and adaptive immune subsystems are necessary to provide an effective immune response to an immunization. Further, effective immunizations must induce long-term stimulation of both the humoral and cell-mediated arms of the adaptive system by the production of effector cells and memory cells. At least seven different types of vaccines are currently in use or in development that produce this effective immunity and have contributed greatly to the prevention of infectious disease around the world.

  6. Going Mobile: AMPA Receptors Move Synapse to Synapse In Vivo

    OpenAIRE

    Rongo, Christopher

    2013-01-01

    Plasticity models invoke the synaptic delivery of AMPARs, yet we know little about how receptors move in vivo. In this issue of Neuron, Hoerndli et al. show that lateral diffusion and kinesin-mediated transport move AMPARs between synapses in vivo.

  7. Synapse Pathology in Psychiatric and Neurologic Disease

    NARCIS (Netherlands)

    M. van Spronsen (Myrrhe); C.C. Hoogenraad (Casper)

    2010-01-01

    textabstractInhibitory and excitatory synapses play a fundamental role in information processing in the brain. Excitatory synapses usually are situated on dendritic spines, small membrane protrusions that harbor glutamate receptors and postsynaptic density components and help transmit electrical sig

  8. The mitogen-activated protein kinase pathway plays a critical role in regulating immunological properties of BRAF mutant cutaneous melanoma cells.

    Science.gov (United States)

    Whipple, Chery A; Boni, Andrea; Fisher, Jan L; Hampton, Thomas H; Tsongalis, Gregory J; Mellinger, Diane L; Yan, Shaofeng; Tafe, Laura J; Brinckerhoff, Constance E; Turk, Mary J; Mullins, David W; Fadul, Camilo E; Ernstoff, Marc S

    2016-06-01

    The advent of drugs targeting the mitogen-activated protein kinase (MAPK) pathway has markedly changed the treatment of advanced-stage melanoma harboring BRAF mutations. However, drug resistance, through mechanisms not well elucidated, often occurs. A better understanding of how melanoma-derived immunologically active molecules change in response to MAPK inhibition of BRAF mutated (BRAF) and BRAF wild type (BRAF) melanomas could help identify promising treatment combinations of small molecule inhibitors and immunotherapy. To this aim, we treated 13 BRAF and 13 BRAF mutated human melanoma cell lines with either a specific BRAF inhibitor or an MEK1/2 inhibitor and analyzed changes in the secretion of 42 selected cytokines, chemokines, and growth factors. We also measured changes in the expression levels of immunologically relevant melanoma cell surface markers. The BRAF melanomas showed minimal changes in response to the inhibitors, whereas the BRAF cell lines showed, on average, a significant decrease in IFNα2, interleukin-7, Fractalkine, GCSF, GRO, TGFα2, interleukin-8, and VEGF, as well as a reduction in pERK and pMEK protein levels, upon MAPK pathway blockade. BRAF inhibition in BRAF cell lines also resulted in significant changes in the expression of several surface markers including upregulation of β2-microglobulin as well as a decrease in MIC A/B and TRAIL-R2. These results indicate that MAPK pathway inhibition leads to changes in the immunological properties of mutant BRAF melanoma cells and lends support for future studies aimed at designing effective treatment strategies that combine BRAF and MEK inhibition with immunotherapy. PMID:26974965

  9. Synapse Pathology in Psychiatric and Neurologic Disease

    OpenAIRE

    Spronsen, Myrrhe; Hoogenraad, Casper

    2010-01-01

    textabstractInhibitory and excitatory synapses play a fundamental role in information processing in the brain. Excitatory synapses usually are situated on dendritic spines, small membrane protrusions that harbor glutamate receptors and postsynaptic density components and help transmit electrical signals. In recent years, it has become evident that spine morphology is intimately linked to synapse function-smaller spines have smaller synapses and support reduced synaptic transmission. The relat...

  10. CCL8 BASED IMMUNOLOGICAL MONITORING

    DEFF Research Database (Denmark)

    The present invention relates to an immunological method and, more particularly, a method for measuring cell-mediated immune reactivity (CMI) in mammals based on the production of CCL8.The invention further discloses an assay and a kit for measuring CMI to an antigen using whole blood or other...

  11. Glial Synapses Found Plastic

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Traditionally regarded as merely padding and supportive, glia, small cells that dramatically outnumber their larger neighbors, neurons, may play an essential role in information processing in the brain.

  12. Dendritic cells induce immunological tolerance after organ transplantation%树突状细胞诱导的器官移植后免疫耐受

    Institute of Scientific and Technical Information of China (English)

    余昆; 苟欣

    2009-01-01

    Dendritic cell (DC) is the most efficient kind of antigen-presenting cell (APC) at present. As the primer and controller of T cellular immunologic response, DC has become a research hotspot in the domain of organ transplantation nowadays. This paper reviewed the biological feature, culture in vitro and the mechanism of inducing immunological tolerance of dendritic cells.%树突状细胞(dendritic cell,DC)是当前发现的功能最强的专职抗原提呈细胞(antigen-presenting cell,APC),其作为机体适应性T细胞免疫应答的始动者和调控者,已成为目前器官移植领域的研究热点.本文就树突状细胞的生物学特性、体外扩增培养、诱导移植免疫耐受的机制等方面的研究进展做一综述.

  13. Hepatocytes as Immunological Agents.

    Science.gov (United States)

    Crispe, Ian N

    2016-01-01

    Hepatocytes are targeted for infection by a number of major human pathogens, including hepatitis B virus, hepatitis C virus, and malaria. However, hepatocytes are also immunological agents in their own right. In systemic immunity, they are central in the acute-phase response, which floods the circulation with defensive proteins during diverse stresses, including ischemia, physical trauma, and sepsis. Hepatocytes express a variety of innate immune receptors and, when challenged with pathogen- or damage-associated molecular patterns, can deliver cell-autonomous innate immune responses that may result in host defense or in immunopathology. Important human pathogens have evolved mechanisms to subvert these responses. Finally, hepatocytes talk directly to T cells, resulting in a bias toward immune tolerance. PMID:26685314

  14. Interplay between Subthreshold Oscillations and Depressing Synapses in Single Neurons.

    Directory of Open Access Journals (Sweden)

    Roberto Latorre

    Full Text Available In this paper we analyze the interplay between the subthreshold oscillations of a single neuron conductance-based model and the short-term plasticity of a dynamic synapse with a depressing mechanism. In previous research, the computational properties of subthreshold oscillations and dynamic synapses have been studied separately. Our results show that dynamic synapses can influence different aspects of the dynamics of neuronal subthreshold oscillations. Factors such as maximum hyperpolarization level, oscillation amplitude and frequency or the resulting firing threshold are modulated by synaptic depression, which can even make subthreshold oscillations disappear. This influence reshapes the postsynaptic neuron's resonant properties arising from subthreshold oscillations and leads to specific input/output relations. We also study the neuron's response to another simultaneous input in the context of this modulation, and show a distinct contextual processing as a function of the depression, in particular for detection of signals through weak synapses. Intrinsic oscillations dynamics can be combined with the characteristic time scale of the modulatory input received by a dynamic synapse to build cost-effective cell/channel-specific information discrimination mechanisms, beyond simple resonances. In this regard, we discuss the functional implications of synaptic depression modulation on intrinsic subthreshold dynamics.

  15. [Synapse elimination and functional neural circuit formation in the cerebellum].

    Science.gov (United States)

    Kano, Masanobu

    2013-06-01

    Neuronal connections are initially redundant, but unnecessary connections are eliminated subsequently during postnatal development. This process, known as 'synapse elimination', is thought to be crucial for establishing functionally mature neural circuits. The climbing fiber (CF) to the Purkinje cell (PC) synapse in the cerebellum is a representative model of synapse elimination. We disclose that one-to-one connection from CF to PC is established through four distinct phases: (1) strengthening of a single CF among multiple CFs in each PC at P3-P7, (2) translocation of a single strengthened CF to PC dendrites from around P9, and (3) early phase (P7 to around P11) and (4) late phase (around P12 to P17) of elimination of weak CF synapses from PC somata. Mice with PC-selective deletion of P/Q-type voltage-dependent Ca2+ channel (VDCC) exhibit severe defects in strengthening of single CFs, dendritic translocation of single CFs and CF elimination from P7. In contrast, mice with a mutation of a single allele for the GABA-synthesizing enzyme GAD67 have a selective impairment of CF elimination from P10 due to reduced inhibition and elevated Ca2+ influx to PC somata. Thus, regulation of Ca2+ influx to PCs is crucial for the four phases of CF synapse elimination. PMID:25069248

  16. Immunology of lymphatic filariasis

    Science.gov (United States)

    Babu, Subash; Nutman, Thomas B.

    2013-01-01

    The immune responses to filarial parasites encompass a complex network of innate and adaptive cells whose interaction with the parasite underlies a spectrum of clinical manifestations. The predominant immunological feature of lymphatic filariasis is an antigen - specific Th2 response and an expansion of IL-10 producing CD4+ T cells that is accompanied by a muted Th1 response. This antigen specific T cell hypo-responsiveness appears to be crucial for the maintenance of the sustained, long-standing infection often with high parasite densities. While the correlates of protective immunity to lymphatic filariasis are still incompletely understood, primarily due to the lack of suitable animal models to study susceptibility, it is clear that T cells and to a certain extent B cells are required for protective immunity. Host immune responses, especially CD4+ T cell responses clearly play a role in mediating pathological manifestations of LF, including lymphedema, hydrocele and elephantiasis. The main underlying defect in the development of clinical pathology appears to be a failure to induce T cell hypo-responsiveness in the face of antigenic stimulation. Finally, another intriguing feature of filarial infections is their propensity to induce bystander effects on a variety of immune responses, including responses to vaccinations, allergens and to other infectious agents. The complexity of the immune response to filarial infection therefore provides an important gateway to understanding the regulation of immune responses to chronic infections, in general. PMID:24134686

  17. 21 CFR 866.5470 - Hemoglobin immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hemoglobin immunological test system. 866.5470... Hemoglobin immunological test system. (a) Indentification. A hemoglobin immunological test system is a device... hemoglobin (the oxygen-carrying pigment in red blood cells) in blood, urine, plasma, or other body...

  18. A New Mechanism for Neuron-synapse Maturation Discovered

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ A group of CAS scientists recently made a research breakthrough in the development of synapse, the key structure of the nervous system that transmits signals from one nerve cell to another. This work was reported as a cover story in the May 4th issue of prestigious journal Neuron.

  19. The gametic synapse

    DEFF Research Database (Denmark)

    Macaulay, Angus D.; Gilbert, Isabelle; Caballero, Julieta;

    2014-01-01

    Even after several decades of quiescent storage in the ovary, the female germ cell is capable of reinitiating transcription to build the reserves that are essential to support early embryonic development. In the current model of mammalian oogenesis, there exists bilateral communication between the...

  20. IMMUNOLOGICAL ASPECTS OF NEUROSYPHILIS

    Directory of Open Access Journals (Sweden)

    M. L. Chuhlovina

    2015-06-01

    Full Text Available Reduced incidence of syphilis was reported in Russia over last years, along with increased prevalence of neurosyphilis. The issues of the mechanisms of the damage of nervous system and the immune response to syphilis are actual. Origin of syphilis antibodies from cerebrospinal fluid of patients with neurosyphilis is considered. The role of intrathecal immunoglobulin production and dysfunction of blood-brain barrier in patients infected with syphilis is of special importance. The aim of the research was to analyze the immunological aspects of neurosyphilis. Polymorphonuclear leukocytes have been shown to play an important role in infection with Treponema pallidium during clearance of the pathogenes. Potential virulence factors of Treponema pallidium have been discovered. It has been found that cell-mediated immune response is very important for defense against Treponema pallidium, while the key importance in bacterial clearance is put on Th1. Evidence has shown that the level of cytokines which are secreted by Th1 (IL-2, interferon gamma and tumor necrosis factor and Th2 (IL-6 and IL-10 — lymphocytes, correlates with syphilis progression. The role of IL-10 in immune response regulation in patients infected with syphilis has been examined: this cytokine can inhibit the activity of immunocompetent cells. Some data has been produced concerning intrathecal production of immunoglobulins in neurosyphilis patients’ cerebrospinal fluid. The research of immunological parameters and composition of liquor in the patients with syphilis has revealed, that lymphocytes of peripheral blood are sensitized to antigens of the brain. It indicates the violation of permeability of patients’ blood-brain barrier. Nervous system becomes involved into the pathological process during the first weeks or months after syphilis infection. Cerebrospinal fluid changes can be detected at seronegative stage of the primary infection. The most expressed changes were found in

  1. Modelling Immunological Memory

    CERN Document Server

    Garret, Simon; Walker, Joanne; Wilson, William; Aickelin, Uwe

    2010-01-01

    Accurate immunological models offer the possibility of performing highthroughput experiments in silico that can predict, or at least suggest, in vivo phenomena. In this chapter, we compare various models of immunological memory. We first validate an experimental immunological simulator, developed by the authors, by simulating several theories of immunological memory with known results. We then use the same system to evaluate the predicted effects of a theory of immunological memory. The resulting model has not been explored before in artificial immune systems research, and we compare the simulated in silico output with in vivo measurements. Although the theory appears valid, we suggest that there are a common set of reasons why immunological memory models are a useful support tool; not conclusive in themselves.

  2. Elucidating the immunological effects of 5-azacytidine treatment in patients with myelodysplastic syndrome and identifying new conditional ligands and T-cell epitopes of relevance in melanoma.

    Science.gov (United States)

    Frøsig, Thomas Mørch

    2015-08-01

    This review is focused on research within three different areas of tumor immunology: discovery of new T-cell epitopes and a new immunological antigen (reported in Paper I and II), elucidation of the immunological effects of treatment with a hypomethylating drug (reported in Paper III) and discovery of new conditional ligands (reported in Paper IV). Many melanoma-associated T-cell epitopes have been described, but 45% of these are restricted to human leukocyte antigen (HLA)-A2, leaving the remaining 36 different HLA molecules with only a few described T-cell epitopes each. Therefore we wanted to expand the number of T-cell epitopes restricted to HLA-A1, -A3, -A11 and -B7, all HLA molecules frequently expressed in Caucasians in Western Europe and Northern America. In Paper I we focused on the proteins gp100, Mart1, MAGE-A3, NY-ESO-1, tyrosinase and TRP-2, all melanoma-associated antigens frequently recognized by T cells from HLA-A2 patients. On contrary, in Paper II we wanted to investigate the protein Nodal as a novel immunological target. We took advantage of a T-cell epitope mapping platform in which HLA ligands are predicted by computer-based algorithms, further tested in the laboratory by an ELISA-based method and used for flow cytometry-based detection of specific T-cell responses by use of combinatorial encoded major histocompatibility (MHC) class I multimers. This procedure resulted in 127 (Paper I) and 32 (Paper II) confirmed HLA ligands, respectively, which we used for screening of the T-cell recognition within peripheral blood mononuclear cell samples from melanoma patients. As spontaneous tumor-specific T-cell responses tend to be of very low frequency and probably below the detection threshold of the method, we incorporated a T-cell enrichment step prior to the detection of these responses. Our screening of 39 melanoma patients resulted in 26 (17 different) T-cell responses against the common melanoma-associated antigens and 10 (8 different) T-cell

  3. Microglial interactions with synapses are modulated by visual experience.

    Directory of Open Access Journals (Sweden)

    Marie-Ève Tremblay

    Full Text Available Microglia are the immune cells of the brain. In the absence of pathological insult, their highly motile processes continually survey the brain parenchyma and transiently contact synaptic elements. Aside from monitoring, their physiological roles at synapses are not known. To gain insight into possible roles of microglia in the modification of synaptic structures, we used immunocytochemical electron microscopy, serial section electron microscopy with three-dimensional reconstructions, and two-photon in vivo imaging to characterize microglial interactions with synapses during normal and altered sensory experience, in the visual cortex of juvenile mice. During normal visual experience, most microglial processes displayed direct apposition with multiple synapse-associated elements, including synaptic clefts. Microglial processes were also distinctively surrounded by pockets of extracellular space. In terms of dynamics, microglial processes localized to the vicinity of small and transiently growing dendritic spines, which were typically lost over 2 d. When experience was manipulated through light deprivation and reexposure, microglial processes changed their morphology, showed altered distributions of extracellular space, displayed phagocytic structures, apposed synaptic clefts more frequently, and enveloped synapse-associated elements more extensively. While light deprivation induced microglia to become less motile and changed their preference of localization to the vicinity of a subset of larger dendritic spines that persistently shrank, light reexposure reversed these behaviors. Taken together, these findings reveal different modalities of microglial interactions with synapses that are subtly altered by sensory experience. These findings suggest that microglia may actively contribute to the experience-dependent modification or elimination of a specific subset of synapses in the healthy brain.

  4. MHCI promotes developmental synapse elimination and aging-related synapse loss at the vertebrate neuromuscular junction.

    Science.gov (United States)

    Tetruashvily, Mazell M; McDonald, Marin A; Frietze, Karla K; Boulanger, Lisa M

    2016-08-01

    Synapse elimination at the developing neuromuscular junction (NMJ) sculpts motor circuits, and synapse loss at the aging NMJ drives motor impairments that are a major cause of loss of independence in the elderly. Here we provide evidence that at the NMJ, both developmental synapse elimination and aging-related synapse loss are promoted by specific immune proteins, members of the major histocompatibility complex class I (MHCI). MHCI is expressed at the developing NMJ, and three different methods of reducing MHCI function all disrupt synapse elimination during the second postnatal week, leaving some muscle fibers multiply-innervated, despite otherwise outwardly normal synapse formation and maturation. Conversely, overexpressing MHCI modestly accelerates developmental synapse elimination. MHCI levels at the NMJ rise with aging, and reducing MHCI levels ameliorates muscle denervation in aged mice. These findings identify an unexpected role for MHCI in the elimination of neuromuscular synapses during development, and indicate that reducing MHCI levels can preserve youthful innervation of aging muscle. PMID:26802986

  5. P2X7 Receptor Inhibition Improves CD34 T-Cell Differentiation in HIV-Infected Immunological Nonresponders on c-ART

    Science.gov (United States)

    Menkova-Garnier, Inna; Hocini, Hakim; Foucat, Emile; Tisserand, Pascaline; Bourdery, Laure; Delaugerre, Constance; Benne, Clarisse; Lévy, Yves; Lelièvre, Jean-Daniel

    2016-01-01

    Peripheral CD4+ T-cell levels are not fully restored in a significant proportion of HIV+ individuals displaying long-term viral suppression on c-ART. These immunological nonresponders (INRs) have a higher risk of developing AIDS and non-AIDS events and a lower life expectancy than the general population, but the underlying mechanisms are not fully understood. We used an in vitro system to analyze the T- and B-cell potential of CD34+ hematopoietic progenitor cells. Comparisons of INRs with matched HIV+ patients with high CD4+ T-cell counts (immune responders (IRs)) revealed an impairment of the generation of T-cell progenitors, but not of B-cell progenitors, in INRs. This impairment resulted in the presence of smaller numbers of recent thymic emigrants (RTE) in the blood and lower peripheral CD4+ T-cell counts. We investigated the molecular pathways involved in lymphopoiesis, focusing particularly on T-cell fate specification (Notch pathway), survival (IL7R-IL7 axis) and death (Fas, P2X7, CD39/CD73). P2X7 expression was abnormally strong and there was no CD73 mRNA in the CD34+ cells of INRs, highlighting a role for the ATP pathway. This was confirmed by the demonstration that in vitro inhibition of the P2X7-mediated pathway restored the T-cell potential of CD34+ cells from INRs. Moreover, transcriptomic analysis revealed major differences in cell survival and death pathways between CD34+ cells from INRs and those from IRs. These findings pave the way for the use of complementary immunotherapies, such as P2X7 antagonists, to restore T-cell lymphopoiesis in INRs. PMID:27082982

  6. Synapse: Synthetic Application Profiler and Emulator

    OpenAIRE

    Merzky, Andre; Jha, Shantenu

    2015-01-01

    We introduce Synapse motivated by the needs to estimate and emulate workload execution characteristics on high-performance and distributed heterogeneous resources. Synapse has a platform independent application profiler, and the ability to emulate profiled workloads on a variety of heterogeneous resources. Synapse is used as a proxy application (or "representative application") for real workloads, with the added advantage that it can be tuned at arbitrary levels of granularity in ways that ar...

  7. Analyzing the exhaustiveness of the synapse protocol

    OpenAIRE

    Marinkovic, Bojan; Ciancaglini, Vincenzo; Ognjanovic, Zoran; Glavan, Paola; Liquori, Luigi; Maksimovic, Petar

    2015-01-01

    International audience The Synapse protocol is a scalable protocol designed for information retrieval over inter-connected heterogeneous overlay networks. In this paper, we give a formal description of Synapse using the Abstract State Machines framework. The formal description pertains to Synapse actions that manipulate distributed keys. Based on this formal description, we present results concerning the expected exhaustiveness for a number of scenarios and systems maintained by the Synaps...

  8. The Biochemical Anatomy of Cortical Inhibitory Synapses

    OpenAIRE

    Heller, E.A.; Zhang, W.; Selimi, F.; Earnheart, J.C.; Slimak, M.A.; Santos-Torres, J.; Ibanez-Tallon, I.; Aoki, C; Chait, B. T.; Heintz, N

    2012-01-01

    Classical electron microscopic studies of the mammalian brain revealed two major classes of synapses, distinguished by the presence of a large postsynaptic density (PSD) exclusively at type 1, excitatory synapses. Biochemical studies of the PSD have established the paradigm of the synapse as a complex signal-processing machine that controls synaptic plasticity. We report here the results of a proteomic analysis of type 2, inhibitory synaptic complexes isolated by affinity purification from th...

  9. The immunology of filariasis*

    OpenAIRE

    1981-01-01

    This report summarizes the available information on the immunology of filariasis, and discusses immunodiagnosis and the immunological factors influencing the host—parasite relationship in lymphatic filariasis and onchocerciasis. Several areas that require further research are identified, particularly concerning the development of new serological techniques, and the fractionation of specific antigens. The problems associated with vaccine development are considered and the importance of finding...

  10. The New Cellular Immunology

    Science.gov (United States)

    Claman, Henry N.

    1973-01-01

    Discusses the nature of the immune response and traces many of the discoveries that have led to the present state of knowledge in immunology. The new cellular immunology is directing its efforts toward improving health by proper manipulation of the immune mechanisms of the body. (JR)

  11. Application of a Static Fluorescence-based Cytometer (the CellScan in Basic Cytometric Studies, Clinical Pharmacology, Oncology and Clinical Immunology

    Directory of Open Access Journals (Sweden)

    Yehuda Shoenfeld

    2005-01-01

    Full Text Available The CellScan apparatus is a laser scanning cytometer enabling repetitive fluorescence intensity (FI and polarization (FP measurements in living cells, as a means of monitoring lymphocyte activation. The CellScan may serve as a tool for diagnosis of rheumatoid arthritis (RA and systemic lupus erythematosus (SLE as well as other autoimmune diseases by monitoring FP changes in peripheral blood lymphocytes (PBLs following exposure to autoantigenic stimuli. Changes in FI and FP in atherosclerotic patients' PBLs following exposure to various stimuli have established the role of the immune system in atherosclerotic disease. The CellScan has been evaluated as a diagnostic tool for drug-allergy, based on FP reduction in PBLs following incubation with allergenic drugs. FI and FP changes in cancer cells have been found to be well correlated with the cytotoxic effect of anti-neoplastic drugs. In conclusion, the CellScan has a variety of applications in cell biology, immunology, cancer research and clinical pharmacology.

  12. Giant ankyrin-G stabilizes somatodendritic GABAergic synapses through opposing endocytosis of GABAA receptors

    OpenAIRE

    Tseng, Wei Chou; Jenkins, Paul M.; Tanaka, Masashi; Mooney, Richard; Bennett, Vann

    2014-01-01

    GABAA-receptor-based interneuron circuitry is essential for higher order function of the human nervous system and is implicated in schizophrenia, depression, anxiety disorders, and autism. GABAergic synapses are located on neuronal cell bodies and dendritic shafts as well as axon initial segments. This study demonstrates that giant ankyrin-G forms micron-scale domains on neuronal cell bodies and dendritic shafts, and promotes somatodendritic GABAergic synapse stability through interaction wit...

  13. Shaping inhibition: activity dependent structural plasticity of GABAergic synapses

    Directory of Open Access Journals (Sweden)

    Pablo Mendez

    2014-10-01

    Full Text Available Inhibitory transmission through the neurotransmitter Ɣ-aminobutyric acid (GABA shapes network activity in the mammalian cerebral cortex by filtering synaptic incoming information and dictating the activity of principal cells. The incredibly diverse population of cortical neurons that use GABA as neurotransmitter shows an equally diverse range of mechanisms that regulate changes in the strength of GABAergic synaptic transmission and allow them to dynamically follow and command the activity of neuronal ensembles. Similarly to glutamatergic synaptic transmission, activity-dependent functional changes in inhibitory neurotransmission are accompanied by alterations in GABAergic synapse structure that range from morphological reorganization of postsynaptic density to de novo formation and elimination of inhibitory contacts. Here we review several aspects of structural plasticity of inhibitory synapses, including its induction by different forms of neuronal activity, behavioral and sensory experience and the molecular mechanisms and signaling pathways involved. We discuss the functional consequences of GABAergic synapse structural plasticity for information processing and memory formation in view of the heterogenous nature of the structural plasticity phenomena affecting inhibitory synapses impinging on somatic and dendritic compartments of cortical and hippocampal neurons.

  14. Immunology of root resorption: A literature review

    Directory of Open Access Journals (Sweden)

    Silva Luciano

    2008-01-01

    Full Text Available Root resorption seems to be related to a complex combination of mechanical factors and biological activity, which comprehends the role of immunologic structures including specialized cells. The aim of this research was to explain the development of the process - from mineralization to the destruction of hard tissues - and the possible relationship between root resorption and immunology, along with discussing current concepts described in the literature.

  15. Opposing mechanisms mediate morphine- and cocaine-induced generation of silent synapses.

    Science.gov (United States)

    Graziane, Nicholas M; Sun, Shichao; Wright, William J; Jang, Daniel; Liu, Zheng; Huang, Yanhua H; Nestler, Eric J; Wang, Yu Tian; Schlüter, Oliver M; Dong, Yan

    2016-07-01

    Exposures to cocaine and morphine produce similar adaptations in nucleus accumbens (NAc)-based behaviors, yet produce very different adaptations at NAc excitatory synapses. In an effort to explain this paradox, we found that both drugs induced NMDA receptor-containing, AMPA receptor-silent excitatory synapses, albeit in distinct cell types through opposing cellular mechanisms. Cocaine selectively induced silent synapses in D1-type neurons, likely via a synaptogenesis process, whereas morphine induced silent synapses in D2-type neurons via internalization of AMPA receptors from pre-existing synapses. After drug withdrawal, cocaine-generated silent synapses became 'unsilenced' by recruiting AMPA receptors to strengthen excitatory inputs to D1-type neurons, whereas morphine-generated silent synapses were likely eliminated to weaken excitatory inputs to D2-type neurons. Thus, these cell type-specific, opposing mechanisms produced the same net shift of the balance between excitatory inputs to D1- and D2-type NAc neurons, which may underlie certain common alterations in NAc-based behaviors induced by both classes of drugs. PMID:27239940

  16. Immunologic analyses of mouse cystathionase in normal and leukemic cells. [Rats, rabbits, /sup 125/I tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Bikel, I.; Faibes, D.; Uren, J.R.; Livingston, D.M.

    1978-11-28

    Rabbit antisera have been raised against mouse liver cystathionase and shown to possess enzyme neutralizing activity. Agar gel double immunodiffusion analyses demonstrated that both mouse liver cystathionase and rat liver cystathionase react with the antisera, the latter enzyme being completely cross-reactive with the former. Following radioiodination of the purified rat liver enzyme, a double antibody radioimmunoassay was developed in which greater than 90% of the labeled protein could be specifically precipitated with the anti-mouse cystathionase antibodies. In this test the purified rat liver and mouse liver enzymes were virtually indistinguishable, generating superimposable competition displacement curves on a protein mass basis. These results indicate that both enzymes are immunologically identical, thus validating the use of the rat in lieu of the murine liver enzyme as radiolabeled tracer in an assay for mouse cystathionase. In addition, competition radioimmunoassays demonstrated that the immunological reactivities of both the purified rat liver and mouse liver enzymes were equally heat sensitive. The sensitivity of the assay was determined to be 1 ng of enzyme protein/0.22 mL of assay mixture, and the assay could be used to detect the presence of enzyme protein in tissue homogenates of single mouse organs. Mouse or rat cross-reactivity with human liver cystathionase was incomplete; but, with the exception of heart and spleen, parallel radioimmunoassay competition displacement curves were obtained for cystathionase from different mouse organs including thymus. Extracts of 7-, 9-, and 10-month-old spontaneous AKR mouse thymomas were tested in the radioimmunoassay along with extracts of age-matched thymuses which were grossly tumor free. A reaction of nonidentity was observed for all of the tumor extracts while a reaction identical with that of the pure liver enzyme was found with all of the normal thymus extracts.

  17. Immunology of infertility.

    Science.gov (United States)

    Jones, W R

    1981-12-01

    Recent research on immunological infertility in men and women is reviewed and the possibilities for therapeutic success in this area are assessed. Surface antigens of the acrosome and main tail piece appear to provoke antibodies of special relevance to male and female infertility and are recognized by circulating sperm-immobilizing antibodies in women and by immobilizing and agglutinizing antibodies in men. Assessment methods have focused on the development of tests of local immunity to sperm. Antisperm antibodies have been tested via sperm microagglutination, the gelatin agglutination test, the sperm immobilization test, and immunofluorescence techniques. In addition, measurement has focused on antibodies in cervical mucus, antibodies in seminal plasma, and cell-mediated immunity. Methods involving both partners include postcoital test, the sperm-cervical mucus penetration test, and the sperm-cervical mucus contact test. There remains a need for the development of specific radioimmunoassys for the precise detection and quantitation of antibodies to sperm antigens, especially those of cell membrane origin. In males, autoimmunity to sperm antigens can be related to infertility by 2 main pathogenic mechanisms: 1) the adverse effects of antibodies directly on spermatozoa, and 2) the association with disordered spermatogenesis resulting in oligospermia and azoospermia. In women, the effector pathways of local immunization mediate both systemic and cell-mediated immune responses. Local antibodies can interfere with the reproductive process by arming macrophages and enhancing phagocytic clearance of spermatozoa from the genital tract, mediating cytotoxic effects on sperm, preventing sperm from adequately penetrating cervical mucus, intefering with sperm capacitation, and influencing sperm selection within the female genital tract. Between 5-10% of infertile men and women show evidence of anitbodies to sperm. Treatment has included occlusion therapy, intrauterine

  18. Astrocytic role in synapse formation after injury.

    Science.gov (United States)

    Li, Ying; Li, Daqing; Raisman, Geoffrey

    2016-08-15

    In 1969 a paper entitled Neuronal plasticity in the septal nuclei of the adult rat proposed that new synapses are formed in the adult brain after injury (Raisman, 1969). The quantitative electron microscopic study of the timed responses to selective partial denervation of the neuropil of the adult rat septal nuclei after distant transection of the hippocampal efferent axons in the fimbria showed that the new synapses arise by sprouting of surviving adjacent synapses which selectively take over the previously denervated sites and thus restore the number of synapses to normal. This article presents the evidence for the role of perisynaptic astrocytic processes in the removal and formation of synapses and considers its significance as one of the three major divisions of the astrocytic surface in terms of the axonal responses to injury and regeneration. This article is part of a Special Issue entitled SI:50th Anniversary Issue. PMID:26746338

  19. Ocular diseases: immunological and molecular mechanisms

    Science.gov (United States)

    Song, Jing; Huang, Yi-Fei; Zhang, Wen-Jing; Chen, Xiao-Fei; Guo, Yu-Mian

    2016-01-01

    Many factors, such as environmental, microbial and endogenous stress, antigen localization, can trigger the immunological events that affect the ending of the diverse spectrum of ocular disorders. Significant advances in understanding of immunological and molecular mechanisms have been researched to improve the diagnosis and therapy for patients with ocular inflammatory diseases. Some kinds of ocular diseases are inadequately responsive to current medications; therefore, immunotherapy may be a potential choice as an alternative or adjunctive treatment, even in the prophylactic setting. This article first provides an overview of the immunological and molecular mechanisms concerning several typical and common ocular diseases; second, the functions of immunological roles in some of systemic autoimmunity will be discussed; third, we will provide a summary of the mechanisms that dictate immune cell trafficking to ocular local microenvironment in response to inflammation.

  20. Synaptic plasticity in GNGA3-/- mice: Cone bipolar cells react up0onthe missing cone input and form ectopic synapses with rods

    OpenAIRE

    Humphries, Peter

    2006-01-01

    PUBLISHED In the mammalian retina, rods and cones connect to distinct sets of bipolar cells. Rods are presynaptic to a single type of rod bipolar cell, whereas cones connect to different types of cone bipolar cells. Synaptic rewiring between cone photoreceptor terminals and rod bipolar cell dendrites has been described as a general result of photoreceptor degeneration. To investigate whether cone bipolar cells also show synaptic plasticity in the absence of cone input, we studied the conne...

  1. Evidence for Alzheimer's disease-linked synapse loss and compensation in mouse and human hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Neuman, Krystina M; Molina-Campos, Elizabeth; Musial, Timothy F; Price, Andrea L; Oh, Kwang-Jin; Wolke, Malerie L; Buss, Eric W; Scheff, Stephen W; Mufson, Elliott J; Nicholson, Daniel A

    2015-11-01

    Alzheimer's disease (AD) is associated with alterations in the distribution, number, and size of inputs to hippocampal neurons. Some of these changes are thought to be neurodegenerative, whereas others are conceptualized as compensatory, plasticity-like responses, wherein the remaining inputs reactively innervate vulnerable dendritic regions. Here, we provide evidence that the axospinous synapses of human AD cases and mice harboring AD-linked genetic mutations (the 5XFAD line) exhibit both, in the form of synapse loss and compensatory changes in the synapses that remain. Using array tomography, quantitative conventional electron microscopy, immunogold electron microscopy for AMPARs, and whole-cell patch-clamp physiology, we find that hippocampal CA1 pyramidal neurons in transgenic mice are host to an age-related synapse loss in their distal dendrites, and that the remaining synapses express more AMPA-type glutamate receptors. Moreover, the number of axonal boutons that synapse with multiple spines is significantly reduced in the transgenic mice. Through serial section electron microscopic analyses of human hippocampal tissue, we further show that putative compensatory changes in synapse strength are also detectable in axospinous synapses of proximal and distal dendrites in human AD cases, and that their multiple synapse boutons may be more powerful than those in non-cognitively impaired human cases. Such findings are consistent with the notion that the pathophysiology of AD is a multivariate product of both neurodegenerative and neuroplastic processes, which may produce adaptive and/or maladaptive responses in hippocampal synaptic strength and plasticity. PMID:25031178

  2. 肥大细胞在器官移植中的免疫学作用%Immunological role of mast cells in organ transplantation

    Institute of Scientific and Technical Information of China (English)

    王春锋

    2011-01-01

    Mast cells are widely recognized as the effcctor cells to mediate type Ⅰ hypersensitivity through IgE receptor. However, mast cells also can function as important initiators and effectors of innate and adaptive immunity. During solid organ transplantation, mast cells seem to play a dual role : on the one hand mast cells exert negative immunological regulatory effect through secretion of anti-inflammatory mediators and interactions with T-regulatory cells; on the other hand, an array of proinflammatory mediators release after the intragraft or systemic MC degranulation, which results in the breakup of peripheral tolerance and fibrosis progression, leading to ehronic allograft failure. The specific mechanisms of MC in organ transplantation deserves further studies.%对肥大细胞(mast cell,MC)的研究多关注于其通过IgE受体介导Ⅰ型超敏反应.近年来,发现肥大细胞还可以作为功能多样化的细胞参与固有和适应性免疫反应.在器官移植中肥大细胞可能发挥双重作用,一方面通过分泌一系列抑炎因子以及与调节性T细胞(regulatory T cells,Treg)相互作用发挥免疫负调节作用,另一方面通过脱颗粒释放促炎因子,介导炎症的发生,打破外周免疫耐受,促进纤维化的形成,导致慢性移植物衰竭.肥大细胞在器官移植中的详尽作用机制有待于进一步研究.

  3. Stimulus-specific adaptation at the synapse level in vitro

    OpenAIRE

    Haitao Wang; Yi-Fan Han; Ying-Shing Chan; Jufang He

    2014-01-01

    Stimulus-specific adaptation (SSA) is observed in many brain regions in humans and animals. SSA of cortical neurons has been proposed to accumulate through relays in ascending pathways. Here, we examined SSA at the synapse level using whole-cell patch-clamp recordings of primary cultured cortical neurons of the rat. First, we found that cultured neurons had high firing capability with 100-Hz current injection. However, neuron firing started to adapt to repeated electrically activated synaptic...

  4. Molecular Anatomy and Number of Antigen Specific CD8 T Cells Required to Cause Type 1 Diabetes

    OpenAIRE

    Oldstone, Michael B.A.; Edelmann, Kurt H; McGavern, Dorian B.; Cruite, Justin T.; Welch, Megan J.

    2012-01-01

    We quantified CD8 T cells needed to cause type 1 diabetes and studied the anatomy of the CD8 T cell/beta (β) cell interaction at the immunologic synapse. We used a transgenic model, in situ tetramer staining to distinguish antigen specific CD8 T cells from total T cells infiltrating islets and a variety of viral mutants selected for functional deletion(s) of various CD8 T cell epitopes. Twenty percent of CD8 T cells in the spleen were specific for all immunodominant and subdominant viral glyc...

  5. Opposing roles for RhoH GTPase during T-cell migration and activation

    DEFF Research Database (Denmark)

    Baker, Christina M; Comrie, William A; Hyun, Young-Min; Chung, Hung-Li; Fedorchuk, Christine A; Lim, Kihong; Brakebusch, Cord; McGrath, James L; Waugh, Richard E; Meier-Schellersheim, Martin; Kim, Minsoo

    2012-01-01

    T cells spend the majority of their time perusing lymphoid organs in search of cognate antigen presented by antigen presenting cells (APCs) and then quickly recirculate through the bloodstream to another lymph node. Therefore, regulation of a T-cell response is dependent upon the ability of cells...... activation as well as prolonged T:APC conjugates. RT-PCR analyses of activated CD4(+) T cells and live images of T-cell migration and immunological synapse (IS) formation revealed that functions of RhoH took place primarily at the levels of transcription and intracellular distribution. Thus, we conclude that...

  6. Neuronal death and synapse elimination in the olivocerebellar system. II. Cell counts in the inferior olive of adult x-irradiated rats and weaver and reeler mutant mice

    International Nuclear Information System (INIS)

    Cell death in the developing rat inferior olive precedes the regression of the polyneuronal innervation of Purkinje cells by olivary axons (i.e., climbing fibers), suggesting that the involution of the redundant olivocerebellar contacts is caused by a withdrawal of supernumerary axonal collaterals rather than by degeneration of the parent cell. However, a subsequent apparent increase of the olivary population occurs, which could eventually mask a residual presynaptic cell death taking place at the same time. Therefore, cell counts were performed in the inferior olive of adult rodents in which the multiple innervation of Purkinje cells by olivary axons is maintained, with the idea that if cell death plays a role in the regression of supernumerary climbing fibers, the number of olivary cells should be higher in these animals than in their controls. The results show that the size of the cell population in the inferior olive of weaver and reeler mutant mice and rats degranulated by early postnatal x-irradiation does not differ significantly from that of their controls. Similarly, the distribution of the cells in the four main olivary subnuclei is not modified in weaver mice and x-irradiated rats. The present data further support the assumption that the regression of the polyneuronal innervation of Purkinje cells occurs independently of cell death in the presynaptic population

  7. In vitro model for induction of immunologic unresponsiveness to turkey γ-globulin in primed mouse spleen cells

    International Nuclear Information System (INIS)

    Unresponsiveness induced to turkey γ-globulin (TGG) in cultures of TGG-primed spleen cells by incubation with high concentrations of soluble TGG (sTGG) was shown to involve a state of active suppression. Upon transfer to secondary cultures of primed spleen cells stimulated with an optimal dose of TGG-conjugated erythrocytes, such tolerant spleen cells were able to actively inhibit a secondary plaque-forming cell response to TGG in these cultures. Almost complete inhibition was observed with a tolerant cell to primed cell ratio of as low as 0.1. The suppression was antigen specific in that tolerant spleen cells which were suppressive for the secondary TGG response were unable to inhibit a primary response to sheep erthrocytes. T cells were shown to be required for the suppressor effect, in that (i) suppressor activity could be removed by complement-mediated lysis with an anti-Thy 1.2 antiserum and (ii) suppressor activity was retained in the effluent fraction after passage of suppressor spleen cells over a nylon wool column. Induction of the T-cell suppressor activity was found to be associated with a loss of T-cell helper activity within the TGG-pulsed cell population. The presence of adherent cells was not required for induction of suppressor activity. Furthermore, the suppressor effect was found to be resistant to 1000 R of γ irradiation

  8. Immunological targeting of cytomegalovirus for glioblastoma therapy

    OpenAIRE

    Nair, Smita K.; Sampson, John H.; Mitchell, Duane A.

    2014-01-01

    Human cytomegalovirus (CMV) is purportedly present in glioblastoma (GBM) while absent from the normal brain, making CMV antigens potentially ideal immunological anti-GBM targets. We recently demonstrated that patient-derived CMV pp65-specific T cells are capable of recognizing and killing autologous GBM tumor cells. This data supports CMV antigen-directed immunotherapies against GBM.

  9. Humans with chronic granulomatous disease maintain humoral immunologic memory despite low frequencies of circulating memory B cells

    OpenAIRE

    Moir, Susan; De Ravin, Suk See; Santich, Brian H.; Kim, Jin Young; Posada, Jacqueline G.; Ho, Jason; Buckner, Clarisa M.; Wang, Wei; Kardava, Lela; Garofalo, Mary; Marciano, Beatriz E.; Manischewitz, Jody; King, Lisa R.; Khurana, Surender; Chun, Tae-Wook

    2012-01-01

    CD27+ memory B cells are reduced in the blood of patients with chronic granulomatous disease (CGD) for reasons and consequences that remain unclear. Here we confirm not only decreased CD27+ but also IgG+ B cells in the blood of CGD patients compared with healthy donors (HDs). However, among IgG+ B cells, the ratio of CD27− to CD27+ was significantly higher in CGD patients compared with HDs. Similar to conventional memory B cells, CD27−IgG+ B cells of CGD patients expressed activation markers ...

  10. Astrocytic mGluR5 and the tripartite synapse.

    Science.gov (United States)

    Panatier, A; Robitaille, R

    2016-05-26

    In the brain, astrocytes occupy a key position between vessels and synapses. Among their numerous functions, these glial cells are key partners of neurons during synaptic transmission. Astrocytes detect transmitter release through receptors and transporters at the level of their processes, which are in close proximity to the tow neuronal elements of synapses. In response to transmitter-mediated activation, glial cells in turn regulate synaptic transmission and neuronal excitability. This process has been reported to involve several glial receptors. One of the best known of such receptors is the metabotropic glutamatergic receptor subtype 5 (mGluR5). In the present review we will discuss the implication of mGluR5s as detectors of synaptic transmission. In particular, we will discuss how the functional properties and localization of these receptors permit the detection of the synaptic signal in a defined temporal window and a given spatial area around the synapse. Furthermore, we will review the impact of their activation on synaptic transmission. PMID:25847307

  11. Activation of BK and SK channels by efferent synapses on outer hair cells in high-frequency regions of the rodent cochlea

    NARCIS (Netherlands)

    Rohmann, Kevin N; Wersinger, Eric; Braude, Jeremy P; Pyott, Sonja J; Fuchs, Paul Albert

    2015-01-01

    Cholinergic neurons of the brainstem olivary complex project to and inhibit outer hair cells (OHCs), refining acoustic sensitivity of the mammalian cochlea. In all vertebrate hair cells studied to date, cholinergic inhibition results from the combined action of ionotropic acetylcholine receptors and

  12. Immunological elimination of infected cells as the candidate mechanism for tumor protection in polyomavirus-infected mice.

    OpenAIRE

    Wirth, J J; Fluck, M M

    1991-01-01

    The uniformly lethal development of mammary tumors in polyomavirus-infected adult female nude mice was prevented by adoptive cell transfer of polyomavirus-immune splenocytes or peritoneal cells. Transferred immune cells also lowered the growth rate of emerging tumors. The induction of other relatively less frequent tumors of the skin and bone was decreased as well. Using in situ hybridization of whole-body sections as well as hybridization of nucleic acids from the mammary glands, we show for...

  13. A Gata3-Mafb transcriptional network directs post-synaptic differentiation in synapses specialized for hearing.

    Science.gov (United States)

    Yu, Wei-Ming; Appler, Jessica M; Kim, Ye-Hyun; Nishitani, Allison M; Holt, Jeffrey R; Goodrich, Lisa V

    2013-01-01

    Information flow through neural circuits is determined by the nature of the synapses linking the subtypes of neurons. How neurons acquire features distinct to each synapse remains unknown. We show that the transcription factor Mafb drives the formation of auditory ribbon synapses, which are specialized for rapid transmission from hair cells to spiral ganglion neurons (SGNs). Mafb acts in SGNs to drive differentiation of the large postsynaptic density (PSD) characteristic of the ribbon synapse. In Mafb mutant mice, SGNs fail to develop normal PSDs, leading to reduced synapse number and impaired auditory responses. Conversely, increased Mafb accelerates synaptogenesis. Moreover, Mafb is responsible for executing one branch of the SGN differentiation program orchestrated by the Gata3 transcriptional network. Remarkably, restoration of Mafb rescues the synapse defect in Gata3 mutants. Hence, Mafb is a powerful regulator of cell-type specific features of auditory synaptogenesis that offers a new entry point for treating hearing loss. DOI: http://dx.doi.org/10.7554/eLife.01341.001. PMID:24327562

  14. A new measure for the strength of electrical synapses

    Directory of Open Access Journals (Sweden)

    Julie S Haas

    2015-09-01

    Full Text Available Electrical synapses, like chemical synapses, mediate intraneuronal communication. Electrical synapses are typically quantified by subthreshold measurements of coupling, which fall short in describing their impact on spiking activity in coupled neighbors. Here we describe a novel measurement for electrical synapse strength that directly evaluates the effect of synaptically transmitted activity on spike timing. This method, also applicable to neurotransmitter-based synapses, communicates the considerable strength of electrical synapses. For electrical synapses measured in rodent slices of the thalamic reticular nucleus, spike timing is modulated by tens of ms by activity in a coupled neighbor.

  15. Aging of cholinergic synapses: fiction or reality?

    International Nuclear Information System (INIS)

    The authors make use of the ciliary ganglion iris preparation of the aging chicken as a model of senescent peripheral cholinergic synapses. Based on the studies performed on the iris, an hypothesis of aging of the cholinergic synapse has been suggested. In order to establish the nature of a deficit, the authors examine the ability of chloinergic synapses in the iris at various ages to take up the precursor tritium-choline and release the formed tritium-ACh in response to high K+ (115 mM) depolarization. A summary of preliminary results of morphometric analysis of nerve endings and synaptic components in the iris of young adult and aged chickens is shown. The experiments suggest that severe changes may occur at later stages of life. A specific functional defect in the cholinergic synapse during aging is found

  16. Immunological memory is associative

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.J.; Forrest, S. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Computer Science; Perelson, A.S. [Los Alamos National Lab., NM (United States)

    1996-12-31

    The purpose of this paper is to show that immunological memory is an associative and robust memory that belongs to the class of sparse distributed memories. This class of memories derives its associative and robust nature by sparsely sampling the input space and distributing the data among many independent agents. Other members of this class include a model of the cerebellar cortex and Sparse Distributed Memory (SDM). First we present a simplified account of the immune response and immunological memory. Next we present SDM, and then we show the correlations between immunological memory and SDM. Finally, we show how associative recall in the immune response can be both beneficial and detrimental to the fitness of an individual.

  17. Systems Theory in Immunology

    CERN Document Server

    Doria, Gino; Koch, Giorgio; Strom, Roberto

    1979-01-01

    This volume collects the contributions presented at the "Working Conference on System Theory in Immunology", held in Rome, May 1978. The aim of the Conference was to bring together immunologists on one side and experts in system theory and applied mathematics on the other, in order to identify problems of common interest and to establish a network of joint effort toward their solution. The methodologies of system theory for processing experimental data and for describing dynamical phenomena could indeed contribute significantly to the under­ standing of basic immunological facts. Conversely, the complexity of experimental results and of interpretative models should stimulate mathematicians to formulate new problems and to design appropriate procedures of analysis. The multitude of scientific publications in theoretical biology, appeared in recent years, confirms this trend and calls for extensive interaction between mat- matics and immunology. The material of this volume is divided into five sections, along ...

  18. A single-transistor silicon synapse

    OpenAIRE

    Diorio, Chris; Hasler, Paul; Minch, Bradley A.; Mead, Carver A.

    1996-01-01

    We have developed a new floating-gate silicon MOS transistor for analog learning applications. The memory storage is nonvolatile; hot-electron injection and electron tunneling permit bidirectional memory updates. Because these updates depend on both the stored memory value and the transistor terminal voltages, the synapse can implement a learning function. We have derived a memory-update rule from the physics of the tunneling and injection processes, and have investigated synapse learning in ...

  19. A new measure for the strength of electrical synapses

    OpenAIRE

    Haas, Julie S.

    2015-01-01

    Electrical synapses, like chemical synapses, mediate intraneuronal communication. Electrical synapses are typically quantified by subthreshold measurements of coupling, which fall short in describing their impact on spiking activity in coupled neighbors. Here, we describe a novel measurement for electrical synapse strength that directly evaluates the effect of synaptically transmitted activity on spike timing. This method, also applicable to neurotransmitter-based synapses, communicates the c...

  20. Immunologic mechanism at infertility

    OpenAIRE

    İlknur Aydın; Behice Erci

    2006-01-01

    Infertility has been serious problem for couples that want to have a child. It is estimated that %10-15 of marriages are involuntary childless; that is, there is the serious problem of infertility. In more than 40% of infertility couples that is the reason of their infertility was unknown. In those couples, probably immunological factors were found to be responsible for the infertility. In the article, it was aimed to review the immunologic causes of male and female infertility in the light o...

  1. Immunologic mechanism at infertility

    Directory of Open Access Journals (Sweden)

    Behice Erci

    2005-10-01

    Full Text Available Infertility has been serious problem for couples that want to have a child. It is estimated that %10-15 of marriages are involuntary childless; that is, there is the serious problem of infertility. In more than 40% of infertility couples that is the reason of their infertility was unknown. In those couples, probably immunological factors were found to be responsible for the infertility. In the article, it was aimed to review the immunologic causes of male and female infertility in the light of the current scientific data.

  2. Immunologic mechanism at infertility

    Directory of Open Access Journals (Sweden)

    İlknur Aydın

    2006-08-01

    Full Text Available Infertility has been serious problem for couples that want to have a child. It is estimated that %10-15 of marriages are involuntary childless; that is, there is the serious problem of infertility. In more than 40% of infertility couples that is the reason of their infertility was unknown. In those couples, probably immunological factors were found to be responsible for the infertility. In the article, it was aimed to review the immunologic causes of male and female infertility in the light of the current scientific data.

  3. Immunological features of T cells induced by human telomerase reverse transcriptase-derived peptides in patients with hepatocellular carcinoma.

    Science.gov (United States)

    Mizukoshi, Eishiro; Nakagawa, Hidetoshi; Kitahara, Masaaki; Yamashita, Tatsuya; Arai, Kuniaki; Sunagozaka, Hajime; Fushimi, Kazumi; Kobayashi, Eiji; Kishi, Hiroyuki; Muraguchi, Atsushi; Kaneko, Shuichi

    2015-08-10

    Human telomerase reverse transcriptase (hTERT) is a catalytic enzyme required for telomere elongation. In this study, we investigated the safety and immunogenicity of an hTERT-derived peptide (hTERT461) as a vaccine and characterized the hTERT-specific T cell responses induced. Fourteen hepatocellular carcinoma (HCC) patients were enrolled in the study. The hTERT-derived peptide was emulsified in incomplete Freund's adjuvant and administered via subcutaneous immunization three times biweekly. The maximum toxicity observed was grade 2 according to the common terminology criteria and mainly consisted of skin reactions at the site of vaccination. The vaccination induced hTERT-specific immunity in 71.4% of patients and 57.1% of patients administered with hTERT461 peptide-specific T cells could prevent HCC recurrence after vaccination. In phenotypic analysis, the post-vaccinated increase in hTERT-specific T cells was due to an increase in cells with the effector memory phenotype, with the potential to produce multiple cytokines. Seven hTERT-specific T cell receptors were obtained from the vaccinated patients, showing their cytotoxic activities to hTERT-derived peptide-bearing cells. In conclusion, the safety and effects of immune boosting by hTERT461 peptide have shown the potential of the peptide to provide clinical benefits in HCC patients. PMID:25982205

  4. LRIT3 is essential to localize TRPM1 to the dendritic tips of depolarizing bipolar cells and may play a role in cone synapse formation

    OpenAIRE

    Neuillé, Marion; Morgans, Catherine W.; Cao, Yan; Orhan, Elise; Michiels, Christelle; Sahel, José-Alain; Audo, Isabelle; Duvoisin, Robert M; Martemyanov, Kirill A.; Zeitz, Christina

    2015-01-01

    International audience Mutations in LRIT3 lead to complete congenital stationary night blindness (cCSNB). The exact role of LRIT3 in ON-bipolar cell signaling cascade remains to be elucidated. Recently, we have characterized a novel mouse model lacking Lrit3 [no b-wave 6, (Lrit3nob6/nob6)], which displays similar abnormalities to patients with cCSNB with LRIT3 mutations. Here we compare the localization of components of the ON-bipolar cell signaling cascade in wild-type and Lrit3nob6/nob6 ...

  5. Presenilin/γ-secretase regulates neurexin processing at synapses.

    Directory of Open Access Journals (Sweden)

    Carlos A Saura

    Full Text Available Neurexins are a large family of neuronal plasma membrane proteins, which function as trans-synaptic receptors during synaptic differentiation. The binding of presynaptic neurexins to postsynaptic partners, such as neuroligins, has been proposed to participate in a signaling pathway that regulates synapse formation/stabilization. The identification of mutations in neurexin genes associated with autism and mental retardation suggests that dysfunction of neurexins may underlie synaptic defects associated with brain disorders. However, the mechanisms that regulate neurexin function at synapses are still unclear. Here, we show that neurexins are proteolytically processed by presenilins (PS, the catalytic components of the γ-secretase complex that mediates the intramembraneous cleavage of several type I membrane proteins. Inhibition of PS/γ-secretase by using pharmacological and genetic approaches induces a drastic accumulation of neurexin C-terminal fragments (CTFs in cultured rat hippocampal neurons and mouse brain. Neurexin-CTFs accumulate mainly at the presynaptic terminals of PS conditional double knockout (PS cDKO mice lacking both PS genes in glutamatergic neurons of the forebrain. The fact that loss of PS function enhances neurexin accumulation at glutamatergic terminals mediated by neuroligin-1 suggests that PS regulate the processing of neurexins at glutamatergic synapses. Interestingly, presenilin 1 (PS1 is recruited to glutamatergic terminals mediated by neuroligin-1, thus concentrating PS1 at terminals containing β-neurexins. Furthermore, familial Alzheimer's disease (FAD-linked PS1 mutations differentially affect β-neurexin-1 processing. Expression of PS1 M146L and PS1 H163R mutants in PS-/- cells rescues the processing of β-neurexin-1, whereas PS1 C410Y and PS1 ΔE9 fail to rescue the processing defect. These results suggest that PS regulate the synaptic function and processing of neurexins at glutamatergic synapses, and that

  6. 21 CFR 866.5110 - Antiparietal antibody immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Antiparietal antibody immunological test system....5110 Antiparietal antibody immunological test system. (a) Identification. An antiparietal antibody... the specific antibody for gastric parietal cells in serum and other body fluids. Gastric...

  7. Oral Microbiology and Immunology

    DEFF Research Database (Denmark)

    Dahlén, Gunnar; Fiehn, Nils-Erik; Olsen, Ingar

    , dental assistants and trainees may find it a useful source of reference. The contents are based on general microbiology and immunology. Oral microbiology is given particular attention, with examples relevant to oral infectious diseases. Each chapter opens with a relatively short pre-reading section...

  8. Immunology & Human Health.

    Science.gov (United States)

    Dawson, Jeffrey R.; And Others

    This monograph was designed for the high school biology curriculum. The first section reviews the major areas of importance in immunology. Section three contains six instructional activities for the high school classroom and the second section contains teacher's materials for those activities. The activities address for students some of the major…

  9. Radioimmunotheapy with [I-131]cG250 in patients with metastasized renal cell cancer : Dosimetric analysis and immunologic response

    NARCIS (Netherlands)

    Brouwers, AH; Buijs, WCAM; Mulders, PFA; de Mulder, PHM; van den Broek, WJM; Mala, C; Oosterwijk, E; Boerman, OC; Corstens, FHM; Oyen, WJG

    2005-01-01

    Purpose: A study was designed to define the therapeutic efficacy, safety, and toxicity of two sequential high-dose treatments of radioimmunotherapy with [I-131]cG250 in patients with metastasized renal cell carcinoma. Here, we report the dosimetric analysis and the relationship between the developme

  10. Investigation of immunological approaches to enhance engraftment in a 1 Gy TBI canine haematopoietic stem cell transplantation model

    Science.gov (United States)

    Lange, Sandra; Altmann, Simone; Brandt, Bettina; Adam, Carsten; Riebau, Franziska; Vogel, Heike; Weirich, Volker; Hilgendorf, Inken; Storb, Rainer; Freund, Mathias; Junghanss, Christian

    2010-01-01

    Objective Stable mixed haematopoietic chimerism can be established in a canine stem cell transplantation model using a conditioning consisting of total body irradiation (TBI, 2Gy) and postgrafting immunosuppression with mycophenolate mofetil (MMF) and cyclosporin (CSA). Reduction of TBI had resulted in graft rejection in this model previously. We investigated whether postgrafting stimulation of donor T-cells against recipient’s haematopoietic antigens or graft augmentation with donor monocyte-derived dendritic cells (MoDC) promote engraftment following 1Gy TBI. Methods All dogs received dog leukocyte-antigen-identical bone marrow transplantation. Dogs were conditioned with either 2Gy of TBI (group 1) or 1Gy of TBI followed by repetitive recipient haematopoietic cell lysate vaccinations (group 2) or graft augmentation with MoDC (group 3). Immunosuppression consisted of CSA and MMF. Results In group 1 four animals remained stable chimeras >wk110, and 3 rejected their grafts (wk10, wk14, wk16). All dogs in groups 2 and 3 rejected their graft (median: wk 10 and 11, respectively). Peak chimerism and engraftment duration was shorter in the 1Gy groups (p<0.05) compared to group 1. Conclusion Neither postgrafting vaccination nor graft augmentation with MoDC were effective in supporting durable engraftment. Additional modifications are neccessary to improve potential strategies aimed at establishment of early tissue specific graft-versus-host reactions. PMID:19100524

  11. MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORγ⁺ regulatory T cells.

    Science.gov (United States)

    Sefik, Esen; Geva-Zatorsky, Naama; Oh, Sungwhan; Konnikova, Liza; Zemmour, David; McGuire, Abigail Manson; Burzyn, Dalia; Ortiz-Lopez, Adriana; Lobera, Mercedes; Yang, Jianfei; Ghosh, Shomir; Earl, Ashlee; Snapper, Scott B; Jupp, Ray; Kasper, Dennis; Mathis, Diane; Benoist, Christophe

    2015-08-28

    T regulatory cells that express the transcription factor Foxp3 (Foxp3(+) T(regs)) promote tissue homeostasis in several settings. We now report that symbiotic members of the human gut microbiota induce a distinct T(reg) population in the mouse colon, which constrains immuno-inflammatory responses. This induction—which we find to map to a broad, but specific, array of individual bacterial species—requires the transcription factor Rorγ, paradoxically, in that Rorγ is thought to antagonize FoxP3 and to promote T helper 17 (T(H)17) cell differentiation. Rorγ's transcriptional footprint differs in colonic T(regs) and T(H)17 cells and controls important effector molecules. Rorγ, and the T(regs) that express it, contribute substantially to regulating colonic T(H)1/T(H)17 inflammation. Thus, the marked context-specificity of Rorγ results in very different outcomes even in closely related cell types. PMID:26272906

  12. Artificial Synapses: Organometal Halide Perovskite Artificial Synapses (Adv. Mater. 28/2016).

    Science.gov (United States)

    Xu, Wentao; Cho, Himchan; Kim, Young-Hoon; Kim, Young-Tae; Wolf, Christoph; Park, Chan-Gyung; Lee, Tae-Woo

    2016-07-01

    A synapse-emulating electronic device based on organometal halide perovskite thin films is described by T.-W. Lee and co-workers on page 5916. The device successfully emulates important characteristics of a biological synapse. This work extends the application of organometal halide perovskites to bioinspired electronic devices, and contributes to the development of neuromorphic electronics. PMID:27442971

  13. IP-I0 BASED IMMUNOLOGICAL MONITORING

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention relates to an immunological method and, more particularly, a method for measuring cell-mediated immune reactivity (CMI) in mammals based on the production of IP-10.The invention further discloses an assay and a kit for measuring CMI to an antigen using whole blood or other...

  14. Sensing Danger: Innate Immunology for Intrusion Detection

    CERN Document Server

    Uwe, Aickelin

    2008-01-01

    The immune system provides an ideal metaphor for anomaly detection in general and computer security in particular. Based on this idea, artificial immune systems have been used for a number of years for intrusion detection, unfortunately so far with little success. However, these previous systems were largely based on immunological theory from the 1970s and 1980s and over the last decade our understanding of immunological processes has vastly improved. In this paper we present two new immune inspired algorithms based on the latest immunological discoveries, such as the behaviour of Dendritic Cells. The resultant algorithms are applied to real world intrusion problems and show encouraging results. Overall, we believe there is a bright future for these next generation artificial immune algorithms.

  15. Modeling synaptic transmission of the tripartite synapse

    Science.gov (United States)

    Nadkarni, Suhita; Jung, Peter

    2007-03-01

    The tripartite synapse denotes the junction of a pre- and postsynaptic neuron modulated by a synaptic astrocyte. Enhanced transmission probability and frequency of the postsynaptic current-events are among the significant effects of the astrocyte on the synapse as experimentally characterized by several groups. In this paper we provide a mathematical framework for the relevant synaptic interactions between neurons and astrocytes that can account quantitatively for both the astrocytic effects on the synaptic transmission and the spontaneous postsynaptic events. Inferred from experiments, the model assumes that glutamate released by the astrocytes in response to synaptic activity regulates store-operated calcium in the presynaptic terminal. This source of calcium is distinct from voltage-gated calcium influx and accounts for the long timescale of facilitation at the synapse seen in correlation with calcium activity in the astrocytes. Our model predicts the inter-event interval distribution of spontaneous current activity mediated by a synaptic astrocyte and provides an additional insight into a novel mechanism for plasticity in which a low fidelity synapse gets transformed into a high fidelity synapse via astrocytic coupling.

  16. [Immunological background and pathomechanisms of food allergies].

    Science.gov (United States)

    Schülke, Stefan; Scheurer, Stephan

    2016-06-01

    Recent advances in immunology have greatly improved our understanding of the pathomechanisms of food allergies. Food allergies are caused and maintained by complex interactions of the innate and adaptive immune system involving antigen-presenting cells (APC), T cells, group 2 innate lymphoid cells (ILC2), epithelial cells (EC) and effectors cells. Additionally, epigenetic factors, the intestinal microbiome and nutritional factors modulating the gastrointestinal lymphatic tissue probably have a significant impact on allergy development. However, why certain individuals develop tolerance while others mount allergic responses, the factors defining the allergenicity of food proteins, as well as the immunological mechanisms triggering allergy development have yet to be analyzed in detail. PMID:27177897

  17. Calcium influx through CRAC channels controls actin organization and dynamics at the immune synapse

    Science.gov (United States)

    Hartzell, Catherine A; Jankowska, Katarzyna I; Burkhardt, Janis K; Lewis, Richard S

    2016-01-01

    T cell receptor (TCR) engagement opens Ca2+ release-activated Ca2+ (CRAC) channels and triggers formation of an immune synapse between T cells and antigen-presenting cells. At the synapse, actin reorganizes into a concentric lamellipod and lamella with retrograde actin flow that helps regulate the intensity and duration of TCR signaling. We find that Ca2+ influx is required to drive actin organization and dynamics at the synapse. Calcium acts by promoting actin depolymerization and localizing actin polymerization and the actin nucleation promotion factor WAVE2 to the periphery of the lamellipod while suppressing polymerization elsewhere. Ca2+-dependent retrograde actin flow corrals ER tubule extensions and STIM1/Orai1 complexes to the synapse center, creating a self-organizing process for CRAC channel localization. Our results demonstrate a new role for Ca2+ as a critical regulator of actin organization and dynamics at the synapse, and reveal potential feedback loops through which Ca2+ influx may modulate TCR signaling. DOI: http://dx.doi.org/10.7554/eLife.14850.001 PMID:27440222

  18. Calcium influx through CRAC channels controls actin organization and dynamics at the immune synapse.

    Science.gov (United States)

    Hartzell, Catherine A; Jankowska, Katarzyna I; Burkhardt, Janis K; Lewis, Richard S

    2016-01-01

    T cell receptor (TCR) engagement opens Ca(2+) release-activated Ca(2+) (CRAC) channels and triggers formation of an immune synapse between T cells and antigen-presenting cells. At the synapse, actin reorganizes into a concentric lamellipod and lamella with retrograde actin flow that helps regulate the intensity and duration of TCR signaling. We find that Ca(2+) influx is required to drive actin organization and dynamics at the synapse. Calcium acts by promoting actin depolymerization and localizing actin polymerization and the actin nucleation promotion factor WAVE2 to the periphery of the lamellipod while suppressing polymerization elsewhere. Ca(2+)-dependent retrograde actin flow corrals ER tubule extensions and STIM1/Orai1 complexes to the synapse center, creating a self-organizing process for CRAC channel localization. Our results demonstrate a new role for Ca(2+) as a critical regulator of actin organization and dynamics at the synapse, and reveal potential feedback loops through which Ca(2+) influx may modulate TCR signaling. PMID:27440222

  19. FOXP3 and CTLA-4 : how isoforms regulate immunological tolerance

    OpenAIRE

    Liu, Sang

    2015-01-01

    The maintenance of immunological tolerance is vital for preventing the immune system to damage normal tissues and physiological function of the body. CD4+FOXP3+ regulatory T (Treg) cells can suppress immune responses in a dominant manner and are essential for immunological tolerance. Although many pathways and molecules have been attributed to the suppressive function of Treg cells, the exact nature of the Treg cell-mediated suppression program is still elusive. In this ...

  20. Overview of spaceflight immunology studies

    Science.gov (United States)

    Taylor, G. R.

    1993-01-01

    The effects of spaceflight and analogues of spaceflight are discussed here and in nine accompanying articles. In this summary we present spaceflight studies with human subjects, animal subjects, and cell cultures and we review ground-based systems used to model the observed effects of spaceflight on the immune system. Human paradigms include bed rest, academic or psychological stress, physical stress, hypobaric or high altitude stress, and confinement. Animal models include antiorthostatic and orthostatic suspension, hypobarism, and confinement. The ten manuscripts in this collection were selected to provide a summary that should give the reader an overview of the various activities of spaceflight immunology researchers throughout the history of space travel. This manuscript identifies the major contributors to the study of spaceflight immunology, explains what types of studies have been conducted, and how they have changed over the years. Also presented is a discussion of the unusual limitations associated with spaceflight research and the efforts to develop appropriate ground-based surrogate model systems. Specific details, data, and mechanistic speculations will be held to a minimum, because they will be discussed in depth in the other articles in the collection.

  1. Mechanisms of immunological tolerance.

    Science.gov (United States)

    Waldmann, Herman

    2016-03-01

    There is increasing interest in establishing diagnostic markers of immunological tolerance applicable to efforts to minimize drug immunosuppression in transplantation and chronic immunological diseases. It is hoped that an understanding of the diverse mechanisms that can contribute to tolerance will guide efforts to establish diagnostic tolerance biomarkers. Not only would these be valuable for management of autoimmune diseases, transplants and allergies, but they might also guide efforts to override tolerance processes in cancer and vaccine development. Where tolerance is generated by deletion or inactivation of antigen reactive lymphocytes, it is unlikely that any long-term-valid blood biomarkers might be found. Where tolerance is mediated by active regulatory mechanisms, indicators that can be usefully measured may emerge, but these would likely show significant heterogeneity reflecting the diversity of active tolerance processes operating in different individuals. Given this, the most useful "kits" might be those "smart" enough to detect this diversity of tolerance players. PMID:26036868

  2. Fundamentals of Vaccine Immunology

    OpenAIRE

    Angela S Clem

    2011-01-01

    From a literature review of the current literature, this article provides an introduction to vaccine immunology including a primer on the components of the immune system, passive vs. active immunization, the mechanism(s) by which immunizations stimulate(s) immunity, and the types of vaccines available. Both the innate and adaptive immune subsystems are necessary to provide an effective immune response to an immunization. Further, effective immunizations must induce long-term stimulation of bo...

  3. Synapse-specific inhibitory control of hippocampal feedback inhibitory circuit

    Directory of Open Access Journals (Sweden)

    Simon eChamberland

    2010-10-01

    Full Text Available Local circuit and long-range GABAergic projections provide powerful inhibitory control over the operation of hippocampal inhibitory circuits, yet little is known about the input- and target-specific organization of interacting inhibitory networks in relation to their specific functions. Using a combination of two-photon laser scanning photostimulation and whole-cell patch clamp recordings in mice hippocampal slices, we examined the properties of transmission at GABAergic synapses formed onto hippocampal CA1 stratum oriens – lacunosum moleculare (O–LM interneurons by two major inhibitory inputs: local projection originating from stratum radiatum interneurons and septohippocampal GABAergic terminals. Optical mapping of local inhibitory inputs to O–LM interneurons revealed that vasoactive intestinal polypeptide- and calretinine-positive neurons, with anatomical properties typical of type III interneuron-specific interneurons, provided the major local source of inhibition to O–LM cells. Inhibitory postsynaptic currents evoked by minimal stimulation of this input exhibited small amplitude and significant paired-pulse and multiple-pulse depression during repetitive activity. Moreover, these synapses failed to show any form of long-term synaptic plasticity. In contrast, synapses formed by septohippocampal projection produced higher amplitude and persistent inhibition and exhibited long-term potentiation induced by theta-like activity. These results indicate the input and target-specific segregation in inhibitory control, exerted by two types of GABAergic projections and responsible for distinct dynamics of inhibition in O–LM interneurons. The two inputs are therefore likely to support the differential activity- and brain state-dependent recruitment of hippocampal feedback inhibitory circuits in vivo, crucial for dendritic disinhibition and computations in CA1 pyramidal cells.

  4. Immunology and Epidemiology

    CERN Document Server

    Hraba, Tomáš

    1986-01-01

    In February 1985 a small international meeting of scientists took place at the recreation resort of the Polish Academy of Sci­ ences in Mogilany, near Cracow, Poland. The initiative for holding the workshop came from a working meeting on mathematical immunology and related topics at the International Institute for Applied Sys­ tems Analysis in Laxenburg, Austria, in November 1983. In addition to representatives of IIASA, delegates of the IIASA National Member Organizations (NMO) of Czechoslovakia, Italy, and the soviet Union took part in that working meeting. The participants came to the conclusion that IIASA could play an important role in facilitating the development of research in this field. The first step that they recommended to I IASA was to organize a workshop on mathematical immunology. The purpose of the workshop was to review the progress that has been made in applying mathematics to problems in immunology and to explore ways in which further progress might be achieved, especially by more efficie...

  5. Anorexia, serum zinc, and immunologic response in small cell lung cancer patients receiving chemotherapy and prophylactic cranial radiotherapy.

    Science.gov (United States)

    Lindsey, A M; Piper, B F

    1986-01-01

    Anorexia is a major clinical problem for patients with certain types of cancer. The specific mechanisms that result in this spontaneous decline in food intake remain unknown. In noncancer populations, zinc has been shown to play a role in maintaining normal appetite, taste acuity, and immunocompetence. One purpose of this prospective, longitudinal study of cachexia in ten males with small cell lung carcinoma was to determine if anorexia (caloric intake), perceived taste changes, zinc intake, and impaired cellular immunity were associated with serum zinc concentrations. The average daily caloric intake declined 490 kcal from time of diagnosis to seven months after diagnosis (mean caloric intake = 72% of RDA). Daily zinc intake ranged from 6.5 to 25.4 mg over the seven months. During this period, the mean serum zinc concentrations, although low (71 micrograms/dl), remained within the normal range. The average weight declined from 81.7 to 74.1 kg. There was no identifiable pattern of perceived taste changes; most of the perceived changes were recorded during the period coinciding with prophylactic cranial radiation. At the initial testing, four of nine subjects were anergic to a battery of skin test antigens (mumps, candida, tuberculin purified protein derivative). The only subject who remained responsive to two antigens throughout the study remained alive at 12 months. Caloric intake was inadequate to maintain weight. While zinc intake was low, low normal serum zinc concentrations were maintained; thus in this sample, serum zinc does not appear to be the anorexigenic factor. PMID:3022247

  6. Advances in cancer immunology and cancer immunotherapy.

    Science.gov (United States)

    Voena, Claudia; Chiarle, Roberto

    2016-02-01

    After decades of setbacks, cancer immunology is living its Golden Age. Recent advances in cancer immunology have provided new therapeutic approaches to treat cancer. The objective clinical response observed in patients treated with antibodies that block the immune checkpoints, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell-death protein 1 (PD-1)/programmed cell-death 1 ligand 1 (PD-L1) pathways, has led to their FDA approval for the treatment of melanoma in 2011 and in 2014, respectively. The anti-PD-1 antibody nivolumab has received the FDA-approval in March 2015 for squamous lung cancer treatment. In addition, antibodies targeting PD-1 or PD-L1 have demonstrated their efficacy and safety in additional tumors, including non-small cell lung carcinoma (NSCLC), renal cell carcinoma (RCC), bladder cancer, and Hodgkin's lymphoma. Almost at the same time, the field of adoptive cell transfer has exploded. The chimeric antigen receptor (CAR) T technology has provided strong evidence of efficacy in the treatment of B cell malignancies, and different T cell based treatments are currently under investigation for different types of tumors. In this review we will discuss the latest advances in cancer immunology and immunotherapy as well as new treatments now under development in the clinic and potential strategies that have shown promising results in preclinical models. PMID:27011048

  7. A Model of In Vitro Plasticity at the Parallel Fiber - Molecular Layer Interneuron Synapses

    Directory of Open Access Journals (Sweden)

    William eLennon

    2015-12-01

    Full Text Available Theoretical and computational models of the cerebellum typically focus on the role of parallel fiber (PF - Purkinje cell (PKJ synapses for learned behavior, but few emphasize the role of the molecular layer interneurons (MLIs -- the stellate and basket cells. A number of recent experimental results suggest the role of MLIs is more important than previous models put forth. We investigate learning at PF - MLI synapses and propose a mathematical model to describe plasticity at this synapse. We perform computer simulations with this form of learning using a spiking neuron model of the MLI and show that it reproduces six in vitro experimental results in addition to simulating four novel protocols. Further, we show how this plasticity model can predict the results of other experimental protocols that are not simulated. Finally, we hypothesize what the biological mechanisms are for changes in synaptic efficacy that embody the phenomenological model proposed here.

  8. Neuroligin-1 loss is associated with reduced tenacity of excitatory synapses.

    Directory of Open Access Journals (Sweden)

    Adel Zeidan

    Full Text Available Neuroligins (Nlgns are postsynaptic, integral membrane cell adhesion molecules that play important roles in the formation, validation, and maturation of synapses in the mammalian central nervous system. Given their prominent roles in the life cycle of synapses, it might be expected that the loss of neuroligin family members would affect the stability of synaptic organization, and ultimately, affect the tenacity and persistence of individual synaptic junctions. Here we examined whether and to what extent the loss of Nlgn-1 affects the dynamics of several key synaptic molecules and the constancy of their contents at individual synapses over time. Fluorescently tagged versions of the postsynaptic scaffold molecule PSD-95, the AMPA-type glutamate receptor subunit GluA2 and the presynaptic vesicle molecule SV2A were expressed in primary cortical cultures from Nlgn-1 KO mice and wild-type (WT littermates, and live imaging was used to follow the constancy of their contents at individual synapses over periods of 8-12 hours. We found that the loss of Nlgn-1 was associated with larger fluctuations in the synaptic contents of these molecules and a poorer preservation of their contents at individual synapses. Furthermore, rates of synaptic turnover were somewhat greater in neurons from Nlgn-1 knockout mice. Finally, the increased GluA2 redistribution rates observed in neurons from Nlgn-1 knockout mice were negated by suppressing spontaneous network activity. These findings suggest that the loss of Nlgn-1 is associated with some use-dependent destabilization of excitatory synapse organization, and indicate that in the absence of Nlgn-1, the tenacity of excitatory synapses might be somewhat impaired.

  9. Synapse: a Scalable Protocol for Interconnecting Heterogeneous Overlay Networks

    OpenAIRE

    Liquori, Luigi; Tedeschi, Cédric; Vanni, Laurent; Ciancaglini, Vincenzo; Bongiovanni, Francesco; Marinkovic, Bojan

    2010-01-01

    International audience This paper presents Synapse, a scalable protocol for information retrieval over the inter-connection of heterogeneous overlay networks. Applications on top of Synapse see those intra-overlay networks as a unique inter-overlay network. Scalability in Synapse is achieved via co-located nodes, i.e. nodes that are part of multiple overlay networks at the same time. Co-located nodes, playing the role of neural synapses and connected to several overlay networks, give a lar...

  10. Flotillin-1 Promotes Formation of Glutamatergic Synapses in Hippocampal Neurons

    OpenAIRE

    Swanwick, Catherine Croft; Shapiro, Marietta E.; Vicini, Stefano; Wenthold, Robert J.

    2010-01-01

    Synapse malformation underlies numerous neurodevelopmental illnesses, including autism spectrum disorders. Here we identify the lipid raft protein flotillin-1 as a promoter of glutamatergic synapse formation. We cultured neurons from the hippocampus, a brain region important for learning and memory, and examined them at two weeks in vitro, a time period rich with synapse formation. Double-label immunocytochemistry of native flot-1 with glutamatergic and GABAergic synapse markers showed that f...

  11. Astrocytes, Synapses and Brain Function: A Computational Approach

    Science.gov (United States)

    Nadkarni, Suhita

    2006-03-01

    Modulation of synaptic reliability is one of the leading mechanisms involved in long- term potentiation (LTP) and long-term depression (LTD) and therefore has implications in information processing in the brain. A recently discovered mechanism for modulating synaptic reliability critically involves recruitments of astrocytes - star- shaped cells that outnumber the neurons in most parts of the central nervous system. Astrocytes until recently were thought to be subordinate cells merely participating in supporting neuronal functions. New evidence, however, made available by advances in imaging technology has changed the way we envision the role of these cells in synaptic transmission and as modulator of neuronal excitability. We put forward a novel mathematical framework based on the biophysics of the bidirectional neuron-astrocyte interactions that quantitatively accounts for two distinct experimental manifestation of recruitment of astrocytes in synaptic transmission: a) transformation of a low fidelity synapse transforms into a high fidelity synapse and b) enhanced postsynaptic spontaneous currents when astrocytes are activated. Such a framework is not only useful for modeling neuronal dynamics in a realistic environment but also provides a conceptual basis for interpreting experiments. Based on this modeling framework, we explore the role of astrocytes for neuronal network behavior such as synchrony and correlations and compare with experimental data from cultured networks.

  12. Localization of mineralocorticoid receptors at mammalian synapses.

    Directory of Open Access Journals (Sweden)

    Eric M Prager

    Full Text Available In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.

  13. A novel non-CB1/TRPV1 endocannabinoid-mediated mechanism depresses excitatory synapses on hippocampal CA1 interneurons

    OpenAIRE

    Edwards, Jeffrey G.; Gibson, Helen E.; Jensen, Tyron; Nugent, Fereshteh; Walther, Curtis; Blickenstaff, Jacob; Kauer, Julie A.

    2010-01-01

    Endocannabinoids (eCBs) mediate various forms of synaptic plasticity at excitatory and inhibitory synapses in the brain. The eCB anandamide binds to several receptors including the transient receptor potential vanilloid 1 (TRPV1) and cannabinoid receptor 1 (CB1). We recently identified that TRPV1 is required for long-term depression at excitatory synapses on hippocampal stratum radiatum interneurons. Here we performed whole-cell patch clamp recordings from CA1 stratum radiatum interneurons in...

  14. Identification of CD8(+) T Cell Epitopes in the West Nile Virus Polyprotein by Reverse-Immunology Using NetCTL

    DEFF Research Database (Denmark)

    Larsen, Mette Voldby; Lelic, A.; Parsons, R.;

    2010-01-01

    Background: West Nile virus (WNV) is a growing threat to public health and a greater understanding of the immune response raised against WNV is important for the development of prophylactic and therapeutic strategies. Methodology/Principal Findings: In a reverse-immunology approach, we used...

  15. IFPA meeting 2011 workshop report III: Placental immunology; epigenetic and microRNA-dependent gene regulation; comparative placentation; trophoblast differentiation; stem cells

    DEFF Research Database (Denmark)

    Ackerman, W E; Bulmer, J N; Carter, Anthony Michael; Chaillet, J R; Chamley, L; Chen, C P; Chuong, E B; Coleman, Jonathan Allan; Collet, G P; Croy, B A; de Mestre, A M; Dickinson, H; Ducray, J; Enders, A C; Fogarty, N M E; Gauster, M; Golos, T; Haider, Sajjad; Heazell, A E; Holland, O J; Huppertz, B; Husebekk, A; John, R M; Johnsen, Fredrik Moltu; Jones, C J P; Kalionis, B; König, J; Lorenzon, A R; Moffett, A; Moreira de Mello, J C; Nuzzo, A M; Parham, P; Parolini, O; Petroff, M G; Pidoux, G; Ramírez-Pinilla, M P; Robinson, W P; Rolfo, A; Sadovsky, Y; Soma, H; Southcombe, J H; Tillburgs, T; Lash, G E

    Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialised topics. At IFPA meeting 2011 there were twelve themed workshops, five of which are summarized in this report. These workshops related to various aspects of placental biology: 1) immunology; 2) e...

  16. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus

    Directory of Open Access Journals (Sweden)

    Grzegorz eWiera

    2015-11-01

    Full Text Available Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed LTP that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tPA/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1 and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.

  17. Effects of Trace Metal Profiles Characteristic for Autism on Synapses in Cultured Neurons

    Directory of Open Access Journals (Sweden)

    Simone Hagmeyer

    2015-01-01

    Full Text Available Various recent studies revealed that biometal dyshomeostasis plays a crucial role in the pathogenesis of neurological disorders such as autism spectrum disorders (ASD. Substantial evidence indicates that disrupted neuronal homeostasis of different metal ions such as Fe, Cu, Pb, Hg, Se, and Zn may mediate synaptic dysfunction and impair synapse formation and maturation. Here, we performed in vitro studies investigating the consequences of an imbalance of transition metals on glutamatergic synapses of hippocampal neurons. We analyzed whether an imbalance of any one metal ion alters cell health and synapse numbers. Moreover, we evaluated whether a biometal profile characteristic for ASD patients influences synapse formation, maturation, and composition regarding NMDA receptor subunits and Shank proteins. Our results show that an ASD like biometal profile leads to a reduction of NMDAR (NR/Grin/GluN subunit 1 and 2a, as well as Shank gene expression along with a reduction of synapse density. Additionally, synaptic protein levels of GluN2a and Shanks are reduced. Although Zn supplementation is able to rescue the aforementioned alterations, Zn deficiency is not solely responsible as causative factor. Thus, we conclude that balancing Zn levels in ASD might be a prime target to normalize synaptic alterations caused by biometal dyshomeostasis.

  18. 骨髓基质细胞分化为神经元样细胞后与皮质神经元间突触的建立%Establishment of synapses between rat cortical neurons and Neuron-like cells derived from bone marrow stromal cells in vitro

    Institute of Scientific and Technical Information of China (English)

    周辉; 姜晓丹; 陈袆招; 杨丽; 法志强; 邹雨汐

    2009-01-01

    Objective To investigate the establishment of synapses between the cortical neurons and the neuron-like cells difierentiated from the marrow stromal cells(BMSCs)in a simulated transplantation system in vitro.Methods The BMSCs from green fluorescent protein(GFP)transgenic mice(GFP-GM-BMSCs) were isolated, cultured and purified in vitro.The third passage of GFP-GM-BMSCs were co-cultured with primary cultured cortical neurons and gliai cells in a simulated transplantation system in serum-free medium conmining 2%B27 supplemented with 20 ng/mL basic fibroblast growth factor(bFGF)and 20 ng/mL epidermal growth factor(EGF).On day 10 of the co-culture,FM1-43,a fluorescent dye specific to active synaptic vesicles,was used to observe synapses formation between the cells under fluorescence microscope. Results The GFP.GM-BMSCsco-cultured with the neural cells in the Serum-free medium containing bFGF and EGF differentiated into neuron-like cells 7 days after the co-culture.On day 10 ofthe co-culture,FM1-43 dye-positive synaptic vesicles were foundin the cell culture,locating mostly in the cell body,processes and terminal sffuctures ofthe neuron-like cells. Conclusions The neuron-like cells derived from GFP-GM-BMSCs can form synapses with the coRical neurons in the simulated cell transplantation system in vitro.%目的 观察与大脑皮质神经元共培养的骨髓基质细胞(BMSCs)经诱导分化成神经元样细胞后,与脑皮质神经元之间形成功能性突触的情况.方法 无菌条件下取绿色荧光蛋白(GFP)转基因小鼠骨髓,用贴壁筛选法体外培养获得GFP转基因小鼠BMSCs(GFP-GM-BMSCs),在体外培养、扩增、纯化.取第3代GFP-GM-BMSCs,种植到源于小鼠大脑的原代皮质神经元和胶质细胞中,培养介质为加有20 ng/mL表皮生长因子(EGF)、20 ng/mL碱性成纤维细胞生长因子(bFGF)的无血清培养基(Neurobasal-A+2%B27),体外模拟建立细胞移植的共培养体系.共培养第10天,利用FM1-43荧光染料

  19. The Nogo Receptor Family Restricts Synapse Number in the Developing Hippocampus

    OpenAIRE

    Wills, Zachary P.; Mandel-Brehm, Caleigh; Mardinly, Alan R.; McCord, Alejandra E.; Giger, Roman J.; Greenberg, Michael E.

    2012-01-01

    Neuronal development is characterized by a period of exuberant synaptic growth that is well studied. However, the mechanisms that restrict this process are less clear. Here we demonstrate that glycosyl-phosphatidylinositol-anchored cell-surface receptors of the Nogo Receptor family (NgR1, NgR2, and NgR3) restrict excitatory synapse formation. Loss of any one of the NgRs results in an increase in synapse number in vitro, whereas loss of all three is necessary for abnormally elevated synaptogen...

  20. Immunological Effects of Silica and Asbestos

    Institute of Scientific and Technical Information of China (English)

    Takemi Otsuki; Fuminori Hyodoh; Ayako Ueki; Yasumitsu Nishimura; Megumi Maeda; Shuko Murakami; Hiroaki Hayashi; Yoshie Miura; Masayasu Kusaka; Takashi Nakano; Kazuya Fukuoka; Takumi Kishimoto

    2007-01-01

    Silicosis patients (SILs) and patients who have been exposed to asbestos develop not only respiratory diseases but also certain immunological disorders. In particular, SIL sometimes complicates autoimmune diseases such as systemic scleroderma, rheumatoid arthritis (known as Caplan syndrome), and systemic lupus erythematoses. In addition, malignant complications such as lung cancer and malignant mesothelioma often occurr in patients exposed to asbestos, and may be involved in the reduction of tumor immunity. Although silica-induced disorders of autoimmunity have been explained as adjuvant-type effects of silica, more precise analyses are needed and should reflect the recent progress in immunomolecular findings. A brief summary of our investigations related to the immunological effects of silica/asbestos is presented. Recent advances in immunomolecular studies led to detailed analyses of the immunological effects of asbestos and silica. Both affect immuno-competent cells and these effects may be associated with the pathophysiological development of complications in silicosis and asbestos-exposed patients such as the occurrence of autoimmune disorders and malignant tumors, respectively. In addition,immunological analyses may lead to the development of new clinical tools for the modification of the pathophysiological aspects of diseases such as the regulation of autoimmunity or tumor immunity using cellmediated therapies, various cytokines, and molecule-targeting therapies. In particular, as the incidence of asbestosrelated malignancies is increasing and such malignancies have been a medical and social problem since the summer of 2005 in Japan, efforts should be focused on developing a cure for these diseases to eliminate nationwide anxiety.

  1. An Introduction to Chinese Society of Immunology

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Chinese Society of Immunology (CSI) was founded in 1984. It has had over 5000 members, among whom 1000 are members of IUIS. There are six Chinese periodicals associated with the Society: Chinese Journal of Immunology, Immunological Journal, Current Immunology, Chinese Journal of Cellular and Molecular Immunology; Chinese Journal of

  2. An Introduction to Chinese Society of Immunology

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Chinese Socicty of Immunology (CSI) was founded in 1984. It has had over 5000 members, among whom 1000 are members of IUIS. There are six Chinese periodicals associated with the Society: Chinese Journal of Immunology,Immunological Journal,Current Immunology,Chinese Journal of Cellular and Molecular Immunology,Chinese Journal of

  3. Optimal and Local Connectivity Between Neuron and Synapse Array in the Quantum Dot/Silicon Brain

    Science.gov (United States)

    Duong, Tuan A.; Assad, Christopher; Thakoor, Anikumar P.

    2010-01-01

    This innovation is used to connect between synapse and neuron arrays using nanowire in quantum dot and metal in CMOS (complementary metal oxide semiconductor) technology to enable the density of a brain-like connection in hardware. The hardware implementation combines three technologies: 1. Quantum dot and nanowire-based compact synaptic cell (50x50 sq nm) with inherently low parasitic capacitance (hence, low dynamic power approx.l0(exp -11) watts/synapse), 2. Neuron and learning circuits implemented in 50-nm CMOS technology, to be integrated with quantum dot and nanowire synapse, and 3. 3D stacking approach to achieve the overall numbers of high density O(10(exp 12)) synapses and O(10(exp 8)) neurons in the overall system. In a 1-sq cm of quantum dot layer sitting on a 50-nm CMOS layer, innovators were able to pack a 10(exp 6)-neuron and 10(exp 10)-synapse array; however, the constraint for the connection scheme is that each neuron will receive a non-identical 10(exp 4)-synapse set, including itself, via its efficacy of the connection. This is not a fully connected system where the 100x100 synapse array only has a 100-input data bus and 100-output data bus. Due to the data bus sharing, it poses a great challenge to have a complete connected system, and its constraint within the quantum dot and silicon wafer layer. For an effective connection scheme, there are three conditions to be met: 1. Local connection. 2. The nanowire should be connected locally, not globally from which it helps to maximize the data flow by sharing the same wire space location. 3. Each synapse can have an alternate summation line if needed (this option is doable based on the simple mask creation). The 10(exp 3)x10(exp 3)-neuron array was partitioned into a 10-block, 10(exp 2)x10(exp 3)-neuron array. This building block can be completely mapped within itself (10,000 synapses to a neuron).

  4. Comparative functional characterization of mouse bone marrow-derived mast cells and peritoneal mast cells in response to non-immunological stimuli.

    Science.gov (United States)

    Singh, R; Kumar, P; Gupta, P P

    2001-04-01

    The cultured mouse mast cells that are dependent on spleen-derived factor for their proliferation and maintenance and have been shown to be similar to mucosal mast cells in terms of their T-cell dependence and histochemical staining characteristics. Mast cell heterogeneity has been confirmed by functional characterization of mouse bone marrow-derived mast cells (MBMMC) and mouse peritoneal mast cells (MPMCs). MPMCs released around 30% of histamine when stimulated with compound 48/80 whereas MBMMC were almost unresponsive to the same stimulus. Calcium Ionophore A23187 on the other hand, released histamine in dose-dependent manner from MBMMC. The study was undertaken to investigate the effect of antiallergic drug, disodium cromoglycate (DSCG), a synthetic cromone and quercetin, a plant-derived flavonoid on Ca ionophore A23187 induced histamine release from MBMMC. MBMMCs were almost unresponsive to DSCG whereas Ca Ionophore induced histamine release was blocked by Quercetin. The results indicate that response of mast cells at one anatomic site to a given stimulus does not necessarily predict the response of mast cells at a different anatomic location to the same stimulus. It shows functional heterogeneity within a single species. So, it cannot be assumed that antiallergic compounds stabilizing mast cells in one tissue site or organ will be equally efficacious against mast cells in other sites. PMID:11491575

  5. Non-invasive bioluminescence imaging to monitor the immunological control of a plasmablastic lymphoma-like B cell neoplasia after hematopoietic cell transplantation.

    Directory of Open Access Journals (Sweden)

    Martin Chopra

    Full Text Available To promote cancer research and to develop innovative therapies, refined pre-clinical mouse tumor models that mimic the actual disease in humans are of dire need. A number of neoplasms along the B cell lineage are commonly initiated by a translocation recombining c-myc with the immunoglobulin heavy-chain gene locus. The translocation is modeled in the C.129S1-Igha(tm1(MycJanz/J mouse which has been previously engineered to express c-myc under the control of the endogenous IgH promoter. This transgenic mouse exhibits B cell hyperplasia and develops diverse B cell tumors. We have isolated tumor cells from the spleen of a C.129S1-Igha(tm1(MycJanz/J mouse that spontaneously developed a plasmablastic lymphoma-like disease. These cells were cultured, transduced to express eGFP and firefly luciferase, and gave rise to a highly aggressive, transplantable B cell lymphoma cell line, termed IM380. This model bears several advantages over other models as it is genetically induced and mimics the translocation that is detectable in a number of human B cell lymphomas. The growth of the tumor cells, their dissemination, and response to treatment within immunocompetent hosts can be imaged non-invasively in vivo due to their expression of firefly luciferase. IM380 cells are radioresistant in vivo and mice with established tumors can be allogeneically transplanted to analyze graft-versus-tumor effects of transplanted T cells. Allogeneic hematopoietic stem cell transplantation of tumor-bearing mice results in prolonged survival. These traits make the IM380 model very valuable for the study of B cell lymphoma pathophysiology and for the development of innovative cancer therapies.

  6. Generation of functional inhibitory synapses incorporating defined combinations of GABA(A or glycine receptor subunits

    Directory of Open Access Journals (Sweden)

    Christine Laura Dixon

    2015-12-01

    Full Text Available Fast inhibitory neurotransmission in the brain is mediated by wide range of GABAA receptor (GABAAR and glycine receptor (GlyR isoforms, each with different physiological and pharmacological properties. Because multiple isoforms are expressed simultaneously in most neurons, it is difficult to define the properties of inhibitory postsynaptic currents mediated by individual isoforms in vivo. Although recombinant expression systems permit the expression of individual isoforms in isolation, they require exogenous agonist application which cannot mimic the dynamic neurotransmitter profile characteristic of native synapses. We describe a neuron-HEK293 cell co-culture technique for generating inhibitory synapses incorporating defined combinations of GABAAR or GlyR subunits. Primary neuronal cultures, prepared from embryonic rat cerebral cortex or spinal cord, are used to provide presynaptic GABAergic and glycinergic terminals, respectively. When the cultures are mature, HEK293 cells expressing the subunits of interest plus neuroligin 2A are plated onto the neurons, which rapidly form synapses onto HEK293 cells. Patch clamp electrophysiology is then used to analyze the physiological and pharmacological properties of the inhibitory postsynaptic currents mediated by the recombinant receptors. The method is suitable for investigating the kinetic properties or the effects of drugs on inhibitory postsynaptic currents mediated by defined GABAAR or GlyR isoforms of interest, the effects of hereditary disease mutations on the formation and function of both types of synapses, and synaptogenesis and synaptic clustering mechanisms. The entire cell preparation procedure takes 2 – 5 weeks.

  7. Synapse Specificity of Long-Term Potentiation Breaks Down with Aging

    Science.gov (United States)

    Ris, Laurence; Godaux, Emile

    2007-01-01

    Memory shows age-related decline. According to the current prevailing theoretical model, encoding of memories relies on modifications in the strength of the synapses connecting the different cells within a neuronal network. The selective increases in synaptic weight are thought to be biologically implemented by long-term potentiation (LTP). Here,…

  8. Immunological network signatures of cancer progression and survival

    Directory of Open Access Journals (Sweden)

    Lavelle Timothy J

    2011-03-01

    Full Text Available Abstract Background The immune contribution to cancer progression is complex and difficult to characterize. For example in tumors, immune gene expression is detected from the combination of normal, tumor and immune cells in the tumor microenvironment. Profiling the immune component of tumors may facilitate the characterization of the poorly understood roles immunity plays in cancer progression. However, the current approaches to analyze the immune component of a tumor rely on incomplete identification of immune factors. Methods To facilitate a more comprehensive approach, we created a ranked immunological relevance score for all human genes, developed using a novel strategy that combines text mining and information theory. We used this score to assign an immunological grade to gene expression profiles, and thereby quantify the immunological component of tumors. This immunological relevance score was benchmarked against existing manually curated immune resources as well as high-throughput studies. To further characterize immunological relevance for genes, the relevance score was charted against both the human interactome and cancer information, forming an expanded interactome landscape of tumor immunity. We applied this approach to expression profiles in melanomas, thus identifying and grading their immunological components, followed by identification of their associated protein interactions. Results The power of this strategy was demonstrated by the observation of early activation of the adaptive immune response and the diversity of the immune component during melanoma progression. Furthermore, the genome-wide immunological relevance score classified melanoma patient groups, whose immunological grade correlated with clinical features, such as immune phenotypes and survival. Conclusions The assignment of a ranked immunological relevance score to all human genes extends the content of existing immune gene resources and enriches our understanding

  9. Changes in rat hippocampal CA1 synapses following imipramine treatment

    DEFF Research Database (Denmark)

    Chen, Fenghua; Madsen, Torsten M; Wegener, Gregers;

    2008-01-01

    synapses) in subregions of the hippocampus by quantifying number of neurons and synapses. Adult male Sprague-Dawley rats were injected with imipramine or saline (i.p.) daily for 14 days. Unbiased stereological methods were used to quantify the number of neurons and synapses. No differences in the volume...... and number of neurons of hippocampal subregions following imipramine treatment were found. However, the number and percentage of CA1 asymmetric spine synapses increased significantly and, conversely, the percentage of asymmetric shaft synapses significantly decreased in the imipramine treated group....... Our results indicate that administration of imipramine for 14 days in normal rats could significantly increase the excitatory spine synapses, and change the relative distribution of spine and shaft synapses. We speculate that the present findings may be explained by the establishment of new synaptic...

  10. Advances of Tumor Hyperthermia and Tumor Immunology in Translational Medicine

    Institute of Scientific and Technical Information of China (English)

    Hooshang Lahooti

    2015-01-01

    Hyperthermia is another important method in the treatment of tumors, secondary to surgery, radiotherapy, chemotherapy and biotherapy. It has been demonstrated the efifcacy and versatility of hyperthermia in a lot of randomized trials across various primary cancers. Both heat shock proteins (HSPs) and dendritic cells (DCs) are greatly affected by hyperthermia and closely related to the tumor immunology. Nowadays, tumor hyperthermia and tumor immunology have been attached much attention in the field of translational medicine. In this article, the action mechanism and immunological effects of hyperthermia, activation of HSPs and DCs as well as HSP- and DC-based cancer vaccine were reviewed from the perspective of translational medicine.

  11. Intrauterine immunology in allergy and infection

    OpenAIRE

    Rindsjö, Erika

    2009-01-01

    Pregnancy is interesting from an immunological point of view. The maternal immune system has to tolerate the fetus and at the same time also protect against infection. The placenta is not a completely tight barrier: in fact, cells can pass through in both directions. Allergy often starts early in life and intrauterine factors have been proposed to play a role in development of allergy. The overall aim of this thesis was to study the innate response to infection and the p...

  12. THE IMMUNOLOGICAL CHARACTERISTIC OF RA PATIENTS WITH ANAEMIA

    Directory of Open Access Journals (Sweden)

    A. E. Sizikov

    2014-07-01

    Full Text Available Abstract. The aim of the investigation was to study the immunological characteristics of RA patients with anaemia. Clinical and laboratory data including the percentage of the main lymphocyte subclasses, phagocyte and DTH-effector activity, serum concentration of immunoglobulins, the percentage of cells producing IFNγ and/or IL-4 and percent of monocytes producing TNF. We revealed some significant clinical, laboratory and immunological differences between RA patients and healthy donors and between patients with and without anaemia. Our data demonstrate RA anemic patients to have more severe disorders than patients without anaemia. We also revealed some significant immunological differences between RA patients and healthy donors and between patients with and without anaemia, including percent of cells producing IFNγ and/or IL-4. Our data permit to conclude that RA patients have many different immunological disturbances, more severe in anaemic patients.

  13. IL-2基因转导CD3AK细胞免疫学功能的研究%Research on Immunologic Functions of Interleukin-2 Gene Transducted CD3AK Cells by Retroviral Vector PLIL-2SN

    Institute of Scientific and Technical Information of China (English)

    王立新; 夏圣; 许靖霞; 蔡仙德

    2000-01-01

    目的:观察白细胞介素-2(IL-2)基因转导后CD3AK细胞免疫学功能的变化。方法:应用逆转录病毒载体将IL2基因转导入CD3AK细胞。检测转导细胞中特异性NeoR基因、培养上清IL2的表达水平及转导CD3AK细胞的体外增殖活性、细胞毒活性和细胞表型。结果:从转导细胞mRNA中扩增出长度为347bp的特异性NeoR基因片段,转导细胞培养上清的IL2表达水平显著增高,体外增殖活性和细胞毒活性均强于未转导组细胞,CD4+/CD2+值升高。结论:PLIL2SN逆转录病毒转导CD3AK细胞后,IL-2基因得到表达并增强CD3AK细胞的免疫学功能。%Objective This experiment was designed to observe the immunologic functions of CD3AK cells into which interleukin-2(IL-2) gene had been transducted. Methods The post-transfer CD3AK cells' special NeoR gene and cell immunologic functions including IL-2 expression, proliferation, cytotoxicity and cell phonetype were detected. R~ults The specific 347 bp NeoR gene was amplfiied in post-transfer cells. The post-transfer cells expressed higher IL-2, proliferation and cytotoxicity ability. It was also found that the ratio of CD4 + T cell to CDa + T cell increased in post-transfer group. Conclusion Transducting IL-2 gene into CD3AK cells could enhance their immunologic functions.

  14. Immunological Detection of Arbutin

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The relative molecular mass of Arbutin is small.Both fluorolabeling and radiolabeling may affect its properties and functions.Therefore, the immunoassay of Arbutin was studied.Arbutin was coupled to bovine serum albumin to get the Arbutin-BSA conjugate with high molar ratio of Arbutin to BSA.Two rabbits were injected with the conjugate to develop the anti-Arbutin serum.Ammonium sulfate precipitation and affinity chromatography were used to purify the antibody.Double agar diffusion test and enzyme-linked immunosorbent assay (ELISA) were adopted to identify the antibody titer.The results demonstrated that the purity and activity of the antibody are high.The method proposed is satisfactory for the immunological detection of Arbutin.

  15. Immunological studies in the acquired immunodeficiency syndrome. II. Active suppression or intrinsic defect--investigated by mixing AIDS cells with HLA-DR identical normal cells

    DEFF Research Database (Denmark)

    Hofmann, B; Ødum, Niels; Jakobsen, B K; Platz, P; Ryder, L P; Nielsen, J O; Gerstoft, J; Svejgaard, A

    1986-01-01

    , each of whom was HLA-DR- and mixed lymphocyte culture (MLC)-identical with one of the AIDS patients. No evidence of suppression was observed when irradiated or non-irradiated AIDS peripheral blood mononuclear cells (PBMC) were added to cultures of HLA-DR-identical PMBC from healthy controls stimulated...... transformation responses to mitogens and antigens of purified HLA-DR-identical normal T cells, indicating that AIDS cells have a normal antigen-presenting capacity and interleukin (IL-1) production. However, AIDS PBMC had a very poor capacity to stimulate normal PBMC in MLC. Together, our experiments suggest...

  16. Copper at synapse: Release, binding and modulation of neurotransmission.

    Science.gov (United States)

    D'Ambrosi, Nadia; Rossi, Luisa

    2015-11-01

    Over the last decade, a piece of the research studying copper role in biological systems was devoted to unravelling a still elusive, but extremely intriguing, aspect that is the involvement of copper in synaptic function. These studies were prompted to provide a rationale to the finding that copper is released in the synaptic cleft upon depolarization. The copper pump ATP7A, which mutations are responsible for diseases with a prominent neurodegenerative component, seems to play a pivotal role in the release of copper at synapses. Furthermore, it was found that, when in the synaptic cleft, copper can control, directly or indirectly, the activity of the neurotransmitter receptors (NMDA, AMPA, GABA, P2X receptors), thus affecting excitability. In turn, neurotransmission can affect copper trafficking and delivery in neuronal cells. Furthermore, it was reported that copper can also modulate synaptic vesicles trafficking and the interaction between proteins of the secretory pathways. Interestingly, proteins with a still unclear role in neuronal system though associated with the pathogenesis of neurodegenerative diseases (the amyloid precursor protein, APP, the prion protein, PrP, α-synuclein, α-syn) show copper-binding domains. They may act as copper buffer at synapses and participate in the interplay between copper and the neurotransmitters receptors. Given that copper dysmetabolism occurs in several diseases affecting central and peripheral nervous system, the findings on the contribution of copper in synaptic transmission, beside its more consolidate role as a neuronal enzymes cofactor, may open new insights for therapy interventions. PMID:26187063

  17. Stimulus-specific adaptation at the synapse level in vitro.

    Directory of Open Access Journals (Sweden)

    Haitao Wang

    Full Text Available Stimulus-specific adaptation (SSA is observed in many brain regions in humans and animals. SSA of cortical neurons has been proposed to accumulate through relays in ascending pathways. Here, we examined SSA at the synapse level using whole-cell patch-clamp recordings of primary cultured cortical neurons of the rat. First, we found that cultured neurons had high firing capability with 100-Hz current injection. However, neuron firing started to adapt to repeated electrically activated synaptic inputs at 10 Hz. Next, to activate different dendritic inputs, electrical stimulations were spatially separated. Cultured neurons showed similar SSA properties in the oddball stimulation paradigm compared to those reported in vivo. Single neurons responded preferentially to a deviant stimulus over repeated, standard stimuli considering both synapse-driven spikes and excitatory postsynaptic currents (EPSCs. Compared with two closely placed stimulating electrodes that activated highly overlapping dendritic fields, two separately placed electrodes that activated less overlapping dendritic fields elicited greater SSA. Finally, we used glutamate puffing to directly activate postsynaptic glutamate receptors. Neurons showed SSA to two separately placed puffs repeated at 10 Hz. Compared with EPSCs, GABAa receptor-mediated inhibitory postsynaptic currents showed weaker SSA. Heterogeneity of the synaptic inputs was critical for producing SSA, with glutamate receptor desensitization participating in the process. Our findings suggest that postsynaptic fatigue contributes largely to SSA at low frequencies.

  18. Positioning of AMPA Receptor-Containing Endosomes Regulates Synapse Architecture

    Directory of Open Access Journals (Sweden)

    Marta Esteves da Silva

    2015-11-01

    Full Text Available Lateral diffusion in the membrane and endosomal trafficking both contribute to the addition and removal of AMPA receptors (AMPARs at postsynaptic sites. However, the spatial coordination between these mechanisms has remained unclear, because little is known about the dynamics of AMPAR-containing endosomes. In addition, how the positioning of AMPAR-containing endosomes affects synapse organization and functioning has never been directly explored. Here, we used live-cell imaging in hippocampal neuron cultures to show that intracellular AMPARs are transported in Rab11-positive recycling endosomes, which frequently enter dendritic spines and depend on the microtubule and actin cytoskeleton. By using chemically induced dimerization systems to recruit kinesin (KIF1C or myosin (MyosinV/VI motors to Rab11-positive recycling endosomes, we controlled their trafficking and found that induced removal of recycling endosomes from spines decreases surface AMPAR expression and PSD-95 clusters at synapses. Our data suggest a mechanistic link between endosome positioning and postsynaptic structure and composition.

  19. Cooperative synapse formation in the neocortex

    OpenAIRE

    Stepanyants Armen; Fares Tarec

    2009-01-01

    Neuron morphology plays an important role in defining synaptic connectivity. Clearly, only pairs of neurons with closely positioned axonal and dendritic branches can be synaptically coupled. For excitatory neurons in the cerebral cortex, such axo-dendritic oppositions, termed potential synapses, must be bridged by dendritic spines to form synaptic connections. To explore the rules by which synaptic connections are formed within the constraints imposed by neuron morphology, we compared the dis...

  20. Neurotrophic regulation of synapse development and plasticity

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Neurotrophic factors are traditionally thought to be secretory proteins that regulate long-tern survival and differe, ntiation of neurons. Recent studies have revealed a previously unexpected role for these factors in synaptie de velopment ami plasticity in diverse neuronal populations. Here we review experimeuts carried oul in our own laboratory in the last few years.. We have made two important discoveries.First,we were among the first to report that brain-derived. neurotrophie faclor (BDNF) facilitates hippocampal hmg-term potentiation (LTP), a form of synaptic plaslicity believed to be involved in learning and memory. BDNF modulates LTP al CAI synapses by enhaneing synaptic responses to high frequency, tetanic slimulalion. This is achieved primafily by facilitating synaptie vesicle doeking, possibly due to an in crease in the levels of the vesicle prolein synaptobrevin and synaptoplysin in the nerve terminals. Gene knockout study demonstrates thai the effects of BDNF are primarily mediated through presynaptic mechanisms. Second, we demonstrated a form of long-term, neurotrophin-mediated synaptic regulation. We showed that long-term treatment of the neuromuscu lar synapses with neurotrophin-3 (NT3) resulted in an enhancement of both spontaneous and evoked synaptic currcuts, as well as profound changes in thc number of synaptic varicosities and syuaptic vesicle proteins in motoneurons, all of which are indicative of more mature synapses. Our current work addresses the following issues:(i) activity-dependent trafficking of neurotrophin receptors, and its role in synapse-specific modulation; (ii) signal transduction mechanisms medialing the acute enhancement of synaplic transmission by neurotrophins; (iii) acute and long-tenn synaptie actions of the GDNF family; (iv) role of BDNF in late-phase LTP and in the development of hippocampal circuit.

  1. The immunological characteristics of tonsil mesenchymal stem cells%扁桃体间充质干细胞免疫学特性的初步研究

    Institute of Scientific and Technical Information of China (English)

    丁刚; 魏立梅; 孙伟元; 张丽

    2015-01-01

    Objective To investigate the immunological characteristics of human tonsil mesenchymal stem cells (TMSCs).Methods Human tonsil tissues were obtained from the children patients with chronic tonsillitis.TMSCs were separated,cultured,and were detected the expression profiles of HLA-Ⅰ,HLA-Ⅱ,CD80,CD86 by flow cytometry.The measurement of immunogenicity,the effect on phytohemagglutinin(PHA) induced peripheral blood mononuclear cell (PBMCs) proliferation and mixed lymphocytes reaction (MLR) were performed to identify the immunological characteristics of TMSCs.The co-cultures of TMSCs + PBMCs + PHA and TMSCs + MLR were established,respectively,and the concentration of kynurenine,which is the metabolin of indoleamine 2,3-dioxygenase,in the culture supernatant were examined.Then we added 1-methyl-L-tryptophan into the co-culture of TMSCs + PBMCs + PHA and TMSCs + MLR,respectively,and tested the proliferation of PBMCs.Each experiment was repeated three times,and there were six samples in each group.Statistical significance was assessed by analysis of variance (ANOVA),and a P value less than 0.05 was considered statistically significant.Results TMSCs expressed HLA-Ⅰ,were negative for HLA-Ⅱ and co-stimulatory molecules CD80 and CD86.The stimulation index in the group of TMSCs + allogeneic PBMCs was 1.38 ± 0.26,whereas the stimulation index in the group of allogeneic PBMCs was 1.22 ± 0.28,and there was no significant difference between the two groups (P > 0.05),indicating that TMSCs could not initiate the proliferation of allogeneic PBMCs.The stimulation indexes in the group of TMSCs + allogeneic PBMCs + PHA were 1.49 ± 0.29 and 1.23 ± 0.22,respectively,whereas the stimulation index in the group of allogeneic PBMCs + PHA was 4.60 ± 0.81,and the difference between the two groups had a statistical significance(P < 0.05),suggesting that TMSCs could inhibit PHA-induced PBMCs proliferation.The stimulation indexes in the group of TMSCs + MLR were 1.29 ±0.23 and 1

  2. Research progress of transplantation of mesenchymal stem cells in treatment of immunological diseases%间充质干细胞移植治疗免疫性疾病的研究进展

    Institute of Scientific and Technical Information of China (English)

    龚飞翔; 汪泱; 邓志锋

    2013-01-01

    Mesenchymal stem cells ( MSCs) , a subset of adult stem cells, possess multilineage differentiation potential and low immunogenicity. MSCs can promote angiogenesis, cell replacement therapy and neuroprotection. It has also been revealed that MSCs have immunomodulatory properties: inhibition of T cell proliferation, suppression of B cell proliferation and differentiation, modulation of natural killer cell activity and influencing dendritic cell maturation and function. Recent studies have demonstrated that transplantation of MSCs can effectively treat immunological diseases, such as graft-versus-host disease, rheumatoid arthritis, diabetes and multiple sclerosis. The research progress of transplantation of MSCs in treatment of immunological diseases is reviewed in this paper.%间充质于细胞(MSCs)是一类具有多向分化潜能和低免疫原性的成体干细胞,具有促进血管形成、保护神经和细胞替代治疗作用,此外,MSCs还具有免疫调节功能,如抑制T细胞增殖和B细胞增殖分化、调节自然杀伤性细胞活性和树突状细胞成熟及功能等.最新研究表明,移植MSCs能有效治疗免疫性疾病如移植物抗宿主病、类风湿性关节炎、糖尿病和多发性硬化症等,文章就MSCs移植治疗免疫相关性疾病的研究进展进行综述.

  3. Structural Modifications of ICAM-1 Cyclic Peptides to Improve the Activity to Inhibit Heterotypic Adhesion of T cells

    OpenAIRE

    Iskandarsyah; Tejo, Bimo A.; Tambunan, Usman S. F.; Verkhivker, Gennady; SIAHAAN, TERUNA J.

    2008-01-01

    LFA-1/ICAM-1 interaction plays an important role in the formation of the immunological synapse between T cells and antigen-presenting cells (APC). Blocking of LFA-1/ICAM-1 interactions has been shown to suppress the progression of autoimmune diseases. cIBR peptide (cyclo(1,12)PenPRGGSVLVTGC) inhibits ICAM-1/LFA-1 interaction by binding to the I-domain of LFA-1. To increase the bioactivity of cIBR peptide, we systemically modified the structure of the peptide by (a) replacing the Pen residue a...

  4. Monoacylated Cellular Prion Proteins Reduce Amyloid-β-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage

    Science.gov (United States)

    West, Ewan; Osborne, Craig; Nolan, William; Bate, Clive

    2015-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ) and the loss of synapses. Aggregation of the cellular prion protein (PrPC) by Aβ oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI) anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound “natural Aβ”, sequestering Aβ outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the Aβ-induced activation of cytoplasmic phospholipase A2 (cPLA2) and Aβ-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to α-synuclein, a protein associated with synapse damage in Parkinson’s disease. In synaptosomes, the aggregation of PrPC by Aβ oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding Aβ oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage. PMID:26043272

  5. Monoacylated Cellular Prion Proteins Reduce Amyloid-β-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage

    Directory of Open Access Journals (Sweden)

    Ewan West

    2015-06-01

    Full Text Available Alzheimer’s disease (AD is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ and the loss of synapses. Aggregation of the cellular prion protein (PrPC by Aβ oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound “natural Aβ”, sequestering Aβ outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the Aβ-induced activation of cytoplasmic phospholipase A2 (cPLA2 and Aβ-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to α-synuclein, a protein associated with synapse damage in Parkinson’s disease. In synaptosomes, the aggregation of PrPC by Aβ oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding Aβ oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage.

  6. Engineering antigen-specific immunological tolerance.

    Energy Technology Data Exchange (ETDEWEB)

    Kontos, Stephan; Grimm, Alizee J.; Hubbell, Jeffrey A.

    2015-05-01

    Unwanted immunity develops in response to many protein drugs, in autoimmunity, in allergy, and in transplantation. Approaches to induce immunological tolerance aim to either prevent these responses or reverse them after they have already taken place. We present here recent developments in approaches, based on engineered peptides, proteins and biomaterials, that harness mechanisms of peripheral tolerance both prophylactically and therapeutically to induce antigenspecific immunological tolerance. These mechanisms are based on responses of B and T lymphocytes to other cells in their immune environment that result in cellular deletion or ignorance to particular antigens, or in development of active immune regulatory responses. Several of these approaches are moving toward clinical development, and some are already in early stages of clinical testing.

  7. Overcoming immunological barriers in regenerative medicine.

    Science.gov (United States)

    Zakrzewski, Johannes L; van den Brink, Marcel R M; Hubbell, Jeffrey A

    2014-08-01

    Regenerative therapies that use allogeneic cells are likely to encounter immunological barriers similar to those that occur with transplantation of solid organs and allogeneic hematopoietic stem cells (HSCs). Decades of experience in clinical transplantation hold valuable lessons for regenerative medicine, offering approaches for developing tolerance-induction treatments relevant to cell therapies. Outside the field of solid-organ and allogeneic HSC transplantation, new strategies are emerging for controlling the immune response, such as methods based on biomaterials or mimicry of antigen-specific peripheral tolerance. Novel biomaterials can alter the behavior of cells in tissue-engineered constructs and can blunt host immune responses to cells and biomaterial scaffolds. Approaches to suppress autoreactive immune cells may also be useful in regenerative medicine. The most innovative solutions will be developed through closer collaboration among stem cell biologists, transplantation immunologists and materials scientists. PMID:25093888

  8. Functional phosphoproteomics for current immunology research

    Directory of Open Access Journals (Sweden)

    Paulino Gómez-Puertas

    2011-01-01

    Full Text Available Signaling networks are key elements in all major aspects of cellular life, playing a major role in inter- and intracellular communications. They are involved in diverse processes such as cell-cycle progression, cellular metabolism, cell-cell communication and appropriate response to the cellular environment. The latter comprises a whole range of networks that are involved in regulation of cell development, differentiation, proliferation, apoptosis, and immunologic responses. The key mechanism involves the transduction of extracellular signals across the cell sur-face to different effectors in the cytosol and the nucleus. Dysregulation of these pathways is often associated with immunology disorders and malignant diseases such as cancer. One of the most common mechanisms of activation and/or inactivation of signaling transduction pathways is phosphorylation and de-phosphorylation at serine, threonine and tyrosine residues. Phosphoproteomics is playing an important role in our understanding of how phosphorylation participates in translating distinct signals into the normal and or abnormal physiological responses, and has shifted research towards screening for potential therapies for diseases and in-depth analysis of phosphoproteomes. Given the importance of phosphoproteomics in translational research we aim at outlining phosphoproteomic approaches based on mass spectrometry (MS. This review focuses on (1b the role of phospho signaling in immunology, (2a current phosphopeptide enrichment methods based on IMAC and titanium dioxide, (2b phosphopeptide analysis by MS, and (2c issues concerned with interpretation of phospho spectra by database dependent search. Finally, quantitative methods used in phosphoproteomics such as Stable Isotope labeling with Amino acid in cell Culture (SILAC, isobaric Tag for Relative and Absolute Quantitation (iTRAQ and Absolute Quantification (AQUA is discussed in section 3.

  9. A Nutrient Combination that Can Affect Synapse Formation

    OpenAIRE

    Wurtman, Richard J.

    2014-01-01

    Brain neurons form synapses throughout the life span. This process is initiated by neuronal depolarization, however the numbers of synapses thus formed depend on brain levels of three key nutrients—uridine, the omega-3 fatty acid DHA, and choline. Given together, these nutrients accelerate formation of synaptic membrane, the major component of synapses. In infants, when synaptogenesis is maximal, relatively large amounts of all three nutrients are provided in bioavailable forms (e.g., uridine...

  10. Neuron network activity scales exponentially with synapse density

    OpenAIRE

    Brewer, G. J.; Boehler, M D; Pearson, R. A.; DeMaris, A A; Ide, A. N.; Wheeler, B C

    2008-01-01

    Neuronal network output in the cortex as a function of synapse density during development has not been explicitly determined. Synaptic scaling in cortical brain networks seems to alter excitatory and inhibitory synaptic inputs to produce a representative rate of synaptic output. Here, we cultured rat hippocampal neurons over a three-week period to correlate synapse density with the increase in spontaneous spiking activity. We followed the network development as synapse formation and spike rat...

  11. Flotillins are involved in the polarization of primitive and mature hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    Lawrence Rajendran

    Full Text Available BACKGROUND: Migration of mature and immature leukocytes in response to chemokines is not only essential during inflammation and host defense, but also during development of the hematopoietic system. Many molecules implicated in migratory polarity show uniform cellular distribution under non-activated conditions, but acquire a polarized localization upon exposure to migratory cues. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present evidence that raft-associated endocytic proteins (flotillins are pre-assembled in lymphoid, myeloid and primitive hematopoietic cells and accumulate in the uropod during migration. Furthermore, flotillins display a polarized distribution during immunological synapse formation. Employing the membrane lipid-order sensitive probe Laurdan, we show that flotillin accumulation in the immunological synapse is concomittant with membrane ordering in these regions. CONCLUSIONS: Together with the observation that flotillin polarization does not occur in other polarized cell types such as polarized epithelial cells, our results suggest a specific role for flotillins in hematopoietic cell polarization. Based on our results, we propose that in hematopoietic cells, flotillins provide intrinsic cues that govern segregation of certain microdomain-associated molecules during immune cell polarization.

  12. Extrinsic sound stimulations and development of periphery auditory synapses

    Institute of Scientific and Technical Information of China (English)

    Kun Hou; Shiming Yang; Ke Liu

    2015-01-01

    The development of auditory synapses is a key process for the maturation of hearing function. However, it is still on debate regarding whether the development of auditory synapses is dominated by acquired sound stimulations. In this review, we summarize relevant publications in recent decades to address this issue. Most reported data suggest that extrinsic sound stimulations do affect, but not govern the development of periphery auditory synapses. Overall, periphery auditory synapses develop and mature according to its intrinsic mechanism to build up the synaptic connections between sensory neurons and/or interneurons.

  13. Silent Synapse-Based Circuitry Remodeling in Drug Addiction.

    Science.gov (United States)

    Dong, Yan

    2016-05-01

    Exposure to cocaine, and likely other drugs of abuse, generates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-silent glutamatergic synapses in the nucleus accumbens. These immature synaptic contacts evolve after drug withdrawal to redefine the neurocircuital properties. These results raise at least three critical questions: (1) what are the molecular and cellular mechanisms that mediate drug-induced generation of silent synapses; (2) how are neurocircuits remodeled upon generation and evolution of drug-generated silent synapses; and (3) what behavioral consequences are produced by silent synapse-based circuitry remodeling? This short review analyzes related experimental results, and extends them to some speculations. PMID:26721952

  14. Sensory experience shapes the development of the visual system’s first synapse

    OpenAIRE

    Dunn, Felice A.; Santina, Luca Della; Parker, Edward D.; Wong, Rachel O.L.

    2013-01-01

    Specific connectivity patterns among neurons create the basic architecture underlying parallel processing in our nervous system. Here we focus on the visual system’s first synapse to examine the structural and functional consequences of sensory deprivation on the establishment of parallel circuits. Dark rearing reduces synaptic strength between cones and cone bipolar cells, a previously unappreciated effect of sensory deprivation. In contrast, rod bipolar cells, which utilize the same glutama...

  15. A matter of balance: role of neurexin and neuroligin at the synapse

    DEFF Research Database (Denmark)

    Bang, Marie Louise; Owczarek, Sylwia

    2013-01-01

    Neurexins and neuroligins are synaptic cell adhesion molecules. Neurexins are primary located on the presynaptic membrane, whereas neuroligins are strictly postsynaptic proteins. Since their discovery, the knowledge of neurexins and neuroligins has expanded, implicating them in various neuronal p...... processes, including the differentiation, maturation, stabilization, and plasticity of both inhibitory and excitatory synapses. Here, we review the most recent results regarding the structure and function of these cell adhesion molecules....

  16. A dendrodendritic reciprocal synapse provides a recurrent excitatory connection in the olfactory bulb

    OpenAIRE

    Didier, Anne; Carleton, Alan; Jan G Bjaalie; Vincent, Jean-Didier; Ottersen, Ole Petter; Storm-Mathisen, Jon; Lledo, Pierre-Marie

    2001-01-01

    Neuronal synchronization in the olfactory bulb has been proposed to arise from a diffuse action of glutamate released from mitral cells (MC, olfactory bulb relay neurons). According to this hypothesis, glutamate spills over from dendrodendritic synapses formed between MC and granule cells (GC, olfactory bulb interneurons) to activate neighboring MC. The excitation of MC is balanced by a strong inhibition from GC. Here we show that MC excitation is caused by glutama...

  17. Immunology and immunity against infection: General rules

    Science.gov (United States)

    Zinkernagel, Rolf M.

    2005-12-01

    Simplified and generalizable rules of immune responses against infections or vaccines have been summarized into 20 statements previously (Scand. J. Immunol. 60 (2004) 9-13) and are restated in a slightly different form here. The key terms of immunology (e.g. specificity, tolerance and memory) are explained in terms of their co-evolutionary importance in the equilibrium between infectious agents and diseases with higher vertebrate hosts. Specificity is best defined by protective antibodies or protective activated T cells; e.g. serotype specific neutralizing antibodies against polio viruses represent the discriminatory power of an immune response very well indeed. Tolerance is reviewed in terms of reactivity rather than self-nonself discrimination. Immune respones are deleted against antigens expressed at sufficient levels within the lymphoheamopoetic system, but may well exist at both, the T and the B cell level against antigens strictly outside of secondary lymphatic organs. In this respect the immune system behaves identically against virus infections and against self antigens. Persistent virus infections delete responsive T cells, once eliminated immune T cell responses wane, if a virus keeps outside of secondary lymphatic tissues no immune response is induced. Immunological memory is usually defined as earlier and greater responses but this does not correlate with protective immunity stringently. It is summarized here that pre-existing titers of protective neutralizing antibodies or pre-existence of activated T cells are the correlates of protection acute cytopathic lethal infections and toxins or against intracellular parasites. It is concluded that many discrepancies and uncertainties in immunological research derive from model situations and experimental results that are correctly measured but cannot be related to co-evolutionary contexts, i.e. survival.

  18. Independent origins of neurons and synapses: insights from ctenophores.

    Science.gov (United States)

    Moroz, Leonid L; Kohn, Andrea B

    2016-01-01

    There is more than one way to develop neuronal complexity, and animals frequently use different molecular toolkits to achieve similar functional outcomes. Genomics and metabolomics data from basal metazoans suggest that neural signalling evolved independently in ctenophores and cnidarians/bilaterians. This polygenesis hypothesis explains the lack of pan-neuronal and pan-synaptic genes across metazoans, including remarkable examples of lineage-specific evolution of neurogenic and signalling molecules as well as synaptic components. Sponges and placozoans are two lineages without neural and muscular systems. The possibility of secondary loss of neurons and synapses in the Porifera/Placozoa clades is a highly unlikely and less parsimonious scenario. We conclude that acetylcholine, serotonin, histamine, dopamine, octopamine and gamma-aminobutyric acid (GABA) were recruited as transmitters in the neural systems in cnidarian and bilaterian lineages. By contrast, ctenophores independently evolved numerous secretory peptides, indicating extensive adaptations within the clade and suggesting that early neural systems might be peptidergic. Comparative analysis of glutamate signalling also shows numerous lineage-specific innovations, implying the extensive use of this ubiquitous metabolite and intercellular messenger over the course of convergent and parallel evolution of mechanisms of intercellular communication. Therefore: (i) we view a neuron as a functional character but not a genetic character, and (ii) any given neural system cannot be considered as a single character because it is composed of different cell lineages with distinct genealogies, origins and evolutionary histories. Thus, when reconstructing the evolution of nervous systems, we ought to start with the identification of particular cell lineages by establishing distant neural homologies or examples of convergent evolution. In a corollary of the hypothesis of the independent origins of neurons, our analyses

  19. Recurrent synapses and circuits in the CA3 region of the hippocampus: an associative network.

    Directory of Open Access Journals (Sweden)

    Richard eMiles

    2014-01-01

    Full Text Available In the CA3 region of the hippocampus, pyramidal cells excite other pyramidal cells and interneurons. The axons of CA3 pyramidal cells spread throughout most of the region to form an associative network. These connections were first drawn by Cajal and Lorente de No. Their physiological properties were explored to understand epileptiform discharges generated in the region. Synapses between pairs of pyramidal cells involve one or few release sites and are weaker than connections made by mossy fibres on CA3 pyramidal cells. Synapses with interneurons are rather effective, as needed to control unchecked excitation. We examine contributions of recurrent synapses to epileptiform synchrony, to the genesis of sharp waves in the CA3 region and to population oscillations at theta and gamma frequencies. Recurrent connections in CA3, as other associative cortices, have a lower connectivity spread over a larger area than in primary sensory cortices. This sparse, but wide-ranging connectivity serves the functions of an associative network, including acquisition of neuronal representations as activity in groups of CA3 cells and completion involving the recall from partial cues of these ensemble firing patterns.

  20. Immunological studies relating to the climate

    International Nuclear Information System (INIS)

    In order to know the effects of ultra-violet radiations on the integrity of their immunological system, a hematologic and immunological study was carried out in 30 clinically healthy children aged between 10 and 15; 15 of each sex, who come from a region in Bielorussia that was affected by the Chernobyl nuclear accident, and who received medical and recreational services at the 'Jose Marti' Pioneers'City, located Tarara Beach (Havana, Cuba) from July 9,1990 to August 27,1990. Data from the initial evaluations upon their arrival in Cuba were compared whit the final results before their return to Bielorussia, in the following variables: haemoglobin, leucocytes, platelets, absolute counts of lymphocytes and neutrophylous polymorphonuclears, levels of sericeus of Igs G, A, M, and E sericas and (CH50), as well as the presence of circulating immuno complexes; besides spot-forming cellular clusters (spontaneous, active, and medial by the receptor Fc in neutrophylous) and the cells identified with monoclonal antibodies against CD2, CD3, CD8 and CD4/CD8 quotient. Cutaneous response to antigen and lymphoblastic transformation in the presence of PHA and PwN were also assessed. Results of this research allow to infer that the adequate and monitored position against ultra-violet rays from the solar radiation in children exposed to low doses of ionizing irradiation does not deteriorate the human immunological system, and do favor its regulation and normal performance

  1. Cosmos: 1989 immunology studies

    Science.gov (United States)

    Sonnenfeld, Gerald

    1991-01-01

    The effects of flight on Cosmos mission 2044 on leukocyte subset distribution and the sensitivity of bone marrow cells to colony stimulating factor-GM were determined. A parallel study with antiorthostatic suspension was also carried out. The study involved repetition and expansion of studies performed on Cosmos 1887. Spleen and bone marrow cells were obtained from flown, vivarium control, synchronous control, and suspended rats. The cells were stained with a series of monoclonal antibodies directed against rat leukocyte cell surface antigens. Control cells were stained with a monoclonal antibody directed against an irrelevant species or were unstained. Cells were then analyzed for fluorescence using a FACSCAN flow cytometer. Bone marrow cells were placed in culture with GM-CSF in McCoy's 5a medium and incubated for 5 days. Cultures were then evaluated for the number of colonies of 50 cells or greater.

  2. The Active and Periactive Zone Organization and the Functional Properties of Small and Large Synapses.

    Science.gov (United States)

    Cano, Raquel; Tabares, Lucia

    2016-01-01

    The arrival of an action potential (AP) at a synaptic terminal elicits highly synchronized quanta release. Repetitive APs produce successive synaptic vesicle (SV) fusions that require management of spent SV components in the presynaptic membrane with minimum disturbance of the secretory apparatus. To this end, the synaptic machinery is structured accordingly to the strength and the range of frequencies at which each particular synapse operates. This results in variations in the number and dimension of Active Zones (AZs), amount and distribution of SVs, and probably, in the primary endocytic mechanisms they use. Understanding better how these structural differences determine the functional response in each case has been a matter of long-term interest. Here we review the structural and functional properties of three distinct types of synapses: the neuromuscular junction (NMJ; a giant, highly reliable synapse that must exocytose a large number of quanta with each stimulus to guarantee excitation of the postsynaptic cell), the hippocampal excitatory small synapse (which most often has a single release site and a relatively small pool of vesicles), and the cerebellar mossy fiber-granule cell synapse (which possesses hundreds of release sites and is able to translocate, dock and prime vesicles at high speed). We will focus on how the release apparatus is organized in each case, the relative amount of vesicular membrane that needs to be accommodated within the periAZ upon stimulation, the different mechanisms for retrieving the excess of membrane and finally, how these factors may influence the functioning of the release sites. PMID:27252645

  3. New players tip the scales in the balance between excitatory and inhibitory synapses

    Directory of Open Access Journals (Sweden)

    El-Husseini Alaa

    2005-03-01

    Full Text Available Abstract Synaptogenesis is a highly controlled process, involving a vast array of players which include cell adhesion molecules, scaffolding and signaling proteins, neurotransmitter receptors and proteins associated with the synaptic vesicle machinery. These molecules cooperate in an intricate manner on both the pre- and postsynaptic sides to orchestrate the precise assembly of neuronal contacts. This is an amazing feat considering that a single neuron receives tens of thousands of synaptic inputs but virtually no mismatch between pre- and postsynaptic components occur in vivo. One crucial aspect of synapse formation is whether a nascent synapse will develop into an excitatory or inhibitory contact. The tight control of a balance between the types of synapses formed regulates the overall neuronal excitability, and is thus critical for normal brain function and plasticity. However, little is known about how this balance is achieved. This review discusses recent findings which provide clues to how neurons may control excitatory and inhibitory synapse formation, with focus on the involvement of the neuroligin family and PSD-95 in this process.

  4. Mixed electrical-chemical synapses in adult rat hippocampus are primarily glutamatergic and coupled by connexin-36

    Directory of Open Access Journals (Sweden)

    Farid Hamzei-Sichani

    2012-05-01

    Full Text Available Dendrodendritic electrical signaling via gap junctions is now an accepted feature of neuronal communication in the mammalian brain, whereas axodendritic and axosomatic gap junctions have rarely been described. We present ultrastructural, immunocytochemical, and dye-coupling evidence for “mixed” (electrical/chemical synapses in adult rat hippocampus on both principal cells and interneurons. Thin-section electron microscopic images of small gap junction-like appositions were found at mossy fiber (MF terminals on thorny excrescences of CA3 pyramidal neurons (CA3pyr, apparently forming glutamatergic mixed synapses. Lucifer Yellow injected into four weakly-fixed CA3pyr was detected in MF axons that contacted the injected CA3pyr, supporting gap junction-mediated coupling between those two types of principal cells. Freeze-fracture replica immunogold-labeling revealed diverse sizes and morphologies of connexin36-containing gap junctions throughout hippocampus. Of 20 immunogold-labeled gap junctions, seven were large (328-1140 connexons, three of which were consistent with electrical synapses between interneurons; but nine were at axon terminal synapses, three of which were immediately adjacent to distinctive glutamate receptor-containing postsynaptic densities, forming mixed glutamatergic synapses. Four others were adjacent to small clusters of immunogold-labeled 10-nm E-face intramembrane particles, apparently representing extrasynaptic glutamate receptor particles. Gap junctions also were on spines in stratum lucidum, stratum oriens, dentate gyrus, and hilus, on both interneurons and unidentified neurons. In addition, one putative GABAergic mixed synapse was found in thin section images of a CA3pyr, but none found by immunogold-labeling were at GABAergic mixed synapses, suggesting their rarity. Cx36-containing gap junctions throughout hippocampus suggest the possibility of reciprocal modulation of electrical and chemical signals in diverse

  5. Circadian rhythmicity of synapses in mouse somatosensory cortex.

    Science.gov (United States)

    Jasinska, Malgorzata; Grzegorczyk, Anna; Woznicka, Olga; Jasek, Ewa; Kossut, Malgorzata; Barbacka-Surowiak, Grazyna; Litwin, Jan A; Pyza, Elzbieta

    2015-10-01

    The circadian rhythmicity displayed by motor behavior of mice: activity at night and rest during the day; and the associated changes in the sensory input are reflected by cyclic synaptic plasticity in the whisker representations located in the somatosensory (barrel) cortex. It was not clear whether diurnal rhythmic changes in synapse density previously observed in the barrel cortex resulted from changes in the activity of the animals, from daily light/dark (LD) rhythm or are driven by an endogenous clock. These changes were investigated in the barrel cortex of C57BL/6 mouse strain kept under LD 12 : 12 h conditions and in constant darkness (DD). Stereological analysis of serial electron microscopic sections was used to assess numerical density of synapses. In mice kept under LD conditions, the total density of synapses and the density of excitatory synapses located on dendritic spines was higher during the light period (rest phase). In contrast, the density of inhibitory synapses located on dendritic spines increased during the dark period (activity phase). Under DD conditions, the upregulation of the inhibitory synapses during the activity phase was retained, but the cyclic changes in the density of excitatory synapses were not observed. The results show that the circadian plasticity concerns only synapses located on spines (and not those on dendritic shafts), and that excitatory and inhibitory synapses are differently regulated during the 24 h cycle: the excitatory synapses are influenced by light, whilst the inhibitory synapses are driven by the endogenous circadian clock. PMID:26274013

  6. An immunologic portrait of cancer

    Directory of Open Access Journals (Sweden)

    Stroncek David F

    2011-08-01

    Full Text Available Abstract The advent of high-throughput technology challenges the traditional histopathological classification of cancer, and proposes new taxonomies derived from global transcriptional patterns. Although most of these molecular re-classifications did not endure the test of time, they provided bulk of new information that can reframe our understanding of human cancer biology. Here, we focus on an immunologic interpretation of cancer that segregates oncogenic processes independent from their tissue derivation into at least two categories of which one bears the footprints of immune activation. Several observations describe a cancer phenotype where the expression of interferon stimulated genes and immune effector mechanisms reflect patterns commonly observed during the inflammatory response against pathogens, which leads to elimination of infected cells. As these signatures are observed in growing cancers, they are not sufficient to entirely clear the organism of neoplastic cells but they sustain, as in chronic infections, a self-perpetuating inflammatory process. Yet, several studies determined an association between this inflammatory status and a favorable natural history of the disease or a better responsiveness to cancer immune therapy. Moreover, these signatures overlap with those observed during immune-mediated cancer rejection and, more broadly, immune-mediated tissue-specific destruction in other immune pathologies. Thus, a discussion concerning this cancer phenotype is warranted as it remains unknown why it occurs in immune competent hosts. It also remains uncertain whether a genetically determined response of the host to its own cancer, the genetic makeup of the neoplastic process or a combination of both drives the inflammatory process. Here we reflect on commonalities and discrepancies among studies and on the genetic or somatic conditions that may cause this schism in cancer behavior.

  7. Tick-borne encephalitis (TBE) and hepatitis B nonresponders feature different immunologic mechanisms in response to TBE and influenza vaccination with involvement of regulatory T and B cells and IL-10.

    Science.gov (United States)

    Garner-Spitzer, Erika; Wagner, Angelika; Paulke-Korinek, Maria; Kollaritsch, Herwig; Heinz, Franz X; Redlberger-Fritz, Monika; Stiasny, Karin; Fischer, Gottfried F; Kundi, Michael; Wiedermann, Ursula

    2013-09-01

    Low responsiveness/nonresponsiveness is characterized by an insufficient immune response upon primary and/or booster vaccination and affects 1-10% of vaccinees. In the current study, we aimed to investigate whether nonresponsiveness is an Ag/vaccine-specific phenomenon and to clarify underlying immunological mechanisms. Nonresponders to tick-borne encephalitis (TBE) or hepatitis B Ag with a history of previous TBE vaccinations were booster vaccinated with TBE and influenza vaccine and compared with TBE high responders in terms of humoral and cellular immune response. Postboosters in TBE high responder existing TBE titers increased, and solid humoral responses to influenza vaccine were induced. In TBE nonresponders, low to undetectable prevaccination TBE titers remained low, whereas sufficient influenza Abs were induced. In both TBE groups, a positive correlation of humoral and cellular immune response was seen as high/low TBE titers were associated with sufficient/lack of Ag-specific T cell proliferation. Furthermore, responses to influenza were robust in terms of Abs and cytokine production. In contrast, in hepatitis B nonresponders, sufficient humoral responses to TBE and influenza Ags were induced despite lacking specific IL-2 and IFN-γ production. Importantly, these patients showed high IL-10 baseline levels in vitro. HLA-DR subtypes associated with hepatitis B nonresponsiveness were overrepresented in this group, and high IL-10 levels were linked to these subtypes. Whereas TBE and hepatitis B nonresponders had increased IL-10-producing FOXP3(+) T regulatory cells upon vaccination, only in hepatitis B nonresponders, showing elevated prevaccination IL-10 levels, a prominent population of B regulatory cells was detected. We conclude that immunological pathways of nonresponsiveness follow different patterns depending both on vaccine Ag and genetic predisposition of the vaccinee. PMID:23872054

  8. Alcohol and immunology: Summary of the 2012 Alcohol and Immunology Research Interest Group (AIRIG) meeting

    OpenAIRE

    Ippolito, Jill A.; Curtis, Brenda J.; Choudhry, Mashkoor A.; Kovacs, Elizabeth J.

    2013-01-01

    On October 27, 2012, the 17th annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held at the Grand Wailea Hotel in Maui, Hawaii as a satellite meeting to the 2012 Society of Leukocyte Biology conference. This year’s meeting focused on the influence of alcohol on signal transduction pathways in various disease and injury models. Three plenary sessions were held where invited speakers shared their research on alcohol-mediated alterations of cell signaling components, immu...

  9. Role of immunological surveillance in radiation carcinogenesis

    International Nuclear Information System (INIS)

    The immune system is known to be highly susceptible to various physical, chemical, and biological insults. The studies on the immediate and long-term effects of radiation on immune system of mice indicated very clearly that there was a dose-dependent reduction in the number of T and B cells, depression of antibody and cytotoxic T cell responses as well as proliferative responses of spleen cells to T and B cell mitogens shortly after irradiation, but they all recovered to the control level within a few months. Immunosuppression observed shortly after irradiation had little influence on the development of radiogenic tumors. The effects of radiation on the incidence of Friend leukemia virus (FLV)-induced leukemias are examined by using young adult B6C3F1 male mice which are normally resistant to FLV-induced leukemogenesis. There was a clear threshold dose of 2 Gy below which the development of FLV induced leukemias was not observed but after exposure to >3 Gy high incidence of leukemias was observed. Fractionated, weekly exposure of young C57BL strain mice to 1.6 Gy of X-rays for four successive weeks causes most of the exposed mice to develop thymic lymphomas between 3 and 10 months. However, when the exposed mice are grafted with bone marrow cells from normal donors, the development of thymic lymphomas on the exposed mice is greatly inhibited. There was a clear dose response relationship between the number of bone marrow cells injected and the inhibition of the development of thymic lymphomas. It now appears clear that T cell-mediated immunological surveillance against newly arising neoplasms conceived by Thomas and Burnet does not hold true anymore in the original form, although virus-infected host cells and other host cells expressing altered-self' markers on their cell surfaces are constantly monitored by the immunological surveillance mechanism. A surveillance function against newly arising neoplasms may be a property of surrounding normal tissue cells rather

  10. Rhythmic changes in synapse numbers in Drosophila melanogaster motor terminals.

    Directory of Open Access Journals (Sweden)

    Santiago Ruiz

    Full Text Available Previous studies have shown that the morphology of the neuromuscular junction of the flight motor neuron MN5 in Drosophila melanogaster undergoes daily rhythmical changes, with smaller synaptic boutons during the night, when the fly is resting, than during the day, when the fly is active. With electron microscopy and laser confocal microscopy, we searched for a rhythmic change in synapse numbers in this neuron, both under light:darkness (LD cycles and constant darkness (DD. We expected the number of synapses to increase during the morning, when the fly has an intense phase of locomotion activity under LD and DD. Surprisingly, only our DD data were consistent with this hypothesis. In LD, we found more synapses at midnight than at midday. We propose that under LD conditions, there is a daily rhythm of formation of new synapses in the dark phase, when the fly is resting, and disassembly over the light phase, when the fly is active. Several parameters appeared to be light dependent, since they were affected differently under LD or DD. The great majority of boutons containing synapses had only one and very few had either two or more, with a 70∶25∶5 ratio (one, two and three or more synapses in LD and 75∶20∶5 in DD. Given the maintenance of this proportion even when both bouton and synapse numbers changed with time, we suggest that there is a homeostatic mechanism regulating synapse distribution among MN5 boutons.

  11. Transgelin-2 in B-Cells Controls T-Cell Activation by Stabilizing T Cell - B Cell Conjugates

    Science.gov (United States)

    Chae, Myoung-Won; Kim, Hye-Ran; Kim, Chang-Hyun; Jun, Chang-Duk; Park, Zee-Yong

    2016-01-01

    The immunological synapse (IS), a dynamic and organized junction between T-cells and antigen presenting cells (APCs), is critical for initiating adaptive immunity. The actin cytoskeleton plays a major role in T-cell reorganization during IS formation, and we previously reported that transgelin-2, an actin-binding protein expressed in T-cells, stabilizes cortical F-actin, promoting T-cell activation in response to antigen stimulation. Transgelin-2 is also highly expressed in B-cells, although no specific function has been reported. In this study, we found that deficiency in transgelin-2 (TAGLN2-/-) in B-cells had little effect on B-cell development and activation, as measured by the expression of CD69, MHC class II molecules, and CD80/86. Nevertheless, in B-cells, transgelin-2 accumulated in the IS during the interaction with T-cells. These results led us to hypothesize that transgelin-2 may also be involved in IS stability in B-cells, thereby influencing T-cell function. Notably, we found that transgelin-2 deficiency in B-cells reduced T-cell activation, as determined by the release of IL-2 and interferon-γ and the expression of CD69. Furthermore, the reduced T-cell activation was correlated with reduced B-cell–T-cell conjugate formation. Collectively, these results suggest that actin stability in B-cells during IS formation is critical for the initiation of adaptive T-cell immunity. PMID:27232882

  12. Immunological Evasion in Glioblastoma

    Science.gov (United States)

    Magaña-Maldonado, Roxana; Chávez-Cortez, Elda Georgina; Olascoaga-Arellano, Nora Karen; López-Mejía, Mariana; Maldonado-Leal, Fernando Manuel; Sotelo, Julio

    2016-01-01

    Glioblastoma is the most aggressive tumor in Central Nervous System in adults. Among its features, modulation of immune system stands out. Although immune system is capable of detecting and eliminating tumor cells mainly by cytotoxic T and NK cells, tumor microenvironment suppresses an effective response through recruitment of modulator cells such as regulatory T cells, monocyte-derived suppressor cells, M2 macrophages, and microglia as well as secretion of immunomodulators including IL-6, IL-10, CSF-1, TGF-β, and CCL2. Other mechanisms that induce immunosuppression include enzymes as indolamine 2,3-dioxygenase. For this reason it is important to develop new therapies that avoid this immune evasion to promote an effective response against glioblastoma. PMID:27294132

  13. Immunological Evasion in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Roxana Magaña-Maldonado

    2016-01-01

    Full Text Available Glioblastoma is the most aggressive tumor in Central Nervous System in adults. Among its features, modulation of immune system stands out. Although immune system is capable of detecting and eliminating tumor cells mainly by cytotoxic T and NK cells, tumor microenvironment suppresses an effective response through recruitment of modulator cells such as regulatory T cells, monocyte-derived suppressor cells, M2 macrophages, and microglia as well as secretion of immunomodulators including IL-6, IL-10, CSF-1, TGF-β, and CCL2. Other mechanisms that induce immunosuppression include enzymes as indolamine 2,3-dioxygenase. For this reason it is important to develop new therapies that avoid this immune evasion to promote an effective response against glioblastoma.

  14. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit

    Directory of Open Access Journals (Sweden)

    Lisa eMapelli

    2015-05-01

    Full Text Available The way long-term potentiation (LTP and depression (LTD are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network , in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei and correspondingly regulate the function of their three main neurons: granule cells (GrCs, Purkinje cells (PCs and deep cerebellar nuclear (DCN cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  15. Nonlinear Synapses for Large-Scale Models: An Efficient Representation Enables Complex Synapse Dynamics Modeling in Large-Scale Simulations

    Directory of Open Access Journals (Sweden)

    Eric eHu

    2015-09-01

    Full Text Available Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations.

  16. Synapse function of neuron-like cells differentiated from bone marrow stromal stem cells by rehmannia glutinosa polysaccharide%地黄多糖诱导骨髓间充质干细胞为神经样细胞后的突触功能

    Institute of Scientific and Technical Information of China (English)

    刘宇卓; 王霞; 杜红阳; 包翠芬; 秦书俭

    2013-01-01

    Objective:To study the synapse function of the neuron-like cells induced by rehmannia glutinosa polysaccharide.Methods:The bone marrow strornal stem cells (BMSCs) were cultured and purified by their characteristic of plastic adhesion,then induced by rehmannia glutinosa polysaccharide for 24 hours,and were cultured for 7 days.The membrane potential (MP),Ca2+ influx,synapse function were detected with laser-scanning confocal microscope.Results:BMSCs were induced for 24h,and cultured for 7 days,than neuron-like cells were observed to stretch out bumps and interact into complex network; Immunofluorescence cytochemistry demonstrated that the rate of nestin expression was 97.9%±1.3%,NSE expression 95.4%±1.9% and the synaptophysin expression 94.2% ±2.2%; the neuron-like cells were stimulated with high concentration KCl; the physiology chart showed that the curve rose shapely,Ca2+ influx increased and endocytosis and exocytosis happened.Conclusion:Rehmannia glutinosa polysaccharide can induce BMSCs to differentiate into the neuron-like cells with synaptic function.%目的:探讨地黄多糖诱导大鼠骨髓间充质干细胞(BMSCs)分化为神经元样细胞后是否具有神经突触功能.方法:贴壁筛选法分离纯化BMSCs,地黄多糖进行诱导,激光共聚焦显微镜检测细胞在高钾刺激下细胞膜电位的变化,细胞内钙流变化及细胞突触循环功能.结果:地黄多糖诱导24 h,连续培养7d后,光学显微镜下显示诱导后的细胞伸出突起交互成复杂网状;免疫荧光细胞化学显示诱导后的细胞神经元巢蛋白阳性表达率为97.9%±1.3%,神经元特异性烯醇化酶阳性率95.4%±1.9%,突触小泡蛋白阳性率为94.2%±2.2%;激光共聚焦显微镜显示诱导后细胞在高钾刺激下细胞膜电位迅速升高,细胞内钙离子流增加,细胞突触发生了胞吞胞吐现象.结论:地黄多糖可以诱导BMSCs分化为神经样细胞,此细胞具有神经细胞的神经生理功能.

  17. A Global Approach to Tumor Immunology

    Institute of Scientific and Technical Information of China (English)

    EnaWang; MonicaCPanelli; VladiaMonsurró; FrancescoMMarincola

    2004-01-01

    Biological and clinical advances in the understanding of tumor immunology suggest that immune responsiveness of human tumors is a complex biological phenomenon that could be best studied by a real-time comparison of tumor/host interactions in the tumor microenvironment through a high-throughput discovery-driven approach. This conclusion is derived from our recognition that too many hypotheses or, in other words, no solid single hypothesis exist, based on experimental results, to further drive experimentation in human subjects. Functional genomic studies entertained during the last few years consolidated the belief that in humans the interactions between tumor and immune cells are too complex to be approached exclusively with a hypothesis driven method. We believe that immune cells suit cancer cells in a Yin and Yang balance by opposing and yet mutually depending on each other. Indeed, immune infiltration in tumors may play a dual role modulating in different circumstances cancer cell growth or destruction through a physiological modulation of inflammation. It is reasonable to question what induces inflammation at the tumor site. We hypothesize that inflammation is primarily driven by the phenotype of tumor cells that can modulate theirmicroenvironment through cell-to-cell interactions or the secretion of soluble factors. Thus, in analogy the observation of immune cells within tumors parallels the presence of paramedics, police and firemen at thescene of an accident, which is reactive to and not causative of the occurrence. In this review we will explore this hypothesis by reporting and summarizing most of our recent work in the frame of available literature on the subject. Cellular & Molecular Immunology.

  18. Interleukin-23: immunological roles and clinical implications.

    Science.gov (United States)

    Tan, Zi Yan; Bealgey, Kenneth W; Fang, Yong; Gong, Yang Ming; Bao, Shisan

    2009-04-01

    Increasing evidence has revealed the importance of IL-23, which closely resembles IL-12 both structurally and immunologically, in linking innate and adaptive immunity. IL-23, produced by activated type 1 macrophages and dendritic cells (DC), possesses unique roles in the differentiation and expansion of memory T cells. IL-23 has been associated with several inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease (IBD) and Helicobacter pylori associated gastritis, mainly due to its capacity to induce a strong Th1 type immune response. IL-23 is also associated with Th17 responses and the cytokine produced by the antigen presenting cells (APC), i.e. IL-12 vs IL-23 determines in part if a response is Th1 or Th17. Recent studies have also associated chronic inflammatory diseases such as IBD, psoriasis and myocardial infarction with polymorphisms of the IL-23 receptor complex. The current review focuses on the immunological role of IL-23 and possible therapeutic avenues for inflammatory diseases. PMID:18725317

  19. IMMUNOLOGICAL PROCESSES IN CANCER: A LINK BETWEEN INFLAMMATION AND IMMUNITY

    Directory of Open Access Journals (Sweden)

    Vanessa Jacob Victorino

    2014-01-01

    Full Text Available Cancer is a worldwide issue and one of the most relevant death causes in child and adults. There are several causes that can lead to cancer development. It is well known that inflammation is one known hallmark of cancer and it favors tumor cells growth. Several alterations in immunological and inflammatory processes are caused in response to tumor presence and both innate and adaptive immunity have effective mechanism to destroy tumor cells. Nevertheless, distinct tumor types developed mechanisms to evade anti-tumor immunological responses. Here, we revise researches regarding inflammation and immune response during cancer development, as well as cancer signaling pathways and immunotherapy that have been performed in Brazil. The better understanding of the mechanisms regarding cancer and immunological processes is of huge importance and it may support the development of new cancer targets.

  20. British Society for Immunology: vaccines and mucosal immunity.

    Science.gov (United States)

    Jackson, M E

    2001-03-01

    The Annual Congress of the British Society for Immunology was well attended with over 1000 British scientists converging on the small Yorkshire town of Harrogate. Wide-ranging and varied, the topics covered included the biochemistry of signaling as well as sessions examining dietary influences upon mucosal immunity. The plenary session on the morning of Wednesday 6 December focused on immunology at the cell surface, where many speakers discussed the role of lipid rafts in immune cell signaling. A session of particular interest followed the plenary session, hosted by the Vaccine Immunology Group. Discussion centered around a number of novel vaccines currently under development, with the emphasis on finding alternatives to the use of hypodermic needles. A number of interesting posters affiliated to this session reflected the high quality of the research presented at the meeting in general. PMID:16025384

  1. Changes in input strength and number are driven by distinct mechanisms at the retinogeniculate synapse

    OpenAIRE

    Lin, David J.; Kang, Erin; Chen, Chinfei

    2014-01-01

    Recent studies have demonstrated that vision influences the functional remodeling of the mouse retinogeniculate synapse, the connection between retinal ganglion cells and thalamic relay neurons in the dorsal lateral geniculate nucleus (LGN). Initially, each relay neuron receives a large number of weak retinal inputs. Over a 2- to 3-wk developmental window, the majority of these inputs are eliminated, and the remaining inputs are strengthened. This period of refinement is followed by a critica...

  2. GA-Binding Protein Is Dispensable for Neuromuscular Synapse Formation and Synapse-Specific Gene Expression▿

    OpenAIRE

    Jaworski, Alexander; Smith, Cynthia L.; Burden, Steven J.

    2007-01-01

    The mRNAs encoding postsynaptic components at the neuromuscular junction are concentrated in the synaptic region of muscle fibers. Accumulation of these RNAs in the synaptic region is mediated, at least in part, by selective transcription of the corresponding genes in synaptic myofiber nuclei. The transcriptional mechanisms that are responsible for synapse-specific gene expression are largely unknown, but an Ets site in the promoter regions of acetylcholine receptor (AChR) subunit genes and o...

  3. Microbiome and immunological interactions.

    Science.gov (United States)

    Kelly, Denise; Mulder, Imke E

    2012-08-01

    The healthy human gut supports a complex and diverse microbiota, dominated by bacterial phylotypes belonging to Bacteroidetes and Firmicutes. In the inflamed gut, overall diversity decreases, coincident with a greater representation of Proteobacteria. There is growing evidence supporting an important role for human gut bacteria in mucosal immunity; interactions at the level of both intestinal and colonic epithelial cells, dendritic cells, and T and B immune cells have been documented. These interactions influence gut barrier and defense mechanisms that include antimicrobial peptide and secretory IgA synthesis. The functional effects of commensal bacteria on T helper cell differentiation have led to the emerging concept that microbiota composition determines T effector- and T regulatory-cell balance, immune responsiveness, and homeostasis. The importance of this biology in relation to immune homeostasis, inflammatory bowel disease, and the rising incidence of autoimmune diseases will be discussed. The detailed description of the human gut microbiota, integrated with evidence-based mechanisms of immune modulation, provides an exciting platform for the identification of next-generation probiotics and related pharmaceutical products. PMID:22861803

  4. Dietary fish oil and DHA down-regulate antigen-activated CD4+ T-cells while promoting the formation of liquid-ordered mesodomains.

    Science.gov (United States)

    Kim, Wooki; Barhoumi, Rola; McMurray, David N; Chapkin, Robert S

    2014-01-28

    We have demonstrated previously that n-3 PUFA endogenously produced by fat-1 transgenic mice regulate CD4+ T-cell function by affecting the formation of lipid rafts, liquid-ordered mesodomains in the plasma membrane. In the present study, we tested the effects of dietary sources of n-3 PUFA, i.e. fish oil (FO) or purified DHA, when compared with an n-6 PUFA-enriched maize oil control diet in DO11.10 T-cell receptor transgenic mice. Dietary n-3 PUFA were enriched in CD4+ T-cells, resulting in the increase of the n-3:n-6 ratio. Following antigen-specific CD4+ T-cell activation by B-lymphoma cells pulsed with the ovalbumin 323-339 peptide, the formation of liquid-ordered mesodomains at the immunological synapse relative to the whole CD4+ T-cell, as assessed by Laurdan labelling, was increased (P< 0·05) in the FO-fed group. The FO diet also suppressed (P< 0·05) the co-localisation of PKCθ with ganglioside GM1 (monosialotetrahexosylganglioside), a marker for lipid rafts, which is consistent with previous observations. In contrast, the DHA diet down-regulated (P< 0·05) PKCθ signalling by moderately affecting the membrane liquid order at the immunological synapse, suggesting the potential contribution of the other major n-3 PUFA components of FO, including EPA. PMID:23962659

  5. Diverse strategies engaged in establishing stereotypic wiring patterns among neurons sharing a common input at the visual system's first synapse

    OpenAIRE

    Dunn, Felice A.; Wong, Rachel O. L.

    2012-01-01

    Sensory circuits use common strategies such as convergence and divergence, typically at different synapses, to pool or distribute inputs. Inputs from different presynaptic cell types converge onto a common postsynaptic cell, acting together to shape neuronal output (Klausberger and Somogyi, 2008). Also, individual presynaptic cells contact several postsynaptic cell types, generating divergence of signals. Attaining such complex wiring patterns relies on the orchestration of many events across...

  6. Immunological self, nonself discrimination

    DEFF Research Database (Denmark)

    Guillet, J G; Lai, M Z; Briner, T J;

    1987-01-01

    The ability of immunodominant peptides derived from several antigen systems to compete with each other for T cell activation was studied. Only peptides restricted by a given transplantation antigen are mutually competitive. There is a correlation between haplotype restriction, ability to bind to ...... that provides a basis for explaining self, nonself discrimination as well as alloreactivity....

  7. The double helix and immunology

    Science.gov (United States)

    Nossal, Gustav J. V.

    2003-01-01

    The immune system can recognize and produce antibodies to virtually any molecule in the Universe. This enormous diversity arises from the ingenious reshuffling of DNA sequences encoding components of the immune system. Immunology is an example of a field completely transformed during the past 50 years by the discovery of the structure of DNA and the emergence of DNA technologies that followed.

  8. Perioperative period: immunological modifications.

    Science.gov (United States)

    Cardinale, F; Chinellato, I; Caimmi, S; Peroni, D G; Franceschini, F; Miraglia Del Giudice, M; Bernardini, R

    2011-01-01

    Surgical stress induces complex modifications in the hemodynamic, metabolic, neuro-hormonal and immune response of the individual. The magnitude of these alterations depends on preoperative events leading to surgery, the severity of surgical trauma, and also on post-operative/post-traumatic complications (multiple hit hypothesis). As in other conditions of tissue damage, surgery trauma is followed by an immune-inflammatory response, initiated at the site of injury by the innate immune system, followed by a compensatory anti-inflammatory (or immunosuppressive) response (CARS), involving mainly cells of the adaptive immune system, which predispose the host to septic complications. The up-regulated inflammatory response, together with a profound impairment of macrophage and cell-mediated immunity, appear to be the cause for patients' increased susceptibility in developing subsequent sepsis after major surgery. PMID:22014920

  9. Immunology of BVDV vaccines.

    Science.gov (United States)

    Ridpath, Julia F

    2013-01-01

    Providing acquired immune protection against infection with bovine viral diarrhea viruses (BVDV) is challenging due to the heterogeneity that exists among BVDV strains and the ability of the virus to infect the fetus and establish persistent infections. Both modified live and killed vaccines have been shown to be efficacious under controlled conditions. Both humoral and cellular immune responses are protective. Following natural infection or vaccination with a modified live vaccine, the majority of the B cell response (as measured by serum antibodies) is directed against the viral proteins E2 and NS2/3, with minor responses against the Erns and E1 proteins. Vaccination with killed vaccines results in serum antibodies directed mainly at the E2 protein. It appears that the major neutralizing epitopes are conformational and are located within the N-terminal half of the E2 protein. While it is thought that the E2 and NS2/3 proteins induce protective T cell responses, these epitopes have not been mapped. Prevention of fetal infections requires T and B cell response levels that approach sterilizing immunity. The heterogeneity that exists among circulating BVDV strains, works against establishing such immunity. Vaccination, while not 100% effective in every individual animal, is effective at the herd level. PMID:22883306

  10. 42 CFR 493.921 - Diagnostic immunology.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Diagnostic immunology. 493.921 Section 493.921... Testing Proficiency Testing Programs by Specialty and Subspecialty § 493.921 Diagnostic immunology. The subspecialties under the specialty of immunology for which a program may offer proficiency testing are...

  11. Assessing immunological properties of biomaterials for bone regeneration applications

    Czech Academy of Sciences Publication Activity Database

    Šírová, Milada

    Cambridge : ELSEVIER - WoodHead Publishing, 2014 - (Dubruel, P.; Van Vlierberghe, S.), s. 324-348 ISBN 978-0-85709-804-7 Institutional support: RVO:61388971 Keywords : immunocompatibility of biomaterials * acute and chronic inflammation * maturation of dendritic cells Subject RIV: EC - Immunology

  12. Carrier priming effect of CRM197 is related to an enhanced B and T cell activation in meningococcal serogroup A conjugate vaccination. Immunological comparison between CRM197 and diphtheria toxoid.

    Science.gov (United States)

    Pecetta, S; Tontini, M; Faenzi, E; Cioncada, R; Proietti, D; Seubert, A; Nuti, S; Berti, F; Romano, M R

    2016-04-29

    Glycoconjugate vaccines are composed of capsular polysaccharides (CPSs) of a pathogenic bacteria covalently linked to carrier proteins. Pre-exposure to the carrier is known to influence the efficacy of the glycoconjugate, by inducing enhanced or suppressed anti-CPS response. Following our previous work on the immunogenicity of diphtheria toxin mutant CRM197 and formaldehyde-treated diphtheria toxoid (DT) as carriers for meningococcal A (MenA) conjugates in mouse model, we further investigated the role of the carrier on the immunological response to glycoconjugate vaccines. We previously showed that high dosage DT priming could result in carrier-induced epitopic suppression (CIES), an event that did not occur for CRM197 priming, and we observed that anti-DT IgGs could cross-react with DT based conjugates in vitro. Here, we confirmed the cross-reactivity of anti-carrier IgGs with DT conjugates in vivo. Furthermore, we analyzed the splenocytes of animals primed with the carrier and subsequently immunized with the MenA conjugate. Pre-exposure to the carrier protein, both CRM197 and DT, resulted in increased carrier-specific plasma and memory B cell response. However, only for CRM197 priming an enhanced carbohydrate-specific plasma cell response was observed. Analysis of circulating IgGs confirmed these observations. Memory to the CPS resulted to be non-influenced by carrier priming. Analysis of T helper response showed an enhancement effect for CRM197 priming, while DT priming resulted in constrained T cell activation. Stimulation with CRM197, which does not require formaldehyde detoxification, of splenocytes from animal immunized with DT suggested that the formaldehyde treatment used to produce DT might be the cause of limited presentation of the antigen to the T cells. We concluded that the dominant carrier-specific B cell response in case of limited T cell recruitment might explain the previously observed CIES phenomenon in case of DT priming. PMID:27015733

  13. Immunology of hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Hepatocellular carcinoma (HCC) is primarily a malignancyof the liver, advancing from a damaged, cirrhoticliver to HCC. Globally, HCC is the sixth most prevalentcancer and the third-most prevalent reason for neoplasticdisease-related deaths. A diverse array ofinfiltrating immunocytes regulates the developmentand progression of HCC, as is the case in many othercancers. An understanding of the various immunecomponents during HCC becomes necessary so thatnovel therapeutic strategies can be designed to combatthe disease. A dysregulated immune system (includingchanges in the number and/or function of immunecells, cytokine levels, and the expression of inhibitoryreceptors or their ligands) plays a key role in thedevelopment of HCC. Alterations in either the innateor adaptive arm of the immune system and cross-talkbetween them make the immune system tolerant totumors, leading to disease progression. In this review,we have discussed the status and roles of variousimmune effector cells (e.g. , dendritic cells, natural killercells, macrophages, and T cells), their cytokine profile,and the chemokine-receptor axis in promoting orimpeding HCC.

  14. Immunological studies in diabetics

    International Nuclear Information System (INIS)

    Circulating immune complexes (CIC) were detected by a solid-phase Clq-binding radioassay in 13.7% of 73 insulin-dependent diabetics (IDD) as compared to 8.6% of 35 non-insulin-dependent diabetics (NIDD) and 8.3% of 24 control subjects. Islet cell antibodies (ICAb) were detected by the indirect immunofluorescent method in 31.5% of 73 IDD as compared to 8.6% of 35 NIDD and 0% of 24 control subjects. A significant correlation between the incidence of CIC and the incidence of ICAb in IDD was detected and this is in support to the concept that islet cell antibodies are involved in the formation of CIC. The possible role of immuno-pathological mechanism that might be involved is discussed on the base of the significant correlation detected between CIC and ICAb on one hand, and positive diabetic family history, high levels of fasting blood sugar and low levels of fasting insulin level, on the other hand, in Saudi IDD. (author)

  15. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    Science.gov (United States)

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il; Yoo, Young-Choon; Byun, Myung-Woo; Hwang, Young-Jeong; Lee, Ju-Woon

    2009-07-01

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-α and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX ( Pstatistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  16. Mechanisms of immunological eradication of a syngeneic guinea pig tumor. II. Effect of methotrexate treatment and T cell depletion of the recipient on adoptive immunity

    Energy Technology Data Exchange (ETDEWEB)

    Shu, S.; Fonseca, L.S.; Hunter, J.T.; Rapp, H.J.

    1983-01-01

    The influence of methotrexate on the development of immunity to the line 10 hepatoma was studied in guinea pigs. Chronic methotrexate treatment had no apparent effect on the ability of immune guinea pigs to suppress the growth of inoculated tumor cells. In contrast, the same methotrexate regimen inhibited the development of tumor immunity if started before the 8th day after immunization with a vaccine containing viable line 10 cells admixed with Bacillus Calmette-Guerin (BCG) cell walls. Thus, methotrexate selectively inhibited the afferent limb of the immune response. In adoptive transfer experiments, methotrexate-treated recipient guinea pigs were capable of being passively sensitized with immune spleen cells, indicating that the primary cell-mediated immune response of the recipient was not required for adoptive immunity. The contribution of recipient T cells in adoptive immunity was further investigated in guinea pigs deleted of T cells by thymectomy, irradiation, and bone marrow reconstitution. Despite demonstrable deficiency in T lymphocyte reactions, B animals were fully capable of rejecting tumors after transfer of immune cells. These results suggest that the expression of adoptive immunity was independent of recipient T cell participation. In addition, sublethal irradiation of immune spleen cells prior to adoptive transfer abolished their efficacy. Proliferation of transferred immune cells in the recipient may be essential for expression of adoptive immunity.

  17. Mechanisms of immunological eradication of a syngeneic guinea pig tumor. II. Effect of methotrexate treatment and T cell depletion of the recipient on adoptive immunity

    International Nuclear Information System (INIS)

    The influence of methotrexate on the development of immunity to the line 10 hepatoma was studied in guinea pigs. Chronic methotrexate treatment had no apparent effect on the ability of immune guinea pigs to suppress the growth of inoculated tumor cells. In contrast, the same methotrexate regimen inhibited the development of tumor immunity if started before the 8th day after immunization with a vaccine containing viable line 10 cells admixed with Bacillus Calmette-Guerin (BCG) cell walls. Thus, methotrexate selectively inhibited the afferent limb of the immune response. In adoptive transfer experiments, methotrexate-treated recipient guinea pigs were capable of being passively sensitized with immune spleen cells, indicating that the primary cell-mediated immune response of the recipient was not required for adoptive immunity. The contribution of recipient T cells in adoptive immunity was further investigated in guinea pigs deleted of T cells by thymectomy, irradiation, and bone marrow reconstitution. Despite demonstrable deficiency in T lymphocyte reactions, B animals were fully capable of rejecting tumors after transfer of immune cells. These results suggest that the expression of adoptive immunity was independent of recipient T cell participation. In addition, sublethal irradiation of immune spleen cells prior to adoptive transfer abolished their efficacy. Proliferation of transferred immune cells in the recipient may be essential for expression of adoptive immunity

  18. Synapses, synaptic activity and intraneuronal Aβ in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Davide Tampellini

    2010-05-01

    Full Text Available β-amyloid peptide accumulation plays a central role in the pathogenesis of Alzheimer’s disease. Aberrant β-amyloid buildup in the brain has been shown to be present both in the extracellular space and within neurons. Synapses are important targets of β-amyloid, and alterations in synapses better correlate with cognitive impairment than amyloid plaques or neurofibrillary tangles. The link between β-amyloid and synapses became even tighter when it was discovered that β-amyloid accumulates within synapses and that synaptic activity modulates β-amyloid secretion. Currently, a central question in Alzheimer’s disease research is what role synaptic activity plays in the disease process, and how specifically β-amyloid is involved in the synaptic dysfunction that characterizes the disease.

  19. Direct imaging of lateral movements of AMPA receptors inside synapses

    CERN Document Server

    Tardin, Catherine; Bats, Cécile; Lounis, Brahim; Choquet, Daniel

    2003-01-01

    Trafficking of AMPA receptors in and out of synapses is crucial for synaptic plasticity. Previous studies have focused on the role of endo/exocytosis processes or that of lateral diffusion of extra-synaptic receptors. We have now directly imaged AMPAR movements inside and outside synapses of live neurons using single-molecule fluorescence microscopy. Inside individual synapses, we found immobile and mobile receptors, which display restricted diffusion. Extra-synaptic receptors display free diffusion. Receptors could also exchange between these membrane compartments through lateral diffusion. Glutamate application increased both receptor mobility inside synapses and the fraction of mobile receptors present in a juxtasynaptic region. Block of inhibitory transmission to favor excitatory synaptic activity induced a transient increase in the fraction of mobile receptors and a decrease in the proportion of juxtasynaptic receptors. Altogether, our data show that rapid exchange of receptors between a synaptic and ext...

  20. Advanced Fluorescence Protein-Based Synapse-Detectors.

    Science.gov (United States)

    Lee, Hojin; Oh, Won Chan; Seong, Jihye; Kim, Jinhyun

    2016-01-01

    The complex information-processing capabilities of the central nervous system emerge from intricate patterns of synaptic input-output relationships among various neuronal circuit components. Understanding these capabilities thus requires a precise description of the individual synapses that comprise neural networks. Recent advances in fluorescent protein engineering, along with developments in light-favoring tissue clearing and optical imaging techniques, have rendered light microscopy (LM) a potent candidate for large-scale analyses of synapses, their properties, and their connectivity. Optically imaging newly engineered fluorescent proteins (FPs) tagged to synaptic proteins or microstructures enables the efficient, fine-resolution illumination of synaptic anatomy and function in large neural circuits. Here we review the latest progress in fluorescent protein-based molecular tools for imaging individual synapses and synaptic connectivity. We also identify associated technologies in gene delivery, tissue processing, and computational image analysis that will play a crucial role in bridging the gap between synapse- and system-level neuroscience. PMID:27445785

  1. Synapse Loss in Olfactory Local Interneurons Modifies Perception

    OpenAIRE

    Acebes-Vindel, José Ángel; Martín-Peña, Alfonso; Chevalier, Valérie; Ferrús, Alberto

    2011-01-01

    Synapse loss correlates with cognitive decline in aging and most neurological pathologies. Sensory perception changes often represent subtle dysfunctions that precede the onset of a neurodegenerative disease. However, a cause–effect relationship between synapse loss and sensory perception deficits is difficult to prove and quantify due to functional and structural adaptation of neural systems. Here we modified a PI3K/AKT/GSK3 signaling pathway to reduce the number of synapses—without affectin...

  2. Opposite actions of nitric oxide on cholinergic synapses: which pathways?

    OpenAIRE

    Mothet, J P; Fossier, P; Tauc, L; Baux, G

    1996-01-01

    Nitric oxide (NO) produced opposite effects on acetylcholine (ACh) release in identified neuroneuronal Aplysia synapses depending on the excitatory or the inhibitory nature of the synapse. Extracellular application of the NO donor, SIN-1, depressed the inhibitory postsynaptic currents (IPSCs) and enhanced the excitatory postsynaptic currents (EPSCs) evoked by presynaptic action potentials (1/60 Hz). Application of a membrane-permeant cGMP analog mimicked the effect of SIN-1 suggesting the par...

  3. A New Efficient-Silicon Area MDAC Synapse

    OpenAIRE

    Zied Gafsi; Nejib Hassen; Mongia Mhiri; Kamel Besbes

    2007-01-01

    Using the binary representation in the Multiplier digital to analog converter (MDAC) synapse designs have crucial drawbacks. Silicon area of transistors, constituting the MDAC circuit, increases exponentially according to the number of bits. This latter is generated by geometric progression of common ratio equal to 2. To reduce this exponential increase to a linear growth, a new synapse named Arithmetic MDAC (AMDAC) is designed. It functions with a new representation based on arithmetic progr...

  4. Low voltage and time constant organic synapse-transistor

    OpenAIRE

    Desbief, Simon; Kyndiah, Adrica; Guerin, David; Gentili, Denis; Murgia, Mauro; Lenfant, Stéphane; Alibart, Fabien; Cramer, Tobias; Biscarini, Fabio; Vuillaume, Dominique

    2015-01-01

    We report on an artificial synapse, an organic synapse-transistor (synapstor) working at 1 volt and with a typical response time in the range 100-200 ms. This device (also called NOMFET, Nanoparticle Organic Memory Field Effect Transistor) combines a memory and a transistor effect in a single device. We demonstrate that short-term plasticity (STP), a typical synaptic behavior, is observed when stimulating the device with input spikes of 1 volt. Both significant facilitating and depressing beh...

  5. Imaging Structural Plasticity Of Synapses In The Brain

    OpenAIRE

    Yu, Xinzhu

    2012-01-01

    Synapses are the sites where neurons contact each other and exchange information in the brain. Experience-dependent changes in synaptic connections are fundamental for numerous neurological processes, ranging from the development of neuronal circuitry to learning and memory. Dendritic spines are the postsynaptic sites of the majority of excitatory synapses in the mammalian central nervous system. The morphology and dynamics of dendritic spines change throughout the lifespan of animals, espe...

  6. Functions of axon guidance molecules in synapse formation

    OpenAIRE

    Chen, Shih-Yu; Cheng, Hwai-Jong

    2009-01-01

    Axon guidance and synapse formation are important developmental events for establishing a functional neuronal circuitry. These two related cellular processes occur in a coordinated fashion but previous studies from multiple model organisms seemed to suggest that axon guidance and synapse formation are mediated by distinct molecular cues. Thus, axon guidance molecules are responsible for guiding the navigating axon toward its target area, while other adhesion or ligand-receptor molecules speci...

  7. Silent Synapse-Based Circuitry Remodeling in Drug Addiction

    OpenAIRE

    Dong, Yan

    2015-01-01

    Exposure to cocaine, and likely other drugs of abuse, generates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-silent glutamatergic synapses in the nucleus accumbens. These immature synaptic contacts evolve after drug withdrawal to redefine the neurocircuital properties. These results raise at least three critical questions: (1) what are the molecular and cellular mechanisms that mediate drug-induced generation of silent synapses; (2) how are neurocircuits remodeled upon genera...

  8. Immunological characteristics and transplantation of bone marrow mesenchymal stem cells in treatment of spinal cord injury%骨髓间充质干细胞免疫学特性及其移植治疗脊髓损伤

    Institute of Scientific and Technical Information of China (English)

    刘筱; 许铁

    2011-01-01

    背景:近年来研究表明:骨髓间充质干细胞能在同种异基因,甚至异种基因的环境中长期存活,并且保持多向分化潜能.这一独特的免疫学特性,以及来源丰富、避免伦理问题等优点,可能为治疗脊髓损伤和促进神经功能修复提供了新的途径.目的:对骨髓间充质干细胞的免疫学特性、不同途径移植及其可能机制进行综述,为干细胞治疗脊髓损伤提供理论依据.方法:由第一作者应用计算机检索PubMed 2000-01/2010-09期间相关文章,检索词为"mesenchymal stem cells,bone marrow,immunological characteristics,transplantation,spinal cord injury".纳入标准:文章所述内容应与骨髓间充质干细胞的免疫学特性及其治疗相关研究进展.排除标准:重复研究或者Meta分析类文章.共收集到260篇相关文献,选取33篇文献进入结果分析.结果与结论:骨髓间充质干细胞具有独特的低免疫原性,有助于抑制移植排斥反应.通过不同的移植方法、选择合适的移植途径和时机,均可对脊髓损伤的治疗提供有益的保护作用,其机制可能是神经元替代、分泌神经营养因子、归巢效应等.随着对骨髓间充质干细胞和脊髓损伤机制研究的不断深入,预示着间充质干细胞移植在治疗脊髓损伤后神经功能修复领域,将有着广阔的临床应用前景.%BACKGROUND: Previous studies have confirmed that bone marrow mesenchymal stem cells (BMSCs) can be also transplanted into allogeneic and heterologous gene environment, and maintain multi-directional differentiation potential. It may provide a new path to promote nerve repair after spinal cord injuries for its rich source, avoidance of ethical problem and distinct immunological characteristics.OBJECTIVE: To summarize the immunological characteristics, different pathways of transplantation and its possible mechanisms of BMSCs and to provide theoretical evidence for stem cells in treatment of spinal cord

  9. Endogenous lectins from cultured soybean cells: isolation of a protein immunologically cross-reactive with seed soybean agglutinin and analysis of its role in binding of Rhizobium japonicum

    OpenAIRE

    1986-01-01

    Incubation of Rhizobium japonicum with the cultured soybean cell line SB-1, originally derived from the roots of Glycine max, resulted in specific adhesion of the bacteria to the plant cells. This binding interaction appears to be mediated via carbohydrate recognition, since galactose can inhibit the heterotypic adhesion but glucose cannot. Affinity chromatography, on a Sepharose column derivatized with N- caproyl-galactosamine, of the supernatant fraction of a SB-1 cell suspension after enzy...

  10. Application of a Static Fluorescence-based Cytometer (the CellScan) in Basic Cytometric Studies, Clinical Pharmacology, Oncology and Clinical Immunology

    OpenAIRE

    Michal Harel; Yael S. Schiffenbauer; Boris Gilburd; Yehuda Shoenfeld

    2005-01-01

    The CellScan apparatus is a laser scanning cytometer enabling repetitive fluorescence intensity (FI) and polarization (FP) measurements in living cells, as a means of monitoring lymphocyte activation. The CellScan may serve as a tool for diagnosis of rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) as well as other autoimmune diseases by monitoring FP changes in peripheral blood lymphocytes (PBLs) following expos...

  11. Fmr1 KO and Fenobam Treatment Differentially Impact Distinct Synapse Populations of Mouse Neocortex

    OpenAIRE

    Wang, Gordon X.; Smith, Stephen J.; MOURRAIN, PHILIPPE

    2014-01-01

    Cognitive deficits in fragile X syndrome (FXS) are attributed to molecular abnormalities of the brain’s vast and heterogeneous synapse populations. Unfortunately, the density of synapses coupled with their molecular heterogeneity presents formidable challenges in understanding the specific contribution of synapse changes in FXS. We demonstrate powerful new methods for the large-scale molecular analysis of individual synapses that allow quantification of numerous specific changes in synapse po...

  12. Artificial Synapse Network on Inorganic Proton Conductor for Neuromorphic Systems Applications

    OpenAIRE

    Zhu, Li Qiang; Wan, Chang Jin; Guo, Li Qiang; Shi, Yi; Wan, Qing

    2013-01-01

    The basic units in our brain are neurons and each neuron has more than 1000 synapse connections. Synapse is the basic structure for information transfer in an ever-changing manner, and short-term plasticity allows synapses to perform critical computational functions in neural circuits. Therefore the major challenge for the hardware implementation of neuromorphic computation is to develop artificial synapse. Here, in-plane oxide-based artificial synapse network coupled by proton neurotransmitt...

  13. Endogenous TWEAK is critical for regulating the function of mouse uterine natural killer cells in an immunological model of pregnancy loss.

    Science.gov (United States)

    Qi, Xuefeng; Lei, Mingzhu; Qin, Lijuan; Xie, Mengjie; Zhao, Dandan; Wang, Jingyu

    2016-05-01

    Uterine natural killer (uNK) cells are the most abundant lymphocyte population in the feto-maternal interface during early gestation, and uNK cells play a significant role in the establishment and maintenance of pregnancy-related vascularization, as well as in tolerance to the fetus. Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor, fibroblast growth factor-inducible molecule (Fn14), are involved in preventing local cytotoxicity and counterbalancing the cytotoxic function of uNK cells. Here, we studied the regulation of TWEAK/Fn14-mediated innate immunity in the uterus using a lipopolysaccharide (LPS)-induced model of abortion in pregnant mice. Specifically, we detected the expression of TWEAK and Fn14 in the uterus and in uNK cells following LPS treatment. Our results revealed that TWEAK and Fn14 are expressed by uNK cells in pregnant mice; in particular, it appears that the cytokine TWEAK is primarily derived from uNK cells. Interestingly, the down-regulation of TWEAK in uNK cells and the up-regulation of the Fn14 receptor in the uterus in LPS-treated mice may contribute to the disruption of decidual homeostasis by altering uNK cell cytotoxicity - ultimately leading to fetal rejection. In conclusion, the present study strongly suggests that the TWEAK-Fn14 axis in uNK cells is involved in maintaining the tolerance necessary for successful pregnancy. PMID:27040357

  14. HIV-infected viremic long-term non-progressors and controllers display different immunological mechanisms for preserved CD4+cell counts

    DEFF Research Database (Denmark)

    Gaardbo, J; Ronit, A; Hartling, H;

    2012-01-01

    LTNP (viral load, VL>5000 copies/ml, CD4+ cell count>350 cells/ul, infected>10 years), 30 VC (VL350 cells/ul), and 25 progressors (PR) (VL>5.000 copies/ml, CD4 count>350 cells/ul) were included. Immune activation (CD4+ and CD8+cells co-expressing CD38+HLA-DR+), apoptosis (CD8+CD28-CD95+), Th17 cells...... (CD4+CD161+), and regulatory T cells (Tregs, CD4+CD25+CD127lowFoxP3+) were evaluated using flow cytometry. For statistics Kruskal-Wallis test followed by Mann-Whitney U test were used. Data are given as medians. Summary of results: LTNP had higher frequency of activated CD4+ and CD8+cells compared to...... VC (3.4% vs. 1.6%, P=0.007, 21.7% vs. 12.0%, P=0.051) and similar levels to PR (4.2%, 22.4%, P>0.05). Likewise, LTNP had higher frequency of apoptotic cells compared to VC (63.7% vs. 48.6%, P=0.0408) and similar levels to PR (63.8%, P>0.05). Interestingly, borderline significant trends towards lower...

  15. Immunological and Toxinological Responses to Jellyfish Stings

    Science.gov (United States)

    Tibballs, James; Yanagihara, Angel A.; Turner, Helen C.; Winkel, Ken

    2013-01-01

    Just over a century ago, animal responses to injections of jellyfish extracts unveiled the phenomenon of anaphylaxis. Yet, until very recently, understanding of jellyfish sting toxicity has remained limited. Upon contact, jellyfish stinging cells discharge complex venoms, through thousands of barbed tubules, into the skin resulting in painful and, potentially, lethal envenomations. This review examines the immunological and toxinological responses to stings by prominent species of jellyfish including Physalia sp. (Portuguese Man-o-War, Blue-bottle), Cubozoan jellyfish including Chironex fleckeri, several Carybdeids including Carybdea arborifera and Alatina moseri, Linuche unguiculta (Thimble jellyfish), a jellyfish responsible for Irukandji syndrome (Carukia barnesi) and Pelagia noctiluca. Jellyfish venoms are composed of potent proteinaceous porins (cellular membrane pore-forming toxins), neurotoxic peptides, bioactive lipids and other small molecules whilst the tubules contain ancient collagens and chitins. We postulate that immunologically, both tubular structural and functional biopolymers as well as venom components can initiate innate, adaptive, as well as immediate and delayed hypersensitivity reactions that may be amenable to topical anti-inflammatory-immunomodifier therapy. The current challenge for immunotoxinologists is to deconstruct the actions of venom components to target therapeutic modalities for sting treatment. PMID:21824077

  16. Daily rhythm of synapse turnover in mouse somatosensory cortex.

    Science.gov (United States)

    Jasinska, Malgorzata; Grzegorczyk, Anna; Jasek, Ewa; Litwin, Jan A; Kossut, Malgorzata; Barbacka-Surowiak, Grazyna; Pyza, Elzbieta

    2014-01-01

    The whisker representations in the somatosensory barrel cortex of mice are modulated by sensory inputs associated with animal motor behavior which shows circadian rhythmicity. In a C57/BL mouse strain kept under a light/dark (LD 12:12) regime, we observed daily structural changes in the barrel cortex, correlated with the locomotor activity level. Stereological analysis of serial electron microscopic sections of the barrel cortex of mice sacrificed during their active or rest period, revealed an increase in the total numerical density of synapses and in the density of excitatory synapses located on dendritic spines during the rest, as well as an increase in the density of inhibitory synapses located on double-synapse spines during the active period. This is the first report demonstrating a daily rhythm in remodeling of the mammalian somatosensory cortex, manifested by changes in the density of synapses and dendritic spines. Moreover, we have found that the excitatory and inhibitory synapses are differently regulated during the day/night cycle. PMID:24718049

  17. Calcium channel-dependent molecular maturation of photoreceptor synapses.

    Directory of Open Access Journals (Sweden)

    Nawal Zabouri

    Full Text Available Several studies have shown the importance of calcium channels in the development and/or maturation of synapses. The Ca(V1.4(α(1F knockout mouse is a unique model to study the role of calcium channels in photoreceptor synapse formation. It features abnormal ribbon synapses and aberrant cone morphology. We investigated the expression and targeting of several key elements of ribbon synapses and analyzed the cone morphology in the Ca(V1.4(α(1F knockout retina. Our data demonstrate that most abnormalities occur after eye opening. Indeed, scaffolding proteins such as Bassoon and RIM2 are properly targeted at first, but their expression and localization are not maintained in adulthood. This indicates that either calcium or the Ca(V1.4 channel, or both are necessary for the maintenance of their normal expression and distribution in photoreceptors. Other proteins, such as Veli3 and PSD-95, also display abnormal expression in rods prior to eye opening. Conversely, vesicle related proteins appear normal. Our data demonstrate that the Ca(V1.4 channel is important for maintaining scaffolding proteins in the ribbon synapse but less vital for proteins related to vesicular release. This study also confirms that in adult retinae, cones show developmental features such as sprouting and synaptogenesis. Overall we present evidence that in the absence of the Ca(V1.4 channel, photoreceptor synapses remain immature and are unable to stabilize.

  18. Immunology of Photo(chemotherapy

    Directory of Open Access Journals (Sweden)

    Ekin Şavk

    2010-12-01

    Full Text Available Perhaps the oldest empirical therapeutic modality in the history of medicine, photo(chemotherapy has well documented benefits but its mode of action is not fully elucidated. Today, thanks to advances in photoimmunology and molecular biology we are provided with important clues as to how photo(chemotherapy works. Initial research on UV light and skin cancer has brought about the groundbreaking discovery of the immunological effects UV. UVB is the UV light most frequently used for therapeutic purposes and its mechanisms of action are best demonstrated. UV light has several distinct effects on various components of the innate and acquired immune systems, especially T lymphocyte functions the common endpoint of which is immune supression. The antiproliferative and antifibrotic therapeutic effects of UVA and UVB have so far not been directly associated with immunological mechanisms.

  19. 灵芝多糖对黄颡鱼免疫细胞活性的影响%Effects of Ganoderma lucidum Polysaccharides on the Activation of Immunological Cells of the Yellow Catfish (Pelteobagrus fulvidraco)

    Institute of Scientific and Technical Information of China (English)

    吴旋; 白东清; 杨广; 宁博; 张雪涛; 孙立卓

    2011-01-01

    选取540尾黄颡鱼(Pelteobagrus fulvidraco),连续投喂含不同水平灵芝多糖(300,600,900,1 200,1 500mg/kg)的配合饲料8周.而后采用Percoll密度梯度离心等技术,对黄颡鱼头肾巨噬细胞与外周血白细胞进行分离纯化,使用NBT还原法、Griesse试剂显色法与MTT法测定头肾巨噬细胞呼吸爆发活性与外周血白细胞的增殖能力,探讨灵芝多糖对黄颡鱼免疫细胞活性的影响.结果表明,灵芝多糖各水平组均能显著提高黄颡鱼头肾巨噬细胞的氧呼吸爆发活性和外周血白细胞的增殖能力(P<0.01);投喂灵芝多糖饲料后,各组头肾巨噬细胞氮呼吸爆发活性虽有提高,但只有1 200~1 500mg/kg水平组为极显著提高(P<0.01).灵芝多糖可以有效提高黄颡鱼免疫细胞的活性.%In this test, 540 yellow catfish (Pelteobagrusfulvidraco) were selected, and fed with different levels of Ganoderma lucidum Polysaccharides (300, 600, 900, 1 200, 1 500 mg/kg diet, respectively) for 8 weeks. Then the head kidney macrophages and peripheral blood leukocytes of yellow catfish were separated by Percoll continuous density gradient centrifugation. NBT reduction, Griesse reagent coloration and MTT assay were respectively used to evaluate the respiratory burst activity of head kidney macrophages and proliferation of peripheral blood leukocytes , in order to discuss the effects of CLP on the activation of immunological cells of yellow catfish. The results showed that: the activity of oxygen respiratory burst activity of head kidney macrophages and the activity of proliferation of peripheral blood leukocytes of every levels of GLP group were extremely enhanced ( P <0. 01). Although the nitrogen respiratory burst activities of every level of GLP group were increased, only activities of 1 200 - 1 500 mg/kg GLP groups were obviously improved (P<0.01). As a result, Ganodeima lucidum polysaccharides could effectively enhance the activation of immunological cells of the

  20. Nonlinear Synapses for Large-Scale Models: An Efficient Representation Enables Complex Synapse Dynamics Modeling in Large-Scale Simulations

    OpenAIRE

    Eric eHu; Jean-Marie Charles Bouteiller; Dong eSong; Michel eBaudry; Theodore W. Berger

    2015-01-01

    Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintai...

  1. Ratio of Circulating IFNγ+ “Th17 Cells” in Memory Th Cells Is Inversely Correlated with the Titer of Anti-CCP Antibodies in Early-Onset Rheumatoid Arthritis Patients Based on Flow Cytometry Methods of the Human Immunology Project

    Science.gov (United States)

    Kotake, Shigeru; Nanke, Yuki; Yago, Toru; Kawamoto, Manabu; Kobashigawa, Tsuyoshi; Yamanaka, Hisashi

    2016-01-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease with chronic joint inflammation characterized by activated T cells. IL-17 and Th17 cells play important roles in the pathogenesis of RA. Recently, plasticity in helper T cells has been demonstrated; Th17 cells can convert to Th1 cells. However, it remains to be elucidated whether this conversion occurs in the early phase of RA. Here, we validated the methods of the Human Immunology Project using only the cell-surface marker through measuring the actual expression of IL-17 and IFNγ. We also evaluated the expression of CD161 in human Th17 cells. We then tried to identify Th17 cells, IL-17+Th17 cells, and IFNγ+Th17 cells in the peripheral blood of early-onset RA patients using the standardized method of the Human Immunology Project. Our findings validated the method and the expression of CD161. The ratio of IFNγ+Th17 cells in memory T cells was inversely correlated to the titers of anti-CCP antibodies in the early-onset RA patients. These findings suggest that Th17 cells play important roles in the early phase of RA and that anti-IL-17 antibodies should be administered to patients with early phase RA, especially those with high titers of CCP antibodies. PMID:27294146

  2. Gephyrin phosphorylation in the functional organization and plasticity of GABAergic synapses

    Directory of Open Access Journals (Sweden)

    Paola Zacchi

    2014-04-01

    Full Text Available Gephyrin is a multifunctional scaffold protein essential for the postsynaptic accumulation of inhibitory glycine and GABAA receptors at synaptic sites. The molecular events involved in gephyrin-dependent GABAA receptor clustering are still unclear. Evidence has been recently provided that gephyrin phosphorylation plays a key role in these processes. By impinging upon its post-synaptic scaffolding properties as well as its stability, gephyrin post-translational modifications have been shown to impact on the structural remodeling of GABAergic synapses leading to synaptic plasticity. In addition, not only gephyrin phosphorylation per se but also the subsequent phosphorylation-dependent recruitment of the chaperone molecule Pin1 represents an emerging mechanism to regulate GABAergic signaling. Extensively characterized as pivotal enzyme controlling cell proliferation and differentiation, the prolyl-isomerase activity of Pin1 has been shown to regulate protein synthesis necessary to sustain the late phase of long-term potentiation at excitatory synapses, thus suggesting its involvement at synaptic sites. In this review we will summarize the current state of knowledge on the signaling pathways responsible for gephyrin post-translational modifications. We will also outline future lines of research that might contribute to better unveil the molecular mechanisms by which gephyrin regulates synaptic plasticity processes at GABAergic synapses.

  3. Comparative evaluation of synaptophysin-based methods for quantification of synapses.

    Science.gov (United States)

    Calhoun, M E; Jucker, M; Martin, L J; Thinakaran, G; Price, D L; Mouton, P R

    1996-12-01

    Development, ageing, and a variety of neurological disorders are characterized by selective alterations in specific populations of nerve cells which are, in turn, associated with changes in the numbers of synapses in the target fields of these neurons. To begin to delineate the significance of changes in synapses in development, ageing, and disease, it is first essential to quantify the number of synapses in defined regions of the CNS. In the past, investigators have used EM methods to assess synapse numbers or density, but these approaches are costly, labour intensive, and technically difficult, particularly in autopsy material. To begin to define reliable strategies useful for studies of both animals and humans, we used three techniques to measure synaptophysin-immunoreactivity in rat brain. The levels of synaptophysin protein were determined by Western blots of five hippocampal subregions; the intensity of synaptophysin-immunoreactivity in dentate gyrus and stratum oriens was determined by optical densitometry of immunocytochemically stained sections; and the total number of synaptophysin-immunoreactivity presynaptic boutons in dentate gyrus and stratum oriens was assessed by unbiased stereology. Each approach has advantages and disadvantages. Western blotting is the least time-consuming of the three methods and allows simultaneous processing of multiple samples. In systematically sampled histological sections, both densitometry and stereology allow precise definition of the region of interest, and the stereological optical dissector method allows quantitation of the numbers of synaptophysin-immunoreactive boutons. Stereology was the only method that clearly demonstrated greater synaptophysin-immunoreactivity in the dentate gyrus as compared to stratum oriens. The use of systematic sampling and the dissector technique offer a high degree of anatomical resolution (lacking in Western blot methods) and has quantitative advantage over the greyscale-based density

  4. Noise-induced damage to ribbon synapses without permanent threshold shifts in neonatal mice.

    Science.gov (United States)

    Shi, L; Guo, X; Shen, P; Liu, L; Tao, S; Li, X; Song, Q; Yu, Z; Yin, S; Wang, J

    2015-09-24

    Recently, ribbon synapses to the hair cells (HCs) in the cochlea have become a novel site of interest in the investigation of noise-induced cochlear lesions in adult rodents (Kujawa and Liberman, 2009; Lin et al., 2011; Liu et al., 2012; Shi et al., 2013). Permanent noise-induced damage to this type of synapse can result in subsequent degeneration of spiral ganglion neurons (SGNs) in the absence of permanent changes to hearing sensitivity. To verify whether noise exposure during an early developmental period produces a similar impact on ribbon synapses, the present study examined the damaging effects of noise exposure in neonatal Kunming mice. The animals received exposure to broadband noise at 105-decibel (dB) sound pressure level (SPL) for 2h on either postnatal day 10 (P10d) or postnatal day 14 (P14d), and then hearing function (based on the auditory brainstem response (ABR)) and cochlear morphology were evaluated during either postnatal weeks 3-4 (P4w) or postnatal weeks 7-8 (P8w). There were no significant differences in the hearing threshold between noise-exposed and control animals, which suggests that noise did not cause permanent loss of hearing sensitivity. However, noise exposure did produce a significant loss of ribbon synapses, particularly in P14d mice, which continued to increase from P4w to P8w. Additionally, a corresponding reduction in the amplitude of compound action potential (CAP) was observed in the noise-exposed groups at P4w and P8w, and the CAP latency was elongated, indicating a change in synaptic function. PMID:26232715

  5. Characterization of a new cell-bound alpha-amylase in Bacillus subtilis 168 Marburg that is only immunologically related to the exocellular alpha-amylase.

    OpenAIRE

    Haddaoui, E; Petit-Glatron, M F; Chambert, R

    1995-01-01

    Immunoblot analysis of Bacillus subtilis cell extracts with polyclonal antibodies, raised against purified exocellular alpha-amylase, revealed one protein species of 82,000 Da. This protein was found even in cells in which the amyE gene, encoding exocellular alpha-amylase, was disrupted. Isolated from the membrane fraction, the 82,000-M(r) protein displayed an alpha-amylase activity in vitro.

  6. In vitro studies: The role of immunological cells in Indonesian thin tail sheep in the killing of the liver fluke, Fasciola

    Directory of Open Access Journals (Sweden)

    S.E Estuningsih

    2002-06-01

    Full Text Available Previous studies have shown that Indonesian Thin Tail (ET sheep exhibit high resistance to challenge with Fasciola gigantica when compared with Merino sheep, and this resistance is expressed in early infection. In order to study the role of the immune system in this resistance to ET sheep, in vitro studies were undertaken in the laboratory. In vitro study to confirm the ability of immune cells from ET sheep in the killing of F. gigantica larvae has been done by incubating immune cells and F. gigantica larvae together with immune sera or normal sera. The viability of the larvae was observed over a period 3 days incubation by observing their motility. The results showed that the cells isolated from F. gigantica- challenged ET sheep in the presence of immune sera from ET were able to kill 70% of the larvae. In contrast, cells from infected Merino were unable to kill a significant number of F. gigantica using the same sera source. It seems that the cytotoxicity was dependent on the presence of immune sera and ET peritoneal cells, suggesting the potential role of an antibody-dependent cell cytotoxic (ADCC mechanism in the resistant ET sheep.

  7. A critical role of T follicular helper cells in human mucosal anti-influenza response that can be enhanced by immunological adjuvant CpG-DNA.

    Science.gov (United States)

    Aljurayyan, A N; Sharma, R; Upile, N; Beer, H; Vaughan, C; Xie, C; Achar, P; Ahmed, M S; McNamara, P S; Gordon, S B; Zhang, Q

    2016-08-01

    T Follicular helper cells (TFH) are considered critical for B cell antibody response, and recent efforts have focused on promoting TFH in order to enhance vaccine efficacy. We studied the frequency and function of TFH in nasopharynx-associated lymphoid tissues (NALT) from children and adults, and its role in anti-influenza antibody response following stimulation by a live-attenuated influenza vaccine (LAIV) or an inactivated seasonal virus antigen (sH1N1). We further studied whether CpG-DNA promotes TFH and by which enhances anti-influenza response. We showed NALT from children aged 1.5-10 years contained abundant TFH, suggesting efficient priming of TFH during early childhood. Stimulation by LAIV induced a marked increase in TFH that correlated with a strong production of anti-hemagglutinin (HA) IgA/IgG/IgM antibodies in tonsillar cells. Stimulation by the inactivated sH1N1 antigen induced a small increase in TFH which was markedly enhanced by CpG-DNA, accompanied by enhanced anti-HA antibody responses. In B cell co-culture experiment, anti-HA responses were only seen in the presence of TFH, and addition of plasmacytoid dendritic cell to TFH-B cell co-culture enhanced the TFH-mediated antibody production following CpG-DNA and sH1N1 antigen stimulation. Induction of TFH differentiation from naïve T cells was also shown following the stimulation. Our results support a critical role of TFH in human mucosal anti-influenza antibody response. Use of an adjuvant such as CpG-DNA that has the capacity to promote TFH by which to enhance antigen-induced antibody responses in NALT tissue may have important implications for future vaccination strategies against respiratory pathogens. PMID:27247060

  8. Severe disruption of the cytoskeleton and immunologically relevant surface molecules in a human macrophageal cell line in microgravity-Results of an in vitro experiment on board of the Shenzhou-8 space mission

    Science.gov (United States)

    Paulsen, Katrin; Tauber, Svantje; Goelz, Nadine; Simmet, Dana Michaela; Engeli, Stephanie; Birlem, Maria; Dumrese, Claudia; Karer, Anissja; Hunziker, Sandra; Biskup, Josefine; Konopasek, Shalimar; Suh, Durie; Hürlimann, Eva; Signer, Christoph; Wang, Anna; Sang, Chen; Grote, Karl-Heinrich; Zhuang, Fengyuan; Ullrich, Oliver

    2014-01-01

    During spaceflight the immune system is one of the most affected systems of the human body. During the SIMBOX (Science in Microgravity Box) mission on Shenzhou-8, we investigated microgravity-associated long-term alterations in macrophageal cells, the most important effector cells of the immune system. We analyzed the effect of long-term microgravity on the cytoskeleton and immunologically relevant surface molecules. Human U937 cells were differentiated into a macrophageal phenotype and exposed to microgravity or 1g on a reference centrifuge on-orbit for 5 days. After on-orbit fixation, the samples were analyzed with immunocytochemical staining and confocal microscopy after landing. The unmanned Shenzhou-8 spacecraft was launched on board a Long March 2F (CZ-2F) rocket from the Jiuquan Satellite Launch Center (JSLC) and landed after a 17-day-mission. We found a severely disturbed actin cytoskeleton, disorganized tubulin and distinctly reduced expression of CD18, CD36 and MHC-II after the 5 days in microgravity. The disturbed cytoskeleton, the loss of surface receptors for bacteria recognition, the activation of T lymphocytes, the loss of an important scavenger receptor and of antigen-presenting molecules could represent a dysfunctional macrophage phenotype. This phenotype in microgravity would be not capable of migrating or recognizing and attacking pathogens, and it would no longer activate the specific immune system, which could be investigated in functional assays. Obviously, the results have to be interpreted with caution as the model system has some limitations and due to numerous technical and biological restrictions (e.g. 23 °C and no CO2 supply during in-flight incubation). All parameter were carefully pre-tested on ground. Therefore, the experiment could be adapted to the experimental conditions available on Shenzhou-8.

  9. Transient B-Cell Depletion with Anti-CD20 in Combination with Proinsulin DNA Vaccine or Oral Insulin: Immunologic Effects and Efficacy in NOD Mice

    OpenAIRE

    Ghanashyam Sarikonda; Sowbarnika Sachithanantham; Yulia Manenkova; Tinalyn Kupfer; Amanda Posgai; Clive Wasserfall; Philip Bernstein; Laura Straub; Pagni, Philippe P.; Darius Schneider; Teresa Rodriguez Calvo; Marilyne Coulombe; Kevan Herold; Gill, Ronald G.; Mark Atkinson

    2013-01-01

    A recent type 1 diabetes (T1D) clinical trial of rituximab (a B cell-depleting anti-CD20 antibody) achieved some therapeutic benefit in preserving C-peptide for a period of approximately nine months in patients with recently diagnosed diabetes. Our previous data in the NOD mouse demonstrated that co-administration of antigen (insulin) with anti-CD3 antibody (a T cell-directed immunomodulator) offers better protection than either entity alone, indicating that novel combination therapies that i...

  10. Elucidating the immunological effects of 5-azacytidine treatment in patients with myelodysplastic syndrome and identifying new conditional ligands and T-cell epitopes of relevance in melanoma

    DEFF Research Database (Denmark)

    Frøsig, Thomas Mørch

    2015-01-01

    T-cell recognition in a given setting within all patients or healthy donors present in a cohort, a broad library of conditional ligands is needed. We designed and evaluated conditional ligands for HLA-B*08:01, HLA-B*35:01 and HLA-B*44:02/03/05, all HLA-B molecules present in high frequency among...... of new conditional ligands (reported in Paper IV). Many melanoma-associated T-cell epitopes have been described, but 45% of these are restricted to human leukocyte antigen (HLA)-A2, leaving the remaining 36 different HLA molecules with only a few described T-cell epitopes each. Therefore we wanted to...... expand the number of T-cell epitopes restricted to HLA-A1, -A3, -A11 and -B7, all HLA molecules frequently expressed in Caucasians in Western Europe and Northern America. In Paper I we focused on the proteins gp100, Mart1, MAGE-A3, NY-ESO-1, tyrosinase and TRP-2, all melanoma-associated antigens...

  11. IMMUNOLOGY

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    5.1 Autoimmune disease2004189 Serum levels of matrix metallopro-teinases-9 in patients with systemic lupus erythemato-sus. YIN Wenhao (殷文浩), et al. Dept Dermatol 2nd Affili Hosp, Med Sch Zhejiang Univ, Hangzhou 310009. Chin J Dermatol 2004;37(2):77-79.Objective: To determine the serum levels of matrix

  12. IMMUNOLOGY

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    3.1 Autoimmune disease2004022 BL-2, IL-6 and their receptors in patients with systemic lupus erythematosus. QIAN Qihong (钱齐宏), et al. Dept Dermatol & Venereol, 1st Affili Hosp, Suzhou Univ, Suzhou 215006. Chin J Dermatol 2003; 36 (12): 696-698.

  13. Multiple proviral integration events after virological synapse-mediated HIV-1 spread

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Rebecca A., E-mail: rebecca.moore@path.ox.ac.uk [The Sir William Dunn School of Pathology, The University of Oxford, South Parks Road, Oxford OX13RE (United Kingdom); Martin, Nicola; Mitar, Ivonne [The Sir William Dunn School of Pathology, The University of Oxford, South Parks Road, Oxford OX13RE (United Kingdom); Jones, Emma [The Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales (United Kingdom); Sattentau, Quentin J. [The Sir William Dunn School of Pathology, The University of Oxford, South Parks Road, Oxford OX13RE (United Kingdom)

    2013-08-15

    HIV-1 can move directly between T cells via virological synapses (VS). Although aspects of the molecular and cellular mechanisms underlying this mode of spread have been elucidated, the outcomes for infection of the target cell remain incompletely understood. We set out to determine whether HIV-1 transfer via VS results in productive, high-multiplicity HIV-1 infection. We found that HIV-1 cell-to-cell spread resulted in nuclear import of multiple proviruses into target cells as seen by fluorescence in-situ hybridization. Proviral integration into the target cell genome was significantly higher than that seen in a cell-free infection system, and consequent de novo viral DNA and RNA production in the target cell detected by quantitative PCR increased over time. Our data show efficient proviral integration across VS, implying the probability of multiple integration events in target cells that drive productive T cell infection. - Highlights: • Cell-to-cell HIV-1 infection delivers multiple vRNA copies to the target cell. • Cell-to-cell infection results in productive infection of the target cell. • Cell-to-cell transmission is more efficient than cell-free HIV-1 infection. • Suggests a mechanism for recombination in cells infected with multiple viral genomes.

  14. Multiple proviral integration events after virological synapse-mediated HIV-1 spread

    International Nuclear Information System (INIS)

    HIV-1 can move directly between T cells via virological synapses (VS). Although aspects of the molecular and cellular mechanisms underlying this mode of spread have been elucidated, the outcomes for infection of the target cell remain incompletely understood. We set out to determine whether HIV-1 transfer via VS results in productive, high-multiplicity HIV-1 infection. We found that HIV-1 cell-to-cell spread resulted in nuclear import of multiple proviruses into target cells as seen by fluorescence in-situ hybridization. Proviral integration into the target cell genome was significantly higher than that seen in a cell-free infection system, and consequent de novo viral DNA and RNA production in the target cell detected by quantitative PCR increased over time. Our data show efficient proviral integration across VS, implying the probability of multiple integration events in target cells that drive productive T cell infection. - Highlights: • Cell-to-cell HIV-1 infection delivers multiple vRNA copies to the target cell. • Cell-to-cell infection results in productive infection of the target cell. • Cell-to-cell transmission is more efficient than cell-free HIV-1 infection. • Suggests a mechanism for recombination in cells infected with multiple viral genomes

  15. Immunological markers of rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Agnieszka Matuszewska

    2016-03-01

    Full Text Available Rheumatoid arthritis (RA is the most common connective tissue disease of autoimmune origin. The disease is characterized by chronic inflammation leading to bone erosions and organ involvement. RA is a progressive disease. It affects the quality of life, leading to disability and death mainly due to premature cardiovascular disease. Early diagnosis and appropriate treatment are essential for prognosis and quality of life improvement. In 2010 the American College of Rheumatology (ACR and The European League Against Rheumatism (EULAR established new RA classification criteria. Besides clinical symptoms it includes two immunologic criteria: rheumatoid factor (RF and anti-citrullinated protein antibodies (anti-CCP antibodies. RF is the first well-known RA immunologic marker. It is observed in 80-85% of patients with RA. Elevated serum level of RF has been associated with increased disease activity, radiographic progression, and the presence of extraarticular manifestations. The sensitivity of RF is 50-90%, and specificity is 50-95%. Anti-CCP antibodies appear to be a more specific marker than RF. They are often present at the very beginning of the disease, or even years before the first symptoms. The prognostic value of anti-CCP antibodies is well established. High serum level of anti-CCP correlates with poor prognosis and early erosions of the joints. The sensitivity of anti-CCP2 is 48-80%, and specificity is 96-98%. New immunologic markers include anti-carbamylated protein antibodies (anti-CarP and antibodies against heterogeneous nuclear ribonucleoproteins (anti-hnRNP A2/B1, RA33. Scientists aim to identify a highly sensitive and specific biomarker of the disease that not only has diagnostic and prognostic value but also may predict the response to treatment.

  16. Immunology of the hair follicle

    Directory of Open Access Journals (Sweden)

    Sibel Doğan

    2014-06-01

    Full Text Available Hair follicles are accepted as a component of skin in mammals. Considering the continuous contact with environment and microorganisms in the normal flora, it is crucial that various elements of immune system are necessary to reside within hair follicles. On the contrary, the protection of hair follicles from the intense anti-infective elements and autoimmunity is mandatory; hence some antigens are not expressed in hair follicle and construct an immune privileged area. In this review, immunologic functions of hair follicle and hair follicle immunology’s effect in pathogenesis of dermatological diseases are discussed in the light of recent studies.

  17. Transient B-cell depletion with anti-CD20 in combination with proinsulin DNA vaccine or oral insulin: immunologic effects and efficacy in NOD mice.

    Directory of Open Access Journals (Sweden)

    Ghanashyam Sarikonda

    Full Text Available A recent type 1 diabetes (T1D clinical trial of rituximab (a B cell-depleting anti-CD20 antibody achieved some therapeutic benefit in preserving C-peptide for a period of approximately nine months in patients with recently diagnosed diabetes. Our previous data in the NOD mouse demonstrated that co-administration of antigen (insulin with anti-CD3 antibody (a T cell-directed immunomodulator offers better protection than either entity alone, indicating that novel combination therapies that include a T1D-related autoantigen are possible. To accelerate the identification and development of novel combination therapies that can be advanced into the clinic, we have evaluated the combination of a mouse anti-CD20 antibody with either oral insulin or a proinsulin-expressing DNA vaccine. Anti-CD20 alone, given once or on 4 consecutive days, produced transient B cell depletion but did not prevent or reverse T1D in the NOD mouse. Oral insulin alone (twice weekly for 6 weeks was also ineffective, while proinsulin DNA (weekly for up to 12 weeks showed a trend toward modest efficacy. Combination of anti-CD20 with oral insulin was ineffective in reversing diabetes in NOD mice whose glycemia was controlled with SC insulin pellets; these experiments were performed in three independent labs. Combination of anti-CD20 with proinsulin DNA was also ineffective in diabetes reversal, but did show modest efficacy in diabetes prevention (p = 0.04. In the prevention studies, anti-CD20 plus proinsulin resulted in modest increases in Tregs in pancreatic lymph nodes and elevated levels of proinsulin-specific CD4+ T-cells that produced IL-4. Thus, combination therapy with anti-CD20 and either oral insulin or proinsulin does not protect hyperglycemic NOD mice, but the combination with proinsulin offers limited efficacy in T1D prevention, potentially by augmentation of proinsulin-specific IL-4 production.

  18. The immunologic effects of mesalamine in treated HIV-infected individuals with incomplete CD4+ T cell recovery: a randomized crossover trial.

    Directory of Open Access Journals (Sweden)

    Ma Somsouk

    Full Text Available The anti-inflammatory agent, mesalamine (5-aminosalicylic acid has been shown to decrease mucosal inflammation in ulcerative colitis. The effect of mesalamine in HIV-infected individuals, who exhibit abnormal mucosal immune activation and microbial translocation (MT, has not been established in a placebo-controlled trial. We randomized 33 HIV-infected subjects with CD4 counts <350 cells/mm3 and plasma HIV RNA levels <40 copies/ml on antiretroviral therapy (ART to add mesalamine vs. placebo to their existing regimen for 12 weeks followed by a 12 week crossover to the other arm. Compared to placebo-treated subjects, mesalamine-treated subjects did not experience any significant change in the percent CD38+HLA-DR+ peripheral blood CD4+ and CD8+ T cells at week 12 (P = 0.38 and P = 0.63, respectively, or in the CD4+ T cell count at week 12 (P = 0.83. The percent CD38+HLA-DR+ CD4+ and CD8+ T cells also did not change significantly in rectal tissue (P = 0.86, P = 0.84, respectively. During the period of mesalamine administration, plasma sCD14, IL-6, D-dimer, and kynurenine to tryptophan ratio were not changed significantly at week 12 and were similarly unchanged at week 24. This study suggests that, at least under the conditions studied, the persistent immune activation associated with HIV infection is not impacted by the anti-inflammatory effects of mesalamine.ClinicalTrials.gov NCT01090102.

  19. VLA-4 integrin concentrates at the peripheral supramolecular activation complex of the immune synapse and drives T helper 1 responses

    Science.gov (United States)

    Mittelbrunn, María; Molina, Ana; Escribese, María M.; Yáñez-Mó, María; Escudero, Ester; Ursa, Ángeles; Tejedor, Reyes; Mampaso, Francisco; Sánchez-Madrid, Francisco

    2004-07-01

    The integrin 41 (VLA-4) not only mediates the adhesion and transendothelial migration of leukocytes, but also provides costimulatory signals that contribute to the activation of T lymphocytes. However, the behavior of 41 during the formation of the immune synapse is currently unknown. Here, we show that 41 is recruited to both human and murine antigen-dependent immune synapses, when the antigen-presenting cell is a B lymphocyte or a dendritic cell, colocalizing with LFA-1 at the peripheral supramolecular activation complex. However, when conjugates are formed in the presence of anti-4 antibodies, VLA-4 colocalizes with the CD3- chain at the center of the synapse. In addition, antibody engagement of 4 integrin promotes polarization toward a T helper 1 (Th1) response in human in vitro models of CD4+ T cell differentiation and naïve T cell priming by dendritic cells. The in vivo administration of anti-4 integrin antibodies also induces an immune deviation to Th1 response that dampens a Th2-driven autoimmune nephritis in Brown Norway rats. These data reveal a regulatory role of 4 integrins on T lymphocyte-antigen presenting cell cognate immune interactions.

  20. Coding deficits in noise-induced hidden hearing loss may stem from incomplete repair of ribbon synapses in the cochlea

    Directory of Open Access Journals (Sweden)

    Lijuan eShi

    2016-05-01

    Full Text Available Recent evidence has shown that noise-induced damage to the synapse between inner hair cells (IHCs and type I afferent auditory nerve fibers (ANFs may occur in the absence of permanent threshold shift (PTS, and that synapses connecting IHCs with low spontaneous rate (SR ANFs are disproportionately affected. Due to the functional importance of low-SR ANF units for temporal processing and signal coding in noisy backgrounds, deficits in cochlear coding associated with noise-induced damage may result in significant difficulties with temporal processing and hearing in noise (i.e., hidden hearing loss. However, significant noise-induced coding deficits have not been reported at the single unit level following the loss of low-SR units. We have found evidence to suggest that some aspects of neural coding are not significantly changed with the initial loss of low-SR ANFs, and that further coding deficits arise in association with the subsequent reestablishment of the synapses. This suggests that synaptopathy in hidden hearing loss may be the result of insufficient repair of disrupted synapses, and not simply due to the loss of low-SR units. These coding deficits include decreases in driven spike rate for intensity coding as well as several aspects of temporal coding: spike latency, peak-to-sustained spike ratio and the recovery of spike rate as a function of click-interval.

  1. Coding Deficits in Noise-Induced Hidden Hearing Loss May Stem from Incomplete Repair of Ribbon Synapses in the Cochlea

    Science.gov (United States)

    Shi, Lijuan; Chang, Yin; Li, Xiaowei; Aiken, Steven J.; Liu, Lijie; Wang, Jian

    2016-01-01

    Recent evidence has shown that noise-induced damage to the synapse between inner hair cells (IHCs) and type I afferent auditory nerve fibers (ANFs) may occur in the absence of permanent threshold shift (PTS), and that synapses connecting IHCs with low spontaneous rate (SR) ANFs are disproportionately affected. Due to the functional importance of low-SR ANF units for temporal processing and signal coding in noisy backgrounds, deficits in cochlear coding associated with noise-induced damage may result in significant difficulties with temporal processing and hearing in noise (i.e., “hidden hearing loss”). However, significant noise-induced coding deficits have not been reported at the single unit level following the loss of low-SR units. We have found evidence to suggest that some aspects of neural coding are not significantly changed with the initial loss of low-SR ANFs, and that further coding deficits arise in association with the subsequent reestablishment of the synapses. This suggests that synaptopathy in hidden hearing loss may be the result of insufficient repair of disrupted synapses, and not simply due to the loss of low-SR units. These coding deficits include decreases in driven spike rate for intensity coding as well as several aspects of temporal coding: spike latency, peak-to-sustained spike ratio and the recovery of spike rate as a function of click-interval. PMID:27252621

  2. Auditory nerve synapses persist in ventral cochlear nucleus long after loss of acoustic input in mice with early-onset progressive hearing loss.

    Science.gov (United States)

    McGuire, Brian; Fiorillo, Benjamin; Ryugo, David K; Lauer, Amanda M

    2015-04-24

    Perceptual performance in persons with hearing loss, especially those using devices to restore hearing, is not fully predicted by traditional audiometric measurements designed to evaluate the status of peripheral function. The integrity of auditory brainstem synapses may vary with different forms of hearing loss, and differential effects on the auditory nerve-brain interface may have particularly profound consequences for the transfer of sound from ear to brain. Loss of auditory nerve synapses in ventral cochlear nucleus (VCN) has been reported after acoustic trauma, ablation of the organ of Corti, and administration of ototoxic compounds. The effects of gradually acquired forms deafness on these synapses are less well understood. We investigated VCN gross morphology and auditory nerve synapse integrity in DBA/2J mice with early-onset progressive sensorineural hearing loss. Hearing status was confirmed using auditory brainstem response audiometry and acoustic startle responses. We found no change in VCN volume, number of macroneurons, or number of VGLUT1-positive auditory nerve terminals between young adult and older, deaf DBA/2J. Cell-type specific analysis revealed no difference in the number of VGLUT1 puncta contacting bushy and multipolar cell body profiles, but the terminals were smaller in deaf DBA/2J mice. Transmission electron microscopy confirmed the presence of numerous healthy, vesicle-filled auditory nerve synapses in older, deaf DBA/2J mice. The present results suggest that synapses can be preserved over a relatively long time-course in gradually acquired deafness. Elucidating the mechanisms supporting survival of central auditory nerve synapses in models of acquired deafness may reveal new opportunities for therapeutic intervention. PMID:25686750

  3. A split horseradish peroxidase for the detection of intercellular protein-protein interactions and sensitive visualization of synapses.

    Science.gov (United States)

    Martell, Jeffrey D; Yamagata, Masahito; Deerinck, Thomas J; Phan, Sébastien; Kwa, Carolyn G; Ellisman, Mark H; Sanes, Joshua R; Ting, Alice Y

    2016-07-01

    Intercellular protein-protein interactions (PPIs) enable communication between cells in diverse biological processes, including cell proliferation, immune responses, infection, and synaptic transmission, but they are challenging to visualize because existing techniques have insufficient sensitivity and/or specificity. Here we report a split horseradish peroxidase (sHRP) as a sensitive and specific tool for the detection of intercellular PPIs. The two sHRP fragments, engineered through screening of 17 cut sites in HRP followed by directed evolution, reconstitute into an active form when driven together by an intercellular PPI, producing bright fluorescence or contrast for electron microscopy. Fusing the sHRP fragments to the proteins neurexin (NRX) and neuroligin (NLG), which bind each other across the synaptic cleft, enabled sensitive visualization of synapses between specific sets of neurons, including two classes of synapses in the mouse visual system. sHRP should be widely applicable to studying mechanisms of communication between a variety of cell types. PMID:27240195

  4. An NMDA Receptor-Dependent Mechanism Underlies Inhibitory Synapse Development

    Directory of Open Access Journals (Sweden)

    Xinglong Gu

    2016-01-01

    Full Text Available In the mammalian brain, GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here, we report that NMDA-type ionotropic glutamate receptors (NMDARs in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, whereas GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain.

  5. 21 CFR 866.5040 - Albumin immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Albumin immunological test system. 866.5040... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5040 Albumin immunological test system. (a) Identification. An albumin immunological test system is a device that consists...

  6. Cosmos 2229 immunology study (Experiment K-8-07)

    Science.gov (United States)

    Sonnenfeld, Gerald

    1993-01-01

    The purpose of the current study was to further validate use of the rhesus monkey as a model for humans in future space flight testing. The areas of immunological importance examined in the Cosmos 2229 flight were represented by two sets of studies. The first set of studies determined the effect of space flight on the ability of bone marrow cells to respond to granulocyte/monocyte colony stimulating factor (GM-CSF). GM-CSF is an important regulator in the differentiation of bone marrow cells of both monocyte/macrophage and granulocyte lineages and any change in the ability of these cells to respond to GM-CSF can result in altered immune function. A second set of studies determined space flight effects on the expression of cell surface markers on both spleen and bone marrow cells. Immune cell markers included in this study were those for T-cell, B-cell, natural killer cell, and interleukin-2 populations. Variations from a normal cell population percentage, as represented by these markers, can be correlated with alterations in immunological function. Cells were stained with fluorescein-labelled antibodies directed against the appropriate antigens, and then analyzed using a flow cytometer.

  7. Immunological Changes in Mesothelioma Patients and Their Experimental Detection

    Directory of Open Access Journals (Sweden)

    Takashi Nakano

    2008-01-01

    Full Text Available It is common knowledge that asbestos exposure causes asbestos-related diseases such as asbestosis, lung cancer and malignant mesothelioma (MM not only in people who have handled asbestos in the work environment, but also in residents living near factories that handle asbestos. These facts have been an enormous medical and social problem in Japan since the summer of 2005. We focused on the immunological effects of asbestos and silica on the human immune system. In this brief review, we present immunological changes in patients with MM and outline their experimental detection. For example, there is over-expression of bcl-2 in CD4+ peripheral T-cells, high plasma concentrations of interleukin (IL-10 and transforming growth factor (TGF-ß, and multiple over-representation of T cell receptor (TcR-Vß in peripheral CD3+ T-cells found in MM patients. We also detail an experimental long-term exposure T-cell model. Analysis of the immunological effects of asbestos may help our understanding of the biological effects of asbestos.

  8. Immunologically induced, complement-dependent up-regulation of the prion protein in the mouse spleen: follicular dendritic cells versus capsule and trabeculae.

    Science.gov (United States)

    Lötscher, Marius; Recher, Mike; Hunziker, Lukas; Klein, Michael A

    2003-06-15

    The expression of the prion protein (PrP) in the follicular dendritic cell network of germinal centers in the spleen is critical for the splenic propagation of the causative agent of prion diseases. However, a physiological role of the prion protein in the periphery remains elusive. To investigate the role and function of PrP expression in the lymphoid system we treated naive mice i.v. with preformed immune complexes or vesicular stomatitis virus. Immunohistochemistry and Western blot analysis of the spleen revealed that 8 days after immunization, immune complexes and vesicular stomatitis virus had both induced a strong increase of PrP expression in the follicular dendritic cell network. Remarkably, this up-regulation did not occur in mice that lack an early factor of the complement cascade, C1q, a component which has been shown previously to facilitate early prion pathogenesis. In addition to the variable PrP level in the germinal centers, we detected steady and abundant PrP expression in the splenic capsule and trabeculae, which are structural elements that have not been associated before with PrP localization. The abundant trabeculo-capsular PrP expression was also evident in spleens of Rag-1-deficient mice, which have been shown before to be incapable of prion expansion. We conclude that trabeculocapsular PrP is not sufficient for splenic prion propagation. Furthermore, our observations may provide important clues for a physiological function of the prion protein and allow a new view on the role of complement and PrP in peripheral prion pathogenesis. PMID:12794132

  9. A New Efficient-Silicon Area MDAC Synapse

    Directory of Open Access Journals (Sweden)

    Zied Gafsi

    2007-01-01

    Full Text Available Using the binary representation in the Multiplier digital to analog converter (MDAC synapse designs have crucial drawbacks. Silicon area of transistors, constituting the MDAC circuit, increases exponentially according to the number of bits. This latter is generated by geometric progression of common ratio equal to 2. To reduce this exponential increase to a linear growth, a new synapse named Arithmetic MDAC (AMDAC is designed. It functions with a new representation based on arithmetic progressions. Using the AMS CMOS 0.35µm technology the silicon area is reduced by a factor of 40%.

  10. Meet the players: local translation at the synapse

    Directory of Open Access Journals (Sweden)

    Michael A Kiebler

    2014-11-01

    Full Text Available It is widely believed that activity-dependent synaptic plasticity is the basis for learning and memory. Both processes are dependent on new protein synthesis at the synapse. Here, we describe a mechanism how dendritic mRNAs are transported and subsequently translated at activated synapses. Furthermore, we present the players involved in the regulation of local dendritic translation upon neuronal stimulation and their molecular interplay that maintain local proteome homeostasis. Any dysregulation causes several types of neurological disorders including muscular atrophies, cancers, neuropathies, neurodegenerative and cognitive disorders.

  11. 异体神经干细胞脑移植后免疫排斥反应的研究%Immunological rejection in brain of cloning goats received neural stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    彭钢; 陈建泉; 朱剑虹

    2010-01-01

    目的 探讨中枢神经系统异体神经干细胞移植后免疫排斥反应的问题. 方法 选取同一批次的成年克隆山羊8只,采用随机数字表法分成2组:神经干细胞移植组和对照组.采用开颅手术的方式分别将异体神经干细胞及相同剂量的生理盐水移植到山羊脑皮层下,抽血测定移植后2组动物不同时间点(移植前1周、移植当时、移植后1周、3周及3个月)血中IL-2及IL-10的水平,以了解移植后动物全身免疫排斥反应的情况;并通过免疫组化的方法 检测移植局部病理切片CD3+细胞浸润的情况,了解移植局部免疫排斥反应的情况. 结果神经干细胞移植组在移植后1周、3周及3个月时血中IL-2水平较对照组明显升高,IL-10水平较对照组明显下降,差异均有统计学意义(P<0.05).移植局部在急性期(细胞移植后1周)和慢性期(细胞移植后3个月)两个时间点均有大量CD3+细胞浸润,与对照组相比差异均有统计学意义(P<0.05). 结论 中枢神经系统异体神经干细胞移植后可发生急、慢性全身和局部免疫排斥反应.%Objective To investigate the immunological rejection in the brain of cloning goats received neural stem cell transplantation. Methods Eight cloning goats of CL series were chosen at random and divided into 2 groups. Neural stem cells and saline at the same dosages were transplanted into the fixed site by surgical intervention in the brain cortex of each group, respectively. The levels of IL-2 and IL-10 in the blood of each group were detected at different times (1 w before, and 0, 1 and 3 w,and 3 months after the cell transplantation) to reflect the systemic immune rejection of the goats after the transplatation. The CD3+ cells in the cell transplantation areas in each group were also detected by the method of immunohistochemistry to reflect the local immune rejection after the transplatation. Results The level of IL-2 was obviously higher and the level of

  12. The therapeutic effect of memantine through the stimulation of synapse formation and dendritic spine maturation in autism and fragile X syndrome.

    Directory of Open Access Journals (Sweden)

    Hongen Wei

    Full Text Available Although the pathogenic mechanisms that underlie autism are not well understood, there is evidence showing that metabotropic and ionotropic glutamate receptors are hyper-stimulated and the GABAergic system is hypo-stimulated in autism. Memantine is an uncompetitive antagonist of NMDA receptors and is widely prescribed for treatment of Alzheimer's disease treatment. Recently, it has been shown to improve language function, social behavior, and self-stimulatory behaviors of some autistic subjects. However the mechanism by which memantine exerts its effect remains to be elucidated. In this study, we used cultured cerebellar granule cells (CGCs from Fmr1 knockout (KO mice, a mouse model for fragile X syndrome (FXS and syndromic autism, to examine the effects of memantine on dendritic spine development and synapse formation. Our results show that the maturation of dendritic spines is delayed in Fmr1-KO CGCs. We also detected reduced excitatory synapse formation in Fmr1-KO CGCs. Memantine treatment of Fmr1-KO CGCs promoted cell adhesion properties. Memantine also stimulated the development of mushroom-shaped mature dendritic spines and restored dendritic spine to normal levels in Fmr1-KO CGCs. Furthermore, we demonstrated that memantine treatment promoted synapse formation and restored the excitatory synapses to a normal range in Fmr1-KO CGCs. These findings suggest that memantine may exert its therapeutic capacity through a stimulatory effect on dendritic spine maturation and excitatory synapse formation, as well as promoting adhesion of CGCs.

  13. Renal and adrenal tumors: Pathology, radiology, ultrasonography, therapy, immunology

    International Nuclear Information System (INIS)

    Aspects as diverse as radiology, pathology, urology, pediatrics and immunology have been brought together in one book. The most up-do-date methods of tumor diagnosis by CT, NMR, and ultrasound are covered, as are methods of catheter embolization and radiation techniques in case of primarily inoperable tumors. Contents: Pathology of Renal and Adrenal Neoplasms; Ultrasound Diagnosis of Renal and Pararenal Tumors; Computed-Body-Tomography of Renal Carcinoma and Perirenal Masses; Magnetic Resonance Imaging of Renal Mass Lesions; I-125 Embolotherapy of Renal Tumors; Adrenal Mass Lesions in Infants and Children; Computed Tomography of the Adrenal Glands; Scintigraphic Studies of Renal and Adrenal Function; Surgical Management of Renal Cell Carcinoma; Operative Therapy of Nephroblastoma; Nonoperative Treatment of Renal Cell Carcinoma; Prenatal Wilms' Tumor; Congenital Neuroblastoma; Nonsurgical Management of Wilms' Tumor; Immunologic Aspects of Malignant Renal Disease

  14. Recognition of higher order patterns in proteins: immunologic kernels.

    Directory of Open Access Journals (Sweden)

    Robert D Bremel

    Full Text Available By applying analysis of the principal components of amino acid physical properties we predicted cathepsin cleavage sites, MHC binding affinity, and probability of B-cell epitope binding of peptides in tetanus toxin and in ten diverse additional proteins. Cross-correlation of these metrics, for peptides of all possible amino acid index positions, each evaluated in the context of a ±25 amino acid flanking region, indicated that there is a strongly repetitive pattern of short peptides of approximately thirty amino acids each bounded by cathepsin cleavage sites and each comprising B-cell linear epitopes, MHC-I and MHC-II binding peptides. Such "immunologic kernel" peptides comprise all signals necessary for adaptive immunologic cognition, response and recall. The patterns described indicate a higher order spatial integration that forms a symbolic logic coordinating the adaptive immune system.

  15. Therapeutic Effects of Bee Venom on Immunological and Neurological Diseases

    Science.gov (United States)

    Hwang, Deok-Sang; Kim, Sun Kwang; Bae, Hyunsu

    2015-01-01

    Bee Venom (BV) has long been used in Korea to relieve pain symptoms and to treat inflammatory diseases, such as rheumatoid arthritis. The underlying mechanisms of the anti-inflammatory and analgesic actions of BV have been proved to some extent. Additionally, recent clinical and experimental studies have demonstrated that BV and BV-derived active components are applicable to a wide range of immunological and neurodegenerative diseases, including autoimmune diseases and Parkinson’s disease. These effects of BV are known to be mediated by modulating immune cells in the periphery, and glial cells and neurons in the central nervous system. This review will introduce the scientific evidence of the therapeutic effects of BV and its components on several immunological and neurological diseases, and describe their detailed mechanisms involved in regulating various immune responses and pathological changes in glia and neurons. PMID:26131770

  16. Immunological and Psychological Benefits of Aromatherapy Massage

    Directory of Open Access Journals (Sweden)

    Hiroko Kuriyama

    2005-01-01

    Full Text Available This preliminary investigation compares peripheral blood cell counts including red blood cells (RBCs, white blood cells (WBCs, neutrophils, peripheral blood lymphocytes (PBLs, CD4+, CD8+ and CD16+ lymphocytes, CD4+/CD8+ ratio, hematocrit, humoral parameters including serum interferon-γ and interleukin-6, salivary secretory immunoglobulin A (IgA. Psychological measures including the State–Trait Anxiety Inventory (STAI questionnaire and the Self-rating Depression Scale (SDS between recipients (n = 11 of carrier oil massage and aromatherapy massage, which includes sweet almond oil, lavender oil, cypress oil and sweet marjoram oil. Though both STAI and SDS showed a significant reduction (P 0.05 increase in PBLs, possibly due to an increase in CD8+ and CD16+ lymphocytes, which had significantly increased post-treatment (P < 0.01. Consequently, the CD4+/CD8+ ratio decreased significantly (P < 0.01. The paucity of such differences after carrier oil massage suggests that aromatherapy massage could be beneficial in disease states that require augmentation of CD8+ lymphocytes. While this study identifies the immunological benefits of aromatherapy massage, there is a need to validate the findings prospectively in a larger cohort of patients.

  17. Centrosome polarization in T cells: a task for formins

    Directory of Open Access Journals (Sweden)

    Laura eAndrés-Delgado

    2013-07-01

    Full Text Available T-cell antigen receptor (TCR engagement triggers the rapid reorientation of the centrosome, which is associated with the secretory machinery, towards the immunological synapse (IS for polarized protein trafficking. Recent evidence indicates that upon TCR triggering the INF2 formin, together with the formins DIA1 and FMNL1, promotes the formation of a specialized array of stable detyrosinated MTs that breaks the symmetrical organization of the T-cell microtubule (MT cytoskeleton. The detyrosinated MT array and TCR-induced tyrosine phosphorylation should coincide for centrosome polarization. We propose that the pushing forces produced by the detyrosinated MT array, which modify the position of the centrosome, in concert with Src kinase dependent TCR signaling, which provide the reference frame with respect to which the centrosome reorients, result in the repositioning of the centrosome to the IS.

  18. The ninth international veterinary immunology symposium

    Science.gov (United States)

    This Introduction to the special issue of Veterinary Immunology and Immunopathology summarizes the Proceedings of the 9th International Veterinary Immunology Symposium (9th IVIS) held August, 2010, in Tokyo, Japan. Over 340 delegates from 30 countries discussed research progress analyzing the immune...

  19. Proteomic and immunologic analyses of brain tumor exosomes

    OpenAIRE

    Graner, Michael W.; Alzate, Oscar; Dechkovskaia, Angelika M.; Keene, Jack D.; Sampson, John H; Mitchell, Duane A; Bigner, Darell D.

    2009-01-01

    Brain tumors are horrific diseases with almost universally fatal outcomes; new therapeutics are desperately needed and will come from improved understandings of glioma biology. Exosomes are endosomally derived 30–100 nm membranous vesicles released from many cell types into the extracellular milieu; surprisingly, exosomes are virtually unstudied in neuro-oncology. These microvesicles were used as vaccines in other tumor settings, but their immunological significance is unevaluated in brain tu...

  20. Immunologic and inflammatory mechanisms that drive asthma progression to remodeling

    OpenAIRE

    Broide, David H.

    2008-01-01

    Although histologic features of airway remodeling have been well characterized in asthma, the immunologic and inflammatory mechanisms that drive progression of asthma to remodeling are still incompletely understood. Conceptually, airway remodeling may be due to persistent inflammation and/or aberrant tissue repair mechanisms. It is likely that several immune and inflammatory cell types and mediators are involved in mediating airway remodeling. In addition, different features of airway remodel...

  1. Acquired immunologic tolerance: with particular reference to transplantation

    OpenAIRE

    Starzl, Thomas E.

    2007-01-01

    The first unequivocally successful bone marrow cell transplantation in humans was recorded in 1968 by the University of Minnesota team of Robert A. Good (Gatti et al. Lancet 2: 1366–1369, 1968). This achievement was a direct extension of mouse models of acquired immunologic tolerance that were established 15 years earlier. In contrast, organ (i.e. kidney) transplantation was accomplished precociously in humans (in 1959) before demonstrating its feasibility in any experimental model and in the...

  2. Infectious and Immunologic Phenotype of MECP2 Duplication Syndrome

    OpenAIRE

    Bauer, Michael; Kölsch, Uwe; Krüger, Renate; Unterwalder, Nadine; Hameister, Karin; Kaiser, Fabian Marc; Vignoli, Aglaia; Rossi, Rainer; Botella, Maria Pilar; Budisteanu, Magdalena; Rosello, Monica; Orellana, Carmen; Tejada, Maria Isabel; Papuc, Sorina Mihaela; Patat, Oliver

    2015-01-01

    MECP2 (methyl CpG binding protein 2) duplication causes syndromic intellectual disability. Patients often suffer from life-threatening infections, suggesting an additional immunodeficiency. We describe for the first time the detailed infectious and immunological phenotype of MECP2 duplication syndrome. 17/27 analyzed patients suffered from pneumonia, 5/27 from at least one episode of sepsis. Encapsulated bacteria (S.pneumoniae, H.influenzae) were frequently isolated. T-cell immunity showed no...

  3. Genetic errors of the human caspase recruitment domain-B-cell lymphoma 10-mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (CBM) complex: Molecular, immunologic, and clinical heterogeneity.

    Science.gov (United States)

    Pérez de Diego, Rebeca; Sánchez-Ramón, Silvia; López-Collazo, Eduardo; Martínez-Barricarte, Rubén; Cubillos-Zapata, Carolina; Ferreira Cerdán, Antonio; Casanova, Jean-Laurent; Puel, Anne

    2015-11-01

    Three members of the caspase recruitment domain (CARD) family of adaptors (CARD9, CARD10, and CARD11) are known to form heterotrimers with B-cell lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (MALT1). These 3 CARD-BCL10-MALT1 (CBM) complexes activate nuclear factor κB in both the innate and adaptive arms of immunity. Human inherited defects of the 3 components of the CBM complex, including the 2 adaptors CARD9 and CARD11 and the 2 core components BCL10 and MALT1, have recently been reported. Biallelic loss-of-function mutant alleles underlie several different immunologic and clinical phenotypes, which can be assigned to 2 distinct categories. Isolated invasive fungal infections of unclear cellular basis are associated with CARD9 deficiency, whereas a broad range of clinical manifestations, including those characteristic of T- and B-lymphocyte defects, are associated with CARD11, MALT1, and BCL10 deficiencies. Interestingly, human subjects with these mutations have some features in common with the corresponding knockout mice, but other features are different between human subjects and mice. Moreover, germline and somatic gain-of-function mutations of MALT1, BCL10, and CARD11 have also been found in patients with other lymphoproliferative disorders. This broad range of germline and somatic CBM lesions, including loss-of-function and gain-of-function mutations, highlights the contribution of each of the components of the CBM complex to human immunity. PMID:26277595

  4. Back-Propagation Operation for Analog Neural Network Hardware with Synapse Components Having Hysteresis Characteristics

    OpenAIRE

    Ueda, Michihito; Nishitani, Yu; Kaneko, Yukihiro; Omote, Atsushi

    2014-01-01

    To realize an analog artificial neural network hardware, the circuit element for synapse function is important because the number of synapse elements is much larger than that of neuron elements. One of the candidates for this synapse element is a ferroelectric memristor. This device functions as a voltage controllable variable resistor, which can be applied to a synapse weight. However, its conductance shows hysteresis characteristics and dispersion to the input voltage. Therefore, the conduc...

  5. Learning-guided automatic three dimensional synapse quantification for drosophila neurons

    OpenAIRE

    Sanders, Jonathan; Singh, Anil; Sterne, Gabriella; Ye, Bing; Zhou, Jie

    2015-01-01

    Background The subcellular distribution of synapses is fundamentally important for the assembly, function, and plasticity of the nervous system. Automated and effective quantification tools are a prerequisite to large-scale studies of the molecular mechanisms of subcellular synapse distribution. Common practices for synapse quantification in neuroscience labs remain largely manual or semi-manual. This is mainly due to computational challenges in automatic quantification of synapses, including...

  6. Slitrks control excitatory and inhibitory synapse formation with LAR receptor protein tyrosine phosphatases

    OpenAIRE

    Yim, Yeong Shin; Kwon, Younghee; Nam, Jungyong; Yoon, Hong In; Lee, Kangduk; Kim, Dong Goo; Kim, Eunjoon; Kim, Chul Hoon; Ko, Jaewon

    2013-01-01

    The balance between excitatory and inhibitory synaptic inputs, which is governed by multiple synapse organizers, controls neural circuit functions and behaviors. Slit- and Trk-like proteins (Slitrks) are a family of synapse organizers, whose emerging synaptic roles are incompletely understood. Here, we report that Slitrks are enriched in postsynaptic densities in rat brains. Overexpression of Slitrks promoted synapse formation, whereas RNAi-mediated knockdown of Slitrks decreased synapse dens...

  7. A strategic analysis of synapse and Canada health infoway’s electronic health record solution blueprint

    OpenAIRE

    Labrosse, Chadwick Andre

    2007-01-01

    Synapse is a currently deployed software application that collects and presents clinical and administrative information about Mental Health & Addictions patients, in the form of an Electronic Health Record (EHR). Synapse was jointly developed by regional health authorities, federal and provincial governments and research institutions. While Synapse has enjoyed limited regional success in British Columbia, the Synapse Project Steering Committee seeks to expand its adoption with clinicians ...

  8. Cadherin-9 Regulates Synapse-Specific Differentiation in the Developing Hippocampus

    OpenAIRE

    Williams, Megan E.; Wilke, Scott A.; Daggett, Anthony; Davis, Elizabeth; Otto, Stefanie; Ravi, Deepak; Ripley, Beth; Bushong, Eric A.; Ellisman, Mark H.; Klein, Gerd; Ghosh, Anirvan

    2011-01-01

    Our understanding of mechanisms that regulate the differentiation of specific classes of synapses is limited. Here, we investigate the formation of synapses between hippocampal dentate gyrus (DG) neurons and their target CA3 neurons and find that DG neurons preferentially form synapses with CA3 rather than DG or CA1 neurons in culture, suggesting that specific interactions between DG and CA3 neurons drive synapse formation. Cadherin-9 is expressed selectively in DG and CA3 neurons, and downre...

  9. Overview of Johne's disease immunology

    Directory of Open Access Journals (Sweden)

    Ashutosh Wadhwa

    2013-10-01

    Full Text Available Johne's disease or paratuberculosis is one of the most economically important diseases of the livestock. Most of the economiclosses associated with paratuberculosis are related to decreased milk production, reduced fertility and higher rates of culling.Understanding the immunology of the disease is very important for better understanding of the interplay between the host andthe causative agent, Mycobacterium avium subsp. paratuberculosis (MAP. After uptake of MAPby macrophages residing inhost's intestinal tissue, two possible scenarios may emerge; MAP may be destroyed or may establish persistent infectionwithin the macrophages. If MAPpersists in the infected macrophage, it continuously modulates adaptive immune responsesof the animal. In this short review we describe the host-pathogen interactions in Johne's disease and highlights potentialprotective mechanisms in order for future design of more effective diagnostic method and vaccine.

  10. Immunological analysis of aerobic bioreactor bovine theileriosis vaccine.

    Directory of Open Access Journals (Sweden)

    Gholamreza Habibi

    2014-09-01

    Full Text Available In this study, the pilot production of aerobic bioreactor tropical theileriosis vaccine was optimized with the aim of immunological assays for further mass production.We have shown earlier the delayed type hypersensitivity (DTH assay could be used for evaluating the immunity and memory cells against specific Theileria antigen in vaccinated animals. In addition, TNF-α is the principle cytokine in modulating the cytotoxic activity of cytotoxic T-lymphocytes (CTL. Immunological analysis of the vaccine was performed by using two cell mediated immunity (CMI in vitro and in vivo DTH test (Theilerin and TNF-α assay.The results of immune responses of susceptible immunized cattle by bioreactor vaccine in comparison with conventional flask vaccine revealed a significant stimulation of immune cells by transcription of high level of TNF-α and positive reaction against Theileria antigen in Theilerin skin test (DTH.The equal immunological results achieved in both above mentioned vaccines verified the satisfactory immunity for aerobic bioreactor theileriosis vaccine for advance mass vaccination in the field on a large-scale.

  11. Synapse-Specific Metaplasticity: To Be Silenced Is Not to Silence 2B

    OpenAIRE

    Philpot, Benjamin D.; Zukin, R. Suzanne

    2010-01-01

    What happens to a single, presynaptically quiescent synapse among a population of active synapses? In this issue of Neuron, Ehlers and colleagues show that, far from being eliminated, these inactive synapses are primed for potentiation and incorporation into a new neural circuit through an upregulation of NR2B-containing NMDA receptors.

  12. Dopamine synapse is a neuroligin-2-mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures.

    Science.gov (United States)

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-04-12

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  13. Human post-mortem synapse proteome integrity screening for proteomic studies of postsynaptic complexes

    OpenAIRE

    Bayés, Alex; Collins, Mark O; Galtrey, Clare M; Simonnet, Clémence; Roy, Marcia; Croning, Mike; Gou, Gemma; van de Lagemaat, Louie N.; Milward, David; Whittle, Ian R.; Smith, Colin; Choudhary, Jyoti S.; Grant, Seth

    2014-01-01

    BackgroundSynapses are fundamental components of brain circuits and are disrupted in over 100 neurological and psychiatric diseases. The synapse proteome is physically organized into multiprotein complexes and polygenic mutations converge on postsynaptic complexes in schizophrenia, autism and intellectual disability. Directly characterising human synapses and their multiprotein complexes from post-mortem tissue is essential to understanding disease mechanisms. However, multiprotein complexes ...

  14. Human post-mortem synapse proteome integrity screening for proteomic studies of postsynaptic complexes

    OpenAIRE

    Bayés, Àlex; Collins, Mark O; Galtrey, Clare M; Simonnet, Clémence; Roy, Marcia; Croning, Mike DR; Gou, Gemma; van de Lagemaat, Louie N.; Milward, David; Whittle, Ian R.; Smith, Colin; Choudhary, Jyoti S.; Grant, Seth GN

    2014-01-01

    Background Synapses are fundamental components of brain circuits and are disrupted in over 100 neurological and psychiatric diseases. The synapse proteome is physically organized into multiprotein complexes and polygenic mutations converge on postsynaptic complexes in schizophrenia, autism and intellectual disability. Directly characterising human synapses and their multiprotein complexes from post-mortem tissue is essential to understanding disease mechanisms. However, multiprotein complexes...

  15. Hematology and immunology studies - The second manned Skylab mission

    Science.gov (United States)

    Kimzey, S. L.; Johnson, P. C.; Ritzman, S. E.; Mengel, C. E.

    1976-01-01

    The hematologic and immunologic functions of the Skylab 3 astronauts were monitored during the preflight, inflight, and postflight phases of the mission. Plasma protein profiles showed high consistency in all phases. A transient suppression of lymphocyte responsiveness was observed postflight. A reduction in the circulating blood volume due to drops in both the plasma volume and red cell mass was found. The loss of red cell mass is most likely a suppressed erythrypoiesis. The functional integrity of the circulating red cells did not appear to be compromised in the course of flight.

  16. A Nutrient Combination that Can Affect Synapse Formation

    Directory of Open Access Journals (Sweden)

    Richard J. Wurtman

    2014-04-01

    Full Text Available Brain neurons form synapses throughout the life span. This process is initiated by neuronal depolarization, however the numbers of synapses thus formed depend on brain levels of three key nutrients—uridine, the omega-3 fatty acid DHA, and choline. Given together, these nutrients accelerate formation of synaptic membrane, the major component of synapses. In infants, when synaptogenesis is maximal, relatively large amounts of all three nutrients are provided in bioavailable forms (e.g., uridine in the UMP of mothers’ milk and infant formulas. However, in adults the uridine in foods, mostly present at RNA, is not bioavailable, and no food has ever been compelling demonstrated to elevate plasma uridine levels. Moreover, the quantities of DHA and choline in regular foods can be insufficient for raising their blood levels enough to promote optimal synaptogenesis. In Alzheimer’s disease (AD the need for extra quantities of the three nutrients is enhanced, both because their basal plasma levels may be subnormal (reflecting impaired hepatic synthesis, and because especially high brain levels are needed for correcting the disease-related deficiencies in synaptic membrane and synapses.

  17. Short-term ionic plasticity at GABAergic synapses

    Directory of Open Access Journals (Sweden)

    Joseph Valentino Raimondo

    2012-10-01

    Full Text Available Fast synaptic inhibition in the brain is mediated by the pre-synaptic release of the neurotransmitter γ-Aminobutyric acid (GABA and the post-synaptic activation of GABA-sensitive ionotropic receptors. As with excitatory synapses, it is being increasinly appreciated that a variety of plastic processes occur at inhibitory synapses, which operate over a range of timescales. Here we examine a form of activity-dependent plasticity that is somewhat unique to GABAergic transmission. This involves short-lasting changes to the ionic driving force for the postsynaptic receptors, a process referred to as short-term ionic plasticity. These changes are directly related to the history of activity at inhibitory synapses and are influenced by a variety of factors including the location of the synapse and the post-synaptic cell’s ion regulation mechanisms. We explore the processes underlying this form of plasticity, when and where it can occur, and how it is likely to impact network activity.

  18. Liprin-alpha Proteins Regulate Neuronal Development and Synapse Function

    NARCIS (Netherlands)

    S.A. Spangler (Samantha)

    2009-01-01

    textabstractSynapses are specialized communication junctions between neurons whose plasticity provides the structural and functional basis for information processing and storage in the brain. Recent biochemical, genetic and imaging studies in diverse model systems are beginning to reveal the molecul

  19. Activity-dependent acceleration of endocytosis at a central synapse.

    Science.gov (United States)

    Wu, Wei; Xu, Jianhua; Wu, Xin-Sheng; Wu, Ling-Gang

    2005-12-14

    Accumulated evidence indicates the existence of rapid and slow endocytosis at many synapses. It has been proposed that rapid endocytosis is activated by intense stimulation when vesicle recycling needs to be speeded up to supply vesicles at hippocampal synapses. However, the evidence, as obtained with imaging techniques, which are somewhat indirect in indicating rapid endocytosis, is controversial. Furthermore, a slower time course of endocytosis is often found after more intense nerve activity, casting doubt on the role of rapid endocytosis at synapses. Here, we addressed this issue at a mammalian central synapse, the calyx of Held, using a capacitance measurement technique that provides a higher time resolution than imaging techniques. We found that rapid endocytosis with a time constant of approximately 1-2 s was activated during intense nerve activity. Reducing the presynaptic calcium current or buffering the intracellular calcium with EGTA significantly inhibited rapid endocytosis, suggesting that calcium triggers rapid endocytosis. During intense stimulation, rapid endocytosis retrieved up to approximately eight vesicles per second per active zone, approximately eightfold larger than reported in the hippocampus, and thus played a dominant role during and within 3 s after intense stimulation. Slow endocytosis became dominant 3 s after intense stimulation likely because of the fall of the intracellular calcium level that deactivated rapid endocytosis. These results underscore the importance of calcium-triggered rapid endocytosis, which offers the nerve terminal the plasticity to speed up vesicle cycling during intense nerve activity. PMID:16354926

  20. Efficient supervised learning in networks with binary synapses

    CERN Document Server

    Baldassi, Carlo; Brunel, Nicolas; Zecchina, Riccardo

    2007-01-01

    Recent experimental studies indicate that synaptic changes induced by neuronal activity are discrete jumps between a small number of stable states. Learning in systems with discrete synapses is known to be a computationally hard problem. Here, we study a neurobiologically plausible on-line learning algorithm that derives from Belief Propagation algorithms. We show that it performs remarkably well in a model neuron with binary synapses, and a finite number of `hidden' states per synapse, that has to learn a random classification task. Such system is able to learn a number of associations close to the theoretical limit, in time which is sublinear in system size. This is to our knowledge the first on-line algorithm that is able to achieve efficiently a finite number of patterns learned per binary synapse. Furthermore, we show that performance is optimal for a finite number of hidden states which becomes very small for sparse coding. The algorithm is similar to the standard `perceptron' learning algorithm, with a...

  1. Sleep: The hebbian reinforcement of the local inhibitory synapses.

    Science.gov (United States)

    Touzet, Claude

    2015-09-01

    Sleep is ubiquitous among the animal realm, and represents about 30% of our lives. Despite numerous efforts, the reason behind our need for sleep is still unknown. The Theory of neuronal Cognition (TnC) proposes that sleep is the period of time during which the local inhibitory synapses (in particular the cortical ones) are replenished. Indeed, as long as the active brain stays awake, hebbian learning guarantees that efficient inhibitory synapses lose their efficiency – just because they are efficient at avoiding the activation of the targeted neurons. Since hebbian learning is the only known mechanism of synapse modification, it follows that to replenish the inhibitory synapses' efficiency, source and targeted neurons must be activated together. This is achieved by a local depolarization that may travel (wave). The period of time during which such slow waves are experienced has been named the "slow-wave sleep" (SWS). It is cut into several pieces by shorter periods of paradoxical sleep (REM) which activity resembles that of the awake state. Indeed, SWS – because it only allows local neural activation – decreases the excitatory long distance connections strength. To avoid losing the associations built during the awake state, these long distance activations are played again during the REM sleep. REM and SWS sleeps act together to guarantee that when the subject awakes again, his inhibitory synaptic efficiency is restored and his (excitatory) long distance associations are still there. PMID:26138624

  2. Learning Spike Time Codes Through Morphological Learning With Binary Synapses.

    Science.gov (United States)

    Roy, Subhrajit; San, Phyo Phyo; Hussain, Shaista; Wei, Lee Wang; Basu, Arindam

    2016-07-01

    In this brief, a neuron with nonlinear dendrites (NNLDs) and binary synapses that is able to learn temporal features of spike input patterns is considered. Since binary synapses are considered, learning happens through formation and elimination of connections between the inputs and the dendritic branches to modify the structure or morphology of the NNLD. A morphological learning algorithm inspired by the tempotron, i.e., a recently proposed temporal learning algorithm is presented in this brief. Unlike tempotron, the proposed learning rule uses a technique to automatically adapt the NNLD threshold during training. Experimental results indicate that our NNLD with 1-bit synapses can obtain accuracy similar to that of a traditional tempotron with 4-bit synapses in classifying single spike random latency and pairwise synchrony patterns. Hence, the proposed method is better suited for robust hardware implementation in the presence of statistical variations. We also present results of applying this rule to real-life spike classification problems from the field of tactile sensing. PMID:26173221

  3. Supporting shared care for diabetes patients. The synapses solution.

    Science.gov (United States)

    Toussaint, P. J.; Kalshoven, M.; Ros, M.; van der Kolk, H.; Weier, O.

    1997-01-01

    In this paper we discuss the construction of a Federated Health Care Record server within the context of the European R&D project Synapses. We describe the system using the five ODP viewpoints. From an analysis of the business process to be supported by the distributed system (the shared care for diabetes patients) requirements for the server are derived. PMID:9357655

  4. Addictive drugs and plasticity of glutamatergic synapses on dopaminergic neurons: what have we learned from genetic mouse models?

    OpenAIRE

    Jan Rodriguez Parkitna; David Engblom

    2012-01-01

    Drug-induced changes in the functional properties of neurons in the mesolimbic dopaminergic system are attractive candidates for the molecular underpinnings of addiction. A central question in this context has been how drugs of abuse affect synaptic plasticity on dopaminergic cells in the ventral tegmental area. We now know that the intake of addictive drugs is accompanied by a complex sequence of alterations in the properties of excitatory synapses on dopaminergic neurons, mainly driven by s...

  5. Reversing the Outcome of Synapse Elimination at Developing Neuromuscular Junctions In Vivo: Evidence for Synaptic Competition and Its Mechanism

    OpenAIRE

    Turney, Stephen G.; Lichtman, Jeff W.

    2012-01-01

    Author Summary Early in development, neurons make multiple synaptic connections with their target cells. Over time, many of these connections disappear, leaving behind a fraction of the original connections. Because this pruning occurs when mammals first leave the uterus, it's thought that this type of remodeling may serve to sculpt the nervous system to match a particular environment. However, what causes synapse elimination is not well understood. In this study, we use in vivo imaging to st...

  6. Immunologic protection afforded by sunscreens in vitro.

    Science.gov (United States)

    Davenport, V; Morris, J F; Chu, A C

    1997-06-01

    Several studies have suggested a lack of correlation between sunscreen sun protection factor and protection of the skin immune system, potentially allowing greater damage to the skin by removing the natural protective erythemal response to sun exposure. Despite this, routine testing of immune protection afforded by sunscreens is not performed by industry. Current laboratory methods for investigating the efficacy of sunscreen protection of epidermal immune function use the induction of contact hypersensitivity or epidermal cell alloantigen presentation. Animal models, cell culture systems, and in vivo human studies are commonly employed, but all these systems have significant drawbacks for use in routine testing. The purpose of this study was to develop an in vitro system for testing the immunologic protection afforded by sunscreens in human skin. Five test sunscreens plus a vehicle control were tested in a "blind" fashion for their in vitro level of immune protection. Creams were applied in a standard manner to human whole skin explants and were irradiated over a range of physiologic doses using an Oriel solar simulator. A mixed epidermal lymphocyte reaction was used to quantify epidermal alloantigen-presenting capacity, in the presence or absence of test cream, for five explants. Results consistently demonstrated that all the test sunscreens protected beyond their designated sun protection factors, whereas the vehicle conferred no protection. The explant-mixed epidermal lymphocyte reaction system gave consistent, reproducible results and may prove useful for the allocation of an immune protection factor to all sunscreens. PMID:9182811

  7. Immunological mechanisms of allergen-specific immunotherapy.

    Science.gov (United States)

    Jutel, Marek; Akdis, C A

    2011-06-01

    The studies on the mechanisms of specific immunotherapy (SIT) point out its targets that decide on the efficacy of SIT and hence might be used for its further improvement. Several mechanisms have been proposed to explain the beneficial effects of immunotherapy. The knowledge of the mechanisms underlying allergic diseases and curative treatment possibilities has experienced exciting advances over the last three decades. Studies in several clinical trials in allergen-SIT have demonstrated that the induction of a tolerant state against allergens in many ways represents a key step in the development of a healthy immune response against allergens. Several cellular and molecular mechanisms have been demonstrated: allergen-specific suppressive capacities of both inducible subsets of CD4(+) CD25(+) forkhead box P3(+) T-regulatory and IL-10-secreting type 1 T-regulatory cells increase in peripheral blood; suppression of eosinophils, mast cells, and basophils; Ab isotype change from IgE to IgG4. This review aims at the better understanding of the observed immunological changes associated with allergen SIT. PMID:21466562

  8. Etiology and immunology of infectious bronchitis virus

    Directory of Open Access Journals (Sweden)

    LF Caron

    2010-06-01

    Full Text Available Infectious bronchitis virus (IBV of chickens is currently one of the main diseases associated with respiratory syndrome in domestic poultry, as well as with losses related to egg production. The etiological agent is a coronavirus, which presents structural differences in the field, mainly in the S1 spike protein. The immune response against this virus is complicated by the few similarities among serotypes. Environmental and management factors, as well as the high mutation rate of the virus, render it difficult to control the disease and compromise the efficacy of the available vaccines. Bird immune system capacity to respond to challenges depend on the integrity of the mucosae, as an innate compartment, and on the generation of humoral and cell-mediated adaptive responses, and may affect the health status of breeding stocks in the medium run. Vaccination of day-old chicks in the hatchery on aims at eliciting immune responses, particularly cell-mediated responses that are essential when birds are first challenged. Humoral response (IgY and IgA are also important for virus clearance in subsequent challenges. The presence of antibodies against the S1 spike protein in 3- to 4-week-old birds is important both in broilers and for immunological memory in layers and breeders.

  9. Aurora A drives early signalling and vesicle dynamics during T-cell activation

    Science.gov (United States)

    Blas-Rus, Noelia; Bustos-Morán, Eugenio; Pérez de Castro, Ignacio; de Cárcer, Guillermo; Borroto, Aldo; Camafeita, Emilio; Jorge, Inmaculada; Vázquez, Jesús; Alarcón, Balbino; Malumbres, Marcos; Martín-Cófreces, Noa B.; Sánchez-Madrid, Francisco

    2016-01-01

    Aurora A is a serine/threonine kinase that contributes to the progression of mitosis by inducing microtubule nucleation. Here we have identified an unexpected role for Aurora A kinase in antigen-driven T-cell activation. We find that Aurora A is phosphorylated at the immunological synapse (IS) during TCR-driven cell contact. Inhibition of Aurora A with pharmacological agents or genetic deletion in human or mouse T cells severely disrupts the dynamics of microtubules and CD3ζ-bearing vesicles at the IS. The absence of Aurora A activity also impairs the activation of early signalling molecules downstream of the TCR and the expression of IL-2, CD25 and CD69. Aurora A inhibition causes delocalized clustering of Lck at the IS and decreases phosphorylation levels of tyrosine kinase Lck, thus indicating Aurora A is required for maintaining Lck active. These findings implicate Aurora A in the propagation of the TCR activation signal. PMID:27091106

  10. Cell adhesion molecules in the central nervous system

    OpenAIRE

    Togashi, Hideru; Sakisaka, Toshiaki; Takai, Yoshimi

    2009-01-01

    Cell-cell adhesion molecules play key roles at the intercellular junctions of a wide variety of cells, including interneuronal synapses and neuron-glia contacts. Functional studies suggest that adhesion molecules are implicated in many aspects of neural network formation, such as axon-guidance, synapse formation, regulation of synaptic structure and astrocyte-synapse contacts. Some basic cell biological aspects of the assembly of junctional complexes of neurons and glial cells resemble those ...

  11. Cannabinoids inhibit network-driven synapse loss between hippocampal neurons in culture.

    Science.gov (United States)

    Kim, Hee Jung; Waataja, Jonathan J; Thayer, Stanley A

    2008-06-01

    Dendritic pruning and loss of synaptic contacts are early events in many neurodegenerative diseases. These effects are dynamic and seem to differ mechanistically from the cell death process. Cannabinoids modulate synaptic activity and afford protection in some neurotoxicity models. We investigated the effects of cannabinoids on activity-induced changes in the number of synapses between rat hippocampal neurons in culture. Morphology and synapses were visualized by confocal imaging of neurons expressing DsRed2 and postsynaptic density protein 95 (PSD95) fused to enhanced green fluorescent protein (GFP). Reducing the extracellular Mg2+ concentration to 0.1 mM for 4 h induced intense synaptic activity, which decreased the number of PSD95-GFP puncta by 45 +/- 13%. Synapse loss was an early event, required activation of N-methyl-D-aspartate receptors, and was mediated by the ubiquitin-proteasome pathway. The cannabinoid receptor full agonist WIN55,212-2 [(R)-(+)-[2,3-dihydro-5-methyl-3-[(4-morpholinyl)-methyl] pyrrolo-[1,2,3-de]-1,4-benzoxazin-6-yl](1-napthalenyl)-methanone monomethanesulfonate] (EC(50) = 2.5 +/- 0.5 nM) and the partial agonist Delta(9)-tetrahydrocannabinol (THC; EC(50) = 9 +/- 3 nM) inhibited PSD loss in a manner reversed by the CB1 receptor antagonist rimonabant [N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxamide]. The protection was mimicked by inhibition of presynaptic Ca2+ channels, and WIN55,212-2 did not prevent PSD loss elicited by direct application of glutamate, suggesting a presynaptic mechanism. Prolonged exposure to WIN55,212-2, but not THC, desensitized the protective effect. Treating cells that had undergone PSD loss with WIN55,212-2 reversed the loss and enabled recovery of a full compliment of synapses. The modulation of synaptic number by acute and prolonged exposure to cannabinoids may account for some of the effects of these drugs on the plasticity, survival, and function of neural networks. PMID

  12. Translational regulation of acetylcholinesterase by the RNA-binding protein Pumilio-2 at the neuromuscular synapse.

    Science.gov (United States)

    Marrero, Emilio; Rossi, Susana G; Darr, Andrew; Tsoulfas, Pantelis; Rotundo, Richard L

    2011-10-21

    Acetylcholinesterase (AChE) is highly expressed at sites of nerve-muscle contact where it is regulated at both the transcriptional and post-transcriptional levels. Our understanding of the molecular mechanisms underlying its regulation is incomplete, but they appear to involve both translational and post-translational events as well. Here, we show that Pumilio-2 (PUM2), an RNA binding translational repressor, is highly localized at the neuromuscular junction where AChE mRNA concentrates. Immunoprecipitation of muscle cell extracts with a PUM2 specific antibody precipitated AChE mRNA, suggesting that PUM2 binds to the AChE transcripts in a complex. Gel shift assays using a bacterially expressed PUM2 RNA binding domain showed specific binding using wild type AChE 3'-UTR RNA segment that was abrogated by mutation of the consensus recognition site. Transfecting skeletal muscle cells with shRNAs specific for PUM2 up-regulated AChE expression, whereas overexpression of PUM2 decreased AChE activity. We conclude that PUM2 binds to AChE mRNA and regulates AChE expression translationally at the neuromuscular synapse. Finally, we found that PUM2 is regulated by the motor nerve suggesting a trans-synaptic mechanism for locally regulating translation of specific proteins involved in modulating synaptic transmission, analogous to CNS synapses. PMID:21865157

  13. Translational Regulation of Acetylcholinesterase by the RNA-binding Protein Pumilio-2 at the Neuromuscular Synapse*

    Science.gov (United States)

    Marrero, Emilio; Rossi, Susana G.; Darr, Andrew; Tsoulfas, Pantelis; Rotundo, Richard L.

    2011-01-01

    Acetylcholinesterase (AChE) is highly expressed at sites of nerve-muscle contact where it is regulated at both the transcriptional and post-transcriptional levels. Our understanding of the molecular mechanisms underlying its regulation is incomplete, but they appear to involve both translational and post-translational events as well. Here, we show that Pumilio-2 (PUM2), an RNA binding translational repressor, is highly localized at the neuromuscular junction where AChE mRNA concentrates. Immunoprecipitation of muscle cell extracts with a PUM2 specific antibody precipitated AChE mRNA, suggesting that PUM2 binds to the AChE transcripts in a complex. Gel shift assays using a bacterially expressed PUM2 RNA binding domain showed specific binding using wild type AChE 3′-UTR RNA segment that was abrogated by mutation of the consensus recognition site. Transfecting skeletal muscle cells with shRNAs specific for PUM2 up-regulated AChE expression, whereas overexpression of PUM2 decreased AChE activity. We conclude that PUM2 binds to AChE mRNA and regulates AChE expression translationally at the neuromuscular synapse. Finally, we found that PUM2 is regulated by the motor nerve suggesting a trans-synaptic mechanism for locally regulating translation of specific proteins involved in modulating synaptic transmission, analogous to CNS synapses. PMID:21865157

  14. Forskolin induces NMDA receptor-dependent potentiation at a central synapse in the leech.

    Science.gov (United States)

    Grey, Kathryn B; Burrell, Brian D

    2008-05-01

    In vertebrate hippocampal neurons, application of forskolin (an adenylyl cyclase activator) and rolipram (a phosphodiesterase inhibitor) is an effective technique for inducing chemical long-term potentiation (cLTP) that is N-methyl-d-aspartate (NMDA) receptor (NMDAR)-dependent. However, it is not known whether forskolin induces a similar potentiation in invertebrate synapses. Therefore, we examined whether forskolin plus rolipram treatment could induce potentiation at a known glutamatergic synapse in the leech (Hirudo sp.), specifically between the pressure (P) mechanosensory and anterior pagoda (AP) neurons. Perfusion of isolated ganglia with forskolin (50 muM) in conjunction with rolipram (0.1 muM) in Mg(2+)-free saline significantly potentiated the P-to-AP excitatory postsynaptic potential. Application of 2-amino-5-phosphonovaleric acid (APV, 100 muM), a competitive NMDAR antagonist, blocked the potentiation, indicating P-to-AP potentiation is NMDAR-dependent. Potentiation was blocked by injection of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA, 1 mM) into the postsynaptic cell, but not by BAPTA injection into the presynaptic neuron, indicating a requirement for postsynaptic elevation of intracellular Ca(2+). Application of db-cAMP mimicked the potentiating effects of forskolin, and Rp-cAMP, an inhibitor of protein kinase A, blocked forskolin-induced potentiation. Potentiation was also blocked by autocamtide-2-related inhibitory peptide (AIP), indicating a requirement for activation of Ca(2+)/calmodulin-dependent kinase II (CaMKII). Finally, potentiation was blocked by botulinum toxin, suggesting that trafficking of glutamate receptors also plays a role in this form of synaptic plasticity. These experiments demonstrate that techniques used to induce cLTP in vertebrate synapses also induce NMDAR-dependent potentiation in the leech CNS and that many of the cellular processes that mediate LTP are conserved between vertebrate and invertebrate phyla. PMID

  15. Immunology of vascularized composite allotransplantation: a primer for hand surgeons.

    Science.gov (United States)

    Ravindra, K; Haeberle, M; Levin, L S; Ildstad, S T

    2012-04-01

    Vascularized composite allotransplantation is a recent innovation in the fields of transplantation surgery, plastic and reconstructive surgery, and orthopedic surgery. The success of hand and face transplantation has been based on extensive experience in solid organ transplantation. Advances in understanding the immunology of transplantation have had a major role in achieving excellent results in this new field. The purpose of this article is to introduce the basics of human immunology (innate and adaptive systems) and the immunological basis of human transplantation (the importance of human leukocyte antigen, direct and indirect pathways of antigen recognition, the 3 signals for T-cell activation, and mechanisms and types of allograft rejection) and focus on the mode of action of immunosuppressive drugs that have evolved as the mechanisms and pathways for rejection have been defined through research. This includes recent studies involving the use of costimulatory blockade, regulatory T cells, and tolerance induction that have resulted from research in understanding the mechanisms of immune recognition and function. PMID:22464235

  16. A kinetic model for the frequency dependence of cholinergic modulation at hippocampal GABAergic synapses.

    Science.gov (United States)

    Stone, Emily; Haario, Heikki; Lawrence, J Josh

    2014-12-01

    In this paper we use a simple model of presynaptic neuromodulation of GABA signaling to decipher paired whole-cell recordings of frequency dependent cholinergic neuromodulation at CA1 parvalbumin-containing basket cell (PV BC)-pyramidal cell synapses. Variance-mean analysis is employed to normalize the data, which is then used to estimate parameters in the mathematical model. Various parameterizations and hidden parameter dependencies are investigated using Markov Chain Monte Carlo (MCMC) parameter estimation techniques. This analysis reveals that frequency dependence of cholinergic modulation requires both calcium-dependent recovery from depression and mAChR-induced inhibition of presynaptic calcium entry. A reduction in calcium entry into the presynaptic terminal in the kinetic model accounted for the frequency-dependent effects of mAChR activation. PMID:25445738

  17. Immunological memory: lessons from the past and a look to the future.

    Science.gov (United States)

    Farber, Donna L; Netea, Mihai G; Radbruch, Andreas; Rajewsky, Klaus; Zinkernagel, Rolf M

    2016-02-01

    Immunological memory is considered to be one of the cardinal features of the adaptive immune system. Despite being a recognized phenomenon since the time of the ancient Greeks, immunologists are yet to fully appreciate the mechanisms that control memory responses in the immune system. Furthermore, our definition of immunological memory itself continues to evolve, with recent suggestions that innate immune cells also show memory-like behaviour. In this Viewpoint article, Nature Reviews Immunology invites five leading immunologists to share their thoughts on our current understanding of the nature of immunological memory. Our experts highlight some of the seminal studies that have shaped the immune memory field and offer contrasting views on the key questions that remain to be addressed. PMID:26831526

  18. IMMUNOLOGICAL STUDY OF SPONGIFORM ENCEPHALOPATHIES

    Directory of Open Access Journals (Sweden)

    J. Meenupriya

    2013-04-01

    Full Text Available Spongiform encephalopathies, categorized as a subclass of neuro-degenerative diseases and commonly known as prion diseases, are a group of progressive conditions that affect the brain and nervous system of many animals, including humans. Prion diseases are common among cannibalistic communities; further research has revealed that the infected or malformed prion protein (named PrPsc spreads its virulence to the normal, healthy prion protein (named PrPc when people consume infected tissues. Knowing that a small interaction between normal and infected prion protein creates virulence, this relationship can be studied as a simple antigen-antibody interaction to understand the series of events that transform a normal prion protein into a virulent misfolded protein. Thoroughly modeled and validated structures of both PrPsc and PrPc can be effectively used to map the epitopes and thereby screen the antigen-antibody interaction using docking studies for a particular organism of concern. This simple immunological approach is used to understand the vital interaction between the normal and malformed proteins that is involved in the disease-spreading mechanism. Clarification of this mechanism could be used in various immune- and bioinformatics algorithms to map the interaction epitopes, furthering an understanding of these pathologies.

  19. Investigating CNS synaptogenesis at single-synapse resolution by combining reverse genetics with correlative light and electron microscopy.

    Science.gov (United States)

    Urwyler, Olivier; Izadifar, Azadeh; Dascenco, Dan; Petrovic, Milan; He, Haihuai; Ayaz, Derya; Kremer, Anna; Lippens, Saskia; Baatsen, Pieter; Guérin, Christopher J; Schmucker, Dietmar

    2015-01-15

    Determining direct synaptic connections of specific neurons in the central nervous system (CNS) is a major technical challenge in neuroscience. As a corollary, molecular pathways controlling developmental synaptogenesis in vivo remain difficult to address. Here, we present genetic tools for efficient and versatile labeling of organelles, cytoskeletal components and proteins at single-neuron and single-synapse resolution in Drosophila mechanosensory (ms) neurons. We extended the imaging analysis to the ultrastructural level by developing a protocol for correlative light and 3D electron microscopy (3D CLEM). We show that in ms neurons, synaptic puncta revealed by genetically encoded markers serve as a reliable indicator of individual active zones. Block-face scanning electron microscopy analysis of ms axons revealed T-bar-shaped dense bodies and other characteristic ultrastructural features of CNS synapses. For a mechanistic analysis, we directly combined the single-neuron labeling approach with cell-specific gene disruption techniques. In proof-of-principle experiments we found evidence for a highly similar requirement for the scaffolding molecule Liprin-α and its interactors Lar and DSyd-1 (RhoGAP100F) in synaptic vesicle recruitment. This suggests that these important synapse regulators might serve a shared role at presynaptic sites within the CNS. In principle, our CLEM approach is broadly applicable to the developmental and ultrastructural analysis of any cell type that can be targeted with genetically encoded markers. PMID:25503410

  20. Modeling-Enabled Systems Nutritional Immunology

    Science.gov (United States)

    Verma, Meghna; Hontecillas, Raquel; Abedi, Vida; Leber, Andrew; Tubau-Juni, Nuria; Philipson, Casandra; Carbo, Adria; Bassaganya-Riera, Josep

    2016-01-01

    This review highlights the fundamental role of nutrition in the maintenance of health, the immune response, and disease prevention. Emerging global mechanistic insights in the field of nutritional immunology cannot be gained through reductionist methods alone or by analyzing a single nutrient at a time. We propose to investigate nutritional immunology as a massively interacting system of interconnected multistage and multiscale networks that encompass hidden mechanisms by which nutrition, microbiome, metabolism, genetic predisposition, and the immune system interact to delineate health and disease. The review sets an unconventional path to apply complex science methodologies to nutritional immunology research, discovery, and development through “use cases” centered around the impact of nutrition on the gut microbiome and immune responses. Our systems nutritional immunology analyses, which include modeling and informatics methodologies in combination with pre-clinical and clinical studies, have the potential to discover emerging systems-wide properties at the interface of the immune system, nutrition, microbiome, and metabolism. PMID:26909350