WorldWideScience

Sample records for cell immobilization electrophoresis

  1. Mapping and identification of interferon gamma-regulated HeLa cell proteins separated by immobilized pH gradient two-dimensional gel electrophoresis

    DEFF Research Database (Denmark)

    Shaw, A.; Larsen, M.; Roepstorff, P.

    1999-01-01

    magnitude of IFN-gamma responsive genes has been reported previously. Our goal is to identify and map IFN-gamma-regulated HeLa cell proteins to the two-dimensional polyacrylamide gel electrophoresis with the immobilized pH gradient (IPG) two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) system...

  2. Immobilized enzymes and cells

    Energy Technology Data Exchange (ETDEWEB)

    Bucke, C; Wiseman, A

    1981-04-04

    This article reviews the current state of the art of enzyme and cell immobilization and suggests advances which might be made during the 1980's. Current uses of immobilized enzymes include the use of glucoamylase in the production of glucose syrups from starch and glucose isomerase in the production of high fructose corn syrup. Possibilities for future uses of immobilized enzymes and cells include the utilization of whey and the production of ethanol.

  3. Down-regulation of triose phosphate isomerase in Vineristine-resistant gastric cancer SGC7901 cell line identified by immobilized pH gradient two-dimensional gel electrophoresis and mierosequencing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective:To exkplore new multidrug-resistance-related proteins in gastric SC7901 cells and clarify their mechanisms.Methods:Two-dimensional(2-D) polyacrylamide gel electrophoresis with immobilized pH gradients(IPG) was applied to compare the differential expression of multidrug-resistance-related proteins in gastric cancer SGC7901 cells and Vineristine-resistant SGC7901 cells (SGC7901/VCR) induced by vincristine sulfate.The 2-D gels were silver-stained.Then,preparative 2-D PAGE was performed.The differential proteins of PVDF membranes were cxcised and identified by N-terminal microsequencing.The mRNA expressions of differential proteins were detected in SGC 7901 cells and SGC7901/VCR cells by RT-PCR.Results:Approximatedly 680 protein sports were resolved on each 2-D gel by silver staining.Most protein spots showed no difference in composition,shape or density.25 proteins differed in abundance (6 higher in SGC7901/VCR cells;19 higher in 7901 cells);5 proteins were unique to one kind of cell or the othe(3 in SGC7901/VRC cells,2 in 7901 cells).One drug-resistance-related protein,which was down-regulated in SGC7901/VCR cells,was identified as trisephosphate isomerase(TPI),a glycolytic pathway enzyme.Conclusions:the results suggest that these differential proteins including TPI may be related to the Vincristine-resistant mechanism in human gastric cancer SGC7901/VCR cell line.

  4. Mapping and identification of HeLa cell proteins separated by immobilized pH-gradient two-dimensional gel electrophoresis and construction of a two-dimensional polyacrylamide gel electrophoresis database

    DEFF Research Database (Denmark)

    Shaw, AC; Rossel Larsen, M; Roepstorff, P

    1999-01-01

    The HeLa cell line, a human adenocarcinoma, is used in many research fields, since it can be infected with a wide range of viruses and intracellular bacteria. Therefore, the mapping of HeLa cell proteins is useful for the investigation of parasite host cell interactions. Because of the recent imp...... these and future data accessible for interlaboratory comparison, we constructed a 2-D PAGE database on the World Wide Web....... the mapping of [35S]methionine/cysteine-labeled HeLa cell proteins with the 2-D PAGE (IPG)-system, using matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and N-terminal sequencing for protein identification. To date 21 proteins have been identified and mapped. In order to make...

  5. Influence of Immobilized Biomolecules on Magnetic Bead Plug Formation and Retention in Capillary Electrophoresis

    Science.gov (United States)

    Henken, Rachel L.; Chantiwas, Rattikan; Gilman, S. Douglass

    2012-01-01

    Significant changes in the formation and retention of magnetic bead plugs in a capillary during electrophoresis were studied, and it was demonstrated that these effects were due to the type of biological molecule immobilized on the surface of these beads. Three biological molecules, an antibody, an oligonucleotide and alkaline phosphatase, were attached to otherwise identical streptavidin-coated magnetic beads through biotin-avidin binding in order to isolate differences in bead immobilization in a magnetic field resulting from the type of biological molecule immobilized on the bead surface. Alkaline phosphatase also was attached to the magnetic beads using epoxy groups on the bead surfaces (instead of avidin-biotin binding) to study the impact of immobilization chemistry. The formation and retention of magnetic bead plugs were studied quantitatively using light scattering detection of magnetic particles eluting from the bead plugs and qualitatively using microscopy. Both the type of biomolecule immobilized on the magnetic bead surface and the chemistry used to link the biomolecule to the magnetic bead impacted the formation and retention of the bead plugs. PMID:22437880

  6. Surface cell immobilization within perfluoroalkoxy microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Stojkovič, Gorazd; Krivec, Matic [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia); Vesel, Alenka [Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Marinšek, Marjan [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia); Žnidaršič-Plazl, Polona, E-mail: polona.znidarsic@fkkt.uni-lj.si [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia)

    2014-11-30

    Graphical abstract: - Highlights: • A very efficient approach for immobilization of cells into microreactors is presented. • It is applicable to various materials, including PFA and cyclic olefin (co)polymers. • It was used to immobilize different prokaryotic and eukaryotic microbes. • Cells were immobilized on the surface in high density and showed good stability. • Mechanisms of APTES interactions with target materials are proposed. - Abstract: Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor{sup ®} and Topas{sup ®}.

  7. Immobilization of microbial cells: A promising tool for treatment of ...

    African Journals Online (AJOL)

    The review articles on cell immobilization have been published since 1980 and reflect the general interest in this topic. Immobilized microbial cells create opportunities in a wide range of sectors including environmental pollution control. Compared with suspended microorganism technology, cell immobilization shows many ...

  8. Immobilization of Mortierella vinacea cells by radiation polymerization

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1983-01-01

    Immobilization of Mortierella vinacea cells, which contain active α-galactosidase, by radiation polymerization at low temperatures was studied. The durability of the enzymatic activity of the immobilized cells obtained with hydrophilic monomers was affected by the concentrations of the cells and monomer in which optimum conditions were observed. The enzymatic activity of the immobilized cells obtained with hydrophilic monomers was compared to that of hydrophobic monomers. Michaelis constants of the immobilized cells varied with monomer concentration. The effect of addition of porous solid substances on the immobilization of the cells was studied

  9. The single-cell gel electrophoresis assay to determine apoptosis ...

    African Journals Online (AJOL)

    When the frequency of appearance of apoptotic cells following was observed over a period of time, there was a significant increase in appearance of apoptosis when using single cell gel electrophoresis assay. The present report demonstrates that the characteristic pattern of apoptotic comets detected by the comet assay ...

  10. Immobilized cells of Candida rugosa possessing fumarase activity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.; Zhone, L.

    1980-01-01

    Immobilized cells of C. rugosa that possessed fumarase activity were prepared by different methods; the most active immobilized cells were entrapped in polyacrylamide gels. The effects of pH temperature, and divalent cations on the fumarase activity of both immobilized and native cells were the same. Mn/sup 2 +/, Mg/sup 2 +/, Ca/sup 2 +/, and Fe/sup 2 +/ did not protect the immobilized enzyme against thermal inactivation. The activity of immobilized fumarase remained constant during 91 days of storage of 4-6 degrees. The immobilized cell column was used for the continuous production of L-malic acid from 1M fumarate at 30 degrees and pH 8.5. The immobilized column operated steadily for 2 months. Half life of the immobilized fumarase at 30 degrees was 95 days.

  11. Immobilization of yeast cells by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Fujimura, T.; Kaetsu, I.

    1982-01-01

    Radiation-induced polymerization method was applied to the immobilization of yeast cells. The effects of irradiation, cooling and monomer, which are neccessary for polymerization, were recovered completely by subsequent aerobical incubation of yeast cells. The ethanol productive in immobilized yeast cells increased with the increase of aerobical incubation period. The growth of yeast cells in immobilized yeast cells was indicated. The maximum ethanol productivity in immobilized yeast cell system was around three times as much as that in free yeast cell system. (orig.)

  12. Preparation of immobilized growing cells and enzymatic hydrolysis of sawdust

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    Trichoderma reesei cells were immobilized by radiation polymerization using porous materials such as non-woven material and sawdust, and the enzymatic hydrolysis of sawdust with the enzyme solution from the immobilized growing cells was studied. The filter paper activity, which shows the magnitude of cellulase production in the immobilized cells, was comparable with that in the intact cells. The filter paper activity was affected by addition concentration of monomer and porous materials. The cells in the immobilized cells grew to be adhered on the surface of the fibrous polymers. Sawdust, which was pretreated by irradiation technique, was effectively hydrolyzed with the enzyme solution resulting from the culture of the immobilized cells, in which the glucose yield increased increasing the culture time of the immobilized cells. (author)

  13. Quantification of DNA damage by single-cell electrophoresis

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1990-01-01

    A simple technique of micro-agarose gel electrophoresis has been developed to quantify DNA damage in individual cells. Cells are embedded in agarose gel on microscope slides, lysed by detergents and then electrophoresed for a short time under neutral or alkaline condition. In irradiated cells, DNA migrates from the nucleus toward the anode, displaying commet-like pattern by staining with DNA-specific fluorescence dye. DNA damage is evaluated by measuring the distance of DNA migration. The technique was applied for measuring DNA damage in single cells exposed to 60 Co γ-rays, or to KUR radiation in the presence or absence of 10 B-enriched boric acid. The enhanced production of double-stranded DNA breaks by 10 B(n,α) 7 Li reaction was demonstrated here. The significant increase in the length of DNA migration was observed in single cells exposed to such a low dose as 20 cGy after alkaline micro electrophoresis. (author)

  14. Immobilization of Trichoderma reesei cells by radiation polymerization

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1983-01-01

    Trichoderma reesei cells were immobilized by radiation polymerization 2-hydroxyethyl acrylate monomer at low temperature. Cellulase production resulting from the growth of the cells in the porous polymer matrix of immobilized cell composites was confirmed by measuring the cellulase activity and pH during the culture. (orig.)

  15. Free-zone electrophoresis of animal cells. 1: Experiments on cell-cell interactions

    Science.gov (United States)

    Todd, P. W.; Hjerten, S.

    1985-01-01

    The electrophoretically migrating zones wasa monitored. The absence of fluid flows in the direction of migration permits direct measurement of electrophoretic velocities of any material. Sedimentation is orthogonal to electrokinetic motion and the effects of particle-particle interaction on electrophoretic mobility is studied by free zone electrophoresis. Fixed erythrocytes at high concentrations, mixtures of fixed erythrocytes from different animal species, and mixtures of cultured human cells were studied in low ionic strength buffers. The electrophoretic velocity of fixed erythrocytes was not altered by increasing cell concentration or by the mixing of erythrocytes from different species. When zones containing cultured human glial cells and neuroblastoma cells are permitted to interact during electrophoresis, altered migration patterns occur. It is found that cell-cell interactions depends upon cell type.

  16. Uranium uptake by immobilized cells of Pseudomonas strain EPS 5028

    International Nuclear Information System (INIS)

    Pons, M.P.; Fuste, M.C.

    1993-01-01

    Polyacrylamide-gel-immobilized cells of Pseudomonas strain EPS 5028 were effective in the removal of uranium (U) from synthetic effluents. Metal accumulation was performed in an open system in columns filled with immobilized cells that were challenged with continuous flows containing U. Possible variable of the system were studied. Uranium uptake by the immobilized cells of this microorganism was affected by pH but not by temperature or flow rate. In addition, U binding could be interpreted in terms of the Freundlich adsorption isotherm indicating single-layer adsorption. The feasibility of reusing the immobilized cells was suggested after the recovery of U with a solution of 0.1 M sodium carbonate. (orig.)

  17. Electrically conductive, immobilized bioanodes for microbial fuel cells

    International Nuclear Information System (INIS)

    Ganguli, R; Dunn, B

    2012-01-01

    The power densities of microbial fuel cells with yeast cells as the anode catalyst were significantly increased by immobilizing the yeast in electrically conductive alginate electrodes. The peak power densities measured as a function of the electrical conductivity of the immobilized electrodes show that although power increases with rising electrical conductivity, it tends to saturate beyond a certain point. Changing the pH of the anode compartment at that point seems to further increase the power density, suggesting that proton transport limitations and not electrical conductivity will limit the power density from electrically conductive immobilized anodes. (paper)

  18. Cell immobilization by radiation polymerization-a comparative study

    International Nuclear Information System (INIS)

    Dahlan bin Hj Mohd; Abu Bakar bin Salleh; Che Nyonya binti Abd Razak; Meheran binti Hamenudin; Kamaruzaman bin Ampon; Wan Md Zin bin Wan Yunus; Mahiran binti Basri

    1991-01-01

    An extracellular lipase producing fungus, Rhizopus rhizopodi formis was immobilised using radiation-induced polyHEMA, alginate and k-carrageenan. Immobilizations were done on spores since they showed better resistance against gamma radiation. The simultaneous radiation immobilization technique was found to be unsuitable because of contamination. Post-radiation immobilization using polyHEMA yielded 2-3 times more enzyme than the free cells. The value, however was slightly lower than the ones given by the cells immobilised using alginate or k-carrageenan, but the radiation-induced polymer was stronger and less likely to disintegrate

  19. Light transfer in agar immobilized microalgae cell cultures

    Science.gov (United States)

    Kandilian, Razmig; Jesus, Bruno; Legrand, Jack; Pilon, Laurent; Pruvost, Jérémy

    2017-09-01

    This paper experimentally and theoretically investigates light transfer in agar-immobilized cell cultures. Certain biotechnological applications such as production of metabolites secreted by photosynthetic microorganisms require cells to be immobilized in biopolymers to minimize contamination and to facilitate metabolite recovery. In such applications, light absorption by cells is one of the most important parameters affecting cell growth or metabolite productivity. Modeling light transfer therein can aid design and optimize immobilized-cell reactors. In this study, Parachlorella kessleri cells with areal biomass concentrations ranging from 0.36 to 16.9 g/m2 were immobilized in 2.6 mm thick agar gels. The average absorption and scattering cross-sections as well as the scattering phase function of P. kessleri cells were measured. Then, the absorption and transport scattering coefficients of the agar gel were determined using an inverse method based on the modified two-flux approximation. The forward model was used to predict the normal-hemispherical transmittance and reflectance of the immobilized-cell films accounting for absorption and scattering by both microalgae and the agar gel. Good agreement was found between the measured and predicted normal-hemispherical transmittance and reflectance provided absorption and scattering by agar were taken into account. Moreover, good agreement was found between experimentally measured and predicted mean rate of photon absorption. Finally, optimal areal biomass concentration was determined to achieve complete absorption of the incident radiation.

  20. Ethanol production by immobilized cells with forced substrate supply

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, Y.; Nishizawa, Y.; Nagai, S.

    1984-01-01

    Ethanol fermentation by a forced substrate supply into an immobilized cell layer was carried out to increase the ethanol production rate and to eliminate the diffusion dependency of substrate supply in an ordinary immobilized cell reaction. Saccharomyces cerevisiae IFO 2347 was immobilized in a mixture of k-carrageenan, locust bean gum, and celite (2: 0.5: 40 wt/vol %). A glucose minimal medium was fed into the immobilized cell layer (5 to 22 mm in thickness) at retention times between 0.6 and 2.8 h under pressure. The stable ethanol fermentation could be maintained for more than 3 weeks with an ethanol yield of 0.48 g ethanol/g glucose and ethanol productivity of 63 g.(l gel)/sup -1/.h/sup -1/ at a retention time of 1.5 h. The yeast cells were well distributed through the gel layer with a vertical gradient, and an average cell density was ca. 8.0 X 10/sup 9/ cells/ml gel, 4-fold higher than that of ordinary immobilized cells. A small filter press reactor was constructed to examine the applicability of ethanol fermentation with this forced substrate supply. The operation could be continued for a month at a retention time of 2 h yielding 96 g/l of ethanol from 200 g/l of glucose. 6 references, 5 figures, 3 tables.

  1. Single-cell microgel electrophoresis: an in vitro assay of radiosensitivity

    International Nuclear Information System (INIS)

    Deeley, J.O.T.; Moore, J.L.

    1993-01-01

    The results obtained by a microgel electrophoresis are comparable to conventional gel electrophoresis and elution techniques (Singh et al, 1989), DNA precipitation, alkali unwinding and cell clonogenicity assays (Olive et al, 1990). Since single cells are assessed, microgel electrophoresis is particularly appropriate for end-points such as the intercell variation in response. The simplicity, low cost and rapidity of microgel electrophoresis compared with other assays makes it particularly attractive for assessing the effects on DNA of radiation and other genotoxic agents on the general population. (Author)

  2. Ethanol fermentation by immobilized cells of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Grote, W.

    1985-01-01

    Previous studies have shown that immobilized yeast cell cultures have commercial potential for fuel ethanol production. In this study the suitability of strains of Z. mobilis for whole cell immobilization was investigated. Experiments revealed that immobilization in Ca-alginate or K-carrageenan gel or use of flocculating strains was effective for ethanol production at relatively high productivities. Two laboratory size reactors were designed and constructed. These were a compartmented multiple discshaft column and a tower fermentor. Results of this work supported other studies that established that growth and fermentation could be uncoupled. The data indicated that specific metabolic rates were dependent on the nature of the fermentation media. The addition of lactobacilli to Z. mobilis continuous fermentations had only a transient effect, and was unlikely to affect an immobilized Z. mobilis process. With 150 gl/sup -1/ glucose media and a Z. mobilis ZM4 immobilized cell reactor, a maximum volumetric ethanol productivity of 55 gl/sup -1/h/sup -1/ was obtained. The fermentation of sucrose media or sucrose-based raw materials (molasses, cane juice, synthetic mill liquor) by immobilized Z. mobilis ZM4 revealed a pattern of rapid sucrose hydrolysis, preferential glucose utilization and the conversion of fructose to the undesirable by-products levan and sorbitol.

  3. A response calculus for immobilized T cell receptor ligands

    DEFF Research Database (Denmark)

    Andersen, P S; Menné, C; Mariuzza, R A

    2001-01-01

    determine the level of T cell activation. When fitted to T cell responses against purified ligands immobilized on plastic surfaces, the 2D-affinity model adequately simulated changes in cellular activation as a result of varying ligand affinity and ligand density. These observations further demonstrated...

  4. Immobilized cell technology in beer brewing: Current experience and results

    Directory of Open Access Journals (Sweden)

    Leskošek-Čukalov Ida J.

    2005-01-01

    Full Text Available Immobilized cell technology (ICT has been attracting continual attention in the brewing industry over the past 30 years. Some of the reasons are: faster fermentation rates and increased volumetric productivity, compared to those of traditional beer production based on freely suspended cells, as well as the possibility of continuous operation. Nowadays, ICT technology is well established in secondary fermentation and alcohol- free and low-alcohol beer production. In main fermentation, the situation is more complex and this process is still under scrutiny on both the lab and pilot levels. The paper outlines the most important ICT processes developed for beer brewing and provides an overview of carrier materials, bioreactor design and examples of their industrial applications, as well as some recent results obtained by our research group. We investigated the possible applications of polyvinyl alcohol in the form of LentiKats®, as a potential porous matrices carrier for beer fermentation. Given are the results of growth studies of immobilized brewer's yeast Saccharomyces uvarum and the kinetic parameters obtained by using alginate microbeads with immobilized yeast cells and suspension of yeast cells as controls. The results indicate that the immobilization procedure in LentiKat® carriers has a negligible effect on cell viability and growth. The apparent specific growth rate of cells released in medium was comparable to that of freely suspended cells, implying preserved cell vitality. A series of batch fermentations performed in shaken flasks and an air-lift bioreactor indicated that the immobilized cells retained high fermentation activity. The full attenuation in green beer was reached after 48 hours in shaken flasks and less than 24 hours of fermentation in gas-lift bioreactors.

  5. Enzyme production in immobilized Trichoderma reesei cells with hydrophobic polymers prepared by radiation polymerization method

    International Nuclear Information System (INIS)

    Luzhao Xin; Kumakura, Minoru; Kaetsu, Isao

    1993-01-01

    Trichoderma reesei cells were immobilized on paper covered with hydrophobic monomer, trimethylpropane triacrylate by radiation polymerization. The effect of immobilization condition on enzyme productivity was studied by measuring filter paper and cellobiose activity. The cells were adhered and grew on the surface of the carrier with the polymer giving high enzyme productivity in the immobilized cells in comparison with the free cells. Optimum concentration and volume of the coating monomer for the preparation of the immobilized cells were obtained. (author)

  6. Production of organic acids in an immobilized cell reactor using ...

    African Journals Online (AJOL)

    Immobilized cell reactor (ICR) was developed as a novel bioreactor to convert hydrolyzed sugars to organic acids. Sugar fermentation by Propionibacterium acid-propionici entraped by calcium alginate was carried out in continuous mode to produce propionic and acetic acids. In continuous fermentation, more than 90 ...

  7. The application of single cell gel electrophoresis or comet assay to human monitoring studies

    Directory of Open Access Journals (Sweden)

    Valverde Mahara

    1999-01-01

    Full Text Available Objective. In the search of new human genotoxic biomarkers, the single cell gel electrophoresis assay has been proposed as a sensible alternative. Material and methods. This technique detects principally single strand breaks as well as alkali-labile and repair-retarded sites. Results. Herein we present our experience using the single cell gel electrophoresis assay in human population studies, both occupationally and environmentally exposed. Conclusions. We discuss the assay feasibility as a genotoxic biomarker.

  8. Immobilization of chlorine dioxide modified cells for uranium absorption

    International Nuclear Information System (INIS)

    He, Shengbin; Ruan, Binbiao; Zheng, Yueping; Zhou, Xiaobin; Xu, Xiaoping

    2014-01-01

    There has been a trend towards the use of microorganisms to recover metals from industrial wastewater, for which various methods have been reported to be used to improve microorganism adsorption characteristics such as absorption capacity, tolerance and reusability. In present study, chlorine dioxide(ClO 2 ), a high-efficiency, low toxicity and environment-benign disinfectant, was first reported to be used for microorganism surface modification. The chlorine dioxide modified cells demonstrated a 10.1% higher uranium adsorption capacity than control ones. FTIR analysis indicated that several cell surface groups are involved in the uranium adsorption and cell surface modification. The modified cells were further immobilized on a carboxymethylcellulose (CMC) matrix to improve their reusability. The cell-immobilized adsorbent could be employed either in a high concentration system to move vast UO 2 2+ ions or in a low concentration system to purify UO 2 2+ contaminated water thoroughly, and could be repeatedly used in multiple adsorption-desorption cycles with about 90% adsorption capacity maintained after seven cycles. - Highlights: • Chlorine dioxide was first reported to be used for microorganism surface modification. • The chlorine dioxide modified cells demonstrated a 10.1% higher uranium adsorption capacity than control ones. • The chlorine dioxide modified cells were further immobilized by carboxymethylcellulose to improve their reusability

  9. A study on immobilized ethanol yeast cells by radiation technique

    International Nuclear Information System (INIS)

    Li Zhengkui; Zhang Bosen

    1994-01-01

    Hydrophilic monomer 2-hydroxyethyl acrylate (HEA) and a series of polyethylene glycol dimethacrylate monomers were copolymerized by radiation technique at low temperature (-78 degree C) and hydrophilic hydrogels were obtained. The immobilization of yeast cells with these copolymer carriers led to a higher ethanol productivity than free cells. Of all copolymer carriers, the ethanol yield with poly (HEA-14 G) was the highest, about 2.45 times as high as that of free yeast cells. In addition, the ethanol productivity of 12 batch repeated reactions with poly (HEA-14G) carrier was all higher than that of free yeast cells. The ethanol productivity of immobilized yeast cells was dependent on the proportion of hydrophilic monomer to other monomers in copolymer systems, the chain length of the bifunctional monomer, the degree of hydration of copolymer carriers, the structure of copolymer carriers and porosity in the internal structure of carriers. The ethanol yield of immobilized cells depended on swelling ability and porosity of copolymer carriers

  10. Immobilization of trichoderma REESEI (QM 9414) cells with paper covered with ionic copolymer by radiation polymerization

    International Nuclear Information System (INIS)

    Lu Zhaoxin

    1992-01-01

    Cationic-hydrophobic copolymer and anionic-hydrophobic copolymer was covered onto surface of paper by radiation polymerization. The paper covered with ionic copolymer was used as carrier of immobilizing Trichoderma reesei cells. Results showed that the cells were immobilized firmly on the carriers and not dislocated from the carriers by shaking. All of FPA of the cells immobilized with the carriers covered with cationic copolymer were higher than that of un-immobilized free cells. The carriers covered with anionic copolymer showed good effect on immobilization of the cells. The weight of immobilized cells increase as increasing the component of DEAEMA in poly (DEAEMA-ATMPT) or decreasing the component of AA in poly (AA-ATMPT). It also increase with the increase of water absorption in poly (DEAEMA-ATMPT) or decrease of water absorption in poly (AA-ATMPT). It shows the static interaction play an important role in the immobilization of cells with ionic copolymer materials

  11. Bioreduction of chromate by immobilized cells of Halomonas sp

    Energy Technology Data Exchange (ETDEWEB)

    Murugavelh, S.; Mohanty, Kaustubha [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam (India)

    2013-07-01

    In this work, the bioreduction of Cr(VI) by immobilized cells of Halomonas sp was reported. Ca alginate, acryl amide and agar were tested as the matrices for immobilization. Ca alginate was found to be the suitable matrix among the different matrices studied. Of the various dosages of inoculum studied 2 g/L was found to be the optimum. Glucose at 1 g L-1 was completely utilized by the immobilized Halomonas sp even in the presence of Cr(VI) at 40 mg L-1. The optimum pH for the bioreduction of Cr(VI) by immobilized Halomonas sp was found to be pH 6. The mechanical strength of the beads plays an essential role in the bioreduction process. Halomonas sp entrapped in a alginate matrix reported a maximum of 98.9 % of reduction for an initial Cr(VI) concentration of 10 mg L-1. The alginate beads can be reused for 3 times with slight drop in the percentage reduction. The presence of other metals decreased the bioreduction percentage.

  12. Immobilization of microbial cell and yeast cell and its application to biomass conversion using radiation techniques

    International Nuclear Information System (INIS)

    Kaetsu, Isao; Kumakura, Minoru; Fujimura, Takashi; Kasai, Noboru; Tamada, Masao

    1987-01-01

    The recent results of immobilization of cellulase-producing cells and ethanol-fermentation yeast by radiation were reported. The enzyme of cellulase produced by immobilized cells was used for saccharification of lignocellulosic wastes and immobilized yeast cells were used for fermentation reaction from glucose to ethanol. The wastes such as chaff and bagasse were treated by γ-ray or electron-beam irradiation in the presence of alkali and subsequent mechanical crushing, to form a fine powder less than 50 μm in diameter. On the other hand, Trichoderma reesei as a cellulase-producing microbial cell was immobilized on a fibrous carrier having a specific porous structure and cultured to produce cellulase. The enzymatic saccharification of the pretreated waste was carried out using the produced cellulase. The enhanced fermentation process to produce ethanol from glucose with the immobilized yeast by radiation was also studied. The ethanol productivity of immobilized growing yeast cells thus obtained was thirteen times that of free yeast cells in a 1:1 volume of liquid medium to immobilized yeast cells. (author)

  13. Immobilization of microbial cell and yeast cell and its application to biomass conversion using radiation techniques

    Science.gov (United States)

    Kaetsu, Isao; Kumakura, Minoru; Fujimura, Takashi; Kasai, Noboru; Tamada, Masao

    The recent results of immobilization of cellulase-producing cells and ethanol-fermentation yeast by radiation were reported. The enzyme of cellulase produced by immobilized cells was used for saccharification of lignocellulosic wastes and immobilized yeast cells were used for fermentation reaction from glucose to ethanol. The wastes such as chaff and bagasse were treated by γ-ray or electron-beam irradiation in the presence of alkali and subsequent mechanical crushing, to form a fine powder less than 50 μm in diameter. On the other hand, Trichoderma reesei as a cellulase-producing microbial cell was immobilized on a fibrous carrier having a specific porous structure and cultured to produce cellulase. The enzymatic saccharification of the pretreated waste was carried out using the produced cellulase. The enhanced fermentation process to produce ethanol from glucose with the immobilized yeast by radiation was also studied. The ethanol productivity of immobilized growing yeast cells thus obtained was thirteen times that of free yeast cells in a 1:1 volume of liquid medium to immobilized yeast cells.

  14. Plant cells : immobilization and oxygen transfer

    NARCIS (Netherlands)

    Hulst, A.C.

    1987-01-01

    The study described in this thesis is part of the integrated project 'Biotechnological production of non-persistent bioinsecticides by means of plant cells invitro ' and was done in close cooperation with the research Institute Ital within the framework

  15. Electrophoresis-base dye adsorption into titanium dioxide film for dye sensitized solar cell application

    International Nuclear Information System (INIS)

    Ratno Nuryadi; Zico Alaia Akbar Junior; Lia Aprilia

    2010-01-01

    Dye Sensitized Solar Cell (DSSC) is one of renewable energy sources which has demanded a substitute non renewable energy sources. The most important factor influencing DSSC performance is dye adsorption into semiconductor nano-porous TiO 2 particles. The purpose of this work is to study the effect of dye eosin Y adsorption on DSSC characteristics by an electrophoresis method. As result, Open Circuit Voltage (V oc ) of DSSC increases as the applied voltage of electrophoresis increases. It is also found that the eosin Y absorbance at wavelength of around 500 nm increases when the electrophoresis voltage is increased. These results indicate that electrophoresis process plays an important role in dye adsorption. (author)

  16. Biosorption of uranium by immobilized cells of Rhodotorula glutinis

    International Nuclear Information System (INIS)

    Jing Bai; Zhan Li; Fangli Fan; Xiaolei Wu; Xiaojie Yin; Longlong Tian; Zhi Qin; Junsheng Guo

    2014-01-01

    Biosorption of uranium ions from diluted solution (≤40 mg L -1 ) onto immobilized cells of Rhodotorula glutinis was investigated in a batch system. Equilibrium, kinetic and thermodynamic studies were conducted by considering the effect of initial uranium concentration, contact time and temperature. Non-linear forms of Langmuir, Freundlich and Sips isotherm models were used to fit the equilibrium data, Sips model was designated as the best one. Kinetic data were simulated by non-linear pseudo-first-order, pseudo-second-order and intra-particle diffusion equations. Pseudo-first-order kinetic equation described the experimental data better than pseudo-second-order equation and intra-particle diffusion equation can fit the kinetic data with two independent curves. Thermodynamic parameters, including ∆H 0, ∆G 0 and ∆S 0, were evaluated, the sorption process was determined to be spontaneous and endothermic. Uranium sorption from pure uranium solutions and uranium pit wastewater by immobilized biomass and blank beads, as well as the regeneration results indicated that immobilized R. glutinis can be use to recovery uranium from uranium pit wastewater. (author)

  17. Analysis of the surface membrane of iodinated leukemic cells by SDS-polyacrylamide gel electrophoresis

    International Nuclear Information System (INIS)

    Ishitani, Kunihiko; Ikeda, Akira; Tamura, Minoru; Takeuchi, Hidekazu; Ihara, Koji

    1980-01-01

    Surface proteins of human leukemic cells were labeled selectively by lactoperoxydase catalysed-iodination and examined by SDS-polyacrylamide gel electrophoresis. The electrophoretic pattern of the surface membranes of cells from a patients with chronic mylogeneous leukemia in blast crisis was of B cell type and showed Ia like antigen. Leukemic cells from a patient with hairly cell leukemia also expressed the pattern of B cell type when tested by this method the technique of iodinating cell surface with lactoperoxidase is useful in characterization of leukemia cells for diagnosis and monitoring of clinical course. (author)

  18. Dental pulp stem cells immobilized in alginate microspheres for applications in bone tissue engineering.

    Science.gov (United States)

    Kanafi, M M; Ramesh, A; Gupta, P K; Bhonde, R R

    2014-07-01

    To immobilize dental pulp stem cells (DPSC) in alginate microspheres and to determine cell viability, proliferation, stem cell characteristics and osteogenic potential of the immobilized DPSCs. Human DPSCs isolated from the dental pulp were immobilized in 1% w/v alginate microspheres. Viability and proliferation of immobilized DPSCs were determined by trypan blue and MTT assay, respectively. Stem cell characteristics of DPSCs post immobilization were verified by labelling the cells with CD73 and CD90. Osteogenic potential of immobilized DPSCs was assessed by the presence of osteocalcin. Alizarin red staining and O-cresolphthalein complexone method confirmed and quantified calcium deposition. A final reverse transcriptase PCR evaluated the expression of osteogenic markers - ALP, Runx-2 and OCN. More than 80% of immobilized DPSCs were viable throughout the 3-week study. Proliferation appeared controlled and consistent unlike DPSCs in the control group. Presence of CD73 and CD90 markers confirmed the stem cell nature of immobilized DPSCs. The presence of osteocalcin, an osteoblastic marker, was confirmed in the microspheres on day 21. Mineralization assays showed high calcium deposition indicating elevated osteogenic potential of immobilized DPSCs. Osteogenic genes- ALP, Runx-2 and OCN were also upregulated in immobilized DPSCs. Surprisingly, immobilized DPSCs in the control group cultured in conventional stem cell media showed upregulation of osteogenic genes and expressed osteocalcin. Dental pulp stem cells immobilized in alginate hydrogels exhibit enhanced osteogenic potential while maintaining high cell viability both of which are fundamental for bone tissue regeneration. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  19. A study of ethanol production of yeast cells immobilized with polymer carrier produced by radiation polymerization

    International Nuclear Information System (INIS)

    Lu Zhaoxin; Fujimura, Takashi

    1993-01-01

    Polymer carriers, poly(hydroxyethyl acrylate(HEA)-methoxy polyethylene glycol methylacrylate (M-23G)) and poly(hydroxyethyl acrylate(HEA)-glycidyl methylacrylate (GMA)) used for the immobilization of yeast cells were prepared by radiation polymerization at low temperature. Yeast cells were immobilized through adhesion and multiplication of yeast cells. The ethanol productivity of immobilized yeast cells with these carriers was related to the monomer composition of polymers and the optimum monomer composition was 20%:10% in poly(HEA-M-23G) and 17%:6% in poly(HEA-GMA). In this case, the ethanol productivity of immobilized yeast cells was about 4 times that of cells in free system. The relationship between the activity of immobilized yeast cells and the water content of the polymer carrier were also discussed. (author)

  20. Radiobiological study on DNA strand breaks and repair using single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1994-01-01

    Single cell gel electrophoresis (SCGE) provides a novel method to measure DNA damage in individual cells and more importantly, to assess heterogeneity in response within a mixed population of cells. Cells embedded in agarose are lysed, subjected to electrophoresis, stained with a fluorescent DNA-specific dye, and viewed under a fluorescence microscope. Damaged cells display 'comets', broken DNA migrating farther to the anode in the electric field. We have previously used this technique to quantify DNA damage induced by moderate doses of low and high LET radiations in cultured Chinese hamster cells. The assay has been optimized in terms of lysing and electrophoresis conditions, and applied to analyse the DNA strand breaks, their repair kinetics and heterogeneity in response in individual Chinese hamster cells exposed to gamma-rays, and to KUR thermal neutrons with and without 10 B or to KEK PF monochromatic soft X-rays as well as to a radio-mimetic agent, neocarzinostatin. The DNA double-strand breaks induced by boron-neutron captured reactions were repaired at a slower rate, but a heterogeneity in response might not contribute to the difference. The neocarzinostatin-induced DNA damage were efficiently repaired in a dose-dependent fashion. The initial amount of gamma-ray induced DNA double-strand breaks was not significantly altered in cells pre-exposed to very low adapting dose. (author)

  1. Vertical ascending electrophoresis of cells with a minimal stabilizing medium

    Science.gov (United States)

    Omenyi, S. N.; Snyder, R. S.

    1983-01-01

    Vertical fractionation of a mixture of fixed horse and human red blood cells layered over a stabilizing support medium was done to give a valid comparison with proposed space experiments. In particular, the effects of sample thickness and concentration on zone migration rate were investigated. Electrophoretic mobilities of horse and human cells calculated from zone migration rates were compatible with those obtained by microelectrophoresis. Complete cell separation was observed when low power and effective cooling were employed.

  2. Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shoubao [Huainan Normal Univ., Anhui (China). School of Life Science; Chen, Xiangsong; Wu, Jingyong; Wang, Pingchao [Chinese Academy of Sciences, Hefei (China). Key Lab. of Ion Beam Bio-engineering of Inst. of Plasma Physics

    2012-05-15

    The aim of the present study was to examine ethanol production from concentrated food waste hydrolysates using whole cells of S. cerevisiae immobilized on corn stalks. In order to improve cell immobilization efficiency, biological modification of the carrier was carried out by cellulase hydrolysis. The results show that proper modification of the carrier with cellulase hydrolysis was suitable for cell immobilization. The mechanism proposed, cellulase hydrolysis, not only increased the immobilized cell concentration, but also disrupted the sleek surface to become rough and porous, which enhanced ethanol production. In batch fermentation with an initial reducing sugar concentration of 202.64 {+-} 1.86 g/l, an optimal ethanol concentration of 87.91 {+-} 1.98 g/l was obtained using a modified corn stalk-immobilized cell system. The ethanol concentration produced by the immobilized cells was 6.9% higher than that produced by the free cells. Ethanol production in the 14th cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in an immobilized cell reactor, the maximum ethanol concentration of 84.85 g/l, and the highest ethanol yield of 0.43 g/g (of reducing sugar) were achieved at hydraulic retention time (HRT) of 3.10 h, whereas the maximum volumetric ethanol productivity of 43.54 g/l/h was observed at a HRT of 1.55 h. (orig.)

  3. Radiation pretreatment of cellulosic wastes and immobilization of cells producing cellulase for their conversion to glucose

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao

    1988-01-01

    Radiation pretreatment of cellulosic wastes such as saw dust and chaff was studied by using electron beam accelerator, in which irradiation effect was increased by increasing irradiation dose and dose rate, by after heating irradiated materials at 100∼140deg C, and by irradiation in the addition of alkaline solution. Trichoderma reesei cells producing cellulase were immobilized by using fibrous porous carrier obtained from radiation polymerization. The filter paper, cellobiose, and CMC activities in the immobilized growing cells were higher than those in free cells. The activity in the immobilized cells obtained with hydrophobic carrier was higher than that obtained with hydrophilic one. Durability of the immobilized cells was examined by repeated batch culture. It was found that the enzyme solution produced in the culture of the immobilized cells can hydrolyze effectively saw dust pretreated by radiation. (author)

  4. The effects of cellulase on capsaicin production in freely suspended cells and immobilized cell cultures of capsicum annuum

    International Nuclear Information System (INIS)

    Islek, C.

    2014-01-01

    The effect of different concentrations of cellulase on the production of capsaicin in freely suspended cell and immobilized cell cultures of Kahramanmara pepper seeds (Capsicum annuum L.) were studied. Calluses were obtained from in vitro germinated hypocotyl explants of pepper seedlings and cell suspensions were prepared from these calluses. Immobilized cell suspension cultures with calcium alginate and free cell suspension cultures were obtained by using cell suspensions. Elicitor such as cellulase (5-30 micro g/ml), was applied both for the free and immobilized cell suspensions and control group without elicitor was prepared. The concentration of capsaicin in freely suspended cells, immobilized cells and their filtrates were identified by HPLC after extraction with ethyl acetate. It was found that the immobilization process had an increasing effect on the capsaicin accumulation. The concentration of capsaicin in the immobilized cells for both control groups and elicitor added samples was higher than the free cells. In general, capsaicin concentration in the filtrate for free cells was higher than the immobilized cells. When all the cellulase and the sampling hours were compared, the highest capsaicin concentration for the immobilized cells was determined as 362,91 micro g/ml f.w. at the 24th hour for 30 micro g/ml cellulase applied samples. (author)

  5. Immobilization of Gibberella fujikuroi cells with carriers modified by radiation polymerization

    International Nuclear Information System (INIS)

    Lu Zhaoxin; Xie Zhongchuan; Wei Qijiang

    1994-01-01

    Gibberella fujikuroi cells were immobilized on modified carriers (gauze) by using the radiation polymerization technique. The mycelium was firmly adhered to the surface of fibril covered with hydrophobic polymer, poly (diethylene glycol dimethyl acrylate) and hydrophobic-hydrophilic copolymer poly (diethylene glycol dimethyl acrylate-sodium acrylate), but it was not immobilized onto the polyethylene net, which has a similar network structure to that of the modified carrier. The weight of immobilized cells was affected by covered polymer. Gibberellic acid productivity in immobilized cells was similar to that of free cells, and the immobilized cells was of good stability. A optimum culture condition for gibberellic acid production was at pH 5.5 and under 20 ∼ 30 degree C

  6. Purification-Free, Target-Selective Immobilization of a Protein from Cell Lysates.

    Science.gov (United States)

    Cha, Jaehyun; Kwon, Inchan

    2018-02-27

    Protein immobilization has been widely used for laboratory experiments and industrial processes. Preparation of a recombinant protein for immobilization usually requires laborious and expensive purification steps. Here, a novel purification-free, target-selective immobilization technique of a protein from cell lysates is reported. Purification steps are skipped by immobilizing a target protein containing a clickable non-natural amino acid (p-azidophenylalanine) in cell lysates onto alkyne-functionalized solid supports via bioorthogonal azide-alkyne cycloaddition. In order to achieve a target protein-selective immobilization, p-azidophenylalanine was introduced into an exogenous target protein, but not into endogenous non-target proteins using host cells with amber codon-free genomic DNAs. Immobilization of superfolder fluorescent protein (sfGFP) from cell lysates is as efficient as that of the purified sfGFP. Using two fluorescent proteins (sfGFP and mCherry), the authors also demonstrated that the target proteins are immobilized with a minimal immobilization of non-target proteins (target-selective immobilization). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Electrophoresis of cell membrane heparan sulfate regulates galvanotaxis in glial cells.

    Science.gov (United States)

    Huang, Yu-Ja; Schiapparelli, Paula; Kozielski, Kristen; Green, Jordan; Lavell, Emily; Guerrero-Cazares, Hugo; Quinones-Hinojosa, Alfredo; Searson, Peter

    2017-08-01

    Endogenous electric fields modulate many physiological processes by promoting directional migration, a process known as galvanotaxis. Despite the importance of galvanotaxis in development and disease, the mechanism by which cells sense and migrate directionally in an electric field remains unknown. Here, we show that electrophoresis of cell surface heparan sulfate (HS) critically regulates this process. HS was found to be localized at the anode-facing side in fetal neural progenitor cells (fNPCs), fNPC-derived astrocytes and brain tumor-initiating cells (BTICs), regardless of their direction of galvanotaxis. Enzymatic removal of HS and other sulfated glycosaminoglycans significantly abolished or reversed the cathodic response seen in fNPCs and BTICs. Furthermore, Slit2, a chemorepulsive ligand, was identified to be colocalized with HS in forming a ligand gradient across cellular membranes. Using both imaging and genetic modification, we propose a novel mechanism for galvanotaxis in which electrophoretic localization of HS establishes cell polarity by functioning as a co-receptor and provides repulsive guidance through Slit-Robo signaling. © 2017. Published by The Company of Biologists Ltd.

  8. Radiosensitivity evaluation of Human tumor cell lines by single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Zhang Yipei; Cao Jia; Wang Yan; Du Liqing; Li Jin; Wang Qin; Fan Feiyue; Liu Qiang

    2011-01-01

    Objective: To explore the feasibility of determining radiosensitivity of human tumor cell lines in vitro using single cell gel electrophoresis (SCGE). Methods: Three human tumor cell lines were selected in this study, HepG 2 , EC-9706 and MCF-7. The surviving fraction (SF) and DNA damage were detected by MTT assay, nested PCR technique and comet assay respectively. Results: MTT assay: The SF of HepG 2 and EC-9706 after irradiated by 2, 4 and 8 Gy was lower significantly than that of MCF-7, which showed that the radiosensitivity of HepG 2 and EC-9706 was higher than that of MCF-7. But there was no statistical difference of SF between HepG 2 and EC-9706. SCGE: The difference of radiosensitivity among these three tumor cell lines was significant after 8 Gy γ-ray irradiation. Conclusion: The multi-utilization of many biological parameter is hopeful to evaluate the radiosensitivity of tumor cells more objectively and exactly. (authors)

  9. Evaluation of genotoxicity of the acute gamma radiation on earthworm Eisenia fetida using single cell gel electrophoresis technique (Comet assay).

    Science.gov (United States)

    Sowmithra, K; Shetty, N J; Jha, S K; Chaubey, R C

    2015-12-01

    Earthworms (Eisenia fetida) most suitable biological indicators of radioactive pollution. Radiation-induced lesions in DNA can be considered to be molecular markers for early effects of ionizing radiation. Gamma radiation produces a wide spectrum of DNA. Some of these lesions, i.e., DNA strand breaks and alkali labile sites can be detected by the single-cell gel electrophoresis (SCGE) or comet assay by measuring the migration of DNA from immobilized nuclear DNA. E. fetida were exposed to different doses of gamma radiation, i.e., 1, 5, 10, 20, 30, 40 and 50Gy, and comet assay was performed for all the doses along with control at 1, 3 and 5h post irradiation to evaluate the genotoxicity of gamma radiation in this organism. The DNA damage was measured as percentage of comet tail DNA. A significant increase in DNA damage was observed in samples exposed to 5Gy and above, and the increase in DNA damage was dose dependent i.e., DNA damage was increased with increased doses of radiation. The highest DNA damage was noticed at 1h post irradiation and gradually decreased with time, i.e., at 3 and 5h post irradiation. The present study reveals that gamma radiation induces DNA damage in E. fetida and the comet assay is a sensitive and rapid method for its detection to detect genotoxicity of gamma radiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1.

    Science.gov (United States)

    Tallur, Preeti N; Mulla, Sikandar I; Megadi, Veena B; Talwar, Manjunatha P; Ninnekar, Harichandra Z

    2015-01-01

    Pyrethroid pesticide cypermethrin is a environmental pollutant because of its widespread use, toxicity and persistence. Biodegradation of such chemicals by microorganisms may provide an cost-effective method for their detoxification. We have investigated the degradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1 in various matrices such as, polyurethane foam (PUF), polyacrylamide, sodium alginate and agar. The optimum temperature and pH for the degradation of cypermethrin by immobilized cells of Micrococcus sp. were found to be 30 °C and 7.0, respectively. The rate of degradation of 10 and 20 mM of cypermethrin by freely suspended cells were compared with that of immobilized cells in batches and semi-continuous with shaken cultures. PUF-immobilized cells showed higher degradation of cypermethrin (10 mM and 20 mM) than freely suspended cells and cells immobilized in other matrices. The PUF-immobilized cells of Micrococcus sp. strain CPN 1 were retain their degradation capacity. Thus, they can be reused for more than 32 cycles, without losing their degradation capacity. Hence, the PUF-immobilized cells of Micrococcus sp. could potentially be used in the bioremediation of cypermethrin contaminated water.

  11. Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1

    Directory of Open Access Journals (Sweden)

    Preeti N. Tallur

    2015-09-01

    Full Text Available Pyrethroid pesticide cypermethrin is a environmental pollutant because of its widespread use, toxicity and persistence. Biodegradation of such chemicals by microorganisms may provide an cost-effective method for their detoxification. We have investigated the degradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1 in various matrices such as, polyurethane foam (PUF, polyacrylamide, sodium alginate and agar. The optimum temperature and pH for the degradation of cypermethrin by immobilized cells of Micrococcus sp. were found to be 30 °C and 7.0, respectively. The rate of degradation of 10 and 20 mM of cypermethrin by freely suspended cells were compared with that of immobilized cells in batches and semi-continuous with shaken cultures. PUF-immobilized cells showed higher degradation of cypermethrin (10 mM and 20 mM than freely suspended cells and cells immobilized in other matrices. The PUF-immobilized cells of Micrococcus sp. strain CPN 1 were retain their degradation capacity. Thus, they can be reused for more than 32 cycles, without losing their degradation capacity. Hence, the PUF-immobilized cells of Micrococcus sp. could potentially be used in the bioremediation of cypermethrin contaminated water.

  12. Immobilization of microbial cells on cellulose-polymer surfaces by radiation polymerization

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1983-01-01

    Streptomyces phaeochromogens cells were immobilized on cellulose-polymer surfaces by radiation polymerization using hydrophilic monomers and paper. The enzyme activity of immobilized cell sheets was higher than that of immobilized cell composites obtained by the usual radiation polymerization technique. The enzyme activity of the sheets was affected by monomer concentration, the thickness of paper, and the degree of polymerization of paper. The copolymerization of hydroxyethyl methacrylate and methoxytetraethyleneglycol methacrylate in the sheets led to a further increase of the enzyme activity due to the increase of the hydrophilicity of the polymer matrix. The Michaelis constant of the sheets from low monomer concentration was close to that of intact cells

  13. Development of High-Productivity Continuous Ethanol Production using PVA-Immobilized Zymomonas mobilis in an Immobilized-Cells Fermenter

    Directory of Open Access Journals (Sweden)

    Nurhayati Nurhayati

    2015-07-01

    Full Text Available Ethanol as one of renewable energy was being considered an excellent alternative clean-burning fuel to replace gasoline. Continuous ethanol fermentation systems had offered important economic advantages compared to traditional systems. Fermentation rates were significantly improved, especially when continuous fermentation was integrated with cell immobilization techniques to enrich the cells concentration in fermentor. Growing cells of Zymomonas mobilis immobilized in polyvinyl alcohol (PVA gel beads were employed in an immobilized-cells fermentor for continuous ethanol fermentation from glucose. The glucose loading, dilution rate, and cells loading were varied in order to determine which best condition employed in obtaining both high ethanol production and low residual glucose with high dilution rate. In this study, 20 g/L, 100 g/L, 125 g/L and 150 g/L of glucose concentration and 20% (w/v, 40% (w/v and 50% (w/v of cells loading were employed with range of dilution rate at 0.25 to 1 h-1. The most stable production was obtained for 25 days by employing 100 g/L of glucose loading. Meanwhile, the results also exhibited that 125 g/L of glucose loading as well as 40% (w/v of cells loading yielded high ethanol concentration, high ethanol productivity, and acceptable residual glucose at 62.97 g/L, 15.74 g/L/h and 0.16 g/L, respectively. Furthermore, the dilution rate of 4 hour with 100 g/L and 40% (w/v of glucose and cells loading was considered as the optimum condition with ethanol production, ethanol productivity and residual glucose obtained were 49.89 g/L, 12.47 g/L/h, and 2.04 g/L, respectively. This recent study investigated ethanol inhibition as well. The present research had proved that high sugar concentration was successfully converted to ethanol. These achieved results were promising for further study.

  14. Study on immobilized yeast cells with hydrophilic polymer carrier by radiation-induced copolymerization

    International Nuclear Information System (INIS)

    Li Zhengkui; Zhang Bosen

    1993-01-01

    Various kinds of monomers 2-hydroxyethyl methacrylate (HEMA), 2-hydroxyethyl acrylate (HEA), hydroxypropyl methacrylate (HPMA) and methoxy polyethylene glycol methylacrylate (M-23G) are copolymerized by radiation technique at low temperature (-78 degree C) and several kinds of copolymer carriers were obtained. Yeast cells are immobilized through adhesion and multiplication of yeast cells themselves on these carriers. The ethanol productivity of immobilized yeast cells with these carriers was related to the monomer composition and water content of copolymer carriers and the optimum monomer composition was 20%:10% in poly (HEA-M23G). In this case, the ethanol productivity of immobilized yeast cells was 26 mg/(ml · h), which was 4 times as high as that of free cells. Effect of adding crosslinking reagent (4G) in lower monomer composition of poly(HEA-M23G) on the ethanol productivity of immobilized cells was better than that in higher one in this work

  15. Kinetic analysis of dihydroxyacetone production from crude glycerol by immobilized cells of Gluconobacter oxydans MTCC 904.

    Science.gov (United States)

    Dikshit, Pritam Kumar; Moholkar, Vijayanand S

    2016-09-01

    The present study has investigated kinetic features of bioconversion of biodiesel-derived crude glycerol to dihydroxyacetone with immobilized Gluconobacter oxydans cells using modified Haldane substrate-inhibition model. The results have been compared against free cells and pure glycerol. Relative variations in the kinetic parameters KS, KI, Vmax, n and X reveal that immobilized G. oxydans cells (on PU foam substrate) with crude glycerol as substrate give higher order of inhibition (n) and lower maximum reaction velocities (Vmax). These results are essentially implications of substrate transport restrictions across immobilization matrix, which causes retention of substrate in the matrix and reduction in fractional available substrate (X) for the cells. This causes reduction in both KS (substrate concentration at Vmax/2) and KI (inhibition constant) as compared to free cells. For immobilized cells, substrate concentration (Smax) corresponding to Vmax is practically same for both pure and crude glycerol as substrate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Cell adsorption and selective desorption for separation of microbial cells by using chitosan-immobilized silica.

    Science.gov (United States)

    Kubota, Munehiro; Matsui, Masayoshi; Chiku, Hiroyuki; Kasashima, Nobuyuki; Shimojoh, Manabu; Sakaguchi, Kengo

    2005-12-01

    Cell adsorption and selective desorption for separation of microbial cells were conducted by using chitosan-immobilized silica (CIS). When chitosan was immobilized onto silica surfaces with glutaraldehyde, bacterial cells adsorbed well and retained viability. Testing of the adsorption and desorption ability of CIS using various microbes such as Escherichia coli, Aeromonas hydrophila, Pseudomonas aeruginosa, Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, Lactobacillus casei, Streptococcus mutans, Streptococcus sobrinus, Streptococcus salivarius, Saccharomyces cerevisiae, Saccharomyces ludwigii, and Schizosaccharomyces pombe revealed that most microbes could be adsorbed and selectively desorbed under different conditions. In particular, recovery was improved when L-cysteine was added. A mixture of two bacterial strains adsorbed onto CIS could also be successfully separated by use of specific solutions for each strain. Most of the desorbed cells were alive. Thus, quantitative and selective fractionation of cells is readily achievable by employing chitosan, a known antibacterial material.

  17. Micromagnetic Cancer Cell Immobilization and Release for Real-Time Single Cell Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Devina; Rad, Armin Tahmasbi [Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269 (United States); Nieh, Mu-Ping [Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269 (United States); Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269 (United States); Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Claffey, Kevin P. [Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030 (United States); Hoshino, Kazunori, E-mail: hoshino@engr.uconn.edu [Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269 (United States)

    2017-04-01

    Understanding the interaction of live cells with macromolecules is crucial for designing efficient therapies. Considering the functional heterogeneity found in cancer cells, real-time single cell analysis is necessary to characterize responses. In this study, we have designed and fabricated a microfluidic channel with patterned micromagnets which can temporarily immobilize the cells during analysis and release them after measurements. The microchannel is composed of plain coverslip top and bottom panels to facilitate easy microscopic observation and undisturbed application of analytes to the cells. Cells labeled with functionalized magnetic beads were immobilized in the device with an efficiency of 90.8±3.6%. Since the micromagnets are made of soft magnetic material (Ni), they released cells when external magnetic field was turned off from the channel. This allows the reuse of the channel for a new sample. As a model drug analysis, the immobilized breast cancer cells (MCF7) were exposed to fluorescent lipid nanoparticles and association and dissociation were measured through fluorescence analysis. Two concentrations of nanoparticles, 0.06 µg/ml and 0.08 µg/ml were tested and time lapse images were recorded and analyzed. The microfluidic device was able to provide a microenvironment for sample analysis, making it an efficient platform for real-time analysis.

  18. Enhanced degradation of 2-nitrotoluene by immobilized cells of Micrococcus sp. strain SMN-1.

    Science.gov (United States)

    Mulla, Sikandar I; Talwar, Manjunatha P; Bagewadi, Zabin K; Hoskeri, Robertcyril S; Ninnekar, Harichandra Z

    2013-02-01

    Nitrotoluenes are the toxic pollutants of the environment because of their large scale use in the production of explosives. Biodegradation of such chemicals by microorganisms may provide an effective method for their detoxification. We have studied the degradation of 2-nitrotoluene by cells of Micrococcus sp. strain SMN-1 immobilized in various matrices such as polyurethane foam (PUF), sodium alginate (SA), sodium alginate-polyvinyl alcohol (SA-PVA), agar and polyacrylamide. The rate of degradation of 15 and 30 mM 2-nitrotoluene by freely suspended cells and immobilized cells in batches and fed-batch with shaken cultures were compared. The PUF-immobilized cells achieved higher degradation of 15 and 30 mM 2-nitrotoluene than freely suspended cells and the cells immobilized in SA-PVA, polyacrylamide, SA and agar. The PUF-immobilized cells could be reused more than 24 cycles without loosing their degradation capacity and showed more tolerance to pH and temperature changes than freely suspended cells. These results revealed the enhanced rate of degradation of 2-nitrotoluene by PUF-immobilized cells of Micrococcus sp. strain SMN-1. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Changcan; Yuan, Wenjie; Khan, Musammir; Li, Qian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin 300072 (China); Yao, Fanglian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072 (China); Zhang, Wencheng, E-mail: wenchengzhang@yahoo.com [Department of Physiology and Pathophysiology, Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China)

    2015-05-01

    Gelatin contains many functional motifs which can modulate cell specific adhesion, so we modified polycarbonate urethane (PCU) scaffold surface by immobilization of gelatin. PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatins onto the surface of aminated PCU scaffolds. To increase the immobilization amount of gelatin, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto PCU scaffolds by surface initiated atom transfer radical polymerization. Then, following amination and immobilization, PCU-g-PEGMA-g-gelatin scaffolds were obtained. Both modified scaffolds were characterized by chemical and biological methods. After immobilization of gelatin, the microfiber surface became rough, but the original morphology of scaffolds was maintained successfully. PCU-g-PEGMA-g-gelatin scaffolds were more hydrophilic than PCU-g-gelatin scaffolds. Because hydrophilic PEGMA and gelatin were grafted and immobilized onto the surface, the PCU-g-PEGMA-g-gelatin scaffolds showed low platelet adhesion, perfect anti-hemolytic activity and excellent cell growth and proliferation capacity. It could be envisioned that PCU-g-PEGMA-g-gelatin scaffolds might have potential applications in tissue engineering artificial scaffolds. - Graphical abstract: PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatin onto the surface of aminated PCU scaffolds (method a). To increase the immobilization amount of gelatin, PEGMAs were grafted onto the scaffold surface by SI-ATRP. PCU-g-PEGMA-g-gelatin scaffolds were prepared by method b. The gelatin modified scaffolds exhibited high hydrophilicity, low platelet adhesion, perfect anti-hemolytic activity, and excellent cell adhesion and proliferation capacity. They might have potential applications as tissue engineering scaffolds for artificial blood vessels. - Highlights: • Hydrophilic scaffolds were prepared by grafting PEGMA and immobilization of gelatins. • Grafting PEGMA enhanced the immobilization amount of gelatin

  20. Implementation of Microfluidic Chip Electrophoresis for the Detection of B-cell Clonality

    Directory of Open Access Journals (Sweden)

    Vazan M

    2016-04-01

    Full Text Available Introduction: A clonal population of B-cells is defined as those cells arising from the mitotic division of a single somatic cell with the same rearrangement of immunoglobulin genes. This gives rise to DNA markers for each individual lymphoid cell and its progenies and enables us to study clonality in different B-cell malignancies using multiplex polymerase chain reaction - PCR. The BIOMED-2 protocol has been implemented for clonality detection in lymphoproliferative diseases and exploits multiplex PCR reaction, subsequently analyzed by heteroduplex analysis (HDA using polyacrylamide gel electrophoresis (PAGE. With the advent of miniaturization and automation of molecular biology methods, lab-on-chip technologies were developed and replace partially the conventional approaches. We tested device for microfluidic chip, which is used for B-cells clonality analysis, using a PCR reaction for three subregions called frameworks (FR of the immunoglobulin heavy locus (IGH gene.

  1. Combinational Effect of Cell Adhesion Biomolecules and Their Immobilized Polymer Property to Enhance Cell-Selective Adhesion

    Directory of Open Access Journals (Sweden)

    Rio Kurimoto

    2016-01-01

    Full Text Available Although surface immobilization of medical devices with bioactive molecules is one of the most widely used strategies to improve biocompatibility, the physicochemical properties of the biomaterials significantly impact the activity of the immobilized molecules. Herein we investigate the combinational effects of cell-selective biomolecules and the hydrophobicity/hydrophilicity of the polymeric substrate on selective adhesion of endothelial cells (ECs, fibroblasts (FBs, and smooth muscle cells (SMCs. To control the polymeric substrate, biomolecules are immobilized on thermoresponsive poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide (poly(NIPAAm-co-CIPAAm-grafted glass surfaces. By switching the molecular conformation of the biomolecule-immobilized polymers, the cell-selective adhesion performances are evaluated. In case of RGDS (Arg-Gly-Asp-Ser peptide-immobilized surfaces, all cell types adhere well regardless of the surface hydrophobicity. On the other hand, a tri-Arg-immobilized surface exhibits FB-selectivity when the surface is hydrophilic. Additionally, a tri-Ile-immobilized surface exhibits EC-selective cell adhesion when the surface is hydrophobic. We believe that the proposed concept, which is used to investigate the biomolecule-immobilized surface combination, is important to produce new biomaterials, which are highly demanded for medical implants and tissue engineering.

  2. Production of organic acids in an immobilized cell reactor using ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... 1Faculty of Chemical Engineering, Noushirvani University of Technology, Babol, Iran. 2Faculty of Civil ... downstream, immobilization was the method of choice which was ..... These methods can be applied to various.

  3. Hydrolysis of fish protein by Bacillus megaterium cells immobilized in radiation induced polymerized wood

    International Nuclear Information System (INIS)

    Ghosh, S.; Alur, M.D.; Nerkar, D.P.

    1992-01-01

    The immobilization of Bacillus megaterium cells in radiation-induced polymerized wood was studied for hydrolysis of trash fish protein. The optimum conditions and reaction kinetics for hydrolysis of protein by free and immobilized cells were found to be similar. Maximum hydrolysis occurred at 50 o C and at pH 7.5 with 15-20% (w/v) of immobilized matrix. The soluble content of the resultant hydrolysate about 2.4% (w/v). (author). 10 refs., 4 figs

  4. Immobilization of cellulose producing cells (sporotrichum cellulophilum) using irradiated rice husk as a substrate

    International Nuclear Information System (INIS)

    Lina, M.R.; Tamada, M.; Kumakura, M.

    1991-01-01

    An experiment to study the effect of irradiated rice husk as a substrate on cellulase production of free and immobilized cells of S. cellulophium was carried out. Radiation pretreatment of rice husk was done using electron beam accelerator (Dynamitron IEA 3000-25,2), with doses of 0, 0.2, 0.4, 0.6, 0.8, and 1.0 MGy. The substrate used in cellulase production of free and immobilized cells were cellulose powder as a standard, and 1.0 MGy irradiated rice husk. Concentrations of cellulose powder for free and immobilized cells were 1, 2, 3, 5, and 8% (w/v). Irradiated rice husk concentrations for free cells were 3, 6, 9, 15, and 24% (w/v), whereas for immobilized cells were 3, 6, and 9% (w/v). Results showed that glucose concentration in 1.0 MGy irradiated rice husk was the highest of all irradiated and unirradiated rice husks. The GPA (glucose production activity) values used of free immobilized cells of S. cellulophium in medium containing 1.0 MGy irradiated rice husk were about 50% lower than in cellulose powder medium. Cellulase solution resulted by immobilized cells, either in cellulose powder or in irradiated rice husk media, were clear and did not contain mycelium. (authors). 7 refs, 7 figs

  5. Co-immobilization of active antibiotics and cell adhesion peptides on calcium based biomaterials.

    Science.gov (United States)

    Palchesko, Rachelle N; Buckholtz, Gavin A; Romeo, Jared D; Gawalt, Ellen S

    2014-07-01

    Two bioactive molecules with unrelated functions, vancomycin and a cell adhesion peptide, were immobilized on the surface of a potential bone scaffold material, calcium aluminum oxide. In order to accomplish immobilization and retain bioactivity three sequential surface functionalization strategies were compared: 1.) vancomycin was chemically immobilized before a cell adhesion peptide (KRSR), 2.) vancomycin was chemically immobilized after KRSR and 3.) vancomycin was adsorbed after binding the cell adhesion peptide. Both molecules remained on the surface and active using all three reaction sequences and after autoclave sterilization based on osteoblast attachment, bacterial turbidity and bacterial zone inhibition test results. However, the second strategy was superior at enhancing osteoblast attachment and significantly decreasing bacterial growth when compared to the other sequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Study on the non-target effect of ionizing radiation using single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Wang Yan; Li Deguan; Liu Jianfeng; Chu Liping; Liu Qiang

    2008-01-01

    Objective: To assess the non-target effect of ionizing radiation by single cell gel electrophoresis (SCGE). Methods: Cross incubated the irradiated( 137 Cs; 2Gy) or non-irradiated lymphocytes of human peripheral blood in the irradiated or non-irradiated plasma respectively, then, assess the DNA damage of lymphocytes using SCGE analysis. Results: The lymphocytes incubated in the irradiated plasma presented more obvious DNA damage than the incubated in the non-irradiated plasma dose (P<0.05). Conclusion: The non-target effect of ionizing radiation can be assessed by SCGE, and the results confirm that cytokines may play a great role in it. (authors)

  7. Engineering cholesterol-based fibers for antibody immobilization and cell capture

    Science.gov (United States)

    Cohn, Celine

    In 2015, the United States is expected to have nearly 600,000 deaths attributed to cancer. Of these 600,000 deaths, 90% will be a direct result of cancer metastasis, the spread of cancer throughout the body. During cancer metastasis, circulating tumor cells (CTCs) are shed from primary tumors and migrate through bodily fluids, establishing secondary cancer sites. As cancer metastasis is incredibly lethal, there is a growing emphasis on developing "liquid biopsies" that can screen peripheral blood, search for and identify CTCs. One popular method for capturing CTCs is the use of a detection platform with antibodies specifically suited to recognize and capture cancer cells. These antibodies are immobilized onto the platform and can then bind and capture cells of interest. However, current means to immobilize antibodies often leave them with drastically reduced function. The antibodies are left poorly suited for cell capture, resulting in low cell capture efficiencies. This body of work investigates the use of lipid-based fibers to immobilize proteins in a way that retains protein function, ultimately leading to increased cell capture efficiencies. The resulting increased efficiencies are thought to arise from the retained three-dimensional structure of the protein as well as having a complete coating of the material surface with antibodies that are capable of interacting with their antigens. It is possible to electrospin cholesterol-based fibers that are similar in design to the natural cell membrane, providing proteins a more natural setting during immobilization. Such fibers have been produced from cholesterol-based cholesteryl succinyl silane (CSS). These fibers have previously illustrated a keen aptitude for retaining protein function and increasing cell capture. Herein the work focuses on three key concepts. First, a model is developed to understand the immobilization mechanism used by electrospun CSS fibers. The antibody immobilization and cell capturing

  8. Application of the Single Cell Gel Electrophoresis (SCGE) Assay to Genotoxicity Evaluation in Plants and Animals

    International Nuclear Information System (INIS)

    Kim, Jin Kyu

    2007-10-01

    Application of the Single Cell Gel Electrophoresis (SCGE) Assay to Genotoxicity Evaluation in Plants and Animals. Recently, the importance of ionizing radiation and chemicals has been recognized since radio- and chemical therapy is directly related to the control of various diseases such as cancer. Radiation and the chemicals can cause biological damages while they have great applicability. It is of necessity to analyze rapidly, easily and accurately the biological effects, especially DNA damage due to those factors. Recently SCGE (single cell gel electrophoresis assay, alias comet assay) has been developed for the efficient evaluation of DNA damage. In this report, the comprehensive review will be given on the rationale, the technical applications and the advantages and shortcomings of SCGE assay. This method can be directly applied to study on toxicity, cancer, and aging in terms of the evaluation of DNA damages due to radiation and chemicals on human cellular level. It is also suggested that comet assay be used for testing genotoxicity of suspected substances, detecting irradiated foods, screening radioprotective candidates, and studying DNA repair process in various biological systems

  9. Application of the Single Cell Gel Electrophoresis (SCGE) Assay to Genotoxicity Evaluation in Plants and Animals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu

    2007-10-15

    Application of the Single Cell Gel Electrophoresis (SCGE) Assay to Genotoxicity Evaluation in Plants and Animals. Recently, the importance of ionizing radiation and chemicals has been recognized since radio- and chemical therapy is directly related to the control of various diseases such as cancer. Radiation and the chemicals can cause biological damages while they have great applicability. It is of necessity to analyze rapidly, easily and accurately the biological effects, especially DNA damage due to those factors. Recently SCGE (single cell gel electrophoresis assay, alias comet assay) has been developed for the efficient evaluation of DNA damage. In this report, the comprehensive review will be given on the rationale, the technical applications and the advantages and shortcomings of SCGE assay. This method can be directly applied to study on toxicity, cancer, and aging in terms of the evaluation of DNA damages due to radiation and chemicals on human cellular level. It is also suggested that comet assay be used for testing genotoxicity of suspected substances, detecting irradiated foods, screening radioprotective candidates, and studying DNA repair process in various biological systems.

  10. Progress in biocatalysis with immobilized viable whole cells: systems development, reaction engineering and applications

    Czech Academy of Sciences Publication Activity Database

    Polakovič, M.; Švitel, J.; Bučko, M.; Filip, J.; Neděla, Vilém; Ansorge-Schumacher, M.B.; Gemeiner, P.

    2017-01-01

    Roč. 39, č. 5 (2017), s. 667-683 ISSN 0141-5492 Institutional support: RVO:68081731 Keywords : biocatalysis * immobilization methods * immobilized whole-cell biocatalyst * multienzyme cascade reactions * process economics * reaction engineering Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Bioprocessing technologies (industrial processes relying on biological agents to drive the process) biocatalysis, fermentation Impact factor: 1.730, year: 2016

  11. State and Kinetic Parameters Estimation of Bio-Ethanol Production with Immobilized Cells

    OpenAIRE

    Mihaylova, Iva; Popova, Silviya; Kostov, Georgi; Ignatova, Maya; Lubenova, Velislava; Naydenova, Vessela; Pircheva, Desislava; Angelov, Mihail

    2013-01-01

    In this paper, state and kinetic parameters estimation based on extended Kalman filter (EKF) is proposed. Experimental data from alcoholic fermentation process with immobilized cells is used. The measurements of glucose and ethanol concentration are used as on-line measurements for observers design and biomass concentration is used for results verification. Biomass, substrate and product concentrations inside immobilized compounds are estimated using the proposed algorithm. Monitoring of the ...

  12. The study of preparation for immobilized cells membranes of E. Coli. by radiation technique

    International Nuclear Information System (INIS)

    Cao Jin; Chen Pin; Yu Yi

    1991-01-01

    The paper described the preparation of immobilized cells membranes with E. Coli by radiation technique. The nylon 6 was grafted with HEMA, which as a matrix to prepare immobilized cells membranes with E. Coli. by radiation entrapment at low temperature. The results showed that the retentive activity possessed a maximum value for membranes with E. Coli. when the irradiation dose was at 10-12 kGy, the entrapped cells has 2.3 g/ml at 50% HEMA concentration, the optimum pH and optimum temperature for membranes with E. Coli. are as same the original cells

  13. Immobilization of microbial cells: A promising tool for treatment of ...

    African Journals Online (AJOL)

    Suzana

    2013-07-10

    Jul 10, 2013 ... (zeolite, clay, anthracite, porous glass, activated char- coal, and ceramics) and organic polymers. Inorganic carriers were selected to immobilize microorganisms because they can resist microbial degradation and are thermostable (Cassidy et al., 1996; Verma et al., 2006). The organic polymeric carriers are ...

  14. Ethanol fermentation of molasses by Saccharomyces cerevisiae cells immobilized onto sugar beet pulp

    Directory of Open Access Journals (Sweden)

    Vučurović Vesna M.

    2012-01-01

    Full Text Available Natural adhesion of Saccharomyces cerevisiae onto sugar beet pulp (SBP is a very simple and cheap immobilization method for retaining high cells density in the ethanol fermentation system. In the present study, yeast cells were immobilized by adhesion onto SBP suspended in the synthetic culture media under different conditions such as: glucose concentration (100, 120 and 150 g/l, inoculum concentration (5, 10 and 15 g/l dry mass and temperature (25, 30, 35 and 40°C. In order to estimate the optimal immobilization conditions the yeast cells retention (R, after each immobilization experiment was analyzed. The highest R value of 0.486 g dry mass yeast /g dry mass SBP was obtained at 30°C, glucose concentration of 150 g/l, and inoculum concentration of 15 g/l. The yeast immobilized under these conditions was used for ethanol fermentation of sugar beet molasses containing 150.2 g/l of reducing sugar. Efficient ethanol fermentation (ethanol concentration of 70.57 g/l, fermentation efficiency 93.98% of sugar beet molasses was achieved using S. cerevisiae immobilized by natural adhesion on SBP. [Projekat Ministarstva nauke Republike Srbije, br. TR-31002

  15. Effects of RGD immobilization on light-induced cell sheet detachment from TiO{sub 2} nanodots films

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kui; Wang, Tiantian [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); Yu, Mengliu [The Affiliated Stomatologic Hospital, Zhejiang University, Hangzhou 310003 (China); The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310003 (China); Wan, Hongping [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); Lin, Jun [The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310003 (China); Weng, Wenjian, E-mail: wengwj@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); The Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Wang, Huiming, E-mail: hmwang1960@hotmail.com [The Affiliated Stomatologic Hospital, Zhejiang University, Hangzhou 310003 (China); The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310003 (China)

    2016-06-01

    Light-induced cell detachment is reported to be a safe and effective cell sheet harvest method. In the present study, the effects of arginine–glycine–aspartic acid (RGD) immobilization on cell growth, cell sheet construction and cell harvest through light illumination are investigated. RGD was first immobilized on TiO{sub 2} nanodots films through simple physical adsorption, and then mouse pre-osteoblastic MC3T3-E1 cells were seeded on the films. It was found that RGD immobilization promoted cell adhesion and proliferation. It was also observed that cells cultured on RGD immobilized films showed relatively high level of pan-cadherin. Cells harvested with ultraviolet illumination (365 nm) showed good viability on both RGD immobilized and unmodified TiO{sub 2} nanodot films. Single cell detachment assay showed that cells detached more quickly on RGD immobilized TiO{sub 2} nanodot films. That could be ascribed to the RGD release after UV365 illumination. The current study demonstrated that RGD immobilization could effectively improve both the cellular responses and light-induced cell harvest. - Highlights: • RGD immobilization on TiO{sub 2} nanodots film favors light-induced cell sheet detachment. • Physically adsorbed RGD detaches from the film through ultraviolet illumination. • RGD detachment promotes cells and cell sheets detachment.

  16. Repeated batch production of ethanol from Jerusalem artichoke tubers using recycled immobilized cells of Kluyveromyces fragilis

    Energy Technology Data Exchange (ETDEWEB)

    Margaritis, A.; Bajpai, P.

    1981-01-01

    Recycled immobilized cells of K. fragilis ATCC 28244 were used for repeated batch production of EtOH from the inulin sugars derived from Jerusalem artichoke tubers. Using 10% initial sugar concentration, a maximum EtOH concentration of 48 g/l was achieved in 7 h when the immobilized cell concentration in the Ca alginate beads was 72 g dry weight immobilized cell/l bioreactor vol.-h. The same Ca alginate beads containing the cells were used repeatedly for 11 batch runs starting with fresh medium at the beginning of each run. The EtOH yield was almost constant at 96% of the theoretical for all 11 batch runs, while the maximum EtOH production rate during the last batch run was 70% of the original EtOH rate obtained in the 1st batch run.

  17. Continuous ethanol production from Jerusalem artichokes stalks using immobilized cells of Kluyveromyces marxianus

    Energy Technology Data Exchange (ETDEWEB)

    Bajpai, P.; Margaritis, A.

    1986-01-01

    Continuous production of ethanol from the extract of Jerusalem artichoke stalks was investigated in a packed bed bioreactor using Kluyveromyces marxianus cells immobilized in calcium alginate gel beds. Maximum conversion of the sugars to ethanol was achieved with a yield of about 98% of the theoretical. Volumetric ethanol productivities of 102 grams of ethanol per litre per hour and 92 grams ethanol per liter per hour were obtained at 87% and 90% conversion respectively for an inlet substrate concentration of 100 gram sugars per liter. The maximum specific ethanol production rate and maximum specific total sugar uptake rate of the immobilized cells were found to be 0.96 gram ethanol per gram immobilized cells per hour and 2.06 gram sugars per gram immobilized cells per hour respectively. The immobilized cell bioreactor was run continuously at a dilution rate of 2.12 per hour for 30 days which resulted in a loss of 30% of the original activity. The half life of the bioreactor was estimated to be about 56 days.

  18. Hexavalent chromate reduction during growth and by immobilized cells of arthrobacter sp. suk 1205

    International Nuclear Information System (INIS)

    Dey, S.; Paul, A.K.

    2017-01-01

    The chromate reducing actinomycetes, Arthrobacter sp. SUK 1205, isolated from chromite mine overburden of Odisha, India exhibited significant chromate reduction during growth with characteristic formation of pale green insoluble precipitate. Reduction of chromate increased with increase in inoculum density but the reduction potential declined as and when Cr(VI) concentration in the medium was increased. Chromate reducing efficiency was promoted when glycerol and glucose were used as electron donors and pH and temperature were maintained at 7.0 and 35 degree C, respectively. The reduction process was inhibited by several metal ions and metabolic inhibitors but not by Cu(II), Mn(II) and DNP. Among the matrices tested for whole cell immobilization, Ca-alginate immobilized whole cells were found to be most effective and were comparable with non-immobilized cells. Minimal salts (MS) medium was the most effective base for Cr(VI) reduction studies with immobilized cells. Under such conditions, the immobilized cells retained their enzymatic activity at least for 4 consecutive cycles indicating the potential of Arthrobacter sp. SUK 1205 in bioremediation of environmental chromium pollution. (author)

  19. Comparative study on antibody immobilization strategies for efficient circulating tumor cell capture.

    Science.gov (United States)

    Ates, Hatice Ceren; Ozgur, Ebru; Kulah, Haluk

    2018-03-23

    Methods for isolation and quantification of circulating tumor cells (CTCs) are attracting more attention every day, as the data for their unprecedented clinical utility continue to grow. However, the challenge is that CTCs are extremely rare (as low as 1 in a billion of blood cells) and a highly sensitive and specific technology is required to isolate CTCs from blood cells. Methods utilizing microfluidic systems for immunoaffinity-based CTC capture are preferred, especially when purity is the prime requirement. However, antibody immobilization strategy significantly affects the efficiency of such systems. In this study, two covalent and two bioaffinity antibody immobilization methods were assessed with respect to their CTC capture efficiency and selectivity, using an anti-epithelial cell adhesion molecule (EpCAM) as the capture antibody. Surface functionalization was realized on plain SiO 2 surfaces, as well as in microfluidic channels. Surfaces functionalized with different antibody immobilization methods are physically and chemically characterized at each step of functionalization. MCF-7 breast cancer and CCRF-CEM acute lymphoblastic leukemia cell lines were used as EpCAM positive and negative cell models, respectively, to assess CTC capture efficiency and selectivity. Comparisons reveal that bioaffinity based antibody immobilization involving streptavidin attachment with glutaraldehyde linker gave the highest cell capture efficiency. On the other hand, a covalent antibody immobilization method involving direct antibody binding by N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC)-N-hydroxysuccinimide (NHS) reaction was found to be more time and cost efficient with a similar cell capture efficiency. All methods provided very high selectivity for CTCs with EpCAM expression. It was also demonstrated that antibody immobilization via EDC-NHS reaction in a microfluidic channel leads to high capture efficiency and selectivity.

  20. Electrophoresis forum '80

    International Nuclear Information System (INIS)

    Radola, B.J.

    1980-01-01

    In this volume the contributions of the electrophoresis meeting are presented in a short term form. The main topics are gel-electrophoresis, ultra thin film isoelectric focusing, one- and two-dimensional electrophoresis, electrophoretical separation techniques, electric focusing (for phorensic studies), substrate free and substrate electrophoresis. In the poster session of this meeting subjects such as (ultra) thin film isoelectric focusing, identification of radioactive proteins, labelling of cell surfaces, autoradiography and 3 H-labelled proteins. Separate abstracts were prepared for 4 papers in this report. (HK) [de

  1. Identification of proteins of human colorectal carcinoma cell line SW480 by two-dimensional electrophoresis and MALDI-TOF mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    Ying-Tao Zhang; Yi-Ping Geng; Le Zhou; Bao-Chang Lai; Lv-Sheng Si; Yi-Li Wang

    2005-01-01

    AIM: To conduct the proteomic analysis of human colorectal carcinoma cell line, SW480 by using two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption /ionization-time of flight mass spectrometry (MALDITOFMS).METHODS: The total proteins of human colorectal carcinoma cell line, SW480 were separated with 2-DE by using immobilized pH gradient strips and visualized by staining with silver nitrate. The gel images were acquired by scanner and 2-DE analysis software, Image Master 2D Elite. Nineteen distinct protein spots were excised from gel randomly and digested in gel by TPCK-trypsin. Mass analysis ofthe tryptic digest peptides mixture was performed by using MALDI-TOF MS. Peptide mass fingerprints (PMFs) obtained by the MALDI-TOF analysis were used to search NCBI,SWISS-PROT and MSDB databases by using Mascot software.RESULTS: PMF maps of all spots were obtained by MALDI-TOF MS and thirteen proteins were preliminarily identified.CONCLUSION: The methods of analysis and identification of protein spots of tumor cells in 2-DE gel with silver staining by MALDI-TOF MS derived PMF have been established.Protein expression profile of SW480 has been obtained.It is demonstrated that a combination of proteomics and cell culture is a useful approach to comprehend the process of colon carcinogenesis.

  2. Magnetically modified bacterial cellulose: A promising carrier for immobilization of affinity ligands, enzymes, and cells

    Energy Technology Data Exchange (ETDEWEB)

    Baldikova, Eva [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Pospiskova, Kristyna [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Ladakis, Dimitrios; Kookos, Ioannis K. [Department of Chemical Engineering, University of Patras, 26504 Patras, Rio (Greece); Koutinas, Apostolis A. [Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855 (Greece); Safarikova, Mirka [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarik, Ivo, E-mail: safarik@nh.cas.cz [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2017-02-01

    Bacterial cellulose (BC) produced by Komagataeibacter sucrofermentans was magnetically modified using perchloric acid stabilized magnetic fluid. Magnetic bacterial cellulose (MBC) was used as a carrier for the immobilization of affinity ligands, enzymes and cells. MBC with immobilized reactive copper phthalocyanine dye was an efficient adsorbent for crystal violet removal; the maximum adsorption capacity was 388 mg/g. Kinetic and thermodynamic parameters were also determined. Model biocatalysts, namely bovine pancreas trypsin and Saccharomyces cerevisiae cells were immobilized on MBC using several strategies including adsorption with subsequent cross-linking with glutaraldehyde and covalent binding on previously activated MBC using sodium periodate or 1,4-butanediol diglycidyl ether. Immobilized yeast cells retained approximately 90% of their initial activity after 6 repeated cycles of sucrose solution hydrolysis. Trypsin covalently bound after MBC periodate activation was very stable during operational stability testing; it could be repeatedly used for ten cycles of low molecular weight substrate hydrolysis without loss of its initial activity. - Highlights: • Bacterial cellulose was magnetically modified with magnetic fluid. • Magnetic cellulose is an efficient carrier for affinity ligands. • Enzymes and cells can be efficiently immobilized to magnetic cellulose.

  3. Plasma modified PLA electrospun membranes for actinorhodin production intensification in Streptomyces coelicolor immobilized-cell cultivations.

    Science.gov (United States)

    Scaffaro, Roberto; Lopresti, Francesco; Sutera, Alberto; Botta, Luigi; Fontana, Rosa Maria; Gallo, Giuseppe

    2017-09-01

    Most of industrially relevant bioproducts are produced by submerged cultivations of actinomycetes. The immobilization of these Gram-positive filamentous bacteria on suitable porous supports may prevent mycelial cell-cell aggregation and pellet formation which usually negatively affect actinomycete submerged cultivations, thus, resulting in an improved biosynthetic capability. In this work, electrospun polylactic acid (PLA) membranes, subjected or not to O 2 -plasma treatment (PLA-plasma), were used as support for immobilized-cell submerged cultivations of Streptomyces coelicolor M145. This strain produces different bioactive compounds, including the blue-pigmented actinorhodin (ACT) and red-pigmented undecylprodigiosin (RED), and constitutes a model for the study of antibiotic-producing actinomycetes. Wet contact angles and X-ray photoelectron spectroscopy analysis confirmed the increased wettability of PLA-plasma due to the formation of polar functional groups such as carboxyl and hydroxyl moieties. Scanning electron microscope observations, carried out at different incubation times, revealed that S. coelicolor immobilized-cells created a dense "biofilm-like" mycelial network on both kinds of PLA membranes. Cultures of S. coelicolor immobilized-cells on PLA or PLA-plasma membranes produced higher biomass (between 1.5 and 2 fold) as well as higher levels of RED and ACT than planktonic cultures. In particular, cultures of immobilized-cells on PLA and PLA-plasma produced comparable levels of RED that were approximatively 4 and 5 fold higher than those produced by planktonic cultures, respectively. In contrast, levels of ACT produced by immobilized-cell cultures on PLA and PLA-plasma were different, being 5 and 10 fold higher than those of planktonic cultures, respectively. Therefore, this is study demonstrated the positive influence of PLA membrane on growth and secondary metabolite production in S. coelicolor and also revealed that O 2 -plasma treated PLA membranes

  4. Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research.

    Science.gov (United States)

    Park, Jae Woo; Na, Sang Cheol; Nguyen, Thanh Qua; Paik, Sang-Min; Kang, Myeongwoo; Hong, Daewha; Choi, Insung S; Lee, Jae-Hyeok; Jeon, Noo Li

    2015-03-01

    This paper describes a novel surface immobilization method for live-cell imaging of Chlamydomonas reinhardtii for continuous monitoring of lipid droplet accumulation. Microfluidics allows high-throughput manipulation and analysis of single cells in precisely controlled microenvironment. Fluorescence imaging based quantitative measurement of lipid droplet accumulation in microalgae had been difficult due to their intrinsic motile behavior. We present a simple surface immobilization method using gelatin coating as the "biological glue." We take advantage of hydroxyproline (Hyp)-based non-covalent interaction between gelatin and the outer cell wall of microalgae to anchor the cells inside the microfluidic device. We have continuously monitored single microalgal cells for up to 6 days. The immobilized microalgae remain viable (viability was comparable to bulk suspension cultured controls). When exposed to wall shear stress, most of the cells remain attached up to 0.1 dyne/cm(2) . Surface immobilization allowed high-resolution, live-cell imaging of mitotic process in real time-which followed previously reported stages in mitosis of suspension cultured cells. Use of gelatin coated microfluidics devices can result in better methods for microalgae strain screening and culture condition optimization that will help microalgal biodiesel become more economically viable. © 2014 Wiley Periodicals, Inc.

  5. Fabrication of Aligned Carbon Nanotube/Polycaprolactone/Gelatin Nanofibrous Matrices for Schwann Cell Immobilization

    Directory of Open Access Journals (Sweden)

    Shiao-Wen Tsai

    2014-01-01

    Full Text Available In this study, we utilized a mandrel rotating collector consisting of two parallel, electrically conductive pieces of tape to fabricate aligned electrospun polycaprolactone/gelatin (PG and carbon nanotube/polycaprolactone/gelatin (PGC nanofibrous matrices. Furthermore, we examined the biological performance of the PGC nanofibrous and film matrices using an in vitro culture of RT4-D6P2T rat Schwann cells. Using cell adhesion tests, we found that carbon nanotube inhibited Schwann cell attachment on PGC nanofibrous and film matrices. However, the proliferation rates of Schwann cells were higher when they were immobilized on PGC nanofibrous matrices compared to PGC film matrices. Using western blot analysis, we found that NRG1 and P0 protein expression levels were higher for cells immobilized on PGC nanofibrous matrices compared to PG nanofibrous matrices. However, the carbon nanotube inhibited NRG1 and P0 protein expression in cells immobilized on PGC film matrices. Moreover, the NRG1 and P0 protein expression levels were higher for cells immobilized on PGC nanofibrous matrices compared to PGC film matrices. We found that the matrix topography and composition influenced Schwann cell behavior.

  6. Growth and substrate consumption of Nitrobacter agilis cells immobilized in carrageenan: part 1. Dynamic modeling.

    Science.gov (United States)

    de Gooijer, C D; Wijffels, R H; Tramper, J

    1991-07-01

    The modeling of the growth of Nitrobacter agilis cell immobilized in kappa-carrageenan is presented. A detailed description is given of the modeling of internal diffusion and growth of cells in the support matrix in addition to external mass transfer resistance. The model predicts the substrate and biomass profiles in the support as well as the macroscopic oxygen consumption rate of the immobilized biocatalyst in time. The model is tested by experiments with continuously operated airlift loop reactors containing cells immobilized in kappa-carrageenan. The model describes experimental data very well. It is clearly shown that external mass transfer may not be neglected. Furthermore, a sensitivity analysis of the parameters at their values during the experiments revealed that apart from the radius of the spheres and the substrate bulk concentration, the external mass transfer resistance coefficient is the most sensitive parameter for our case.

  7. Application of single cell gel electrophoresis in post-evaluation of organism radiation damage

    International Nuclear Information System (INIS)

    Jiang Lin; Mu Wanjun; Liu Guoping; Xu Yunshu; Luo Shunzhong; Gao Qingxiang

    2009-01-01

    The transient irradiation-caused DNA damage in the human peripheral blood lymphocytes,mouse peripheral blood lymphocytes and alive mouse irradiated by α-ray and γ-ray was investigated, and the single cell gel electrophoresis(SCGE, Comet Assay) was used to detect the extent of DNA damage. On this basis, the dose-effect curve and the evaluating method for radiant after-effect were established, the absorbed dose of alive mouse A irradiated by γ-rays was computed. The results indicate that not only the dose-effect can be described by using SCGE, but also the dose-computed after organism irradiated by radiant rays is achieved with it, and SCGE may be used as a new biological dosimeter. (authors)

  8. Application of single cell gel electrophoresis in post-evaluation of organism radiation damage

    International Nuclear Information System (INIS)

    Jiang Lin; Mu Wanjun; Liu Guoping; Xu Yunshu; Gao Qingxiang

    2007-01-01

    The immediate irradiation-caused DNA damage in the human Peripheral Blood Lymphocytes, mouse Peripheral Blood Lymphocytes and alive mouse irradiated by α-Rays and γ-rays was investigated, and the single cell gel electrophoresis(SCGE, Comet Assay) was used to detect the extent of DNA damage. On this base, the dose-effect curve and the evaluating method for radiant aftereffect were established, the absorbed does of alive mouse A irradiated by γ-rays was computed. The results indicated that not only the does-effect could be described by using SCGE, but also the does-computed after organism irradiated by radiant rays was achieved with it, and SCGE might be used as a new biological dosimeter. (authors)

  9. [Comparison of fibroblastic cell compatibility of type I collagen-immobilized titanium between electrodeposition and immersion].

    Science.gov (United States)

    Kyuragi, Takeru

    2014-03-01

    Titanium is widely used for medical implants. While many techniques for surface modification have been studied for optimizing its biocompatibility with hard tissues, little work has been undertaken to explore ways of maximizing its biocompatibility with soft tissues. We investigated cell attachment to titanium surfaces modified with bovine Type I collagen immobilized by either electrodeposition or a conventional immersion technique. The apparent thickness and durability of the immobilized collagen layer were evaluated prior to incubation of the collagen-immobilized titanium surfaces with NIH/3T3 mouse embryonic fibroblasts. The initial cell attachment and expression of actin and vinculin were evaluated. We determined that the immobilized collagen layer was much thicker and more durable when placed using the electrodeposition technique than the immersion technique. Both protocols produced materials that promoted better cell attachment, growth and structural protein expression than titanium alone. However, electrodeposition was ultimately superior to immersion because it is quicker to perform and produces a more durable collagen coating. We conclude that electrodeposition is an effective technique for immobilizing type I collagen on titanium surfaces, thus improving their cytocompatibility with fibroblasts.

  10. Investigating the feasibility of stem cell enrichment mediated by immobilized selectins.

    Science.gov (United States)

    Charles, Nichola; Liesveld, Jane L; King, Michael R

    2007-01-01

    Hematopoietic stem cell therapy is used to treat both malignant and non-malignant diseases, and enrichment of the hematopoietic stem and progenitor cells (HSPCs) has the potential to reduce the likelihood of graft vs host disease or relapse, potentially fatal complications associated with the therapy. Current commercial HSPC isolation technologies rely solely on the CD34 surface marker, and while they have proven to be invaluable, they can be time-consuming with variable recoveries reported. We propose that selectin-mediated enrichment could prove to be a quick and effective method for recovering HSPCs from adult bone marrow (ABM) on the basis of differences in rolling velocities and independently of CD34 expression. Purified CD34+ ABM cells and the unselected CD34- ABM cells were perfused over immobilized P-, E-, and L-selectin-IgG at physiologic wall shear stresses, and rolling velocities and cell retention data were collected. CD34+ ABM cells generally exhibited lower rolling velocities and higher retention than the unselected CD34- ABM cells on all three selectins. For initial CD34+ ABM cell concentrations ranging from 1% to 5%, we predict an increase in purity ranging from 5.2% to 36.1%, depending on the selectin used. Additionally, selectin-mediated cell enrichment is not limited to subsets of cells with inherent differences in rolling velocities. CD34+ KG1a cells and CD34- HL60 cells exhibited nearly identical rolling velocities on immobilized P-selectin-IgG over the entire range of shear stresses studied. However, when anti-CD34 antibody was co-immobilized with the P-selectin-IgG, the rolling velocity of the CD34+ KG1a cells was significantly reduced, making selectin-mediated cell enrichment a feasible option. Optimal cell enrichment in immobilized selectin surfaces can be achieved within 10 min, much faster than most current commercially available systems.

  11. [Transformation of 2- and 4-cyanopyridines by free and immobilized cells of nitrile-hydrolyzing bacteria].

    Science.gov (United States)

    Maksimova, Iu G; Vasil'ev, D M; Ovechkina, G V; Maksimov, A Iu; Demakov, V A

    2013-01-01

    The transformation dynamics of 2- and 4-cyanopyridines by cells suspended and adsorbed on inorganic carriers has been studied in the Rhodococcus ruber gt 1 strain possessing nitrile hydratase activity and the Pseudomonas fluorescens C2 strain containing nitrilase. It was shown that both nitrile hydratase and nitrilase activities of immobilized cells against 2-cyanopyridine were 1.5-4 times lower compared to 4-cyanopyridine and 1.6-2 times lower than the activities of free cells against 2-cyanpopyridine. The possibility of obtaining isonicotinic acid during the combined conversion of 4-cyanopyridine by a mixed suspension of R. ruber gt 1 cells with a high level of nitrile hydratase activity and R. erythropolis 11-2 cells with a pronounced activity of amidase has been shown. Immobilization of Rhodococcus cells on raw coal and Pseudomonas cells on china clay was shown to yield a heterogeneous biocatalyst for the efficient transformation of cyanopyridines into respective amides and carbonic acids.

  12. Immobilization method of yeast cells for intermittent contact mode imaging using the atomic force microscope

    International Nuclear Information System (INIS)

    De, Tathagata; Chettoor, Antony M.; Agarwal, Pranav; Salapaka, Murti V.; Nettikadan, Saju

    2010-01-01

    The atomic force microscope (AFM) is widely used for studying the surface morphology and growth of live cells. There are relatively fewer reports on the AFM imaging of yeast cells (Kasas and Ikai, 1995), (Gad and Ikai, 1995). Yeasts have thick and mechanically strong cell walls and are therefore difficult to attach to a solid substrate. In this report, a new immobilization technique for the height mode imaging of living yeast cells in solid media using AFM is presented. The proposed technique allows the cell surface to be almost completely exposed to the environment and studied using AFM. Apart from the new immobilization protocol, for the first time, height mode imaging of live yeast cell surface in intermittent contact mode is presented in this report. Stable and reproducible imaging over a 10-h time span is observed. A significant improvement in operational stability will facilitate the investigation of growth patterns and surface patterns of yeast cells.

  13. Immobilization of anode-attached microbes in a microbial fuel cell.

    KAUST Repository

    Wagner, Rachel C

    2012-01-03

    Current-generating (exoelectrogenic) bacteria in bioelectrochemical systems (BESs) may not be culturable using standard in vitro agar-plating techniques, making isolation of new microbes a challenge. More in vivo like conditions are needed where bacteria can be grown and directly isolated on an electrode. While colonies can be developed from single cells on an electrode, the cells must be immobilized after being placed on the surface. Here we present a proof-of-concept immobilization approach that allows exoelectrogenic activity of cells on an electrode based on applying a layer of latex to hold bacteria on surfaces. The effectiveness of this procedure to immobilize particles was first demonstrated using fluorescent microspheres as bacterial analogs. The latex coating was then shown to not substantially affect the exoelectrogenic activity of well-developed anode biofilms in two different systems. A single layer of airbrushed coating did not reduce the voltage produced by a biofilm in a microbial fuel cell (MFC), and more easily applied dip-and-blot coating reduced voltage by only 11% in a microbial electrolysis cell (MEC). This latex immobilization procedure will enable future testing of single cells for exoelectrogenic activity on electrodes in BESs.

  14. Immobilization of anode-attached microbes in a microbial fuel cell.

    KAUST Repository

    Wagner, Rachel C; Porter-Gill, Sikandar; Logan, Bruce E

    2012-01-01

    Current-generating (exoelectrogenic) bacteria in bioelectrochemical systems (BESs) may not be culturable using standard in vitro agar-plating techniques, making isolation of new microbes a challenge. More in vivo like conditions are needed where bacteria can be grown and directly isolated on an electrode. While colonies can be developed from single cells on an electrode, the cells must be immobilized after being placed on the surface. Here we present a proof-of-concept immobilization approach that allows exoelectrogenic activity of cells on an electrode based on applying a layer of latex to hold bacteria on surfaces. The effectiveness of this procedure to immobilize particles was first demonstrated using fluorescent microspheres as bacterial analogs. The latex coating was then shown to not substantially affect the exoelectrogenic activity of well-developed anode biofilms in two different systems. A single layer of airbrushed coating did not reduce the voltage produced by a biofilm in a microbial fuel cell (MFC), and more easily applied dip-and-blot coating reduced voltage by only 11% in a microbial electrolysis cell (MEC). This latex immobilization procedure will enable future testing of single cells for exoelectrogenic activity on electrodes in BESs.

  15. Cells immobilized on patterns printed in DNA by an inkjet printer.

    Science.gov (United States)

    Sakurai, Kengo; Teramura, Yuji; Iwata, Hiroo

    2011-05-01

    The ability to two-dimensionally align various kinds of cells freely onto substrate would be a useful tool for analysis of cell-cell interactions. In this study, we aimed to establish a method for attaching cells to the substrate, in which the pattern is drawn by an inkjet printer. Poly-deoxyribonucleic acid (DNA) was immobilized onto the cell surface by use of DNA-conjugated poly(ethylene) glycol-phospholipid (DNA-PEG-lipid), which is the amphiphilic conjugate of PEG-lipid and single-stranded DNA. The surface of the substrate was then modified with the complementary DNA using an inkjet printer. Finally, DNA-immobilized cells were attached onto the substrate through DNA hybridization. The use of the inkjet printer enabled us to draw the DNA pattern accurately on the substrate with a resolution of a few hundred micrometers. DNA-immobilized cells could be attached precisely along the DNA pattern on the substrate. In addition, various kinds of cells could be attached simultaneously by using various sequences of DNA. Our technique is promising for analysis of cell-cell interactions and differentiation induction in stem cell research. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Immobilization of yeast cells with ionic hydrogel produced by radiation polymerization

    International Nuclear Information System (INIS)

    Lu Zhaoxin; Fujimura, T.

    1990-01-01

    The mixture of an ionic monomer of 2-acrylamido 2-methylpropane-sulfonic acid and a series of polyethylene glycol dimethacrylate monomer were polymerized at-78 deg C with 60 Co γ-rays and were used for immobilization of yeast cells. The immobilized yeast cells with these carriers had higher ethanol productivity than that without any carriers. The yield of ethanol with poly TBAS-14G carrier was the highest, and increased by 3.5 times compared with the free yeast cells. It was found that the ethanol yield increased with the increase of the glycol number in polyethylene glycol dimethacrylate. The state of the immobilized cells was observed with microscope and it was found that the difference in the ethanol productivity was mainly due to the difference in the internal structure and the properties of polymer carrier. It was considered that the polymer carrier had a proper hydrophilicity, swelling ability, cation in the surface and porousity in the internal structure for immobilizing yeast cells

  17. Indirect immobilized Jagged1 suppresses cell cycle progression and induces odonto/osteogenic differentiation in human dental pulp cells.

    Science.gov (United States)

    Manokawinchoke, Jeeranan; Nattasit, Praphawi; Thongngam, Tanutchaporn; Pavasant, Prasit; Tompkins, Kevin A; Egusa, Hiroshi; Osathanon, Thanaphum

    2017-08-31

    Notch signaling regulates diverse biological processes in dental pulp tissue. The present study investigated the response of human dental pulp cells (hDPs) to the indirect immobilized Notch ligand Jagged1 in vitro. The indirect immobilized Jagged1 effectively activated Notch signaling in hDPs as confirmed by the upregulation of HES1 and HEY1 expression. Differential gene expression profiling using an RNA sequencing technique revealed that the indirect immobilized Jagged1 upregulated genes were mainly involved in extracellular matrix organization, disease, and signal transduction. Downregulated genes predominantly participated in the cell cycle, DNA replication, and DNA repair. Indirect immobilized Jagged1 significantly reduced cell proliferation, colony forming unit ability, and the number of cells in S phase. Jagged1 treated hDPs exhibited significantly higher ALP enzymatic activity, osteogenic marker gene expression, and mineralization compared with control. Pretreatment with a γ-secretase inhibitor attenuated the Jagged1-induced ALP activity and mineral deposition. NOTCH2 shRNA reduced the Jagged1-induced osteogenic marker gene expression, ALP enzymatic activity, and mineral deposition. In conclusion, indirect immobilized Jagged1 suppresses cell cycle progression and induces the odonto/osteogenic differentiation of hDPs via the canonical Notch signaling pathway.

  18. Progress in emerging techniques for characterization of immobilized viable whole-cell biocatalysts

    Czech Academy of Sciences Publication Activity Database

    Bučko, M.; Vikartovská, A.; Schenkmayerová, A.; Tkáč, J.; Filip, J.; Chorvát Jr., D.; Neděla, Vilém; Ansorge-Schumacher, M.B.; Gemeiner, P.

    2017-01-01

    Roč. 71, č. 11 (2017), s. 2309-2324 ISSN 0366-6352 Institutional support: RVO:68081731 Keywords : bioelectrocatalysis * imaging techniques * immobilized whole-cell biocatalyst * multienzyme cascade reactions * online kinetics Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Bioprocessing technologies (industrial processes relying on biological agents to drive the process) biocatalysis, fermentation Impact factor: 1.258, year: 2016

  19. Correlation of acidic and basic carrier ampholyte and immobilized pH gradient two-dimensional gel electrophoresis patterns based on mass spectrometric protein identification

    DEFF Research Database (Denmark)

    Nawrocki, A; Larsen, Martin Røssel; Podtelejnikov, A V

    1998-01-01

    Separation of proteins on either carrier ampholyte-based or immobilized pH gradient-based two-dimensional (2-D) gels gives rise to electrophoretic patterns that are difficult to compare visually. In this paper we have used matrix-assisted laser desorption/ionization mass spectrometry (MALDI......-MS) to determine the identities of 335 protein spots in these two 2-D gel systems, including a substantial number of basic proteins which had never been identified before. Proteins that were identified in both gel systems allowed us to cross-reference the gel patterns. Vector analysis of these cross...

  20. Removal of Cadmium and Zinc from Soil using Immobilized Cell of Biosurfactant Producing Bacteria

    Directory of Open Access Journals (Sweden)

    Charoon Sarin

    2010-07-01

    Full Text Available Immobilized biosurfactant producing bacteria (Bacillus subtilis TP8 and Pseudomonas fluorescens G7 were assessed for survival in heavy metal contaminated soil and for their ability to remove cadmium and zinc from contaminated soil. P. fluorescens G7 was considered to be a good candidate for bioremediation of heavy metals because of its high minimum inhibitory concentrations (MIC for each heavy metal and because of the obviously increased numbers of cell surviving after incubation in the heavy metal contaminated soil up to 4 weeks. The results of soil remediation showed that approximately 19% of Zn and 16.7% of Cd could be removed by this immobilized biosurfactant producing bacteria after incubation for 2 weeks. The results confirm the potential applicability of the immobilized biosurfactant producing bacteria for heavy metal bioremediation.

  1. Chitin hydrolysis assisted by cell wall degrading enzymes immobilized of Thichoderma asperellum on totally cinnamoylated D-sorbitol beads

    International Nuclear Information System (INIS)

    Fernandes, Kátia F.; Cortijo-Triviño, David; Batista, Karla A.; Ulhoa, Cirano J.; García-Ruiz, Pedro A.

    2013-01-01

    In this study, cell wall degrading enzymes produced by Thrichoderma asperellum (TCWDE) were immobilized on totally cinnamoylated D-sorbitol (TCNSO) beads and used for chitin hydrolysis. In order to optimize immobilization efficiency, the reaction time was varied from 2 to 12 h and reactions were conducted in the presence or absence of Na 2 SO 4 . Immobilized enzymes were analysed concerning to thermal and operational stability. Immobilization in presence of Na 2 SO 4 was 54% more efficient than immobilization in absence of salt. After optimization, 32% of the total enzyme offered was immobilized, with 100% of bounding efficiency, measured as the relation between protein and enzyme immobilized. Free and TCNSO–TCWDE presented very similar kinetics with maximum hydrolysis reached at 90 min of reaction. Thermal stability of both free and TCNSO–TCWDE was similar, with losses in activity after 55 °C. Moreover, free and TCNSO–TCWDE retained 100% activity after 3 h incubation at 55 °C. TCNSO–TCWDE were used in a bath-wise reactor during 14 cycles, producing 1825 μg of N-acetylglucosamine (NAG) maintaining 83% of initial activity. - Highlights: • TCWDE immobilized on TCNSO, a support with highly hydrophobic character • New immobilization strategy for immobilization on a hydrophobic support • TCNSO–TCWDE were retained during washes and during incubation at 55 °C for 3 h

  2. Chitin hydrolysis assisted by cell wall degrading enzymes immobilized of Thichoderma asperellum on totally cinnamoylated D-sorbitol beads

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Kátia F., E-mail: katia@icb.ufg.br [Departamento de Bioquímica e Biologia Molecular, Instituo de Ciências Biológicas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970 Goiânia, GO (Brazil); Grupo de Química de Carbohidratos y Biotecnología de Alimentos (QCBA), Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain); Cortijo-Triviño, David [Grupo de Química de Carbohidratos y Biotecnología de Alimentos (QCBA), Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain); Batista, Karla A.; Ulhoa, Cirano J. [Departamento de Bioquímica e Biologia Molecular, Instituo de Ciências Biológicas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970 Goiânia, GO (Brazil); García-Ruiz, Pedro A. [Grupo de Química de Carbohidratos y Biotecnología de Alimentos (QCBA), Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain)

    2013-07-01

    In this study, cell wall degrading enzymes produced by Thrichoderma asperellum (TCWDE) were immobilized on totally cinnamoylated D-sorbitol (TCNSO) beads and used for chitin hydrolysis. In order to optimize immobilization efficiency, the reaction time was varied from 2 to 12 h and reactions were conducted in the presence or absence of Na{sub 2}SO{sub 4}. Immobilized enzymes were analysed concerning to thermal and operational stability. Immobilization in presence of Na{sub 2}SO{sub 4} was 54% more efficient than immobilization in absence of salt. After optimization, 32% of the total enzyme offered was immobilized, with 100% of bounding efficiency, measured as the relation between protein and enzyme immobilized. Free and TCNSO–TCWDE presented very similar kinetics with maximum hydrolysis reached at 90 min of reaction. Thermal stability of both free and TCNSO–TCWDE was similar, with losses in activity after 55 °C. Moreover, free and TCNSO–TCWDE retained 100% activity after 3 h incubation at 55 °C. TCNSO–TCWDE were used in a bath-wise reactor during 14 cycles, producing 1825 μg of N-acetylglucosamine (NAG) maintaining 83% of initial activity. - Highlights: • TCWDE immobilized on TCNSO, a support with highly hydrophobic character • New immobilization strategy for immobilization on a hydrophobic support • TCNSO–TCWDE were retained during washes and during incubation at 55 °C for 3 h.

  3. Continuous ethanol production using immobilized yeast cells entrapped in loofa-reinforced alginate carriers

    Directory of Open Access Journals (Sweden)

    Phoowit Bangrak

    2011-06-01

    Full Text Available A culture of Saccharomyces cerevisiae M30 entrapped in loofa-reinforced alginate was used for continuous ethanol fermentation in a packed-bed reactor with initial sugar concentrations of 200-248 g/L. Maximum ethanol productivity of 11.5 g/(L·h was obtained at an ethanol concentration of 57.4 g/L, an initial sugar concentration of 220 g/L and a dilution rate (D of 0.2 h-1. However, a maximum ethanol concentration of 82.1 g/L (productivity of 9.0 g/(L·h was obtained at a D of 0.11 h-1. Ethanol productivity in the continuous culture was 6-8-fold higher than that in the batch culture. Due to the developed carrier's high biocompatibility, high porosity, and good mechanical strength, advantages such as cell regeneration, reusability, altered mechanical strength, and high capacity to trap active cells in the reactor were achieved in this study. The immobilized cell reactor was successfully operated for 30 days without any loss in ethanol productivity. The average conversion yield was 0.43-0.45 throughout the entire operation, with an immobilization yield of 47.5%. The final total cell concentration in the reactor was 37.3 g/L (17.7 g/L immobilized cells and 19.6 g/L suspended cells. The concentration of suspended cells in the effluent was 0.8 g/L.

  4. Production of α-keto acids Part I. Immobilized cells ofTrigonopsis variabilis containing D-amino acid oxidase.

    Science.gov (United States)

    Brodelius, P; Nilsson, K; Mosbach, K

    1981-12-01

    Whole cells ofTrigonopsis variabilis were immobilized by entrapment in Ca(2+)-alginate and used for the production of α-keto acids from the corresponding D-amino acids. The D-amino acid oxidase within the immobilized cells has a broad substrate specificity. Hydrogen peroxide formed in the enzymatic reaction was efficiently hydrolyzed by manganese oxide co-immobilized with the cells. The amino acid oxidase activity was assayed with a new method based on reversed-phase HPLC. Oxygen requirements, bead size, concentration of cells in the beads, flow rate, and other factors were investigated in a " trickle-bed " reactor.

  5. Capillary zone electrophoresis-tandem mass spectrometry detects low concentration host cell impurities in monoclonal antibodies

    Science.gov (United States)

    Zhu, Guijie; Sun, Liangliang; Heidbrink-Thompson, Jennifer; Kuntumalla, Srilatha; Lin, Hung-yu; Larkin, Christopher J.; McGivney, James B.; Dovichi, Norman J.

    2016-01-01

    We have evaluated capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry (CZE-ESI-MS/MS) for detection of trace amounts of host cell protein impurities in recombinant therapeutics. Compared to previously published procedures, we have optimized the buffer pH used in the formation of a pH junction to increase injection volume. We also prepared a five-point calibration curve by spiking twelve standard proteins into a solution of a human monoclonal antibody. A custom CZE-MS/MS system was used to analyze the tryptic digest of this mixture without depletion of the antibody. CZE generated a ~70 min separation window (~90 min total analysis duration) and ~300 peak capacity. We also analyzed the sample using ultra-performance liquid chromatography (UPLC)-MS/MS. CZE-MS/MS generated ~five times higher base peak intensity and more peptide identifications for low-level spiked proteins. Both methods detected all proteins spiked at the ~100 ppm level with respect to the antibody. PMID:26530276

  6. Preliminary study on biological dosimetry using alkaline single cell gel electrophoresis of human peripheral lymphocytes

    International Nuclear Information System (INIS)

    Liu Qingjie; Lu Xue; Feng Jiangbing; Chen Deqing; Chen Xiaosui

    2006-01-01

    Objective: To explore the feasibility of alkaline single cell gel electrophoresis (SCGE) in biological dosimetry of ionizing radiation. Methods: Normal peripheral blood samples from two healthy males were exposed to different doses coblat-60 gamma-rays, ranged from 0 to 5 Gy, and the tail length (TL) and Oliver tail moment (TM) of the lymphocytes were analyzed with SCGE. The dose-effect curves of TL and TM were fitted respectively. The TL and TM of lymphocytes for eight radiation workers were analyzed with SCGE, cumulative doses were estimated using the fitted TL and TM equations, and then compared with the recorded monitoring doses. Results: The TLs or TMs of normal human lymphocytes were increased with the irradiation doses, and its relationship can be fitted with a linear-quadratic equations: Y=13.59 + 20.87X - 2.27 X 2 for TL, and Y = 8.50 + 15.04X - 1.43X 2 for TM, respectively (Y denotes TL or TM value, X is radiation dose). The doses estimated with TM equation were closer to the recorded monitoring doses than that with TL equation. Conclusions: The TM in lymphocytes analyzed with SCGE is a promising radiation biological dosimeter. (authors)

  7. Assessment of DNA damage in radiation workers by using single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Jia Lili; Zhang Tao; Yang Yonghua; Wang Yan; Du Liqing; Cao Jia; Wang Hong; Liu Qiang; Fan Feiyue

    2010-01-01

    Objective: To assess the DNA damage of radiation workers in different grade hospitals, and to explore the correlation between the types of work or work time and the levels of DNA damage. Methods: DNA single strand break were detected by using alkaline single cell gel electrophoresis (SCGE), and the comet was analyzed with CASP (Comet Assay Software Project). TDNA%, TL, TM and OTM were calculated. Results: The parameters of SCGE in the radiation group were higher than those of control group (F=3.93, P<0.01). The significant difference was found not only among the different types of work or different work time, but also among the different grade hospitals (F=1.83, 1.91, P<0.05). Conclusions: Various levels of DNA damage could be detected in the radiation workers of the two hospitals. DNA damage of radiation workers is less serious in the higher-grade hospital than the lower grade one. Different types of work or work time might affect the DNA damage level. (authors)

  8. Immobilization of yeast cells with ionic hydrogel carriers by adhesion-multiplication.

    Science.gov (United States)

    Zhaoxin, L; Fujimura, T

    2000-12-01

    The mixture of an ionic monomer, 2-acrylamido 2-methylpropanesulfonic acid (TBAS), and a series of poly(ethylene glycol) dimethacrylate (nG) monomers were copolymerized with 60Co gamma-rays, and the produced ionic hydrogel polymers were used for immobilization of yeast cells. The cells were adhered onto the surface of the hydrogel polymers and intruded into the interior of the polymers with growing. The immobilized yeast cells with these hydrogel polymers had higher ethanol productivity than that of free cells. The yield of ethanol with poly(TBAS-14G) carrier was the highest and increased by 3.5 times compared to the free cells. It was found that the ethanol yield increased with the increase of glycol number in poly(ethylene glycol) dimethacrylate. The state of the immobilized cells was observed with microscope, and it was also found that the difference in the ethanol productivity is mainly due to the difference in the internal structure and properties of polymer carrier, such as surface charge, hydrophilicity, and swelling ability of polymer carrier.

  9. A CORN STEM AS BIOMATERIAL FOR SACCHAROMYCES CEREVISIAE CELLS IMMOBILIZATION FOR THE ETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Vesna Vučurović

    2008-11-01

    Full Text Available This study provides a preliminary contribution to the development of a bioprocess for the production of ethanol using Saccharomyces cerevisiae cells immobilized onto a corn stem. For this purpose, the yeast cells were submitted to the batch tests in situ adsorption onto 0.5 cm long corn stem. Cells immobilization was analyzed by optical microscopy. The number of the yeast cells, fermentation kinetics, the ethanol yield in the presence or the absence of the support in the fermentation medium was investigated. It was determined that the addition of the corn stem led to the abrupt increase of the yeast cells number in substrate, ethanol yield, pH value, a total dissolved salts content and substrate conductivity. The addition of 5 and 10g of the corn stem pith per liter of the medium decreased the amount of residual sugar. The results indicate that a corn stem might be a good carrier for the yeast cell immobilization, and also a cheap alternative recourse of mineral components with the possibility of application for improving ethanol productivities.

  10. A chip-type thin-layer electrochemical cell coupled with capillary electrophoresis for online separation of electrode reaction products

    Energy Technology Data Exchange (ETDEWEB)

    He, Jian-Bo, E-mail: jbhe@hfut.edu.cn; Cui, Ting; Zhang, Wen-Wen; Deng, Ning

    2013-07-05

    Graphical abstract: -- Highlights: •A new coupling of thin-layer electrolysis with capillary electrophoresis (CE). •Rapid electrolysis, direct sampling followed by online CE separation. •At least 13 products of quercetin oxidation were separated. •Thermodynamic and kinetic parameters were determined from CE peak areas. -- Abstract: A coupling technique of thin-layer electrolysis with high-performance capillary electrophoresis/UV–vis technique(EC/HPCE/UV–vis) is developed for online separation and determination of electrode reaction products. A chip-type thin-layer electrolytic (CTE) cell was designed and fabricated, which contains a capillary channel and a background electrolyte reservoir, allowing rapid electrolysis, direct sampling and online electrophoretic separation. This chip-type setup was characterized based on an electrophoresis expression of Nernst equation that was applied to the redox equilibrium of o-tolidine at different potentials. The utility of the method was demonstrated by separating and determining the electro-oxidation products of quercetin in different pH media. Two main products were always found in the studied time, potential and pH ranges. The variety of products increased not only with increasing potential but also with increasing pH value, and in total, at least 13 products were observed in the electropherograms. This work illustrates a novel example of capillary electrophoresis used online with thin-layer electrolysis to separate and detect electrode reaction products.

  11. A chip-type thin-layer electrochemical cell coupled with capillary electrophoresis for online separation of electrode reaction products

    International Nuclear Information System (INIS)

    He, Jian-Bo; Cui, Ting; Zhang, Wen-Wen; Deng, Ning

    2013-01-01

    Graphical abstract: -- Highlights: •A new coupling of thin-layer electrolysis with capillary electrophoresis (CE). •Rapid electrolysis, direct sampling followed by online CE separation. •At least 13 products of quercetin oxidation were separated. •Thermodynamic and kinetic parameters were determined from CE peak areas. -- Abstract: A coupling technique of thin-layer electrolysis with high-performance capillary electrophoresis/UV–vis technique(EC/HPCE/UV–vis) is developed for online separation and determination of electrode reaction products. A chip-type thin-layer electrolytic (CTE) cell was designed and fabricated, which contains a capillary channel and a background electrolyte reservoir, allowing rapid electrolysis, direct sampling and online electrophoretic separation. This chip-type setup was characterized based on an electrophoresis expression of Nernst equation that was applied to the redox equilibrium of o-tolidine at different potentials. The utility of the method was demonstrated by separating and determining the electro-oxidation products of quercetin in different pH media. Two main products were always found in the studied time, potential and pH ranges. The variety of products increased not only with increasing potential but also with increasing pH value, and in total, at least 13 products were observed in the electropherograms. This work illustrates a novel example of capillary electrophoresis used online with thin-layer electrolysis to separate and detect electrode reaction products

  12. Physicochemical characterization of the yeast cells and the waste lignocellulosic particles in the immobilization process for ethanol production

    DEFF Research Database (Denmark)

    Agudelo-Escobar, Lina María; Mussatto, Solange I.; Peñuela, Mariana

    2017-01-01

    Ethanol is one of the leading alternative fuels. Efforts have increased the development of technologies for producing ethanol efficiently and economically. The continuous fermentation using yeast cells immobilized in low‐cost materials is presented as an excellent alternative. We used four...... to confirm the hydrophobic or hydrophilic character and the free energies interaction was established. Images were obtained by scanning electron microscope, and determination of surface areas and volumes was performed by adsorption and desorption isotherms. It was established that cell surface properties...... are modified by the immobilization process to which they are subjected. It was evident that cell immobilization depended on the properties of the carrier, as well as cell surface properties. Thus, in order to improve the process of cell immobilization, it is essential to understand the type of carrier‐cell...

  13. Bioleaching of Primary Nickel Ore Using Acidithiobacillus ferrooxidans LR Cells Immobilized in Glass Beads

    Directory of Open Access Journals (Sweden)

    Ellen Cristine Giese

    2015-06-01

    Full Text Available Sulphide minerals are one of the most important sources of value metals. For several years, a large number of hydrometallurgical and biotechnological processes have been developed to leach low-grade sulphide ores and the conditions are well established. However, the management of microorganisms in the bioleaching process is not easy to handle. In this paper, the use of immobilized cells of Acidithiobacillus ferrooxidans LR in glass beads in bioleaching of primary nickel ore was evaluated. The column experiments inoculated with immobilized cells of A. ferrooxidans LR showed the same efficiency than the conventional method using free cells and is promising for application on a larger scale as it ensuring integrity and activity of biomining microorganisms and reduce process costs. DOI: http://dx.doi.org/10.17807/orbital.v7i2.698 

  14. Radiation-induced DNA damage and repair in radiosensitive and radioresistant human tumour cells measured by field inversion gel electrophoresis

    International Nuclear Information System (INIS)

    Smeets, M.F.M.A.; Mooren, E.H.M.; Begg, A.C.

    1993-01-01

    Radiation-induced DNA damage induction and repair was measured in two human squamous carcinoma cell lines with differing radiosensitivities. Experiments were carried out with field inversion gel electrophoresis (FIGE), adapted to measure DNA double strand break (DSB) induction and repair in unlabelled cells. The sensitivity of the method was increased by introducing a hybridization membrane into the agarose gel. Damaged DNA accumulated on one spot on the membrane resulting in high local concentrations. This DNA was quantified using radioactively-labelled total human DNA as a probe. Radiosensitivity differences at physiological temperatures could not be explained by differences in either induction or repair of DNA damage as measured by pulsed field gel electrophoresis. (author)

  15. The enhancement of chondrogenesis of ATDC5 cells in RGD-immobilized microcavitary alginate hydrogels.

    Science.gov (United States)

    Yao, Yongchang; Zeng, Lei; Huang, Yuyang

    2016-07-01

    In our previous work, we have developed an effective microcavitary alginate hydrogel for proliferation of chondrocytes and maintenance of chondrocytic phenotype. In present work, we investigated whether microcavitary alginate hydrogel could promote the chondrogenesis of progenitor cells. Moreover, we attempted to further optimize this system by incorporating synthetic Arg-Gly-Asp peptide. ATDC5 cells were seeded into microcavitary alginate hydrogel with or without Arg-Gly-Asp immobilization. Cell Counting Kit-8 and live/dead staining were conducted to analyze cell proliferation. Real-time polymerase chain reaction (RT-PCR), hematoxylin and eosin, and Toluidine blue O staining as well as Western blot assay was performed to evaluate the cartilaginous markers at transcriptional level and at protein level, respectively. The obtained data demonstrated that Arg-Gly-Asp-immobilized microcavitary alginate hydrogel was preferable to promote the cell proliferation. Also, Arg-Gly-Asp-immobilized microcavitary alginate hydrogel improved the expression of chondrocytic genes including Collagen II and Aggrecan when compared with microcavitary alginate hydrogel. The results suggested that microcavitary alginate hydrogel could promote the chondrogenesis. And Arg-Gly-Asp would be promising to ameliorate this culture system for cartilage tissue engineering. © The Author(s) 2016.

  16. Single-cell gel electrophoresis applied to the analysis of UV-C damage and its repair in human cells

    International Nuclear Information System (INIS)

    Gedik, C.M.; Collins, A.R.; Ewen, S.W.B.

    1992-01-01

    The authors have adapted procedure of single cell gel electrophoresis (SCGE) for studying DNA damage and repair induced by UV-C-radiation, using HeLa cells. UV-C itself does not induce DNA breakage, and though cellular repair of UV-C damage produces DNA breaks as intermediates, these are too short-lived to be detected by SCGE. Incubation of UV-C-irradiated cells with the DNA synthesis inhibitor aphidicolin causes accumulation of incomplete repair sites to a level readily detected by SCGE even after doses as low as 0.5 J m -2 and incubation for as little as 5 min. The authors also studied UV-C-dependent incision, repair synthesis and ligation in permeable cells. Finally, key incubated permeable cells, after UV-C-irradiation, with exogenous UV endonuclease, examined consequent breaks both by SCGE and by alkaline unwinding to express results of the electrophoretic method in terms of DNA break frequencies. The sensitivity of the SCGE technique can thus be estimated; as few as 0.1 DNA breaks per 10 9 daltons are detected. (Author)

  17. Potential use of gradient denaturing gel electrophoresis in obtaining mutational spectra from human cells

    International Nuclear Information System (INIS)

    Thilly, W.G.

    1985-01-01

    A method is described to isolate mutations in DNA in human cells. When a double-stranded DNA migrates through an electric field on an electrophoretic gel, it is compact hydrodynamic structure relative to the same material in a melted form. Normally the solution in electrophoretic gels is uniform, but a way has been devised to set up a stable gradient of increasing solute concentration in the direction of DNA motion. Thus, as a double-stranded DNA molecule is drawn by the electric field into higher and higher concentrations of urea/formamide, it will eventually reach a point at which the concentration is high enough to melt the lower-melting-point region. The melting results in an essentially immobile structure within the gel so that the position at which the DNA molecule stops on the gradient gel is determined by its melting point, which is uniquely determined by its nucleotide sequence. A single base pair substitution within a low melting point sequence of some 100 base pairs changed the expected melting point by 0.4 0 C and resulted in about a 2-cm displacement under appropriate denaturing gel conditions. This expectation leads to the idea that if a mixture of DNA sequences derived from point mutations within the same restriction fragment were permitted to anneal with a complementary wild-type sequence, the melting point of each type of heteroduplex would differ depending on the kind and position of each mutation

  18. Internalization: acute apoptosis of breast cancer cells using herceptin-immobilized gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Rathinaraj P

    2015-02-01

    Full Text Available Pierson Rathinaraj,1 Ahmed M Al-Jumaily,1 Do Sung Huh21Institute of Biomedical Technologies, Auckland University of Technology, Auckland, New Zealand; 2Department of Nano science and Engineering, Inje University, Gimhea, South KoreaAbstract: Herceptin, the monoclonal antibody, was successfully immobilized on gold nanoparticles (GNPs to improve their precise interactions with breast cancer cells (SK-BR3. The mean size of the GNPs (29 nm, as determined by dynamic light scattering, enlarged to 82 nm after herceptin immobilization. The in vitro cell culture experiment indicated that human skin cells (FB proliferated well in the presence of herceptin-conjugated GNP (GNP–Her, while most of the breast cancer cells (SK-BR3 had died. To elucidate the mechanism of cell death, the interaction of breast cancer cells with GNP–Her was tracked by confocal laser scanning microscopy. Consequently, GNP–Her was found to be bound precisely to the membrane of the breast cancer cell, which became almost saturated after 6 hours incubation. This shows that the progression signal of SK-BR3 cells is retarded completely by the precise binding of antibody to the human epidermal growth factor receptor 2 receptor of the breast cancer cell membrane, causing cell death.Keywords: herceptin, gold nanoparticles, SK-BR3 cells, intracellular uptake

  19. Cell culture plastics with immobilized interleukin-4 for monocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Met, Özcan

    2011-01-01

    Standard cell culture plastic was surface modified by passive adsorption or covalent attachment of interleukin (IL)-4 and investigated for its ability to induce differentiation of human monocytes into mature dendritic cells, a process dose-dependently regulated by IL-4. Covalent attachment of IL-4...... in water instead of phosphate-buffered saline. Passively adsorbed IL-4 was observed to induce differentiation to dendritic cells, but analysis of cell culture supernatants revealed that leakage of IL-4 into solution could account for the differentiation observed. Covalent attachment resulted in bound IL-4...... at similar concentrations to the passive adsorption process, as measured by enzyme-linked immunosorbent assays, and the bound IL-4 did not leak into solution to any measurable extent during cell culture. However, covalently bound IL-4 was incapable of inducing monocyte differentiation. This may be caused...

  20. Production of tannase by the immobilized cells of Bacillus licheniformis KBR6 in Ca-alginate beads.

    Science.gov (United States)

    Mohapatra, P K D; Mondal, K C; Pati, B R

    2007-06-01

    The present study was aimed at finding the optimal conditions for immobilization of Bacillus licheniformis KBR6 cells in calcium-alginate (Ca-alginate) beads and determining the operational stability during the production of tannin-acyl-hydrolase (tannase) under semicontinous cultivation. The active cells of B. licheniformis KBR6 were immobilized in Ca-alginate and used for the production of tannase. The influence of alginate concentration (5, 10, 20 and 30 g l(-1)) and initial cell loading on enzyme production were studied. The production of tannase increased significantly with increasing alginate concentration and reached a maximum enzyme yield of 0.56 +/- 0.03 U ml(-1) at 20 g l(-1). This was about 1.70-fold higher than that obtained by free cells. The immobilized cells produced tannase consistently over 13 repeated cycles and reached a maximum level at the third cycle. Scanning electron microscope study indicated that the cells in Ca-alginate beads remain in normal shape. The Ca-alginate entrapment is a promising immobilization method of B. licheniformis KBR6 for repeated tannase production. Tannase production by immobilized cells is superior to that of free cells because it leads to higher volumetric activities within the same period of fermentation. This is the first report of tannase production from immobilized bacterial cells. The bacterium under study can produce higher amounts of tannase with respect to other fungal strains within a short cultivation period.

  1. Optimizing Immobilized Enzyme Performance in Cell-Free Environments to Produce Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Belfort, Georges [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering; Grimaldi, Joseph J. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering

    2015-01-27

    Limitations on biofuel production using cell culture (Escherichia coli, Clostridium, Saccharomyces cerevisiae, brown microalgae, blue-green algae and others) include low product (alcohol) concentrations (≤0.2 vol%) due to feedback inhibition, instability of cells, and lack of economical product recovery processes. To overcome these challenges, an alternate simplified biofuel production scheme was tested based on a cell-free immobilized enzyme system. Using this cell free system, we were able to obtain about 2.6 times higher concentrations of iso-butanol using our non-optimized system as compared with live cell systems. This process involved two steps: (i) converts acid to aldehyde using keto-acid decarboxylase (KdcA), and (ii) produces alcohol from aldehyde using alcohol dehydrogenase (ADH) with a cofactor (NADH) conversion from inexpensive formate using a third enzyme, formate dehydrogenase (FDH). To increase stability and conversion efficiency with easy separations, the first two enzymes were immobilized onto methacrylate resin. Fusion proteins of labile KdcA (fKdcA) were expressed to stabilize the covalently immobilized KdcA. Covalently immobilized ADH exhibited long-term stability and efficient conversion of aldehyde to alcohol over multiple batch cycles without fusions. High conversion rates and low protein leaching were achieved by covalent immobilization of enzymes on methacrylate resin. The complete reaction scheme was demonstrated by immobilizing both ADH and fKdcA and using FDH free in solution. The new system without in situ removal of isobutanol achieved a 55% conversion of ketoisovaleric acid to isobutanol at a concentration of 0.5 % (v/v). Further increases in titer will require continuous removal of the isobutanol using our novel brush membrane system that exhibits a 1.5 fold increase in the separation factor of isobutanol from water versus that obtained for commercial silicone rubber membranes. These bio-inspired brush membranes are based on the

  2. Cell culture plastics with immobilized interleukin-4 for monocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Met, Ozcan

    2011-01-01

    in water instead of phosphate-buffered saline. Passively adsorbed IL-4 was observed to induce differentiation to dendritic cells, but analysis of cell culture supernatants revealed that leakage of IL-4 into solution could account for the differentiation observed. Covalent attachment resulted in bound IL-4...... at similar concentrations to the passive adsorption process, as measured by enzyme-linked immunosorbent assays, and the bound IL-4 did not leak into solution to any measurable extent during cell culture. However, covalently bound IL-4 was incapable of inducing monocyte differentiation. This may be caused...

  3. Production of D-tagatose, a functional sweetener, utilizing alginate immobilized Lactobacillus fermentum CGMCC2921 cells.

    Science.gov (United States)

    Xu, Zheng; Li, Sha; Fu, Fenggen; Li, Guixiang; Feng, Xiaohai; Xu, Hong; Ouyang, Pingkai

    2012-02-01

    D-tagatose is a ketohexose that can be used as a novel functional sweetener in foods, beverages, and dietary supplements. This study was aimed at developing a high-yielding D-tagatose production process using alginate immobilized Lactobacillus fermentum CGMCC2921 cells. For the isomerization from D-galactose into D-tagatose, the immobilized cells showed optimum temperature and pH at 65 °C and 6.5, respectively. The alginate beads exhibited a good stability after glutaraldehyde treatment and retained 90% of the enzyme activity after eight cycles (192 h at 65 °C) of batch conversion. The addition of borate with a molar ratio of 1.0 to D-galactose led to a significant enhancement in the D-tagatose yield. Using commercial β-galactosidase and immobilized L. fermentum cells, D-tagatose was successfully obtained from lactose after a two-step biotransformation. The relatively high conversion rate and productivity from D-galactose to D-tagatose of 60% and 11.1 g l⁻¹ h⁻¹ were achieved in a packed-bed bioreactor. Moreover, lactobacilli have been approved as generally recognized as safe organisms, which makes this L. fermentum strain an attracting substitute for recombinant Escherichia coli cells among D-tagatose production progresses.

  4. A novel cell weighing method based on the minimum immobilization pressure for biological applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qili [Robotics and Mechatronics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800 (Australia); Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300071 (China); Shirinzadeh, Bijan [Robotics and Mechatronics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800 (Australia); Cui, Maosheng [Biotechnology Lab of Animal Reproduction, Tianjin Animal Sciences, Tianjin 300112 (China); Sun, Mingzhu; Liu, Yaowei; Zhao, Xin, E-mail: zhaoxin@nankai.edu.cn [Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300071 (China)

    2015-07-28

    A novel weighing method for cells with spherical and other regular shapes is proposed in this paper. In this method, the relationship between the cell mass and the minimum aspiration pressure to immobilize the cell (referred to as minimum immobilization pressure) is derived for the first time according to static theory. Based on this relationship, a robotic cell weighing process is established using a traditional micro-injection system. Experimental results on porcine oocytes demonstrate that the proposed method is able to weigh cells at an average speed of 16.3 s/cell and with a success rate of more than 90%. The derived cell mass and density are in accordance with those reported in other published results. The experimental results also demonstrated that this method is able to detect less than 1% variation of the porcine oocyte mass quantitatively. It can be conducted by a pair of traditional micropipettes and a commercial pneumatic micro-injection system, and is expected to perform robotic operation on batch cells. At present, the minimum resolution of the proposed method for measuring the cell mass can be 1.25 × 10{sup −15 }kg. Above advantages make it very appropriate for quantifying the amount of the materials injected into or moved out of the cells in the biological applications, such as nuclear enucleations and embryo microinjections.

  5. A novel cell weighing method based on the minimum immobilization pressure for biological applications

    International Nuclear Information System (INIS)

    Zhao, Qili; Shirinzadeh, Bijan; Cui, Maosheng; Sun, Mingzhu; Liu, Yaowei; Zhao, Xin

    2015-01-01

    A novel weighing method for cells with spherical and other regular shapes is proposed in this paper. In this method, the relationship between the cell mass and the minimum aspiration pressure to immobilize the cell (referred to as minimum immobilization pressure) is derived for the first time according to static theory. Based on this relationship, a robotic cell weighing process is established using a traditional micro-injection system. Experimental results on porcine oocytes demonstrate that the proposed method is able to weigh cells at an average speed of 16.3 s/cell and with a success rate of more than 90%. The derived cell mass and density are in accordance with those reported in other published results. The experimental results also demonstrated that this method is able to detect less than 1% variation of the porcine oocyte mass quantitatively. It can be conducted by a pair of traditional micropipettes and a commercial pneumatic micro-injection system, and is expected to perform robotic operation on batch cells. At present, the minimum resolution of the proposed method for measuring the cell mass can be 1.25 × 10 −15  kg. Above advantages make it very appropriate for quantifying the amount of the materials injected into or moved out of the cells in the biological applications, such as nuclear enucleations and embryo microinjections

  6. Continuous Ethanol Production Using Immobilized-Cell/Enzyme Biocatalysts in Fluidized-Bed Bioreactor (FBR)

    Energy Technology Data Exchange (ETDEWEB)

    Nghiem, NP

    2003-11-16

    The immobilized-cell fluidized-bed bioreactor (FBR) was developed at Oak Ridge National Laboratory (ORNL). Previous studies at ORNL using immobilized Zymomonas mobilis in FBR at both laboratory and demonstration scale (4-in-ID by 20-ft-tall) have shown that the system was more than 50 times as productive as industrial benchmarks (batch and fed-batch free cell fermentations for ethanol production from glucose). Economic analysis showed that a continuous process employing the FBR technology to produce ethanol from corn-derived glucose would offer savings of three to six cents per gallon of ethanol compared to a typical batch process. The application of the FBR technology for ethanol production was extended to investigate more complex feedstocks, which included starch and lignocellulosic-derived mixed sugars. Economic analysis and mathematical modeling of the reactor were included in the investigation. This report summarizes the results of these extensive studies.

  7. Raspberry wine fermentation with suspended and immobilized yeast cells of two strains of Saccharomyces cerevisiae.

    Science.gov (United States)

    Djordjević, Radovan; Gibson, Brian; Sandell, Mari; de Billerbeck, Gustavo M; Bugarski, Branko; Leskošek-Čukalović, Ida; Vunduk, Jovana; Nikićević, Ninoslav; Nedović, Viktor

    2015-01-01

    The objectives of this study were to assess the differences in fermentative behaviour of two different strains of Saccharomyces cerevisiae (EC1118 and RC212) and to determine the differences in composition and sensory properties of raspberry wines fermented with immobilized and suspended yeast cells of both strains at 15 °C. Analyses of aroma compounds, glycerol, acetic acid and ethanol, as well as the kinetics of fermentation and a sensory evaluation of the wines, were performed. All fermentations with immobilized yeast cells had a shorter lag phase and faster utilization of sugars and ethanol production than those fermented with suspended cells. Slower fermentation kinetics were observed in all the samples that were fermented with strain RC212 (suspended and immobilized) than in samples fermented with strain EC1118. Significantly higher amounts of acetic acid were detected in all samples fermented with strain RC212 than in those fermented with strain EC1118 (0.282 and 0.602 g/l, respectively). Slightly higher amounts of glycerol were observed in samples fermented with strain EC1118 than in those fermented with strain RC212. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Effect of hydrogel elasticity and ephrinB2-immobilized manner on Runx2 expression of human mesenchymal stem cells.

    Science.gov (United States)

    Toda, Hiroyuki; Yamamoto, Masaya; Uyama, Hiroshi; Tabata, Yasuhiko

    2017-08-01

    The objective of this study is to design the manner of ephrinB2 immobilized onto polyacrylamide (PAAm) hydrogels with varied elasticity and evaluate the effect of hydrogels elasticity and the immobilized manner of ephrinB2 on the Runx2 expression of human mesenchymal stem cells (hMSC). The PAAm hydrogels were prepared by the radical polymerization of acrylamide (AAm), and N,N'-methylenebisacrylamide (BIS). By changing the BIS concentration, the elasticity of PAAm hydrogels changed from 1 to 70kPa. For the bio-specific immobilization of ephrinB2, a chimeric protein of ephrinB2 and Fc domain was immobilized onto protein A-conjugated PAAm hydrogels by making use of the bio-specific interaction between the Fc domain and protein A. When hMSC were cultured on the ephrinB2-immobilized PAAm hydrogels with varied elasticity, the morphology of hMSC was of cuboidal shape on the PAAm hydrogels immobilized with ephrinB2 compared with non-conjugated ones, irrespective of the hydrogels elasticity. The bio-specific immobilization of ephrinB2 enhanced the level of Runx2 expression. The expression level was significantly high for the hydrogels of 3.6 and 5.9kPa elasticity with bio-specific immobilization of ephrinB2 compared with other hydrogels with the same elasticity. The hydrogels showed a significantly down-regulated RhoA activity. It is concluded that the Runx2 expression of hMSC is synergistically influenced by the hydrogels elasticity and their immobilized manner of ephrinB2 immobilized. Differentiation fate of mesenchymal stem cells (MSC) is modified by biochemical and biophysical factors, such as elasticity and signal proteins. However, there are few experiments about combinations of them. In this study, to evaluate the synergistic effect of them on cell properties of MSC, we established to design the manner of Eph signal ligand, ephrinB2, immobilized onto polyacrylamide hydrogels with varied elasticity. The gene expression level of an osteogenic maker, Runx2, was enhanced

  9. Production of R-Mandelic Acid Using Nitrilase from Recombinant E. coli Cells Immobilized with Tris(Hydroxymethyl)Phosphine.

    Science.gov (United States)

    Zhang, Xin-Hong; Liu, Zhi-Qiang; Xue, Ya-Ping; Wang, Yuan-Shan; Yang, Bo; Zheng, Yu-Guo

    2018-03-01

    Recombinant Escherichia coli cells harboring nitrilase from Alcaligenes faecalis were immobilized using tris(hydroxymethyl)phosphine (THP) as the coupling agent. The optimal pH and temperature of the THP-immobilized cells were determined at pH 8.0 and 55 °C. The half-lives of THP-immobilized cells measured at 35, 40, and 50 °C were 1800, 965, and 163 h, respectively. The concentration of R-mandelic acid (R-MA) reached 358 mM after merely 1-h conversion by the immobilized cells with 500 mM R,S-mandelonitrile (R,S-MN), affording the highest productivity of 1307 g L -1  day -1 and the space-time productivity of 143.2 mmol L -1  h -1  g -1 . The immobilized cells with granular shape were successfully recycled for 60 batches using 100 mM R,S-MN as substrate at 40 °C with 64% of relative activity, suggesting that the immobilized E. coli cells obtained in this study are promising for the production of R-MA.

  10. Comparison between pulsed-field and constant-field gel electrophoresis for measurement of DNA double-strand breaks in irradiated Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Wlodek, D.; Banath, J.; Olive, P.L.

    1991-01-01

    Pulsed-field gel electrophoresis (PFGE) is one of the most sensitive methods for detecting DNA double-strand breaks in mammalian cells. However, it has been observed that constant-field gel electrophoresis (CFGE), when optimized, can detect breaks with equal efficiency. The migration of DNA from the well and the separation of DNA molecules according to size appear to be different processes; only the latter requires the application of PFGE. CFGE is very sensitive and can detect DNA damage produced by less than 5Gy of radiation. Low voltage (ca.0.6V/cm) during electrophoresis appears to be essential for the migration of the largest fraction of DNA from the agarose plug containing the cells; the electrophoresis run time, cell density in the plug, agarose concentration, nature of detergent and extent of radiolabelling are less important. It is concluded that CFGE is equally sensitive but more rapid and economical than PFGE for the measurement of DNA damage. (author)

  11. Glucoamylase biosynthesis by cells of Aspergillus niger C sub 58-III immobilized in sintered glass and pumice stones

    Energy Technology Data Exchange (ETDEWEB)

    Fiedurek, J.; Lobarzewski, J. (Uniwersytet Marii Curie-Sklodowskiej, Lublin (Poland). Inst. Mikrobiologii i Biochemii)

    1990-09-01

    A simple method of A. niger C{sub 58-III} cell immobilization is described. This strain produces extracellular glucoamylase. According to the proposed method A. niger spores were first immobilized by adsorption in sintered glass Rasching rings (RR) or pumice stones (PS). Growing out from spores, A. niger cells produced extracellular glucoamylase. This technique facilitates the culture growth in a filamentous spongy structure of the supports with a continuous accumulation of biomass. After every 24 h it was possible to obtain culture liquid rich in glucoamylase. This procedure can be repeated 30 times using the same sample of immobilized A. niger culture without any loss of glucoamylase activity in the liquid medium. In a 96 h period immobilized A. niger cells produced 300 units . ml{sup -1} whereas a shake culture of this fungus produced only 186 units . ml{sup -1}. (orig.).

  12. Ethanol production from molasses by immobilized cells of zymomonas mobilis EMCC 1546

    International Nuclear Information System (INIS)

    Meliegy, S.A.; Abdelaziz, A.H.

    2004-01-01

    Ethanol production from beet molasses by zymomonas mobilis EMCC 1546 was studied using continuous processes in which immobilized bacterial cells of Z.mobilis EMCC 1546 was grown on both sodium alginate and polyvinyl alcohol(PVA). The fermentation was performed in a shaking incubation and 1-liter ferment or with final working 750 ml. The initial sugar concentration studied was 50, 100,150, 200 and 250 g/l. The results showed that optimum initial sugar for ethanol production was 200 g/l. In batch fermentation, the highest ethanol concentration was 28.50 g/. Also effect of gamma irradiation was studied to enhance ethanol production. The highest ethanol production at dose dose 0.25 kGy was 34.82 g/l. The results showed that continuous fermentation, at dilution rate 1.36 (I/h), helped to increase the ethanol production significantly and continuous fermentation with immobilized cells in alginate gave higher ethanol production, 35.8 (g/I), as compared with those immobilized in hydrogel (PVA)

  13. Ethanol production by fermentation using immobilized cells of Saccharomyces cerevisiae in cashew apple bagasse.

    Science.gov (United States)

    Pacheco, Alexandre Monteiro; Gondim, Diego Romão; Gonçalves, Luciana Rocha Barros

    2010-05-01

    In this work, cashew apple bagasse (CAB) was used for Saccharomyces cerevisiae immobilization. The support was prepared through a treatment with a solution of 3% HCl, and delignification with 2% NaOH was also conducted. Optical micrographs showed that high populations of yeast cells adhered to pre-treated CAB surface. Ten consecutive fermentations of cashew apple juice for ethanol production were carried out using immobilized yeasts. High ethanol productivity was observed from the third fermentation assay until the tenth fermentation. Ethanol concentrations (about 19.82-37.83 g L(-1) in average value) and ethanol productivities (about 3.30-6.31 g L(-1) h(-1)) were high and stable, and residual sugar concentrations were low in almost all fermentations (around 3.00 g L(-1)) with conversions ranging from 44.80% to 96.50%, showing efficiency (85.30-98.52%) and operational stability of the biocatalyst for ethanol fermentation. Results showed that cashew apple bagasse is an efficient support for cell immobilization aiming at ethanol production.

  14. Cane molasses fermentation for continuous ethanol production in an immobilized cells reactor by Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani, Farshid; Younesi, Habibollah; Esmaeili Sari, Abbas [Department of Environmental Science, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, P.O. Box: 64414-356 (Iran); Najafpour, Ghasem [Department of Chemical Engineering, Faculty of Engineering, Noshirvani University of Technology, Babol (Iran)

    2011-02-15

    Sodium-alginate immobilized yeast was employed to produce ethanol continuously using cane molasses as a carbon source in an immobilized cell reactor (ICR). The immobilization of Saccharomyces cerevisiae was performed by entrapment of the cell cultured media harvested at exponential growth phase (16 h) with 3% sodium alginate. During the initial stage of operation, the ICR was loaded with fresh beads of mean diameter of 5.01 mm. The ethanol production was affected by the concentration of the cane molasses (50, 100 and 150 g/l), dilution rates (0.064, 0.096, 0.144 and 0.192 h{sup -1}) and hydraulic retention time (5.21, 6.94, 10.42 and 15.63 h) of the media. The pH of the feed medium was set at 4.5 and the fermentation was carried out at an ambient temperature. The maximum ethanol production, theoretical yield (Y{sub E/S}), volumetric ethanol productivity (Q{sub P}) and total sugar consumption was 19.15 g/l, 46.23%, 2.39 g l{sup -1} h{sup -1} and 96%, respectively. (author)

  15. Immobilization of yeast cells on hydrogel carriers obtained by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Luzhao Xin; Carenza, M.; Kaetsu, Isao; Kumakura, Minoru; Yoshida, Masaru; Fujimura, Takashi

    1992-01-01

    Polymer hydrogels were obtained by radiation-induced copolymerization at -78 o C of aqueous solutions of acrylic and methacrylic esters. The matrices were characterized by equilibrium water content measurements, by optical microscopy observations and by scanning electron microscopy analysis. Yeast cells were immobilized on these hydrogels and the ethanol productivity by batch fermentation was determined. Matrix hydrophilicity and porosity were found to deeply influence the adhesion of yeast cells and, hence, the ethanol productivity. The latter as well as other physico-chemical properties were also affected by the presence of a crosslinking agent added in small amounts to the polymerizating mixture. (author)

  16. Bioactivity of immobilized hyaluronic acid derivatives regarding protein adsorption and cell adhesion

    DEFF Research Database (Denmark)

    Köwitsch, Alexander; Yang, Yuan; Ma, Ning

    2011-01-01

    with HA on physicochemical surface properties of these substrata and estimates of the quantities of immobilized HA were obtained by different physical methods such as contact angle measurements, ellipsometry, and atomic force microscopy. The bioactivity of aHA and tHA toward their natural binding partner...... affects cell growth and differentiation. A lower number and spreading of cells were observed on HA-modified surfaces compared to amino- and vinyl-terminated glass and silicon surfaces. Immunofluorescence microscopy also revealed that adhesion of fibroblast plated on HA-modified surfaces was mediated...... primarily by HA receptor CD44, indicating that bioactivity of HA was not significantly reduced by chemical modification....

  17. Effect of Cell-to-matrix Ratio in Polyvinyl Alcohol Immobilized Pure and Mixed Cultures on Atrazine Degradation

    International Nuclear Information System (INIS)

    Siripattanakul, Sumana; Wirojanagud, Wanpen; McEvoy, John; Khan, Eakalak

    2008-01-01

    Atrazine biodegradation by immobilized pure and mixed cultures was examined. A pure atrazine-degrading culture, Agrobacterium radiobacter J14a (J14a), and a mixed culture (MC), isolated from an atrazine-contaminated crop field, were immobilized using phosphorylated-polyvinyl alcohol (PPVA). An existing cell immobilization procedure was modified to enhance PPVA matrix stability. The results showed that the matrices remained mechanically and chemically stable after shaking with glass beads over 15 days under various salt solutions and pH values. The immobilization process had a slight effect on cell viability. With the aid of scanning electron microscopy, a suitable microstructure of PPVA matrices for cell entrapment was observed. There were two porous layers of spherical gel matrices, the outside having an encapsulation property and the inside containing numerous pores for bacteria to occupy. J14a and MC were immobilized at three cell-to-matrix ratios of 3.5, 6.7, and 20 mg dry cells/mL matrix. The atrazine biodegradation tests were conducted in an aerobic batch system, which was inoculated with cells at 2,000 mg/L. The tests were also conducted using free (non-immobilized) J14a and MC for comparative purpose. The cell-to-matrix ratio of 3.5 mg/mL provided the highest atrazine removal efficiency of 40-50% in 120 h for both J14a and MC. The free cell systems, for both cultures, presented much lower atrazine removal efficiencies compared to the immobilized cell systems at the same level of inoculation

  18. Specific proteins synthesized during the viral lytic cycle in vaccinia virus-infected HeLa cells: analysis by high-resolution, two-dimensional gel electrophoresis

    International Nuclear Information System (INIS)

    Carrasco, L.; Bravo, R.

    1986-01-01

    The proteins synthesized in vaccinia-infected HeLa cells have been analyzed at different times after infection by using two-dimensional gel electrophoresis. Vaccinia-infected cells present up to 198 polypeptides (138 acidic, isoelectric focusing; 60 basic, nonequilibrium pH gradient electrophoresis) not detected in control cells. Cells infected in the presence of cycloheximide show 81 additional polypeptides after cycloheximide removal, resulting in a total estimate of 279 proteins induced after vaccinia infection. The glycoproteins made at various time postinfection were also analyzed. At least 13 proteins labeled with [ 3 H]glucosamine were detected in vaccinia-infected HeLa cells

  19. Electrophoresis technology

    Science.gov (United States)

    Snyder, R. S.

    1985-01-01

    A new high resolution apparatus designed for space was built as a laboratory prototype. Using a moving wall with a low zeta potential coating, the major sources of flow distortion for an electrophoretic sample stream are removed. Highly resolved fractions, however, will only be produced in space because of the sensitivity of this chamber to buoyancy-induced convection in the laboratory. The second and third flights of the McDonnell Douglas Astronautics Corporation continuous flow electrophoresis system carried samples developed at MSFC intended to evaluate the broad capabilities of free flow electrophoresis in a reduced gravity environment. Biological model materials, hemoglobin and polystyrene latex microspheres, were selected because of their past use as electrophoresis standards and as visible markers for fluid flow due to electroosmosis, spacecraft acceleration or other factors. The dependence of the separation resolution on the properties of the sample and its suspension solution was assessed.

  20. Binase Immobilized on Halloysite Nanotubes Exerts Enhanced Cytotoxicity toward Human Colon Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Vera Khodzhaeva

    2017-09-01

    Full Text Available Many ribonucleases (RNases are considered as promising tools for antitumor therapy because of their selective cytotoxicity toward cancer cells. Binase, the RNase from Bacillus pumilus, triggers apoptotic response in cancer cells expressing RAS oncogene which is mutated in a large percentage of prevalent and deadly malignancies including colorectal cancer. The specific antitumor effect of binase toward RAS-transformed cells is due to its direct binding of RAS protein and inhibition of downstream signaling. However, the delivery of proteins to the intestine is complicated by their degradation in the digestive tract and subsequent loss of therapeutic activity. Therefore, the search of new systems for effective delivery of therapeutic proteins is an actual task. This study is aimed to the investigation of antitumor effect of binase immobilized on natural halloysite nanotubes (HNTs. Here, we have developed the method of binase immobilization on HNTs and optimized the conditions for the enzyme loading and release (i; we have found the non-toxic concentration of pure HNTs which allows to distinguish HNTs- and binase-induced cytotoxic effects (ii; using dark-field and fluorescent microscopy we have proved the absorption of binase-loaded HNTs on the cell surface (iii and demonstrated that binase-halloysite nanoformulations possessed twice enhanced cytotoxicity toward tumor colon cells as compared to the cytotoxicity of binase itself (iv. The enhanced antitumor activity of biocompatible binase-HNTs complex confirms the advisability of its future development for clinical practice.

  1. An Evaluation of Kinetic Parameters of Cadmium and Copper Biosorption by Immobilized Cells

    Directory of Open Access Journals (Sweden)

    Nelly Georgieva

    2007-10-01

    Full Text Available Bioremediation is the use of living organisms to reduce or eliminate environmental hazards resulting from the accumulation of toxic chemicals and other hazardous wastes. This technology is based on the utilization of microorganisms to transform organic and inorganic compounds. The filamentous yeast Trichosporon cutaneum strain R57, immobilized and free cells was cultivated as batch culture on a liquid medium in the presence of various concentrations of cadmium and copper ions. The simultaneous uptake and accumulation of Cd2+ and Cu2+ ions by Tr. cutaneum cells depending on the initial concentration of Cd2+ and Cu2+ in the medium were studied. The potential use of the free and immobilized cells of Trichosporon cutaneum to remove cadmium and copper ions, from aqueous solutions was evaluated. Two important physicochemical aspects for the evaluation of the sorption process as a unit operation are the equilibrium of sorption and the kinetics. The Cd2+ and Cu2+ ions biosorption capacities of all tested adsorbent were presented as a function of the initial concentration of metal ions within the aqueous biosorption medium. The individual, as well as bicomponent sorption kinetics of copper and cadmium ions by immobilised cells of Trichosporon cutaneum R57 is presented. A second order kinetic model obtains kinetic parameters for the copper and cadmium ions.

  2. Production of D-alanine from DL-alanine using immobilized cells of Bacillus subtilis HLZ-68.

    Science.gov (United States)

    Zhang, Yangyang; Li, Xiangping; Zhang, Caifei; Yu, Xiaodong; Huang, Fei; Huang, Shihai; Li, Lianwei; Liu, Shiyu

    2017-09-13

    Immobilized cells of Bacillus subtilis HLZ-68 were used to produce D-alanine from DL-alanine by asymmetric degradation. Different compounds such as polyvinyl alcohol and calcium alginate were employed for immobilizing the B. subtilis HLZ-68 cells, and the results showed that cells immobilized using a mixture of these two compounds presented higher L-alanine degradation activity, when compared with free cells. Subsequently, the effects of different concentrations of polyvinyl alcohol and calcium alginate on L-alanine consumption were examined. Maximum L-alanine degradation was exhibited by cells immobilized with 8% (w/v) polyvinyl alcohol and 2% (w/v) calcium alginate. Addition of 400 g of DL-alanine (200 g at the beginning of the reaction and 200 g after 30 h of incubation) into the reaction solution at 30 °C, pH 6.0, aeration of 1.0 vvm, and agitation of 400 rpm resulted in complete L-alanine degradation within 60 h, leaving 185 g of D-alanine in the reaction solution. The immobilized cells were applied for more than 15 cycles of degradation and a maximum utilization rate was achieved at the third cycle. D-alanine was easily extracted from the reaction solution using cation-exchange resin, and the chemical and optical purity of the extracted D-alanine was 99.1 and 99.6%, respectively.

  3. Phytoremediation of Benzophenone and Bisphenol A by Glycosylation with Immobilized Plant Cells

    Directory of Open Access Journals (Sweden)

    Kei Shimoda

    2009-01-01

    Full Text Available Benzophenone and bisphenol A are environmental pollutions, which have been listed among “chemicals suspected of having endocrine disrupting effects” by the World Wildlife Fund, the National Institute of Environmental Health Sciences in the USA and the Japanese Environment Agency. The cultured cells of Nicotiana tabacum glycosylated benzophenone to three glycosides, 4-O-β-D-glucopyranosylbenzophenone (9%, diphenylmethyl β-D-glucopyranoside (14%, and diphenylmethyl 6-O-(β-D-glucopyranosyl-β-D-glucopyranoside (12% after 48 h incubation. On the other hand, incubation of benzophenone with immobilized cells of N. tabacum in sodium alginate gel gave products in higher yields, i.e. the yields of 4-O-β-D-glucopyranosylbenzophenone, diphenylmethyl β-D-glucopyranoside, and diphenylmethyl 6-O-(β-D-glucopyranosyl-β-D-glucopyranoside were 15, 27, and 22%, respectively. Bisphenol A was converted into three glycosides, 2,2-bis(4-β-D-glucopyranosyloxyphenylpropane (16%, 2-(4-β-D-glucopyranosyloxy-3-hydroxyphenyl-2-(4-β-D-gluco- pyranosyloxyphenyl propane (8%, and 2-(3-β-D-glucopyranosyloxy-4-hydroxyphenyl-2-(4-β-D-glucopyranosyloxyphe nylpropane (5%. Also the use of immobilized N. tabacum cells improved the yield of products; the glycosylation of bisphenol A with immobilized N. tabacum gave 2,2-bis(4-β-D-glucopyranosyloxyphenylpropane (24%, 2-(4-β-D-gluco- pyranosyloxy-3-hydroxyphenyl-2-(4-β-D-glucopyranosyloxyphenyl propane (15%, and 2-(3-β-D-glucopyranosyloxy- 4-hydroxyphenyl-2-(4-β-D-glucopyranosyloxyphenylpropane (11%.

  4. The effect of cell immobilization on the antibacterial activity of Lactobacillus reuteri DPC16 cells during passage through a simulated gastrointestinal tract system.

    Science.gov (United States)

    Zhao, Qian; Maddox, Ian S; Mutukumira, Anthony; Lee, Sung Je; Shu, Quan

    2012-10-01

    Cell immobilization has the ability to influence the survival and functional characteristics of probiotic bacterial strains in harsh environments. This study investigated the effect of cell immobilization and passage through a simulated gastrointestinal tract (GI) on the antibacterial activity of Lactobacillus reuteri DPC16. Antibacterial activity, reuterin production and diol dehydratase activity were assayed in recovered isolates of L. reuteri that had been immobilized in Ca alginate-skim milk, and incubated in simulated GI fluids. Among all the recovered isolates tested, any that had undergone immobilization followed by immediate recovery of the cells without subsequent incubation in any fluids demonstrated the highest reuterin production, antimicrobial activity and diol dehydratase enzyme activity. L. reuteri DPC16 cells that had been immobilized, incubated in simulated GI fluids, and subsequently recovered from the beads often showed some loss of antimicrobial activity compared to the immobilized cells. The data confirm that the process of immobilization of L. reuteri in Ca alginate-skim milk, rather than the passage through simulated GI fluids, resulted in enhanced antibacterial activity. This is attributed to increased diol dehydratase activity, resulting in increased reuterin production.

  5. Acetone-butanol-ethanol (ABE) fermentation in an immobilized cell trickle bed reactor.

    Science.gov (United States)

    Park, C H; Okos, M R; Wankat, P C

    1989-06-05

    Acetone-butanol-ethanol (ABE) fermentation was successfully carried out in an immobilized cell trickle bed reactor. The reactor was composed of two serial columns packed with Clostridium acetobutylicum ATCC 824 entrapped on the surface of natural sponge segments at a cell loading in the range of 2.03-5.56 g dry cells/g sponge. The average cell loading was 3.58 g dry cells/g sponge. Batch experiments indicated that a critical pH above 4.2 is necessary for the initiation of cell growth. One of the media used during continuous experiments consisted of a salt mixture alone and the other a nutrient medium containing a salt mixture with yeast extract and peptone. Effluent pH was controlled by supplying various fractions of the two different types of media. A nutrient medium fraction above 0.6 was crucial for successful fermentation in a trickle bed reactor. The nutrient medium fraction is the ratio of the volume of the nutrient medium to the total volume of nutrient plus salt medium. Supplying nutrient medium to both columns continuously was an effective way to meet both pH and nutrient requirement. A 257-mL reactor could ferment 45 g/L glucose from an initial concentration of 60 g/L glucose at a rate of 70 mL/h. Butanol, acetone, and ethanol concentrations were 8.82, 5.22, and 1.45 g/L, respectively, with a butanol and total solvent yield of 19.4 and 34.1 wt %. Solvent productivity in an immobilized cell trickle bed reactor was 4.2 g/L h, which was 10 times higher than that obtained in a batch fermentation using free cells and 2.76 times higher than that of an immobilized CSTR. If the nutrient medium fraction was below 0.6 and the pH was below 4.2, the system degenerated. Oxygen also contributed to the system degeneration. Upon degeneration, glucose consumption and solvent yield decreased to 30.9 g/L and 23.0 wt %, respectively. The yield of total liquid product (40.0 wt %) and butanol selectivity (60.0 wt %) remained almost constant. Once the cells were degenerated

  6. Determination of Concentration of Living Immobilized Yeast Cells by Fluorescence Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Podrazký, Ondřej; Kuncová, Gabriela

    2005-01-01

    Roč. 107, č. 1 (2005), s. 126-134 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /7./. Madrid, 04.04.2004-07.04.2004] R&D Projects: GA ČR GA104/01/0461; GA MŠk(CZ) OC 840.10 Institutional research plan: CEZ:AV0Z40720504 Keywords : immobilization of cells * 2-D fluorescence spectroscopy * sol–gel Subject RIV: CE - Biochemistry Impact factor: 2.646, year: 2005

  7. Characteristics of an immobilized yeast cell system using very high gravity for the fermentation of ethanol.

    Science.gov (United States)

    Ji, Hairui; Yu, Jianliang; Zhang, Xu; Tan, Tianwei

    2012-09-01

    The characteristics of ethanol production by immobilized yeast cells were investigated for both repeated batch fermentation and continuous fermentation. With an initial sugar concentration of 280 g/L during the repeated batch fermentation, more than 98% of total sugar was consumed in 65 h with an average ethanol concentration and ethanol yield of 130.12 g/L and 0.477 g ethanol/g consumed sugar, respectively. The immobilized yeast cell system was reliable for at least 10 batches and for a period of 28 days without accompanying the regeneration of Saccharomyces cerevisiae inside the carriers. The multistage continuous fermentation was carried out in a five-stage column bioreactor with a total working volume of 3.75 L. The bioreactor was operated for 26 days at a dilution rate of 0.015 h(-1). The ethanol concentration of the effluent reached 130.77 g/L ethanol while an average 8.18 g/L residual sugar remained. Due to the high osmotic pressure and toxic ethanol, considerable yeast cells died without regeneration, especially in the last two stages, which led to the breakdown of the whole system of multistage continuous fermentation.

  8. Performance of the ACWA Pilot Immobilized Cell Bioreactor in Degradation of HD and Tetrytol Payloads of the M60 Chemical Round

    National Research Council Canada - National Science Library

    Guelta, Mark A; Chester, Nancy A; Kurnas, Carl W; Haley, Mark V; Lupton, F. S; Koch, Mark

    2002-01-01

    .... Neutralization followed by biodegradation was one technology identified as having potential. Guelta and DeFrank conducted preliminary laboratory studies using 1-liter Immobilized Cell Bioreactors (ICB...

  9. Immobilization of anaerobic thermophilic bacteria for the production of cell-free thermostable. alpha. -amylases and pullulanases

    Energy Technology Data Exchange (ETDEWEB)

    Klingeberg, M [Goettingen Univ. (Germany, F.R.). Inst. fuer Mikrobiologie; Vorlop, K D [Technische Univ. Braunschweig (Germany, F.R.). Inst. fuer Technische Chemie; Antranikian, G [Technische Univ. Hamburg-Harburg, Hamburg (Germany, F. R.). Arbeitsbereich Biotechnologie 1

    1990-08-01

    For the production of cell-free thermostable {alpha}-amylases and pullulanases various anaerobic thermophilic bacteria that belong to the genera Clostridium and Thermoanaerobacter were immobilized in calcium alginate gel beads. The entrapment of bacteria was performed in full was well as in hollow spheres. An optimal limited medium, which avoided bacterial outgrowth, was developed for the cultivation of immobilized organisms at 60deg C using 0.4% starch as substrate. Compared to non-immobilized cells these techniques allowed a significant increase (up to 5.6-fold) in the specific activities of the extracellular enzymes formed. An increase in the productivity of extracellular enzymes was observed after immobilization of bacteria in full spheres. In the case of C. thermosaccharolyticum, for instance, the productivity was raised from 90 units (U)/10{sup 12} cells up to 700 U/10{sup 12} cells. Electrophoretic analysis of the secreted proteins showed that in all cases most of the amylolytic enzymes formed were released into the culture medium. Proteins that had a molecular mass of less than 450 000 daltons could easily diffuse through the gel matrix. Cultivation of immobilized bacteria in semi-continuous and fed-batch cultures was also accompanied by an elevation in the concentration of cell-free enzymes. (orig.).

  10. Enhancing anticoagulation and endothelial cell proliferation of titanium surface by sequential immobilization of poly(ethylene glycol) and collagen

    International Nuclear Information System (INIS)

    Pan, Chang-Jiang; Hou, Yan-Hua; Ding, Hong-Yan; Dong, Yun-Xiao

    2013-01-01

    In the present study, poly(ethylene glycol) (PEG) and collagen I were sequentially immobilized on the titanium surface to simultaneously improve the anticoagulation and endothelial cell proliferation. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy analysis confirmed that PEG and collagen I were successfully immobilized on the titanium surface. Water contact angle results suggested the excellent hydrophilic surface after the immobilization. The anticoagulation experiments demonstrated that the immobilized PEG and collagen I on the titanium surface could not only obviously prevent platelet adhesion and aggregation but also prolong activated partial thromboplastin time (APTT), leading to the improved blood compatibility. Furthermore, immobilization of collagen to the end of PEG chain did not abate the anticoagulation. As compared to those on the pristine and PEG-modified titanium surfaces, endothelial cells exhibited improved proliferative profiles on the surface modified by the sequential immobilization of PEG and collagen in terms of CCK-8 assay, implying that the modified titanium may promote endothelialization without abating the blood compatibility. Our method may be used to modify the surface of blood-contacting biomaterials such as titanium to promote endothelialization and improve the anticoagulation, it may be helpful for development of the biomedical devices such as coronary stents, where endothelializaton and excellent anticoagulation are required.

  11. Continuous Production of Dextran from Immobilized Cells of Leuconostoc mesenteroides KIBGE HA1 Using Acrylamide as a Support

    OpenAIRE

    Qader, Shah Ali Ul; Aman, Afsheen; Azhar, Abid

    2011-01-01

    The cells of L. mesenteroides KIBGE HA1 were immobilized for the production of dextran on acrylamide gel and gel concentration was optimized for maximum entrapment. Sucrose at substrate concentration of 10% produced high yield of dextran at 25°C with a percent conversion of 5.82 while at 35°C it was 3.5. However, increasing levels of sucrose diminished dextran yields. The free cells stopped producing dextran after 144 h, while immobilized cells continued to produce dextran even after 480 h. M...

  12. Immobilization of microorganisms. Part 1. Preparation of immobilized Lactobacillus bulgaricus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K H

    1981-01-01

    The immobilization of Lactobacillus bulgaricus on polyacrylamide and on alginate beads was investigated. The most active immobilized cells were obtained by entrapment in Ca alginate beads. These immobilized microbial cells, when introduced into 4.5% lactose solution and whey solution showed maximum relative activity of 28% for lactose and 18% for whey compared to free cells.

  13. Two-dimensional gel electrophoresis data for proteomic profiling of Sporothrix yeast cells

    Directory of Open Access Journals (Sweden)

    Anderson Messias Rodrigues

    2015-03-01

    Full Text Available Sporotrichosis is a chronic infection of the skin and subcutaneous tissues of human and other mammals caused by a complex of cryptic dimorphic fungi in the plant-associated order Ophiostomatales. With major differences between routes of transmission, Sporothrix infections are emerging as new threat in tropical and subtropical areas, particularly in form of outbreaks. The mechanisms underlying the pathogenesis and invasion of Sporothrix spp. are still poorly understood and many virulence factors remain unidentified. In this scenario, a global analysis of proteins expressed by clinical Sporothrix species combined with the identification of seroreactive proteins is overdue. Optimization of sample preparation and electrophoresis conditions are key steps toward reproducibility of gel-based proteomics assays. We provide the data generated using an efficient protocol of protein extraction for rapid and large-scale proteome analysis using two-dimensional gel electrophoresis. The protocol was established and optimized for pathogenic and non-pathogenic Sporothrix spp. including Sporothrix brasiliensis (CBS 132990, Sporothrix schenckii sensu stricto (CBS 132974, Sporothrix globosa (CBS 132922, and Sporothrix mexicana (CBS 120341. The data, supplied in this article, are related to the research article entitled “Immunoproteomic analysis reveals a convergent humoral response signature in the Sporothrix schenckii complex” (Rodrigues et al., 2014 [1].

  14. Continuous acetone-ethanol-butanol fermentation by immobilized cells of Clostridium acetobutylicum

    Energy Technology Data Exchange (ETDEWEB)

    Badr, H.R.; Toledo, R.; Hamdy, M.K. [University of Georgia, Athens (Greece). Food Science and Technology Dept.

    2001-07-01

    Eight Clostridium acetobutylicum strains were examined for {alpha}-amylase and strains B-591, B-594 and P-262 had the highest activities. Defibered-sweet-potato-slurry (DSPS), containing 39.7 g starch l{sup -1}, supplemented with potassium phosphate (1.0 g l{sup -1}), cysteine-HCl (5.0 g l{sup -1}), the antifoam (polypropylene glycol, 0.1 mg ml{sup -1}), was used a continuous feedstock (FS) to a multistage bioreactor system for acetone-ethanol-butanol (AEB) fermentation. The system consisted on four columns (three vertical and one near horizontal) packed with beads containing immobilized cells of C. acetobutylicum P-262. When DSPS was pumped into the bioreactor system, at a flow rate of 2.36 ml min{sup -1}, the effluent has 7.73 g solvents l{sup -1} (1.56, acetone; 0.65, ethanol; 5.52 g, butanol) and no starch. Productivity of total solvents synthesized during continuous operation were 1.0 g 1{sup -1}h{sup -1} and 19.5 % yield compared to 0.12 g l{sup -1}h{sup -1} with 29% yield using the batch system. We proposed using DSPS for AEB fermentation in a continuous mode with immobilized P-262 cells that are active amylase producers which will lead to cost reduction compared to the batch system. (Author)

  15. Immobilization of Glucose Oxidase on Modified-Carbon-Paste-Electrodes for Microfuel Cell

    Directory of Open Access Journals (Sweden)

    Laksmi Ambarsari

    2016-03-01

    Full Text Available Glucose oxidase (GOx is being developed for many applications such as an implantable fuel cell, due to its attractive property of operating under physiological conditions. This study reports the functional immobilization of glucose oxidase onto polyaniline-nanofiber-modified-carbon-paste-electrodes (GOx/MCPE as bioanodes in fuel cell applications. In particular, GOx is immobilized onto the electrode surface via a linker molecule (glutaraldehyde. Polyaniline, synthesized by the interfacial polymerization method, produces a morphological form of nanofibers (100-120 nm which have good conductivity. The performance of the polyaniline-modified-carbon-paste-electrode (MCPE was better than the carbon- paste-electrode (CPE alone. The optimal pH and temperature of the GOx/MCPE were 4.5 (in 100 mM acetate buffer and 65 °C, respectively. The GOx/MCPE exhibit high catalytic performances (activation energy 16.4 kJ mol-1, have a high affinity for glucose (Km value 37.79 µM and can have a maximum current (Imax of 3.95 mA. The sensitivity of the bioelectrode also was high at 57.79 mA mM-1 cm-2.

  16. Investigation on accordance of DNA double-strand break of blood between in vivo and in vitro irradiation using single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Liu Qiang; Jiang Enhai; Li Jin; Tang Weisheng; Wang Zhiquan; Zhao Yongcheng; Fan Feiyue

    2006-01-01

    Objective: To observe the consistency of DNA double-strand break between in vivo and in vitro irradiation, as a prophase study in radiation biodosimetry using single cell gel electrophoresis (SCGE). Methods: Detect DNA double-strand break after whole-body and in vitro radiation in mice lymphocytes using neutral single cell gel electrophoresis. The comet images were processed by CASP software and all the data were analysed by SPSS12.0. Results: There is no difference between in vivo and in vitro irradiation group in HDNA%, TDNA%, CL, TL, TM and OTM. Conclusion: The result of neutral single cell gel electrophoresis shortly after in vitro irradiation can precisely reflect the DNA double-strand break of lymphocytes in whole-body irradiation. (authors)

  17. Cell immobilization for production of lactic acid biofilms do it naturally.

    Science.gov (United States)

    Dagher, Suzanne F; Ragout, Alicia L; Siñeriz, Faustino; Bruno-Bárcena, José M

    2010-01-01

    Interest in natural cell immobilization or biofilms for lactic acid fermentation has developed considerably over the last few decades. Many studies report the benefits associated with biofilms as industrial methods for food production and for wastewater treatment, since the formation represents a protective means of microbial growth offering survival advantages to cells in toxic environments. The formation of biofilms is a natural process in which microbial cells adsorb to a support without chemicals or polymers that entrap the cells and is dependent on the reactor environment, microorganism, and characteristics of the support. These unique characteristics enable biofilms to cause chronic infections, disease, food spoilage, and devastating effects as in microbial corrosion. Their distinct resistance to toxicity, high biomass potential, and improved stability over cells in suspension make biofilms a good tool for improving the industrial economics of biological lactic acid production. Lactic acid bacteria and specific filamentous fungi are the main sources of biological lactic acid. Over the past two decades, studies have focused on improving the lactic acid volumetric productivity through reactor design development, new support materials, and improvements in microbial production strains. To illustrate the operational designs applied to the natural immobilization of lactic acid producing microorganisms, this chapter presents the results of a search for optimum parameters and how they are affected by the physical, chemical, and biological variables of the process. We will place particular emphasis upon the relationship between lactic acid productivity attained by various types of reactors, supports, media formulations, and lactic acid producing microorganisms. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  18. Characterization of an immobilized cell, trickle bed reactor during long term butanol (ABE) fermentation.

    Science.gov (United States)

    Park, C H; Okos, M R; Wankat, P C

    1990-06-20

    Acetone-butanol-ethanol (ABE) fermentation was performed continuously in an immobilized cell, trickle bed reactor for 54 days without, degeneration by maintaining the pH above 4.3. Column clogging was minimized by structured packing of immobilization matrix. The reactor contained two serial glass columns packed with Clostridium acetobutylicum adsorbed on 12- and 20-in.-long polyester sponge strips at total flow rates between 38 and 98.7 mL/h. Cells were initially grown at 20 g/L glucose resulting in low butanol (1.15 g/L) production encouraging cell growth. After the initial cell growth phase a higher glucose concentration (38.7 g/L) improved solvent yield from 13.2 to 24.1 wt%, and butanol production rate was the best. Further improvement in solvent yield and butanol production rate was not observed with 60 g/L of glucose. However, when the fresh nutrient supply was limited to only the first column, solvent yield increased to 27.3 wt% and butanol selectivity was improved to 0.592 as compared to 0.541 when fresh feed was fed to both columns. The highest butanol concentration of 5.2 g/L occurred at 55% conversion of the feed with 60 g/L glucose. Liquid product yield of immobilized cells approached the theoretical value reported in the literature. Glucose and product concentration profiles along the column showed that the columns can be divided into production and inhibition regions. The length of each zone was dependent upon the feed glucose concentration and feed pattern. Unlike batch fermentation, there was no clear distinction between acid and solvent production regions. The pH dropped, from 6.18-6.43 to 4.50-4.90 in the first inch of the reactor. The pH dropped further to 4.36-4.65 by the exit of the column. The results indicate that the strategy for long term stable operation with high solvent yield requires a structured packing of biologically stable porous matrix such as polyester sponge, a pH maintenance above 4.3, glucose concentrations up to 60 g/L and

  19. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Science.gov (United States)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-06-06

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  20. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-12-26

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  1. Parameters and kinetics of olive mill wastewater dephenolization by immobilized Rhodotorula glutinis cells.

    Science.gov (United States)

    Bozkoyunlu, Gaye; Takaç, Serpil

    2014-01-01

    Olive mill wastewater (OMW) with total phenol (TP) concentration range of 300-1200 mg/L was treated with alginate-immobilized Rhodotorula glutinis cells in batch system. The effects of pellet properties (diameter, alginate concentration and cell loading (CL)) and operational parameters (initial TP concentration, agitation rate and reusability of pellets) on dephenolization of OMW were studied. Up to 87% dephenolization was obtained after 120 h biodegradations. The utilization number of pellets increased with the addition of calcium ions into the biodegradation medium. The overall effectiveness factors calculated for different conditions showed that diffusional limitations arising from pellet size and pellet composition could be neglected. Mass transfer limitations appeared to be more effective at high substrate concentrations and low agitation rates. The parameters of logistic model for growth kinetics of R. glutinis in OMW were estimated at different initial phenol concentrations of OMW by curve-fitting of experimental data with the model.

  2. Acceleration of vertical migration of corneal epithelial cells in albino rats during chronic immobilization stress

    International Nuclear Information System (INIS)

    Timoshin, S.S.; Berezhnova, N.I.

    1986-01-01

    This paper studies the effect of chronic immobilization stress on the kinetics of corneal epithelial cells from the basal layer into higher layers. Experiments were carried out on 49 male rats. The animals were given an intraperitoneal injection of tritium-thymidine and an additional application of 5 microCi of tritium-thymidine was made to its surface because the cornea has no blood supply. The animals were killed and the cornea removed for investigation. Values of the index of labeled nuclei and intensity of thymidine labeling, characterizing DNA synthesis in the corneas of the control and experimental animals showed no significant change compared with their values in a pervious series of experiments. Chronic exposure to stress increased the velocity of vertical migration of the cells from the basal layer toward the outer layers of the cornea

  3. Comparative investigations of T cell receptor gamma gene rearrangements in frozen and formalin-fixed paraffin wax-embedded tissues by capillary electrophoresis

    DEFF Research Database (Denmark)

    Christensen, M; Funder, A D; Bendix, K

    2006-01-01

    AIM: To compare clonal T cell receptor gamma (TCRgamma) gene rearrangements in frozen and formalin-fixed paraffin wax-embedded (FFPE) tissue, using capillary electrophoresis for use in diagnostics, as T cell lymphomas may be difficult to diagnose by conventional methods.METHODS: The DNA for PCR......% for patient specimens and the specificity 100%. The junctional region between the Vgamma and Jgamma segments was specific for each patient.CONCLUSIONS: Capillary electrophoresis of PCR products from frozen and FFPE tissue is suitable for detecting clonal TCRgamma gene rearrangements. It is important, however...

  4. Covalent immobilization of stem cell factor and stromal derived factor 1α for in vitro culture of hematopoietic progenitor cells.

    Science.gov (United States)

    Cuchiara, Maude L; Horter, Kelsey L; Banda, Omar A; West, Jennifer L

    2013-12-01

    Hematopoietic stem cells (HSCs) are currently utilized in the treatment of blood diseases, but widespread application of HSC therapeutics has been hindered by the limited availability of HSCs. With a better understanding of the HSC microenvironment and the ability to precisely recapitulate its components, we may be able to gain control of HSC behavior. In this work we developed a novel, biomimetic PEG hydrogel material as a substrate for this purpose and tested its potential with an anchorage-independent hematopoietic cell line, 32D clone 3 cells. We immobilized a fibronectin-derived adhesive peptide sequence, RGDS; a cytokine critical in HSC self-renewal, stem cell factor (SCF); and a chemokine important in HSC homing and lodging, stromal derived factor 1α (SDF1α), onto the surfaces of poly(ethylene glycol) (PEG) hydrogels. To evaluate the system's capabilities, we observed the effects of the biomolecules on 32D cell adhesion and morphology. We demonstrated that the incorporation of RGDS onto the surfaces promotes 32D cell adhesion in a dose-dependent fashion. We also observed an additive response in adhesion on surfaces with RGDS in combination with either SCF or SDF1α. In addition, the average cell area increased and circularity decreased on gel surfaces containing immobilized SCF or SDF1α, indicating enhanced cell spreading. By recapitulating aspects of the HSC microenvironment using a PEG hydrogel scaffold, we have shown the ability to control the adhesion and spreading of the 32D cells and demonstrated the potential of the system for the culture of primary hematopoietic cell populations. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Effective immobilization of alcohol dehydrogenase on carbon nanoscaffolds for ethanol biofuel cell.

    Science.gov (United States)

    Umasankar, Yogeswaran; Adhikari, Bal-Ram; Chen, Aicheng

    2017-12-01

    An efficient approach for immobilizing alcohol dehydrogenase (ADH) while enhancing its electron transfer ability has been developed using poly(2-(trimethylamino)ethyl methacrylate) (MADQUAT) cationic polymer and carbon nanoscaffolds. The carbon nanoscaffolds were comprised of single-walled carbon nanotubes (SWCNTs) wrapped with reduced graphene oxide (rGO). The ADH entrapped within the MADQUAT that was present on the carbon nanoscaffolds exhibited a high electron exchange capability with the electrode through its cofactor β-nicotinamide adenine dinucleotide hydrate and β-nicotinamide adenine dinucleotide reduced disodium salt hydrate (NAD + /NADH) redox reaction. The advantages of the carbon nanoscaffolds used as the support matrix and the MADQUAT employed for the entrapment of ADH versus physisorption were demonstrated via cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Our experimental results showed a higher electron transfer, electrocatalytic activity, and rate constant for MADQUAT entrapped ADH on the carbon nanoscaffolds. The immobilization of ADH using both MADQUAT and carbon nanoscaffolds exhibited strong potential for the development of an efficient bio-anode for ethanol powered biofuel cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A novel multistep method for chondroitin sulphate immobilization and its interaction with fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozaltin, Kadir; Lehocký, Marián, E-mail: lehocky@post.cz; Kuceková, Zdenka; Humpolíček, Petr; Sáha, Petr

    2017-01-01

    Polymeric biomaterials are widely used in medical applications owing to their low cost, processability and sufficient toughness. Surface modification by creating a thin film of bioactive agents is promising technique to enhance cellular interactions, regulate the protein adsorption and/or avoid bacterial infections. Polyethylene is one of the most used polymeric biomaterial but its hydrophobic nature impedes its further chemical modifications. Plasma treatment is unique method to increase its hydrophilicity by incorporating hydrophilic oxidative functional groups and tailoring the surface by physical etching. Furthermore, grafting of polymer brushes of amine group containing monomers onto the functionalized surface lead to strongly immobilized bioactive agents at the final step. Chondroitin sulphate is natural polysaccharide mainly found in connective cartilage tissue which used as a bioactive agent to immobilize onto polyethylene surface by multistep method in this study. - Highlights: • Attachment of chondroitin sulfate to polyethylene. • A robust way to modify surfaces using multistep approach. • The modified surfaces showed improved proliferation of mouse primary fibroblast cells.

  7. Evaluation of radio-induced DNA damage and their repair in human lymphocytes by comet assay or single cell gel electrophoresis; Avaliacao do dano radioinduzido no DNA e reparo em linfocitos humanos pelo metodo do cometa (single cell gel electrophoresis)

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Patricia A. do; Suzuki, Miriam F.; Okazaki, Kayo [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1997-12-01

    The comet assay, also called single cell gel electrophoresis technique, permits to evaluate quantitatively DNA breakage induced by chemical and physical agents at the level of the single cell. The present paper refers to the construction of dose-response curves to DNA damage and repair studies in human peripheral lymphocytes, utilizing the comet assay for the radiosensitivity analysis. So, the blood samples were obtained from healthy donors (40-50 year old), irradiated in a {sup 60} Co source (GAMMACEL 220) with doses of 0.17, 0.25, 0.57, 1.10, 2.12 and 4.22 Gy (0.59 Gy/min.) and processed 1 and 24 hours after the exposition. Results obtained showed a increase in the total lenght of comet (DNA migration) as a function of radiation dose in samples processed 1 and 24 hours after the treatment. The DNA lesion in irradiated lymphocytes with 4.22 Gy (means value of 101.4 {mu}m) were 3.4 times higher than in the untreated lymphocytes (mean value of 30 {mu}m) instead of 24 hours after the irradiation were 1.5 times higher (mean value of 46.3 {mu}m). This reduction on DNA repair occurred in these cells. It was also possible visualized the presence of subpopulations of the cells with different sensitivity and repair capacity to ionizing radiation in these donors. (author). 8 refs., 3 figs.

  8. Study on dose-effect relationship of radiation-induced DNA damage using single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Liu Qiang; Jiang Enhai; Li Jin; Tang Weisheng; Wang Zhiquan; Zhao Yongcheng; Fan Feiyue

    2006-01-01

    Objective: To explore a new, simple and quick radiation biodosimeter, which can be applied to estimate biological dose in case of radiation accident. Methods: DNA double-strand break were detected using neutral single cell gel electrophoresis (SCGE), and all the indexes of comet assay including HDNA%, TDNA%, CL, TL, TM, and OTM were analyzed by CASP (Comet Assay Software Project). The curve of dose-effect was fitted using SPSS 12.0 software. Results: Statistically significant dose-effect relationships were observed in all the indexes of comet assay, OTM was superior to other indexes. Conclusions: Application of neutral comet assay combined with CASP analysis could serve as a new radiation biodosimeter. (authors)

  9. Evaluation of genotoxicity after application of Listerine(R) on human lymphocytes by micronucleus and single cell gel electrophoresis assays.

    Science.gov (United States)

    Türkez, Hasan; Togar, Basak; Arabaci, Taner

    2012-04-01

    Listerine (LN) is one of the most commonly used mouth rinses worldwide although very limited information is available concerning its genotoxicity. In another view, the biological safety profile of oral care products is frequently assumed on the basis of simplistic test models. Therefore, the present study was undertaken to investigate the in vitro genotoxic potential of LN using micronucleus and single cell gel electrophoresis tests as genetic endpoints. Different concentrations of LN (0-100% of ml/culture, v/v) were applied to whole human blood cultures (n = 5). The result of the present study showed that there were no statistically significant differences (p > 0.05) between the control group and the groups treated with LN alone in both analysed endpoints. In conclusion, our result first demonstrated the absence of genotoxicity of LN on human lymphocytes.

  10. Identification of Receptor Ligands and Receptor Subtypes Using Antagonists in a Capillary Electrophoresis Single-Cell Biosensor Separation System

    Science.gov (United States)

    Fishman, Harvey A.; Orwar, Owe; Scheller, Richard H.; Zare, Richard N.

    1995-08-01

    A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3 acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B_2 receptor subtype (B_2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B_2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.

  11. Mutagenicity assessment of two herbal medicines, Urtan and Carmint in human leukocytes by single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Jalili, M.; Hatami, A.; Kalantari, H.; Kalantar, E.

    2006-01-01

    The use of herbal medicine is an old and still widespread particle, which makes studies their genotoxicity essential. Urtan and Carmint are examples of herbal medicines used in Iran which used for the treatment of hyperplasia, diuretic, urinary diffusion and antispasmodic action, carminative gastrointestinal disfunction respectively. The aim of this study was to evaluate the mutagenicity of these herbal medicines in human leukocytes by Single Cell Gel Electrophoresis (SCGE). Both the herbal medicines were used at four concentrations (0.046, 0.092, 0.138 and 0.184/ 100 ml). The results were compared against positive (Cr VI) and negative (no mutagen) control groups. Fluorescence microscope was used to observe the DNA damage in randomly selected cells, which were stained with ethidium bromide. Microscopic observation of the affected cells due to Urtan and Carmint was encouraging as compared to previous studies using SCGE. Both Urtan and Carmint exhibited considerable DNA damage to the blood cells. For example, Urtan at o.184 g/100ml concentration had almost 23% mutagenic effect and as the concentration increased the mutagenic effect also increased. Similarly Carmint exhibited considerable DNA damage on blood cells. Therefore, both the herbal medicines may have some mutagenic effect. (author)

  12. Proteomic analysis of docetaxel resistance in human nasopharyngeal carcinoma cells using the two-dimensional gel electrophoresis method.

    Science.gov (United States)

    Peng, Xingchen; Gong, Fengming M; Ren, Min; Ai, Ping; Wu, ShaoYong; Tang, Jie; Hu, XiaoLin

    2016-09-01

    Docetaxel-based chemotherapy has been recommended for advanced nasopharyngeal carcinoma (NPC). However, treatment failure often occurs because of acquired drug resistance. In this study, a docetaxel-resistant NPC cell line CNE-2R was established with increasing doses of docetaxel for more than 6 months. Two-dimensional gel electrophoresis and ESI-Q-TOF-MS were used to compare the differential expression of docetaxel-resistance-associated proteins between human NPC CNE-2 cells and docetaxel-resistant CNE-2R cells. As a result, 24 differentially expressed proteins were identified, including 11 proteins with increased expression and 13 proteins with decreased expression. These proteins function in diverse biological processes such as metabolism, signal transduction, calcium ion binding, immune response, proteolysis, and so on. Among these, α-enolase (ENO1), significantly upregulated in CNE-2R, was selected for detailed analysis. Inhibition of ENO1 by shRNA restored CNE-2R cells' sensitivity to docetaxel. Moreover, overexpression of ENO1 could facilitate the development of acquired resistance of docetaxel in CNE-2 cells. Western blot and reverse-transcription PCR data of clinical samples confirmed that α-enolase was upregulated in docetaxel-resistant human NPC tissues. Finding such proteins might improve interpretation of the molecular mechanisms leading to the acquisition of docetaxel chemoresistance.

  13. Preparation and immobilization of noble metal nanoparticles for plasmonic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruoli; Pitzer, Martin; Hu, DongZhi; Schaadt, Daniel M. [Institut fuer Angewandte Physik, Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); DFG Centrum fuer Funktionelle Nanostrukturen (CFN), KIT (Germany); Fruk, Ljiljana [DFG Centrum fuer Funktionelle Nanostrukturen (CFN), KIT (Germany)

    2011-07-01

    Thin-film solar cells are of high interest due to good electrical properties and low material consumption. Traditional thin-film cells, however, have considerable transmission losses because of the reduced absorption volume. A promising way to enhance absorption in the active layer is the light-trapping by plasmonic nanostructures. Metallic nanoparticles have in particular shown large enhancement of the photocurrent in thin-film devices. In this poster, we present preparation of Au,Ag and Pt nanoparticles by polyol method and seed mediated methods for use in plasmonic solar cells. Polyol method typically uses ethylene glycol as the solvent and reducing agent,and in seed-mediated synthesis small nanoparticle seeds are first prepared and then used to promote the growth of different shapes of nanoparticles. We particularly focus on the use of nanocubes and nanospheres for solar cell design. Following the nanoparticle preparation, a new method to immobilize particles on GaAs surfaces via covalent chemical bonds has been developed which prevents agglomerations and allows control of the surface density. Photocurrent spectra of GaAs pin solar cells with and without particles have been recorded. These measurements show the dependence of the photocurrent enhancement on particle material, shape and density.

  14. Flavor formation and cell physiology during the production of alcohol-free beer with immobilized Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Iersel, van M.F.M.; Dieren, van B.; Rombouts, F.M.; Abee, T.

    1999-01-01

    Production of alcohol-free beer by limited fermentation is optimally performed in a packed-bed reactor operating in downflow. This ensures a highly controllable system with optimal reactor design. In the present study, we report on changes in the physiology of immobilized yeast cells in the reactor.

  15. Enhancing osteogenic differentiation of MC3T3-E1 cells by immobilizing RGD onto liquid crystal substrate

    International Nuclear Information System (INIS)

    Wu, Shaopeng; Yang, Xiaohui; Li, Wenqiang; Du, Lin; Zeng, Rong; Tu, Mei

    2017-01-01

    To understand the effects of GRGDF modification on MC3T3-E1 cell behavior, we cultured these cells onto a biomimetic liquid crystalline matrix modified with GRGDF peptide (OPC-GA-RGD). Successful immobilization of GRGDF on the liquid crystalline surface was verified by fluorescent labeling, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). OPC-GA-RGDs retained its liquid crystalline feature after surface modification. The RGD-immobilized OPC substrate was hardly beneficial to initial cell adhesion but could support long-term cell survival. The enhancement in cell proliferation did not correlate with RGD density. The lower GRGDF density immobilized on the liquid crystalline OPC matrix (OPC-GA-RGD3) promoted cell adhesion, proliferation, ALP expression level and mineralization, suggesting that both the viscoelasticity-based mechanical stimuli and receptor/ligand-based biochemical cue synergistically modulate MC3T3-E1 cell behavior. - Highlight: • A novel type of GRGDF-immobilized liquid crystalline matrices was fabricated and served as a substrate for the in vitro culture of MC3T3-E1 cells. • The lower RGD density might provide a better condition for initial cell adhesion and proliferation, up-regulation of ALP expression levels, and mineralization. • The intrinsic liquid crystalline feature of OPC matrix, instead of RGD efficiency, promoted initial cell adhesion. • Properties of the liquid crystalline OPC matrix together with the stable receptor-ligand binging synergistically modulated MC3T3-E1 cell behavior.

  16. Enhancing osteogenic differentiation of MC3T3-E1 cells by immobilizing RGD onto liquid crystal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shaopeng; Yang, Xiaohui; Li, Wenqiang; Du, Lin; Zeng, Rong; Tu, Mei, E-mail: tumei@jnu.edu.cn

    2017-02-01

    To understand the effects of GRGDF modification on MC3T3-E1 cell behavior, we cultured these cells onto a biomimetic liquid crystalline matrix modified with GRGDF peptide (OPC-GA-RGD). Successful immobilization of GRGDF on the liquid crystalline surface was verified by fluorescent labeling, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). OPC-GA-RGDs retained its liquid crystalline feature after surface modification. The RGD-immobilized OPC substrate was hardly beneficial to initial cell adhesion but could support long-term cell survival. The enhancement in cell proliferation did not correlate with RGD density. The lower GRGDF density immobilized on the liquid crystalline OPC matrix (OPC-GA-RGD3) promoted cell adhesion, proliferation, ALP expression level and mineralization, suggesting that both the viscoelasticity-based mechanical stimuli and receptor/ligand-based biochemical cue synergistically modulate MC3T3-E1 cell behavior. - Highlight: • A novel type of GRGDF-immobilized liquid crystalline matrices was fabricated and served as a substrate for the in vitro culture of MC3T3-E1 cells. • The lower RGD density might provide a better condition for initial cell adhesion and proliferation, up-regulation of ALP expression levels, and mineralization. • The intrinsic liquid crystalline feature of OPC matrix, instead of RGD efficiency, promoted initial cell adhesion. • Properties of the liquid crystalline OPC matrix together with the stable receptor-ligand binging synergistically modulated MC3T3-E1 cell behavior.

  17. Trans-membrane electron transfer in red blood cells immobilized in a chitosan film on a glassy carbon electrode

    International Nuclear Information System (INIS)

    Yu, Chunmei; Wang, Li; Zhu, Zhenkun; Bao, Ning; Gu, Haiying

    2014-01-01

    We have studied the trans-membrane electron transfer in human red blood cells (RBCs) immobilized in a chitosan film on a glassy carbon electrode (GCE). Electron transfer results from the presence of hemoglobin (Hb) in the RBCs. The electron transfer rate (k s ) of Hb in RBCs is 0.42 s −1 , and <1.13 s −1 for Hb directly immobilized in the chitosan film. Only Hb molecules in RBCs that are closest to the plasma membrane and the surface of the electrode can undergo electron transfer to the electrode. The immobilized RBCs displayed sensitive electrocatalytic response to oxygen and hydrogen peroxide. It is believed that this cellular biosensor is of potential significance in studies on the physiological status of RBCs based on observing their electron transfer on the modified electrode. (author)

  18. Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2012-06-01

    Full Text Available Abstract Background Microbial laccases are highly useful in textile effluent dye biodegradation. However, the bioavailability of cellularly expressed or purified laccases in continuous operations is usually limited by mass transfer impediment or enzyme regeneration difficulty. Therefore, this study develops a regenerable bacterial surface-displaying system for industrial synthetic dye decolorization, and evaluates its effects on independent and continuous operations. Results A bacterial laccase (WlacD was engineered onto the cell surface of the solvent-tolerant bacterium Pseudomonas putida to construct a whole-cell biocatalyst. Ice nucleation protein (InaQ anchor was employed, and the ability of 1 to 3 tandemly aligned N-terminal repeats to direct WlacD display were compared. Immobilized WlacD was determined to be surface-displayed in functional form using Western blot analysis, immunofluorescence microscopy, flow cytometry, and whole-cell enzymatic activity assay. Engineered P. putida cells were then applied to decolorize the anthraquinone dye Acid Green (AG 25 and diazo-dye Acid Red (AR 18. The results showed that decolorization of both dyes is Cu2+- and mediator-independent, with an optimum temperature of 35°C and pH of 3.0, and can be stably performed across a temperature range of 15°C to 45°C. A high activity toward AG25 (1 g/l with relative decolorization values of 91.2% (3 h and 97.1% (18 h, as well as high activity to AR18 (1 g/l by 80.5% (3 h and 89.0% (18 h, was recorded. The engineered system exhibited a comparably high activity compared with those of separate dyes in a continuous three-round shake-flask decolorization of AG25/AR18 mixed dye (each 1 g/l. No significant decline in decolorization efficacy was noted during first two-rounds but reaction equilibriums were elongated, and the residual laccase activity eventually decreased to low levels. However, the decolorizing capacity of the system was easily retrieved

  19. Exploring bio-hydrogen-producing performance in three-phase fluidized bed bioreactors using different types of immobilized cells

    International Nuclear Information System (INIS)

    Shu-Yii Wu; Chi-Neng Lin; Yuan-Chang Shen; Shu-Yii Wu; Chiu-Yue Lin; Jo-Shu Chang

    2006-01-01

    In this study, the spherical activated carbon (AC) and silicone gel (SC) were used as the primary matrices to immobilize H 2 -producing activated sludge. The experiments were carried out in two different types of three-phase fluidized beds; namely, conventional fluidized bed reactor (FBR) and draft tube fluidized bed reactor (DTFBR). The solid volume of AC and SC immobilized cells was 10 vol.% for both FBR and DTFBR. Sucrose (at 20000 mg COD/l) was used as the carbon substrate for H 2 production. The H 2 -producing performance was examined at different hydraulic retention times (HRT = 8, 6, 4, 2, 1, and 0.5 h). The results show that the best volumetric H 2 production rate was 1.23 ± 0.08 l/h/l (HRT = 2 h) and 2.33 ± 0.22 l/h/l (HRT 0.5 h) for fluidized beds containing AC and SC immobilized cells, respectively. The highest H 2 yield was 3.37 mol H 2 /mol sucrose (HRT = 6 h) and 4.07 mol H 2 /mol sucrose (HRT = 4 h) for fluidized beds with AC and SC immobilized cells, respectively. The H 2 content in the biogas was stably maintained at 35% or higher for all the reactors, while the primary soluble metabolites in the cultures were acetic acid and butyric acid. (authors)

  20. Cell-Free Expression and In Situ Immobilization of Parasite Proteins from Clonorchis sinensis for Rapid Identification of Antigenic Candidates.

    Directory of Open Access Journals (Sweden)

    Christy Catherine

    Full Text Available Progress towards genetic sequencing of human parasites has provided the groundwork for a post-genomic approach to develop novel antigens for the diagnosis and treatment of parasite infections. To fully utilize the genomic data, however, high-throughput methodologies are required for functional analysis of the proteins encoded in the genomic sequences. In this study, we investigated cell-free expression and in situ immobilization of parasite proteins as a novel platform for the discovery of antigenic proteins. PCR-amplified parasite DNA was immobilized on microbeads that were also functionalized to capture synthesized proteins. When the microbeads were incubated in a reaction mixture for cell-free synthesis, proteins expressed from the microbead-immobilized DNA were instantly immobilized on the same microbeads, providing a physical linkage between the genetic information and encoded proteins. This approach of in situ expression and isolation enables streamlined recovery and analysis of cell-free synthesized proteins and also allows facile identification of the genes coding antigenic proteins through direct PCR of the microbead-bound DNA.

  1. Effect of Ethanol Stress on Fermentation Performance of Saccharomyces cerevisiae Cells Immobilized on Nypa fruticans Leaf Sheath Pieces

    Directory of Open Access Journals (Sweden)

    Hoang Phong Nguyen

    2015-01-01

    Full Text Available The yeast cells of Saccharomyces cerevisiae immobilized on Nypa fruticans leaf sheath pieces were tested for ethanol tolerance (0, 23.7, 47.4, 71.0 and 94.7 g/L. Increase in the initial ethanol concentration from 23.7 to 94.7 g/L decreased the average growth rate and concentration of ethanol produced by the immobilized yeast by 5.2 and 4.1 times, respectively. However, in the medium with initial ethanol concentration of 94.7 g/L, the average growth rate, glucose uptake rate and ethanol formation rate of the immobilized yeast were 3.7, 2.5 and 3.5 times, respectively, higher than those of the free yeast. The ethanol stress inhibited ethanol formation by Saccharomyces cerevisiae cells and the yeast responded to the stress by changing the fatty acid composition of cellular membrane. The adsorption of yeast cells on Nypa fruticans leaf sheath pieces of the growth medium increased the saturated fatty acid (C16:0 and C18:0 mass fraction in the cellular membrane and that improved alcoholic fermentation performance of the immobilized yeast.

  2. The Cutting Edge of Affinity Electrophoresis Technology

    Science.gov (United States)

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-01-01

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years. PMID:28248262

  3. The Cutting Edge of Affinity Electrophoresis Technology.

    Science.gov (United States)

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-03-18

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years.

  4. Immobilization of gold nanoparticles on cell culture surfaces for safe and enhanced gold nanoparticle-mediated laser transfection

    Science.gov (United States)

    Kalies, Stefan; Heinemann, Dag; Schomaker, Markus; Gentemann, Lara; Meyer, Heiko; Ripken, Tammo

    2014-01-01

    Abstract. In comparison to standard transfection methods, gold nanoparticle-mediated laser transfection has proven to be a versatile alternative. This is based on its minor influence on cell viability and its high efficiency, especially for the delivery of small molecules like small interfering RNA. However, in order to transfer it to routine usage, a safety aspect is of major concern: The avoidance of nanoparticle uptake by the cells is desired. The immobilization of the gold nanoparticles on cell culture surfaces can address this issue. In this study, we achieved this by silanization of the appropriate surfaces and the binding of gold nanoparticles to them. Comparable perforation efficiencies to the previous approaches of gold nanoparticle-mediated laser transfection with free gold nanoparticles are demonstrated. The uptake of the immobilized particles by the cells is unlikely. Consequently, these investigations offer the possibility of bringing gold nanoparticle-mediated laser transfection closer to routine usage. PMID:25069006

  5. A novel ethanol/oxygen microfluidic fuel cell with enzymes immobilized onto cantilevered porous electrodes

    Science.gov (United States)

    Desmaële, D.; Nguyen-Boisse, T. T.; Renaud, L.; Tingry, S.

    2016-11-01

    This paper introduces a novel design of membraneless microfluidic biofuel cell that incorporates three-dimensional porous electrodes containing immobilized enzymes to catalyze redox reactions occurring in the presence of ethanol/O2 co-laminar flows. In order to maximize the penetration depth of the reactants inside the porous medium, we report on the preliminary evaluation of cantilevered bioelectrodes, namely the fibrous electrodes protrude along the internal walls of the miniature electrochemical chamber. As a first proof-of-concept, we demonstrate the integration of a bioanode and a biocathode into a lamination-based microfluidic cell fabricated via rapid prototyping. With enzymes deposited into the fibrous structure of 25 mm long, 1 mm wide and 0.11 mm thick carbon paper electrodes, the volumetric power density reached 1.25 mW cm-3 at 0.43 V under a flow rate of 50 μL min-1. An advantage of the presented microfluidic biofuel cell is that it can be adapted to include a larger active electrode volume via the vertical stacking of multiple thin bioelectrodes. We therefore envision that our design would be amenable to reach the level of net power required to supply energy to a plurality of low-consumption electronic devices.

  6. Modulation of Protein Adsorption and Cell Proliferation on Polyethylene Immobilized Graphene Oxide Reinforced HDPE Bionanocomposites.

    Science.gov (United States)

    Upadhyay, Rahul; Naskar, Sharmistha; Bhaskar, Nitu; Bose, Suryasarathi; Basu, Bikramjit

    2016-05-18

    The uniform dispersion of nanoparticles in a polymer matrix, together with an enhancement of interfacial adhesion is indispensable toward achieving better mechanical properties in the nanocomposites. In the context to biomedical applications, the type and amount of nanoparticles can potentially influence the biocompatibility. To address these issues, we prepared high-density polyethylene (HDPE) based composites reinforced with graphene oxide (GO) by melt mixing followed by compression molding. In an attempt to tailor the dispersion and to improve the interfacial adhesion, we immobilized polyethylene (PE) onto GO sheets by nucleophilic addition-elimination reaction. A good combination of yield strength (ca. 20 MPa), elastic modulus (ca. 600 MPa), and an outstanding elongation at failure (ca. 70%) were recorded with 3 wt % polyethylene grafted graphene oxide (PE-g-GO) reinforced HDPE composites. Considering the relevance of protein adsorption as a biophysical precursor to cell adhesion, the protein adsorption isotherms of bovine serum albumin (BSA) were determined to realize three times higher equilibrium constant (Keq) for PE-g-GO-reinforced HDPE composites as compared to GO-reinforced composites. To assess the cytocompatibility, we grew osteoblast cell line (MC3T3) and human mesenchymal stem cells (hMSCs) on HDPE/GO and HDPE/PE-g-GO composites, in vitro. The statistically significant increase in metabolically active cell over different time periods in culture for up to 6 days in MC3T3 and 7 days for hMSCs was observed, irrespective of the substrate composition. Such observation indicated that HDPE with GO or PE-g-GO addition (up to 3 wt %) can be used as cell growth substrate. The extensive proliferation of cells with oriented growth pattern also supported the fact that tailored GO addition can support cellular functionality in vitro. Taken together, the experimental results suggest that the PE-g-GO in HDPE can effectively be utilized to enhance both mechanical and

  7. Efficient biodegradation of cyanide and ferrocyanide by Na-alginate beads immobilized with fungal cells of Trichoderma koningii.

    Science.gov (United States)

    Zhou, Xiaoying; Liu, Lixing; Chen, Yunpeng; Xu, Shufa; Chen, Jie

    2007-09-01

    Cyanide or metal cyanide contaminations have become serious environmental and food-health problems. A fungal mutant of Trichoderma koningii, TkA8, constructed by restriction enzyme-mediated integration, has been verified to have a high cyanide degradation ability in our previous study. In this study, the mutant cells were entrapped in sodium-alginate (Na-alginate) immobilization beads to degrade cyanide and ferrocyanide in a liquid mineral medium. The results showed that the fungus in immobilization beads consisting of 3% Na-alginate and 3% CaCl2 could degrade cyanide more efficiently than a nonimmobilized fungal culture. For maximum degradation efficiency, the optimal ratio of Na-alginate and wet fungal biomass was 20:1 (m/m) and the initial pH was 6.5. In comparison, cell immobilization took at least 3 and 8 days earlier, respectively, to completely degrade cyanide and ferrocyanide. In addition, we showed that the immobilized beads could be easily recovered from the medium and reused for up to 5 batches without significant losses of fungal remediation abilities. The results of this study provide a promising alternative method for the large-scale remediation of soil or water systems from cyanide contamination.

  8. Capillary zone electrophoresis-multiple reaction monitoring from 100 pg of RAW 264.7 cell lysate digest.

    Science.gov (United States)

    Sun, Liangliang; Li, Yihan; Champion, Matthew M; Zhu, Guijie; Wojcik, Roza; Dovichi, Norman J

    2013-06-07

    Capillary zone electrophoresis-multiple/single reaction monitoring (CZE-MRM/SRM), which employed an electrokinetically driven sheath-flow electrospray interface, was used for the rapid and highly sensitive detection of protein analytes in complex tryptic digests. MRM channels were developed against a commercial exponential mixture of bovine proteins. Five proteins spanning four orders of magnitude concentration range were confidently detected from only 2.5 ng of the digest mixture; the mass detection limits (S/N = 3) of two detected proteins, alpha-casein and glutamate dehydrogenase were about 600 zmol and 30 amol, respectively. This technique was then applied to a RAW 264.7 cell lysate digest. Three proteins were confidently and reproducibly detected from 100 pg of this digest. The sample amount corresponds to the approximate protein content from a single cell, which suggests that CZE-MRM may be a useful analytical tool in chemical cytometry. In addition to providing highly sensitive detection of proteins in complex mixtures, this system is highly rapid; migration time of the protein digests was less than 10 min.

  9. Comparative analysis of different whole cell immobilized Aspergillus niger catalysts for gluconic acid fermentation using pretreated cane molasses

    Energy Technology Data Exchange (ETDEWEB)

    Subba Rao, D. (Div. of Biochemical Engineering, Dept. of Chemical Engineering, Indian Inst. of Tech., Madras (India)); Panda, T. (Div. of Biochemical Engineering, Dept. of Chemical Engineering, Indian Inst. of Tech., Madras (India))

    1994-10-01

    To compare the efficiency of various whole cell immobilization techniques for the production of gluconic acid by Aspergillus niger were investigated using potassium ferrocyanide-treated cane molasses as the substrate. The techniques followed were: (1) Calcium alginate entrapment, (2) cross-linking with glutaraldehyde after cell permeabilization with (a) acetone, (b) toluene and (c) isopropanol and (3) development of granular catalyst. A comparative analysis of yield has revealed that calcium alginate entrapment was the most suitable technique as it had given the maximum product yield (0.40 g gluconic acid/g total reducing sugar supplied). The properties of immobilized A. niger in sodium alginate gel have been thoroughly investigated and compared with those of free cells under most suitable conditions of fermentation. (orig.)

  10. Designing photobioreactors based on living cells immobilized in silica gel for carbon dioxide mitigation.

    Science.gov (United States)

    Rooke, Joanna C; Léonard, Alexandre; Meunier, Christophe F; Su, Bao-Lian

    2011-09-19

    Atmospheric carbon dioxide levels have been rising since the industrial revolution, with the most dramatic increase occurring since the end of World War II. Carbon dioxide is widely regarded as one of the major factors contributing to the greenhouse effect, which is of major concern in today's society because it leads to global warming. Photosynthesis is Nature's tool for combating elevated carbon dioxide levels. In essence, photosynthesis allows a cell to harvest solar energy and convert it into chemical energy through the assimilation of carbon dioxide and water. Therefore photosynthesis is regarded as an ideal way to harness the abundance of solar energy that reaches Earth and convert anthropologically generated carbon dioxide into useful carbohydrates, providing a much more sustainable energy source. This Minireview aims to tackle the idea of immobilizing photosynthetic unicellular organisms within inert silica frameworks, providing protection both to the fragile cells and to the external ecosystem, and to use this resultant living hybrid material in a photobioreactor. The viability and activity of various unicellular organisms are summarized alongside design issues of a photobioreactor based on living hybrid materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM.

    Science.gov (United States)

    Zhang, Wen; Stack, Andrew G; Chen, Yongsheng

    2011-02-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite (α-Fe(2)O(3)) and corundum (α-Al(2)O(3)) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3±0.7nN to 0.8±0.4nN as hematite NPs increased from 26nm to 98nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson-Kendall-Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. The Experimental Study of the Performance of Nano-Thin Polyelectrolyte Shell for Dental Pulp Stem Cells Immobilization.

    Science.gov (United States)

    Grzeczkowicz, A; Granicka, L H; Maciejewska, I; Strawski, M; Szklarczyk, M; Borkowska, M

    2015-12-01

    Carious is the most frequent disease of mineralized dental tissues which might result in dental pulp inflammation and mortality. In such cases an endodontic treatment is the only option to prolong tooth functioning in the oral cavity; however, in the cases of severe pulpitis, especially when complicated with periodontal tissue inflammation, the endodontic treatment might not be enough to protect against tooth loss. Thus, keeping the dental pulp viable and/or possibility of the reconstruction of a viable dental pulp complex, appears to become a critical factor for carious and/or pulp inflammation treatment. The nowadays technologies, which allow handling dental pulp stem cells (DPSC), seem to bring us closer to the usage of dental stem cells for tooth tissues reconstruction. Thus, DPSC immobilized within nano-thin polymeric shells, allowing for a diffusion of produced factors and separation from bacteria, may be considered as a cover system supporting technology of dental pulp reconstruction. The DPSC were immobilized using a layer-by-layer technique within nano-thin polymeric shells constructed and modified by nanostructure involvement to ensure the layers stability and integrity as well as separation from bacterial cells. The cytotoxity of the material used for membrane production was assessed on the model of adherent cells. The performance of DPSC nano-coating was assessed in vitro. Membrane coatings showed no cytotoxicity on the immobilized cells. The presence of coating shell was confirmed with flow cytometry, atomic force microscopy and visualized with fluorescent microscopy. The transfer of immobilized DPSC within the membrane system ensuring cells integrity, viability and protection from bacteria should be considered as an alternative method for dental tissues transportation and regeneration.

  13. Radiation-induced DNA breaks detected by immuno labelling of poly(ADP-ribose) in CHO cells. Standardization by pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    Varlet, P.; Bidon, N.; Noel, G.; Averbeck, D.; Salamero, J.; DeMurcia, G.

    1998-01-01

    The poly (ADP-ribose) polymerase is an ubiquitous nuclear protein capable of binding specifically to DNA strand breaks. It synthesizes ADP-ribose polymers proportionally to DNA breaks. The actual method of reference to determine DNA double strand breaks is pulsed-field gel electrophoresis, but this requires many cells. It thus appeared of interest to use poly (ADP-ribos)ylation to follow and estimate γ-ray-induced DNA fragmentation at the level of isolated cells after γ-irradiation in chinese hamster ovary cells (CHO-K1). The results obtained by the immuno-labelling technique of ADP-ribose polymers were compared to those obtained by pulsed-field gel electrophoresis. They show that poly (ADP-ribos)ylation reflects the occurrence of radiation-induced DNA strand breaks. A clear relationship exists between the amount of ADP-ribose polymers detected and DNA double strand breaks after γ-irradiation. (authors)

  14. Isotropically etched radial micropore for cell concentration, immobilization, and picodroplet generation.

    Science.gov (United States)

    Perroud, Thomas D; Meagher, Robert J; Kanouff, Michael P; Renzi, Ronald F; Wu, Meiye; Singh, Anup K; Patel, Kamlesh D

    2009-02-21

    To enable several on-chip cell handling operations in a fused-silica substrate, small shallow micropores are radially embedded in larger deeper microchannels using an adaptation of single-level isotropic wet etching. By varying the distance between features on the photolithographic mask (mask distance), we can precisely control the overlap between two etch fronts and create a zero-thickness semi-elliptical micropore (e.g. 20 microm wide, 6 microm deep). Geometrical models derived from a hemispherical etch front show that micropore width and depth can be expressed as a function of mask distance and etch depth. These models are experimentally validated at different etch depths (25.03 and 29.78 microm) and for different configurations (point-to-point and point-to-edge). Good reproducibility confirms the validity of this approach to fabricate micropores with a desired size. To illustrate the wide range of cell handling operations enabled by micropores, we present three on-chip functionalities: continuous-flow particle concentration, immobilization of single cells, and picoliter droplet generation. (1) Using pressure differentials, particles are concentrated by removing the carrier fluid successively through a series of 44 shunts terminated by 31 microm wide, 5 microm deep micropores. Theoretical values for the concentration factor determined by a flow circuit model in conjunction with finite volume modeling are experimentally validated. (2) Flowing macrophages are individually trapped in 20 microm wide, 6 microm deep micropores by hydrodynamic confinement. The translocation of transcription factor NF-kappaB into the nucleus upon lipopolysaccharide stimulation is imaged by fluorescence microscopy. (3) Picoliter-sized droplets are generated at a 20 microm wide, 7 microm deep micropore T-junction in an oil stream for the encapsulation of individual E. coli bacteria cells.

  15. Comparison of Yeast Cell Protein Solubilization Procedures for Two-dimensional Electrophoresis

    DEFF Research Database (Denmark)

    Harder, A; Wildgruber, R; Nawrocki, A

    1999-01-01

    Three different procedures for the solubilization of yeast (S. cerevisiae) cell proteins were compared on the basis of the obtained two-dimensional (2-D) polypeptide patterns. Major emphasis was laid on minimizing handling steps, protein modification or degradation, and quantitative loss of high...... with sodium dodecyl sulfate (SDS) buffer, consisting of 1% SDS and 100 mM tris(hydroxymethyl)aminomethane (Tris)-HCl, pH 7.0, followed by dilution with "standard" lysis buffer, and (iii) boiling the sample with SDS during cell lysis, followed by dilution with thiourea/urea lysis buffer (2 M thiourea/ 7 M urea...

  16. A high sensitivity, high throughput, automated single-cell gel electrophoresis ('Comet') DNA damage assay

    International Nuclear Information System (INIS)

    Vojnovic, B.; Barber, P.R.; Johnston, P.J.; Gregory, H.C.; Locke, R.J.

    2003-01-01

    A fully automated microscopy machine vision image capture and analysis system for the collection of data from slides of 'comets' has been developed. The novel image processing algorithms employed in delineating the 'comet head' from the 'comet tail' allow us to determine accurately very low levels of damage. In conjunction with calibrated and automated image capture methods, we are able to eliminate operator subjectivity and analyse large numbers of cells (>2500) in a short time (<1 hour). The image processing algorithm is designed to handle particularly difficult nuclei containing a high degree of structure, due to DNA clumping. We also present techniques used to extend the assay's dynamic range by removing interfering background fluorescence and to define a region of interest. If subtle biological variations are to be quantified (e.g. cell cycle dependant damage), then the use of large cell populations is dictated. Under those circumstances, the use of a fully automated system is particularly advantageous providing that the manner in which data is extracted does not introduce any inadvertent bias. In practice, it is essential that the image processing steps are geared towards the correct recognition of an acceptable cell nucleus, i.e. comet 'head'. We acknowledge the financial support of CRUK, Programme Grant C133/A1812 - SP 2195-01/02 and the US Department of Energy Low Dose Radiation Research Program grant DE-FG07-99ER62878

  17. Potato Processing Wastewater as a Substrate for Red Pigment Production from Immobilized Gamma-Irradiated Cells of Monascus purpureus

    International Nuclear Information System (INIS)

    Hazaa, M.A.; Shash, S.M.; Emam, D.A.; Youssef, B.M.; Khalaf, M.A.

    2009-01-01

    Although pigment production by Monascus spp. in chemically defined media is well documented (in submerged cultures and free cells), very few information is available about the use of agro-industrial wastes and immobilized cells. In this study immobilized irradiated spores (in sponge cubes) of M. purpureus (24 h age and 0.5 g cubes/50 ml medium) produced high amount of red pigment reached up to 2.32 g/I, after 4 days of incubation, compared with the amount of pigment produced by the free cells (1.84 g/I). Also, potato processing wastewater (PPW) was examined as the main culture medium for red pigment production by this fungus under optimizing culture conditions for repeated batches. The results showed that with irradiated immobilized cells, the maximum amount of red pigment production (1.96 g/I) was recorded at the second batch. Moreover, high reductions of biochemical oxygen demand (BOD); 82.6 % for this waste was obtained during the second batch. The data revealed that very little amount of soluble toxic substances in the extracted sample leading to only 8% dead chicken embryos

  18. Avoiding acidic region streaking in two-dimensional gel electrophoresis: case study with two bacterial whole cell protein extracts.

    Science.gov (United States)

    Roy, Arnab; Varshney, Umesh; Pal, Debnath

    2014-09-01

    Acidic region streaking (ARS) is one of the lacunae in two-dimensional gel electrophoresis (2DE) of bacterial proteome. This streaking is primarily caused by nucleic acid (NuA) contamination and poses major problem in the downstream processes like image analysis and protein identification. Although cleanup and nuclease digestion are practiced as remedial options, these strategies may incur loss in protein recovery and perform incomplete removal of NuA. As a result, ARS has remained a common observation across publications, including the recent ones. In this work, we demonstrate how ultrasound wave can be used to shear NuA in plain ice-cooled water, facilitating the elimination of ARS in the 2DE gels without the need for any additional sample cleanup tasks. In combination with a suitable buffer recipe, IEF program and frequent paper-wick changing approach, we are able to reproducibly demonstrate the production of clean 2DE gels with improved protein recovery and negligible or no ARS. We illustrate our procedure using whole cell protein extracts from two diverse organisms, Escherichia coli and Mycobacterium smegmatis. Our designed protocols are straightforward and expected to provide good 2DE gels without ARS, with comparable times and significantly lower cost.

  19. Immobilization of Electroporated Cells for Fabrication of Cellular Biosensors: Physiological Effects of the Shape of Calcium Alginate Matrices and Foetal Calf Serum

    Directory of Open Access Journals (Sweden)

    Nikos Katsanakis

    2009-01-01

    Full Text Available In order to investigate the physiological effect of transfected cell immobilization in calcium alginate gels, we immobilized electroporated Vero cells in gels shaped either as spherical beads or as thin membrane layers. In addition, we investigated whether serum addition had a positive effect on cell proliferation and viability in either gel configuration. The gels were stored for four weeks in a medium supplemented or not with 20% (v/v foetal calf serum. Throughout a culture period of four weeks, cell proliferation and cell viability were assayed by optical microscopy after provision of Trypan Blue. Non-elaborate culture conditions (room temperature, non-CO2 enriched culture atmosphere were applied throughout the experimental period in order to evaluate cell viability under less than optimal storage conditions. Immobilization of electroporated cells was associated with an initially reduced cell viability, which was gradually increased. Immobilization was associated with maintenance of cell growth for the duration of the experimental period, whereas electroporated cells essentially died after a week in suspension culture. Considerable proliferation of immobilized cells was observed in spherical alginate beads. In both gel configurations, addition of serum was associated with increased cell proliferation. The results of the present study could contribute to an improvement of the storability of biosensors based on electroporated, genetically or membrane-engineered cells.

  20. The Effect of Cell Immobilization by Calcium Alginate on Bacterially Induced Calcium Carbonate Precipitation

    Directory of Open Access Journals (Sweden)

    Mostafa Seifan

    2017-10-01

    Full Text Available Microbially induced mineral precipitation is recognized as a widespread phenomenon in nature. A diverse range of minerals including carbonate, sulphides, silicates, and phosphates can be produced through biomineralization. Calcium carbonate (CaCO3 is one of the most common substances used in various industries and is mostly extracted by mining. In recent years, production of CaCO3 by bacteria has drawn much attention because it is an environmentally- and health-friendly pathway. Although CaCO3 can be produced by some genera of bacteria through autotrophic and heterotrophic pathways, the possibility of producing CaCO3 in different environmental conditions has remained a challenge to determine. In this study, calcium alginate was proposed as a protective carrier to increase the bacterial tolerance to extreme environmental conditions. The model showed that the highest concentration of CaCO3 is achieved when the bacterial cells are immobilized in the calcium alginate beads fabricated using 1.38% w/v Na-alginate and 0.13 M CaCl2.

  1. Biooxidation of 2-phenylethanol to phenylacetic acid by whole-cell Gluconobacter oxydans biocatalyst immobilized in polyelectrolyte complex capsules

    Czech Academy of Sciences Publication Activity Database

    Bertóková, A.; Vikartovská, A.; Bučko, M.; Gemeiner, P.; Tkáč, J.; Chorvát, D.; Štefuca, V.; Neděla, Vilém

    2015-01-01

    Roč. 33, č. 2 (2015), s. 111-120 ISSN 1024-2422 R&D Projects: GA ČR(CZ) GA14-22777S Institutional support: RVO:68081731 Keywords : Gluconobacter oxydans * natural flavors * phenylacetic acid * immobilized whole-cell biocatalyst * polyelectrolyte complex capsules * environmental scanning electron microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.892, year: 2015

  2. Determination of glutathione in apoptotic SMMC-7221 cells induced by xylitol selenite using capillary electrophoresis.

    Science.gov (United States)

    Wu, Xue; Cao, Yu; Zhang, Jian; Lei, Ming; Deng, Xiaojie; Zahid, Kashif Rafiq; Liu, Yanli; Liu, Ke; Yang, Jihong; Xiong, Guomei; Yao, Hanchao; Qi, Chao

    2016-05-01

    To determine the glutathione (GSH) content in a human hepatoma cell line (SMMC-7221) treated with xylitol/selenite, providing a part of an investigation of its anti-cancer mechanisms. The nuclei of SMMC-7221 cells were stained with Hoechst 33258 in an apoptosis assay, and their morphology subsequently changed from circular to crescent shape. The calibration curve (r(2) = 0.992) was established, and GSH content markedly decreased after treated with 0.5 and 1 mg xylitol/selenite l(-1) for 12, 36 and 60 h (12 h: from 95.57 ± 19.57 to 29.09 ± 7.74 and 24.27 ± 11.15; 36 h: from 70.73 ± 11.35 to 19.54 ± 6.39 and 9.35 ± 6.69; 60 h: from 72.63 ± 16.94 to 7.432 ± 3.84 and 0). The depletion rate of GSH was more related to the concentration of xylitol/selenite than the treatment time (from 69.95 ± 1.87 to 100 % vs. 0.22 ± 0.2 to 100 %). Xylitol/selenite is a promising anti-cancer drug to induce apoptosis in SMMC-7221 cells. It may regulate the apoptosis through the co-action of multiple mechanisms related to GSH depletion.

  3. IMPACT OF THE FERMENTATION PROCESS WITH IMMOBILIZED YEAST CELLS ON THE AROMA PROFILE AND SENSORY QUALITY OF DISTILLATES PRODUCED FROM TWO FIG (Ficus carica L. CULTIVARS

    Directory of Open Access Journals (Sweden)

    Borislav Miličević

    2017-01-01

    Full Text Available The aim of this research was to investigate the influence of immobilized cell fermentation on aroma and sensory characteristics of distillates produced from two fig varieties commonly grown in Croatia (Petrovača bijela and Petrovača crna. Distillate samples were produced both by classical and immobilized yeast fermentation technology. Aroma profile was determined using GC/FID and sensory analysis was conducted according to German DLG model. Results showed that immobilized cell technique gives distillates with higher ethanol and lower ester contents, but of higher sensory quality. It is a promising technique for production of high quality fruit distillates.

  4. Immobilization of Lactobacillus rhamnosus in mesoporous silica-based material: An efficiency continuous cell-recycle fermentation system for lactic acid production.

    Science.gov (United States)

    Zhao, Zijian; Xie, Xiaona; Wang, Zhi; Tao, Yanchun; Niu, Xuedun; Huang, Xuri; Liu, Li; Li, Zhengqiang

    2016-06-01

    Lactic acid bacteria immobilization methods have been widely used for lactic acid production. Until now, the most common immobilization matrix used is calcium alginate. However, Ca-alginate gel disintegrated during lactic acid fermentation. To overcome this deficiency, we developed an immobilization method in which Lactobacillus rhamnosus cells were successfully encapsulated into an ordered mesoporous silica-based material under mild conditions with a high immobilization efficiency of 78.77% by using elemental analysis. We also optimized the cultivation conditions of the immobilized L. rhamnosus and obtained a high glucose conversion yield of 92.4%. Furthermore, L. rhamnosus encapsulated in mesoporous silica-based material exhibited operational stability during repeated fermentation processes and no decrease in lactic acid production up to 8 repeated batches. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Preparation of nano-biomaterials with Leptolyngbia foveolarum and heavy metal biosorption by free and immobilized algal cells

    International Nuclear Information System (INIS)

    Toncheva-Panova, T.; Pouneva, I.; Sholeva, M.; Chernev, G.

    2010-01-01

    Using the sol-gel procedure nano-biomaterials with incorporation of Leptolyngbia foveolarum in the silica matrix were manufactured. The immobilization of algal cells was confirmed with Scanning Electron Microscopy (SEM) investigations and photos. Observation of nano-biomaterials with Atomic Force Microscopy (AFM) shows nanostructure with well-defined nanounits and their aggregates. The potential of the Antarctic isolate L. foveolarum for sorption of Cu 2+ and Cd 2+ was studied by incubation of free algal cells and those immobilized in nano-biomaterials in the salts solutions of the two heavy metals. The rest of the heavy metal was determined with inductively coupled plasma atomic emission spectrometer (ICP-AES). It was established that the heavy metal biosorption capacity demonstrated by the free Leptolyngbia cells was retained after their incorporation in the nano-matrices. Free cells as well as embedded in silica nano-matrix sequestered the two heavy metals with greater affinity for copper. The highest binding capacity, 76% of the initial Cu 2+ concentration possessed nano-biomaterials with incorporated vegetative L. foveolarum cells, compared to 68% of free cells. For cadmium the degree of biosorption was lower - 35% by free cells and 30.2% by those incorporated in the biocer. (authors)

  6. Heparin-immobilized hydroxyapatite nanoparticles as a lactoferrin delivery system for improving osteogenic differentiation of adipose-derived stem cells

    International Nuclear Information System (INIS)

    Kim, Sung Eun; Yun, Young-Pil; Kim, Hak-Jun; Lee, Deok-Won; Shim, Kyu-Sik; Jeon, Daniel I; Rhee, Jin-Kyu; Park, Kyeongsoon

    2016-01-01

    The aim of this study is to fabricate lactoferrin (LF)-carrying hydroxyapatite nanoparticles (HAp NPs) to enhance osteogenic differentiation of rabbit adipose-derived stem cells (rADSCs). HAp NPs were modified with heparin-dopamine (Hep-DOPA) (Hep-HAp) and further immobilized with LF (LF/Hep-HAp). Heparin immobilization on HAp NPs prevented aggregation of HAp NPs in aqueous solution and prolonged the release of LF from LF/Hep-HAp NPs. In vitro studies of rADSCs have demonstrated that LF-Hep/HAp NPs significantly increase alkaline phosphatase (ALP) activity, calcium deposition, and both mRNA expression of osteocalcin (OCN) and osteopontin (OPN) in comparison with HAp and Hep-HAp NPs. These results suggest that LF/Hep-HAp NPs can effectively induce osteogenic differentiation of rADSCs. (paper)

  7. Immobilization of CotA, an extremophilic laccase from Bacillus subtilis, on glassy carbon electrodes for biofuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Beneyton, T.; El Harrak, A.; Griffiths, A.D.; Taly, V. [Institut de Science et d' Ingenierie Supramoleculaire, CNRS UMR, Strasbourg (France); Hellwig, P. [Institut de Chimie, Universite de Strasbourg, CNRS UMR, Strasbourg (France)

    2011-01-15

    Thanks to their high stability over a wide range of experimental conditions, extremophilic enzymes represent an interesting alternative to mesophilic enzymes as catalysts for biofuel cell applications. In the present work, we report for the first time the immobilization of a thermophilic laccase (CotA from Bacillus subtilis endospore coat) on glassy carbon electrodes functionalized via electrochemical reduction of in situ generated aminophenyl monodiazonium salts. We compare the performance of CotA-modified electrodes for the reduction of O{sub 2} to mutant variants and demonstrate that the measured electrical current is directly correlated to the catalytic efficiencies (k{sub cat}/K{sub m}) of the immobilized enzyme. CotA-modified electrodes showed an optimal operation temperature of 45-50 C and stable catalytic activity for at least 7 weeks. (author)

  8. Ethanol production by repeated batch and continuous fermentations of blackstrap molasses using immobilized yeast cells on thin-shell silk cocoons

    International Nuclear Information System (INIS)

    Rattanapan, Anuchit; Limtong, Savitree; Phisalaphong, Muenduen

    2011-01-01

    Highlights: → Thin-shell silk cocoons for immobilization of Saccharomycescerevisiae. → Advantages: high mechanical strength, light weight, biocompatibility and high surface area. → Enhanced cell stability and ethanol productivity by the immobilization system. -- Abstract: A thin-shell silk cocoon (TSC), a residual from the silk industry, is used as a support material for the immobilization of Saccharomyces cerevisiae M30 in ethanol fermentation because of its properties such as high mechanical strength, light weight, biocompatibility and high surface area. In batch fermentation with blackstrap molasses as the main fermentation substrate, an optimal ethanol concentration of 98.6 g/L was obtained using a TSC-immobilized cell system at an initial reducing sugar concentration of 240 g/L. The ethanol concentration produced by the immobilized cells was 11.5% higher than that produced by the free cells. Ethanol production in five-cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in a packed-bed reactor, a maximum ethanol productivity of 19.0 g/(L h) with an ethanol concentration of 52.8 g/L was observed at a 0.36 h -1 dilution rate.

  9. Soymilk residue (okara) as a natural immobilization carrier for Lactobacillus plantarum cells enhances soymilk fermentation, glucosidic isoflavone bioconversion, and cell survival under simulated gastric and intestinal conditions.

    Science.gov (United States)

    Xiudong, Xia; Ying, Wang; Xiaoli, Liu; Ying, Li; Jianzhong, Zhou

    2016-01-01

    Cell immobilization is an alternative to microencapsulation for the maintenance of cells in a liquid medium. However, artificial immobilization carriers are expensive and pose a high safety risk. Okara, a food-grade byproduct from soymilk production, is rich in prebiotics. Lactobacilli could provide health enhancing effects to the host. This study aimed to evaluate the potential of okara as a natural immobilizer for L. plantarum 70810 cells. The study also aimed to evaluate the effects of okara-immobilized L. plantarum 70810 cells (IL) on soymilk fermentation, glucosidic isoflavone bioconversion, and cell resistance to simulated gastric and intestinal stresses. Scanning electron microscopy (SEM) was used to show cells adherence to the surface of okara. Lactic acid, acetic acid and isoflavone analyses in unfermented and fermented soymilk were performed by HPLC with UV detection. Viability and growth kinetics of immobilized and free L. plantarum 70810 cells (FL) were followed during soymilk fermentation. Moreover, changes in pH, titrable acidity and viscosity were measured by conventional methods. For in vitro testing of simulated gastrointestinal resistance, fermented soymilk was inoculated with FL or IL and an aliquot incubated into acidic MRS broth which was conveniently prepared to simulate gastric, pancreatic juices and bile salts. Survival to simulated gastric and intestinal stresses was evaluated by plate count of colony forming units on MRS agar. SEM revealed that the lactobacilli cells attached and bound to the surface of okara. Compared with FL, IL exhibited a significantly higher specific growth rate, shorter lag phase of growth, higher productions of lactic and acetic acids, a faster decrease in pH and increase in titrable acidity, and a higher soymilk viscosity. Similarly, IL in soymilk showed higher productions of daizein and genistein compared with the control. Compared with FL, IL showed reinforced resistance to simulatedgastric and intestinal

  10. Soymilk residue (okara as a natural immobilization carrier for Lactobacillus plantarum cells enhances soymilk fermentation, glucosidic isoflavone bioconversion, and cell survival under simulated gastric and intestinal conditions

    Directory of Open Access Journals (Sweden)

    Xia Xiudong

    2016-11-01

    Full Text Available Cell immobilization is an alternative to microencapsulation for the maintenance of cells in a liquid medium. However, artificial immobilization carriers are expensive and pose a high safety risk. Okara, a food-grade byproduct from soymilk production, is rich in prebiotics. Lactobacilli could provide health enhancing effects to the host. This study aimed to evaluate the potential of okara as a natural immobilizer for L. plantarum 70810 cells. The study also aimed to evaluate the effects of okara-immobilized L. plantarum 70810 cells (IL on soymilk fermentation, glucosidic isoflavone bioconversion, and cell resistance to simulated gastric and intestinal stresses. Scanning electron microscopy (SEM was used to show cells adherence to the surface of okara. Lactic acid, acetic acid and isoflavone analyses in unfermented and fermented soymilk were performed by HPLC with UV detection. Viability and growth kinetics of immobilized and free L. plantarum 70810 cells (FL were followed during soymilk fermentation. Moreover, changes in pH, titrable acidity and viscosity were measured by conventional methods. For in vitro testing of simulated gastrointestinal resistance, fermented soymilk was inoculated with FL or IL and an aliquot incubated into acidic MRS broth which was conveniently prepared to simulate gastric, pancreatic juices and bile salts. Survival to simulated gastric and intestinal stresses was evaluated by plate count of colony forming units on MRS agar. SEM revealed that the lactobacilli cells attached and bound to the surface of okara. Compared with FL, IL exhibited a significantly higher specific growth rate, shorter lag phase of growth, higher productions of lactic and acetic acids, a faster decrease in pH and increase in titrable acidity, and a higher soymilk viscosity. Similarly, IL in soymilk showed higher productions of daizein and genistein compared with the control. Compared with FL, IL showed reinforced resistance to simulatedgastric and

  11. DNA double-strand break measurement in mammalian cells by pulsed-field gel electrophoresis: an approach using restriction enzymes and gene probing

    International Nuclear Information System (INIS)

    Loebrich, M.; Ikpeme, S.; Kiefer, J.

    1994-01-01

    DNA samples prepared from human SP 3 cells, which had not been exposed to various doses of X-ray, were treated with NotI restriction endonuclease before being run in a contour-clamped homogeneous electrophoresis system. The restriction enzyme cuts the DNA at defined positions delivering DNA sizes which can be resolved by pulsed-field gel electrophoresis (PFGE). In order to investigate only one of the DNA fragments, a human lactoferrin cDNA, pHL-41, was hybridized to the DNA separated by PFGE. As a result, only the DNA fragment which contains the hybridized gene was detected resulting in a one-band pattern. The decrease of this band was found to be exponential with increasing radiation dose. From the slope, a double-strand break induction rate of (6.3±0.7) x 10 -3 /Mbp/Gy was deduced for 80 kV X-rays. (Author)

  12. Effects of immobilization on spermiogenesis

    Science.gov (United States)

    Meitner, E. R.

    1980-01-01

    The influence of immobilization stress on spermiogenesis in rats was investigated. After 96 hour immobilization, histological changes began to manifest themselves in the form of practically complete disappearance of cell population of the wall of seminiferous tubule as well as a markedly increased number of cells with pathologic mitoses. Enzymological investigations showed various changes of activity (of acid and alkaline phosphatase and nonspecific esterase) in the 24, 48, and 96 hour immobilization groups.

  13. KINETIC STUDIES ON BIODEGRADATION OF LIPIDS FROM OLIVE OIL MILL WASTEWATERS WITH FREE AND IMMOBILIZED Bacillus sp. CELLS

    Directory of Open Access Journals (Sweden)

    Anca-Irina Galaction

    2012-03-01

    Full Text Available The studies on the biodegradation of lipids from olive oil mill wastewater with free and immobilized Bacillus sp. cells indicated that the maximum specific rate of the process is reached at pH = 8. The use of immobilized cells allows to increasing the number of biodegradation process cycles, but reduces the rate of the process. In this case, the process rate depends on the biocatalysts size and cells concentration inside them. Thus, at bacterial cells concentration of 9 g d.w./100 mL biocatalyst, the apparent specific rate varied from 4.65 to 1.46×10-2 h-1 by increasing the biocatalyst particles diameter from 3 to 4.2 mm.The cumulated influences of the particles size and cells concentration have been included in a mathematical model for the apparent specific rate of lipids biodegradation. The model offers a good concordance with the experimental data, the average deviation being of +/- 7.38%.

  14. Biological acetate production from carbon dioxide by Acetobacterium woodii and Clostridium ljungdahlii: The effect of cell immobilization.

    Science.gov (United States)

    Cheng, Hai-Hsuan; Syu, Jyun-Cyuan; Tien, Shih-Yuan; Whang, Liang-Ming

    2018-08-01

    This study investigated the acetate production from gas mixture of hydrogen (H 2 ) and carbon dioxide (CO 2 ) in the ratio of 7:3 using two acetogens: Acetobacterium woodii and Clostridium ljungdahlii. Batch result shows A. woodii performed two-phase degradation with the presence of glucose that lactate was produced from glucose and was reutilized for the production of butyrate and few acetate, while only acetate was detected when providing gas mixture. C. ljungdahlii produced butyrate and ethanol along with acetate when glucose was introduced, while only ethanol and acetate were found by feeding gas mixture. The acetate-to-ethanol (A/E) ratio can be enhanced by cell immobilization, while GAC immobilization produced only acetate and the production rate reached 0.072 mmol/d under fed-batch operation. Acetate production rate increased from 18 to 28 mmol/L/d with GAC immobilization when gas flowrate increased from 100 to 300 mL/min in anaerobic fluidized membrane bioreactor (AFMBR), and a highest A/E ratio of 30 implies the possible application of acetate recovery from H 2 and CO 2 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Electrophoresis device

    Science.gov (United States)

    Rhodes, P. H.; Snyder, R. S. (Inventor)

    1982-01-01

    A device for separating cellular particles of a sample substance into fractionated streams of different cellular species includes a casing having a distribution chamber, a separation chamber, and a collection chamber. The electrode chambers are separated from the separation chamber interior by means of passages such that flow variations and membrane variations around the slotted portion of the electrode chamber do not enduce flow perturbations into the laminar buffer curtain flowing in the separation chamber. The cellular particles of the sample are separated under the influence of the electrical field and the separation chamber into streams of different cellular species. The streams of separated cells enter a partition array in the collection chamber where they are fractionated and collected.

  16. Induction of DNA double-strand breaks by restriction enzymes in X-ray-sensitive mutant Chinese hamster ovary cells measured by pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    Kinashi, Yuko; Nagasawa, Hatsumi; Little, J.B.; Okayasu, Ryuichi; Iliakis, G.E.

    1995-01-01

    This investigation was designed to determine whether the cytotoxic effects of different restriction endonucleases are related to the number and type of DNA double-strand breaks (DSBs) they produce. Chinese hamster ovary (CHO) K1 and xrs-5 cells, a radiosensitive mutant of CHO K1, were exposed to restriction endonucleases HaeIII, HinfI, PvuII and BamHI by electroporation. These enzymes represent both blunt and sticky end cutters with differing recognition sequence lengths. The number of DSBs was measured by pulsed-field gel electrophoresis (PFGE). Two forms of PFGE were employed: asymmetric field-inversion gel electrophoresis (AFIGE) for measuring the kinetics of DNA breaks by enzyme digestion and clamped homogeneous gel electrophoresis (CHEF) for examining the size distributions of damaged DNA. The amount of DNA damage induced by exposure to all four restriction enzymes was significantly greater in xrs-5 compared to CHO K1 cells, consistent with the reported DSB repair deficiency in these cells. Since restriction endonucleases produce DSBs alone as opposed to the various types of DNA damage induced by X rays, these results confirm that the repair defect in this mutant involves the rejoining of DSBs. Although the cutting frequency was directly related to the length of the recognition sequence for four restriction enzymes, there was no simple correlation between the cytotoxic effect and the amount of DNA damage produced by each enzyme in either cell line. This finding suggests that the type or nature of the cutting sequence itself may play a role in restriction enzyme-induced cell killing. 32 refs., 6 figs., 3 tabs

  17. Enhanced production of alkaline thermostable keratinolytic protease from calcium alginate immobilized cells of thermoalkalophilic Bacillus halodurans JB 99 exhibiting dehairing activity.

    Science.gov (United States)

    Shrinivas, Dengeti; Kumar, Raghwendra; Naik, G R

    2012-01-01

    The thermoalkalophilic Bacillus halodurans JB 99 cells known for production of novel thermostable alkaline keratinolytic protease were immobilized in calcium alginate matrix. Batch and repeated batch cultivation using calcium alginate immobilized cells were studied for alkaline protease production in submerged fermentation. Immobilized cells with 2.5% alginate and 350 beads/flask of initial cell loading showed enhanced production of alkaline protease by 23.2% (5,275 ± 39.4 U/ml) as compared to free cells (4,280 ± 35.4 U/ml) after 24 h. In the semicontinuous mode of cultivation, immobilized cells under optimized conditions produced an appreciable level of alkaline protease in up to nine cycles and reached a maximal value of 5,975 U/ml after the seventh cycle. The enzyme produced from immobilized cells efficiently degraded chicken feathers in the presence of a reducing agent which can help the poultry industry in the management of keratin-rich waste and obtaining value-added products.

  18. Hydrolysis of whey by whole cells of Kluyveromyces bulgaricus immobilized in calcium alginate gels in hen egg white

    Energy Technology Data Exchange (ETDEWEB)

    Decleire, M; Huynh, N van; Motte, J C; Cat, W de

    1985-10-01

    Whey hydrolysis was compared in column reactors containing whole yeast cells immobilized in Ca-alginate or in hen egg white in relation to cell US -galactosidase activity, flow rates, temperature and time. With cells of 1.3 U/mg dry weight (ONPG method) immobilized in Ca-alignate, 80% hydrolysis was obtained at 4 and 20C with, respectively 0.50 and 1.65 bed volume/H; the values were 0.2 and 0.74 with cells entrapped in hen egg white. When the flow rate was expressed as ml/H/g wet yeast, no significant difference was observed between both matrices and 80% hydrolysis was reached with a flow rate 1.7 and 5 according to the temperature. The best performance was achieved by the yeast egg white reactor. At 4C, hydrolysis deccreased by 10% after 13 days; by 20% after 17 days. The presence of lactose transport inhibitors in whey did not significantly influence lactose hydrolysis. (orig.).

  19. Whole cell immobilization of refractory glucose isomerase using tris(hydroxymethyl)phosphine as crosslinker for preparation of high fructose corn syrup at elevated temperature.

    Science.gov (United States)

    Jia, Dong-Xu; Wang, Teng; Liu, Zi-Jian; Jin, Li-Qun; Li, Jia-Jia; Liao, Cheng-Jun; Chen, De-Shui; Zheng, Yu-Guo

    2018-04-04

    Glucose isomerase (GI) responsible for catalyzing the isomerization from d-glucose to d-fructose, was an important enzyme for producing high fructose corn syrup (HFCS). In a quest to prepare HFCS at elevated temperature and facilitate enzymatic recovery, an effective procedure for whole cell immobilization of refractory Thermus oshimai glucose isomerase (ToGI) onto Celite 545 using tris(hydroxymethyl)phosphine (THP) as crosslinker was established. The immobilized biocatalyst showed an activity of approximate 127.3 U/(g·immobilized product) via optimization in terms of cells loading, crosslinker concentration and crosslinking time. The pH optimum of the immobilized biocatalyst was displaced from pH 8.0 of native enzyme to neutral pH 7.0. Compared with conventional glutaraldehyde (GLU)-immobilized cells, it possessed the enhanced thermostability with 70.1% residual activity retaining after incubation at 90°C for 72 h. Moreover, the THP-immobilized biocatalyst exhibited superior operational stability, in which it retained 85.8% of initial activity after 15 batches of bioconversion at 85°C. This study paved a way for reducing catalysis cost for upscale preparation of HFCS with higher d-fructose concentration. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Characterization of curdlan produced by Agrobacterium sp. IFO 13140 cells immobilized in a loofa sponge matrix, and application of this biopolymer in the development of functional yogurt.

    Science.gov (United States)

    Ortiz Martinez, Camila; Pereira Ruiz, Suelen; Carvalho Fenelon, Vanderson; Rodrigues de Morais, Gutierrez; Luciano Baesso, Mauro; Matioli, Graciette

    2016-05-01

    Agrobacterium sp. IFO 13140 cells were immobilized on a loofa sponge and used to produce curdlan over five successive cycles. The interaction between microbial cells and the loofa sponge as well as the produced curdlan were characterized by Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectrometry. The purity of the curdlan was also evaluated. The storage stability of the immobilized cells was assessed and the produced curdlan was used in a functional yogurt formulation. The average curdlan production by immobilized cells was 17.84 g L(-1) . The presence of the microorganism in the sponge was confirmed and did not cause alterations in the matrix, and the chemical structure of the curdlan was the same as that of commercial curdlan. The purity of both was similar. The immobilized cells remained active after 300 days of storage at -18 °C. The use of the produced curdlan in a functional yogurt resulted in a product with lower syneresis. A large number of cells physically adhered to the surface of loofa sponge fibers, and its use as an immobilization matrix to produce curdlan was effective. The use of the produced curdlan in yogurt allowed the development of a more stable product. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. Processing of influenza HA protein in MDCK cells: components with different mobilities in polyacrylamide gel electrophoresis and their precursor-product relationships

    International Nuclear Information System (INIS)

    Sklyanskaya, E.I.; Rudneva, I.A.; Vovk, T.S.; Kaverin, N.V.

    1980-01-01

    In influenza virus-infected MDCK cells labelled with 14 C-chlorella hydrolysate or 35 S-methionine a virus-specific protein component is revealed migrating slightly faster than HA protein in polyacrylamide gel electrophoresis. Under chase conditions the component disappears either completely or partially, with a concomitant intensification of the HA band. The rate and extent of this transition are strain-dependent. Both the HA band and the faster moving component are not revealed if the cells are labelled in the presence of 20 mM of D-glucosamine. In primary cell cultures of chick embryos a single HA band with a mobility similar to that of the faster moving component in MDCK cells has been observed. It is suggested that the transition of the label from the faster moving component to the HA band reflects the final step of HA processing specific for MDCK cells. (author)

  2. A comparative study of radiation induced DNA damage and repair in buccal cells and lymphocytes assessed by single cell gel electrophoresis (comet) assay

    International Nuclear Information System (INIS)

    Dhillon, V.S.; Fenech, M.

    2003-01-01

    Full text: During the past few years, there has been increasing interest in epithelial cells from buccal mucosa for genotoxicity evaluation of different chemical and/or physical agents. In the present study we used the buccal and sublingual epithelial cells to detect both inter- and intra-individual variation in radiation induced DNA damage and repair. For this purpose we used the single cell gel electrophoresis assay which over the years has gained wide spread acceptance as a simple, sensitive and reliable assay to measure genotoxicity related effects as well as kinetics of DNA repair. Buccal and sublingual epithelial cells from six individuals (3 male and 3 females; 35-45 years old) were collected. Cells were then irradiated for 0, 2 and 4 Gy doses using 137 Cs-source (5.58 Gy min-1). After irradiation the cells were either placed immediately on ice or incubated at 37 deg C for 2 1/2 hour to allow cellular repair. We also studied G0 and G1 lymphocytes from the same individuals to compare the radiation-induced DNA damage and repair potential with the two types of buccal cells. Baseline DNA damage rate was significantly greater (p < 0.001) in buccal (28.18%) and sublingual epithelial cells (30.66) as compared to G0 (22.02%) and G1 (21.46%) lymphocytes. Radiation-induced DNA damage in buccal (19.34%, 2Gy; 21.41%, 4 Gy) and sublingual epithelial cells (18.11% and 20.60%) was very similar and significantly lower than that observed in lymphocytes (29.76%, 56.77% for G0 and 32.66%, 59.32% for G1). The extent of DNA repair in buccal and sublingual epithelial cells was significantly lower than that observed in lymphocytes. The results for buccal and sublingual epithelial cells were highly correlated with each other (r 0.9541) as were those of G0 and G1 lymphocytes (r 0.9868). The results suggest a much reduced capacity for cellular repair in buccal and sublingual epithelial cells

  3. Bioethanol production from starchy biomass by direct fermentation using saccharomyces diastaticus in batch free and immobilized cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Kilonzo, P.M.; Margaritis, A. [University of Western Ontario, London, ON (Canada). Dept. of Chemical and Biochemical Engineering; Yu, J.; Ye, Q. [East China Univ. of Science and Technology, Shanghai (China). Biochemical Engineering Research Inst. and State Key Lab

    2006-07-01

    The feasibility of using amylolytic yeasts for the direct fermentation of starchy biomass to ethanol was discussed. Although amylolytic yeasts such as Saccharomycopsis, Lipomyces, and Schwaniomyces secrete both {alpha}-amylase and glucoamylase enzymes that synergistically enhance starch degradation, they are not suitable for industrial bio-ethanol production because of low tolerance for ethanol and slow fermentation rate. For that reason, this study examined the direct ethanol fermentation of soluble starch or dextrin with the amylolytic yeast Saccharomyces diastaticus in batch free and immobilized cells systems. Saccharomyces diastaticus secretes glucoamylase and can therefore assimilate and ferment starch and starch-like biomass. The main focus of the study was on parameters leading to higher ethanol yields from high concentration of dextrin and soluble starch using batch cultures. A natural attachment method was proposed in which polyurethane foam sheets were used as the carrier for amylolytic yeasts immobilization in ethanol fermentations. The support was chosen because it was inexpensive, autoclavable, pliable and could be tailored to suit process requirements regarding net surface charge, shape and size. It was found that Saccharomyces diastaticus was very efficient in terms of fermentation of high initial concentrations of dextrin or soluble starch. Higher concentrations of ethanol were produced. In batch fermentations, the cells fermented high dextrin concentrations more efficiently. In particular, in batch fermentation, more than 92 g-L of ethanol was produced from 240 g-L of dextrin, at conversion efficiency of 90 per cent. The conversion efficiency decreased to 60 per cent but a higher final ethanol concentration of 147 g/L was attained with a medium containing 500 g/L of dextrin. In an immobilized cell bioreactor, Saccharomyces diastaticus produced 83 g/L of ethanol from 240 g/L of dextrin, corresponding to ethanol volumetric productivity of 9.1 g

  4. Feasibility of measuring radiation-induced DNA double strand breaks and their repair by pulsed field gel electrophoresis in freshly isolated cells from the mouse RIF-1 tumor

    International Nuclear Information System (INIS)

    Waarde, Maria A.W.H. van; Assen, Annette J. van; Konings, Antonius W.T.; Kampinga, Harm H.

    1996-01-01

    Purpose: To examine the technical feasibility of pulsed field gel electrophoresis (PFGE) as a predictive assay for the radio responsiveness of tumors. Induction and repair of DNA double strand breaks (DSBs) in a freshly prepared cell suspension from a RIF-1 tumor (irradiated ex vivo) was compared with DSB induction and repair in exponentially growing RIF-1 cells in culture (irradiated in vitro). Methods and Materials: A murine RIF-1 tumor grown in vivo was digested, and cells were exposed to x-rays (ex vivo) at doses of 1 to 75 Gy. DNA damage was measured using CHEF (clamped homogeneous electric fields) electrophoresis. Repair kinetics were studied at 37 deg. C for 4 h after irradiation. Radiosensitivity was determined by clonogenic assay, and cell cycle distributions by flow cytometry. For comparison, a trypsinized suspension of exponentially growing RIF-1 cells in vitro was run parallel with each ex vivo experiment. Results: Induction of DSBs, expressed as % DNA extracted from the plug, was similar in the in vitro and ex vivo irradiated cells. Compared to repair rates in in vitro cultured RIF-1 cells, repair kinetics in a freshly prepared cell suspension from the tumor were decreased, unrelated to differences in radiosensitivity. Differences in repair could not be explained by endogenous DNA degradation, nor by influences of enzymes used for digestion of the tumor. A lower plating efficiency and differences in ploidy (as revealed by flow cytometry) were the only reproducible differences between in vivo and in vitro grown cells that may explain the differences in repair kinetics. Conclusions: The current results do not support the idea that PFGE is a technique robust enough to be a predictive assay for the radiosensitivity of tumor cells

  5. DNA damage evaluation of hydroxyapatite on fibroblast cell L929 using the single cell gel electrophoresis assay.

    Science.gov (United States)

    Rajab, N F; Yaakob, T A; Ong, B Y; Hamid, M; Ali, A M; Annuar, B O; Inayat-Hussain, S H

    2004-05-01

    Hydroxyapatite is the main component of the bone which is a potential biomaterial substance that can be applied in orthopaedics. In this study, the biocompatibility of this biomaterial was assessed using an in vitro technique. The cytotoxicity and genotoxicity effect of HA2 and HA3 against L929 fibroblast cell was evaluated using the MTT Assay and Alkaline Comet Assay respectively. Both HA2 and HA3 compound showed low cytotoxicity effect as determined using MTT Assay. Cells viability following 72 hours incubation at maximum concentration of both HA2 and HA3 (200 mg/ml) were 75.3 +/- 8.8% and 86.7 +/- 13.1% respectively. However, the cytotoxicity effect of ZnSO4.7H2O as a positive control showed an IC50 values of 46 mg/ml (160 microM). On the other hand, both HA2 and HA3 compound showed a slight genotoxicity effect as determined using the Alkaline Comet Assay following incubation at the concentration 200 mg/ml for 72 hours. This assay has been widely used in genetic toxicology to detect DNA strand breaks and alkali-labile site. The percentage of the cells with DNA damage for both substance was 27.7 +/- 1.3% and 15.6 +/- 1.0% for HA2 and HA3 respectively. Incubation of the cells for 24 hours with 38 microg/ml (IC25) of positive control showed an increase in percentage of cells with DNA damage (67.5 +/- 0.7%). In conclusion, our study indicated that both hydroxyapatite compounds showed a good biocompatibility in fibroblast cells.

  6. Production of isomaltulose obtained by Erwinia sp. cells submitted to different treatments and immobilized in calcium alginate

    Directory of Open Access Journals (Sweden)

    Haroldo Yukio Kawaguti

    2011-03-01

    Full Text Available In recent decades, there has been an increase in the studies of isomaltulose obtainment, due to its physicochemical properties and physiological health benefits. These properties, which include low cariogenicity, low glycemic index and greater stability, allow the use of this sweetener as a substitute for sucrose in foods; besides the fact that it can be converted to isomalt, a dietary non-cariogenic sugar alcohol used in pharmaceuticals as well as in the food industry. Isomaltulose (6-O-α-D-glucopyronosyl-1-6-D-fructofuranose is a disaccharide reducer obtained by the enzymatic conversion of sucrose - the α-glucosyltransferase enzyme. Different treatments were performed for the preparation of whole cells; lysed cells; and crude enzyme extract of Erwinia sp. D12 strain immobilized in calcium alginate. The packed bed column of granules, containing Erwinia sp. cells sonicated and immobilized in calcium alginate (CSI, reached a maximum conversion of 53-59% sucrose into isomaltulose and it presented activity for 480 hours. The converted syrup was purified and the isomaltulose crystallization was performed through the lowering of temperature. The isomaltulose crystals presented purity of 96.5%.

  7. Fixed-bed biosorption of cadmium using immobilized Scenedesmus obliquus CNW-N cells on loofa (Luffa cylindrica) sponge.

    Science.gov (United States)

    Chen, Bor-Yann; Chen, Chun-Yen; Guo, Wan-Qian; Chang, Hao-Wei; Chen, Wen-Ming; Lee, Duu-Jong; Huang, Chieh-Chen; Ren, Nan-Qi; Chang, Jo-Shu

    2014-05-01

    A continuous fixed-bed biosorption process was established for cadmium (Cd) removal by Scenedesmus obliquus CNW-N (isolated from southern Taiwan) cells immobilized onto loofa sponge. This immobilized-cell biosorption process allows better recovery and reusability of the microalgal biomass. The growth of microalgae on the matrix support with appropriate nutrient supplementation could enhance the overall metal removal activity. Major operating parameters (e.g., feeding flow rate, cycle number of medium replacement, and particle diameter of the sponge) were studied for treatability evaluation. The most promising cell growth on the sponge support was obtained at a flow rate of 0.284 bed volume (BV)/min, sponge particle diameter of 1 cm, and with one cycle of medium replacement. The performance of fixed-bed biosorption (adsorption capacity of 38.4 mg, breakthrough time at 15.5 h) was achieved at a flow rate of 5 ml/min with an influent concentration of 7.5 mg Cd/l. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Kinetics of ethanol production by immobilized Kluyveromyces marxianus cells at varying sugar concentrations of Jerusalem artichoke juice

    Energy Technology Data Exchange (ETDEWEB)

    Bajpai, P.; Margaritis, A.

    1987-08-01

    Kinetics of ethanol fermentation at varying sugar concentrations of Jerusalem artichoke tuber extract has been studied using Kluyveromyces marxianus cells immobilized in calcium alginate gel beads. A maximum ethanol concentration of 111 g/l was achieved at an initial sugar concentration of 260 g/l in 20 hours, when the immobilized cell concentration in the calcium alginate beads was 53.3 g dry wt./l bead volume. Ethanol yield remained almost unaffected by initial sugar concentration up to 250 g/l and was found to be about 88% of the theoretical. Maximum rate of ethanol production decreased from 22.5 g ethanol/l/h to 10.5 g ethanol/l/h while the maximum rate of total sugars utilization decreased from 74.9 g sugars/l/h to 28.5 g sugars/l/h as the initial substrate concentration was increased from 100 to 300 g/l. The concentration of free cells in the fermentation broth was low.

  9. Preservation of Bacillus firmus Strain 37 and Optimization of Cyclodextrin Biosynthesis by Cells Immobilized on Loofa Sponge

    Directory of Open Access Journals (Sweden)

    Cristiane Moriwaki

    2012-08-01

    Full Text Available The preservation of Bacillus firmus strain 37 cells by lyophilization was evaluated and response surface methodology (RSM was used to optimize the β-cyclodextrin (β-CD production by cells immobilized on loofa sponge. Interactions were studied with the variables temperature, pH and dextrin concentration using a central composite design (CCD. Immobilization time influence on β-CD production was also investigated. B. firmus strain 37 cells remained viable after one year of storage, showing that the lyophilization is a suitable method for preservation of the microorganism. From the three-dimensional diagrams and contour plots, the best conditions for β-CD production were determined: temperature 60 °C, pH 8, and 18% dextrin. Considering that the amount of dextrin was high, a new assay was carried out, in which dextrin concentrations of 10, 15, and 18% were tested and the temperature of 60 °C and pH 8 were maintained. The results achieved showed very small differences and therefore, for economic reasons, the use of 10% dextrin is suggested. Increasing the immobilization time of cells immobilized on synthetic sponge the β-CD production decreased and did not change for cells immobilized on loofa sponge. The results of this research are important for microorganism preservation and essential in the optimization of the biosynthesis of CD.

  10. Antimicrobial and cell viability measurement of bovine serum albumin capped silver nanoparticles (Ag/BSA) loaded collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film.

    Science.gov (United States)

    Bakare, Rotimi; Hawthrone, Samantha; Vails, Carmen; Gugssa, Ayele; Karim, Alamgir; Stubbs, John; Raghavan, Dharmaraj

    2016-03-01

    Bacterial infection of orthopedic devices has been a major concern in joint replacement procedures. Therefore, this study is aimed at formulating collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film loaded with bovine serum albumin capped silver nanoparticles (Ag/BSA NPs) to inhibit bacterial growth while retaining/promoting osteoblast cells viability. The nanoparticles loaded collagen immobilized PHBV film was characterized for its composition by X-ray Photoelectron Spectroscopy and Anodic Stripping Voltammetry. The extent of loading of Ag/BSA NPs on collagen immobilized PHBV film was found to depend on the chemistry of the functionalized PHBV film and the concentration of Ag/BSA NPs solution used for loading nanoparticles. Our results showed that more Ag/BSA NPs were loaded on higher molecular weight collagen immobilized PHEMA-g-PHBV film. Maximum loading of Ag/BSA NPs on collagen immobilized PHBV film was observed when 16ppm solution was used for adsorption studies. Colony forming unit and optical density measurements showed broad antimicrobial activity towards Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa at significantly lower concentration i.e., 0.19 and 0.31μg/disc, compared to gentamicin and sulfamethoxazole trimethoprim while MTT assay showed that released nanoparticles from Ag/BSA NPs loaded collagen immobilized PHBV film has no impact on MCTC3-E1 cells viability. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Quantification of apoptotic DNA fragmentation in a transformed uterine epithelial cell line, HRE-H9, using capillary electrophoresis with laser-induced fluorescence detector (CE-LIF).

    Science.gov (United States)

    Fiscus, R R; Leung, C P; Yuen, J P; Chan, H C

    2001-01-01

    Apoptotic cell death of uterine epithelial cells is thought to play an important role in the onset of menstruation and the successful implantation of an embryo during early pregnancy. Abnormal apoptosis in these cells can result in dysmenorrhoea and infertility. In addition, decreased rate of epithelial apoptosis likely contributes to endometriosis. A key step in the onset of apoptosis in these cells is cleavage of the genomic DNA between nucleosomes, resulting in polynucleosomal-sized fragments of DNA. The conventional technique for assessing apoptotic DNA fragmentation uses agarose (slab) gel electrophoresis (i.e. DNA laddering). However, recent technological advances in the use of capillary electrophoresis (CE), particularly the introduction of the laser-induced fluorescence detector (LIF), has made it possible to perform DNA laddering with improved automation and much greater sensitivity. In the present study, we have further developed the CE-LIF technique by using a DNA standard curve to quantify accurately the amount of DNA in the apoptotic DNA fragments and have applied this new quantitative technique to study apoptosis in a transformed uterine epithelial cell line, the HRE-H9 cells. Apoptosis was induced in the HRE-H9 cells by serum deprivation for 5, 7 and 24 h, resulting in increased DNA fragmentation of 2.2-, 3.1- and 6.2-fold, respectively, above the 0 h or plus-serum controls. This ultrasensitive CE-LIF technique provides a novel method for accurately measuring the actions of pro- or anti-apoptotic agents or conditions on uterine epithelial cell lines. Copyright 2001 Academic Press.

  12. Fast methods for analysis of neurotransmitters from single cell and monitoring their releases in central nervous system by capillary electrophoresis, fluorescence microscopy and luminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ziqiang [Iowa State Univ., Ames, IA (United States)

    1999-12-10

    Fast methods for separation and detection of important neurotransmitters and the releases in central nervous system (CNS) were developed. Enzyme based immunoassay combined with capillary electrophoresis was used to analyze the contents of amino acid neurotransmitters from single neuron cells. The release of amino acid neurotransmitters from neuron cultures was monitored by laser induced fluorescence imaging method. The release and signal transduction of adenosine triphosphate (ATP) in CNS was studied with sensitive luminescence imaging method. A new dual-enzyme on-column reaction method combined with capillary electrophoresis has been developed for determining the glutamate content in single cells. Detection was based on monitoring the laser-induced fluorescence of the reaction product NADH, and the measured fluorescence intensity was related to the concentration of glutamate in each cell. The detection limit of glutamate is down to 10-8 M level, which is 1 order of magnitude lower than the previously reported detection limit based on similar detection methods. The mass detection limit of a few attomoles is far superior to that of any other reports. Selectivity for glutamate is excellent over most of amino acids. The glutamate content in single human erythrocyte and baby rat brain neurons were determined with this method and results agreed well with literature values.

  13. [Biodegradation of methyl tert-butyl ether by stabilized immobilized Methylibium petroleiphilum PM1 cells and its biodegradation kinetics analysis].

    Science.gov (United States)

    Cheng, Zhuo-wei; Fu, Ling-xiao; Jiang, Yi-feng; Chen, Jian-meng; Zhang, Rong

    2011-05-01

    Methylibium petroleiphilum PM1, which is capable of degrading methyl tert-butyl ether (MTBE) , was immobilized in calcium alginate gel beads. Several methods were explored to increase the strength of these gel beads. The central composite design analysis indicated that the introduction of 0.2 mol x L(-1) Ca2+ into the crosslinking solution, 1.38 mmol x L(-1) Ca2+ into the growth medium and 0.1% polyethyleneimine (PEI) as the chemical crosslinking agent could increase the stability of the Ca-alginate gel beads with no loss of biodegradation activity. The stabilized immobilized cells could be used 400 h continuously with no breakage and no bioactivity loss. Examination of scanning electron microscope demonstrated that a membrane surrounding the gel beads was formed and the cells could grow and breed well in the stabilized calcium alginate gel beads. Kinetic analysis of the gel bead-degradation indicated that the rate-limiting step was biochemical process instead of intraparticle diffusion process. The diameter of 3 mm affected the biodegradability less while high concentration of PEI induced much more serious mass transfer restraint.

  14. Biological treatment of potato processing wastewater for red pigment production by immobilized cells of UV-irradiated monascus sp. in repeated batch

    International Nuclear Information System (INIS)

    Khalaf, S.A.

    2004-01-01

    Potato processing wastewater (PPW) was collected and analyzed for biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen and starch content. A fungal strain isolated from PPW identified as Monascus sp. PPW was evaluated for its ability to grow and produce red pigment, biomass and reduce the starch content of the ,PPW. Active UV-irradiated isolate of the above strain was obtained by exposing the parent strain to UV-radiation and coded Monascus. sp. PPW-UV7 and used as immobilized cell system for PPW treatment process in repeated batch fermentation. The immobilized cells (in sponge cubes) were able to reduce COD by about 85.7 %, with biomass production of 9.22 gl+ l and over productivity of red pigment of 2.6 gl+ 1 after 8 days fermentation (2 batches). The immobilized cells showed stability and viability for 8 batches (32 days) during the process treatment

  15. Physico-chemical characteristics of immobilized polygalacturonase ...

    African Journals Online (AJOL)

    Polygalacturonase (PG) was isolated from Aspergillus niger (A. niger) (SA6), partially purified, characterized and immobilized by entrapment using calcium alginate. The polygalacturonase showed two bands on sodium dodecyl sulfate polyacryamide gel electrophoresis (SDS-PAGE) suggesting an “endo and exo” ...

  16. Ethanol production in an immobilized-cell column reactor: The effects of micro-aeration and dual feeds

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K

    1988-01-01

    Immobilized Saccharomyces cerevesiae cells adsorbed onto wood chips in a packed-bed bioreactor were used for ethanol fermentation from glucose solution. In aerobic and anaerobic batch experiments, an increase in initial glucose concentration resulted in a reduction of the specific growth rate, but no apparent glucose inhibition was found at initial glucose concentrations of ca <120 g/l. Since it is inevitable to use high substrate concentration to obtain high product concentration, experiments were performed in an immobilized-cell reactor (ICR) to examine any improvements achieved by a dual-feed mode over a continuous ICR system. The dual scheme can provide the same total amount of substrate while keeping the maximum substrate concentration to which the cells are exposed to about half of that in the single-feed case. In the dual-feed ICR, the ethanol production rate was 15% higher than that of the single-fed ICR. Experiments in skewed and vertical ICRs were performed to observe the difference in CO{sub 2} bubble removal; the bubbles were smoothly released in the skewed ICR compared to significant CO{sub 2} accumulation in the vertical ICR, and a biomass buildup on the wood surface was also observed. The experimental results indicate that trace amounts of dissolved oxygen stimulated fermentation rates, with one experiment showing a 31% improvement in ethanol productivity using aeration. At a controlled aeration rate, cells were observed to flocculate naturally onto the wood surface. Plugging of the void spaces, due to excess cell growth and intermittent CO{sub 2} holdup, was observed to begin at the base of the packed bed and progressed upward with time, thus undesirable channelling of liquid flow occurred. 200 refs., 76 figs., 21 tabs.

  17. Microorganism immobilization

    Science.gov (United States)

    Compere, Alicia L.; Griffith, William L.

    1981-01-01

    Live metabolically active microorganisms are immobilized on a solid support by contacting particles of aggregate material with a water dispersible polyelectrolyte such as gelatin, crosslinking the polyelectrolyte by reacting it with a crosslinking agent such as glutaraldehyde to provide a crosslinked coating on the particles of aggregate material, contacting the coated particles with live microorganisms and incubating the microorganisms in contact with the crosslinked coating to provide a coating of metabolically active microorganisms. The immobilized microorganisms have continued growth and reproduction functions.

  18. The application of single cell gel electrophoresis or comet assay to human monitoring studies Aplicacion de la electroforesis unicelular o ensayo cometa en estudios de monitoreo humano

    Directory of Open Access Journals (Sweden)

    Mahara Valverde

    1999-11-01

    Full Text Available Objective. In the search of new human genotoxic biomarkers, the single cell gel electrophoresis assay has been proposed as a sensible alternative. Material and methods. This technique detects principally single strand breaks as well as alkali-labile and repair-retarded sites. Results. Herein we present our experience using the single cell gel electrophoresis assay in human population studies, both occupationally and environmentally exposed. Conclusions. We discuss the assay feasibility as a genotoxic biomarker.Objetivo. En la búsqueda de nuevos marcadores genotóxicos aplicables a estudios de poblaciones humanas expuestos a xenobióticos, la utilización del ensayo de electroforesis en una sola célula se ha propuesto como un método sensible y una buena alternativa. Material y métodos. Esta técnica detecta rompimientos en el ADN de cadena sencilla, así como sitios álcali lábiles y sitios retardados de reparación. Resultados. En este trabajo, presentamos nuestra experiencia utilizando este ensayo en poblaciones humanas expuestas ocupacionalmente o ambientalmente a diferentes xenobióticos. Conclusiones. Se discute la posible utilidad de este ensayo como un biomarcador de efecto genotóxico.

  19. Affinity in electrophoresis.

    Science.gov (United States)

    Heegaard, Niels H H

    2009-06-01

    The journal Electrophoresis has greatly influenced my approaches to biomolecular affinity studies. The methods that I have chosen as my main tools to study interacting biomolecules--native gel and later capillary zone electrophoresis--have been the topic of numerous articles in Electrophoresis. Below, the role of the journal in the development and dissemination of these techniques and applications reviewed. Many exhaustive reviews on affinity electrophoresis and affinity CE have been published in the last few years and are not in any way replaced by the present deliberations that are focused on papers published by the journal.

  20. Price estimation and economic evaluation of the production cost of red wines produced by immobilized cells on dried raisin berries

    Directory of Open Access Journals (Sweden)

    Argiris Tsakiris

    2011-02-01

    Full Text Available Argiris Tsakiris1, Kiriaki Sotirakoglou2, Panagiotis Kandylis3, Panagiotis Kaldis1, Constantina Tzia4, Yiannis Kourkoutas31Department of Oenology and Beverage Technology, Faculty of Food Technology and Nutrition, Technological Educational Institute of Athens, Athens, Greece; 2Department of Mathematics and Statistics, Agricultural University of Athens, Athens, Greece; 3Applied Microbiology and Molecular Biotechnology Research Group, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece; 4Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, GreeceAbstract: The aim of the study was initially to estimate the price of red wines produced by immobilized cells on dried raisin berries and subsequently to investigate whether the estimated price was sufficient to counterbalance the increased investment and operational costs required for industrial application of the novel biotechnological process. Price estimation of the experimental wines was based on the correlation of sensory quality, determined by a group of trained tasters, and the price of commercial wines available in a certain market. Application of principal component analysis (PCA provided improved results over simple and exponential regression analysis, as only a part of the relationship between the two variables was represented (68.4% and 75.3%, respectively. However, with PCA the total variance explained by the two components was 100%. Taste was more important than aroma in determining sensory quality, and wine price was mainly affected by sensory quality rather than wine age in the Greek market. The total increase of production cost was estimated to be €0.032/bottle, which is significantly lower than the increase of €2.08/bottle price estimated by PCA for the red wines produced by immobilized cells, due to the improved aromatic potential compared with wines produced by

  1. Electrophoresis in space at zero gravity

    Science.gov (United States)

    Bier, M.; Snyder, R. S.

    1974-01-01

    Early planning for manufacturing operations in space include the use of electrophoresis for purification and separation of biological materials. Greatly simplified electrophoresis apparatus have been flown in the Apollo 14 and 16 missions to test the possibility of stable liquid systems in orbit. Additionally, isoelectric focusing and isotachophoresis are of particular interest as they offer very high resolution and have self-sharpening boundaries. The value of possible space electrophoresis is substantial. For example, present technology permits large fractionation of only a few of blood proteins many fractions, and separated cell populations are needed for research.

  2. Measurement of DNA double-strand breaks in CHO cells at various stages of the cell cycle using pulsed field gel electrophoresis: calibration by means of 125I decay

    International Nuclear Information System (INIS)

    Iliakis, G.E.; Cicilioni, O.; Metzger, L.

    1991-01-01

    Experiments were performed to calibrate a recently developed pulsed field gel electrophoresis assay, the asymmetric field inversion gel electrophoresis (AFIGE), for the measurement of double-strand breaks (dsb) in the DNA of mammalian cells. Calibration was carried out by means of 125 I decay accumulation, under conditions preventing repair, based on the observation that each 125 I decay in the DNA produces approximately one dsb. Results suggest that that observed fluctuations in the fraction of DNA activity released (FAR) per Gy throughout the cycle reflect cell-cycle-associated differences in the physicochemical properties of the DNA molecules that alter their electrophoretic mobility, rather than variations in the induction of dsb per Gy, i.e. the sensitivity of the assay fluctuates throughout the cycle. (author)

  3. Decolorization of textile dye RB19 using volcanic rock matrix immobilized Bacillus thuringiensis cells with surface displayed laccase.

    Science.gov (United States)

    Wan, Juan; Sun, Xiaowen; Liu, Cheng; Tang, Mengjun; Li, Lin; Ni, Hong

    2017-06-01

    A triplicate volcanic rock matrix-Bacillus thuringiensis-laccase WlacD (VRMs-Bt-WlacD) dye decolorization system was developed. WlacD was displayed on the B. thuringiensis MB174 cell surface to prepare a whole-cell laccase biocatalyst by using two repeat N-terminal domains of autolysin Mbg (Mbgn) 2 as the anchoring motif. Immunofluorescence microscopic assays confirmed that the fusion protein (Mbgn) 2 -WlacD was anchored on the surface of the recombinant B. thuringiensis MB174. After optimization by a single factor test, L 9 (3 4 )-orthogonal test, Plackett-Burman test, steepest ascent method, and Box-Behnken response surface methodology, the whole-cell specific laccase activity of B. thuringiensis MB174 was improved to 555.2 U L -1 , which was 2.25 times than that of the primary culture condition. Optimized B. thuringiensis MB174 cells were further adsorbed by VRMs to prepare VRMs-Bt-WlacD, an immobilized whole-cell laccase biocatalyst. Decolorization capacity of as-prepared VRMs-Bt-WlacD toward an initial concentration of 500 mg L -1 of an textile dye reactive blue 19 (RB19) aqueous solution reached 72.36% at a solid-to-liquid ratio of 10 g-100 mL. Repeated decolorization-activation operations showed the high decolorization capacity of VRMs-Bt-WlacD and have the potential for large-scale or continuous operations.

  4. Disc electrophoresis and related techniques of polyacrylamide gel electrophoresis

    National Research Council Canada - National Science Library

    Maurer, H. R

    1971-01-01

    ..., enzymes, antingens and radioactively labelled materials, and detailed treatments of micro disc electrophoresis, preparative polyacrylamide gel electrophoresis and many other techniques for special problems...

  5. Horizontal bioreactor for ethanol production by immobilized cells. Pt. 3. Reactor modeling and experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Woehrer, W

    1989-04-05

    A mathematical model which describes ethanol formation in a horizontal tank reactor containing Saccharomyces cerevisiae immobilized in small beads of calcium alignate has been developed. The design equations combine flow dynamics of the reactor as well as product formation kinetics. The model was verified for 11 continuous experiments, where dilution rate, feed glucose concentration and bead volume fraction were varied. The model predicts effluent ethanol concentration and CO/sub 2/ production rate within the experimental error. A simplification of the model is possible, when the feed glucose concentration does not exceed 150 kg/m/sup 3/. The simplification results in an analytical solution of the design equation and hence can easily be applied for design purposes as well as for optimization studies.

  6. Continuous cider fermentation with co-immobilized yeast and Leuconostoc oenos cells.

    Science.gov (United States)

    Nedovic; Durieuxb; Van Nedervelde L; Rosseels; Vandegans; Plaisant; Simon

    2000-06-01

    Ca-alginate matrix was used to co-immobilize Saccharomyces bayanus and Leuconostoc oenos in one integrated biocatalytic system in order to perform simultaneously alcoholic and malo-lactic fermentation of apple juice to produce cider, in a continuous packed bed bioreactor. The continuous process permitted much faster fermentation compared with the traditional batch process. The flavor formation was also better controlled. By adjusting the flow rate of feeding substrate through the bioreactor, i.e. its residence time, it was possible to obtain either "soft" or "dry" cider. However, the profile of volatile compounds in the final product was modified comparatively to the batch process, especially for higher alcohols, isoamylacetate, and diacetyl. This modification is due to different physiology states of yeast in two processes. Nevertheless, the taste of cider was quite acceptable.

  7. Determination of ethanol in acetic acid-containing samples by a biosensor based on immobilized Gluconobacter cells

    Directory of Open Access Journals (Sweden)

    VALENTINA A. KRATASYUK

    2012-11-01

    Full Text Available Reshetilov AN, Kitova AE, Arkhipova AV, Kratasyuk VA, Rai MK. 2012. Determination of ethanol in acetic acid containing samples by a biosensor based on immobilized Gluconobacter cells. Nusantara Bioscience 4: 97-100. A biosensor based on Gluconobacter oxydans VKM B-1280 bacteria was used for detection of ethanol in the presence of acetic acid. It was assumed that this assay could be useful for controlling acetic acid production from ethanol and determining the final stage of the fermentation process. Measurements were made using a Clark electrode-based amperometric biosensor. The effect of pH of the medium on the sensor signal and the analytical parameters of the sensor (detection range, sensitivity were investigated. The residual content of ethanol in acetic acid samples was analyzed. The results of the study are important for monitoring the acetic acid production process, as they represent a method of tracking its stages

  8. The microalga Chlamydomonas reinhardtii CW-15 as a solar cell for hydrogen peroxide photoproduction. Comparison between free and immobilized cells and thylakoids for energy conversion efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, W.; Galvan, F.; Rosa, F.F. de la [Instituto de Bioquimica Vegetal y Fotosintesis, Universidad de Sevilla y CSIC, Sevilla (Spain)

    1995-11-28

    Immobilized cells and thylakoid vesicles of the microalga Chlamydomonas reinhardtii CW-15 have been developed as a solar cell because of their capabilities of producing hydrogen peroxide. This compound is an efficient and clean fuel used for rocket propulsion, motors and for heating. Hydrogen peroxide is produced by the photosystem in a catalyst cycle in which a redox mediator (methyl viologen) is reduced by electrons obtained from water by the photosynthetic apparatus of the microalga and it is re-oxidized by the oxygen dissolved in the solution. The photoproduction has been investigated using a discontinuous system with whole cells, or thylakoid vesicles, free or immobilized on alginate. The stimulation by azide as an inhibitor of catalase has also been analyzed. Under determined optimum conditions, the photoproduction by Ca-alginate entrapped cells, with a rate of 33 {mu}mol H{sub 2}O{sub 2}/mg Chl.h, was maintained for several hours with an energy conversion efficiency of 0.25%

  9. Citric acid production from partly deproteinized whey under non-sterile culture conditions using immobilized cells of lactose-positive and cold-adapted Yarrowia lipolytica B9.

    Science.gov (United States)

    Arslan, Nazli Pinar; Aydogan, Mehmet Nuri; Taskin, Mesut

    2016-08-10

    The present study was performed to produce citric acid (CA) from partly deproteinized cheese whey (DPCW) under non-sterile culture conditions using immobilized cells of the cold-adapted and lactose-positive yeast Yarrowia lipolytica B9. DPCW was prepared using the temperature treatment of 90°C for 15min. Sodium alginate was used as entrapping agent for cell immobilization. Optimum conditions for the maximum CA production (33.3g/L) in non-sterile DPCW medium were the temperature of 20°C, pH 5.5, additional lactose concentration of 20g/L, sodium alginate concentration of 2%, number of 150 beads/100mL and incubation time of 120h. Similarly, maximum citric acid/isocitric acid (CA/ICA) ratio (6.79) could be reached under these optimal conditions. Additional nitrogen and phosphorus sources decreased CA concentration and CA/ICA ratio. Immobilized cells were reused in three continuous reaction cycles without any loss in the maximum CA concentration. The unique combination of low pH and temperature values as well as cell immobilization procedure could prevent undesired microbial contaminants during CA production. This is the first work on CA production by cold-adapted microorganisms under non-sterile culture conditions. Besides, CA production using a lactose-positive strain of the yeast Y. lipolytica was investigated for the first time in the present study. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Actin Immobilization on Chitin for Purifying Myosin II: A Laboratory Exercise That Integrates Concepts of Molecular Cell Biology and Protein Chemistry

    Science.gov (United States)

    de Souza, Marcelle Gomes; Grossi, Andre Luiz; Pereira, Elisangela Lima Bastos; da Cruz, Carolina Oliveira; Mendes, Fernanda Machado; Cameron, Luiz Claudio; Paiva, Carmen Lucia Antao

    2008-01-01

    This article presents our experience on teaching biochemical sciences through an innovative approach that integrates concepts of molecular cell biology and protein chemistry. This original laboratory exercise is based on the preparation of an affinity chromatography column containing F-actin molecules immobilized on chitin particles for purifying…

  11. Repair of γ-irradiation-induced DNA single-strand breaks in human bone marrow cells. Analysis of unfractionated and CD34+ cells using single-cell gel electrophoresis

    International Nuclear Information System (INIS)

    Lankinen, Maarit H.; Vilpo, Juhani A.

    1997-01-01

    Human bone marrow mononuclear cells (BMMNCs) were separated by density gradient centrifugation, and a subpopulation of progenitor cells was further isolated using anti-CD34-coated magnetic beads. The cells were irradiated with γ-rays (0.93-5.43 Gy) from a 137 Cs source. The extent of DNA damage, i.e., single-strand breaks (SSBs) and alkali-labile lesions of individual cells, was investigated using the alkaline single-cell gel electrophoresis technique. The irradiation resulted in a dose-dependent increase in DNA migration, reflecting the number of detectable DNA lesions. An approximately similar extent of SSB formation was observed in BMMNCs and CD34+ cells. Damage was repaired when the cells were incubated at 37C: a fast initial repair phase was followed by a slower rejoining of SSBs in both BMMNC and CD34+ cell populations. A significantly longer time was required to repair the lesions caused by 5.43 Gy than those caused by 0.93 Gy. In the present work we report, for the first time, the induction and repair of DNA SSBs at the level of single human bone marrow cells when exposed to ionizing radiation at clinically relevant doses. These data, together with our previous results with human blood granulocytes and lymphocytes, indicate an approximately similar extent of formation and repair of γ-irradiation-induced DNA SSBs in immature and mature human hematopoietic cells

  12. Detection of clonal T-cell receptor beta and gamma chain gene rearrangement by polymerase chain reaction and capillary gel electrophoresis.

    Science.gov (United States)

    Fan, Hongxin; Robetorye, Ryan S

    2013-01-01

    Although established diagnostic criteria exist for mature T-cell neoplasms, a definitive diagnosis of a T-cell lymphoproliferative disorder cannot always be obtained using more conventional techniques such as flow cytometric immunophenotyping, conventional cytogenetics, fluorescence in situ hybridization, or immunohistochemistry. However, because T-cell malignancies contain identically rearranged T-cell receptor gamma (TCRG) and/or beta (TCRB) genes, the polymerase chain reaction (PCR) can be a fast, convenient, and dependable option to identify clonal T-cell processes. This chapter describes the use of PCR and capillary electrophoresis to identify clonal TCRB and TCRG gene rearrangements (TCRB and TCRG PCR) using a commercially available method employing multiple multiplex PCR tubes that was originally developed as the result of a large European BIOMED-2 collaborative study (Invivoscribe Technologies). The core protocol for the TCRB assay involves the use of three separate multiplex master mix tubes. Tubes A and B target the framework regions within the variable and joining regions of the TCRB gene, and Tube C targets the diversity and joining regions of the TCRB gene. The core protocol for the TCRG assay utilizes two multiplex master mix tubes (Tubes A and B) that target the variable and joining regions of the TCRG gene. Use of the five BIOMED-2 TCRB and TCRG PCR multiplex tubes in parallel can detect approximately 94% of clonal TCR gene rearrangements.

  13. [Correlation of single-cell gel electrophoresis and mitomycin C-induced chromosomal breakage for chromosomal instabiligy in children with Fanconi anemia].

    Science.gov (United States)

    Zhang, Li; Liu, Qiang; Zou, Yao; Liu, Xiao-ming; Zhang, Jia-yuan; Wang, Shu-chun; Chen, Xiao-juan; Guo, Ye; Yang, Wen-yu; Ruan, Min; Liu, Tian-feng; Liu, Fang; Cai, Xiao-jin; Chen, Yu-mei; Zhu, Xiao-fan

    2013-02-01

    Fanconi anemia (FA) is characterized by bone marrow failure, congenital abnormalities and predisposition to neoplasia. Hypersensitivity of FA cells to the clastogenic effect of mitomycin C (MMC) provides a unique marker for the diagnosis before the beginning of hematological manifestations. The aim of this study was to evaluate the relationship between Single-Cell Gel Electrophoresis (SCGE) and mitomycin C-induced chromosomal breakage in children with FA. Between January 2007 and June 2011, 248 children (results of the two methods and compared with each other. The receiver operating characteristic (ROC) curve was used to evaluate the parameters in SCGE. Seventeen patients were diagnosed as FA and 231 as non-FA. Chromosomal breakage was found to be significantly higher in FA patients [(32.2 ± 4.8)%] than non-FA [(19.9 ± 3.0)%] and controls[(21.6 ± 4.8)%] when induced by MMC 80 ng/ml. The parameters of SCGE were significantly different between FA patients and non-FA or controls. All the parameters were rectilinearly correlated with MMC (P = 0.000). The most closely correlated parameter was the rate of comet cell (r = 0.848, P = 0.000). The results of ROC curves suggested the comet cell rate (0.999) was more important. SCGE might be used to discriminate between FA and non-FA individuals. The relationship between SCGE and MMC-induced chromosomal breakage was significant. The rate of comet cell was the important parameter.

  14. Rejoining of DNA double-strand breaks in X-irradiated CHO cells studied by constant- and graded-field gel electrophoresis

    International Nuclear Information System (INIS)

    Dahm-Daphi, J.; Dikomey, E.

    1996-01-01

    Induction and repair of double-strand breaks (dsb) were measured in exponentially growing CHO-10A cells using the constant- and graded-field gel electrophoresis. Dsb repair was studied after an X-ray dose of 60Gy. The repair curve obtained was biphasic with the respective half-times of τ 1 = 3.8 ± 0.9 and τ 2 = 118 ± 30 min. The number of non-reparable dsb was measured for X-ray doses up to 180 Gy and was found to be only a small fraction (14%) of all non-rejoinable breaks determined previously using the alkaline unwinding technique. The ratio of non-reparable dsb to the number of lethal events calculated from survival curves is 0.14:1. This result indicates that for CHO cells non-reparable dsb represent only a small fraction of lethal damage. This is in line with the cytogenic observation that cell killing mainly results from mis-rejoined events (i.e. exchange aberrations, translocations, interstitial delections). The kinetics of dsb rejoining were found to be independent of the size of the fragments involved (between 1 and 10 Mbp). In addition, the rejoining kinetics of DNA fragments ≤ 1 Mbp did not show the formation of new DNA fragments with time after irradiation indicating the absence of programmed cell death in irradiated CHO cells. (author)

  15. Determination of NAD+ and NADH level in a Single Cell Under H2O2 Stress by Capillary Electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Wenjun [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    A capillary electrophoresis (CE) method is developed to determine both NAD+ and NADH levels in a single cell, based on an enzymatic cycling reaction. The detection limit can reach down to 0.2 amol NAD+ and 1 amol NADH on a home-made CE-LIF setup. The method showed good reproducibility and specificity. After an intact cell was injected into the inlet of a capillary and lysed using a Tesla coil, intracellular NAD+ and NADH were separated, incubated with the cycling buffer, and quantified by the amount of fluorescent product generated. NADH and NAD+ levels of single cells of three cell lines and primary astrocyte culture were determined using this method. Comparing cellular NAD+ and NADH levels with and without exposure to oxidative stress induced by H2O2, it was found that H9c2 cells respond to the stress by reducing both cellular NAD+ and NADH levels, while astrocytes respond by increasing cellular NADH/NAD+ ratio.

  16. Immobilization of cross linked Col-I–OPN bone matrix protein on aminolysed PCL surfaces enhances initial biocompatibility of human adipogenic mesenchymal stem cells (hADMSC)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Hee; Jyoti, Md. Anirban; Song, Ho-Yeon, E-mail: songmic@sch.ac.kr

    2014-06-01

    In bone tissue engineering surface modification is considered as one of the important ways of fabricating successful biocompatible material. Addition of biologically active functionality on the surfaces has been tried for improving the overall biocompatibility of the system. In this study poly-ε-caprolactone film surfaces have been modified through aminolysis and immobilization process. Collagen type I (COL-I) and osteopontin (OPN), which play an important role in osteogenesis, was immobilized onto PCL films followed by aminolysis treatment using 1,6-hexanediamine. Characterization of animolysed and immobilized surfaces were done by a number techniques using scanning electron microscopy (SEM), FT-IR, XPS, ninhydrin staining, SDS-PAGE and confocal microscopy and compared between the modified and un-modified surfaces. Results of the successive experiments showed that aminolysis treatment was homogeneously achieved which helped to entrap or immobilize Col-I–OPN proteins on surfaces of PCL film. In vitro studies with human adipogenic mesenchymal stem cells (hADMSC) also confirmed the attachment and proliferation of cells was better in modified PCL surfaces than the unmodified surfaces. SEM, confocal microscopy and MTT assay showed a significant increase in cell spreading, attachment and proliferations on the biofunctionalized surfaces compared to the unmodified PCL surfaces at all-time points indicating the success of surface biofunctionalization.

  17. Optimization of date syrup for enhancement of the production of citric acid using immobilized cells of Aspergillus niger

    Science.gov (United States)

    Mostafa, Yasser S.; Alamri, Saad A.

    2012-01-01

    Date syrup as an economical source of carbohydrates and immobilized Aspergillus niger J4, which was entrapped in calcium alginate pellets, were employed for enhancing the production of citric acid. Maximum production was achieved by pre-treating date syrup with 1.5% tricalcium phosphate to remove heavy metals. The production of citric acid using a pretreated medium was 38.87% higher than an untreated one that consumed sugar. The appropriate presence of nitrogen, phosphate and magnesium appeared to be important in order for citric acid to accumulate. The production of citric acid and the consumed sugar was higher when using 0.1% ammonium nitrate as the best source of nitrogen. The production of citric acid increased significantly when 0.1 g/l of KH2PO4 was added to the medium of date syrup. The addition of magnesium sulfate at the rate of 0.20 g/l had a stimulating effect on the production of citric acid. Maximum production of citric acid was obtained when calcium chloride was absent. One of the most important benefits of immobilized cells is their ability and stability to produce citric acid under a repeated batch culture. Over four repeated batches, the production of citric acid production was maintained for 24 days when each cycle continued for 144 h. The results obtained in the repeated batch cultivation using date syrup confirmed that date syrup could be used as a medium for the industrial production of citric acid. PMID:23961184

  18. Optimization of date syrup for enhancement of the production of citric acid using immobilized cells of Aspergillus niger.

    Science.gov (United States)

    Mostafa, Yasser S; Alamri, Saad A

    2012-04-01

    Date syrup as an economical source of carbohydrates and immobilized Aspergillus niger J4, which was entrapped in calcium alginate pellets, were employed for enhancing the production of citric acid. Maximum production was achieved by pre-treating date syrup with 1.5% tricalcium phosphate to remove heavy metals. The production of citric acid using a pretreated medium was 38.87% higher than an untreated one that consumed sugar. The appropriate presence of nitrogen, phosphate and magnesium appeared to be important in order for citric acid to accumulate. The production of citric acid and the consumed sugar was higher when using 0.1% ammonium nitrate as the best source of nitrogen. The production of citric acid increased significantly when 0.1 g/l of KH2PO4 was added to the medium of date syrup. The addition of magnesium sulfate at the rate of 0.20 g/l had a stimulating effect on the production of citric acid. Maximum production of citric acid was obtained when calcium chloride was absent. One of the most important benefits of immobilized cells is their ability and stability to produce citric acid under a repeated batch culture. Over four repeated batches, the production of citric acid production was maintained for 24 days when each cycle continued for 144 h. The results obtained in the repeated batch cultivation using date syrup confirmed that date syrup could be used as a medium for the industrial production of citric acid.

  19. Effect of furfural on ethanol production by S. cerevisiae in a cross-linked immobilized cell reactor

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, L.J.; Vega, J.L.; Basu, R.; Clausen, E.C.; Gaddy, J.L. (Arkansas Univ., Fayetteville, AR (United States). Dept. of Chemical Engineering)

    1992-01-01

    Furfural, a browning reaction product, inhibits yeast (Saccharomyces cerevisiae) growth and metabolism at low concentration levels in batch culture. The performance of an immobilized cell reactor (ICR) in the presence of 0-2.0 g l[sup -1] of furfural was examined. Cell growth in the ICR, with and without furfural in the media, indicated that either furfural did not impair glucose utilization, or that the negative effects of furfural were negated by increasing cell density in the reactor. Ethanol yields were constant at 0.48 g ethanol per g glucose regardless of the furfural concentration in the media. Although the specific productivity in the ICR decreased with furfural concentration, the productivity based on liquid hold-up remained constant. Furfural was depleted in the ICR during the experimental operation. Thus, furfural levels of 2.0 g 1[sup -1] or less can be tolerated by the yeast for ethanol production in the ICR without negatively affecting reactor performance. (author).

  20. Retention behavior of flavonoids on immobilized artificial membrane chromatography and correlation with cell-based permeability.

    Science.gov (United States)

    Tsopelas, Fotios; Tsagkrasouli, Maria; Poursanidis, Pavlos; Pitsaki, Maria; Vasios, George; Danias, Panagiotis; Panderi, Irene; Tsantili-Kakoulidou, Anna; Giaginis, Constantinos

    2018-03-01

    The aim of the study was to investigate the immobilized artificial membrane (IAM) retention mechanism for a set of flavonoids and to evaluate the potential of IAM chromatography to model Caco-2 permeability. For this purpose, the retention behavior of 41 flavonoid analogs on two IAM stationary phases, IAM.PC.MG and IAM.PC.DD2, was investigated. Correlations between retention factors, logk w(IAM) and octanol-water partitioning (logP) were established and the role of hydroxyl groups of flavonoids to the underlying retention mechanism was explored. IAM retention and logP values were used to establish sound linear models with Caco-2 permeability (logP app ) taken from the literature. Both stepwise regression and multivariate analysis confirmed the contribution of hydrogen bond descriptors, as additional parameters in the either logk w(IAM) or logP models. Retention factors on both IAM stationary phases showed comparable performance with n-octanol-water partitioning towards Caco-2 permeability. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Continuous production of pectinase by immobilized yeast cells on spent grains.

    Science.gov (United States)

    Almeida, Catarina; Brányik, Tomás; Moradas-Ferreira, Pedro; Teixeira, José

    2003-01-01

    A yeast strain secreting endopolygalacturonase was used in this work to study the possibility of continuous production of this enzyme. It is a feasible and interesting alternative to fungal batch production essentially due to the specificity of the type of pectinase excreted by Kluyveromyces marxianus CCT 3172, to the lower broth viscosity and to the easier downstream operations. In order to increase the reactors' productivity, a cellulosic carrier obtained from barley spent grains was tested as an immobilization support. Two types of reactors were studied for pectinase production using glucose as a carbon and energy source--a continuous stirred tank reactor (CSTR) and a packed bed reactor (PBR) with recycled flow. The highest value for pectinase volumetric productivity (P(V)=0.98 U ml(-1) h(-1)) was achieved in the PBR for D=0.40 h(-1), a glucose concentration on the inlet of S(in)=20 g l(-1), and a biomass load in the support of X(i)=0.225 g g(-1). The results demonstrate the attractiveness of the packed bed system for pectinase production.

  2. Protein electrophoresis - serum

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003540.htm Protein electrophoresis - serum To use the sharing features on ... JavaScript. This lab test measures the types of protein in the fluid (serum) part of a blood ...

  3. Urine protein electrophoresis test

    Science.gov (United States)

    Urine protein electrophoresis; UPEP; Multiple myeloma - UPEP; Waldenström macroglobulinemia - UPEP; Amyloidosis - UPEP ... special paper and apply an electric current. The proteins move and form visible bands. These reveal the ...

  4. Electrophoresis in strong electric fields.

    Science.gov (United States)

    Barany, Sandor

    2009-01-01

    Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a

  5. Production of D-tagatose at high temperatures using immobilized Escherichia coli cells expressing L-arabinose isomerase from Thermotoga neapolitana.

    Science.gov (United States)

    Hong, Young-Ho; Lee, Dong-Woo; Lee, Sang-Jae; Choe, Eun-Ah; Kim, Seong-Bo; Lee, Yoon-Hee; Cheigh, Chan-Ick; Pyun, Yu-Ryang

    2007-04-01

    Escherichia coli cells expressing L-arabinose isomerase from Thermotoga neapolitana (TNAI) were immobilized in calcium alginate beads. The resulting cell reactor (2.4 U, t (1/2) = 43 days at 70 degrees C) in a continuous recycling mode at 70 degrees C produced 49 and 38 g D-tagatose/l from 180 and 90 g D-galactose/l, respectively, within 12 h.

  6. Identification of differentially expressed proteins between human esophageal immortalized and carcinomatous cell lines by two-dimensional electrophoresis and MALDI-TOF-mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    Xing-Dong Xiong; Li-Yan Xu; Zhong-Ying Shen; Wei-Jia Cai; Jian-Min Luo; Ya-Li Han; En-Min Li

    2002-01-01

    AIM: To identify the differentially expressed proteins between the human immortalized esophageal epithelial cell line (SHEE) and the malignant transformed esophageal carcinoma cell line (SHEEC), and to explore new ways for studying esophageal carcinoma associated genes. METHODS: SHEE and SHEEC cell lines were used to separate differentially expressed proteins by two-dimensional electrophoresis/The silver-stained 2-D gels was scanned with EDAS290 digital camera system and analyzed with the PDQuest 6.2 Software. Six spots in which the differentially expressed protein was more obvious were selected and analyzed with matrix-assisted laser desorption/ionization time of flying mass spectrometry (MALDI-TOF-MS).RESULTS: There were 107±4.58 and 115±9.91 protein spots observed in SHEE and SHEEC respectively, and the majority of these spots between the two cell lines matched each other (r=-0.772), only a few were expressed differentially. After analyzed by MALDI-TOF-MS and database search for the six differentially expressed proteins, One new protein as well as other five sequence-known proteins including RNPEP-like protein, human rRNA gene upstream sequence binding transcription factor, uracil DNA glycosylase,Annexin A2 and p300/CBP-associated factor were preliminarily identified.CONCLUSION: These differentially expressed proteins might play an importance role during malignant transformation of SHEEC from SHEE. The identification of these proteins may serve as a new way for studying esophageal carcinoma associated genes.

  7. Evaluation of radio-induced DNA damage and their repair in human lymphocytes by comet assay or single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Nascimento, Patricia A. do; Suzuki, Miriam F.; Okazaki, Kayo

    1997-01-01

    The comet assay, also called single cell gel electrophoresis technique, permits to evaluate quantitatively DNA breakage induced by chemical and physical agents at the level of the single cell. The present paper refers to the construction of dose-response curves to DNA damage and repair studies in human peripheral lymphocytes, utilizing the comet assay for the radiosensitivity analysis. So, the blood samples were obtained from healthy donors (40-50 year old), irradiated in a 60 Co source (GAMMACEL 220) with doses of 0.17, 0.25, 0.57, 1.10, 2.12 and 4.22 Gy (0.59 Gy/min.) and processed 1 and 24 hours after the exposition. Results obtained showed a increase in the total lenght of comet (DNA migration) as a function of radiation dose in samples processed 1 and 24 hours after the treatment. The DNA lesion in irradiated lymphocytes with 4.22 Gy (means value of 101.4 μm) were 3.4 times higher than in the untreated lymphocytes (mean value of 30 μm) instead of 24 hours after the irradiation were 1.5 times higher (mean value of 46.3 μm). This reduction on DNA repair occurred in these cells. It was also possible visualized the presence of subpopulations of the cells with different sensitivity and repair capacity to ionizing radiation in these donors. (author). 8 refs., 3 figs

  8. Cytoskeletal proteins from human skin fibroblasts, peripheral blood leukocytes, and a lymphoblastoid cell line compared by two-dimensional gel electrophoresis

    International Nuclear Information System (INIS)

    Giometti, C.S.; Willard, K.E.; Anderson, N.L.

    1982-01-01

    Differences in proteins between cells grown as suspension cultures and those grown as attached cultures were studied by comparing the proteins of detergent-resistant cytoskeletons prepared from peripheral blood leukocytes and a lymphoblastoid cell line (GM607) (both grown as suspension cultures) and those of human skin fibroblasts (grown as attached cultures) by two-dimensional gel electrophoresis. The major cytoskeletal proteins of the leukocytes were also present in the protein pattern of GM607 cytoskeletons. In contrast, the fibroblast cytoskeletal protein pattern contained four groups of proteins that differed from the patterns of the leukocytes and GM607. In addition, surface labeling of GM607 and human fibroblasts with 125 I demonstrated that substantial amounts of vimentin and actin are exposed at the surface of the attached fibroblasts, but there is little evidence of similar exposure at the surface of the suspension-grown GM607. These results demonstrate some differences in cytoskeletal protein composition between different types of cells could be related to their ability or lack of ability to grow as attached cells in tissue culture

  9. Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae cells immobilized in agar agar and Ca-alginate matrices

    Energy Technology Data Exchange (ETDEWEB)

    Behera, Shuvashish; Mohanty, Rama Chandra [Department of Botany, Utkal University, Vani Vihar, Bhubaneswar 751004, Orissa (India); Kar, Shaktimay; Ray, Ramesh Chandra [Microbiology Laboratory, Central Tuber Crops Research Institute (Regional Centre), Bhubaneswar 751019, Orissa (India)

    2010-01-15

    Batch fermentation of mahula (Madhuca latifolia L., a tree commonly found in tropical rain forest) flowers was carried out using immobilized cells (in agar agar and calcium alginate) and free cells of Saccharomyces cerevisiae. The ethanol yields were 151.2, 154.5 and 149.1 g kg{sup -1} flowers using immobilized (in agar agar and calcium alginate) and free cells, respectively. Cell entrapment in calcium alginate was found to be marginally superior to those in agar agar (2.2% more) as well as over free cell (3.5% more) as regard to ethanol yield from mahula flowers is concerned. Further, the immobilized cells were physiologically active at least for three cycles [150.6, 148.5 and 146.5 g kg{sup -1} (agar agar) and 152.8, 151.5 and 149.5 g kg{sup -1} flowers (calcium alginate) for first, second and third cycle, respectively] of ethanol fermentation without apparently lowering the productivity. Mahula flowers, a renewable, non-food-grade cheap carbohydrate substrate from non-agricultural environment such as forest can serve as an alternative to food grade sugar/starchy crops such as maize, sugarcane for bio-ethanol production. (author)

  10. Immobilization of Platelet-Rich Plasma onto COOH Plasma-Coated PCL Nanofibers Boost Viability and Proliferation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Anastasiya Solovieva

    2017-12-01

    Full Text Available The scaffolds made of polycaprolactone (PCL are actively employed in different areas of biology and medicine, especially in tissue engineering. However, the usage of unmodified PCL is significantly restricted by the hydrophobicity of its surface, due to the fact that its inert surface hinders the adhesion of cells and the cell interactions on PCL surface. In this work, the surface of PCL nanofibers is modified by Ar/CO2/C2H4 plasma depositing active COOH groups in the amount of 0.57 at % that were later used for the immobilization of platelet-rich plasma (PRP. The modification of PCL nanofibers significantly enhances the viability and proliferation (by hundred times of human mesenchymal stem cells, and decreases apoptotic cell death to a normal level. According to X-ray photoelectron spectroscopy (XPS, after immobilization of PRP, up to 10.7 at % of nitrogen was incorporated into the nanofibers surface confirming the grafting of proteins. Active proliferation and sustaining the cell viability on nanofibers with immobilized PRP led to an average number of cells of 258 ± 12.9 and 364 ± 34.5 for nanofibers with ionic and covalent bonding of PRP, respectively. Hence, our new method for the modification of PCL nanofibers with PRP opens new possibilities for its application in tissue engineering.

  11. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol-gel immobilized cells.

    Science.gov (United States)

    Bagheri Lotfabad, Tayebe; Ebadipour, Negisa; Roostaazad, Reza; Partovi, Maryam; Bahmaei, Manochehr

    2017-04-01

    Rhamnolipids are the most common biosurfactants and P. aeruginosa strains are the most frequently studied microorganisms for the production of rhamnolipids. Eco-friendly advantages and promising applications of rhamnolipids in various industries are the major reasons for pursuing the economic production of these biosurfactants. This study shows that cultivation of P. aeruginosa MR01 in medium contained inexpensive soybean oil refinery wastes which exhibited similar levels and homologues of rhamnolipids. Mass spectrometry indicated that the Rha-C10-C10 and Rha-Rha-C10-C10 constitute the main rhamnolipids in different cultures of MR01 including one of oil carbon source analogues. Moreover, rhamnolipid mixtures extracted from different cultures showed critical micelle concentrations (CMC) in the range of ≃24 to ≃36mg/l with capability to reduce the surface tension of aqueous solution from 72 to ≃27-32mN/m. However, the sol-gel technique using tetraethyl orthosilicate (TEOS) was used as a gentler method in order to entrap the P. aeruginosa MR01 cells in mold silica gels. Immobilized cells can be utilized several times in consecutive fermentation batches as well as in flow fermentation processes. In this way, reusability of the cells may lead to a more economical fermentation process. Approximately 90% of cell viability was retained during the silica sol-gel immobilization and ≃84% of viability of immobilized cells was preserved for 365days of immobilization and storage of the cells in phosphate buffer at 4°C and 25°C. Moreover, mold gels showed good mechanical stability during the seven successive fermentation batches and the entrapped cells were able to efficiently preserve their biosurfactant-producing potential. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The application of methylation specific electrophoresis (MSE to DNA methylation analysis of the 5' CpG island of mucin in cancer cells

    Directory of Open Access Journals (Sweden)

    Yokoyama Seiya

    2012-02-01

    Full Text Available Abstract Background Methylation of CpG sites in genomic DNA plays an important role in gene regulation and especially in gene silencing. We have reported mechanisms of epigenetic regulation for expression of mucins, which are markers of malignancy potential and early detection of human neoplasms. Epigenetic changes in promoter regions appear to be the first step in expression of mucins. Thus, detection of promoter methylation status is important for early diagnosis of cancer, monitoring of tumor behavior, and evaluating the response of tumors to targeted therapy. However, conventional analytical methods for DNA methylation require a large amount of DNA and have low sensitivity. Methods Here, we report a modified version of the bisulfite-DGGE (denaturing gradient gel electrophoresis using a nested PCR approach. We designated this method as methylation specific electrophoresis (MSE. The MSE method is comprised of the following steps: (a bisulfite treatment of genomic DNA, (b amplification of the target DNA by a nested PCR approach and (c applying to DGGE. To examine whether the MSE method is able to analyze DNA methylation of mucin genes in various samples, we apply it to DNA obtained from state cell lines, ethanol-fixed colonic crypts and human pancreatic juices. Result The MSE method greatly decreases the amount of input DNA. The lower detection limit for distinguishing different methylation status is Conclusions The MSE method can provide a qualitative information of methylated sequence profile. The MSE method allows sensitive and specific analysis of the DNA methylation pattern of almost any block of multiple CpG sites. The MSE method can be applied to analysis of DNA methylation status in many different clinical samples, and this may facilitate identification of new risk markers.

  13. Palm oil mill effluent treatment using a two-stage microbial fuel cells system integrated with immobilized biological aerated filters.

    Science.gov (United States)

    Cheng, Jia; Zhu, Xiuping; Ni, Jinren; Borthwick, Alistair

    2010-04-01

    An integrated system of two-stage microbial fuel cells (MFCs) and immobilized biological aerated filters (I-BAFs) was used to treat palm oil mill effluent (POME) at laboratory scale. By replacing the conventional two-stage up-flow anaerobic sludge blanket (UASB) with a newly proposed upflow membrane-less microbial fuel cell (UML-MFC) in the integrated system, significant improvements on NH(3)-N removal were observed and direct electricity generation implemented in both MFC1 and MFC2. Moreover, the coupled iron-carbon micro-electrolysis in the cathode of MFC2 further enhanced treatment efficiency of organic compounds. The I-BAFs played a major role in further removal of NH(3)-N and COD. For influent COD and NH(3)-N of 10,000 and 125 mg/L, respectively, the final effluents COD and NH(3)-N were below 350 and 8 mg/L, with removal rates higher than 96.5% and 93.6%. The GC-MS analysis indicated that most of the contaminants were satisfactorily biodegraded by the integrated system. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. AN INTEGRATIVE WAY OF TEACHING MOLECULAR CELL BIOLOGY AND PROTEIN CHEMISTRY USING ACTIN IMMOBILIZATION ON CHITIN FOR PURIFYING MYOSIN II.

    Directory of Open Access Journals (Sweden)

    M.G. Souza

    2007-05-01

    Full Text Available Our intent is to present our experience on teaching Molecular Cell Biology andProtein Chemistry at UNIRIO through an innovative approach that includes myosin IIextraction and purification. We took advantage of the properties of muscle contractionand propose a simple method for purifying myosin II by affinity chromatography. Thisoriginal method is based on the preparation of an affinity column containing actinmolecules covalently bound to chitin particles. We propose a three-week syllabus thatincludes lectures and bench experimental work. The syllabus favors the activelearning of protein extraction and purification, as well as, of scientific concepts suchas muscle contraction, cytoskeleton structure and its importance for the living cell. Italso promotes the learning of the biotechnological applications of chitin and theapplications of protein immobilization in different industrial fields. Furthermore, theactivities also target the development of laboratorial technical abilities, thedevelopment of problem solving skills and the ability to write up a scientific reportfollowing the model of a scientific article. It is very important to mention that thissyllabus can be used even in places where a facility such as ultra-centrifugation islacking.

  15. Genotoxicity assessment of antidiabetic formulation (ADPHF6 in human lymphocytes by single cell gel electrophoresis (comet assay - an in vitro study

    Directory of Open Access Journals (Sweden)

    Devanand Shanmugasundaram

    2015-06-01

    Full Text Available Levels of Reactive Oxygen Species (ROS molecules during aerobic metabolism are often regulated by unique endogenous antioxidant system. During hyperglycaemic condition, accumulation of excess fatty acids & glucose in adipose tissue (Wright Jr E., 2006 results in increased levels of ROS. When ROS molecules overwhelms the cells antioxidant defence system, it ends up in cellular oxidative stress; which in turn is reported to cause oxidative DNA damage & intervene damage to macromolecules & cellular membranes (Ahmad et al., 2013. Our novel anti-hyperglycaemic polyherbal formulation (ADPHF6 had already illustrated significant inhibitory activity against α-amylase & α-glucosidase enzymes and also scavenging free radicals (in vitro models. The present study demonstrates the protective effect of formulation against H2O2 induced DNA damage in human lymphocytes by Single Cell Gel Electrophoresis (SCGE assay. Experimental procedures were approved by Institutional Human Ethics Committee of Frontier Lifeline Hospital, Chennai, India (FLL/IEC/02/2014. Peripheral human lymphocytes were isolated (Duthie et.al, 2002 and subjected for Cell viability by Trypan blue exclusion method. The alkaline SCGE assay was carried out to determine the level of DNA damage in ADPHF6 treated cells with minor modifications from Singh et al., 1988. Frosted microscopic slides were pre-coated with 1% NMA followed by 1% LMA and incubated for 15 min at 15-20o C. 100 μL of freshly prepared cell suspension (2 x 104 cells was mixed with 0.5% LMA & casted on microscopic slide. The cells were immersed in lysing solution for 2 hours at 4O C and washed in TBE buffer for 5 min at RT. All the slides were treated with fresh alkaline solution for 20 minutes for expression of alkali-labile damage. Electrophoresis was performed at 24 V for 20 min at RT. Slides were washed in neutralizing buffer for 5 min at RT. All the groups were stained with Acridine Orange (20µg/ml & Propidium Iodide (20µg

  16. On-line sequential injection-capillary electrophoresis for near-real-time monitoring of extracellular lactate in cell culture flasks.

    Science.gov (United States)

    Alhusban, Ala A; Gaudry, Adam J; Breadmore, Michael C; Gueven, Nuri; Guijt, Rosanne M

    2014-01-03

    Cell culture has replaced many in vivo studies because of ethical and regulatory measures as well as the possibility of increased throughput. Analytical assays to determine (bio)chemical changes are often based on end-point measurements rather than on a series of sequential determinations. The purpose of this work is to develop an analytical system for monitoring cell culture based on sequential injection-capillary electrophoresis (SI-CE) with capacitively coupled contactless conductivity detection (C(4)D). The system was applied for monitoring lactate production, an important metabolic indicator, during mammalian cell culture. Using a background electrolyte consisting of 25mM tris(hydroxymethyl)aminomethane, 35mM cyclohexyl-2-aminoethanesulfonic acid with 0.02% poly(ethyleneimine) (PEI) at pH 8.65 and a multilayer polymer coated capillary, lactate could be resolved from other compounds present in media with relative standard deviations 0.07% for intraday electrophoretic mobility and an analysis time of less than 10min. Using the human embryonic kidney cell line HEK293, lactate concentrations in the cell culture medium were measured every 20min over 3 days, requiring only 8.73μL of sample per run. Combining simplicity, portability, automation, high sample throughput, low limits of detection, low sample consumption and the ability to up- and outscale, this new methodology represents a promising technique for near real-time monitoring of chemical changes in diverse cell culture applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. A process for the treatment of olive mill waste waters by immobilized cells.

    Directory of Open Access Journals (Sweden)

    ElYachioui, M.

    2005-06-01

    Full Text Available Mould strains were immobilized on sawdust from woods as a solid material for the treatment of Olive Mill Waste (OMW waters. Assays were carried out in flasks. The treatment process was monitored by physico-chemical determinations including pH, polyphenols and COD, which were followed up during the incubation time. In parallel the chemical inhibitory activity of OMW was confirmed biologically by the determination of some microorganisms in the medium including the plate count, yeasts and lactic acid bacteria. Results indicated that the polyphenol degradation level was 87 %. The COD was also reduced by 60 %. The pH of the effluent increased from 4.5 to 6.6. The microbial profiles showed their best growth during the treatment period indicating a removal of the inhibitory activities from the OMW waters. The growth patterns of all microorganism groups were similar and could reach high levels in the effluent.Cepas de moho fueron inmovilizadas sobre serrín de madera como material sólido para el tratamiento de aguas residuales de un molino de aceituna (OMW. Los ensayos se realizaron en matraces. El proceso de tratamiento se monitorizó mediante determinaciones físico-químicas incluyendo pH, polifenoles y DQO, que también se analizaron durante el tiempo de incubación. En paralelo, la actividad inhibidora química de las OMW se confirma biológicamente mediante su efecto sobre algunos microorganismos incluyendo levaduras y bactérias ácido lácticas. Los resultados indicaron que los polifenoles se degradan hasta un nivel del 87 %. La DQO se redujo también al 60 %. El pH del efluente aumentó de 4.5 a 6.6. Los perfiles microbiológicos mostraron un mejor crecimiento a medida que avanzaba el tratamiento indicando una supresión de las actividades inhibidoras de las aguas (OMW. El comportamiento del crecimiento de todos los grupos de microorganismos fue similar y puede alcanzar altos niveles en el efluente

  18. Identification of Increased Amounts of Eppin Protein Complex Components in Sperm Cells of Diabetic and Obese Individuals by Difference Gel Electrophoresis*

    Science.gov (United States)

    Paasch, Uwe; Heidenreich, Falk; Pursche, Theresia; Kuhlisch, Eberhard; Kettner, Karina; Grunewald, Sonja; Kratzsch, Jürgen; Dittmar, Gunnar; Glander, Hans-Jürgen; Hoflack, Bernard; Kriegel, Thomas M.

    2011-01-01

    Metabolic disorders like diabetes mellitus and obesity may compromise the fertility of men and women. To unveil disease-associated proteomic changes potentially affecting male fertility, the proteomes of sperm cells from type-1 diabetic, type-2 diabetic, non-diabetic obese and clinically healthy individuals were comparatively analyzed by difference gel electrophoresis. The adaptation of a general protein extraction procedure to the solubilization of proteins from sperm cells allowed for the resolution of 3187 fluorescent spots in the difference gel electrophoresis image of the master gel, which contained the entirety of solubilized sperm proteins. Comparison of the pathological and reference proteomes by applying an average abundance ratio setting of 1.6 and a p ≤ 0.05 criterion resulted in the identification of 79 fluorescent spots containing proteins that were present at significantly changed levels in the sperm cells. Biometric evaluation of the fluorescence data followed by mass spectrometric protein identification revealed altered levels of 12, 71, and 13 protein species in the proteomes of the type-1 diabetic, type-2 diabetic, and non-diabetic obese patients, respectively, with considerably enhanced amounts of the same set of one molecular form of semenogelin-1, one form of clusterin, and two forms of lactotransferrin in each group of pathologic samples. Remarkably, β-galactosidase-1-like protein was the only protein that was detected at decreased levels in all three pathologic situations. The former three proteins are part of the eppin (epididymal proteinase inhibitor) protein complex, which is thought to fulfill fertilization-related functions, such as ejaculate sperm protection, motility regulation and gain of competence for acrosome reaction, whereas the putative role of the latter protein to function as a glycosyl hydrolase during sperm maturation remains to be explored at the protein/enzyme level. The strikingly similar differences detected in the

  19. Synthesis of Pt-immobilized on silica and polystyrene-encapsulated silica and their applications as electrocatalysts in the proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Yi, Sung-Chul; Kim, Chang Young; Jung, Chi Young; Jeong, Sung Hoon; Kim, Wha Jung

    2011-01-01

    Nano sized Pt particles were successfully immobilized onto SiO 2 and polystyrene-encapsulated silica core shell (SiO 2 @PS). To make the immobilization of Pt onto both silica and polystyrene-encapsulated silica core shell, SiO 2 was first functionalized with -NH 2 using 3-amino propyl trimethoxysilane (APTMS) while for core shell, the negatively charged surface of polystyrene (PS) was changed with positive charge by cationic surfactant such as cetyltrimethylammonium chloride (CTACl) to make the formation of SiO 2 shell on preformed PS sphere. Transmission electron micrograph (TEM) images shows that Pt nanoparticles immobilized onto SiO 2 and SiO 2 @PS were to be 3-4 nm without agglomeraiton. The energy dispersive spectroscope (EDS) shows that Pt contents on both SiO 2 and SiO 2 @PS were to be 21.45% and 20.28%, respectively. In case of Pt-SiO 2 @PS, it is believed that Pt should have been immobilized onto PS surface and pore within SiO 2 shell as well as SiO 2 surface. The MEA fabricated with Pt-SiO 2 @PS shows better cell performance than of Pt-SiO 2 .

  20. Tissue factor-expressing tumor cells can bind to immobilized recombinant tissue factor pathway inhibitor under static and shear conditions in vitro.

    Directory of Open Access Journals (Sweden)

    Sara P Y Che

    Full Text Available Mammary tumors and malignant breast cancer cell lines over-express the coagulation factor, tissue factor (TF. High expression of TF is associated with a poor prognosis in breast cancer. Tissue factor pathway inhibitor (TFPI, the endogenous inhibitor of TF, is constitutively expressed on the endothelium. We hypothesized that TF-expressing tumor cells can bind to immobilized recombinant TFPI, leading to arrest of the tumor cells under shear in vitro. We evaluated the adhesion of breast cancer cells to immobilized TFPI under static and shear conditions (0.35 - 1.3 dyn/cm2. We found that high-TF-expressing breast cancer cells, MDA-MB-231 (with a TF density of 460,000/cell, but not low TF-expressing MCF-7 (with a TF density of 1,400/cell, adhered to recombinant TFPI, under static and shear conditions. Adhesion of MDA-MB-231 cells to TFPI required activated factor VII (FVIIa, but not FX, and was inhibited by a factor VIIa-blocking anti-TF antibody. Under shear, adhesion to TFPI was dependent on the TFPI-coating concentration, FVIIa concentration and shear stress, with no observed adhesion at shear stresses greater than 1.0 dyn/cm2. This is the first study showing that TF-expressing tumor cells can be captured by immobilized TFPI, a ligand constitutively expressed on the endothelium, under low shear in vitro. Based on our results, we hypothesize that TFPI could be a novel ligand mediating the arrest of TF-expressing tumor cells in high TFPI-expressing vessels under conditions of low shear during metastasis.

  1. Correlation between γ-ray-induced DNA double-strand breakage and cell killing after biologically relevant doses: analysis by pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    Murray, D.

    1994-01-01

    We examined the degree of correlation between γ-ray-induced lethality and DNA double-strand breaks (dsbs) after biologically relevant doses of radiation. Radiation lethality was modified by treating 14 C-labelled Chinese hamster ovary cells with either of two aminothiols (WR-1065 or WR-255591) and the associated effect on dsb induction was determined by pulsed-field gel electrophoresis (PFGE). The use of phosphorimaging to analyse the distribution of 14 C-activity in the gel greatly improved the low-dose resolution of the PFGE assay. Both WR-1065 and WR-255591 protected against dsb induction and lethality to a similar extent after low doses of radiation. although this correlation broke down when supralethal doses were used to induce dsbs. Thus, the level of dsbs induced in these cells as measured by PFGE after survival-curve doses of γ-radiation is consistently predictive of the degree of lethality obtained, implying a cause-effect relationship between these two parameters and confirming previous results obtained using the neutral filter elution assay for dsbs. (author)

  2. Lectin affinity electrophoresis.

    Science.gov (United States)

    Kobayashi, Yuka

    2014-01-01

    An interaction or a binding event typically changes the electrophoretic properties of a molecule. Affinity electrophoresis methods detect changes in the electrophoretic pattern of molecules (mainly macromolecules) that occur as a result of biospecific interactions or complex formation. Lectin affinity electrophoresis is a very effective method for the detection and analysis of trace amounts of glycobiological substances. It is particularly useful for isolating and separating the glycoisomers of target molecules. Here, we describe a sensitive technique for the detection of glycoproteins separated by agarose gel-lectin affinity electrophoresis that uses antibody-affinity blotting. The technique is tested using α-fetoprotein with lectin (Lens culinaris agglutinin and Phaseolus vulgaris agglutinin)-agarose gels.

  3. Biocatalyst including porous enzyme cluster composite immobilized by two-step crosslinking and its utilization as enzymatic biofuel cell

    Science.gov (United States)

    Chung, Yongjin; Christwardana, Marcelinus; Tannia, Daniel Chris; Kim, Ki Jae; Kwon, Yongchai

    2017-08-01

    An enzyme cluster composite (TPA/GOx) formed from glucose oxidase (GOx) and terephthalaldehyde (TPA) that is coated onto polyethyleneimine (PEI) and carbon nanotubes (CNTs) is suggested as a new catalyst ([(TPA/GOx)/PEI]/CNT). In this catalyst, TPA promotes inter-GOx links by crosslinking to form a large and porous structure, and the TPA/GOx composite is again crosslinked with PEI/CNT to increase the amount of immobilized GOx. Such a two-step crosslinking (i) increases electron transfer because of electron delocalization by π conjugation and (ii) reduces GOx denaturation because of the formation of strong chemical bonds while its porosity facilitates mass transfer. With these features, an enzymatic biofuel cell (EBC) employing the new catalyst is fabricated and induces an excellent maximum power density (1.62 ± 0.08 mW cm-2), while the catalytic activity of the [(TPA/GOx)/PEI]/CNT catalyst is outstanding. This is clear evidence that the two-step crosslinking and porous structure caused by adoption of the TPA/GOx composite affect the performance enhancement of EBC.

  4. Immobilization of silver nanoparticles in Zr-based MOFs: induction of apoptosis in cancer cells

    Science.gov (United States)

    Han, Congcong; Yang, Jian; Gu, Jinlou

    2018-03-01

    Silver nanoparticles (AgNPs) are a potential class of nanomaterial for antibiosis and chemotherapeutic effects against human carcinoma cells. However, the DNA-damaging ability of free AgNPs pose the critical issues in their biomedical applications. Herein, we demonstrated a facile method to capture Ag+ ions and reduce them into active AgNPs within Zr-based metal-organic frameworks (MOFs) of UiO-66 with a mild reductant of DMF (AgNPs@UiO-66(DMF)). The average diameters of UiO-66 carriers and AgNPs were facilely controlled to be 140 and 10 nm, respectively. The obtained UiO-66 nanocarriers exhibited excellent biocompatibility and could be effectively endocytosed by cancer cells. Additionally, the AgNPs@UiO-66(DMF) could rapidly release Ag+ ions and efficiently inhibit the growth of cancer cells. The half maximal inhibitory concentration (IC50) values of the encapsulated AgNPs were calculated to be 2.7 and 2.45 μg mL-1 for SMMC-7721 and HeLa cells, respectively, which were much lower than those of free AgNPs in the reported works. Therefore, the developed AgNPs@UiO-66(DMF) not only maintained the therapeutic effect against cancer cells but also reduced the dosage of free AgNPs in chemotherapy treatment. [Figure not available: see fulltext.

  5. Cyclin-dependent kinase inhibitor, roscovitine, in combination with exogenous cytokinin, N6-benzyladenine, causes increase of cis-cytokinins in immobilized tobacco cells

    Czech Academy of Sciences Publication Activity Database

    Blagoeva, Elitsa; Malbeck, Jiří; Gaudinová, Alena; Vaněk, Tomáš; Vaňková, Radomíra

    2003-01-01

    Roč. 25, č. 6 (2003), s. 469-472 ISSN 0141-5492 R&D Projects: GA MŠk OC 840.20; GA MŠk LN00A081 Institutional research plan: CEZ:AV0Z4055905; CEZ:AV0Z5038910 Keywords : alginate * cytokinins * plant cell immobilization Subject RIV: ED - Physiology Impact factor: 0.778, year: 2003

  6. The application of methylation specific electrophoresis (MSE) to DNA methylation analysis of the 5' CpG island of mucin in cancer cells

    International Nuclear Information System (INIS)

    Yokoyama, Seiya; Yonezawa, Suguru; Kitamoto, Sho; Yamada, Norishige; Houjou, Izumi; Sugai, Tamotsu; Nakamura, Shin-ichi; Arisaka, Yoshifumi; Takaori, Kyoichi; Higashi, Michiyo

    2012-01-01

    Methylation of CpG sites in genomic DNA plays an important role in gene regulation and especially in gene silencing. We have reported mechanisms of epigenetic regulation for expression of mucins, which are markers of malignancy potential and early detection of human neoplasms. Epigenetic changes in promoter regions appear to be the first step in expression of mucins. Thus, detection of promoter methylation status is important for early diagnosis of cancer, monitoring of tumor behavior, and evaluating the response of tumors to targeted therapy. However, conventional analytical methods for DNA methylation require a large amount of DNA and have low sensitivity. Here, we report a modified version of the bisulfite-DGGE (denaturing gradient gel electrophoresis) using a nested PCR approach. We designated this method as methylation specific electrophoresis (MSE). The MSE method is comprised of the following steps: (a) bisulfite treatment of genomic DNA, (b) amplification of the target DNA by a nested PCR approach and (c) applying to DGGE. To examine whether the MSE method is able to analyze DNA methylation of mucin genes in various samples, we apply it to DNA obtained from state cell lines, ethanol-fixed colonic crypts and human pancreatic juices. The MSE method greatly decreases the amount of input DNA. The lower detection limit for distinguishing different methylation status is < 0.1% and the detectable minimum amount of DNA is 20 pg, which can be obtained from only a few cells. We also show that MSE can be used for analysis of challenging samples such as human isolated colonic crypts or human pancreatic juices, from which only a small amount of DNA can be extracted. The MSE method can provide a qualitative information of methylated sequence profile. The MSE method allows sensitive and specific analysis of the DNA methylation pattern of almost any block of multiple CpG sites. The MSE method can be applied to analysis of DNA methylation status in many different clinical

  7. Fabrication of Biomolecule Microarrays for Cell Immobilization Using Automated Microcontact Printing.

    Science.gov (United States)

    Foncy, Julie; Estève, Aurore; Degache, Amélie; Colin, Camille; Cau, Jean Christophe; Malaquin, Laurent; Vieu, Christophe; Trévisiol, Emmanuelle

    2018-01-01

    Biomolecule microarrays are generally produced by conventional microarrayer, i.e., by contact or inkjet printing. Microcontact printing represents an alternative way of deposition of biomolecules on solid supports but even if various biomolecules have been successfully microcontact printed, the production of biomolecule microarrays in routine by microcontact printing remains a challenging task and needs an effective, fast, robust, and low-cost automation process. Here, we describe the production of biomolecule microarrays composed of extracellular matrix protein for the fabrication of cell microarrays by using an automated microcontact printing device. Large scale cell microarrays can be reproducibly obtained by this method.

  8. Immobilization and continuous culture of cells with radiation polymerized supports for the uses of biomass conversion processes

    International Nuclear Information System (INIS)

    Kaetsu, I.; Kumakura, M.; Fujimura, T.; Tamada, M.; Kasai, N.

    1988-01-01

    A novel technique for immobilization and biofunctional components such as enzyme, antibody, protein, drug, hormone and organella by means of radiation polymerization was studied and developed. (E.G.) [pt

  9. Nonradioactive telomerase activity assay by microchip electrophoresis: privileges to the classical gel electrophoresis assay.

    Science.gov (United States)

    Zhelev, Zhivko; Bakalova, Rumiana; Ewis, Ashraf; Ohba, Hideki; Ishikawa, Mitsuru; Baba, Yoshinobu

    2005-08-01

    The present study accents on the privileges of microchip-based electrophoresis to the conventional gel electrophoresis in separation of telomerase repeat amplification protocol/polymerase chain reaction (PCR) ladder products obtained in telomerase-catalyzed reaction in cancer cells. We try to clarify the interpretation of the results obtained by both electrophoretic procedures and to avoid misinterpretation as a result of PCR-dependent artefacts.

  10. Immobilization of heparan sulfate on electrospun meshes to support embryonic stem cell culture and differentiation

    NARCIS (Netherlands)

    Meade, K.A.; White, K.J.; Pickford, C.E.; Holley, R.J.; Marson, A.; Tillotson, D.; Kuppevelt, A.H.M.S.M. van; Whittle, J.D.; Day, A.J.; Merry, C.L.

    2013-01-01

    As our understanding of what guides the behavior of multi- and pluripotent stem cells deepens, so too does our ability to utilize certain cues to manipulate their behavior and maximize their therapeutic potential. Engineered, biologically functionalized materials have the capacity to influence stem

  11. Analysis of cell performance and thermal regeneration of a lithium-tin cell having an immobilized fused-salt electrolyte

    Science.gov (United States)

    Cairns, E. J.; Shimotake, H.

    1969-01-01

    Cell performance and thermal regeneration of a thermally regenerative cell uses lithium and tin and a fused-salt electrolyte. The emf of the Li-Sn cell, as a function of cathode-alloy composition, is shown to resemble that of the Na-Bi cell.

  12. Design and performance of a trickle-bed bioreactor with immobilized hybridoma cells.

    Science.gov (United States)

    Phillips, H A; Scharer, J M; Bols, N C; Moo-Young, M

    1992-01-01

    A trickle-bed system employing inert matrices of vermiculite or polyurethane foam packed in the downcomer section of a split-flow air-lift reactor has been developed for hybridoma culture to enhance antibody productivity. This quiescent condition favoured occlusion and allowed the cells to achieve densities twelve fold greater (12.8 x 10(6) cells/ml reactor for polyurethane foam) than in free cell suspension. The reactor was operated in a cyclic batch mode whereby defined volumes of medium were periodically withdrawn and replaced with equal volumes of fresh medium. The pH of the medium was used as the indicator of the feeding schedule. Glucose, lactate and ammonia concentrations reached a stationary value after 5 days. With vermiculite packing, a monoclonal antibody (MAb) concentration of 2.4 mg/l was achieved after 12 days. The MAb concentration declined then increased to a value of 1.8 mg/l. In the polyurethane foam average monoclonal antibody (MAb) concentrations reached a stationary value of 1.1 mg/l in the first 20 days and increased to a new stationary state value of 2.1 mg/l for the remainder of the production. MAb productivity in the trickle-bed reactor was 0.3 mg/l.d (polyurethane foam) and 0.18 mg/l.d (vermiculite) in comparison to 0.12 mg/l.d for free cell suspension. This trickle-bed system seems to be an attractive way of increasing MAb productivity in culture.

  13. Magnetically modified bacterial cellulose: A promising carrier for immobilization of affinity ligands, enzymes, and cells

    Czech Academy of Sciences Publication Activity Database

    Baldíková, E.; Pospíšková, K.; Ladakis, D.; Kookos, I.K.; Koutinas, A.A.; Šafaříková, Miroslava; Šafařík, Ivo

    2017-01-01

    Roč. 71, February (2017), s. 214-221 ISSN 0928-4931 Institutional support: RVO:60077344 Keywords : bacterial cellulose * Komagataeibacter sucrofermentans * copper phthalocyanine * crystal violet * yeast cells * trypsin Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Bioproducts (products that are manufactured using biological material as feedstock) biomaterials, bioplastics, biofuels, bioderived bulk and fine chemicals, bio-derived novel materials Impact factor: 4.164, year: 2016

  14. Potential of Immobilized Whole-Cell Methylocella tundrae as a Biocatalyst for Methanol Production from Methane.

    Science.gov (United States)

    Mardina, Primata; Li, Jinglin; Patel, Sanjay K S; Kim, In-Won; Lee, Jung-Kul; Selvaraj, Chandrabose

    2016-07-28

    Methanol is a versatile compound that can be biologically synthesized from methane (CH4) by methanotrophs using a low energy-consuming and environment-friendly process. Methylocella tundrae is a type II methanotroph that can utilize CH4 as a carbon and energy source. Methanol is produced in the first step of the metabolic pathway of methanotrophs and is further oxidized into formaldehyde. Several parameters must be optimized to achieve high methanol production. In this study, we optimized the production conditions and process parameters for methanol production. The optimum incubation time, substrate, pH, agitation rate, temperature, phosphate buffer and sodium formate concentration, and cell concentration were determined to be 24 h, 50% CH4, pH 7, 150 rpm, 30°C, 100 mM and 50 mM, and 18 mg/ml, respectively. The optimization of these parameters significantly improved methanol production from 0.66 to 5.18 mM. The use of alginate-encapsulated cells resulted in enhanced methanol production stability and reusability of cells after five cycles of reuse under batch culture conditions.

  15. In vivo evaluation of EPO-secreting cells immobilized in different alginate-PLL microcapsules.

    Science.gov (United States)

    Ponce, S; Orive, G; Hernández, R M; Gascón, A R; Canals, J M; Muñoz, M T; Pedraz, J L

    2006-11-01

    Alginates are the most employed biomaterials for cell encapsulation due to their abundance, easy gelling properties and apparent biocompatibility. However, as natural polymers different impurities including endotoxins, proteins and polyphenols can be found in their composition. Several purification protocols as well as different batteries of assays to prove the biocompatibility of the alginates in vitro have been recently developed. However, little is known about how the use of alginates with different purity grade may affect the host immune response after their implantation in vivo. The present paper investigates the long-term functionality and biocompatibility of murine erythropoietin (EPO) secreting C2C12 cells entrapped in microcapsules elaborated with alginates with different properties (purity, composition and viscosity). Results showed that independently of the alginate type employed, the animals presented elevated hematocrit levels until day 130, remaining at values between 70-87%. However, histological analysis of the explanted devices showed higher overgrowth around non-biomedical grade alginate microcapsules which could be directly related with higher impurity content of this type of alginate. Although EPO delivery may be limited by the formation of a fibrotic layer around non-biomedical grade alginate microcapsules, the high EPO secretion of the encapsulated cells together with the pharmacodynamic behaviour and the angiogenic and immune-modulatory properties of EPO result in no direct correlation between the biocompatibility of the alginate and the therapeutic response obtained.

  16. Simultaneous determination of superoxide and hydrogen peroxide in macrophage RAW 264.7 cell extracts by microchip electrophoresis with laser-induced fluorescence detection.

    Science.gov (United States)

    Li, Hongmin; Li, Qingling; Wang, Xu; Xu, Kehua; Chen, Zhenzhen; Gong, Xiaocong; Liu, Xin; Tong, Lili; Tang, Bo

    2009-03-15

    A method for the first time to simultaneously determine superoxide and hydrogen peroxide in macrophage RAW 264.7 cell extracts by microchip electrophoresis with laser-induced fluorescence detection (MCE-LIF) was developed. 2-Chloro-1,3-dibenzothiazolinecyclohexene (DBZTC) and bis(p-methylbenzenesulfonyl) dichlorofluorescein (FS), two probes that can be specifically derivatized by superoxide and hydrogen peroxide, respectively, were synthesized and used. Parameters influencing the derivatization and on-chip separation were optimized. With the use of a HEPES (20 mM, pH 7.4) running buffer, a 50 mm long separation channel, and a separation voltage of 1800 V, baseline separation was achieved within 48 s for the two derivatization products, DBZTC-oxide (DBO) and 2,7-dichlorofluorescein (DCF). The linearity ranges of the method were 0.08-5.0 and 0.02-5.0 microM with detection limits (signal-to-noise ratio = 3) of 10 nM (1.36 amol) and 5.6 nM (0.76 amol) for superoxide and hydrogen peroxide, respectively. The relative standard deviations (RSDs) of migration time and peak area were less than 2.0% and 5.0%, respectively. The recoveries of the cell extract samples spiked with 1.0 microM standard solutions were 96.1% and 93.0% for superoxide and hydrogen peroxide, respectively. With the use of this method, superoxide and hydrogen peroxide in phorbol myristate acetate (PMA)-stimulated macrophage RAW 264.7 cell extracts were found to be 0.78 and 1.14 microM, respectively. The method has paved a way for simultaneously determining two or more reactive oxygen species (ROS) in a biological system with high resolution.

  17. Generation of continuous packed bed reactor with PVA-alginate blend immobilized Ochrobactrum sp. DGVK1 cells for effective removal of N,N-dimethylformamide from industrial effluents

    Energy Technology Data Exchange (ETDEWEB)

    Sanjeev Kumar, S.; Kumar, M. Santosh [Department of Biochemistry, Gulbarga University, Gulbarga 585106, Karnataka (India); Siddavattam, D. [Department of Animal Sciences, University of Hyderabad, Hyderabad 500046 (India); Karegoudar, T.B., E-mail: goudartbk@gmail.com [Department of Biochemistry, Gulbarga University, Gulbarga 585106, Karnataka (India)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Removal of DMF was compared by free and immobilized cells of Ochrobactrum sp. DGVK1. Black-Right-Pointing-Pointer Ochrobactrum sp. DGVK1 cells entrapped in PVA-alginate have shown more tolerance. Black-Right-Pointing-Pointer PVA-alginate beads removed DMF even in the presence of other organic solvents. Black-Right-Pointing-Pointer Removal of DMF from industrial effluents by PVA-alginate blended batch operations. Black-Right-Pointing-Pointer Development of industrially feasible remediation strategy for DMF removal. - Abstract: Effective removal of dimethylformamide (DMF), the organic solvent found in industrial effluents of textile and pharma industries, was demonstrated by using free and immobilized cells of Ochrobactrum sp. DGVK1, a soil isolate capable of utilizing DMF as a sole source of carbon, nitrogen. The free cells have efficiently removed DMF from culture media and effluents, only when DMF concentration was less than 1% (v/v). Entrapment of cells either in alginate or in polyvinyl alcohol (PVA) failed to increase tolerance limits. However, the cells of Ochrobactrum sp. DGVK1 entrapped in PVA-alginate mixed matrix tolerated higher concentration of DMF (2.5%, v/v) and effectively removed DMF from industrial effluents. As determined through batch fermentation, these immobilized cells have retained viability and degradability for more than 20 cycles. A continuous packed bed reactor, generated by using PVA-alginate beads, efficiently removed DMF from industrial effluents, even in the presence of certain organic solvents frequently found in effluents along with DMF.

  18. Assessment of vinyl chloride-induced DNA damage in lymphocytes of plastic industry workers using a single-cell gel electrophoresis technique.

    Science.gov (United States)

    Awara, W M; El-Nabi, S H; El-Gohary, M

    1998-06-26

    DNA damage and the formation of stable carcinogen-DNA adducts are considered critical events in the initiation of the carcinogenic process. This study was carried out to assess whether exposure of plastics industry workers to the vinyl chloride monomer (VCM) for different periods of time would cause DNA damage, using the single-cell gel electrophoresis (SCGE) technique. Levels of DNA damage was assessed by both extent of DNA migration and numbers of DNA damaged spots in the peripheral blood lymphocytes from 32 plastics workers with different periods of exposure to VCM; they were evaluated by comparison with a group of non-exposed individuals. It was found that plastics workers who were exposed to VCM for different periods of time showed significantly increased levels of DNA damage compared with the non-exposed subjects. There was a significant correlation between the severity of DNA damage and duration of exposure. However, no significant correlation was found between the age of all subjects and DNA damage. Concentrations of VCM in the air inside the factory were found to be significantly higher than values in non-exposed areas, despite being lower than the threshold limit value (TLV). Our results encourage the application of SCGE as a sensitive, simple, fast and useful technique in the regular health screening of workers occupationally exposed to VCM (even at concentrations below the TLV) to assess the possibility of any DNA damage.

  19. Glucose Oxidase Directly Immobilized onto Highly Porous Gold Electrodes for Sensing and Fuel Cell applications

    International Nuclear Information System (INIS)

    Toit, Hendrik du; Di Lorenzo, Mirella

    2014-01-01

    Highlights: • Electrochemical adsorption of glucose oxidase (GOx) on highly porous gold (hPG); • Rapid one-step immobilisation protocol with no use of expensive and/or harsh reagents; • Linear response to glucose in the range 50 μM -10 mM; • Lower detection limit, stable over 5 days: 25 μM. • The use of the GOx-hPG in a fuel cell lead to the peak power density of 6 μW cm −2 . - Abstract: The successful implementation of redox-enzyme electrodes in biosensors and enzymatic biofuel cells has been the subject of extensive research. For high sensitivity and high energy-conversion efficiency, the effective electron transfer at the protein-electrode interface has a key role. This is difficult to achieve in the case of glucose oxidase, due to the fact that for this enzyme the redox centre is buried inside the structure, far from any feasible electrode binding sites. This study reports, a simple and rapid methodology for the direct immobilisation of glucose oxidase into highly porous gold electrodes. When the resulting electrode was tested as glucose sensor, a Michaelis-Menten kinetic trend was observed, with a detection limit of 25 μM. The bioelectrode sensitivity, calculated against the superficial surface area of the bioelectrode, was of 22.7 ± 0.1 μA mM −1 cm −2 . This glucose oxidase electrode was also tested as an anode in a glucose/O 2 enzymatic biofuel cell, leading to a peak power density of 6 μW cm −2 at a potential of 0.2 V

  20. Kinetic and mass transfer studies on the isomerization of cellulose hydrolyzate using immobilized Streptomyces cells

    Energy Technology Data Exchange (ETDEWEB)

    Ghose, T K; Chand, S

    1978-01-01

    Streptomyces cells possessing glucose isomerase activity, heat-treated and confined within polyester sacs have been used in batch/continuous isomerization of enzymatically hydrolyzed microcrystalline cellulose. Conversion data at different concentrations of substrate closely follow the reactor performance equation based on the reaction kinetics. The effect of external film and pore diffusional resistances were experimentally found to be negligible. The dispersion effects in the packed bed column have been evaluated by pulse input tracer analysis. Continuous operation of the column to isomerize cellulose hydrolyzate (2.0 M glucose) showed an exponential deactivation of enzyme activity with a half-life of 447 h.

  1. Laminin Peptide-Immobilized Hydrogels Modulate Valve Endothelial Cell Hemostatic Regulation.

    Directory of Open Access Journals (Sweden)

    Liezl Rae Balaoing

    Full Text Available Valve endothelial cells (VEC have unique phenotypic responses relative to other types of vascular endothelial cells and have highly sensitive hemostatic functions affected by changes in valve tissues. Furthermore, effects of environmental factors on VEC hemostatic function has not been characterized. This work used a poly(ethylene glycol diacrylate (PEGDA hydrogel platform to evaluate the effects of substrate stiffness and cell adhesive ligands on VEC phenotype and expression of hemostatic genes. Hydrogels of molecular weights (MWs 3.4, 8, and 20 kDa were polymerized into platforms of different rigidities and thiol-modified cell adhesive peptides were covalently bound to acrylate groups on the hydrogel surfaces. The peptide RKRLQVQLSIRT (RKR is a syndecan-1 binding ligand derived from laminin, a trimeric protein and a basement membrane matrix component. Conversely, RGDS is an integrin binding peptide found in many extracellular matrix (ECM proteins including fibronectin, fibrinogen, and von Willebrand factor (VWF. VECs adhered to and formed a stable monolayer on all RKR-coated hydrogel-MW combinations. RGDS-coated platforms supported VEC adhesion and growth on RGDS-3.4 kDa and RGDS-8 kDa hydrogels. VECs cultured on the softer RKR-8 kDa and RKR-20 kDa hydrogel platforms had significantly higher gene expression for all anti-thrombotic (ADAMTS-13, tissue factor pathway inhibitor, and tissue plasminogen activator and thrombotic (VWF, tissue factor, and P-selectin proteins than VECs cultured on RGDS-coated hydrogels and tissue culture polystyrene controls. Stimulated VECs promoted greater platelet adhesion than non-stimulated VECs on their respective culture condition; yet stimulated VECs on RGDS-3.4 kDa gels were not as responsive to stimulation relative to the RKR-gel groups. Thus, the syndecan binding, laminin-derived peptide promoted stable VEC adhesion on the softer hydrogels and maintained VEC phenotype and natural hemostatic function. In

  2. Novel pectin-silica hybrids used for immobilization of Trichosporon cutaneum cells efficient in removal of Cadmium and Copper ions from waste water

    International Nuclear Information System (INIS)

    Georgieva, N.; Rangelova, N.; Peshev, D.; Nenkova, S.

    2011-01-01

    New silica hybrid materials containing tetramethyl siloxane (TMOS) as an inorganic precursor and apple pectin (AP) as an organic compound were prepared. The quantity of organic substance was 5 and 50 wt% AP. The amorphous state of the samples was proved by X-ray diffraction analyses (XRD). The Infrared scattering spectra (IR) showed characteristic peaks for SiO2 network, as well as for pectin. The synthesized hybrid materials were applied as matrices for cells immobilization by attachment and entrapment of the filamentous yeast Trichosporon cutaneum R57. This strain showed considerable ability to remove cadmium and copper ions from aqueous solutions. Regarding heavy metal biosorption capacity, the attachment was found to be superior compared to the entrapment method as a technique for biomass immobilization. (authors) Key words: biomaterials, composite materials, microstructure, sol-gel preparation

  3. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity

    Science.gov (United States)

    Agnihotri, Shekhar; Bajaj, Geetika; Mukherji, Suparna; Mukherji, Soumyo

    2015-04-01

    Silver-based hybrid nanomaterials are gaining interest as potential alternatives for conventional antimicrobial agents. Herein, we present a simple, facile and eco-friendly approach for the deposition of silver nanoparticles (AgNPs) on ZnO nanorods, which act as a nanoreactor for in situ synthesis and as an immobilizing template in the presence of arginine. The presence of arginine enhanced the stability of ZnO deposition on the glass substrate by hindering the dissolution of zinc under alkaline conditions. Various Ag/ZnO hybrid nanorod (HNR) samples were screened to obtain a high amount of silver immobilization on the ZnO substrate. Ag/ZnO HNRs displayed potent antibacterial ability and could achieve 100% kill for both Escherichia coli and Bacillus subtilis strains under various test conditions. The hybrid material mediated its dual mode of antibacterial action through direct contact-killing and release of silver ions/nanoparticles and showed superior bactericidal performance compared to pure ZnO nanorods and colloidal AgNPs. No significant decline in antibacterial efficacy was observed even after the same substrate was repeatedly reused multiple times. Interestingly, the amount of Ag and Zn release was much below their maximal limit in drinking water, thus preventing potential health hazards. Immobilized AgNPs showed no cytotoxic effects on the human hepatocarcinoma cell line (HepG2). Moreover, treating cells with the antibacterial substrate for 24 hours did not lead to significant generation of reactive oxygen species (ROS). The good biocompatibility and bactericidal efficacy would thus make it feasible to utilize this immobilization strategy for preparing new-generation antibacterial coatings.Silver-based hybrid nanomaterials are gaining interest as potential alternatives for conventional antimicrobial agents. Herein, we present a simple, facile and eco-friendly approach for the deposition of silver nanoparticles (AgNPs) on ZnO nanorods, which act as a

  4. Silk fibroin immobilization on poly(ethylene terephthalate) films: Comparison of two surface modification methods and their effect on mesenchymal stem cells culture

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Meini; Yao, Jinrong; Chen, Xin; Huang, Lei; Shao, Zhengzhong, E-mail: zzshao@fudan.edu.cn

    2013-04-01

    Silk fibroin (SF) has played a curial role for the surface modification of conventional materials to improve the biocompatibility, and SF modified poly(ethylene terephthalate) (PET) materials have potential applications on tissue engineering such as artificial ligament, artificial vessel, artificial heart valve sewing cuffs dacron and surgical mesh engineering. In this work, SF was immobilized onto PET film via two different methods: 1) plasma pretreatment followed by SF dip coating (PET-SF) and 2) plasma-induce acrylic acid graft polymerization and subsequent covalent immobilization of SF on PET film (PET-PAA-SF). It could be found that plasma treatment provided higher surface roughness which was suitable for further SF dip coating, while grafted poly(acrylic acid) (PAA) promised the covalent bonding between SF and PAA. ATR-FTIR adsorption band at 3284 cm{sup −1}, 1623 cm{sup −1} and 1520 cm{sup −1} suggested the successful introduction of SF onto PET surface, while the amount of immobilized SF of PET-SF was higher than PET-PAA-SF according to XPS investigation (0.29 vs 0.23 for N/C ratio). Surface modified PET film was used as substrate for mesenchymal stem cells (MSCs) culture, the cells on PET-SF surface exhibited optimum density compared to PET-PAA-SF according to CCK-8 assays, which indicated that plasma pretreatment followed by SF dip coating was a simple and effective way to prepare biocompatible PET surface. Highlights: ► Silk fibroins were immobilized onto PET films with or without the linker of PAA. ► Various techniques were performed to characterize the modified surfaces ► Plasma treatment followed by SF dip coating introduced more SF onto PET films. ► Compare to PET-PAA-SF, PET-SF has better biocompatibility base on MSCs culture.

  5. Inhibition of nucleotide excision repair by fludarabine in normal lymphocytes in vitro, measured by the alkaline single cell gel electrophoresis (comet) assay

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, Takahiro; Kawai, Yasukazu; Ueda, Takanori [Fukui Medical Univ., Matsuoka (Japan)

    2002-05-01

    Alkylating agents or platinum analogues initiate several excision repair mechanisms, which involve incision of the DNA strand, excision of the damaged nucleotide, gap filling by DNA resynthesis, and rejoining by ligation. The previous study described that nucleotide excision repair permitted incorporation of fludarabine nucleoside (F-area-A) into the repair patch, thereby inhibiting the DNA resynthesis. In the present study, to clarify the repair kinetics in view of the inhibition by F-ara-A, normal lymphocytes were stimulated to undergo nucleotide excision repair by ultraviolet C (UV) irradiation in the presence or absence of F-ara-A. The repair kinetics were determined as DNA single strand breaks resulting from the incision and the rejoining using the alkaline single cell gel electrophoresis (comet) assay. DNA resynthesis was evaluated in terms of the uptake of tritiated thymidine into DNA. The lymphocytes initiated the incision step maximally at 1 h, and completed the rejoining process within 4 h after UV exposure. UV also initiated thymidine uptake, which increased time-dependently and reached a plateau at 4 h. A 2-h pre-incubation with F-ara-A inhibited the repair in a concentration-dependent manner, with the maximal inhibition by 5 {mu}M. This inhibitory effect was demonstrated by the reduction of the thymidine uptake and by the inhibition of the rejoining. A DNA polymerase inhibitor, aphidicolin, and a ribonucleotide reductase inhibitor, hydroxyurea, were not so inhibitory to the repair process as F-ara-A at equimolar concentrations. The present findings suggest that inhibition of nucleotide excision repair may represent a novel therapeutic strategy against cancer, especially in the context of resistant cells with an increased repair capacity. (author)

  6. Protein covalent immobilization via its scarce thiol versus abundant amine groups: Effect on orientation, cell binding domain exposure and conformational lability.

    Science.gov (United States)

    Ba, O M; Hindie, M; Marmey, P; Gallet, O; Anselme, K; Ponche, A; Duncan, A C

    2015-10-01

    Quantity, orientation, conformation and covalent linkage of naturally cell adhesive proteins adsorbed or covalently linked to a surface, are known to influence the preservation of their subsequent long term cell adhesion properties and bioactivity. In the present work, we explore two different strategies for the covalent linking of plasma fibronectin (pFN) - used as a cell adhesive model protein, onto a polystyrene (PS) surface. One is aimed at tethering the protein to the surface in a semi-oriented fashion (via one of the 4 free thiol reactive groups on the protein) with a heterofunctional coupling agent (SSMPB method). The other aims to immobilize the protein in a more random fashion by reaction between the abundant pendant primary amine bearing amino acids of the pFN and activated carboxylic surface functions obtained after glutaric anhydride surface treatment (GA method). The overall goal will be to verify the hypothesis of a correlation between covalent immobilization of a model cell adhesive protein to a PS surface in a semi-oriented configuration (versus randomly oriented) with promotion of enhanced exposure of the protein's cell binding domain. This in turn would lead to enhanced cell adhesion. Ideally the goal is to elaborate substrates exhibiting a long term stable protein monolayer with preserved cell adhesive properties and bioactivity for biomaterial and/or cell adhesion commercial plate applications. However, the initial restrictive objective of this paper is to first quantitatively and qualitatively investigate the reversibly (merely adsorbed) versus covalently irreversibly bound protein to the surface after the immobilization procedure. Although immobilized surface amounts were similar (close to the monolayer range) for all immobilization approaches, covalent grafting showed improved retention and stronger "tethering" of the pFN protein to the surface (roughly 40%) after SDS rinsing compared to that for mere adsorption (0%) suggesting an added value

  7. Glucocorticoid cell reception in mice of different strains with natural killer cell activity depressed during immobilization stress

    International Nuclear Information System (INIS)

    Lyashko, V.N.; Sukhikh, G.T.

    1987-01-01

    The authors study differences in stress-induced depression of natural killer cell activity in mice of different inbred lines, depending on parameters of glucocorticoid binding with glucorticoid receptors of spleen cells and on the hormonal status of the animals. In determining the parameters of glucocorticoid binding on intact splenocytes, aliquots of a suspension of washed splenocytes were incubated with tritium-labeled dexamethasone

  8. Comparison of DNA double-strand break rejoining as measured by pulsed field gel electrophoresis, neutral sucrose gradient centrifugation and non-unwinding filter elution in irradiated plateau-phase CHO cells

    International Nuclear Information System (INIS)

    Iliakis, G.; Metzger, L.; Pantelias, G.

    1991-01-01

    The initial (up to 30 min) rate of DNA double-strand break (dsb) rejoining was measured in irradiated plateau-phase CHO cells, in a set of parallel experiments using the same cell suspension, by means of non-unwinding filter elution, neutral sucrose gradient centrifugation, and two pulsed-field gel electrophoresis assays: asymmetric field inversion gel electrophoresis (AFIGE) and clamped homogeneous electric field (CHEF) gel electrophoresis. The rate of DNA dsb rejoining was compared to the rate of rejoining of chromatin breaks measured, also in the same cell population, using the technique of premature chromosome condensation (PCC). Two radiation exposures, 25 Gy and/or 50 Gy, were used and applied to the individual parts of the experiments according to the sensitivity of the assay under investigation. The results suggest all major techniques currently used for assaying rejoining of DNA dsb give similar results, and indicate that more information is required before a direct correlation between rejoining of DNA dsb and rejoining of chromatin breaks can be established. (author)

  9. Practical capillary electrophoresis

    CERN Document Server

    Weinberger, Robert

    2000-01-01

    In the 1980s, capillary electrophoresis (CE) joined high-performance liquid chromatography (HPLC) as the most powerful separation technique available to analytical chemists and biochemists. Published research using CE grew from 48 papers in the year of commercial introduction (1988) to 1200 in 1997. While only a dozen major pharmaceutical and biotech companies have reduced CE to routine practice, the applications market is showing real or potential growth in key areas, particularly in the DNA marketplace for genomic mapping and forensic identification. For drug development involving small molecules (including chiral separations), one CE instrument can replace 10 liquid chromatographs in terms of speed of analysis. CE also uses aqueous rather than organic solvents and is thus environmentally friendlier than HPLC. The second edition of Practical Capillary Electrophoresis has been extensively reorganized and rewritten to reflect modern usage in the field, with an emphasis on commercially available apparatus and ...

  10. Analysis of electrophoresis performance

    Science.gov (United States)

    Roberts, G. O.

    1984-01-01

    The SAMPLE computer code models electrophoresis separation in a wide range of conditions. Results are included for steady three dimensional continuous flow electrophoresis (CFE), time dependent gel and acetate film experiments in one or two dimensions and isoelectric focusing in one dimension. The code evolves N two dimensional radical concentration distributions in time, or distance down a CFE chamber. For each time or distance increment, there are six stages, successively obtaining the pH distribution, the corresponding degrees of ionization for each radical, the conductivity, the electric field and current distribution, and the flux components in each direction for each separate radical. The final stage is to update the radical concentrations. The model formulation for ion motion in an electric field ignores activity effects, and is valid only for low concentrations; for larger concentrations the conductivity is, therefore, also invalid.

  11. Moving into advanced nanomaterials. Toxicity of rutile TiO{sub 2} nanoparticles immobilized in nanokaolin nanocomposites on HepG2 cell line

    Energy Technology Data Exchange (ETDEWEB)

    Bessa, Maria João, E-mail: mjbessa8@gmail.com [Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto (Portugal); Costa, Carla, E-mail: cstcosta@gmail.com [Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto (Portugal); EPIUnit - Institute of Public Health, University of Porto, Rua das Taipas 135, 4050-600, Porto (Portugal); Reinosa, Julian, E-mail: jjreinosa@icv.csic.es [Electroceramic Department, Instituto de Cerámica y Vidrio, CSIC, Campus de Cantoblanco, Calle de Kelson, 5, 28049 Madrid (Spain); Pereira, Cristiana, E-mail: cristianacostapereira@gmail.com [Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto (Portugal); EPIUnit - Institute of Public Health, University of Porto, Rua das Taipas 135, 4050-600, Porto (Portugal); Fraga, Sónia, E-mail: teixeirafraga@hotmail.com [Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto (Portugal); EPIUnit - Institute of Public Health, University of Porto, Rua das Taipas 135, 4050-600, Porto (Portugal); Fernández, José, E-mail: jfernandez@icv.csic.es [Electroceramic Department, Instituto de Cerámica y Vidrio, CSIC, Campus de Cantoblanco, Calle de Kelson, 5, 28049 Madrid (Spain); Bañares, Miguel A., E-mail: miguel.banares@csic.es [Catalytic Spectroscopy Laboratory, Instituto de Catálisis y Petroleoquímica, ICP-CSIC, Madrid (Spain); and others

    2017-02-01

    Immobilization of nanoparticles on inorganic supports has been recently developed, resulting in the creation of nanocomposites. Concerning titanium dioxide nanoparticles (TiO{sub 2} NPs), these have already been developed in conjugation with clays, but so far there are no available toxicological studies on these nanocomposites. The present work intended to evaluate the hepatic toxicity of nanocomposites (C-TiO{sub 2}), constituted by rutile TiO{sub 2} NPs immobilized in nanokaolin (NK) clay, and its individual components. These nanomaterials were analysed by means of FE-SEM and DLS analysis for physicochemical characterization. HepG2 cells were exposed to rutile TiO{sub 2} NPs, NK clay and C-TiO{sub 2} nanocomposite, in the presence and absence of serum for different exposure periods. Possible interferences with the methodological procedures were determined for MTT, neutral red uptake, alamar blue (AB), LDH, and comet assays, for all studied nanomaterials. Results showed that MTT, AB and alkaline comet assay were suitable for toxicity analysis of the present materials after slight modifications to the protocol. Significant decreases in cell viability were observed after exposure to all studied nanomaterials. Furthermore, an increase in HepG2 DNA damage was observed after shorter periods of exposure in the absence of serum proteins and longer periods of exposure in their presence. Although the immobilization of nanoparticles in micron-sized supports could, in theory, decrease the toxicity of single nanoparticles, the selection of a suitable support is essential. The present results suggest that NK clay is not the appropriate substrate to decrease TiO{sub 2} NPs toxicity. Therefore, for future studies, it is critical to select a more appropriate substrate for the immobilization of TiO{sub 2} NPs. - Highlights: • Only the MTT and AB assays were found to be suitable for cytotoxicity assessment. • Alkaline comet assay was also appropriate for genotoxicity evaluation

  12. Differential in Gel Electrophoresis (DIGE Comparative Proteomic Analysis of Macrophages Cell Cultures in Response to Perthamide C Treatment

    Directory of Open Access Journals (Sweden)

    Raffaele Riccio

    2013-04-01

    Full Text Available Secondary metabolites contained in marine organisms disclose diverse pharmacological activities, due to their intrinsic ability to recognize bio-macromolecules, which alter their expression and modulate their function. Thus, the identification of the cellular pathways affected by marine natural products is crucial to provide important functional information concerning their mechanism of action at the molecular level. Perthamide C, a marine sponge metabolite isolated from the polar extracts of Theonella swinhoei and endowed with a broad and interesting anti-inflammatory profile, was found in a previous study to specifically interact with heat shock protein-90 and glucose regulated protein-94, also disclosing the ability to reduce cisplatin-mediated apoptosis. In this paper, we evaluated the effect of this compound on the whole proteome of murine macrophages cells by two-dimensional DIGE proteomics. Thirty-three spots were found to be altered in expression by at least 1.6-fold and 29 proteins were identified by LC ESI-Q/TOF-MS. These proteins are involved in different processes, such as metabolism, structural stability, protein folding assistance and gene expression. Among them, perthamide C modulates the expression of several chaperones implicated in the folding of proteins correlated to apoptosis, such as Hsp90 and T-complexes, and in this context our data shed more light on the cellular effects and pathways altered by this marine cyclo-peptide.

  13. In situ photo-immobilised pH gradient isoelectric focusing and zone electrophoresis integrated two-dimensional microfluidic chip electrophoresis for protein separation

    International Nuclear Information System (INIS)

    Lin, Fengmin; Yu, Shiyong; Gu, Le; Zhu, Xuetao; Wang, Jianshe; Zhu, Han; Lu, Yi; Wang, Yihua; Deng, Yulin; Geng, Lina

    2015-01-01

    A method is introduced for open-column photo-induced site-selective immobilization of pH gradients in a layer of PEG-methacrylate in a multi-dimensional microfluidic chip for use in electrophoresis. It has several attractive features: (a) mixtures of fluorescently labelled proteins carbonic anhydrase, catalase and myoglobin in their native state can be separated by pH-gradient isoelectric focusing (IEF) and zone electrophoresis (CZE) using integrated 2D chip electrophoresis; (b) compared to strip packing or monolithic photo-immobilization, it overcomes the shortcomings of free carrier ampholyte-based 2D chip electrophoresis in an easy way; (c) larger amount of sample can be loaded into the open column-mode electrophoresis (d) immobilized pH gradients can be re-used and the chip can be recycled; (e) a multilayer 3D pH gradient is established by a layer-by-layer assembly technique to further increase the separation capacity. In our perception, this strategy has a large potential in microfluidic chip-based separation schemes because of its simplicity, separation power, re-usability, and separation capacity. (author)

  14. Deferoxamine immobilized poly(D,L-lactide) membrane via polydopamine adhesive coating: The influence on mouse embryo osteoblast precursor cells and human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huihua [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Luo, Binghong, E-mail: tluobh@jnu.edu.cn [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Wen, Wei [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Zhou, Changren, E-mail: tcrz9@jnu.edu.cn [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Tian, Lingling [Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576 (Singapore); Ramakrishna, Seeram [Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576 (Singapore); Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632 (China)

    2017-01-01

    Osteogenesis and angiogenesis play the prominent role in the bone regeneration. In this study, deferoxamine (DFO), an induced agent for osteogenesis and angiogenesis, was modified onto the surface of poly(D,L-lactide) (PDLLA) membrane via a facile and convenient approach based on the self-polymerization of dopamine (DOPA). The surface composition, morphology, hydrophilicity and surface energy of the original and modified PDLLA membranes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electronic microscopy (SEM), atomic force microscopy (AFM) and contact angle measurement. The surface roughness and hydrophilicity of the PDLLA membrane were obviously increased by introducing either the single polydopamine (PDOPA) or the dual layers of PDOPA and DFO. In vitro cells culture experiments indicated that both the PDLLA/PDOPA and PDLLA/PDOPA-DFO composite membranes were more beneficial to the attachment, proliferation and spreading of MC3T3-E1 cells and HUVECs compared to the original PDLLA membrane. The PDLLA/PDOPA-DFO membrane was supportive for the proliferation of both MC3T3-E1 cells and HUVECs, and especially for HUVECs. The results suggested that the as-prepared PDLLA/PDOPA-DFO composite can be expected to be used as a promising bone regenerative material with promoted angiogenesis. - Highlights: • DFO was conveniently immobilized on PDLLA membrane based on PDOPA adhesive layer. • Hydrophilicity of PDLLA membrane was improved by modification with PDOPA and DFO. • Modified membranes were more favorable to the growth of MC3T3-E1 cells and HUVECs. • DFO was supportive for the growth of two kinds of cells, especially for HUVECs.

  15. Enhancement of the efficiency of dye-sensitized solar cell with multi-wall carbon nanotubes/polypyrrole composite counter electrodes prepared by electrophoresis/electrochemical polymerization

    International Nuclear Information System (INIS)

    Luo, Jun; Niu, Hai-jun; Wen, Hai-lin; Wu, Wen-jun; Zhao, Ping; Wang, Cheng; Bai, Xu-duo; Wang, Wen

    2013-01-01

    Graphical abstract: The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. Highlights: ► MWCNT/PPy composite film prepared by electrodeposition layer by layer was used as counter electrode in DSSC. ► The overall energy conversion efficiency of the DSSC was 3.78% by employing the composite film. ► The energy conversion efficiency increased by 41.04% compared with efficiency of 2.68% by using the single MWCNT film. ► We analyzed the mechanism and influence factor of electron transfer in the composite electrode by EIS. - Abstract: For the purpose of replacing the precious Pt counter electrode in dye-sensitized solar cells (DSSCs) with higher energy conversion efficiency, multi-wall carbon nanotube (MWCNT)/polypyrrole (PPy) double layers film counter electrode (CE) was fabricated by electrophoresis and cyclic voltammetry (CV) layer by layer. Atom force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscope (TEM) demonstrated the morphologies of the composite electrode and Raman spectroscopy verified the PPy had come into being. The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. The result of impedance showed that the charge transfer resistance R ct of the MWCNT/PPy CE had the lowest value compared to that of MWCNT or PPy electrode. These results indicate that the composite film with high conductivity, high active surface area, and good catalytic properties for I 3 − reduction can potentially be used as the CE in a high-performance DSSC

  16. Enhancement of the efficiency of dye-sensitized solar cell with multi-wall carbon nanotubes/polypyrrole composite counter electrodes prepared by electrophoresis/electrochemical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jun; Niu, Hai-jun; Wen, Hai-lin [Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, Department of Macromolecular Material and Engineering, Heilongjiang University, Harbin 150086 (China); Wu, Wen-jun; Zhao, Ping [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Wang, Cheng; Bai, Xu-duo [Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, Department of Macromolecular Material and Engineering, Heilongjiang University, Harbin 150086 (China); Wang, Wen, E-mail: haijunniu@hotmail.com [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150080 (China)

    2013-03-15

    Graphical abstract: The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. Highlights: ► MWCNT/PPy composite film prepared by electrodeposition layer by layer was used as counter electrode in DSSC. ► The overall energy conversion efficiency of the DSSC was 3.78% by employing the composite film. ► The energy conversion efficiency increased by 41.04% compared with efficiency of 2.68% by using the single MWCNT film. ► We analyzed the mechanism and influence factor of electron transfer in the composite electrode by EIS. - Abstract: For the purpose of replacing the precious Pt counter electrode in dye-sensitized solar cells (DSSCs) with higher energy conversion efficiency, multi-wall carbon nanotube (MWCNT)/polypyrrole (PPy) double layers film counter electrode (CE) was fabricated by electrophoresis and cyclic voltammetry (CV) layer by layer. Atom force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscope (TEM) demonstrated the morphologies of the composite electrode and Raman spectroscopy verified the PPy had come into being. The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. The result of impedance showed that the charge transfer resistance R{sub ct} of the MWCNT/PPy CE had the lowest value compared to that of MWCNT or PPy electrode. These results indicate that the composite film with high conductivity, high active surface area, and good catalytic properties for I{sub 3}{sup −} reduction can potentially be used as the CE in a high-performance DSSC.

  17. Bioconversion of l-glutamic acid to α-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing l-amino acid deaminase from Proteus mirabilis.

    Science.gov (United States)

    Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-dong; Chen, Rachel R; Du, Guocheng; Liu, Long; Chen, Jian

    2014-01-01

    The goal of this work was to develop an immobilized whole-cell biocatalytic process for the environment-friendly synthesis of α-ketoglutaric acid (α-KG) from l-glutamic acid. We compared the suitability of Escherichia coli and Bacillus subtilis strains overexpressing Proteus mirabilisl-amino acid deaminase (l-AAD) as potential biocatalysts. Although both recombinant strains were biocatalytically active, the performance of B. subtilis was superior to that of E. coli. With l-glutamic acid as the substrate, α-KG production levels by membranes isolated from B. subtilis and E. coli were 55.3±1.73 and 21.7±0.39μg/mg protein/min, respectively. The maximal conversion ratio of l-glutamic acid to α-KG was 31% (w/w) under the following optimal conditions: 15g/L l-glutamic acid, 20g/L whole-cell biocatalyst, 5mM MgCl2, 40°C, pH 8.0, and 24-h incubation. Immobilization of whole cells with alginate increased the recyclability by an average of 23.33% per cycle. This work established an efficient one-step biotransformation process for the production of α-KG using immobilized whole B. subtilis overexpressing P. mirabilisl-AAD. Compared with traditional multistep chemical synthesis, the biocatalytic process described here has the advantage of reducing environmental pollution and thus has great potential for the large-scale production of α-KG. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Polyelectrolyte Complex Beads by Novel Two-Step Process for Improved Performance of Viable Whole-Cell Baeyer-Villiger Monoxygenase by Immobilization

    Czech Academy of Sciences Publication Activity Database

    Krajčovič, T.; Bučko, M.; Vikartovská, A.; Lacík, I.; Uhelská, L.; Chorvát, D.; Neděla, Vilém; Tihlaříková, Eva; Gericke, M.; Heinze, T.; Gemeiner, P.

    2017-01-01

    Roč. 7, č. 11 (2017), s. 353-364 ISSN 2073-4344 Institutional support: RVO:68081731 Keywords : polyelectrolyte complex beads * environmental scanning electron microscopy * confocal laser scanning microscopy * Baeyer-Villiger biooxidation * cyclohexanone monoxygenase * immobilization * viable whole-cell biocatalyst Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Bioprocessing technologies (industrial processes relying on biological agents to drive the process) biocatalysis, fermentation Impact factor: 3.082, year: 2016 http://www.mdpi.com/2073-4344/7/11/353

  19. DNA double-strand breaks in mammalian cells exposed to γ-rays and very heavy ions. Fragment-size distributions determined by pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    Kraxenberger, F.; Friedl, A.A.; Eckardt-Schupp, F.; Weber, K.J.; Flentje, M.; Quicken, P.; Kellerer, A.M.; Ludwig-Maximilians University, Munich

    1998-01-01

    The spatial distribution of DNA double-strand breaks (DSB) was assessed after treatment of mammalian cells (V79) with densely ionizing radiation. Cells were exposed to beams of heavy charged particles (calcium ions: 6.9 MeV/u, 2.1.10 3 keV/μm; uranium ions: 9.0 MeV/u, 1.4.10 4 keV/μm) at the linear accelerator UNILAC of GSI, Darmstadt. DNA was isolated in agarose plugs and subjected to pulsed-field gel electrophoresis under conditions that separated DNA fragments of size 50 kbp to 5 Mbp. The measured fragment distributions were compared to those obtained after γ-irradiation and were analyzed by means of a convolution and a deconvolution technique. In contrast to the finding for γ-radiation, the distributions produced by heavy ions do not correspond to the random breakage model. Their marked overdispersion and the observed excess of short fragments reflect spatial clustering of DSB that extends over large regions of the DNA, up to several mega base pairs (Mbp). At fluences of 0.75 and 1.5/μm 2 , calcium ions produce nearly the same shape of fragment spectrum, merely with a difference in the amount of DNA entering the gel; this suggests that the DNA is fragmented by individual calcium ions. At a fluence of 0.8/μm 2 uranium ions produce a profile that is shifted to smaller fragment sizes in comparison to the profile obtained at a fluence of 0.4/μm 2 ; this suggests cumulative action of two separate ions in the formation of fragments. These observations are not consistent with the expectation that the uranium ions, with their much larger LET, should be more likely to produce single particle action than the calcium ions. However, a consideration of the greater lateral extension of the tracks of the faster uranium ions explains the observed differences; it suggests that the DNA is closely coiled so that even DNA locations several Mbp apart are usually not separated by less than 0.1 or 0.2 μm. (orig.)

  20. Optimization of date syrup for enhancement of the production of citric acid using immobilized cells of Aspergillus niger

    OpenAIRE

    Mostafa, Yasser S.; Alamri, Saad A.

    2012-01-01

    Date syrup as an economical source of carbohydrates and immobilized Aspergillus niger J4, which was entrapped in calcium alginate pellets, were employed for enhancing the production of citric acid. Maximum production was achieved by pre-treating date syrup with 1.5% tricalcium phosphate to remove heavy metals. The production of citric acid using a pretreated medium was 38.87% higher than an untreated one that consumed sugar. The appropriate presence of nitrogen, phosphate and magnesium appear...

  1. Matrix-immobilized BMP-2 on microcontact printed fibronectin as in vitro tool to study BMP-mediated signaling and cell migration

    Directory of Open Access Journals (Sweden)

    Kristin eHauff

    2015-05-01

    Full Text Available During development, bone morphogenetic proteins (BMPs exert important functions in several tissues by regulating signaling for cell differentiation and migration. In vivo the extracellular matrix (ECM not only provides a support for adherent cells, but also presents a reservoir of growth factors (GFs. Several constituents of the ECM provide adhesive cues, which serve as binding sites for cell transmembrane receptors, such as integrins, which convey adhesion-mediated signaling to the intracellular compartment. Integrins do not function alone but rather crosstalk and cooperate with other receptors, such as GF receptors, in regulating cell responses to extracellular signals. To this, we present here the immobilization of BMP-2 onto cellular fibronectin (cFN, a key protein of the ECM, to investigate their impact on GF-mediated signaling and migration.Following biotinylation, BMP-2 was linked to biotinylated cFN using NeutrAvidin (NA as cross-linker. Characterization with QCM-D and ELISA confirmed the efficient immobilization of BMP-2 on cFN over a period of 24 h.To validate the bioactivity of matrix-immobilized BMP-2 (iBMP-2 we investigated short- and long-term responses of C2C12 myoblasts in comparison to soluble BMP-2 (sBMP-2 or in absence of GFs. Similarly to sBMP-2, iBMP-2 triggered Smad 1/5 phosphorylation and translocation into the nucleus corresponding to the activation of BMP-mediated Smad-dependent pathway. Additionally, successful suppression of myotube formation was observed after six days.We next implemented this approach to fabricate cFN micro patterned stripes by soft lithography. These stripes only allowed cell-surface interaction on the pattern due to passivation of the surface in between, thus serving as platform for studies on directed cell migration. During a 10 h-period, cells showed an increased migratory activity upon BMP-2 exposure.Thus, this versatile tool retains the GF's bioactivity and allows the presentation of ECM

  2. Terbutaline causes immobilization of single β2-adrenergic receptor-ligand complexes in the plasma membrane of living A549 cells as revealed by single-molecule microscopy

    Science.gov (United States)

    Sieben, Anne; Kaminski, Tim; Kubitscheck, Ulrich; Häberlein, Hanns

    2011-02-01

    G-protein-coupled receptors are important targets for various drugs. After signal transduction, regulatory processes, such as receptor desensitization and internalization, change the lateral receptor mobility. In order to study the lateral diffusion of β2-adrenergic receptors (β2AR) complexed with fluorescently labeled noradrenaline (Alexa-NA) in plasma membranes of A549 cells, trajectories of single receptor-ligand complexes were monitored using single-particle tracking. We found that a fraction of 18% of all β2ARs are constitutively immobile. About 2/3 of the β2ARs moved with a diffusion constant of D2 = 0.03+/-0.001 μm2/s and about 17% were diffusing five-fold faster (D3 = 0.15+/-0.02 μm2/s). The mobile receptors moved within restricted domains and also showed a discontinuous diffusion behavior. Analysis of the trajectory lengths revealed two different binding durations with τ1 = 77+/-1 ms and τ2 = 388+/-11 ms. Agonistic stimulation of the β2AR-Alexa-NA complexes with 1 μM terbutaline caused immobilization of almost 50% of the receptors within 35 min. Simultaneously, the mean area covered by the mobile receptors decreased significantly. Thus, we demonstrated that agonistic stimulation followed by cell regulatory processes results in a change in β2AR mobility suggesting that different receptor dynamics characterize different receptor states.

  3. RAD18 and associated proteins are immobilized in nuclear foci in human cells entering S-phase with ultraviolet light-induced damage

    International Nuclear Information System (INIS)

    Watson, Nicholas B.; Nelson, Eric; Digman, Michelle; Thornburg, Joshua A.; Alphenaar, Bruce W.; McGregor, W. Glenn

    2008-01-01

    Proteins required for translesion DNA synthesis localize in nuclear foci of cells with replication-blocking lesions. The dynamics of this process were examined in human cells with fluorescence-based biophysical techniques. Photobleaching recovery and raster image correlation spectroscopy experiments indicated that involvement in the nuclear foci reduced the movement of RAD18 from diffusion-controlled to virtual immobility. Examination of the mobility of REV1 indicated that it is similarly immobilized when it is observed in nuclear foci. Reducing the level of RAD18 greatly reduced the focal accumulation of REV1 and reduced UV mutagenesis to background frequencies. Fluorescence lifetime measurements indicated that RAD18 and RAD6A or polη only transferred resonance energy when these proteins colocalized in damage-induced nuclear foci, indicating a close physical association only within such foci. Our data support a model in which RAD18 within damage-induced nuclear foci is immobilized and is required for recruitment of Y-family DNA polymerases and subsequent mutagenesis. In the absence of damage these proteins are not physically associated within the nucleoplasm

  4. Response surface optimization for the transesterification of karanja oil using immobilized whole cells of Rhizopus oryzae in n-hexane system

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Devanesan; Rajendran, Aravindan; Thangavelu, Viruthagiri [Annamalai University, Department of Chemical Engineering, Faculty of Engineering and Technology, Biochemical Engineering Laboratory, Annamalai Nagar, Tamil Nadu (India)

    2012-03-15

    Non-edible oils represent one of the most viable alternative feed stocks for the production of large volumes of biodiesel at cheaper cost in tropical countries. The objective of the present study is to investigate the ability of the immobilized whole cells of Rhizopus oryzae MTCC 262 to catalyze the biodiesel production from karanja oil in n-hexane system. Response surface methodology was employed to evaluate the effects of synthesis parameters, such as molar ratio of oil to alcohol, reaction temperature and reaction time on percentage biodiesel (methyl esters) yield. Transesterification was performed in shake flasks containing immobilized cells in the reaction mixture with 10% oil weight of n-hexane. The quadratic effects of molar ratio of oil to alcohol and reaction time proved to be the significant at 1% and 5% levels, respectively. The optimum synthesis conditions were found to be: molar ratio of oil to alcohol 1:2.73, reaction temperature 41.39 C and reaction time 73.97 h. Biodiesel yield (methyl ester) was 75.98 (wt.%) under the optimal conditions and the subsequent verification experiments with biodiesel yield of 78.0 (wt.%) confirmed the validity of the proposed model. (orig.)

  5. Detection of telomerase activity using microchip electrophoresis.

    Science.gov (United States)

    Karasawa, Koji; Arakawa, Hidetoshi

    2015-07-01

    Telomerase participates in malignant transformation or immortalization of cells and thus has attracted attention as an anticancer drug target and diagnostic tumor marker. The telomeric repeat amplification protocol (TRAP) and improved TRAP methods (TRAP-fluorescence, TRAP-hybridization, etc.) are widely used forms of this telomerase assay. However, these approaches generally employ acrylamide gel electrophoresis after amplification of telomeric repeats by polymerase chain reaction (PCR), making these TRAP methods time consuming and technically demanding. In this study we developed a novel telomerase assay using microchip electrophoresis for rapid and highly sensitive detection of telomerase activity in cancer cells. The mixed gel of 0.8% hydroxypropyl methylcellulose (HPMC) and 0.3% polyethylene oxide (PEO) with SYBR Gold (fluorescent reagent) was used for microchip electrophoresis. As a result, the product amplified by a telomerase-positive cell could be measured in one cell per assay and detected with high reproducibility (CV=0.67%) in the short time of 100s. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Acetate production from whey lactose using co-immobilized cells of homolactic and homoacetic bacteria in a fibrous-bed bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.; Yang, S.T. [Ohio State Univ., Columbus, OH (United States). Dept. of Chemical Engineering

    1998-11-20

    Acetate was produced from whey lactose in batch and fed-batch fermentations using co-immobilized cells of Clostridium formicoaceticum and Lactococcus lactis. The cells were immobilized in a spirally wound fibrous sheet packed in a 0.45-L column reactor, with liquid circulated through a 5-L stirred-tank fermentor. Industrial-grade nitrogen sources, including corn steep liquor, casein hydrolysate, and yeast hydrolysate, were studied as inexpensive nutrient supplements to whey permeate and acid whey. Supplementation with either 2.5% (v/v) corn steep liquor or 1.5 g/L casein hydrolysate was adequate for the cocultured fermentation. The overall acetic acid yield from lactose was 0.9 g/g, and the productivity was 0.25 g/(L h). Both lactate and acetate at high concentrations inhibited the homoacetic fermentation. To overcome these inhibitions, fed-batch fermentations were used to keep lactate concentration low and to adapt cells to high-concentration acetate. The final acetate concentration obtained in the fed-batch fermentations were used to keep lactate concentration low and to adapt cells to high-concentration acetate. The final acetate concentration obtained in the fed-batch fermentation was 75 g/L, which was the highest acetate concentration ever produced by C. formicoaceticum. Even at this high acetate concentration, the overall productivity was 0.18 g/(L h) based on the total medium volume and 1.23 g/(L h) based on the fibrous-bed reactor volume. The cells isolated from the fibrous-bed bioreactor at the end of this study were more tolerant to acetic acid than the original culture used to seed the bioreactor, indicating that adaptation and natural selection of acetate-tolerant strains occurred. This cocultured fermentation process could be used to produce a low-cost acetate deicer from whey permeate and acid whey.

  7. Continuous Production of Isomalto-oligosaccharides by Thermo-inactivated Cells of Aspergillus niger J2 with Coarse Perlite as an Immobilizing Material.

    Science.gov (United States)

    Huang, Zhihua; Li, Zhihong; Su, Yongjian; Zhu, Yongfeng; Zeng, Wei; Chen, Guiguang; Liang, Zhiqun

    2018-02-13

    The coarse perlite 40-80 mesh was selected as an immobilizing material and put into a packed bed reactor (PBR) to continuously convert maltose to isomalto-oligosaccharides (IMOs). The PBR was prepared by mixing the thermo-inactivated cells (TIC) from Aspergillus niger J2 strain with the coarse perlite, then the mixture was put into an overpressure-resistant column. Compared with diatomite 40-80 mesh and thin perlite 80-120 mesh in PBR, coarse perlite was chosen as the best filtration aid, when the ratio of coarse perlite versus TIC was 1:1. The thermal and pH stability of the free and immobilized TIC and the optimum conditions for the transglycosylation reactions were determined. The results show that approximately 75 and 82% and 87 and 91% of α-glucosidase activity were reserved for free and immobilized TIC at temperatures from 30 to 60 °C and pH from 3.00 to 7.00 for 12 h, respectively. With 30% malt syrup under the conditions of 50 °C and pH 4.00, a mini-scale packed bed reactor (Mi-PBR) and medium-scale packed bed reactor (Me-PBR) could continuously produce IMO over 25 and 34 days with the yield of effective IMO (eIMO) ≥ 35% and total IMO (tIMO) ≥ 50%, respectively. The strategy of mixing the coarse perlite with TIC in PBR is a novel approach to continuously produce IMO and has great application potential in industry.

  8. A simplified technique for nasoendotracheal tube immobilization.

    OpenAIRE

    Berardo, N.; Leban, S. G.; Williams, F. A.

    1989-01-01

    A simplified technique for immobilization of a nasoendotracheal tube is described in which a wide strap of open cell, hypoallergenic, foam-backed fabric is secured to the patient's head with a Velcro fastener.

  9. Electron tomography of cryo-immobilized plant tissue: a novel approach to studying 3D macromolecular architecture of mature plant cell walls in situ.

    Directory of Open Access Journals (Sweden)

    Purbasha Sarkar

    Full Text Available Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼ 2 nm, and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF, cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we

  10. Stereotactic ablative body radiotherapy for non-small-cell lung cancer: setup reproducibility with novel arms-down immobilization.

    Science.gov (United States)

    Moore, Karen; Paterson, Claire; Hicks, Jonathan; Harrow, Stephen; McJury, Mark

    2016-12-01

    A clinical evaluation of the intrafraction and interfraction setup accuracy of a novel thermoplastic mould immobilization device and patient position in early-stage lung cancer being treated with stereotactic radiotherapy at the Beatson West of Scotland Cancer Centre, Glasgow, UK. 35 patients were immobilized in a novel, arms-down position, with a four-point Klarity ™ (Klarity Medical Products, Ohio, US) clear thermoplastic mould fixed to a SinMed (CIVCO Medical solutions, lowa, US) head and neck board. A knee support was also used for patient comfort and support. Pre- and post-treatment kilovoltage cone beam CT (CBCT) images were fused with the planning CT scan to determine intra- and interfraction motion. A total of 175 CBCT scans were analysed in the longitudinal, vertical and lateral directions. The mean intrafraction errors were 0.05 ± 0.77 mm (lateral), 0.44 ± 1.2 mm (superior-inferior) and -1.44 ± 1.35 mm (anteroposterior), respectively. Mean composite three-dimensional displacement vector was 2.14 ± 1.2 mm. Interfraction errors were -0.66 ± 2.35 mm (lateral), -0.13 ± 3.11 mm (superior-inferior) and 0.00 ± 2.94 mm (anteroposterior), with three-dimensional vector 4.08 ± 2.73 mm. Setup accuracy for lung image-guided stereotactic ablative radiotherapy using a unique immobilization device, where patients have arms by their sides, has been shown to be safe and favourably comparable to other published setup data where more complex and cumbersome devices were utilised. There was no arm toxicity reported and low arm doses. Advances in knowledge: We report on the accuracy of a novel patient immobilization device.

  11. Simultaneous determination of reactive oxygen and nitrogen species in mitochondrial compartments of apoptotic HepG2 cells and PC12 cells based on microchip electrophoresis-laser-induced fluorescence.

    Science.gov (United States)

    Chen, Zhenzhen; Li, Qingling; Sun, Qianqian; Chen, Hao; Wang, Xu; Li, Na; Yin, Miao; Xie, Yanxia; Li, Hongmin; Tang, Bo

    2012-06-05

    Determination of intracellular bioactive species will afford beneficial information related to cell metabolism, signal transduction, cell function, and disease treatment. In this study, the first application of a microchip electrophoresis-laser-induced fluorescence (MCE-LIF) method for concurrent determination of reactive oxygen species (ROS) and reactive nitrogen species (RNS), i.e., superoxide (O(2)(-•)) and nitric oxide (NO) in mitochondria, was developed using fluorescent probes 2-chloro-1,3-dibenzothiazolinecyclohexene (DBZTC) and 3-amino,4-aminomethyl-2',7'-difluorescein (DAF-FM), respectively. Potential interference of intracellular dehydroascorbic acid (DHA) and ascorbic acid (AA) for NO detection with DAF-FM was eliminated through oxidation of AA with the addition of ascorbate oxidase, followed by subsequent MCE separation. Fluorescent products of O(2)(-•) and NO, DBZTC oxide (DBO), and DAF-FM triazole (DAF-FMT) showed excellent baseline separation within 1 min with a running buffer of 40 mM Tris solution (pH 7.4) and a separating electric field of 500 V/cm. The levels of DBO and DAF-FMT in mitochondria isolated from normal HepG2 cells and PC12 cells were evaluated using this method. Furthermore, the changes of DBO and DAF-FMT levels in mitochondria isolated from apoptotic HepG2 cells and PC12 cells could also be detected. The current approach was proved to be simple, fast, reproducible, and efficient. Measurement of the two species with the method will be beneficial to understand ROS/RNS distinctive functions. In addition, it will provide new insights into the role that both species play in biological systems.

  12. Heat stress-induced loss of eukaryotic initiation factor 5A (eIF-5A) in a human pancreatic cancer cell line, MIA PaCa-2, analyzed by two-dimensional gel electrophoresis.

    Science.gov (United States)

    Takeuchi, Kana; Nakamura, Kazuyuki; Fujimoto, Masanori; Kaino, Seiji; Kondoh, Satoshi; Okita, Kiwamu

    2002-02-01

    Alterations of intracellular proteins during the process of heat stress-induced cell death of a human pancreatic cancer cell line, MIA PaCa-2, were investigated using two-dimensional gel electrophoresis (2-DE), agarose gel electrophoresis, and cell biology techniques. Incubation of MIA PaCa-2 at 45 degrees C for 30 min decreased the cell growth rate and cell viability without causing chromosomal DNA fragmentation. Incubation at 51 degrees C for 30 min suppressed cell growth and again led to death without DNA fragmentation. The cell death was associated with the loss of an intracellular protein of M(r) 17,500 and pI 5.2 on 2-DE gel. This protein was determined to be eukaryotic initiation factor SA (eIF-5A) by microsequencing of the N-terminal region of peptide fragments obtained by cyanogen bromide treatment of the protein blotted onto a polyvinylidene difluoride (PVDF) membrane. The sequences detected were QXSALRKNGFVVLKGRP and STSKTGXHGHAKVHLVGID, which were homologous with the sequence of eIF-5A from Gln 20 to Pro 36 and from Ser 43 to Asp 61, respectively. Furthermore, the result of sequencing suggested that the protein was an active form of hypusinated eIF-5A, because Lys 46 could be detected but not Lys 49, which is the site for hypusination. These results suggest that loss of the active form of eIF-5A is an important factor in the irreversible process of heat stress-induced death of MIA PaCa-2 cells.

  13. Assay of hybrid ribonuclease using a membrane filter-immobilized synthetic hybrid: application to the human leukemic cell

    International Nuclear Information System (INIS)

    Papaphilis, A.D.; Kamper, E.F.

    1985-01-01

    A method for assaying hybrid ribonuclease has been devised which utilizes as substrate the synthetic hybrid [ 3 H]polyriboadenylic acid [poly(rA)]:polydeoxythymidylic acid [poly(dT)] immobilized on the solid matrix of nitrocellulose filters. The hybridization on filter of [ 3 H]poly(rA) to poly(dT) has been explored in terms of efficacy of the process and the response of the product to RNase H. A pulse of uv irradiation of poly(dT) while in dry state on the filter increased its firm binding to the filter in a concentration-dependent manner, resulting in a concomitant increase of the yield of hybrid formation. The filter-immobilized hybrid was 95% resistant to RNase A but sensitive to RNase H. When stored in toluene in the cold the hybrid maintained its stability for over 6 months, as judged by its resistance to RNase A. The method offers a number of advantages over assays that use solution hybrids as substrates and was readily applicable in the screening of leukemic patients, in the leukocytes of which it has demonstrated increased RNase H levels

  14. Phylogenetic reconstruction of South American felids defined by protein electrophoresis

    OpenAIRE

    Pecon Slattery, J.; Johnson, W. E.; Goldman, D.; O'Brien, S. J.

    1994-01-01

    Phylogenetic associations among six closely related South American felid species were defined by changes in protein-encoding gene loci. We analyzed proteins isolated from skin fibroblasts using two-dimensional electrophoresis and allozymes extracted from blood cells. Genotypes were determined for multiple individuals of ocelot, margay, tigrina, Geoffroy's cat, kodkod, and pampas cat at 548 loci resolved by two-dimensional electrophoresis and 44 allozyme loci. Phenograms were constructed using...

  15. Kaempferol-immobilized titanium dioxide promotes formation of new bone: effects of loading methods on bone marrow stromal cell differentiation in vivo and in vitro.

    Science.gov (United States)

    Tsuchiya, Shuhei; Sugimoto, Keisuke; Kamio, Hisanobu; Okabe, Kazuto; Kuroda, Kensuke; Okido, Masazumi; Hibi, Hideharu

    2018-01-01

    Surface modification of titanium dioxide (TiO 2 ) implants promotes bone formation and shortens the osseointegration period. Kaempferol is a flavonoid that has the capacity to promote osteogenic differentiation in bone marrow stromal cells. The aim of this study was to promote bone formation around kaempferol immobilized on TiO 2 implants. There were four experimental groups. Alkali-treated TiO 2 samples (implants and discs) were used as a control and immersed in Dulbecco's phosphate-buffered saline (DPBS) (Al-Ti). For the coprecipitation sample (Al-cK), the control samples were immersed in DPBS containing 50 µg kaempferol/100% ethanol. For the adsorption sample (Al-aK), 50 µg kaempferol/100% ethanol was dropped onto control samples. The surface topography of the TiO 2 implants was observed by scanning electron microscopy with energy-dispersive X-ray spectroscopy, and a release assay was performed. For in vitro experiments, rat bone marrow stromal cells (rBMSCs) were cultured on each of the TiO 2 samples to analyze cell proliferation, alkaline phosphatase activity, calcium deposition, and osteogenic differentiation. For in vivo experiments, TiO 2 implants placed on rat femur bones were analyzed for bone-implant contact by histological methods. Kaempferol was detected on the surface of Al-cK and Al-aK. The results of the in vitro study showed that rBMSCs cultured on Al-cK and Al-aK promoted alkaline phosphatase activity, calcium deposition, and osteogenic differentiation. The in vivo histological analysis revealed that Al-cK and Al-aK stimulated new bone formation around implants. TiO 2 implant-immobilized kaempferol may be an effective tool for bone regeneration around dental implants.

  16. Denaturing gradient gel electrophoresis

    International Nuclear Information System (INIS)

    Kocherginskaya, S.A.; Cann, I.K.O.; Mackie, R.I.

    2005-01-01

    It is worthwhile considering that only some 30 species make up the bulk of the bacterial population in human faeces at any one time based on the classical cultivation-based approach. The situation in the rumen is similar. Thus, it is practical to focus on specific groups of interest within the complex community. These may be the predominant or the most active species, specific physiological groups or readily identifiable (genetic) clusters of phylogenetically related organisms. Several 16S rDNA fingerprinting techniques can be invaluable for selecting and monitoring sequences or phylogenetic groups of interest and are described below. Over the past few decades, considerable attention was focussed on the identification of pure cultures of microbes on the basis of genetic polymorphisms of DNA encoding rRNA such as ribotyping, amplified fragment length polymorphism and randomly amplified polymorphic DNA. However, many of these methods require prior cultivation and are less suitable for use in analysis of complex mixed populations although important in describing cultivated microbial diversity in molecular terms. Much less attention was given to molecular characterization of complex communities. In particular, research into diversity and community structure over time has been revolutionized by the advent of molecular fingerprinting techniques for complex communities. Denaturing or temperature gradient gel electrophoresis (DGGE/TGGE) methods have been successfully applied to the analysis of human, pig, cattle, dog and rodent intestinal populations

  17. A High-Throughput Oxidative Stress Biosensor Based on Escherichia coli roGFP2 Cells Immobilized in a k-Carrageenan Matrix

    Directory of Open Access Journals (Sweden)

    Lia Ooi

    2015-01-01

    Full Text Available Biosensors fabricated with whole-cell bacteria appear to be suitable for detecting bioavailability and toxicity effects of the chemical(s of concern, but they are usually reported to have drawbacks like long response times (ranging from hours to days, narrow dynamic range and instability during long term storage. Our aim is to fabricate a sensitive whole-cell oxidative stress biosensor which has improved properties that address the mentioned weaknesses. In this paper, we report a novel high-throughput whole-cell biosensor fabricated by immobilizing roGFP2 expressing Escherichia coli cells in a k-carrageenan matrix, for the detection of oxidative stress challenged by metalloid compounds. The E. coli roGFP2 oxidative stress biosensor shows high sensitivity towards arsenite and selenite, with wide linear range and low detection limit (arsenite: 1.0 × 10−3–1.0 × 101 mg·L−1, LOD: 2.0 × 10−4 mg·L−1; selenite: 1.0 × 10−5–1.0 × 102 mg·L−1, LOD: 5.8 × 10−6 mg·L−1, short response times (0–9 min, high stability and reproducibility. This research is expected to provide a new direction in performing high-throughput environmental toxicity screening with living bacterial cells which is capable of measuring the bioavailability and toxicity of environmental stressors in a friction of a second.

  18. Improved production of isomaltulose by a newly isolated mutant of Serratia sp. cells immobilized in calcium alginate.

    Science.gov (United States)

    Kim, Yonghwan; Koo, Bong-Seong; Lee, Hyeon-Cheol; Yoon, Youngdae

    2015-03-01

    Isomaltulose, also known as palatinose, is produced by sucrose isomerase and has been highlighted as a sugar substitute due to a number of advantageous properties. For the massive production of isomaltulose, high resistance to sucrose and stability of sucrose isomerase as well as sucrose conversion yields would be critical factors. We describe a series of screening procedures to isolate the mutant strain of Serratia sp. possessing enhanced isomaltulose production with improved stability. The new Serratia sp. isolated from a series of screening procedures allowed us to produce isomaltulose from 60% sucrose solution, with over 90% conversion yield. Moreover, when this strain was immobilized in calcium alginate beads and placed in a medium containing 60% sucrose, it showed over 70% sucrose conversion yields for 30 cycles of repeated-batch reactions. Thus, improved conversion activity and stability of the newly isolated Serratia sp. strain in the present study would be highly valuable for industries related to isomaltulose production.

  19. In situ immobilization of proteins and RGD peptide on polyurethane surfaces via poly(ethylene oxide) coupling polymers for human endothelial cell growth.

    Science.gov (United States)

    Wang, Dong-an; Ji, Jian; Sun, Yong-hong; Shen, Jia-cong; Feng, Lin-xian; Elisseeff, Jennifer H

    2002-01-01

    A "CBABC"-type pentablock coupling polymer, mesylMPEO, was designed and synthesized to promote human endothelial cell growth on the surfaces of polyurethane biomaterials. The polymer was composed of a central 4,4'-methylenediphenyl diisocyanate (MDI) coupling unit and poly(ethylene oxide) (PEO) spacer arms with methanesulfonyl (mesyl) end groups pendent on both ends. As the presurface modifying additive (pre-SMA), the mesylMPEO was noncovalently introduced onto the poly(ether urethane) (PEU) surfaces by dip coating, upon which the protein/peptide factors (gelatin, albumin, and arginine-glycine-aspartic acid tripeptide [RGD]) were covalently immobilized in situ by cleavage of the original mesyl end groups. The pre-SMA synthesis and PEU surface modification were characterized using nuclear magnetic resonance spectroscopy ((1)H NMR), attenuated total reflection infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS). Human umbilical vein endothelial cells (HUVEC) were harvested manually by collagenase digestion and seeded on the modified PEU surfaces. Cell adhesion ratios (CAR) and cell proliferation ratios (CPR) were measured using flow cytometry, and the individual cell viability (ICV) was determined by MTT assay. The cell morphologies were investigated by optical inverted microscopy (OIM) and scanning electrical microscopy (SEM). The gelatin- and RGD-modified surfaces were HUVEC-compatible and promoted HUVEC growth. The albumin-modified surfaces were compatible but inhibited cell adhesion. The results also indicated that, for HUVEC in vitro cultivation, the cell adhesion stage was of particular importance and had a significant impact on the cell responses to the modified surfaces.

  20. DNA typing by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, N.

    1997-10-08

    Capillary electrophoresis is becoming more and more important in nucleic acid analysis including DNA sequencing, typing and disease gene measurements. This work summarized the background of DNA typing. The recent development of capillary electrophoresis was also discussed. The second part of the thesis showed the principle of DNA typing based on using the allelic ladder as the absolute standard ladder in capillary electrophoresis system. Future work will be focused on demonstrating DNA typing on multiplex loci and examples of disease diagnosis in the on-line format of PCR-CE. Also capillary array electrophoresis system should allow high throughput, fast speed DNA typing. Only the introduction and conclusions for this report are available here. A reprint was removed for separate processing.

  1. Biomedical applications of capillary electrophoresis

    International Nuclear Information System (INIS)

    Kartsova, L A; Bessonova, E A

    2015-01-01

    The review deals with modern analytical approaches used in capillary electrophoresis for solving medical and biological problems: search for biomarkers of various diseases and rapid diagnosis based on characteristic profiles of biologically active compounds by capillary electrophoresis with mass spectrometric detection; monitoring of the residual drugs in biological fluids for evaluating the efficiency of drug therapy; testing of the enantiomeric purity of pharmaceutical products; the use of novel materials as components of stationary and pseudo-stationary phases in capillary electrophoresis and capillary electrochromatography to increase the selectivity of separation of components of complex matrices; and identification of various on-line preconcentration techniques to reduce the detection limits of biologically active analytes. A topical trend in capillary electrophoresis required in clinical practice, viz., the design of microfluidic systems, is discussed. The bibliography includes 173 references

  2. Applications of space-electrophoresis in medicine. [for cellular separations in molecular biology

    Science.gov (United States)

    Bier, M.

    1976-01-01

    The nature of electrophoresis is reviewed and potential advances realizable in the field of biology and medicine from a space electrophoresis facility are examined. The ground-based applications of electrophoresis: (1) characterization of an ionized species; (2) determination of the quantitative composition of a complex mixture; and (3) isolation of the components of a mixture, separation achieved on the basis of the difference in transport rates is reviewed. The electrophoresis of living cells is considered, touching upon the following areas: the separation of T and B lymphocytes; the genetic influence on mouse lymphocyte mobilities; the abnormal production of specific and monoclonal immunoproteins; and the study of cancer. Schematic diagrams are presented of three types of electrophoresis apparatus: the column assembly for the static electrophoresis experiment on the Apollo-Soyuz mission, the continuous flow apparatus used in the same mission and a miniaturized electrophoresis apparatus.

  3. Characterization of mutations and loss of heterozygosity of p53 and K-ras2 in pancreatic cancer cell lines by immobilized polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Edwards Jeremy

    2003-07-01

    Full Text Available Abstract Background The identification of known mutations in a cell population is important for clinical applications and basic cancer research. In this work an immobilized form of the polymerase chain reaction, referred to as polony technology, was used to detect mutations as well as gene deletions, resulting in loss of heterozygosity (LOH, in cancer cell lines. Specifically, the mutational hotspots in p53, namely codons 175, 245, 248, 249, 273, and 282, and K-ras2, codons 12, 13 and 61, were genotyped in the pancreatic cell line, Panc-1. In addition LOH analysis was also performed for these same two genes in Panc-1 by quantifying the relative gene copy number of p53 and K-ras2. Results Using polony technology, Panc-1 was determined to possess only one copy of p53, which possessed a mutation in codon 273, and two copies of K-ras2, one wildtype and one with a mutation in codon 12. To further demonstrate the general approach of this method, polonies were also used to detect K-ras2 mutations in the pancreatic cell lines, AsPc-1 and CAPAN-1. Conclusions In conclusion, we have developed an assay that can detect mutations in hotspots of p53 and K-ras2 as well as diagnose LOH in these same genes.

  4. Production of cellulase from immobilized Trichoderma reesei

    International Nuclear Information System (INIS)

    Kasai, Noboru; Tamada, Masao; Kumakura, Minoru

    1989-05-01

    This report completed the results that obtained on the study of the enzyme activity in the culture of immobilized Trichoderma reesei cells in flask scale (100ml) and bench scale (30l). In the flask scale culture, the batch and repeated batch culture were carried out, and in the bench scale culture, the batch, repeated batch and continuous culture were done by using a culture equipment that is an unit process of the bench scale test plant for saccharification of cellulosic wastes. The enzyme activity of the immobilized cells was higher than that of the intact cells in the flask scale culture and it was confirmed that the enzyme activity was not decreased on the repeated batch culture of six times even. In the bench scale culture, it was found that a optimum culture condition of the immobilized cells was not different from that of the free cells and the immobilized cells gave the enzyme solution with a high enzyme activity in the culture condition of 450rpm stirring speed and air supply of 0.1v/v/m above. The technique of the repeated batch and continuous culture for long times in bench scale without contamination was established. The enzyme activity of the immobilized cells in continuous culture became to be 85 % to that in batch culture and it was found that the enzyme solution with high enzyme activity was continuously obtained in the continuous culture for long times. (author)

  5. Immobilization Technologies in Probiotic Food Production

    Directory of Open Access Journals (Sweden)

    Gregoria Mitropoulou

    2013-01-01

    Full Text Available Various supports and immobilization/encapsulation techniques have been proposed and tested for application in functional food production. In the present review, the use of probiotic microorganisms for the production of novel foods is discussed, while the benefits and criteria of using probiotic cultures are analyzed. Subsequently, immobilization/encapsulation applications in the food industry aiming at the prolongation of cell viability are described together with an evaluation of their potential future impact, which is also highlighted and assessed.

  6. Immobilizing live Escherichia coli for AFM studies of surface dynamics

    International Nuclear Information System (INIS)

    Lonergan, N.E.; Britt, L.D.; Sullivan, C.J.

    2014-01-01

    Atomic force microscopy (AFM) is a probe-based technique that permits high resolution imaging of live bacterial cells. However, stably immobilizing cells to withstand the probe-based lateral forces remains an obstacle in AFM mediated studies, especially those of live, rod shaped bacteria in nutrient media. Consequently, AFM has been under-utilized in the research of bacterial surface dynamics. The aim of the current study was to immobilize a less adherent Escherichia coli strain in a method that both facilitates AFM imaging in nutrient broth and preserves overall cell viability. Immobilization reagents and buffers were systematically evaluated and the cell membrane integrity was monitored in all sample preparations. As expected, the biocompatible gelatin coated surfaces facilitated stable cell attachment in lower ionic strength buffers, yet poorly immobilized cells in higher ionic strength buffers. In comparison, poly-L-lysine surfaces bound cells in both low and high ionic strength buffers. The benefit of the poly-L-lysine binding capacity was offset by the compromised membrane integrity exhibited by cells on poly-L-lysine surfaces. However, the addition of divalent cations and glucose to the immobilization buffer was found to mitigate this unfavorable effect. Ultimately, immobilization of E. coli cells on poly-L-lysine surfaces in a lower ionic strength buffer supplemented with Mg 2+ and Ca 2+ was determined to provide optimal cell attachment without compromising the overall cell viability. Cells immobilized in this method were stably imaged in media through multiple division cycles. Furthermore, permeability assays indicated that E. coli cells recover from the hypoosmotic stress caused by immobilization in low ionic strength buffers. Taken together, this data suggests that stable immobilization of viable cells on poly-L-lysine surfaces can be accomplished in lower ionic strength buffers that are supplemented with divalent cations for membrane stabilization while

  7. 3-Chloro-1,2-propanediol biodegradation by Ca-alginate immobilized Pseudomonas putida DSM 437 cells applying different processes: mass transfer effects.

    Science.gov (United States)

    Konti, Aikaterini; Mamma, Diomi; Hatzinikolaou, Dimitios G; Kekos, Dimitris

    2016-10-01

    3-Chloro-1,2-propanediol (3-CPD) biodegradation by Ca-alginate immobilized Pseudomonas putida cells was performed in batch system, continuous stirred tank reactor (CSTR), and packed-bed reactor (PBR). Batch system exhibited higher biodegradation rates and 3-CPD uptakes compared to CSTR and PBR. The two continuous systems (CSTR and PBR) when compared at 200 mg/L 3-CPD in the inlet exhibited the same removal of 3-CPD at steady state. External mass-transfer limitations are found negligible at all systems examined, since the observable modulus for external mass transfer Ω ≪ 1 and the Biot number Bi > 1. Intra-particle diffusion resistance had a significant effect on 3-CPD biodegradation in all systems studied, but to a different extent. Thiele modulus was in the range of 2.5 in batch system, but it was increased at 11 when increasing cell loading in the beads, thus lowering significantly the respective effectiveness factor. Comparing the systems at the same cell loading in the beads PBR was less affected by internal diffusional limitations compared to CSTR and batch system, and, as a result, exhibited the highest overall effectiveness factor.

  8. Media arrangement impacts cell growth in anaerobic fixed-bed reactors treating sugarcane vinasse: Structured vs. randomic biomass immobilization.

    Science.gov (United States)

    de Aquino, Samuel; Fuess, Lucas Tadeu; Pires, Eduardo Cleto

    2017-07-01

    This study reports on the application of an innovative structured-bed reactor (FVR) as an alternative to conventional packed-bed reactors (PBRs) to treat high-strength solid-rich wastewaters. Using the FVR prevents solids from accumulating within the fixed-bed, while maintaining the advantages of the biomass immobilization. The long-term operation (330days) of a FVR and a PBR applied to sugarcane vinasse under increasing organic loads (2.4-18.0kgCODm -3 day -1 ) was assessed, focusing on the impacts of the different media arrangements over the production and retention of biomass. Much higher organic matter degradation rates, as well as long-term operational stability and high conversion efficiencies (>80%) confirmed that the FVR performed better than the PBR. Despite the equivalent operating conditions, the biomass growth yield was different in both reactors, i.e., 0.095gVSSg -1 COD (FVR) and 0.066gVSSg -1 COD (PBR), indicating a clear control of the media arrangement over the biomass production in fixed-bed reactors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Characterisation of ribosomal proteins from HeLa and Krebs II mouse ascites tumor cells by different two-dimensional polyacrylamide gel electrophoresis techniques

    DEFF Research Database (Denmark)

    Issinger, O G; Beier, H

    1978-01-01

    Electrophoresis of ribosomal proteins according to Kaltschmidt and Wittmann, 1970a, b (pH 8.6/pH 4.5 urea system) yielded 29 proteins for the small subunits and 35 and 37 proteins for the large subunits of Krebs II ascites and HeLa ribosomes, respectively. Analysis of the proteins according...... to a modified technique by Mets and Bogorad (1974) (pH 4.5/pH 8.6 SDS system) revealed 28 and 29 proteins in the small subunits and 37 and 38 proteins in the large subunits of Krebs II ascites and HeLa ribosomes. The molecular weights of the individual proteins were determined by: 1. "three-dimensional" gel...... using the pH 4.5/pH 8.6 SDS system. The molecular weights Krebs II ascites and HeLa ribosomal proteins are compared with those obtained by other authors for different mammalian species....

  10. Immobilized waste leaching

    International Nuclear Information System (INIS)

    Suarez, A.A.

    1989-01-01

    The main mechanism by which the immobilized radioactive materials can return to biosphere is the leaching due to the intrusion of water into the repositories. Some mathematical models and experiments utilized to evaluate the leaching rates in different immobilization matrices are described. (author) [pt

  11. Assessment of DNA damage and Chromosome aberration in human lymphocyte exposed to low dose radiation detected by FISH(Fluorescence In Situ Hybridization) and SCGE(Single Cell Gel Electrophoresis)

    International Nuclear Information System (INIS)

    Chung, Hai Won; Kim, Su Young; Kim, Byung Mo; Kim, Sun Jin; Ha, Sung Whan; Kim, Tae Hwan; Cho, Chul Koo

    2000-01-01

    Comparative study was performed for the assessment of DNA damage and Chromosomal aberration in human lymphocyte exposed to low dose radiation using Fluorescence In Situ Hybridization(FISH) and Single Cell Gel Electrophoresis(SCGE). Chromosomal aberrations in human lymphocyte exposed to radiation at doses of 5, 10, 30 and 50cGy were analysed with whole chromosome-specific probes by human chromosome 1, 2 and 4 according to PAINT system. FISH with chromosome-specific probe has been used to be a valid and rapid method for detection of chromosome rearrangements induced by low dose radiation. The frequencies of stable translocation per cell equivalents were 0.0116, 0.0375, 0.0407, 0.0727 and 0.0814 for 0, 5, 10, 30 and 50cGy, respectively, and those of dicentric were 0.00, 0.0125, 0.174, 0.0291 and 0.0407 respectively. Radiation induced DNA damage in human lymphocyte in a dose-dependent manner at low doses from 5cGy to 50cGy, which were analysed by single Cell Gel Electrophoresis(SCGE). From above results, FISH seemed to be useful for radiation biodosimetry by which the frequencies of stable aberrations in human lymphocyte can be observed more easily than by conventional method and SCGE also seemed to be sensitive method for detecting DNA damage by low dose radiation exposure, so that those methods will improve our technique to perform meaningful biodosimetry for radiation at low doses

  12. Comparison of protein patterns of xrs-5, a radiosensitive Chinese hamster ovary cell line, and CHO-K1, its radioresistant parent, using two-dimensional gel-electrophoresis

    International Nuclear Information System (INIS)

    Kramer, J.M.

    1991-01-01

    X-ray sensitive strains of Chinese hamster ovary cell lines have been used to analyze radiation repair mechanisms. One cell line, xrs-5, has been shown to be very sensitive to ionizing radiation and radical forming chemical mutagens. This sensitivity is thought to be a result a mutation in the DNA double strand break (DSB) repair mechanism, and its characterization has been a goal of several repair mechanism studies. Using two-dimensional gel electrophoresis, we have detected a protein (MW approximately 55KD) in the DNA/Nuclear Matrix (nucleoid) cell fraction of CHO-Kl cells that is absent in the nucleoid fraction of xrs-5. This protein is present, however, in both CHO-Kl and xrs-5 whole cell protein maps. To determine whether the 55KD protein is responsible for the radiosensitive and defective DSB repair phenotype of xrs-5 cells, studies are now underway to analyze revertants of xrs-5 that are proficient in DSB repair. Furthermore, an effort to sequence the protein in question is planned. 23 refs., 2 figs

  13. Serum globulin electrophoresis

    Science.gov (United States)

    ... plasma proteins. In: Baynes JW, Dominiczak MH, eds. Medical Biochemistry . 4th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap 4. Rajkumar SV. Plasma cell disorders. In: Goldman L, Schafer AI, ... . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 187.

  14. Low pH immobilizes and kills human leukocytes and prevents transmission of cell-associated HIV in a mouse model

    Directory of Open Access Journals (Sweden)

    Markham Richard B

    2005-09-01

    results suggest that physiologic or microbicide-induced acid immobilization and killing of infected white blood cells may be effective in preventing sexual transmission of cell-associated HIV.

  15. Complex effect of lignocellulosic biomass pretreatment with 1-butyl-3-methylimidazolium chloride ionic liquid on various aspects of ethanol and fumaric acid production by immobilized cells within SSF.

    Science.gov (United States)

    Dotsenko, Anna S; Dotsenko, Gleb S; Senko, Olga V; Stepanov, Nikolay A; Lyagin, Ilya V; Efremenko, Elena N; Gusakov, Alexander V; Zorov, Ivan N; Rubtsova, Ekaterina A

    2018-02-01

    The pretreatment of softwood and hardwood samples (spruce and hornbeam wood) with 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) was undertaken for further simultaneous enzymatic saccharification of renewable non-food lignocellulosic biomass and microbial fermentation of obtained sugars to ethanol and fumaric acid. A multienzyme cocktail based on cellulases and yeast or fungus cells producing ethanol and fumaric acid were the main objects of [Bmim]Cl influence studies. A complex effect of lignocellulosic biomass pretreatment with [Bmim]Cl on various aspects of the process (both action of cellulases and microbial conversion of hydrolysates to target products) was revealed. Positive effects of the pretreatment with [Bmim]Cl included decreasing the lignin content in the biomass, and increasing the effectiveness of enzymatic hydrolysis and microbial transformation of pretreated biomass. Immobilized cells of both yeasts and fungi possessed improved productive characteristics in the biotransformation of biomass pretreated with [Bmim]Cl to ethanol and fumaric acid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Impedance spectra of patch clamp scenarios for single cells immobilized on a lab-on-a-chip

    DEFF Research Database (Denmark)

    Alberti, Massimo; Snakenborg, Detlef; Lopacinska, Joanna M.

    2014-01-01

    and simulated impedance spectra proved that the presented method could distinguish between a cell-attached mode and a whole-cell mode even with low-quality seals. In physiological conditions, the capacitance of HeLa cells was measured to *38 pF. The first gigaseal was recorded and maintained for 40 min. Once...... membrane. After incubating the chip for 24 h, HeLa cells adhered and grew on the chip surface but did not survive when trapped on the microapertures. The microfluidic system proved to work as a micro electrophysiological analysis system, and the IS-based method can be used for further studies on the post......A simple method based on impedance spectroscopy (IS) was developed to distinguish between different patch clamp modes for single cells trapped on microapertures in a patch clamp microchannel array designed for patch clamping on cultured cells. The method allows detecting via impedance analysis...

  17. Surface Charge Measurement of SonoVue, Definity and Optison: A Comparison of Laser Doppler Electrophoresis and Micro-Electrophoresis.

    Science.gov (United States)

    Ja'afar, Fairuzeta; Leow, Chee Hau; Garbin, Valeria; Sennoga, Charles A; Tang, Meng-Xing; Seddon, John M

    2015-11-01

    Microbubble (MB) contrast-enhanced ultrasonography is a promising tool for targeted molecular imaging. It is important to determine the MB surface charge accurately as it affects the MB interactions with cell membranes. In this article, we report the surface charge measurement of SonoVue, Definity and Optison. We compare the performance of the widely used laser Doppler electrophoresis with an in-house micro-electrophoresis system. By optically tracking MB electrophoretic velocity in a microchannel, we determined the zeta potentials of MB samples. Using micro-electrophoresis, we obtained zeta potential values for SonoVue, Definity and Optison of -28.3, -4.2 and -9.5 mV, with relative standard deviations of 5%, 48% and 8%, respectively. In comparison, laser Doppler electrophoresis gave -8.7, +0.7 and +15.8 mV with relative standard deviations of 330%, 29,000% and 130%, respectively. We found that the reliability of laser Doppler electrophoresis is compromised by MB buoyancy. Micro-electrophoresis determined zeta potential values with a 10-fold improvement in relative standard deviation. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Studies on the immobilization of biofunctional components by radiation polymerization and their applications

    International Nuclear Information System (INIS)

    Kaetsu, I.; Kumakura, M.; Fujimura, T.; Yoshida, M.; Asano, M.; Kasai, N.; Tamada, M.

    1986-01-01

    The recent progress on the studies of immobilization of various biofunctional components mainly by means of radiation polymerization as well as their practical applications to biomedical and biochemical fields were reviewed. The immobilization of drugs for the controlled release and targetting, the immobilization of antigens and antibodies for the immunodiagnosis, and the immobilization of microorganisms and tissue cells for the cell culture and the biomass conversion were the main topics in this review. The new findings on the enhanced immobilization methods and the polymeric carriers for immobilization were also attached. (author)

  19. Diffusion of Oxygen in Alginate Gels Related to the Kinetics of Methanol Oxidation by Immobilized Hansenula polymorpha Cells

    NARCIS (Netherlands)

    Hiemstra, Harry; Dijkhuizen, Lubbert; Harder, Willem

    1983-01-01

    In the yeast Hansenula polymorpha an oxygen-requiring enzyme, alcohol oxidase, catalyzes the conversion of methanol into formaldehyde. After growth on methanol cells of the organism were harvested and entrapped in barium-alginate gels. The diffusion of oxygen towards these cells is seriously

  20. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.

    2014-01-01

    Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...... and products of catalytic reactions can freely diffuse through open mesopores (2–40 nm). The formation mechanism of hierarchically structured porous bioactive glasses, the immobilization mechanism of enzyme and the catalysis mechanism of immobilized enzyme are then discussed. The novel nanostructure...

  1. Catalytical Properties of Free and Immobilized Aspergillus niger Tannase

    OpenAIRE

    Abril Flores-Maltos; Luis V. Rodríguez-Durán; Jacqueline Renovato; Juan C. Contreras; Raúl Rodríguez; Cristóbal N. Aguilar

    2011-01-01

    A fungal tannase was produced, recovered, and immobilized by entrapment in calcium alginate beads. Catalytical properties of the immobilized enzyme were compared with those of the free one. Tannase was produced intracellularly by the xerophilic fungus Aspergillus niger GH1 in a submerged fermentation system. Enzyme was recovered by cell disruption and the crude extract was partially purified. The catalytical properties of free and immobilized tannase were evaluated using tannic acid and methy...

  2. Platform for immobilization and observation of subcellular processes

    Science.gov (United States)

    McKnight, Timothy E.; Kalluri, Udaya C.; Melechko, Anatoli V.

    2014-08-26

    A method of immobilizing matter for imaging that includes providing an array of nanofibers and directing matter to the array of the nanofibers. The matter is immobilized when contacting at least three nanofibers of the array of nanofibers simultaneously. Adjacent nanofibers in the array of nanofibers may be separated by a pitch as great as 100 microns. The immobilized matter on the array of nanofibers may then be imaged. In some examples, the matter may be cell matter, such as protoplasts.

  3. Plutonium Disposition by Immobilization

    International Nuclear Information System (INIS)

    Gould, T.; DiSabatino, A.; Mitchell, M.

    2000-01-01

    The ultimate goal of the Department of Energy (DOE) Immobilization Project is to develop, construct, and operate facilities that will immobilize between 17 to 50 tonnes (MT) of U.S. surplus weapons-usable plutonium materials in waste forms that meet the ''spent fuel'' standard and are acceptable for disposal in a geologic repository. Using the ceramic can-in-canister technology selected for immobilization, surplus plutonium materials will be chemically combined into ceramic forms which will be encapsulated within large canisters of high level waste (HLW) glass. Deployment of the immobilization capability should occur by 2008 and be completed within 10 years. In support of this goal, the DOE Office of Fissile Materials Disposition (MD) is conducting development and testing (D and T) activities at four DOE laboratories under the technical leadership of Lawrence Livermore National Laboratory (LLNL). The Savannah River Site has been selected as the site for the planned Plutonium Immobilization Plant (PIP). The D and T effort, now in its third year, will establish the technical bases for the design, construction, and operation of the U. S. capability to immobilize surplus plutonium in a suitable and cost-effective manner. Based on the D and T effort and on the development of a conceptual design of the PIP, automation is expected to play a key role in the design and operation of the Immobilization Plant. Automation and remote handling are needed to achieve required dose reduction and to enhance operational efficiency

  4. Isomaltulose production using free and immobilized Serratia ...

    African Journals Online (AJOL)

    André

    2016-05-18

    May 18, 2016 ... After 2 h of reaction time in shake flasks, a high production of ... immobilized cells in calcium alginate was studied in a packed bed bioreactor during seven days in a .... cell biomass was obtained from fermentation in a 6.6 L bioreactor .... carbohydrates were analyzed comparing their retention times with.

  5. Isomaltulose production using free and immobilized Serratia ...

    African Journals Online (AJOL)

    Isomaltulose is a low cariogenic sweetener used as a substitute for sucrose in the food industry. In this study, isomaltulose production by Serratia plymuthica ATCC 15928 was performed using free and immobilized cells. Response Surface Methodology was employed to evaluate the influence of temperature, wet cell mass ...

  6. Effect of photo-immobilization of epidermal growth factor on the cellular behaviors

    International Nuclear Information System (INIS)

    Ogiwara, Kazutaka; Nagaoka, Masato; Cho, Chong-Su; Akaike, Toshihiro

    2006-01-01

    We constructed photo-reactive epidermal growth factor (EGF) bearing p-azido phenylalanine at the C-terminal (HEGFP) by genetic engineering to investigate the possibility of immobilized EGF as a novel artificial extracellular matrix (ECM). The constructed recombinant protein was immobilized to glass surface by ultraviolet irradiation. A431 cells adhered both to HEGFP-immobilized and collagen-coated surfaces. Interaction between immobilized HEGFP and EGF receptors in the A431 cells was independent of Mg 2+ although integrin-mediated cell adhesion to natural ECMs is dependent on Mg 2+ . Phosphorylation of EGF receptors in A431 cells was induced by immobilized HEGFP as same as soluble EGF. DNA uptake of hepatocytes decreased by immobilized HEGFP whereas it increased by soluble EGF. Liver-specific functions of hepatocytes were maintained for 3 days by immobilized HEGFP whereas they were not maintained by soluble EGF, indicating that immobilized HEGFP follows different signal transduction pathway from soluble EGF

  7. Bioprocessing: Prospects for space electrophoresis

    Science.gov (United States)

    Bier, M.

    1977-01-01

    The basic principles of electrophoresis are reviewed in light of its past contributions to biology and medicine. The near-zero gravity environment of orbiting spacecraft may present some unique advantages for a variety of processes, by abolishing the major source of convection in fluids. As the ground-based development of electrophoresis was heavily influenced by the need to circumvent the effects of gravity, this process should be a prime candidate for space operation. Nevertheless, while a space facility for electrophoresis may overcome the limitations imposed by gravity, it will not necessarily overcome all problems inherent in electrophoresis. These are, mainly, electroosmosis and the dissipation of the heat generated by the electric field. The NASA program has already led to excellent coatings to prevent electroosmosis, while the need for heat dissipation will continue to impose limits on the actual size of equipment. It is also not excluded that, once the dominant force of gravity is eliminated, disturbances in fluid stability may originate from weaker forces, such as surface tension.

  8. Gel electrophoresis of inorganic cations

    International Nuclear Information System (INIS)

    Schoenhofer, F.; Grass, F.

    1978-01-01

    In order to be able to separate the largest possible amounts of substance, polyacryl amide gel (PAA) and silica gel are used as carrier for the electrophoresis. Milligramme quantities can easily be separated on PAA gel plates. Electrophoretic ion focussing considerably improves it. Separations of Sr/Y and lanthanoids were carried out. The behaviour of the readily soluble complexing agent acids on silica gel thin layers was minutely investigated and an interpretation of the focussing effect was derived. The conditions for separating radionuclides were optimized. A further improved separation can be achieved by a time sequence combination of normal electrophoresis and ion focussing. Selective isolation methods are advantageous to determine radionuclide traces in environmental samples. The selective adsorption on preformed deposits was transferred to electrophoresis. After pre-investigations on silica gel layers, strontium and barium could also be retained on PAA gel and radium on strontium sulphate in PAA, whereas the disturbing calcium can easily pass through. Cesium can also be retained by prussian blue in the electrophoresis. (orig.) [de

  9. Radiation technology for immobilization of bioactive materials

    International Nuclear Information System (INIS)

    1988-12-01

    Within the framework of the Agency's coordinated research programme on ''Application of Radiation Technology in Immobilization of Bioactive Materials'', the third and final research coordination meeting was held at Beijing University, Beijing, People's Republic of China, 15-18 June 1987. The present publication compiles all presentations made at the meeting. Fundamental processes for the immobilization of enzymes, antibodies, cells and drugs were developed and established using gamma radiation, electron beams and plasma discharge. Applications of various biofunctional components, immobilized by radiation techniques in different processes, were studied. A range of backbone polymers has been examined together with various monomers. Coupling procedures have been developed which are relevant to our particular requirements. Enzymes of various types and characteristics have been immobilized with considerable efficiency. The immobilized biocatalysts have been shown to possess significant activity and retention of activity on storage. There appears to be a high degree of specificity associated with the properties of the immobilised biocatalysts, their activity and the ease of their preparation. Novel additives which lower the total radiation dose in grafting have been discovered and their value in immobilization processes assessed. Potential applications include: medical (diagnostic, therapeutic), and industrial processes (fermentation, bioseparation, etc.). Refs, figs and tabs

  10. Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry

    OpenAIRE

    Singh, Pramod Kumar; Shrivastava, Nidhi; Chaturvedi, Krishna; Sharma, Bechan; Bhagyawant, Sameer S.

    2016-01-01

    Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE) across a broad range 3.0–10.0 immobilized pH gradient (IPG) strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected ...

  11. Regulating the migration of smooth muscle cells by a vertically distributed poly(2-hydroxyethyl methacrylate) gradient on polymer brushes covalently immobilized with RGD peptides.

    Science.gov (United States)

    Wu, Sai; Du, Wang; Duan, Yiyuan; Zhang, Deteng; Liu, Yixiao; Wu, Bingbing; Zou, Xiaohui; Ouyang, Hongwei; Gao, Changyou

    2018-05-30

    biological cues perpendicular to the substrate, which is the usual case for the biological signaling molecules to locate in ECM in vivo, has been scarcely studied, and has not been used to guide the directional migration of cells. In this study, we prepare a depth gradient of RGD peptides along the polymer chains, which is used to guide the directional migration of SMCs after a second hydrophilic bock is prepared in a gradient manner. For the first time the directional migration of SMCs is achieved under the guidance of a depth gradient of RGD ligands. The mechanisms of different cell migration abilities are further discussed based on the results of cell adhesion, cell adhesion force, cytoskeleton alignment and expression of relative proteins and genes. This work paves a new strategy by fabricating a gradient polymer brushes with immobilized bioactive molecules to dominate the directional cell migration, and elucidates the mechanisms underlining the biased migration along RGD depth localization gradients, shedding a light for the design of novel biomaterials to control and guide cell migration and invasion. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Dynamics of yeast immobilized-cell fluidized-bed bioreactors systems in ethanol fermentation from lactose-hydrolyzed whey and whey permeate.

    Science.gov (United States)

    Gabardo, Sabrina; Pereira, Gabriela Feix; Klein, Manuela P; Rech, Rosane; Hertz, Plinho F; Ayub, Marco Antônio Záchia

    2016-01-01

    We studied the dynamics of ethanol production on lactose-hydrolyzed whey (LHW) and lactose-hydrolyzed whey permeate (LHWP) in batch fluidized-bed bioreactors using single and co-cultures of immobilized cells of industrial strains of Saccharomyces cerevisiae and non-industrial strains of Kluyveromyces marxianus. Although the co-culture of S. cerevisiae CAT-1 and K. marxianus CCT 4086 produced two- to fourfold the ethanol productivity of single cultures of S. cerevisiae, the single cultures of the K. marxianus CCT 4086 produced the best results in both media (Y EtOH/S = 0.47-0.49 g g(-1) and Q P = 1.39-1.68 g L(-1) h(-1), in LHW and LHWP, respectively). Ethanol production on concentrated LHWP (180 g L(-1)) reached 79.1 g L(-1), with yields of 0.46 g g(-1) for K. marxianus CCT 4086 cultures. Repeated batches of fluidized-bed bioreactor on concentrated LHWP led to increased ethanol productivity, reaching 2.8 g L(-1) h(-1).

  13. Production of extremely alkaliphilic, halotolerent, detergent, and thermostable mannanase by the free and immobilized cells of Bacillus halodurans PPKS-2. Purification and characterization.

    Science.gov (United States)

    Vijayalaxmi, S; Prakash, P; Jayalakshmi, S K; Mulimani, V H; Sreeramulu, K

    2013-09-01

    The alkaliphilic Bacillus halodurans strain PPKS-2 was shown to produce extracellular extreme alkaliphilic, halotolerent, detergent, and thermostable mannanase activity. The cultural conditions for the maximum enzyme production were optimized with respect to pH, temperature, NaCl, and inexpensive agro wastes as substrates. Mannanase production was enhanced more than 4-fold in the presence of 1 % defatted copra meal and 0.5 % peptone or feather hydrolysate at pH 11 and 40 °C. Mannanase was purified to 10.3-fold with 34.6 % yield by ion exchange and gel filtration chromatography methods. Its molecular mass was estimated to be 22 kDa by SDS-PAGE. The mannanase had maximal activity at pH 11 and 70 °C. This enzyme was active over a broad range of NaCl (0-16 %) and thermostable retaining 100 % of the original activity at 70 °C for 3 h. Immobilization of whole cells proved to be effective for continuous production of mannanase. Since the strain PPKS-2 grows on cheaper agro wastes such as defatted copra meal, corn husk, jowar bagasse, and wheat bran, these can be exploited for mannanase production on an industrial scale.

  14. Chondrogenesis and hypertrophy in response to aggregate behaviors of human mesenchymal stem cells on a dendrimer-immobilized surface.

    Science.gov (United States)

    Wongin, Sopita; Ogawa, Yuuki; Kim, Mee-Hae; Viravaidya-Pasuwat, Kwanchanok; Kino-Oka, Masahiro

    2017-08-01

    To investigate the behaviors of aggregates of human mesenchymal stem cells (hMSCs) on chondrogenesis and chondrocyte hypertrophy using spatiotemporal expression patterns of chondrogenic (type II collagen) and hypertrophic (type X collagen) markers during chondrogenesis. hMSCs were cultured on either a polystyrene surface or polyamidoamine dendrimer surface with a fifth generation (G5) dendron structure in chondrogenic medium and growth medium. At day 7, cell aggregates without stress fibers formed on the G5 surface and triggered differentiation of hMSCs toward the chondrogenic fate, as indicated by type II collagen being observed while type X collagen was undetectable. In contrast, immunostaining of hMSCs cultured on polystyrene, which exhibited abundant stress fibers and did not form aggregates, revealed no evidence of either type II and or type X collagen. At day 21, the morphological changes of the cell aggregates formed on the G5 surface were suppressed as a result of stress fiber formation. Type II collagen was observed throughout the aggregates whereas type X collagen was detected only at the basal side of the aggregates. Change of cell aggregate behaviors derived from G5 surface alone regulated chondrogenesis and hypotrophy, and this was enhanced by chondrogenic medium. Incubation of hMSCs affects the expression of type II and X collagens via effects on cell aggregate behavior and stress fiber formation.

  15. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Godoy-Gallardo, Maria, E-mail: maria.godoy.gallardo@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Guillem-Marti, Jordi, E-mail: jordi.guillem.marti@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Sevilla, Pablo, E-mail: psevilla@euss.es [Department of Mechanics, Escola Universitària Salesiana de Sarrià (EUSS), C/ Passeig de Sant Bosco, 42, 08017 Barcelona (Spain); Manero, José M., E-mail: jose.maria.manero@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Gil, Francisco J., E-mail: francesc.xavier.gil@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); and others

    2016-02-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  16. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    International Nuclear Information System (INIS)

    Godoy-Gallardo, Maria; Guillem-Marti, Jordi; Sevilla, Pablo; Manero, José M.; Gil, Francisco J.

    2016-01-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  17. A large-scale electrophoresis- and chromatography-based determination of gene expression profiles in bovine brain capillary endothelial cells after the re-induction of blood-brain barrier properties

    Directory of Open Access Journals (Sweden)

    Duban-Deweer Sophie

    2010-11-01

    Full Text Available Abstract Background Brain capillary endothelial cells (BCECs form the physiological basis of the blood-brain barrier (BBB. The barrier function is (at least in part due to well-known proteins such as transporters, tight junctions and metabolic barrier proteins (e.g. monoamine oxidase, gamma glutamyltranspeptidase and P-glycoprotein. Our previous 2-dimensional gel proteome analysis had identified a large number of proteins and revealed the major role of dynamic cytoskeletal remodelling in the differentiation of bovine BCECs. The aim of the present study was to elaborate a reference proteome of Triton X-100-soluble species from bovine BCECs cultured in the well-established in vitro BBB model developed in our laboratory. Results A total of 215 protein spots (corresponding to 130 distinct proteins were identified by 2-dimensional gel electrophoresis, whereas over 350 proteins were identified by a shotgun approach. We classified around 430 distinct proteins expressed by bovine BCECs. Our large-scale gene expression analysis enabled the correction of mistakes referenced into protein databases (e.g. bovine vinculin and constitutes valuable evidence for predictions based on genome annotation. Conclusions Elaboration of a reference proteome constitutes the first step in creating a gene expression database dedicated to capillary endothelial cells displaying BBB characteristics. It improves of our knowledge of the BBB and the key proteins in cell structures, cytoskeleton organization, metabolism, detoxification and drug resistance. Moreover, our results emphasize the need for both appropriate experimental design and correct interpretation of proteome datasets.

  18. Multiplexed Western Blotting Using Microchip Electrophoresis.

    Science.gov (United States)

    Jin, Shi; Furtaw, Michael D; Chen, Huaxian; Lamb, Don T; Ferguson, Stephen A; Arvin, Natalie E; Dawod, Mohamed; Kennedy, Robert T

    2016-07-05

    Western blotting is a commonly used protein assay that combines the selectivity of electrophoretic separation and immunoassay. The technique is limited by long time, manual operation with mediocre reproducibility, and large sample consumption, typically 10-20 μg per assay. Western blots are also usually used to measure only one protein per assay with an additional housekeeping protein for normalization. Measurement of multiple proteins is possible; however, it requires stripping membranes of antibody and then reprobing with a second antibody. Miniaturized alternatives to Western blot based on microfluidic or capillary electrophoresis have been developed that enable higher-throughput, automation, and greater mass sensitivity. In one approach, proteins are separated by electrophoresis on a microchip that is dragged along a polyvinylidene fluoride membrane so that as proteins exit the chip they are captured on the membrane for immunoassay. In this work, we improve this method to allow multiplexed protein detection. Multiple injections made from the same sample can be deposited in separate tracks so that each is probed with a different antibody. To further enhance multiplexing capability, the electrophoresis channel dimensions were optimized for resolution while keeping separation and blotting times to less than 8 min. Using a 15 μm deep × 50 μm wide × 8.6 cm long channel, it is possible to achieve baseline resolution of proteins that differ by 5% in molecular weight, e.g., ERK1 (44 kDa) from ERK2 (42 kDa). This resolution allows similar proteins detected by cross-reactive antibodies in a single track. We demonstrate detection of 11 proteins from 9 injections from a single Jurkat cell lysate sample consisting of 400 ng of total protein using this procedure. Thus, multiplexed Western blots are possible without cumbersome stripping and reprobing steps.

  19. The fluid mechanics of continuous flow electrophoresis

    Science.gov (United States)

    Saville, D. A.

    1990-01-01

    The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.

  20. Escherichia coli NemA is an efficient chromate reductase that can be biologically immobilized to provide a cell free system for remediation of hexavalent chromium.

    Directory of Open Access Journals (Sweden)

    Katherine J Robins

    Full Text Available Hexavalent chromium is a serious and widespread environmental pollutant. Although many bacteria have been identified that can transform highly water-soluble and toxic Cr(VI to insoluble and relatively non-toxic Cr(III, bacterial bioremediation of Cr(VI pollution is limited by a number of issues, in particular chromium toxicity to the remediating cells. To address this we sought to develop an immobilized enzymatic system for Cr(VI remediation. To identify novel Cr(VI reductase enzymes we first screened cell extracts from an Escherichia coli library of soluble oxidoreductases derived from a range of bacteria, but found that a number of these enzymes can reduce Cr(VI indirectly, via redox intermediates present in the crude extracts. Instead, activity assays for 15 candidate enzymes purified as His6-tagged proteins identified E. coli NemA as a highly efficient Cr(VI reductase (k(cat/K(M= 1.1×10(5 M(-1 s(-1 with NADH as cofactor. Fusion of nemA to the polyhydroxyalkanoate synthase gene phaC from Ralstonia eutropha enabled high-level biosynthesis of functionalized polyhydroxyalkanoate granules displaying stable and active NemA on their surface. When these granules were combined with either Bacillus subtilis glucose dehydrogenase or Candida boidinii formate dehydrogenase as a cofactor regenerating partner, high levels of chromate transformation were observed with only low initial concentrations of expensive NADH cofactor being required, the overall reaction being powered by consumption of the cheap sacrificial substrates glucose or formic acid, respectively. This system therefore offers promise as an economic solution for ex situ Cr(VI remediation.

  1. Western Blotting using Capillary Electrophoresis

    OpenAIRE

    Anderson, Gwendolyn J.; Cipolla, Cynthia; Kennedy, Robert T.

    2011-01-01

    A microscale Western blotting system based on separating sodium-dodecyl sulfate protein complexes by capillary gel electrophoresis followed by deposition onto a blotting membrane for immunoassay is described. In the system, the separation capillary is grounded through a sheath capillary to a mobile X-Y translation stage which moves a blotting membrane past the capillary outlet for protein deposition. The blotting membrane is moistened with a methanol and buffer mixture to facilitate protein a...

  2. Capillary electrophoresis systems and methods

    Science.gov (United States)

    Dorairaj, Rathissh [Hillsboro, OR; Keynton, Robert S [Louisville, KY; Roussel, Thomas J [Louisville, KY; Crain, Mark M [Georgetown, IN; Jackson, Douglas J [New Albany, IN; Walsh, Kevin M [Louisville, KY; Naber, John F [Goshen, KY; Baldwin, Richard P [Louisville, KY; Franco, Danielle B [Mount Washington, KY

    2011-08-02

    An embodiment of the invention is directed to a capillary electrophoresis apparatus comprising a plurality of separation micro-channels. A sample loading channel communicates with each of the plurality of separation channels. A driver circuit comprising a plurality of electrodes is configured to induce an electric field across each of the plurality of separation channels sufficient to cause analytes in the samples to migrate along each of the channels. The system further comprises a plurality of detectors configured to detect the analytes.

  3. DNA Sequencing by Capillary Electrophoresis

    Science.gov (United States)

    Karger, Barry L.; Guttman, Andras

    2009-01-01

    Sequencing of human and other genomes has been at the center of interest in the biomedical field over the past several decades and is now leading toward an era of personalized medicine. During this time, DNA sequencing methods have evolved from the labor intensive slab gel electrophoresis, through automated multicapillary electrophoresis systems using fluorophore labeling with multispectral imaging, to the “next generation” technologies of cyclic array, hybridization based, nanopore and single molecule sequencing. Deciphering the genetic blueprint and follow-up confirmatory sequencing of Homo sapiens and other genomes was only possible by the advent of modern sequencing technologies that was a result of step by step advances with a contribution of academics, medical personnel and instrument companies. While next generation sequencing is moving ahead at break-neck speed, the multicapillary electrophoretic systems played an essential role in the sequencing of the Human Genome, the foundation of the field of genomics. In this prospective, we wish to overview the role of capillary electrophoresis in DNA sequencing based in part of several of our articles in this journal. PMID:19517496

  4. Major proteins in normal human lymphocyte subpopulations separated by fluorescence-activated cell sorting and analyzed by two-dimensional gel electrophoresis

    DEFF Research Database (Denmark)

    Madsen, P S; Hokland, M; Ellegaard, J

    1988-01-01

    markers were observed in all cell types. All the putative protein markers have been identified in the protein database of human peripheral blood mononuclear cells (PBMCs) (see accompanying article by Celis et al.). Comparison of the overall patterns of protein synthesis of the unsorted PBMCs with those...... of the four subpopulations showed that the synthesis of some major PBMC proteins decreased substantially in the sorted subsets. These proteins are most likely not of monocyte origin, as these cells constituted only about 15% of the total PBMCs. Also, the inhibition does not seem to be due to the addition...

  5. Hyaluronic Acid Immobilized Polyacrylamide Nanoparticle Sensors for CD44 Receptor Targeting and pH Measurement in Cells

    DEFF Research Database (Denmark)

    Sun, Honghao; Benjaminsen, Rikke Vicki; Almdal, Kristoffer

    2012-01-01

    Our ability to design receptor-targeted nanocarriers aimed at drug release after endocytosis is limited by the current knowledge of intracellular nanoparticle (NP) trafficking. It is not clear if NP size, surface chemistry, and/or targeting of cell surface receptors changes the intracellular fate...... of NPs; i.e., will all NPs enter acidic compartments and eventually end up in lysosomes or are there escape mechanisms or receptor-specific signaling that can be induced to change the cellular processing of an internalized NP? To give new insight into the intracellular trafficking of NPs that target...... nanosensors indicates that the intracellular trafficking is aimed at lysosomes regardless of whether CD44 receptor-specific or unspecific uptake is induced....

  6. Anthraquinone-2-sulfonate immobilized to conductive polypyrrole hydrogel as a bioanode to enhance power production in microbial fuel cell.

    Science.gov (United States)

    Tang, Xinhua; Ng, How Yong

    2017-11-01

    In this study, anthraquinone-2-sulfonate (AQS), a redox mediator, was covalently bound to conductive polypyrrole hydrogel (CPH) via electrochemical reduction of the in-situ-generated AQS diazonium salts. The porous structure and hydrophilic surface of this CPH/AQS anode enhanced biofilm formation while the AQS bound on the CPH/AQS anode worked as a redox mediator. The CPH/AQS bioanode reduced the charge transfer resistance from 28.3Ω to 4.1Ω while increased the maximum power density from 762±37mW/m 2 to 1919±69mW/m 2 , compared with the bare anode. These results demonstrated that the facile synthesis of the CPH/AQS anode provided an efficient route to enhance the power production of microbial fuel cell (MFC). Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Immobilization of Trichoderma reesei by radiation polymerization

    International Nuclear Information System (INIS)

    Zhou Ruimin; Ma Zueteh; Kaetus, Isao; Kumakura, Minoro

    1993-01-01

    Immobilization of Trichoderma reesei was carried out by radiation polymerization. It was found that the activity of fixed cells increased with increasing surface area of the carrier and was affected by the concentration of monomer tetraethylenglycol dimethacrylate and the shape of the substrate composition and structure of cotton textile fabrics. (author)

  8. Diesel oil removal by immobilized Pseudoxanthomonas sp. RN402.

    Science.gov (United States)

    Nopcharoenkul, Wannarak; Netsakulnee, Parichat; Pinyakong, Onruthai

    2013-06-01

    Pseudoxanthomonas sp. RN402 was capable of degrading diesel, crude oil, n-tetradecane and n-hexadecane. The RN402 cells were immobilized on the surface of high-density polyethylene plastic pellets at a maximum cell density of 10(8) most probable number (MPN) g(-1) of plastic pellets. The immobilized cells not only showed a higher efficacy of diesel oil removal than free cells but could also degrade higher concentrations of diesel oil. The rate of diesel oil removal by immobilized RN402 cells in liquid culture was 1,050 mg l(-1) day(-1). Moreover, the immobilized cells could maintain high efficacy and viability throughout 70 cycles of bioremedial treatment of diesel-contaminated water. The stability of diesel oil degradation in the immobilized cells resulted from the ability of living RN402 cells to attach to material surfaces by biofilm formation, as was shown by CLSM imaging. These characteristics of the immobilized RN402 cells, including high degradative efficacy, stability and flotation, make them suitable for the purpose of continuous wastewater bioremediation.

  9. Comparative proteome analysis of three mouse lung adenocarcinoma CMT cell lines with different metastatic potential by two-dimensional gel electrophoresis and mass spectrometry.

    Science.gov (United States)

    Zhang, Kelan; Wrzesinski, Krzysztof; Stephen, J Fey; Larsen, Peter Mose; Zhang, Xumin; Roepstorff, Peter

    2008-12-01

    Metastasis is a lethal attribute of a cancer and presents a continuing therapeutic challenge. Metastasis is a highly complex process and more knowledge about the mechanisms behind metastasis is highly desirable. Isogenic CMT cell lines were selected from a spontaneous mouse lung adenocarcinoma and characterized in vivo to have different metastatic potential. In this study, the comprehensive protein expression profiles of three of these CMT cell lines at passage 5, 15 and 35 were analyzed by 2-DE separation followed by MS identification. As a result, 82 and 40 unique proteins were found to be significantly up- or down-regulated between cell lines with different metastatic potential at passages 5 and 15, respectively. These proteins were identified by MS and most of them have previously been reported to be related to cancer development and/or metastasis. Bioinformatics analysis indicated that several of the proteins were involved in proteasome, cell-cycle and cell-communication pathways. Among them, some keratins, 14-3-3 proteins and 26S proteasome proteins were identified and their aberrant expression may be directly or indirectly involved in cancer development and metastasis. In conclusion, our comprehensive 2-DE-based proteomics studies revealed some candidate proteins, protein families and signaling pathways, which might be important in cancer development and metastasis.

  10. Limb immobilization and corticobasal syndrome.

    Science.gov (United States)

    Graff-Radford, Jonathan; Boeve, Bradley F; Drubach, Daniel A; Knopman, David S; Ahlskog, J Eric; Golden, Erin C; Drubach, Dina I; Petersen, Ronald C; Josephs, Keith A

    2012-12-01

    Recently, we evaluated two patients with corticobasal syndrome (CBS) who reported symptom onset after limb immobilization. Our objective was to investigate the association between trauma, immobilization and CBS. The charts of forty-four consecutive CBS patients seen in the Mayo Clinic Alzheimer Disease Research Center were reviewed with attention to trauma and limb immobilization. 10 CBS patients (23%) had immobilization or trauma on the most affected limb preceding the onset or acceleration of symptoms. The median age at onset was 61. Six patients manifested their first symptoms after immobilization from surgery or fracture with one after leg trauma. Four patients had pre-existing symptoms of limb dysfunction but significantly worsened after immobilization or surgery. 23 percent of patients had immobilization or trauma of the affected limb. This might have implications for management of CBS, for avoiding injury, limiting immobilization and increasing movement in the affected limb. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Comparative proteome analysis of three mouse lung adenocarcinoma CMT cell lines with different metastatic potential by two-dimensional gel electrophoresis and mass spectrometry

    DEFF Research Database (Denmark)

    Zhang, Kelan; Wrzesinski, Krzysztof; Stephen, J Fey

    2008-01-01

    and characterized in vivo to have different metastatic potential. In this study, the comprehensive protein expression profiles of three of these CMT cell lines at passage 5, 15 and 35 were analyzed by 2-DE separation followed by MS identification. As a result, 82 and 40 unique proteins were found...

  12. Comparative proteomic analysis of the ribosomes in 5-fluorouracil resistance of a human colon cancer cell line using the radical-free and highly reducing method of two-dimensional polyacrylamide gel electrophoresis.

    Science.gov (United States)

    Kimura, Kosei; Wada, Akira; Ueta, Masami; Ogata, Akihiko; Tanaka, Satoru; Sakai, Akiko; Yoshida, Hideji; Fushitani, Hideo; Miyamoto, Akiko; Fukushima, Masakazu; Uchiumi, Toshio; Tanigawa, Nobuhiko

    2010-11-01

    Many auxiliary functions of ribosomal proteins (r-proteins) have received considerable attention in recent years. However, human r-proteins have hardly been examined by proteomic analysis. In this study, we isolated ribosomal particles and subsequently compared the proteome of r-proteins between the DLD-1 human colon cancer cell line and its 5-fluorouracil (5-FU)-resistant sub-line, DLD-1/5-FU, using the radical-free and highly reducing method of two-dimensional polyacrylamide gel electrophoresis, which has a superior ability to separate basic proteins, and we discuss the role of r-proteins in 5-FU resistance. Densitometric analysis was performed to quantify modulated proteins, and protein spots showing significant changes were identified by employing matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. Three basic proteins (L15, L37 and prohibitin) which were significantly modulated between DLD-1 and DLD-1/5-FU were identified. Two proteins, L15 and L37, showed down-regulated expression in DLD-1/5-FU in comparison to DLD-1. Prohibitin, which is not an r-protein and is known to be localized in the mitochondria, showed up-regulated expression in DLD-1/5-FU. These 3 proteins may be related to 5-FU resistance.

  13. Effect of cell immobilization on the treatment of olive mill wastewater by a total phenols, acetic acid and formic acid degrading bacterium strain

    Directory of Open Access Journals (Sweden)

    Errami, Mohamed

    2005-06-01

    Full Text Available Olive mill wastewater (OMW is a pure vegetative by-product, containing a high organic and polyphenol content and is resistant to biodegradation. Its disposal lead to major environmental pollution problems in the Mediterranean basin. An aerobic bacterium was isolated from OMW. During three consecutive diluted and supplemented OMW treatment cycles, significant abatement of its phytotoxic substances was observed. In fact, total phenols, acetic and formic acids were reduced between 33 and 64 % when cells of the isolated bacterium were grown free; and between 62 and 78 % when cells of the same isolated bacterium were grown immobilized in a polyurethane sponge. These results suggest that the bacterium culture of the new isolate would decrease the OMW phytotoxicity. Phylogenetic analysis of 16S ribosomal DNA showed that all the related sequences are members of the Enterobacteriaceae family and revealed that the isolated bacterium was characterized as a Klebsiella oxytoca strain.El alpechín (OMW es un residuo puro de la extracción del aceite de oliva, que contiene una elevada carga orgánica y de polifenoles por lo que es resistente a la degradación. Su descarga produce graves problemas de contaminación medioambiental en toda el área mediterránea. Se ha aislado una bacteria anaerobia del OMW, que , durante tres ciclos consecutivos de tratamiento del OMW diluido y suplementado, produjo una disminución significativa de las sustancias fitotóxicas del residuo. De hecho, la concentración en fenoles totales, ácido acético y ácido fórmico se redujeron entre 33 y 64 % cuando las células no estaban inmovilizadas y entre el 62 y 78 % cuando las células bacterianas se inmovilizaron en una esponja de poliuretano. Estos resultados indican que el cultivo de la nueva bacteria aislada puede disminuir la fototoxicidad del alpechín. Análisis filogenético del ribosoma 16S de DNA demostró que todas las secuencias eran miembros de la familia

  14. Membranes suited for immobilizing biomolecules

    NARCIS (Netherlands)

    2009-01-01

    The present invention relates to flow-through membranes suitable for the immobilization of biomols., methods for the prepn. of such membranes and the use of such membranes for the immobilization of biomols. and subsequent detection of immobilized biomols. The invention concerns a flow-through

  15. Comparative assessment of heavy metal removal by immobilized ...

    African Journals Online (AJOL)

    EJIRO

    Key words: Biosorption, bacteria, heavy metal, dead bacterial cells, immobilization. INTRODUCTION ... Moreover, the metals cannot be degraded to harmless products and ... a sterile plastic container and taken immediately to the laboratory.

  16. Scaling-up batch conditions for efficient sucrose hydrolysis catalyzed by an immobilized recombinant Pichia pastoris cells in a stirrer tank reactor

    Directory of Open Access Journals (Sweden)

    Duniesky Martínez

    2017-01-01

    Conclusions: To date, there is not enough information to describe the large-scale production of invert sugar using different scaled-up criteria such as dose of immobilized biocatalyst and stirring speed effect on mass transfer. The present study results constitute a valuable tool to successfully carry out this type of high-scale operation for industrial purposes.

  17. A simple and robust approach to immobilization of antibody fragments.

    Science.gov (United States)

    Ikonomova, Svetlana P; He, Ziming; Karlsson, Amy J

    2016-08-01

    Antibody fragments, such as the single-chain variable fragment (scFv), have much potential in research and diagnostics because of their antigen-binding ability similar to a full-sized antibody and their ease of production in microorganisms. Some applications of antibody fragments require immobilization on a surface, and we have established a simple immobilization method that is based on the biotin-streptavidin interaction and does not require a separate purification step. We genetically fused two biotinylation tags-the biotin carboxyl carrier protein (BCCP) or the AviTag minimal sequence-to six different scFvs (scFv13R4, scFvD10, scFv26-10, scFv3, scFv5, and scFv12) for site-specific biotinylation in vivo by endogenous biotin ligases produced by Escherichia coli. The biotinylated scFvs were immobilized onto streptavidin-coated plates directly from cell lysates, and immobilization was detected through enzyme-linked immunosorbent assays. All scFvs fusions were successfully immobilized, and scFvs biotinylated via the BCCP tag tended to immobilize better than those biotinylated via the AviTag, even when biotinylation efficiency was improved with the biotin ligase BirA. The ability of immobilized scFvs to bind antigens was confirmed using scFv13R4 and scFvD10 with their respective targets β-galactosidase and bacteriophage lambda head protein D (gpD). The immobilized scFv13R4 bound to β-galactosidase at the same level for both biotinylation tags when the surface was saturated with the scFv, and immobilized scFvs retained their functionality for at least 100days after immobilization. The simplicity and robustness of our method make it a promising approach for future applications that require antibody fragment immobilization. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Western blotting using capillary electrophoresis.

    Science.gov (United States)

    Anderson, Gwendolyn J; M Cipolla, Cynthia; Kennedy, Robert T

    2011-02-15

    A microscale Western blotting system based on separating sodium-dodecyl sulfate protein complexes by capillary gel electrophoresis followed by deposition onto a blotting membrane for immunoassay is described. In the system, the separation capillary is grounded through a sheath capillary to a mobile X-Y translation stage which moves a blotting membrane past the capillary outlet for protein deposition. The blotting membrane is moistened with a methanol and buffer mixture to facilitate protein adsorption. Although discrete protein zones could be detected, bands were broadened by ∼1.7-fold by transfer to membrane. A complete Western blot for lysozyme was completed in about one hour with 50 pg mass detection limit from low microgram per milliliter samples. These results demonstrate substantial reduction in time requirements and improvement in mass sensitivity compared to conventional Western blots. Western blotting using capillary electrophoresis shows promise to analyze low volume samples with reduced reagents and time, while retaining the information content of a typical Western blot.

  19. Conducting polymer electrodes for gel electrophoresis.

    Directory of Open Access Journals (Sweden)

    Katarina Bengtsson

    Full Text Available In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene (PEDOT can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  20. Conducting polymer electrodes for gel electrophoresis.

    Science.gov (United States)

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  1. Catalytical Properties of Free and Immobilized Aspergillus niger Tannase

    Directory of Open Access Journals (Sweden)

    Abril Flores-Maltos

    2011-01-01

    Full Text Available A fungal tannase was produced, recovered, and immobilized by entrapment in calcium alginate beads. Catalytical properties of the immobilized enzyme were compared with those of the free one. Tannase was produced intracellularly by the xerophilic fungus Aspergillus niger GH1 in a submerged fermentation system. Enzyme was recovered by cell disruption and the crude extract was partially purified. The catalytical properties of free and immobilized tannase were evaluated using tannic acid and methyl gallate as substrates. KM and Vmax values for free enzyme were very similar for both substrates. But, after immobilization, KM and Vmax values increased drastically using tannic acid as substrate. These results indicated that immobilized tannase is a better biocatalyst than free enzyme for applications on liquid systems with high tannin content, such as bioremediation of tannery or olive-mill wastewater.

  2. Catalytical Properties of Free and Immobilized Aspergillus niger Tannase.

    Science.gov (United States)

    Flores-Maltos, Abril; Rodríguez-Durán, Luis V; Renovato, Jacqueline; Contreras, Juan C; Rodríguez, Raúl; Aguilar, Cristóbal N

    2011-01-01

    A fungal tannase was produced, recovered, and immobilized by entrapment in calcium alginate beads. Catalytical properties of the immobilized enzyme were compared with those of the free one. Tannase was produced intracellularly by the xerophilic fungus Aspergillus niger GH1 in a submerged fermentation system. Enzyme was recovered by cell disruption and the crude extract was partially purified. The catalytical properties of free and immobilized tannase were evaluated using tannic acid and methyl gallate as substrates. K(M) and V(max) values for free enzyme were very similar for both substrates. But, after immobilization, K(M) and V(max) values increased drastically using tannic acid as substrate. These results indicated that immobilized tannase is a better biocatalyst than free enzyme for applications on liquid systems with high tannin content, such as bioremediation of tannery or olive-mill wastewater.

  3. Single cell gel electrophoresis as a tool to assess genetic damage in Heleobia cf. australis (Mollusca: Gastropoda as sentinel for industrial and domestic pollution in Montevideo bay (Uruguay

    Directory of Open Access Journals (Sweden)

    Silvia Villar

    2015-09-01

    Full Text Available AbstractThe knowledge of the extent of DNA damage in aquatic organisms in polluted areas is an important issue because contamination may alter their health at sublethal levels. Although molluscs have been widely used to monitor water pollution, there are no records of in vivo genotoxicity studies. Heleobia cf. australis, is distributed in almost all Uruguayan coastal ecosystems, including highly polluted sites. The comet assay is a damage genetic biomarker based on the migration of negatively charged DNA fragments produced by mutagenic agents in individual cells. Live individuals were collected in the Montevideo Bay (impacted area and Laguna Garzón (control to analyze the presence of mutagenic agents in the former site through comet assay. Cells from organisms of the impacted area showed significantly higher levels of genetic damage than those obtained in the control population, measured by percentage of DNA in the tail. Although preliminary, this approach supports the idea that H. cf. australis could be used as a sentinel to evaluate the presence of mutagenic agents in estuarine environments, alerting to the impact of contamination in its early stages.

  4. Immobilization Patterns and Dynamics of Acetate-Utilizing Methanogens Immobilized in Sterile Granular Sludge in Upflow Anaerobic Sludge Blanket Reactors

    Science.gov (United States)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kjær

    1999-01-01

    Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fed upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After several months of reactor operation, the methanogens were immobilized, either separately or together. The fastest immobilization was observed in the reactor containing M. mazeii S-6. The highest effluent concentration of acetate was observed in the reactor with only M. mazeii S-6 immobilized, while the lowest effluent concentration of acetate was observed in the reactor where both types of methanogens were immobilized together. No changes were observed in the kinetic parameters (Ks and μmax) of immobilized M. concilii GP-6 or M. mazeii S-6 compared with suspended cultures, indicating that immobilization does not affect the growth kinetics of these methanogens. An enzyme-linked immunosorbent assay using polyclonal antibodies against either M. concilii GP-6 or M. mazeii S-6 showed significant variations in the two methanogenic populations in the different reactors. Polyclonal antibodies were further used to study the spatial distribution of the two methanogens. M. concilii GP-6 was immobilized only on existing support material without any specific pattern. M. mazeii S-6, however, showed a different immobilization pattern: large clumps were formed when the concentration of acetate was high, but where the acetate concentration was low this strain was immobilized on support material as single cells or small clumps. The data clearly show that the two aceticlastic methanogens immobilize differently in UASB systems, depending on the conditions found throughout the UASB reactor. PMID:10049862

  5. Characterization of a frozen shoulder model using immobilization in rats.

    Science.gov (United States)

    Kim, Du Hwan; Lee, Kil-Ho; Lho, Yun-Mee; Ha, Eunyoung; Hwang, Ilseon; Song, Kwang-Soon; Cho, Chul-Hyun

    2016-12-08

    The objective of this study was to investigate serial changes for histology of joint capsule and range of motion of the glenohumeral joint after immobilization in rats. We hypothesized that a rat shoulder contracture model using immobilization would be capable of producing effects on the glenohumeral joint similar to those seen in patients with frozen shoulder. Sixty-four Sprague-Dawley rats were randomly divided into one control group (n = 8) and seven immobilization groups (n = 8 per group) that were immobilized with molding plaster for 3 days, or for 1, 2, 3, 4, 5, or 6 weeks. At each time point, eight rats were euthanized for histologic evaluation of the axillary recess and for measurement of the abduction angle. Infiltration of inflammatory cells was found in the synovial tissue until 2 weeks after immobilization. However, inflammatory cells were diminished and fibrosis was dominantly observed in the synovium and subsynovial tissue 3 weeks after immobilization. From 1 week after immobilization, the abduction angle of all immobilization groups at each time point was significantly lower than that of the control group. Our study demonstrated that a rat frozen shoulder model using immobilization generates the pathophysiologic process of inflammation leading to fibrosis on the glenohumeral joint similar to that seen in patients with frozen shoulder. This model was attained within 3 weeks after immobilization. It may serve as a useful tool to investigate pathogenesis at the molecular level and identify potential target genes that are involved in the development of frozen shoulder.

  6. Mapping of Chlamydia trachomatis proteins by immobiline-polyacrylamide two-dimensional electrophoresis: spot identification by N-terminal sequencing and immunoblotting

    DEFF Research Database (Denmark)

    Bini, L; Sanchez-Campillo, M; Santucci, A

    1996-01-01

    Proteins from purified elementary bodies of Chlamydia trachomatis were separated by two-dimensional gel electrophoresis on nonlinear wide-range immobilized pH gradients in the first dimension and polyacrylamide gradient gels in the second dimension. The maps obtained with this system are highly...

  7. Effects of interferon gamma on Chlamydia trachomatis serovar A and L2 protein expression investigated by two-dimensional gel electrophoresis

    DEFF Research Database (Denmark)

    Shaw, A; Christiansen, Gunna; Birkelund, Svend

    1999-01-01

    ]methionine and two-dimensional gel electrophoresis with immobilized pH gradients in order to investigate changes in the protein expression of C. trachomatis serovar A and L2 caused by treatment with IFN-gamma. In contrast to what was observed in C. trachomatis L2, our results showed that, in C. trachomatis A, down...

  8. Studies on lectins. XXXII. Application of affinity electrophoresis to the study of the interaction of lectins and their derivatives with sugars.

    Science.gov (United States)

    Horejsí, V; Tichá, M; Kocourek, J

    1977-09-29

    Affinity electrophoresis was used to study the sugar binding heterogeneity of lectins or their derivatives. Commercial and demetallized preparations of concanavalin A could be resolved by affinity electrophoresis into three components with different affinity to immobilized sugar. Similarly the Vicia cracca lectin obtained by affinity chromatography behaved on affinity gels as a mixture of active and inactive molecular species. Affinity electrophoresis has shown that the nonhemagglutinating acetylated lentil lectin and photo-oxidized or sulfenylated pea lectin retain their sugar binding properties; dissociation constants of saccharide complexes of these derivatives are similar to those of native lectins. The presence of specific immobilized sugar in the affinity gel improved the resolution of isolectins from Dolichos biflorus and Ricinus communis seeds.

  9. Capillary electrophoresis microchip coupled with on-line chemiluminescence detection

    International Nuclear Information System (INIS)

    Su Rongguo; Lin Jinming; Qu Feng; Chen Zhifeng; Gao Yunhua; Yamada, Masaaki

    2004-01-01

    In the present work, chemiluminescence detection was integrated with capillary electrophoresis microchip. The microchip was designed on the principle of flow-injection chemiluminescence system and capillary electrophoresis. It has three main channels, five reservoirs and a detection cell. As model samples, dopamine and catechol were separated and detected using a permanganate chemiluminescent system on the prepared microchip. The samples were electrokinetically injected into the double-T cross section, separated in the separation channel, and then oxidized by chemiluminescent reagent delivered by a home-made micropump to produce light in the detection cell. The electroosmotic flow could be smoothly coupled with the micropump flow. The detection limits for dopamine and catechol were 20.0 and 10.0 μM, respectively. Successful separation and detection of dopamine and catechol demonstrated the distinct advantages of integration of chemiluminescent detection on a microchip for rapid and sensitive analysis

  10. Misleading presentation of haemoglobin electrophoresis data | Adu ...

    African Journals Online (AJOL)

    Haemoglobinopathies are common in sub-Saharan Africa. As such haemoglobin electrophoresis are required to inform clinical decision making. However, haemoglobin electrophoresis is an assay that detects protein at either alkaline or acidic pH. Such assays do not interrogate gene sequences but rather the product of a ...

  11. Supramolecular gel electrophoresis of large DNA fragments.

    Science.gov (United States)

    Tazawa, Shohei; Kobayashi, Kazuhiro; Oyoshi, Takanori; Yamanaka, Masamichi

    2017-10-01

    Pulsed-field gel electrophoresis is a frequent technique used to separate exceptionally large DNA fragments. In a typical continuous field electrophoresis, it is challenging to separate DNA fragments larger than 20 kbp because they migrate at a comparable rate. To overcome this challenge, it is necessary to develop a novel matrix for the electrophoresis. Here, we describe the electrophoresis of large DNA fragments up to 166 kbp using a supramolecular gel matrix and a typical continuous field electrophoresis system. C 3 -symmetric tris-urea self-assembled into a supramolecular hydrogel in tris-boric acid-EDTA buffer, a typical buffer for DNA electrophoresis, and the supramolecular hydrogel was used as a matrix for electrophoresis to separate large DNA fragments. Three types of DNA marker, the λ-Hind III digest (2 to 23 kbp), Lambda DNA-Mono Cut Mix (10 to 49 kbp), and Marker 7 GT (10 to 165 kbp), were analyzed in this study. Large DNA fragments of greater than 100 kbp showed distinct mobility using a typical continuous field electrophoresis system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Analytical biotechnology: Capillary electrophoresis and chromatography

    International Nuclear Information System (INIS)

    Horvath, C.; Nikelly, J.G.

    1990-01-01

    The papers describe the separation, characterization, and equipment required for the electrophoresis or chromatography of cyclic nucleotides, pharmaceuticals, therapeutic proteins, recombinant DNA products, pheromones, peptides, and other biological materials. One paper, On-column radioisotope detection for capillary electrophoresis, has been indexed separately for inclusion on the data base

  13. An Improved 2-Dimensional Gel Electrophoresis Method for Resolving Human Erythrocyte Membrane Proteins.

    Science.gov (United States)

    Kumar, Manoj; Singh, Rajendra; Meena, Anil; Patidar, Bhagwan S; Prasad, Rajendra; Chhabra, Sunil K; Bansal, Surendra K

    2017-01-01

    The 2-dimensional gel electrophoresis (2-DE) technique is widely used for the analysis of complex protein mixtures extracted from biological samples. It is one of the most commonly used analytical techniques in proteomics to study qualitative and quantitative protein changes between different states of a cell or an organism (eg, healthy and diseased), conditionally expressed proteins, posttranslational modifications, and so on. The 2-DE technique is used for its unparalleled ability to separate thousands of proteins simultaneously. The resolution of the proteins by 2-DE largely depends on the quality of sample prepared during protein extraction which increases results in terms of reproducibility and minimizes protein modifications that may result in artifactual spots on 2-DE gels. The buffer used for the extraction and solubilization of proteins influences the quality and reproducibility of the resolution of proteins on 2-DE gel. The purification by cleanup kit is another powerful process to prevent horizontal streaking which occurs during isoelectric focusing due to the presence of contaminants such as salts, lipids, nucleic acids, and detergents. Erythrocyte membrane proteins serve as prototypes for multifunctional proteins in various erythroid and nonerythroid cells. In this study, we therefore optimized the selected major conditions of 2-DE for resolving various proteins of human erythrocyte membrane. The modification included the optimization of conditions for sample preparation, cleanup of protein sample, isoelectric focusing, equilibration, and storage of immobilized pH gradient strips, which were further carefully examined to achieve optimum conditions for improving the quality of protein spots on 2-DE gels. The present improved 2-DE analysis method enabled better detection of protein spots with higher quality and reproducibility. Therefore, the conditions established in this study may be used for the 2-DE analysis of erythrocyte membrane proteins for

  14. Research on pre-staining gel electrophoresis

    International Nuclear Information System (INIS)

    Zhong Ruibo; Liu Yushuang; Zhang Ping; Liu Jingran; Zhao Guofen; Zhang Feng

    2014-01-01

    Background: Gel electrophoresis is a powerful biochemical separation technique. Most biological molecules are completely transparent in the visible region of light, so it is necessary to use staining to show the results after gel electrophoresis, and the general steps of conventional staining methods are time-consuming. Purpose: We try to develop a novel approach to simplify the gel electrophoresis: Pre-Staining Gel Electrophoresis (PSGE), which can make the gel electrophoresis results monitored in real time. Methods: Pre-stain the protein samples with Coomassie Brilliant Blue (CBB) for 30 min before loading the sample into the gel well. Results and Conclusion: PSGE can be successfully used to analyze the binding efficiency of Bovine Serum Albumin (BSA) and amphiphilic polymer via chemical coupling and physical absorption, and the double PSGE also shows a great potential in bio-analytical chemistry. (authors)

  15. Detecting irradiation of seeds using microgel electrophoresis (a collaborative trial)

    International Nuclear Information System (INIS)

    Cerda, H.; Haine, H.E.; Jones, J.L.

    1995-06-01

    Preservation of certain foods by irradiation is permitted in the United Kingdom. However, all irradiated foods must be labelled as such, to ensure consumer choice. To help enforce labelling, a variety of methods have been developed for distinguishing between irradiated and non-irradiated foods. In preliminary trials, microgel electrophoresis -a simple method of assessing DNA damage - has shown considerable promise in this respect. This report describes microgel electrophoresis, and details results obtained in a blind trial carried out in collaboration with the Swedish University of Agricultural Sciences. Microgel electrophoresis facilitates analysis of the leakage of DNA from cells extracted from food material. In irradiated samples, the DNA is fragmented and will leak from cells in an electric current. This leakage can be seen as a 'comet' when the stained gel is viewed with a microscope. The size and shape of the comet can be used to estimate the irradiation dose administered to the sample. In non-irradiated samples the DNA is less fragmented, will tend not to leak from the cells and will not form a comet. (author)

  16. Immobilization: A Revolution in Traditional Brewing

    Science.gov (United States)

    Virkajärvi, Ilkka; Linko, Matti

    In nature many micro-organisms tend to bind to solid surfaces. This tendency has long been utilized in a number of processes, for example in producing vinegar and acetic acid in bioreactors filled with wood shavings. Acetobacteria are attached to the surface of these shavings. In modern technical language: they are immobilized. Also yeast cells can be immobilized. In the brewing industry this has been the basis for maintaining efficient, continuous fermentation in bioreactors with very high yeast concentrations. The most dramatic change in brewing over recent years has been the replacement of traditional lagering of several weeks by a continuous process in which the residence time is only about 2h. Continuous primary fermentation is used on a commercial scale in New Zealand. In this process, instead of a carrier, yeast is retained in reactors by returning it partly after separation. In many pilot scale experiments the primary fermentation is shortened from about 1week to 1-2days using immobilized yeast reactors. When using certain genetically modified yeast strains no secondary fermentation is needed, and the total fermentation time in immobilized yeast reactors can therefore be shortened to only 2days.

  17. Removal of nitrate using Paracoccus sp. YF1 immobilized on bamboo carbon

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan; Gan, Li [School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Chen, Zuliang, E-mail: Zuliang.chen@unisa.edu.au [School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of Environments, Mawson Lakes, SA 5095 (Australia); Megharaj, Mallavarapu; Naidu, Ravi [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of Environments, Mawson Lakes, SA 5095 (Australia)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Paracoccus sp. immobilized on bamboo carbon used for the denitrification. Black-Right-Pointing-Pointer The rate of denitrification increased using the immobilized cells. Black-Right-Pointing-Pointer 99.8% denitrification was maintained after 10-cycle reuse. Black-Right-Pointing-Pointer Demonstrating an excellent reusability and a potential technique. - Abstract: Paracoccus sp. strain YF1 immobilized on bamboo carbon was developed for the denitrification. The results show that denitrification was significantly improved using immobilized cells compared to that of free cells, where denitrification time decreased from 24 h (free cells) to 15 h (immobilized cells). The efficiency of denitrification increased from 4.57 mg/(L h) (free cells) to 6.82 mg/(L h) (immobilized cells). Kinetics studies suggest that denitrification by immobilized YF1 cells fitted well to the zero-order model. Scanning electron microscopy (SEM) demonstrated that firstly, the bacteria became stable on the inside and exterior of the bamboo carbon particles and secondly, they formed biofilm after adhesion. Various factors and their influences on biological denitrification were investigated, namely temperature, pH, initial nitrate concentrations and carbon sources. The immobilized cells exhibited more nitrate removal at various conditions compared to free cells since bamboo carbon as a carrier protects cells against changes in environmental conditions. Denitrification using the YF1 immobilized in bamboo carbon was also maintained 99.8% after the tenth cycle reuse, thus demonstrating excellent reusability. Finally, wastewater was treated using the immobilized cells and the outcome was that nitrogen was completely removed by bamboo-immobilized YF1.

  18. Removal of nitrate using Paracoccus sp. YF1 immobilized on bamboo carbon

    International Nuclear Information System (INIS)

    Liu, Yan; Gan, Li; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2012-01-01

    Highlights: ► Paracoccus sp. immobilized on bamboo carbon used for the denitrification. ►The rate of denitrification increased using the immobilized cells. ► 99.8% denitrification was maintained after 10-cycle reuse. ► Demonstrating an excellent reusability and a potential technique. - Abstract: Paracoccus sp. strain YF1 immobilized on bamboo carbon was developed for the denitrification. The results show that denitrification was significantly improved using immobilized cells compared to that of free cells, where denitrification time decreased from 24 h (free cells) to 15 h (immobilized cells). The efficiency of denitrification increased from 4.57 mg/(L h) (free cells) to 6.82 mg/(L h) (immobilized cells). Kinetics studies suggest that denitrification by immobilized YF1 cells fitted well to the zero-order model. Scanning electron microscopy (SEM) demonstrated that firstly, the bacteria became stable on the inside and exterior of the bamboo carbon particles and secondly, they formed biofilm after adhesion. Various factors and their influences on biological denitrification were investigated, namely temperature, pH, initial nitrate concentrations and carbon sources. The immobilized cells exhibited more nitrate removal at various conditions compared to free cells since bamboo carbon as a carrier protects cells against changes in environmental conditions. Denitrification using the YF1 immobilized in bamboo carbon was also maintained 99.8% after the tenth cycle reuse, thus demonstrating excellent reusability. Finally, wastewater was treated using the immobilized cells and the outcome was that nitrogen was completely removed by bamboo-immobilized YF1.

  19. Evaluation of co-immobilized lactobacillus delbrueckii with porous particles for lactic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Seki, M.; Furusaki, S. [The University of Tokyo, Tokyo (Japan)

    1996-02-01

    Lactic acid production using co-immobilized L.defbrveckii with porous particles has been studied. The effect of co-immobilization with porous particles was verified by measuring the variations of both overall production rate of lactic acid and effective diffusion coefficient in the co-immobilized gel. The effective diffusion coefficient decreased with increasing cell concentration in the co-immobilized gel. However, in the high cell density regimes, the effective diffusion coefficient in co-immobilized gel was higher than that without co-immobilized porous particles. The optimal volume fraction of porous particles in the co-immobilizing gel beads leas estimated experimentally at about 10%(v/v). An approximately 30% increase of the overall production rate was obtained compared to the control culture. Mathematical analysis showed that by co-immobilizing cells with porous particles, the steady-state concentration profiles of proton and undissociated lactic acid changed favorably inside the gel beads. The result indicates that co-immobilization with porous particles is a useful method to improve fermentation efficiency in processes using immobilized cells. 19 refs., 8 figs.

  20. Fluctuation correlation models for receptor immobilization

    Science.gov (United States)

    Fourcade, B.

    2017-12-01

    Nanoscale dynamics with cycles of receptor diffusion and immobilization by cell-external-or-internal factors is a key process in living cell adhesion phenomena at the origin of a plethora of signal transduction pathways. Motivated by modern correlation microscopy approaches, the receptor correlation functions in physical models based on diffusion-influenced reaction is studied. Using analytical and stochastic modeling, this paper focuses on the hybrid regime where diffusion and reaction are not truly separable. The time receptor autocorrelation functions are shown to be indexed by different time scales and their asymptotic expansions are given. Stochastic simulations show that this analysis can be extended to situations with a small number of molecules. It is also demonstrated that this analysis applies when receptor immobilization is coupled to environmental noise.

  1. Immobilization of IFR salt wastes in mortar

    International Nuclear Information System (INIS)

    Fisher, D.F.; Johnson, T.R.

    1988-01-01

    Portland cement-base mortars are being considered for immobilizing chloride salt wastes from the fuel cycle of an integral fast reactor (IFR). The IFR is a sodium-cooled fast reactor with metal fuel. It has a close-coupled fuel cycle in which fission products are separated from the actinides in an electrochemical cell operating at 500 degrees C. This cell has a cadmium anode and a liquid salt electrolyte. The salt will be a low-melting mixture of alkaline and alkaline earth chlorides. This paper discusses one method being considered for immobilizing this treated salt, to disperse it in a portland cement-base motar, which would then be sealed in corrosion-resistant containers. For this application, the grout must be sufficiently fluid that it can be pumped into canisters where it will solidify into a strong, leach-resistant material

  2. Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials.

    Science.gov (United States)

    Adam, Vojtech; Vaculovicova, Marketa

    2017-10-01

    Nanomaterials are in analytical science used for a broad range of purposes, covering the area of sample pretreatment as well as separation, detection, and identification of target molecules. This part of the review covers capillary electrophoresis (CE) of nanomaterials and focuses on the application of CE as a method for characterization used during nanomaterial synthesis and modification as well as the monitoring of their properties and interactions with other molecules. The heterogeneity of the nanomaterial family is extremely large. Depending on different definitions of the term Nanomaterial/Nanoparticle, the group may cover metal and polymeric nanoparticles, carbon nanomaterials, liposomes and even dendrimers. Moreover, these nanomaterials are usually subjected to some kind of surface modification or functionalization, which broadens the diversity even more. Not only for purposes of verification of nanomaterial synthesis and batch-to-batch quality check, but also for determination the polydispersity and for functionality characterization on the nanoparticle surface, has CE offered very beneficial capabilities. Finally, the monitoring of interactions between nanomaterials and other (bio)molecules is easily performed by some kind of capillary electromigration technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Immobilization of enzymes by radiation

    International Nuclear Information System (INIS)

    Kaetsu, I.; Kumakura, M.; Yoshida, M.; Asano, M.; Himei, M.; Tamura, M.; Hayashi, K.

    1979-01-01

    Immobilization of various enzymes was performed by radiation-induced polymerization of glass-forming monomers at low temperatures. Alpha-amylase and glucoamylase were effectively immobilized in hydrophilic polymer carrier such as poly(2-hydroxyethyl methacrylate) and also in rather hydrophobic carrier such as poly(tetraethylene-glycol diacrylate). Immobilized human hemoglobin underwent the reversible oxygenation concomitantly with change of oxygen concentration outside of the matrices. (author)

  4. Immobilization patterns and dynamics of acetate-utilizing methanogens immobilized in sterile granular sludge in upflow anaerobic sludge blanket reactors

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    1999-01-01

    Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fea upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After......, but where the acetate concentration was low this strain was immobilized on support material as single cells or small clumps, The data clearly show that the two aceticlastic methanogens immobilize differently in UASB systems, depending on the conditions found throughout the UASB reactor....

  5. Ultrafast Capillary Electrophoresis Isolation of DNA Aptamer for the PCR Amplification-Based Small Analyte Sensing

    Directory of Open Access Journals (Sweden)

    Emmanuelle eFiore

    2015-08-01

    Full Text Available Here, we report a new homogeneous DNA amplification-based aptamer assay for small analyte sensing. The aptamer of adenosine chosen as the model analyte was split into two fragments able to assemble in the presence of target. Primers were introduced at extremities of one fragment in order to generate the amplifiable DNA component. The amount of amplifiable fragment was quantifiable by Real-Time Polymerase Chain Reaction (RT-PCR amplification and directly reliable on adenosine concentration. This approach combines the very high separation efficiency and the homogeneous format (without immobilization of capillary electrophoresis and the sensitivity of real time PCR amplification. An ultrafast isolation of target-bound split aptamer (60 s was developed by designing a capillary electrophoresis input/ouput scheme. Such method was successfully applied to the determination of adenosine with a LOD of 1 µM.

  6. Immobilized yeast in bioreactor for alcohol fermentation

    International Nuclear Information System (INIS)

    Handy, M.K.; Kim, K.

    1986-01-01

    Mutant of Saccharomyces cerevisiae was developed using a Co-60 source. Cells were immobilized onto sterile, channeled alumina beads and packed into bioreactor column under controlled temperature. Feedstocks containing substrate and nutrients were fed into the bioreactor at specific rates. Beads with greatest porosity and surface area produced the most ethanol. Factors affecting ethanol productivity included: temperature, pH, flow rate, nutrients and substrate in the feedstock

  7. Pigment Production from Immobilized Monascus sp. Utilizing Polymeric Resin Adsorption

    OpenAIRE

    Evans, Patrick J.; Wang, Henry Y.

    1984-01-01

    Pigment production by the fungus Monascus sp. was studied to determine why Monascus sp. provides more pigment in solid culture than in submerged culture. Adding a sterilized nonionic polymeric adsorbent resin directly to the growing submerged culture did not enhance the pigment production, thus indicating that pigment extraction is probably not a factor. Monascus cells immobilized in hydrogel were studied and exhibited decreased pigment production as a result of immobilization. This result is...

  8. DNA electrophoresis through microlithographic arrays

    International Nuclear Information System (INIS)

    Sevick, E.M.; Williams, D.R.M.

    1996-01-01

    Electrophoresis is one of the most widely used techniques in biochemistry and genetics for size-separating charged molecular chains such as DNA or synthetic polyelectrolytes. The separation is achieved by driving the chains through a gel with an external electric field. As a result of the field and the obstacles that the medium provides, the chains have different mobilities and are physically separated after a given process time. The macroscopically observed mobility scales inversely with chain size: small molecules move through the medium quickly while larger molecules move more slowly. However, electrophoresis remains a tool that has yet to be optimised for most efficient size separation of polyelectrolytes, particularly large polyelectrolytes, e.g. DNA in excess of 30-50 kbp. Microlithographic arrays etched with an ordered pattern of obstacles provide an attractive alternative to gel media and provide wider avenues for size separation of polyelectrolytes and promote a better understanding of the separation process. Its advantages over gels are (1) the ordered array is durable and can be re-used, (2) the array morphology is ordered and can be standardized for specific separation, and (3) calibration with a marker polyelectrolyte is not required as the array is reproduced to high precision. Most importantly, the array geometry can be graduated along the chip so as to expand the size-dependent regime over larger chain lengths and postpone saturation. In order to predict the effect of obstacles upon the chain-length dependence in mobility and hence, size separation, we study the dynamics of single chains using theory and simulation. We present recent work describing: 1) the release kinetics of a single DNA molecule hooked around a point, frictionless obstacle and in both weak and strong field limits, 2) the mobility of a chain impinging upon point obstacles in an ordered array of obstacles, demonstrating the wide range of interactions possible between the chain and

  9. Comparison of non-electrophoresis grade with electrophoresis grade BIS in NIPAM polymer gel preparation

    Science.gov (United States)

    Khodadadi, Roghayeh; Khajeali, Azim; Farajollahi, Ali Reza; Hajalioghli, Parisa; Raeisi, Noorallah

    2015-01-01

    Introduction:The main objective of this study was to investigate the possibility of replacing electrophoresis cross-linker with non-electrophoresis N, N′-methylenebisacrylamide (BIS) in N-isopropyl acrylamide (NIPAM) polymer gel and its possible effect on dose response. Methods: NIPAM polymer gel was prepared from non-electrophoresis grade BIS and the relaxation rate (R2) was measured by MR imaging after exposing the gel to gamma radiation from Co-60 source. To compare the response of this gel with the one that contains electrophoresis grade BIS, two sets of NIPAM gel were prepared using electrophoresis and non-electrophoresis BIS and irradiated to different gamma doses. Results: It was found that the dose–response of NIPAM gel made from the non-electrophoresis grade BIS is coincident with that of electrophoresis grade BIS. Conclusion:Taken all, it can be concluded that the non-electrophoresis grade BIS not only is a suitable alternative for the electrophoresis grade BIS but also reduces the cost of gel due to its lower price. PMID:26457250

  10. SDS-Polyacrylamide Electrophoresis and Western Blotting Applied to the Study of Asthma.

    Science.gov (United States)

    García-Solaesa, Virginia; Abad, Sara Ciria

    2016-01-01

    Western blotting is used to analyze proteins after being separated by electrophoresis and subsequently electro-transferred to a membrane. Once immobilized, a specific protein can be identified through its reaction with a labeled antibody or antigen. It is a methodology commonly used in biomedical research such as asthma studies, to assess the pathways of inflammatory mediators involved in the disease.Here, we describe an example of western blotting to determine the factors involved in asthma. In this chapter, the methodology of western blotting is reviewed, paying attention on potential problems and giving interesting recommendations.

  11. Increased Production of Food-Grade d-Tagatose from d-Galactose by Permeabilized and Immobilized Cells of Corynebacterium glutamicum, a GRAS Host, Expressing d-Galactose Isomerase from Geobacillus thermodenitrificans.

    Science.gov (United States)

    Shin, Kyung-Chul; Sim, Dong-Hyun; Seo, Min-Ju; Oh, Deok-Kun

    2016-11-02

    The generally recognized as safe microorganism Corynebacterium glutamicum expressing Geobacillus thermodenitrificans d-galactose isomerase (d-GaI) was an efficient host for the production of d-tagatose, a functional sweetener. The d-tagatose production at 500 g/L d-galactose by the host was 1.4-fold higher than that by Escherichia coli expressing d-GaI. The d-tagatose-producing activity of permeabilized C. glutamicum (PCG) cells treated with 1% (w/v) Triton X-100 was 2.1-fold higher than that of untreated cells. Permeabilized and immobilized C. glutamicum (PICG) cells in 3% (w/v) alginate showed a 3.1-fold longer half-life at 50 °C and 3.1-fold higher total d-tagatose concentration in repeated batch reactions than PCG cells. PICG cells, which produced 165 g/L d-tagatose after 3 h, with a conversion of 55% (w/w) and a productivity of 55 g/L/h, showed significantly higher d-tagatose productivity than that reported for other cells. Thus, d-tagatose production by PICG cells may be an economical process to produce food-grade d-tagatose.

  12. Blood grouping based on PCR methods and agarose gel electrophoresis.

    Science.gov (United States)

    Sell, Ana Maria; Visentainer, Jeane Eliete Laguila

    2015-01-01

    The study of erythrocyte antigens continues to be an intense field of research, particularly after the development of molecular testing methods. More than 300 specificities have been described by the International Society for Blood Transfusion as belonging to 33 blood group systems. The polymerase chain reaction (PCR) is a central tool for red blood cells (RBC) genotyping. PCR and agarose gel electrophoresis are low cost, easy, and versatile in vitro methods for amplifying defined target DNA (RBC polymorphic region). Multiplex-PCR, AS-PCR (Specific Allele Polymerase Chain Reaction), and RFLP-PCR (Restriction Fragment Length Polymorphism-Polymerase Chain Reaction) techniques are usually to identify RBC polymorphisms. Furthermore, it is an easy methodology to implement. This chapter describes the PCR methodology and agarose gel electrophoresis to identify the polymorphisms of the Kell, Duffy, Kidd, and MNS blood group systems.

  13. High performance glucose/O2 compartment-less biofuel cell using DNA/CNTs as platform for immobilizing bilirubin oxidase as novel biocathode and integrated NH2-CNTs/dendrimer/glucose dehydrogenase/nile blue as bioanode

    International Nuclear Information System (INIS)

    Korani, Aazam; Salimi, Abdollah

    2015-01-01

    Highlights: • A biocathode based on immobilization of bilirubin oxidase onto MWCNTs/DNA is designed. • The performance of MWCNTs/DNA/BOD biocathode for O 2 reduction reaction is improved. • Compared to MWCNTs/BOD,at present biocathode current density to ORR increased 3 folds. • The onset potential for ORR is 0.57 V and its current density increased to 270 μA cm −2 . • A glucose/O 2 BFC with voltage of 0.66 V, J = 172 μAcm −2 and power of 45 μW cm −2 fabricated. - Abstract: Herein, deoxyribonucleic acid (DNA)/multi-walled carbon nanotube (MWCNTs) with enhanced negative charged density was used as a novel electrochemical platform for oriented immobilization of bilirubin oxidase. The proposed support improved the direct electron transfer kinetics of BOD and its catalytic activity toward oxygen reduction reaction (ORR). In comparison to BOD enzyme which immobilized directly onto MWCNTs the current density increased three folds and reached to 270 μA cm −2 at 0.405 V with an onset potential of 0.57 V (vs. Ag/AgCl). The ability of this modified electrode as a biocathode is investigated after assembling with bioanode. The bioanode prepared with covalent attachment of glucose dehydrogenase enzyme (GDH) and nile blue (NB) as an efficient mediator for coenzyme regeneration onto glassy carbon electrode modified with amino-carbon nanotubes(MWCNTs-NH 2 ) and carboxyl terminated polyamidoamin dendrimer (PAMAM-Den) as a multifunctional linker. Finally, the performance of one-compartment glucose/O 2 biofuel cell without separators is also investigated. The open circuit voltage of the cell and maximum current density are obtained 660 mV and 172 μA cm −2 , respectively, while the maximum power density of 45 μW cm −2 is achieved at 428 mV of the cell voltage in buffer solution saturated with O 2 and containing 50 mM of glucose. The stability of the constructed EBFC is investigated under continuous operation at maximum power. It is observed that the biofuel

  14. Biodegradation of chlorobenzene using immobilized crude extracts ...

    African Journals Online (AJOL)

    SERVER

    2007-10-04

    Oct 4, 2007 ... immobilized crude extracts were reused for all other experiments and found that immobilization .... India which are of analytical reagent grade. .... 9. 60. 3. 1. Figure 3. Degradation of chlorobenzene by immobilized crude.

  15. Supramolecular protein immobilization on lipid bilayers

    NARCIS (Netherlands)

    Bosmans, R.P.G.; Hendriksen, W.E.; Verheijden, Mark Lloyd; Eelkema, R.; Jonkheijm, Pascal; van Esch, J.H.; Brunsveld, Luc

    2015-01-01

    Protein immobilization on surfaces, and on lipid bilayers specifically, has great potential in biomolecular and biotechnological research. Of current special interest is the immobilization of proteins using supramolecular noncovalent interactions. This allows for a reversible immobilization and

  16. Iodine immobilization in apatites

    International Nuclear Information System (INIS)

    Audubert, F.; Lartigue, J.E.

    2000-01-01

    In the context of a scientific program on long-lived radionuclide conditioning, a matrix for iodine 129 immobilization has been studied. A lead vanado-phosphate apatite was prepared from the melt of lead vanado-phosphate Pb 3 (VO 4 ) 1.6 (PO 4 ) 0.4 and lead iodide PbI 2 in stoichiometric proportions by calcination at 700 deg. C during 3 hours. Natural sintering of this apatite is not possible because the product decomposition occurs at 400 deg. C. Reactive sintering is the solution. The principle depends on the coating of lead iodide with lead vanado-phosphate. Lead vanado-phosphate coating is used as iodo-apatite reactant and as dense covering to confine iodine during synthesis. So the best condition to immobilize iodine during iodo-apatite synthesis is a reactive sintering at 700 deg. C under 25 MPa. We obtained an iodo-apatite surrounded with dense lead vanadate. Leaching behaviour of the matrix synthesized by solid-solid reaction is under progress in order to determine chemical durability, basic mechanisms of the iodo-apatite alteration and kinetic rate law. Iodo-apatite dissolution rates were pH and temperature dependent. We obtained a rate of 2.5 10 -3 g.m -2 .d -1 at 90 deg. C in initially de-ionised water. (authors)

  17. Characterization of asphaltenes by nonaqueous capillary electrophoresis

    NARCIS (Netherlands)

    Kok, W.T.; Tüdös, A.J.; Grutters, M.; Shepherd, A.G.

    2011-01-01

    Nonaqueous capillary electrophoresis was used for the separation and characterization of asphaltene samples from different sources. For the separation medium (background electrolyte), mixtures of tetrahydrofuran and a high-permittivity organic solvent could be used. The best results were obtained

  18. Conducting Polymer Electrodes for Gel Electrophoresis

    OpenAIRE

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that p-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel ...

  19. Usage of capillary electrophoresis for common hemoglobinopathies screening

    Directory of Open Access Journals (Sweden)

    Alireza Ebrahimi

    2016-06-01

    Full Text Available Hemoglobinopathies are most common inherited disorders in the world; approximately 7 percent of the worldwide population and 5-6 percent of population of Iran are carriers. The hemoglobin disorders inherit as autosomal recessive and are very common in the Mediterranean area and much of the Asia and Africa. The control of this inherited disorders need to genetic counseling and accurate screening by more advanced and more accurate methods. This study explains features of current Iran hemoglobin disorders, nominates the accessible methods for screening them and introduces the capillary zone electrophoresis as a rapid and more accurate method. The required data were extracted of various articles and then for good explanation, current Iran hemoglobinopathies properties were showed in the tables and electropherograms of important hemoglobin disorders in Iran population were provided for help to interpretation results of blood tests by capillary zone electrophoresis method. Hemoglobin disorders are including thalassemias and hemoglobin variants; Disruption in the production and malfunction of globin chains cause types of hemoglobin disorders. We cannot introduce one of clinical laboratory tests as critical and basic method for screening and distinguishing types of inherited hemoglobin disorders as alone. For distinguishing the types of them must be prepared enough information and data of the hemoglobin disorders and for more accurate analysis must be used simultaneously different methods as gel electrophoresis, high performance liquid chromatography, isoelectric focusing, capillary zone electrophoresis or molecular tests. The capillary electrophoresis is an accurate and rapid method for screening types of the hemoglobin disorders. Other side this method cannot analyze all of them, so must be used biochemical, biophysical and molecular methods for confirmation the results. This review showed we can use the capillary electrophoresis and HPLC as two

  20. Usage of Capillary Electrophoresis for screening common Hemoglobinopathies

    Directory of Open Access Journals (Sweden)

    2016-06-01

    Full Text Available Hemoglobinopathies are most common inherited disorders in the world approximately 7 percent of the worldwide population and 5-6 percent of population of Iran are carriers. For control of this inherited hemoglobin disorders need to accurate screening by more advanced and more accurate methods. This study explains features of current Iran hemoglobin disorders, nominates the accessible methods for screening them and introduces the capillary zone electrophoresis as a rapid & more accurate method. The required data were extracted of various articles and then for good explanation, current Iran hemoglobinopathies properties were showed in the tables and electropherograms of important hemoglobin disorders in Iran population were provided for help to interpretation results of blood tests by capillary zone electrophoresis method. Hemoglobin disorders are including thalassemias & hemoglobin variants Disruption in the production and malfunction of globin chains cause types of hemoglobin disorders. We cannot introduce one of clinical laboratory tests as critical and basic method for screening and distinguishing types of inherited hemoglobin disorders as alone. For distinguishing the types of them must be prepared enough information and data of the hemoglobin disorders and for more accurate analysis must be used simultaneously different methods as Gel electrophoresis, High performance liquid chromatography, Isoelectric focusing, Capillary zone electrophoresis or molecular tests. The capillary electrophoresis is an accurate and rapid method for screening types of the hemoglobin disorders. Other side this method cannot analyze all of them, so must be used biochemical, biophysical and molecular methods for confirmation the results. This review showed we can use the capillary electrophoresis and HPLC as two complementary methods for hemoglobinopathies screening. We can analyze by the methods more hemoglobin disorders and decrease more laboratory errors. Moreover

  1. Bioreporter pseudomonas fluorescens HK44 immobilized in a silica matrix

    Directory of Open Access Journals (Sweden)

    Trogl J.

    2003-01-01

    Full Text Available The bioluminescent bioreporter Pseudomonas fluorescens HK44, the whole cell bacterial biosensor that responds to naphthalene and its metabolites via the production of visible light, was immobilized into a silica matrix by the sol-gel technique. The bioluminescence intensities were measured in the maximum of the bioluminescence band at X = 500 nm. The immobilized cells (>105 cells per g silica matrix produced light after induction by salicylate (cone. > 10 g/l, naphthalene and aminobenzoic acid. The bioluminescence intensities induced by 2,3-dihydroxynaphthalene 3-hydroxybenzoic acid and 4-hydroxybenzoic acid were comparable to a negative control. The cells in the silica layers on glass slides produced light in response to the presence of an inductor at least 8 months after immobilization, and >50 induction cycles. The results showed that these test slides could be used as assays for the multiple determination of water pollution.

  2. Enhanced Uranium Immobilization and Reduction by Geobacter sulfurreducens Biofilms

    Science.gov (United States)

    Cologgi, Dena L.; Speers, Allison M.; Bullard, Blair A.; Kelly, Shelly D.

    2014-01-01

    Biofilms formed by dissimilatory metal reducers are of interest to develop permeable biobarriers for the immobilization of soluble contaminants such as uranium. Here we show that biofilms of the model uranium-reducing bacterium Geobacter sulfurreducens immobilized substantially more U(VI) than planktonic cells and did so for longer periods of time, reductively precipitating it to a mononuclear U(IV) phase involving carbon ligands. The biofilms also tolerated high and otherwise toxic concentrations (up to 5 mM) of uranium, consistent with a respiratory strategy that also protected the cells from uranium toxicity. The enhanced ability of the biofilms to immobilize uranium correlated only partially with the biofilm biomass and thickness and depended greatly on the area of the biofilm exposed to the soluble contaminant. In contrast, uranium reduction depended on the expression of Geobacter conductive pili and, to a lesser extent, on the presence of the c cytochrome OmcZ in the biofilm matrix. The results support a model in which the electroactive biofilm matrix immobilizes and reduces the uranium in the top stratum. This mechanism prevents the permeation and mineralization of uranium in the cell envelope, thereby preserving essential cellular functions and enhancing the catalytic capacity of Geobacter cells to reduce uranium. Hence, the biofilms provide cells with a physically and chemically protected environment for the sustained immobilization and reduction of uranium that is of interest for the development of improved strategies for the in situ bioremediation of environments impacted by uranium contamination. PMID:25128347

  3. Assessing attitudes toward spinal immobilization.

    Science.gov (United States)

    Bouland, Andrew J; Jenkins, J Lee; Levy, Matthew J

    2013-10-01

    Prospective studies have improved knowledge of prehospital spinal immobilization. The opinion of Emergency Medical Services (EMS) providers regarding spinal immobilization is unknown, as is their knowledge of recent research advances. To examine the attitudes, knowledge, and comfort of prehospital and Emergency Department (ED) EMS providers regarding spinal immobilization performed under a non-selective protocol. An online survey was conducted from May to July of 2011. Participants were drawn from the Howard County Department of Fire and Rescue Services and the Howard County General Hospital ED. The survey included multiple choice questions and responses on a modified Likert scale. Correlation analysis and descriptive data were used to analyze results. Comfort using the Kendrick Extrication Device was low among ED providers. Experienced providers were more likely to indicate comfort using this device. Respondents often believed that spinal immobilization is appropriate in the management of penetrating trauma to the chest and abdomen. Reported use of padding decreased along with the frequency with which providers practice and encounter immobilized patients. Respondents often indicated that they perform spinal immobilization due solely to mechanism of injury. Providers who feel as if spinal immobilization is often performed unnecessarily were more likely to agree that immobilization causes an unnecessary delay in patient care. The results demonstrate the need for improved EMS education in the use of the Kendrick Extrication Device, backboard padding, and spinal immobilization in the management of penetrating trauma. The attitudes highlighted in this study are relevant to the implementation of a selective spinal immobilization protocol. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Two-dimensional polyacrylamide gel electrophoresis of intracellular proteins

    International Nuclear Information System (INIS)

    Ojima, N.; Sakamoto, T.; Yamashita, M.

    1996-01-01

    Since two-dimensional electrophoresis was established by O'Farrell for analysis of intracellular proteins of Escherichia coli, it has been applied to separation of proteins of animal cells and tissues, and especially to identification of stress proteins. Using this technique, proteins are separated by isoelectric focusing containing 8 m urea in the first dimension and by SDS-PAGE in the second dimension. The gels are stained with Coomassie Blue R-250 dye, followed by silver staining. In the case of radio-labeled proteins, the gels are dried and then autoradiographed. In order to identify a specific protein separated by two-dimensional electrophoresis, a technique determining the N-terminal amino acid sequence of the protein has been developed recently. After the proteins in the gel were electrotransferred to a polyvinylidene difluoride membrane, the membrane was stained for protein with Commassie Blue and a stained membrane fragment was applied to a protein sequencer. Our recent studies demonstrated that fish cells newly synthesized various proteins in response to heat shock, cold nd osmotic stresses. For example, when cellular proteins extracted from cold-treated rainbow trout cells were subjected to two-dimensional gel electrophoresis, the 70 kDa protein was found to be synthesized during the cold-treatment. N-Terminal sequence analysis showed that the cold-inducible protein was a homolog of mammalian valosin-containing protein and yeast cell division cycle gene product CDC48p. Furthermore, the sequence data were useful for preparing PCR primers and a rabbit antibody against a synthetic peptide to analyze a role for the protein in the function of trout cells and mechanisms for regulation

  5. HLW immobilization in glass

    International Nuclear Information System (INIS)

    Leroy, P.; Jacquet-Francillon, N.; Runge, S.

    1992-01-01

    The immobilization of High Level Waste in glass in France is a long history which started as early as in the 1950's. More than 30 years of Research and Development have been invested in that field. Two industrial facilities are operating (AVM and R7) and a third one (T7), under cold testing, is planned to start active operation in the mid-92. While vitrification has been demonstrated to be an industrially mastered process, the question of the quality of the final waste product, i.e. the HLW glass, must be addressed. The scope of the present paper is to focus on the latter point from both standpoints of the R and D and of the industrial reality

  6. Phylogenetic reconstruction of South American felids defined by protein electrophoresis.

    Science.gov (United States)

    Slattery, J P; Johnson, W E; Goldman, D; O'Brien, S J

    1994-09-01

    Phylogenetic associations among six closely related South American felid species were defined by changes in protein-encoding gene loci. We analyzed proteins isolated from skin fibroblasts using two-dimensional electrophoresis and allozymes extracted from blood cells. Genotypes were determined for multiple individuals of ocelot, margay, tigrina, Geoffroy's cat, kodkod, and pampas cat at 548 loci resolved by two-dimensional electrophoresis and 44 allozyme loci. Phenograms were constructed using the methods of Fitch-Margoliash and neighbor-joining on a matrix of Nei's unbiased genetic distances for all pairs of species. Results of a relative-rate test indicate changes in two-dimensional electrophoresis data are constant among all South American felids with respect to a hyena outgroup. Allelic frequencies were transformed to discrete character states for maximum parsimony analysis. Phylogenetic reconstruction indicates a major split occurred approximately 5-6 million years ago, leading to three groups within the ocelot lineage. The earliest divergence led to Leopardus tigrina, followed by a split between an ancestor of an unresolved trichotomy of three species (Oncifelis guigna, O. geoffroyi, and Lynchailuris colocolo) and a recent common ancestor of Leopardus pardalis and L. wiedii. The results suggest that modern South American felids are monophyletic and evolved rapidly after the formation of the Panama land bridge between North and South America.

  7. Effect of oleic acid on the production of ethanol and fructose from glucose/fructose mixtures in an immobilized cell reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guenette, M E [Ottawa Univ., ON (Canada). Dept. of Chemical Engineering; [IOGEN Corp., Ottawa, ON (Canada); Duvnjak, Z [Ottawa Univ., ON (Canada). Dept. of Chemical Engineering; [IOGEN Corp., Ottawa, ON (Canada)

    1996-12-31

    Saccharomyces cerevisiae ATCC 39859 was immobilized onto small cubes of wood to produce ethanol and very enriched fructose syrup from glucose/fructose mixtures through the selective fermentation of glucose. A maximum ethanol productivity of 21.9 g/l.h was attained from a feed containing 9.7% (w/v) glucose and 9.9% (w/v) fructose. An ethanol concentration, glucose conversion and fructose yield of 29.6 g/l, 62% and 99% were obtained, respectively. This resulted in a final fructose/glucose ratio of 2.7. At lower ethanol productivity levels the fructose/glucose ratio increases, as does the ethanol concentration in the effluent. The addition of 30 mg/l oleic acid to the medium increased the ethanol productivity and its concentration by 13% at a dilution rate of 0.74 h{sup -1}. (orig.)

  8. Microchip analysis of lithium in blood using moving boundary electrophoresis and zone electrophoresis

    NARCIS (Netherlands)

    Vrouwe, E.X.; Lüttge, Regina; Olthuis, Wouter; van den Berg, Albert

    The determination of inorganic cations in blood plasma is demonstrated using a combination of moving boundary electrophoresis (MBE) and zone electrophoresis. The sample loading performed under MBE conditions is studied with the focus on the quantitative analysis of lithium. A concentration

  9. Microchip analysis of lithium in blood using moving boundary electrophoresis and zone electrophoresis

    NARCIS (Netherlands)

    Vrouwe, E.X.; Luttge, R.; Olthuis, W.; Berg, van den A.

    2005-01-01

    The determination of inorganic cations in blood plasma is demonstrated using a combination of moving boundary electrophoresis (MBE) and zone electrophoresis. The sample loading performed under MBE conditions is studied with the focus on the quantitative analysis of lithium. A concentration

  10. Non-invasive screening for Alzheimer's disease by sensing salivary sugar using Drosophila cells expressing gustatory receptor (Gr5a) immobilized on an extended gate ion-sensitive field-effect transistor (EG-ISFET) biosensor.

    Science.gov (United States)

    Lau, Hui-Chong; Lee, In-Kyu; Ko, Pan-Woo; Lee, Ho-Won; Huh, Jeung-Soo; Cho, Won-Ju; Lim, Jeong-Ok

    2015-01-01

    Body fluids are often used as specimens for medical diagnosis. With the advent of advanced analytical techniques in biotechnology, the diagnostic potential of saliva has been the focus of many studies. We recently reported the presence of excess salivary sugars, in patients with Alzheimer's disease (AD). In the present study, we developed a highly sensitive, cell-based biosensor to detect trehalose levels in patient saliva. The developed biosensor relies on the overexpression of sugar sensitive gustatory receptors (Gr5a) in Drosophila cells to detect the salivary trehalose. The cell-based biosensor was built on the foundation of an improved extended gate ion-sensitive field-effect transistor (EG-ISFET). Using an EG-ISFET, instead of a traditional ion-sensitive field-effect transistor (ISFET), resulted in an increase in the sensitivity and reliability of detection. The biosensor was designed with the gate terminals segregated from the conventional ISFET device. This design allows the construction of an independent reference and sensing region for simultaneous and accurate measurements of samples from controls and patients respectively. To investigate the efficacy of the cell-based biosensor for AD screening, we collected 20 saliva samples from each of the following groups: participants diagnosed with AD, participants diagnosed with Parkinson's disease (PD), and a control group composed of healthy individuals. We then studied the response generated from the interaction of the salivary trehalose of the saliva samples and the Gr5a in the immobilized cells on an EG-ISFET sensor. The cell-based biosensor significantly distinguished salivary sugar, trehalose of the AD group from the PD and control groups. Based on these findings, we propose that salivary trehalose, might be a potential biomarker for AD and could be detected using our cell-based EG-ISFET biosensor. The cell-based EG-ISFET biosensor provides a sensitive and direct approach for salivary sugar detection and

  11. Poly(Dopamine-Assisted Immobilization of Xu Duan on 3D Printed Poly(Lactic Acid Scaffolds to Up-Regulate Osteogenic and Angiogenic Markers of Bone Marrow Stem Cells

    Directory of Open Access Journals (Sweden)

    Chia-Hung Yeh

    2015-07-01

    Full Text Available Three-dimensional printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid (PLA scaffolds and use a mussel-inspired surface coating and Xu Duan (XD immobilization to regulate cell adhesion, proliferation and differentiation of human bone-marrow mesenchymal stem cells (hBMSCs. We prepared PLA scaffolds and coated with polydopamine (PDA. The chemical composition and surface properties of PLA/PDA/XD were characterized by XPS. PLA/PDA/XD controlled hBMSCs’ responses in several ways. Firstly, adhesion and proliferation of hBMSCs cultured on PLA/PDA/XD were significantly enhanced relative to those on PLA. In addition, the focal adhesion kinase (FAK expression of cells was increased and promoted cell attachment depended on the XD content. In osteogenesis assay, the osteogenesis markers of hBMSCs cultured on PLA/PDA/XD were significantly higher than seen in those cultured on a pure PLA/PDA scaffolds. Moreover, hBMSCs cultured on PLA/PDA/XD showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hBMSCs.

  12. Poly(Dopamine)-Assisted Immobilization of Xu Duan on 3D Printed Poly(Lactic Acid) Scaffolds to Up-Regulate Osteogenic and Angiogenic Markers of Bone Marrow Stem Cells.

    Science.gov (United States)

    Yeh, Chia-Hung; Chen, Yi-Wen; Shie, Ming-You; Fang, Hsin-Yuan

    2015-07-14

    Three-dimensional printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid) (PLA) scaffolds and use a mussel-inspired surface coating and Xu Duan (XD) immobilization to regulate cell adhesion, proliferation and differentiation of human bone-marrow mesenchymal stem cells (hBMSCs). We prepared PLA scaffolds and coated with polydopamine (PDA). The chemical composition and surface properties of PLA/PDA/XD were characterized by XPS. PLA/PDA/XD controlled hBMSCs' responses in several ways. Firstly, adhesion and proliferation of hBMSCs cultured on PLA/PDA/XD were significantly enhanced relative to those on PLA. In addition, the focal adhesion kinase (FAK) expression of cells was increased and promoted cell attachment depended on the XD content. In osteogenesis assay, the osteogenesis markers of hBMSCs cultured on PLA/PDA/XD were significantly higher than seen in those cultured on a pure PLA/PDA scaffolds. Moreover, hBMSCs cultured on PLA/PDA/XD showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hBMSCs.

  13. Laser-assisted immobilization of colloid silver nanoparticles on polyethyleneterephthalate

    Science.gov (United States)

    Siegel, Jakub; Lyutakov, Oleksiy; Polívková, Markéta; Staszek, Marek; Hubáček, Tomáš; Švorčík, Václav

    2017-10-01

    Immobilization of nanoobjects on the surface of underlying material belongs to current issues of material science. Such altered materials exhibits completely exceptional properties exploitable in a broad spectrum of industrially important applications ranging from catalysts up to health-care industry. Here we present unique approach for immobilization of electrochemically synthesized silver nanoparticles on polyethyleneterephthalate (PET) foil whose essence lies in physical incorporation of particles into thin polymer surface layer induced by polarized excimer laser light. Changes in chemical composition and surface structure of polymer after particle immobilization were recorded by wide range of analytical techniques such as ARXPS, EDX, RBS, AAS, Raman, ICP-MS, DLS, UV-vis, SEM, TEM, and AFM. Thorough analysis of both nanoparticles entering the immobilization step as well as modified PET surface allowed revealing the mechanism of immobilization process itself. Silver nanoparticles were physically embedded into a thin surface layer of polymer reaching several nanometers beneath the surface rather than chemically bonded to PET macromolecules. Laser-implanted nanoparticles open up new possibilities especially in the development of the next generation cell-conform antimicrobial coatings of polymeric materials, namely due to the considerable immobilization strength which is strong enough to prevent particle release into the surrounding environment.

  14. Bioremediation of contaminated surface water by immobilized Micrococcus roseus.

    Science.gov (United States)

    Li, H; Li, P; Hua, T; Zhang, Y; Xiong, X; Gong, Z

    2005-08-01

    The problems caused by contaminated surface water have gradually become more serious in recent years. Although various remediation technologies were investigated, unfortunately, no efficient method was developed. In this paper, a new bioremediation technology was studied using Micrococcus roseus, which was immobilized in porous spherical beads by an improved polyvinyl alcohol (PVA) - sodium alginate (SA) embedding method. The experimental results indicated that COD removal rate could reach 64.7 % within 72 hours when immobilized M. roseus beads were used, which was ten times as high as that of free cells. The optimum inoculation rate of immobilized M. roseus beads was 10 % (mass percent of the beads in water sample, g g(-1)). Suitable aeration was proved necessary to enhance the bioremediation process. The immobilized cells had an excellent tolerance to pH and temperature changes, and were also more resistant to heavy metal stress compared with free cells. The immobilized M. roseus beads had an excellent regeneration capacity and could be reused after 180-day continuous usage. The Scanning Electronic Microscope (SEM) analysis showed that the bead microstructure was suitable for M. roseus growth, however, some defect structures should still be improved.

  15. High-level-waste immobilization

    International Nuclear Information System (INIS)

    Crandall, J.L.

    1982-01-01

    Analysis of risks, environmental effects, process feasibility, and costs for disposal of immobilized high-level wastes in geologic repositories indicates that the disposal system safety has a low sensitivity to the choice of the waste disposal form

  16. Capillary Electrophoresis Artifact Due to Eosin

    Science.gov (United States)

    Murphy, Kathleen M.; Berg, Karin D.; Geiger, Tanya; Hafez, Michael; Flickinger, Katie A.; Cooper, Lisa; Pearson, Patrick; Eshleman, James R.

    2005-01-01

    Capillary electrophoresis (CE) is a commonly used tool in the analysis of fluorescently labeled PCR amplification products. We have identified a CE artifact caused by the tissue stain eosin that can complicate the interpretation of CE data. The artifact was detected during routine analysis of a DNA sample isolated from a formalin-fixed, paraffin-embedded tissue sample considered histologically suspicious for a B-cell neoplasm. A standard clinical PCR and CE assay for immunoglobulin heavy chain (IGH) gene rearrangement revealed a weak polyclonal population of rearranged IGH genes and a 71 base peak suspicious for IGH clonality. The spectral properties of the 71 base peak were unusual in that although the dominant fluorescence of the peak was blue, it also fluoresced in green and yellow (blue>green>yellow), raising the suspicion that the peak might represent an artifact. CE analysis of the genomic DNA sample without PCR amplification demonstrated the presence of the 71 base peak, suggesting that the artifact was caused by a contaminant within the DNA sample itself. We demonstrate that eosin, which was used to stain the formalin-fixed tissue during processing, yields a discrete 71 base peak of similar morphology to the contaminant peak on CE analysis. The data suggest that eosin in the fixed tissue was not completely eliminated during nucleic acid extraction, resulting in the artifact peak. We discuss the implications of this potentially common contaminant on the interpretation of CE data and demonstrate that artifacts caused by eosin can be avoided by using more stringent DNA purification steps. Histological dyes may fluoresce, and artifacts from them should be considered when primary peaks contain additional underlying peaks of other colors. PMID:15681487

  17. Covalent co-immobilization of heparin/laminin complex that with different concentration ratio on titanium surface for selectively direction of platelets and vascular cells behavior

    International Nuclear Information System (INIS)

    Wang, Jian; Chen, Yuan; Liu, Tao; Wang, Xue; Liu, Yang; Wang, Yuan; Chen, Junying; Huang, Nan

    2014-01-01

    Highlights: • Extracellular matrix inspired surface modification with fibronectin, heparin and VEGF to construct a favorable microenvironment for selectively anticoagulant and promote endothelialization. • Take the advantage of specific intermolecular interaction, the bioactivity of above biomolecules was more efficiently maintained in compared with the common used covalent immobilization method. • Poly-l-lysine was used as a novel interlayer for surface amination, and in comparison, PLL coating was more feasible and the degradation product had no harm to human body. - Abstract: Surface biofunctional modification of coronary artery stent to improve the hemocompatibility and selectively accelerate endothelium regeneration but prevent restenosis have been become a new hotspot. For this, a novel method was developed in this work by co-immobilization of Ln and heparin complex on poly-L-lysine modified Ti surface. Take the advantage of the specific interaction between Ln and heparin, Ln and heparin complexes with different concentration ratios were set up for creating different exposure density of these two types of biomolecules. According to biocompatibility evaluation results, the Hep/Ln complexes modified surface displayed less platelet adhesion and activation. Especially, on L(150)H and L(200)H surface, the AT III binding quantity, APTT value and anti-coagulation property of modified surface were significantly promoted. Furthermore, the adherent density and proliferation activity of ECs and EPCs were positively correlated with Ln concentration. Notably, the proliferation of both ECs and EPCs on L(100)H, L(150)H and L(200)H surface were greatly promoted. Another hand, the proliferation activity of SMCs was significantly inhibited on Hep/Ln modified surfaces, which was considered mainly due to the inhibitory effect of heparin to SMCs. According to the existing results, this study demonstrated that in a certain range of heparin and laminin concentration ratio

  18. Preparative electrophoresis of industrial fission product solutions

    International Nuclear Information System (INIS)

    Tret, Joel

    1971-07-01

    The aim of this work is to contribute to the development of the continuous electrophoresis technique while studying its application in the preparative electrophoresis of industrial fission product solutions. The apparatus described is original. It was built for the purposes of the investigation and proved very reliable in operation. The experimental conditions necessary to maintain and supervise the apparatus in a state of equilibrium are examined in detail; their stability is an important factor, indispensable to the correct performance of an experiment. By subjecting an industrial solution of fission products to preparative electrophoresis it is possible, according to the experimental conditions, to prepare carrier-free radioelements of radiochemical purity (from 5 to 7 radioelements): 137 Cs, 90 Sr, 141+144 Ce, 91 Y, 95 Nb, 95 Zr, 103+106 Ru. (author) [fr

  19. Immobilization of Acetobacter sp. CCTCC M209061 for efficient asymmetric reduction of ketones and biocatalyst recycling

    Directory of Open Access Journals (Sweden)

    Chen Xiao-Hong

    2012-09-01

    Full Text Available Abstract Background The bacterium Acetobacter sp. CCTCC M209061 is a promising whole-cell biocatalyst with exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones that can be used to make valuable chiral alcohols such as (R-4-(trimethylsilyl-3-butyn-2-ol. Although it has promising catalytic properties, its stability and reusability are relatively poor compared to other biocatalysts. Hence, we explored various materials for immobilizing the active cells, in order to improve the operational stability of biocatalyst. Results It was found that Ca-alginate give the best immobilized biocatalyst, which was then coated with chitosan to further improve its mechanical strength and swelling-resistance properties. Conditions were optimized for formation of reusable immobilized beads which can be used for repeated batch asymmetric reduction of 4′-chloroacetophenone. The optimized immobilized biocatalyst was very promising, with a specific activity of 85% that of the free-cell biocatalyst (34.66 μmol/min/g dw of cells for immobilized catalyst vs 40.54 μmol/min/g for free cells in the asymmetric reduction of 4′-chloroacetophenone. The immobilized cells showed better thermal stability, pH stability, solvent tolerance and storability compared with free cells. After 25 cycles reaction, the immobilized beads still retained >50% catalytic activity, which was 3.5 times higher than degree of retention of activity by free cells reused in a similar way. The cells could be recultured in the beads to regain full activity and perform a further 25 cycles of the reduction reaction. The external mass transfer resistances were negligible as deduced from Damkohler modulus Da η ∅ Conclusions Ca-alginate coated with chitosan is a highly effective material for immobilization of Acetobacter sp. CCTCC M209061 cells for repeated use in the asymmetric reduction of ketones. Only a small cost in terms of the slightly lower catalytic activity compared to

  20. Undergraduate physics laboratory: Electrophoresis in chromatography paper

    Science.gov (United States)

    Hyde, Alexander; Batishchev, Oleg

    2015-12-01

    An experiment studying the physical principles of electrophoresis in liquids was developed for an undergraduate laboratory. We have improved upon the standard agarose gel electrophoresis experimental regime with a straightforward and cost-effective procedure, in which drops of widely available black food coloring were separated by electric field into their dye components on strips of chromatography paper soaked in a baking soda/water solution. Terminal velocities of seven student-safe dyes were measured as a function of the electric potential applied along the strips. The molecular mobility was introduced and calculated by analyzing data for a single dye. Sources of systematic and random errors were investigated.

  1. Continuous production of ethanol from hexoses and pentoses using immobilized mixed cultures of Escherichia coli strains

    Science.gov (United States)

    Unrean, Pornkamol; Srienc, Friedrich

    2010-01-01

    We have developed highly efficient ethanologenic E. coli strains that selectively consume pentoses and/or hexoses. Mixed cultures of these strains can be used to selectively adjust the sugar utilization kinetics in ethanol fermentations. Based on the kinetics of sugar utilization, we have designed and implemented an immobilized cell system for the optimized continuous conversion of sugars into ethanol. The results confirm that immobilized mixed cultures support a simultaneous conversion of hexoses and pentoses into ethanol at high yield and at a faster rate than immobilized homogenous cells. Continuous ethanol production has been maintained for several weeks at high productivity with near complete sugar utilization. The control of sugar utilization using immobilized mixed cultures can be adapted to any composition of hexoses and pentoses by adjusting the strain distribution of immobilized cells. The approach, therefore, holds promise for ethanol fermentation from lignocellulosic hydrolysates where the feedstock varies in sugar composition. PMID:20699108

  2. Cultivation characteristics of immobilized Aspergillus oryzae for kojic acid production.

    Science.gov (United States)

    Kwak, M Y; Rhee, J S

    1992-04-15

    Aspergillus oryzae in situ grown from spores entrapped in calcium alginate gel beads was used for the production of kojic acid. The immobilized cells in flask cultures produced kojic acid in a linear proportion while maintaining the stable metabolic activity for a prolonged production period. Kojic acid was accumulated up to a high concentration of 83 g/L, at which the kojic acid began to crystallize, and, thus, the culture had to be replaced with fresh media for the next batch culture. The overall productivities of two consecutive cultivations were higher than that of free mycelial fermentation. However, the production rate of kojic acid by the immobilized cells was suddenly decreased with the appearance of central cavernae inside the immobilized gel beads after 12 days of the third batch cultivation.

  3. Cobalt immobilization by manganese oxidizing bacteria from the Indian ridge system

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, R.; Sujith, P.P.; Fernandes, S.O.; Verma, P.; Khedekar, V.D.; LokaBharathi, P.A.

    Co immobilization by two manganese oxidizing isolates from Carlsberg Ridge waters (CR35 and CR48) was compared with that of Mn at same molar concentrations. At a lower concentration of 10 mu M, CR35 and CR48 immobilized 22 and 23 fM Co cell-1...

  4. Development in electrophoresis: instrumentation for two-dimensional gel electrophoresis of protein separation and application of capillary electrophoresis in micro-bioanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Aoshuang [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    This dissertation begins with a general introduction of topics related to this work. The following chapters contain three scientific manuscripts, each presented in a separate chapter with accompanying tables, figures, and literature citations. The final chapter summarizes the work and provides some prospective on this work. This introduction starts with a brief treatment of the basic principles of electrophoresis separation, followed by a discussion of gel electrophoresis and particularly polyacrylamide gel electrophoresis for protein separation, a summary of common capillary electrophoresis separation modes, and a brief treatment of micro-bioanalysis application of capillary electrophoresis, and ends with an overview of protein conformation and dynamics.

  5. Phosphopeptide enrichment by immobilized metal affinity chromatography

    DEFF Research Database (Denmark)

    Thingholm, Tine E.; Larsen, Martin R.

    2016-01-01

    Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively...... charged metal ions such as Fe3+, Ga3+, Al3+, Zr4+, and Ti4+ has made it possible to enrich phosphorylated peptides from peptide samples. However, the selectivity of most of the metal ions is limited, when working with highly complex samples, e.g., whole-cell extracts, resulting in contamination from...

  6. Status of plutonium ceramic immobilization processes and immobilization forms

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B.B.; Van Konynenburg, R.A. [Lawrence Livermore National Lab., CA (United States); Vance, E.R.; Jostsons, A. [Australian Nuclear Science and Technology Organization, Menai (Australia)] [and others

    1996-05-01

    Immobilization in a ceramic followed by permanent emplacement in a repository or borehole is one of the alternatives currently being considered by the Fissile Materials Disposition Program for the ultimate disposal of excess weapons-grade plutonium. To make Pu recovery more difficult, radioactive cesium may also be incorporated into the immobilization form. Valuable data are already available for ceramics form R&D efforts to immobilize high-level and mixed wastes. Ceramics have a high capacity for actinides, cesium, and some neutron absorbers. A unique characteristic of ceramics is the existence of mineral analogues found in nature that have demonstrated actinide immobilization over geologic time periods. The ceramic form currently being considered for plutonium disposition is a synthetic rock (SYNROC) material composed primarily of zirconolite (CaZrTi{sub 2}O{sub 7}), the desired actinide host phase, with lesser amounts of hollandite (BaAl{sub 2}Ti{sub 6}O{sub 16}) and rutile (TiO{sub 2}). Alternative actinide host phases are also being considered. These include pyrochlore (Gd{sub 2}Ti{sub 2}O{sub 7}), zircon (ZrSiO{sub 4}), and monazite (CePO{sub 4}), to name a few of the most promising. R&D activities to address important technical issues are discussed. Primarily these include moderate scale hot press fabrications with plutonium, direct loading of PuO{sub 2} powder, cold press and sinter fabrication methods, and immobilization form formulation issues.

  7. Status of plutonium ceramic immobilization processes and immobilization forms

    International Nuclear Information System (INIS)

    Ebbinghaus, B.B.; Van Konynenburg, R.A.; Vance, E.R.; Jostsons, A.

    1996-01-01

    Immobilization in a ceramic followed by permanent emplacement in a repository or borehole is one of the alternatives currently being considered by the Fissile Materials Disposition Program for the ultimate disposal of excess weapons-grade plutonium. To make Pu recovery more difficult, radioactive cesium may also be incorporated into the immobilization form. Valuable data are already available for ceramics form R ampersand D efforts to immobilize high-level and mixed wastes. Ceramics have a high capacity for actinides, cesium, and some neutron absorbers. A unique characteristic of ceramics is the existence of mineral analogues found in nature that have demonstrated actinide immobilization over geologic time periods. The ceramic form currently being considered for plutonium disposition is a synthetic rock (SYNROC) material composed primarily of zirconolite (CaZrTi 2 O 7 ), the desired actinide host phase, with lesser amounts of hollandite (BaAl 2 Ti 6 O 16 ) and rutile (TiO 2 ). Alternative actinide host phases are also being considered. These include pyrochlore (Gd 2 Ti 2 O 7 ), zircon (ZrSiO 4 ), and monazite (CePO 4 ), to name a few of the most promising. R ampersand D activities to address important technical issues are discussed. Primarily these include moderate scale hot press fabrications with plutonium, direct loading of PuO 2 powder, cold press and sinter fabrication methods, and immobilization form formulation issues

  8. Radioprotective action on bone marrow CFU during immobilization of mice

    International Nuclear Information System (INIS)

    Keizer, H.J.; van Putten, L.M.

    1976-01-01

    Anesthesia and restraint without anesthesia during whole-body x-irradiation decrease the mortality from both the bone marrow and the intestinal syndromes (30- and 5-day mortality). The two types of immobilization decrease the radiosensitivity of the hemopoietic stem cells, as shown by an increased survival of hemopoietic stem cells in the marrow of immobilized mice. The hypoxic cell radiosensitizer Ro-07-0582 reversed the radioprotective effect during restraint without anesthesia, but not during pentobarbital anesthesia. This indicates that hypoxia of the femur bone marrow cannot explain the decreased radiosensitivity of the stem cells during pentobarbital anesthesia. Pentobarbital was also shown to inhibit the recruitment of resting femur bone marrow stem cells (G 0 -phase cells) into cycle following a sublethal dose of x rays. The relevance of these observations is discussed

  9. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS ...

    African Journals Online (AJOL)

    Four strains of eri, Samia cynthia ricini Lepidoptera: Saturniidae that can be identified morphologically and maintained at North East Institute of Science and Technology, Jorhat were characterized based on their protein profile by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and DNA by random ...

  10. Contemporary sample stacking in analytical electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Šlampová, Andrea; Malá, Zdeňka; Pantůčková, Pavla; Gebauer, Petr; Boček, Petr

    2013-01-01

    Roč. 34, č. 1 (2013), s. 3-18 ISSN 0173-0835 R&D Projects: GA ČR GAP206/10/1219 Institutional support: RVO:68081715 Keywords : biological samples * stacking * trace analysis * zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.161, year: 2013

  11. Electrophoresis test prevalence, requesting patterns, yield and ...

    African Journals Online (AJOL)

    Most of the appropriate SPE test requests were from clinical haematology, renal ... implementation of principles of demand management and the ... electrophoresis (IFE)) in a South African (SA) pathology laboratory setting are limited. Objectives. ... (NHLS) hospital information system database from 1 July 2010 to. 30 June ...

  12. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  13. Contemporary sample stacking in analytical electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Malá, Zdeňka; Šlampová, Andrea; Křivánková, Ludmila; Gebauer, Petr; Boček, Petr

    2015-01-01

    Roč. 36, č. 1 (2015), s. 15-35 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA13-05762S Institutional support: RVO:68081715 Keywords : biological samples * stacking * trace analysis * zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.482, year: 2015

  14. Matching Two-dimensional Gel Electrophoresis' Spots

    DEFF Research Database (Denmark)

    Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza

    2012-01-01

    This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar...

  15. Capillary Electrophoresis Analysis of Conventional Splicing Assays

    DEFF Research Database (Denmark)

    de Garibay, Gorka Ruiz; Acedo, Alberto; García-Casado, Zaida

    2014-01-01

    of these assays is often challenging. Here, we explore this issue by conducting splicing assays in 31 BRCA2 genetic variants. All variants were assessed by RT-PCR followed by capillary electrophoresis and direct sequencing. If assays did not produce clear-cut outputs (Class-2 or Class-5 according to analytical...

  16. Concentration polarization in nanochannel DNA electrophoresis

    NARCIS (Netherlands)

    Dubsky, P.; Das, Siddhartha; van den Berg, Albert; Eijkel, Jan C.T.

    2011-01-01

    We demonstrate that the large field electrophoresis of a single DNA molecule in nanofluidic systems is accompanied by concentration polarization. We illustrate this phenomena by utilizing our electrophoretic simulation tool SIMUL. First we in-vestigate a simple system with univalent strong

  17. Immobilization needs and technology programs

    International Nuclear Information System (INIS)

    Gray, L.W.; Kan, T.; Shaw, H.; Armantrout, G.

    1995-01-01

    In the aftermath of the Cold War, the US and Russia agreed to large reductions in nuclear weapons. To aid in the selection of long-term management options, DOE has undertaken a multifaceted study to select options for storage and disposition of plutonium in keeping with US policy that plutonium must be subjected to the highest standards of safety, security, and accountability. One alternative being considered is immobilization. To arrive at a suitable immobilization form, we first reviewed published information on high-level waste immobilization technologies and identified 72 possible plutonium immobilization forms to be prescreened. Surviving forms were further screened using multi-attribute utility analysis to determine the most promising technology families. Promising immobilization families were further evaluated to identify chemical, engineering, environmental, safety, and health problems that remain to be solved prior to making technical decisions as to the viability of using the form for long- term disposition of plutonium. From this evaluation, a detailed research and development plan has been developed to provide answers to these remaining questions

  18. Alcoholic fermentation by immobilized yeast at high sugar concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Holcberg, I.B.; Margalith, P.

    1981-01-01

    Glucose fermentation by Saccharomyces cerevisiae immobilized by entrapment in agar, carrageenan, alginate and polyacrylamide gels, was compared to that of freely suspended cells at concentration of 10-50% (w.w.) sugar. The rate of ethanol production by the entrapped cells was 20-25% higher than that of the free cells. Concentrations of up to 14.5% w/w ethanol (30% glucose initial concentration) could be obtained. A number of hypotheses for the improved alcoholic fermentation are discussed.

  19. Sample Stacking in capillary zone electrophoresis : Principles, advantages and limitations

    NARCIS (Netherlands)

    Beckers, J.L.; Bocek, P.

    2000-01-01

    The principles of stacking procedures are described and their properties are discussed, including the fundamentals of the behavior of zone boundaries and the consequences of the self-correcting properties of boundaries in moving boundary electrophoresis, isotachophoresis, and zone electrophoresis.

  20. Using Gel Electrophoresis To Illustrate Protein Diversity and Isoelectric Point.

    Science.gov (United States)

    Browning, Mark; Vanable, Joseph

    2002-01-01

    Demonstrates the differences in protein structures by focusing on isoelectric point with an experiment that is observable under certain pH levels in gel electrophoresis. Explains the electrophoresis procedure and reports results of the experiments. (YDS)

  1. Immobilization of cellulase by radiation polymerization

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1983-01-01

    Immobilization of cellulase by radiation polymerization at low temperatures was studied. The enzymatic activity of immobilized cellulase pellets varied with the monomer, enzyme concentration, and the thickness of immobilized cellulase pellets. The optimum monomer concentration in the immobilization of cellulase was 30-50% at the pellet thickness of 1.0 mm, in which the enzymatic activity was 50%. The enzymatic activity of immobilized cellulase pellets was examined using various substrates such as cellobiose, carboxymethylcellulose, and paper pretreated by radiation. It was found that irradiated paper can be hydrolyzed by immobilized cellulase pellets. (author)

  2. Immobile Complex Verbs in Germanic

    DEFF Research Database (Denmark)

    Vikner, Sten

    2005-01-01

    the V° requirements or the V* requirements. Haider (1993, p. 62) and Koopman (1995), who also discuss such immobile verbs, only account for verbs with two prefix-like parts (e.g., German uraufführen ‘to perform (a play) for the first time' or Dutch herinvoeren ‘to reintroduce'), not for the more...... frequent type with only one prefix-like part (e.g., German bauchreden/Dutch buikspreken ‘to ventriloquize'). This analysis will try to account not only for the data discussed in Haider (1993) and Koopman (1995) but also for the following: - why immobile verbs include verbs with only one prefix-like part...... are immobile, - why such verbs are not found in Germanic VO-languages such as English and Scandinavian....

  3. 21 CFR 862.2485 - Electrophoresis apparatus for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrophoresis apparatus for clinical use. 862.2485 Section 862.2485 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Instruments § 862.2485 Electrophoresis apparatus for clinical use. (a) Identification. An electrophoresis...

  4. Electrical conductivity measurements of aqueous and immobilized potassium hydroxide

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mollerup, Pia Lolk

    2012-01-01

    concentrations was investigated using the van der Pauw method in combination with electrochemical impedance spectroscopy (EIS). Conductivity values as high as 2.7 S cm−1 for 35 wt%, 2.9 S cm−1 for 45 wt%, and 2.8 S cm−1 for 55 wt% concentrated aqueous solutions were measured at 200 °C. Micro- and nano-porous...... solid pellets were produced and used to immobilize aqueous KOH solutions. These are intended to operate as ion-conductive diaphragms (electrolytes) in alkaline electrolysis cells, offering high conductivity and corrosion resistance. The conductivity of immobilized KOH has been determined by the same...

  5. Immobilization of IFR salt wastes in mortar

    International Nuclear Information System (INIS)

    Fischer, D.F.; Johnson, T.R.

    1988-01-01

    Portland cement-base mortars are being considered for immobilizing chloride salt wastes produced by the fuel cycles of Integral Fast Reactors (IFR). The IFR is a sodium-cooled fast reactor with metal alloy fuels. It has a close-coupled fuel cycle in which fission products are separated from the actinides in an electrochemical cell operating at 500/degree/C. This cell has a liquid cadmium anode in which the fuels are dissolved and a liquid salt electrolyte. The salt will be a mixture of either lithium, potassium, and sodium chlorides or lithium, calcium, barium, and sodium chlorides. One method being considered for immobilizing the treated nontransuranic salt waste is to disperse the salt in a portland cement-base mortar that will be sealed in corrosion-resistant containers. For this application, the grout must be sufficiently fluid that it can be pumped into canister-molds where it will solidify into a strong, leach-resistant material. The set times must be longer than a few hours to allow sufficient time for processing, and the mortar must reach a reasonable compressive strength (/approximately/7 MPa) within three days to permit handling. Because fission product heating will be high, about 0.6 W/kg for a mortar containing 10% waste salt, the effects of elevated temperatures during curing and storage on mortar properties must be considered

  6. Non-invasive screening for Alzheimer's disease by sensing salivary sugar using Drosophila cells expressing gustatory receptor (Gr5a immobilized on an extended gate ion-sensitive field-effect transistor (EG-ISFET biosensor.

    Directory of Open Access Journals (Sweden)

    Hui-Chong Lau

    Full Text Available Body fluids are often used as specimens for medical diagnosis. With the advent of advanced analytical techniques in biotechnology, the diagnostic potential of saliva has been the focus of many studies. We recently reported the presence of excess salivary sugars, in patients with Alzheimer's disease (AD. In the present study, we developed a highly sensitive, cell-based biosensor to detect trehalose levels in patient saliva. The developed biosensor relies on the overexpression of sugar sensitive gustatory receptors (Gr5a in Drosophila cells to detect the salivary trehalose. The cell-based biosensor was built on the foundation of an improved extended gate ion-sensitive field-effect transistor (EG-ISFET. Using an EG-ISFET, instead of a traditional ion-sensitive field-effect transistor (ISFET, resulted in an increase in the sensitivity and reliability of detection. The biosensor was designed with the gate terminals segregated from the conventional ISFET device. This design allows the construction of an independent reference and sensing region for simultaneous and accurate measurements of samples from controls and patients respectively. To investigate the efficacy of the cell-based biosensor for AD screening, we collected 20 saliva samples from each of the following groups: participants diagnosed with AD, participants diagnosed with Parkinson's disease (PD, and a control group composed of healthy individuals. We then studied the response generated from the interaction of the salivary trehalose of the saliva samples and the Gr5a in the immobilized cells on an EG-ISFET sensor. The cell-based biosensor significantly distinguished salivary sugar, trehalose of the AD group from the PD and control groups. Based on these findings, we propose that salivary trehalose, might be a potential biomarker for AD and could be detected using our cell-based EG-ISFET biosensor. The cell-based EG-ISFET biosensor provides a sensitive and direct approach for salivary sugar

  7. Immobilization of acid digestion residue

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.; Allen, C.R.

    1983-01-01

    Acid digestion treatment of nuclear waste is similar to incineration processes and results in the bulk of the waste being reduced in volume and weight to some residual solids termed residue. The residue is composed of various dispersible solid materials and typically contains the resultant radioactivity from the waste. This report describes the immobilization of the residue in portland cement, borosilicate glass, and some other waste forms. Diagrams showing the cement and glass virtification parameters are included in the report as well as process steps and candidate waste product forms. Cement immobilization is simplest and probably least expensive; glass vitrification exhibits the best overall volume reduction ratio

  8. MUCOADHESIVE GEL WITH IMMOBILIZED LYSOZYME: PREPARATION AND PROPERTIES

    Directory of Open Access Journals (Sweden)

    Dekina S. S.

    2015-08-01

    Full Text Available The study of non-covalent immobilized lysozyme, as well as physico-chemical and biochemical properties of obtained mucoadhesive gel was the aim of the research. Lysozyme activity was determined by bacteriolytic method (Micrococcus lysodeikticus cells acetone powder was a substrate. Lysozyme immobilization was conducted by the method of entrapment in gel. Enzyme carrier interaction was studied by viscometric, spectrophotometric and spectrofluorimetric methods. Mucoadhesive gel with immobilized lysozyme, possessing antiinflammatory and antimicrobial activities, was prepared. Due to immobilization, protein-polymer complex with the original enzymatic activity was formed. The product is characterized by high mucoadhesive properties, quantitative retaining of protein and bacteriolytic activity, prolonged release of the enzyme, improved biochemical characteristics (extended pH-activity profile, stability in acidic medium and during storage for 2 years, and it is perspective for further studies. The proposed method for lysozyme immobilization in the carboxymethyl cellulose sodium salt gel allows to obtain a stable, highly efficient product, with high adhesive properties for attachment to the mucous membranes, that is promising for use in biomedicine.

  9. Gelatin Functionalization of Biomaterial Surfaces: Strategies for Immobilization and Visualization

    Directory of Open Access Journals (Sweden)

    Peter Dubruel

    2011-01-01

    Full Text Available In the present work, the immobilization of gelatin as biopolymer on two types of implantable biomaterials, polyimide and titanium, was compared. Both materials are known for their biocompatibility while lacking cell-interactive behavior. For both materials, a pre-functionalization step was required to enable gelatin immobilization. For the polyimide foils, a reactive succinimidyl ester was introduced first on the surface, followed by covalent grafting of gelatin. For the titanium material, methacrylate groups were first introduced on the Ti surface through a silanization reaction. The applied functionalities enabled the subsequent immobilization of methacrylamide modified gelatin. Both surface modified materials were characterized in depth using atomic force microscopy, static contact angle measurements, confocal fluorescence microscopy, attenuated total reflection infrared spectroscopy and X-ray photo-electron spectroscopy. The results indicated that the strategies elaborated for both material classes are suitable to apply stable gelatin coatings. Interestingly, depending on the material class studied, not all surface analysis techniques are applicable.

  10. Electrophoresis microchip with integrated waveguides for simultaneous native UV fluorescence and absorbance detection

    DEFF Research Database (Denmark)

    Ohlsson, Pelle Daniel; Sala, Olga Ordeig; Mogensen, Klaus Bo

    2009-01-01

    Simultaneous label-free detection of UV absorbance and native UV-excited fluorescence in an electrophoresis microchip is presented. UV transparent integrated waveguides launch light at a wavelength of 254 nm from a mercury lamp along the length of a 1-mm. long detection cell. Transmitted UV light...

  11. Alkaline gel electrophoresis assay to detect DNA strand breaks and repair mechanisms in Escherichia coli

    International Nuclear Information System (INIS)

    Mattos, Jose Carlos Pelielo de; Motta, Ellen Serri da; Oliveira, Marcia Betania Nunes de; Dantas, Flavio Jose da Silva; Araujo, Adriano Caldeira de

    2008-01-01

    Reactive oxygen species (ROS) can induce lesions in different cellular targets, including DNA. Stannous chloride (SnCl 2 ) is a ROS generator, leading to lethality in Escherichia coli (E. coli), with the base excision repair (BER) mechanism playing a role in this process. Many techniques have been developed to detect genotoxicity, as comet assay, in eukaryotic cells, and plasmid DNA agarose gel electrophoresis. In this study, an adaptation of the alkaline gel electrophoresis method was carried out to ascertain the induction of strand breaks by SnCl 2 in bacterial DNA, from E. coli BER mutants, and its repair pathway. Results obtained show that SnCl 2 was able to induce DNA strand breaks in all strains tested. Moreover, endonuclease IV and exonuclease III play a role in DNA repair. On the whole, data has shown that the alkaline gel electrophoresis assay could be used both for studying DNA strand breaks induction and for associated repair mechanisms. (author)

  12. Radiation immobilization of catalase and its application

    International Nuclear Information System (INIS)

    Wang Guanghui; Ha Hongfei; Wang Xia; Wu Jilan

    1988-01-01

    Catalase was immobilized by a chemical method on porous polyacrylamide particles produced by radiation polymerization of acrylamide monomer at low temperature (-78 0 C). Activity of immobilized catalase was enhanced distinctly by joining a chemical arm to the support. The method of recovery of catalase activity on immobilized polymer was found by soaking it in certain buffer. The treatment of H 2 O 2 both in aqueous solution and alcoholic solution by using the immobilized catalase was performed. (author)

  13. Microfluidic chip-capillary electrophoresis devices

    CERN Document Server

    Fung, Ying Sing; Du, Fuying; Guo, Wenpeng; Ma, Tongmei; Nie, Zhou; Sun, Hui; Wu, Ruige; Zhao, Wenfeng

    2015-01-01

    Capillary electrophoresis (CE) and microfluidic chip (MC) devices are relatively mature technologies, but this book demonstrates how they can be integrated into a single, revolutionary device that can provide on-site analysis of samples when laboratory services are unavailable. By introducing the combination of CE and MC technology, Microfluidic Chip-Capillary Electrophoresis Devices broadens the scope of chemical analysis, particularly in the biomedical, food, and environmental sciences. The book gives an overview of the development of MC and CE technology as well as technology that now allows for the fabrication of MC-CE devices. It describes the operating principles that make integration possible and illustrates some achievements already made by the application of MC-CE devices in hospitals, clinics, food safety, and environmental research. The authors envision further applications for private and public use once the proof-of-concept stage has been passed and obstacles to increased commercialization are ad...

  14. Optically controlled electrophoresis with a photoconductive substrate

    Science.gov (United States)

    Inami, Wataru; Nagashima, Taiki; Kawata, Yoshimasa

    2018-05-01

    A photoconductive substrate is used to perform electrophoresis. Light-induced micro-particle flow manipulation is demonstrated without using a fabricated flow channel. The path along which the particles were moved was formed by an illuminated light pattern on the substrate. Because the substrate conductivity and electric field distribution can be modified by light illumination, the forces acting on the particles can be controlled. This technique has potential applications as a high functionality analytical device.

  15. Immobilization and characterization of inulinase from Ulocladium

    Indian Academy of Sciences (India)

    Ulocladium atrum inulinase was immobilized on different composite membranes composed of chitosan/nonwoven fabrics. Km values of free and immobilized U. atrum inulinase on different composite membranes were calculated. The enzyme had optimum pH at 5.6 for free and immobilized U. atrum inulinase on polyester ...

  16. Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media.

    Science.gov (United States)

    Chen, Zhen; Dorfman, Kevin D

    2014-02-01

    Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such "tilted" post arrays is superior to the standard "un-tilted" approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low-electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the "free path," i.e. the average distance of ballistic trajectories of point-sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Startup of electrophoresis in a suspension of colloidal spheres.

    Science.gov (United States)

    Chiang, Chia C; Keh, Huan J

    2015-12-01

    The transient electrophoretic response of a homogeneous suspension of spherical particles to the step application of an electric field is analyzed. The electric double layer encompassing each particle is assumed to be thin but finite, and the effect of dynamic electroosmosis within it is incorporated. The momentum equation for the fluid outside the double layers is solved through the use of a unit cell model. Closed-form formulas for the time-evolving electrophoretic and settling velocities of the particles in the Laplace transform are obtained in terms of the electrokinetic radius, relative mass density, and volume fraction of the particles. The time scale for the development of electrophoresis and sedimentation is significantly smaller for a suspension with a higher particle volume fraction or a smaller particle-to-fluid density ratio, and the electrophoretic mobility at any instant increases with an increase in the electrokinetic particle radius. The transient electrophoretic mobility is a decreasing function of the particle volume fraction if the particle-to-fluid density ratio is relatively small, but it may increase with an increase in the particle volume fraction if this density ratio is relatively large. The particle interaction effect in a suspension on the transient electrophoresis is much weaker than that on the transient sedimentation of the particles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Immobilization of Mitochondria on Graphene

    Science.gov (United States)

    2013-08-29

    poly-L-lysine has also been reported for immobilization of yeast mitochondria. Coating was performed by repetitive washing of cover slips with 0.02...of Poly-L-lysine Applications of PLL PLL is a production of bacterial fermentation and is used as a food preservative. In biology, PLL is used in

  19. Biological methanol production by immobilized Methylocella tundrae using simulated biohythane as a feed.

    Science.gov (United States)

    Patel, Sanjay K S; Singh, Raushan K; Kumar, Ashok; Jeong, Jae-Hoon; Jeong, Seong Hun; Kalia, Vipin C; Kim, In-Won; Lee, Jung-Kul

    2017-10-01

    Biohythane may be used as an alternative feed for methanol production instead of costly pure methane. In this study, methanol production potential of Methylocella tundrae immobilized through covalent immobilization, adsorption, and encapsulation was evaluated. Cells covalently immobilized on groundnut shells and chitosan showed a relative methanol production potential of 83.9 and 91.6%, respectively, compared to that of free cells. The maximum methanol production by free cells and cells covalently immobilized on groundnut shells and chitosan was 6.73, 6.20, and 7.23mM, respectively, using simulated biohythane as a feed. Under repeated batch conditions of eight cycles, cells covalently immobilized on chitosan and groundnut shells, and cells encapsulated in sodium-alginate resulted in significantly higher cumulative methanol production of 37.76, 31.80, and 25.58mM, respectively, than free cells (18.57mM). This is the first report on immobilization of methanotrophs on groundnut shells and its application in methanol production using biohythane as a feed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Histomorphometric analysis of the response of rat skeletal muscle to swimming, immobilization and rehabilitation

    Directory of Open Access Journals (Sweden)

    C.C.F. Nascimento

    2008-09-01

    Full Text Available The objective of the present study was to determine to what extent, if any, swimming training applied before immobilization in a cast interferes with the rehabilitation process in rat muscles. Female Wistar rats, mean weight 260.52 ± 16.26 g, were divided into 4 groups of 6 rats each: control, 6 weeks under baseline conditions; trained, swimming training for 6 weeks; trained-immobilized, swimming training for 6 weeks and then immobilized for 1 week; trained-immobilized-rehabilitated, swimming training for 6 weeks, immobilized for 1 week and then remobilized with swimming for 2 weeks. The animals were then sacrificed and the soleus and tibialis anterior muscles were dissected, frozen in liquid nitrogen and processed histochemically (H&E and mATPase. Data were analyzed statistically by the mixed effects linear model (P < 0.05. Cytoarchitectural changes such as degenerative characteristics in the immobilized group and regenerative characteristics such as centralized nucleus, fiber size variation and cell fragmentation in the groups submitted to swimming were more significant in the soleus muscle. The diameters of the lesser soleus type 1 and type 2A fibers were significantly reduced in the trained-immobilized group compared to the trained group (P < 0.001. In the tibialis anterior, there was an increase in the number of type 2B fibers and a reduction in type 2A fibers when trained-immobilized rats were compared to trained rats (P < 0.001. In trained-immobilized-rehabilitated rats, there was a reduction in type 2B fibers and an increase in type 2A fibers compared to trained-immobilized rats (P < 0.009. We concluded that swimming training did not minimize the deleterious effects of immobilization on the muscles studied and that remobilization did not favor tissue re-adaptation.