WorldWideScience

Sample records for cell hybrid vehicles

  1. Electric vehicles, hybrid electric vehicles and fuel cell electric vehicles: what in the future

    Energy Technology Data Exchange (ETDEWEB)

    Maggetto, G.; Van Mierlo, J. [Vrije Universiteit, Brussel (Belgium)

    2000-07-01

    In urban area, due to their beneficial effect on environment, electric vehicles, hybrid electric vehicles and fuel cell electric vehicles are an important factor for improvement of traffic and more particular for a healthier environment. Moreover, the need for alternative energy source is growing and the price competition of alternatives against oil is becoming more and more realistic. Electric vehicles, hybrid electric vehicles and fuel cell electric vehicles are offering the best possibility for the use of new energy sources, because electricity can result from a transformation with high efficiency of these sources and is always used with the highest possible efficiency in systems with electric drives or components. Some basic considerations about the situation today and in a mid and long-term perspective, are presented together with the infrastructure developments.

  2. Hybrid energy sources for electric and fuel cell vehicle propulsion

    OpenAIRE

    Schofield, N; Yap, H T; Bingham, Chris

    2005-01-01

    Given the energy (and hence range) and performance limitations of electro-chemical batteries, hybrid systems combining energy and power dense storage technologies have been proposed for electric vehicle propulsion. The paper will discuss the application of electro-chemical batteries, supercapacitors and fuel cells in single and hybrid source configurations for electric vehicle drive-train applications. Simulation models of energy sources are presented and used to investigate the design optimi...

  3. Systems Integration, Modeling, and Validation of a Fuel Cell Hybrid Electric Vehicle

    OpenAIRE

    Ogburn, Michael James

    2000-01-01

    The goals of the research documented in this thesis were the design, construction, modeling, and validation of a fuel cell hybrid electric vehicle based a conversion of a five-passenger production sedan. Over 60 engineering students working together as the Hybrid Electric Vehicle Team of Virginia Tech (HEVT), integrated a proton exchange membrane fuel cell system into a series hybrid electric vehicle. This design produced an efficient and truly zero-emission vehicle. This 1997 Chevrolet Lum...

  4. Continual Energy Management System of Proton Exchange Membrane Fuel Cell Hybrid Power Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ren Yuan

    2016-01-01

    Full Text Available Current research status in energy management of Proton Exchange Membrane (PEM fuel cell hybrid power electric vehicles are first described in this paper, and then build the PEMFC/ lithium-ion battery/ ultra-capacitor hybrid system model. The paper analysis the key factors of the continuous power available in PEM fuel cell hybrid power electric vehicle and hybrid power system working status under different driving modes. In the end this paper gives the working flow chart of the hybrid power system and concludes the three items of the system performance analysis.

  5. Evaluation of fuel cell hybrid electric light commercial vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.M.

    2002-07-01

    This report summarised the results of tests both in the laboratory and in operation on the roads in London carried out to determine the performance of the Zetek Fuel Cell Vehicle operated by Westminster County Council. Details are given of the vehicle's data logging system, and measurement of its acceleration and power, driveability, vehicle range, and the energy efficiency of the fuel cell, and its environmental performance. The frequent shutdowns of the fuel cell system and the problems with the DC/DC converter are discussed.

  6. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    OpenAIRE

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    Proton Exchange Membrane fuel cell (PEMFC) technology is one of the most attractive candidates for transportation applications due to its inherently high efficiency and high power density. However, the fuel cell system efficiency can suffer because of the need for forced air supply and water-cooling systems. Hence the operating strategy of the fuel cell system can have a significant impact on the fuel cell system efficiency and thus vehicle fuel economy. The key issues are how the fuel cell b...

  7. UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Paul

    2012-05-31

    This is the final report of the UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence which spanned from 2005-2012. The U.S. Department of Energy (DOE) established the Graduate Automotive Technology Education (GATE) Program, to provide a new generation of engineers and scientists with knowledge and skills to create advanced automotive technologies. The UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence established in 2005 is focused on research, education, industrial collaboration and outreach within automotive technology. UC Davis has had two independent GATE centers with separate well-defined objectives and research programs from 1998. The Fuel Cell Center, administered by ITS-Davis, has focused on fuel cell technology. The Hybrid-Electric Vehicle Design Center (HEV Center), administered by the Department of Mechanical and Aeronautical Engineering, has focused on the development of plug-in hybrid technology using internal combustion engines. The merger of these two centers in 2005 has broadened the scope of research and lead to higher visibility of the activity. UC Davis's existing GATE centers have become the campus's research focal points on fuel cells and hybrid-electric vehicles, and the home for graduate students who are studying advanced automotive technologies. The centers have been highly successful in attracting, training, and placing top-notch students into fuel cell and hybrid programs in both industry and government.

  8. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  9. LQR-Based Power Train Control Method Design for Fuel Cell Hybrid Vehicle

    OpenAIRE

    Haitao, Yun; Yulan, Zhao; Zunnian, Liu; Kui, Hao

    2013-01-01

    Based on the mathematical model of fuel cell hybrid vehicle (FCHV) proposed in our previous study, a multistate feedback control strategy of the hybrid power train is designed based on the linear quadratic regulator (LQR) algorithm. A Kalman Filter (KF) observer is introduced to estimate state of charge (SOC) of the battery firstly, and then a linear quadratic regulator is constructed to compute the state feedback gain matrix of the closed-loop control system. At last, simulation and actual t...

  10. Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    Published data from various sources are used to perform economic and environmental comparisons of four types of vehicles: conventional, hybrid, electric and hydrogen fuel cell. The production and utilization stages of the vehicles are taken into consideration. The comparison is based on a mathematical procedure, which includes normalization of economic indicators (prices of vehicles and fuels during the vehicle life and driving range) and environmental indicators (greenhouse gas and air pollution emissions), and evaluation of an optimal relationship between the types of vehicles in the fleet. According to the comparison, hybrid and electric cars exhibit advantages over the other types. The economic efficiency and environmental impact of electric car use depends substantially on the source of the electricity. If the electricity comes from renewable energy sources, the electric car is advantageous compared to the hybrid. If electricity comes from fossil fuels, the electric car remains competitive only if the electricity is generated on board. It is shown that, if electricity is generated with an efficiency of about 50-60% by a gas turbine engine connected to a high-capacity battery and an electric motor, the electric car becomes advantageous. Implementation of fuel cells stacks and ion conductive membranes into gas turbine cycles permits electricity generation to increase to the above-mentioned level and air pollution emissions to decrease. It is concluded that the electric car with on-board electricity generation represents a significant and flexible advance in the development of efficient and ecologically benign vehicles.

  11. Super-capacitors fuel-cell hybrid electric vehicle optimization and control strategy development

    International Nuclear Information System (INIS)

    Paladini, Vanessa; Donateo, Teresa; De Risi, Arturo; Laforgia, Domenico

    2007-01-01

    In the last decades, due to emissions reduction policies, research focused on alternative powertrains among which hybrid electric vehicles (HEVs) powered by fuel cells are becoming an attractive solution. One of the main issues of these vehicles is the energy management in order to improve the overall fuel economy. The present investigation aims at identifying the best hybrid vehicle configuration and control strategy to reduce fuel consumption. The study focuses on a car powered by a fuel cell and equipped with two secondary energy storage devices: batteries and super-capacitors. To model the powertrain behavior an on purpose simulation program called ECoS has been developed in Matlab/Simulink environment. The fuel cell model is based on the Amphlett theory. The battery and the super-capacitor models account for charge/discharge efficiency. The analyzed powertrain is also equipped with an energy regeneration system to recover braking energy. The numerical optimization of vehicle configuration and control strategy of the hybrid electric vehicle has been carried out with a multi objective genetic algorithm. The goal of the optimization is the reduction of hydrogen consumption while sustaining the battery state of charge. By applying the algorithm to different driving cycles, several optimized configurations have been identified and discussed

  12. Development of a fuel cell plug-in hybrid electric vehicle and vehicle simulator for energy management assessment

    Science.gov (United States)

    Meintz, Andrew Lee

    This dissertation offers a description of the development of a fuel cell plug-in hybrid electric vehicle focusing on the propulsion architecture selection, propulsion system control, and high-level energy management. Two energy management techniques have been developed and implemented for real-time control of the vehicle. The first method is a heuristic method that relies on a short-term moving average of the vehicle power requirements. The second method utilizes an affine function of the short-term and long-term moving average vehicle power requirements. The development process of these methods has required the creation of a vehicle simulator capable of estimating the effect of changes to the energy management control techniques on the overall vehicle energy efficiency. Furthermore, the simulator has allowed for the refinement of the energy management methods and for the stability of the method to be analyzed prior to on-road testing. This simulator has been verified through on-road testing of a constructed prototype vehicle under both highway and city driving schedules for each energy management method. The results of the finalized vehicle control strategies are compared with the simulator predictions and an assessment of the effectiveness of both strategies is discussed. The methods have been evaluated for energy consumption in the form of both hydrogen fuel and stored electricity from grid charging.

  13. A Parallel Energy-Sharing Control Strategy for Fuel Cell Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Nik Rumzi Nik Idris

    2011-08-01

    Full Text Available This paper presents a parallel energy-sharing control strategy for the application of fuel cell hybrid vehicles (FCHVs. The hybrid source discussed consists of a fuel cells (FCs generator and energy storage units (ESUs which composed by the battery and ultracapacitor (UC modules. A direct current (DC bus is used to interface between the energy sources and the electric vehicles (EV propulsion system (loads. Energy sources are connected to the DC bus using of power electronics converters. A total of six control loops are designed in the supervisory system in order to regulate the DC bus voltage, control of current flow and to monitor the state of charge (SOC of each energy storage device at the same time. Proportional plus integral (PI controllers are employed to regulate the output from each control loop referring to their reference signals. The proposed energy control system is simulated in MATLAB/Simulink environment. Results indicated that the proposed parallel energy-sharing control system is capable to provide a practical hybrid vehicle in respond to the vehicle traction response and avoids the FC and battery from overstressed at the same time.

  14. LQR-Based Power Train Control Method Design for Fuel Cell Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Yun Haitao

    2013-01-01

    Full Text Available Based on the mathematical model of fuel cell hybrid vehicle (FCHV proposed in our previous study, a multistate feedback control strategy of the hybrid power train is designed based on the linear quadratic regulator (LQR algorithm. A Kalman Filter (KF observer is introduced to estimate state of charge (SOC of the battery firstly, and then a linear quadratic regulator is constructed to compute the state feedback gain matrix of the closed-loop control system. At last, simulation and actual test are utilized to demonstrate this new approach.

  15. Design of a Fuel Cell Hybrid Electric Vehicle Drive System

    DEFF Research Database (Denmark)

    Schaltz, Erik

    Fuel cells achieve more and more attention due to their potential of replacing the traditional internal combustion engine (ICE) used in the area of transportation. In this PhD thesis a fuel cell shaft power pack (FCSPP) is designed and implemented in a small truck. The FCSPP replaces the original...... supply system of the truck which was powered by a lead-acid battery package. The FCSPP includes fuel storage, a fuel cell system, an energy storage device, power electronics, an electric machine, and the necessary control. The FCSPP therefore converts the energy of the fuel to a shaft torque and speed...... of the electric machine. In the thesis the High Temperature Proton Exchange Membrane Fuel Cell (HTPEMFC) is used as it has promising properties for being supplied by reformed methanol, instead of pure hydrogen, which is more practical feasible. It takes approximately 6 minutes before the fuel cell is ready...

  16. Simulation of the PEM fuel cell hybrid power train of an automated guided vehicle and comparison with experimental results

    NARCIS (Netherlands)

    Bram Veenhuizen; J.C.N. Bosma

    2009-01-01

    At HAN University research has been started into the development of a PEM fuel cell hybrid power train to be used in an automated guided vehicle. For this purpose a test facility is used with the possibility to test all important functional aspects of a PEM fuel cell hybrid power train. In this

  17. Design and Comparison of Power Systems for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand

    2008-01-01

    In a fuel cell hybrid electric vehicle (FCHEV) the fuel cell stack is assisted by one or more energy storage devices. Thereby the system cost, mass, and volume can be decreased, and a significant better performance can be obtained. Two often used energy storage devices are the battery...... ultracapacitors are the only energy storage device the system becomes too big and heavy. A fuel cell/battery/ultracapacitor hybrid provides the longest life time of the batteries. If the fuel cell stack power is too small, the system will be big, heavy, and have a poor efficiency....... and ultracapacitor. In this paper a design method to design the power system of a FCHEV is presented. 10 cases of combining the fuel stack with either the battery, ultracapacitor, or both are investigated. The system volume, mass, efficiency, and battery lifetime are also compared. It is concluded that when...

  18. Hybrid FSAE Vehicle Realization

    Science.gov (United States)

    2010-12-01

    The goal of this multi-year project is to create a fully functional University of Idaho entry in the hybrid FSAE competition. Vehicle integration is underway as part of a variety of 2010-11 senior design projects. This leverages a variety of analytic...

  19. Test methods for evaluating energy consumption and emissions of vehicles with electric, hybrid and fuel cell power trains

    NARCIS (Netherlands)

    Smokers, R.T.M.; Ploumen, S.; Conte, M.; Buning, L.; Meier-Engel, K.

    2000-01-01

    As part of the MATADOR-project measurement methods have been developed for the evaluation of the energy consumption and emissions of vehicles with advanced propulsion systems, such as battery-electric, hybrid electric and fuel cell vehicles. Based on an inventory of existing and prospective standard

  20. Modelling and design optimization of low speed fuel cell - battery hybrid electric vehicles. Paper no. IGEC-1-125

    International Nuclear Information System (INIS)

    Guenther, M.; Dong, Z.

    2005-01-01

    A push for electric vehicles has occurred in the past several decades due to various concerns about air pollution and the contribution of emissions to global climate change. Although electric cars and buses have been the focus of much of electric vehicle development, smaller vehicles are used extensively for transportation and utility purposes in many countries. In order to explore the viability of fuel cell - battery hybrid electric vehicles, empirical fuel cell system data has been incorporated into the NREL's vehicle design and simulation tool, ADVISOR (ADvanced Vehicle SimulatOR), to predict the performance of a low-speed, fuel cell - battery electric vehicle through MATLAB Simulink. The modelling and simulation provide valuable feedback to the design optimization of the fuel cell power system. A sampling based optimization algorithm was used to explore the viability and options of a low cost design for urban use. (author)

  1. Modeling and Nonlinear Control of Fuel Cell / Supercapacitor Hybrid Energy Storage System for Electric Vehicles

    DEFF Research Database (Denmark)

    El Fadil, Hassan; Giri, Fouad; Guerrero, Josep M.

    2014-01-01

    This paper deals with the problem of controlling hybrid energy storage system (HESS) for electric vehicle. The storage system consists of a fuel cell (FC), serving as the main power source, and a supercapacitor (SC), serving as an auxiliary power source. It also contains a power block for energy...... requirements: i) tight dc bus voltage regulation; ii) perfect tracking of SC current to its reference; iii) and asymptotic stability of the closed loop system. A nonlinear controller is developed, on the basis of the system nonlinear model, making use of Lyapunov stability design techniques. The latter...

  2. Hybrid vehicle control

    Science.gov (United States)

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  3. Energy Management Strategies based on efficiency map for Fuel Cell Hybrid Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Feroldi, Diego; Serra, Maria; Riera, Jordi [Institut de Robotica i Informatica Industrial (CSIC-UPC), C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2009-05-15

    The addition of a fast auxiliary power source like a supercapacitor bank in fuel cell-based vehicles has a great potential because permits a significant reduction of the hydrogen consumption and an improvement of the vehicle efficiency. The Energy Management Strategies, commanding the power split between the power sources in the hybrid arrangement to fulfil the power requirement, perform a fundamental role to achieve this objective. In this work, three strategies based on the knowledge of the fuel cell efficiency map are proposed. These strategies are attractive due to the relative simplicity of the real time implementation and the good performance. The strategies are tested both in a simulation environment and in an experimental setup using a 1.2-kW PEM fuel cell. The results, in terms of hydrogen consumption, are compared with an optimal case, which is assessed trough an advantageous technique also introduced in this work and with a pure fuel cell vehicle as well. This comparative reveals high efficiency and good performance, allowing to save up to 26% of hydrogen in urban scenarios. (author)

  4. Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects

    International Nuclear Information System (INIS)

    Pollet, Bruno G.; Staffell, Iain; Shang, Jin Lei

    2012-01-01

    Decarbonising transport is proving to be one of today's major challenges for the global automotive industry due to many factors such as the increase in greenhouse gas and particulate emissions affecting not only the climate but also humans, the increase in pollution, rapid oil depletion, issues with energy security and dependency from foreign sources and population growth. For more than a century, our society has been dependent upon oil, and major breakthroughs in low- and ultra-low carbon technologies and vehicles are urgently required. This review paper highlights the current status of hybrid, battery and fuel cell electric vehicles from an electrochemical and market point of view. The review paper also discusses the advantages and disadvantages of using each technology in the automotive industry and the impact of these technologies on consumers.

  5. Hybrid Turbine Electric Vehicle

    Science.gov (United States)

    Viterna, Larry A.

    1997-01-01

    Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.

  6. Modeling, simulation, and concept studies of a fuel cell hybrid electric vehicle powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Oezbek, Markus

    2010-03-29

    This thesis focuses on the development of a fuel cell-based hybrid electric powertrain for smaller (2 kW) hybrid electric vehicles (HEVs). A Hardware-in-the-Loop test rig is designed and built with the possibility to simulate any load profile for HEVs in a realistic environment, whereby the environment is modeled. Detailed simulation models of the test rig are developed and validated to real physical components and control algorithms are designed for the DC/DC-converters and the fuel cell system. A state-feedback controller is developed for the DC/DC-converters where the state-space averaging method is used for the development. For the fuel cells, a gain-scheduling controller based on state feedback is developed and compared to two conventional methods. The design process of an HEV with regard to a given load profile is introduced with comparison between SuperCaps and batteries. The HEV is also evaluated with an introduction to different power management concepts with regard to fuel consumption, dynamics, and fuel cell deterioration rate. The power management methods are implemented in the test rig and compared. (orig.)

  7. Research on Hybrid Vehicle Drivetrain

    Science.gov (United States)

    Xie, Zhongzhi

    Hybrid cars as a solution to energy saving, emission reduction measures, have received widespread attention. Motor drive system as an important part of the hybrid vehicles as an important object of study. Based on the hybrid electric vehicle powertrain control system for permanent magnet synchronous motor as the object of study. Can be applied to hybrid car compares the characteristics of traction motors, chose permanent magnet synchronous Motors as drive motors for hybrid vehicles. Building applications in hybrid cars in MATLAB/Simulink simulation model of permanent-magnet synchronous motor speed control system and analysis of simulation results.

  8. SUBCONTRACT REPORT: DC-DC Converter for Fuel Cell and Hybrid Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, Laura D [ORNL; Zhu, Lizhi [Ballard Power Systems/Siemens VDO

    2007-07-01

    The goal of this project is to develop and fabricate a 5kW dc-dc converter with a baseline 14V output capability for fuel cell and hybrid vehicles. The major objectives for this dc-dc converter technology are to meet: Higher efficiency (92%); High coolant temperature,e capability (105 C); High reliability (15 Years/150,000miles); Smaller volume (5L); Lower weight (6kg); and Lower cost ($75/kW). The key technical challenge for these converters is the 105 C coolant temperatures. The power switches and magnetics must be designed to sustain these operating temperatures reliably, without a large cost/mass/volume penalty.

  9. Investigation of Battery/Ultracapacitor Energy Storage Rating for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Khaligh, A.; Rasmussen, Peter Omand

    2008-01-01

    Combining high energy density batteries and high power density ultracapacitors in Fuel Cell Hybrid Electric Vehicles (FCHEV) results in a high efficient, high performance, low size, and light system. Often the batteries are rated with respect to their energy requirement in order to reduce...... their volume and mass. This does not prevent deep discharges of the batteries, which is critical to their lifetime. In this paper, the ratings of the batteries and ultracapacitors in a FCHEV are investigated. Comparison of system volume, mass, efficiency, and battery lifetime due to the rating of the energy...... storage devices are presented. It is concluded, that by sufficient rating of the battery or ultracapacitors, an appropriate balance between system volume, mass, efficiency, and battery lifetime is achievable....

  10. Power Management for Fuel Cell and Battery Hybrid Unmanned Aerial Vehicle Applications

    Science.gov (United States)

    Stein, Jared Robert

    As electric powered unmanned aerial vehicles enter a new age of commercial viability, market opportunities in the small UAV sector are expanding. Extending UAV flight time through a combination of fuel cell and battery technologies enhance the scope of potential applications. A brief survey of UAV history provides context and examples of modern day UAVs powered by fuel cells are given. Conventional hybrid power system management employs DC-to-DC converters to control the power split between battery and fuel cell. In this study, a transistor replaces the DC-to-DC converter which lowers weight and cost. Simulation models of a lithium ion battery and a proton exchange membrane fuel cell are developed and integrated into a UAV power system model. Flight simulations demonstrate the operation of the transistor-based power management scheme and quantify the amount of hydrogen consumed by a 5.5 kg fixed wing UAV during a six hour flight. Battery power assists the fuel cell during high throttle periods but may also augment fuel cell power during cruise flight. Simulations demonstrate a 60 liter reduction in hydrogen consumption when battery power assists the fuel cell during cruise flight. Over the full duration of the flight, averaged efficiency of the power system exceeds 98%. For scenarios where inflight battery recharge is desirable, a constant current battery charger is integrated into the UAV power system. Simulation of inflight battery recharge is performed. Design of UAV hybrid power systems must consider power system weight against potential flight time. Data from the flight simulations are used to identify a simple formula that predicts flight time as a function of energy stored onboard the modeled UAV. A small selection of commercially available batteries, fuel cells, and compressed air storage tanks are listed to characterize the weight of possible systems. The formula is then used in conjunction with the weight data to generate a graph of power system weight

  11. Energy management strategy for fuel cell-supercapacitor hybrid vehicles based on prediction of energy demand

    Science.gov (United States)

    Carignano, Mauro G.; Costa-Castelló, Ramon; Roda, Vicente; Nigro, Norberto M.; Junco, Sergio; Feroldi, Diego

    2017-08-01

    Offering high efficiency and producing zero emissions Fuel Cells (FCs) represent an excellent alternative to internal combustion engines for powering vehicles to alleviate the growing pollution in urban environments. Due to inherent limitations of FCs which lead to slow transient response, FC-based vehicles incorporate an energy storage system to cover the fast power variations. This paper considers a FC/supercapacitor platform that configures a hard constrained powertrain providing an adverse scenario for the energy management strategy (EMS) in terms of fuel economy and drivability. Focusing on palliating this problem, this paper presents a novel EMS based on the estimation of short-term future energy demand and aiming at maintaining the state of energy of the supercapacitor between two limits, which are computed online. Such limits are designed to prevent active constraint situations of both FC and supercapacitor, avoiding the use of friction brakes and situations of non-power compliance in a short future horizon. Simulation and experimentation in a case study corresponding to a hybrid electric bus show improvements on hydrogen consumption and power compliance compared to the widely reported Equivalent Consumption Minimization Strategy. Also, the comparison with the optimal strategy via Dynamic Programming shows a room for improvement to the real-time strategies.

  12. Hybrid Vehicle Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-06-01

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  13. Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach

    Science.gov (United States)

    Zhou, Daming; Al-Durra, Ahmed; Gao, Fei; Ravey, Alexandre; Matraji, Imad; Godoy Simões, Marcelo

    2017-10-01

    Energy management strategy plays a key role for Fuel Cell Hybrid Electric Vehicles (FCHEVs), it directly affects the efficiency and performance of energy storages in FCHEVs. For example, by using a suitable energy distribution controller, the fuel cell system can be maintained in a high efficiency region and thus saving hydrogen consumption. In this paper, an energy management strategy for online driving cycles is proposed based on a combination of the parameters from three offline optimized fuzzy logic controllers using data fusion approach. The fuzzy logic controllers are respectively optimized for three typical driving scenarios: highway, suburban and city in offline. To classify patterns of online driving cycles, a Probabilistic Support Vector Machine (PSVM) is used to provide probabilistic classification results. Based on the classification results of the online driving cycle, the parameters of each offline optimized fuzzy logic controllers are then fused using Dempster-Shafer (DS) evidence theory, in order to calculate the final parameters for the online fuzzy logic controller. Three experimental validations using Hardware-In-the-Loop (HIL) platform with different-sized FCHEVs have been performed. Experimental comparison results show that, the proposed PSVM-DS based online controller can achieve a relatively stable operation and a higher efficiency of fuel cell system in real driving cycles.

  14. Electric and Hybrid Vehicles Program

    Science.gov (United States)

    1994-08-01

    This program, in cooperation with industry, is conducting research, development, testing, and evaluation activities to develop the technologies that would lead to production and introduction of low-and zero-emission electric and hybrid vehicles into the Nation's transportation fleet. This annual report describes program activities in the areas of advanced battery, fuel cell, and propulsion systems development. Testing and evaluation of new technology in fleet site operations and laboratories are also provided. Also presented is status on incentives (CAFE, 1992 Energy Policy Act) and use of foreign components, and a listing of publications by DOE, national laboratories, and contractors.

  15. Dynamic simulation of a fuel cell hybrid vehicle during the federal test procedure-75 driving cycle

    International Nuclear Information System (INIS)

    Kang, Sanggyu; Min, Kyoungdoug

    2016-01-01

    Highlights: • Development of a FCHV dynamic model. • Integration of a PEMFC system dynamic model with the electric vehicle model. • Investigation of the dynamic behavior of the FCEV and PEMFC system during FTP-75. • Capturing the dynamic correlation among components in PEMFC system during FTP-75. - Abstract: The dynamic behavior of a proton exchange membrane fuel cell (PEMFC) system is a crucial factor to ensure the safe and effective operation of fuel cell hybrid vehicles (FCHVs). Specifically, water and thermal management are critical to stabilize the performance of the PEMFC during severe load changes. In the present study, the FCHV dynamic model is developed. The dynamic model of the PEMFC system developed by Matlab–Simulink® is integrated into the electric vehicle model embedded in the Amesim®. The dynamic model of the PEMFC system is composed of a PEMFC stack, an air feeding system, and a thermal management system (TMS). The component models of PEMFC, a shell-and-tube gas-to-gas membrane humidifier, and a heat exchanger are validated via a comparison with the experimental data. The FCHV model is simulated during a federal test procedure (FTP)-75 driving cycle. One system configuration and control strategy is adopted to attain optimal water and thermal management in the PEMFC system. The vehicle speed obtained from the FCHV model aptly tracks the target velocity profile of the FTP-75 cycle within an error of ±0.5%. The dynamic behavior and correlation of each component in the PEMFC system is investigated. The mass and heat transfer in the PEMFC, a humidifier, and a heat exchanger are resolved to determine the species concentration and the temperature more accurately with discretization in the flow’s perpendicular direction. Discretization in the flow parallel direction of humidifier and heat exchanger model makes it possible to capture the distribution of the characteristics. The present model can be used to attain the optimization of the system

  16. Evaluation of Fuel-Cell Range Extender Impact on Hybrid Electrical Vehicle Performance

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Schaltz, Erik; Koustrup, Per Sune

    2013-01-01

    of a vehicle with an internal combustion engine (ICE). Fuel cells (FCs) can be added to an EV as an additional energy source. These are faster to refill and will therefore facilitate the transition from vehicles running on fossil fuel to electricity. Different EV setups with FC strategies are presented...

  17. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system

    International Nuclear Information System (INIS)

    Offer, G.J.; Howey, D.; Contestabile, M.; Clague, R.; Brandon, N.P.

    2010-01-01

    This paper compares battery electric vehicles (BEV) to hydrogen fuel cell electric vehicles (FCEV) and hydrogen fuel cell plug-in hybrid vehicles (FCHEV). Qualitative comparisons of technologies and infrastructural requirements, and quantitative comparisons of the lifecycle cost of the powertrain over 100,000 mile are undertaken, accounting for capital and fuel costs. A common vehicle platform is assumed. The 2030 scenario is discussed and compared to a conventional gasoline-fuelled internal combustion engine (ICE) powertrain. A comprehensive sensitivity analysis shows that in 2030 FCEVs could achieve lifecycle cost parity with conventional gasoline vehicles. However, both the BEV and FCHEV have significantly lower lifecycle costs. In the 2030 scenario, powertrain lifecycle costs of FCEVs range from $7360 to $22,580, whereas those for BEVs range from $6460 to $11,420 and FCHEVs, from $4310 to $12,540. All vehicle platforms exhibit significant cost sensitivity to powertrain capital cost. The BEV and FCHEV are relatively insensitive to electricity costs but the FCHEV and FCV are sensitive to hydrogen cost. The BEV and FCHEV are reasonably similar in lifecycle cost and one may offer an advantage over the other depending on driving patterns. A key conclusion is that the best path for future development of FCEVs is the FCHEV.

  18. Hybrid and Plug-in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  19. Design and modelling of high gain DC-DC converters for fuel cell hybrid electric vehicles

    Science.gov (United States)

    Elangovan, D.; Karthigeyan, V.; Subhanu, B.; Ashwin, M.; Arunkumar, G.

    2017-11-01

    Transportation (Diesel and petrol internal combustion engine vehicles) approximately contributes to 25.5% of total CO2 emission. Thus diesel and petrol engine vehicles are the most dominant contributors of CO2 emission which leads global warming which causes climate change. The problem of CO2 emission and global warming can be reduced by focusing on renewable energy vehicles. Out of the available renewable energy sources fuel cell is the only source which has reasonable efficiency and can be used in vehicles. But the main disadvantage of fuel cell is its slow response time. So energy storage systems like batteries and super capacitors are used in parallel with the fuel cell. Fuel cell is used during steady state vehicle operation while during transient conditions like starting, acceleration and braking batteries and super capacitors can supply or absorb energy. In this paper a unidirectional fuel cell DC-DC converter and bidirectional energy storage system DC-DC converter is proposed, which can interface dc sources at different voltage levels to the dc bus and also it can independently control the power flow from each energy source to the dc bus and vice versa. The proposed converters are designed and simulated using PSIM version 9.1.1 and gate pulse pattern, input and output voltage waveforms of the converters for steady state operation are studied.

  20. Optimal control of hybrid vehicles

    CERN Document Server

    Jager, Bram; Kessels, John

    2013-01-01

    Optimal Control of Hybrid Vehicles provides a description of power train control for hybrid vehicles. The background, environmental motivation and control challenges associated with hybrid vehicles are introduced. The text includes mathematical models for all relevant components in the hybrid power train. The power split problem in hybrid power trains is formally described and several numerical solutions detailed, including dynamic programming and a novel solution for state-constrained optimal control problems based on Pontryagin’s maximum principle.   Real-time-implementable strategies that can approximate the optimal solution closely are dealt with in depth. Several approaches are discussed and compared, including a state-of-the-art strategy which is adaptive for vehicle conditions like velocity and mass. Two case studies are included in the book: ·        a control strategy for a micro-hybrid power train; and ·        experimental results obtained with a real-time strategy implemented in...

  1. Which energy source for road transport in the future? A comparison of battery, hybrid and fuel cell vehicles

    International Nuclear Information System (INIS)

    Mierlo, J. van; Maggetto, G.; Lataire, Ph.

    2006-01-01

    The hydrogen era is foreseen following the European research programme in a time horizon of 2020-2040. But there will be clearly a choice to be made between an electron economy (direct use of the produced electricity) and the so called 'hydrogen economy' which leads to the introduction of an intermediate hydrogen production, transport and distribution process before the final use in an electrical process. This paper considers only passenger car and delivery vans applications. In this field a big time gap is to be filled between the situation today, the occurrence of oil shortage in a quite short future and this time horizon 2020-2040. Today's intermediate solutions are clearly based on hybrid electric vehicles and battery electric vehicles. The performances of these solutions are putting a lot of questions on the necessity of a hydrogen economy for future transportation. The paper discusses performances of hybrid electric vehicles and battery electric vehicles in comparison of the future hydrogen fuel cell based systems which are now in R and D phase and a very beginning of field demonstration

  2. Military Hybrid Vehicle Survey

    Science.gov (United States)

    2011-08-03

    III Composite 4.3% Integrated starter generator for engine shut down, regenerative braking and avoidance of inefficient engine operation [28]. FMTV...eliminating the inefficiencies associated with idling, vehicle braking and low engine speed part load efficiency, many improvements can be realized...batteries or delivering power back into an electrical grid . Additionally, new military vehicles are demanding an excess of 100kW, which can only be

  3. Analytical solution and experimental validation of the energy management problem for fuel cell hybrid vehicles

    NARCIS (Netherlands)

    P.P.J. van den Bosch; Edwin Tazelaar; M. Grimminck; Stijn Hoppenbrouwers; Bram Veenhuizen

    2011-01-01

    The objective of an energy management strategy for fuel cell hybrid propulsion systems is to minimize the fuel needed to provide the required power demand. This minimization is defined as an optimization problem. Methods such as dynamic programming numerically solve this optimization problem.

  4. Experimental assessment of an energy management strategy on a fuel cell hybrid vehicle

    NARCIS (Netherlands)

    Edwin Tazelaar; Bram Veenhuizen

    2012-01-01

    Fuel cell hybrid power trains comprise an energy storage to supply peaks in the power demand and to facilitate regenerative braking. In terms of control systems, the presence of storage provides additional freedom to minimize the vehicle’s fuel consumption. In a previous paper [1] an analytical

  5. Boost Converters for Gas Electric and Fuel Cell Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    McKeever, JW

    2005-06-16

    Hybrid electric vehicles (HEVs) are driven by at least two prime energy sources, such as an internal combustion engine (ICE) and propulsion battery. For a series HEV configuration, the ICE drives only a generator, which maintains the state-of-charge (SOC) of propulsion and accessory batteries and drives the electric traction motor. For a parallel HEV configuration, the ICE is mechanically connected to directly drive the wheels as well as the generator, which likewise maintains the SOC of propulsion and accessory batteries and drives the electric traction motor. Today the prime energy source is an ICE; tomorrow it will very likely be a fuel cell (FC). Use of the FC eliminates a direct drive capability accentuating the importance of the battery charge and discharge systems. In both systems, the electric traction motor may use the voltage directly from the batteries or from a boost converter that raises the voltage. If low battery voltage is used directly, some special control circuitry, such as dual mode inverter control (DMIC) which adds a small cost, is necessary to drive the electric motor above base speed. If high voltage is chosen for more efficient motor operation or for high speed operation, the propulsion battery voltage must be raised, which would require some type of two-quadrant bidirectional chopper with an additional cost. Two common direct current (dc)-to-dc converters are: (1) the transformer-based boost or buck converter, which inverts a dc voltage, feeds the resulting alternating current (ac) into a transformer to raise or lower the voltage, and rectifies it to complete the conversion; and (2) the inductor-based switch mode boost or buck converter [1]. The switch-mode boost and buck features are discussed in this report as they operate in a bi-directional chopper. A benefit of the transformer-based boost converter is that it isolates the high voltage from the low voltage. Usually the transformer is large, further increasing the cost. A useful feature

  6. Fuel Savings from Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, K.; Thornton, M.

    2009-03-01

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  7. A novel methodology for non-linear system identification of battery cells used in non-road hybrid electric vehicles

    Science.gov (United States)

    Unger, Johannes; Hametner, Christoph; Jakubek, Stefan; Quasthoff, Marcus

    2014-12-01

    An accurate state of charge (SoC) estimation of a traction battery in hybrid electric non-road vehicles, which possess higher dynamics and power densities than on-road vehicles, requires a precise battery cell terminal voltage model. This paper presents a novel methodology for non-linear system identification of battery cells to obtain precise battery models. The methodology comprises the architecture of local model networks (LMN) and optimal model based design of experiments (DoE). Three main novelties are proposed: 1) Optimal model based DoE, which aims to high dynamically excite the battery cells at load ranges frequently used in operation. 2) The integration of corresponding inputs in the LMN to regard the non-linearities SoC, relaxation, hysteresis as well as temperature effects. 3) Enhancements to the local linear model tree (LOLIMOT) construction algorithm, to achieve a physical appropriate interpretation of the LMN. The framework is applicable for different battery cell chemistries and different temperatures, and is real time capable, which is shown on an industrial PC. The accuracy of the obtained non-linear battery model is demonstrated on cells with different chemistries and temperatures. The results show significant improvement due to optimal experiment design and integration of the battery non-linearities within the LMN structure.

  8. Experimental investigation on the dynamic performance of a hybrid PEM fuel cell/battery system for lightweight electric vehicle application

    International Nuclear Information System (INIS)

    Tang, Yong; Yuan, Wei; Pan, Minqiang; Wan, Zhenping

    2011-01-01

    A hybrid system combining a 2 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack and a lead-acid battery pack is developed for a lightweight cruising vehicle. The dynamic performances of this PEMFC system with and without the assistance of the batteries are systematically investigated in a series of laboratory and road tests. The stack current and voltage have timely dynamic responses to the load variations. Particularly, the current overshoot and voltage undershoot both happen during the step-up load tests. These phenomena are closely related to the charge double-layer effect and the mass transfer mechanisms such as the water and gas transport and distribution in the fuel cell. When the external load is beyond the range of the fuel cell system, the battery immediately participates in power output with a higher transient discharging current especially in the accelerating and climbing processes. The DC-DC converter exhibits a satisfying performance in adaptive modulation. It helps rectify the voltage output in a rigid manner and prevent the fuel cell system from being overloaded. The dynamic responses of other operating parameters such as the anodic operating pressure and the inlet and outlet temperatures are also investigated. The results show that such a hybrid system is able to dynamically satisfy the vehicular power demand.

  9. Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK

    International Nuclear Information System (INIS)

    Offer, G.J.; Contestabile, M.; Howey, D.A.; Clague, R.; Brandon, N.P.

    2011-01-01

    This paper conducts a techno-economic study on hydrogen Fuel Cell Electric Vehicles (FCV), Battery Electric Vehicles (BEV) and hydrogen Fuel Cell plug-in Hybrid Electric Vehicles (FCHEV) in the UK using cost predictions for 2030. The study includes an analysis of data on distance currently travelled by private car users daily in the UK. Results show that there may be diminishing economic returns for Plug-in Hybrid Electric Vehicles (PHEV) with battery sizes above 20 kWh, and the optimum size for a PHEV battery is between 5 and 15 kWh. Differences in behaviour as a function of vehicle size are demonstrated, which decreases the percentage of miles that can be economically driven using electricity for a larger vehicle. Decreasing carbon dioxide emissions from electricity generation by 80% favours larger optimum battery sizes as long as carbon is priced, and will reduce emissions considerably. However, the model does not take into account reductions in carbon dioxide emissions from hydrogen generation, assuming hydrogen will still be produced from steam reforming methane in 2030. - Research highlights: → Report diminishing returns for plug-in hybrids with battery sizes above 20 kWh. → The optimum size for a PHEV battery is between 5 and 15 kWh. → Current behaviour decreases percentage electric only miles for larger vehicles. → Low carbon electricity favours larger battery sizes as long as carbon is priced. → Reinforces that the FCHEV is a cheaper option than conventional ICE vehicles in 2030.

  10. Internal combustion engines in hybrid vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de; Beckman, D.E.

    1998-01-01

    In this paper the use of internal combustion engines in hybrid powertrains is investigated. The substantial difference between the use of internal combustion engines in conventional and in hybrid vehicles mean that engines for hybrid vehicles should be designed specifically for the purpose. At the

  11. Influence of Battery/Ultracapacitor Energy-Storage Sizing on Battery Lifetime in a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand; Khaligh, Alireza

    2009-01-01

    Combining high-energy-density batteries and high-power-density ultracapacitors in fuel cell hybrid electric vehicles (FCHEVs) results in a high-performance, highly efficient, low-size, and light system. Often, the battery is rated with respect to its energy requirement to reduce its volume and mass....... This does not prevent deep discharges of the battery, which are critical to the lifetime of the battery. In this paper, the ratings of the battery and ultracapacitors are investigated. Comparisons of the system volume, the system mass, and the lifetime of the battery due to the rating of the energy storage......, the battery, and the ultracapacitors, are proposed. A charging strategy, which charges the energy-storage devices due to the conditions of the FCHEV, is also proposed. The analysis provides recommendations on the design of the battery and the ultracapacitor energy-storage systems for FCHEVs....

  12. Predictive cruise control in hybrid electric vehicles

    NARCIS (Netherlands)

    Keulen, T. van; Naus, M.J.G.; Jager, B. de; Molengraft, G.J.L. van de; Steinbuch, M.; Aneke, N.P.I.

    2009-01-01

    Deceleration rates have considerable influence on the fuel economy of hybrid electric vehicles. Given the vehicle characteristics and actual/measured operating conditions, as well as upcoming route information, optimal velocity trajectories can be constructed that maximize energy recovery. To

  13. Hierarchical Control Strategy of Heat and Power for Zero Energy Buildings including Hybrid Fuel Cell/Photovoltaic Power Sources and Plug-in Electric Vehicle

    DEFF Research Database (Denmark)

    Ghiasi, Mohammad Iman; Aliakbar Golkar, Masoud; Hajizadeh, Amin

    2016-01-01

    This paper presents a hierarchical control strategy for heat and electric power control of a building integrating hybrid renewable power sources including photovoltaic, fuel cell and battery energy storage with Plug-in Electric Vehicles (PEV) in smart distribution systems. Because...... complexities and uncertainties in this kind of hybrid system, a hybrid supervisory control with an adaptive fuzzy sliding power control strategy is proposed to regulate the amount of requested fuel from a fuel cell power source to produce the electrical power and heat. Then, simulation results are used...... of the controllability of fuel cell power, this power sources plays the main role for providing heat and electric power to zero emission buildings. First, the power flow structure between hybrid power resources is described. To do so, all necessary electrical and thermal equations are investigated. Next, due to the many...

  14. Hybrid and Electric Advanced Vehicle Systems Simulation

    Science.gov (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  15. Vibration Isolation for Parallel Hydraulic Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    The M. Nguyen

    2008-01-01

    Full Text Available In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.

  16. Flight Testing of Hybrid Powered Vehicles

    Science.gov (United States)

    Story, George; Arves, Joe

    2006-01-01

    Hybrid Rocket powered vehicles have had a limited number of flights. Most recently in 2004, Scaled Composites had a successful orbital trajectory that put a private vehicle twice to over 62 miles high, the edge of space to win the X-Prize. This endeavor man rates a hybrid system. Hybrids have also been used in a number of one time launch attempts - SET-1, HYSR, HPDP. Hybrids have also been developed for use and flown in target drones. This chapter discusses various flight-test programs that have been conducted, hybrid vehicles that are in development, other hybrid vehicles that have been proposed and some strap-on applications have also been examined.

  17. Test of hybrid power system for electrical vehicles using a lithium-ion battery pack and a reformed methanol fuel cell range extender

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Sahlin, Simon Lennart

    2014-01-01

    This work presents the proof-of-concept of an electric traction power system with a high temperature polymer electrolyte membrane fuel cell range extender, usable for automotive class electrical vehicles. The hybrid system concept examined, consists of a power system where the primary power...... is delivered by a lithium ion battery pack. In order to increase the run time of the application connected to this battery pack, a high temperature PEM (HTPEM) fuel cell stack acts as an on-board charger able to charge a vehicle during operation as a series hybrid. Because of the high tolerance to carbon...... monoxide, the HTPEM fuel cell system can efficiently use a liquid methanol/water mixture of 60%/40% by volume, as fuel instead of compressed hydrogen, enabling potentially a higher volumetric energy density. In order to test the performance of such a system, the experimental validation conducted uses...

  18. DOE Hybrid and Electric Vehicle Test Platform

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yimin [Advanced Vehicle Research Center, Danville, VA (United States)

    2012-03-31

    Based on the contract NT-42790 to the Department of Energy, “Plug-in Hybrid Ethanol Research Platform”, Advanced Vehicle Research Center (AVRC) Virginia has successfully developed the phase I electric drive train research platform which has been named as Laboratory Rapid Application Testbed (LabRAT). In phase II, LabRAT is to be upgraded into plug-in hybrid research platform, which will be capable of testing power systems for electric vehicles, and plug-in hybrid electric vehicles running on conventional as well as alternative fuels. LabRAT is configured as a rolling testbed with plentiful space for installing various component configurations. Component connections are modularized for flexibility and are easily replaced for testing various mechanisms. LabRAT is designed and built as a full functional vehicle chassis with a steering system, brake system and four wheel suspension. The rear drive axle offers maximum flexibility with a quickly changeable gear ratio final drive to accommodate different motor speed requirements. The electric drive system includes an electric motor which is mechanically connected to the rear axle through an integrated speed/torque sensor. Initially, a 100 kW UQM motor and corresponding UQM motor controller is used which can be easily replaced with another motor/controller combination. A lithium iron phosphate (LiFePO4) battery pack is installed, which consists of 108 cells of 100 AH capacity, giving the total energy capacity of 32.5 kWh. Correspondingly, a fully functional battery management system (BMS) is installed to perform battery cell operation monitoring, cell voltage balancing, and reporting battery real time operating parameters to vehicle controller. An advanced vehicle controller ECU is installed for controlling the drive train. The vehicle controller ECU receives traction or braking torque command from driver through accelerator and brake pedal position sensors and battery operating signals from the BMS through CAN BUS

  19. Multi-objective energy management optimization and parameter sizing for proton exchange membrane hybrid fuel cell vehicles

    International Nuclear Information System (INIS)

    Hu, Zunyan; Li, Jianqiu; Xu, Liangfei; Song, Ziyou; Fang, Chuan; Ouyang, Minggao; Dou, Guowei; Kou, Gaihong

    2016-01-01

    Highlights: • Fuel economy, lithium battery size and powertrain system durability are incorporated in optimization. • A multi-objective power allocation strategy by taking battery size into consideration is proposed. • Influences of battery capacity and auxiliary power on strategy design are explored. • Battery capacity and fuel cell service life for the system life cycle cost are optimized. - Abstract: The powertrain system of a typical proton electrolyte membrane hybrid fuel cell vehicle contains a lithium battery package and a fuel cell stack. A multi-objective optimization for this powertrain system of a passenger car, taking account of fuel economy and system durability, is discussed in this paper. Based on an analysis of the optimum results obtained by dynamic programming, a soft-run strategy was proposed for real-time and multi-objective control algorithm design. The soft-run strategy was optimized by taking lithium battery size into consideration, and implemented using two real-time algorithms. When compared with the optimized dynamic programming results, the power demand-based control method proved more suitable for powertrain systems equipped with larger capacity batteries, while the state of charge based control method proved superior in other cases. On this basis, the life cycle cost was optimized by considering both lithium battery size and equivalent hydrogen consumption. The battery capacity selection proved more flexible, when powertrain systems are equipped with larger capacity batteries. Finally, the algorithm has been validated in a fuel cell city bus. It gets a good balance of fuel economy and system durability in a three months demonstration operation.

  20. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  1. Investigation of aging mechanisms of high power Li-ion cells used for hybrid electric vehicles

    Science.gov (United States)

    Bourlot, Sandrine; Blanchard, Philippe; Robert, Stéphanie

    High power lithium-ion batteries need to exhibit long service life to meet targets of automotive applications. This article describes the deep investigation of the so-called VL6P cells, high power lithium-ion cells mass produced by Johnson Controls - Saft (JC-S), in order to understand the root causes of their aging. Cells aged by calendar and cycle life are investigated here compared to fresh cells. Among the results of the different analyses, the most significant is that more active lithium is detected in negative electrode after aging. This tends to indicate that effect of aging is due to increase of positive electrode limitation. Results of this investigation will allow JC-S to continue to improve life of the lithium-ion cells.

  2. Hybrid vehicles - an alternative for the Swedish market; Hybridfordon - ett alternativ foer den svenska bilparken

    Energy Technology Data Exchange (ETDEWEB)

    Egebaeck, Karl-Erik; Bucksch, S.

    2000-06-01

    The object of this report is to assemble information on and describe the situation for the development of hybrid vehicles and various alternatives within this field of development. In the report the description is concentrated mainly on the combination of combustion engine and electric battery, which is the most common combination in present day hybrid vehicles. In order to take a glimpse into the future even the combination of fuel cells and electric battery is described. The light duty electric hybrid vehicles which have been developed up to now are mainly parallel hybrids. If the development of hybrid systems takes place it will most certainly concern light duty vehicles which will come to be parallel hybrids equipped with an Otto or a diesel engine, depending on what the manufacturers wish to back. In the report the use of series hybrid vehicles is estimated to be limited to heavy-duty hybrid vehicles. Hybrids will not be likely to be relevant for heavy-duty vehicles, with the exception of those lorries which operate in city centres, i.e. lorries which are used to distribute goods to shops, garbage vehicles and certain types of working vehicle for service purposes. Continued development of the hybrid system for buses seems uncertain for various reasons. If there is a technical breakthrough in the manufacture of batteries and simultaneously the manufacturers increase their efforts to develop hybrid vehicles, the situation can be changed so that there is a speedier introduction of hybrid vehicles for heavy-duty vehicles.

  3. The Hybrid Electric Vehicle - Traveling Salesman Problem

    NARCIS (Netherlands)

    Doppstadt, C.; Koberstein, A.; Vigo, D.

    2016-01-01

    The reduction in carbon dioxide levels by using hybrid electric vehicles is a currently ongoing endeavor. Although this development is quite advanced for hybrid electric passenger cars, small transporters and trucks are far behind. We try to address this challenge by introducing a new optimization

  4. The solution to be prioritized: the hybrid vehicle; La solution a privilegier: le vehicule hybride

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-06-01

    In term of carbon dioxide emissions as well as in term of energy consumption, the most efficient solution could be the important introduction of hybrid vehicles from the beginning of 2005. However the development of the electric powered vehicle could be beneficial for the greenhouse effect until 2020. The motorization by fuel cells seems less performing. (N.C.)

  5. Survivability design for a hybrid underwater vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Biao; Wu, Chao; Li, Xiang; Zhao, Qingkai; Ge, Tong [State Key Lab of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-03-10

    A novel hybrid underwater robotic vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes: operate as an untethered autonomous vehicle in autonomous underwater vehicle (AUV) mode and operate under remote control connected to the surface vessel by a lightweight, fiber optic tether in remotely operated vehicle (ROV) mode. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes, survivability has been placed on an equal level with the other design attributes of the HROV since the beginning of the project. This paper reports the survivability design elements for the HROV including basic vehicle design of integrated navigation and integrated communication, emergency recovery strategy, distributed architecture, redundant bus, dual battery package, emergency jettison system and self-repairing control system.

  6. Survivability design for a hybrid underwater vehicle

    International Nuclear Information System (INIS)

    Wang, Biao; Wu, Chao; Li, Xiang; Zhao, Qingkai; Ge, Tong

    2015-01-01

    A novel hybrid underwater robotic vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes: operate as an untethered autonomous vehicle in autonomous underwater vehicle (AUV) mode and operate under remote control connected to the surface vessel by a lightweight, fiber optic tether in remotely operated vehicle (ROV) mode. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes, survivability has been placed on an equal level with the other design attributes of the HROV since the beginning of the project. This paper reports the survivability design elements for the HROV including basic vehicle design of integrated navigation and integrated communication, emergency recovery strategy, distributed architecture, redundant bus, dual battery package, emergency jettison system and self-repairing control system

  7. Quantifying the benefits of hybrid vehicles

    OpenAIRE

    Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

    2006-01-01

    Motor vehicles are a core technology of our modern life and economy. But motor vehicles, motor fuels, and the road system unfortunately pollute our air, soil and water, depend on limited oil supplies and are implicated in warming the earth’s climate. In response, some car companies have introduced the biggest change in automotive technology since early in the last century. Hybrid electric vehicles (HEVs) reduce emissions and fuel use through increased fuel economy. So far, full-HEV t...

  8. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Beaty, Kevin D [Kalamazoo, MI; Zou, Zhanijang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-07-21

    A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

  9. ELECTROMAGNETIC BIOSPHERE POLLUTION BY MOTOR TRANSPORT (VEHICLES, ELECTRIC VEHICLES, HYBRID VEHICLES

    Directory of Open Access Journals (Sweden)

    S. Selivanov

    2009-01-01

    Full Text Available The physics of the electromagnetic field is considered. The analysis of electromagnetic radiation on the human-being, the origin of which is the vehicle the electric vehicle, the hybrid vehicle is being considered. The monitoring of electromagnetic radiation of vehicles is carried out.

  10. Comparison performance of split plug-in hybrid electric vehicle and hybrid electric vehicle using ADVISOR

    Directory of Open Access Journals (Sweden)

    Mohd Rashid Muhammad Ikram

    2017-01-01

    Full Text Available Electric vehicle suffers from relatively short range and long charging times and consequently has not become an acceptable solution to the automotive consumer. The addition of an internal combustion engine to extend the range of the electric vehicle is one method of exploiting the high efficiency and lack of emissions of the electric vehicle while retaining the range and convenient refuelling times of a conventional gasoline powered vehicle. The term that describes this type of vehicle is a hybrid electric vehicle. Many configurations of hybrid electric vehicles have been designed and implemented, namely the series, parallel and power-split configurations. This paper discusses the comparison between Split Plug-in Hybrid Electric Vehicle(SPHEV and Hybrid Electric Vehicle(HEV. Modelling methods such as physics-based Resistive Companion Form technique and Bond Graph method are presented with powertrain component and system modelling examples. The modelling and simulation capability of existing tools such as ADvanced VehIcle SimulatOR (ADVISOR is demonstrated through application examples. Since power electronics is indispensable in hybrid vehicles, the issue of numerical oscillations in dynamic simulations involving power electronics is briefly addressed.

  11. Advanced hybrid and electric vehicles system optimization and vehicle integration

    CERN Document Server

    2016-01-01

    This contributed volume contains the results of the research program “Agreement for Hybrid and Electric Vehicles”, funded by the International Energy Agency. The topical focus lies on technology options for the system optimization of hybrid and electric vehicle components and drive train configurations which enhance the energy efficiency of the vehicle. The approach to the topic is genuinely interdisciplinary, covering insights from fields. The target audience primarily comprises researchers and industry experts in the field of automotive engineering, but the book may also be beneficial for graduate students.

  12. Frontier battery development for hybrid vehicles

    Science.gov (United States)

    2012-01-01

    Background Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. Methods This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. Results The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Conclusions Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil. PMID:22540987

  13. Frontier battery development for hybrid vehicles

    Directory of Open Access Journals (Sweden)

    Lewis Heather

    2012-04-01

    Full Text Available Abstract Background Interest in hybrid-electric vehicles (HEVs has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. Methods This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. Results The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Conclusions Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil.

  14. Modeling and Implementation of a 1 kW, Air Cooled HTPEM Fuel Cell in a Hybrid Electrical Vehicle

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Remón, Ian Natanael

    2008-01-01

    , was implemented in a small electrical vehicle. A dynamic model was developed using Matlab-Simulink to describe the system characteristics, select operating conditions and to size system components. Preheating of the fuel cell stack with electrical resistors was investigated and found to be an unrealistic approach...

  15. Powertrain system for a hybrid electric vehicle

    Science.gov (United States)

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  16. Development history of the Hybrid Test Vehicle

    Science.gov (United States)

    Trummel, M. C.; Burke, A. F.

    1983-01-01

    Phase I of a joint Department of Energy/Jet Propulsion Laboratory Program undertook the development of the Hybrid Test Vehicle (HTV), which has subsequently progressed through design, fabrication, and testing and evaluation phases. Attention is presently given to the design and test experience gained during the HTV development program, and a discussion is presented of the design features and performance capabilities of the various 'mule' vehicles, devoted to the separate development of engine microprocessor control, vehicle structure, and mechanical components, whose elements were incorporated into the final HTV design. Computer projections of the HTV's performance are given.

  17. A new type of hybrid vehicle in Japan; Un nouveau type de vehicule hybride au Japon

    Energy Technology Data Exchange (ETDEWEB)

    Henry, P.

    2004-04-01

    During the 37. edition of the Tokyo Motor Show in October 2003, several fuel cell hybrid vehicles were presented by Japanese car makers who grant considerable budgets to develop less polluting vehicles. The trend chosen by Japanese car manufacturers concerns the hybrid system combining fuel cell and battery. Stress has been put also on intelligent systems for navigation and safety but also on the design and comfort. However, even if the environment protection is the main challenge of the Japanese automotive industry, the driving pleasure remains the most profitable medium-term market to be exploitable by industrialists. (J.S.)

  18. Plug-in hybrid electric vehicle R&D plan

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-06-01

    FCVT, in consultation with industry and other appropriate DOE offices, developed the Draft Plug-In Hybrid Electric Vehicle R&D Plan to accelerate the development and deployment of technologies critical for plug-in hybrid vehicles.

  19. Hybrid electric vehicles energy management strategies

    CERN Document Server

    Onori, Simona; Rizzoni, Giorgio

    2016-01-01

    This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. In addition to the examples, simulation code is provided via a website, so that readers can work on the actua...

  20. Online energy management for hybrid electric vehicles

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Koot, M.W.T.; Bosch, P.P.J. van den; Kok, D.B.

    2008-01-01

    Hybrid electric vehicles (HEVs) are equipped with multiple power sources for improving the efficiency and performance of their power supply system. An energy management (EM) strategy is needed to optimize the internal power flows and satisfy the driver's power demand. To achieve maximum fuel profits

  1. Electric and hybrid vehicle technology: TOPTEC

    Science.gov (United States)

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between 'refueling' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of 'Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  2. Electric and Hybrid Vehicle Technology: TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  3. Electric and Hybrid Vehicle Technology: TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  4. Impact of Vehicle Hybridization on Fuel Consumption Economy

    OpenAIRE

    Rezaei, Javad

    2018-01-01

    Air pollution, limited number of knownpetroleum resources and increasing of greenhouse gases have led the governmentsand researchers to have more investigation on Hybrid Electric Vehicles.Considering technical availability and manufacturing facilities with regardingto the final vehicle price, hybridization of conventional vehicles could be abetter choice than designing and manufacturing a new hybrid electric car.Parallel-Series hybrid electric vehicles(power-split) which is used in this study...

  5. A PEMFC hybrid electric vehicle real time control system

    Science.gov (United States)

    Sun, Hongqiao

    In recent years, environmental friendly technologies and alternative energy solutions have drawn a lot of public attentions due to global energy crisis and pollution issues. Fuel cell (FC), a technology invented almost at the same time as the internal combustion (IC) engine, is now the focus of the automotive industry again. The fuel cell vehicle (FCV) has zero emission and its efficiency is significantly higher than the conventional IC engine power vehicles. Among a variety of FCV technologies, proton exchange membrane (PEM) FC vehicle appears to be far more attractive and mature. The prototype PEMFC vehicle has been developed and demonstrated to the public by nearly all the major automotive manufacturers in recent years. However, to the interest of the public research, publications and documentations on the PEMFC vehicle technology are rarely available due to its proprietary nature, which essentially makes it a secured technology. This dissertation demonstrates a real world application of a PEMFC hybrid electric vehicle. Through presenting the vehicle design concept, developing the real time control system and generating generic operation principles, this dissertation targets at establishing the public knowledge base on this new technology. A complete PEMFC hybrid electric vehicle design, including vehicle components layout, process flow diagram, real time control system architecture, subsystem structures and control algorithms, is presented in order to help understand the whole vehicle system. The design concept is validated through the vehicle demonstration. Generic operating principles are established along with the validation process, which helps populate this emerging technology. Thereafter, further improvements and future research directions are discussed.

  6. USING OF NON-CONVENTIONAL FUELS IN HYBRID VEHICLE DRIVES

    Directory of Open Access Journals (Sweden)

    Dalibor Barta

    2016-12-01

    Full Text Available Electric or hybrid vehicles are becoming increasingly common on roads. While electric vehicles are still more or less intended for city traffic, hybrid vehicles allow normal use due to wider driving range. The use of internal combustion engines in hybrid drives is still an inspiration to find the way to reduce the produc-tion of emissions. Numbers of alternative energy resources were studied as a substitution of conventional fuels for hybrid vehicles drives worldwide. The paper deals with the possibility of using alternative fuels as CNG, LPG and LNG in combination with hybrid drive of a midibus with the capacity of 20 passengers. Various aspects and techniques of hybrid vehicles from energy management system, propulsion system and using of various alternative fuels are explored in this paper. Other related fields of hybrid vehicles such as changes of vehicle weight or influence of electric energy sources on the total vehicle emission production are also included.

  7. An energy management approach of hybrid vehicles using traffic preview information for energy saving

    International Nuclear Information System (INIS)

    Zheng, Chunhua; Xu, Guoqing; Xu, Kun; Pan, Zhongming; Liang, Quan

    2015-01-01

    Highlights: • Energy management approach of hybrid vehicles using traffic preview information. • Vehicle velocity profile and fuel consumption are optimized at the same time. • It is proved that a further energy saving is achieved by the proposed approach. • The proposed approach is useful especially for autonomous hybrid vehicles. - Abstract: The traffic preview information is very helpful for hybrid vehicles when distributing the power requirement of the vehicle to power sources and when determining the next driving route of the vehicle. In this research, an energy management approach for hybrid vehicles is proposed, which optimizes the vehicle velocity profile while minimizing the fuel consumption with the help of the traffic preview information, so that a further energy saving for hybrid vehicles can be achieved. The Pontryagin’s Minimum Principle (PMP) is adopted on the proposed approach. A fuel cell hybrid vehicle (FCHV) is selected as an example, and the proposed energy management approach is applied to the FCHV in a computer simulation environment for the offline and online cases respectively. Simulation results show that the fuel economy of the FCHV is improved by the proposed energy management approach compared to a benchmark case where the driving cycle is fixed and only the hybrid power split (allocation) ratio is optimized. The proposed energy management approach is useful especially for the autonomous hybrid vehicles.

  8. Hydrogen hybrid vehicle engine development: Experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Van Blarigan, P. [Sandia National Lab., Livermore, CA (United States)

    1995-09-01

    A hydrogen fueled engine is being developed specifically for the auxiliary power unit (APU) in a series type hybrid vehicle. Hydrogen is different from other internal combustion (IC) engine fuels, and hybrid vehicle IC engine requirements are different from those of other IC vehicle engines. Together these differences will allow a new engine design based on first principles that will maximize thermal efficiency while minimizing principal emissions. The experimental program is proceeding in four steps: (1) Demonstration of the emissions and the indicated thermal efficiency capability of a standard CLR research engine modified for higher compression ratios and hydrogen fueled operation. (2) Design and test a new combustion chamber geometry for an existing single cylinder research engine, in an attempt to improve on the baseline indicated thermal efficiency of the CLR engine. (3) Design and build, in conjunction with an industrial collaborator, a new full scale research engine designed to maximize brake thermal efficiency. Include a full complement of combustion diagnostics. (4) Incorporate all of the knowledge thus obtained in the design and fabrication, by an industrial collaborator, of the hydrogen fueled engine for the hybrid vehicle power train illustrator. Results of the CLR baseline engine testing are presented, as well as preliminary data from the new combustion chamber engine. The CLR data confirm the low NOx produced by lean operation. The preliminary indicated thermal efficiency data from the new combustion chamber design engine show an improvement relative to the CLR engine. Comparison with previous high compression engine results shows reasonable agreement.

  9. Systems Engineering of Electric and Hybrid Vehicles

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  10. Gasoline hybrid pneumatic engine for efficient vehicle powertrain hybridization

    OpenAIRE

    Dimitrova, Zlatina; Maréchal, François

    2015-01-01

    The largest applied convertors in passenger cars are the internal combustion engines – gasoline, diesel, adapted also for operating on alternative fuels and hybrid modes. The number of components that are necessary to realize modern future propulsion system is inexorably increasing. The need for efficiency improvement of the vehicle energy system induces the search for an innovative methodology during the design process. In this article the compressed air is investigated as an innovative solu...

  11. Voltage balancing: Long-term experience with the 250 V supercapacitor module of the hybrid fuel cell vehicle HY-LIGHT

    Science.gov (United States)

    Kötz, R.; Sauter, J.-C.; Ruch, P.; Dietrich, P.; Büchi, F. N.; Magne, P. A.; Varenne, P.

    On the occasion of the "Challenge Bibendum" 2004 in Shanghai, the hybrid fuel cell-supercapacitor vehicle HY-LIGHT, a joint project of Conception et Développement Michelin and the Paul Scherrer Institut, was presented to the public. The drive train of this vehicle comprises a 30 kW polymer electrolyte fuel cell (PEFC) and a 250 V supercapacitor (SC) module for energy recuperation and boost power during short acceleration and start-up processes. The supercapacitor module was deliberately constructed without continuous voltage balancing units. The performance of the supercapacitor module was monitored over the 2 years of operation particularly with respect to voltage balancing of the large number of SC cells connected in series. During the investigated period of 19 months and about 7000 km driving, the voltage imbalance within the supercapacitor module proved negligible. The maximum deviation between best and worst SC was always below 120 mV and the capacitor with the highest voltage never exceeded the nominal voltage by more than 40 mV.

  12. Analysis of product efficiency of hybrid vehicles and promotion policies

    International Nuclear Information System (INIS)

    Choi, Hyundo; Oh, Inha

    2010-01-01

    The key aim of this study is to evaluate the product efficiency of current hybrid vehicles and suggest effective policies to promote hybrid vehicles in the Korean automobile market and development trends of hybrid vehicles. The efficiency levels for car models sold in Korea, including hybrid ones, were measured using the recently developed discrete additive data envelopment analysis (DEA) model that reflects consumer preference. The result of the analysis shows that current hybrid vehicles on the market are still at lower competitive advantage than traditional car models with conventional combustion engines and we can suggest a mix of incentive policies to promote the competitiveness of hybrid vehicles. In addition, we also identify two distinctive trends of hybrid vehicle development: environment-oriented hybrid vehicles and performance-oriented hybrid vehicles. It implies that the government should take account of development trends of hybrid vehicles to achieve the policy goals in designing support schemes and automobile companies that are willing to develop hybrid vehicles can also gain some insights for making strategic decisions. (author)

  13. Advanced propulsion system for hybrid vehicles

    Science.gov (United States)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  14. Brake blending strategy for a hybrid vehicle

    Science.gov (United States)

    Boberg, Evan S.

    2000-12-05

    A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

  15. Electric and plug-in hybrid vehicles advanced simulation methodologies

    CERN Document Server

    Varga, Bogdan Ovidiu; Moldovanu, Dan; Iclodean, Calin

    2015-01-01

    This book is designed as an interdisciplinary platform for specialists working in electric and plug-in hybrid electric vehicles powertrain design and development, and for scientists who want to get access to information related to electric and hybrid vehicle energy management, efficiency and control. The book presents the methodology of simulation that allows the specialist to evaluate electric and hybrid vehicle powertrain energy flow, efficiency, range and consumption. The mathematics behind each electric and hybrid vehicle component is explained and for each specific vehicle the powertrain

  16. Energy Storage Fuel Cell Vehicle Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Markel, T.; Pesaran, A.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

    2005-04-01

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy's Energy Storage Program.

  17. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations

    International Nuclear Information System (INIS)

    Dubarry, Matthieu; Truchot, Cyril; Cugnet, Mikael; Liaw, Bor Yann; Gering, Kevin; Sazhin, Sergiy; Jamison, David; Michelbacher, Christopher

    2011-01-01

    Evaluating commercial Li-ion batteries presents some unique benefits. One of them is to use cells made from established fabrication process and form factor, such as those offered by the 18650 cylindrical configuration, to provide a common platform to investigate and understand performance deficiency and aging mechanism of target chemistry. Such an approach shall afford us to derive relevant information without influence from processing or form factor variability that may skew our understanding on cell-level issues. A series of 1.9 Ah 18650 lithium ion cells developed by a commercial source using a composite positive electrode comprising (LiMn1/3Ni1/3Co1/3O2 + LiMn2O4) is being used as a platform for the investigation of certain key issues, particularly path-dependent aging and degradation in future plug-in hybrid electric vehicle (PHEV) applications, under the US Department of Energy's Applied Battery Research (ABR) program. Here we report in Part I the initial characterizations of the cell performance and Part II some aspects of cell degradation in 2C cycle aging. The initial characterizations, including cell-to-cell variability, are essential for life cycle performance characterization in the second part of the report when cell-aging phenomena are discussed. Due to the composite nature of the positive electrode, the features (or signature) derived from the incremental capacity (IC) of the cell appear rather complex. In this work, the method to index the observed IC peaks is discussed. Being able to index the IC signature in details is critical for analyzing and identifying degradation mechanism later in the cycle aging study.

  18. Systematic elaboration of online energy management laws for hybrid vehicles

    OpenAIRE

    SCORDIA, Julien; TRIGUI, Rochdi; JEANNERET, Bruno; BADIN, François; MALAQUIN, Bertrand

    2005-01-01

    In this paper, we describe a systematic methodology to elaborate hybrid vehicle energy management laws. "Systematic" means that this conception is done with minimal tuning, whatever the hybrid vehicle architecture and sizing are. A radial basis function type neural network is used to learn from the offline energy management laws given by an optimization tool named KOALA. Then the trained neural network can be used to control the hybrid vehicle online. The results are satisfactory as regards h...

  19. Hybrid electric vehicle power management system

    Science.gov (United States)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  20. Hybrid Power Management-Based Vehicle Architecture

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    Hybrid Power Management (HPM) is the integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications (s ee figure). The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, that provides all power to a common energy storage system that is used to power the drive motors and vehicle accessory systems. This architecture also provides power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. The key element of HPM is the energy storage system. All generated power is sent to the energy storage system, and all loads derive their power from that system. This can significantly reduce the power requirement of the primary power source, while increasing the vehicle reliability. Ultracapacitors are ideal for an HPM-based energy storage system due to their exceptionally long cycle life, high reliability, high efficiency, high power density, and excellent low-temperature performance. Multiple power sources and multiple loads are easily incorporated into an HPM-based vehicle. A gas turbine is a good primary power source because of its high efficiency, high power density, long life, high reliability, and ability to operate on a wide range of fuels. An HPM controller maintains optimal control over each vehicle component. This flexible operating system can be applied to all vehicles to considerably improve vehicle efficiency, reliability, safety, security, and performance. The HPM-based vehicle architecture has many advantages over conventional vehicle architectures. Ultracapacitors have a much longer cycle life than batteries, which greatly improves system reliability, reduces life-of-system costs, and reduces environmental impact as ultracapacitors will probably never need to be

  1. Market penetration scenarios for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  2. Hydrogen Fuel Cell Vehicles

    OpenAIRE

    Delucchi, Mark

    1992-01-01

    Hydrogen is an especially attractive transportation fuel. It is the least polluting fuel available, and can be produced anywhere there is water and a clean source of electricity. A fuel cycle in which hydrogen is produced by solar-electrolysis of water, or by gasification of renewably grown biomass, and then used in a fuel-cell powered electric-motor vehicle (FCEV), would produce little or no local, regional, or global pollution. Hydrogen FCEVs would combine the best features of bat...

  3. Fuel cell hybrid drive train test facility

    NARCIS (Netherlands)

    J. Bruinsma; I. Zafina; H. Bosma; Edwin Tazelaar; Bram Veenhuizen

    2009-01-01

    Fuel cells are expected to play an important role in the near future as prime energy source on board of road-going vehicles. In order to be able to test all important functional aspects of a fuel cell hybrid drive train, the Automotive Institute of the HAN University has decided to realize a

  4. Dedicated auxiliary power units for Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de

    1998-01-01

    The use of a dedicated auxiliary power unit is essential to utilize the potential that hybrid vehicles offer for efficient and ultra-clean transportation. An example of a hybrid project at the TNO Road-Vehicles Research Institute shows the development and the results of a dedicated auxiliary power

  5. Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume VI. Cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, K.S.

    1979-09-30

    The purpose of the cost analysis is to determine the economic feasibility of a variety of hybrid vehicles with respect to conventional vehicles specifically designed for the same duty cycle defined by the mission analysis. Several different hybrid configurations including parallel, parallel-flywheel, and series vehicles were evaluated. The ramifications of incorporating examples of advanced batteries, these being the advanced lead-acid, nickel-zinc, and sodium sulfur were also investigated. Vehicles were specifically designed with these batteries and for the driving cycles specified by the mission. Simulated operation on the missions yielded the energy consumption (petroleum and/or electricity) over the driving cycles. It was concluded that: in the event that gasoline prices reach $2.50 to $3.00/gal, hybrid vehicles in many applications will become economically competitive with conventional vehicles without subsidization; in some commercial applications hybrid vehicles could be economically competitive, when the gasoline price ranges from $1.20 to $1.50/gal. The cost per kWh per cycle of the advanced batteries is much more important economically than the specific energy; the series hybrid vehicles were found to be more expensive in comparison to the parallel or parallel-flywheel hybrids when designed as passenger vehicles; and hybrid vehicles designed for private use could become economically competitive and displace up to 50% of the fuel normally used on that mission if subsidies of $500 to $2000 were supplied to the owner/operator. (LCL)

  6. Hybrid Electric Vehicle Control Strategy Based on Power Loss Calculations

    OpenAIRE

    Boyd, Steven J

    2006-01-01

    Defining an operation strategy for a Split Parallel Architecture (SPA) Hybrid Electric Vehicle (HEV) is accomplished through calculating powertrain component losses. The results of these calculations define how the vehicle can decrease fuel consumption while maintaining low vehicle emissions. For a HEV, simply operating the vehicle's engine in its regions of high efficiency does not guarantee the most efficient vehicle operation. The results presented are meant only to define a literal str...

  7. FOREVER - Noise emission of electric and hybrid electric vehicles

    OpenAIRE

    PALLAS, Marie-Agnès; KENNEDY, John; WALKER, Ian; BERENGIER, Michel; LELONG, Joël

    2013-01-01

    Electric and hybrid-electric vehicles are often referred to as quiet vehicles, comparatively to conventional internal combustion engines (ICE) vehicles, although this assertion might be tempered in some cases. On one hand some low noise ICE vehicles can be encountered in the fleet in circulation. On the other hand the driving conditions can affect the powertrain and the rolling noise contribution, thus impacting the global noise emission differently depending on vehicle categories. The electr...

  8. System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics

    Energy Technology Data Exchange (ETDEWEB)

    France, David M.; Yu, Wenhua; Singh, Dileep; Zhao, Weihuan

    2017-11-21

    The invention provides a single radiator cooling system for use in hybrid electric vehicles, the system comprising a surface in thermal communication with electronics, and subcooled boiling fluid contacting the surface. The invention also provides a single radiator method for simultaneously cooling electronics and an internal combustion engine in a hybrid electric vehicle, the method comprising separating a coolant fluid into a first portion and a second portion; directing the first portion to the electronics and the second portion to the internal combustion engine for a time sufficient to maintain the temperature of the electronics at or below 175.degree. C.; combining the first and second portion to reestablish the coolant fluid; and treating the reestablished coolant fluid to the single radiator for a time sufficient to decrease the temperature of the reestablished coolant fluid to the temperature it had before separation.

  9. A High-Gain Three-Port Power Converter with Fuel Cell, Battery Sources and Stacked Output for Hybrid Electric Vehicles and DC-Microgrids

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2016-03-01

    Full Text Available This paper proposes a novel high-gain three-port power converter with fuel cell (FC, battery sources and stacked output for a hybrid electric vehicle (HEV connected to a dc-microgrid. In the proposed power converter, the load power can be flexibly distributed between the input sources. Moreover, the charging or discharging of the battery storage device can be controlled effectively using the FC source. The proposed converter has several outputs in series to achieve a high-voltage output, which makes it suitable for interfacing with the HEV and dc-microgrid. On the basis of the charging and discharging states of the battery storage device, two power operation modes are defined. The proposed power converter comprises only one boost inductor integrated with a flyback transformer; the boost and flyback circuit output terminals are stacked to increase the output voltage gain and reduce the voltage stress on the power devices. This paper presents the circuit configuration, operating principle, and steady-state analysis of the proposed converter, and experiments conducted on a laboratory prototype are presented to verify its effectiveness.

  10. Electric and hybrid vehicles: power sources, models, sustainability, infrastructure and the market

    National Research Council Canada - National Science Library

    Pistoia, G

    2010-01-01

    ... for simulation studies Velocity scheduling using traffic preview Hybrid vehicles with telematics Optimal management of hybrid vehicles with telematics Conclusions and future opportunities 1. 2. 3...

  11. Scenario analysis of hybrid class 3-7 heavy vehicles.

    Energy Technology Data Exchange (ETDEWEB)

    An, F.; Stodolsky, F.; Vyas, A.; Cuenca, R.; Eberhardt, J. J.

    1999-12-23

    The effects of hybridization on heavy-duty vehicles are not well understood. Heavy vehicles represent a broader range of applications than light-duty vehicles, resulting in a wide variety of chassis and engine combinations, as well as diverse driving conditions. Thus, the strategies, incremental costs, and energy/emission benefits associated with hybridizing heavy vehicles could differ significantly from those for passenger cars. Using a modal energy and emissions model, they quantify the potential energy savings of hybridizing commercial Class 3-7 heavy vehicles, analyze hybrid configuration scenarios, and estimate the associated investment cost and payback time. From the analysis, they conclude that (1) hybridization can significantly reduce energy consumption of Class 3-7 heavy vehicles under urban driving conditions; (2) the grid-independent, conventional vehicle (CV)-like hybrid is more cost-effective than the grid-dependent, electric vehicle (EV)-like hybrid, and the parallel configuration is more cost-effective than the series configuration; (3) for CV-like hybridization, the on-board engine can be significantly downsized, with a gasoline or diesel engine used for SUVs perhaps being a good candidate for an on-board engine; (4) over the long term, the incremental cost of a CV-like, parallel-configured Class 3-4 hybrid heavy vehicle is about %5,800 in the year 2005 and $3,000 in 2020, while for a Class 6-7 truck, it is about $7,100 in 2005 and $3,300 in 2020; and (5) investment payback time, which depends on the specific type and application of the vehicle, averages about 6 years under urban driving conditions in 2005 and 2--3 years in 2020.

  12. Developing a Blended Type Course of Introduction to Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Na Zhu

    2016-02-01

    Full Text Available An innovative course of introduction to hybrid vehicles is developed for both associate and bachelor degree programs for engineering technology with automotive/mechanical concentration. The hybrid vehicle course content includes several topics, such as the rational of pure electric vehicle and hybrid vehicle, hybrid vehicle propulsion systems, fundamentals of motor/generator systems, fundamentals of battery and energy management system, and introduction to various configurations of hybrid vehicle systems available in market and under development. Hybrid vehicle technology is a new area and developed rapidly in the field of automotive and mechanical engineering. Students need not only the fundamentals and concepts from college, but also the ability to keep up with the latest technology after their graduation. Therefore, a blended course type is employed to help students have a better understanding of the fundamentals of hybrid vehicle and developing their self-studying ability. Topics in the course have three steps of learning. Firstly, on-ground lecture is given in class, where the instructor explains basic knowledge, such as principles, equations, and design rules.  In this way, the students will have enough background knowledge and be able to conduct further self-reading and research work. Secondly, students are required to go to university’s desire to learn (D2L online system and finish the online part of the topic. In the D2L system, students will find a quiz and its supporting materials. Thirdly, students come back to the on-ground lecture and discuss the quiz in groups with instructor. After the discussion, the instructor gives students a conclusion of the topic and moves forward to the next topic. A computer simulation class is also given to help student better understand the operation strategies of the hybrid vehicle systems and have a trial of design of hybrid vehicle.

  13. Definition and verification of a set of reusable reference architectures for hybrid vehicle development

    OpenAIRE

    Harrington, Cian

    2012-01-01

    Current concerns regarding climate change and energy security have resulted in an increasing demand for low carbon vehicles, including: more efficient internal combustion engine vehicles, alternative fuel vehicles, electric vehicles and hybrid vehicles. Unlike traditional internal combustion engine vehicles and electric vehicles, hybrid vehicles contain a m...

  14. Assessing current vehicle performance and simulating the performance of hydrogen and hybrid cars

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Bent [Roskilde University, Institute for Nature, Systems and Models, Energy, Environment and Climate group, Universitetsvej 1, DK-4000 Roskilde (Denmark)

    2007-07-15

    A measure of the efficiency in transforming energy input into transport work is defined and applied to road vehicles as well as to sea, air and rail vehicles for passenger or freight transportation. The insight obtained with this measure is compared with the results of applying the conventional measure of kilometres per unit of energy for current fleets of vehicles. Then, simulation methods are used to assess the performance of fuel cell vehicles, electric vehicles and hybrids between the two. The latter are found to provide an optimum performance for a small, efficient passenger car. (author)

  15. Multi-Hybrid Power Vehicles with Cost Effective and Durable Polymer Electrolyte Membrane Fuel Cell and Li-ion Battery

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Anima [Univ. of Houston, Houston, TX (United States)

    2014-02-28

    Anima Bose, the principal investigator of the project, originally proposed to develop composite membranes to operate PEMFCs at much higher temperatures than 80°C and to alleviate the flooding problems often encountered in Nafion menmbrane containing fuel cells. The PI has successfully created composite membranes by blending small quantities of octasilane-poss (OSP) with Nafion. The composite membranes exhibited temperature tolerance up to 110°C without scarifying cell performance as determined by polarization curves and proton conductivity measurements. These membranes also exhibited superior water management performance as evident from the lack of flooding. Furthermore, these fuel cells performed well under reduced humidities. Structural and thermal analyses revealed that these Nafion-octasilane composite membranes are homogenous at concentrations up to 3 wt% of the OSP and that the siloxane offers additional thermal stability.

  16. Close Look at Hybrid Vehicle Loyalty and Ownership

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho-Ling [ORNL; Chin, Shih-Miao [ORNL; Wilson, Daniel W [ORNL; Oliveira Neto, Francisco Moraes [ORNL; Taylor, Rob D [ORNL

    2013-01-01

    In a news release dated April 9, 2012, Polk stated that only 35% of hybrid owners bought a hybrid again when they returned to market in 2011. These findings were based on an internal study conducted by Polk. The study also indicated that if repurchase behavior among the high volume audience of Toyota Prius owners wasn t factored in; hybrid loyalty would drop to under 25%. This news release has generated a lot of interest and concern by the automobile industry as well as consumers, since it was published, and caused many to think about the idea of hybrid loyalty as well as factors that influence consumers. Most reactions to the 35% hybrid loyalty dealt with concerns of the viability of hybrid technology as part of the solution to address transportation energy challenges. This paper attempts to shed more light on Polk s hybrid loyalty study as well as explore several information sources concerning hybrid loyalty status. Specifically, major factors that might impact the selection and acquisition of hybrid vehicles are addressed. This includes investigating the associations between hybrid market shares and influencing factors like fuel price and hybrid incentives, as well as the availability of hybrid models and other highly fuel efficient vehicle options. This effort is not in-depth study, but rather a short study to see if Polk s claim could be validated. This study reveals that Polk s claim was rather misleading because its definition of loyalty was very narrow. This paper also suggests that Polk s analysis failed to account for some very important factors, raising the question of whether it is fair to compare a vehicle drive train option (which hybrids are) with a vehicle brand in terms of loyalty and also raises the question of whether hybrid loyalty is even a valid point to consider. This report maintains that Polk s study does not prove that hybrid owners were dissatisfied with their vehicles, which was a common theme among reporting news agencies when Polk

  17. Research on minimum sound specifications for hybrid and electric vehicles

    Science.gov (United States)

    2012-06-30

    This report documents research by the National Highway Traffic Safety Administration (NHTSA) to identify ways : to develop sound specifications for electric and hybrid vehicles. The research was conducted to support activities : related to the implem...

  18. Real-world environmental performance of hybrid vehicles

    NARCIS (Netherlands)

    Winkel, R.G.; Hendriksen, P.; Vermeulen, R.J.; Foster, D.L.

    2001-01-01

    With the further development and market introduction of hybrid vehicle technologies in recent years we are now at a stage where we can test whether the proclaimed advantages of hybrid propulsion in terms of fuel efficiency and emission reduction are actually realised. An important issue is that

  19. Energy management in hybrid electric vehicles: benefit of prediction

    NARCIS (Netherlands)

    Keulen, T. van; Jager, B. de; Kessels, J.T.B.A.; Steinbuch, M.

    2010-01-01

    Hybrid vehicles require a supervisory algorithm, often referred to as energy management strategy, which governs the drivetrain components. In general the energy management strategy objective is to minimize the fuel consumption subject to constraints on the components, vehicle performance and driver

  20. Plug-in hybrid electric vehicles in dynamical energy markets

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, P.P.J. van den

    2008-01-01

    The plug-in hybrid electric vehicle allows vehicle propulsion from multiple internal power sources. Electric energy from the grid can be utilized by means of the plug-in connection. An on-line energy management (EM) strategy is proposed to minimize the costs for taking energy from each power source.

  1. Bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Schmal, D.; Saakes, M.; Veen, W.R. ter; Raadschelders, J.W.; Have, P.T.J.H. ten

    2000-01-01

    In hybrid electric vehicles (HEV) the requirements on batteries are very different from those for battery electric vehicles (BEV). A high power (bipolar) lead-acid battery could be a good alternative for other types of batteries under development for this application. It is potentially cheap and

  2. Research on Energy Management Strategy of Hybrid Electric Vehicle

    OpenAIRE

    Deng Tao; Huang Xiguang

    2015-01-01

    To improve the fuel economy and reduce emissions of hybrid electric vehicles, energy management strategy has received high attention. In this paper, by analyzing the deficiency of existing energy management strategy for hybrid cars, it not only puts forward the minimal equivalent fuel consumption adaptive strategy, but also is the first time to consider the driving dynamics target simultaneously, and to explain the future development direction of China’s hybrid energy management strategy.

  3. Research on Energy Management Strategy of Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Deng Tao

    2015-01-01

    Full Text Available To improve the fuel economy and reduce emissions of hybrid electric vehicles, energy management strategy has received high attention. In this paper, by analyzing the deficiency of existing energy management strategy for hybrid cars, it not only puts forward the minimal equivalent fuel consumption adaptive strategy, but also is the first time to consider the driving dynamics target simultaneously, and to explain the future development direction of China’s hybrid energy management strategy.

  4. Panorama 2011: The development of hybrid and electric vehicles

    International Nuclear Information System (INIS)

    Vinot, S.

    2011-01-01

    Car manufacturers are having to deal with increasingly stringent norms and customers who are increasingly demanding with respect to fuel savings. As a result, large numbers of them are now looking into solutions that involve electrifying their vehicles. Hybrid vehicles, some of which can be recharged, and electric vehicles are the new stars of the auto trade shows. But not all manufacturers are necessarily using the same strategies. (author)

  5. Redox flow batteries for hybrid electric vehicles: progress and challenges

    OpenAIRE

    Rusllim Mohammad, M.; Sharkh, S.M.; Walsh, F.C.

    2009-01-01

    Electric vehicles have been the focus of muchresearch over the last two decades as the world has sought improved energy utilization and reduced emissions. However, the lengthy charging time, modest range and relatively sluggish performance of batteries have restricted the commercialization of electric vehicles. Hybrid propulsion can overcome most of these shortcomings, with improved energy efficiency and reduced emissions compared to conventional internal combustion engine vehicles (ICEVs)...

  6. State-of-the-art assessment of electric and hybrid vehicles

    Science.gov (United States)

    1978-01-01

    Data are presented that were obtained from the electric and hybrid vehicles tested, information collected from users of electric vehicles, and data and information on electric and hybrid vehicles obtained on a worldwide basis from manufacturers and available literature. The data given include: (1) information and data base (electric and hybrid vehicle systems descriptions, sources of vehicle data and information, and sources of component data); (2) electric vehicles (theoretical background, electric vehicle track tests, user experience, literature data, and summary of electric vehicle status); (3) electric vehicle components (tires, differentials, transmissions, traction motors, controllers, batteries, battery chargers, and component summary); and (4) hybrid vehicles (types of hybrid vehicles, operating modes, hybrid vehicles components, and hybrid vehicles performance characteristics).

  7. INCREASING REDUCTION OF CO2 EMISSION IN HYBRID VEHICLES

    Directory of Open Access Journals (Sweden)

    Zbigniew ŁUKASIK

    2017-12-01

    Full Text Available This article concerns the issue of reduction of CO2 emission in hybrid vehicles. External lighting through LED technology was applied to show additional CO2 savings in these vehicles. The authors propose for hybrid vehicles of M1 category: conditions of testing external lights, research equipment with measuring system and measuring method in order to determine energy savings obtained by application of external LED light. It enables to calculate saving of CO2 emission and estimate potential energy and ecological benefits. Computational formulas of CO2 emission savings and calculated fuel consumption and percentage reduction of CO2 proposed by the authors were used as a confirmation. Average worktime of lighting and three configurations of sources of lighting of hybrid vehicles were used in the analysis: halogen bulb/bulb, xenon/LED lamp and full electroluminescent external lighting.

  8. Hybrid vehicle assessment. Phase I. Petroleum savings analysis

    Energy Technology Data Exchange (ETDEWEB)

    Levin, R.; Liddle, S.; Deshpande, G.; Trummel, M.; Vivian, H.

    1984-03-01

    This report presents the results of a comprehensive analysis of near-term electric-hybrid vehicles. Its purpose was to estimate their potential to save significant amounts of petroleum on a national scale in the 1990s. Performance requirements and expected annual usage patterns of these vehicles were first modeled. The projected US fleet composition was estimated, and conceptual hybrid vehicle designs were conceived and analyzed for petroleum use when driven in the expected annual patterns. These petroleum consumption estimates were then compared to similar estimates for projected 1990 conventional vehicles having the same performance and driven in the same patterns. Results are presented in the form of three utility functions and comparisons of several conceptual designs are made. The Hybrid Vehicle (HV) design and assessment techniques are discussed and a general method is explained for selecting the optimum energy management strategy for any vehicle-mission-battery combination. A discussion of lessons learned during the construction and test of the General Electric Hybrid Test Vehicle is also presented. Conclusions and recommendations are presented, and development recommendations are identified.

  9. Technology and implementation of electric vehicles and plug‐in hybrid electric vehicles

    DEFF Research Database (Denmark)

    Hansen, Kenneth; Mathiesen, Brian Vad; Connolly, David

    2011-01-01

    developments. Different business models and policies are also outlined along with a description of the on‐going research and demonstration projects. An analysis of the current and near term electric and plug‐in hybrid electric vehicles indicate that the cost for family cars will not change much, while...... the ranges of electric vehicles will increase and may even double for some family cars compared to the existing models. The average driving range in this report increases from around 150 km for existing electric vehicles to more than 200 km for near term electric vehicles (expected new models in 2012......In this report state of the art electric vehicle and plug‐in hybrid electric vehicle technology is presented to clarify the current and near term development. The current status of diffusion for electric vehicles in Denmark, Sweden and internationally is presented as well as the expected...

  10. Hybrid systems, optimal control and hybrid vehicles theory, methods and applications

    CERN Document Server

    Böhme, Thomas J

    2017-01-01

    This book assembles new methods showing the automotive engineer for the first time how hybrid vehicle configurations can be modeled as systems with discrete and continuous controls. These hybrid systems describe naturally and compactly the networks of embedded systems which use elements such as integrators, hysteresis, state-machines and logical rules to describe the evolution of continuous and discrete dynamics and arise inevitably when modeling hybrid electric vehicles. They can throw light on systems which may otherwise be too complex or recondite. Hybrid Systems, Optimal Control and Hybrid Vehicles shows the reader how to formulate and solve control problems which satisfy multiple objectives which may be arbitrary and complex with contradictory influences on fuel consumption, emissions and drivability. The text introduces industrial engineers, postgraduates and researchers to the theory of hybrid optimal control problems. A series of novel algorithmic developments provides tools for solving engineering pr...

  11. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  12. Battery Management Systems in Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Michael Pecht

    2011-10-01

    Full Text Available The battery management system (BMS is a critical component of electric and hybrid electric vehicles. The purpose of the BMS is to guarantee safe and reliable battery operation. To maintain the safety and reliability of the battery, state monitoring and evaluation, charge control, and cell balancing are functionalities that have been implemented in BMS. As an electrochemical product, a battery acts differently under different operational and environmental conditions. The uncertainty of a battery’s performance poses a challenge to the implementation of these functions. This paper addresses concerns for current BMSs. State evaluation of a battery, including state of charge, state of health, and state of life, is a critical task for a BMS. Through reviewing the latest methodologies for the state evaluation of batteries, the future challenges for BMSs are presented and possible solutions are proposed as well.

  13. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    Science.gov (United States)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  14. Hybrid boosters for future launch vehicles

    Science.gov (United States)

    Dargies, E.; Lo, R. E.

    There is a striking similarity in the design of the US Space Transportation System, the European ARI-ANE 5P and the Japanese II-II: they all use a high energy cryogenic core stage along with two large solid propellant rocket boosters (SRB's) in order to provide for a high lift-off thrust level. Prior to last years disasters with Challenger and Titan it was widely held that SRB's were cheap, uncomplicated and safe. Even before the revelation by these accidents of severe safety hazards, shuttle operations demonstrated that the SRB's were by no means as cheap as reusable systems ought to be. In addition, they became known as sources of considerable environmental pollution. In contrast, hybrid rocket propulsion systems offer the following potential advantages: • much higher savety level (TNT equivalent almost zero, shut-down capability in case of ignition failure of one unit, inert against unbonding) • choice of non-toxic propellant combinations • equal or higher specific performance For these reasons, system analysis were carried out to examine hybrids as potential alternative to SRB's. Various analytical tools (mass- and performance models, trajectory simulation etc.) were developed for parametrical studies of hybrid propulsion systems. Special attention was devoted to the well-known primary concern of hybrids: geometrical design of the solid fuel grain and regression rate of the ablating surface. Experimental data were used as input wherever possible. In 1985 first studies were carried out to find possible fields of application for hybrid rocket engines. A mass model and a performance model for hybrid rocket motors were developed, taking into account the peculiarities of hybrid combustion as there are i.e. low regression rate and shifting mixture ratio during operation. After some analytical work was done, hybrids proved to be a promising alternative to SRB's. Compared with solids, hybrids offer many advantages.

  15. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : final report.

    Science.gov (United States)

    2012-02-01

    The University of Toledo University Transportation Center (UT-UTC) has identified : hybrid vehicles as one of the three areas of the research. The activities in this research : are directed towards the noise, vibration, and harshness (NVH) solutions ...

  16. Active flywheel control for hybrid vehicle; Compensation active des pulsations de couple dans un vehicule hybride

    Energy Technology Data Exchange (ETDEWEB)

    Tnani, S.; Coirault, P.; Champenois, G. [Ecole Superieure d' Ingenieurs, Lab. d' Automatique et d' Informatique Industrielle, 86 - Poitiers (France)

    2005-01-01

    In the paper, the authors propose a novel control strategy of torque ripple on hybrid vehicle. The combustion engine ripple's are reduced by using an active filter and an AC machine which is mounted on the crank-shaft to generate on inverse torque sequence. The control strategy is based on a multi-objectives state feedback synthesis. A complete modelling of the hybrid propulsion of the vehicle is achieved. Simulation results highlight the interest of the control scheme. (authors)

  17. Vehicle Sideslip Angle Estimation Based on Hybrid Kalman Filter

    Directory of Open Access Journals (Sweden)

    Jing Li

    2016-01-01

    Full Text Available Vehicle sideslip angle is essential for active safety control systems. This paper presents a new hybrid Kalman filter to estimate vehicle sideslip angle based on the 3-DoF nonlinear vehicle dynamic model combined with Magic Formula tire model. The hybrid Kalman filter is realized by combining square-root cubature Kalman filter (SCKF, which has quick convergence and numerical stability, with square-root cubature based receding horizon Kalman FIR filter (SCRHKF, which has robustness against model uncertainty and temporary noise. Moreover, SCKF and SCRHKF work in parallel, and the estimation outputs of two filters are merged by interacting multiple model (IMM approach. Experimental results show the accuracy and robustness of the hybrid Kalman filter.

  18. Novel Field Test Equipment for Lithium-Ion Batteries in Hybrid Electrical Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Goran Lindbergh

    2011-04-01

    Full Text Available Lifetime testing of batteries for hybrid-electrical vehicles (HEV is usually performed in the lab, either at the cell, module or battery pack level. Complementary field tests of battery packs in vehicles are also often performed. There are, however, difficulties related to field testing of battery-packs. Some examples are cost issues and the complexity of continuously collecting battery performance data, such as capacity fade and impedance increase. In this paper, a novel field test equipment designed primarily for lithium-ion battery cell testing is presented. This equipment is intended to be used on conventional vehicles, not hybrid vehicles, as a cheaper and faster field testing method for batteries, compared to full scale HEV testing. The equipment emulates an HEV environment for the tested battery cell by using real time vehicle sensor information and the existing starter battery as load and source. In addition to the emulated battery cycling, periodical capacity and pulse testing capability are implemented as well. This paper begins with presenting some background information about hybrid electrical vehicles and describing the limitations with today’s HEV battery testing. Furthermore, the functionality of the test equipment is described in detail and, finally, results from verification of the equipment are presented and discussed.

  19. Variable Bus Voltage Modeling for Series Hybrid Electric Vehicle Simulation

    OpenAIRE

    Merkle, Matthew Alan

    1997-01-01

    A growing dependence on foreign oil, along with a heightened concern over the environmental impact of personal transportation, had led the U. S. government to investigate and sponsor research into advanced transportation concepts. One of these future technologies is the hybrid electric vehicle (HEV), typically featuring both an internal combustion engine and an electric motor, with the goal of producing fewer emissions while obtaining superior fuel economy. While vehicles such as the Virg...

  20. Catalog of components for electric and hybrid vehicle propulsion systems

    Science.gov (United States)

    Eissler, H. C.

    1981-01-01

    This catalog of commercially available electric and hybrid vehicle propulsion system components is intended for designers and builders of these vehicles and contains 50 categories of components. These categories include those components used between the battery terminals and the output axle hub, as well as some auxiliary equipment. An index of the components and a listing of the suppliers and their addresses and phone numbers are included.

  1. Modeling and Nonlinear Control of Electric Power Stage in Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Tahri, A.; El Fadil, H.; Guerrero, Josep M.

    2014-01-01

    This paper deals with the problem of modeling and controlling the electric power stage of hybrid electric vehicle. The controlled system consists of a fuel cell (FC) as a main source, a supercapacitor as an auxiliary source, two DC-DC power converters, an inverter and a traction induction motor...

  2. Unregulated emissions from light-duty hybrid electric vehicles

    Science.gov (United States)

    Suarez-Bertoa, R.; Astorga, C.

    2016-07-01

    The number of registrations of light duty hybrid electric vehicles has systematically increased over the last years and it is expected to keep growing. Hence, evaluation of their emissions becomes very important in order to be able to anticipate their impact and share in the total emissions from the transport sector. For that reason the emissions from a Euro 5 compliant hybrid electric vehicle (HV2) and a Euro 5 plug-in hybrid electric vehicle (PHV1) were investigated with special interest on exhaust emissions of ammonia, acetaldehyde and ethanol. Vehicles were tested over the World harmonized Light-duty Test Cycle (WLTC) at 23 and -7 °C using two different commercial fuels E5 and E10 (gasoline containing 5% and 10% vol/vol of ethanol, respectively). PHV1 resulted in lower emissions than HV2 due to the pure electric strategy used by the former. PHV1 and HV2 showed lower regulated emissions than conventional Euro 5 gasoline light duty vehicles. However, emissions of ammonia (2-8 and 6-15 mg km-1 at 22 and -7 °C, respectively), ethanol (0.3-0.8 and 2.6-7.2 mg km-1 at 22 and -7 °C, respectively) and acetaldehyde (∼0.2 and 0.8-2.7 mg km-1 at 22 and -7 °C, respectively) were in the same range of those recently reported for conventional gasoline light duty vehicles.

  3. Electric machine for hybrid motor vehicle

    Science.gov (United States)

    Hsu, John Sheungchun

    2007-09-18

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  4. Electric and hybrid vehicle environmental control subsystem study

    Science.gov (United States)

    Heitner, K. L.

    1980-01-01

    An environmental control subsystem (ECS) in electric and hybrid vehicles is studied. A combination of a combustion heater and gasoline engine (Otto cycle) driven vapor compression air conditioner is selected. The combustion heater, the small gasoline engine, and the vapor compression air conditioner are commercially available. These technologies have good cost and performance characteristics. The cost for this ECS is relatively close to the cost of current ECS's. Its effect on the vehicle's propulsion battery is minimal and the ECS size and weight do not have significant impact on the vehicle's range.

  5. Plug-In Hybrid Vehicle Analysis (Milestone Report)

    Energy Technology Data Exchange (ETDEWEB)

    Markel, T.; Brooker, A.; Gonder, J.; O' Keefe, M.; Simpson, A.; Thornton, M.

    2006-11-01

    NREL's plug-in hybrid electric vehicle (PHEV) analysis activities made great strides in FY06 to objectively assess PHEV technology, support the larger U.S. Department of Energy PHEV assessment effort, and share technical knowledge with the vehicle research community and vehicle manufacturers. This report provides research papers and presentations developed in FY06 to support these efforts. The report focuses on the areas of fuel economy reporting methods, cost and consumption benefit analysis, real-world performance expectations, and energy management strategies.

  6. Characterization tests for plug-in hybrid electric vehicle application of graphite/LiNi0.4Mn1.6O4 cells with two different separators and electrolytes

    Science.gov (United States)

    Arbizzani, C.; De Giorgio, F.; Mastragostino, M.

    2014-11-01

    The paper reports and discusses the results of electrochemical tests carried out according to the DOE Battery Test Manual for plug-in Hybrid Electric Vehicles (PHEVs) on laboratory high-voltage graphite/LiNi0.4Mn1.6O4 cells with electrode formulation and mass-loading suitable for scale-up, and mixed ethylene carbonate-dimethyl carbonate with two diverse lithium salts, lithium tris(pentafluoroethyl)trifluorophosphate and LiPF6, as electrolytes. The cells, assembled with two different separators, a polypropylene monolayer separator (Celgard®2400) and a reinforced polyvinylidene fluoride macroporous membrane (PVdF-NCC), were also tested by deep charge/discharge cycles. The results show the strong impact of the separator on high-rate cell functioning in PHEVs.

  7. Hybrid Fuel Cell Technology Overview

    Energy Technology Data Exchange (ETDEWEB)

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  8. Hybrid Underwater Vehicle: ARV Design and Development

    Directory of Open Access Journals (Sweden)

    Zhigang DENG

    2014-02-01

    Full Text Available The development of SMU-I, a new autonomous & remotely-operated vehicle (ARV is described. Since it has both the characteristics of autonomous underwater vehicle (AUV and remote operated underwater vehicle (ROV, it is able to achieve precision fix station operation and manual timely intervention. In the paper the initial design of basic components, such as vehicle, propulsion, batteries etc. and the control design of motion are introduced and analyzed. ROV’s conventional cable is replaced by a fiber optic cable, which makes it available for high-bandwidth real-time video, data telemetry and high-quality teleoperation. Furthermore, with the aid of the manual real-time remote operation and ranging sonar, it also resolves the AUV’s conflicting issue, which can absolutely adapt the actual complex sea environment and satisfy the unknown mission need. The whole battery system is designed as two-battery banks, whose voltages and temperatures are monitored through CAN (controller area network bus to avoid battery fire and explosion. A fuzzy-PID controller is designed for its motion control, including depth control and direction control. The controller synthesizes the advantage of fuzzy control and PID control, utilizes the fuzzy rules to on-line tune the parameters of PID controller, and achieves a better control effect. Experiment results demonstrate to show the effectiveness of the test-bed.

  9. Airport electric vehicle powered by fuel cell

    Science.gov (United States)

    Fontela, Pablo; Soria, Antonio; Mielgo, Javier; Sierra, José Francisco; de Blas, Juan; Gauchia, Lucia; Martínez, Juan M.

    Nowadays, new technologies and breakthroughs in the field of energy efficiency, alternative fuels and added-value electronics are leading to bigger, more sustainable and green thinking applications. Within the Automotive Industry, there is a clear declaration of commitment with the environment and natural resources. The presence of passenger vehicles of hybrid architecture, public transport powered by cleaner fuels, non-aggressive utility vehicles and an encouraging social awareness, are bringing to light a new scenario where conventional and advanced solutions will be in force. This paper presents the evolution of an airport cargo vehicle from battery-based propulsion to a hybrid power unit based on fuel cell, cutting edge batteries and hydrogen as a fuel. Some years back, IBERIA (Major Airline operating in Spain) decided to initiate the replacement of its diesel fleet for battery ones, aiming at a reduction in terms of contamination and noise in the surrounding environment. Unfortunately, due to extreme operating conditions in airports (ambient temperature, intensive use, dirtiness, …), batteries suffered a very severe degradation, which took its toll in terms of autonomy. This reduction in terms of autonomy together with the long battery recharge time made the intensive use of this fleet impractical in everyday demanding conditions.

  10. Fleet Services adds hybrid vehicles to rental fleet

    OpenAIRE

    West, Hilary

    2008-01-01

    Virginia Tech Fleet Services added four hybrid vehicles to its rental fleet on June 16, 2008. The additions reflect an effort to further advance the universtiy's commitments to sustainability and to further improve the overall fuel efficiency of the rental car fleet.

  11. ADОPTIVE CONTROL OF THE HYBRID VEHICLE POWER UNIT

    Directory of Open Access Journals (Sweden)

    S. Serikov

    2014-10-01

    Full Text Available The problem of adaptive control of the hybrid vehicle power unit, which makes it possible to minimize the quality criterion under constraints on the state parameters and the control vector is considered. A formal statement of the optimization problem is given. The solution of this problem by the method of neural network control based on the adaptive criticism is considered.

  12. Route-Based Control of Hybrid Electric Vehicles: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J. D.

    2008-01-01

    Today's hybrid electric vehicle controls cannot always provide maximum fuel savings over all drive cycles. Route-based controls could improve HEV fuel efficiency by 2%-4% and help save nearly 6.5 million gallons of fuel annually.

  13. DIAGNOSTICS CONCEPTION OF ELECTRICAL DRIVE OF A HYBRID VEHICLE

    Directory of Open Access Journals (Sweden)

    Y. Borodenko

    2012-01-01

    Full Text Available Conceptual approach to creat the diagnostic system of the power elements of the electric drive of the hybrid vehicle has been considered. Approbation of the imitation model of electric drive with brushless DC electric motor as a diagnostic object has been carried out.

  14. Technology Advances Enabling a New Class of Hybrid Underwater Vehicles

    Science.gov (United States)

    Bowen, A.

    2016-02-01

    Both tethered (ROV) and untethered (AUV) systems have proven to be highly valuable tools for a range of application undersea. Certain enabling technologies coupled with recent advances in robotic systems make it possible to consider supplementing many of the functions performed by these platforms with appropriately designed semi-autonomous vehicles that may be less expensive operate than traditional deep-water ROVs. Such vehicles can be deployed from smaller ships and may lead to sea-floor resident systems able to perform a range of interventions under direct human control when required. These systems are effectively a hybrid cross between ROV and AUV vehicles and poised to enable an important new class of undersea vehicle. It is now possible to radically redefine the meaning of the words "tethered vehicle" to include virtual tethering via acoustic and optical means or through the use of small diameter re-useable tethers, providing not power but only high bandwidth communications. The recent developments at Woods Hole Oceanographic Institution (WHOI), paves the way for a derivative vehicle type able to perform a range of interventions in deep water. Such battery-powered, hybrid-tethered vehicles will be able to perform tasks that might otherwise require a conventional ROV. These functions will be possible from less complex ships because of a greatly reduced dependence on large, heavy tethers and associated vehicle handling equipment. In certain applications, such vehicles can be resident within subsea facilities, able to provide operators with near instant access when required. Several key emerging technologies and capabilities make such a vehicle possible. Advances in both acoustic and optical "wireless" underwater communications and mico-tethers as pioneered by the HROV Nereus offer the potential to transform ROV type operations and thus offer planners and designers an important new dimension to subsea robotic intervention

  15. Hybrid-Electric Vehicle with Natural Gas-Diesel Engine

    Directory of Open Access Journals (Sweden)

    Lino Guzzella

    2013-07-01

    Full Text Available In this paper we demonstrate the potential of combining electric hybridization with a dual-fuel natural gas-Diesel engine. We show that carbon dioxide emissions can be reduced to 43 gram per kilometer with a subcompact car on the New European Driving Cycle (NEDC. The vehicle is operated in charge-sustaining mode, which means that all energy is provided by the fuel. The result is obtained by hardware-in-the-loop experiments where the engine is operated on a test bench while the rest of the powertrain as well as the vehicle are simulated. By static engine measurements we demonstrate that the natural gas-Diesel engine reaches efficiencies of up to 39.5%. The engine is operated lean at low loads with low engine out nitrogen oxide emissions such that no nitrogen oxide aftertreatment is necessary. At medium to high loads the engine is operated stoichiometrically, which enables the use of a cost-efficient three-way catalytic converter. By vehicle emulation of a non-hybrid vehicle on the Worldwide harmonized Light vehicles Test Procedure (WLTP, we demonstrate that transient operation of the natural gas-Diesel engine is also possible, thus enabling a non-hybridized powertrain as well.

  16. Demonstration of Heavy Diesel Hybrid Fleet Vehicles

    Science.gov (United States)

    2016-03-29

    conventional truck baseline, and a hybrid truck of equivalent make, model year, and production run. Refuse trucks were built on a refuse truck chassis ...opportunities for fuel economy and noise reduction benefits. Validation efforts included both track and site testing. Track testing provided baseline data...monitor A- weighted sound pressure levels. EXWC measured indoor noise following guidance with Federal Motor Carrier Safety Administration (FMCSA) 393.94

  17. Adaptive powertrain control for plugin hybrid electric vehicles

    Science.gov (United States)

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  18. Current State of Military Hybrid Vehicle Development

    Science.gov (United States)

    2011-08-31

    Integrated starter generator for engine shut down, regenerative braking and avoidance of inefficient engine operation [28]. FMTV VI Composite 6-9% Fuel...and eliminating the inefficiencies associated with idling, vehicle braking and low engine speed part load efficiency, many improvements could be...delivered in any form to and from any load. Some examples included charging the soldiers’ batteries or delivering power back into an electrical grid

  19. Demonstration of Heavy Hybrid Diesel Fleet Vehicles

    Science.gov (United States)

    2016-03-01

    utility trucks are rated for noise reduction in the PTO work, or idling mode. Noise measurement is in terms of A- weighted decibels. The A- weighted ...production run. Refuse trucks were built on a refuse truck chassis , with four individual troughs and side loaders for collection of separated...integration across the DoD non-tactical vehicle fleet, and provide opportunities for fuel economy and noise reduction benefits. Validation efforts

  20. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-12-31

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  1. Analysis of plug-in hybrid electric vehicle utility factors

    Science.gov (United States)

    Bradley, Thomas H.; Quinn, Casey W.

    Plug-in hybrid electric vehicles (PHEVs) are hybrid electric vehicles that can be fueled from both conventional liquid fuels and grid electricity. To represent the total contribution of both of these fuels to the operation, energy use, and environmental impacts of PHEVs, researchers have developed the concept of the utility factor. As standardized in documents such as SAE J1711 and SAE J2841, the utility factor represents the proportion of vehicle distance travelled that can be allocated to a vehicle test condition so as to represent the real-world driving habits of a vehicle fleet. These standards must be used with care so that the results are understood within the context of the assumptions implicit in the standardized utility factors. This study analyzes and derives alternatives to the standard utility factors from the 2001 National Highway Transportation Survey, so as to understand the sensitivity of PHEV performance to assumptions regarding charging frequency, vehicle characteristics, driver characteristics, and means of defining the utility factor. Through analysis of these alternative utility factors, this study identifies areas where analysis, design, and policy development for PHEVs can be improved by alternative utility factor calculations.

  2. Sensorless Suitability Analysis of Hybrid PM Machines for Electric Vehicles

    DEFF Research Database (Denmark)

    Matzen, Torben Nørregaard; Rasmussen, Peter Omand

    2009-01-01

    Electrical machines for traction in electric vehicles are an essential component which attract attention with respect to machine design and control as a part of the emerging renewable industry. For the hybrid electric machine to replace the familiar behaviour of the combustion engine torque......, control seems necessary to implement. For hybrid permanent magnet (PM) machines torque control in an indirect fashion using dq-current control is frequently done. This approach requires knowledge about the machine shaft position which may be obtained sensorless. In this article a method based on accurate...... knowledge of machine flux linkages is proposed for analysing the suitability for sensorless control at zero and low speed....

  3. Control system and method for a hybrid electric vehicle

    Science.gov (United States)

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2001-01-01

    A vehicle system controller (20) is presented for a LSR parallel hybrid electric vehicle having an engine (10), a motor (12), wheels (14), a transmission (16) and a battery (18). The vehicle system controller (20) has a state machine having a plurality of predefined states (22-32) that represent operating modes for the vehicle. A set of rules is defined for controlling the transition between any two states in the state machine. The states (22-32) are prioritized according to driver demands, energy management concerns and system fault occurrences. The vehicle system controller (20) controls the transitions from a lower priority state to a higher priority state based on the set of rules. In addition, the vehicle system controller (20) will control a transition to a lower state from a higher state when the conditions no longer warrant staying in the current state. A unique set of output commands is defined for each state for the purpose of controlling lower level subsystem controllers. These commands serve to achieve the desire vehicle functionality within each state and insure smooth transitions between states.

  4. Battery Test Manual For 48 Volt Mild Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Lee Kenneth [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-03-01

    This manual details the U.S. Advanced Battery Consortium and U.S. Department of Energy Vehicle Technologies Program goals, test methods, and analysis techniques for a 48 Volt Mild Hybrid Electric Vehicle system. The test methods are outlined stating with characterization tests, followed by life tests. The final section details standardized analysis techniques for 48 V systems that allow for the comparison of different programs that use this manual. An example test plan is included, along with guidance to filling in gap table numbers.

  5. Control system and method for a hybrid electric vehicle

    Science.gov (United States)

    Tamor, Michael Alan

    2001-03-06

    Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

  6. Potency of Thermoelectric Generator for Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Nandy Putra

    2010-10-01

    Full Text Available Thermoelectric Generator (TEG has been known as electricity generation for many years. If the temperature difference occurred between two difference semi conductor materials, the current will flow in the material and produced difference voltage. This principle is known as Seebeck effect that is the opposite of Peltier effect Thermoelectric Cooling (TEC. This research was conducted to test the potential of electric source from twelve peltier modules. Then, these thermoelectric generators were applied in hybrid car by using waste heat from the combustion engine. The experiment has been conducted with variations of peltier module arrangements (series and parallels and heater as heat source for the thermoelectric generator, with variations of heater voltage input (110V and 220V applied. The experimental result showed that twelve of peltier modules arranged in series and heater voltage of 220V generated power output of 8.11 Watts with average temperature difference of 42.82°C. This result shows that TEG has a bright prospect as alternative electric source.

  7. On use of hybrid rocket propulsion for suborbital vehicles

    Science.gov (United States)

    Okninski, Adam

    2018-04-01

    While the majority of operating suborbital rockets use solid rocket propulsion, recent advancements in the field of hybrid rocket motors lead to renewed interest in their use in sounding rockets. This paper presents results of optimisation of sounding rockets using hybrid propulsion. An overview of vehicles under development during the last decade, as well as heritage systems is provided. Different propellant combinations are discussed and their performance assessment is given. While Liquid Oxygen, Nitrous Oxide and Nitric Acid have been widely tested with various solid fuels in flight, Hydrogen Peroxide remains an oxidiser with very limited sounding rocket applications. The benefits of hybrid propulsion for sounding rockets are given. In case of hybrid rocket motors the thrust curve can be optimised for each flight, using a flow regulator, depending on the payload and mission. Results of studies concerning the optimal burn duration and nozzle selection are given. Specific considerations are provided for the Polish ILR-33 "Amber" sounding rocket. Low regression rates, which up to date were viewed as a drawback of hybrid propulsion may be used to the benefit of maximising rocket performance if small solid rocket boosters are used during the initial flight period. While increased interest in hybrid propulsion is present, no up-to-date reference concerning use of hybrid rocket propulsion for sounding rockets is available. The ultimate goal of the paper is to provide insight into the sensitivity of different design parameters on performance of hybrid sounding rockets and delve into the potential and challenges of using hybrid rocket technology for expendable suborbital applications.

  8. Electric Motor-Generator for a Hybrid Electric Vehicle

    OpenAIRE

    Odvářka, Erik; Mebarki, Abdeslam; Gerada, David; Brown, Neil; Ondrůšek, Čestmír

    2009-01-01

    Several topologies of electrical machines can be used to meet requirements for application in a hybrid electric vehicle. This paper describes process of an electric motor-generator selection, considering electromagnetic, thermal and basic control design. The requested electrical machine must develop 45 kW in continuous operation at 1300 rpm with field weakening capability up to 2500 rpm. Both radial and axial flux topologies are considered as potential candidates. A family of axial flux machi...

  9. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    Science.gov (United States)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  10. Control of a hybrid electric vehicle with predictive journey estimation

    OpenAIRE

    Cho, B

    2008-01-01

    Battery energy management plays a crucial role in fuel economy improvement of charge-sustaining parallel hybrid electric vehicles. Currently available control strategies consider battery state of charge (SOC) and driver’s request through the pedal input in decision-making. This method does not achieve an optimal performance for saving fuel or maintaining appropriate SOC level, especially during the operation in extreme driving conditions or hilly terrain. The objective of this ...

  11. EHV systems technology - A look at the principles and current status. [Electric and Hybrid Vehicle

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1983-01-01

    An examination of the basic principles and practices of systems engineering is undertaken in the context of their application to the component and subsystem technologies involved in electric and hybrid vehicle (EHV) development. The limitations of purely electric vehicles are contrasted with hybrid, heat engine-incorporating vehicle technology, which is inherently more versatile. A hybrid vehicle concept assessment methodology is presented which employs current technology and yet fully satisfies U.S. Department of Energy petroleum displacement goals.

  12. Hybrid adaptive ascent flight control for a flexible launch vehicle

    Science.gov (United States)

    Lefevre, Brian D.

    For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the

  13. Research on the Interior Sound Quality in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Liao Lian Ying

    2016-01-01

    Full Text Available Even the overall level of vehicle interior noise of hybrid electric vehicle (HEV reduced to a certain degree, the vibration and noise generated by the engine, motor, generator and power split have made greater effect on the vehicle interior sound quality in HEV. In order to research the feature of vehicle interior sound quality in HEV, the HEV is used to be the research object, the binaural noise sample of the driver when playing different kinds of music in the vehicle with the speed of sixty kilometers per hour is collected. ArtemiS is used to conduct frequency division processing, so as to obtain the relative weight of each frequency band and the overall noise. The tone, roughness and sharpness of sound quality subjective evaluation parameters are quantified, the SPSS is used to establish the linear regression model of the sample, and the best masking music tracks are found out. Then, the sound samples that contains the best music tracks and the simple vehicle interior noise are re-collected, the regression model and ArtemiS are used to predict the subjective evaluation value. The research results show that when adding the music, the tone degree rises and the lowering degree decreases, thus the disturbing degree reduces, which significantly improves the sound quality in the HEV.

  14. Merging mobility and energy vision with hybrid electric vehicles and vehicle infrastructure integration

    International Nuclear Information System (INIS)

    He Yiming; Chowdhury, Mashrur; Ma Yongchang; Pisu, Pierluigi

    2012-01-01

    As the U.S. federal government is seeking useful applications of Vehicle-Infrastructure Integration (VII) and encouraging a greener and more efficient automobile industry, this paper demonstrated a path to meet the national transportation goal via VII. An impact study was conducted in a midsize U.S. metropolitan area on the potential of utilizing VII communication in Hybrid Electric Vehicle (HEV) operations by simulating a VII-enabled vehicle framework for both conventional HEV and Plug-in Hybrid Electric Vehicles (PHEV). The data collection and communication capability of the VII system allowed the prediction of speed profiles at the vehicle level with an average error rate of 13.2%. With the prediction, at the individual vehicle level, VII technology allowed PHEV and HEV to achieve additional benefits with an approximately 3% decrease in total energy consumption and emission. At the network level, the benefit–cost analysis indicated that the benefit–cost ratios for PHEV and HEV of the VII vehicle network exceed one at the fleet penetration rate of 20% and 30%, respectively. Our findings encourage to support public and private investments in VII infrastructure and its integration with HEV and PHEV in order to reap the increased energy savings from these vehicles. - Highlights: ► A VII-HEV/PHEV framework was simulated for a midsized U.S. metropolitan area. ► A VII-based prediction algorithm was developed for the framework. ► Significant improvement in energy efficiency and emission was achieved at single vehicle level. ► Network analysis was conducted to show cost-effectiveness of this framework.

  15. How to consider Electric and Hybrid Electric vehicles in CNOSSOS-EU predicting method?

    OpenAIRE

    PALLAS, Marie-Agnès; BERENGIER, Michel; MUIRHEAD, Matthew; MORGAN, Phil

    2014-01-01

    Electric and hybrid-electric vehicles are often referred to as quiet vehicles, comparatively to conventional internal combustion engine vehicles. At first, these new vehicle types were mainly developed for urban situations for their qualities concerning air pollution reduction, but due to the improvement of their electric range, they can also be encountered on national road networks. The electric and hybrid powertrain technologies are mostly employed on light vehicles, but a more recent break...

  16. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    Science.gov (United States)

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  17. A magneto rheological hybrid damper for railway vehicles suspensions

    Directory of Open Access Journals (Sweden)

    Gheorghe GHITA

    2012-09-01

    Full Text Available High speed railway vehicles features a specific lateral oscillation resulting from the coupled lateral displacement and yaw of the wheelset which leads to a sinusoid movement of the wheelset along the track, transferred to the entire vehicle. The amplitude of this oscillation is strongly dependant on vehicle’s velocity. Over a certain value, namely the critical speed, the instability phenomenon so-called hunting occurs. To raise the vehicle’s critical speed different designs of the suspension all leading to a much stiffer vehicle can be envisaged. Different simulations prove that a stiffer central suspension will decrease the passenger’s comfort in terms of lateral accelerations of the carboy. The authors propose a semi-active magneto rheological suspension to improve the vehicle’s comfort at high speeds. The suspension has as executive elements hybrid magneto rheological dampers operating under sequential control strategy type balance logic. Using an original mathematical model for the lateral dynamics of the vehicle the responses of the system with passive and semi-active suspensions are simulated. It is shown that the semi-active suspension can improve the vehicle performances.

  18. Energy regenerative suspension test for EEV and hybrid vehicle

    Science.gov (United States)

    Abdullah, M. A.; Jamil, J. F.; Muhammad, N. S.

    2015-12-01

    The world is demanding on the alternative fuel and reducing the fuel consumption of land transportation especially in the automotive industries. This paper emphasizes the development of the energy regenerative suspension system (EReSS) for energy efficient vehicle (EEV) or hybrid. The EReSS product is fabricated and tested on the laboratory and real vehicle. The test is conducted to test the function of the EReSS system on real vehicle. The test is done using the multimeter to record the reading of voltage produces by the EReSS system that is attached to the vehicle suspension system. The experiment starts by setting the parameters in the EReSS system which is the number of windings with a standard magnet. Road irregularity is one of the important parts of the experiment which is set to be various types of road condition and driving style. A domestic car model is selected for the EReSS test that the system can be installed. The test of the EReSS gives out the maximum output voltage of 5.6 V with 530 windings. Improvement on the material can increase the output voltage. The EReSS is function on the real vehicle by producing voltage by harvesting the kinetic energy from the suspension vibration.

  19. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Christophersen, Jon P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  20. Generator voltage stabilisation for series-hybrid electric vehicles.

    Science.gov (United States)

    Stewart, P; Gladwin, D; Stewart, J; Cowley, R

    2008-04-01

    This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle.

  1. Optimal Control of Engine Warmup in Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    van Reeven Vital

    2016-01-01

    Full Text Available An Internal Combustion Engine (ICE under cold conditions experiences increased friction losses due to a high viscosity of the lubricant. With the additional control freedom present in hybrid electric vehicles, the losses during warmup can be minimized and fuel can be saved. In this paper, firstly, a control-oriented model of the ICE, describing the warmup behavior, is developed and validated on measured vehicle data. Secondly, the two-state, non-autonomous fuel optimization, for a parallel hybrid electric vehicle with stop-start functionality, is solved using optimal control theory. The principal behavior of the Lagrange multipliers is explicitly derived, including the discontinuities (jumps that are caused by the constraints on the lubricant temperature and the energy in the battery system. The minimization of the Hamiltonian for this two-state problem is also explicitly solved, resulting in a computationally efficient algorithm. The optimal controller shows the fuel benefit, as a function of the initial temperature, for a long-haul truck simulated on the FTP-75.

  2. Effects of ambient conditions on fuel cell vehicle performance

    Science.gov (United States)

    Haraldsson, K.; Alvfors, P.

    Ambient conditions have considerable impact on the performance of fuel cell hybrid vehicles. Here, the vehicle fuel consumption, the air compressor power demand, the water management system and the heat loads of a fuel cell hybrid sport utility vehicle (SUV) were studied. The simulation results show that the vehicle fuel consumption increases with 10% when the altitude increases from 0 m up to 3000 m to 4.1 L gasoline equivalents/100 km over the New European Drive Cycle (NEDC). The increase is 19% on the more power demanding highway US06 cycle. The air compressor is the major contributor to this fuel consumption increase. Its load-following strategy makes its power demand increase with increasing altitude. Almost 40% of the net power output of the fuel cell system is consumed by the air compressor at the altitude of 3000 m with this load-following strategy and is thus more apparent in the high-power US06 cycle. Changes in ambient air temperature and relative humidity effect on the fuel cell system performance in terms of the water management rather in vehicle fuel consumption. Ambient air temperature and relative humidity have some impact on the vehicle performance mostly seen in the heat and water management of the fuel cell system. While the heat loads of the fuel cell system components vary significantly with increasing ambient temperature, the relative humidity did not have a great impact on the water balance. Overall, dimensioning the compressor and other system components to meet the fuel cell system requirements at the minimum and maximum expected ambient temperatures, in this case 5 and 40 °C, and high altitude, while simultaneously choosing a correct control strategy are important parameters for efficient vehicle power train management.

  3. IEA implementing agreement for hybrid and electric vehicle technologies and programmes, Annex VII hybrid vehicles : Topic 13, assessment of the energy consumption of hybrid trucks using ADVISOR

    NARCIS (Netherlands)

    Eelkema, J.; Winkel, R.G.; Geraets, R.; Verbakel, M.J.L.

    2002-01-01

    This topic report focuses on the possible benefits of the application of a hybrid powertrain in heavy-duty vehicles. The main objective is to assess whether a significant reduction in fuel consumption is feasible. An average Dutch distribution truck with a conventional driveline will be compared to

  4. Organic and hybrid solar cells

    CERN Document Server

    Huang, Hui

    2014-01-01

    This book delivers a comprehensive evaluation of organic and hybrid solar cells and identifies their fundamental principles and numerous applications. Great attention is given to the charge transport mechanism, donor and acceptor materials, interfacial materials, alternative electrodes, device engineering and physics, and device stability. The authors provide an industrial perspective on the future of photovoltaic technologies.

  5. Analysis of fuel cell hybrid locomotives

    Science.gov (United States)

    Miller, Arnold R.; Peters, John; Smith, Brian E.; Velev, Omourtag A.

    Led by Vehicle Projects LLC, an international industry-government consortium is developing a 109 t, 1.2 MW road-switcher locomotive for commercial and military railway applications. As part of the feasibility and conceptual-design analysis, a study has been made of the potential benefits of a hybrid power plant in which fuel cells comprise the prime mover and a battery or flywheel provides auxiliary power. The potential benefits of a hybrid power plant are: (i) enhancement of transient power and hence tractive effort; (ii) regenerative braking; (iii) reduction of capital cost. Generally, the tractive effort of a locomotive at low speed is limited by wheel adhesion and not by available power. Enhanced transient power is therefore unlikely to benefit a switcher locomotive, but could assist applications that require high acceleration, e.g. subway trains with all axles powered. In most cases, the value of regeneration in locomotives is minimal. For low-speed applications such as switchers, the available kinetic energy and the effectiveness of traction motors as generators are both minimal. For high-speed heavy applications such as freight, the ability of the auxiliary power device to absorb a significant portion of the available kinetic energy is low. Moreover, the hybrid power plant suffers a double efficiency penalty, namely, losses occur in both absorbing and then releasing energy from the auxiliary device, which result in a net storage efficiency of no more than 50% for present battery technology. Capital cost in some applications may be reduced. Based on an observed locomotive duty cycle, a cost model shows that a hybrid power plant for a switcher may indeed reduce capital cost. Offsetting this potential benefit are the increased complexity, weight and volume of the power plant, as well as 20-40% increased fuel consumption that results from lower efficiency. Based on this analysis, the consortium has decided to develop a pure fuel cell road-switcher locomotive

  6. Hybrid Electric Vehicles: Some Theoretical Considerations on Consumption Behaviour

    Directory of Open Access Journals (Sweden)

    Fabio Carlucci

    2018-04-01

    Full Text Available Solving the problem of the lack of environmental sustainability in transport activities requires the involvement of new technologies, particularly in populated cities where mobility activities play a major role in generating externalities. The move from cars powered by conventional internal combustion engines to cars powered by alternative energies can make an important contribution to reducing emissions and achieving a more sustainable transport system. Unfortunately, green car market development still remains uncertain because of the higher production costs of batteries and engines. In this context, surprisingly little attention has been devoted to analysing the economic factors affecting consumers’ behaviour in the choice of hybrid electric vehicles. To fill this gap, the diffusion process of hybrid technology as well as intrinsic and extrinsic motivations and the crowding-out effect on consumers’ purchasing decisions are taken under consideration. Finally, some policy recommendations are provided.

  7. Combined Optimal Sizing and Control for a Hybrid Tracked Vehicle

    Directory of Open Access Journals (Sweden)

    Huei Peng

    2012-11-01

    Full Text Available The optimal sizing and control of a hybrid tracked vehicle is presented and solved in this paper. A driving schedule obtained from field tests is used to represent typical tracked vehicle operations. Dynamics of the diesel engine-permanent magnetic AC synchronous generator set, the lithium-ion battery pack, and the power split between them are modeled and validated through experiments. Two coupled optimizations, one for the plant parameters, forming the outer optimization loop and one for the control strategy, forming the inner optimization loop, are used to achieve minimum fuel consumption under the selected driving schedule. The dynamic programming technique is applied to find the optimal controller in the inner loop while the component parameters are optimized iteratively in the outer loop. The results are analyzed, and the relationship between the key parameters is observed to keep the optimal sizing and control simultaneously.

  8. Design Optimization of a Hybrid Electric Vehicle Powertrain

    Science.gov (United States)

    Mangun, Firdause; Idres, Moumen; Abdullah, Kassim

    2017-03-01

    This paper presents an optimization work on hybrid electric vehicle (HEV) powertrain using Genetic Algorithm (GA) method. It focused on optimization of the parameters of powertrain components including supercapacitors to obtain maximum fuel economy. Vehicle modelling is based on Quasi-Static-Simulation (QSS) backward-facing approach. A combined city (FTP-75)-highway (HWFET) drive cycle is utilized for the design process. Seeking global optimum solution, GA was executed with different initial settings to obtain sets of optimal parameters. Starting from a benchmark HEV, optimization results in a smaller engine (2 l instead of 3 l) and a larger battery (15.66 kWh instead of 2.01 kWh). This leads to a reduction of 38.3% in fuel consumption and 30.5% in equivalent fuel consumption. Optimized parameters are also compared with actual values for HEV in the market.

  9. Data Fusion Modeling for an RT3102 and Dewetron System Application in Hybrid Vehicle Stability Testing

    OpenAIRE

    Zhibin Miao; Hongtian Zhang

    2015-01-01

    More and more hybrid electric vehicles are driven since they offer such advantages as energy savings and better active safety performance. Hybrid vehicles have two or more power driving systems and frequently switch working condition, so controlling stability is very important. In this work, a two-stage Kalman algorithm method is used to fuse data in hybrid vehicle stability testing. First, the RT3102 navigation system and Dewetron system are introduced. Second, a modeling of data fusion is p...

  10. Hybrid and electric advanced vehicle systems (heavy) simulation

    Science.gov (United States)

    Hammond, R. A.; Mcgehee, R. K.

    1981-01-01

    A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

  11. Karakats: the Bricolage of Hybrid Vehicles that Skate and Swim

    Directory of Open Access Journals (Sweden)

    Patrick Laviolette

    2015-06-01

    Full Text Available This paper explores the material culture of ‘karakat’ (Russian karakatitsa hybrid vehicles in the town of Kallaste, east Estonia. It focuses on the social factors that allow karakat culture to change. The region of study was part of the Soviet Union so the phenomenon of self-assembled vehicles implies socialist and communist considerations. Local people are still surrounded by the material legacy of that time. Technological assemblages from the past therefore continue to live in the present. It was popular in the USSR to maintain off-road vehicles, which were put together with the owner’s own hands. Such a bricolage technique has been preserved since the middle of the 20th century and is something that is used as a marker of local identity. The distribution of spare parts was problematic in former Soviet times and this has influenced the way men now make karakats. Current owners spend a lot of time servicing their vehicles. The issue of masculinity is highly relevant here because dealing with technology is seen as a masculine activity. Moreover, because it is increasingly open to tourists, karakat culture is becoming a tradable commodity.

  12. Intelligent emission-sensitive routing for plugin hybrid electric vehicles.

    Science.gov (United States)

    Sun, Zhonghao; Zhou, Xingshe

    2016-01-01

    The existing transportation sector creates heavily environmental impacts and is a prime cause for the current climate change. The need to reduce emissions from this sector has stimulated efforts to speed up the application of electric vehicles (EVs). A subset of EVs, called plug-in hybrid electric vehicles (PHEVs), backup batteries with combustion engine, which makes PHEVs have a comparable driving range to conventional vehicles. However, this hybridization comes at a cost of higher emissions than all-electric vehicles. This paper studies the routing problem for PHEVs to minimize emissions. The existing shortest-path based algorithms cannot be applied to solving this problem, because of the several new challenges: (1) an optimal route may contain circles caused by detour for recharging; (2) emissions of PHEVs not only depend on the driving distance, but also depend on the terrain and the state of charge (SOC) of batteries; (3) batteries can harvest energy by regenerative braking, which makes some road segments have negative energy consumption. To address these challenges, this paper proposes a green navigation algorithm (GNA) which finds the optimal strategies: where to go and where to recharge. GNA discretizes the SOC, then makes the PHEV routing problem to satisfy the principle of optimality. Finally, GNA adopts dynamic programming to solve the problem. We evaluate GNA using synthetic maps generated by the delaunay triangulation. The results show that GNA can save more than 10 % energy and reduce 10 % emissions when compared to the shortest path algorithm. We also observe that PHEVs with the battery capacity of 10-15 KWh detour most and nearly no detour when larger than 30 KWh. This observation gives some insights when developing PHEVs.

  13. Predictive Energy Management Strategy Including Traffic Flow Data for Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Bouwman, K.R.; Pham, T.H.; Wilkins, S.; Hofman, T.

    2017-01-01

    Within hybrid electric vehicles (HEVs) predictive energy management strategies (EMSs) have the potential to reduce the fuel consumption compared to conventional EMSs, where the drive cycle is unknown. Typically, predictive EMSs require a future vehicle speed profile prediction. However, when

  14. Evaluation of sounds for hybrid and electric vehicles operating at low speed

    Science.gov (United States)

    2012-10-22

    Electric vehicles (EV) and hybrid electric vehicles (HEVs), operated at low speeds may reduce auditory cues used by pedestrians to assess the state of nearby traffic creating a safety issue. This field study compares the auditory detectability of num...

  15. Simulation and Test of a Fuel Cell Hybrid Golf Cart

    Directory of Open Access Journals (Sweden)

    Jingming Liang

    2014-01-01

    Full Text Available This paper establishes the simulation model of fuel cell hybrid golf cart (FCHGC, which applies the non-GUI mode of the Advanced Vehicle Simulator (ADVISOR and the genetic algorithm (GA to optimize it. Simulation of the objective function is composed of fuel consumption and vehicle dynamic performance; the variables are the fuel cell stack power sizes and the battery numbers. By means of simulation, the optimal parameters of vehicle power unit, fuel cell stack, and battery pack are worked out. On this basis, GUI mode of ADVISOR is used to select the rated power of vehicle motor. In line with simulation parameters, an electrical golf cart is refitted by adding a 2 kW hydrogen air proton exchange membrane fuel cell (PEMFC stack system and test the FCHGC. The result shows that the simulation data is effective but it needs improving compared with that of the real cart test.

  16. Energy Management and Control of Plug-In Hybrid Electric Vehicle Charging Stations in a Grid-Connected Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Sidra Mumtaz

    2017-11-01

    Full Text Available The charging infrastructure plays a key role in the healthy and rapid development of the electric vehicle industry. This paper presents an energy management and control system of an electric vehicle charging station. The charging station (CS is integrated to a grid-connected hybrid power system having a wind turbine maximum power point tracking (MPPT controlled subsystem, photovoltaic (PV MPPT controlled subsystem and a controlled solid oxide fuel cell with electrolyzer subsystem which are characterized as renewable energy sources. In this article, an energy management system is designed for charging and discharging of five different plug-in hybrid electric vehicles (PHEVs simultaneously to fulfil the grid-to-vehicle (G2V, vehicle-to-grid (V2G, grid-to-battery storage system (G2BSS, battery storage system-to-grid (BSS2G, battery storage system-to-vehicle (BSS2V, vehicle-to-battery storage system (V2BSS and vehicle-to-vehicle (V2V charging and discharging requirements of the charging station. A simulation test-bed in Matlab/Simulink is developed to evaluate and control adaptively the AC-DC-AC converter of non-renewable energy source, DC-DC converters of the storage system, DC-AC grid side inverter and the converters of the CS using adaptive proportional-integral-derivate (AdapPID control paradigm. The effectiveness of the AdapPID control strategy is validated through simulation results by comparing with conventional PID control scheme.

  17. Study on the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles

    DEFF Research Database (Denmark)

    Pinto, Cláudio; Barreras, Jorge V.; de Castro, Ricardo

    2017-01-01

    This paper presents a study of the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles. In particular, the aim is to find the number of battery (and supercapacitor) cells to propel a light vehicle to run two different standard driving cycles....... Three equivalent circuit models are considered to simulate the battery electrical performance: linear static, non-linear static and non-linear with first-order dynamics. When dimensioning a battery-based vehicle, less complex models may lead to a solution with more battery cells and higher costs....... Despite the same tendency, when a hybrid vehicle is taken into account, the influence of the battery models is dependent on the sizing strategy. In this work, two sizing strategies are evaluated: dynamic programming and filter-based. For the latter, the complexity of the battery model has a clear...

  18. Procedure for the Design of a Hybrid-Series Vehicle and the Hybridization Degree Choice

    Directory of Open Access Journals (Sweden)

    Antonino Coccia

    2010-03-01

    Full Text Available For years, the interest of the UDR1 research group has focused on the development of a Hybrid Series (HS vehicle, different from the standard one thanks to the use of a Gas Turbine set (GT as a thermal engine. The reason for this choice resides in the opportunity to reduce weight and dimensions, in comparison to a traditional Internal Combustion Engine (ICE. It is not possible to use the GT engine set directly for the vehicle traction, therefore the UDR1 HS configuration shows the GT set connected with the electric generator only. The result is that the traction is purely electric. The resulting engine configuration is a commonly defined Hybrid Series. Many efforts are spent in the definition of a generic scientific method to define the correct ratio (Degree of Hybridization between the installed power of the battery pack and that of the GT electric generator, which simultaneously guarantees the life of the battery pack and the capacity of the vehicle to complete a common mission without lack of energy or stopping. This article reports a method to define the power ratio between battery pack and GT generator, applied to a recent commission for the development of a mini city bus.

  19. A battery-fuel cell hybrid auxiliary power unit for trucks: Analysis of direct and indirect hybrid configurations

    International Nuclear Information System (INIS)

    Samsun, Remzi Can; Krupp, Carsten; Baltzer, Sidney; Gnörich, Bruno; Peters, Ralf; Stolten, Detlef

    2016-01-01

    Highlights: • A battery-fuel cell hybrid auxiliary power unit for heavy duty vehicles is reported. • Comparison of direct and indirect hybrids using representative load profiles. • Evaluation based on validated fuel cell system and battery models. • Indirect hybrid with constant fuel cell load yields 29.3% hybrid system efficiency. • Fuel cell should be pre-heated using waste heat from the diesel engine during drive. - Abstract: The idling operation of engines in heavy duty vehicles to cover electricity demand during layovers entails significant fuel consumption and corresponding emissions. Indeed, this mode of operation is highly inefficient and a noteworthy contributor to the transportation sector’s aggregate carbon dioxide emissions. Here, a potential solution to this wasteful practice is outlined in the form of a hybrid battery-fuel cell system for application as an auxiliary power unit for trucks. Drawing on experimentally-validated fuel cell and battery models, several possible hybrid concepts are evaluated and direct and indirect hybrid configurations analyzed using a representative load profile. The results indicate that a direct hybrid configuration is only applicable if the load demand profile does not deviate strongly from the assumed profile. Operation of an indirect hybrid with a constant fuel cell load yields the greatest hybrid system efficiency, at 29.3%, while battery size could be reduced by 87% if the fuel cell is operated at the highest dynamics. Maximum efficiency in truck applications can be achieved by pre-heating the system prior to operation using exhaust heat from the motor, which increased system efficiency from 25.3% to 28.1%, including start-up. These findings confirm that hybrid systems could offer enormous fuel savings and constitute a sizeable step on the path toward energy-efficient and environmentally-friendly heavy duty vehicles that does not necessitate a fuel switch.

  20. A systematic design approach for two planetary gear split hybrid vehicles

    Science.gov (United States)

    Liu, Jinming; Peng, Huei

    2010-11-01

    Multiple power sources in a hybrid vehicle allow for flexible vehicle power-train operations, but also impose kinematic constraints due to component characteristics. This paper presents a design process that enables systematic search and screening through all three major dimensions of hybrid vehicle designs - system configuration, component sizing and control, to achieve optimal performance while satisfying the imposed constraints. An automated dynamic modelling method is first developed which enables the construction of hybrid vehicle model efficiently. A screening process then narrows down to configurations that satisfy drivability and operation constraints. Finally, a design and control optimisation strategy is carried out to obtain the best execution of each configuration. A case study for the design of a power-split hybrid vehicle with optimal fuel economy is used to demonstrate this overall hybrid vehicle design process.

  1. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    Science.gov (United States)

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326

  2. Fuel cells: a real option for Unmanned Aerial Vehicles propulsion.

    Science.gov (United States)

    González-Espasandín, Óscar; Leo, Teresa J; Navarro-Arévalo, Emilio

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.

  3. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    Directory of Open Access Journals (Sweden)

    Óscar González-Espasandín

    2014-01-01

    Full Text Available The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC and Direct Methanol Fuel Cells (DMFC, their fuels (hydrogen and methanol, and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.

  4. A Hybrid Intelligent Multisensor Positioning Methodology for Reliable Vehicle Navigation

    Directory of Open Access Journals (Sweden)

    Xu Li

    2015-01-01

    Full Text Available With the rapid development of intelligent transportation systems worldwide, it becomes more important to realize accurate and reliable vehicle positioning in various environments whether GPS is available or not. This paper proposes a hybrid intelligent multisensor positioning methodology fusing the information from low-cost sensors including GPS, MEMS-based strapdown inertial navigation system (SINS and electronic compass, and velocity constraint, which can achieve a significant performance improvement over the integration scheme only including GPS and MEMS-based SINS. First, the filter model of SINS aided by multiple sensors is presented in detail and then an improved Kalman filter with sequential measurement-update processing is developed to realize the filtering fusion. Further, a least square support vector machine- (LS SVM- based intelligent module is designed and augmented with the improved KF to constitute the hybrid positioning system. In case of GPS outages, the LS SVM-based intelligent module trained recently is used to predict the position error to achieve more accurate positioning performance. Finally, the proposed hybrid positioning method is evaluated and compared with traditional methods through real field test data. The experimental results validate the feasibility and effectiveness of the proposed method.

  5. Stochastic Optimal Control of Parallel Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Feiyan Qin

    2017-02-01

    Full Text Available Energy management strategies (EMSs in hybrid electric vehicles (HEVs are highly related to the fuel economy and emission performances. However, EMS constitutes a challenging problem due to the complex structure of a HEV and the unknown or partially known driving cycles. To meet this problem, this paper adopts a stochastic dynamic programming (SDP method for the EMS of a specially designed vehicle, a pre-transmission single-shaft torque-coupling parallel HEV. In this parallel HEV, the auto clutch output is connected to the transmission input through an electric motor, which benefits an efficient motor assist operation. In this EMS, demanded torque of driver is modeled as a one-state Markov process to represent the uncertainty of future driving situations. The obtained EMS has been evaluated with ADVISOR2002 over two standard government drive cycles and a self-defined one, and compared with a dynamic programming (DP one and a rule-based one. Simulation results have shown the real-time performance of the proposed approach, and potential vehicle performance improvement relative to the rule-based one.

  6. Development of commercial hybrid electric vehicle with native key components

    Directory of Open Access Journals (Sweden)

    S. V. Bakhmutov

    2014-01-01

    Full Text Available The perspectives of development of medium weight cargo vehicles with hybrid powertrain including Russian native key components are considered in this article. Series-parallel scheme of HEV is more relevant owing to limitations of series and parallel schemes. An example of this technology is described. This technical solution has good facilities for variation of HEV and AWD type. The authors have patented it. In addition, another main issue is to choose the types of key components with good correlation for parameters of ICE, electric motors, batteries, and inverter. Using mathematical model of the vehicle a selection and correlation of technical characteristics were carried out to meet ecological and economical requirements. After computing calculation two control strategies were accepted. The first strategy contributes to good fuel consumption, while the other one is aimed at ecology. Researchers use test benches to confirm the results of calculation, and this one was built by the authors applying native components. The result of experiment on the test bench is the growth of fuel consumption of the medium weight cargo vehicle by 25% and compliance with ecological class Euro-4.

  7. Electric and Hybrid Vehicles Program 18th annual report to Congress for Fiscal Year 1994

    Science.gov (United States)

    1995-04-01

    The Department remains focused on the technologies that are critical to making electric and hybrid vehicles commercially viable and competitive with current production gasoline-fueled vehicles in performance, reliability, and affordability. During Fiscal Year 1994, significant progress was made toward fulfilling the intent of Congress. The Department and the United States Advanced Battery Consortium (a partnership of the three major domestic automobile manufacturers) continued to work together and to focus the efforts of battery developers on the battery technologies that are most likely to be commercialized in the near term. Progress was made in industry cost-shared contracts toward demonstrating the technical feasibility of fuel cells for passenger bus and light duty vehicle applications. Two industry teams which will develop hybrid vehicle propulsion technologies have been selected through competitive procurement and have initiated work, in Fiscal Year 1994. In addition, technical studies and program planning continue, as required by the Energy Policy Act of 1992, to achieve the goals of reducing the transportation sector dependence on imported oil, reducing the level of environmentally harmful emissions, and enhancing industrial productivity and competitiveness.

  8. Energy Management Strategies for Diesel Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Grondin Olivier

    2015-01-01

    Full Text Available This paper focuses on hybrid energy management for a Diesel Hybrid Electric Vehicle (HEV with a parallel architecture. The proposed strategy focuses on the reduction of Nitric Oxides (NOx emissions that represents a key issue to meet diesel emissions standards. The strategy is split in two separated functions aiming at limiting the NOx in steady-state and transient operating conditions. The first functions, control the torque split between the engine and the electric motor. This energy management is based on the Equivalent Consumption Minimization Strategy (ECMS where an additional degree of freedom is introduced to tune the optimization tradeoffs from the pure fuel economy case to the pure NOx limitation case. The second function adapts the torque split ratio between the motor and the engine, initially computed from the optimal control strategy during transient operations where NOx are produced. The engine torque correction relies on mean value models for the EGR system dynamics and for the NOx formation. This paper applies a methodology based on Software in the Loop (SiL and Hardware in the Loop (HiL simulations in order to understand the system performance according to the powertrain configurations and also to tune the proposed energy management strategy. The simulation results are confirmed by experiments performed on Hybrid-Hardware in the Loop (Hy-HiL test bench. This work shows the potential of using the hybrid architecture to limit NOx emissions by choosing the best operating point and by limiting the engine dynamics. The NOx reduction has limited impact on fuel consumption.

  9. Wavelet-Transform-Based Power Management of Hybrid Vehicles with Multiple On-board Energy Sources Including Fuel Cell, Battery and Ultracapacitor

    Science.gov (United States)

    2008-09-12

    considered to be promising for application as distributed generation sources due to high efficiency and compactness [1-2], [21-24]. The PEMFC is...also a primary candidate for environment-friendly vehicles. The nomenclatures of the PEMFC are as follows: B , C : Constants to calculate the...0 O H H-O H-O 1 2 N I q q r r FU = (10) The block diagram of the PEMFC model based on the above equations is shown in Fig

  10. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : phase II, final report, March 2010.

    Science.gov (United States)

    2010-03-01

    The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (N...

  11. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : phase I final report, March 2009.

    Science.gov (United States)

    2009-03-01

    The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (N...

  12. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : phase II final report.

    Science.gov (United States)

    2010-03-01

    The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (N...

  13. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : phase III final report.

    Science.gov (United States)

    2011-08-01

    The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (N...

  14. Energy control strategy for a hybrid electric vehicle

    Science.gov (United States)

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2002-08-27

    An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

  15. Green light optimal speed advisory for hybrid electric vehicles

    Science.gov (United States)

    Luo, Yugong; Li, Shan; Zhang, Shuwei; Qin, Zhaobo; Li, Keqiang

    2017-03-01

    There are few studies on the speed optimization of hybrid electric vehicles (HEVs) in an intelligent transportation system (ITS), and therefore, this paper proposes a novel optimal speed advisory strategy for continuous intersections that helps reduce fuel consumption and passing time. The map of the complex fuel consumption model of HEVs is constructed, and a method based on a genetic algorithm that considers continuous intersections and traffic conditions is designed to solve this nonlinear optimization problem. The comparison of the results of a real driving test and a single-intersection optimization algorithm with the simulation results of the proposed optimal speed algorithm for continuous intersections shows that the proposed strategy has a significant advantage in reducing fuel consumption and intersection passing time.

  16. The Impact of Hybrid Electric Vehicles Incentives on Demand and the Determinants of Hybrid-Vehicle Adoption

    Science.gov (United States)

    Riggieri, Alison

    According to the Energy Information Administration, transportation currently accounts for over 60% of U.S. oil demand (E.I.A. 2010). Improving automobile energy efficiency could therefore reduce oil consumption and the negative environmental effects of automobile use. Subsidies for energy-efficient technologies such as hybrid-electric vehicles have gained political popularity since their introduction into the market and therefore have been implemented with increasing frequency. After the introduction of hybrid-electric vehicles into the U.S. market, the federal government initially implemented a 2000 federal tax deduction for these vehicles (later increased to a 3500 credit). Many states followed, offering various exemptions, such as high-occupancy vehicle (HOV) lane use, and excise-tax, sales-tax, and income-tax exemptions. Because not all states have implemented these subsidies, this policy topic is an ideal candidate for an outcome evaluation using an observational study postulation. States adopt incentives for different reasons based on factors that make adoption more attractive, however, so it is first necessary to identify these differences that predict policy adoption. This allows for the evaluative work to control for self selection bias. Three classes of internal determinants of policy adoption, political context, problem severity, and institutional support, and one type of external diffusion factor, are tested using logistic regression. Results suggest that the number of neighboring states that have already adopted incentives are consistently a determinant of diffusion for all three types of incentives test, HOV lane exemptions, sales-tax exemptions, and income-tax exemptions. In terms of internal factors, constituent support, a type of political context, predicts, sale-tax, income-tax, and HOV lane exemptions, but that the other two classes of determinants, problem severity and institutional support, were not universally significant across types of

  17. Dynamic Modeling and Simulation of a Switched Reluctance Motor in a Series Hybrid Electric Vehicle

    OpenAIRE

    Siavash Sadeghi; Mojtaba Mirsalim; Arash Hassanpour Isfahani

    2010-01-01

    Dynamic behavior analysis of electric motors is required in order to accuratelyevaluate the performance, energy consumption and pollution level of hybrid electricvehicles. Simulation tools for hybrid electric vehicles are divided into steady state anddynamic models. Tools with steady-state models are useful for system-level analysiswhereas tools that utilize dynamic models give in-depth information about the behavior ofsublevel components. For the accurate prediction of hybrid electric vehicl...

  18. Development of hybrid electric vehicle powertrain test system based on virtue instrument

    Science.gov (United States)

    Xu, Yanmin; Guo, Konghui; Chen, Liming

    2017-05-01

    Hybrid powertrain has become the standard configuration of some automobile models. The test system of hybrid vehicle powertrain was developed based on virtual instrument, using electric dynamometer to simulate the work of engines, to test the motor and control unit of the powertrain. The test conditions include starting, acceleration, and deceleration. The results show that the test system can simulate the working conditions of the hybrid electric vehicle powertrain under various conditions.

  19. Hardware In the Loop Simulation of a Diesel Parallel Mild-Hybrid Electric Vehicle

    OpenAIRE

    TRIGUI, Rochdi; JEANNERET, Bruno; MALAQUIN, Bertrand; BADIN, François; PLASSE , C

    2007-01-01

    Hybrid vehicles present a real potential to reduce CO2 emission and energy dependency. The simulation of these vehicles is well adapted to highlight the first order influent parameters. However, more realistic components and HEVs performance versus cost could be identified and improved by testing using the HIL concept. This paper deals with the test and validation of a parallel mild-hybrid vehicle with a first HIL configuration presenting a low additional cost. Measured fuel consumption reduc...

  20. Hybrid neural network bushing model for vehicle dynamics simulation

    International Nuclear Information System (INIS)

    Sohn, Jeong Hyun; Lee, Seung Kyu; Yoo, Wan Suk

    2008-01-01

    Although the linear model was widely used for the bushing model in vehicle suspension systems, it could not express the nonlinear characteristics of bushing in terms of the amplitude and the frequency. An artificial neural network model was suggested to consider the hysteretic responses of bushings. This model, however, often diverges due to the uncertainties of the neural network under the unexpected excitation inputs. In this paper, a hybrid neural network bushing model combining linear and neural network is suggested. A linear model was employed to represent linear stiffness and damping effects, and the artificial neural network algorithm was adopted to take into account the hysteretic responses. A rubber test was performed to capture bushing characteristics, where sine excitation with different frequencies and amplitudes is applied. Random test results were used to update the weighting factors of the neural network model. It is proven that the proposed model has more robust characteristics than a simple neural network model under step excitation input. A full car simulation was carried out to verify the proposed bushing models. It was shown that the hybrid model results are almost identical to the linear model under several maneuvers

  1. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    Energy Technology Data Exchange (ETDEWEB)

    Short, W.; Denholm, P.

    2006-04-01

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  2. Electric and Hybrid Vehicles Program. Sixteenth annual report to Congress for fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    This report describes the progress achieved in developing electric and hybrid vehicle technologies, beginning with highlights of recent accomplishments in FY 1992. Detailed descriptions are provided of program activities during FY 1992 in the areas of battery, fuel cell, and propulsion system development, and testing and evaluation of new technology in fleet site operations and in laboratories. This Annual Report also contains a status report on incentives and use of foreign components, as well as a list of publications resulting from the DOE program.

  3. Lyapunov based control of hybrid energy storage system in electric vehicles

    DEFF Research Database (Denmark)

    El Fadil, H.; Giri, F.; Guerrero, Josep M.

    2012-01-01

    This paper deals with a Lyapunov based control principle in a hybrid energy storage system for electric vehicle. The storage system consists on fuel cell (FC) as a main power source and a supercapacitor (SC) as an auxiliary power source. The power stage of energy conversion consists on a boost...... voltage regulations, ii) perfect tracking of SC current to its reference, and iii) asymptotic stability of the closed loop system. It is clearly shown, using formal analysis and simulations that the designed controller meets all the objectives....

  4. Fuel cell vehicle technologies, infrastructure and requirements.

    Science.gov (United States)

    2017-04-01

    Fuel cell electric vehicles (FCEVs) use hydrogen as fuel and exhaust only water and heat. They : provide driving ranges and fueling times comparable to gasoline vehicles. Despite the advantages, : FCEVs have been in and out of the spot light of the a...

  5. Nanostructured organic and hybrid solar cells.

    Science.gov (United States)

    Weickert, Jonas; Dunbar, Ricky B; Hesse, Holger C; Wiedemann, Wolfgang; Schmidt-Mende, Lukas

    2011-04-26

    This Progress Report highlights recent developments in nanostructured organic and hybrid solar cells. The authors discuss novel approaches to control the film morphology in fully organic solar cells and the design of nanostructured hybrid solar cells. The motivation and recent results concerning fabrication and effects on device physics are emphasized. The aim of this review is not to give a summary of all recent results in organic and hybrid solar cells, but rather to focus on the fabrication, device physics, and light trapping properties of nanostructured organic and hybrid devices. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Environmental Assessment of the US Department of Energy Electric and Hybrid Vehicle Program

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.K.; Bernard, M.J. III; Walsh, R.F

    1980-11-01

    This environmental assessment (EA) focuses on the long-term (1985-2000) impacts of the US Department of Energy (DOE) electric and hybrid vehicle (EHV) program. This program has been designed to accelerate the development of EHVs and to demonstrate their commercial feasibility as required by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (P.L. 94-413), as amended (P.L. 95-238). The overall goal of the program is the commercialization of: (1) electric vehicles (EVs) acceptable to broad segments of the personal and commercial vehicle markets, (2) hybrid vehicles (HVs) with range capabilities comparable to those of conventional vehicles (CVs), and (3) advanced EHVs completely competitive with CVs with respect to both cost and performance. Five major EHV projects have been established by DOE: market demonstration, vehicle evaluation and improvement, electric vehicle commercialization, hybrid vehicle commercialization, and advanced vehicle development. Conclusions are made as to the effects of EV and HV commercialization on the: consumption and importation of raw materials; petroleum and total energy consumption; ecosystems impact from the time of obtaining raw material through vehicle use and materials recycling; environmental impacts on air and water quality, land use, and noise; health and safety aspects; and socio-economic factors. (LCL)

  7. MODELLING AND CONTROL OF POWER-SPLIT HYBRID ELECTRIC VEHICLE USING FUZZY LOGIC METHOD

    OpenAIRE

    Mohammadpour, Ebrahim; Khajavi, Mehrdad Nouri

    2014-01-01

    Nowadays, automotive manufactures increasingly have lead to development of hybrid vehicles due to energy consumption growing and increased emissions. the power-split hybrids due to the simultaneous using of speed and torque couplings has integrated advantage of series and parallel hybrid systems and minimize their disadvantages , however the power-split hybrids control strategy is far more complex than other types. Generally the control strategy tries to use the optimize operating point of HE...

  8. Electric and hybrid vehicle self-certification and verification procedures: Market Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-03-01

    The process by which a manufacturer of an electric or hybrid vehicle certifies that his vehicle meets the DOE Performance Standards for Demonstration is described. Such certification is required for any vehicles to be purchased under the Market Demonstration Program. It also explains the verification testing process followed by DOE for testing to verify compliance. Finally, the document outlines manufacturer responsibilities and presents procedures for recertification of vehicles that have failed verification testing.

  9. Predictive control strategies for energy saving of hybrid electric vehicles based on traffic light information

    Directory of Open Access Journals (Sweden)

    Kaijiang YU

    2015-10-01

    Full Text Available As the conventional control method for hybrid electric vehicle doesn’t consider the effect of known traffic light information on the vehicle energy management, this paper proposes a model predictive control intelligent optimization strategies based on traffic light information for hybrid electric vehicles. By building the simplified model of the hybrid electric vehicle and adopting the continuation/generalized minimum residual method, the model prediction problem is solved. The simulation is conducted by using MATLAB/Simulink platform. The simulation results show the effectiveness of the proposed model of the traffic light information, and that the proposed model predictive control method can improve fuel economy and the real-time control performance significantly. The research conclusions show that the proposed control strategy can achieve optimal control of the vehicle trajectory, significantly improving fuel economy of the vehicle, and meet the system requirements for the real-time optimal control.

  10. Linear engine development for series hybrid electric vehicles

    Science.gov (United States)

    Toth-Nagy, Csaba

    This dissertation argues that diminishing oil reserves, concern over global climate change, and desire to improve ambient air quality all demand the development of environment-friendly personal transportation. In certain applications, series hybrid electric vehicles offer an attractive solution to reducing fuel consumption and emissions. Furthermore, linear engines are emerging as a powerplant suited to series HEV applications. In this dissertation, a linear engine/alternator was considered as the auxiliary power unit of a range extender series hybrid electric vehicle. A prototype linear engine/alternator was developed, constructed and tested at West Virginia University. The engine was a 2-stroke, 2-cylinder, dual piston, direct injection, diesel engine. Experiment on the engine was performed to study its behavior. The study variables included mass of the translator, amount of fuel injected, injection timing, load, and stroke with operating frequency and mechanical efficiency as the basis of comparison. The linear engine was analyzed in detail and a simple simulation model was constructed to compare the trends of simulation with the experimental data and to expand on the area where the experimental data were lacking. The simulation was based on a simple and analytical model, rather than a detailed and intensely numerical one. The experimental and theoretical data showed similar trends. Increasing translator mass decreased the operating frequency and increased compression ratio. Larger mass and increased compression ratio improved the ability of the engine to sustain operation and the engine was able to idle on less fuel injected into the cylinder. Increasing the stroke length caused the operating frequency to drop. Increasing fueling or decreasing the load resulted in increased operating frequency. This projects the possibility of using the operating frequency as an input for feedback control of the engine. Injection timing was varied to investigate two different

  11. Hybrid vehicle system studies and optimized hydrogen engine design

    Science.gov (United States)

    Smith, J. R.; Aceves, S.

    1995-04-01

    We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO(x) emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO(x) concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO(x). Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today's gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

  12. Shifting primary energy source and NOx emission location with plug-in hybrid vehicles

    Science.gov (United States)

    Karman, Deniz

    2011-06-01

    various fuel and vehicle technologies. Three chapters are of particular interest from the perspective of PHEVs: (2) Techno-economic comparison of series hybrid, fuel cell and regular cars; (3) Energy use, cost and CO2 emissions of electric cars; and (4) Combining hybrid cars and synthetic fuels with electricity generation and carbon capture and storage. The study is noteworthy not only for the technical analyses and quantitative cost comparisons, but also for addressing questions relating to the transition from the current state of affairs to future 'optimal' scenarios. Multiple transportation fuel technologies/options (9 different fuels produced with 23 different technologies), vehicle technologies (36 types of cars, buses, trucks, and vans), and electric power generation technologies are considered under nine policy based scenarios. It is not possible to do justice to the thoroughness of the thesis within the context of this brief perspective, but one quote from the thesis may be appropriate: 'Across scenarios, time periods and reduction targets, our least-cost optimal configurations show a preference for biofuels and hybrid cars over electric or fuel cell cars. In addition to having lower costs, this allows for an easier transition as less infrastructure change is required to support hybrid cars than to facilitate large scale use of electric or hydrogen fuel cell cars.' Without forgetting that the analysis is specific to its setting in the Netherlands, it is nevertheless a challenging starting point for similar analyses elsewhere. The accompanying article to this perspective and the studies mentioned above point to the interest in, and the challenges associated with PHEV technology, its adoption and implementation over a realistic time frame, in different geographic regions. Elgowainy et al (2010) estimate the penetration of PHEV technology as 10% share of PHEVs in the 2020 US vehicle population. In one of van Vliet's (2010) scenarios (Forced Electric Car) a target of

  13. Sizing stack and battery of a fuel cell hybrid distribution truck

    NARCIS (Netherlands)

    Bram Veenhuizen; P. van den Bosch; T. Hofman; Edwin Tazelaar; Y. Shen

    2012-01-01

    An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW) and battery (kW, kWh) sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define

  14. Public policies for hybrid-electric vehicles: The impact of government incentives on consumer adoption

    Science.gov (United States)

    Diamond, David B.

    This dissertation examines the outcomes and effectiveness of public policies designed to promote the adoption of hybrid-electric vehicles (HEVs). As a primary methodology, I employ cross-sectional analysis of hybrid registration data over time for U.S. states and Virginia municipalities to examine the relationship between hybrid adoption and a variety of socioeconomic and policy variables. I also compare hybrid adoption patterns over time to the U.S. average for specific states that have changed incentive policies, to determine whether these policy changes are consistent with significant changes in adoption patterns. The results of these analyses suggest a strong relationship between gasoline prices and hybrid adoption, but a much weaker relationship between incentive policies and hybrid adoption. Incentives that allow hybrids to access High Occupancy Vehicle (HOV) lanes with only one occupant may also be effective in promoting adoption, but only under specific circumstances and with the potential for significant unintended consequences.

  15. A study on optimization of hybrid drive train using Advanced Vehicle Simulator (ADVISOR)

    Science.gov (United States)

    Same, Adam; Stipe, Alex; Grossman, David; Park, Jae Wan

    This study investigates the advantages and disadvantages of three hybrid drive train configurations: series, parallel, and "through-the-ground" parallel. Power flow simulations are conducted with the MATLAB/Simulink-based software ADVISOR. These simulations are then applied in an application for the UC Davis SAE Formula Hybrid vehicle. ADVISOR performs simulation calculations for vehicle position using a combined backward/forward method. These simulations are used to study how efficiency and agility are affected by the motor, fuel converter, and hybrid configuration. Three different vehicle models are developed to optimize the drive train of a vehicle for three stages of the SAE Formula Hybrid competition: autocross, endurance, and acceleration. Input cycles are created based on rough estimates of track geometry. The output from these ADVISOR simulations is a series of plots of velocity profile and energy storage State of Charge that provide a good estimate of how the Formula Hybrid vehicle will perform on the given course. The most noticeable discrepancy between the input cycle and the actual velocity profile of the vehicle occurs during deceleration. A weighted ranking system is developed to organize the simulation results and to determine the best drive train configuration for the Formula Hybrid vehicle. Results show that the through-the-ground parallel configuration with front-mounted motors achieves an optimal balance of efficiency, simplicity, and cost. ADVISOR is proven to be a useful tool for vehicle power train design for the SAE Formula Hybrid competition. This vehicle model based on ADVISOR simulation is applicable to various studies concerning performance and efficiency of hybrid drive trains.

  16. Vehicle height and posture control of the electronic air suspension system using the hybrid system approach

    Science.gov (United States)

    Sun, Xiaoqiang; Cai, Yingfeng; Chen, Long; Liu, Yanling; Wang, Shaohua

    2016-03-01

    The electronic air suspension (EAS) system can improve ride comfort, fuel economy and handling safety of vehicles by adjusting vehicle height. This paper describes the development of a novel controller using the hybrid system approach to adjust the vehicle height (height control) and to regulate the roll and pitch angles of the vehicle body during the height adjustment process (posture control). The vehicle height adjustment system of EAS poses challenging hybrid control problems, since it features different discrete modes of operation, where each mode has an associated linear continuous-time dynamic. In this paper, we propose a novel approach to the modelling and controller design problem for the vehicle height adjustment system of EAS. The system model is described firstly in the hybrid system description language (HYSDEL) to obtain a mixed logical dynamical (MLD) hybrid model. For the resulting model, a hybrid model predictive controller is tuned to improve the vehicle height and posture tracking accuracy and to achieve the on-off statuses direct control of solenoid valves. The effectiveness and performance of the proposed approach are demonstrated by simulations and actual vehicle tests.

  17. Vehicle Hybrid Braking Control Using Sliding Mode Control

    Science.gov (United States)

    Kasahara, Misawa; Kanai, Yuki; Shiraki, Ryoko; Mori, Yasuchika

    Anti-lock brake system and brake-by-wire are proposed in the vehicle control using a brake, and the braking power is expected to be improved more than ever. The researches such as an application to the ABS of Siliding mode control which considered a actuator dynamics and a hybrid control of the brake using model reference adaptive control are done so far. However, in the former case, speed following that becomes a target exists physically impossible situation by saturation of tire frictional force because only speed following is done. In the latter, the model error is caused because the simulation model and the controller design model are different. Therefore, there is a problem that an accurate follow cannot be done. In this paper, the braking control is performed using the sliding mode control which has high robustness for disturbance that fulfils matching conditions. In so doing, it aims at the achievement of optimal braking control to switch wheel speed following to slip ratio following.

  18. Synthetic fuels for transportation : background paper #1 : the future potential of electric and hybrid vehicles

    Science.gov (United States)

    1982-03-01

    This report presents a comprehensive review of the future of electric and hybrid : vehicles through the year 2010 in the United States. It was prepared for the : Office of Technology Assessment as background information for its study, : "Synthetic Fu...

  19. The Swedish electric and hybrid vehicle R, D and D program. Seminar October 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This publication presents a selection of the ongoing projects in the form of abstracts, within the KFB RDD-program Electric- and Hybrid Vehicles. These projects were presented at a project manager seminar 20-21 October 1998

  20. Hybrid Computational Model for High-Altitude Aeroassist Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A hybrid continuum/noncontinuum computational model will be developed for analyzing the aerodynamics and heating on aeroassist vehicles. Unique features of this...

  1. Improving the energy density of hydraulic hybrid vehicles (HHVS) and evaluating plug-in HHVS.

    Science.gov (United States)

    2010-10-01

    This report describes analyses performed by researchers at The University of Toledo (UT) in : collaboration with researchers at the University of Detroit Mercy (UDM) on the project : Improving the Energy Density of Hydraulic Hybrid Vehicles (HHVs)...

  2. How hybrid-electric vehicles are different from conventional vehicles: the effect of weight and power on fuel consumption

    International Nuclear Information System (INIS)

    Reynolds, C; Kandlikar, M

    2007-01-01

    An increasingly diverse set of hybrid-electric vehicles (HEVs) is now available in North America. The recent generation of HEVs have higher fuel consumption, are heavier, and are significantly more powerful than the first generation of HEVs. We compare HEVs for sale in the United States in 2007 to equivalent conventional vehicles and determine how vehicle weight and system power affects fuel consumption within each vehicle set. We find that heavier and more powerful hybrid-electric vehicles are eroding the fuel consumption benefit of this technology. Nonetheless, the weight penalty for fuel consumption in HEVs is significantly lower than in equivalent conventional internal combustion engine vehicles (ICEVs). A 100 kg change in vehicle weight increases fuel consumption by 0.7 l/100 km in ICEVs compared with 0.4 l/100 km in HEVs. When the HEVs are compared with their ICEV counterparts in an equivalence model that differentiates between cars and sports-utility vehicles, the average fuel consumption benefit was 2.7 l/100 km. This analysis further reveals that a HEV which is 100 kg heavier than an identical ICEV would have a fuel consumption penalty of 0.15 l/100 km. Likewise, an increase in the HEV's power by 10 kW results in a fuel consumption penalty of 0.27 l/100 km

  3. Control strategy of hydraulic/electric synergy system in heavy hybrid vehicles

    International Nuclear Information System (INIS)

    Sun Hui; Yang Lifu; Jing Junqing; Luo Yanling

    2011-01-01

    Energy consumption and exhaust emissions of hybrid vehicles strongly depend on the energy storage source and the applied control strategy. Heavy vehicles have the characteristics of frequent starts/stops and significant amounts of braking energy, which needs to find a more efficient way to store and use the high power flow. A novel parallel hybrid vehicles configuration consisting of hydraulic/electric synergy system is proposed to overcome the existing drawbacks of single energy storage source in heavy hybrid vehicles. A control strategy combining a logic threshold approach and key parameters optimization algorithm is developed to achieve acceptable vehicle performance while simultaneously maximizing engine fuel economy and maintaining the battery state of charge in its rational operation range at all times. The experimental and simulation results illustrate the potential of the proposed control strategy in terms of fuel economy and in keeping the deviations of SOC at high efficiency range.

  4. Hybrid Electric Vehicle Experimental Model with CAN Network Real Time Control

    Directory of Open Access Journals (Sweden)

    RATOI, M.

    2010-05-01

    Full Text Available In this paper an experimental model with a distributed control system of a hybrid electrical vehicle is presented. A communication CAN network of high speed (1 Mbps assures a distributed control of the all components. The modeling and the control of different operating regimes are realized on an experimental test-bench of a hybrid electrical vehicle. The experimental results concerning the variations of the mains variables (currents, torques, speeds are presented.

  5. Programmed cell death and hybrid incompatibility.

    Science.gov (United States)

    Frank, S A; Barr, C M

    2003-01-01

    We propose a new theory to explain developmental aberrations in plant hybrids. In our theory, hybrid incompatibilities arise from imbalances in the mechanisms that cause male sterility in hermaphroditic plants. Mitochondria often cause male sterility by killing the tapetal tissue that nurtures pollen mother cells. Recent evidence suggests that mitochondria destroy the tapetum by triggering standard pathways of programmed cell death. Some nuclear genotypes repress mitochondrial male sterility and restore pollen fertility. Normal regulation of tapetal development therefore arises from a delicate balance between the disruptive effects of mitochondria and the defensive countermeasures of the nuclear genes. In hybrids, incompatibilities between male-sterile mitochondria and nuclear restorers may frequently upset the regulatory control of programmed cell death, causing tapetal abnormalities and male sterility. We propose that hybrid misregulation of programmed cell death may also spill over into other tissues, explaining various developmental aberrations observed in hybrids.

  6. HYBRID FUEL CELL-SOLAR CELL SPACE POWER SUBSYSTEM CAPABILITY.

    Science.gov (United States)

    This report outlines the capabilities and limitations of a hybrid solar cell- fuel cell space power subsystem by comparing the proposed hybrid system...to conventional power subsystem devices. The comparisons are based on projected 1968 capability in the areas of primary and secondary battery, fuel ... cell , solar cell, and chemical dynamic power subsystems. The purpose of the investigation was to determine the relative merits of a hybrid power

  7. Selection of hybrid vehicle for green environment using multi-attributive border approximation area comparison method

    Directory of Open Access Journals (Sweden)

    Tapas Kumar Biswas

    2018-02-01

    Full Text Available The mobility sector including all kinds of transportation systems are facing global challenges in re-spect of green environmental issues. There has been a paradigm shift in the concept of design and manufacturing of automotive vehicles keeping in mind the scarcity of fossil fuel and the impact of emission on environment due to burning of it. The addition of hybrid and electric vehicles in pas-senger car segment has got significant momentum to address the global challenges. This research investigates the performance of a group of hybrid vehicles from customers’ perspective. Among the different brands that are available in the hybrid vehicle market, smart customers have given pri-ority to vehicle cost, mileage, tail pipe emission, comfortness and high tank size volume for long drive. Considering these attributes, selection strategy for hybrid vehicles has been developed using entropy based multi-attributive border approximation area comparison (MABAC method. This research highlights the best hybrid vehicle which reduces air pollution in cities with other significant environmental benefits, reduces dependence on foreign energy imports and minimizes the annual fuel cost.

  8. Ansaldo programs on fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Marcenaro, B.G.; Federici, F. [Ansaldo Ricerche Srl, Genova (Italy)

    1996-12-31

    The growth in traffic and the importance of maintaining a stable ecology at the global scale, particularly with regard to atmospheric pollution, raises the necessity to realize a new generation of vehicles which are more efficient, more economical and compatible with the environment. At European level, the Car of Tomorrow task force has identified fuel cells as a promising alternative propulsion system. Ansaldo Ricerche has been involved in the development of fuel cell vehicles since the early nineties. Current ongoing programs relates to: (1) Fuel cell bus demonstrator (EQHEPP BUS) Test in 1996 (2) Fuel cell boat demonstrator (EQHHPP BOAT) Test in 1997 (3) Fuel cell passenger car prototype (FEVER) Test in 1997 (4) 2nd generation Fuel cell bus (FCBUS) 1996-1999 (5) 2nd generation Fuel cell passenger car (HYDRO-GEN) 1996-1999.

  9. Three state-of-the-art individual electric and hybrid vehicle test reports, volume 2

    Science.gov (United States)

    1978-01-01

    Procedures used in determining the energy efficiency and economy of a gasoline-electric hybrid taxi, an electric passenger car, and an electric van are described. Tabular and graphic data show results of driving cycle and constant speed tests, energy distribution to various components, efficiency of the components, and, for the hybrid vehicle, the emissions.

  10. Acoustic characteristics of hybrid electric vehicles and the safety of pedestrians who are blind

    Science.gov (United States)

    2010-08-01

    Quieter cars such as electric vehicles (EVs) and hybrid electric vehicles (HEVs) may reduce auditory cues used by pedestrians to assess the state of nearby traffic and, as a result, their use may have an adverse impact on pedestrian safety. In order ...

  11. Auditory detectability of hybrid electric vehicles by pedestrians who are blind

    Science.gov (United States)

    2010-11-15

    Quieter cars such as electric vehicles (EVs) and hybrid electric vehicles (HEVs) may reduce auditory cues used by pedestrians to assess the state of nearby traffic and, as a result, their use may have an adverse impact on pedestrian safety. In order ...

  12. Model-based eco-driving and integrated powertrain control for (hybrid) electric vehicles

    NARCIS (Netherlands)

    Ivens, T.; Spronkmans, S.; Rosca, B.; Wilkins, S.

    2013-01-01

    The Netherlands Organisation for Applied Scientific Research (TNO) is engaged in research, development and testing of a range of technologies relating to hybrid and electric vehicle energy management and performance. The impact of driver behaviour on vehicle energy consumption is a significant

  13. A New Method to Optimize Semiactive Hybrid Energy Storage System for Hybrid Electrical Vehicle by Using PE Function

    Directory of Open Access Journals (Sweden)

    Cong Zhang

    2015-01-01

    Full Text Available Although both battery and super-capacitor are important power sources for hybrid electric vehicles, there is no accurate configuration theory to match the above two kinds of power sources which have significantly different characteristics on energy and power storage for the goal of making good use of their individual features without size wasting. In this paper, a new performance is presented that is used for analysis and optimal design method of battery and super-capacitor for hybrid energy storage system of a parallel hybrid electrical vehicle. In order to achieve optimal design with less consumption, the power-energy function is applied to establish direct mathematical relationship between demand power and the performance. During matching process, firstly, three typical operating conditions are chosen as the basis of design; secondly, the energy and power capacity evaluation methods for the parameters of battery and super-capacitor in hybrid energy storage system are proposed; thirdly, the mass, volume, and cost of the system are optimized simultaneously by using power-energy function. As a result, there are significant advantages on mass, volume, and cost for the hybrid energy storage system with the matching method. Simulation results fit well with the results of analysis, which confirms that the optimized design can meet the demand of hybrid electric vehicle well.

  14. Electric and hybrid vehicle program. Quarterly report, January-February-March 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    Highlights of program developments are discussed, and ETV-1 test results are described. The temperature effects on lead-acid battery performance from 27 to 55/sup 0/C are reported, and the status of demonstration electric vehicle orders and deliveries is summarized. The certification and testing status of demonstration project vehicles is outlined, and a personnel directory for the DOE Electric and Hybrid Vehicle Program is included. (WHK)

  15. Batteries charging systems for electric and plug-in hybrid electric vehicles

    OpenAIRE

    Monteiro, Vítor Duarte Fernandes; Gonçalves, Henrique; Ferreira, João C.; Afonso, João L.

    2012-01-01

    Many countries have a large dependence on imported fossil fuels whose prices increase almost every day. Knowing that much of this consumption is for transportation systems, it becomes essential to seek for alternatives. The natural bet is the electric mobility, namely through Electric Vehicles (EVs) and Plug-in Hybrid Electric Vehicles (PHEVs). However, the wide spread utilization of these vehicles has consequences on the electrical power grid, mainly in terms of load management and electric ...

  16. Fuel cell hybrid taxi life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Patricia, E-mail: patricia.baptista@ist.utl.pt [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Ribau, Joao; Bravo, Joao; Silva, Carla [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Adcock, Paul; Kells, Ashley [Intelligent Energy, Charnwood Building, HolywellPark, Ashby Road, Loughborough, LE11 3GR (United Kingdom)

    2011-09-15

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO{sub 2} emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO{sub 2} emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: > A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. > The hydrogen powered vehicles have the lowest energy consumption and CO{sub 2} emissions results. > A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  17. Fuel cell hybrid taxi life cycle analysis

    International Nuclear Information System (INIS)

    Baptista, Patricia; Ribau, Joao; Bravo, Joao; Silva, Carla; Adcock, Paul; Kells, Ashley

    2011-01-01

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO 2 emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO 2 emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: → A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. → The hydrogen powered vehicles have the lowest energy consumption and CO 2 emissions results. → A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  18. Commercial viability of hybrid vehicles : best household use and cross national considerations.

    Energy Technology Data Exchange (ETDEWEB)

    Santini, D. J.; Vyas, A. D.

    1999-07-16

    Japanese automakers have introduced hybrid passenger cars in Japan and will soon do so in the US. In this paper, we report how we used early computer simulation model results to compare the commercial viability of a hypothetical near-term (next decade) hybrid mid-size passenger car configuration under varying fuel price and driving patterns. The fuel prices and driving patterns evaluated are designed to span likely values for major OECD nations. Two types of models are used. One allows the ''design'' of a hybrid to a specified set of performance requirements and the prediction of fuel economy under a number of possible driving patterns (called driving cycles). Another provides an estimate of the incremental cost of the hybrid in comparison to a comparably performing conventional vehicle. In this paper, the models are applied to predict the NPV cost of conventional gasoline-fueled vehicles vs. parallel hybrid vehicles. The parallel hybrids are assumed to (1) be produced at high volume, (2) use nickel metal hydride battery packs, and (3) have high-strength steel bodies. The conventional vehicle also is assumed to have a high-strength steel body. The simulated vehicles are held constant in many respects, including 0-60 time, engine type, aerodynamic drag coefficient, tire rolling resistance, and frontal area. The hybrids analyzed use the minimum size battery pack and motor to meet specified 0-60 times. A key characteristic affecting commercial viability is noted and quantified: that hybrids achieve the most pronounced fuel economy increase (best use) in slow, average-speed, stop-and-go driving, but when households consistently drive these vehicles under these conditions, they tend to travel fewer miles than average vehicles. We find that hours driven is a more valuable measure than miles. Estimates are developed concerning hours of use of household vehicles versus driving cycle, and the pattern of minimum NPV incremental cost (or benefit) of

  19. Environmental assessment for the electric and hybrid vehicle demonstration project, performance standards and financial incentives

    Energy Technology Data Exchange (ETDEWEB)

    LaBelle, S. J.

    1978-10-01

    The assessment is concerned with the impacts of the demonstration of electric and hybrid vehicles acquired to fulfill certain requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act, PL 94-413 as amended. The financial incentives programs and vehicle performance standards associated with the demonstration are also covered. Not included is an assessment of the long term effects of EHV commercialization and of the research and development program being carried out simultaneously with the demonstration, also in response to PL 94-413. These federal actions will be included in a programmatic environmental assessment scheduled for completion in FY 79.

  20. Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles.

    Science.gov (United States)

    Kim, Yong Jung; Yang, Cheol-Min; Park, Ki Chul; Kaneko, Katsumi; Kim, Yoong Ahm; Noguchi, Minoru; Fujino, Takeshi; Oyama, Shigeki; Endo, Morinobu

    2012-03-12

    Supercapacitors can store and deliver energy by a simple charge separation, and thus they could be an attractive option to meet transient high energy density in operating fuel cells and in electric and hybrid electric vehicles. To achieve such requirements, intensive studies have been carried out to improve the volumetric capacitance in supercapacitors using various types and forms of carbons including carbon nanotubes and graphenes. However, conventional porous carbons are not suitable for use as electrode material in supercapacitors for such high energy density applications. Here, we show that edge-enriched porous carbons are the best electrode material for high energy density supercapacitors to be used in vehicles as an auxiliary powertrain. Molten potassium hydroxide penetrates well-aligned graphene layers vertically and consequently generates both suitable pores that are easily accessible to the electrolyte and a large fraction of electrochemically active edge sites. We expect that our findings will motivate further research related to energy storage devices and also environmentally friendly electric vehicles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Development of ultra-battery for hybrid-electric vehicle applications

    Science.gov (United States)

    Lam, L. T.; Louey, R.

    Transport is one of the largest sources of human-induced greenhouse gas emissions and fossil-fuels consumption. This has lead to a growing demand for hybrid-electric vehicles (HEVs) to reduce air pollution and consumption of fossil fuels. CSIRO Energy Technology has developed the ultra-battery, a new technology that will reduce the cost and boost the performance of batteries in HEVs. The ultra-battery is a hybrid energy-storage device, which combines an asymmetric supercapacitor, and a lead-acid battery in one unit cell, taking the best from both technologies without the need for extra electronic controls. The capacitor will enhance the power and lifespan of the lead-acid battery as it acts as a buffer in discharging and charging. Consequently, this hybrid technology is able to provide and absorb charge rapidly during vehicle acceleration and braking. The ultra-battery has been subjected to a variety of tests. To date, results show that the discharge and charge power of the ultra-battery is ∼50% higher and its cycle-life is at least three times longer than that of the conventional lead-acid counterpart. Furthermore, the ultra-battery is able to be produced as either flooded-electrolyte or valve-regulated designs in the existing lead-acid factory and also able to reconfigure for a variety of applications, such as conventional automobile, power tool, forklift, high-power uninterruptible power supply and remote-area power supply. The prototype ultra-batteries have been constructed and are under laboratory evaluation and field trial. The success of the ultra-battery will obviously make HEVs more affordable and widespread. This, in turn, will reduce greenhouse gas emissions in the urban environment and the consumption of limited supplies of fossil fuels.

  2. Electric and hybrid electric vehicle study utilizing a time-stepping simulation

    Science.gov (United States)

    Schreiber, Jeffrey G.; Shaltens, Richard K.; Beremand, Donald G.

    1992-01-01

    The applicability of NASA's advanced power technologies to electric and hybrid vehicles was assessed using a time-stepping computer simulation to model electric and hybrid vehicles operating over the Federal Urban Driving Schedule (FUDS). Both the energy and power demands of the FUDS were taken into account and vehicle economy, range, and performance were addressed simultaneously. Results indicate that a hybrid electric vehicle (HEV) configured with a flywheel buffer energy storage device and a free-piston Stirling convertor fulfills the emissions, fuel economy, range, and performance requirements that would make it acceptable to the consumer. It is noted that an assessment to determine which of the candidate technologies are suited for the HEV application has yet to be made. A proper assessment should take into account the fuel economy and range, along with the driveability and total emissions produced.

  3. Data Fusion Modeling for an RT3102 and Dewetron System Application in Hybrid Vehicle Stability Testing

    Directory of Open Access Journals (Sweden)

    Zhibin Miao

    2015-08-01

    Full Text Available More and more hybrid electric vehicles are driven since they offer such advantages as energy savings and better active safety performance. Hybrid vehicles have two or more power driving systems and frequently switch working condition, so controlling stability is very important. In this work, a two-stage Kalman algorithm method is used to fuse data in hybrid vehicle stability testing. First, the RT3102 navigation system and Dewetron system are introduced. Second, a modeling of data fusion is proposed based on the Kalman filter. Then, this modeling is simulated and tested on a sample vehicle, using Carsim and Simulink software to test the results. The results showed the merits of this modeling.

  4. Optimization of a fuel cell powertrain for a sport utility vehicle. Paper no. IGEC-1-087

    International Nuclear Information System (INIS)

    Stevens, M.B.; Mendes, C.; Mali, T.J.; Fowler, M.W.; Fraser, R.A.

    2005-01-01

    A central composite design was utilized to study the effects of fuel cell powertrain sizing and efficiencies on vehicle performance based on a Chevrolet Equinox platform. Simulations were performed using the Powertrain System Analysis Toolkit (PSAT), a vehicle simulator that constructs and executes various Simulink vehicle models. Once parametric equations relating performance metrics and subcomponent sizing and efficiency were fit, optimal design points were obtained using non-linear optimization. Optimized architectures were used to compare fuel cell powertrains incorporating ultracapacitors, nickel-metal hydride battery packs, and lithium-ion battery packs. The performance metrics also provided a basis for comparison with conventional, battery, and hybrid configurations. The fuel cell configurations exhibited similar or improved acceleration performance, with approximately double the mileage of the stock vehicle. The range of the fuel cell Equinox was reduced from the stock vehicle to approximately 300 miles. The battery vehicles showed the highest efficiencies and mileages, but exhibited an unacceptable range of approximately 100 miles. The hybrid configuration showed notable improvements over the stock vehicle, but still lacked the degree of benefits provided by the fuel cell (FCVs) and battery electric vehicles (BEVs). Also, the acceleration time for the hybrid vehicle was sluggish, likely due to the increase weight of the configuration. The work described in this study was performed by members of the University Of Waterloo Alternate Fuels Team (UWAFT) as part of the Challenge X Vehicle Competition. (author)

  5. The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households

    OpenAIRE

    Turrentine, Thomas; Kurani, Kenneth

    1995-01-01

    We report the results of a survey of the potential demand for electric vehicles (EVs) among a subset of California households. We limit our analysis to one group of potential hybrid households. These households own two or more light duty vehicles and buy new vehicles of the body styles we expect will be offered as electric vehicles. These characteristics identify households who may be able to incorporate at least one limited range vehicle into thei...

  6. On direct hydrogen fuel cell vehicles modelling and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Haraldsson, Kristina

    2005-03-01

    In this thesis, direct hydrogen Proton Exchange Membrane (PEM) fuel cell systems in vehicles are investigated through modelling, field tests and public acceptance surveys. A computer model of a 50 kW PEM fuel cell system was developed. The fuel cell system efficiency is approximately 50% between 10 and 45% of the rated power. The fuel cell auxiliary system, e.g. compressor and pumps, was shown to clearly affect the overall fuel cell system electrical efficiency. Two hydrogen on-board storage options, compressed and cryogenic hydrogen, were modelled for the above-mentioned system. Results show that the release of compressed gaseous hydrogen needs approximately 1 kW of heat, which can be managed internally with heat from the fuel cell stack. In the case of cryogenic hydrogen, the estimated heat demand of 13 kW requires an extra heat source. A phase change based (PCM) thermal management solution to keep a 50 kW PEM fuel cell stack warm during dormancy in a cold climate (-20 deg C) was investigated through simulation and experiments. It was shown that a combination of PCM (salt hydrate or paraffin wax) and vacuum insulation materials was able to keep a fuel cell stack from freezing for about three days. This is a simple and potentially inexpensive solution, although development on issues such as weight, volume and encapsulation materials is needed. Two different vehicle platforms, fuel cell vehicles and fuel cell hybrid vehicles, were used to study the fuel consumption and the air, water and heat management of the fuel cell system under varying operating conditions, e.g. duty cycles and ambient conditions. For a compact vehicle, with a 50 kW fuel cell system, the fuel consumption was significantly reduced, {approx}50 %, compared to a gasoline-fuelled vehicle of similar size. A bus with 200 kW fuel cell system was studied and compared to a diesel bus of comparable size. The fuel consumption of the fuel cell bus displayed a reduction of 33-37 %. The performance of a fuel

  7. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.

    Science.gov (United States)

    Sioshansi, Ramteen; Denholm, Paul

    2009-02-15

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and byimproving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. We find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. By changing generator dispatch, a PHEVfleet of up to 15% of light-duty vehicles can actually decrease net generator NOx emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO2, SO2, and NOx emissions can be reduced even further.

  8. Test and development of a solar-hybrid vehicle prototype and turbo-compressor model for automotive engines

    OpenAIRE

    Naddeo, Massimo

    2016-01-01

    2014 - 2015 In last decade, Hybrid Electric Vehicles (HEV) have emerged as real alternatives to engine-driven vehicles, in order to reduce fuel consumption and emissions.... [edited by author] XIV n.s.

  9. A Study on Control Strategy of Regenerative Braking in the Hydraulic Hybrid Vehicle Based on ECE Regulations

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2013-01-01

    Full Text Available This paper establishes a mathematic model of composite braking in the hydraulic hybrid vehicle and analyzes the constraint condition of parallel regenerative braking control algorithm. Based on regenerative braking system character and ECE (Economic Commission of Europe regulations, it introduces the control strategy of regenerative braking in parallel hydraulic hybrid vehicle (PHHV. Finally, the paper establishes the backward simulation model of the hydraulic hybrid vehicle in Matlab/simulink and makes a simulation analysis of the control strategy of regenerative braking. The results show that this strategy can equip the hydraulic hybrid vehicle with strong brake energy recovery power in typical urban drive state.

  10. A hybrid mammalian cell cycle model

    Directory of Open Access Journals (Sweden)

    Vincent Noël

    2013-08-01

    Full Text Available Hybrid modeling provides an effective solution to cope with multiple time scales dynamics in systems biology. Among the applications of this method, one of the most important is the cell cycle regulation. The machinery of the cell cycle, leading to cell division and proliferation, combines slow growth, spatio-temporal re-organisation of the cell, and rapid changes of regulatory proteins concentrations induced by post-translational modifications. The advancement through the cell cycle comprises a well defined sequence of stages, separated by checkpoint transitions. The combination of continuous and discrete changes justifies hybrid modelling approaches to cell cycle dynamics. We present a piecewise-smooth version of a mammalian cell cycle model, obtained by hybridization from a smooth biochemical model. The approximate hybridization scheme, leading to simplified reaction rates and binary event location functions, is based on learning from a training set of trajectories of the smooth model. We discuss several learning strategies for the parameters of the hybrid model.

  11. Real life testing of a Hybrid PEM Fuel Cell Bus

    Science.gov (United States)

    Folkesson, Anders; Andersson, Christian; Alvfors, Per; Alaküla, Mats; Overgaard, Lars

    Fuel cells produce low quantities of local emissions, if any, and are therefore one of the most promising alternatives to internal combustion engines as the main power source in future vehicles. It is likely that urban buses will be among the first commercial applications for fuel cells in vehicles. This is due to the fact that urban buses are highly visible for the public, they contribute significantly to air pollution in urban areas, they have small limitations in weight and volume and fuelling is handled via a centralised infrastructure. Results and experiences from real life measurements of energy flows in a Scania Hybrid PEM Fuel Cell Concept Bus are presented in this paper. The tests consist of measurements during several standard duty cycles. The efficiency of the fuel cell system and of the complete vehicle are presented and discussed. The net efficiency of the fuel cell system was approximately 40% and the fuel consumption of the concept bus is between 42 and 48% lower compared to a standard Scania bus. Energy recovery by regenerative braking saves up 28% energy. Bus subsystems such as the pneumatic system for door opening, suspension and brakes, the hydraulic power steering, the 24 V grid, the water pump and the cooling fans consume approximately 7% of the energy in the fuel input or 17% of the net power output from the fuel cell system. The bus was built by a number of companies in a project partly financed by the European Commission's Joule programme. The comprehensive testing is partly financed by the Swedish programme "Den Gröna Bilen" (The Green Car). A 50 kW el fuel cell system is the power source and a high voltage battery pack works as an energy buffer and power booster. The fuel, compressed hydrogen, is stored in two high-pressure stainless steel vessels mounted on the roof of the bus. The bus has a series hybrid electric driveline with wheel hub motors with a maximum power of 100 kW. Hybrid Fuel Cell Buses have a big potential, but there are

  12. A real time fuzzy logic power management strategy for a fuel cell vehicle

    International Nuclear Information System (INIS)

    Hemi, Hanane; Ghouili, Jamel; Cheriti, Ahmed

    2014-01-01

    Highlights: • We present a real time fuzzy logic power management strategy. • This strategy is applied to hybrid electric vehicle dynamic model. • Three configurations evaluated during a drive cycle. • The hydrogen consumption is analysed for the three configurations. - Abstract: This paper presents real time fuzzy logic controller (FLC) approach used to design a power management strategy for a hybrid electric vehicle and to protect the battery from overcharging during the repetitive braking energy accumulation. The fuel cell (FC) and battery (B)/supercapacitor (SC) are the primary and secondary power sources, respectively. This paper analyzes and evaluates the performance of the three configurations, FC/B, FC/SC and FC/B/SC during real time driving conditions and unknown driving cycle. The MATLAB/Simulink and SimPowerSystems software packages are used to model the electrical and mechanical elements of hybrid vehicles and implement a fuzzy logic strategy

  13. Research on the Power Management Strategy of Hybrid Electric Vehicles Based on Electric Variable Transmissions

    Directory of Open Access Journals (Sweden)

    Qiwei Xu

    2014-02-01

    Full Text Available Electric variable transmission is a new electromechanical energy conversion device structure, which is especially suitable as the driving force distribution device for hybrid electric vehicles. This paper focuses on the power management strategy of hybrid electric vehicles based on an electric variable transmission, and a kind of hierarchical control ideology is proposed. The control strategy is composed of four control levels, namely analysis of force requirement, operation mode switching, force distribution and coordinate control, which are designed respectively in this paper. Then a simulation model is built based on the notion of energetic macroscopic representation, and an experimental test bench is built. The simulation and experiment results demonstrate the feasibility of the proposed strategy, and it can be taken as a new theory and method for the study of hybrid electric vehicle based on electric variable transmission.

  14. Layout design and energetic analysis of a complex diesel parallel hybrid electric vehicle

    International Nuclear Information System (INIS)

    Finesso, Roberto; Spessa, Ezio; Venditti, Mattia

    2014-01-01

    Highlights: • Layout design, energetic and cost analysis of complex parallel hybrid vehicles. • Development of global and real-time optimizers for control strategy identification. • Rule-based control strategies to minimize fuel consumption and NO x . • Energy share across each working mode for battery and thermal engine. - Abstract: The present paper is focused on the design, optimization and analysis of a complex parallel hybrid electric vehicle, equipped with two electric machines on both the front and rear axles, and on the evaluation of its potential to reduce fuel consumption and NO x emissions over several driving missions. The vehicle has been compared with two conventional parallel hybrid vehicles, equipped with a single electric machine on the front axle or on the rear axle, as well as with a conventional vehicle. All the vehicles have been equipped with compression ignition engines. The optimal layout of each vehicle was identified on the basis of the minimization of the overall powertrain costs during the whole vehicle life. These costs include the initial investment due to the production of the components as well as the operating costs related to fuel consumption and to battery depletion. Identification of the optimal powertrain control strategy, in terms of the management of the power flows of the engine and electric machines, and of gear selection, is necessary in order to be able to fully exploit the potential of the hybrid architecture. To this end, two global optimizers, one of a deterministic nature and another of a stochastic type, and two real-time optimizers have been developed, applied and compared. A new mathematical technique has been developed and applied to the vehicle simulation model in order to decrease the computational time of the optimizers. First, the vehicle model equations were written in order to allow a coarse time grid to be used, then, the control variables (i.e., power flow and gear number) were discretized, and the

  15. Aeromechanical stability analysis of a multirotor vehicle with application to hybrid heavy lift helicopter dynamics

    Science.gov (United States)

    Venkatesan, C.; Friedmann, P. P.

    1984-01-01

    The Hybrid Heavy Lift Helicopter (HHLH) is a potential candidate vehicle aimed at providing heavy lift capability at low cost. This vehicle consists of a buoyant envelope attached to a supporting structure. Four rotor systems are also attached to the supporting structure. Nonlinear equations of motion capable of modeling the dynamics of this multi-rotor/support frame/vehicle system have been developed and used to study the fundamental aeromechanical stability characteristics of this class of vehicles. The mechanism of coupling between the blades, supporting structure and rigid body modes is identified and the effect of buoyancy ratio (buoyant lift/total weight) on the vehicle dynamics is studied. It is shown that dynamics effects have a major role in the design of such vehicles. The analytical model developed is also useful for studying the aeromechanical stability of single rotor and tandem rotor coupled rotor/fuselage systems.

  16. Cyclic Parameter Refinement of 4S-10 Hybrid Flux-Switching Motor for Lightweight Electric Vehicle

    Science.gov (United States)

    Rani, J. Abd; Sulaiman, E.; Kumar, R.

    2017-08-01

    A great deal of attention has been given to the reduction of lighting the vehicle because the lighter the vehicle the energy consumption is comparatively low. Hence, the lightweight electric vehicle was introduced for lower carbon footprint and the sizing of the vehicle itself. One of the components to reduce the weight of the vehicle is the propulsion system which comprised of electric motor functioning as the source of torque to drive the propulsion system of the machine. This paper presents the refinement methodology for the optimized design of the 4S-10P E-Core hybrid excitation flux switching motor. The purpose of the refinement methodology is to improve the torque production of the optimized motor. The result of the successful improvement of the torque production is justifiable for a lightweight electric vehicle to drive the propulsion system.

  17. Method and apparatus for controlling battery charging in a hybrid electric vehicle

    Science.gov (United States)

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2003-06-24

    A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

  18. A Polar Fuzzy Control Scheme for Hybrid Power System Using Vehicle-To-Grid Technique

    Directory of Open Access Journals (Sweden)

    Mohammed Elsayed Lotfy

    2017-07-01

    Full Text Available A novel polar fuzzy (PF control approach for a hybrid power system is proposed in this research. The proposed control scheme remedies the issues of system frequency and the continuity of demand supply caused by renewable sources’ uncertainties. The hybrid power system consists of a wind turbine generator (WTG, solar photovoltaics (PV, a solar thermal power generator (STPG, a diesel engine generator (DEG, an aqua-electrolyzer (AE, an ultra-capacitor (UC, a fuel-cell (FC, and a flywheel (FW. Furthermore, due to the high cost of the battery energy storage system (BESS, a new idea of vehicle-to-grid (V2G control is applied to use the battery of the electric vehicle (EV as equivalent to large-scale energy storage units instead of small batteries to improve the frequency stability of the system. In addition, EV customers’ convenience is taken into account. A minimal-order observer is used to estimate the supply error. Then, the area control error (ACE signal is calculated in terms of the estimated supply error and the frequency deviation. ACE is considered in the frequency domain. Two PF approaches are utilized in the intended system. The mission of each controller is to mitigate one frequency component of ACE. The responsibility for ACE compensation is shared among all parts of the system according to their speed of response. The performance of the proposed control scheme is compared to the conventional fuzzy logic control (FLC. The effectiveness and robustness of the proposed control technique are verified by numerical simulations under various scenarios.

  19. Hybrid battery/supercapacitor energy storage system for the electric vehicles

    Science.gov (United States)

    Kouchachvili, Lia; Yaïci, Wahiba; Entchev, Evgueniy

    2018-01-01

    Electric vehicles (EVs) have recently attracted considerable attention and so did the development of the battery technologies. Although the battery technology has been significantly advanced, the available batteries do not entirely meet the energy demands of the EV power consumption. One of the key issues is non-monotonic consumption of energy accompanied by frequent changes during the battery discharging process. This is very harmful to the electrochemical process of the battery. A practical solution is to couple the battery with a supercapacitor, which is basically an electrochemical cell with a similar architecture, but with a higher rate capability and better cyclability. In this design, the supercapacitor can provide the excess energy required while the battery fails to do so. In addition to the battery and supercapacitor as the individual units, designing the architecture of the corresponding hybrid system from an electrical engineering point of view is of utmost importance. The present manuscript reviews the recent works devoted to the application of various battery/supercapacitor hybrid systems in EVs.

  20. Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Kostecki, R.; Zhang, X.; Ross Jr., P.N.; Kong, F.; Sloop, S.; Kerr, J.B.; Striebel, K.; Cairns, E.; McLarnon, F.

    2001-01-01

    The Advanced Technology Development (ATD) Program seeks to aid the development of high-power lithium-ion batteries for hybrid electric vehicles. Nine 18650-size ATD baseline cells were tested under a variety of conditions. The cells consisted of a carbon anode, LiNi 0.8 Co 0.2 O 2 cathode and DEC-EC-LiPF 6 electrolyte, and they were engineered for high-power applications. Selected instrumental techniques such as synchrotron IR microscopy, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, gas chromatography, etc. were used to characterize the anode, cathode, current collectors and electrolyte from these cells. The goal was to identify detrimental processes which lead to battery failure under a high-current cycling regime as well as during storage at elevated temperatures. The diagnostic results suggest that the following factors contribute to the cell power loss: (a) SEI deterioration and non-uniformity on the anode, (b) morphology changes, increase of impedance and phase separation on the cathode, (c) pitting corrosion on the cathode Al current collector, and (d) decomposition of the LiPF 6 salt in the electrolyte at elevated temperature

  1. Hybrid Control of Long-Endurance Aerial Robotic Vehicles for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Deok-Jin Lee

    2011-06-01

    Full Text Available This paper presents an effective hybrid control approach for building stable wireless sensor networks between heterogeneous unmanned vehicles using long‐ endurance aerial robotic vehicles. For optimal deployment of the aerial vehicles in communication networks, a gradient climbing based self‐estimating control algorithm is utilized to locate the aerial platforms to maintain maximum communication throughputs between distributed multiple nodes. The autonomous aerial robots, which function as communication relay nodes, extract and harvest thermal energy from the atmospheric environment to improve their flight endurance within specified communication coverage areas. The rapidly‐deployable sensor networks with the high‐endurance aerial vehicles can be used for various application areas including environment monitoring, surveillance, tracking, and decision‐making support. Flight test and simulation studies are conducted to evaluate the effectiveness of the proposed hybrid control technique for robust communication networks.

  2. An energy management for series hybrid electric vehicle using improved dynamic programming

    Science.gov (United States)

    Peng, Hao; Yang, Yaoquan; Liu, Chunyu

    2018-02-01

    With the increasing numbers of hybrid electric vehicle (HEV), management for two energy sources, engine and battery, is more and more important to achieve the minimum fuel consumption. This paper introduces several working modes of series hybrid electric vehicle (SHEV) firstly and then describes the mathematical model of main relative components in SHEV. On the foundation of this model, dynamic programming is applied to distribute energy of engine and battery on the platform of matlab and acquires less fuel consumption compared with traditional control strategy. Besides, control rule recovering energy in brake profiles is added into dynamic programming, so shorter computing time is realized by improved dynamic programming and optimization on algorithm.

  3. GHG emissions from sugar cane ethanol, plug-in hybrids, heavy duty gasoline vehicles and hybrids, and materials review

    International Nuclear Information System (INIS)

    2006-01-01

    This report provided updates of new work and new pathways added to the GHGenius model. The model was developed to analyze lifecycle emissions of contaminants associated with the production and use of alternative and traditional fuels, and is continually updated with new information on existing processes and new innovations. The report described the addition of a new table that showed fossil energy consumption per km driven. New information on energy requirements to remove sulphur from gasoline and diesel fuel in Canada were provided. The report also outlined a new pathway for plug-in hybrid battery-powered electric and gasoline vehicles. Vehicle weight was included as part of the user inputs for modelling gasoline powered heavy duty vehicles and gasoline hybrid heavy duty vehicles. Information on the production processes of ethanol from sugar cane were also added to the model. Amounts of energy consumed during the manufacture of materials for vehicles were also incorporated into the model. 34 refs., 39 tabs., 6 figs

  4. Phase I of the Near-Term Hybrid Passenger-Vehicle Development Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    Under contract to the Jet Propulsion Laboratory of the California Institute of Technology, Minicars conducted Phase I of the Near-Term Hybrid Passenger Vehicle (NTHV) Development Program. This program led to the preliminary design of a hybrid (electric and internal combustion engine powered) vehicle and fulfilled the objectives set by JPL. JPL requested that the report address certain specific topics. A brief summary of all Phase I activities is given initially; the hybrid vehicle preliminary design is described in Sections 4, 5, and 6. Table 2 of the Summary lists performance projections for the overall vehicle and some of its subsystems. Section 4.5 gives references to the more-detailed design information found in the Preliminary Design Data Package (Appendix C). Alternative hybrid-vehicle design options are discussed in Sections 3 through 6. A listing of the tradeoff study alternatives is included in Section 3. Computer simulations are discussed in Section 9. Section 8 describes the supporting economic analyses. Reliability and safety considerations are discussed specifically in Section 7 and are mentioned in Sections 4, 5, and 6. Section 10 lists conclusions and recommendations arrived at during the performance of Phase I. A complete bibliography follows the list of references.

  5. Stirling engine electric hybrid vehicle propulsion system conceptual design study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dochat, G; Artiles, A; Killough, J; Ray, A; Chen, H S

    1978-08-01

    Results of a six-month study to characterize a series Stirling engine electric hybrid vehicle propulsion system are presented. The Stirling engine was selected as the heat conversion element to exploit the high efficiency (> .36), low pollution, multi-fuel and quiet operation of this machine. A free-piston Stirling engine driving a linear alternator in a hermatically sealed enclosure was chosen to gain the reliability, long life, and maintenance free characteristics of a sealed unit. The study performs trade off evaluations, selection of engine, battery, motor and inverter size, optimization of components, and develops a conceptual design and characterization of the total propulsion system. The conclusion of the study is that a Stirling engine electric hybrid propulsion system can be used successfully to augment the battery storage of a passenger vehicle and will result in significant savings of petroleum energy over present passenger vehicles. The performance and range augmentation of the hybrid design results in significant improvements over an all electric vehicle. The hybrid will be capable of performing 99% of the passenger vehicle annual trip distribution requirements with extremely low fuel usage. (TFD)

  6. Environmental Benefits of Using Wind Generation to Power Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Mahdi Hajian

    2011-08-01

    Full Text Available As alternatives to conventional vehicles, Plug-in Hybrid Electric Vehicles (PHEVs running off electricity stored in batteries could decrease oil consumption and reduce carbon emissions. By using electricity derived from clean energy sources, even greater environmental benefits are obtainable. This study examines the potential benefits arising from the widespread adoption of PHEVs in light of Alberta’s growing interest in wind power. It also investigates PHEVs’ capacity to mitigate natural fluctuations in wind power generation.

  7. Development and experimental validation of a low-frequency dynamic model for a Hybrid Electric Vehicle

    OpenAIRE

    Galvagno, Enrico; Velardocchia, Mauro

    2012-01-01

    This paper describes the development and experimental validation of a high-fidelity Hybrid Electric Vehicle (HEV) simulator that enables testing and calibration of energy management and driveline control strategies. The model is capable of predicting longitudinal vehicle responses that affect energy consumption and drivability in the low-to-mid frequency region (up to 10 Hz). The simulator focuses primarily on the drivetrain dynamics, while the dynamics of the actuators are represented by sim...

  8. Vehicle surge detection and pathway discrimination by pedestrians who are blind: Effect of adding an alert sound to hybrid electric vehicles on performance.

    Science.gov (United States)

    Kim, Dae Shik; Emerson, Robert Wall; Naghshineh, Koorosh; Pliskow, Jay; Myers, Kyle

    2012-05-01

    This study examined the effect of adding an artificially generated alert sound to a quiet vehicle on its detectability and localizability with 15 visually impaired adults. When starting from a stationary position, the hybrid electric vehicle with an alert sound was significantly more quickly and reliably detected than either the identical vehicle without such added sound or the comparable internal combustion engine vehicle. However, no significant difference was found between the vehicles in respect to how accurately the participants could discriminate the path of a given vehicle (straight vs. right turn). These results suggest that adding an artificial sound to a hybrid electric vehicle may help reduce delay in street crossing initiation by a blind pedestrian, but the benefit of such alert sound may not be obvious in determining whether the vehicle in his near parallel lane proceeds straight through the intersection or turns right in front of him.

  9. Vehicle surge detection and pathway discrimination by pedestrians who are blind: Effect of adding an alert sound to hybrid electric vehicles on performance

    Science.gov (United States)

    Kim, Dae Shik; Emerson, Robert Wall; Naghshineh, Koorosh; Pliskow, Jay; Myers, Kyle

    2012-01-01

    This study examined the effect of adding an artificially generated alert sound to a quiet vehicle on its detectability and localizability with 15 visually impaired adults. When starting from a stationary position, the hybrid electric vehicle with an alert sound was significantly more quickly and reliably detected than either the identical vehicle without such added sound or the comparable internal combustion engine vehicle. However, no significant difference was found between the vehicles in respect to how accurately the participants could discriminate the path of a given vehicle (straight vs. right turn). These results suggest that adding an artificial sound to a hybrid electric vehicle may help reduce delay in street crossing initiation by a blind pedestrian, but the benefit of such alert sound may not be obvious in determining whether the vehicle in his near parallel lane proceeds straight through the intersection or turns right in front of him. PMID:22707841

  10. Development of a software platform for a plug-in hybrid electric vehicle simulator

    Science.gov (United States)

    Karlis, Athanasios; Bibeau, Eric; Zanetel, Paul; Lye, Zelon

    2012-03-01

    Electricity use for transportation has had limited applications because of battery storage range issues, although many recent successful demonstrations of electric vehicles have been achieved. Renewable biofuels such as biodiesel and bioethanol also contribute only a small percentage of the overall energy mix for mobility. Recent advances in hybrid technologies have significantly increased vehicle efficiencies. More importantly, hybridization now allows a significant reduction in battery capacity requirements compared to pure electric vehicles, allowing electricity to be used in the overall energy mix in the transportation sector. This paper presents an effort made to develop a Plug-in Hybrid Electric Vehicle (PHEV) platform that can act as a comprehensive alternative energy vehicle simulator. Its goal is to help in solving the pressing needs of the transportation sector, both in terms of contributing data to aid policy decisions for reducing fossil fuel use, and to support research in this important area. The Simulator will allow analysing different vehicle configurations, and control strategies with regards to renewable and non-renewable fuel and electricity sources. The simulation platform models the fundamental aspects of PHEV components, that is, process control, heat transfer, chemical reactions, thermodynamics and fluid properties. The outcomes of the Simulator are: (i) determining the optimal combination of fuels and grid electricity use, (ii) performing greenhouse gas calculations based on emerging protocols being developed, and (iii) optimizing the efficient and proper use of renewable energy sources in a carbon constrained world.

  11. Influence of plug-in hybrid electric vehicles on smart grids; Management der Trendwatching Group. Einfluss von Plug-In Hybrid Vehicles auf intelligente Verteilnetze (Smart Grids) - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R. [ENCO Energie Consulting AG, Bubendorf (Switzerland); Strub, P. [Pierre Strub, Basel (Switzerland)

    2008-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at the influence of plug-in hybrid vehicles on intelligent electricity distribution grids. The work of a trend-watching group which examined the regulatory services at the interface between such 'smart' grids and electrically powered vehicles is reported on. The trend-watching group includes research institutes, energy suppliers, NGOs, the automobile industry and technology companies. Vehicle-to-grid concepts and innovative developments in the Swiss market are commented on and the group's own activities (research, business models, technological development and politics) are discussed. The group will accompany relevant research programs and the implementation of measures as well as accompanying feasibility evaluations concerning current market developments. The Swiss federal strategy is to be discussed and international co-operation (with the IEA) is to be further strengthened.

  12. Energy-efficient microcontrollers for electric and hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Makowitz, Rainer; Gryska, Holger; Thanner, Manfred; Steinert, Frank [Freescale Halbleiter GmbH, Muenchen (Germany)

    2010-07-01

    Electric vehicles with their limited supply of energy are accelerating the trend towards more energy-efficient electronics that has started with the discussion on reducing the production of greenhouse gas of vehicles. While electricifaction of functions in a car is a technique that will help reduce overall energy consumption, microcontrollers are playing an important role in energetically optimizing the resulting electronics. In this presentation we give an overview of operating strategies for embedded automotive systems that lead to a set of power modes for the microcontrollers. Examples will be shown how Freescale's microcontrollers are designet to optimize energy consumption in each of these modes. We will also outline what needs to be done in the overall vehicle communication network design and in software to effectively use these new features of microcontrollers. The major elements that would benefit from standardization (e.g. in Autosar) will be indicated. (orig.)

  13. Modeling and control of a hybrid-electric vehicle for drivability and fuel economy improvements

    Science.gov (United States)

    Koprubasi, Kerem

    The gradual decline of oil reserves and the increasing demand for energy over the past decades has resulted in automotive manufacturers seeking alternative solutions to reduce the dependency on fossil-based fuels for transportation. A viable technology that enables significant improvements in the overall tank-to-wheel vehicle energy conversion efficiencies is the hybridization of electrical and conventional drive systems. Sophisticated hybrid powertrain configurations require careful coordination of the actuators and the onboard energy sources for optimum use of the energy saving benefits. The term optimality is often associated with fuel economy, although other measures such as drivability and exhaust emissions are also equally important. This dissertation focuses on the design of hybrid-electric vehicle (HEV) control strategies that aim to minimize fuel consumption while maintaining good vehicle drivability. In order to facilitate the design of controllers based on mathematical models of the HEV system, a dynamic model that is capable of predicting longitudinal vehicle responses in the low-to-mid frequency region (up to 10 Hz) is developed for a parallel HEV configuration. The model is validated using experimental data from various driving modes including electric only, engine only and hybrid. The high fidelity of the model makes it possible to accurately identify critical drivability issues such as time lags, shunt, shuffle, torque holes and hesitation. Using the information derived from the vehicle model, an energy management strategy is developed and implemented on a test vehicle. The resulting control strategy has a hybrid structure in the sense that the main mode of operation (the hybrid mode) is occasionally interrupted by event-based rules to enable the use of the engine start-stop function. The changes in the driveline dynamics during this transition further contribute to the hybrid nature of the system. To address the unique characteristics of the HEV

  14. Estimation of Future Demand for Neutron-Transmutation-Doped Silicon Caused by Development of Hybrid Electric Vehicle

    International Nuclear Information System (INIS)

    Kim, Myong Seop; Park, Sang Jun

    2008-01-01

    By using this doping method, silicon semiconductors with an extremely uniform dopant distribution can be produced. They are usually used for high power devices such as thyristor (SCR), IGBT, IGCT and GTO. Now, the demand for high power semiconductor devices has increased rapidly due to the rapid increase of the green energy technologies. Among them, the productions of hybrid cars or fuel cell engines are excessively increased to reduce the amount of discharged air pollution substances, such as carbon dioxide which causes global warming. It is known that the neutron-transmutation-doped floating-zone (FZ) silicon wafers are used in insulated-gate bipolar transistors (IGBTs) which control the speed of the electric traction motors equipped in hybrid or fuel cell vehicles. Therefore, inevitably, it can be supposed that the demand of the NTD silicon is considerably increased. However, it is considered likely that the irradiation capacity will not be large enough to meet the increasing demand. After all, the large irradiation capacity for NTD such as a reactor dedicated to the silicon irradiation will be constructed depending on the industrial demand for NTD silicon. In this work, we investigated the relationship between the hybrid electric vehicle (HEV) industry and the NTD silicon production. Also, we surveyed the prospect for the production of the HEV. Then, we deduced the worldwide demand for the NTD silicon associated with the HEV production. This work can be utilized as the basic material for the construction of the new irradiation facility such as NTD-dedicated neutron source

  15. Benchmarking of OEM Hybrid Electric Vehicles at NREL: Milestone Report

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K. J.; Rajagopalan, A.

    2001-10-26

    A milestone report that describes the NREL's progress and activities related to the DOE FY2001 Annual Operating Plan milestone entitled ''Benchmark 2 new production or pre-production hybrids with ADVISOR.''

  16. General concept of a gas engine for a hybrid vehicle, operating on methanol dissociation products

    International Nuclear Information System (INIS)

    Tartakovsky, L.; Aleinikov, Y.; Fainberg, V.; Garbar, A.; Gutman, M.; Hetsroni, G.; Schindler, Y.; Zvirin, Y.

    1998-01-01

    The paper presents a general concept of a hybrid propulsion system, based on an SI internal combustion engine fueled by methanol dissociation products (MDP). The proposed hybrid propulsion scheme is a series hybrid, which allows the engine to be operated in an on-off mode at constant optimal regime. The engine is fed by gaseous products of methanol dissociation (mainly hydrogen and carbon monoxide) emerging from an on-board catalytic reformer. The general scheme and base operation features of the propulsion system are described. The benefits that may be achieved by combining the well-known idea of on-board methanol dissociation with the hybrid vehicle concept are discussed. The proposed scheme is compared with those of systems operating on gasoline, liquid methanol, hydrogen and also with the multi-regime (not hybrid) engine fed by MDP

  17. Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Hong-Wen He

    2010-11-01

    Full Text Available Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UDDS (Urban Dynamometer Driving Schedule. The simulation results showed that the hybrid power system could greatly optimize and improve the efficiency of the batteries and their dynamic current was also decreased due to the participation of the ultracapacitors, which would have a good influence on batteries’ cycle life. Finally, the parameter matching for the passive hybrid power system was studied by simulation and comparisons.

  18. The suitability of internal combustion engine sounds as artificial warning sounds for electric and hybrid vehicles

    Directory of Open Access Journals (Sweden)

    Ivan Bolkovac

    2014-08-01

    Full Text Available The paper discusses the issue of adding artificial warning sounds to hybrid and fully electric vehicles, in order to increase traffic safety by making these vehicles audible at low speeds. The goal of this modification is to enable the pedestrians to perceive possible danger coming from such a vehicle in time to respond accordingly. Following the results of previous research which state that the sounds of internal combustion engines are valid candidates for artificial warning sounds to be added to hybrid or fully electric vehicles, a preliminary examination of the suitability and acceptability of different engine sounds in various modes of operation has been conducted. The chosen modes of operation are running in idle, at 2000 rpm and 3000 rpm with the vehicle stopped. Both gasoline and diesel engines were investigated. To expand the range of engine sounds, the type of vehicles was not limited to personal cars. The results show significant differences in suitability of engine sounds for the stated purpose, with vehicle type being the main differentiating factor.

  19. Propulsion system research and development for electric and hybrid vehicles

    Science.gov (United States)

    Schwartz, H. J.

    1980-01-01

    An approach to propulsion subsystem technology is presented. Various tests of component reliability are described to aid in the production of better quality vehicles. component characterization work is described to provide engineering data to manufacturers on component performance and on important component propulsion system interactions.

  20. Genetic algorithm with small population size for search feasible control parameters for parallel hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Yu-Huei Cheng

    2017-11-01

    Full Text Available The control strategy is a major unit in hybrid electric vehicles (HEVs. In order to provide suitable control parameters for reducing fuel consumptions and engine emissions while maintaining vehicle performance requirements, the genetic algorithm (GA with small population size is applied to search for feasible control parameters in parallel HEVs. The electric assist control strategy (EACS is used as the fundamental control strategy of parallel HEVs. The dynamic performance requirements stipulated in the Partnership for a New Generation of Vehicles (PNGV is considered to maintain the vehicle performance. The known ADvanced VehIcle SimulatOR (ADVISOR is used to simulate a specific parallel HEV with urban dynamometer driving schedule (UDDS. Five population sets with size 5, 10, 15, 20, and 25 are used in the GA. The experimental results show that the GA with population size of 25 is the best for selecting feasible control parameters in parallel HEVs.

  1. 78 FR 2797 - Federal Motor Vehicle Safety Standards; Minimum Sound Requirements for Hybrid and Electric Vehicles

    Science.gov (United States)

    2013-01-14

    ... Costs) II. Background Whether or not a vehicle can be easily detected by the sound it makes is a product... (passenger cars, vans, sport utility vehicles and pickup trucks), as well as LSVs, motorcycles, medium and... standard we are proposing today would be enforced in the same fashion as other safety standards issued...

  2. Effect of hybrid system battery performance on determining CO2 emissions of hybrid electric vehicles in real-world conditions

    International Nuclear Information System (INIS)

    Alvarez, Robert; Schlienger, Peter; Weilenmann, Martin

    2010-01-01

    Hybrid electric vehicles (HEVs) can potentially reduce vehicle CO 2 emissions by using recuperated kinetic vehicle energy stored as electric energy in a hybrid system battery (HSB). HSB performance affects the individual net HEV CO 2 emissions for a given driving pattern, which is considered to be equivalent to unchanged net energy content in the HSB. The present study investigates the influence of HSB performance on the statutory correction procedure used to determine HEV CO 2 emissions in Europe based on chassis dynamometer measurements with three identical in-use examples of a full HEV model featuring different mileages. Statutory and real-world driving cycles and full electric vehicle operation modes have been considered. The main observation is that the selected HEVs can only use 67-80% of the charge provided to the HSB, which distorts the outcomes of the statutory correction procedure that does not consider such irreversibility. CO 2 emissions corrected according to this procedure underestimate the true net CO 2 emissions of one HEV by approximately 13% in real-world urban driving. The correct CO 2 emissions are only reproduced when considering the HSB performance in this driving pattern. The statutory procedure for correcting HEV CO 2 emissions should, therefore, be adapted.

  3. Review of Optimization Strategies for System-Level Design in Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Silvas, E.; Hofman, T.; Murgovski, N.; Etman, L.F.P.; Steinbuch, M.

    2017-01-01

    The optimal design of a hybrid electric vehicle (HEV) can be formulated as a multiobjective optimization problem that spreads over multiple levels (technology, topology, size, and control). In the last decade, studies have shown that by integrating these optimization levels, fuel benefits are

  4. The Swedish electric and hybrid vehicle R, D and D program. Seminar no. 2, June 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    This publication presents a selection of the ongoing and finalised projects in form of abstracts, within the KFB RDD-program Electric- and Hybride Vehicles. These projects were presented at the second project manager seminar 14-15 June 1999. The first project manager seminar was held 20-21 October 1998

  5. Consumer adoption and grid impact models for plug-in hybrid electric vehicles in Wisconsin.

    Science.gov (United States)

    2010-05-01

    This proposed study focuses on assessing the demand for plug-in hybrid electric vehicles (PHEV) in Wisconsin and its economic : impacts on the States energy market and the electric grid. PHEVs are expected to provide a range of about 40 miles per ...

  6. Hybrid path planning for non-holonomic autonomous vehicles: An experimental evaluation

    NARCIS (Netherlands)

    Esposto, F.; Goos, J.; Teerhuis, A.; Alirezaei, M.

    2017-01-01

    Path planning of an autonomous vehicle as a non-holonomic system is an essential part for many automated driving applications. Parking a car into a parking lot and maneuvering it through a narrow corridor would be a common driving scenarios in an urban environment. In this study a hybrid approach

  7. Integrated powertrain control for hybrid electric vehicles with electric variable transmission

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Foster, D.L.; Bosch, P.P.J. van den

    2009-01-01

    The electric variable transmission (EVT) offers a powersplit for hybrid electric vehicles by integrating two motor/ generator sets into one electric machine. This double rotor concept implements a continuously variable transmission between the engine and the driveline, including the possibility for

  8. Households' Stories of Their Encounters with a Plug-In Hybrid Electric Vehicle

    Science.gov (United States)

    Caperello, Nicolette D.; Kurani, Kenneth S.

    2012-01-01

    One way to progress toward greenhouse gas reductions is for people to drive plug-in hybrid electric vehicles (PHEVs). Households in this study participated in a 4- to 6-week PHEV driving trial. A narrative of each household's encounter with the PHEV was constructed by the researchers from multiple in-home interviews, questionnaires completed by…

  9. Energy management strategies for electric and plug-in hybrid electric vehicles

    CERN Document Server

    Williamson, Sheldon S

    2013-01-01

    Covers power electronics and motor drives for energy management of electric and plug-in hybrid electric vehicles Addresses specific issues and design solutions related to photovoltaic/grid based EV battery charging infrastructures and on-board battery management systems Emphasis on power electronic converter topologies for on-board battery management

  10. Development and testing of a bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Saakes, M.; Kluiters, E.; Schmal, D.; Mourad, S.; Have, P.T.J.H. ten

    1999-01-01

    An 80 V bipolar lead-acid battery was constructed and tested using hybrid electric vehicle (HEV) drive cycles. Drive cycles with a peak power of 6.7 kW, equal to 1/5 of the total power profile required for the HEV studied, were run successfully. Model calculations showed that the 80 V module

  11. Hybrid emitter all back contact solar cell

    Science.gov (United States)

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  12. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?

    Science.gov (United States)

    Lebeau, Philippe; De Cauwer, Cedric; Macharis, Cathy; Verbeke, Wouter; Coosemans, Thierry

    2015-01-01

    Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks) and vehicle technology (petrol, hybrid, diesel, and electric vehicles). Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile. PMID:26236769

  13. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?

    Science.gov (United States)

    Lebeau, Philippe; De Cauwer, Cedric; Van Mierlo, Joeri; Macharis, Cathy; Verbeke, Wouter; Coosemans, Thierry

    2015-01-01

    Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks) and vehicle technology (petrol, hybrid, diesel, and electric vehicles). Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile.

  14. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?

    Directory of Open Access Journals (Sweden)

    Philippe Lebeau

    2015-01-01

    Full Text Available Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks and vehicle technology (petrol, hybrid, diesel, and electric vehicles. Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile.

  15. Phase I of the Near-Term Hybrid Vehicle Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-10

    Heat engine/electric hybrid vehicles offer the potential of greatly reduced petroleum consumption, compared to conventional vehicles, without the disadvantages of limited performance and operating range associated with pure electric vehicles. This report documents a hybrid vehicle design approach which is aimed at the development of the technology required to achieve this potential, in such a way that it is transferable to the auto industry in the near term. The development of this design approach constituted Phase I of the Near-Term Hybrid Vehicle Program. The major tasks in this program were: mission analysis and performance specification studies; design tradeoff studies; and preliminary design. Detailed reports covering each of these tasks are included as appendices to this report. A fourth task, sensitivity studies, is also included in the report on the design tradeoff studies. Because of the detail with which these appendices cover methodology and results, the body of this report has been prepared as a brief executive summary of the program activities and results, with appropriate references to the detailed material in the appendices.

  16. Phase I of the Near-Term Hybrid Passenger-Vehicle Development Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    Heat engine/electric hybrid vehicles offer the potential of greatly reduced petroleum consumption, compared to conventional vehicles, without the disadvantages of limited performance and operating range associated with purely electric vehicles. This report documents a hybrid-vehicle design approach which is aimed at the development of the technology required to achieve this potential - in such a way that it is transferable to the auto industry in the near term. The development of this design approach constituted Phase I of the Near-Term Hybrid-Vehicle Program. The major tasks in this program were: (1) Mission Analysis and Performance Specification Studies; (2) Design Tradeoff Studies; and (3) Preliminary Design. Detailed reports covering each of these tasks are included as appendices to this report and issued under separate cover; a fourth task, Sensitivity Studies, is also included in the report on the Design Tradeoff Studies. Because of the detail with which these appendices cover methodology and both interim and final results, the body of this report was prepared as a brief executive summary of the program activities and results, with appropriate references to the detailed material in the appendices.

  17. Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus

    International Nuclear Information System (INIS)

    Hu, Xiaosong; Johannesson, Lars; Murgovski, Nikolce; Egardt, Bo

    2015-01-01

    Highlights: • Hybrid energy storage system is optimally sized and controlled for a hybrid bus. • Dynamic battery health model is incorporated in the optimization. • Convex programming is efficient for optimizing hybrid propulsion systems. • Optimal battery replacement strategy is explored. • Comparison to the battery-only option is made in the health-aware optimization. - Abstract: Energy storage systems (ESSs) play an important role in the performance and economy of electrified vehicles. Hybrid energy storage system (HESS) combining both lithium-ion cells and supercapacitors is one of the most promising solutions. This paper discusses the optimal HESS dimensioning and energy management of a fuel cell hybrid electric bus. Three novel contributions are added to the relevant literature. First, efficient convex programming is used to simultaneously optimize the HESS dimension (including sizes of both the lithium-ion battery pack and the supercapacitor stack) and the power allocation between the HESS and the fuel cell system (FCS) of the hybrid bus. In the combined plant/controller optimization problem, a dynamic battery State-of-Health (SOH) model is integrated to quantitatively examine the impact of the battery replacement strategy on both the HESS size and the bus economy. Second, the HESS and the battery-only ESS options are systematically compared in the proposed optimization framework. Finally, the battery-health-perceptive HESS optimization outcome is contrasted to the ideal one neglecting the battery degradation (assuming that the battery is durable over the bus service period without deliberate power regulation)

  18. Hybrid vehicle turbine engine technology support (HVTE-TS) project. 1995--1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This report presents a summary of technical work accomplished on the Hybrid Vehicle Turbine Engine--Technology Support (HVTE-TS) Project during calendar years 1995 and 1996. Work was performed under an initial National Aeronautics and Space Administration (NASA) contract DEN3-336. As of September 1996 the contract administration was transferred to the US Department of Energy (DoE) Chicago Operations Office, and renumbered as DE-AC02-96EE50553. The purpose of the HVTE-TS program is to develop gas turbine engine technology in support of DoE and automotive industry programs exploring the use of gas turbine generator sets in hybrid-electric automotive propulsion systems. The program focus is directed to the development of four key technologies to be applied to advanced turbogenerators for hybrid vehicles: Structural ceramic materials and processes; Low emissions combustion systems; Regenerators and seals systems; and Insulation systems and processes. 60 figs., 9 tabs.

  19. PERENCANAAN FRAME DAN RANGKAIAN ELECTRIC BERBASIS HYBRID-ELECTRIC VEHICLES (HEVs MENUJU UNDIKSHA GO GREEN

    Directory of Open Access Journals (Sweden)

    Kadek rihendra dantes

    2014-05-01

    Full Text Available Hybrid merupakan salah satu solusi untuk menciptakan transportasi yang efisien dan ramah lingkungan. Berdasarkan pra-survey yang dilakukan, keadaan lingkungan Universitas Pendidikan Ganesha sangat tidak kondusif artinya, lalu lintas di dalam kampus yang bising dan tidak kondusif menyebabkan kenyamanan dalam melakukan proses belajar mengajar bias dibilang tidak maksimal. Melalui proposal ini direncanakan sebuah transportasi lokal di lingkungan Universitas Pendidikan Ganesha untuk menciptakan lingkungan kampus lebih nyaman dan kondusip. Lebih lanjut, topik dalam penelitian ini: Perencanaan Transportasi Lokal Berbasis Hybrid-Electric Vehicles (HEVs Ramah Lingkungan. (Studi Kasus di Universitas Pendidikan Ganesha Singaraja. Perancangan transportasi lokal ini dilakukan melalui 4 fase, yaitu: (1 Survey dan Analisis Kondisi Umum, (2 Studi Pustaka (Kajian Teori dan Emperik, (3 Analisis Proses, serta (4 Perancangan frame Hybrid-Electric Vehicles, Electric System, Internal Combustion Engine.

  20. Substantial improvements of fuel economy. Potentials of electric and hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, K. [Technical Univ. of Denmark (Denmark); Nielsen, L.H. [Forskningscenter Risoe (Denmark)

    1996-12-01

    This paper evaluates the scope for improvement of the energy and environmental impacts of road traffic by means of electrical and hybrid electric propulsion. These technologies promise considerable improvements of the fuel economy of vehicles compared to the present vehicle types as well as beneficial effects for the energy and traffic system. The paper - based on work carried out in the project `Transportation fuel based on renewable energy`, funded by the National Energy Agency of Denmark and carried out by Department of Buildings and Energy, Technical University of Denmark and System Analysis Department, Risoe National Laboratory - assesses the potentials for reduction of the primary energy consumption and emissions, and points to the necessary technical development to reap these benefits. A case study concerning passenger cars is analysed by means of computer simulations, comparing electric and hybrid electric passenger car to an equivalent reference vehicle (a conventional gasoline passenger car). (au) 10 refs.

  1. Optimum design and research on novel vehicle hybrid excitation synchronous generator

    Directory of Open Access Journals (Sweden)

    Liu Zhong-Shu

    2017-01-01

    Full Text Available Hybrid excitation is an organic combination of permanent magnet excitation and electric excitation. Hybrid excitation synchronous generator (HESG both has the advantages of light quality, less losses and high efficiency like permanent magnet generator and the advantages of good magnetic field adjusting performance like electric excitation generator, so it is very suitable for the vehicle application. This paper presented a novel vehicle HESG which has skew stator core, permanent magnet rotor and both armature winding and field winding in the stator. Using ANSYS software, simulating the electric excitation field and the magnetic field, and finally the main parameters of HESG were designed. The simulation and the test results both show that the novel vehicle PMSG has the advantages of small cogging torque, high efficiency, small harmonic component output voltage and low waveform aberration, so as to meet the design requirements fully.

  2. Energy Management of Hybrid Electric Vehicles: 15 years of development at the Ohio State University

    Directory of Open Access Journals (Sweden)

    Rizzoni Giorgio

    2015-01-01

    Full Text Available The aim of this paper is to document 15 years of hybrid electric vehicle energy management research at The Ohio State University Center for Automotive Research (OSUCAR. Hybrid Electric Vehicle (HEV technology encompasses many diverse aspects. In this paper we focus exclusively on the evolution of supervisory control strategies for on-board energy management in HEV. We present a series of control algorithms that have been developed in simulation and implemented in prototype vehicles for charge-sustaining HEVs at OSU-CAR. These solutions span from fuzzy-logic control algorithms to more sophisticated model-based optimal control methods. Finally, methods developed for plug-in HEVs energy management are also discussed

  3. Torque Coordination Control during Braking Mode Switch for a Plug-in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-10-01

    Full Text Available Hybrid vehicles usually have several braking systems, and braking mode switches are significant events during braking. It is difficult to coordinate torque fluctuations caused by mode switches because the dynamic characteristics of braking systems are different. In this study, a new type of plug-in hybrid vehicle is taken as the research object, and braking mode switches are divided into two types. The control strategy of type one is achieved by controlling the change rates of clutch hold-down and motor braking forces. The control strategy of type two is achieved by simultaneously changing the target braking torque during different mode switch stages and controlling the motor to participate in active coordination control. Finally, the torque coordination control strategy is modeled in MATLAB/Simulink, and the results show that the proposed control strategy has a good effect in reducing the braking torque fluctuation and vehicle shocks during braking mode switches.

  4. Utilization of rotor kinetic energy storage for hybrid vehicles

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  5. Modeling and Validation of Power-split and P2 Parallel Hybrid Electric Vehicles SAE 2013-01-1470)

    Science.gov (United States)

    The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined ...

  6. Near Term Hybrid Passenger Vehicle Development Program. Phase I, Final report. Appendix B: trade-off studies. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Traversi, M.; Piccolo, R.

    1979-06-11

    Trade-off studies of Near Term Hybrid Vehicle (NTHV) design elements were performed to identify the most promising design concept in terms of achievable petroleum savings. The activities in these studies are described. The results are presented as preliminary NTHV body design, expected fuel consumption as a function of vehicle speed, engine requirements, battery requirements, and vehicle reliability and cost. (LCL)

  7. Solar-Hydrogen Fuel-Cell Vehicles

    OpenAIRE

    DeLuchi, Mark A.; Ogden, Joan M.

    1993-01-01

    Hydrogen is an especially attractive transportation fuel. It is the least polluting fuel available, and can be produced anywhere there is water and a clean source of electricity. A fuel cycle in which hydrogen is produced by solar-electrolysis of water, or by gasification of renewably grown biomass, and then used in a fuel-cell powered electric-motor vehicle (FCEV), would produce little or no local, regional or global pollution. Hydrogen FCEVs would combine the best features of battery-powere...

  8. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  9. Electric and hybrid vehicle system R/D

    Science.gov (United States)

    Schwartz, H. J.

    1980-01-01

    The work being done to characterize the level of current propulsion technology through component testing is described. Important interactions between the battery and the propulsion system will be discussed. Component development work, involving traction motors, motor controllers and transmissions are described and current results are presented. Studies of advanced electric and hybrid propulsion system studies are summarized and the status of propulsion system development work supported by the project is described. A strategy for fostering joint industry/government projects for commercialization of propulsion components and systems is described briefly.

  10. A Hybrid Vehicle Detection Method Based on Viola-Jones and HOG + SVM from UAV Images.

    Science.gov (United States)

    Xu, Yongzheng; Yu, Guizhen; Wang, Yunpeng; Wu, Xinkai; Ma, Yalong

    2016-08-19

    A new hybrid vehicle detection scheme which integrates the Viola-Jones (V-J) and linear SVM classifier with HOG feature (HOG + SVM) methods is proposed for vehicle detection from low-altitude unmanned aerial vehicle (UAV) images. As both V-J and HOG + SVM are sensitive to on-road vehicles' in-plane rotation, the proposed scheme first adopts a roadway orientation adjustment method, which rotates each UAV image to align the roads with the horizontal direction so the original V-J or HOG + SVM method can be directly applied to achieve fast detection and high accuracy. To address the issue of descending detection speed for V-J and HOG + SVM, the proposed scheme further develops an adaptive switching strategy which sophistically integrates V-J and HOG + SVM methods based on their different descending trends of detection speed to improve detection efficiency. A comprehensive evaluation shows that the switching strategy, combined with the road orientation adjustment method, can significantly improve the efficiency and effectiveness of the vehicle detection from UAV images. The results also show that the proposed vehicle detection method is competitive compared with other existing vehicle detection methods. Furthermore, since the proposed vehicle detection method can be performed on videos captured from moving UAV platforms without the need of image registration or additional road database, it has great potentials of field applications. Future research will be focusing on expanding the current method for detecting other transportation modes such as buses, trucks, motors, bicycles, and pedestrians.

  11. Electric and hybrid vehicle program; Site Operator Program

    Energy Technology Data Exchange (ETDEWEB)

    Warren, J.F.

    1992-05-01

    Activities during the second quarter included the second meeting of the Site Operators in Phoenix, AZ in late April. The meeting was held in conjunction with the Solar and Electric 500 Race activities. Delivery of vehicles ordered previously has begun, although two of the operators are experiencing some delays in receiving their vehicles. Public demonstration activities continue, with an apparent increasing level of awareness and interest being displayed by the public. Initial problems with the Site Operator Database have been corrected and revised copies of the program have been supplied to the Program participants. Operating and Maintenance data is being supplied and submitted to INEL on a monthly basis. Interest in the Site Operator Program is being reflected in requests for information from several organizations from across the country, representing a wide diversity of interests. These organizations have been referred to existing Site Operators with the explanation that the program will not be adding new participants, but that most of the existing organizations are willing to work with other groups. The exception to this was the addition of Potomac Electric Power Company (PEPCO) to the program. PEPCO has been awarded a subcontract to operate and maintain the DOE owned G-Van and Escort located in Washington, DC. They will provide data on these vehicles, as well as a Solectria Force which PEPCO has purchased. The Task Force intends to be actively involved in the infrastructure development in a wide range of areas. These include, among others, personnel development, safety, charging, and servicing. Work continues in these areas. York Technical College (YORK) has completed the draft outline for the EV Technician course. This is being circulated to organizations around the country for comments. Kansas State University (KSU) is working with a private sector company to develop a energy dispensing meter for opportunity charging in public areas.

  12. Improving the Performance Attributes of Plug-in Hybrid Electric Vehicles in Hot Climates through Key-Off Battery Cooling

    Directory of Open Access Journals (Sweden)

    Sina Shojaei

    2017-12-01

    Full Text Available Ambient conditions can have a significant impact on the average and maximum temperature of the battery of electric and plug-in hybrid electric vehicles. Given the sensitivity of the ageing mechanisms of typical battery cells to temperature, a significant variability in battery lifetime has been reported with geographical location. In addition, high battery temperature and the associated cooling requirements can cause poor passenger thermal comfort, while extreme battery temperatures can negatively impact the power output of the battery, limiting the available electric traction torque. Avoiding such issues requires enabling battery cooling even when the vehicle is parked and not plugged in (key-off, but the associated extra energy requirements make applying key-off cooling a non-trivial decision. In this paper, a representative plug-in parallel hybrid electric vehicle model is used to simulate a typical 24-h duty cycle to quantify the impact of hot ambient conditions on three performance attributes of the vehicle: the battery lifetime, passenger thermal comfort and fuel economy. Key-off cooling is defined as an optimal control problem in view of the duty cycle of the vehicle. The problem is then solved using the dynamic programming method. Controlling key-off cooling through this method leads to significant improvements in the battery lifetime, while benefiting the fuel economy and thermal comfort attributes. To further improve the battery lifetime, partial charging of the battery is considered. An algorithm is developed that determines the optimum combination of key-off cooling and the level of battery charge. Simulation results confirm the benefits of the proposed method.

  13. Hybrid membranes for fuel cells

    Science.gov (United States)

    Bochkareva, S. S.; Shashkina, S. S.

    2018-01-01

    Fuel cells are a very efficient, reliable, durable, and environmentally friendly energy source. Membranes for fuel cells were developed based on nitrogen-containing high-molecular compounds and organic–inorganic composites. Their electrical conductivities were measured. The influence of a silicon block of composites on the proton exchange properties of membranes was proved.The comparative characterization of the studied materials was performed.

  14. A Hybrid Positioning Strategy for Vehicles in a Tunnel Based on RFID and In-Vehicle Sensors

    Directory of Open Access Journals (Sweden)

    Xiang Song

    2014-12-01

    Full Text Available Many intelligent transportation system applications require accurate, reliable, and continuous vehicle positioning. How to achieve such positioning performance in extended GPS-denied environments such as tunnels is the main challenge for land vehicles. This paper proposes a hybrid multi-sensor fusion strategy for vehicle positioning in tunnels. First, the preliminary positioning algorithm is developed. The Radio Frequency Identification (RFID technology is introduced to achieve preliminary positioning in the tunnel. The received signal strength (RSS is used as an indicator to calculate the distances between the RFID tags and reader, and then a Least Mean Square (LMS federated filter is designed to provide the preliminary position information for subsequent global fusion. Further, to improve the positioning performance in the tunnel, an interactive multiple model (IMM-based global fusion algorithm is developed to fuse the data from preliminary positioning results and low-cost in-vehicle sensors, such as electronic compasses and wheel speed sensors. In the actual implementation of IMM, the strong tracking extended Kalman filter (STEKF algorithm is designed to replace the conventional extended Kalman filter (EKF to achieve model individual filtering. Finally, the proposed strategy is evaluated through experiments. The results validate the feasibility and effectiveness of the proposed strategy.

  15. Batteries for electric and hybrid-electric vehicles.

    Science.gov (United States)

    Cairns, Elton J; Albertus, Paul

    2010-01-01

    Batteries have powered vehicles for more than a century, but recent advances, especially in lithium-ion (Li-ion) batteries, are bringing a new generation of electric-powered vehicles to the market. Key barriers to progress include system cost and lifetime, and derive from the difficulty of making a high-energy, high-power, and reversible electrochemical system. Indeed, although humans produce many mechanical and electrical systems, the number of reversible electrochemical systems is very limited. System costs may be brought down by using cathode materials less expensive than those presently employed (e.g., sulfur or air), but reversibility will remain a key challenge. Continued improvements in the ability to synthesize and characterize materials at desired length scales, as well as to use computations to predict new structures and their properties, are facilitating the development of a better understanding and improved systems. Battery research is a fascinating area for development as well as a key enabler for future technologies, including advanced transportation systems with minimal environmental impact.

  16. Hybrid Robotic Vehicle of Operations at 11,000 meters: Project Progress to Date

    Science.gov (United States)

    Bowen, A.; Whitcomb, L. L.; Yoerger, D.

    2004-12-01

    The National Science Foundation, Office of Naval Research and National Oceanic and Atmospheric Administration have teamed together to fund Woods Hole Oceanographic Institution for the design and construction of a novel robotic vehicle capable of operating in water depths of up to 11,000 meters. The vehicle, which combines the attributes of both an autonomous and tethered vehicle is appropriately termed a hybrid remotely operated vehicle or HROV. The operational paradigm for this vehicle will require that the system be cable of operating as either an autonomous or tethered system. In its autonomous mode, the HROV will be capable of gathering large area sonar and photographic survey data. Once the mapping information has been analyzed aboard the support vessel and specific areas of interest identified, the vehicle is converted to operate as a tethered vehicle. The tether is based on US Navy work with small diameter fiber optic micro-cable that will be adapted to this application. In both modes of operation, the vehicle will be battery powered. The fiber tether only provides a real-time data link between the vehicle and operators for the purpose of conducting highly interactive operations such as manipulation and sampling. Because of the extreme pressures at 11,000 meters and a desire to limit the size and cost of the vehicle, use of new materials and techniques will be required such as alumina ceramics for pressure cases and flotation and light emitting diodes for illumination. Funding for this project began in 2003 and many of the higher risk elements of the project are well underway. Trial deployment of the vehicle to Challenger Deep of the Marianas Trench is expected in late 2006.

  17. Solving the vehicle routing problem by a hybrid meta-heuristic algorithm

    Science.gov (United States)

    Yousefikhoshbakht, Majid; Khorram, Esmaile

    2012-08-01

    The vehicle routing problem (VRP) is one of the most important combinational optimization problems that has nowadays received much attention because of its real application in industrial and service problems. The VRP involves routing a fleet of vehicles, each of them visiting a set of nodes such that every node is visited by exactly one vehicle only once. So, the objective is to minimize the total distance traveled by all the vehicles. This paper presents a hybrid two-phase algorithm called sweep algorithm (SW) + ant colony system (ACS) for the classical VRP. At the first stage, the VRP is solved by the SW, and at the second stage, the ACS and 3-opt local search are used for improving the solutions. Extensive computational tests on standard instances from the literature confirm the effectiveness of the presented approach.

  18. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James Gerald [ORNL

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  19. Review on Automotive Power Generation System on Plug-in Hybrid Electric Vehicles & Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Leong Yap Wee

    2016-01-01

    Full Text Available Regenerative braking is a function to recharge power bank on the Plug-in electric vehicles (PHEV and electric vehicles (EV. The weakness of this system is, it can only perform its function when the vehicle is slowing down or by stepping the brake foot pedal. In other words, the electricity recharging system is inconsistent, non-continuous and geography dependent. To overcome the weakness of the regenerative braking system, it is suggested that to apply another generator which is going to be parallel with the regenerative braking system so that continuous charging can be achieved. Since the ironless electricity generator has a less counter electromotive force (CEMF comparing to an ironcored electricity generator and no cogging torque. Applying the ironless electricity generator parallel to the regenerative braking system is seen one of the options which creates sustainable charging system compared to cored electricity generator.

  20. Baseline tests of the Kordesh hybrid passenger vehicle

    Science.gov (United States)

    Soltis, R. F.; Bozek, J. M.; Denington, R. J.; Dustin, M. O.

    1978-01-01

    Performance test results are presented for a four-passenger Austin A40 sedan that was converted to a heat-engine-alternator-and battery-powered hybrid. It is propelled by a conventional, gasoline-fueled, heat-engine-driven alternator and a traction pack powering a series-wound, 10 hp direct-current electric drive motor. The 16 hp gasoline engine drives the 7 kilowatt alternator, which provides electrical power to the drive motor or to the 96 volt traction battery through a rectifier. The propulsion battery consists of eight 12 volt batteries connected in series. The electric motor is coupled to a four-speed standard transmission, which drives the rear wheels. Power to the motor is controlled by a three-step foot throttle, which actuates relays that control armature current and field excitation. Conventional hydraulic brakes are used.

  1. A comparative evaluation of energy storage systems for a fuel cell vehicle. Paper no. IGEC-1-142

    International Nuclear Information System (INIS)

    Marshall, J.; Kazerani, M.

    2005-01-01

    The widespread operation of internal combustion engine (ICE) vehicles has today become a great cause for concern due to the uncertainty of fossil fuel reserves, energy security issues, and numerous adverse environmental effects. Alternatives such as fuel cell vehicles, electric vehicles, hybrid vehicles, and biodiesel vehicles provide the possibility to ease some or all of these concerns. The fuel cell vehicle, however, offers an excellent combination of reducing ICE vehicle problems while maintaining the performance, driving range, and convenience that consumers require. This paper documents a comparative evaluation of an extremely important facet of the fuel cell vehicle: the energy storage system (ESS). Batteries and ultracapacitors, the two most common choices for an ESS, are compared qualitatively to illustrate the advantages and disadvantages of each. Also, a quantitative comparison is made to choose the best technology for a small fuel cell-powered SUV having the design objectives of high performance and high efficiency. Practical issues such as availability and cost are also considered. The results of the analysis indicate that a battery ESS provides the best combination of efficiency, performance, and cost for a present-day fuel cell vehicle design. Yet, if the anticipated cost reductions and improvements in the energy storage capabilities of ultracapacitors do occur, ultracapacitors will become a very strong contender for energy storage solutions of future fuel cell vehicles. (author)

  2. Hybrid Silicon Nanocone–Polymer Solar Cells

    KAUST Repository

    Jeong, Sangmoo

    2012-06-13

    Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 μm thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm 2, which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution. © 2012 American Chemical Society.

  3. Fuel cell-fuel cell hybrid system

    Science.gov (United States)

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  4. Control Strategy Optimization for Parallel Hybrid Electric Vehicles Using a Memetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yu-Huei Cheng

    2017-03-01

    Full Text Available Hybrid electric vehicle (HEV control strategy is a management approach for generating, using, and saving energy. Therefore, the optimal control strategy is the sticking point to effectively manage hybrid electric vehicles. In order to realize the optimal control strategy, we use a robust evolutionary computation method called a “memetic algorithm (MA” to optimize the control parameters in parallel HEVs. The “local search” mechanism implemented in the MA greatly enhances its search capabilities. In the implementation of the method, the fitness function combines with the ADvanced VehIcle SimulatOR (ADVISOR and is set up according to an electric assist control strategy (EACS to minimize the fuel consumption (FC and emissions (HC, CO, and NOx of the vehicle engine. At the same time, driving performance requirements are also considered in the method. Four different driving cycles, the new European driving cycle (NEDC, Federal Test Procedure (FTP, Economic Commission for Europe + Extra-Urban driving cycle (ECE + EUDC, and urban dynamometer driving schedule (UDDS are carried out using the proposed method to find their respectively optimal control parameters. The results show that the proposed method effectively helps to reduce fuel consumption and emissions, as well as guarantee vehicle performance.

  5. Analysis and control of a hybrid vehicle powered by free-piston energy converter

    OpenAIRE

    Hansson, Jörgen

    2006-01-01

    The introduction of hybrid powertrains has made it possible to utilise unconventional engines as primary power units in vehicles. The free-piston energy converter (FPEC) is such an engine. It is a combination of a free-piston combustion engine and a linear electrical machine. The main features of this configuration are high efficiency and a rapid transient response. In this thesis the free-piston energy converter as part of a hybrid powertrain is studied. One issue of the FPEC is the generati...

  6. Review and Comparison of Power Management Approaches for Hybrid Vehicles with Focus on Hydraulic Drives

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Karbaschian

    2014-05-01

    Full Text Available The main advantage of hybrid powertrains is based on the efficient transfer of power and torque from power sources to the powertrain as well as recapturing of reversible energies without effecting the vehicle performance. The benefits of hybrid hydraulic powertrains can be better utilized with an appropriate power management. In this paper, different types of power management algorithms like off-line and on-line methods are briefly reviewed and classified. Finally, the algorithms are evaluated and compared. Therefore, different related criteria are evaluated and applied.

  7. Implementation of Single Phase Soft Switched PFC Converter for Plug-in-Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Aiswariya Sekar

    2015-11-01

    Full Text Available This paper presents a new soft switching boost converter with a passive snubber cell without additional active switches for battery charging systems. The proposed snubber finds its application in the front-end ac-dc converter of Plug-in Hybrid Electric Vehicle (PHEV battery chargers. The proposed auxiliary snubber circuit consists of an inductor, two capacitors and two diodes. The new converter has the advantages of continuous input current, low switching stresses, high voltage gain without extreme duty cycle, minimized charger size and charging time and fewer amounts of cost and electricity drawn from the utility at higher switching frequencies. The switch is made to turn ON by Zero Current Switching (ZCS and turn OFF by Zero Voltage Switching (ZVS. The detailed steady state analysis of the novel ac-dc Zero Current- Zero Voltage Switching (ZC-ZVS boost Power Factor Correction (PFC converter is presented with its operating principle. The experimental prototype of 20 kHz, 100 W converter verifies the theoretical analysis. The power factor of the prototype circuit reaches near unity with an efficiency of 97%, at nominal output power for a ±10% variation in the input voltage and ±20% variation in the snubber component values.

  8. Simulation and Optimization of Air-Cooled PEMFC Stack for Lightweight Hybrid Vehicle Application

    Directory of Open Access Journals (Sweden)

    Jingming Liang

    2015-01-01

    Full Text Available A model of 2 kW air-cooled proton exchange membrane fuel cell (PEMFC stack has been built based upon the application of lightweight hybrid vehicle after analyzing the characteristics of heat transfer of the air-cooled stack. Different dissipating models of the air-cooled stack have been simulated and an optimal simulation model for air-cooled stack called convection heat transfer (CHT model has been figured out by applying the computational fluid dynamics (CFD software, based on which, the structure of the air-cooled stack has been optimized by adding irregular cooling fins at the end of the stack. According to the simulation result, the temperature of the stack has been equally distributed, reducing the cooling density and saving energy. Finally, the 2 kW hydrogen-air air-cooled PEMFC stack is manufactured and tested by comparing the simulation data which is to find out its operating regulations in order to further optimize its structure.

  9. Battery available power prediction of hybrid electric vehicle based on improved Dynamic Matrix Control algorithms

    Science.gov (United States)

    Wang, Limei; Cheng, Yong; Zou, Ju

    2014-09-01

    The core technology to any hybrid engine vehicle (HEV) is the design of energy management strategy (EMS). To develop a reasonable EMS, it is necessary to monitor the state of capacity, state of health and instantaneous available power of battery packs. A new method that linearizes RC equivalent circuit model and predicts battery available power according to original Dynamic Matrix Control algorithm is proposed. To verify the validity of the new algorithm, a bench test with lithium-ion battery cell and a HEV test with lithium-ion battery packs are carried out. The bench test results indicate that a single RC block equivalent circuit model could be used to describe the dynamic and the steady state characteristics of a battery under testing conditions. However, lacking of long time constant of RC modules, there is a sample deviation in the open-circuit voltage identified and that measured. The HEV testing results show that the battery voltage predicted is in good agreement with that measured, the maximum difference is within 3.7%. Fixing the time constant to a numeric value, satisfactory results can still be achieved. After setting a battery discharge cut-off voltage, the instantaneous available power of the battery can be predicted.

  10. Optimization of Power Train and Control Strategy of a Hybrid Electric Vehicle for Maximum Energy Economy

    Directory of Open Access Journals (Sweden)

    Osornio-Correa C.

    2013-01-01

    Full Text Available A solution to increase fuel economy in Hybrid Electric Vehicles derived from physical characteristics of the vehicle, the powertrain and the control strategy is presented. A heuristic Control Map is created to analyze the restrictions and benefits of using either of the onboard power plants under different driving conditions. The control strategy follows the Control Map with a logic that responds to the Battery State of Charge. Finally, a case study demonstrates the increase in fuel economy and charge sustainability; here, the variables studied are submitted to a Multi-Objective Genetic Algorithm Optimization.

  11. An Approach for Designing Thermal Management Systems for Electric and Hybrid Vehicle Battery Packs

    International Nuclear Information System (INIS)

    Pesaran, Ahmad A.; Keyser, Matthew; Burch, Steve

    1999-01-01

    If battery packs for electric vehicles (EVs) and hybrid electric vehicles (HEVs) are to operate effectively in all climates, thermal management of the packs is essential. In this paper, we will review a systematic approach for designing and evaluating battery pack thermal management systems. A thermal management system using air as the heat transfer medium is less complicated than a system using liquid cooling/heating. Generally, for parallel HEVs, an air thermal management system is adequate, whereas for EVs and series HEVs, liquid-based systems may be required for optimum thermal performance. Further information on battery thermal management can be found on the Web site www.ctts.nrel.gov/BTM

  12. Near Term Hybrid Passenger Vehicle Development Program. Phase I, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Montalenti, P.; Piccolo, R.

    1979-09-21

    Activities performed in the Near Term Hybrid Vehicle (NTHV) program which studied the technical, economic, and fuel conservation aspects of replacing new 1985 full sized passenger cars in the US with automobiles having combination heat engines and electric motor power are summarized. These studies included NTHV design for the body power units, transmission system, and controls; evaluation of alternative strategies; the fuel conservation expected; goals for vehicle performance, safety and reliability; economic analysis, and mathematical models for use in the computer-aided design of the optimum performance NTHV. (LCL)

  13. Intelligent Hybrid Vehicle Power Control - Part 1: Machine Learning of Optimal Vehicle Power

    Science.gov (United States)

    2012-06-30

    the motor or both can provide the traction power to the drivetrain. During vehicle deceleration, the regenerative braking power is captured to charge...state variable, E, are quantized into grids . In Figure 2, the engine speed is discretized into 31 different engine speeds and is labeled as an engine

  14. 40 CFR 86.1818-12 - Greenhouse gas emission standards for light-duty vehicles, light-duty trucks, and medium-duty...

    Science.gov (United States)

    2010-07-01

    ... Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and..., including multi-fuel vehicles, vehicles fueled with alternative fuels, hybrid electric vehicles, plug-in hybrid electric vehicles, electric vehicles, and fuel cell vehicles. Unless otherwise specified, multi...

  15. On the performance of accelerated particle swarm optimization for charging plug-in hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Imran Rahman

    2016-03-01

    Full Text Available Transportation electrification has undergone major changes since the last decade. Success of smart grid with renewable energy integration solely depends upon the large-scale penetration of plug-in hybrid electric vehicles (PHEVs for a sustainable and carbon-free transportation sector. One of the key performance indicators in hybrid electric vehicle is the State-of-Charge (SoC which needs to be optimized for the betterment of charging infrastructure using stochastic computational methods. In this paper, a newly emerged Accelerated particle swarm optimization (APSO technique was applied and compared with standard particle swarm optimization (PSO considering charging time and battery capacity. Simulation results obtained for maximizing the highly nonlinear objective function indicate that APSO achieves some improvements in terms of best fitness and computation time.

  16. Near term hybrid passenger vehicle development program. Phase I. Appendices A and B. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    In this report vehicle use patterns or missions are defined and studied. The three most promising missions were found to be: all-purpose city driving which has the maximum potential market penetration; commuting which requires mainly a two-passenger car; and family and civic business driving which have minimal range requirements. The mission selection process was based principally on an analysis of the travel patterns found in the Nationwide Transportation Survey and on the Los Angeles and Washington, DC origin-destination studies data presented by General Research Corporation in Volume II of this report. Travel patterns in turn were converted to fuel requirements for 1985 conventional and hybrid cars. By this means the potential fuel savings for each mission were estimated, and preliminary design requirements for hybrid vehicles were derived.

  17. Experimental Analysis on Laboratory DC Fast Charging Architecture for Electric and Plug-in Hybrid Vehicles

    OpenAIRE

    Capasso, Clemente

    2015-01-01

    This manuscript is aimed to present a complete experimental analysis on DC power architecture for fast charging operations of full electric and plug-in hybrid vehicles. The described research activities start from an experimental characterization of energy storage systems of different technologies during their charging and discharging operations. These tests are carried out through a specific laboratory bench, which is properly controlled in order to obtain the required charging/discharging p...

  18. Real-world fuel economy and CO2 emissions of plug-in hybrid electric vehicles

    OpenAIRE

    Plötz, Patrick; Funke, Simon; Jochem, Patrick

    2015-01-01

    Plug-in hybrid electric vehicles (PHEV) combine electric propulsion with an internal combustion engine. Their potential to reduce transport related green-house gas emissions highly depends on their actual usage and electricity provision. Various studies underline their environmental and economic advantages, but are based on standardised driving cycles, simulations or small PHEV fleets. Here, we analyse real-world fuel economy of PHEV and the factors influencing it based on about 2,000 actual ...

  19. Improvement of cosmic ray ruggedness of hybrid vehicles power semiconductor devices

    International Nuclear Information System (INIS)

    Nishida, Shuichi; Ohnishi, Toyokazu; Fujikawa, Touma; Nose, Noboru; Hamada, Kimimori; Shoji, Tomoyuki; Ishiko, Masayasu

    2010-01-01

    Power semiconductors which are used under high voltage conditions in HVs (Hybrid Vehicles) are required to have high destruction tolerance against cosmic rays as well as to meet conventional quality standards. In this paper, an SEB (Single Event Burnout) failure mechanism induced by cosmic rays in IGBTs (Insulated Gate Bipolar Transistors) was investigated. Through an optimized device design in which thyristor action was suppressed, the device destruction tolerance was greatly improved. (author)

  20. Torque Split Strategy for Parallel Hybrid Electric Vehicles with an Integrated Starter Generator

    OpenAIRE

    Fu, Zhumu; Gao, Aiyun; Wang, Xiaohong; Song, Xiaona

    2014-01-01

    This paper presents a torque split strategy for parallel hybrid electric vehicles with an integrated starter generator (ISG-PHEV) by using fuzzy logic control. By combining the efficiency map and the optimum torque curve of the internal combustion engine (ICE) with the state of charge (SOC) of the batteries, the torque split strategy is designed, which manages the ICE within its peak efficiency region. Taking the quantified ICE torque, the quantified SOC of the batteries, and the quantified I...

  1. A review of composite material applications in the automotive industry for the electric and hybrid vehicle

    Science.gov (United States)

    Bauer, J. L.

    1979-01-01

    A review is made of the state-of-the-art in regard to the use of composite materials for reducing the structural mass of automobiles. Reduction of mass provides, in addition to other engineering improvements, increased performance/range advantages that are particularly needed in the electric and hybrid vehicle field. Problems encountered include the attainment of mass production techniques and the prevention of environmental hazards.

  2. Switched causual modeling of transmission with clutch in hybrid electric vehicles

    OpenAIRE

    LHOMME, W; TRIGUI, R; DELARU, P; JEANNERET, B; BOUSCAUROL, A; BADIN, F

    2008-01-01

    Certain difficulties arise when attempting to model a clutch in a power train transmission due to its nonlinear behavior. Two different states have to be taken into account-the first being when the clutch is locked and the second being when the clutch is slipping. In this paper, a clutch model is developed using the Energetic Macroscopic Representation, which is, in turn, used in the modeling of complete hybrid electric vehicles (HEVs). Two different models are used, and a specific condition ...

  3. Plug-in-Hybrid Vehicle Use, Energy Consumption, and Greenhouse Emissions: An Analysis of Household Vehicle Placements in Northern California

    Directory of Open Access Journals (Sweden)

    Daniel Kammen

    2011-03-01

    Full Text Available We report on the real-world use over the course of one year of a nickel-metal-hydride plug-in hybrid—the Toyota Plug-In HV—by a set of 12 northern California households able to charge at home and work. From vehicle use data, energy and greenhouse-emissions implications are also explored. A total of 1557 trips—most using under 0.5 gallons of gasoline—ranged up to 2.4 hours and 133 miles and averaged 14 minutes and 7 miles. 399 charging events averaged 2.6 hours. The maximum lasted 4.6 hours. Most recharges added less than 1.4 kWh, with a mean charge of 0.92 kWh. The average power drawn was under one-half kilowatt. The greenhouse gas emissions from driving and charging were estimated to be 2.6 metric tons, about half of the emissions expected from a 22.4-mpg vehicle (the MY2009 fleet-wide real-world average. The findings contribute to better understanding of how plug-in hybrids might be used, their potential impact, and how potential benefits and requirements vary for different plug-in-vehicle designs. For example, based on daily driving distances, 20 miles of charge-depleting range would have been fully utilized on 81% of days driven, whereas 40 miles would not have been fully utilized on over half of travel days.

  4. Effect of plug-in hybrid electric vehicle adoption on gas tax revenue, local pollution, and greenhouse gas emissions.

    Science.gov (United States)

    2015-12-01

    Plug-in hybrid electric vehicles (PHEV) are likely to increase in popularity in the near future. However, the : environmental benefits of PHEVs involve tradeoffs between the benefits of reduced tailpipe emissions : against the drawbacks of increased ...

  5. Emissions from Plug-in Hybrid Electric Vehicle (PHEV) During Real World Driving Under Various Weather Conditions

    Science.gov (United States)

    2018-02-02

    Exposure to particulate matter (PM) and pollutant gas (NOx) is associated with increased cardiopulmonary morbidity and mortality. Mobile source emissions contribute to PM and NOx emissions significantly in urban areas. Hybrid Electric Vehicles (HEVs)...

  6. Comparative Calculation of the Fuel–Optimal Operating Strategy for Diesel Hybrid Railway Vehicles

    Directory of Open Access Journals (Sweden)

    Leska Maik

    2017-06-01

    Full Text Available In contrast to road-based traffic, the track as well as the corresponding duty cycle for railways are known beforehand, which represents a great advantage during the development of operating strategies for hybrid vehicles. Hence the benefits of hybrid vehicles regarding the fuel consumption can be exploited by means of an off-line optimisation. In this article, the fuel-optimal operating strategy is calculated for one specified track using two hybrid railway vehicles with different kinds of energy storage systems: on the one hand, a lithium-ion battery (high-energy storage and, on the other, a double layer capacitor (high-power storage. For this purpose, control-oriented simulation models are developed for each architecture addressing the main effects contributing to the longitudinal dynamics of the power train. Based on these simulation models, the fuel-optimal operating strategy is calculated by two different approaches: Bellman’s dynamic programming, a wellknown approach in this field, and an innovative sensitivity-based optimisation.

  7. Lithium-ion Battery Degradation Assessment and Remaining Useful Life Estimation in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nabil Laayouj

    2016-06-01

    Full Text Available Abstract—Prognostic activity deals with prediction of the remaining useful life (RUL of physical systems based on their actual health state and their usage conditions. RUL estimation gives operators a potent tool in decision making by quantifying how much time is left until functionality is lost. In addition, it can be used to improve the characterization of the material proprieties that govern damage propagation for the structure being monitored. RUL can be estimated by using three main approaches, namely model-based, data-driven and hybrid approaches. The prognostics methods used later in this paper are hybrid and data-driven approaches, which employ the Particle Filter in the first one and the autoregressive integrated moving average in the second. The performance of the suggested approaches is evaluated in a comparative study on data collected from lithium-ion battery of hybrid electric vehicle.

  8. Spatial, temporal, and hybrid decompositions for large-scale vehicle routing with time windows

    Energy Technology Data Exchange (ETDEWEB)

    Bent, Russell W [Los Alamos National Laboratory

    2010-01-01

    This paper studies the use of decomposition techniques to quickly find high-quality solutions to large-scale vehicle routing problems with time windows. It considers an adaptive decomposition scheme which iteratively decouples a routing problem based on the current solution. Earlier work considered vehicle-based decompositions that partitions the vehicles across the subproblems. The subproblems can then be optimized independently and merged easily. This paper argues that vehicle-based decompositions, although very effective on various problem classes also have limitations. In particular, they do not accommodate temporal decompositions and may produce spatial decompositions that are not focused enough. This paper then proposes customer-based decompositions which generalize vehicle-based decouplings and allows for focused spatial and temporal decompositions. Experimental results on class R2 of the extended Solomon benchmarks demonstrates the benefits of the customer-based adaptive decomposition scheme and its spatial, temporal, and hybrid instantiations. In particular, they show that customer-based decompositions bring significant benefits over large neighborhood search in contrast to vehicle-based decompositions.

  9. Hybrid Video Stabilization for Mobile Vehicle Detection on SURF in Aerial Surveillance

    Directory of Open Access Journals (Sweden)

    Gao Chunxian

    2015-01-01

    Full Text Available Detection of moving vehicles in aerial video sequences is of great importance with many promising applications in surveillance, intelligence transportation, or public service applications such as emergency evacuation and policy security. However, vehicle detection is a challenging task due to global camera motion, low resolution of vehicles, and low contrast between vehicles and background. In this paper, we present a hybrid method to efficiently detect moving vehicle in aerial videos. Firstly, local feature extraction and matching were performed to estimate the global motion. It was demonstrated that the Speeded Up Robust Feature (SURF key points were more suitable for the stabilization task. Then, a list of dynamic pixels was obtained and grouped for different moving vehicles by comparing the different optical flow normal. To enhance the precision of detection, some preprocessing methods were applied to the surveillance system, such as road extraction and other features. A quantitative evaluation on real video sequences indicated that the proposed method improved the detection performance significantly.

  10. Distributed energy resources management using plug-in hybrid electric vehicles as a fuel-shifting demand response resource

    DEFF Research Database (Denmark)

    Morais, Hugo; Sousa, Tiago; Soares, J.

    2015-01-01

    In the smart grids context, distributed energy resources management plays an important role in the power systems' operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important...... to develop adequate methodologies to schedule the electric vehicles' charge and discharge processes, avoiding network congestions and providing ancillary services.This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed......, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting...

  11. Techno-economic comparison of series hybrid, plug-in hybrid, fuel cell and regular cars

    NARCIS (Netherlands)

    van Vliet, O.P.R.; Kruithof, T.; Turkenburg, W.C.; Faaij, A.P.C.

    2010-01-01

    We examine the competitiveness of series hybrid compared to fuel cell, parallel hybrid, and regular cars. We use public domain data to determine efficiency, fuel consumption, total costs of ownership and greenhouse gas emissions resulting from drivetrain choices. The series hybrid drivetrain can be

  12. GRAB-ECO for Minimal Fuel Consumption Estimation of Parallel Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhao Jianning

    2017-11-01

    Full Text Available As a promising solution to the reduction of fuel consumption and CO2 emissions in road transport sector, hybrid electric powertrains are confronted with complex control techniques for the evaluation of the minimal fuel consumption, particularly the excessively long computation time of the design-parameter optimization in the powertrain's early design stage. In this work, a novel and simple GRaphical-Analysis-Based method of fuel Energy Consumption Optimization (GRAB-ECO is developed to estimate the minimal fuel consumption for parallel hybrid electric powertrains in light- and heavy-duty application. Based on the power ratio between powertrain's power demand and the most efficient engine power, GRAB-ECO maximizes the average operating efficiency of the internal combustion engine by shifting operating points to the most efficient conditions, or by eliminating the engine operation from poorly efficient operating points to pure electric vehicle operation. A turning point is found to meet the requirement of the final state of energy of the battery, which is charge-sustaining mode in this study. The GRAB-ECO was tested with both light- and heavy-duty parallel hybrid electric vehicles, and validated in terms of the minimal fuel consumption and the computation time. Results show that GRAB-ECO accurately approximates the minimal fuel consumption with less than 6% of errors for both light- and heavy-duty parallel hybrid electric powertrains. Meanwhile, GRAB-ECO reduces computation time by orders of magnitude compared with PMP-based (Pontryagin's Minimum Principle approaches.

  13. Fuel consumption optimization for smart hybrid electric vehicle during a car-following process

    Science.gov (United States)

    Li, Liang; Wang, Xiangyu; Song, Jian

    2017-03-01

    Hybrid electric vehicles (HEVs) provide large potential to save energy and reduce emission, and smart vehicles bring out great convenience and safety for drivers. By combining these two technologies, vehicles may achieve excellent performances in terms of dynamic, economy, environmental friendliness, safety, and comfort. Hence, a smart hybrid electric vehicle (s-HEV) is selected as a platform in this paper to study a car-following process with optimizing the fuel consumption. The whole process is a multi-objective optimal problem, whose optimal solution is not just adding an energy management strategy (EMS) to an adaptive cruise control (ACC), but a deep fusion of these two methods. The problem has more restricted conditions, optimal objectives, and system states, which may result in larger computing burden. Therefore, a novel fuel consumption optimization algorithm based on model predictive control (MPC) is proposed and some search skills are adopted in receding horizon optimization to reduce computing burden. Simulations are carried out and the results indicate that the fuel consumption of proposed method is lower than that of the ACC+EMS method on the condition of ensuring car-following performances.

  14. Life-cycle private costs of hybrid electric vehicles in the current Chinese market

    International Nuclear Information System (INIS)

    Lin, Chengtao; Wu, Tian; Ou, Xunmin; Zhang, Qian; Zhang, Xu; Zhang, Xiliang

    2013-01-01

    Understanding the life-cycle private cost (LCPC) of the hybrid electric vehicle (HEV) is important for market feasibility analysis. An HEV LCPC model was established to evaluate HEV market prospects in China compared with traditional internal combustion engine vehicles (ICEV). The Kluger HV, a full-hybrid HEV sports utility vehicle (SUV), aimed at the Chinese market, was simulated as the 2010 model's technology details were well publicized. The LCPC of the Kluger HV was roughly the same (about 1.06 times) as that of its comparable ICEV (Highlander SUV). This aligns with other compact and midsize HEV cars (e.g., Toyota Prius, Honda Civic and Toyota Camry HEV) in China. With oil prices predicted to rise in the long-term, the advantage of HEVs energy saving will partly compensate the high manufacturing costs associated with their additional motor/battery components. Besides supporting technology development, enabling policy should be implemented to introduce HEV technology into taxi fleets and business cars. This technology's cost-competitiveness, compared with traditional ICEVs, is advantageous for these higher mileage vehicles. - Highlights: ► A model is set up to evaluate the life-cycle private cost of HEVs. ► Life-cycle private costs of HEVs are higher than conventional cars in China. ► HEVs become competitive when the oil price rises

  15. Hybrid Map-Based Navigation Method for Unmanned Ground Vehicle in Urban Scenario

    Directory of Open Access Journals (Sweden)

    Huiyan Chen

    2013-07-01

    Full Text Available To reduce the data size of metric map and map matching computational cost in unmanned ground vehicle self-driving navigation in urban scenarios, a metric-topological hybrid map navigation system is proposed in this paper. According to the different positioning accuracy requirements, urban areas are divided into strong constraint (SC areas, such as roads with lanes, and loose constraint (LC areas, such as intersections and open areas. As direction of the self-driving vehicle is provided by traffic lanes and global waypoints in the road network, a simple topological map is fit for the navigation in the SC areas. While in the LC areas, the navigation of the self-driving vehicle mainly relies on the positioning information. Simultaneous localization and mapping technology is used to provide a detailed metric map in the LC areas, and a window constraint Markov localization algorithm is introduced to achieve accurate position using laser scanner. Furthermore, the real-time performance of the Markov algorithm is enhanced by using a constraint window to restrict the size of the state space. By registering the metric maps into the road network, a hybrid map of the urban scenario can be constructed. Real unmanned vehicle mapping and navigation tests demonstrated the capabilities of the proposed method.

  16. A Hybrid Algorithm Based on ACO and PSO for Capacitated Vehicle Routing Problems

    Directory of Open Access Journals (Sweden)

    Yucheng Kao

    2012-01-01

    Full Text Available The vehicle routing problem (VRP is a well-known combinatorial optimization problem. It has been studied for several decades because finding effective vehicle routes is an important issue of logistic management. This paper proposes a new hybrid algorithm based on two main swarm intelligence (SI approaches, ant colony optimization (ACO and particle swarm optimization (PSO, for solving capacitated vehicle routing problems (CVRPs. In the proposed algorithm, each artificial ant, like a particle in PSO, is allowed to memorize the best solution ever found. After solution construction, only elite ants can update pheromone according to their own best-so-far solutions. Moreover, a pheromone disturbance method is embedded into the ACO framework to overcome the problem of pheromone stagnation. Two sets of benchmark problems were selected to test the performance of the proposed algorithm. The computational results show that the proposed algorithm performs well in comparison with existing swarm intelligence approaches.

  17. SDP Policy Iteration-Based Energy Management Strategy Using Traffic Information for Commuter Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaohong Jiao

    2014-07-01

    Full Text Available This paper demonstrates an energy management method using traffic information for commuter hybrid electric vehicles. A control strategy based on stochastic dynamic programming (SDP is developed, which minimizes on average the equivalent fuel consumption, while satisfying the battery charge-sustaining constraints and the overall vehicle power demand for drivability. First, according to the sample information of the traffic speed profiles, the regular route is divided into several segments and the statistic characteristics in the different segments are constructed from gathered data on the averaged vehicle speeds. And then, the energy management problem is formulated as a stochastic nonlinear and constrained optimal control problem and a modified policy iteration algorithm is utilized to generate a time-invariant state-dependent power split strategy. Finally, simulation results over some driving cycles are presented to demonstrate the effectiveness of the proposed energy management strategy.

  18. Study questions environmental impact of fuel-cell vehicles

    Science.gov (United States)

    Stafford, Ned

    2015-09-01

    Fuel-cell electric vehicles are seen by many as an environmentally friendly technology that can reduce greenhousegas emissions by producing no harmful emissions. But a new study has found that overall a fuel cell electric vehicle has about the same negative environmental impact as a luxury sports car.

  19. Technology Roadmaps - Electric and plug-in hybrid electric vehicles (EV/PHEV)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-15

    The mass deployment of electric and plug-in hybrid electric vehicles (EVs and PHEVs) that rely on low greenhouse gas (GHG) emission electricity generation has great potential to significantly reduce the consumption of petroleum and other high CO2-emitting transportation fuels. The vision of the Electric and Plug-in Hybrid (EV/PHEV) Vehicles Roadmap is to achieve by 2050 the widespread adoption and use of EVs and PHEVs, which together represent more than 50% of annual LDV (light duty vehicle) sales worldwide. In addition to establishing a vision, this roadmap sets strategic goals to achieve it, and identifies the steps that need to be taken to accomplish these goals. This roadmap also outlines the roles and collaboration opportunities for different stakeholders and shows how government policy can support the overall achievement of the vision. The strategic goals for attaining the widespread adoption and use of EVs and PHEVs worldwide by 2050 cover the development of the EV/PHEV market worldwide through 2030 and involve targets that align with global targets to stabilise GHG concentrations. These technology-specific goals include the following: Set targets for electric-drive vehicle sales; Develop coordinated strategies to support the market introduction of electric-drive vehicles; Improve industry understanding of consumer needs and behaviours; Develop performance metrics for characterising vehicles; Foster energy storage RD and D initiatives to reduce costs and address resource-related issues; and, Develop and implement recharging infrastructure. The roadmap outlines additional recommendations that must be considered in order to successfully meet the technology milestones and strategic goals. These recommendations include the following: Use a comprehensive mix of policies that provide a clear framework and balance stakeholder interests; Engage in international collaboration efforts; and, Address policy and industry needs at a national level. The IEA will work in an

  20. Design comparison of single phase outer and inner-rotor hybrid excitation flux switching motor for hybrid electric vehicles

    Science.gov (United States)

    Mazlan, Mohamed Mubin Aizat; Sulaiman, Erwan; Husin, Zhafir Aizat; Othman, Syed Muhammad Naufal Syed; Khan, Faisal

    2015-05-01

    In hybrid excitation machines (HEMs), there are two main flux sources which are permanent magnet (PM) and field excitation coil (FEC). These HEMs have better features when compared with the interior permanent magnet synchronous machines (IPMSM) used in conventional hybrid electric vehicles (HEVs). Since all flux sources including PM, FEC and armature coils are located on the stator core, the rotor becomes a single piece structure similar with switch reluctance machine (SRM). The combined flux generated by PM and FEC established more excitation fluxes that are required to produce much higher torque of the motor. In addition, variable DC FEC can control the flux capabilities of the motor, thus the machine can be applied for high-speed motor drive system. In this paper, the comparisons of single-phase 8S-4P outer and inner rotor hybrid excitation flux switching machine (HEFSM) are presented. Initially, design procedures of the HEFSM including parts drawing, materials and conditions setting, and properties setting are explained. Flux comparisons analysis is performed to investigate the flux capabilities at various current densities. Then the flux linkages of PM with DC FEC of various DC FEC current densities are examined. Finally torque performances are analyzed at various armature and FEC current densities for both designs. As a result, the outer-rotor HEFSM has higher flux linkage of PM with DC FEC and higher average torque of approximately 10% when compared with inner-rotor HEFSM.

  1. Towards a Friendly Energy Management Strategy for Hybrid Electric Vehicles with Respect to Pollution, Battery and Drivability

    Directory of Open Access Journals (Sweden)

    Guillaume Colin

    2014-09-01

    Full Text Available The paper proposes a generic methodology to incorporate constraints (pollutant emission, battery health, drivability into on-line energy management strategies (EMSs for hybrid electric vehicles (HEVs and plug-in hybrid electric vehicles (PHEVs. The integration of each constraint into the EMS, made with the Pontryagin maximum principle, shows a tradeoff between the fuel consumption and the constraint introduced. As state dynamics come into play (catalyst temperature, battery cell temperature, etc., the optimization problem becomes more complex. Simulation results are presented to highlight the contribution of this generic strategy, including constraints compared to the standard approach. These results show that it is possible to find an energy management strategy that takes into account an increasing number of constraints (drivability, pollution, aging, environment, etc.. However, taking these constraints into account increases fuel consumption (the existence of a trade-off curve. This trade-off can be sometimes difficult to find, and the tools developed in this paper should help to find an acceptable solution quickly

  2. Techno-economic assessment of fuel cell vehicles for India

    International Nuclear Information System (INIS)

    Manish S; Rangan Banerjee

    2006-01-01

    This paper compares four alternative vehicle technologies for a typical small family car in India (Maruti 800) - two conventional i) Petrol driven internal combustion (IC) engine, ii) Compressed natural gas (CNG) driven IC engine and two based on proton exchange membrane (PEM) fuel cells with different storage iii) Compressed hydrogen storage and iv) Metal hydride (FeTi) storage. Each technology option is simulated in MATLAB using a backward facing algorithm to calculate the force and power requirement for the Indian urban drive cycle. The storage for the CNG and the fuel cell vehicles is designed to have driving range of 50% of the existing petrol vehicle. The simulation considers the part load efficiency vs. load characteristics for the computed ratings of the IC engine and the fuel cell. The analysis includes the transmission efficiency, motor efficiency and storage efficiencies. The comparison criteria used are the primary energy consumption (MJ/km), the cost (Rs./km) obtained by computing the annualized life cycle cost and dividing this by the annual vehicle travel and carbon dioxide emissions (g/km). For the primary energy analysis the energy required for extraction, processing of the fuel is also included. For the fuel cell vehicles, it is assumed that hydrogen is produced from natural gas through steam methane reforming. It is found that the fuel cell vehicles have the lowest primary energy consumption (1.3 MJ/km) as compared to the petrol and CNG vehicles (2.3 and 2.5 MJ/km respectively). The cost analysis is done based on existing prices in India and reveals that the CNG vehicle has the lowest cost (2.3 Rs./km) as compared to petrol (4.5 Rs./km). The fuel cell vehicles have a higher cost of 26 Rs./km mainly due to the higher fuel cell system cost (93% of the total cost). The CO 2 emissions are lowest for the fuel cell vehicle with compressed hydrogen storage (98 g/km) as compared to the petrol vehicle (162 g/km). If the incremental annual cost of the fuel

  3. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Poch, L. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Vyas, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Mahalik, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Rousseau, A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2010-06-01

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs.

  4. Design, control and power management of a battery/ultra-capacitor hybrid system for small electric vehicles

    DEFF Research Database (Denmark)

    Li, Zhihao; Onar, Omer; Khaligh, Alireza

    2009-01-01

    This paper introduces design, control, and power management of a battery/ultra-capacitor hybrid system, utilized for small electric vehicles (EV). The batteries are designed and controlled to work as the main energy storage source of the vehicle, supplying average power to the load; and the ultra...

  5. Optimal Battery Utilization Over Lifetime for Parallel Hybrid Electric Vehicle to Maximize Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Chinmaya; Naghshtabrizi, Payam; Verma, Rajeev; Tang, Zhijun; Smith, Kandler; Shi, Ying

    2016-08-01

    This paper presents a control strategy to maximize fuel economy of a parallel hybrid electric vehicle over a target life of the battery. Many approaches to maximizing fuel economy of parallel hybrid electric vehicle do not consider the effect of control strategy on the life of the battery. This leads to an oversized and underutilized battery. There is a trade-off between how aggressively to use and 'consume' the battery versus to use the engine and consume fuel. The proposed approach addresses this trade-off by exploiting the differences in the fast dynamics of vehicle power management and slow dynamics of battery aging. The control strategy is separated into two parts, (1) Predictive Battery Management (PBM), and (2) Predictive Power Management (PPM). PBM is the higher level control with slow update rate, e.g. once per month, responsible for generating optimal set points for PPM. The considered set points in this paper are the battery power limits and State Of Charge (SOC). The problem of finding the optimal set points over the target battery life that minimize engine fuel consumption is solved using dynamic programming. PPM is the lower level control with high update rate, e.g. a second, responsible for generating the optimal HEV energy management controls and is implemented using model predictive control approach. The PPM objective is to find the engine and battery power commands to achieve the best fuel economy given the battery power and SOC constraints imposed by PBM. Simulation results with a medium duty commercial hybrid electric vehicle and the proposed two-level hierarchical control strategy show that the HEV fuel economy is maximized while meeting a specified target battery life. On the other hand, the optimal unconstrained control strategy achieves marginally higher fuel economy, but fails to meet the target battery life.

  6. Hybrid Solar Cells: Materials, Interfaces, and Devices

    Science.gov (United States)

    Mariani, Giacomo; Wang, Yue; Kaner, Richard B.; Huffaker, Diana L.

    Photovoltaic technologies could play a pivotal role in tackling future fossil fuel energy shortages, while significantly reducing our carbon dioxide footprint. Crystalline silicon is pervasively used in single junction solar cells, taking up 80 % of the photovoltaic market. Semiconductor-based inorganic solar cells deliver relatively high conversion efficiencies at the price of high material and manufacturing costs. A great amount of research has been conducted to develop low-cost photovoltaic solutions by incorporating organic materials. Organic semiconductors are conjugated hydrocarbon-based materials that are advantageous because of their low material and processing costs and a nearly unlimited supply. Their mechanical flexibility and tunable electronic properties are among other attractions that their inorganic counterparts lack. Recently, collaborations in nanotechnology research have combined inorganic with organic semiconductors in a "hybrid" effort to provide high conversion efficiencies at low cost. Successful integration of these two classes of materials requires a profound understanding of the material properties and an exquisite control of the morphology, surface properties, ligands, and passivation techniques to ensure an optimal charge carrier generation across the hybrid device. In this chapter, we provide background information of this novel, emerging field, detailing the various approaches for obtaining inorganic nanostructures and organic polymers, introducing a multitude of methods for combining the two components to achieve the desired morphologies, and emphasizing the importance of surface manipulation. We highlight several studies that have fueled new directions for hybrid solar cell research, including approaches for maximizing efficiencies by controlling the morphologies of the inorganic component, and in situ molecular engineering via electrochemical polymerization of a polymer directly onto the inorganic nanowire surfaces. In the end, we

  7. Numerical simulation of active track tensioning system for autonomous hybrid vehicle

    Science.gov (United States)

    Mȩżyk, Arkadiusz; Czapla, Tomasz; Klein, Wojciech; Mura, Gabriel

    2017-05-01

    One of the most important components of a high speed tracked vehicle is an efficient suspension system. The vehicle should be able to operate both in rough terrain for performance of engineering tasks as well as on the road with high speed. This is especially important for an autonomous platform that operates either with or without human supervision, so that the vibration level can rise compared to a manned vehicle. In this case critical electronic and electric parts must be protected to ensure the reliability of the vehicle. The paper presents a dynamic parameters determination methodology of suspension system for an autonomous high speed tracked platform with total weight of about 5 tonnes and hybrid propulsion system. Common among tracked vehicles suspension solutions and cost-efficient, the torsion-bar system was chosen. One of the most important issues was determining optimal track tensioning - in this case an active hydraulic system was applied. The selection of system parameters was performed with using numerical model based on multi-body dynamic approach. The results of numerical analysis were used to define parameters of active tensioning control system setup. LMS Virtual.Lab Motion was used for multi-body dynamics numerical calculation and Matlab/SIMULINK for control system simulation.

  8. Research of Ant Colony Optimized Adaptive Control Strategy for Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Linhui Li

    2014-01-01

    Full Text Available Energy management control strategy of hybrid electric vehicle has a great influence on the vehicle fuel consumption with electric motors adding to the traditional vehicle power system. As vehicle real driving cycles seem to be uncertain, the dynamic driving cycles will have an impact on control strategy’s energy-saving effect. In order to better adapt the dynamic driving cycles, control strategy should have the ability to recognize the real-time driving cycle and adaptively adjust to the corresponding off-line optimal control parameters. In this paper, four types of representative driving cycles are constructed based on the actual vehicle operating data, and a fuzzy driving cycle recognition algorithm is proposed for online recognizing the type of actual driving cycle. Then, based on the equivalent fuel consumption minimization strategy, an ant colony optimization algorithm is utilized to search the optimal control parameters “charge and discharge equivalent factors” for each type of representative driving cycle. At last, the simulation experiments are conducted to verify the accuracy of the proposed fuzzy recognition algorithm and the validity of the designed control strategy optimization method.

  9. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    Science.gov (United States)

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  10. Hybrid Optimization-Based Approach for Multiple Intelligent Vehicles Requests Allocation

    Directory of Open Access Journals (Sweden)

    Ahmed Hussein

    2018-01-01

    Full Text Available Self-driving cars are attracting significant attention during the last few years, which makes the technology advances jump fast and reach a point of having a number of automated vehicles on the roads. Therefore, the necessity of cooperative driving for these automated vehicles is exponentially increasing. One of the main issues in the cooperative driving world is the Multirobot Task Allocation (MRTA problem. This paper addresses the MRTA problem, specifically for the problem of vehicles and requests allocation. The objective is to introduce a hybrid optimization-based approach to solve the problem of multiple intelligent vehicles requests allocation as an instance of MRTA problem, to find not only a feasible solution, but also an optimized one as per the objective function. Several test scenarios were implemented in order to evaluate the efficiency of the proposed approach. These scenarios are based on well-known benchmarks; thus a comparative study is conducted between the obtained results and the suboptimal results. The analysis of the experimental results shows that the proposed approach was successful in handling various scenarios, especially with the increasing number of vehicles and requests, which displays the proposed approach efficiency and performance.

  11. Design and development of split-parallel through-the road retrofit hybrid electric vehicle with in-wheel motors

    Science.gov (United States)

    Zulkifli, S. A.; Syaifuddin Mohd, M.; Maharun, M.; Bakar, N. S. A.; Idris, S.; Samsudin, S. H.; Firmansyah; Adz, J. J.; Misbahulmunir, M.; Abidin, E. Z. Z.; Syafiq Mohd, M.; Saad, N.; Aziz, A. R. A.

    2015-12-01

    One configuration of the hybrid electric vehicle (HEV) is the split-axle parallel hybrid, in which an internal combustion engine (ICE) and an electric motor provide propulsion power to different axles. A particular sub-type of the split-parallel hybrid does not have the electric motor installed on board the vehicle; instead, two electric motors are placed in the hubs of the non-driven wheels, called ‘hub motor’ or ‘in-wheel motor’ (IWM). Since propulsion power from the ICE and IWM is coupled through the vehicle itself, its wheels and the road on which it moves, this particular configuration is termed ‘through-the-road’ (TTR) hybrid. TTR configuration enables existing ICE-powered vehicles to be retrofitted into an HEV with minimal physical modification. This work describes design of a retrofit- conversion TTR-IWM hybrid vehicle - its sub-systems and development work. Operating modes and power flow of the TTR hybrid, its torque coupling and resultant traction profiles are initially discussed.

  12. Optimal Design of a Novel Hybrid Electric Powertrain for Tracked Vehicles

    Directory of Open Access Journals (Sweden)

    Zhaobo Qin

    2017-12-01

    Full Text Available Tracked vehicles have been widely used in construction, agriculture, and the military. Major problems facing the industry, however, are high emissions and fuel consumption. Hybrid electric tracked vehicles have thus become increasingly popular because of their improved fuel economy and reduced emissions. While the series hybrid system has drawn the most attention and has been applied in most cases, the low efficiency caused by energy conversion losses and large propulsion motors has limited its development. A novel multi-mode powertrain with two output shafts controlling each side of the track independently is first proposed. The powertrain is a three-planetary-gear power-split system with one engine, three motors, and an ultracapacitor pack. Compared with the existing technologies, the proposed powertrain can realize skid steering without an extra steering mechanism, and significantly improve the overall efficiency. To demonstrate the advantages of the novel powertrain, a topology-control-size integrated optimization problem is solved based on drivability, fuel economy, and cost. Final simulation results show that the optimized design with downsized components can produce about a 30% improvement in drivability and a 15% improvement in fuel economy compared with the commonly used series hybrid benchmark. Moreover, the optimized design is verified to be much more economical taking cumulative cost into account, which is very attractive for potential industrial applications in the future.

  13. A control-oriented simulation model of a power-split hybrid electric vehicle

    International Nuclear Information System (INIS)

    Cipek, Mihael; Pavković, Danijel; Petrić, Joško

    2013-01-01

    Highlights: ► A simulation model of a two mode power-split hybrid electric vehicle (HEV) is proposed. ► Modeling the energy losses in the HEV transmission components are presented. ► The control optimization model implementation aspects are discussed. -- Abstract: A simulation model of a two mode power-split hybrid electric vehicle (HEV) is proposed in this paper for the purpose of HEV dynamics analysis and control system design. The bond graph methodology is used to model dominant dynamic effects of the mechanical part of the HEV transmission. Simple quasi-static battery model, the environment model, the tire and the power losses model of a vehicle are included, as well. A low-level electric generator speed control loop is designed, which includes a PI controller tuned according to the symmetrical optimum tuning procedure. Finally, off-line optimization by conjugate gradient-based BPTT-like optimal control algorithm, which is based on the presented mathematical model, is also given in the paper.

  14. Ant colony system (ACS with hybrid local search to solve vehicle routing problems

    Directory of Open Access Journals (Sweden)

    Suphan Sodsoon

    2016-02-01

    Full Text Available This research applied an Ant Colony System algorithm with a Hybrid Local Search to solve Vehicle Routing Problems (VRP from a single depot when the customers’ requirements are known. VRP is an NP-hard optimization problem and has usually been successfully solved optimum by heuristics. A fleet of vehicles of a specific capacity are used to serve a number of customers at minimum cost, without violating the constraints of vehicle capacity. There are meta-heuristic approaches to solve these problems, such as Simulated Annealing, Genetic Algorithm, Tabu Search and the Ant Colony System algorithm. In this case a hybrid local search was used (Cross-Exchange, Or-Opt and 2-Opt algorithm with an Ant Colony System algorithm. The Experimental Design was tested on 7 various problems from the data set online in the OR-Library. There are five different problems in which customers are randomly distributed with the depot in an approximately central location. The customers were grouped into clusters. The results are evaluated in terms of optimal routes using optimal distances. The experimental results are compared with those obtained from meta-heuristics and they show that the proposed method outperforms six meta-heuristics in the literature.

  15. Fuzzy-hybrid land vehicle driveline modelling based on a moving window subtractive clustering approach

    Science.gov (United States)

    Economou, J. T.; Knowles, K.; Tsourdos, A.; White, B. A.

    2011-02-01

    In this article, the fuzzy-hybrid modelling (FHM) approach is used and compared to the input-output system Takagi-Sugeno (TS) modelling approach which correlates the drivetrain power flow equations with the vehicle dynamics. The output power relations were related to the drivetrain bounded efficiencies and also to the wheel slips. The model relates also to the wheel and ground interactions via suitable friction coefficient models relative to the wheel slip profiles. The wheel slip had a significant efficiency contribution to the overall driveline system efficiency. The peak friction slip and peak coefficient of friction values are known a priori during the analysis. Lastly, the rigid body dynamical power has been verified through both simulation and experimental results. The mathematical analysis has been supported throughout the paper via experimental data for a specific electric robotic vehicle. The identification of the localised and input-output TS models for the fuzzy hybrid and the experimental data were obtained utilising the subtractive clustering (SC) methodology. These results were also compared to a real-time TS SC approach operating on periodic time windows. This article concludes with the benefits of the real-time FHM method for the vehicle electric driveline due to the advantage of both the analytical TS sub-model and the physical system modelling for the remaining process which can be clearly utilised for control purposes.

  16. Development of a methanol reformer for fuel cell vehicles

    OpenAIRE

    Lindström, Bård

    2003-01-01

    Vehicles powered by fuel cells are from an environmentalaspect superior to the traditional automobile using internalcombustion of gasoline. Power systems which are based upon fuelcell technology require hydrogen for operation. The ideal fuelcell vehicle would operate on pure hydrogen stored on-board.However, storing hydrogen on-board the vehicle is currently notfeasible for technical reasons. The hydrogen can be generatedon-board using a liquid hydrogen carrier such as methanol andgasoline. T...

  17. The Jet Propulsion Laboratory Electric and Hybrid Vehicle System Research and Development Project, 1977-1984: A Review

    Science.gov (United States)

    Kurtz, D.; Roan, V.

    1985-01-01

    The JPL Electric and Hybrid Vehicle System Research and Development Project was established in the spring of 1977. Originally administered by the Energy Research and Development Administration (ERDA) and later by the Electric and Hybrid Vehicle Division of the U.S. Department of Energy (DOE), the overall Program objective was to decrease this nation's dependence on foreign petroleum sources by developing the technologies and incentives necessary to bring electric and hybrid vehicles successfully into the marketplace. The ERDA/DOE Program structure was divided into two major elements: (1) technology research and system development and (2) field demonstration and market development. The Jet Propulsion Laboratory (JPL) has been one of several field centers supporting the former Program element. In that capacity, the specific historical areas of responsibility have been: (1) Vehicle system developments (2) System integration and test (3) Supporting subsystem development (4) System assessments (5) Simulation tool development.

  18. Methodological comparison on hybrid nano organic solar cell fabrication

    Science.gov (United States)

    Vairavan, Rajendaran; Hambali, Nor Azura Malini Ahmad; Wahid, Mohamad Halim Abd; Retnasamy, Vithyacharan; Shahimin, Mukhzeer Mohamad

    2018-02-01

    The development of low cost solar cells has been the main focus in recent years. This has lead to the generation of photovoltaic cells based on hybrid of nanoparticle-organic polymer materials. This type of hybrid photovoltaic cells can overcome the problem of polymeric devices having low optical absorption and carrier mobilities. The hybrid cell has the potential of bridging the efficiency gap, which in present in organic and inorganic semiconductor materials. This project focuses on obtaining an hybrid active layer consisting of nanoparticles and organic polymer, to understand the parameter involved in obtaining this active layer and finally to investigate if the addition of nano particles in to the active layer could enhance the output of the hybrid solar cell. The hybrid active layer have will be deposited using the spin coating technique by using CdTe, CdS nano particles mixed with poly (2-methoxy,5-(2-ethyl-hexyloxy)-p-phenylvinylene)MEH-PPV.

  19. Optimal control applied to the control strategy of a parallel hybrid vehicle; Commande optimale appliquee a la strategie de commande d'un vehicule hybride parallele

    Energy Technology Data Exchange (ETDEWEB)

    Delprat, S.; Guerra, T.M. [Universite de Valenciennes et du Hainaut-Cambresis, LAMIH UMR CNRS 8530, 59 - Valenciennes (France); Rimaux, J. [PSA Peugeot Citroen, DRIA/SARA/EEES, 78 - Velizy Villacoublay (France); Paganelli, G. [Center for Automotive Research, Ohio (United States)

    2002-07-01

    Control strategies are algorithms that calculate the power repartition between the engine and the motor of an hybrid vehicle in order to minimize the fuel consumption and/or emissions. Some algorithms are devoted to real time application whereas others are designed for global optimization in stimulation. The last ones provide solutions which can be used to evaluate the performances of a given hybrid vehicle or a given real time control strategy. The control strategy problem is firstly written into the form of an optimization under constraints problem. A solution based on optimal control is proposed. Results are given for the European Normalized Cycle and a parallel single shaft hybrid vehicle built at the LAMIH (France). (authors)

  20. Experimental Evaluation of Supercapacitor-Fuel Cell Hybrid Power Source for HY-IEL Scooter

    Directory of Open Access Journals (Sweden)

    Piotr Bujlo

    2013-01-01

    Full Text Available This paper presents the results of development of a hybrid fuel cell supercapacitor power system for vehicular applications that was developed and investigated at the Energy Sources Research Section of the Wroclaw Division of Electrotechnical Institute (IEL/OW. The hybrid power source consists of a polymer exchange membrane fuel cell (PEMFC stack and an energy-type supercapacitor that supports the system in time of peak power demands. The developed system was installed in the HY-IEL electric scooter. The vehicle was equipped with auxiliary components (e.g., air compressor, hydrogen tank, and electromagnetic valves needed for proper operation of the fuel cell stack, as well as electronic control circuits and a data storage unit that enabled on-line recording of system and vehicle operation parameters. Attention is focused on the system energy flow monitoring. The experimental part includes field test results of a vehicle powered with the fuel cell-supercapacitor system. Values of currents and voltages recorded for the system, as well as the vehicle’s velocity and hydrogen consumption rate, are presented versus time of the experiment. Operation of the hybrid power system is discussed and analysed based on the results of measurements obtained.

  1. Battery durability and longevity based power management for plug-in hybrid electric vehicle with hybrid energy storage system

    International Nuclear Information System (INIS)

    Zhang, Shuo; Xiong, Rui; Cao, Jiayi

    2016-01-01

    Highlights: • A novel procedure for developing an optimal power management strategy was proposed. • Efficiency and durability were considered to improve the practical performance. • Three control rules were abstracted from the optimization results with DP algorithm. • The proposed control strategy was verified under different SoC and SoH conditions. • The proposed strategy could further improve the energy efficiency obviously. - Abstract: Efficiency and durability are becoming two key issues for the energy storage system in electric vehicles together with their associated power management strategies. In this paper, we present a procedure for the design of a near-optimal power management strategy for the hybrid battery and ultracapacitor energy storage system (HESS) in a plug-in hybrid electric vehicle. The design procedure starts by defining a cost function to minimize the electricity consumption of the HESS and to optimize the operating behavior of the battery. To determine the optimal control actions and power distribution between two power sources, a dynamic programming (DP)-based novel analysis method is proposed, and the optimization framework is presented accordingly. Through analysis of the DP control actions under different battery state-of-health (SoH) conditions, near-optimal rules are extracted. A rule based power management is proposed based on the abstracted rules and simulation results indicate that the new control strategy can improve system efficiency under different SoH and different SoC conditions. Ultimately, the performance of proposed strategy is further verified under different types of driving cycles including the MANHATTAN cycle, 1015 6PRIUS cycle and UDDSHDV cycle.

  2. A Bicontinuous Double Gyroid Hybrid Solar Cell

    KAUST Repository

    Crossland, Edward J. W.

    2009-08-12

    We report the first successful application of an ordered bicontinuous gyroid semiconducting network in a hybrid bulk heterojunction solar cell. The freestanding gyroid network is fabricated by electrochemical deposition into the 10 nm wide voided channels of a self-assembled, selectively degradable block copolymer film. The highly ordered pore structure is ideal for uniform infiltration of an organic hole transporting material, and solid-state dye-sensitized solar cells only 400 nm thick exhibit up to 1.7% power conversion efficiency. This patterning technique can be readily extended to other promising heterojunction systems and is a major step toward realizing the full potential of self-assembly in the next generation of device technologies. © 2009 American Chemical Society.

  3. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14

    to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor

  4. Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses

    International Nuclear Information System (INIS)

    Lajunen, Antti; Lipman, Timothy

    2016-01-01

    This paper evaluates the lifecycle costs and carbon dioxide emissions of different types of city buses. The simulation models of the different powertrains were developed in the Autonomie vehicle simulation software. The carbon dioxide emissions were calculated both for the bus operation and for the fuel and energy pathways from well to tank. Two different operating environment case scenarios were used for the primary energy sources, which were Finland and California (USA). The fuel and energy pathways were selected appropriately in relation to the operating environment. The lifecycle costs take into account the purchase, operating, maintenance, and possible carbon emission costs. Based on the simulation results, the energy efficiency of city buses can be significantly improved by the alternative powertrain technologies. Hybrid buses have moderately lower carbon dioxide emissions during the service life than diesel buses whereas fully-electric buses have potential to significantly reduce carbon dioxide emissions, by up to 75%. The lifecycle cost analysis indicates that diesel hybrid buses are already competitive with diesel and natural gas buses. The high costs of fuel cell and battery systems are the major challenges for the fuel cell hybrid buses in order to reduce lifecycle costs to more competitive levels. - Highlights: • Alternative powertrains can significantly improve energy efficiency of transit buses. • Operating environment has an important impact on the lifecycle costs of buses. • Diesel hybrid buses are already cost effective solution for public transportation. • The cost of fuel cell technology is the major challenge for fuel cell hybrid buses. • Fully-electric buses have potential to significantly reduce carbon dioxide emissions.

  5. A hybrid algorithm combining EKF and RLS in synchronous estimation of road grade and vehicle' mass for a hybrid electric bus

    Science.gov (United States)

    Sun, Yong; Li, Liang; Yan, Bingjie; Yang, Chao; Tang, Gongyou

    2016-02-01

    This paper proposes a novel hybrid algorithm for simultaneously estimating the vehicle mass and road grade for hybrid electric bus (HEB). First, the road grade in current step is estimated using extended Kalman filter (EKF) with the initial state including velocity and engine torque. Second, the vehicle mass is estimated twice, one with EKF and the other with recursive least square (RLS) using the estimated road grade. A more accurate value of the estimated mass is acquired by weighting the trade-off between EKF and RLS. Finally, the road grade and vehicle mass thus obtained are used as the initial states for the next step, and two variables could be decoupled from the nonlinear vehicle dynamics by performing the above procedure repeatedly. Simulation results show that in different starting conditions, the proposed algorithm provides higher accuracy and faster convergence speed, compared with the results using EKF or RLS alone.

  6. The economics of using plug-in hybrid electric vehicle battery packs for grid storage

    Science.gov (United States)

    Peterson, Scott B.; Whitacre, J. F.; Apt, Jay

    We examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. Ancillary services such as frequency regulation are not considered here because only a small number of vehicles will saturate that market. Hourly electricity prices in three U.S. cities were used to arrive at daily profit values, while the economic losses associated with battery degradation were calculated based on data collected from A123 Systems LiFePO 4/Graphite cells tested under combined driving and off-vehicle electricity utilization. For a 16 kWh (57.6 MJ) vehicle battery pack, the maximum annual profit with perfect market information and no battery degradation cost ranged from ∼US140 to 250 in the three cities. If the measured battery degradation is applied, however, the maximum annual profit (if battery pack replacement costs fall to 5000 for a 16 kWh battery) decreases to ∼10-120. It appears unlikely that these profits alone will provide sufficient incentive to the vehicle owner to use the battery pack for electricity storage and later off-vehicle use. We also estimate grid net social welfare benefits from avoiding the construction and use of peaking generators that may accrue to the owner, finding that these are similar in magnitude to the energy arbitrage profit.

  7. Hybrid Photovoltaic Systems with Accumulation—Support for Electric Vehicle Charging

    Directory of Open Access Journals (Sweden)

    Petr Mastny

    2017-06-01

    Full Text Available The paper presents the concept of a hybrid power system with additional energy storage to support electric vehicles (EVs charging stations. The aim is to verify the possibilities of mutual cooperation of individual elements of the system from the point of view of energy balances and to show possibilities of utilization of accumulation for these purposes using mathematical modeling. The description of the technical solution of the concept is described by a mathematical model in the Matlab Simulink programming environment. Individual elements of the assembled model are described in detail, together with the algorithm of the control logic of charging the supporting storage system. The resulting model was validated via an actual small-scale hybrid system (HS. Within the outputs of the mathematical model, two simulation scenarios are presented, with the aid of which the benefits of the concept presented were verified.

  8. Development and Demonstration of a Low Cost Hybrid Drive Train for Medium and Heavy Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Strangas, Elias; Schock, Harold; Zhu, Guoming; Moran, Kevin; Ruckle, Trevor; Foster, Shanelle; Cintron-Rivera, Jorge; Tariq, Abdul; Nino-Baron, Carlos

    2011-04-30

    The DOE sponsored effort is part of a larger effort to quantify the efficiency of hybrid powertrain systems through testing and modeling. The focus of the DOE sponsored activity was the design, development and testing of hardware to evaluate the efficiency of the electrical motors relevant to medium duty vehicles. Medium duty hybrid powertrain motors and generators were designed, fabricated, setup and tested. The motors were a permanent magnet configuration, constructed at Electric Apparatus Corporation in Howell, Michigan. The purpose of this was to identify the potential gains in terms of fuel cost savings that could be realized by implementation of such a configuration. As the electric motors constructed were prototype designs, the scope of the project did not include calculation of the costs of mass production of the subject electrical motors or generator.

  9. Energy Management Strategy Based on the Driving Cycle Model for Plugin Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaoling Fu

    2014-01-01

    Full Text Available The energy management strategy (EMS for a plugin hybrid electric vehicle (PHEV is proposed based on the driving cycle model and dynamic programming (DP algorithm. A driving cycle model is constructed by collecting and processing the driving data of a certain school bus. The state of charge (SOC profile can be obtained by the DP algorithm for the whole driving cycle. In order to optimize the energy management strategy in the hybrid power system, the optimal motor torque control sequence can be calculated using the DP algorithm for the segments between the traffic intersections. Compared with the traditional charge depleting-charge sustaining (CDCS strategy, the test results on the ADVISOR platform show a significant improvement in fuel consumption using the EMS proposed in this paper.

  10. A review and design of power electronics converters for fuel cell hybrid system applications

    DEFF Research Database (Denmark)

    Zhang, Zhe; Pittini, Riccardo; Andersen, Michael A. E.

    2012-01-01

    This paper presents an overview of most promising power electronics topologies for a fuel cell hybrid power conversion system which can be utilized in many applications such as hybrid electrical vehicles (HEV), distributed generations (DG) and uninterruptible-power-supply (UPS) systems. Then......, a multiple-input power conversion system including a decoupled dual-input converter and a three-phase neutral-point-clamped (NPC) inverter is proposed. The system can operate in both stand-alone and grid-connected modes. Simulation and experimental results are provided to show the feasibility of the proposed...... system and the effectiveness of the control methods....

  11. Fuel cell mining vehicles: design, performance and advantages

    International Nuclear Information System (INIS)

    Betournay, M.C.; Miller, A.R.; Barnes, D.L.

    2003-01-01

    The potential for using fuel cell technology in underground mining equipment was discussed with reference to the risks associated with the operation of hydrogen vehicles, hydrogen production and hydrogen delivery systems. This paper presented some of the initiatives for mine locomotives and fuel cell stacks for underground environments. In particular, it presents the test results of the first applied industrial fuel cell vehicle in the world, a mining and tunneling locomotive. This study was part of an international initiative managed by the Fuel Cell Propulsion Institute which consists of several mining companies, mining equipment manufacturers, and fuel cell technology developers. Some of the obvious benefits of fuel cells for underground mining operations include no exhaust gases, lower electrical costs, significantly reduced maintenance, and lower ventilation costs. Another advantage is that the technology can be readily automated and computer-based for tele-remote operations. This study also quantified the cost and operational benefits associated with fuel cell vehicles compared to diesel vehicles. It is expected that higher vehicle productivity could render fuel cell underground vehicles cost-competitive. 6 refs., 1 tab

  12. Technology Development and Design of a Hybrid Mars Ascent Vehicle Concept

    Science.gov (United States)

    Karp, Ashley C.; Redmond, Matt; Nakazono, Barry; Vaughan, David; Shotwell, Robert; Story, George; Jackson, Dale; Young, David

    2016-01-01

    Hybrid propulsion has been investigated as an enhancing technology for a Mars Ascent Vehicle (MAV) concept as part of potential Mars Sample Return (MSR) because of its high specific impulse, restartability, and the ability to operate and survive at extremely low temperatures. A new wax-based hybrid fuel formulation has been developed that could withstand the harsh and variable Mars environment protected solely by a minimal layer of passive insulation. This formulation could provide substantial energy savings for a notional lander and is critical for rover mobility. Preliminary thermal cycle testing has determined that the formulation can survive the expected temperature extremes and lifetime thermal testing is currently underway. A complete preliminary design using this new fuel formulation combined with a low temperature oxidizer such as Mixed Oxides of Nitrogen (MON30) is presented. Several key features associated with a complete hybrid MAV concept are investigated to determine their mission suitability (e.g. Thrust Vector Control and restartable ignition options). Potential challenges along a path towards developing such a system are outlined and future work is suggested as a means of technology maturation. The hybrid design presented here was the lowest Gross Lift Off Mass (GLOM) result of a 2015 Jet Propulsion Laboratory (JPL) led MAV concept study.

  13. Position Error Compensation via a Variable Reluctance Sensor Applied to a Hybrid Vehicle Electric Machine

    Directory of Open Access Journals (Sweden)

    İhsan Ömür Bucak

    2010-03-01

    Full Text Available In the automotive industry, electromagnetic variable reluctance (VR sensors have been extensively used to measure engine position and speed through a toothed wheel mounted on the crankshaft. In this work, an application that already uses the VR sensing unit for engine and/or transmission has been chosen to infer, this time, the indirect position of the electric machine in a parallel Hybrid Electric Vehicle (HEV system. A VR sensor has been chosen to correct the position of the electric machine, mainly because it may still become critical in the operation of HEVs to avoid possible vehicle failures during the start-up and on-the-road, especially when the machine is used with an internal combustion engine. The proposed method uses Chi-square test and is adaptive in a sense that it derives the compensation factors during the shaft operation and updates them in a timely fashion.

  14. Development of an Integrated Cooling System Controller for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Chong Wang

    2017-01-01

    Full Text Available A hybrid electrical bus employs both a turbo diesel engine and an electric motor to drive the vehicle in different speed-torque scenarios. The cooling system for such a vehicle is particularly power costing because it needs to dissipate heat from not only the engine, but also the intercooler and the motor. An electronic control unit (ECU has been designed with a single chip computer, temperature sensors, DC motor drive circuit, and optimized control algorithm to manage the speeds of several fans for efficient cooling using a nonlinear fan speed adjustment strategy. Experiments suggested that the continuous operating performance of the ECU is robust and capable of saving 15% of the total electricity comparing with ordinary fan speed control method.

  15. The hybrid bio-inspired aerial vehicle: Concept and SIMSCAPE flight simulation.

    Science.gov (United States)

    Tao Zhang; Su, Steven; Nguyen, Hung T

    2016-08-01

    This paper introduces a Silver Gull-inspired hybrid aerial vehicle, the Super Sydney Silver Gull (SSSG), which is able to vary its structure, under different manoeuvre requirements, to implement three flight modes: the flapping wing flight, the fixed wing flight, and the quadcopter flight (the rotary wing flight of Unmanned Air Vehicle). Specifically, through proper mechanism design and flight mode transition, the SSSG can imitate the Silver Gull's flight gesture during flapping flight, save power consuming by switching to the fixed wing flight mode during long-range cruising, and hover at targeted area when transferring to quadcopter flight mode. Based on the aerodynamic models, the Simscape, a product of MathWorks, is used to simulate and analyse the performance of the SSSG's flight modes. The entity simulation results indicate that the created SSSG's 3D model is feasible and ready to be manufactured for further flight tests.

  16. Harmonic Impact of Plug-In Hybrid Electric Vehicle on Electric Distribution System

    Directory of Open Access Journals (Sweden)

    A. Aljanad

    2016-01-01

    Full Text Available This paper presents the harmonic effects of plug-in hybrid electric vehicles (PHEV on the IEEE 37-bus distribution system at different PHEV penetration levels considering a practical daily residential load shape. The PHEV is modeled as a current harmonic source by using the Open-Source Distribution System Simulator (OpenDSS and DSSimpc software. Time series harmonic simulation was conducted to investigate the harmonic impact of PHEV on the system by using harmonic data obtained from a real electric vehicle. Harmonic effects on the system voltage profile and circuit power losses are also investigated by using OpenDSS and MATLAB software. Current/voltage total harmonic distortion (THD produced from the large scale of PHEV is investigated. Test results show that the voltage and current THDs are increased up to 9.5% and 50%, respectively, due to high PHEV penetrations and these THD values are significantly larger than the limits prescribed by the IEEE standards.

  17. Position error compensation via a variable reluctance sensor applied to a Hybrid Vehicle Electric machine.

    Science.gov (United States)

    Bucak, Ihsan Ömür

    2010-01-01

    In the automotive industry, electromagnetic variable reluctance (VR) sensors have been extensively used to measure engine position and speed through a toothed wheel mounted on the crankshaft. In this work, an application that already uses the VR sensing unit for engine and/or transmission has been chosen to infer, this time, the indirect position of the electric machine in a parallel Hybrid Electric Vehicle (HEV) system. A VR sensor has been chosen to correct the position of the electric machine, mainly because it may still become critical in the operation of HEVs to avoid possible vehicle failures during the start-up and on-the-road, especially when the machine is used with an internal combustion engine. The proposed method uses Chi-square test and is adaptive in a sense that it derives the compensation factors during the shaft operation and updates them in a timely fashion.

  18. Method of converting an existing vehicle powertrain to a hybrid powertrain system

    Science.gov (United States)

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    2001-12-25

    A method of converting an existing vehicle powertrain including a manual transmission to a hybrid powertrain system with an automated powertrain transmission. The first step in the method of attaching a gear train housing to a housing of said manual transmission, said gear train housing receiving as end of drive shaft of said transmission and rotatably supporting a gear train assembly. Secondly, mounting an electric motor/generator to said gear train housing and attaching a motor/generator drive shaft of said electric motor/generator to said gear train assembly. Lastly, connecting an electro-mechanical clutch actuator to a friction clutch mechanism of said manual transmission.

  19. Convex Optimization for the Energy Management of Hybrid Electric Vehicles Considering Engine Start and Gearshift Costs

    Directory of Open Access Journals (Sweden)

    Tobias Nüesch

    2014-02-01

    Full Text Available This paper presents a novel method to solve the energy management problem for hybrid electric vehicles (HEVs with engine start and gearshift costs. The method is based on a combination of deterministic dynamic programming (DP and convex optimization. As demonstrated in a case study, the method yields globally optimal results while returning the solution in much less time than the conventional DP method. In addition, the proposed method handles state constraints, which allows for the application to scenarios where the battery state of charge (SOC reaches its boundaries.

  20. Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle

    Science.gov (United States)

    Boberg, Evan S.; Gebby, Brian P.

    1999-09-28

    A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

  1. CO2Mitigation Potential of Plug-in Hybrid Electric Vehicles larger than expected.

    Science.gov (United States)

    Plötz, P; Funke, S A; Jochem, P; Wietschel, M

    2017-11-28

    The actual contribution of plug-in hybrid and battery electric vehicles (PHEV and BEV) to greenhouse gas mitigation depends on their real-world usage. Often BEV are seen as superior as they drive only electrically and do not have any direct emissions during driving. However, empirical evidence on which vehicle electrifies more mileage with a given battery capacity is lacking. Here, we present the first systematic overview of empirical findings on actual PHEV and BEV usage for the US and Germany. Contrary to common belief, PHEV with about 60 km of real-world range currently electrify as many annual vehicles kilometres as BEV with a much smaller battery. Accordingly, PHEV recharged from renewable electricity can highly contribute to green house gas mitigation in car transport. Including the higher CO 2eq emissions during the production phase of BEV compared to PHEV, PHEV show today higher CO 2eq savings then BEVs compared to conventional vehicles. However, for significant CO 2eq improvements of PHEV and particularly of BEVs the decarbonisation of the electricity system should go on.

  2. Near term hybrid passenger vehicle development program. Phase I. Appendices C and D. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The derivation of and actual preliminary design of the Near Term Hybrid Vehicle (NTHV) are presented. The NTHV uses a modified GM Citation body, a VW Rabbit turbocharged diesel engine, a 24KW compound dc electric motor, a modified GM automatic transmission, and an on-board computer for transmission control. The following NTHV information is presented: the results of the trade-off studies are summarized; the overall vehicle design; the selection of the design concept and the base vehicle (the Chevrolet Citation), the battery pack configuration, structural modifications, occupant protection, vehicle dynamics, and aerodynamics; the powertrain design, including the transmission, coupling devices, engine, motor, accessory drive, and powertrain integration; the motor controller; the battery type, duty cycle, charger, and thermal requirements; the control system (electronics); the identification of requirements, software algorithm requirements, processor selection and system design, sensor and actuator characteristics, displays, diagnostics, and other topics; environmental system including heating, air conditioning, and compressor drive; the specifications, weight breakdown, and energy consumption measures; advanced technology components, and the data sources and assumptions used. (LCL)

  3. Performance and driveline analyses of engine capacity in range extender engine hybrid vehicle

    Science.gov (United States)

    Praptijanto, Achmad; Santoso, Widodo Budi; Nur, Arifin; Wahono, Bambang; Putrasari, Yanuandri

    2017-01-01

    In this study, range extender engine designed should be able to meet the power needs of a power generator of hybrid electrical vehicle that has a minimum of 18 kW. Using this baseline model, the following range extenders will be compared between conventional SI piston engine (Baseline, BsL), engine capacity 1998 cm3, and efficiency-oriented SI piston with engine capacity 999 cm3 and 499 cm3 with 86 mm bore and stroke square gasoline engine in the performance, emission prediction of range extender engine, standard of charge by using engine and vehicle simulation software tools. In AVL Boost simulation software, range extender engine simulated from 1000 to 6000 rpm engine loads. The highest peak engine power brake reached up to 38 kW at 4500 rpm. On the other hand the highest torque achieved in 100 Nm at 3500 rpm. After that using AVL cruise simulation software, the model of range extended electric vehicle in series configuration with main components such as internal combustion engine, generator, electric motor, battery and the arthemis model rural road cycle was used to simulate the vehicle model. The simulation results show that engine with engine capacity 999 cm3 reported the economical performances of the engine and the emission and the control of engine cycle parameters.

  4. Effects of plug-in hybrid electric vehicles on ozone concentrations in Colorado.

    Science.gov (United States)

    Brinkman, Gregory L; Denholm, Paul; Hannigan, Michael P; Milford, Jana B

    2010-08-15

    This study explores how ozone concentrations in the Denver, CO area might have been different if plug-in hybrid electric vehicles (PHEVs) had replaced light duty gasoline vehicles in summer 2006. A unit commitment and dispatch model was used to estimate the charging patterns of PHEVs and dispatch power plants to meet electricity demand. Emission changes were estimated based on gasoline displacement and the emission characteristics of the power plants providing additional electricity. The Comprehensive Air Quality Model with extensions (CAMx) was used to simulate the effects of these emissions changes on ozone concentrations. Natural gas units provided most of the electricity used for charging PHEVs in the scenarios considered. With 100% PHEV penetration, nitrogen oxide (NO(x)) emissions were reduced by 27 tons per day (tpd) from a fleet of 1.7 million vehicles and were increased by 3 tpd from power plants; VOC emissions were reduced by 57 tpd. These emission changes reduced modeled peak 8-h average ozone concentrations by approximately 2-3 ppb on most days. Ozone concentration increases were modeled for small areas near central Denver. Future research is needed to forecast when significant PHEV penetration may occur and to anticipate characteristics of the corresponding power plant and vehicle fleets.

  5. A hybrid metaheuristic for the time-dependent vehicle routing problem with hard time windows

    Directory of Open Access Journals (Sweden)

    N. Rincon-Garcia

    2017-01-01

    Full Text Available This article paper presents a hybrid metaheuristic algorithm to solve the time-dependent vehicle routing problem with hard time windows. Time-dependent travel times are influenced by different congestion levels experienced throughout the day. Vehicle scheduling without consideration of congestion might lead to underestimation of travel times and consequently missed deliveries. The algorithm presented in this paper makes use of Large Neighbourhood Search approaches and Variable Neighbourhood Search techniques to guide the search. A first stage is specifically designed to reduce the number of vehicles required in a search space by the reduction of penalties generated by time-window violations with Large Neighbourhood Search procedures. A second stage minimises the travel distance and travel time in an ‘always feasible’ search space. Comparison of results with available test instances shows that the proposed algorithm is capable of obtaining a reduction in the number of vehicles (4.15%, travel distance (10.88% and travel time (12.00% compared to previous implementations in reasonable time.

  6. An Economical Route Planning Method for Plug-In Hybrid Electric Vehicle in Real World

    Directory of Open Access Journals (Sweden)

    Yuanjian Zhang

    2017-11-01

    Full Text Available Relieving the adverse effects of automobiles on the environment and natural resources has drawn the attention of numerous researchers. This paper seeks a new path to reach a target by focusing on the synergy of the vehicle and the environment. A real-time economical route planning method for a plug-in hybrid electric vehicle (PHEV is proposed. Three main contributions have been made. Firstly, a real comparison test is performed to provide rudimentary understanding of the difference in energy usage and route planning between PHEVs and conventional vehicles. Secondly, an approach to obtain PHEV customized data is developed for road weight calculation, which is the essential step in route planning. This method incorporates traffic data from conventional vehicles with the PHEV simulation model, obtaining the required data. Thirdly, the travel expense estimation model (TEEM is designed. The TEEM could be applied to calculate the road weight of each road segment considering the impact on energy consumption with respect to environmental factors, providing the grounds for route planning. The proposed method to plan an economical route is evaluated, and the results justify its validation and ability to improve fuel economy.

  7. Study on Power Switching Process of a Hybrid Electric Vehicle with In-Wheel Motors

    Directory of Open Access Journals (Sweden)

    Shaohua Wang

    2016-01-01

    Full Text Available Hybrid electric vehicles with in-wheel motors (IWM achieve a variety of driving modes by two power sources—the engine and the IWM. One of the critical problems that exists in such vehicle is the different transient characteristics between the engine and the IWM. Therefore, switching processes between the power sources have noteworthy impacts on vehicle dynamics and driving performance. For the particular switching process of the pure electric mode to the engine driving mode, a specific control strategy coordinating clutch torque, motor torque, and engine torque was proposed to solve drivability issues caused by inconsistent responses of different power sources during the mode transition. The specific switching process could be described as follows: the engine was started by IWM with the clutch serving as a key enabling actuator, dynamic torque compensation through IWM was implemented after engine started, and, meanwhile, engine speed was controlled to track the target speed through the closed loop PID control strategy. The bench tests results showed that the vehicle jerk caused during mode switching was reduced and fast and smooth mode switching was realized, which leads to the improvement of vehicle’s riding comfort.

  8. Plug-in hybrid electric vehicles as regulating power providers: Case studies of Sweden and Germany

    International Nuclear Information System (INIS)

    Andersson, S.-L.; Elofsson, A.K.; Galus, M.D.; Goeransson, L.; Karlsson, S.; Johnsson, F.; Andersson, G.

    2010-01-01

    This study investigates plug-in hybrid electric vehicles (PHEVs) as providers of regulating power in the form of primary, secondary and tertiary frequency control. Previous studies have shown that PHEVs could generate substantial profits while providing ancillary services. This study investigates under what conditions PHEVs can generate revenues using actual market data, i.e. prices and activations of regulating power, from Sweden and Germany from four months in 2008. PHEV market participation is modelled for individual vehicles in a fleet subject to a simulated movement pattern. Costs for infrastructure and vehicle-to-grid equipment are not included in the analysis. The simulation results indicate that maximum average profits generated on the German markets are in the range 30-80 Euro per vehicle and month whereas the Swedish regulating power markets give no profit. In addition, an analysis is performed to identify strengths, weaknesses, opportunities, and threats (SWOT) of PHEVs as regulating power providers. Based on the simulation results and the SWOT analysis, characteristics for an ideal regulating power market for PHEVs are presented.

  9. Cleaning the air and improving health with hydrogen fuel-cell vehicles.

    Science.gov (United States)

    Jacobson, M Z; Colella, W G; Golden, D M

    2005-06-24

    Converting all U.S. onroad vehicles to hydrogen fuel-cell vehicles (HFCVs) may improve air quality, health, and climate significantly, whether the hydrogen is produced by steam reforming of natural gas, wind electrolysis, or coal gasification. Most benefits would result from eliminating current vehicle exhaust. Wind and natural gas HFCVs offer the greatest potential health benefits and could save 3700 to 6400 U.S. lives annually. Wind HFCVs should benefit climate most. An all-HFCV fleet would hardly affect tropospheric water vapor concentrations. Conversion to coal HFCVs may improve health but would damage climate more than fossil/electric hybrids. The real cost of hydrogen from wind electrolysis may be below that of U.S. gasoline.

  10. Heat management methodology for enhanced global efficiency in hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    F. Claude

    2017-09-01

    Full Text Available The transportation impact on pollution and global climate change, has forced the automotive sector to search for more ecological solutions. Owing to the different properties of Fuel Cell (FC, real potential for reducing vehicles’ emissions has been witnessed. The optimization of FC integration within Electric Vehicles (EVs is one of the original solutions. This paper presents an innovating solution of multi-stack Fuel Cell Electrical Vehicle (FCEV in terms of efficiency, durability and ecological impact on environment. The main objective is to illustrate the interest of using the multi-stack FC system on the global autonomy, cycling, and efficiency enhancement, besides optimizing its operation performance.

  11. Towards sustainable urban transportation: Test, demonstration and development of fuel cell and hybrid-electric buses

    International Nuclear Information System (INIS)

    Folkesson, Anders

    2008-05-01

    Several aspects make today's transport system non-sustainable: - Production, transport and combustion of fossil fuels lead to global and local environmental problems. - Oil dependency in the transport sector may lead to economical and political instability. - Air pollution, noise, congestion and land-use may jeopardise public health and quality of life, especially in urban areas. In a sustainable urban transport system most trips are made with public transport because high convenience and comfort makes travelling with public transport attractive. In terms of emissions, including noise, the vehicles are environmentally sustainable, locally as well as globally. Vehicles are energy-efficient and the primary energy stems from renewable sources. Costs are reasonable for all involved, from passengers, bus operators and transport authorities to vehicle manufacturers. The system is thus commercially viable on its own merits. This thesis presents the results from three projects involving different concept buses, all with different powertrains. The first two projects included technical evaluations, including tests, of two different fuel cell buses. The third project focussed on development of a series hybrid-bus with internal combustion engine intended for production around 2010. The research on the fuel cell buses included evaluations of the energy efficiency improvement potential using energy mapping and vehicle simulations. Attitudes to hydrogen fuel cell buses among passengers, bus drivers and bus operators were investigated. Safety aspects of hydrogen as a vehicle fuel were analysed and the use of hydrogen compared to electrical energy storage were also investigated. One main conclusion is that a city bus should be considered as one energy system, because auxiliaries contribute largely to the energy use. Focussing only on the powertrain is not sufficient. The importance of mitigating losses far down an energy conversion chain is emphasised. The Scania hybrid fuel cell

  12. Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen R [ORNL; Markel, Lawrence C [ORNL; Hadley, Stanton W [ORNL; Hinds, Shaun [Sentech, Inc.; DeVault, Robert C [ORNL

    2009-01-01

    Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs

  13. Development & optimization of a rule-based energy management strategy for fuel economy improvement in hybrid electric vehicles

    Science.gov (United States)

    Asfoor, Mostafa

    The gradual decline of oil reserves and the increasing demand for energy over the past decades has resulted in automotive manufacturers seeking alternative solutions to reduce the dependency on fossil-based fuels for transportation. A viable technology that enables significant improvements in the overall energy conversion efficiencies is the hybridization of conventional vehicle drive systems. This dissertation builds on prior hybrid powertrain development at the University of Idaho. Advanced vehicle models of a passenger car with a conventional powertrain and three different hybrid powertrain layouts were created using GT-Suite. These different powertrain models were validated against a variety of standard driving cycles. The overall fuel economy, energy consumption, and losses were monitored, and a comprehensive energy analysis was performed to compare energy sources and sinks. The GT-Suite model was then used to predict the formula hybrid SAE vehicle performance. Inputs to this model were a numerically predicted engine performance map, an electric motor torque curve, vehicle geometry, and road load parameters derived from a roll-down test. In this case study, the vehicle had a supervisory controller that followed a rule-based energy management strategy to insure a proper power split during hybrid mode operation. The supervisory controller parameters were optimized using discrete grid optimization method that minimized the total amount of fuel consumed during a specific urban driving cycle with an average speed of approximately 30 [mph]. More than a 15% increase in fuel economy was achieved by adding supervisory control and managing power split. The vehicle configuration without the supervisory controller displayed a fuel economy of 25 [mpg]. With the supervisory controller this rose to 29 [mpg]. Wider applications of this research include hybrid vehicle controller designs that can extend the range and survivability of military combat platforms. Furthermore, the

  14. Onboard fuel processor for PEM fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, Brian J.; Zhao, Jian L.; Ruffo, Michael; Khan, Rafey; Dattatraya, Druva; Dushman, Nathan [Nuvera Fuel Cells, Inc, 20 Acorn Park, Cambridge, MA 02140 (United States); Beziat, Jean-Christophe; Boudjemaa, Fabien [Renault, Service 64240 - FR TCR GRA 0 75, Technocentre Renault - 1 avenue du Golf, 78288 Guyancourt (France)

    2007-07-15

    To lower vehicle greenhouse gas emissions, many automotive companies are exploring fuel cell technologies, which combine hydrogen and oxygen to produce electricity and water. While hydrogen storage and infrastructure remain issues, Renault and Nuvera Fuel Cells are developing an onboard fuel processor, which can convert a variety of fuels into hydrogen to power these fuel cell vehicles. The fuel processor is now small enough and powerful enough for use on a vehicle. The catalysts and heat exchangers occupy 80 l and can be packaged with balance of plant controls components in a 150-l volume designed to fit under the vehicle. Recent systems can operate on gasoline, ethanol, and methanol with fuel inputs up to 200 kWth and hydrogen efficiencies above 77%. The startup time is now less than 4 min to lower the CO in the hydrogen stream to the target value for the fuel cell. (author)

  15. Time course of programmed cell death, which included autophagic features, in hybrid tobacco cells expressing hybrid lethality.

    Science.gov (United States)

    Ueno, Naoya; Nihei, Saori; Miyakawa, Naoto; Hirasawa, Tadashi; Kanekatsu, Motoki; Marubashi, Wataru; van Doorn, Wouter G; Yamada, Tetsuya

    2016-12-01

    PCD with features of vacuolar cell death including autophagy-related features were detected in hybrid tobacco cells, and detailed time course of features of vacuolar cell death were established. A type of interspecific Nicotiana hybrid, Nicotiana suaveolens × N. tabacum exhibits temperature-sensitive lethality. This lethality results from programmed cell death (PCD) in hybrid seedlings, but this PCD occurs only in seedlings and suspension-cultured cells grown at 28 °C, not those grown at 36 °C. Plant PCD can be classified as vacuolar cell death or necrotic cell death. Induction of autophagy, vacuolar membrane collapse and actin disorganization are each known features of vacuolar cell death, but observed cases of PCD showing all these features simultaneously are rare. In this study, these features of vacuolar cell death were evident in hybrid tobacco cells expressing hybrid lethality. Ion leakage, plasma membrane disruption, increased activity of vacuolar processing enzyme, vacuolar membrane collapse, and formation of punctate F-actin foci were each evident in these cells. Transmission electron microscopy revealed that macroautophagic structures formed and tonoplasts ruptured in these cells. The number of cells that contained monodansylcadaverine (MDC)-stained structures and the abundance of nine autophagy-related gene transcripts increased just before cell death at 28 °C; these features were not evident at 36 °C. We assessed whether an autophagic inhibitor, wortmannin (WM), influenced lethality in hybrid cells. After the hybrid cell began to die, WM suppressed increases in ion leakage and cell deaths, and it decreased the number of cells containing MDC-stained structures. These results showed that several features indicative of autophagy and vacuolar cell death were evident in the hybrid tobacco cells subject to lethality. In addition, we documented a detailed time course of these vacuolar cell death features.

  16. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  17. Hydrogen fuel cell vehicles for the 3rd millenniums

    International Nuclear Information System (INIS)

    Fahmy, F.H.

    2006-01-01

    As the world population increases, so does the demand for transportation. Automobiles, being the most common means of transportation are on of the main sources pollution. Therefore, in order to meet the needs of society and to protect the environment, scientists began looking for a new solution to this problem. Before they suggested any answers, the scientists first looked at all aspects surrounding the issue. Fuel cell can be promoted energy diversity and a transition to renewable energy sources. This paper presents a new friendly environmental vehicles. The fuel of this vehicles is a renewable sources, solar radiation, PV arrays, electrolyzer, hydrogen and fuel cell. All the results show the capability of vehicle's design with all the details of each main component for several varieties of vehicles for transportation. This new idea realizes clean and healthy environment vehicles

  18. Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-duty Vehicle Market

    Energy Technology Data Exchange (ETDEWEB)

    Greene, D.L.

    2004-08-23

    Diesel and hybrid technologies each have the potential to increase light-duty vehicle fuel economy by a third or more without loss of performance, yet these technologies have typically been excluded from technical assessments of fuel economy potential on the grounds that hybrids are too expensive and diesels cannot meet Tier 2 emissions standards. Recently, hybrid costs have come down and the few hybrid makes available are selling well. Diesels have made great strides in reducing particulate and nitrogen oxide emissions, and are likely though not certain to meet future standards. In light of these developments, this study takes a detailed look at the market potential of these two powertrain technologies and their possible impacts on light-duty vehicle fuel economy. A nested multinomial logit model of vehicle choice was calibrated to 2002 model year sales of 930 makes, models and engine-transmission configurations. Based on an assessment of the status and outlook for the two technologies, market shares were predicted for 2008, 2012 and beyond, assuming no additional increase in fuel economy standards or other new policy initiatives. Current tax incentives for hybrids are assumed to be phased out by 2008. Given announced and likely introductions by 2008, hybrids could capture 4-7% and diesels 2-4% of the light-duty market. Based on our best guesses for further introductions, these shares could increase to 10-15% for hybrids and 4-7% for diesels by 2012. The resulting impacts on fleet average fuel economy would be about +2% in 2008 and +4% in 2012. If diesels and hybrids were widely available across vehicle classes, makes, and models, they could capture 40% or more of the light-duty vehicle market.

  19. OPTIMIZATION BALANCING DEVICES LI-ION BATTERIES FOR HYBRID AND ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    R. P. Sharkovich

    2016-01-01

    Full Text Available The article discusses and proves the feasibility of using the proposed system balancing Li-ion battery consisting of a plurality of series-connected cells, applied to hybrid and electric transportation. The main objective of the system is to increase the performance and operating time of Li-ion batteries.

  20. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy.

    Science.gov (United States)

    Samaras, Constantine; Meisterling, Kyle

    2008-05-01

    Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a role in reducing greenhouse gas (GHG) emissions from the transport sector. However, meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. We assess life cycle GHG emissions from PHEVs and find that they reduce GHG emissions by 32% compared to conventional vehicles, but have small reductions compared to traditional hybrids. Batteries are an important component of PHEVs, and GHGs associated with lithium-ion battery materials and production account for 2-5% of life cycle emissions from PHEVs. We consider cellulosic ethanol use and various carbon intensities of electricity. The reduced liquid fuel requirements of PHEVs could leverage limited cellulosic ethanol resources. Electricity generation infrastructure is long-lived, and technology decisions within the next decade about electricity supplies in the power sector will affectthe potential for large GHG emissions reductions with PHEVs for several decades.

  1. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Ming Cheng

    2015-09-01

    Full Text Available The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs. Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG. Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized.

  2. Electromagnetic Analysis and Design of Switched Reluctance Double-Rotor Machine for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Shouliang Han

    2014-10-01

    Full Text Available The double-rotor machine is a kind of multiple input and output electromechanical energy transducer with two electrical ports and two mechanical ports, which is an ideal transmission system for hybrid electric vehicles and has a series of advantages such as integration of power and energy, high efficiency and compaction. In this paper, a switched reluctance double-rotor machine (SRDRM is proposed for hybrid electric vehicles, while no conductor or PM in the middle rotor. This machine not only inherits the merits of switched reluctance machine, such as simple salient rotor structure, high reliability and wide speed range, but also can avoid the outer rotor’s cooling problem effectively. By using an equivalent magnetic circuit model, the function of middle rotor yoke is analyzed. Electromagnetic analyses of the SRDRM are performed with analytical calculations and 2-D finite element methods, including the effects of main parameters on performance. Finally, a 4.4 kW prototype machine is designed and manufactured, and the tests are performed, which validate the proposed design method.

  3. Multi-objective decoupling algorithm for active distance control of intelligent hybrid electric vehicle

    Science.gov (United States)

    Luo, Yugong; Chen, Tao; Li, Keqiang

    2015-12-01

    The paper presents a novel active distance control strategy for intelligent hybrid electric vehicles (IHEV) with the purpose of guaranteeing an optimal performance in view of the driving functions, optimum safety, fuel economy and ride comfort. Considering the complexity of driving situations, the objects of safety and ride comfort are decoupled from that of fuel economy, and a hierarchical control architecture is adopted to improve the real-time performance and the adaptability. The hierarchical control structure consists of four layers: active distance control object determination, comprehensive driving and braking torque calculation, comprehensive torque distribution and torque coordination. The safety distance control and the emergency stop algorithms are designed to achieve the safety and ride comfort goals. The optimal rule-based energy management algorithm of the hybrid electric system is developed to improve the fuel economy. The torque coordination control strategy is proposed to regulate engine torque, motor torque and hydraulic braking torque to improve the ride comfort. This strategy is verified by simulation and experiment using a forward simulation platform and a prototype vehicle. The results show that the novel control strategy can achieve the integrated and coordinated control of its multiple subsystems, which guarantees top performance of the driving functions and optimum safety, fuel economy and ride comfort.

  4. Energy Management and Control of Electric Vehicles, Using Hybrid Power Source in Regenerative Braking Operation

    Directory of Open Access Journals (Sweden)

    Bo Long

    2014-07-01

    Full Text Available Today’s battery powered electric vehicles still face many issues: (1 Ways of improving the regenerative braking energy; (2 how to maximally extend the driving-range of electric vehicles (EVs and prolong the service life of batteries; (3 how to satisfy the energy requirements of the EVs both in steady and dynamic state. The electrochemical double-layer capacitors, also called ultra-capacitors (UCs, have the merits of high energy density and instantaneous power output capability, and are usually combined with power battery packs to form a hybrid power supply system (HPSS. The power circuit topology of the HPSS has been illustrated in this paper. In the proposed HPSS, all the UCs are in series, which may cause an imbalanced voltage distribution of each unit, moreover, the energy allocation between the batteries and UCs should also be considered. An energy-management scheme to solve this problem has been presented. Moreover, due to the parameter variations caused by temperature changes and produced errors, the modelling procedure of the HPSS becomes very difficult, so an H∞ current controller is presented. The proposed hybrid power source circuit is implemented on a laboratory hardware setup using a digital signal processor (DSP. Simulation and experimental results have been put forward to demonstrate the feasibility and validity of the approach.

  5. A HYBRID GENETIC ALGORITHM IMPLEMENTATION FOR VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal Ibrahim

    2016-01-01

    Full Text Available This article is related to approach development in order to determine the most appropriate route for bottled water delivery from warehouse to retail from particular boundaries such as a limit on number of vehicle, vehicle capacity, and time windows to each retail. A mathematical model of VRPTW is adopted to solve the problem. Malang is one of the drinking water production centers in Indonesia, definitely it will be difficult for the company to determine the optimal delivery route with the existing restrictions. In this research hybrid genetic algorithm is use to determine the route shipping companies with the Java programming language. After analyzing the results obtained show that the results of the implementation of hybrid genetic algorithm is better than the company actual route. Moreover, authors also analyze the effect the number of iterations for the computation time, and the influence the number of iterations for the fitness value or violation. This algorithm can be applied for the routing and the result obtained is an optimal solution

  6. Dynamic Coordinated Shifting Control of Automated Mechanical Transmissions without a Clutch in a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Xinlei Liu

    2012-08-01

    Full Text Available On the basis of the shifting process of automated mechanical transmissions (AMTs for traditional hybrid electric vehicles (HEVs, and by combining the features of electric machines with fast response speed, the dynamic model of the hybrid electric AMT vehicle powertrain is built up, the dynamic characteristics of each phase of shifting process are analyzed, and a control strategy in which torque and speed of the engine and electric machine are coordinatively controlled to achieve AMT shifting control for a plug-in hybrid electric vehicle (PHEV without clutch is proposed. In the shifting process, the engine and electric machine are well controlled, and the shift jerk and power interruption and restoration time are reduced. Simulation and real car test results show that the proposed control strategy can more efficiently improve the shift quality for PHEVs equipped with AMTs.

  7. Dynamic modeling and simulation of an induction motor with adaptive backstepping design of an input-output feedback linearization controller in series hybrid electric vehicle

    Directory of Open Access Journals (Sweden)

    Jalalifar Mehran

    2007-01-01

    Full Text Available In this paper using adaptive backstepping approach an adaptive rotor flux observer which provides stator and rotor resistances estimation simultaneously for induction motor used in series hybrid electric vehicle is proposed. The controller of induction motor (IM is designed based on input-output feedback linearization technique. Combining this controller with adaptive backstepping observer the system is robust against rotor and stator resistances uncertainties. In additional, mechanical components of a hybrid electric vehicle are called from the Advanced Vehicle Simulator Software Library and then linked with the electric motor. Finally, a typical series hybrid electric vehicle is modeled and investigated. Various tests, such as acceleration traversing ramp, and fuel consumption and emission are performed on the proposed model of a series hybrid vehicle. Computer simulation results obtained, confirm the validity and performance of the proposed IM control approach using for series hybrid electric vehicle.

  8. Strategic alliances for the development of fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Maruo, Kanehira [Goeteborg Univ. (Sweden). Section of Science and Technology Studies

    1998-12-01

    The aim of this paper is to explore and describe the current stage of fuel cell vehicle development in the world. One can write three possible future scenarios - an optimistic, a realistic, and a pessimistic scenario: - The optimistic scenario -- The Daimler/Ballard/Ford alliance continues to develop fuel cell stacks and fuel cell vehicle systems as eagerly as they have been doing in recent years. Daimler(/Chrysler)-Benz continues to present its Necar 4, Necar 5, and so on, as planned, and thus keeps Toyota and Honda under severe pressure. Toyota`s and Honda`s real motivation seems to be not to allow Daimler-Benz to be the first to market. Their investment in fuel cell technology will be very large. At the same time, governments and other stake-holders will quickly and in a timely fashion build up infrastructures. We will then see many fuel cell vehicles by 2004. A paradigm shift in automotive technology will have taken place. - The realistic scenario -- Fuel cell vehicles will reach the same level of development by 2004/2005 as pure electric vehicles were at in 1997/1998. This means that fuel cell vehicles will be produced at the rate of several hundred vehicles per year per manufacturer and cost about $40,000 or more, which is still considerably more expensive than ordinary gasoline cars. These fuel cell vehicles will have a performance similar to today`s advanced electric vehicles, e.g., Toyota`s RAV4/EV and Honda`s EV Plus. To go further from this stage to the mass-production stage strong government incentives will be needed. - The pessimistic scenario -- It turns out that fuel cells are not as pure or efficient as in theory and in laboratory experiments. Prices of gasoline and diesel gas continue to be very low. The Californian 10% ZEV Requirement that has been meant to be valid at least ten years from 2003 through 2012 will be suspended or greatly modified. Daimler-Benz, Toyota, and Honda slow down their fuel cell vehicle development activities. No one is

  9. Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Ruchuan Liu

    2014-04-01

    Full Text Available Inorganic/organic hybrid solar cells have attracted a lot of interest due to their potential in combining the advantages of both components. To understand the key issues in association with photoinduced charge separation/transportation processes and to improve overall power conversion efficiency, various combinations with nanostructures of hybrid systems have been investigated. Here, we briefly review the structures of hybrid nanocomposites studied so far, and attempt to associate the power conversion efficiency with these nanostructures. Subsequently, we are then able to summarize the factors for optimizing the performance of inorganic/organic hybrid solar cells.

  10. Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells

    Science.gov (United States)

    Liu, Ruchuan

    2014-01-01

    Inorganic/organic hybrid solar cells have attracted a lot of interest due to their potential in combining the advantages of both components. To understand the key issues in association with photoinduced charge separation/transportation processes and to improve overall power conversion efficiency, various combinations with nanostructures of hybrid systems have been investigated. Here, we briefly review the structures of hybrid nanocomposites studied so far, and attempt to associate the power conversion efficiency with these nanostructures. Subsequently, we are then able to summarize the factors for optimizing the performance of inorganic/organic hybrid solar cells. PMID:28788591

  11. Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States

    International Nuclear Information System (INIS)

    Onat, Nuri Cihat; Kucukvar, Murat; Tatari, Omer

    2015-01-01

    Highlights: • Driving patterns and electricity generation mix influence vehicle preferences. • EVs are found to be least carbon-intensive vehicle option in 24 states. • HEVs are found to be the most energy-efficient option in 45 states. • EVs across the board are unfavorable in the marginal electricity mix scenario. • Use of renewable energy to power EVs/PHEVs is crucial. - Abstract: Electric vehicles (EVs), plug-in hybrid electric vehicles (PHEVs), and hybrid electric vehicles (HEVs) are often considered as better options in terms of greenhouse gas emissions and energy consumption compared to internal combustion vehicles. However, making any decision among these vehicle options is not a straightforward process due to temporal and spatial variations, such as the sources of the electricity used and regional driving patterns. In this study, we compared these vehicle options across 50 states, taking into account state-specific average and marginal electricity generation mixes, regional driving patterns, and vehicle and battery manufacturing impacts. Furthermore, a policy scenario proposing the widespread use of solar energy to charge EVs and PHEVs is evaluated. Based on the average electricity generation mix scenario, EVs are found to be least carbon-intensive vehicle option in 24 states, while HEVs are found to be the most energy-efficient option in 45 states. In the marginal electricity mix scenario, widespread adoption of EVs is found to be an unwise strategy given the existing and near-future marginal electricity generation mix. On the other hand, EVs can be superior to other alternatives in terms of energy-consumption, if the required energy to generate 1 kW h of electricity is below 1.25 kW h

  12. Mode Shift Control for a Hybrid Heavy-Duty Vehicle with Power-Split Transmission

    Directory of Open Access Journals (Sweden)

    Kun Huang

    2017-02-01

    Full Text Available Given that power-split transmission (PST is considered to be a major powertrain technology for hybrid heavy-duty vehicles (HDVs, the development and application of PST in the HDVs make mode shift control an essential aspect of powertrain system design. This paper presents a shift schedule design and torque control strategy for a hybrid HDV with PST during mode shift, intended to reduce the output torque variation and improve the shift quality (SQ. Firstly, detailed dynamic models of the hybrid HDV are developed to analyze the mode shift characteristics. Then, a gear shift schedule calculation method including a dynamic shift schedule and an economic shift schedule is provided. Based on the dynamic models and the designed shift schedule, a mode shift performance simulator is built using MATLAB/Simulink, and simulations are carried out. Through analysis of the dynamic equations, it is seen that the inertia torques of the motor–generator lead to the occurrence of transition torque. To avoid the unwanted transition torque, we use a mode shift control strategy that coordinates the motor–generator torque to compensate for the transition torque. The simulation and experimental results demonstrate that the output torque variation during mode shift is effectively reduced by the proposed control strategy, thereby improving the SQ.

  13. 77 FR 62623 - 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel...

    Science.gov (United States)

    2012-10-15

    ... Manufacturer Compliance Flexibilities 1. Air Conditioning Related Credits 2. Incentives for Electric Vehicles, Plug-in Hybrid Electric Vehicles, Fuel Cell Vehicles, and Dedicated and Dual Fuel Compressed Natural... Trucks 4. Treatment of Plug-in Hybrid Electric Vehicles, Dual Fuel Compressed Natural Gas Vehicles, and...

  14. An Efficient Two-Objective Hybrid Local Search Algorithm for Solving the Fuel Consumption Vehicle Routing Problem

    Directory of Open Access Journals (Sweden)

    Weizhen Rao

    2016-01-01

    Full Text Available The classical model of vehicle routing problem (VRP generally minimizes either the total vehicle travelling distance or the total number of dispatched vehicles. Due to the increased importance of environmental sustainability, one variant of VRPs that minimizes the total vehicle fuel consumption has gained much attention. The resulting fuel consumption VRP (FCVRP becomes increasingly important yet difficult. We present a mixed integer programming model for the FCVRP, and fuel consumption is measured through the degree of road gradient. Complexity analysis of FCVRP is presented through analogy with the capacitated VRP. To tackle the FCVRP’s computational intractability, we propose an efficient two-objective hybrid local search algorithm (TOHLS. TOHLS is based on a hybrid local search algorithm (HLS that is also used to solve FCVRP. Based on the Golden CVRP benchmarks, 60 FCVRP instances are generated and tested. Finally, the computational results show that the proposed TOHLS significantly outperforms the HLS.

  15. Proceedings of the PHEV09 conference : plug-in hybrid and electric vehicles

    International Nuclear Information System (INIS)

    2009-01-01

    The commercialization of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) will require careful consideration of the electric grid's generation and distribution capacities as well as new developments in electric drives and other PHEV and EV technologies. A greater understanding of the policy initiatives needed to develop and promote the use of PHEVs and EVs is also needed in Canada. With 344 delegates, this conference provided a forum for the discussion of issues related to the current PHEV and EV market in Canada. The first day of the conference focused on emerging battery technologies, while the second and third days discussed PHEV and EV technologies, markets, policies and regulations. Presentations at the conference were divided into 18 sessions: (1) performance of batteries in extreme conditions; (2) grid integration; (3) customer perspectives; (4) public and private support programs for the Canadian EV industry; (5) grid-vehicle interface; (6) standards, regulations and safety issues now and in the foreseeable future; (7) an overview of key initiatives in Canada; (8) applications in defence and space; (9) international perspectives on market issues and supportive policies; (10) power management; (11) applications in northern and remote communities; (12) emerging business models to accelerate electric drive; (13) power management; (14) renewable and zero GHG energy opportunities; (15) human resources implications; (16) OEM perspectives; (17) OEM perspectives part 2; and (18) a closing plenary session. The conference featured 64 presentations, of which 11 have been catalogued separately for inclusion in this database. tabs., figs.

  16. Why is the market for hybrid electric vehicles (HEVs) moving slowly?

    Science.gov (United States)

    Rahmani, Djamel; Loureiro, Maria L.

    2018-01-01

    Hybrid electric vehicles (HEVs) could be a good short term option to help achieve global targets regarding road transport greenhouse gas emissions. Several common and country-specific public policies based on price or tax rebates are established in order to encourage the adoption of HEVs. The present research empirically assesses market preferences for HEVs in Spain, looking at the role of subsidies. An interactive internet-based survey was conducted in a representative sample (N = 1,200) of Spanish drivers. Drivers are willing to pay an extra amount of €1,645 for a HEV model compared to a conventional vehicle, premium which is well below the price markup for these cars. Therefore, current levels of economic subsidies applied in isolation to promote these types of vehicles may have a quite limited effect in extending their use. Overall, it is found that drivers have clear misconceptions about HEVs, which affect their purchasing choices and perceptions. Therefore, a policy mix of various incentives (including informational campaigns) may be required in order to stimulate the demand for HEVs. PMID:29561860

  17. An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles

    Science.gov (United States)

    Lemoine, D. M.; Kammen, D. M.; Farrell, A. E.

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) can use both grid-supplied electricity and liquid fuels. We show that under recent conditions, millions of PHEVs could have charged economically in California during both peak and off-peak hours even with modest gasoline prices and real-time electricity pricing. Special electricity rate tariffs already in place for electric vehicles could successfully render on-peak charging uneconomical and off-peak charging very attractive. However, unless battery prices fall by at least a factor of two, or gasoline prices double, the present value of fuel savings is smaller than the marginal vehicle costs, likely slowing PHEV market penetration in California. We also find that assumptions about how PHEVs are charged strongly influence the number of PHEVs that can be charged before the electric power system must be expanded. If most PHEVs are charged after the workday, and thus after the time of peak electricity demand, our forecasts suggest that several million PHEVs could be deployed in California without requiring new generation capacity, and we also find that the state's PHEV fleet is unlikely to reach into the millions within the current electricity sector planning cycle. To ensure desirable outcomes, appropriate technologies and incentives for PHEV charging will be needed if PHEV adoption becomes mainstream.

  18. Evaluation of semiconductor devices for Electric and Hybrid Vehicle (EHV) ac-drive applications, volume 1

    Science.gov (United States)

    Lee, F. C.; Chen, D. Y.; Jovanovic, M.; Hopkins, D. C.

    1985-01-01

    The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost.

  19. Why is the market for hybrid electric vehicles (HEVs) moving slowly?

    Science.gov (United States)

    Rahmani, Djamel; Loureiro, Maria L

    2018-01-01

    Hybrid electric vehicles (HEVs) could be a good short term option to help achieve global targets regarding road transport greenhouse gas emissions. Several common and country-specific public policies based on price or tax rebates are established in order to encourage the adoption of HEVs. The present research empirically assesses market preferences for HEVs in Spain, looking at the role of subsidies. An interactive internet-based survey was conducted in a representative sample (N = 1,200) of Spanish drivers. Drivers are willing to pay an extra amount of €1,645 for a HEV model compared to a conventional vehicle, premium which is well below the price markup for these cars. Therefore, current levels of economic subsidies applied in isolation to promote these types of vehicles may have a quite limited effect in extending their use. Overall, it is found that drivers have clear misconceptions about HEVs, which affect their purchasing choices and perceptions. Therefore, a policy mix of various incentives (including informational campaigns) may be required in order to stimulate the demand for HEVs.

  20. Uncertainty analysis and design optimization of hybrid rocket motor powered vehicle for suborbital flight

    Directory of Open Access Journals (Sweden)

    Zhu Hao

    2015-06-01

    Full Text Available In this paper, we propose an uncertainty analysis and design optimization method and its applications on a hybrid rocket motor (HRM powered vehicle. The multidisciplinary design model of the rocket system is established and the design uncertainties are quantified. The sensitivity analysis of the uncertainties shows that the uncertainty generated from the error of fuel regression rate model has the most significant effect on the system performances. Then the differences between deterministic design optimization (DDO and uncertainty-based design optimization (UDO are discussed. Two newly formed uncertainty analysis methods, including the Kriging-based Monte Carlo simulation (KMCS and Kriging-based Taylor series approximation (KTSA, are carried out using a global approximation Kriging modeling method. Based on the system design model and the results of design uncertainty analysis, the design optimization of an HRM powered vehicle for suborbital flight is implemented using three design optimization methods: DDO, KMCS and KTSA. The comparisons indicate that the two UDO methods can enhance the design reliability and robustness. The researches and methods proposed in this paper can provide a better way for the general design of HRM powered vehicles.

  1. A Hybrid Chaos-Particle Swarm Optimization Algorithm for the Vehicle Routing Problem with Time Window

    Directory of Open Access Journals (Sweden)

    Qi Hu

    2013-04-01

    Full Text Available State-of-the-art heuristic algorithms to solve the vehicle routing problem with time windows (VRPTW usually present slow speeds during the early iterations and easily fall into local optimal solutions. Focusing on solving the above problems, this paper analyzes the particle encoding and decoding strategy of the particle swarm optimization algorithm, the construction of the vehicle route and the judgment of the local optimal solution. Based on these, a hybrid chaos-particle swarm optimization algorithm (HPSO is proposed to solve VRPTW. The chaos algorithm is employed to re-initialize the particle swarm. An efficient insertion heuristic algorithm is also proposed to build the valid vehicle route in the particle decoding process. A particle swarm premature convergence judgment mechanism is formulated and combined with the chaos algorithm and Gaussian mutation into HPSO when the particle swarm falls into the local convergence. Extensive experiments are carried out to test the parameter settings in the insertion heuristic algorithm and to evaluate that they are corresponding to the data’s real-distribution in the concrete problem. It is also revealed that the HPSO achieves a better performance than the other state-of-the-art algorithms on solving VRPTW.

  2. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jason [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yu, Wensong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Sun, Pengwei [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Leslie, Scott [Powerex, Inc., Harrison, OH (United States); Prusia, Duane [Powerex, Inc., Harrison, OH (United States); Arnet, Beat [Azure Dynamics, Oak Park, MI (United States); Smith, Chris [Azure Dynamics, Oak Park, MI (United States); Cogan, Art [Azure Dynamics, Oak Park, MI (United States)

    2012-03-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105°C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  3. Optimization of Key Parameters of Energy Management Strategy for Hybrid Electric Vehicle Using DIRECT Algorithm

    Directory of Open Access Journals (Sweden)

    Jingxian Hao

    2016-11-01

    Full Text Available The rule-based logic threshold control strategy has been frequently used in energy management strategies for hybrid electric vehicles (HEVs owing to its convenience in adjusting parameters, real-time performance, stability, and robustness. However, the logic threshold control parameters cannot usually ensure the best vehicle performance at different driving cycles and conditions. For this reason, the optimization of key parameters is important to improve the fuel economy, dynamic performance, and drivability. In principle, this is a multiparameter nonlinear optimization problem. The logic threshold energy management strategy for an all-wheel-drive HEV is comprehensively analyzed and developed in this study. Seven key parameters to be optimized are extracted. The optimization model of key parameters is proposed from the perspective of fuel economy. The global optimization method, DIRECT algorithm, which has good real-time performance, low computational burden, rapid convergence, is selected to optimize the extracted key parameters globally. The results show that with the optimized parameters, the engine operates more at the high efficiency range resulting into a fuel savings of 7% compared with non-optimized parameters. The proposed method can provide guidance for calibrating the parameters of the vehicle energy management strategy from the perspective of fuel economy.

  4. Analysis Platform for Energy Efficiency Enhancement in Hybrid and Full Electric Vehicles

    Directory of Open Access Journals (Sweden)

    NICOLAICA, M.-O.

    2016-02-01

    Full Text Available The current paper presents a new virtual analysis method that is applied both on hybrid and electric vehicle architectures with the purpose of contributing to the improvement of energy efficiency. The study is based on Matlab modeling and simulation. A set of parameters are considered in order to assess the system performance. The benefit is given by the comparative overview obtained after the completed analysis. The effectiveness of the analysis method is confirmed by a sequence of simulation results combined in several case studies. The impulse of the research is given by the fact that the automotive market is focusing on wider simulation techniques and better control strategies that lead to more efficient vehicles. Applying the proposed method during design would improve the battery management and controls strategy. The advantage of this method is that the system behavior with regards to energy efficiency can be evaluated from an early concept phase. The results contribute to the actual necessity of driving more efficient and more environmental friendly vehicles.

  5. An Online Energy Management Control for Hybrid Electric Vehicles Based on Neuro-Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Feiyan Qin

    2018-03-01

    Full Text Available Hybrid electric vehicles are a compromise between traditional vehicles and pure electric vehicles and can be part of the solution to the energy shortage problem. Energy management strategies (EMSs are highly related to energy utilization in HEVs’ fuel economy. In this research, we have employed a neuro-dynamic programming (NDP method to simultaneously optimize fuel economy and battery state of charge (SOC. In this NDP method, the critic network is a multi-resolution wavelet neural network based on the Meyer wavelet function, and the action network is a conventional wavelet neural network based on the Morlet function. The weights and parameters of both networks are obtained by an algorithm of backpropagation type. The NDP-based EMS has been applied to a parallel HEV and compared with a previously reported NDP EMS and a stochastic dynamic programing-based method. Simulation results under ADVISOR2002 have shown that the proposed NDP approach achieves better performance than both the methods. These indicate that the proposed NDP EMS, and the CWNN and MRWNN, are effective in approximating a nonlinear system.

  6. A hybrid life cycle assessment of the vehicle-to-grid application in light duty commercial fleet

    International Nuclear Information System (INIS)

    Zhao, Yang; Tatari, Omer

    2015-01-01

    The vehicle-to-grid system is an approach utilizing the idle battery capacity of electric vehicles while they are parked to provide supplementary energy to the power grid. As electrification continues in light duty vehicle fleets, the application of vehicle-to-grid systems for commercial delivery truck fleets can provide extra revenue for fleet owners, and also has significant potential for reducing greenhouse gas emissions from the electricity generation sector. In this study, an economic input–output based hybrid life cycle assessment is conducted to analyze the potential greenhouse gas emissions emission savings from the use of the vehicle-to-grid system, as well as the possible emission impacts caused by battery degradation. A Monte Carlo simulation was performed to address the uncertainties that lie in the electricity exchange amount of the vehicle-to-grid service as well as the battery life of the electric vehicles. The results of this study showed that extended range electric vehicles and battery electric vehicles are both viable regulation service providers for saving greenhouse gas emissions from electricity generation if the battery wear-out from regulation services is assumed to be minimal, but the vehicle-to-grid system becomes less attractive at higher battery degradation levels. - Highlights: • The commercial delivery trucks are studied as vehicle-to-grid service providers. • Hybrid life cycle assessment is conducted to evaluate emission mitigation. • Battery degradation level and corresponding emissions and cost are evaluated. • Vehicle-to-grid service is shown to have significant emission saving effect.

  7. Simultaneous Observation of Hybrid States for Cyber-Physical Systems: A Case Study of Electric Vehicle Powertrain.

    Science.gov (United States)

    Lv, Chen; Liu, Yahui; Hu, Xiaosong; Guo, Hongyan; Cao, Dongpu; Wang, Fei-Yue

    2017-08-22

    As a typical cyber-physical system (CPS), electrified vehicle becomes a hot research topic due to its high efficiency and low emissions. In order to develop advanced electric powertrains, accurate estimations of the unmeasurable hybrid states, including discrete backlash nonlinearity and continuous half-shaft torque, are of great importance. In this paper, a novel estimation algorithm for simultaneously identifying the backlash position and half-shaft torque of an electric powertrain is proposed using a hybrid system approach. System models, including the electric powertrain and vehicle dynamics models, are established considering the drivetrain backlash and flexibility, and also calibrated and validated using vehicle road testing data. Based on the developed system models, the powertrain behavior is represented using hybrid automata according to the piecewise affine property of the backlash dynamics. A hybrid-state observer, which is comprised of a discrete-state observer and a continuous-state observer, is designed for the simultaneous estimation of the backlash position and half-shaft torque. In order to guarantee the stability and reachability, the convergence property of the proposed observer is investigated. The proposed observer are validated under highly dynamical transitions of vehicle states. The validation results demonstrates the feasibility and effectiveness of the proposed hybrid-state observer.

  8. Heel and toe driving on fuel cell vehicle

    Science.gov (United States)

    Choi, Tayoung; Chen, Dongmei

    2012-12-11

    A system and method for providing nearly instantaneous power in a fuel cell vehicle. The method includes monitoring the brake pedal angle and the accelerator pedal angle of the vehicle, and if the vehicle driver is pressing both the brake pedal and the accelerator pedal at the same time and the vehicle is in a drive gear, activating a heel and toe mode. When the heel and toe mode is activated, the speed of a cathode compressor is increased to a predetermined speed set-point, which is higher than the normal compressor speed for the pedal position. Thus, when the vehicle brake is removed, the compressor speed is high enough to provide enough air to the cathode, so that the stack can generate nearly immediate power.

  9. Field Trials of the Nereus Hybrid Underwater Robotic Vehicle in the Challenger Deep of the Mariana Trench

    Science.gov (United States)

    2010-06-01

    currents and below the most energetic and biologi - cally active part of the water column. The vehicle package contains the optical-fiber dispenser, brake...mineral samples and over 13 species of organisms from these dives (Figure 8 and 9). Sampling at the hydrothermal vents on the Toto Seamount on Dive 15...Field Trials of the Nereus Hybrid Underwater Robotic Vehicle in the Challenger Deep of the Mariana Trench Andrew D. Bowen, Dana R. Yoerger, Chris

  10. Design, control and power management of a battery/ultra-capacitor hybrid system for small electric vehicles

    DEFF Research Database (Denmark)

    Li, Zhihao; Onar, Omer; Khaligh, Alireza

    2009-01-01

    This paper introduces design, control, and power management of a battery/ultra-capacitor hybrid system, utilized for small electric vehicles (EV). The batteries are designed and controlled to work as the main energy storage source of the vehicle, supplying average power to the load; and the ultra......-capacitors are used to meet the peak power demands during transients. Power management system determines the directions of power flow, according to load demand. Presented analyses validate the efficient power management methodology....

  11. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    DEFF Research Database (Denmark)

    Nielsen, L.H.; Jørgensen K.

    2000-01-01

    vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and forthe conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport......The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore toillustrate the potential synergistic interplay...... between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalisedelectricity market are analysed. The project focuses on battery electric vehicles and fuel cell...

  12. Hybrid Perovskite/Perovskite Heterojunction Solar Cells.

    Science.gov (United States)

    Hu, Yinghong; Schlipf, Johannes; Wussler, Michael; Petrus, Michiel L; Jaegermann, Wolfram; Bein, Thomas; Müller-Buschbaum, Peter; Docampo, Pablo

    2016-06-28

    Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices.

  13. Knowledge basis concerning the market for electric vehicles and plug-in hybrids (KAMEL); Kunskapsunderlag angaaende marknaden foer elfordon och laddhybrider (KAMEL)

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    The Swedish Energy Agency is proposing a four-year demonstration and development program to support the market introduction of electric vehicles and plug-in hybrids (electric vehicle applications). This in light of the uncertainties in the market introduction of vehicles, cost of key components such as batteries, the possibility of industrial development in Sweden and the uncertainty of how to complement to existing charging infrastructure in an socioeconomic way. In addition to this, the more general aid to electric cars and plug-in hybrids is to be reviewed. Today, electric vehicles, hybrids, ethanol vehicles, bio-gas vehicles and fuel-efficient vehicles, are supported by the green car definition and the environmental classification system. Furthermore, ethanol vehicles and biogas vehicles have support through tax reduction for biofuels. Overall, community support for electric vehicles and plug-in hybrids is lower than for the introduction of ethanol vehicles and biogas vehicles which do not reflect the environmental benefits they have. The review of the general subsidies for electric vehicles and the support through a demonstration program represent a concerted strategy to overcome the initially very high additional cost of these vehicles

  14. An integrated optimization approach for a hybrid energy system in electric vehicles

    International Nuclear Information System (INIS)

    Hung, Yi-Hsuan; Wu, Chien-Hsun

    2012-01-01

    Highlights: ► Second-order control-oriented dynamics for a battery/supercapacitor EV is modeled. ► Multiple for-loop programming and global searchwith constraints are main design principles of integrated optimization algorithm (IOA). ► Optimal hybridization is derived based on maximizing energy storage capacity. ► Optimal energy management in three EV operation modes is searched based on minimizing total consumed power. ► Simulation results prove that 6+% of total energy is saved by the IOA method. -- Abstract: This paper develops a simple but innovative integrated optimization approach (IOA) for deriving the best solutions of component sizing and control strategies of a hybrid energy system (HES) which consists of a lithium battery and a supercapacitor module. To implement IOA, a multiple for-loop structure with a preset cost function is needed to globally calculate the best hybridization and energy management of the HES. For system hybridization, the optimal size ratio is evaluated by maximizing the HES energy stored capacity at various costs. For energy management, the optimal power distribution combined with a three-mode rule-based strategy is searched to minimize the total consumed energy. Combining above two for-loop structures and giving a time-dependent test scenario, the IOA is derived by minimizing the accumulated HES power. Simulation results show that 6% of the total HES energy can be saved in the IOA case compared with the original system in two driving cycles: ECE and UDDS, and two vehicle weights, respectively. It proves that the IOA effectively derives the maximum energy storage capacity and the minimum energy consumption of the HES at the same time. Experimental verification will be carried out in the near future.

  15. Real-time control strategy to maximize hybrid electric vehicle powertrain efficiency

    International Nuclear Information System (INIS)

    Shabbir, Wassif; Evangelou, Simos A.

    2014-01-01

    Highlights: • An off-line local control is proposed for real-time HEV energy management. • Powertrain efficiencies are studied to produce a unified objective function. • Penalty function is designed to ensure charge sustaining operation. • Implementation by storing optimal power share in a two-dimensional control map. • Proposed control improved fuel economy by up to 20% compared to conventional control. - Abstract: The proposed supervisory control system (SCS) uses a control map to maximize the powertrain efficiency of a hybrid electric vehicle (HEV) in real-time. The paper presents the methodology and structure of the control, including a novel, comprehensive and unified expression for the overall powertrain efficiency that considers the engine-generator set and the battery in depth as well as the power electronics. A control map is then produced with instructions for the optimal power share between the engine branch and battery branch of the vehicle such that the powertrain efficiency is maximized. This map is computed off-line and can thereafter be operated in real-time at very low computational cost. A charge sustaining factor is also developed and introduced to ensure the SCS operates the vehicle within desired SOC bounds. This SCS is then tested and benchmarked against two conventional control strategies in a high-fidelity vehicle model, representing a series HEV. Extensive simulation results are presented for repeated cycles of a diverse range of standard driving cycles, showing significant improvements in fuel economy (up to 20%) and less aggressive use of the battery

  16. An agent-based model to study market penetration of plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Eppstein, Margaret J.; Grover, David K.; Marshall, Jeffrey S.; Rizzo, Donna M.

    2011-01-01

    A spatially explicit agent-based vehicle consumer choice model is developed to explore sensitivities and nonlinear interactions between various potential influences on plug-in hybrid vehicle (PHEV) market penetration. The model accounts for spatial and social effects (including threshold effects, homophily, and conformity) and media influences. Preliminary simulations demonstrate how such a model could be used to identify nonlinear interactions among potential leverage points, inform policies affecting PHEV market penetration, and help identify future data collection necessary to more accurately model the system. We examine sensitivity of the model to gasoline prices, to accuracy in estimation of fuel costs, to agent willingness to adopt the PHEV technology, to PHEV purchase price and rebates, to PHEV battery range, and to heuristic values related to gasoline usage. Our simulations indicate that PHEV market penetration could be enhanced significantly by providing consumers with ready estimates of expected lifetime fuel costs associated with different vehicles (e.g., on vehicle stickers), and that increases in gasoline prices could nonlinearly magnify the impact on fleet efficiency. We also infer that a potential synergy from a gasoline tax with proceeds is used to fund research into longer-range lower-cost PHEV batteries. - Highlights: → We model consumer agents to study potential market penetration of PHEVs. → The model accounts for spatial, social, and media effects. → We identify interactions among potential leverage points that could inform policy. → Consumer access to expected lifetime fuel costs may enhance PHEV market penetration. → Increasing PHEV battery range has synergistic effects on fleet efficiency.

  17. Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Alejandro Mendez

    2014-07-01

    Full Text Available Autonomous Underwater Vehicles (AUVs are vehicles that are primarily used to accomplish oceanographic research data collection and auxiliary offshore tasks. At the present time, they are usually powered by lithium-ion secondary batteries, which have insufficient specific energies. In order for this technology to achieve a mature state, increased endurance is required. Fuel cell power systems have been identified as an effective means to achieve this endurance but no implementation in a commercial device has yet been realized. This paper summarizes the current state of development of the technology in this field of research. First, the most adequate type of fuel cell for this application is discussed. The prototypes and design concepts of AUVs powered by fuel cells which have been developed in the last few years are described. Possible commercial and experimental fuel cell stack options are analyzed, examining solutions adopted in the analogous aerial vehicle applications, as well as the underwater ones, to see if integration in an AUV is feasible. Current solutions in oxygen and hydrogen storage systems are overviewed and energy density is objectively compared between battery power systems and fuel cell power systems for AUVs. A couple of system configuration solutions are described including the necessary lithium-ion battery hybrid system. Finally, some closing remarks on the future of this technology are given.

  18. Nereid Under Ice (NUI): A Hybrid Remotely Operated Vehicle for Under Ice Telepresence

    Science.gov (United States)

    Jakuba, M.; Bowen, A.; German, C. R.; Whitcomb, L. L.; Kinsey, J. C.; Yoerger, D.; Mayer, L.; McFarland, C.; Suman, S.; Bailey, J.; Judge, C.; Elliott, S.; Gomez-Ibanez, D.; Machado, C.; Taylor, C. L.; Katlein, C.; Arndt, S.; Singh, H.; Maksym, T.; Laney, S.; Nicolaus, M.; Boetius, A.

    2016-02-01

    The Nereid Under Ice (NUI) Hybrid Remotely Operated Vehicle (HROV) is a 2000 m rated robotic underwater vehicle that allows for direct real-time human supervision of mapping, inspection, and intervention tasks beneath ice and unconstrained by the motions of a support vessel. The vehicle employs a unique unarmored communications only fiber-optic tether that enables putative standoff distances of up to 20 km from an ice-edge boundary while under direct human control. Designed and built at WHOI's Deep Submergence Laboratory, along with colleagues at Johns Hopkins University and the University of New Hampshire, NUI enables exploration, detailed examination, and sample retrieval from ice-margin and under-ice environments through the use of high-definition video coupled with a seven-function hydraulic manipulator in addition to a range of acoustic, chemical, and biological sensors tailored to suit the needs of an individual expedition. We summarize the technological and scientific outcomes of under ice sea trials in the High Arctic and capability enhancements undertaken since the successful completion of trials. In July, 2014, NUI successfully completed its first under-ice field expedition from aboard the Alfred Wegener Institute's ice-breaker Polarstern. In addition to conducting engineering trials, the vehicle was equipped with various mission-specific biological sensors for studying near-ice primary productivity - a comprehensive pumped fluorometry system SUNA nitrate, Eco Triplet FL/BB/CDOM, SBE25+ CTD, FRRF, PAR), hyperspectral radiance and irradiance sensors (RAMSES ACC, ARC). We present an overview of results from four dives traveling up to 3.7 km under moving sea ice to a maximum depth of 45 m and ranging up to 800 m distant from Polarstern. We also report continued development aimed at enhancing NUI's capabilities. During the 2014 trials the vehicle was not equipped with a manipulator for sample retrieval. Funding has been secured and design studies are

  19. An Analysis of Fuel Cell Options for an All-electric Unmanned Aerial Vehicle

    Science.gov (United States)

    Kohout, Lisa L.; Schmitz, Paul C.

    2007-01-01

    A study was conducted to assess the performance characteristics of both PEM and SOFC-based fuel cell systems for an all-electric high altitude, long endurance Unmanned Aerial Vehicle (UAV). Primary and hybrid systems were considered. Fuel options include methane, hydrogen, and jet fuel. Excel-based models were used to calculate component mass as a function of power level and mission duration. Total system mass and stored volume as a function of mission duration for an aircraft operating at 65 kft altitude were determined and compared.

  20. Demand Response and Economic Dispatch of Power Systems Considering Large-Scale Plug-in Hybrid Electric Vehicles/Electric Vehicles (PHEVs/EVs): A Review

    OpenAIRE

    Wei Gu; Haojun Yu; Wei Liu; Junpeng Zhu; Xiaohui Xu

    2013-01-01

    Increasing concerns about global environmental issues have led to the urgent development of green transportation. The enthusiasm of governments should encourage the prosperity of the plug-in hybrid electric vehicles/electric vehicles (PHEVs/EVs) industry in the near future. PHEVs/EVs are not only an alternative to gasoline but are also burgeoning units for power systems. The impact of large-scale PHEVs/EVs on power systems is of profound significance. This paper discusses how to use PHEVs/EVs...

  1. Estimation of CO2 reduction by parallel hard-type power hybridization for gasoline and diesel vehicles.

    Science.gov (United States)

    Oh, Yunjung; Park, Junhong; Lee, Jong Tae; Seo, Jigu; Park, Sungwook

    2017-10-01

    The purpose of this study is to investigate possible improvements in ICEVs by implementing fuzzy logic-based parallel hard-type power hybrid systems. Two types of conventional ICEVs (gasoline and diesel) and two types of HEVs (gasoline-electric, diesel electric) were generated using vehicle and powertrain simulation tools and a Matlab-Simulink application programming interface. For gasoline and gasoline-electric HEV vehicles, the prediction accuracy for four types of LDV models was validated by conducting comparative analysis with the chassis dynamometer and OBD test data. The predicted results show strong correlation with the test data. The operating points of internal combustion engines and electric motors are well controlled in the high efficiency region and battery SOC was well controlled within ±1.6%. However, for diesel vehicles, we generated virtual diesel-electric HEV vehicle because there is no available vehicles with similar engine and vehicle specifications with ICE vehicle. Using a fuzzy logic-based parallel hybrid system in conventional ICEVs demonstrated that HEVs showed superior performance in terms of fuel consumption and CO 2 emission in most driving modes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Integration of plug-in hybrid electric vehicles (PHEV) with grid connected residential photovoltaic energy systems

    Science.gov (United States)

    Nagarajan, Adarsh; Shireen, Wajiha

    2013-06-01

    This paper proposes an approach for integrating Plug-In Hybrid Electric Vehicles (PHEV) to an existing residential photovoltaic system, to control and optimize the power consumption of residential load. Control involves determining the source from which residential load will be catered, where as optimization of power flow reduces the stress on the grid. The system built to achieve the goal is a combination of the existing residential photovoltaic system, PHEV, Power Conditioning Unit (PCU), and a controller. The PCU involves two DC-DC Boost Converters and an inverter. This paper emphasizes on developing the controller logic and its implementation in order to accommodate the flexibility and benefits of the proposed integrated system. The proposed controller logic has been simulated using MATLAB SIMULINK and further implemented using Digital Signal Processor (DSP) microcontroller, TMS320F28035, from Texas Instruments

  3. From course assessment to redesign: a hybrid-vehicle course as a case illustration

    Science.gov (United States)

    Stanton, Ken C.; Bradley, Thomas H.

    2013-12-01

    Assessment has become a central aspect of engineering education for evaluating student learning, attaining accreditation, and ensuring accountability. However, the final step of the assessment process, which requires assessment results be used to redesign courses and programmes, is appreciably underdeveloped in the literature. As such, this work suggests a process, based on the engineering problem-solving method, to analyse and act on problems and successes identified in the assessment results. The process is illustrated through an application to Colorado State University's new programme for Hybrid-Electric Vehicle Engineering, for which the redesign process was originally created. Readers will benefit by simplifying and systematising the essential aspect of the assessment process - application to course redesign - for use in both research and practice applications.

  4. Online Identification of Power Required for Self-Sustainability of the Battery in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Malikopoulos, Andreas [ORNL

    2014-01-01

    Hybrid electric vehicles have shown great potential for enhancing fuel economy and reducing emissions. Deriving a power management control policy to distribute the power demanded by the driver optimally to the available subsystems (e.g., the internal combustion engine, motor, generator, and battery) has been a challenging control problem. One of the main aspects of the power management control algorithms is concerned with the self-sustainability of the electrical path, which must be guaranteed for the entire driving cycle. This paper considers the problem of identifying online the power required by the battery to maintain the state of charge within a range of the target value. An algorithm is presented that realizes how much power the engine needs to provide to the battery so that self-sustainability of the electrical path is maintained.

  5. Detection and Elimination of a Potential Fire in Engine and Battery Compartments of Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Macam S. Dattathreya

    2012-01-01

    Full Text Available This paper presents a novel fuzzy deterministic noncontroller type (FDNCT system and an FDNCT inference algorithm (FIA. The FDNCT uses fuzzy inputs and produces a deterministic non-fuzzy output. The FDNCT is an extension and alternative for the existing fuzzy singleton inference algorithm. The research described in this paper applies FDNCT to build an architecture for an intelligent system to detect and to eliminate potential fires in the engine and battery compartments of a hybrid electric vehicle. The fuzzy inputs consist of sensor data from the engine and battery compartments, namely, temperature, moisture, and voltage and current of the battery. The system synthesizes the data and detects potential fires, takes actions for eliminating the hazard, and notifies the passengers about the potential fire using an audible alarm. This paper also presents the computer simulation results of the comparison between the FIA and singleton inference algorithms for detecting potential fires and determining the actions for eliminating them.

  6. Targeting plug-in hybrid electric vehicle policies to increase social benefits

    International Nuclear Information System (INIS)

    Skerlos, Steven J.; Winebrake, James J.

    2010-01-01

    In 2009 the U.S. federal government enacted tax credits aimed at encouraging consumers to purchase plug-in hybrid electric vehicles (PHEVs). These tax credits are available to all consumers equally and therefore do not account for the variability in social benefits associated with PHEV operation in different parts of the country. The tax credits also do not consider variability in consumer income. This paper discusses why the PHEV subsidy policy would have higher social benefits at equal or less cost if the tax credits were offered at different levels depending on consumer income and the location of purchase. Quantification of these higher social benefits and related policy proposals are left for future work.

  7. Regenerative Braking Control Strategy of Electric-Hydraulic Hybrid (EHH Vehicle

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-07-01

    Full Text Available A novel electric-hydraulic hybrid drivetrain incorporating a set of hydraulic systems is proposed for application in a pure electric vehicle. Models of the electric and hydraulic components are constructed. Two control strategies, which are based on two separate rules, are developed; the maximum energy recovery rate strategy adheres to the rule of the maximization of the braking energy recovery rate, while the minimum current impact strategy adheres to the rule of the minimization of the charge current to the battery. The simulation models were established to verify the effects of these two control strategies. An ABS (Anti-lock Braking System fuzzy control strategy is also developed and simulated. The simulation results demonstrate that the developed control strategy can effectively absorb the braking energy, suppress the current impact, and assure braking safety.

  8. Engine-start Control Strategy of P2 Parallel Hybrid Electric Vehicle

    Science.gov (United States)

    Xiangyang, Xu; Siqi, Zhao; Peng, Dong

    2017-12-01

    A smooth and fast engine-start process is important to parallel hybrid electric vehicles with an electric motor mounted in front of the transmission. However, there are some challenges during the engine-start control. Firstly, the electric motor must simultaneously provide a stable driving torque to ensure the drivability and a compensative torque to drag the engine before ignition. Secondly, engine-start time is a trade-off control objective because both fast start and smooth start have to be considered. To solve these problems, this paper first analyzed the resistance of the engine start process, and established a physic model in MATLAB/Simulink. Then a model-based coordinated control strategy among engine, motor and clutch was developed. Two basic control strategy during fast start and smooth start process were studied. Simulation results showed that the control objectives were realized by applying given control strategies, which can meet different requirement from the driver.

  9. Self-learning control system for plug-in hybrid vehicles

    Science.gov (United States)

    DeVault, Robert C [Knoxville, TN

    2010-12-14

    A system is provided to instruct a plug-in hybrid electric vehicle how optimally to use electric propulsion from a rechargeable energy storage device to reach an electric recharging station, while maintaining as high a state of charge (SOC) as desired along the route prior to arriving at the recharging station at a minimum SOC. The system can include the step of calculating a straight-line distance and/or actual distance between an orientation point and the determined instant present location to determine when to initiate optimally a charge depleting phase. The system can limit extended driving on a deeply discharged rechargeable energy storage device and reduce the number of deep discharge cycles for the rechargeable energy storage device, thereby improving the effective lifetime of the rechargeable energy storage device. This "Just-in-Time strategy can be initiated automatically without operator input to accommodate the unsophisticated operator and without needing a navigation system/GPS input.

  10. Longitudinal velocity and road slope estimation in hybrid electric vehicles employing early detection of excessive wheel slip

    Science.gov (United States)

    Klomp, Matthijs; Gao, Yunlong; Bruzelius, Fredrik

    2014-05-01

    Vehicle speed is one of the important quantities in vehicle dynamics control. Estimation of the slope angle is in turn a necessity for correct dead reckoning from vehicle acceleration. In the present work, estimation of vehicle speed is applied to a hybrid vehicle with an electric motor on the rear axle and a combustion engine on the front axle. The wheel torque information, provided by electric motor, is used to early detect excessive wheel slip and improve the accuracy of the estimate. A best-wheel selection approach is applied as the observation variable of a Kalman filter which reduces the influence of slipping wheels as well as reducing the computational effort. The performance of the proposed algorithm is illustrated on a test data recorded at a winter test ground with excellent results, even for extreme conditions such as when all four wheels are spinning.

  11. 75 FR 49945 - In the Matter of Certain Hybrid Electric Vehicles and Components Thereof; Notice of Commission...

    Science.gov (United States)

    2010-08-16

    .... 74 FR. 52258-59 (Oct. 9, 2009). The complaint named as respondents Toyota Motor Corporation of Japan and two U.S. subsidiaries (collectively ``Toyota''). The complaint alleges infringement by certain Toyota hybrid vehicles of claims of U.S. Patent No. 5,343,970. On July 19, 2010, Paice and Toyota moved...

  12. Experimental evaluation of hybrid vehicle fuel economy and pollutant emissions over real-world simulation driving cycles

    Science.gov (United States)

    Fontaras, Georgios; Pistikopoulos, Panayotis; Samaras, Zissis

    2008-06-01

    The reduction of transport-generated CO2 emissions is currently a problem of global interest. Hybrid electric vehicles (HEVs) are considered as one promising technological solution for limiting transport-generated greenhouse gas emissions. Currently, the number of HEVs in the market remains limited, but this picture will change in the years to come as HEVs are expected to pave the way for cleaner technologies in transport. In this paper, results are presented regarding fuel economy and pollutant emissions measurements of two hybrid electric production vehicles. The measurements were conducted on a Prius II and a Honda Civic IMA using both the European legislated driving cycle (New European Driving Cycle, NEDC) and real-world simulation driving cycles (Artemis). In addition to the emissions measurements, other vehicle-operating parameters were studied in an effort to better quantify the maximum CO2 reduction potential. Data from real-world operation of a Prius II vehicle were also used in the evaluation. Results indicate that in most cases both vehicles present improved energy efficiency and pollutant emissions compared to conventional cars. The fuel economy benefit of the two HEVs peaked under urban driving conditions where reductions of 60% and 40% were observed, respectively. Over higher speeds the difference in fuel economy was lower, reaching that of conventional diesel at 95 km h-1. The effect of ambient temperature on fuel consumption was also quantified. It is concluded that urban operation benefits the most of hybrid technology, leading to important fuel savings and urban air quality improvement.

  13. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    OpenAIRE

    González_Espasandín, Oscar; Leo Mena, Teresa de Jesus; Navarro Arevalo, Emilio

    2013-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order t...

  14. Hybrid optimal online-overnight charging coordination of plug-in electric vehicles in smart grid

    Science.gov (United States)

    Masoum, Mohammad A. S.; Nabavi, Seyed M. H.

    2016-10-01

    Optimal coordinated charging of plugged-in electric vehicles (PEVs) in smart grid (SG) can be beneficial for both consumers and utilities. This paper proposes a hybrid optimal online followed by overnight charging coordination of high and low priority PEVs using discrete particle swarm optimization (DPSO) that considers the benefits of both consumers and electric utilities. Objective functions are online minimization of total cost (associated with grid losses and energy generation) and overnight valley filling through minimization of the total load levels. The constraints include substation transformer loading, node voltage regulations and the requested final battery state of charge levels (SOCreq). The main challenge is optimal selection of the overnight starting time (toptimal-overnight,start) to guarantee charging of all vehicle batteries to the SOCreq levels before the requested plug-out times (treq) which is done by simultaneously solving the online and overnight objective functions. The online-overnight PEV coordination approach is implemented on a 449-node SG; results are compared for uncoordinated and coordinated battery charging as well as a modified strategy using cost minimizations for both online and overnight coordination. The impact of toptimal-overnight,start on performance of the proposed PEV coordination is investigated.

  15. Integration of plug-in hybrid electric vehicles in a regional wind-thermal power system

    International Nuclear Information System (INIS)

    Goeransson, Lisa; Karlsson, Sten; Johnsson, Filip

    2010-01-01

    This study investigates consequences of integrating plug-in hybrid electric vehicles (PHEVs) in a wind-thermal power system supplied by one quarter of wind power and three quarters of thermal generation. Four different PHEV integration strategies, with different impacts on the total electric load profile, have been investigated. The study shows that PHEVs can reduce the CO 2 -emissions from the power system if actively integrated, whereas a passive approach to PHEV integration (i.e. letting people charge the car at will) is likely to result in an increase in emissions compared to a power system without PHEV load. The reduction in emissions under active PHEV integration strategies is due to a reduction in emissions related to thermal plant start-ups and part load operation. Emissions of the power sector are reduced with up to 4.7% compared to a system without PHEVs, according to the simulations. Allocating this emission reduction to the PHEV electricity consumption only, and assuming that the vehicles in electric mode is about 3 times as energy efficient as standard gasoline operation, total emissions from PHEVs would be less than half the emissions of a standard car, when running in electric mode.

  16. Life cycle assessment of hybrid vehicles recycling: Comparison of three business lines of dismantling.

    Science.gov (United States)

    Belboom, Sandra; Lewis, Grégory; Bareel, Pierre-François; Léonard, Angélique

    2016-04-01

    This paper undertakes an environmental evaluation of hybrid vehicles recycling, using industrial data from Comet Traitement SA in Belgium. Three business lines have been modelled and analysed. The first one is relative to the business as usual with a dismantling to recover batteries and engines followed by shredding and post shredding treatments. The second one considers, in addition, the removal of electronic control units (ECU) before shredding followed by same steps than in the first line and the last one is relative to the additional removal of big plastic parts before shredding and business as usual post shredding treatments. Results show non-significant environmental benefits when ECU or large parts of plastics are recovered before shredding. Improvements in terms of environmental benefits are lower than the uncertainty of the results. Indeed, the performing usual process for end-of-life vehicles (ELV) treatment reaches 97% of the ELV which is valorised in terms of metal and energy recoveries. Post shredding treatment units include metals, plastics and energy recovery of residues. Comet business as usual route for ELV valorisation is in accordance with the requirements of the European directive and recommendations for further improvement with dismantling of other parts (ECU or plastics) before shredding are non-relevant in this case. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Environmental impact analysis of electric and hybrid vehicle batteries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-16

    This environmental impact analysis of electric and hybrid vehicle batteries is intended to identify principal environmental impacts resulting directly or indirectly from the development of electric vehicle batteries. Thus, the result of this study could be used to determine the appropriate following step in the U.S. DOE's EIA process. The environmental impacts considered in this document are the incremental impacts generated during the various phases in the battery life cycle. The processes investigated include mining, milling, smelting, and refining of metallic materials for electrode components; manufacturing processes of inorganic chemicals and other materials for electrolytes and other hardware components; battery assembly processes; operation and maintenance of batteries; and recycling and disposal of used batteries. The severity of the incremental impacts is quantified to the extent consistent with the state-of-knowledge. Many of the industrial processes involve proprietary or patent information; thus, in many cases, the associated environmental impacts could not be determined. In addition, most candidate battery systems are still in the development phase. Thus, the manufacturing and recycling processes for most battery systems either have not been developed by industry, or the information is not available. For these cases, the associated environmental impact evaluations could only be qualitative, and the need for further investigations is indicated. 26 figures, 27 tables. (RWR)

  18. Energy efficient non-road hybrid electric vehicles advanced modeling and control

    CERN Document Server

    Unger, Johannes; Jakubek, Stefan

    2016-01-01

    Analyzing the main problems in the real-time control of parallel hybrid electric powertrains in non-road applications, which work in continuous high dynamic operation, this book gives practical insight in to how to maximize the energetic efficiency and drivability of such powertrains. The book addresses an energy management control structure, which considers all constraints of the physical powertrain and uses novel methodologies for the prediction of the future load requirements to optimize the controller output in terms of an entire work cycle of a non-road vehicle. The load prediction includes a methodology for short term loads as well as for an entire load cycle by means of a cycle detection. A maximization of the energetic efficiency can so be achieved, which is simultaneously a reduction in fuel consumption and exhaust emissions. Readers will gain a deep insight into the necessary topics to be considered in designing an energy and battery management system for non-road vehicles and that only a combinatio...

  19. A Single-Degree-of-Freedom Energy Optimization Strategy for Power-Split Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Chaoying Xia

    2017-07-01

    Full Text Available This paper presents a single-degree-of-freedom energy optimization strategy to solve the energy management problem existing in power-split hybrid electric vehicles (HEVs. The proposed strategy is based on a quadratic performance index, which is innovatively designed to simultaneously restrict the fluctuation of battery state of charge (SOC and reduce fuel consumption. An extended quadratic optimal control problem is formulated by approximating the fuel consumption rate as a quadratic polynomial of engine power. The approximated optimal control law is obtained by utilizing the solution properties of the Riccati equation and adjoint equation. It is easy to implement in real-time and the engineering significance is explained in details. In order to validate the effectiveness of the proposed strategy, the forward-facing vehicle simulation model is established based on the ADVISOR software (Version 2002, National Renewable Energy Laboratory, Golden, CO, USA. The simulation results show that there is only a little fuel consumption difference between the proposed strategy and the Pontryagin’s minimum principle (PMP-based global optimal strategy, and the proposed strategy also exhibits good adaptability under different initial battery SOC, cargo mass and road slope conditions.

  20. An Improved Energy Management Strategy for Hybrid Energy Storage System in Light Rail Vehicles

    Directory of Open Access Journals (Sweden)

    Long Cheng

    2018-02-01

    Full Text Available A single-objective optimization energy management strategy (EMS for an onboard hybrid energy storage system (HESS for light rail (LR vehicles is proposed. The HESS uses batteries and supercapacitors (SCs. The main objective of the proposed optimization is to reduce the battery and SC losses while maintaining the SC state of charge (SOC within specific limits based on the distance between consecutive LR stations. To do this, a series of optimized SOC limits is used to prevent the SC from becoming exhausted prematurely instead of the standard SC SOC penalty term in the cost function. Meanwhile, a rule-based EMS (RB-EMS is used to give the SCs charging priority over the batteries when the vehicle is braking. Moreover, a simplified method for the optimization is proposed to reduce the computational burden. Simulation and experimental results for the proposed EMS and a standard SC SOC penalty-based cost function optimization are provided to evaluate losses. As a result, it is shown that the proposed EMS, compared with standard SC SOC penalty-based cost function optimization, decreases losses and prevents the SOC from reach the discharging limits.