WorldWideScience

Sample records for cell hesc line

  1. Effect of Chromatin Structure on the Extent and Distribution of DNA Double Strand Breaks Produced by Ionizing Radiation; Comparative Study of hESC and Differentiated Cells Lines.

    Science.gov (United States)

    Venkatesh, Priyanka; Panyutin, Irina V; Remeeva, Evgenia; Neumann, Ronald D; Panyutin, Igor G

    2016-01-02

    Chromatin structure affects the extent of DNA damage and repair. Thus, it has been shown that heterochromatin is more protective against DNA double strand breaks (DSB) formation by ionizing radiation (IR); and that DNA DSB repair may proceed differently in hetero- and euchromatin regions. Human embryonic stem cells (hESC) have a more open chromatin structure than differentiated cells. Here, we study the effect of chromatin structure in hESC on initial DSB formation and subsequent DSB repair. DSB were scored by comet assay; and DSB repair was assessed by repair foci formation via 53BP1 antibody staining. We found that in hESC, heterochromatin is confined to distinct regions, while in differentiated cells it is distributed more evenly within the nuclei. The same dose of ionizing radiation produced considerably more DSB in hESC than in differentiated derivatives, normal human fibroblasts; and one cancer cell line. At the same time, the number of DNA repair foci were not statistically different among these cells. We showed that in hESC, DNA repair foci localized almost exclusively outside the heterochromatin regions. We also noticed that exposure to ionizing radiation resulted in an increase in heterochromatin marker H3K9me3 in cancer HT1080 cells, and to a lesser extent in IMR90 normal fibroblasts, but not in hESCs. These results demonstrate the importance of chromatin conformation for DNA protection and DNA damage repair; and indicate the difference of these processes in hESC.

  2. The hESC line Envy expresses high levels of GFP in all differentiated progeny.

    Science.gov (United States)

    Costa, Magdaline; Dottori, Mirella; Ng, Elizabeth; Hawes, Susan M; Sourris, Koula; Jamshidi, Pegah; Pera, Martin F; Elefanty, Andrew G; Stanley, Edouard G

    2005-04-01

    Human embryonic stem cells (hESCs) have been advanced as a potential source of cells for use in cell replacement therapies. The ability to identify hESCs and their differentiated progeny readily in transplantation experiments will facilitate the analysis of hESC potential and function in vivo. We have generated a hESC line designated 'Envy', in which robust levels of green fluorescent protein (GFP) are expressed in stem cells and all differentiated progeny.

  3. Human ESCs predisposition to karyotypic instability: Is a matter of culture adaptation or differential vulnerability among hESC lines due to inherent properties?

    Directory of Open Access Journals (Sweden)

    Bueno Clara

    2008-10-01

    Full Text Available Abstract Background The use of human embryonic stem cells (hESCs in research is increasing and hESCs hold the promise for many biological, clinical and toxicological studies. Human ESCs are expected to be chromosomally stable since karyotypic changes represent a pitfall for potential future applications. Recently, several studies have analysed the genomic stability of several hESC lines maintained after prolonged in vitro culture but controversial data has been reported. Here, we prompted to compare the chromosomal stability of three hESC lines maintained in the same laboratory using identical culture conditions and passaging methods. Results Molecular cytogenetic analyses performed in three different hESC lines maintained in parallel in identical culture conditions revealed significant differences among them in regard to their chromosomal integrity. In feeders, the HS181, SHEF-1 and SHEF-3 hESC lines were chromosomally stable up to 185 passages using either mechanical or enzymatic dissection methods. Despite the three hESC lines were maintained under identical conditions, each hESC line behaved differently upon being transferred to a feeder-free culture system. The two younger hESC lines, HS181 (71 passages and SHEF-3 (51 passages became chromosomally unstable shortly after being cultured in feeder-free conditions. The HS181 line gained a chromosome 12 by passage 17 and a marker by passage 21, characterized as a gain of chromosome 20 by SKY. Importantly, the mosaicism for trisomy 12 gradually increased up to 89% by passage 30, suggesting that this karyotypic abnormality provides a selective advantage. Similarly, the SHEF-3 line also acquired a trisomy of chromosome 14 as early as passage 10. However, this karyotypic aberration did not confer selective advantage to the genetically abnormal cells within the bulk culture and the level of mosaicism for the trisomy 14 remained overtime between 15%–36%. Strikingly, however, a much older hESC line

  4. hESC expansion and stemness are independent of connexin forty-three-mediated intercellular communication between hESCs and hASC feeder cells.

    Directory of Open Access Journals (Sweden)

    Jin-Su Kim

    Full Text Available BACKGROUND: Human embryonic stem cells (hESCs are a promising and powerful source of cells for applications in regenerative medicine, tissue engineering, cell-based therapies, and drug discovery. Many researchers have employed conventional culture techniques using feeder cells to expand hESCs in significant numbers, although feeder-free culture techniques have recently been developed. In regard to stem cell expansion, gap junctional intercellular communication (GJIC is thought to play an important role in hESC survival and differentiation. Indeed, it has been reported that hESC-hESC communication through connexin 43 (Cx43, one of the major gap junctional proteins is crucial for the maintenance of hESC stemness during expansion. However, the role of GJIC between hESCs and feeder cells is unclear and has not yet been reported. METHODOLOGY/PRINCIPAL FINDINGS: This study therefore examined whether a direct Cx43-mediated interaction between hESCs and human adipose-derived stem cells (hASCs influences the maintenance of hESC stemness. Over 10 passages, hESCs cultured on a layer of Cx43-downregulated hASC feeder cells showed normal morphology, proliferation (colony growth, and stemness, as assessed by alkaline phosphatase (AP, OCT4 (POU5F1-Human gene Nomenclature Database, SOX2, and NANOG expression. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that Cx43-mediated GJIC between hESCs and hASC feeder cells is not an important factor for the conservation of hESC stemness and expansion.

  5. Population based model of human embryonic stem cell (hESC differentiation during endoderm induction.

    Directory of Open Access Journals (Sweden)

    Keith Task

    Full Text Available The mechanisms by which human embryonic stem cells (hESC differentiate to endodermal lineage have not been extensively studied. Mathematical models can aid in the identification of mechanistic information. In this work we use a population-based modeling approach to understand the mechanism of endoderm induction in hESC, performed experimentally with exposure to Activin A and Activin A supplemented with growth factors (basic fibroblast growth factor (FGF2 and bone morphogenetic protein 4 (BMP4. The differentiating cell population is analyzed daily for cellular growth, cell death, and expression of the endoderm proteins Sox17 and CXCR4. The stochastic model starts with a population of undifferentiated cells, wherefrom it evolves in time by assigning each cell a propensity to proliferate, die and differentiate using certain user defined rules. Twelve alternate mechanisms which might describe the observed dynamics were simulated, and an ensemble parameter estimation was performed on each mechanism. A comparison of the quality of agreement of experimental data with simulations for several competing mechanisms led to the identification of one which adequately describes the observed dynamics under both induction conditions. The results indicate that hESC commitment to endoderm occurs through an intermediate mesendoderm germ layer which further differentiates into mesoderm and endoderm, and that during induction proliferation of the endoderm germ layer is promoted. Furthermore, our model suggests that CXCR4 is expressed in mesendoderm and endoderm, but is not expressed in mesoderm. Comparison between the two induction conditions indicates that supplementing FGF2 and BMP4 to Activin A enhances the kinetics of differentiation than Activin A alone. This mechanistic information can aid in the derivation of functional, mature cells from their progenitors. While applied to initial endoderm commitment of hESC, the model is general enough to be applicable

  6. Population based model of human embryonic stem cell (hESC) differentiation during endoderm induction.

    Science.gov (United States)

    Task, Keith; Jaramillo, Maria; Banerjee, Ipsita

    2012-01-01

    The mechanisms by which human embryonic stem cells (hESC) differentiate to endodermal lineage have not been extensively studied. Mathematical models can aid in the identification of mechanistic information. In this work we use a population-based modeling approach to understand the mechanism of endoderm induction in hESC, performed experimentally with exposure to Activin A and Activin A supplemented with growth factors (basic fibroblast growth factor (FGF2) and bone morphogenetic protein 4 (BMP4)). The differentiating cell population is analyzed daily for cellular growth, cell death, and expression of the endoderm proteins Sox17 and CXCR4. The stochastic model starts with a population of undifferentiated cells, wherefrom it evolves in time by assigning each cell a propensity to proliferate, die and differentiate using certain user defined rules. Twelve alternate mechanisms which might describe the observed dynamics were simulated, and an ensemble parameter estimation was performed on each mechanism. A comparison of the quality of agreement of experimental data with simulations for several competing mechanisms led to the identification of one which adequately describes the observed dynamics under both induction conditions. The results indicate that hESC commitment to endoderm occurs through an intermediate mesendoderm germ layer which further differentiates into mesoderm and endoderm, and that during induction proliferation of the endoderm germ layer is promoted. Furthermore, our model suggests that CXCR4 is expressed in mesendoderm and endoderm, but is not expressed in mesoderm. Comparison between the two induction conditions indicates that supplementing FGF2 and BMP4 to Activin A enhances the kinetics of differentiation than Activin A alone. This mechanistic information can aid in the derivation of functional, mature cells from their progenitors. While applied to initial endoderm commitment of hESC, the model is general enough to be applicable either to a system of

  7. Donating embryos for human embryonic stem cell (hESC) research: a committee opinion.

    Science.gov (United States)

    2013-10-01

    hESC research is an ethically acceptable use of human embryos that are in excess of those needed to meet the fertility goals of patients. The ethical basis for this view and issues to be considered during the informed consent process for the donation of embryos are developed in this document. This report replaces the Committee's 2009 report, "Donating spare embryos for stem cell research" (Fertil Steril 2009;91:667-70).

  8. Derivation and characterisation of hESC lines from supernumerary embryos, experience from Odense, Denmark

    DEFF Research Database (Denmark)

    Harkness, Linda; Rasmussen, Iben Anne; Erb, Karin;

    2010-01-01

    The derivation and characterisation of human embryonic stem cells provides a source of pluripotent stem cells with potential for clinical applications. Utilising locally sourced embryos from two IVF clinics, we derived and characterised five new cell lines for use in a non-clinical setting....... Analysis of clinical data showed that the majority of embryos (94.5%) failed to reach the blastocyst stage of development and of all embryos, regardless of developmental status, 248 embryos were needed to create one stem cell line. From the number of embryos (69) which developed to the blastocyst stage 8...

  9. Label-free separation of human embryonic stem cells (hESCs) and their cardiac derivatives using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J W; Lieu, D K; Huser, T R; Li, R A

    2008-09-08

    Self-renewable, pluripotent human embryonic stem cells (hESCs) can be differentiated into cardiomyocytes (CMs), providing an unlimited source of cells for transplantation therapies. However, unlike certain cell lineages such as hematopoietic cells, CMs lack specific surface markers for convenient identification, physical separation, and enrichment. Identification by immunostaining of cardiac-specific proteins such as troponin requires permeabilization, which renders the cells unviable and non-recoverable. Ectopic expression of a reporter protein under the transcriptional control of a heart-specific promoter for identifying hESC-derived CMs (hESC-CMs) is useful for research but complicates potential clinical applications. The practical detection and removal of undifferentiated hESCs in a graft, which may lead to tumors, is also critical. Here, we demonstrate a non-destructive, label-free optical method based on Raman scattering to interrogate the intrinsic biochemical signatures of individual hESCs and their cardiac derivatives, allowing cells to be identified and classified. By combining the Raman spectroscopic data with multivariate statistical analysis, our results indicate that hESCs, human fetal left ventricular CMs, and hESC-CMs can be identified by their intrinsic biochemical characteristics with an accuracy of 96%, 98% and 66%, respectively. The present study lays the groundwork for developing a systematic and automated method for the non-invasive and label-free sorting of (i) high-quality hESCs for expansion, and (ii) ex vivo CMs (derived from embryonic or adult stem cells) for cell-based heart therapies.

  10. Feeder-free maintenance of hESCs in mesenchymal stem cell-conditioned media: distinct requirements for TGF-β and IGF-Ⅱ

    Institute of Scientific and Technical Information of China (English)

    Rosa Montes; Gertrudis Ligero; Laura Sanchez; Purificación Catalina; Teresa de la Cueva; Ana Nieto; Gustavo J Melen; Ruth Rubio; Javier García-Castro; Clara Bueno; Pablo Menendez

    2009-01-01

    A paracrine regulation was recently proposed in human embryonic stem cells (hESCs) grown in mouse embryonic fibroblast (MEF)-conditioned media (MEF-CM), where hESCs spontaneously differentiate into autologous fibroblast-like cells to maintain culture homeostasis by producing TGF-β and insulin-like growth factor-Ⅱ (IGF-Ⅱ) in response to basic fibroblast growth factor (bFGF). Although the importance of TGF-β family members in the maintenance of pluripotency of hESCs is widely established, very little is known about the role of IGF-Ⅱ. In order to ease hESC cul-ture conditions and to reduce xenogenic components, we sought (ⅰ) to determine whether hESCs can be maintained stable and pluripotent using CM from human foreskin fibroblasts (HFFs) and human mesenchymal stem cells (hM-SCs) rather than MEF-CM, and (ⅱ) to analyze whether the cooperation of bFGF with TGF-β and IGF-Ⅱ to maintain hESCs in MEF-CM may be extrapolated to hESCs maintained in ailogeneic mesenchymal stem cell (MSC)-CM and HFF-CM. We found that MSCs and HFFs express all FGF receptors (FGFRI-4) and specifically produce TGF-β in response to bFGF. However, HFFs but not MSCs secrete IGF-Ⅱ. Despite the absence of IGF-Ⅱ in MSC-CM, hESC pluripotency and culture homeostasis were successfully maintained in MSC-CM for over 37 passages. Human ESCs derived on MSCs and hESCs maintained in MSC-CM retained hESC morphology, euploidy, expression of surface markers and transcription factors linked to pluripotency and displayed in vitro and in vivo multilineage developmen-tal potential, suggesting that IGF-Ⅱ may be dispensable for hESC pluripotency. In fact, IGF-Ⅱ blocking had no effect on the homeostasis of hESC cultures maintained either on HFF-CM or on MSC-CM. These data indicate that hESCs are successfully maintained feeder-free with IGF-Ⅱ-lacking MSC-CM, and that the previously proposed paracrine mechanism by which bFGF cooperates with TGF-β and IGF-Ⅱ in the maintenance of hESCs in MEF

  11. Power-laws and the use of pluripotent stem cell lines

    NARCIS (Netherlands)

    Schuldt, Bernhard M; Guhr, Anke; Lenz, Michael; Kobold, Sabine; MacArthur, Ben D; Schuppert, Andreas; Löser, Peter; Müller, Franz-Josef

    2013-01-01

    It is widely accepted that the (now reversed) Bush administration's decision to restrict federal funding for human embryonic stem cell (hESC) research to a few "eligible" hESC lines is responsible for the sustained preferential use of a small subset of hESC lines (principally the H1 and H9 lines) in

  12. MicroRNA-302/367 Cluster Governs hESC Self-Renewal by Dually Regulating Cell Cycle and Apoptosis Pathways

    Directory of Open Access Journals (Sweden)

    Zhonghui Zhang

    2015-04-01

    Full Text Available miR-302/367 is the most abundant miRNA cluster in human embryonic stem cells (hESCs and can promote somatic cell reprogramming. However, its role in hESCs remains poorly understood. Here, we studied functional roles of the endogenous miR-302/367 cluster in hESCs by employing specific TALE-based transcriptional repressors. We revealed that miR-302/367 cluster dually regulates hESC cell cycle and apoptosis in dose-dependent manner. Gene profiling and functional studies identified key targets of the miR-302/367 cluster in regulating hESC self-renewal and apoptosis. We demonstrate that in addition to its role in cell cycle regulation, miR-302/367 cluster conquers apoptosis by downregulating BNIP3L/Nix (a BH3-only proapoptotic factor and upregulating BCL-xL expression. Furthermore, we show that butyrate, a natural compound, upregulates miR-302/367 cluster expression and alleviates hESCs from apoptosis induced by knockdown of miR-302/367 cluster. In summary, our findings provide new insights in molecular mechanisms of how miR-302/367 cluster regulates hESCs.

  13. A defined, feeder-free, serum-free system to generate in vitro hematopoietic progenitors and differentiated blood cells from hESCs and hiPSCs.

    Directory of Open Access Journals (Sweden)

    Giorgia Salvagiotto

    Full Text Available Human ESC and iPSC are an attractive source of cells of high quantity and purity to be used to elucidate early human development processes, for drug discovery, and in clinical cell therapy applications. To efficiently differentiate pluripotent cells into a pure population of hematopoietic progenitors we have developed a new 2-dimensional, defined and highly efficient protocol that avoids the use of feeder cells, serum or embryoid body formation. Here we showed that a single matrix protein in combination with growth factors and a hypoxic environment is sufficient to generate from pluripotent cells hematopoietic progenitors capable of differentiating further in mature cell types of different lineages of the blood system. We tested the differentiation method using hESCs and 9 iPSC lines generated from different tissues. These data indicate the robustness of the protocol providing a valuable tool for the generation of clinical-grade hematopoietic cells from pluripotent cells.

  14. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    Science.gov (United States)

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-02-03

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts.

  15. The use of human amniotic fluid mesenchymal stem cells as the feeder layer to establish human embryonic stem cell lines.

    Science.gov (United States)

    Soong, Yung-Kwei; Huang, Shang-Yu; Yeh, Chiu-Hsiang; Wang, Tzu-Hao; Chang, Kuo-Hsuan; Cheng, Po-Jen; Shaw, S W Steven

    2015-12-01

    Human embryonic stem cells (hESCs) are pluripotent cells that have the potential to differentiate into the three germ layers and possibly all tissues of the human body. To fulfil the clinical potentials for cell-based therapy, banks of hESC lines that express different combinations of the major histocompatibility genes should be established, preferably without exposing such cells to animal cells and proteins. In this study, we tested human amniotic fluid mesenchymal stem cells (AFMSCs) as feeder cells to support the growth of hESCs. Our results indicated that mitomycin-treated AFMSCs were able to support the newly established hESC lines CGLK-1 and CGLK-2. The hESC colonies cultured on AFMSCs expressed alkaline phosphatase (ALK-P), SSEA-4, TRA-1-60, TRA-1-81, Oct-4, Nanog and Sox-2, which are markers for undifferentiated hESCs. Chromosomal analyses of both hESC lines, CGLK-1 and CGLK-2, which were cultured on AFMSC feeders for 22 and 14 passages, respectively, were confirmed to be normal karyotypes (46, XX). The ability of AFMSCs as feeder cells to maintain the undifferentiated growth and pluripotency of hESCs was confirmed by in vivo formation of teratomas derived on AFMSC hESCs in severe combined immune-compromised mice. The use of AFMSCs for feeder cells to culture hESCs has several advantages, in that AFMSCs are not tumourigenic and can be expanded extensively with a short doubling time.

  16. Gene expression profile of neuronal progenitor cells derived from hESCs: activation of chromosome 11p15.5 and comparison to human dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    William J Freed

    Full Text Available BACKGROUND: We initiated differentiation of human embryonic stem cells (hESCs into dopamine neurons, obtained a purified population of neuronal precursor cells by cell sorting, and determined patterns of gene transcription. METHODOLOGY: Dopaminergic differentiation of hESCs was initiated by culturing hESCs with a feeder layer of PA6 cells. Differentiating cells were then sorted to obtain a pure population of PSA-NCAM-expressing neuronal precursors, which were then analyzed for gene expression using Massive Parallel Signature Sequencing (MPSS. Individual genes as well as regions of the genome which were activated were determined. PRINCIPAL FINDINGS: A number of genes known to be involved in the specification of dopaminergic neurons, including MSX1, CDKN1C, Pitx1 and Pitx2, as well as several novel genes not previously associated with dopaminergic differentiation, were expressed. Notably, we found that a specific region of the genome located on chromosome 11p15.5 was highly activated. This region contains several genes which have previously been associated with the function of dopaminergic neurons, including the gene for tyrosine hydroxylase (TH, the rate-limiting enzyme in catecholamine biosynthesis, IGF2, and CDKN1C, which cooperates with Nurr1 in directing the differentiation of dopaminergic neurons. Other genes in this region not previously recognized as being involved in the functions of dopaminergic neurons were also activated, including H19, TSSC4, and HBG2. IGF2 and CDKN1C were also found to be highly expressed in mature human TH-positive dopamine neurons isolated from human brain samples by laser capture. CONCLUSIONS: The present data suggest that the H19-IGF2 imprinting region on chromosome 11p15.5 is involved in the process through which undifferentiated cells are specified to become neuronal precursors and/or dopaminergic neurons.

  17. No relationship between embryo morphology and successful derivation of human embryonic stem cell lines.

    Directory of Open Access Journals (Sweden)

    Susanne Ström

    Full Text Available BACKGROUND: The large number (30 of permanent human embryonic stem cell (hESC lines and additional 29 which did not continue growing, in our laboratory at Karolinska Institutet have given us a possibility to analyse the relationship between embryo morphology and the success of derivation of hESC lines. The derivation method has been improved during the period 2002-2009, towards fewer xeno-components. Embryo quality is important as regards the likelihood of pregnancy, but there is little information regarding likelihood of stem cell derivation. METHODS: We evaluated the relationship of pronuclear zygote stage, the score based on embryo morphology and developmental rate at cleavage state, and the morphology of the blastocyst at the time of donation to stem cell research, to see how they correlated to successful establishment of new hESC lines. RESULTS: Derivation of hESC lines succeeded from poor quality and good quality embryos in the same extent. In several blastocysts, no real inner cell mass (ICM was seen, but permanent well growing hESC lines could be established. One tripronuclear (3PN zygote, which developed to blastocyst stage, gave origin to a karyotypically normal hESC line. CONCLUSION: Even very poor quality embryos with few cells in the ICM can give origin to hESC lines.

  18. 人体胚胎肝细胞蛋白质组学的研究进展%Research Progress of human embryonic stem cells hESC Proteomics

    Institute of Scientific and Technical Information of China (English)

    眭维国; 谭秋培; 薛雯; 陈洁晶

    2012-01-01

    人体胚胎干细胞是一类具有自我更新能力的多潜能细胞,在一定条件下,可分化成超过200种人体细胞类型,它在发育生物学和再生医学中具有重要的研究价值.其多潜能性使得一系列疾病,包括癌症、阿尔茨海默病和帕金森病的治疗看到了希望.而胚胎干细胞蛋白质组学的研究对揭示胚胎干细胞增殖和分化的机制以及其多潜能的维持具有重大意义.在此,总结在过去几年中已报道的部分关于人体胚胎干细胞蛋白质组学研究取得的进步及其对人体胚胎干细胞研究的促进作用.%Human embryonic stem cell (hESC) is a group of pluripotent cells with self-renewal capacity, which can differentiate into more than 200 kinds of human cell types under certain conditions, and has important research value in developmental biology and regenerative medicine. Pluripotency makes cure of a range of diseases such as cancer, Alzheimer disease and Parkinson disease possible. Embryonic stem cell proteomics research plays an important role in revealing embryonic stem cell proliferation and differentiation mechanisms as well as the maintenance of the pluripotent. Here is to make a summary of some research achievements of human embryonic stem cells proteomics and their role in promoting research in hESC reported in the past few years.

  19. Optimized protocol for derivation of human embryonic stem cell lines.

    Science.gov (United States)

    Camarasa, María Vicenta; Galvez, Víctor Miguel; Brison, Daniel Roy; Bachiller, Daniel

    2012-09-01

    For the past 12 years, the biology and applications of human embryonic stem cells (hESCs) have received great attention from the scientific community. Derivatives of the first hESC line obtained by J. Thomson's group (Science 282(5391):1145-1147, 1998) have been used in clinical trials in patients with spinal cord injury, and other hESC lines have now been used to generate cells for use in treating blindness (Lancet 379(9817):713-720, 2012). In addition to the classical protocol based on mouse or human feeder layers using open culture methods (In Vitro Cellular & Developmental Biology - Animal 46(3-4):386-394, 2010; Stem Cells 23(9):1221-1227, 2005; Nature Biotechnology 24(2):185-187, 2006; Human Reproduction 21(2):503-511, 2006; Human Reproduction 20(8):2201-2206, 2005; Fertility and Sterility 83(5):1517-1529, 2005), novel hESC lines have been derived xeno-free (without using animal derived reagents) (PLoS One 5 (4):1024-1026, 2010), feeder-free (without supporting cell monolayers) (Lancet 365(9471):1601-1603, 2005), in microdrops under oil (In Vitro Cellular & Developmental Biology - Animal 46(3-4):236-41, 2010) and in suspension with ROCK inhibitor (Nature Biotechnology 28(4):361-4, 2010). Regardless of the culture system, successful hESC derivation usually requires optimization of embryo culture, the careful and timely isolation of its inner cell mass (ICM), and precise culture conditions up to the establishment of pluripotent cell growth during hESC line derivation. Herein we address the crucial steps of the hESC line derivation protocol, and provide tips to apply quality control to each step of the procedure.

  20. Derivation and characterization of human embryonic stem cell lines from the Chinese population

    Institute of Scientific and Technical Information of China (English)

    Zhao Wu; Huimin Dai; Lei Qian; Qing Tian; Lei Xiao; Xiaojun Tan; Hui Li; Lingjun Rao; Lixiazi He; Lei Bao; Jing Liao; Chun Cui; Zhenyu Zuo; Qiao Li

    2011-01-01

    Human embryonic stem cells (hESCs) can self-renew indefinitely and differentiate into all cell types in the human body. Therefore, they are valuable in regenerative medicine, human developmental biology and drug discovery. A number of hESC lines have been derived from the Chinese population,but limited of them are available for research purposes. Here we report the derivation and characterization of two hESC lines derived from human blastocysts of Chinese origin. These hESCs express alkaline phosphatase and hESC-specific markers, including Oct4, Nanog, SSEA-3, SSEA-4,TRA-1-60 and TRA-1-81. They also have high levels of telomerase activity and normal karyotypes. These cells can form embryoid body in vitro and can be differentiated into all three germ layers in vivo by teratoma formation. The newly established hESCs will be distributed for research purposes.The availability of hESC lines from the Chinese population will facilitate studies on the differences in hESCs from different ethnic groups.

  1. hESC Differentiation toward an Autonomic Neuronal Cell Fate Depends on Distinct Cues from the Co-Patterning Vasculature

    Directory of Open Access Journals (Sweden)

    Lisette M. Acevedo

    2015-06-01

    Full Text Available To gain insight into the cellular and molecular cues that promote neurovascular co-patterning at the earliest stages of human embryogenesis, we developed a human embryonic stem cell model to mimic the developing epiblast. Contact of ectoderm-derived neural cells with mesoderm-derived vasculature is initiated via the neural crest (NC, not the neural tube (NT. Neurovascular co-patterning then ensues with specification of NC toward an autonomic fate requiring vascular endothelial cell (EC-secreted nitric oxide (NO and direct contact with vascular smooth muscle cells (VSMCs via T-cadherin-mediated homotypic interactions. Once a neurovascular template has been established, NT-derived central neurons then align themselves with the vasculature. Our findings reveal that, in early human development, the autonomic nervous system forms in response to distinct molecular cues from VSMCs and ECs, providing a model for how other developing lineages might coordinate their co-patterning.

  2. Immunoflourescence and mRNA analysis of human embryonic stem cells (hESCs) grown under feeder-free conditions

    DEFF Research Database (Denmark)

    Awan, Aashir; Oliveri, Roberto S; Jensen, Pernille L

    2010-01-01

    onto 16-well glass chambers, and continuing with the general IF and qPCR steps will be provided. The techniques will be illustrated with new results on cellular localization of transcriptional factors and components of the Hedgehog, Wnt, and PDGF signaling pathways to primary cilia in stem cell...

  3. Publishing SNP genotypes of human embryonic stem cell lines: policy statement of the International Stem Cell Forum Ethics Working Party.

    Science.gov (United States)

    Knoppers, Bartha M; Isasi, Rosario; Benvenisty, Nissim; Kim, Ock-Joo; Lomax, Geoffrey; Morris, Clive; Murray, Thomas H; Lee, Eng Hin; Perry, Margery; Richardson, Genevra; Sipp, Douglas; Tanner, Klaus; Wahlström, Jan; de Wert, Guido; Zeng, Fanyi

    2011-09-01

    Novel methods and associated tools permitting individual identification in publicly accessible SNP databases have become a debatable issue. There is growing concern that current technical and ethical safeguards to protect the identities of donors could be insufficient. In the context of human embryonic stem cell research, there are no studies focusing on the probability that an hESC line donor could be identified by analyzing published SNP profiles and associated genotypic and phenotypic information. We present the International Stem Cell Forum (ISCF) Ethics Working Party's Policy Statement on "Publishing SNP Genotypes of Human Embryonic Stem Cell Lines (hESC)". The Statement prospectively addresses issues surrounding the publication of genotypic data and associated annotations of hESC lines in open access databases. It proposes a balanced approach between the goals of open science and data sharing with the respect for fundamental bioethical principles (autonomy, privacy, beneficence, justice and research merit and integrity).

  4. A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure

    Institute of Scientific and Technical Information of China (English)

    Ge Lin; Qi OuYang; Xiaoying Zhou; Yifan Gu; Ding Yuan; Wen Li; Gang Liu; Tiancheng Liu; Guanexiu Lu

    2007-01-01

    Homozygous human embryonic stem cells (hESCs) are thought to be better cell sources for hESC banking because their human leukocyte antigen (HLA) haplotype would strongly increase the degree of matching for certain populations with relatively smaller cohorts of cell lines. Homozygous hESCs can be generated from parthenogenetic embryos, but only heterozygous hESCs have been established using the current strategy to artificially activate the oocyte without second polar body extrusion. Here we report the first successful derivation of a human homozygous ESC line (chHES-32) from a one-pronuclear oocyte following routine in vitro fertilization treatment. cAHES-32 cells express common markers and genes with normal hESCs. They have been propagated in an undifferentiated state for more than a year (>P50) and have maintained a stable karyotype of 46, XX. When differentiated in vivo and in vitro, c/zHES-32 cells can form derivatives from all three embryonic germ layers. The almost undetectable expression of five paternally expressed imprinted genes and their HLA genotype identical to the oocyte donor indicated their parthenogenetic origin. Using genome-wide single-nucleotide polymorphism analysis and DNA fingerprinting, the homozygosity of c/zHES-32 cells was further confirmed. The results indicated that 'unwanted' one-pronuclear oocytes might be a potential source for human homozygous and parthenogenetic ESCs, and suggested an alternative strategy for obtaining homozygous hESC lines from parthenogenetic haploid oocytes.

  5. Adapting collagen/CNT matrix in directing hESC differentiation

    OpenAIRE

    Sridharan, Indumathi; Kim, Taeyoung; Wang, Rong

    2009-01-01

    The lineage selection in human embryonic stem cell (hESC) differentiation relies on both the growth factors and small molecules in the media and the physical characteristics of the micro-environment. In this work, we utilized various materials, including the collagen-carbon nanotube (collagen/CNT) composite material, as cell culture matrices to examine the impact of matrix properties on hESC differentiation. Our AFM analysis indicated that the collagen/CNT formed rigid fibril bundles, which p...

  6. Derivation of Two New Human Embryonic Stem Cell Lines from Nonviable Human Embryos

    Directory of Open Access Journals (Sweden)

    Svetlana Gavrilov

    2011-01-01

    Full Text Available We report the derivation and characterization of two new human embryonic stem cells (hESC lines (CU1 and CU2 from embryos with an irreversible loss of integrated organismic function. In addition, we analyzed retrospective data of morphological progression from embryonic day (ED 5 to ED6 for 2480 embryos not suitable for clinical use to assess grading criteria indicative of loss of viability on ED5. Our analysis indicated that a large proportion of in vitro fertilization (IVF embryos not suitable for clinical use could be used for hESC derivation. Based on these combined findings, we propose that criteria commonly used in IVF clinics to determine optimal embryos for uterine transfer can be employed to predict the potential for hESC derivation from poor quality embryos without the destruction of vital human embryos.

  7. Genomic Analysis of hESC Pedigrees Identifies De Novo Mutations and Enables Determination of the Timing and Origin of Mutational Events

    Directory of Open Access Journals (Sweden)

    Dalit Ben-Yosef

    2013-09-01

    Full Text Available Given the association between mutational load and cancer, the observation that genetic aberrations are frequently found in human pluripotent stem cells (hPSCs is of concern. Prior studies in human induced pluripotent stem cells (hiPSCs have shown that deletions and regions of loss of heterozygosity (LOH tend to arise during reprogramming and early culture, whereas duplications more frequently occur during long-term culture. For the corresponding experiments in human embryonic stem cells (hESCs, we studied two sets of hESC lines: one including the corresponding parental DNA and the other generated from single blastomeres from four sibling embryos. Here, we show that genetic aberrations observed in hESCs can originate during preimplantation embryo development and/or early derivation. These early aberrations are mainly deletions and LOH, whereas aberrations arising during long-term culture of hESCs are more frequently duplications. Our results highlight the importance of close monitoring of genomic integrity and the development of improved methods for derivation and culture of hPSCs.

  8. Derivation of a Homozygous Human Androgenetic Embryonic Stem Cell Line.

    Science.gov (United States)

    Ding, Chenhui; Huang, Sunxing; Qi, Quan; Fu, Rui; Zhu, Wanwan; Cai, Bing; Hong, Pingping; Liu, Zhengxin; Gu, Tiantian; Zeng, Yanhong; Wang, Jing; Xu, Yanwen; Zhao, Xiaoyang; Zhou, Qi; Zhou, Canquan

    2015-10-01

    Human embryonic stem cells (hESCs) have long been considered as a promising source for cell replacement therapy. However, one major obstacle for the use of these cells is immune compatibility. Histocompatible human parthenogenetic ESCs have been reported as a new method for generating human leukocyte antigen (HLA)-matched hESCs. To further investigate the possibility of obtaining histocompatible stem cells from uniparental embryos, we tried to produce androgenetic haploid human embryos by injecting a single spermatozoon into enucleated human oocyte, and establish human androgenetic embryonic stem (hAGES) cell lines from androgenetic embryos. In the present study, a diploid hAGES cell line has been established, which exhibits typical features of human ESCs, including the expression of pluripotency markers, having differentiation potential in vitro and in vivo, and stable propagation in an undifferentiated state (>P40). Bisulfite sequencing of the H19, Snrpn, Meg3, and Kv imprinting control regions suggested that hAGES cells maintained to a certain extent a sperm methylation pattern. Genome-wide single nucleotide polymorphism, short tandem repeat, and HLA analyses revealed that the hAGES cell genome was highly homozygous. These results suggest that hAGES cells from spermatozoon could serve as a useful tool for studying the mechanisms underlying genomic imprinting in humans. It might also be used as a potential resource for cell replacement therapy as parthenogenetic stem cells.

  9. Immunofluorescence Microscopy and mRNA Analysis of Human Embryonic Stem Cells (hESCs) Including Primary Cilia Associated Signaling Pathways

    DEFF Research Database (Denmark)

    Vestergaard, Maj Linea; Awan, Aashir; Warzecha, Caroline Becker

    2016-01-01

    onto 16-well glass chambers, and continuing with the general IFM and qPCR anlysis. The techniques are illustrated with results on cellular localization of transcriptional factors and components of the Hedgehog, Wnt, PDGF, and TGFβ signaling pathways to primary cilia in stem cell maintenance...

  10. Derivation of HVR1, HVR2 and HVR3 human embryonic stem cell lines from IVF embryos after preimplantation genetic diagnosis (PGD for monogenic disorder

    Directory of Open Access Journals (Sweden)

    Abdelkrim Hmadcha

    2016-05-01

    Full Text Available From 106 human blastocyts donate for research after in vitro fertilization (IVF and preimplantation genetic diagnosis (PGD for monogenetic disorder, 3 human embryonic stem cells (hESCs HVR1, HVR2 and HVR3 were successfully derived. HVR1 was assumed to be genetically normal, HVR2 carrying Becker muscular dystrophy and HVR3 Hemophilia B. Despite the translocation t(9;15(q34.3;q14 detected in HVR2, all the 3 cell lines were characterised in vitro and in vivo as normal hESCs lines and were registered in the Spanish Stem Cell Bank.

  11. Adapting collagen/CNT matrix in directing hESC differentiation.

    Science.gov (United States)

    Sridharan, Indumathi; Kim, Taeyoung; Wang, Rong

    2009-04-17

    The lineage selection in human embryonic stem cell (hESC) differentiation relies on both the growth factors and small molecules in the media and the physical characteristics of the micro-environment. In this work, we utilized various materials, including the collagen-carbon nanotube (collagen/CNT) composite material, as cell culture matrices to examine the impact of matrix properties on hESC differentiation. Our AFM analysis indicated that the collagen/CNT formed rigid fibril bundles, which polarized the growth and differentiation of hESCs, resulting in more than 90% of the cells to the ectodermal lineage in Day 3 in the media commonly used for spontaneous differentiation. We also observed the differentiated cells followed the coarse alignment of the collagen/CNT matrix. The research not only revealed the responsiveness of hESCs to matrix properties, but also provided a simple yet efficient way to direct the hESC differentiation, and imposed the potential of forming neural-cell based bio-devices for further applications.

  12. Derivation of the King's College London human embryonic stem cell lines.

    Science.gov (United States)

    Stephenson, Emma L; Braude, Peter R

    2010-04-01

    Since the derivation of the first human embryonic stem cell (hESC) line in 1998, there has been substantial interest in the potential of these cells for regenerative medicine and cell therapy and in the use of hESCs carrying clinically relevant genetic mutations as models for disease research and therapeutic target identification. There is still a need to improve derivation efficiency and further the understanding of the basic biology of these cells and to develop clinical grade culture systems with the aim of producing cell lines suitable for subsequent manipulation for therapy. The derivation of initial hESC lines at King's College London is discussed here, with focus on derivation methodology. Each of the derivations was distinctive. Although the stage and morphology of each blastocyst were generally similar in each attempt, the behaviour of the colonies was unpredictable; colony morphology and development was different with each attempt. Days 5, 6 and 7 blastocysts were used successfully, and the number of days until appearance of stem-like cells varied from 4 to 14 d. Routine characterisation analyses were performed on three lines, all of which displayed appropriate marker expression and survived cryopreservation-thaw cycles. From the lines discussed, four are at various stages of the deposition process with the UKSCB, one is pending submission and two are unsuitable for banking. Continued open and transparent reporting of results and collaborations will maximise the efficiency of derivation and facilitate the development of standardised protocols for the derivation and early culture of hESC lines.

  13. Primed to perish: heightened mitochondrial priming explains hESC apoptosis sensitivity

    NARCIS (Netherlands)

    Geijsen, N.

    2013-01-01

    Human embryonic stem cells (hESCs) are hypersensitive to apoptotic stimuli, though the underlying mechanisms are poorly characterized. In this issue of Cell Stem Cell, Liu et al. (2013) report that mitochondria of human ESCs exist in an apoptosis-prone state, ready to act as cellular executioners up

  14. Primed to perish: heightened mitochondrial priming explains hESC apoptosis sensitivity

    NARCIS (Netherlands)

    Geijsen, N.

    2013-01-01

    Abstract Human embryonic stem cells (hESCs) are hypersensitive to apoptotic stimuli, though the underlying mechanisms are poorly characterized. In this issue of Cell Stem Cell, Liu et al. (2013) report that mitochondria of human ESCs exist in an apoptosis-prone state, ready to act as cellular execut

  15. Derivation of Huntington Disease affected Genea046 human embryonic stem cell line

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea046 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying HTT gene CAG expansion of 45 repeats, indicative of Huntington Disease. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 85% of cells expressed Nanog, 92% Oct4, 75% Tra1–60 and 99% SSEA4 and demonstrated Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and visible contamination.

  16. Derivation of Trisomy 21 affected human embryonic stem cell line Genea021

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea021 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Trisomy 21, indicative of Down Syndrome. Following ICM outgrowth on inactivated human feeders, CGH and STR analyses demonstrated a 47, XY, +21 karyotype and male allele pattern. The hESC line had pluripotent cell morphology, 71% of cells expressed Nanog, 84% Oct4, 23% Tra1–60 and 95% SSEA4, gave a Pluritest Pluripotency score of 21.85, Novelty of 1.42, demonstrated Alkaline Phosphatase activity and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and visible contamination.

  17. Generation of a TLE3 heterozygous knockout human embryonic stem cell line using CRISPR-Cas9

    Directory of Open Access Journals (Sweden)

    Anne M. Bara

    2016-09-01

    Full Text Available Here, we generated a monoallelic mutation in the TLE3 (Transducin Like Enhancer of Split 3 gene using CRISPR-Cas9 editing in the human embryonic stem cell (hESC line WA01. The heterozygous knockout cell line, TLE3-447-D08-A01, displays partial loss of TLE3 protein expression while maintaining pluripotency, differentiation potential and genomic integrity.

  18. Feeder-free culture of human embryonic stem cells in conditioned medium for efficient genetic modification.

    Science.gov (United States)

    Braam, Stefan R; Denning, Chris; Matsa, Elena; Young, Lorraine E; Passier, Robert; Mummery, Christine L

    2008-01-01

    Realizing the potential of human embryonic stem cells (hESCs) in research and commercial applications requires generic protocols for culture, expansion and genetic modification that function between multiple lines. Here we describe a feeder-free hESC culture protocol that was tested in 13 independent hESC lines derived in five different laboratories. The procedure is based on Matrigel adaptation in mouse embryonic fibroblast conditioned medium (CM) followed by monolayer culture of hESC. When combined, these techniques provide a robust hESC culture platform, suitable for high-efficiency genetic modification via plasmid transfection (using lipofection or electroporation), siRNA knockdown and viral transduction. In contrast to other available protocols, it does not require optimization for individual lines. hESC transiently expressing ectopic genes are obtained within 9 d and stable transgenic lines within 3 weeks.

  19. Derivation and characterisation of the human embryonic stem cell lines, NOTT1 and NOTT2.

    Science.gov (United States)

    Priddle, Helen; Allegrucci, Cinzia; Burridge, Paul; Munoz, Maria; Smith, Nigel M; Devlin, Lyndsey; Sjoblom, Cecilia; Chamberlain, Sarah; Watson, Sue; Young, Lorraine E; Denning, Chris

    2010-04-01

    The ability to maintain human embryonic stem cells (hESCs) during long-term culture and yet induce differentiation to multiple lineages potentially provides a novel approach to address various biomedical problems. Here, we describe derivation of hESC lines, NOTT1 and NOTT2, from human blastocysts graded as 3BC and 3CB, respectively. Both lines were successfully maintained as colonies by mechanical passaging on mouse embryonic feeder cells or as monolayers by trypsin-passaging in feeder-free conditions on Matrigel. Undifferentiated cells retained expression of pluripotency markers (OCT4, NANOG, SSEA-4, TRA-1-60 and TRA-1-81), a stable karyotype during long-term culture and could be transfected efficiently with plasmid DNA and short interfering RNA. Differentiation via formation of embryoid bodies resulted in expression of genes associated with early germ layers and terminal lineage specification. The electrophysiology of spontaneously beating NOTT1-derived cardiomyocytes was recorded and these cells were shown to be pharmacologically responsive. Histological examination of teratomas formed by in vivo differentiation of both lines in severe immunocompromised mice showed complex structures including cartilage or smooth muscle (mesoderm), luminal epithelium (endoderm) and neuroectoderm (ectoderm). These observations show that NOTT1 and NOTT2 display the accepted characteristics of hESC pluripotency.

  20. Storage of cell lines.

    Science.gov (United States)

    Parker, Katharine A

    2011-01-01

    The successful storage of cell lines depends upon many factors, including the condition of the cells to be frozen and the experience of the operator. Attempting to freeze down unhealthy, contaminated or poorly labelled cells can have huge implications for a research laboratory. This chapter outlines the importance of good record keeping, vigilant monitoring, aseptic technique, and high-quality reagents in the successful storage and downstream propagation of cell lines.

  1. Identification of unsafe human induced pluripotent stem cell lines using a robust surrogate assay for pluripotency.

    Science.gov (United States)

    Polanco, Juan Carlos; Ho, Mirabelle S H; Wang, Bei; Zhou, Qi; Wolvetang, Ernst; Mason, Elizabeth; Wells, Christine A; Kolle, Gabriel; Grimmond, Sean M; Bertoncello, Ivan; O'Brien, Carmel; Laslett, Andrew L

    2013-08-01

    Human induced pluripotent stem cells (hiPSC) have the potential to generate healthy cells and tissues for the study and medical treatment of a large number of diseases. The utility of putative hiPSC-based therapies is constrained by a lack of robust quality-control assays that address the stability of the cells or their capacity to form teratomas after differentiation. Here we report that virally derived hiPSC, but not human embryonic stem cells (hESC) or hiPSC derived using episomal nonintegrating vectors, exhibit a propensity to revert to a pluripotent phenotype following differentiation. This instability was revealed using our published method to identify pluripotent cells undergoing very early-stage differentiation in standard hESC cultures, by fluorescence activated cell sorting (FACS) based on expression of the cell surface markers TG30 (CD9) and GCTM-2. Differentiated cells cultured post-FACS fractionation from virally derived hiPSC lines reacquired immunoreactivity to TG30 (CD9) and GCTM-2, formed stem cell-like colonies, and re-expressed canonical pluripotency markers. Furthermore, differentiated cells from pluripotency-reverting hiPSC lines generated teratomas in immunocompromised mice, raising concerns about their safety in downstream applications. In contrast, differentiated cell populations from hESC and episomally derived hiPSC did not show any of these abnormalities. Our assays may be used to identify "unsafe" hiPSC cell lines and this information should be considered when selecting hiPSC lines for clinical use and indicate that experiments using these "unsafe" hiPSC lines should be interpreted carefully.

  2. Improved genetic manipulation of human embryonic stem cells.

    NARCIS (Netherlands)

    Braam, S.R.; Denning, C.; van den Brink, S.; Kats, P.; Hochstenbach, R.; Passier, R.; Mummery, C.L.

    2008-01-01

    Low efficiency of transfection limits the ability to genetically manipulate human embryonic stem cells (hESCs), and differences in cell derivation and culture methods require optimization of transfection protocols. We transiently transferred multiple independent hESC lines with different growth requ

  3. Procedures for Derivation and Characterisation of Human Embryonic Stem Cells from Odense, Denmark

    DEFF Research Database (Denmark)

    Harkness, Linda; Kassem, Moustapha

    2012-01-01

    In 1998, a development occurred in stem cell biology with the fi rst report of the derivation of a human embryonic stem cell (hESC) line. Since then a number of techniques have been used to derive and characterise hESCs. Here, we describe the derivation methods used by our laboratory for isolation...

  4. Endogenous APOBEC3B restricts LINE-1 retrotransposition in transformed cells and human embryonic stem cells.

    Science.gov (United States)

    Wissing, Silke; Montano, Mauricio; Garcia-Perez, Jose Luis; Moran, John V; Greene, Warner C

    2011-10-21

    Members of the APOBEC3 (A3) family of cytidine deaminase enzymes act as host defense mechanisms limiting both infections by exogenous retroviruses and mobilization of endogenous retrotransposons. Previous studies revealed that the overexpression of some A3 proteins could restrict engineered human Long INterspersed Element-1 (LINE-1 or L1) retrotransposition in HeLa cells. However, whether endogenous A3 proteins play a role in restricting L1 retrotransposition remains largely unexplored. Here, we show that HeLa cells express endogenous A3B and A3C, whereas human embryonic stem cells (hESCs) express A3B, A3C, A3DE, A3F, and A3G. To study the relative contribution of endogenous A3 proteins in restricting L1 retrotransposition, we first generated small hairpin RNAs (shRNAs) to suppress endogenous A3 mRNA expression, and then assessed L1 mobility using a cell-based L1 retrotransposition assay. We demonstrate that in both HeLa and hESCs, shRNA-based knockdown of A3B promotes a ∼2-3.7-fold increase in the retrotransposition efficiency of an engineered human L1. Knockdown of the other A3s produced no significant increase in L1 activity. Thus, A3B appears to restrict engineered L1 retrotransposition in a broad range of cell types, including pluripotent cells.

  5. Derivation and characterization of human embryonic stem cells on human amnion epithelial cells.

    Science.gov (United States)

    Lai, Dongmei; Wang, Yongwei; Sun, Jian; Chen, Yifei; Li, Ting; Wu, Yi; Guo, Lihe; Wei, Chunsheng

    2015-05-07

    Culture conditions that support the growth of undifferentiated human embryonic stem cells (hESCs) have already been established using primary human amnion epithelial cells (hAECs) as an alternative to traditional mitotically inactivated mouse embryonic fibroblasts (MEFs). In the present work, inner cell masses (ICM) were isolated from frozen embryos obtained as donations from couples undergoing in vitro fertilization (IVF) treatment and four new hESC lines were derived using hAECs as feeder cells. This feeder system was able to support continuous growth of what were, according to their domed shape and markers, undifferentiated naïve-like hESCs. Their pluripotent potential were also demonstrated by embryoid bodies developing to the expected three germ layers in vitro and the productions of teratoma in vivo. The cell lines retained their karyotypic integrity for over 35 passages. Transmission electron microscopy (TEM) indicated that these newly derived hESCs consisted mostly of undifferentiated cells with large nuclei and scanty cytoplasm. The new hESCs cultured on hAECs showed distinct undifferentiated characteristics in comparison to hESCs of the same passage maintained on MEFs. This type of optimized culture system may provide a useful platform for establishing clinical-grade hESCs and assessing the undifferentiated potential of hESCs.

  6. Human amniotic epithelial cells as feeder layer to derive and maintain human embryonic stem cells from poor-quality embryos

    Directory of Open Access Journals (Sweden)

    Daniela Ávila-González

    2015-09-01

    Full Text Available Data from the literature suggest that human embryonic stem cell (hESC lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1 from poor-quality (PQ embryos derived and maintained on human amniotic epithelial cells (hAEC. This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers.

  7. Human amniotic epithelial cells as feeder layer to derive and maintain human embryonic stem cells from poor-quality embryos.

    Science.gov (United States)

    Ávila-González, Daniela; Vega-Hernández, Eva; Regalado-Hernández, Juan Carlos; De la Jara-Díaz, Julio Francisco; García-Castro, Irma Lydia; Molina-Hernández, Anayansi; Moreno-Verduzco, Elsa Romelia; Razo-Aguilera, Guadalupe; Flores-Herrera, Héctor; Portillo, Wendy; Díaz-Martínez, Néstor Emmanuel; García-López, Guadalupe; Díaz, Néstor Fabián

    2015-09-01

    Data from the literature suggest that human embryonic stem cell (hESC) lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1) from poor-quality (PQ) embryos derived and maintained on human amniotic epithelial cells (hAEC). This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers.

  8. The Forkhead box transcription factor FOXM1 is required for the maintenance of cell proliferation and protection against oxidative stress in human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    C.T.D. Kwok

    2016-05-01

    Full Text Available Human embryonic stem cells (hESCs exhibit unique cell cycle structure, self-renewal and pluripotency. The Forkhead box transcription factor M1 (FOXM1 is critically required for the maintenance of pluripotency in mouse embryonic stem cells and mouse embryonal carcinoma cells, but its role in hESCs remains unclear. Here, we show that FOXM1 expression was enriched in undifferentiated hESCs and was regulated in a cell cycle-dependent manner with peak levels detected at the G2/M phase. Expression of FOXM1 did not correlate with OCT4 and NANOG during in vitro differentiation of hESCs. Importantly, knockdown of FOXM1 expression led to aberrant cell cycle distribution with impairment in mitotic progression but showed no profound effect on the undifferentiated state. Interestingly, FOXM1 depletion sensitized hESCs to oxidative stress. Moreover, genome-wide analysis of FOXM1 targets by ChIP-seq identified genes important for M phase including CCNB1 and CDK1, which were subsequently confirmed by ChIP and RNA interference analyses. Further peak set comparison against a differentiating hESC line and a cancer cell line revealed a substantial difference in the genomic binding profile of FOXM1 in hESCs. Taken together, our findings provide the first evidence to support FOXM1 as an important regulator of cell cycle progression and defense against oxidative stress in hESCs.

  9. Variations of X chromosome inactivation occur in early passages of female human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Tamar Dvash

    Full Text Available X chromosome inactivation (XCI is a dosage compensation mechanism essential for embryonic development and cell physiology. Human embryonic stem cells (hESCs derived from inner cell mass (ICM of blastocyst stage embryos have been used as a model system to understand XCI initiation and maintenance. Previous studies of undifferentiated female hESCs at intermediate passages have shown three possible states of XCI; 1 cells in a pre-XCI state, 2 cells that already exhibit XCI, or 3 cells that never undergo XCI even upon differentiation. In this study, XCI status was assayed in ten female hESC lines between passage 5 and 15 to determine whether XCI variations occur in early passages of hESCs. Our results show that three different states of XCI already exist in the early passages of hESC. In addition, we observe one cell line with skewed XCI and preferential expression of X-linked genes from the paternal allele, while another cell line exhibits random XCI. Skewed XCI in undifferentiated hESCs may be due to clonal selection in culture instead of non-random XCI in ICM cells. We also found that XIST promoter methylation is correlated with silencing of XIST transcripts in early passages of hESCs, even in the pre-XCI state. In conclusion, XCI variations already take place in early passages of hESCs, which may be a consequence of in vitro culture selection during the derivation process. Nevertheless, we cannot rule out the possibility that XCI variations in hESCs may reflect heterogeneous XCI states in ICM cells that stochastically give rise to hESCs.

  10. Derivation, characterization and differentiation of a new human embryonic stem cell line from a Chinese hatched blastocyst assisted by a non-contact laser system.

    Science.gov (United States)

    Wu, Rongrong; Xu, Chenming; Jin, Fan; Tan, Zhou; Gu, Bin; Chen, Liangbiao; Yao, Xing; Zhang, Ming

    2010-08-01

    Currently worldwide attention has focused on the derivation of human embryonic stem cells (hESCs) for future therapeutic medicine. However, the majority of existing hESCs are directly or indirectly exposed to non-human materials during their derivation and/or propagation, which greatly restrict their therapeutic potential. Besides the efforts to improve culture systems, the derivation procedure, especially blastocyst manipulation, needs to be optimized. We adopted a non-contact laser-assisted hatching system in combination with sequential culture process to obtain hatched blastocysts as materials for hESC derivation, and derived a hESC line ZJUhES-1 of a Chinese population without exposure to any non-human materials during blastocyst manipulation. ZJUhES-1 satisfies the criteria of pluripotent hESCs: typically morphological characteristics; the expression of alkaline phosphatase, human telomerase reverse transcriptase and multiple hESC-specific markers including SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, OCT-4, Nanog, Rex-1, Sox-2, UTF-1, Connexins 43 and 45, TERF-1 and TERF-2, Glut-1, BCRP-1/ABCG-2, GDF3, LIN28, FGF4, Thy-1, Cripto1/TDGF1, AC133 as well as SMAD1/2/3/5; extended proliferative capacity; maintenance of a stable male karyotype after long-term cultivation; and robust multiple-lineage developmental potentials both in vivo and in vitro. Moreover, ZJUhES-1 has distinct identity revealed from DNA fingerprinting. Our xeno-free blastocyst manipulation procedure may promote the progression toward clinical-grade hESC derivation.

  11. CLO : The cell line ontology

    NARCIS (Netherlands)

    Sarntivijai, Sirarat; Lin, Yu; Xiang, Zuoshuang; Meehan, Terrence F.; Diehl, Alexander D.; Vempati, Uma D.; Schuerer, Stephan C.; Pang, Chao; Malone, James; Parkinson, Helen; Liu, Yue; Takatsuki, Terue; Saijo, Kaoru; Masuya, Hiroshi; Nakamura, Yukio; Brush, Matthew H.; Haendel, Melissa A.; Zheng, Jie; Stoeckert, Christian J.; Peters, Bjoern; Mungall, Christopher J.; Carey, Thomas E.; States, David J.; Athey, Brian D.; He, Yongqun

    2014-01-01

    Background: Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO

  12. Derivation of NEM2 affected human embryonic stem cell line Genea079

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea079 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying compound heterozygous mutations in the NEB gene, exon 55 deletion & c.15110dupA, indicative of Nemaline Myopathy Type 2 (NEM2. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XY and STR analysis demonstrated a male Allele pattern. The hESC line had pluripotent cell morphology, 86% of cells expressed Nanog, 95% Oct4, 54% Tra1-60 and 98% SSEA4 and gave a PluriTest Pluripotency score of 30.25, Novelty of 1.21. The cell line was negative for Mycoplasma and visible contamination.

  13. [Development of human embryonic stem cell model for toxicity evaluation].

    Science.gov (United States)

    Yu, Guang-yan; Cao, Tong; Ouyang, Hong-wei; Peng, Shuang-qing; Deng, Xu-liang; Li, Sheng-lin; Liu, He; Zou, Xiao-hui; Fu, Xin; Peng, Hui; Wang, Xiao-ying; Zhan, Yuan

    2013-02-18

    The current international standard for toxicity screening of biomedical devices and materials recommend the use of immortalized cell lines because of their homogeneous morphologies and infinite proliferation which provide good reproducibility for in vitro cytotoxicity screening. However, most of the widely used immortalized cell lines are derived from animals and may not be representative of normal human cell behavior in vivo, in particular in terms of the cytotoxic and genotoxic response. Therefore, It is vital to develop a model for toxicity evaluation. In our studies, two Chinese human embryonic stem cell (hESC) lines as toxicity model were established. hESC derived tissue/organ cell model for tissue/organ specific toxicity evaluation were developed. The efficiency and accuracy of using hESC model for cytoxicity, embryotoxicity and genotoxicity evaluation were confirmed. The results indicated that hESCs might be good tools for toxicity testing and biosafety evaluation in vitro.

  14. Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes.

    Science.gov (United States)

    Prat, Aleix; Karginova, Olga; Parker, Joel S; Fan, Cheng; He, Xiaping; Bixby, Lisa; Harrell, J Chuck; Roman, Erick; Adamo, Barbara; Troester, Melissa; Perou, Charles M

    2013-11-01

    Five molecular subtypes (luminal A, luminal B, HER2-enriched, basal-like, and claudin-low) with clinical implications exist in breast cancer. Here, we evaluated the molecular and phenotypic relationships of (1) a large in vitro panel of human breast cancer cell lines (BCCLs), human mammary fibroblasts (HMFs), and human mammary epithelial cells (HMECs); (2) in vivo breast tumors; (3) normal breast cell subpopulations; (4) human embryonic stem cells (hESCs); and (5) bone marrow-derived mesenchymal stem cells (hMSC). First, by integrating genomic data of 337 breast tumor samples with 93 cell lines we were able to identify all the intrinsic tumor subtypes in the cell lines, except for luminal A. Secondly, we observed that the cell lines recapitulate the differentiation hierarchy detected in the normal mammary gland, with claudin-low BCCLs and HMFs cells showing a stromal phenotype, HMECs showing a mammary stem cell/bipotent progenitor phenotype, basal-like cells showing a luminal progenitor phenotype, and luminal B cell lines showing a mature luminal phenotype. Thirdly, we identified basal-like and highly migratory claudin-low subpopulations of cells within a subset of triple-negative BCCLs (SUM149PT, HCC1143, and HCC38). Interestingly, both subpopulations within SUM149PT were enriched for tumor-initiating cells, but the basal-like subpopulation grew tumors faster than the claudin-low subpopulation. Finally, claudin-low BCCLs resembled the phenotype of hMSCs, whereas hESCs cells showed an epithelial phenotype without basal or luminal differentiation. The results presented here help to improve our understanding of the wide range of breast cancer cell line models through the appropriate pairing of cell lines with relevant in vivo tumor and normal cell counterparts.

  15. The influence of early embryo traits on human embryonic stem cell derivation efficiency.

    Science.gov (United States)

    O'Leary, Thomas; Heindryckx, Björn; Lierman, Sylvie; Van der Jeught, Margot; Menten, Björn; Deforce, Dieter; Cornelissen, Ria; de Sousa Lopes, Susana Chuva; De Sutter, Petra

    2011-05-01

    Despite its prognostic value in in vitro fertilization, early embryo morphology is not reported on in the derivation of human embryonic stem cell (hESC) lines. Standard hESC derivation does rely on blastocyst development and its efficiency is highly correlated to inner cell mass (ICM) quality. Poor-quality embryos (PQEs) donated for hESC derivation may have a range of cleavage-stage abnormalities that are known to compromise further development. This study was implemented to determine whether specific PQEs traits influence the efficiency of good-quality ICMs to derive new hESC lines. We found that although the types of PQEs investigated were all able to make blastocysts with good-quality ICMs, the ICMs were unequal in their ability to derive hESCs. Good-quality ICMs from embryos with multiple poor-quality traits were unable to generate hESC lines, in contrast to good-quality ICMs from embryos with a single poor-quality trait. In addition, our data suggest a direct correlation between the number of ICM cells present in the blastocyst and its capacity to derive new hESC lines. This study is the first to demonstrate that ICM quality alone is an incomplete indicator of hESC derivation and that application of in vitro fertilization-based early embryo scoring can help predict hESC derivation efficiency. Experiments aiming to quantify, improve upon, or compare hESC derivation efficiency should thus take into consideration early embryo morphology scoring for the comparison of groups with equal developmental competence.

  16. Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells.

    Science.gov (United States)

    Quang, Tara; Marquez, Maribel; Blanco, Giselle; Zhao, Yuanxiang

    2014-01-01

    Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4-10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system.

  17. A Euploid Line of Human Embryonic Stem Cells Derived from a 43,XX,dup(9q),+12,-14,-15,-18,-21 Embryo

    Science.gov (United States)

    Fonseca, Simone Aparecida Siqueira; Costas, Roberta Montero; Morato-Marques, Mariana; Costa, Silvia; Alegretti, Jose Roberto; Rosenberg, Carla; da Motta, Eduardo Leme Alves; Serafini, Paulo C.; Pereira, Lygia V.

    2015-01-01

    Aneuploid embryos diagnosed by FISH-based preimplantation genetic screening (PGS) have been shown to yield euploid lines of human embryonic stem cells (hESCs) with a relatively high frequency. Given that the diagnostic procedure is usually based on the analysis of 1–2 blastomeres of 5 to 10-cell cleavage-stage embryos, mosaicism has been a likely explanation for the phenomena. However, FISH-based PGS can have a significant rate of misdiagnosis, and therefore some of those lines may have been derived from euploid embryos misdiagnosed as aneuploid. More recently, coupling of trophectoderm (TE) biopsy at the blastocyst stage and array-CGH lead to a more informative form of PGS. Here we describe the establishment of a new line of hESCs from an embryo with a 43,XX,dup(9q),+12,-14,-15,-18,-21 chromosomal content based on array-CGH of TE biopsy. We show that, despite the complex chromosomal abnormality, the corresponding hESC line BR-6 is euploid (46,XX). Single nucleotide polymorphism analysis showed that the embryo´s missing chromosomes were not duplicated in BR-6, suggesting the existence of extensive mosaicism in the TE lineage. PMID:26540511

  18. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts

    Institute of Scientific and Technical Information of China (English)

    Qingyun Mai; Yang Yu; Tao Li; Liu Wang; Mei-jue Chen; Shu-zhen Huang; Canquan Zhou; Qi Zhou

    2007-01-01

    Parthenogenesis is one of the main, and most useful, methods to derive embryonic stem cells (ESCs), which may be an important source of histocompatible cells and tissues for cell therapy. Here we describe the derivation and characterization of two ESC lines (hPES-1 and hPES-2) from in vitro developed blastocysts following parthenogenetic activation of human oocytes. Typical ESC morphology was seen, and the expression of ESC markers was as expected for alkaline phosphatase, octamer-binding transcription factor 4, stage-specific embryonic antigen 3, stage-specific embryonic antigen 4, TRA-1-60, and TRA-1-81, and there was absence of expression of negative markers such as stage-specific embryonic antigen 1. Expression of genes specific for different embryonic germ layers was detected from the embryoid bodies (EBs) of both hESC lines, suggesting their differentiation potential in vitro. However, in vivo, only hPES-1 formed teratoma consisting of all three embryonic germ layers (hPES-2 did not). Interestingly, after continuous proliferation for more than 100 passages, hPES-1 cells still maintained a normal 46 XX karyotype; hPES-2 displayed abnormalities such as chromosome translocation after long term passages. Short Tandem Repeat (STR) results demonstrated that the hPES lines were genetic matches with the egg donors, and gene imprinting data confirmed the parthenogenetic origin of these ES cells. Genome-wide SNP analysis showed a pattern typical of parthenogenesis. All of these results demonstrated the feasibility to isolate and establish human parthenogenetic ESC lines, which provides an important tool for studying epigenetic effects in ESCs as well as for future therapeutic interventions in a clinical setting.

  19. Human embryonic stem cells: preclinical perspectives

    Directory of Open Access Journals (Sweden)

    Sarda Kanchan

    2008-01-01

    Full Text Available Abstract Human embryonic stem cells (hESCs have been extensively discussed in public and scientific communities for their potential in treating diseases and injuries. However, not much has been achieved in turning them into safe therapeutic agents. The hurdles in transforming hESCs to therapies start right with the way these cells are derived and maintained in the laboratory, and goes up-to clinical complications related to need for patient specific cell lines, gender specific aspects, age of the cells, and several post transplantation uncertainties. The different types of cells derived through directed differentiation of hESC and used successfully in animal disease and injury models are described briefly. This review gives a brief outlook on the present and the future of hESC based therapies, and talks about the technological advances required for a safe transition from laboratory to clinic.

  20. Human embryonic stem cell derivation and directed differentiation.

    Science.gov (United States)

    Trounson, A

    2005-01-01

    Human embryonic stem cells (hESCs) are produced from normal, chromosomally aneuploid and mutant human embryos, which are available from in vitro fertilisation (IVF) for infertility or preimplantation diagnosis. These hESC lines are an important resource for functional genomics, drug screening and eventually cell and gene therapy. The methods for deriving hESCs are well established and repeatable, and are relatively successful, with a ratio of 1:10 to 1:2 hESC lines established to embryos used. hESCs can be formed from morula and blastocyst-stage embryos and from isolated inner cell mass cell (ICM) clusters. The hESCs can be formed and maintained on mouse or human somatic cells in serum-free conditions, and for several passages in cell-free cultures. The hESCs can be transfected with DNA constructs. Their gene expression profiles are being described and immunological characteristics determined. They may be grown indefinitely in culture while maintaining their original karyotype but this must be confirmed from time to time. hESCs spontaneously differentiate in the absence of the appropriate cell feeder layer, when overgrown in culture and when isolated from the ESC colony. All three major embryonic lineages are produced in differentiating attachment cultures and in unattached embryoid bodies. Cell progenitors of interest can be identified by markers, expression of reporter genes and characteristic morphology, and the culture thereafter enriched for further culture to more mature cell types. The most advanced directed differentiation pathways have been developed for neural cells and cardiac muscle cells, but many other cell types including haematopoietic progenitors, endothelial cells, lung alveoli, keratinocytes, pigmented retinal epithelium, neural crest cells and motor neurones, hepatic progenitors and cells that have some markers of gut tissue and pancreatic cells have been produced. The prospects for regenerative medicine are significant and there is much

  1. Characterisation Of Forebrain Neurons Derived From Late-Onset Huntington’s Disease Human Embryonic Stem Cell Lines

    Directory of Open Access Journals (Sweden)

    Jonathan Christos Niclis

    2013-04-01

    Full Text Available Huntington's Disease (HD is an incurable neurodegenerative disorder caused by a CAG repeat expansion in exon 1 of the Huntingtin gene. Recently, induced pluripotent stem cell lines carrying atypical and aggressive (CAG60+ HD variants have been generated, and perplexingly exhibit disparate molecular pathologies. Here we investigate two human embryonic stem cell (hESC lines carrying CAG37 and CAG51 repeats to assess whether typical late-onset expansions exhibit HD pathologies. HD hESC properties were assessed in comparison to wildtype control lines at undifferentiated states and throughout forebrain neuronal differentiation. Pluripotent HD lines demonstrate growth, viability, pluripotent gene expression, mitochondrial activity and forebrain specification that is indistinguishable from control lines. Expression profiles of crucial genes known to be dysregulated in HD remain unperturbed in the presence of mutant protein and throughout differentiation; however, elevated glutamate responses were observed in HD CAG51 neurons. These findings suggest typical late-onset HD mutations do not alter pluripotent parameters or differentiation mechanics but that neuronal progeny may possess the capacity to recapitulate neuropathologies seen in human patients. Such HD models will help further our understanding of the cascade of pathological events leading to disease onset and progression, while simultaneously facilitating the identification of candidate HD therapeutics.

  2. Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks.

    Directory of Open Access Journals (Sweden)

    Elisa Valletta

    Full Text Available Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR, or Simple Sequence Repeats (SSR, is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs. We used human embryonic stem cells (hESCs contaminated by either mouse embryonic stem cells (mESCs or mouse embryonic fibroblasts (MEFs as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general.

  3. Optimizing human embryonic stem cells differentiation efficiency by screening size-tunable homogenous embryoid bodies.

    Science.gov (United States)

    Moon, Sung-Hwan; Ju, Jongil; Park, Soon-Jung; Bae, Daekyeong; Chung, Hyung-Min; Lee, Sang-Hoon

    2014-07-01

    Human embryonic stem cells (hESCs) are generally induced to differentiate by forming spherical structures termed embryoid bodies (EBs) in the presence of soluble growth factors. hEBs are generated by suspending small clumps of hESC colonies; however, the resulting hEBs are heterogeneous because this method lacks the ability to control the number of cells in individual EBs. This heterogeneity affects factors that influence differentiation such as cell-cell contact and the diffusion of soluble factors, and consequently, the differentiation capacity of each EB varies. Here, we fabricated size-tunable concave microwells to control the physical environment, thereby regulating the size of EBs formed from single hESCs. Defined numbers of single hESCs were forced to aggregate and generate uniformly sized EBs with high fidelity, and the size of the EBs was controlled using concave microwells of different diameters. Differentiation patterns in H9- and CHA15-hESCs were affected by EB size in both the absence and presence of growth factors. By screening EB size in the presence of various BMP4 concentrations, a two-fold increase in endothelial cell differentiation was achieved. Because each hESC line has unique characteristics, the findings of this study demonstrate that concave microwells could be used to screen different EB sizes and growth factor concentrations to optimize differentiation for each hESC line.

  4. Improved cell therapy protocols for Parkinson's disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons

    DEFF Research Database (Denmark)

    Sundberg, Maria; Bogetofte, Helle; Lawson, Tristan

    2013-01-01

    The main motor symptoms of Parkinson's disease are due to the loss of dopaminergic (DA) neurons in the ventral midbrain (VM). For the future treatment of Parkinson's disease with cell transplantation it is important to develop efficient differentiation methods for production of human iPSCs and h...

  5. Human amniotic fluid stem cells support undifferentiated propagation and pluripotency of human embryonic stem cell without b-FGF in a density dependent manner.

    Science.gov (United States)

    Ma, Xiaorong; Li, Huanqi; Xin, Shujia; Ma, Yueting; Ouyang, Tianxiang

    2014-01-01

    Human embryonic stem cells (hESCs) are pluripotent cells which can give rise to almost all adult cell lineages. Culture system of hESCs is complex, requiring exogenous b-FGF and feeder cell layer. Human mesenchymal stem cells (MSCs) not only synthesize soluble cytokines or factors such as b-FGF, but also provide other mechanism which might play positive role on sustaining hESCs propagation and pluripotency. Human amniotic fluid stem (AFS) cells, which share characteristics of both embryonic and adult stem cells, have been regarded as promising cells for regenerative medicine. Taking advantage by AFS cells, we studied the ability of AFS cells in supporting undifferentiated propagation and pluripotency of Chinese population derived X-01 hESCs. Human AF-type amniotic fluid stem cells (hAF-AFSCs) transcribed genes including Activin A, TGF-β1, Noggin and b-FGF, which involved in maintaining pluripotency and self-renewal of hESCs. Compared to mouse embryonic fibroblasts (MEFs), hAF-AFSCs secreted higher concentration of b-FGF which was important in hESCs culture (P FGF supplementation, keeping undifferentiated status. While exogenous b-FGF was obviated, propagation of hESCs with undifferentiated status was dependent on density of hAF-AFSC feeder layer. Lower density of hAF-AFSCs resulted in rapid decline in undifferentiated clone number, while higher ones hindered the growth of colonies. The most appropriate hAF-AFSCs feeder density to maintain the X-01 hESC line without exogenous b-FGF was 15-20×10(4)/well. To the best of our knowledge, this is the first study demonstrating that hAF-AFSCs could support undifferentiated propagation and pluripotency of Chinese population derived hESCs without exogenous b-FGF supplementation.

  6. Human embryonic stem cells express elevated levels of multiple pro-apoptotic BCL-2 family members.

    Directory of Open Access Journals (Sweden)

    David T Madden

    Full Text Available Two of the greatest challenges in regenerative medicine today remain (1 the ability to culture human embryonic stem cells (hESCs at a scale sufficient to satisfy clinical demand and (2 the ability to eliminate teratoma-forming cells from preparations of cells with clinically desirable phenotypes. Understanding the pathways governing apoptosis in hESCs may provide a means to address these issues. Limiting apoptosis could aid scaling efforts, whereas triggering selective apoptosis in hESCs could eliminate unwanted teratoma-forming cells. We focus here on the BCL-2 family of proteins, which regulate mitochondrial-dependent apoptosis. We used quantitative PCR to compare the steady-state expression profile of all human BCL-2 family members in hESCs with that of human primary cells from various origins and two cancer lines. Our findings indicate that hESCs express elevated levels of the pro-apoptotic BH3-only BCL-2 family members NOXA, BIK, BIM, BMF and PUMA when compared with differentiated cells and cancer cells. However, compensatory expression of pro-survival BCL-2 family members in hESCs was not observed, suggesting a possible explanation for the elevated rates of apoptosis observed in proliferating hESC cultures, as well as a mechanism that could be exploited to limit hESC-derived neoplasms.

  7. Sourcing human embryos for embryonic stem cell lines: Problems & perspectives

    Directory of Open Access Journals (Sweden)

    Rajvi H Mehta

    2014-01-01

    Full Text Available The ability to successfully derive human embryonic stem cells (hESC lines from human embryos following in vitro fertilization (IVF opened up a plethora of potential applications of this technique. These cell lines could have been successfully used to increase our understanding of human developmental biology, transplantation medicine and the emerging science of regenerative medicine. The main source for human embryos has been ′discarded′ or ′spare′ fresh or frozen human embryos following IVF. It is a common practice to stimulate the ovaries of women undergoing any of the assisted reproductive technologies (ART and retrieve multiple oocytes which subsequently lead to multiple embryos. Of these, only two or maximum of three embryos are transferred while the rest are cryopreserved as per the decision of the couple. In case a couple does not desire to ′cryopreserve′ their embryos then all the embryos remaining following embryo transfer can be considered ′spare′ or if a couple is no longer in need of the ′cryopreserved′ embryos then these also can be considered as ′spare′. But, the question raised by the ethicists is, "what about ′slightly′ over-stimulating a woman to get a few extra eggs and embryos? The decision becomes more difficult when it comes to ′discarded′ embryos. As of today, the quality of the embryos is primarily assessed based on morphology and the rate of development mainly judged by single point assessment. Despite many criteria described in the literature, the quality assessment is purely subjective. The question that arises is on the decision of ′discarding′ embryos. What would be the criteria for discarding embryos and the potential ′use′ of ESC derived from the ′abnormal appearing′ embryos? This paper discusses some of the newer methods to procure embryos for the derivation of embryonic stem cell lines which will respect the ethical concerns but still provide the source material.

  8. NANOG reporter cell lines generated by gene targeting in human embryonic stem cells

    DEFF Research Database (Denmark)

    Fischer, Yvonne; Ganic, Elvira; Ameri, Jacqueline;

    2010-01-01

    Pluripotency and self-renewal of human embryonic stem cells (hESCs) is mediated by a complex interplay between extra- and intracellular signaling pathways, which regulate the expression of pluripotency-specific transcription factors. The homeodomain transcription factor NANOG plays a central role...

  9. Thyroid cell lines in research on goitrogenesis.

    Science.gov (United States)

    Gerber, H; Peter, H J; Asmis, L; Studer, H

    1991-12-01

    Thyroid cell lines have contributed a lot to the understanding of goitrogenesis. The cell lines mostly used in thyroid research are briefly discussed, namely the rat thyroid cell lines FRTL and FRTL-5, the porcine thyroid cell lines PORTHOS and ARTHOS, The sheep thyroid cell lines OVNIS 5H and 6H, the cat thyroid cell lines PETCAT 1 to 4 and ROMCAT, and the human thyroid cell lines FTC-133 and HTh 74. Chinese hamster ovary (CHO) cells and COS-7 cells, stably transfected with TSH receptor cDNA and expressing a functional TSH receptor, are discussed as examples for non-thyroidal cells, transfected with thyroid genes.

  10. Comparative Analysis of Whole-Genome Gene Expression Changes in Cultured Human Embryonic Stem Cells in Response to Low, Clinical Diagnostic Relevant, and High Doses of Ionizing Radiation Exposure

    Science.gov (United States)

    Sokolov, Mykyta; Nguyen, Van; Neumann, Ronald

    2015-01-01

    The biological effects of low-dose ionizing radiation (LDIR) exposure in humans are not comprehensively understood, generating a high degree of controversy in published literature. The earliest stages of human development are known to be among the most sensitive to stress exposures, especially genotoxic stresses. However, the risks stemming from exposure to LDIR, particularly within the clinical diagnostic relevant dose range, have not been directly evaluated in human embryonic stem cells (hESCs). Here, we describe the dynamics of the whole genome transcriptional responses of different hESC lines to both LDIR and, as a reference, high-dose IR (HDIR). We found that even doses as low as 0.05 Gy could trigger statistically significant transient changes in a rather limited subset of genes in all hESCs lines examined. Gene expression signatures of hESCs exposed to IR appear to be highly dose-, time-, and cell line-dependent. We identified 50 genes constituting consensus gene expression signature as an early response to HDIR across all lines of hESC examined. We observed substantial differences in biological pathways affected by either LDIR or HDIR in hESCs, suggesting that the molecular mechanisms underpinning the responses of hESC may fundamentally differ depending on radiation doses. PMID:26133243

  11. Differentiation of stem cells upon deprivation of exogenous FGF2

    DEFF Research Database (Denmark)

    Kjartansdóttir, Kristín Rós; Gabrielsen, Anette; Reda, Ahmed

    2012-01-01

    Establishing a model for in vitro differentiation of human embryonic stem cells (hESCs) towards the germ cell lineage could be used to identify molecular mechanisms behind germ cell differentiation that may help in understanding human infertility. Here, we evaluate whether a lack of exogenous...... fibroblast growth factor 2 (FGF2) is supporting spontaneous differentiation of hESCs cultured on human foreskin fibroblast (hFF) monolayers towards germ cell lineage. Additionally to depriving the hESCs of exogenous FGF2, cells were stimulated with all-trans retinoic acid (ATRA). To get a more comprehensive...... impression on effects of removal of FGF2 and stimulation with ATRA, we combined the results of three cell lines for each experimental setting. When combining gene expression profiles of three cell lines for 96 genes, only 6 genes showed a significant up-regulation in all cell lines, when no FGF2 was added...

  12. Generation of Corneal Keratocytes from Human Embryonic Stem Cells.

    Science.gov (United States)

    Hertsenberg, Andrew J; Funderburgh, James L

    2016-01-01

    Human Embryonic Stem Cells (hESC) offer an important resource as a limitless supply of any differentiated cell type of the human body. Keratocytes, cells from the corneal stroma, may have the potential for restoration of vision in cell therapy and biomedical engineering applications, but these specialized cells are not readily expanded in vitro. Here we describe a two-part method to produce keratocytes from the H1 hESC cell line. The hESC cells, maintained and expanded in feeder-free culture medium are first differentiated to neural crest cells using the stromal-derived inducing activity (SDIA) of the PA6 mouse embryonic fibroblast cell line. The resulting neural crest cells are selected by their expression of cell-surface CD271 and subsequently cultured as 3D pellets in a defined differentiation medium to induce a keratocyte phenotype.

  13. In vitro differentiation and attachment of human embryonic stem cells on periodontal tooth root surfaces.

    Science.gov (United States)

    Inanç, Bülend; Elçin, A Eser; Elçin, Y Murat

    2009-11-01

    Periodontal tissue engineering based on cell replacement therapies is a promising field for improved regeneration of tooth supporting structures lost as a result of destructive periodontal diseases. Human embryonic stem cells (hESCs) could become adequate cell source for tissue engineering because of their unlimited proliferative potential and ability to differentiate to all somatic cell types. The aim of this study was to analyze the differentiation capacity of hESCs toward periodontal compartment cells and their relationship with tooth root surfaces in vitro. Periodontal ligament fibroblastic cell (PDLF) cultures were established and characterized; hESCs (HUES-9 line) were expanded in undifferentiated state and characterized for pluripotency morphologically and immunohistochemically. Extracted tooth root slices (RS) of 300 microm thickness, prepared with both periodontal and endodontic instrumentation, were used. Three different experimental groups were established: (i) undifferentiated hESC colonies cultured on and around the RS; (ii) undifferentiated hESC colonies cultured on and around RS with PDLF coculture, and (iii) undifferentiated hESC colonies cultured on and around RS with PDLF coculture in osteoinductive medium for 3 weeks. The fibrogenic and osteogenic marker expression was assessed with immunohistochemistry; histological staining and scanning electron microscopy were utilized to determine the relationship between differentiating hESCs and mineralized tooth root structures. Results demonstrate that hESC differentiation is influenced by tooth structures, PDLFs, and osteogenic medium, resulting with increased propensity toward mesenchymal lineage commitment, and formation of soft-hard tissue relationship in close contact areas. The proposed experimental system may facilitate further understanding in development of periodontal structures and contribute to realization of hESCs as a cell source in periodontal tissue engineering applications.

  14. Engineering Human Stem Cell Lines with Inducible Gene Knockout using CRISPR/Cas9.

    Science.gov (United States)

    Chen, Yuejun; Cao, Jingyuan; Xiong, Man; Petersen, Andrew J; Dong, Yi; Tao, Yunlong; Huang, Cindy Tzu-Ling; Du, Zhongwei; Zhang, Su-Chun

    2015-08-06

    Precise temporal control of gene expression or deletion is critical for elucidating gene function in biological systems. However, the establishment of human pluripotent stem cell (hPSC) lines with inducible gene knockout (iKO) remains challenging. We explored building iKO hPSC lines by combining CRISPR/Cas9-mediated genome editing with the Flp/FRT and Cre/LoxP system. We found that "dual-sgRNA targeting" is essential for biallelic knockin of FRT sequences to flank the exon. We further developed a strategy to simultaneously insert an activity-controllable recombinase-expressing cassette and remove the drug-resistance gene, thus speeding up the generation of iKO hPSC lines. This two-step strategy was used to establish human embryonic stem cell (hESC) and induced pluripotent stem cell (iPSC) lines with iKO of SOX2, PAX6, OTX2, and AGO2, genes that exhibit diverse structural layout and temporal expression patterns. The availability of iKO hPSC lines will substantially transform the way we examine gene function in human cells.

  15. Embryonic stem cells: from markers to market.

    Science.gov (United States)

    Deb, Kaushik Dilip; Jayaprakash, Anitha Devi; Sharma, Vijay; Totey, Satish

    2008-02-01

    ABSTRACT Embryonic stem cells are considered the mother of all kinds of tissues and cells and it is envisioned as the holy grail of regenerative medicine. However, their use in cell replacement therapies (CRT) has so far been limited and their potentials are yet to be fully realized. The use of human embryonic stem cells (hESC) involves many safety issues pertaining to culture conditions and epigenetic changes. The role and importance of an epigenomic signature in derivation and maintenance of hESC are discussed. We provide a list of important epigenetic markers, which should be studied for evaluation of safety in hESC-based cell replacement therapies. These genes also need to be screened to determine an epigenetic signature for pluripotency in the hESCs. Finally a comprehensive list of all known stemness signature genes and the marker genes for different germ line lineages are presented. This review aims at summing up most of the intriguing molecules that can play a role in the maintenance of pluripotency and can help in determining hESC differentiation to various lineages. Extensive understanding of these markers will eventually help the researchers to transform the hESC research from bench to the bedside. The use of hESCs in CRTs is still in its infancy; much effort is warranted to turn them into the much dreamed about magic wand of regenerative medicine.

  16. Selective isolation and differentiation of a stromal population of human embryonic stem cells with osteogenic potential

    DEFF Research Database (Denmark)

    Harkness, Linda M; Mahmood, Amer; Ditzel, Nicholas

    2011-01-01

    The derivation of osteogenic cells from human embryonic stem cells (hESC) has been hampered by the absence of easy and reproducible protocols. hESC grown in feeder-free conditions, often show a sub population of fibroblast-like, stromal cells growing between the colonies. Thus, we examined...... the possibility that these cells represent a population of stromal (mesenchymal) stem cells (hESC-stromal). Two in house derived hES cell lines (Odense3 and KMEB3) as well as an externally derived cell line (Hues8) were transitioned to feeder-free conditions. A sub population of fibroblast-like cells established...

  17. Astrocytes derived from trisomic human embryonic stem cells express markers of astrocytic cancer cells and premalignant stem-like progenitors

    Directory of Open Access Journals (Sweden)

    Iverson Linda E

    2010-04-01

    Full Text Available Abstract Background Trisomic variants of human embryonic stem cells (hESCs arise spontaneously in culture. Although trisomic hESCs share many properties with diploid hESCs, they also exhibit features of cancer stem cells. Since most hESC-based therapies will utilize differentiated derivatives, it is imperative to investigate the potential of trisomic hESCs to undergo malignant transformation during differentiation prior to their use in the clinical setting. Methods Diploid and trisomic hESCs were differentiated into astrocytic progenitors cells (APCs, RNA extracted and hybridized to human exon-specific microarrays. Global gene expression profiles of diploid and trisomic APCs were compared to that of an astrocytoma cell line and glioblastoma samples, analyzed by others, using the same microarray platform. Results Bioinformatic analysis of microarray data indicates that differentiated trisomic APCs exhibit global expression profiles with similarities to the malignant astrocytoma cell line. An analogous trend is observed in comparison to glioblastoma samples indicating that trisomic APCs express markers of astrocytic cancer cells. The analysis also allowed identification of transcripts predicted to be differentially expressed in brain tumor stem cells. These data indicate that in vitro differentiation of trisomic hESCs along astrocytic pathways give rise to cells exhibiting properties of premalignant astrocytic stem/progenitor cells. Conclusions Given their occult nature, opportunities to study premalignant stem/progenitor cells in human have been few. The ability to propagate and direct the differentiation of aneuploid hESCs provides a powerful in vitro system for investigating biological properties of human cells exhibiting features of premalignant stem cells. This in vitro culture system can be used to elucidate changes in gene expression occurring enroute to malignant transformation and to identify molecular markers of cancer stem

  18. Human embryonic stem cells carrying an unbalanced translocation demonstrate impaired differentiation into trophoblasts: an in vitro model of human implantation failure.

    Science.gov (United States)

    Shpiz, A; Kalma, Y; Frumkin, T; Telias, M; Carmon, A; Amit, A; Ben-Yosef, D

    2015-03-01

    Carriers of the balanced translocation t(11;22), the most common reciprocal translocation in humans, are at high risk of creating gametes with unbalanced translocation, leading to repeated miscarriages. Current research models for studying translocated embryos and the biological basis for their implantation failure are limited. The aim of this study was to elucidate whether human embryonic stem cells (hESCs) carrying the unbalanced chromosomal translocation t(11;22) can provide an explanation for repeated miscarriages of unbalanced translocated embryos. Fluorescent in situ hybridization and karyotype analysis were performed to analyze the t(11;22) in embryos during PGD and in the derived hESC line. The hESC line was characterized by RT-PCR and FACS analysis for pluripotent markers. Directed differentiation to trophoblasts was carried out by bone morphogenetic protein 4 (BMP4). Trophoblast development was analyzed by measuring β-hCG secretion, by β-hCG immunostaining and by gene expression of trophoblastic markers. We derived the first hESC line carrying unbalanced t(11;22), which showed the typical morphological and molecular characteristics of a hESC line. Control hESCs differentiated into trophoblasts secreted increasing levels of β-hCG and concomitantly expressed the trophoblast genes, CDX2, TP63, KRT7, ERVW1, CGA, GCM1, KLF4 and PPARG. In contrast, differentiated translocated hESCs displayed reduced and delayed secretion of β-hCG concomitant with impaired expression of the trophoblastic genes. The reduced activation of trophoblastic genes may be responsible for the impaired trophoblastic differentiation in t(11;22)-hESCs, associated with implantation failure in unbalanced t(11;22) embryos. Our t(11;22) hESCs are presented as a valuable human model for studying the mechanisms underlying implantation failure.

  19. Two-way communication between endometrial stromal cells and monocytes.

    Science.gov (United States)

    Klinkova, Olga; Hansen, Keith A; Winterton, Emily; Mark, Connie J; Eyster, Kathleen M

    2010-02-01

    Immune system cells and cells of the endometrium have long been proposed to interact in both physiological and pathological processes. The current study was undertaken to examine communication between cultured monocytes and endometrial stromal cells and also to assess responses of endometrial stromal cells for treatment with estradiol (E) in the absence and presence of medroxyprogesterone acetate (P). A telomerase-immortalized human endometrial stromal cell (T-HESC) line and the U937 monocyte cell line were used. Telomerase-immortalized human endometrial stromal cells were treated with E +/- P +/- monocyte conditioned medium; U937 were treated +/- T-HESC conditioned medium. Gene expression in response to treatment was examined by DNA microarray. Bidirectional communication, as demonstrated by changes in gene expression, clearly occurred between U937 monocytes and T-HESC.

  20. MicroRNA-302b Enhances the Sensitivity of Hepatocellular Carcinoma Cell Lines to 5-FU via Targeting Mcl-1 and DPYD

    Directory of Open Access Journals (Sweden)

    Donghui Cai

    2015-10-01

    Full Text Available MiR-302b is a member of miR-302-367 cluster. The miR-302-367 cluster played important roles in maintaining pluripotency in human embryonic stem cells (hESCs and has been proved to be capable of suppressing cell growth in several types of cancer cell lines including Hepatocellular Carcinoma (HCC Cell lines. However, the role that miR-302b plays in the 5-Fluorouracil (5-FU sensitivity of HCC has not been known. This study showed that miR-302b could enhance the sensitivity to 5-FU in HCC cell lines and verified its two putative targeted genes responsible for its 5-FU sensitivity.

  1. MicroRNA-302b Enhances the Sensitivity of Hepatocellular Carcinoma Cell Lines to 5-FU via Targeting Mcl-1 and DPYD.

    Science.gov (United States)

    Cai, Donghui; He, Kang; Chang, Su'e; Tong, Dongdong; Huang, Chen

    2015-10-06

    MiR-302b is a member of miR-302-367 cluster. The miR-302-367 cluster played important roles in maintaining pluripotency in human embryonic stem cells (hESCs) and has been proved to be capable of suppressing cell growth in several types of cancer cell lines including Hepatocellular Carcinoma (HCC) Cell lines. However, the role that miR-302b plays in the 5-Fluorouracil (5-FU) sensitivity of HCC has not been known. This study showed that miR-302b could enhance the sensitivity to 5-FU in HCC cell lines and verified its two putative targeted genes responsible for its 5-FU sensitivity.

  2. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  3. Progress in human embryonic stem cell research in the United States between 2001 and 2010.

    Directory of Open Access Journals (Sweden)

    Keyvan Vakili

    Full Text Available On August 9th, 2001, the federal government of the United States announced a policy restricting federal funds available for research on human embryonic stem cell (hESCs out of concern for the "vast ethical mine fields" associated with the creation of embryos for research purposes. Until the policy was repealed on March 9th, 2009, no U.S. federal funds were available for research on hESCs extracted after August 9, 2001, and only limited federal funds were available for research on a subset of hESC lines that had previously been extracted. This paper analyzes how the 2001 U.S. federal funding restrictions influenced the quantity and geography of peer-reviewed journal publications on hESC. The primary finding is that the 2001 policy did not have a significant aggregate effect on hESC research in the U.S. After a brief lag in early 2000s, U.S. hESC research maintained pace with other areas of stem cell and genetic research. The policy had several other consequences. First, it was tied to increased hESC research funding within the U.S. at the state level, leading to concentration of related activities in a relatively small number of states. Second, it stimulated increased collaborative research between US-based scientists and those in countries with flexible policies toward hESC research (including Canada, the U.K., Israel, China, Spain, and South Korea. Third, it encouraged independent hESC research in countries without restrictions.

  4. Human fetal liver stromal cells expressing erythropoietin promote hematopoietic development from human embryonic stem cells.

    Science.gov (United States)

    Yang, Chao; Ji, Lei; Yue, Wen; Shi, Shuang-Shuang; Wang, Ruo-Yong; Li, Yan-Hua; Xie, Xiao-Yan; Xi, Jia-Fei; He, Li-Juan; Nan, Xue; Pei, Xue-Tao

    2012-02-01

    Blood cells transfusion and hematopoietic stem cells (HSCs) transplantation are important methods for cell therapy. They are widely used in the treatment of incurable hematological disorder, infectious diseases, genetic diseases, and immunologic deficiency. However, their availability is limited by quantity, capacity of proliferation and the risk of blood transfusion complications. Recently, human embryonic stem cells (hESCs) have been shown to be an alternative resource for the generation of hematopoietic cells. In the current study, we describe a novel method for the efficient production of hematopoietic cells from hESCs. The stable human fetal liver stromal cell lines (hFLSCs) expressing erythropoietin (EPO) were established using the lentiviral system. We observed that the supernatant from the EPO transfected hFLSCs could induce the hESCs differentiation into hematopoietic cells, especially erythroid cells. They not only expressed fetal and embryonic globins but also expressed the adult-globin chain on further maturation. In addition, these hESCs-derived erythroid cells possess oxygen-transporting capacity, which indicated hESCs could generate terminally mature progenies. This should be useful for ultimately developing an animal-free culture system to generate large numbers of erythroid cells from hESCs and provide an experimental model to study early human erythropoiesis.

  5. Molluscan cells in culture: primary cell cultures and cell lines.

    Science.gov (United States)

    Yoshino, T P; Bickham, U; Bayne, C J

    2013-06-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome.

  6. Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Zhumur Ghosh

    Full Text Available Human induced pluripotent stem cells (hiPSCs generated by de-differentiation of adult somatic cells offer potential solutions for the ethical issues surrounding human embryonic stem cells (hESCs, as well as their immunologic rejection after cellular transplantation. However, although hiPSCs have been described as "embryonic stem cell-like", these cells have a distinct gene expression pattern compared to hESCs, making incomplete reprogramming a potential pitfall. It is unclear to what degree the difference in tissue of origin may contribute to these gene expression differences. To answer these important questions, a careful transcriptional profiling analysis is necessary to investigate the exact reprogramming state of hiPSCs, as well as analysis of the impression, if any, of the tissue of origin on the resulting hiPSCs. In this study, we compare the gene profiles of hiPSCs derived from fetal fibroblasts, neonatal fibroblasts, adipose stem cells, and keratinocytes to their corresponding donor cells and hESCs. Our analysis elucidates the overall degree of reprogramming within each hiPSC line, as well as the "distance" between each hiPSC line and its donor cell. We further identify genes that have a similar mode of regulation in hiPSCs and their corresponding donor cells compared to hESCs, allowing us to specify core sets of donor genes that continue to be expressed in each hiPSC line. We report that residual gene expression of the donor cell type contributes significantly to the differences among hiPSCs and hESCs, and adds to the incompleteness in reprogramming. Specifically, our analysis reveals that fetal fibroblast-derived hiPSCs are closer to hESCs, followed by adipose, neonatal fibroblast, and keratinocyte-derived hiPSCs.

  7. Epigenetics changes caused by the fusion of human embryonic stem cell and ovarian cancer cells.

    Science.gov (United States)

    He, Ke; Qu, Hu; Xu, Li-Nan; Gao, Jun; Cheng, Fu-Yi; Xiang, Peng; Zhou, Can-Quan

    2016-10-01

    To observe the effect of gene expression and tumorigenicity in hybrid cells of human embryonic stem cells (hESCs) and ovarian cancer cells in vitro and in vivo using a mouse model, and to determine its feasibility in reprogramming tumour cells growth and apoptosis, for a potential exploration of the role of hESCs and tumour cells fusion in the management of ovarian cancer. Stable transgenic hESCs (H1) and ovarian cancer cell line OVCAR-3 were established before fusion, and cell fusion system was established to analyse the related indicators. PTEN expression in HO-H1 cells was higher than those in the parental stem cells and lower than those in parental tumour cells; the growth of OV-H1 (RFP+GFP) hybrid cells with double fluorescence expressions were obviously slower than that of human embryonic stem cells and OVCAR-3 ovarian cancer cells. The apoptosis signal of the OV-H1 hybrid cells was significantly higher than that of the hESCs and OVCAR-3 ovarian cancer cells. In vivo results showed that compared with 7 days, 28 days and 35 days after inoculation of OV-H1 hybrid cells; also, apoptotic cell detection indicated that much stronger apoptotic signal was found in OV-H1 hybrid cells inoculated mouse. The hESCs can inhibit the growth of OVCAR-3 cells in vitro by suppressing p53 and PTEN expression to suppress the growth of tumour that may be achieved by inducing apoptosis of OVCAR-3 cells. The change of epigenetics after fusion of ovarian cancer cells and hESCs may become a novel direction for treatment of ovarian cancer.

  8. Dynamics of the transcriptome response of cultured human embryonic stem cells to ionizing radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Mykyta V., E-mail: sokolovm@mail.nih.gov [Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 (United States); Panyutin, Irina V., E-mail: ipanyutinv@mail.nih.gov [Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 (United States); Panyutin, Igor G., E-mail: igorp@helix.nih.gov [Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 (United States); Neumann, Ronald D., E-mail: rneumann@mail.nih.gov [Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 (United States)

    2011-05-10

    One of the key consequences of exposure of human cells to genotoxic agents is the activation of DNA damage responses (DDR). While the mechanisms underpinning DDR in fully differentiated somatic human cells have been studied extensively, molecular signaling events and pathways involved in DDR in pluripotent human embryonic stem cells (hESC) remain largely unexplored. We studied changes in the human genome-wide transcriptome of H9 hESC line following exposures to 1 Gy of gamma-radiation at 2 h and 16 h post-irradiation. Quantitative real-time PCR was performed to verify the expression data for a subset of genes. In parallel, the cell growth, DDR kinetics, and expression of pluripotency markers in irradiated hESC were monitored. The changes in gene expression in hESC after exposure to ionizing radiation (IR) are substantially different from those observed in somatic human cell lines. Gene expression patterns at 2 h post-IR showed almost an exclusively p53-dependent, predominantly pro-apoptotic, signature with a total of only 30 up-regulated genes. In contrast, the gene expression patterns at 16 h post-IR showed 354 differentially expressed genes, mostly involved in pro-survival pathways, such as increased expression of metallothioneins, ubiquitin cycle, and general metabolism signaling. Cell growth data paralleled trends in gene expression changes. DDR in hESC followed the kinetics reported for human somatic differentiated cells. The expression of pluripotency markers characteristic of undifferentiated hESC was not affected by exposure to IR during the time course of our analysis. Our data on dynamics of transcriptome response of irradiated hESCs may provide a valuable tool to screen for markers of IR exposure of human cells in their most naive state; thus unmasking the key elements of DDR; at the same time, avoiding the complexity of interpreting distinct cell type-dependent genotoxic stress responses of terminally differentiated cells.

  9. A CRISPR/Cas-Mediated Selection-free Knockin Strategy in Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Zengrong Zhu

    2015-06-01

    Full Text Available The development of new gene-editing tools, in particular the CRISPR/Cas system, has greatly facilitated site-specific mutagenesis in human embryonic stem cells (hESCs, including the introduction or correction of patient-specific mutations for disease modeling. However, integration of a reporter gene into an endogenous locus in hESCs still requires a lengthy and laborious two-step strategy that involves first drug selection to identify correctly targeted clones and then excision of the drug-resistance cassette. Through the use of iCRISPR, an efficient gene-editing platform we recently developed, this study demonstrates a knockin strategy without drug selection for both active and silent genes in hESCs. Lineage-specific hESC reporter lines are useful for real-time monitoring of cell-fate decisions and lineage tracing, as well as enrichment of specific cell populations during hESC differentiation. Thus, this selection-free knockin strategy is expected to greatly facilitate the use of hESCs for developmental studies, disease modeling, and cell-replacement therapy.

  10. A homozygous Keap1-knockout human embryonic stem cell line generated using CRISPR/Cas9 mediates gene targeting

    Directory of Open Access Journals (Sweden)

    So-Jung Kim

    2017-03-01

    Full Text Available Kelch-like ECH-associated protein 1 (keap1 is a cysteine-rich protein that interacts with transcription factor Nrf2 in a redox-sensitive manner, leading to the degradation of Nrf2 (Kim et al., 2014a. Disruption of Keap1 results in the induction of Nrf2-related signaling pathways involving the expression of a set of anti-oxidant and anti-inflammatory genes. We generated biallelic mutants of the Keap1 gene using a CRISPR-Cas9 genome editing method in the H9 human embryonic stem cell (hESC. The Keap1 homozygous-knockout H9 cell line retained normal morphology, gene expression, and in vivo differentiation potential.

  11. Proteomic Analysis of Human Blastocoel Fluid and Blastocyst Cells

    DEFF Research Database (Denmark)

    Linnert Jensen, Pernille; Beck, Hans Christian; Petersen, Jørgen;

    the cells of the blastocyst are exposed. The ICM is the starting point for the development of undifferentiated human embryonic stem cells (hESCs), which posses the potential to develop into any cell type present in the adult human body [1,2]. This ability makes hESCs a potential source of cells...... for regenerative medicine, such as in the treatment of diabetes, Parkinson’s disease, blindness, and spinal cord injury. In the context of developing regenerative medicine based on hESCs, it remains a challenge to employ safe, xenofree and defined culture conditions. The blastocoel fluid is per se the in vivo......The human blastocyst consists of 100-200 cells that are organized in an outer layer of differentiated trophectoderm (TE) cells lining the blastocyst cavity into which the undifferentiated inner cell mass (ICM) protrudes. The cavity of the blastocyst is filled with blastocoel fluid to which all...

  12. In situ cryopreservation of human embryonic stem cells in gas-permeable membrane culture cassettes for high post-thaw yield and good manufacturing practice.

    Science.gov (United States)

    Amps, K J; Jones, M; Baker, D; Moore, H D

    2010-06-01

    The development of efficient and robust methods for the cryopreservation of human embryonic stem cells (hESCs) is important for the production of master and working cell banks for future clinical applications. Such methods must meet requirements of good manufacturing practice (GMP) and maintain genetic stability of the cell line. We investigated the culture of four Shef hESC lines in gas permeable 'culture cassettes' which met GMP compliance. hESCs adhered rapidly to the membrane and colonies displayed good proliferation and expansion. After 5-7 days of culture, hESCs were cryopreserved in situ using 10% dimethyl sulphoxide in foetal calf serum at approximately 1 degrees C/min. This method was compared with a control of standard flask culture and cryopreservation in vials. Post-thaw cassette culture displayed relative proliferation ratios (fold increase above flask/cryovial culture) of 114 (Shef 4), 8.2 (Shef 5), 195 (shef 6) and 17.5 (Shef 7). The proportion of cells expressing pluripotency markers after cryopreservation was consistently greater in cassette culture than for the control with the markers SSEA3 and SSEA4 exhibiting a significant increase (P> or =0.05). The efficiency of cell line culture in cassette was associated with the overall passage number of the cell line. The procedure enables cryopreservation of relatively large quantities of hESCs in situ, whilst returning high yields of viable, undifferentiated stem cells, thereby increasing capacity to scale up with greater efficacy.

  13. Alternative splicing in the differentiation of human embryonic stem cells into cardiac precursors.

    Directory of Open Access Journals (Sweden)

    Nathan Salomonis

    2009-11-01

    Full Text Available The role of alternative splicing in self-renewal, pluripotency and tissue lineage specification of human embryonic stem cells (hESCs is largely unknown. To better define these regulatory cues, we modified the H9 hESC line to allow selection of pluripotent hESCs by neomycin resistance and cardiac progenitors by puromycin resistance. Exon-level microarray expression data from undifferentiated hESCs and cardiac and neural precursors were used to identify splice isoforms with cardiac-restricted or common cardiac/neural differentiation expression patterns. Splice events for these groups corresponded to the pathways of cytoskeletal remodeling, RNA splicing, muscle specification, and cell cycle checkpoint control as well as genes with serine/threonine kinase and helicase activity. Using a new program named AltAnalyze (http://www.AltAnalyze.org, we identified novel changes in protein domain and microRNA binding site architecture that were predicted to affect protein function and expression. These included an enrichment of splice isoforms that oppose cell-cycle arrest in hESCs and that promote calcium signaling and cardiac development in cardiac precursors. By combining genome-wide predictions of alternative splicing with new functional annotations, our data suggest potential mechanisms that may influence lineage commitment and hESC maintenance at the level of specific splice isoforms and microRNA regulation.

  14. Effects of Pulsed Electromagnetic Field on Differentiation of HUES-17 Human Embryonic Stem Cell Line

    Directory of Open Access Journals (Sweden)

    Yi-Lin Wu

    2014-08-01

    Full Text Available Electromagnetic fields are considered to potentially affect embryonic development, but the mechanism is still unknown. In this study, human embryonic stem cell (hESC line HUES-17 was applied to explore the mechanism of exposure on embryonic development to pulsed electromagnetic field (PEMF for 400 pulses at different electric field intensities and the differentiation of HUES-17 cells was observed after PEMF exposure. The expression of alkaline phosphatase (AP, stage-specific embryonic antigen-3 (SSEA-3, SSEA-4 and the mRNA level and protein level of Oct4, Sox2 and Nanog in HUES-17 cells remained unchanged after PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m. Four hundred pulses PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m did not affect the differentiation of HUES-17 cells. The reason why electromagnetic fields affect embryonic development may be due to other mechanisms rather than affecting the differentiation of embryonic stem cells.

  15. Alternative Routes to Induce Naïve Pluripotency in Human Embryonic Stem Cells.

    Science.gov (United States)

    Duggal, Galbha; Warrier, Sharat; Ghimire, Sabitri; Broekaert, Dorien; Van der Jeught, Margot; Lierman, Sylvie; Deroo, Tom; Peelman, Luc; Van Soom, Ann; Cornelissen, Ria; Menten, Björn; Mestdagh, Pieter; Vandesompele, Jo; Roost, Matthias; Slieker, Roderick C; Heijmans, Bastiaan T; Deforce, Dieter; De Sutter, Petra; De Sousa Lopes, Susana Chuva; Heindryckx, Björn

    2015-09-01

    Human embryonic stem cells (hESCs) closely resemble mouse epiblast stem cells exhibiting primed pluripotency unlike mouse ESCs (mESCs), which acquire a naïve pluripotent state. Efforts have been made to trigger naïve pluripotency in hESCs for subsequent unbiased lineage-specific differentiation, a common conundrum faced by primed pluripotent hESCs due to heterogeneity in gene expression existing within and between hESC lines. This required either ectopic expression of naïve genes such as NANOG and KLF2 or inclusion of multiple pluripotency-associated factors. We report here a novel combination of small molecules and growth factors in culture medium (2i/LIF/basic fibroblast growth factor + Ascorbic Acid + Forskolin) facilitating rapid induction of transgene-free naïve pluripotency in hESCs, as well as in mESCs, which has not been shown earlier. The converted naïve hESCs survived long-term single-cell passaging, maintained a normal karyotype, upregulated naïve pluripotency genes, and exhibited dependence on signaling pathways similar to naïve mESCs. Moreover, they undergo global DNA demethylation and show a distinctive long noncoding RNA profile. We propose that in our medium, the FGF signaling pathway via PI3K/AKT/mTORC induced the conversion of primed hESCs toward naïve pluripotency. Collectively, we demonstrate an alternate route to capture naïve pluripotency in hESCs that is fast, reproducible, supports naïve mESC derivation, and allows efficient differentiation.

  16. Transcriptional activation of human CDCA8 gene regulated by transcription factor NF-Y in embryonic stem cells and cancer cells.

    Science.gov (United States)

    Dai, Can; Miao, Cong-Xiu; Xu, Xiao-Ming; Liu, Lv-Jun; Gu, Yi-Fan; Zhou, Di; Chen, Lian-Sheng; Lin, Ge; Lu, Guang-Xiu

    2015-09-11

    The cell division cycle associated 8 (CDCA8) gene plays an important role in mitosis. Overexpression of CDCA8 was reported in some human cancers and is required for cancer growth and progression. We found CDCA8 expression was also high in human ES cells (hESCs) but dropped significantly upon hESC differentiation. However, the regulation of CDCA8 expression has not yet been studied. Here, we characterized the CDCA8 promoter and identified its cis-elements and transcription factors. Three transcription start sites were identified. Reporter gene assays revealed that the CDCA8 promoter was activated in hESCs and cancer cell lines. The promoter drove the reporter expression specifically to pluripotent cells during early mouse embryo development and to tumor tissues in tumor-bearing mice. These results indicate that CDCA8 is transcriptionally activated in hESCs and cancer cells. Mechanistically, two key activation elements, bound by transcription factor NF-Y and CREB1, respectively, were identified in the CDCA8 basic promoter by mutation analyses and electrophoretic motility shift assays. NF-Y binding is positively correlated with promoter activities in different cell types. Interestingly, the NF-YA subunit, binding to the promoter, is primarily a short isoform in hESCs and a long isoform in cancer cells, indicating a different activation mechanism of the CDCA8 transcription between hESCs and cancer cells. Finally, enhanced CDCA8 promoter activities by NF-Y overexpression and reduced CDCA8 transcription by NF-Y knockdown further verified that NF-Y is a positive regulator of CDCA8 transcription. Our study unearths the molecular mechanisms underlying the activation of CDCA8 expression in hESCs and cancer cells, which provides a better understanding of its biological functions.

  17. Derivation of xeno-free and GMP-grade human embryonic stem cells--platforms for future clinical applications.

    Directory of Open Access Journals (Sweden)

    Shelly E Tannenbaum

    Full Text Available Clinically compliant human embryonic stem cells (hESCs should be developed in adherence to ethical standards, without risk of contamination by adventitious agents. Here we developed for the first time animal-component free and good manufacturing practice (GMP-compliant hESCs. After vendor and raw material qualification, we derived xeno-free, GMP-grade feeders from umbilical cord tissue, and utilized them within a novel, xeno-free hESC culture system. We derived and characterized three hESC lines in adherence to regulations for embryo procurement, and good tissue, manufacturing and laboratory practices. To minimize freezing and thawing, we continuously expanded the lines from initial outgrowths and samples were cryopreserved as early stocks and banks. Batch release criteria included DNA-fingerprinting and HLA-typing for identity, characterization of pluripotency-associated marker expression, proliferation, karyotyping and differentiation in-vitro and in-vivo. These hESCs may be valuable for regenerative therapy. The ethical, scientific and regulatory methodology presented here may serve for development of additional clinical-grade hESCs.

  18. Functional human artificial chromosomes are generated and stably maintained in human embryonic stem cells

    Science.gov (United States)

    Mandegar, Mohammad A.; Moralli, Daniela; Khoja, Suhail; Cowley, Sally; Chan, David Y.L.; Yusuf, Mohammed; Mukherjee, Sayandip; Blundell, Michael P.; Volpi, Emanuela V.; Thrasher, Adrian J.; James, William; Monaco, Zoia L.

    2011-01-01

    We present a novel and efficient non-integrating gene expression system in human embryonic stem cells (hESc) utilizing human artificial chromosomes (HAC), which behave as autonomous endogenous host chromosomes and segregate correctly during cell division. HAC are important vectors for investigating the organization and structure of the kinetochore, and gene complementation. HAC have so far been obtained in immortalized or tumour-derived cell lines, but never in stem cells, thus limiting their potential therapeutic application. In this work, we modified the herpes simplex virus type 1 amplicon system for efficient transfer of HAC DNA into two hESc. The deriving stable clones generated green fluorescent protein gene-expressing HAC at high frequency, which were stably maintained without selection for 3 months. Importantly, no integration of the HAC DNA was observed in the hESc lines, compared with the fibrosarcoma-derived control cells, where the exogenous DNA frequently integrated in the host genome. The hESc retained pluripotency, differentiation and teratoma formation capabilities. This is the first report of successfully generating gene expressing de novo HAC in hESc, and is a significant step towards the genetic manipulation of stem cells and potential therapeutic applications. PMID:21593218

  19. Epigenetically reprogramming of human embryonic stem cells by 3-Deazaneplanocin A and sodium butyrate

    Directory of Open Access Journals (Sweden)

    Soheila Azghadi

    2011-01-01

    Full Text Available Objectives: Infertility affects about 6.1 million women aged 15-44 in the United States. The leading cause of infertility in women is quantitative and qualitative defects in human germ-cell development (these sentences are not mentioned in introduction so it is not correct to mention in abstract, you can omit. Human embryonic stem cell (hESC lines are derived from the inner cell mass (ICM of developing blastocysts and have a broad clinical potential. hESCs have been classified into three classes based on their epigenetic state. The goal of this study was to epigenetically reprogram Class II and Class III cell lines to Class I (naïve state, and to in vitro differentiation of potent hESCs to primordial germ cells (PGCs. Methods: Recent evidence suggests that 3-deazaneplanocin A (DZNep is a global histone methylation inhibitor which selectively inhibits trimethylation of lysine 27 on histone H3K27, and it is an epigenetic therapeutic for cancer. The characteristics of DZNep lead us to hypothesize that it is a good candidate to epigenetically reprogram hESCs to the Class I. Additionally, we used sodium butyrate (NaBu shown in previous studies to up-regulate the expression of germ cell specific markers (these sentences should be come in introduction. Results: We used these two drugs to produce epigenetically stable hESC lines. hESC lines are an appropriate system for disease modeling and understanding developmental stages, therefore producing stable stem cell lines may have an outstanding impact in different research fields such as preventive medicine. Conclusions: X-Chromosome inactivation has been used as a tool to follow the reprogramming process. We have used immunostaining and western blot as methods to follow this reprogramming qualitatively and quantitatively.

  20. Human dendritic cells derived from embryonic stem cells stably modified with CD1d efficiently stimulate antitumor invariant natural killer T cell response.

    Science.gov (United States)

    Zeng, Jieming; Wang, Shu

    2014-01-01

    Invariant natural killer T (iNKT) cells are a unique lymphocyte subpopulation that mediates antitumor activities upon activation. A current strategy to harness iNKT cells for cancer treatment is endogenous iNKT cell activation using patient-derived dendritic cells (DCs). However, the limited number and functional defects of patient DCs are still the major challenges for this therapeutic approach. In this study, we investigated whether human embryonic stem cells (hESCs) with an ectopically expressed CD1d gene could be exploited to address this issue. Using a lentivector carrying an optimized expression cassette, we generated stably modified hESC lines that consistently overexpressed CD1d. These modified hESC lines were able to differentiate into DCs as efficiently as the parental line. Most importantly, more than 50% of such derived DCs were CD1d+. These CD1d-overexpressing DCs were more efficient in inducing iNKT cell response than those without modification, and their ability was comparable to that of DCs generated from monocytes of healthy donors. The iNKT cells expanded by the CD1d-overexpressing DCs were functional, as demonstrated by their ability to lyse iNKT cell-sensitive glioma cells. Therefore, hESCs stably modified with the CD1d gene may serve as a convenient, unlimited, and competent DC source for iNKT cell-based cancer immunotherapy.

  1. Limited Gene Expression Variation in Human Embryonic Stem Cell and Induced Pluripotent Stem Cell Derived Endothelial Cells

    OpenAIRE

    2013-01-01

    Recent evidence suggests human embryonic stem cell (hESC) and induced pluripotent stem (iPS) cell lines have differences in their epigenetic marks and transcriptomes, yet the impact of these differences on subsequent terminally differentiated cells is less well understood. Comparison of purified, homogeneous populations of somatic cells derived from multiple independent human iPS and ES lines will be required to address this critical question. Here, we report a differentiation protocol based ...

  2. The production and directed differentiation of human embryonic stem cells.

    Science.gov (United States)

    Trounson, Alan

    2006-04-01

    Human embryonic stem cells (hESCs) are being rapidly produced from chromosomally euploid, aneuploid, and mutant human embryos that are available from in vitro fertilization clinics treating patients for infertility or preimplantation genetic diagnosis. These hESC lines are an important resource for functional genomics, drug screening, and, perhaps eventually, cell and gene therapy. The methods for deriving hESCs are well established and repeatable and are relatively successful with a ratio of 1:10 to 1:2 new hESC lines produced from 4- to 8-d-old morula and blastocysts and from isolated inner cell mass cell clusters of human blastocysts. The hESCs can be formed and maintained on human somatic cells in humanized serum-free culture conditions and for several passages in cell-free culture systems. The hESCs can be transfected with DNA constructs. Their gene expression profiles are being described and immunological characteristics determined. They may be grown indefinitely in vitro while maintaining their original karyotype and epigenetic status, but this needs to be confirmed from time to time in long-term cultures. hESCs spontaneously differentiate in the absence of the appropriate cell feeder layer, when overgrown in culture and when isolated from the ESC colony. All three major embryonic lineages are produced in differentiating flat attachment cultures and unattached embryoid bodies. Cell progenitors of interest can be identified by markers, expression of reporter genes, and characteristic morphology, and the cells thereafter enriched for progenitor types and further culture to more mature cell types. Directed differentiation systems are well developed for ectodermal pathways that result in neural and glial cells and the mesendodermal pathway for cardiac muscle cells and many other cell types including hematopoietic progenitors and endothelial cells. Directed differentiation into endoderm has been more difficult to achieve, perhaps because of the lack of markers of

  3. A unique epigenetic signature is associated with active DNA replication loci in human embryonic stem cells.

    Science.gov (United States)

    Li, Bing; Su, Trent; Ferrari, Roberto; Li, Jing-Yu; Kurdistani, Siavash K

    2014-02-01

    The cellular epigenetic landscape changes as pluripotent stem cells differentiate to somatic cells or when differentiated cells transform to a cancerous state. These epigenetic changes are commonly correlated with differences in gene expression. Whether active DNA replication is also associated with distinct chromatin environments in these developmentally and phenotypically diverse cell types has not been known. Here, we used BrdU-seq to map active DNA replication loci in human embryonic stem cells (hESCs), normal primary fibroblasts and a cancer cell line, and correlated these maps to the epigenome. In all cell lines, the majority of BrdU peaks were enriched in euchromatin and at DNA repetitive elements, especially at microsatellite repeats, and coincided with previously determined replication origins. The most prominent BrdU peaks were shared between all cells but a sizable fraction of the peaks were specific to each cell type and associated with cell type-specific genes. Surprisingly, the BrdU peaks that were common to all cell lines were associated with H3K18ac, H3K56ac, and H4K20me1 histone marks only in hESCs but not in normal fibroblasts or cancer cells. Depletion of the histone acetyltransferases for H3K18 and H3K56 dramatically decreased the number and intensity of BrdU peaks in hESCs. Our data reveal a unique epigenetic signature that distinguishes active replication loci in hESCs from normal somatic or malignant cells.

  4. Unraveling the global microRNAome responses to ionizing radiation in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Mykyta V Sokolov

    Full Text Available MicroRNAs (miRNA comprise a group of short ribonucleic acid molecules implicated in regulation of key biological processes and functions at the post-transcriptional level. Ionizing radiation (IR causes DNA damage and generally triggers cellular stress response. However, the role of miRNAs in IR-induced response in human embryonic stem cells (hESC has not been defined yet. Here, by using system biology approaches, we show for the first time, that miRNAome undergoes global alterations in hESC (H1 and H9 lines after IR. Interrogation of expression levels of 1,090 miRNA species in irradiated hESC showed statistically significant changes in 54 genes following 1 Gy of X-ray exposures; global miRNAome alterations were found to be highly temporally and cell line--dependent in hESC. Time-course studies showed that the 16 hr miRNAome radiation response of hESC is much more robust compared to 2 hr-response signature (only eight genes, and may be involved in regulating the cell cycle. Quantitative real-time PCR performed on some miRNA species confirms the robustness of our miRNA microarray platform. Positive regulation of differentiation-, cell cycle-, ion transport- and endomembrane system-related processes were predicted to be negatively affected by miRNAome changes in irradiated hESC. Our findings reveal a fundamental role of miRNAome in modulating the radiation response, and identify novel molecular targets of radiation in hESC.

  5. Difference in Membrane Repair Capacity Between Cancer Cell Lines and a Normal Cell Line.

    Science.gov (United States)

    Frandsen, Stine Krog; McNeil, Anna K; Novak, Ivana; McNeil, Paul L; Gehl, Julie

    2016-08-01

    Electroporation-based treatments and other therapies that permeabilize the plasma membrane have been shown to be more devastating to malignant cells than to normal cells. In this study, we asked if a difference in repair capacity could explain this observed difference in sensitivity. Membrane repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique, providing a sensitive index of repair capacity. The normal primary cell line of all tested cell lines exhibited the slowest rate of dye entry after laser disruption and lowest level of dye uptake. Significantly, more rapid dye uptake and a higher total level of dye uptake occurred in six of the seven tested cancer cell lines (p normal cell line (98 % viable cells) was higher than in the three tested cancer cell lines (81-88 % viable cells). These data suggest more effective membrane repair in normal, primary cells and supplement previous explanations why electroporation-based therapies and other therapies permeabilizing the plasma membrane are more effective on malignant cells compared to normal cells in cancer treatment.

  6. [The prospect of pluripotent stem cell-based therapy].

    Science.gov (United States)

    Borisenko, G G

    2009-01-01

    Human embrional stem cells (hESC) are able to maintain pluripotency in culture, to proliferate indefinitely and to differentiate into any somatic cell type. Due to these unique properties, hESC may become an exceptional source of tissues for transplantation and have great potential for the therapy of incurable diseases. Here, we review new developments in the area of embrional stem cells and discuss major challenges--standartization of protocols for cell derivation and cultivation, identification of specific molecular markers, development of new aprouches for directed differentiation etc.--which remain to be settled, prior to safe and successful clinical application of stem cells. We appraise several potential approaches of hESC therapy including derivation of autologous cells via therapeutic cloning (1), generation of immune tolerance to allogenic donor cells via hematopoetic chimerism (2), and development of the banks of hESC lines (3). In addition, we discuss brifly induced pluripotent cells, which are derived via genetic modification of autologous somatic cells and are analogous to ESC. Our analysis demonstrates that uncontrollable differentiation in vivo and teratogenic potential of hESC are critical limitations of their application in clinic. Therefore, the major direction of hESC use is derivation of a specific differentiated progeny, which has lower proliferative potential and immune privilege, yet poses fewer risks. Finally, cell therapy is far more complex and resource-consuming process as compared to drug-based medicine; pluripotent stem cell biology and technology is in need of further investigation and development before these cells can be used in clinics.

  7. FOXN1 (GFP/w) reporter hESCs enable identification of integrin-β4, HLA-DR, and EpCAM as markers of human PSC-derived FOXN1(+) thymic epithelial progenitors.

    Science.gov (United States)

    Soh, Chew-Li; Giudice, Antonietta; Jenny, Robert A; Elliott, David A; Hatzistavrou, Tanya; Micallef, Suzanne J; Kianizad, Korosh; Seach, Natalie; Zúñiga-Pflücker, Juan Carlos; Chidgey, Ann P; Trounson, Alan; Nilsson, Susan K; Haylock, David N; Boyd, Richard L; Elefanty, Andrew G; Stanley, Edouard G

    2014-06-01

    Thymic epithelial cells (TECs) play a critical role in T cell maturation and tolerance induction. The generation of TECs from in vitro differentiation of human pluripotent stem cells (PSCs) provides a platform on which to study the mechanisms of this interaction and has implications for immune reconstitution. To facilitate analysis of PSC-derived TECs, we generated hESC reporter lines in which sequences encoding GFP were targeted to FOXN1, a gene required for TEC development. Using this FOXN1 (GFP/w) line as a readout, we developed a reproducible protocol for generating FOXN1-GFP(+) thymic endoderm cells. Transcriptional profiling and flow cytometry identified integrin-β4 (ITGB4, CD104) and HLA-DR as markers that could be used in combination with EpCAM to selectively purify FOXN1(+) TEC progenitors from differentiating cultures of unmanipulated PSCs. Human FOXN1(+) TEC progenitors generated from PSCs facilitate the study of thymus biology and are a valuable resource for future applications in regenerative medicine.

  8. FOXN1GFP/w Reporter hESCs Enable Identification of Integrin-β4, HLA-DR, and EpCAM as Markers of Human PSC-Derived FOXN1+ Thymic Epithelial Progenitors

    Directory of Open Access Journals (Sweden)

    Chew-Li Soh

    2014-06-01

    Full Text Available Thymic epithelial cells (TECs play a critical role in T cell maturation and tolerance induction. The generation of TECs from in vitro differentiation of human pluripotent stem cells (PSCs provides a platform on which to study the mechanisms of this interaction and has implications for immune reconstitution. To facilitate analysis of PSC-derived TECs, we generated hESC reporter lines in which sequences encoding GFP were targeted to FOXN1, a gene required for TEC development. Using this FOXN1GFP/w line as a readout, we developed a reproducible protocol for generating FOXN1-GFP+ thymic endoderm cells. Transcriptional profiling and flow cytometry identified integrin-β4 (ITGB4, CD104 and HLA-DR as markers that could be used in combination with EpCAM to selectively purify FOXN1+ TEC progenitors from differentiating cultures of unmanipulated PSCs. Human FOXN1+ TEC progenitors generated from PSCs facilitate the study of thymus biology and are a valuable resource for future applications in regenerative medicine.

  9. ISL1 protein transduction promotes cardiomyocyte differentiation from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Hananeh Fonoudi

    Full Text Available BACKGROUND: Human embryonic stem cells (hESCs have the potential to provide an unlimited source of cardiomyocytes, which are invaluable resources for drug or toxicology screening, medical research, and cell therapy. Currently a number of obstacles exist such as the insufficient efficiency of differentiation protocols, which should be overcome before hESC-derived cardiomyocytes can be used for clinical applications. Although the differentiation efficiency can be improved by the genetic manipulation of hESCs to over-express cardiac-specific transcription factors, these differentiated cells are not safe enough to be applied in cell therapy. Protein transduction has been demonstrated as an alternative approach for increasing the efficiency of hESCs differentiation toward cardiomyocytes. METHODS: We present an efficient protocol for the differentiation of hESCs in suspension by direct introduction of a LIM homeodomain transcription factor, Islet1 (ISL1 recombinant protein into the cells. RESULTS: We found that the highest beating clusters were derived by continuous treatment of hESCs with 40 µg/ml recombinant ISL1 protein during days 1-8 after the initiation of differentiation. The treatment resulted in up to a 3-fold increase in the number of beating areas. In addition, the number of cells that expressed cardiac specific markers (cTnT, CONNEXIN 43, ACTININ, and GATA4 doubled. This protocol was also reproducible for another hESC line. CONCLUSIONS: This study has presented a new, efficient, and reproducible procedure for cardiomyocytes differentiation. Our results will pave the way for scaled up and controlled differentiation of hESCs to be used for biomedical applications in a bioreactor culture system.

  10. Gene Manipulation of Human Embryonic Stem Cells by In Vitro-Synthesized mRNA for Gene Therapy.

    Science.gov (United States)

    Wang, Xiao Li; Yu, Li; Ding, Yan; Guo, Xing Rong; Yuan, Ya Hong; Li, Dong Sheng

    2015-01-01

    The difficulty in producing genetically modified human embryonic stem cells (hESCs) limits research on their applications. Virus-based gene transfer is not safe for clinical use, whereas DNAbased non-viral methods are not efficient or safe, and mRNA-based methods are useful for genetic manipulation. In this study, we easily obtained multiple types and large amounts of in vitro-synthesized mRNA by PCR. The efficiency of different transfection methods was studied by flow cytometry. The effect of different mRNA modifications on protein translation efficiency and dynamics of luciferase mRNA expression in hESCs were studied using a bioluminescence imaging system. The pluripotency of hESCs after transfection was studied by immunofluorescence. In vitro-synthesized pancreatic-duodenal homeobox 1 (PDX1) mRNA was used to induce the differentiation of hESCs into insulin-producing cells. We found that electroporation is the most efficient transfection method, and it produces more than 95% transgene expression in multiple hESC lines. Synthesized mRNA with a combination of a polyA tail, cap and base analogues is more efficiently translated into protein in hESCs compared with single-modified mRNA. Transfection of mRNA into hESCs by trypsinizing the cells into single-cell suspensions did not affect their pluripotency, and multiple types of mRNAs can be transfected into hESCs efficiently. We found that PDX-1 mRNA transfection significantly improved the expression level of genes related to beta cells and differentiated cells that express insulin and C-peptide. ELISA analysis validate the insulin secretion of islet-like cell clusters in response to glucose stimulation. Our results indicate that electroporation of in vitro-synthesized mRNA is useful for genetic manipulation of hESCs and differentiation of hESCs into particular cell types, and this finding will pave the way for clinical applications of this method.

  11. YKL-40 is differentially expressed in human embryonic stem cells and in cell progeny of the three germ layers

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Johansen, Julia S; Larsen, Lars A;

    2012-01-01

    The secreted glycoprotein YKL-40 participates in cell differentiation, inflammation, and cancer progression. High YKL-40 expression is reported during early human development, but its functions are unknown. Six human embryonic stem cell (hESC) lines were cultured in an atmosphere of low or high...... YKL-40 protein and YKL-40 mRNA expression were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative RT-PCR. Serial-sectioned colonies were stained for YKL-40 protein and for pluripotent hESC (OCT4, NANOG) and germ layer (HNF-3ß, PDX1, CD34, p63, nestin, PAX6) markers. Double...

  12. Characterization of monoclonal antibodies recognizing 130 kDa surface proteins on human embryonic stem cells and cancer cell lines.

    Science.gov (United States)

    Kim, Jum-Ji; Choi, Hong Seo; Lee, Mi-Young; Ryu, Chun Jeih

    2013-04-01

    To study cell surface proteins expressed on human embryonic stem cells (hESCs), we generated a panel of monoclonal antibodies (MAbs) against undifferentiated hESCs by a decoy immunization strategy in a previous study. Two of the MAbs, 63-B6 and 246-D7, bound to human pluripotent stem cells but not to human primary cells such as human peripheral blood mononuclear cells and human lung fibroblasts. They did not bind to either mouse embryonic stem cells or mouse embryonic fibroblasts. The two MAbs had similar binding profiles for many various cancer cells, with few exceptions. Expression of antigens recognized by the two MAbs was rapidly decreased during embryoid body formation of hESCs and gradually increased after initial decrease. The MAbs recognized approximately 130 kDa proteins on the surface of hESCs. Cloning and sequence analysis of antibody genes showed that although the MAbs had exactly the same light chain sequences, they had different heavy chain sequences. Taken together, the results suggest that the two MAbs may recognize two different epitopes of the same or different 130 kDa surface proteins involved in regulating the early differentiation of human pluripotent stem cells and cancer cells.

  13. Human embryonic stem cell cultivation: historical perspective and evolution of xeno-free culture systems.

    Science.gov (United States)

    Desai, Nina; Rambhia, Pooja; Gishto, Arsela

    2015-02-22

    Human embryonic stem cells (hESC) have emerged as attractive candidates for cell-based therapies that are capable of restoring lost cell and tissue function. These unique cells are able to self-renew indefinitely and have the capacity to differentiate in to all three germ layers (ectoderm, endoderm and mesoderm). Harnessing the power of these pluripotent stem cells could potentially offer new therapeutic treatment options for a variety of medical conditions. Since the initial derivation of hESC lines in 1998, tremendous headway has been made in better understanding stem cell biology and culture requirements for maintenance of pluripotency. The approval of the first clinical trials of hESC cells for treatment of spinal cord injury and macular degeneration in 2010 marked the beginning of a new era in regenerative medicine. Yet it was clearly recognized that the clinical utility of hESC transplantation was still limited by several challenges. One of the most immediate issues has been the exposure of stem cells to animal pathogens, during hESC derivation and during in vitro propagation. Initial culture protocols used co-culture with inactivated mouse fibroblast feeder (MEF) or human feeder layers with fetal bovine serum or alternatively serum replacement proteins to support stem cell proliferation. Most hESC lines currently in use have been exposed to animal products, thus carrying the risk of xeno-transmitted infections and immune reaction. This mini review provides a historic perspective on human embryonic stem cell culture and the evolution of new culture models. We highlight the challenges and advances being made towards the development of xeno-free culture systems suitable for therapeutic applications.

  14. False leukemia-lymphoma cell lines: an update on over 500 cell lines.

    Science.gov (United States)

    Drexler, H G; Dirks, W G; Matsuo, Y; MacLeod, R A F

    2003-02-01

    Human leukemia-lymphoma (LL) cell lines represent an extremely important resource for research in a variety of fields and disciplines. As the cell lines are used as in vitro model systems in lieu of primary cell material, it is crucial that the cells in the culture flasks faithfully correspond to the purported objects of study. Obviously, proper authentication of cell line derivation and precise characterization are indispensable requirements to use as model systems. A number of studies has shown an unacceptable level of LL cell lines to be false. We present here the results of authenticating a comprehensively large sample (n = 550) of LL cell lines mainly by DNA fingerprinting and cytogenetic evaluation. Surprisingly, near-identical incidences (ca 15%) of false cell lines were observed among cell lines obtained directly from original investigators (59/395: 14.9%) and from secondary sources (23/155: 14.8%) implying that most cross-contamination is perpetrated by originators, presumably during establishment. By comparing our data with those published, we were further able to subclassify the false cell lines as (1) virtual: cross-contaminated with and unretrievably overgrown by other cell lines during initiation, never enjoying independent existence; (2) misidentified: cross-contaminated subsequent to establishment so that an original prototype may still exist; or (3) misclassified: unwittingly established from an unintended (often normal) cell type. Prolific classic leukemia cell lines were found to account for the majority of cross-contaminations, eg CCRF-CEM, HL-60, JURKAT, K-562 and U-937. We discuss the impact of cross-contaminations on scientific research, the reluctance of scientists to address the problem, and consider possible solutions. These findings provide a rationale for mandating the procurement of reputably sourced LL cell lines and their regular authentication thereafter.

  15. Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells.

    NARCIS (Netherlands)

    Dormeyer, W.; van Hoof, D.; Braam, S.R.; Heck, A.J.R.; Mummery, C.L.; Krijgsveld, J.

    2008-01-01

    Human embryonic stem cells (hESCs) are of immense interest in regenerative medicine as they can self-renew indefinitely and can give rise to any adult cell type. Human embryonal carcinoma cells (hECCs) are the malignant counterparts of hESCs found in testis tumors. hESCs that have acquired chromosom

  16. Effect of VEGF on Neural Differentiation of Human Embryonic Stem Cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Shujie JIAO; Huifang XU; Jie XU; Yanqiang ZHAN; Suming ZHANG

    2009-01-01

    The effects of vascular endothelial growth factor (VEGF) on neural differentiation of human embryonic stem cells (hESCs) in vitro and the possible mechanism were observed. The hESCs lines,TJMU1 and TJMU2, were established and stored by our laboratory, hESCs differentiated into neuronal cells through embryonic body formation. In this induction process, hESCs were divided into three groups: group A, routine induction; group B, routine induction+10 ng/mL VEGF; group C, routine in-duction+10 ng/mL VEGF+10 ng/mL VEGFR2/Fc. OCT4, Nestin and GFAP in each group were de-tected by RT-PCR, and the cells expressing Nestin and GFAP were counted by immunofluorescence.The percentage of Nestin positive cells in group B was significantly higher than in groups A and C,while the percentage of GFAP positive cells in group B was significantly lower than in groups A and C (P0.05). It was concluded that VEGF, via VEGFR2, stimulated the neural differentiation of hESCs in vitro.

  17. Virus Discovery Using Tick Cell Lines

    Science.gov (United States)

    Bell-Sakyi, Lesley; Attoui, Houssam

    2016-01-01

    While ticks have been known to harbor and transmit pathogenic arboviruses for over 80 years, the application of high-throughput sequencing technologies has revealed that ticks also appear to harbor a diverse range of endogenous tick-only viruses belonging to many different families. Almost nothing is known about these viruses; indeed, it is unclear in most cases whether the identified viral sequences are derived from actual replication-competent viruses or from endogenous virus elements incorporated into the ticks’ genomes. Tick cell lines play an important role in virus discovery and isolation through the identification of novel viruses chronically infecting such cell lines and by acting as host cells to aid in determining whether or not an entire replication-competent, infective virus is present in a sample. Here, we review recent progress in tick-borne virus discovery and comment on the actual and potential applications for tick cell lines in this emerging research area. PMID:27679414

  18. Autophagy in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Thien Tra

    Full Text Available Autophagy (macroautophagy is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC.

  19. Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines.

    Science.gov (United States)

    Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara

    2009-01-01

    The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines.

  20. Enhanced expression of FNDC5 in human embryonic stem cell-derived neural cells along with relevant embryonic neural tissues.

    Science.gov (United States)

    Ghahrizjani, Fatemeh Ahmadi; Ghaedi, Kamran; Salamian, Ahmad; Tanhaei, Somayeh; Nejati, Alireza Shoaraye; Salehi, Hossein; Nabiuni, Mohammad; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2015-02-25

    Availability of human embryonic stem cells (hESCs) has enhanced the capability of basic and clinical research in the context of human neural differentiation. Derivation of neural progenitor (NP) cells from hESCs facilitates the process of human embryonic development through the generation of neuronal subtypes. We have recently indicated that fibronectin type III domain containing 5 protein (FNDC5) expression is required for appropriate neural differentiation of mouse embryonic stem cells (mESCs). Bioinformatics analyses have shown the presence of three isoforms for human FNDC5 mRNA. To differentiate which isoform of FNDC5 is involved in the process of human neural differentiation, we have used hESCs as an in vitro model for neural differentiation by retinoic acid (RA) induction. The hESC line, Royan H5, was differentiated into a neural lineage in defined adherent culture treated by RA and basic fibroblast growth factor (bFGF). We collected all cell types that included hESCs, rosette structures, and neural cells in an attempt to assess the expression of FNDC5 isoforms. There was a contiguous increase in all three FNDC5 isoforms during the neural differentiation process. Furthermore, the highest level of expression of the isoforms was significantly observed in neural cells compared to hESCs and the rosette structures known as neural precursor cells (NPCs). High expression levels of FNDC5 in human fetal brain and spinal cord tissues have suggested the involvement of this gene in neural tube development. Additional research is necessary to determine the major function of FDNC5 in this process.

  1. Radiation sensitivity of Merkel cell carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J.H.; Ramsay, J.R.; Birrell, G.W. [Queensland Institute of Medical Research (Australia)] [and others

    1995-07-30

    Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after {gamma} irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to {gamma} irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution. 25 refs., 3 figs., 1 tab.

  2. Stem cell characteristics in prostate cancer cell lines.

    NARCIS (Netherlands)

    Pfeiffer, M.J.; Schalken, J.A.

    2010-01-01

    BACKGROUND: Recent studies indicate the presence of a small, stem-like cell population in several human cancers that is crucial for the tumour (re)population. OBJECTIVE: Six established prostate cancer (PCa) cell lines-DU145, DuCaP, LAPC-4, 22Rv1, LNCaP, and PC-3-were examined for their stem cell pr

  3. Insulin-producing cells derived from human embryonic stem cells: comparison of definitive endoderm- and nestin-positive progenitor-based differentiation strategies.

    Directory of Open Access Journals (Sweden)

    Rui Wei

    Full Text Available Human embryonic stem cells (hESCs are pluripotent and capable of undergoing multilineage differentiation into highly specialized cells including pancreatic islet cells. Thus, they represent a novel alternative source for targeted therapies and regenerative medicine for diabetes. Significant progress has been made in differentiating hESCs toward pancreatic lineages. One approach is based on the similarities of pancreatic β cell and neuroepithelial development. Nestin-positive cells are selected as pancreatic β cell precursors and further differentiated to secrete insulin. The other approach is based on our knowledge of developmental biology in which the differentiation protocol sequentially reproduces the individual steps that are known in normal β cell ontogenesis during fetal pancreatic development. In the present study, the hESC cell line PKU1.1 was induced to differentiate into insulin-producing cells (IPCs using both protocols. The differentiation process was dynamically investigated and the similarities and differences between both strategies were explored. Our results show that IPCs can be successfully induced with both differentiation strategies. The resulting IPCs from both protocols shared many similar features with pancreatic islet cells, but not mature, functional β cells. However, these differently-derived IPC cell types displayed specific morphologies and different expression levels of pancreatic islet development-related markers. These data not only broaden our outlook on hESC differentiation into IPCs, but also extend the full potential of these processes for regenerative medicine in diabetes.

  4. Global expression profile of highly enriched cardiomyocytes derived from human embryonic stem cells.

    Science.gov (United States)

    Xu, Xiu Qin; Soo, Set Yen; Sun, William; Zweigerdt, Robert

    2009-09-01

    Human embryonic stem cells (hESC), with their ability to differentiate into cardiomyocytes in culture, hold great potential for cell replacement therapies and provide an in vitro model of human heart development. A genomewide characterization of the molecular phenotype of hESC-derived cardiomyocytes is important for their envisioned applications. We have employed a lineage selection strategy to generate a pure population of cardiomyocytes (>99%) from transgenic hESC lines. Global gene expression profiling showed that these cardiomyocytes are distinct from pluripotent and differentiated hESC cultures. Pure cardiomyocytes displayed similarities with heart tissue, but in many aspects presented an individual transcriptome pattern. A subset of 1,311 cardiac-enriched transcripts was identified, which were significantly overpresented (p human heart development.

  5. [Developing of a new feeder-free system and characterization of human embryonic stem cell sublines derived in this system under autogenic and allogenic culturing].

    Science.gov (United States)

    Kol'tsova, A M; Voronkina, I V; Gordeeva, O F; Zenin, V V; Lifantseva, N V; Musorina, A S; Smagina, L V; Iakovleva, T K; Polianskaia, G G

    2012-01-01

    A new feeder-free culture system for human embryonic stem cells (hESC) was developed. It consist of extracellular matrix proteins synthesized by feeder cells--mesenchymal stem cell line SC5-MSC, which was derived from initial hESC line SC5. The major ECM proteins--fibronectin and laminin--that maintain hESC growth in feeder-free system were identified. An essential component of this system is a SC5-MSC-conditioned medium. Two hESC sublines were derived. The subline SC5-FF was cultured in autogenic and subline SC7-FF in allogenic system. Sublines SC5-FF and SC7-FF passed through more than 300 and 115 cell population doublings, retained normal diploid karyotype and an ability of in vitro differentiation into derivates of three germ layers. These sublines express markers of undifferentiated hESC: alkaline phosphatase, Oct-4, SSEA-4, TRA-1-81 and multidrug resistance transporter--ABCG2. The RT-PCR analysis revealed that undifferentiated cells SC5-FF subline, like cells of initial feeder-maintained hESC line SC5, expressed genes OCT4 and NANOG, and germ line specific genes such as DPPA3/STELLA and DAZL. An expression of OCT4, NANOG, DPPA3/STELLA ans DAZL was down-regulated during embryonic bodies differentiation, whereas expression of somatic lineages specific genes like GATA4 and AFP (extra embryonic and embryonic endoderm), PAX6 (neuroectoderm) and BRY (mesoderm) was up-regulated. The comparative analysis of some typical features (karyotype structure, the average population doubling time and the number of undifferentiated cells in populations) did not reveal essential differences between initial SC5 and SC7 lines and their sublines SC5-FF and SC7-FF. This shows that feeder-free culture systems, which are much more stable than any feeder systems, do not break main hESC features during long cultivation and can be recommended for fundamental, biomedicine and pharmacological investigations, using hESCs.

  6. Cellular radiosensitivity of small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1997-01-01

    PURPOSE: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based...

  7. Analysis of Mitochondrial Function and Localisation during Human Embryonic Stem Cell Differentiation In Vitro

    Science.gov (United States)

    Prowse, Andrew B. J.; Chong, Fenny; Elliott, David A.; Elefanty, Andrew G.; Stanley, Edouard G.; Gray, Peter P.; Munro, Trent P.; Osborne, Geoffrey W.

    2012-01-01

    Human embryonic stem cell (hESC) derivatives show promise as viable cell therapy options for multiple disorders in different tissues. Recent advances in stem cell biology have lead to the reliable production and detailed molecular characterisation of a range of cell-types. However, the role of mitochondria during differentiation has yet to be fully elucidated. Mitochondria mediate a cells response to altered energy requirements (e.g. cardiomyocyte contraction) and, as such, the mitochondrial phenotype is likely to change during the dynamic process of hESC differentiation. We demonstrate that manipulating mitochondrial biogenesis alters mesendoderm commitment. To investigate mitochondrial localisation during early lineage specification of hESCs we developed a mitochondrial reporter line, KMEL2, in which sequences encoding the green fluorescent protein (GFP) are targeted to the mitochondria. Differentiation of KMEL2 lines into the three germ layers showed that the mitochondria in these differentiated progeny are GFP positive. Therefore, KMEL2 hESCs facilitate the study of mitochondria in a range of cell types and, importantly, permit real-time analysis of mitochondria via the GFP tag. PMID:23284940

  8. Analysis of mitochondrial function and localisation during human embryonic stem cell differentiation in vitro.

    Directory of Open Access Journals (Sweden)

    Andrew B J Prowse

    Full Text Available Human embryonic stem cell (hESC derivatives show promise as viable cell therapy options for multiple disorders in different tissues. Recent advances in stem cell biology have lead to the reliable production and detailed molecular characterisation of a range of cell-types. However, the role of mitochondria during differentiation has yet to be fully elucidated. Mitochondria mediate a cells response to altered energy requirements (e.g. cardiomyocyte contraction and, as such, the mitochondrial phenotype is likely to change during the dynamic process of hESC differentiation. We demonstrate that manipulating mitochondrial biogenesis alters mesendoderm commitment. To investigate mitochondrial localisation during early lineage specification of hESCs we developed a mitochondrial reporter line, KMEL2, in which sequences encoding the green fluorescent protein (GFP are targeted to the mitochondria. Differentiation of KMEL2 lines into the three germ layers showed that the mitochondria in these differentiated progeny are GFP positive. Therefore, KMEL2 hESCs facilitate the study of mitochondria in a range of cell types and, importantly, permit real-time analysis of mitochondria via the GFP tag.

  9. Integration-defective lentiviral vector mediates efficient gene editing through homology-directed repair in human embryonic stem cells.

    Science.gov (United States)

    Wang, Yebo; Wang, Yingjia; Chang, Tammy; Huang, He; Yee, Jiing-Kuan

    2016-11-28

    Human embryonic stem cells (hESCs) are used as platforms for disease study, drug screening and cell-based therapy. To facilitate these applications, it is frequently necessary to genetically manipulate the hESC genome. Gene editing with engineered nucleases enables site-specific genetic modification of the human genome through homology-directed repair (HDR). However, the frequency of HDR remains low in hESCs. We combined efficient expression of engineered nucleases and integration-defective lentiviral vector (IDLV) transduction for donor template delivery to mediate HDR in hESC line WA09. This strategy led to highly efficient HDR with more than 80% of the selected WA09 clones harboring the transgene inserted at the targeted genomic locus. However, certain portions of the HDR clones contained the concatemeric IDLV genomic structure at the target site, probably resulted from recombination of the IDLV genomic input before HDR with the target. We found that the integrase protein of IDLV mediated the highly efficient HDR through the recruitment of a cellular protein, LEDGF/p75. This study demonstrates that IDLV-mediated HDR is a powerful and broadly applicable technology to carry out site-specific gene modification in hESCs.

  10. Three Huntington's Disease Specific Mutation-Carrying Human Embryonic Stem Cell Lines Have Stable Number of CAG Repeats upon In Vitro Differentiation into Cardiomyocytes.

    Science.gov (United States)

    Jacquet, Laureen; Neueder, Andreas; Földes, Gabor; Karagiannis, Panagiotis; Hobbs, Carl; Jolinon, Nelly; Mioulane, Maxime; Sakai, Takao; Harding, Sian E; Ilic, Dusko

    2015-01-01

    Huntington disease (HD; OMIM 143100), a progressive neurodegenerative disorder, is caused by an expanded trinucleotide CAG (polyQ) motif in the HTT gene. Cardiovascular symptoms, often present in early stage HD patients, are, in general, ascribed to dysautonomia. However, cardio-specific expression of polyQ peptides caused pathological response in murine models, suggesting the presence of a nervous system-independent heart phenotype in HD patients. A positive correlation between the CAG repeat size and severity of symptoms observed in HD patients has also been observed in in vitro HD cellular models. Here, we test the suitability of human embryonic stem cell (hESC) lines carrying HD-specific mutation as in vitro models for understanding molecular mechanisms of cardiac pathology seen in HD patients. We have differentiated three HD-hESC lines into cardiomyocytes and investigated CAG stability up to 60 days after starting differentiation. To assess CAG stability in other tissues, the lines were also subjected to in vivo differentiation into teratomas for 10 weeks. Neither directed differentiation into cardiomyocytes in vitro nor in vivo differentiation into teratomas, rich in immature neuronal tissue, led to an increase in the number of CAG repeats. Although the CAG stability might be cell line-dependent, induced pluripotent stem cells generated from patients with larger numbers of CAG repeats could have an advantage as a research tool for understanding cardiac symptoms of HD patients.

  11. Three Huntington's Disease Specific Mutation-Carrying Human Embryonic Stem Cell Lines Have Stable Number of CAG Repeats upon In Vitro Differentiation into Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Laureen Jacquet

    Full Text Available Huntington disease (HD; OMIM 143100, a progressive neurodegenerative disorder, is caused by an expanded trinucleotide CAG (polyQ motif in the HTT gene. Cardiovascular symptoms, often present in early stage HD patients, are, in general, ascribed to dysautonomia. However, cardio-specific expression of polyQ peptides caused pathological response in murine models, suggesting the presence of a nervous system-independent heart phenotype in HD patients. A positive correlation between the CAG repeat size and severity of symptoms observed in HD patients has also been observed in in vitro HD cellular models. Here, we test the suitability of human embryonic stem cell (hESC lines carrying HD-specific mutation as in vitro models for understanding molecular mechanisms of cardiac pathology seen in HD patients. We have differentiated three HD-hESC lines into cardiomyocytes and investigated CAG stability up to 60 days after starting differentiation. To assess CAG stability in other tissues, the lines were also subjected to in vivo differentiation into teratomas for 10 weeks. Neither directed differentiation into cardiomyocytes in vitro nor in vivo differentiation into teratomas, rich in immature neuronal tissue, led to an increase in the number of CAG repeats. Although the CAG stability might be cell line-dependent, induced pluripotent stem cells generated from patients with larger numbers of CAG repeats could have an advantage as a research tool for understanding cardiac symptoms of HD patients.

  12. Susceptibility testing of fish cell lines for virus isolation

    DEFF Research Database (Denmark)

    Ariel, Ellen; Skall, Helle Frank; Olesen, Niels Jørgen

    2009-01-01

    compare susceptibility between cell lines and between lineages within a laboratory and between laboratories (Inter-laboratory Proficiency Test). The objective being that the most sensitive cell line and lineages are routinely selected for diagnostic purposes.In comparing cell lines, we simulated "non......-cell-culture-adapted" virus by propagating the virus in heterologous cell lines to the one tested. A stock of test virus was produced and stored at - 80 °C and tests were conducted biannually. This procedure becomes complicated when several cell lines are in use and does not account for variation among lineages. In comparing...... cell lineages, we increased the number of isolates of each virus, propagated stocks in a given cell line and tested all lineages of that line in use in the laboratory. Testing of relative cell line susceptibility between laboratories is carried out annually via the Inter-laboratory Proficiency Test...

  13. Induced pluripotent stem cell lines derived from human somatic cells.

    Science.gov (United States)

    Yu, Junying; Vodyanik, Maxim A; Smuga-Otto, Kim; Antosiewicz-Bourget, Jessica; Frane, Jennifer L; Tian, Shulan; Nie, Jeff; Jonsdottir, Gudrun A; Ruotti, Victor; Stewart, Ron; Slukvin, Igor I; Thomson, James A

    2007-12-21

    Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal karyotypes, express telomerase activity, express cell surface markers and genes that characterize human ES cells, and maintain the developmental potential to differentiate into advanced derivatives of all three primary germ layers. Such induced pluripotent human cell lines should be useful in the production of new disease models and in drug development, as well as for applications in transplantation medicine, once technical limitations (for example, mutation through viral integration) are eliminated.

  14. 77 FR 5489 - Identification of Human Cell Lines Project

    Science.gov (United States)

    2012-02-03

    ... Genetics Group Web site at http://www.nist.gov/mml/biochemical/genetics/index.cfm . Once the total number... methods for human cell line authentication the identity of a cell line need no longer be in doubt. NIST...

  15. The establishment of human embryonic stem cell lines from embryos of women with polycystic ovary syndrome%多囊卵巢综合征源性人胚胎干细胞系的建立

    Institute of Scientific and Technical Information of China (English)

    李朋粉; 孙莹璞; 王芳; 孔慧娟; 白爱红; 赵芳

    2011-01-01

    目的:利用多囊卵巢综合征(PCOS)患者体外受精周期中废弃胚胎建立人胚胎干细胞(hESCs)系.方法:收集PCOS患者体外受精-胚胎移植周期中废弃的新鲜或冷冻胚胎,序贯培养至囊胚,机械分离内细胞团,接种于混合饲养层(小鼠胚胎成纤维细胞:人包皮成纤维细胞为1:1),传代培养.对稳定传代的hESCs进行形态学观察、碱性磷酸酶染色、阶段特异性胚胎抗原-4、转录因子OCT-4的表达、核型分析、体内、外分化潜能鉴定.结果:①收集到59枚新鲜废胚,培养后获得14枚囊胚,分离11个内细胞团,贴壁、传代后建立5株hESCs系,均具备hESC特性.②收集到解冻胚胎19枚,培养后获得6枚囊胚,分离5个内细胞团,形成5个原代克隆,目前传至3~4代.结论:建立了PCOS源性hESCs系,为研究PCOS发病机理、筛选候选基因、基因定位及基因治疗等提供良好的生物学模型;废弃的新鲜及冷冻胚胎均可作为hESC建系的材料来源.%Objective: To establish human embryonic stem cells (hESCs) lines derived from discarded embryos of women with polycystic ovary syndrome (PCOS) in vitro fertilization and embryo transfer (IVF-ET). Methods: The discarded fresh and frozen embryos were recruited from the women with PCOS undergoing IVF-ET program. The embryos were cultured into blastula by the sequential culture. After isolation by mechanical method, the inner cell mass (ICM) was implanted on the mixed feeder layer (the ratio of mouse embryonic fibroblast and human foreskin fibroblast was 11)and subcultured. Finally, the cells were authenticated as hESCs by various methods, which included morphological observation, test for experssion of alkaline phosphates (AKP), stage-specific embryonic antigen-4 (SSEA-4)and OCT- 4, karyotype analysis, differentiation potentials in vivo and in vitro. Results: A total of 14 blastulae were obtained from 59 low quality fresh embryos, which resulted in the formation of 11 ICM and 5

  16. Expression of Cyclooxygenase-2 in Ovarian Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To investigate the expression of cyclooxygenase-2 (COX-2) in ovarian cancer cell lines,RT-PCR and immunocytochemistry were used to detect the expression of COX-2 in 5 ovarian cancer cell lines. The expression of COX-2 mRNA and protein was detected in all 5 cell lines. It is suggested that COX-2 is expressed in ovarian cancer cell lines, which provides a basis for the chemoprevention of ovarian cancer.

  17. Radiosensitivity of Human Melanoma Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Bergoc, R. M.; Medina, V.; Cricco, G.; Mohamed, N.; Martin, G.; Nunez, M.; Croci, M.; Crescenti, E. J.; Rivera, E. S.

    2004-07-01

    Cutaneous melanoma is a skin cancer resulting from the malign transformation of skin-pigment cells, the melanocytes. The radiotherapy, alone or in combination with other treatment, is an important therapy for this disease. the objective of this paper was to determine in vitro the radiosensitivity of two human melanoma cell lines with different metastatic capability: WM35 and MI/15, and to study the effect of drugs on radiobiological parameters. The Survival Curves were adjusted to the mathematical Linear-quadratic model using GrapsPad Prism software. Cells were seeded in RPMI medium (3000-3500 cells/flask), in triplicate and irradiated 24 h later. The irradiation was performed using an IBL 437C H Type equipment (189 TBq, 7.7 Gy/min) calibrated with a TLD 700 dosimeter. The range of Doses covered from 0 to 10 Gy and the colonies formed were counted at day 7th post-irradiation. Results obtained were: for WM35, {alpha}=0.37{+-}0.07 Gy''-1 and {beta}=0.06{+-}0.02 Gy''-2, for M1/15m {alpha}=0.47{+-}0.03 Gy''-1 and {beta}=0.06{+-}0.01 Gy''-2. The {alpha}/{beta} values WM35: {alpha}/{beta} values WM35: {alpha}/{beta}=6.07 Gy and M1/15: {alpha}/{beta}{sub 7}.33 Gy were similar, independently of their metastatic capabillity and indicate that both lines exhibit high radioresistance. Microscopic observation of irradiated cells showed multinuclear cells with few morphologic changes non-compatible with apoptosis. By means of specific fluorescent dyes and flow cytometry analysis we determined the intracellular levels of the radicals superoxide and hydrogen peroxide and their modulation in response to ionizing radiation. The results showed a marked decreased in H{sub 2}O{sub 2} intracellular levels with a simultaneous increase in superoxide that will be part of a mechanism responsible for induction of cell radioresistance. This response triggered by irradiated cells could not be abrogated by different treatments like histamine or the

  18. Differential requirements for hematopoietic commitment between human and rhesus embryonic stem cells.

    Science.gov (United States)

    Rajesh, Deepika; Chinnasamy, Nachimuthu; Mitalipov, Shoukhrat M; Wolf, Don P; Slukvin, Igor; Thomson, James A; Shaaban, Aimen F

    2007-02-01

    Progress toward clinical application of ESC-derived hematopoietic cellular transplantation will require rigorous evaluation in a large animal allogeneic model. However, in contrast to human ESCs (hESCs), efforts to induce conclusive hematopoietic differentiation from rhesus macaque ESCs (rESCs) have been unsuccessful. Characterizing these poorly understood functional differences will facilitate progress in this area and likely clarify the critical steps involved in the hematopoietic differentiation of ESCs. To accomplish this goal, we compared the hematopoietic differentiation of hESCs with that of rESCs in both EB culture and stroma coculture. Initially, undifferentiated rESCs and hESCs were adapted to growth on Matrigel without a change in their phenotype or karyotype. Subsequent differentiation of rESCs in OP9 stroma led to the development of CD34(+)CD45(-) cells that gave rise to endothelial cell networks in methylcellulose culture. In the same conditions, hESCs exhibited convincing hematopoietic differentiation. In cytokine-supplemented EB culture, rESCs demonstrated improved hematopoietic differentiation with higher levels of CD34(+) and detectable levels of CD45(+) cells. However, these levels remained dramatically lower than those for hESCs in identical culture conditions. Subsequent plating of cytokine-supplemented rhesus EBs in methylcellulose culture led to the formation of mixed colonies of erythroid, myeloid, and endothelial cells, confirming the existence of bipotential hematoendothelial progenitors in the cytokine-supplemented EB cultures. Evaluation of four different rESC lines confirmed the validity of these disparities. Although rESCs have the potential for hematopoietic differentiation, they exhibit a pause at the hemangioblast stage of hematopoietic development in culture conditions developed for hESCs.

  19. miR-181b-5p Modulates Cell Migratory Proteins, Tissue Inhibitor of Metalloproteinase 3, and Annexin A2 During In Vitro Decidualization in a Human Endometrial Stromal Cell Line.

    Science.gov (United States)

    Graham, Amanda; Holbert, Joshua; Nothnick, Warren B

    2016-01-01

    Decidualization is essential for successful embryo implantation and is regulated by concerted actions of growth factors and hormones. More recently, microRNAs, small RNA molecules that regulate posttranscriptional gene expression, have been implicated to play a role in the decidualization process. Of these microRNAs, miR-181b-5p has been associated with decidualization but its precise role and targets are not well established. To address this gap in our knowledge, we assessed the expression of miR-181b-5p, and its target tissue inhibitor of metalloproteinase 3 (TIMP-3), during in vitro decidualization using the well-characterized human endometrial stromal cell line, t-HESC. miR-181b-5p expression was highest prior to decidualization and significantly decreased in response to decidualization stimulus. In contrast, TIMP-3 expression was absent prior to in vitro decidualization and increased during decidualization. Regulation of TIMP-3 expression by miR-181b-5p was confirmed in vitro by quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot analysis, and 3' untranslated region reporter constructs. To identify unforeseen targets of miR-181b-5p during in vitro decidualization, t-HESC cells were transfected with pre- miR-181b-5p, and protein profiles were determined by 2-dimensional differential in-gel electrophoresis followed by matrix-assisted laser desorption-ionization time-of-flight/time-of-flight (MALDI TOF/TOF) tandem mass spectrometry. Of these proteins, several downregulated proteins associated with cell migration were identified including annexin A2, which we subsequently confirmed by qRT-PCR and Western blot analysis to be regulated by miR-181b-5p. In conclusion, miR-181b-5p is downregulated during the process of in vitro decidualization and may regulate the expression of proteins associated with cell migration including TIMP-3 and annexin A2.

  20. Mechanical dissociation of human embryonic stem cell colonies by manual scraping after collagenase treatment is much more detrimental to cellular viability than is trypsinization with gentle pipetting.

    Science.gov (United States)

    Heng, Boon Chin; Liu, Hua; Ge, Zigang; Cao, Tong

    2007-05-01

    Because hESC (human embryonic stem cells) are 'social cells' that require co-operative interactions and intimate physical contact with each other, it is absolutely essential to dissociate hESC colonies into cellular clumps rather than into a single-cell suspension during serial passage. The present study compared two commonly used protocols for dissociating hESC colonies. The first protocol involved mild enzymatic treatment with collagenase type IV (1 mg/ml) for approx. 5-10 min, prior to mechanical dissociation into cellular clumps through manual scraping with a plastic pipette tip. The second protocol involved a short duration of exposure (2-3 min) to low concentrations of trypsin (0.05%), followed by gentle pipetting. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay was used to compare the recovery of viable cells after dissociating hESC colonies with these two protocols, before and after conventional freeze-thawing with 10% (v/v) DMSO. Besides undifferentiated hESC, the randomly differentiated fibroblastic progenies of hESC at various passages (P0-P4), together with an immortalized cell line (CRL-1486), were also utilized to compare the two protocols. The results demonstrated that the second protocol (trypsinization with gentle pipetting) is much less detrimental to cellular viability than is the first protocol (collagenase treatment with scratching). This in turn translated to higher freeze-thaw survival rates. It is hypothesized that scratching after collagenase treatment (first protocol) somehow induces physical damage to the cells, thereby leading to a lower recovery of viable cells, both before and after freeze-thawing.

  1. A novel combination of factors, termed SPIE, which promotes dopaminergic neuron differentiation from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Tandis Vazin

    Full Text Available BACKGROUND: Stromal-Derived Inducing Activity (SDIA is one of the most efficient methods of generating dopaminergic (DA neurons from embryonic stem cells (ESC. DA neuron induction can be achieved by co-culturing ESC with the mouse stromal cell lines PA6 or MS5. The molecular nature of this effect, which has been termed "SDIA" is so far unknown. Recently, we found that factors secreted by PA6 cells provided lineage-specific instructions to induce DA differentiation of human ESC (hESC. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we compared PA6 cells to various cell lines lacking the SDIA effect, and employed genome expression analysis to identify differentially-expressed signaling molecules. Among the factors highly expressed by PA6 cells, and known to be associated with CNS development, were stromal cell-derived factor 1 (SDF-1/CXCL12, pleiotrophin (PTN, insulin-like growth factor 2 (IGF2, and ephrin B1 (EFNB1. When these four factors, the combination of which was termed SPIE, were applied to hESC, they induced differentiation to TH-positive neurons in vitro. RT-PCR and western blot analysis confirmed the expression of midbrain specific markers, including engrailed 1, Nurr1, Pitx3, and dopamine transporter (DAT in cultures influenced by these four molecules. Electrophysiological recordings showed that treatment of hESC with SPIE induced differentiation of neurons that were capable of generating action potentials and forming functional synaptic connections. CONCLUSIONS/SIGNIFICANCE: The combination of SDF-1, PTN, IGF2, and EFNB1 mimics the DA phenotype-inducing property of SDIA and was sufficient to promote differentiation of hESC to functional midbrain DA neurons. These findings provide a method for differentiating hESC to form DA neurons, without a requirement for the use of animal-derived cell lines or products.

  2. Primitive cardiac cells from human embryonic stem cells.

    Science.gov (United States)

    Hudson, James; Titmarsh, Drew; Hidalgo, Alejandro; Wolvetang, Ernst; Cooper-White, Justin

    2012-06-10

    Pluripotent stem cell-derived cardiomyocytes are currently being investigated for in vitro human heart models and as potential therapeutics for heart failure. In this study, we have developed a differentiation protocol that minimizes the need for specific human embryonic stem cell (hESC) line optimization. We first reduced the heterogeneity that exists within the starting population of bulk cultured hESCs by using cells adapted to single-cell passaging in a 2-dimensional (2D) culture format. Compared with bulk cultures, single-cell cultures comprised larger fractions of TG30(hi)/OCT4(hi) cells, corresponding to an increased expression of pluripotency markers OCT4 and NANOG, and reduced expression of early lineage-specific markers. A 2D temporal differentiation protocol was then developed, aimed at reducing the inherent heterogeneity and variability of embryoid body-based protocols, with induction of primitive streak cells using bone morphogenetic protein 4 and activin A, followed by cardiogenesis via inhibition of Wnt signaling using the small molecules IWP-4 or IWR-1. IWP-4 treatment resulted in a large percentage of cells expressing low amounts of cardiac myosin heavy chain and expression of early cardiac progenitor markers ISL1 and NKX2-5, thus indicating the production of large numbers of immature cardiomyocytes (~65,000/cm(2) or ~1.5 per input hESC). This protocol was shown to be effective in HES3, H9, and, to a lesser, extent, MEL1 hESC lines. In addition, we observed that IWR-1 induced predominantly atrial myosin light chain (MLC2a) expression, whereas IWP-4 induced expression of both atrial (MLC2a) and ventricular (MLC2v) forms. The intrinsic flexibility and scalability of this 2D protocol mean that the output population of primitive cardiomyocytes will be particularly accessible and useful for the investigation of molecular mechanisms driving terminal cardiomyocyte differentiation, and potentially for the future treatment of heart failure.

  3. EXPRESSION OF Fas LIGAND IN HUMAN COLON CANCER CELL LINES

    Institute of Scientific and Technical Information of China (English)

    张建军; 丁尔迅; 王强; 陈学云; 付志仁

    2001-01-01

    To investigate the expression of Fas ligand in human colon carcinoma cell lines. Methods: A total of six human colon cancer cell lines were examined for the expression of Fas ligand mRNA and cell surface protein by using RT-PCR and flow cytometry respectively. Results: The results showed that Fas ligand mRNA was expressed in all of the six cancer cell lines and Fas ligand cell surface protein was expressed in part of them. Conclusion: These data suggest that Fas ligand was expressed, at least in part, in human colon cancer cell lines and might facilitate to escape from immune surveillance of the host.

  4. Biological characteristics of cell lines of human dental alveolus

    Institute of Scientific and Technical Information of China (English)

    陈世璋; 黄靖香; 孙明学; 赵斌

    2003-01-01

    Objective To investigate the biological characteristics of cell lines of healthy and diseased human dental alveoli. Methods Primary cell lines from either healthy or diseased human dental alveoli were obtained. Two cell lines, H-258 and H-171 derived from healthy and diseased human tissues respectively, were selected for morphological study and research on their growth and aging, using cell counting, and histochemical and immunohistochemical staining. Results Primary cell lines were successfully established from innormal dental alveoli. After freezing and thawing for three times, cell growth was continued and no morphological alterations were observed. The doubling time was 53.4 hours and mean division index (MDI) was 4‰. Cells were kept normal after twenty generations with no obvious reduction of doubling time and MDI. Of twenty-six primary cell lines derived from healthy human dental alveoli, only three cell lines achieved generation. After freezing and thawing for twice, cultured cells were still alive at a decreased growth speed, with doubling time of 85.9 hours and MDI of 3‰. Both cell lines, H-171 and H-258, shared the characteristics of osteoblast. Conclusions Primary cell lines of diseased human dental alveoli show greater growth potential. All cell lines of dental alveoli share characteristics of osteoblast. The technique we developed may be put into practice for the treatment of abnormal dental alveoli.

  5. Molluscan cells in culture: primary cell cultures and cell lines

    OpenAIRE

    2013-01-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as bi...

  6. In vitro radiosensitivity of human leukemia cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Weichselbaum, R.R.; Greenberger, J.S.; Schmidt, A.; Karpas, A.; Moloney, W.C.; Little, J.B.

    1981-05-01

    The in vitro radiobiologic survival values (anti n, D/sub 0/) of four tumor lines derived from human hematopoietic tumors were studied. These cell lines were HL60 promyelocytic leukemia; K562 erythroleukemia; 45 acute lymphocytic leukemia; and 176 acute monomyelogenous leukemia. More cell lines must be examined before the exact relationship between in vitro radiosensitivity and clinical radiocurability is firmly established.

  7. Epigenetic mechanisms regulate MHC and antigen processing molecules in human embryonic and induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Beatriz Suárez-Alvarez

    Full Text Available BACKGROUND: Human embryonic stem cells (hESCs are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM components and NKG2D ligands (NKG2D-L in hESCs, induced pluripotent stem cells (iPSCs and NTera2 (NT2 teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1 and tapasin (TPN components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of beta2-microglobulin (beta2m light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and beta2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs. Absence of HLA-DR and HLA-G expression was regulated by DNA methylation. CONCLUSIONS/SIGNIFICANCE: Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell

  8. Induction of human embryonic and induced pluripotent stem cells into urothelium.

    Science.gov (United States)

    Osborn, Stephanie L; Thangappan, Ravikumar; Luria, Ayala; Lee, Justin H; Nolta, Jan; Kurzrock, Eric A

    2014-05-01

    In vitro generation of human urothelium from stem cells would be a major advancement in the regenerative medicine field, providing alternate nonurologic and/or nonautologous tissue sources for bladder grafts. Such a model would also help decipher the mechanisms of urothelial differentiation and would facilitate investigation of deviated differentiation of normal progenitors into urothelial cancer stem cells, perhaps elucidating areas of intervention for improved treatments. Thus far, in vitro derivation of urothelium from human embryonic stem cells (hESCs) or human induced pluripotent stem (hiPS) cells has not been reported. The goal of this work was to develop an efficient in vitro protocol for the induction of hESCs into urothelium through an intermediary definitive endoderm step and free of matrices and cell contact. During directed differentiation in a urothelial-specific medium ("Uromedium"), hESCs produced up to 60% urothelium, as determined by uroplakin expression; subsequent propagation selected for 90% urothelium. Alteration of the epithelial and mesenchymal cell signaling contribution through noncell contact coculture or conditioned media did not enhance the production of urothelium. Temporospatial evaluation of transcription factors known to be involved in urothelial specification showed association of IRF1, GET1, and GATA4 with uroplakin expression. Additional hESC and hiPS cell lines could also be induced into urothelium using this in vitro system. These results demonstrate that derivation and propagation of urothelium from hESCs and hiPS cells can be efficiently accomplished in vitro in the absence of matrices, cell contact, or adult cell signaling and that the induction process appears to mimic normal differentiation.

  9. Cloning of aminopeptidase Npromoter and its activity in hematopoietic cell and different tumor cell lines

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Aminopeptidase N (APN) promoter region was cloned and sequenced from peripheral blood mononuclear cells. The recombinant reporter construct containing the promoter and luciferase gene, designated pXP1-APNLuc, was introduced into myeloblastic cell line, T lymphocyte cell line and various tumor cell lines. Luciferase assay showed that APN upstream promoter is myeloid-specific for high expression in myeloblastic cell line and much lower expres sion in T lymphocyte cell line. The promoter activity was relatively high in lung adenoma cell line compared with other tumor cell lines including hepatoma cell line, tong cancer cell line and esophageal cancer cell line in which the promoter activity significantly diminished or was almost undetectable. The characteristics of APN promoter may pro vide a new strategy for specific myeloprotection while tumor patients are being treated with chemotherapy and/or radio therapy.

  10. Comparative pluripotency analysis of mouse embryonic stem cells derived from wild-type and infertile hermaphrodite somatic cell nuclear transfer blastocysts

    Institute of Scientific and Technical Information of China (English)

    FAN Yong; YAO RuQiang; YU Yang; LI ZanDong; WANG Liu; ALICE Jouneau; ZHOU Qi; TONG Man; ZHAO ChunLi; DING ChenHui; HAO Jie; LV Zhuo; DAI XiangPeng; HAI Tang; LI XueMei

    2008-01-01

    Therapeutic cloning, whereby embryonic stem cells (ESCs) are derived from patient-specific cloned blastocysts via somatic cell nuclear transfer (SCNT), holds great promise for treating many human diseases using regenerative medicine. Teratoma formation and germline transmission have been used to confirm the pluripotency of mouse stem cells, but human embryonic stem cells (hESCs) have not been proven to be fully pluripotent owing to the ethical impossibility of testing for germ line transmission, which would be the strongest evidence for full pluripotency. Therefore, formation of differentiated cells from the three somatic germ layers within a teratoma is taken as the best indicator of pluripotency in hESC lines. The possibility that these lines lack full multi- or pluripotency has not yet been evaluated.In this study, we established 16 mouse ESC lines, including 3 genetically defective nuclear transfer-ESC (ntESC) lines derived from SCNT blastocysts of infertile hermaphrodite F1 mice and 13 ntESC lines derived from SCNT blastocysts of normal F1 mice. We found that the defective ntESCs expressed all in vitro markers of pluripotency and could form teratomas that included derivatives from all three germ layers, but could not be transmitted via the germ line, in contrast with normal ntESCs. Our results indicate that teratoma formation assays with hESCs might be an insufficient standard to assess full pluripotency, although they do define multipotency to some degree. More rigorous standards are required to assess the safety of hESCs for therapeutic cloning.

  11. MODERATE CYTOTOXICITY OF PROANTHOCYANIDINS TO HUMAN TUMOR-CELL LINES

    NARCIS (Netherlands)

    KOLODZIEJ, H; HABERLAND, C; WOERDENBAG, HJ; KONINGS, AWT

    1995-01-01

    In the present study the cytotoxicity of 16 proanthocyanidins was evaluated in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. With IC50 values ranging from 18 to >200 mu m following continuous

  12. A distinct microRNA signature for definitive endoderm derived from human embryonic stem cells.

    Science.gov (United States)

    Hinton, Andrew; Afrikanova, Ivka; Wilson, Mike; King, Charles C; Maurer, Brian; Yeo, Gene W; Hayek, Alberto; Pasquinelli, Amy E

    2010-06-01

    Human embryonic stem cells (hESCs) have the potential to differentiate into many adult cell types, and they are being explored as a resource for cell replacement therapies for multiple diseases. In order to optimize in vitro differentiation protocols, it will be necessary to elucidate regulatory mechanisms that contribute to lineage specification. MicroRNAs (miRNAs) are emerging as key regulators of hESC differentiation and embryonic development. In this study, we compare miRNA expression profiles between pluripotent hESCs and definitive endoderm (DE), an early step in the pathway toward the pancreatic lineage. Results from microarray analysis showed that DE can be distinguished by its unique miRNA profile, which consists of 37 significantly down-regulated and 17 up-regulated miRNAs in 2 different cell lines and in the presence/absence of feeder layers. Comparison to other hESC-derived lineages showed that most of the highly up-regulated miRNAs are specific to endoderm in early development. Notably, miR-375, which was previously implicated in regulating development and function of later stages of pancreatic development, is highly and specifically up-regulated during DE formation, suggesting that it may have a distinct role very early in development. Examination of potential mRNA targets showed that TIMM8A is repressed by ectopic miR-375 expression in pluripotent hESCs.

  13. The Effect of Low Level Laser Irradiation on Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Hossein Baharvand

    2005-01-01

    Full Text Available Introduction: Different effects of low level laser irradiation (LLLI on various cell types have already been demonstrated. However, its effects on embryonic stem cells have not yet been shown. The present study evaluates the morphological and immunocytochemical effects of LLLI on human embryonic stem cell (hESC colonies. Material and Methods: Equal-sized pieces of hESC line (Royan H1 were irradiated with a single dose of 830-nm Ga-Al-As diode laser (3, 5, and 8 jcm-2, 30mW and cultured on mouse embryonic fibroblasts. The morphology of the colonies was evaluated qualitatively by observation under an inverted microscope (grades A, B, C, and D exhibited 0-30%, 30-50%, 50-80%, and 80-100% differentiation, respectively. The stemness area was assessed by expression of surface antigens using anti-Tra-1-60 and anti-Tra-1-81. Results: Our data demonstrated a dose-dependent stimulatory effect of LLLI on hESC differentiation. Two doses of 5 and 8jcm-2 induced statistically significant differentiation (grades C and D. Conclusions: These data showed that LLLI influenced hESC differentiation, which might be used for cell therapy after transplantation

  14. POTENTIAL CELL LINE TOXICITY OF ENVIRONMENTAL NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Mohan Durga

    2012-01-01

    Full Text Available In India, the unprecedented growth rate and urbanization along with the rapid increase in motor vehicle activity and industrialization are contributing to high levels of urban air pollution. The population is mainly exposed to high air pollution concentrations, where motor vehicle emissions constitute the main source of fine and ultrafine particles. Motor exhaust emissions is a mixture of gases and Particulate Matter (PM. Diesel and petrol fuels in vehicles produce combustion-derived particles as a result of combustion. Vehicle exhaust particles are the main constituents of environmental nanoparticles. In the present investigation, environmental nanoparticles such as Diesel Exhaust Particles (DEP and Petrol Exhaust Particles (PEP were collected from on-road vehicles using a specially designed collection chamber. The surface morphology of the collected particles was analyzed through Transmission Electron Microscope (TEM, and the elemental mapping was performed through EDAX analysis. Results indicated the presence of nanometer-size particles in both the categories of vehicle exhaust. These small-size particles of respirable range can enter the respiratory tract of humans and get deposited in the lungs and cause various effects inside the human body. The aim of this study is to assess the cytotoxicity of the collected Diesel Exhaust Nanoparticles (DENPs and Petrol Exhaust Nanoparticles (PENPs. Cytotoxicity endpoint, such as IC50 (50% Inhibitory Concentration, was determined after a 24-h exposure. Results of this study indicated that all five cell lines were sensitive to these vehicle exhaust nanoparticles at varying levels.

  15. Derivation and Utilization of Functional CD8(+) Dendritic Cell Lines.

    Science.gov (United States)

    Pigni, Matteo; Ashok, Devika; Acha-Orbea, Hans

    2016-01-01

    It is notoriously difficult to obtain large quantities of non-activated dendritic cells ex vivo. For this reason, we produced and characterized a mouse model expressing the large T oncogene under the CD11c promoter (Mushi mice), in which CD8α(+) dendritic cells transform after 4 months. We derived a variety of stable cell lines from these primary lines. These cell lines reproducibly share with freshly isolated dendritic cells most surface markers, mRNA and protein expression, and all tested biological functions. Cell lines can be derived from various strains and knockout mice and can be easily transduced with lentiviruses. In this article, we describe the derivation, culture, and lentiviral transduction of these dendritic cell lines.

  16. Investigation of the selenium metabolism in cancer cell lines

    DEFF Research Database (Denmark)

    Lunøe, Kristoffer; Gabel-Jensen, Charlotte; Stürup, Stefan

    2011-01-01

    incubated with cells for 24 h and the induction of cell death was measured using flow cytometry. The amounts of total selenium in cell medium, cell lysate and the insoluble fractions was determined by ICP-MS. Speciation analysis of cellular fractions was performed by reversed phase, anion exchange and size...... except MeSeA. Speciation analysis showed that MeSeA was completely transformed during the incubations, while metabolic conversion of the other Se compounds was limited. Production of volatile dimethyl diselenide was observed for MeSeA and MeSeCys. MeSeA, MeSeCys and selenite showed noticeable protein......The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line...

  17. HIF induces human embryonic stem cell markers in cancer cells.

    Science.gov (United States)

    Mathieu, Julie; Zhang, Zhan; Zhou, Wenyu; Wang, Amy J; Heddleston, John M; Pinna, Claudia M A; Hubaud, Alexis; Stadler, Bradford; Choi, Michael; Bar, Merav; Tewari, Muneesh; Liu, Alvin; Vessella, Robert; Rostomily, Robert; Born, Donald; Horwitz, Marshall; Ware, Carol; Blau, C Anthony; Cleary, Michele A; Rich, Jeremy N; Ruohola-Baker, Hannele

    2011-07-01

    Low oxygen levels have been shown to promote self-renewal in many stem cells. In tumors, hypoxia is associated with aggressive disease course and poor clinical outcomes. Furthermore, many aggressive tumors have been shown to display gene expression signatures characteristic of human embryonic stem cells (hESC). We now tested whether hypoxia might be responsible for the hESC signature observed in aggressive tumors. We show that hypoxia, through hypoxia-inducible factor (HIF), can induce an hESC-like transcriptional program, including the induced pluripotent stem cell (iPSC) inducers, OCT4, NANOG, SOX2, KLF4, cMYC, and microRNA-302 in 11 cancer cell lines (from prostate, brain, kidney, cervix, lung, colon, liver, and breast tumors). Furthermore, nondegradable forms of HIFα, combined with the traditional iPSC inducers, are highly efficient in generating A549 iPSC-like colonies that have high tumorigenic capacity. To test potential correlation between iPSC inducers and HIF expression in primary tumors, we analyzed primary prostate tumors and found a significant correlation between NANOG-, OCT4-, and HIF1α-positive regions. Furthermore, NANOG and OCT4 expressions positively correlated with increased prostate tumor Gleason score. In primary glioma-derived CD133 negative cells, hypoxia was able to induce neurospheres and hESC markers. Together, these findings suggest that HIF targets may act as key inducers of a dynamic state of stemness in pathologic conditions.

  18. Authentication of the R06E Fruit Bat Cell Line

    Directory of Open Access Journals (Sweden)

    Ingo Jordan

    2012-05-01

    Full Text Available Fruit bats and insectivorous bats are believed to provide a natural reservoir for a wide variety of infectious diseases. Several lines of evidence, including the successful isolation of infectious viruses, indicate that Marburg virus and Ravn virus have found a major reservoir in colonies of the Egyptian rousette (Rousettus aegyptiacus. To facilitate molecular studies on virus-reservoir host interactions and isolation of viruses from environmental samples, we established cell lines from primary cells of this animal. The cell lines were given to several laboratories until we realized that a contamination with Vero cells in one of the cultures had occurred. Here we describe a general diagnostic procedure for identification of cross-species contamination with the focus on Vero and Rousettus cell lines, and summarize newly discovered properties of the cell lines that may pertain to pathogen discovery.

  19. Genetic manipulation of human embryonic stem cells in serum and feeder-free media.

    Science.gov (United States)

    Braam, Stefan R; Denning, Chris; Mummery, Christine L

    2010-01-01

    Generic methods for genetic manipulation of human embryonic stem cells (hESCs) are important for both present research and future commercial applications. To date, differences in cell derivation and culture have required independent optimization of transfection and transduction protocols and some lines have remained refractile to all methods. Here we describe a culture protocol that has been extensively tested in 12 different hESC lines (1, 2) and shown to support efficient gene transfer independent of the method of gene delivery or history of the cell line. The system is based on Matrigel monolayer culture and conditioned medium from mouse embryonic feeder cells (MEFs) and entails transient high-density culture followed by rapid adaptation to low density for gene transfer. Under these conditions, plasmid transfection, virus infection, and siRNA transfection are highly effective. Stable genetically modified hESC lines can be generated with plasmid transfection, viral infection, or electroporation without loss of pluripotency or differentiation potential. The majority of lines generated in this system display a normal karyotype.

  20. Effect of leptin on cell proliferation and apoptosis of gastric adenocarcinoma cell line-SGC7901 and colon cancer cell line-HT-29

    Institute of Scientific and Technical Information of China (English)

    Chang-Wen Yu; Bi-Sheng Zhu

    2016-01-01

    Objective:To explore effect of leptin on cell proliferation and apoptosis of gastric adenocarcinoma cell line-SGC7901 and colon cancer cell line-HT-29.Methods: MTT and flow cytometry were adopted for detecting the effect of exogenous leptin on cell cycle of gastric adenocarcinoma cell line-SGC7901 and colon cancer cell line-HT-29.Results: Leptin with mass concentration (0 ng/mL, 5 ng/mL, 50 ng/mL, 100 ng/mL, 200 ng/mL) could stimulate the growth of gastric adenocarcinoma cell line-SGC7901 and colon cancer cell line-HT-29; exogenous leptin with mass concentration (5 ng/mL, 50 ng/mL, 100 ng/mL, 200 ng/mL) could inhibit cell growth of gastric adenocarcinoma cell line-SGC7901 and colon cancer cell line-HT-29 after 72 h; among which, inhibiting effects of cell line-SGC7901 and cell line-HT-29 were the most significant under the effect of exogenous leptin with mass concentration-200 ng/mL.Conclusion:Within a certain concentration and action time, exogenous leptin can stimulate the growth of gastric adenocarcinoma cell line and colon cancer cell line, and then promot the tumor cell proliferation and/or inhibit the tumor cell apoptosis.

  1. Cancer and inflammation studies using zebrafish cell lines

    NARCIS (Netherlands)

    He, Shuning

    2010-01-01

    As the zebrafish, Danio rerio, has been increasingly used as an animal model for biomedical research, we aimed to establish zebrafish cell line models for inflammation and cancer studies in this thesis. Several zebrafish cell lines were characterized and their genetic and physiological properties we

  2. Derivation of the human embryonic stem cell line RCM1

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCM-1 was derived from a failed to fertilise egg undergoing parthenogenetic stimulation. The cell line shows normal pluripotency marker expression and differentiation to three germ layers in vitro and in vivo. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data is available.

  3. Trichloroethylene toxicity in a human hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Thevenin, E.; McMillian, J. [Medical Univ. of Charleston South Carolina, SC (United States)

    1994-12-31

    The experiments conducted in this study were designed to determine the usefullness of hepatocyte cultures and a human hepatoma cell line as model systems for assessing human susceptibility to hepatocellular carcinoma due to exposure to trichloroethylene. The results from these studies will then be analyzed to determine if human cell lines can be used to conduct future experiments of this nature.

  4. Beryllium-stimulated apoptosis in macrophage cell lines.

    Science.gov (United States)

    Sawyer, R T; Fadok, V A; Kittle, L A; Maier, L A; Newman, L S

    2000-08-21

    In vitro stimulation of bronchoalveolar lavage cells from patients with chronic beryllium disease (CBD) induces the production of TNF-alpha. We tested the hypothesis that beryllium (Be)-stimulated TNF-alpha might induce apoptosis in mouse and human macrophage cell lines. These cell lines were selected because they produce a range of Be-stimulated TNF-alpha. The mouse macrophage cell line H36.12j produces high levels of Be-stimulated TNF-alpha. The mouse macrophage cell line P388D.1 produces low, constitutive, levels of TNF-alpha and does not up-regulate Be-stimulated TNF-alpha production. The DEOHS-1 human CBD macrophage cell line does not produce constitutive or Be-stimulated TNF-alpha. Apoptosis was determined by microscopic observation of propidium iodide stained fragmented nuclei in unstimulated and BeSO(4)-stimulated macrophage cell lines. BeSO(4) induced apoptosis in all macrophage cell lines tested. Beryllium-stimulated apoptosis was dose-responsive and maximal after 24 h of exposure to 100 microM BeSO(4). In contrast, unstimulated and Al(2)(SO(4))(3)-stimulated macrophage cell lines did not undergo apoptosis. The general caspase inhibitor BD-fmk inhibited Be-stimulated macrophage cell line apoptosis at concentrations above 50 microM. Our data show that Be-stimulated macrophage cell line apoptosis was caspase-dependent and not solely dependent on Be-stimulated TNF-alpha levels. We speculate that the release of Be-antigen from apoptotic macrophages may serve to re-introduce Be material back into the lung microenvironment, make it available for uptake by new macrophages, and thereby amplify Be-stimulated cytokine production, promoting ongoing inflammation and granuloma maintenance in CBD.

  5. Regulated expression of erythropoietin by two human hepatoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, M.A.; Glass, G.A.; Cunningham, J.M.; Bunn, H.F.

    1987-11-01

    The development of a cell culture system that produces erythropoietin (Epo) in a regulated manner has been the focus of much effort. The authors have screened multiple renal and hepatic cell lines for either constitutive or regulated expression of Epo. Only the human hepatoma cell lines, Hep3B and HepG2, made significant amounts of Epo as measured both by radioimmunoassay and in vitro bioassay (as much as 330 milliunits per 10/sup 6/ cells in 24 hr). The constitutive production of Epo increased dramatically as a function of cell density in both cell lines. At cell densities < 3.3 x 10/sup 5/ cells per cm/sup 2/, there was little constitutive release of Epo in the medium. With Hep3B cells grown at low cell densities, a mean 18-fold increase in Epo expression was seen in response to hypoxia and a 6-fold increase was observed in response to incubation in medium containing 50 ..mu..M cobalt(II) chloride. At similar low cell densities, Epo production in HepG2 cells could be enhanced an average of about 3-fold by stimulation with either hypoxia or cobalt(II) chloride. Upon such stimulation, both cell lines demonstrated markedly elevated levels of Epo mRNA. Hence, both Hep3B and HepG2 cell lines provide an excellent in vitro system in which to study the physiological regulation of Epo expression.

  6. Human embryonic stem cell lines derived from the Chinese population

    Institute of Scientific and Technical Information of China (English)

    Zhen Fu FANG; Fan JIN; Hui GAI; Ying CHEN; Li WU; Ai Lian LIU; Bin CHEN; Hui Zhen SHENG

    2005-01-01

    Six human embryonic stem cell lines were established from surplus blastocysts. The cell lines expressed alkaline phosphatase and molecules typical of primate embryonic stem cells, including Oct-4, Nanog, TDGF1, Sox2, EBAF,Thy-1, FGF4, Rex-1, SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81. Five of the six lines formed embryoid bodies that expressed markers of a variety of cell types; four of them formed teratomas with tissue types representative of all three embryonic germ layers. These human embryonic stem cells are capable of producing clones of undifferentiated morphology, and one of them was propagated to become a subline. Human embryonic stem cell lines from the Chinese population should facilitate stem cell research and may be valuable in studies of population genetics and ecology.

  7. Motoneuron differentiation of immortalized human spinal cord cell lines.

    Science.gov (United States)

    Li, R; Thode, S; Zhou, J; Richard, N; Pardinas, J; Rao, M S; Sah, D W

    2000-02-01

    Human motoneuron cell lines will be valuable tools for spinal cord research and drug discovery. To create such cell lines, we immortalized NCAM(+)/neurofilament(+) precursors from human embryonic spinal cord with a tetracycline repressible v-myc oncogene. Clonal NCAM(+)/neurofilament(+) cell lines differentiated exclusively into neurons within 1 week. These neurons displayed extensive processes, exhibited immunoreactivity for mature neuron-specific markers such as tau and synaptophysin, and fired action potentials upon current injection. Moreover, a clonal precursor cell line gave rise to multiple types of spinal cord neurons, including ChAT(+)/Lhx3(+)/Lhx4(+) motoneurons and GABA(+) interneurons. These neuronal restricted precursor cell lines will expedite the elucidation of molecular mechanisms that regulate the differentiation, maturation and survival of specific subsets of spinal cord neurons, and the identification and validation of novel drug targets for motoneuron diseases and spinal cord injury.

  8. Derivation of naive human embryonic stem cells.

    Science.gov (United States)

    Ware, Carol B; Nelson, Angelique M; Mecham, Brigham; Hesson, Jennifer; Zhou, Wenyu; Jonlin, Erica C; Jimenez-Caliani, Antonio J; Deng, Xinxian; Cavanaugh, Christopher; Cook, Savannah; Tesar, Paul J; Okada, Jeffrey; Margaretha, Lilyana; Sperber, Henrik; Choi, Michael; Blau, C Anthony; Treuting, Piper M; Hawkins, R David; Cirulli, Vincenzo; Ruohola-Baker, Hannele

    2014-03-25

    The naïve pluripotent state has been shown in mice to lead to broad and more robust developmental potential relative to primed mouse epiblast cells. The human naïve ES cell state has eluded derivation without the use of transgenes, and forced expression of OCT4, KLF4, and KLF2 allows maintenance of human cells in a naïve state [Hanna J, et al. (2010) Proc Natl Acad Sci USA 107(20):9222-9227]. We describe two routes to generate nontransgenic naïve human ES cells (hESCs). The first is by reverse toggling of preexisting primed hESC lines by preculture in the histone deacetylase inhibitors butyrate and suberoylanilide hydroxamic acid, followed by culture in MEK/ERK and GSK3 inhibitors (2i) with FGF2. The second route is by direct derivation from a human embryo in 2i with FGF2. We show that human naïve cells meet mouse criteria for the naïve state by growth characteristics, antibody labeling profile, gene expression, X-inactivation profile, mitochondrial morphology, microRNA profile and development in the context of teratomas. hESCs can exist in a naïve state without the need for transgenes. Direct derivation is an elusive, but attainable, process, leading to cells at the earliest stage of in vitro pluripotency described for humans. Reverse toggling of primed cells to naïve is efficient and reproducible.

  9. Derivation of human embryonic stem cell line Genea022

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea022 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XY karyotype and male allele pattern through CGH and STR analysis. Pluripotency of Genea022 was demonstrated with 84% of cells expressed Nanog, 98% Oct4, 55% Tra1–60 and 97% SSEA4, gave a Pluritest Pluripotency score of 42.95, Novelty of 1.23, demonstrated Alkaline Phosphatase activity and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and visible contamination.

  10. Further characterization of the first seminoma cell line TCam-2.

    Science.gov (United States)

    de Jong, Jeroen; Stoop, Hans; Gillis, Ad J M; Hersmus, Remko; van Gurp, Ruud J H L M; van de Geijn, Gert-Jan M; van Drunen, Ellen; Beverloo, H Berna; Schneider, Dominik T; Sherlock, Jon K; Baeten, John; Kitazawa, Sohei; van Zoelen, E Joop; van Roozendaal, Kees; Oosterhuis, J Wolter; Looijenga, Leendert H J

    2008-03-01

    Testicular germ cell tumors of adolescents and adults (TGCTs) can be classified into seminomatous and nonseminomatous tumors. Various nonseminomatous cell lines, predominantly embryonal carcinoma, have been established and proven to be valuable for pathobiological and clinical studies. So far, no cell lines have been derived from seminoma which constitutes more than 50% of invasive TGCTs. Such a cell line is essential for experimental investigation of biological characteristics of the cell of origin of TGCTs, i.e., carcinoma in situ of the testis, which shows characteristics of a seminoma cell. Before a cell line can be used as model, it must be verified regarding its origin and characteristics. Therefore, a multidisciplinary approach was undertaken on TCam-2 cells, supposedly the first seminoma cell line. Fluorescence in situ hybridization, array comparative genomic hybridization, and spectral karyotyping demonstrated an aneuploid DNA content, with gain of 12p, characteristic for TGCTs. Genome wide mRNA and microRNA expression profiling supported the seminoma origin, in line with the biallelic expression of imprinted genes IGF2/H19 and associated demethylation of the imprinting control region. Moreover, the presence of specific markers, demonstrated by immunohistochemistry, including (wild type) KIT, stem cell factor, placental alkaline phosphatase, OCT3/4 (also demonstrated by a specific Q-PCR) and NANOG, and the absence of CD30, SSX2-4, and SOX2, confirms that TCam-2 is a seminoma cell line. Although mutations in oncogenes and tumor suppressor genes are rather rare in TGCTs, TCam-2 had a mutated BRAF gene (V600E), which likely explains the fact that these cells could be propagated in vitro. In conclusion, TCam-2 is the first well-characterized seminoma-derived cell line, with an exceptional mutation, rarely found in TGCTs.

  11. Establishment of Germ-line Competent C57BL/6J Embryonic Stem Cell Lines

    Institute of Scientific and Technical Information of China (English)

    Gui-jun YAN; Zheng GU; Jian WANG; Jia-ke TSO

    2004-01-01

    Objective To establish C57BL/6J embryonic stem (ES) cell lines with potential germline contribution Methods ES cells were isolated from blastocyst inner cell mass of C57BL/6J mice, and cultured for 15 passages, and then injected into blastococels of lCR mice blastocysts to establish chimeric mice.Results Three ES cell lines (mC57ESl,mC57ES3, mC57ES7) derived from the inner cell mass of C57BL/6J mice blastocysts were established. They were characteristic of undifferentiated state, including normal XY karyotype, expression of a specific cell surface marker "stage-specific embryonic antigen-1" and alkaline phosphatase in continuous passage. When injected into immunodeficient mice, mC5 7ES1 cells consis tently differentiated into derivatives of all three embryonic germ layers. When mC57ES1cells were transferred into ICR mice blastocysts, 4 chimeric mice have been obtained.One male of them revealed successful germ-line transmission. Conclussion We have obtained C57BL/6J ES cell lines with a potential germ-line contribution, which can be used to generate transgenic and gene knock-out mice.

  12. Cytotoxinic Mechanism of Hydroxyapatite Nanoparticles on Human Hepatoma Cell Lines

    Institute of Scientific and Technical Information of China (English)

    CAO Xian-ying; QI Zhi-tao; DAI Hong-lian; YAN Yu-hua; LI Shi-pu

    2003-01-01

    Stable and single-dispersed HAP nanoparticles were synthesized with chemical method assisted by ultrasonic treatment.HAP nanoparticles were surveyed by AFM and Zataplus.The effect on the Bel-7402 human hepatoma cell lines treated with HAP nanoparticles was investigated by the MTT methods and observation of morphology,and the mechanism was studied in changes of cell cycle and ultrastructure.The result shows that inhibition of HAP nanoparticles on the Bel-7402 human hepatoma cell lines is obviously in vitro.HAP nanoparticles the entered cancer cytoplasm,and cell proliferation is stopped at G1 phase of cell cycle,thus,cancer cells die directly.

  13. Deriving cell lines from zebrafish embryos and tumors.

    Science.gov (United States)

    Choorapoikayil, Suma; Overvoorde, John; den Hertog, Jeroen

    2013-09-01

    Over the last two decades the zebrafish has emerged as a powerful model organism in science. The experimental accessibility, the broad range of zebrafish mutants, and the highly conserved genetic and biochemical pathways between zebrafish and mammals lifted zebrafish to become one of the most attractive vertebrate models to study gene function and to model human diseases. Zebrafish cell lines are highly attractive to investigate cell biology and zebrafish cell lines complement the experimental tools that are available already. We established a straightforward method to culture cells from a single zebrafish embryo or a single tumor. Here we describe the generation of fibroblast-like cell lines from wild-type and ptenb(-/-) embryos and an endothelial-like cell line from a tumor of an adult ptena(+/-)ptenb(-/-) zebrafish. This protocol can easily be adapted to establish stable cell lines from any mutant or transgenic zebrafish line and the average time to obtain a pro-stable cell line is 3-5 months.

  14. Recombinant protein production from stable mammalian cell lines and pools.

    Science.gov (United States)

    Hacker, David L; Balasubramanian, Sowmya

    2016-06-01

    We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced.

  15. Establishment of human embryonic stem cell line from gamete donors

    Institute of Scientific and Technical Information of China (English)

    LI Tao; ZHOU Can-quan; MAI Qing-yun; ZHUANG Guang-lun

    2005-01-01

    Background Human embryonic stem (HES) cell derived from human blastocyst can be propagated indefinitely in the primitive undifferentiated state while remaining pluripotent. It has exciting potential in human developmental biology, drug discovery, and transplantation medicine. But there are insufficient HES cell lines for further study. Methods Three oocyte donors were studied, and 3 in vitro fertilization (IVF) cycles were carried out to get blastocysts for the establishment of HES cell line. Isolated from blastocysts immunosurgically, inner cell mass (ICM) was cultured and propagated on mouse embryonic fibroblasts (MEFs). Once established, morphology, cell surface markers, karyotype and differentiating ability of the cell line were thoroughly analyzed.Results Four ICMs from 7 blastocysts were cultured on MEFs. After culture, one cell line (cHES-1) was established and met the criteria for defining human pluripotent stem cells including a series of markers used to identify pluripotent stem cells, morphological similarity to primate embryonic stem cells and HES reported else where. Normal and stable karyotype maintained over 60 passages, and demonstrated ability to differentiate into a wide variety of cell types.Conclusions HES cell lines can be established from gamete donors at a relatively highly efficient rate. The establishment will exert a widespread impact on biomedical research.

  16. Susceptibility of various cell lines to Neospora caninum tachyzoites cultivation

    Directory of Open Access Journals (Sweden)

    Khordadmehr, M.,

    2014-05-01

    Full Text Available Neospora caninum is a coccidian protozoan parasite which is a major cause of bovine abortions and neonatal mortality in cattle, sheep, goat and horse. Occasionally, cultured cells are used for isolation and multiplication of the agent in vitro with several purposes. In this study the tachyzoite yields of N. caninum were compared in various cell cultures as the host cell lines. Among the cell cultures tested, two presented good susceptibility to the agent: cell lines Vero and MA-104. SW742 and TLI (in vitro suspension culture of lymphoid cells infected with Theileria lestoquardi showed moderate sensitivity. No viable tachyzoite were detected in the culture of MDCK and McCoy cell lines. These results demonstrate that MA-104 and SW742 cells present adequate susceptibility to N. caninum compared to Vero cells, which have been largely used to multiply the parasite in vitro. Moreover, these have easy manipulation, fast multiplication and relatively low nutritional requirements. In addition, the result of this study showed that TLI cell line as a suspension cell culture is susceptible to Nc-1 tachyzoites infection and could be used as an alternative host cell line for tachyzoites culture in vitro studies.

  17. JKT-1 is not a human seminoma cell line.

    Science.gov (United States)

    de Jong, Jeroen; Stoop, Hans; Gillis, Ad J M; van Gurp, Ruud J H L M; van Drunen, Ellen; Beverloo, H Berna; Lau, Yun-Fai Chris; Schneider, Dominik T; Sherlock, Jon K; Baeten, John; Hatakeyama, Shingo; Ohyama, Chikara; Oosterhuis, J Wolter; Looijenga, Leendert H J

    2007-08-01

    The JKT-1 cell line has been used in multiple independent studies as a representative model of human testicular seminoma. However, no cell line for this specific tumour type has been independently confirmed previously; and therefore, the seminomatous origin of JKT-1 must be proven. The genetic constitution of the JKT-1 cells was determined using flow cytometry and spectral karyotyping, as well as array comparative genomic hybridization and fluorescent in situ hybridization. Marker profiling, predominantly based on differentially expressed proteins during normal germ cell development, was performed by immunohistochemistry and Western blot analyses. Moreover, genome wide affymetrix mRNA expression and profiling of 157 microRNAs was performed, and the status of genomic imprinting was determined. A germ cell origin of the JKT-1 cells was in line with genomic imprinting status and marker profile (including positive staining for several cancer-testis antigens). However, the supposed primary tumour, from which the cell line was derived, being indeed a classical seminoma, was molecularly proven not to be the origin of the cell line. The characteristic chromosomal anomalies of seminoma, e.g. gain of the short arm of chromosome 12, as well as the informative marker profile (positive staining for OCT3/4, NANOG, among others) were absent in the various JKT-1 cell lines investigated, irrespective of where the cells were cultured. All results indicate that the JKT-1 cell line is not representative of human seminoma. Although it can originate from an early germ cell, a non-germ cell derivation cannot be excluded.

  18. Investigation of radiosensitivity gene signatures in cancer cell lines.

    Directory of Open Access Journals (Sweden)

    John S Hall

    Full Text Available Intrinsic radiosensitivity is an important factor underlying radiotherapy response, but there is no method for its routine assessment in human tumours. Gene signatures are currently being derived and some were previously generated by expression profiling the NCI-60 cell line panel. It was hypothesised that focusing on more homogeneous tumour types would be a better approach. Two cell line cohorts were used derived from cervix [n = 16] and head and neck [n = 11] cancers. Radiosensitivity was measured as surviving fraction following irradiation with 2 Gy (SF2 by clonogenic assay. Differential gene expression between radiosensitive and radioresistant cell lines (SF2 median was investigated using Affymetrix GeneChip Exon 1.0ST (cervix or U133A Plus2 (head and neck arrays. There were differences within cell line cohorts relating to tissue of origin reflected by expression of the stratified epithelial marker p63. Of 138 genes identified as being associated with SF2, only 2 (1.4% were congruent between the cervix and head and neck carcinoma cell lines (MGST1 and TFPI, and these did not partition the published NCI-60 cell lines based on SF2. There was variable success in applying three published radiosensitivity signatures to our cohorts. One gene signature, originally trained on the NCI-60 cell lines, did partially separate sensitive and resistant cell lines in all three cell line datasets. The findings do not confirm our hypothesis but suggest that a common transcriptional signature can reflect the radiosensitivity of tumours of heterogeneous origins.

  19. Development of a cell line from Echinococcus granulosus germinal layer.

    Science.gov (United States)

    Albani, Clara María; Cumino, Andrea Carina; Elissondo, María Celina; Denegri, Guillermo María

    2013-10-01

    In vitro culture of parasitic helminths provides an important tool to study cell regeneration and physiology, as well as for molecular biology and genetic engineering studies. In the present study, we established in vitro propagation of cells from Echinococcus granulosus germinal cyst layer. E. granulosus germinal cells grew beyond 100 passages and showed no signs of reduced proliferation capacity. Microscopic analysis revealed that cells grew both attached to the substrate and in suspension, forming three-dimensional structures like mammalian stem cell aggregates. Examination of the chromosome number of attached germinal cells showed a high degree of heteroploidy, suggesting the occurrence of transformation during culture. Monolayer cells survived cryopreservation and were able to proliferate after thawing. Based on the characteristics displayed by E. granulosus germinal cells, we establish a cell line from the E. granulosus germinal layer. Furthermore, we propose that this cell line could be useful for drug screening and for obtaining parasite material.

  20. Establishment of Jurkat tet-on cell line

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Tet-control system is developed to tightly control target gene expression in mammalian cells by using the regulatory elements of tetracycline-repressor of the transposor Tn10 from E.Coli.We have transfected reverse tetracycline-controlled transactivator gene (rtTA) into genome of Jurkat cells and established two Jurkat tet-on cell lines.Induction of luciferase reporter activity with doxycycline,a tetracycline derivative,is dose-dependent with a peak value of 32-fold increment.Establishment of Jurkat tet-on cell lines greatly facilitates quantitative studies on target gene functions in the cells.

  1. Establishment and characterization of rat portal myofibroblast cell lines.

    Directory of Open Access Journals (Sweden)

    Michel Fausther

    Full Text Available The major sources of scar-forming myofibroblasts during liver fibrosis are activated hepatic stellate cells (HSC and portal fibroblasts (PF. In contrast to well-characterized HSC, PF remain understudied and poorly defined. This is largely due to the facts that isolation of rodent PF for functional studies is technically challenging and that PF cell lines had not been established. To address this, we have generated two polyclonal portal myofibroblast cell lines, RGF and RGF-N2. RGF and RGF-N2 were established from primary PF isolated from adult rat livers that underwent culture activation and subsequent SV40-mediated immortalization. Specifically, Ntpdase2/Cd39l1-sorted primary PF were used to generate the RGF-N2 cell line. Both cell lines were functionally characterized by RT-PCR, immunofluorescence, immunoblot and bromodeoxyuridine-based proliferation assay. First, immortalized RGF and RGF-N2 cells are positive for phenotypic myofibroblast markers alpha smooth muscle actin, type I collagen alpha-1, tissue inhibitor of metalloproteinases-1, PF-specific markers elastin, type XV collagen alpha-1 and Ntpdase2/Cd39l1, and mesenchymal cell marker ecto-5'-nucleotidase/Cd73, while negative for HSC-specific markers desmin and lecithin retinol acyltransferase. Second, both RGF and RGF-N2 cell lines are readily transfectable using standard methods. Finally, RGF and RGF-N2 cells attenuate the growth of Mz-ChA-1 cholangiocarcinoma cells in co-culture, as previously demonstrated for primary PF. Immortalized rat portal myofibroblast RGF and RGF-N2 cell lines express typical markers of activated PF-derived myofibroblasts, are suitable for DNA transfection, and can effectively inhibit cholangiocyte proliferation. Both RGF and RGF-N2 cell lines represent novel in vitro cellular models for the functional studies of portal (myofibroblasts and their contribution to the progression of liver fibrosis.

  2. Mercury specifically induces LINE-1 activity in a human neuroblastoma cell line.

    Science.gov (United States)

    Habibi, Laleh; Shokrgozar, Mohammad Ali; Tabrizi, Mina; Modarressi, Mohammad Hossein; Akrami, Seyed Mohammad

    2014-01-01

    L1 retro-elements comprise 17% of the human genome. Approximately 100 copies of these autonomous mobile elements are active in our DNA and can cause mutations, gene disruptions, and genomic instability. Therefore, human cells control the activities of L1 elements, in order to prevent their deleterious effects through different mechanisms. However, some toxic agents increase the retrotransposition activity of L1 elements in somatic cells. In order to identify specific effects of neurotoxic metals on L1 activity in neuronal cells, we studied the effects of mercury and cobalt on L1-retroelement activity by measuring levels of cellular transcription, protein expression, and genomic retrotransposition in a neuroblastoma cell line compared with the effects in three non-neuronal cell lines. Our results show that mercury increased the expression of L1 RNA, the activity of the L1 5'UTR, and L1 retrotransposition exclusively in the neuroblastoma cell line but not in non-neuronal cell lines. However, cobalt increased the expression of L1 RNA in neuroblastoma cells, HeLa cells, and wild-type human fibroblasts, and also increased the activity of the L1 5'UTR as well as the SV40 promoter in HeLa cells but not in neuroblastoma cells. Exposure to cobalt did not result in increased retrotransposition activity in HeLa cells or neuroblastoma cells. We conclude that non-toxic levels of the neurotoxic agent mercury could influence DNA by increasing L1 activities, specifically in neuronal cells, and may make these cells susceptible to neurodegeneration over time.

  3. Apoptotic effect of noscapine in breast cancer cell lines.

    Science.gov (United States)

    Quisbert-Valenzuela, Edwin O; Calaf, Gloria M

    2016-06-01

    Cancer is a public health problem in the world and breast cancer is the most frequently cancer in women. Approximately 15% of the breast cancers are triple-negative. Apoptosis regulates normal growth, homeostasis, development, embryogenesis and appropriate strategy to treat cancer. Bax is a protein pro-apoptotic enhancer of apoptosis in contrast to Bcl-2 with antiapoptotic properties. Initiator caspase-9 and caspase-8 are features of intrinsic and extrinsic apoptosis pathway, respectively. NF-κB is a transcription factor known to be involved in the initiation and progression of breast cancer. Noscapine, an alkaloid derived from opium is used as antitussive and showed antitumor properties that induced apoptosis in cancer cell lines. The aim of the present study was to determine the apoptotic effect of noscapine in breast cancer cell lines compared to breast normal cell line. Three cell lines were used: i) a control breast cell line MCF-10F; ii) a luminal-like adenocarcinoma triple-positive breast cell line MCF-7; iii) breast cancer triple-negative cell line MDA-MB-231. Our results showed that noscapine had lower toxicity in normal cells and was an effective anticancer agent that induced apoptosis in breast cancer cells because it increases Bax gene and protein expression in three cell lines, while decreases Bcl-xL gene expression, and Bcl-2 protein expression decreased in breast cancer cell lines. Therefore, Bax/Bcl-2 ratio increased in the three cell lines. This drug increased caspase-9 gene expression in breast cancer cell lines and caspase-8 gene expression increased in MCF-10F and MDA-MB-231. Furthermore, it increased cleavage of caspase-8, suggesting that noscapine-induced apoptosis is probably due to the involvement of extrinsic and intrinsic apoptosis pathways. Antiapoptotic gene and protein expression diminished and proapoptotic gene and protein expression increased noscapine-induced expression, probably due to decrease in NF-κB gene and protein expression

  4. Differential effects of bisphosphonates on breast cancer cell lines

    NARCIS (Netherlands)

    Verdijk, R.; Franke, H.R.; Wolbers, F.; Vermes, I.

    2007-01-01

    Bisphosphonates may induce direct anti-tumor effects in breast cancers cells in virtro. In this study, six bisphosphonates were administered to three breast caner cell lines. Cell proliferation was measured by quantification of th expressio of Cyclin D1 mRNA. Apoptosis was determined by flow cytome

  5. Enrichment of human ESC-derived multipotent mesenchymal stem cells with immunosuppressive and anti-inflammatory properties capable to protect against experimental inflammatory bowel disease.

    Science.gov (United States)

    Sánchez, Laura; Gutierrez-Aranda, Iván; Ligero, Gertrudis; Rubio, Ruth; Muñoz-López, Martín; García-Pérez, José L; Ramos, Verónica; Real, Pedro J; Bueno, Clara; Rodríguez, René; Delgado, Mario; Menendez, Pablo

    2011-02-01

    Human ESCs provide access to the earliest stages of human development and may serve as an unlimited source of functional cells for future cell therapies. The optimization of methods directing the differentiation of human embryonic stem cells (hESCs) into tissue-specific precursors becomes crucial. We report an efficient enrichment of mesenchymal stem cells (MSCs) from hESCs through specific inhibition of SMAD-2/3 signaling. Human ESC-derived MSCs (hESC-MSCs) emerged as a population of fibroblastoid cells expressing a MSC phenotype: CD73+ CD90+ CD105+ CD44+ CD166+ CD45- CD34- CD14- CD19- human leucocyte antigen-DR (HLA-DR)-. After 28 days of SMAD-2/3 inhibition, hESC cultures were enriched (>42%) in multipotent MSCs. CD73+CD90+ hESC-MSCs were fluorescence activated cell sorting (FACS)-isolated and long-term cultures were established and maintained for many passages displaying a faster growth than somatic tissue-derived MSCs while maintaining MSC morphology and phenotype. They displayed osteogenic, adipogenic, and chondrocytic differentiation potential and exhibited potent immunosuppressive and anti-inflammatory properties in vitro and in vivo, where hESC-MSCs were capable of protecting against an experimental model of inflammatory bowel disease. Interestingly, the efficient enrichment of hESCs into MSCs through inhibition of SMAD-2/3 signaling was not reproducible with distinct induced pluripotent stem cell lines. Our findings provide mechanistic insights into the differentiation of hESCs into immunosuppressive and anti-inflammatory multipotent MSCs with potential future clinical applications.

  6. Investigation of the selenium metabolism in cancer cell lines.

    Science.gov (United States)

    Lunøe, Kristoffer; Gabel-Jensen, Charlotte; Stürup, Stefan; Andresen, Lars; Skov, Søren; Gammelgaard, Bente

    2011-02-01

    The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line (Jurkat E6-1) were incubated with five selenium compounds representing inorganic as well as organic Se compounds in different oxidation states. Selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys), methylseleninic acid (MeSeA), selenite and selenate in the concentration range 5-100 μM were incubated with cells for 24 h and the induction of cell death was measured using flow cytometry. The amounts of total selenium in cell medium, cell lysate and the insoluble fractions was determined by ICP-MS. Speciation analysis of cellular fractions was performed by reversed phase, anion exchange and size exclusion chromatography and ICP-MS detection. The selenium compounds exhibited large differences in their ability to induce cell death in the three cell lines and the susceptibilities of the cell lines were different. Full recovery of selenium in the cellular fractions was observed for all Se compounds except MeSeA. Speciation analysis showed that MeSeA was completely transformed during the incubations, while metabolic conversion of the other Se compounds was limited. Production of volatile dimethyl diselenide was observed for MeSeA and MeSeCys. MeSeA, MeSeCys and selenite showed noticeable protein binding. Correlations between cell death induction and the Se compounds transformations could not be demonstrated.

  7. Global Conservation of Protein Status between Cell Lines and Xenografts

    Directory of Open Access Journals (Sweden)

    Julian Biau

    2016-08-01

    Full Text Available Common preclinical models for testing anticancer treatment include cultured human tumor cell lines in monolayer, and xenografts derived from these cell lines in immunodeficient mice. Our goal was to determine how similar the xenografts are compared with their original cell line and to determine whether it is possible to predict the stability of a xenograft model beforehand. We studied a selection of 89 protein markers of interest in 14 human cell cultures and respective subcutaneous xenografts using the reverse-phase protein array technology. We specifically focused on proteins and posttranslational modifications involved in DNA repair, PI3K pathway, apoptosis, tyrosine kinase signaling, stress, cell cycle, MAPK/ERK signaling, SAPK/JNK signaling, NFκB signaling, and adhesion/cytoskeleton. Using hierarchical clustering, most cell culture-xenograft pairs cluster together, suggesting a global conservation of protein signature. Particularly, Akt, NFkB, EGFR, and Vimentin showed very stable protein expression and phosphorylation levels highlighting that 4 of 10 pathways were highly correlated whatever the model. Other proteins were heterogeneously conserved depending on the cell line. Finally, cell line models with low Akt pathway activation and low levels of Vimentin gave rise to more reliable xenograft models. These results may be useful for the extrapolation of cell culture experiments to in vivo models in novel targeted drug discovery.

  8. Phenotypes and karyotypes of human malignant mesothelioma cell lines.

    Directory of Open Access Journals (Sweden)

    Vandana Relan

    Full Text Available BACKGROUND: Malignant mesothelioma is an aggressive tumour of serosal surfaces most commonly pleura. Characterised cell lines represent a valuable tool to study the biology of mesothelioma. The aim of this study was to develop and biologically characterise six malignant mesothelioma cell lines to evaluate their potential as models of human malignant mesothelioma. METHODS: Five lines were initiated from pleural biopsies, and one from pleural effusion of patients with histologically proven malignant mesothelioma. Mesothelial origin was assessed by standard morphology, Transmission Electron Microscopy (TEM and immunocytochemistry. Growth characteristics were assayed using population doubling times. Spectral karyotyping was performed to assess chromosomal abnormalities. Authentication of donor specific derivation was undertaken by DNA fingerprinting using a panel of SNPs. RESULTS: Most of cell lines exhibited spindle cell shape, with some retaining stellate shapes. At passage 2 to 6 all lines stained positively for calretinin and cytokeratin 19, and demonstrated capacity for anchorage-independent growth. At passage 4 to 16, doubling times ranged from 30-72 hours, and on spectral karyotyping all lines exhibited numerical chromosomal abnormalities ranging from 41 to 113. Monosomy of chromosomes 8, 14, 22 or 17 was observed in three lines. One line displayed four different karyotypes at passage 8, but only one karyotype at passage 42, and another displayed polyploidy at passage 40 which was not present at early passages. At passages 5-17, TEM showed characteristic features of mesothelioma ultrastructure in all lines including microvilli and tight intercellular junctions. CONCLUSION: These six cell lines exhibit varying cell morphology, a range of doubling times, and show diverse passage-dependent structural chromosomal changes observed in malignant tumours. However they retain characteristic immunocytochemical protein expression profiles of

  9. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  10. Determinants of intrinsic radiosensitivity of mammalian cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Radford, I.R. [Peter MacCallum Cancer Institute, East Melbourne, VIC (Australia). Research Division

    1998-12-31

    Differences in the radiosensitivity of normal and cancerous cells could arise in various ways. Although there is no compelling data to support the view, the currently prevailing opinion is that differences in radiosensitivity are related to differences in some aspect of enzymatic DNA repair. A test of the importance of possible differences in enzymatic DNA repair in determining relative radiosensitivity would be to compare lethality in cells containing equivalent numbers of DNA lesions. Six cell lines were used in these studies: two Chinese hamster (CHO and V79) and a monkey (Vero) fibroblast-like line, a mouse melanoma line (B16-F1), and a rat (RUC-2) and a human (SQ-20B) carcinoma line. This group of cell lines displays a wide range of sensitivities to external beam low-LET radiation, ranging from the relatively radiosensitive B16-F1 and Vero lines through to the highly radioresistant RUC-2 line. However, it is important to note that none of the lines has a demonstrated defect in enzymatic DNA repair and that all appear to die by necrosis following a lethal radiation insult. Despite having significantly different radiosensitivities, CHO and V79 cells showed comparable responses to DNA-associated {sup 125}I-decays with D{sub o} values of around 65. More surprisingly, the radiosensitive B16-F1 line and the radioresistant RUC-2 line both had responses with D{sub o} values of around 133 {sup 125}I-decays. The factor of two difference between the D{sub o} values for these two pairs of cell lines is probably attributable to CHO and V79 cells being pseudo-diploid whereas B 16-F1 and RUC2 appear to have derived from tetraploid cells. The generality of the above result, for DNA lesions of different quality, was tested by comparing the sensitivities of CHO and V79 cells to DNA-associated {sup 3}H-decays. Again, consistent with the {sup 125}I-decay data, there was no significant difference in the D{sub o} values for these lines. Our {sup 3}H- and {sup 125}I-decay data are

  11. Biobanking human embryonic stem cell lines

    DEFF Research Database (Denmark)

    Holm, Søren

    2016-01-01

    Stem cell banks curating and distributing human embryonic stem cells have been established in a number of countries and by a number of private institutions. This paper identifies and critically discusses a number of arguments that are used to justify the importance of such banks in policy...... are curiously absent from the particular stem cell banking policy discourse. This to some extent artificially isolates this discourse from the broader discussions about the flows of reproductive materials and tissues in modern society, and such isolation may lead to the interests of important actors being...

  12. Generation of CD34+ cells from human embryonic stem cells using a clinically applicable methodology and engraftment in the fetal sheep model.

    Science.gov (United States)

    Kim, Jaehyup; Zanjani, Esmail D; Jeanblanc, Christine M; Goodrich, A Daisy; Hematti, Peiman

    2013-08-01

    Until now, ex vivo generation of CD34(+) hematopoietic stem cells (HSCs) from human embryonic stem cells (hESCs) mostly involved use of feeder cells of nonhuman origin. Although they provided invaluable models to study hematopoiesis, in vivo engraftment of hESC-derived HSCs remains a challenging task. In this study, we used a novel coculture system composed of human bone marrow-derived mesenchymal stromal/stem cells (MSCs) and peripheral blood CD14(+) monocyte-derived macrophages to generate CD34(+) cells from hESCs in vitro. Human ESC-derived CD34(+) cells generated using this method expressed surface makers associated with adult human HSCs and upregulated hematopoietic stem cell genes comparable to human bone marrow-derived CD34(+) cells. Finally, transplantation of purified hESC-derived CD34(+) cells into the preimmune fetal sheep, primed with transplantation of MSCs derived from the same hESC line, demonstrated multilineage hematopoietic activity with graft presence up to 16 weeks after transplantation. This in vivo demonstration of engraftment and robust multilineage hematopoietic activity by hESC-derived CD34(+) cells lends credence to the translational value and potential clinical utility of this novel differentiation and transplantation protocol.

  13. Cold storage and cryopreservation of tick cell lines

    Directory of Open Access Journals (Sweden)

    Lallinger Gertrud

    2010-04-01

    Full Text Available Abstract Background Tick cell lines are now available from fifteen ixodid and argasid species of medical and veterinary importance. However, some tick cell lines can be difficult to cryopreserve, and improved protocols for short- and long-term low temperature storage will greatly enhance their use as tools in tick and tick-borne pathogen research. In the present study, different protocols were evaluated for cold storage and cryopreservation of tick cell lines derived from Rhipicephalus (Boophilus decoloratus, Rhipicephalus (Boophilus microplus, Ixodes ricinus and Ixodes scapularis. For short-term cold storage, cells were kept under refrigeration at 6°C for 15, 30 and 45 days. For cryopreservation in liquid nitrogen, use of a sucrose-phosphate-glutamate freezing buffer (SPG as cryoprotectant was compared with dimethylsulfoxide (DMSO supplemented with sucrose. Cell viability was determined by the trypan blue exclusion test and cell morphology was evaluated in Giemsa-stained cytocentrifuge smears. Results Cold storage at 6°C for up to 30 days was successful in preserving R. (B. microplus, R. (B. decoloratus, I. ricinus and I. scapularis cell lines; lines from the latter three species could be easily re-cultivated after 45 days under refrigeration. While cell lines from all four tick species cryopreserved with 6% DMSO were successfully resuscitated, the R. (B. decoloratus cells did not survive freezing in SPG and of the other three species, only the R. (B. microplus cells resumed growth during the observation period. Conclusions This constitutes the first report on successful short-term refrigeration of cells derived from R. (B. decoloratus, R. (B. microplus, and I. ricinus, and use of SPG as an alternative to DMSO for cryopreservation, thus making an important contribution to more reliable and convenient tick cell culture maintenance.

  14. B-cell receptor-associated protein 31 regulates human embryonic stem cell adhesion, stemness, and survival via control of epithelial cell adhesion molecule.

    Science.gov (United States)

    Kim, Won-Tae; Seo Choi, Hong; Min Lee, Hyun; Jang, Young-Joo; Ryu, Chun Jeih

    2014-10-01

    B-Cell receptor-associated protein 31 (BAP31) regulates the export of secreted membrane proteins from the endoplasmic reticulum (ER) to the downstream secretory pathway. Previously, we generated a monoclonal antibody 297-D4 against the surface molecule on undifferentiated human embryonic stem cells (hESCs). Here, we found that 297-D4 antigen was localized to pluripotent hESCs and downregulated during early differentiation of hESCs and identified that the antigen target of 297-D4 was BAP31 on the hESC-surface. To investigate the functional role of BAP31 in hESCs, BAP31 expression was knocked down by small interfering RNA. BAP31 depletion impaired hESC self-renewal and pluripotency and drove hESC differentiation into multicell lineages. BAP31 depletion hindered hESC proliferation by arresting cell cycle at G0/G1 phase and inducing caspase-independent cell death. Interestingly, BAP31 depletion reduced hESC adhesion to extracellular matrix (ECM). Analysis of cell surface molecules showed decreased expression of epithelial cell adhesion molecule (EpCAM) in BAP31-depleted hESCs, while ectopic expression of BAP31 elevated the expression of EpCAM. EpCAM depletion also reduced hESC adhesion to ECM, arrested cell cycle at G0/G1 phase and induced cell death, producing similar effects to those of BAP31 depletion. BAP31 and EpCAM were physically associated and colocalized at the ER and cell surface. Both BAP31 and EpCAM depletion decreased cyclin D1 and E expression and suppressed PI3K/Akt signaling, suggesting that BAP31 regulates hESC stemness and survival via control of EpCAM expression. These findings provide, for the first time, mechanistic insights into how BAP31 regulates hESC stemness and survival via control of EpCAM expression.

  15. Establishment of a new bovine leukosis virus producing cell line.

    Science.gov (United States)

    Beier, D; Riebe, R; Blankenstein, P; Starick, E; Bondzio, A; Marquardt, O

    2004-11-01

    Due to the prevalence of different bovine leukosis virus (BLV) species in the cattle population in Europe, problems may arise in the serological diagnosis of BLV infections. In addition, earlier investigations demonstrated that contamination of the BLV antigen-producing cell culture systems by bovine viral diarrhea virus (BVDV) may give rise to misinterpretation of serological test results after BVDV vaccination of cattle. By co-cultivation of peripheral leukocytes of a BLV-infected cow with a permanent sheep kidney cell line, a new BLV-producing cell line named PO714 was established. This line carries a BLV provirus of the Belgian species and has been tested to be free of a variety of possibly contaminating viruses and mycoplasms. Investigations of a panel of well-characterised sera by agar gel immunodiffusion (AGID) and capture ELISA (cELISA) tests using antigen prepared from this new cell line in comparison with antigen of the well-known cell line FLK/BLV yielded comparable results. False positive results caused by BVDV cross-reactions could be eliminated when tests were carried out with antigen derived from the new cell line.

  16. Expressional patterns of chaperones in ten human tumor cell lines

    Directory of Open Access Journals (Sweden)

    Slavc Irene

    2004-12-01

    Full Text Available Abstract Background Chaperones (CH play an important role in tumor biology but no systematic work on expressional patterns has been reported so far. The aim of the study was therefore to present an analytical method for the concomitant determination of several CH in human tumor cell lines, to generate expressional patterns in the individual cell lines and to search for tumor and non-tumor cell line specific CH expression. Human tumor cell lines of neuroblastoma, colorectal and adenocarcinoma of the ovary, osteosarcoma, rhabdomyosarcoma, malignant melanoma, lung, cervical and breast cancer, promyelocytic leukaemia were homogenised, proteins were separated on two-dimensional gel electrophoresis with in-gel digestion of proteins and MALDI-TOF/TOF analysis was carried out for the identification of CH. Results A series of CH was identified including the main CH groups as HSP90/HATPas_C, HSP70, Cpn60_TCP1, DnaJ, Thioredoxin, TPR, Pro_isomerase, HSP20, ERP29_C, KE2, Prefoldin, DUF704, BAG, GrpE and DcpS. Conclusions The ten individual tumor cell lines showed different expression patterns, which are important for the design of CH studies in tumor cell lines. The results can serve as a reference map and form the basis of a concomitant determination of CH by a protein chemical rather than an immunochemical method, independent of antibody availability or specificity.

  17. Metronidazole decreases viability of DLD-1 colorectal cancer cell line.

    Science.gov (United States)

    Sadowska, Anna; Krętowski, Rafał; Szynaka, Beata; Cechowska-Pasko, Marzanna; Car, Halina

    2013-10-01

    The aim of our study was to evaluate the impact of metronidazole (MTZ) on DLD-1 colorectal cancer cell (CRC) line. Toxicity of MTZ was determined by MTT test. Cells were incubated with MTZ used in different concentrations for 24, 48, and 72 hours. The effect of MTZ on DNA synthesis was measured as [3H]-thymidine incorporation. The morphological changes in human DLD-1 cell line were defined by transmission electron microscope OPTON 900. The influence of MTZ on the apoptosis of DLD-1 cell lines was detected by flow cytometry and fluorescence microscopy, while cell concentration, volume, and diameter were displayed by Scepter Cell Counter from Millipore. Our results show that cell viability was diminished in all experimental groups in comparison with the control, and the differences were statistically significant. We did not find any significant differences in [3H]-thymidine incorporation in all experimental groups and times of observation. Cytofluorimetric assays demonstrated a statistically significant increase of apoptotic rate in MTZ concentrations 10 and 50 μg/mL after 24 hours; 0.1, 10, 50, and 250 μg/mL after 48 hours; and in all concentrations after 72 hours compared with control groups. In the ultrastructural studies, necrotic or apoptotic cells were occasionally seen. In conclusion, MTZ affects human CRC cell line viability. The reduction of cell viability was consistent with the apoptotic test.

  18. Regional differences in expression of specific markers for human embryonic stem cells

    DEFF Research Database (Denmark)

    Laursen, Steen B; Møllgård, Kjeld; Olesen, Christian;

    2007-01-01

    Characterization of human embryonic stem cell (hESC) lines derived from the inner cell masses of blastocysts generally includes expression analysis of markers such as OCT4, NANOG, SSEA3, SSEA4, TRA-1-60 and TRA-1-81. Expression is usually detected by immunocytochemical staining of entire colonies...... staining to weak or absent NANOG staining, and vice versa. SSEA4 staining was only observed in small clusters or single cells and not confined to the TRA territory. Co-expression of all markers was only detected in small areas. SSEA1 expression was found exclusively outside the TRA territory. In conclusion......, pronounced regional differences in the expression of markers considered specific for undifferentiated hESC may suggest the existence of different cell populations....

  19. In vitro radiosensitivity of human leukemia cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Weichselbaum, R.R.; Greenberger, J.S.; Schmidt, A.; Karpas, A.; Moloney, W.C.; Little, J.B.

    1981-05-01

    The in vitro radiobiologic survival values (n, D0) of four tumor lines derived from human hematopoietic tumors were studied. These cell lines were HL50 (n . 1.3, D0 . 117 rad(1.17 Gy)), promyelocytic leukemia; K562 (n . 1.4, D0 . 165 rad(1.65 Gy)), erythroleukemia; 45 (n . 1.1, D0 . 147 rad(1.47 Gy)), acute lymphocyte leukemia; and 176 (n . 4.0, D0 . 76 rad(0.76 Gy)), acute monomyelogenous leukemia. More cell lines must be examined before the exact relationship between in vitro radiosensitivity and clinical radiocurability is firmly established.

  20. Effect of failures and repairs on multiple cell production lines

    Energy Technology Data Exchange (ETDEWEB)

    Legato, P.; Bobbio, A.; Roberti, L.

    1989-01-01

    This paper examines a production line composed of multiple stages, or cells, which are passed in sequential order to arrive to the final product. Two possible coordination disciplines are considered, namely: the classical tandem arrangement of sequential working centers with input buffer and the kanban scheme, considered the Japanese shop floor realization of the Just-In-Time (JIT) manifacturing approach. The production line is modelled and analysed by means of Stochastic Petri Nets (SPN). Finally an analysis is made of the possibility that the working cells can incur failure/repair cycles perturbing the production flow of the line and thus reduce performance indices.

  1. Efficacy of ribavirin against malignant glioma cell lines

    Science.gov (United States)

    OGINO, AKIYOSHI; SANO, EMIKO; OCHIAI, YUSHI; YAMAMURO, SHUN; TASHIRO, SHINYA; YACHI, KAZUNARI; OHTA, TAKASHI; FUKUSHIMA, TAKAO; OKAMOTO, YUTAKA; TSUMOTO, KOUHEI; UEDA, TAKUYA; YOSHINO, ATSUO; KATAYAMA, YOICHI

    2014-01-01

    Ribavirin (1-β-D-ribofuranosy-1,2,4-triazole-3-carboxamide) has been widely administered as an antiviral agent against RNA and DNA viruses. Ribavirin, in combination with interferon, has predominantly been applied in the treatment of the hepatitis C virus infection and its potential antitumor efficacy has recently become a point of interest. The aim of the present study was to evaluate the effect of ribavirin on the growth of malignant glioma cells, to identify novel predictive genes in malignant glioma cells (by analyzing gene expression profiles) and to assess the influence of ribavirin on the cell cycle of malignant glioma cells. The present study evaluated the antitumor efficacy of ribavirin against various malignant glioma cell lines (A-172, AM-38, T98G, U-87MG, U-138MG, U-251MG and YH-13). After culturing the cells in ribavirin-containing culture medium (final concentration, 0–1,000 μM) for 72 h, the viable proliferated cells were harvested and counted. The half maximal inhibitory concentration of ribavirin, with regard to the growth of the malignant glioma cell lines, was determined from the concentration of ribavirin required for 50% growth inhibition in comparison to the untreated control cells. Furthermore, the current study identified the genes in which the gene expression levels correlated with the ribavirin sensitivity of the malignant glioma cells lines, using a high-density oligonucleotide array. Finally, cell cycle analysis was performed on the U-87MG cell line. It was identified that ribavirin inhibited the growth of all of the malignant glioma cell lines in a dose-dependent manner, although the ribavirin sensitivity varied between each cell line. Of the extracted genes, PDGFRA demonstrated the strongest positive correlation between gene expression level and ribavirin sensitivity. Cell cycle analysis of the U-87MG cell line demonstrated that ribavirin treatment induces G0/G1 arrest and thus may be an effective agent for inhibiting malignant

  2. Comparative analysis of cell death induction by Taurolidine in different malignant human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Ritter Peter R

    2010-03-01

    Full Text Available Abstract Background Taurolidine (TRD represents an anti-infective substance with anti-neoplastic activity in many malignant cell lines. So far, the knowledge about the cell death inducing mechanisms and pathways activated by TRD is limited. The aim of this study was therefore, to perform a comparative analysis of cell death induction by TRD simultaneously in different malignant cell lines. Materials and methods Five different malignant cell lines (HT29/Colon, Chang Liver/Liver, HT1080/fibrosarcoma, AsPC-1/pancreas and BxPC-3/pancreas were incubated with increasing concentrations of TRD (100 μM, 250 μM and 1000 μM for 6 h and 24 h. Cell viability, apoptosis and necrosis were analyzed by FACS analysis (Propidiumiodide/AnnexinV staining. Additionally, cells were co-incubated with the caspase Inhibitor z-VAD, the radical scavenger N-Acetylcystein (NAC and the Gluthation depleting agent BSO to examine the contribution of caspase activation and reactive oxygen species in TRD induced cell death. Results All cell lines were susceptible to TRD induced cell death without resistance toward this anti-neoplastic agent. However, the dose response effects were varying largely between different cell lines. The effect of NAC and BSO co-treatment were highly different among cell lines - suggesting a cell line specific involvement of ROS in TRD induced cell death. Furthermore, impact of z-VAD mediated inhibition of caspases was differing strongly among the cell lines. Conclusion This is the first study providing a simultaneous evaluation of the anti-neoplastic action of TRD across several malignant cell lines. The involvement of ROS and caspase activation was highly variable among the five cell lines, although all were susceptible to TRD induced cell death. Our results indicate, that TRD is likely to provide multifaceted cell death mechanisms leading to a cell line specific diversity.

  3. Exometabolom analysis of breast cancer cell lines: Metabolic signature.

    Science.gov (United States)

    Willmann, Lucas; Erbes, Thalia; Halbach, Sebastian; Brummer, Tilman; Jäger, Markus; Hirschfeld, Marc; Fehm, Tanja; Neubauer, Hans; Stickeler, Elmar; Kammerer, Bernd

    2015-08-21

    Cancer cells show characteristic effects on cellular turnover and DNA/RNA modifications leading to elevated levels of excreted modified nucleosides. We investigated the molecular signature of different subtypes of breast cancer cell lines and the breast epithelial cell line MCF-10A. Prepurification of cell culture supernatants was performed by cis-diol specific affinity chromatography using boronate-derivatized polyacrylamide gel. Samples were analyzed by application of reversed phase chromatography coupled to a triple quadrupole mass spectrometer. Collectively, we determined 23 compounds from RNA metabolism, two from purine metabolism, five from polyamine/methionine cycle, one from histidine metabolism and two from nicotinate and nicotinamide metabolism. We observed major differences of metabolite excretion pattern between the breast cancer cell lines and MCF-10A, just as well as between the different breast cancer cell lines themselves. Differences in metabolite excretion resulting from cancerous metabolism can be integrated into altered processes on the cellular level. Modified nucleosides have great potential as biomarkers in due consideration of the heterogeneity of breast cancer that is reflected by the different molecular subtypes of breast cancer. Our data suggests that the metabolic signature of breast cancer cell lines might be a more subtype-specific tool to predict breast cancer, rather than a universal approach.

  4. Biobanking human embryonic stem cell lines

    DEFF Research Database (Denmark)

    Holm, Søren

    2016-01-01

    are curiously absent from the particular stem cell banking policy discourse. This to some extent artificially isolates this discourse from the broader discussions about the flows of reproductive materials and tissues in modern society, and such isolation may lead to the interests of important actors being...

  5. Characterisation of thyroid medullary carcinoma TT cell line.

    Science.gov (United States)

    Zabel, M; Grzeszkowiak, J

    1997-01-01

    TT cell line is the best known stabilized cell line derived from the human medullary thyroid carcinoma. The ultrastructural characteristics of these cells include well developed rough endoplasmic reticulum, a prominent Golgi apparatus and a considerable number of secretory granules. Numerous hormones were immunocytochemically demonstrated in TT cells of which calcitonin and calcitonin gene-related peptide (CGRP) are the products of the same gene but an alternative RNA processing. TT cells were found to produce some other hormones as well, namely ACTH, neurotensin, enkephalin, PTHrP, gastrin-releasing peptide (GRP), serotonin but also functional proteins of the chromogranin group, synaptophysin, NSE, calbindin and tyrosine hydroxylase. Some marker proteins have been detected in the cytosol (CEA) and in the cytoskeleton (alpha-tubulin, cytokeratin). The influence of numerous factors on the secretory activity of these cells has been demonstrated so far, including effects of 1,25-dihydroxycholecalciferol, glucocorticoids, sex steroids, cAMP, gastrin-releasing peptide, sodium butyrate, phorbol esters, ionomycin and forskolin. The investigators performed on the TT cell line demonstrate that this is the most reliable model system for the human parafollicular cells developed so far, in comparison to other cell lines derived from the medullary carcinoma of the thyroid.

  6. Neurohypophysial Receptor Gene Expression by Thymic T Cell Subsets and Thymic T Cell Lymphoma Cell Lines

    Directory of Open Access Journals (Sweden)

    I. Hansenne

    2004-01-01

    transcribed in thymic epithelium, while immature T lymphocytes express functional neurohypophysial receptors. Neurohypophysial receptors belong to the G protein-linked seven-transmembrane receptor superfamily and are encoded by four distinct genes, OTR, V1R, V2R and V3R. The objective of this study was to identify the nature of neurohypophysial receptor in thymic T cell subsets purified by immunomagnetic selection, as well as in murine thymic lymphoma cell lines RL12-NP and BW5147. OTR is transcribed in all thymic T cell subsets and T cell lines, while V3R transcription is restricted to CD4+ CD8+ and CD8+ thymic cells. Neither V1R nor V2R transcripts are detected in any kind of T cells. The OTR protein was identified by immunocytochemistry on thymocytes freshly isolated from C57BL/6 mice. In murine fetal thymic organ cultures, a specific OTR antagonist does not modify the percentage of T cell subsets, but increases late T cell apoptosis further evidencing the involvement of OT/OTR signaling in the control of T cell proliferation and survival. According to these data, OTR and V3R are differentially expressed during T cell ontogeny. Moreover, the restriction of OTR transcription to T cell lines derived from thymic lymphomas may be important in the context of T cell leukemia pathogenesis and treatment.

  7. Generation of iPSC line iPSC-FH2.1 in hypoxic conditions from human foreskin fibroblasts

    Directory of Open Access Journals (Sweden)

    María Questa

    2016-03-01

    Full Text Available Human foreskin fibroblasts were used to generate the iPSC line iPSC-FH2.1 using the EF1a-hSTEMCCA-loxP vector expressing OCT4, SOX2, c-MYC and KLF4, in 5% O2 culture conditions. Stemness was confirmed, as was pluripotency both in vivo and in vitro, in normoxia and hypoxia. Human Embryonic Stem Cell (hESC line WA-09 and reprogrammed fibroblast primary culture HFF-FM were used as controls.

  8. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology...... to an epithelial morphology and vice versa. To achieve this, we developed a shotgun-based lipidomics workflow that enabled the absolute quantification of mammalian membrane lipidomes with minimal sample processing from low sample amounts. Epithelial morphogenesis was accompanied by a major shift from sphingomyelin...... to glycosphingolipid, together with an increase in plasmalogen, phosphatidylethanolamine, and cholesterol content, whereas the opposite changes took place during an epithelial-to-mesenchymal transition. Moreover, during polarization, the sphingolipids became longer, more saturated, and more hydroxylated as required...

  9. Heterozygous embryonic stem cell lines derived from nonhuman primate parthenotes.

    Science.gov (United States)

    Dighe, Vikas; Clepper, Lisa; Pedersen, Darlene; Byrne, James; Ferguson, Betsy; Gokhale, Sumita; Penedo, M Cecilia T; Wolf, Don; Mitalipov, Shoukhrat

    2008-03-01

    Monoparental parthenotes represent a potential source of histocompatible stem cells that should be isogenic with the oocyte donor and therefore suitable for use in cell or tissue replacement therapy. We generated five rhesus monkey parthenogenetic embryonic stem cell (PESC) lines with stable, diploid female karyotypes that were morphologically indistinguishable from biparental controls, expressed key pluripotent markers, and generated cell derivatives representative of all three germ layers following in vivo and in vitro differentiation. Interestingly, high levels of heterozygosity were observed at the majority of loci that were polymorphic in the oocyte donors. Some PESC lines were also heterozygous in the major histocompatibility complex region, carrying haplotypes identical to those of the egg donor females. Expression analysis revealed transcripts from some imprinted genes that are normally expressed from only the paternal allele. These results indicate that limitations accompanying the potential use of PESC-derived phenotypes in regenerative medicine, including aberrant genomic imprinting and high levels of homozygosity, are cell line-dependent and not always present. PESC lines were derived in high enough yields to be practicable, and their derivatives are suitable for autologous transplantation into oocyte donors or could be used to establish a bank of histocompatible cell lines for a broad spectrum of patients.

  10. Transportation characteristics of nolatrexed in three tumor cell lines

    Institute of Scientific and Technical Information of China (English)

    LI Yi-lei; ZHAO Ai-guo; WU Shu-guang

    2002-01-01

    Objective:To investigate the association of the transportation characteristics of nolatrexed in tumor cells with its drug sensitivity. Methods: The sensitivity of 3 tumor cell lines, C6, SRS82 and LoVo, to nolatrexed were determined by growth inhibition study. After exposure to 20 μmol/L nolatrexed at different time intervals ranging from 0 to 30 min, or to nolatrexed at different concentrations ranging from 0 to 40μmol/L for 10 min, the intracellular drug concentration was measured using high-performance liquid chromatography. Results: C6 was the most sensitive cell line among the three, with sensitivity 6. 8-fold and 13.8-fold those of SRS-82 and LoVo cells respectively. Transportation of nolatrexed in the 3 cell lines were qualitatively similar, which rapidly achieved steady-state within 5 min, and linear relationship between the intracellular and extracellular drug concentration was observed. The intracellular steady-state level achieved in C6 was significantly higher than those in the other two cell lines, the latter having comparable levels. Conclusion: Nolatrexed enters the cell very quickly and different transport capacities are involved in the generation of varied sensitivity to nolatrexed in tumor cells.

  11. Limited gene expression variation in human embryonic stem cell and induced pluripotent stem cell-derived endothelial cells.

    Science.gov (United States)

    White, Mark P; Rufaihah, Abdul J; Liu, Lei; Ghebremariam, Yohannes T; Ivey, Kathryn N; Cooke, John P; Srivastava, Deepak

    2013-01-01

    Recent evidence suggests human embryonic stem cell (hESC) and induced pluripotent stem (iPS) cell lines have differences in their epigenetic marks and transcriptomes, yet the impact of these differences on subsequent terminally differentiated cells is less well understood. Comparison of purified, homogeneous populations of somatic cells derived from multiple independent human iPS and ES lines will be required to address this critical question. Here, we report a differentiation protocol based on embryonic development that consistently yields large numbers of endothelial cells (ECs) derived from multiple hESCs or iPS cells. Mesoderm differentiation of embryoid bodies was maximized, and defined growth factors were used to generate KDR(+) EC progenitors. Magnetic purification of a KDR(+) progenitor subpopulation resulted in an expanding, homogeneous pool of ECs that expressed EC markers and had functional properties of ECs. Comparison of the transcriptomes revealed limited gene expression variability between multiple lines of human iPS-derived ECs or between lines of ES- and iPS-derived ECs. These results demonstrate a method to generate large numbers of pure human EC progenitors and differentiated ECs from pluripotent stem cells and suggest individual lineages derived from human iPS cells may have significantly less variance than their pluripotent founders.

  12. Energy metabolism in human pluripotent stem cells and their differentiated counterparts.

    Directory of Open Access Journals (Sweden)

    Sandra Varum

    Full Text Available Human pluripotent stem cells have the ability to generate all cell types present in the adult organism, therefore harboring great potential for the in vitro study of differentiation and for the development of cell-based therapies. Nonetheless their use may prove challenging as incomplete differentiation of these cells might lead to tumoregenicity. Interestingly, many cancer types have been reported to display metabolic modifications with features that might be similar to stem cells. Understanding the metabolic properties of human pluripotent stem cells when compared to their differentiated counterparts can thus be of crucial importance. Furthermore recent data has stressed distinct features of different human pluripotent cells lines, namely when comparing embryo-derived human embryonic stem cells (hESCs and induced pluripotent stem cells (IPSCs reprogrammed from somatic cells.We compared the energy metabolism of hESCs, IPSCs, and their somatic counterparts. Focusing on mitochondria, we tracked organelle localization and morphology. Furthermore we performed gene expression analysis of several pathways related to the glucose metabolism, including glycolysis, the pentose phosphate pathway and the tricarboxylic acid (TCA cycle. In addition we determined oxygen consumption rates (OCR using a metabolic extracellular flux analyzer, as well as total intracellular ATP levels by high performance liquid chromatography (HPLC. Finally we explored the expression of key proteins involved in the regulation of glucose metabolism.Our results demonstrate that, although the metabolic signature of IPSCs is not identical to that of hESCs, nonetheless they cluster with hESCs rather than with their somatic counterparts. ATP levels, lactate production and OCR revealed that human pluripotent cells rely mostly on glycolysis to meet their energy demands. Furthermore, our work points to some of the strategies which human pluripotent stem cells may use to maintain high

  13. Continuous production of erythropoietin by an established human renal carcinoma cell line: development of the cell line

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, J.B.; Shouval, D.

    1986-01-01

    Establishment of a stable, transformed human renal carcinoma cell line that produces erythropoietin in vitro and has maintained this function continuously since 1981 and for > 150 passages in monolayer culture was accomplished by transplantation of human renal clear cell carcinoma tissue from a patient with erythrocytosis into an immunosuppressed athymic mouse. In addition to its immunocrossreactivity with native human urinary erythropoietin, the tumor erythropoietin demonstrates biological activity in the in vitro mouse erythroid colony-forming unit assay and in tumor-bearing nude mice. The cloned renal carcinoma cell line has an abnormal human karyotype and has ultrastructural features characteristic of human renal clear cell carcinoma. This cell line provides a reproducible model system for the production of an erythropoietin-like material and for the study of its synthesis and secretion.

  14. Derivation of human embryonic stem cell line Genea019

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea019 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XX karyotype, female Allele pattern and unaffected Htt CAG repeat length, compared to HD affected sibling Genea020. Pluripotency of Genea019 was demonstrated with 75% of cells expressing Nanog, 89% Oct4, 48% Tra1-60 and 85% SSEA4, a Pluritest Pluripotency score of 22.97, Novelty score of 1.42, tri-lineage teratoma formation and Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and any visible contamination.

  15. Guidelines for the use of cell lines in biomedical research.

    Science.gov (United States)

    Geraghty, R J; Capes-Davis, A; Davis, J M; Downward, J; Freshney, R I; Knezevic, I; Lovell-Badge, R; Masters, J R W; Meredith, J; Stacey, G N; Thraves, P; Vias, M

    2014-09-09

    Cell-line misidentification and contamination with microorganisms, such as mycoplasma, together with instability, both genetic and phenotypic, are among the problems that continue to affect cell culture. Many of these problems are avoidable with the necessary foresight, and these Guidelines have been prepared to provide those new to the field and others engaged in teaching and instruction with the information necessary to increase their awareness of the problems and to enable them to deal with them effectively. The Guidelines cover areas such as development, acquisition, authentication, cryopreservation, transfer of cell lines between laboratories, microbial contamination, characterisation, instability and misidentification. Advice is also given on complying with current legal and ethical requirements when deriving cell lines from human and animal tissues, the selection and maintenance of equipment and how to deal with problems that may arise.

  16. Differential Proteomics in Malignant and Normal Liver Cell Lines

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-jun; WANG Bin; YAN Zhi-yong; QIAN Dong-meng; SONG Xu-xia; Ding Shou-yi; BAI Zhi-qiang

    2007-01-01

    Objective: To detect differential protein expression in malignant and normal liver cell lines in vitro using the SELDI ProteinChip platform, for investigating the pathogenesis of liver cancer. Methods: Two cell lines, human normal liver cell line L02 and hepatoma cell line SMMC-7721 were cultured routinely, harvested in good condition and lysed. After quantification, the supernatant of the lysate was tested by IMAC3 (Immobilized Mental Affinity Capture) and WCX2 (Weak Cation Exchange) chips on the SELDI-TOF-MS ProteinChip reader. Results: Protein expression differed between the malignant and normal liver cell lines. A total of 20 differentially expressed proteins were found, among which, 7 were captured by the IMAC3 chip and 14 by the WCX2 chip. Peaks at 5,419, 7,979 and 11,265 Da were higher and at 8,103, 8,492, 10,160 and 11,304 Da lower in SMMC-7721 cells by the IMAC3 chip; peaks at 7,517, 7,945 and 7,979 Da were higher and at 5,061, 5,551, 5,818, 7,439, 9,401,10,100, 10,312, 11,621, 11,662, 11,830 and 12,772 Da lower in SMMC-7721 cells by the WCX2 chip. Interestingly, both chips captured the 7,979 Da peak. In addition, the 11,081 Da peak corresponded precisely with the molecular mass of the calcium binding protein S100A10, which may participate in the formation of liver cancer in association with p36. Conclusion: Detecting differential protein expression in malignant and normal liver cell lines using the SELDI ProteinChip platform was simple, sensitive and repeatable. The results we obtained can serve as a basis for investigating the pathogenesis of liver cancer and aid the discovery of new therapeutic targets.

  17. Reconstruction of endometrium from human endometrial side population cell lines.

    Directory of Open Access Journals (Sweden)

    Irene Cervelló

    Full Text Available Endometrial regeneration is mediated, at least in part, by the existence of a specialized somatic stem cell (SSC population recently identified by several groups using the side population (SP technique. We previously demonstrated that endometrial SP displays genotypic, phenotypic and the functional capability to develop human endometrium after subcutaneous injection in NOD-SCID mice. We have now established seven human endometrial SP (hESP cell lines (ICE 1-7: four from the epithelial and three from the stromal fraction, respectively. SP cell lines were generated under hypoxic conditions based on their cloning efficiency ability, cultured for 12-15 passages (20 weeks and cryopreserved. Cell lines displayed normal 46XX karyotype, intermediate telomerase activity pattern and expressed mRNAs encoding proteins that are considered characteristic of undifferentiated cells (Oct-4, GDF3, DNMT3B, Nanog, GABR3 and those of mesodermal origin (WT1, Cardiac Actin, Enolase, Globin, REN. Phenotype analysis corroborated their epithelial (CD9+ or stromal (vimentin+ cell origin and mesenchymal (CD90+, CD73+ and CD45⁻ attributes. Markers considered characteristic of ectoderm or endoderm were not detected. Cells did not express either estrogen receptor alpha (ERα or progesterone receptor (PR. The hESP cell lines were able to differentiate in vitro into adipocytes and osteocytes, which confirmed their mesenchymal origin. Finally, we demonstrated their ability to generate human endometrium when transplanted beneath the renal capsule of NOD-SCID mice. These findings confirm that SP cells exhibit key features of human endometrial SSC and open up new possibilities for the understanding of gynecological disorders such as endometriosis or Asherman syndrome. Our cell lines can be a valuable model to investigate new targets for endometrium proliferation in endometriosis.

  18. Establishment, immortalisation and characterisation of pteropid bat cell lines.

    Directory of Open Access Journals (Sweden)

    Gary Crameri

    Full Text Available BACKGROUND: Bats are the suspected natural reservoir hosts for a number of new and emerging zoonotic viruses including Nipah virus, Hendra virus, severe acute respiratory syndrome coronavirus and Ebola virus. Since the discovery of SARS-like coronaviruses in Chinese horseshoe bats, attempts to isolate a SL-CoV from bats have failed and attempts to isolate other bat-borne viruses in various mammalian cell lines have been similarly unsuccessful. New stable bat cell lines are needed to help with these investigations and as tools to assist in the study of bat immunology and virus-host interactions. METHODOLOGY/FINDINGS: Black flying foxes (Pteropus alecto were captured from the wild and transported live to the laboratory for primary cell culture preparation using a variety of different methods and culture media. Primary cells were successfully cultured from 20 different organs. Cell immortalisation can occur spontaneously, however we used a retroviral system to immortalise cells via the transfer and stable production of the Simian virus 40 Large T antigen and the human telomerase reverse transcriptase protein. Initial infection experiments with both cloned and uncloned cell lines using Hendra and Nipah viruses demonstrated varying degrees of infection efficiency between the different cell lines, although it was possible to infect cells in all tissue types. CONCLUSIONS/SIGNIFICANCE: The approaches developed and optimised in this study should be applicable to bats of other species. We are in the process of generating further cell lines from a number of different bat species using the methodology established in this study.

  19. Monoclonal antibodies against the human leukemia cell line K 562.

    Science.gov (United States)

    Böttger, V; Hering, S; Jantscheff, P; Micheel, B

    1985-01-01

    Three monoclonal antibodies raised against K 562, a cell line originally established from a patient with chronic myeloid leukemia (CML) in terminal blast crisis, were selected according to their distinct reaction pattern. Whereas two antibodies (ZIK-C1-A/C5 and ZIK-C1-A/H5 also designated C and H) recognized antigens, present on K 562 cells and other immature and mature hematopoietic cells (cell lines and normal blood and bone marrow cells), antibody ZIK-C1-A/D9 also designated Y showed an exclusive binding to K 562 cells. The results obtained (here and in the following paper) indicate, that antibody ZIK-C1-A/D9 defines an early differentiation antigen of hematopoiesis or a leukemia-associated antigen.

  20. Comparative Metabolic Flux Profiling of Melanoma Cell Lines

    Science.gov (United States)

    Scott, David A.; Richardson, Adam D.; Filipp, Fabian V.; Knutzen, Christine A.; Chiang, Gary G.; Ronai, Ze'ev A.; Osterman, Andrei L.; Smith, Jeffrey W.

    2011-01-01

    Metabolic rewiring is an established hallmark of cancer, but the details of this rewiring at a systems level are not well characterized. Here we acquire this insight in a melanoma cell line panel by tracking metabolic flux using isotopically labeled nutrients. Metabolic profiling and flux balance analysis were used to compare normal melanocytes to melanoma cell lines in both normoxic and hypoxic conditions. All melanoma cells exhibited the Warburg phenomenon; they used more glucose and produced more lactate than melanocytes. Other changes were observed in melanoma cells that are not described by the Warburg phenomenon. Hypoxic conditions increased fermentation of glucose to lactate in both melanocytes and melanoma cells (the Pasteur effect). However, metabolism was not strictly glycolytic, as the tricarboxylic acid (TCA) cycle was functional in all melanoma lines, even under hypoxia. Furthermore, glutamine was also a key nutrient providing a substantial anaplerotic contribution to the TCA cycle. In the WM35 melanoma line glutamine was metabolized in the “reverse” (reductive) direction in the TCA cycle, particularly under hypoxia. This reverse flux allowed the melanoma cells to synthesize fatty acids from glutamine while glucose was primarily converted to lactate. Altogether, this study, which is the first comprehensive comparative analysis of metabolism in melanoma cells, provides a foundation for targeting metabolism for therapeutic benefit in melanoma. PMID:21998308

  1. Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions.

    Science.gov (United States)

    Swistowski, Andrzej; Peng, Jun; Liu, Qiuyue; Mali, Prashant; Rao, Mahendra S; Cheng, Linzhao; Zeng, Xianmin

    2010-10-01

    Human induced pluripotent stem cells (iPSCs) reprogrammed from somatic cells represent a promising unlimited cell source for generating patient-specific cells for biomedical research and personalized medicine. As a first step, critical to clinical applications, we attempted to develop defined culture conditions to expand and differentiate human iPSCs into functional progeny such as dopaminergic neurons for treating or modeling Parkinson's disease (PD). We used a completely defined (xeno-free) system that we previously developed for efficient generation of authentic dopaminergic neurons from human embryonic stem cells (hESCs), and applied it to iPSCs. First, we adapted two human iPSC lines derived from different somatic cell types for the defined expansion medium and showed that the iPSCs grew similarly as hESCs in the same medium regarding pluripotency and genomic stability. Second, by using these two independent adapted iPSC lines, we showed that the process of differentiation into committed neural stem cells (NSCs) and subsequently into dopaminergic neurons was also similar to hESCs. Importantly, iPSC-derived dopaminergic neurons were functional as they survived and improved behavioral deficits in 6-hydroxydopamine-leasioned rats after transplantation. In addition, iPSC-derived NSCs and neurons could be efficiently transduced by a baculoviral vector delivering episomal DNA for future gene function study and disease modeling using iPSCs. We also performed genome-wide microarray comparisons between iPSCs and hESCs, and we derived NSC and dopaminergic neurons. Our data revealed overall similarity and visible differences at a molecular level. Efficient generation of functional dopaminergic neurons under defined conditions will facilitate research and applications using PD patient-specific iPSCs.

  2. Cell death in mammalian cell culture: molecular mechanisms and cell line engineering strategies

    OpenAIRE

    Krampe, Britta; Al-Rubeai, Mohamed

    2010-01-01

    Cell death is a fundamentally important problem in cell lines used by the biopharmaceutical industry. Environmental stress, which can result from nutrient depletion, by-product accumulation and chemical agents, activates through signalling cascades regulators that promote death. The best known key regulators of death process are the Bcl-2 family proteins which constitute a critical intracellular checkpoint of apoptosis cell death within a common death pathway. Engineering of several members o...

  3. hPSCreg—the human pluripotent stem cell registry

    Science.gov (United States)

    Seltmann, Stefanie; Lekschas, Fritz; Müller, Robert; Stachelscheid, Harald; Bittner, Marie-Sophie; Zhang, Weiping; Kidane, Luam; Seriola, Anna; Veiga, Anna; Stacey, Glyn; Kurtz, Andreas

    2016-01-01

    The human pluripotent stem cell registry (hPSCreg), accessible at http://hpscreg.eu, is a public registry and data portal for human embryonic and induced pluripotent stem cell lines (hESC and hiPSC). Since their first isolation the number of hESC lines has steadily increased to over 3000 and new iPSC lines are generated in a rapidly growing number of laboratories as a result of their potentially broad applicability in biomedicine and drug testing. Many of these lines are deposited in stem cell banks, which are globally established to store tens of thousands of lines from healthy and diseased donors. The Registry provides comprehensive and standardized biological and legal information as well as tools to search and compare information from multiple hPSC sources and hence addresses a translational research need. To facilitate unambiguous identification over different resources, hPSCreg automatically creates a unique standardized name for each cell line registered. In addition to biological information, hPSCreg stores extensive data about ethical standards regarding cell sourcing and conditions for application and privacy protection. hPSCreg is the first global registry that holds both, manually validated scientific and ethical information on hPSC lines, and provides access by means of a user-friendly, mobile-ready web application. PMID:26400179

  4. hPSCreg--the human pluripotent stem cell registry.

    Science.gov (United States)

    Seltmann, Stefanie; Lekschas, Fritz; Müller, Robert; Stachelscheid, Harald; Bittner, Marie-Sophie; Zhang, Weiping; Kidane, Luam; Seriola, Anna; Veiga, Anna; Stacey, Glyn; Kurtz, Andreas

    2016-01-04

    The human pluripotent stem cell registry (hPSCreg), accessible at http://hpscreg.eu, is a public registry and data portal for human embryonic and induced pluripotent stem cell lines (hESC and hiPSC). Since their first isolation the number of hESC lines has steadily increased to over 3000 and new iPSC lines are generated in a rapidly growing number of laboratories as a result of their potentially broad applicability in biomedicine and drug testing. Many of these lines are deposited in stem cell banks, which are globally established to store tens of thousands of lines from healthy and diseased donors. The Registry provides comprehensive and standardized biological and legal information as well as tools to search and compare information from multiple hPSC sources and hence addresses a translational research need. To facilitate unambiguous identification over different resources, hPSCreg automatically creates a unique standardized name for each cell line registered. In addition to biological information, hPSCreg stores extensive data about ethical standards regarding cell sourcing and conditions for application and privacy protection. hPSCreg is the first global registry that holds both, manually validated scientific and ethical information on hPSC lines, and provides access by means of a user-friendly, mobile-ready web application.

  5. Skin Biopsy and Patient-Specific Stem Cell Lines

    Science.gov (United States)

    Li, Yao; Nguyen, Huy V.; Tsang, Stephen H.

    2016-01-01

    The generation of patient-specific induced pluripotent stem (iPS) cells permits the development of next-generation patient-specific systems biology models reflecting personalized genomics profiles to better understand pathophysiology. In this chapter, we describe how to create a patient-specific iPS cell line. There are three major steps: (1) performing a skin biopsy procedure on the patient; (2) extracting human fibroblast cells from the skin biopsy tissue; and (3) reprogramming patient-specific fibroblast cells into the pluripotent stem cell stage. PMID:26141312

  6. The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations.

    Science.gov (United States)

    Meeth, Katrina; Wang, Jake Xiao; Micevic, Goran; Damsky, William; Bosenberg, Marcus W

    2016-09-01

    The remarkable success of immune therapies emphasizes the need for immune-competent cancer models. Elegant genetically engineered mouse models of a variety of cancers have been established, but their effective use is limited by cost and difficulties in rapidly generating experimental data. Some mouse cancer cell lines are transplantable to immunocompetent host mice and have been utilized extensively to study cancer immunology. Here, we describe the Yale University Mouse Melanoma (YUMM) lines, a comprehensive system of mouse melanoma cell lines that are syngeneic to C57BL/6, have well-defined human-relevant driver mutations, and are genomically stable. This will be a useful tool for the study of tumor immunology and genotype-specific cancer biology.

  7. Human cell lines: A promising alternative for recombinant FIX production.

    Science.gov (United States)

    de Sousa Bomfim, Aline; Cristina Corrêa de Freitas, Marcela; Picanço-Castro, Virgínia; de Abreu Soares Neto, Mário; Swiech, Kamilla; Tadeu Covas, Dimas; Maria de Sousa Russo, Elisa

    2016-05-01

    Factor IX (FIX) is a vitamin K-dependent protein, and it has become a valuable pharmaceutical in the Hemophilia B treatment. We evaluated the potential of recombinant human FIX (rhFIX) expression in 293T and SK-Hep-1 human cell lines. SK-Hep-1-FIX cells produced higher levels of biologically active protein. The growth profile of 293T-FIX cells was not influenced by lentiviral integration number into the cellular genome. SK-Hep-1-FIX cells showed a significantly lower growth rate than SK-Hep-1 cells. γ-carboxylation process is significant to FIX biological activity, thus we performed a expression analysis of genes involved in this process. The 293T gene expression suggests that this cell line could efficiently carboxylate FIX, however only 28% of the total secreted protein is active. SK-Hep-1 cells did not express high amounts of VKORC1 and carboxylase, but this cell line secreted large amounts of active protein. Enrichment of culture medium with Ca(+2) and Mg(+2) ions did not affect positively rhFIX expression in SK-Hep-1 cells. In 293T cells, the addition of 0.5 mM Ca(+2) and 1 mM Mg(+2) resulted in higher rhFIX concentration. SK-Hep-1 cell line proved to be very effective in rhFIX production, and it can be used as a novel biotechnological platform for the production of recombinant proteins.

  8. Casein gene expression in mouse mammary epithelial cell lines: Dependence upon extracellular matrix and cell type

    Energy Technology Data Exchange (ETDEWEB)

    Medina, D.; Oborn, C.J. (Baylor College of Medicine, Houston, TX (USA)); Li, M.L.; Bissell, M.J. (Univ. of California, Berkeley (USA))

    1987-09-01

    The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appeared to represent myoepithelial cells. The cell lines were examined for expression of {beta}-casein mRNA in the presence or absence of prolactin. The inducibility of {beta}-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types.

  9. Analysis of LINE-1 expression in human pluripotent cells.

    Science.gov (United States)

    Muñoz-Lopez, Martin; Garcia-Cañadas, Marta; Macia, Angela; Morell, Santiago; Garcia-Perez, Jose L

    2012-01-01

    Half of the human genome is composed of repeated DNA, and some types are mobile within our genome (transposons and retrotransposons). Despite their abundance, only a small fraction of them are currently active in our genome (Long Interspersed Element-1 (LINE-1), Alu, and SVA elements). LINE-1 or L1 elements are a family of active non-LTR retrotransposons, the ongoing mobilization of which still impacts our genome. As selfish DNA elements, L1 activity is more prominent in early human development, where new insertions would be transmitted to the progeny. Here, we describe the conventional methods aimed to determine the expression level of LINE-1 elements in pluripotent human cells.

  10. Establishment of cell suspension line of Populus tomentosa Carr

    Institute of Scientific and Technical Information of China (English)

    YAO Na; ZHANG Zhi-yi; AN Xin-min; YANG Kai

    2008-01-01

    Leaves of fine Populus tomentosa genotype TC152 were used as explants to establish cell suspension lines. The effects of plant growth regulators on callus induction and establishment of cell suspension lines were studied. The callus induction rate was the highest on a MS solid medium supplemented with 1.0 mg·L-1 2,4-D. A cell suspension line could be obtained by inoculating calli which were not subeultured into a MS liquid medium supplemented with 1.5 mg·L-1 2,4-D. The best subculture medium was MS+ 0.8 mg·L-1 2,4-D + 30 g·L-1 sucrose with a subculture cycle of seven days.

  11. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Emanuela Mari

    2016-11-01

    Full Text Available Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2 and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS, mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells.

  12. Repair at single targeted DNA double-strand breaks in pluripotent and differentiated human cells.

    Directory of Open Access Journals (Sweden)

    Hua Fung

    Full Text Available Differences in ex vivo cell culture conditions can drastically affect stem cell physiology. We sought to establish an assay for measuring the effects of chemical, environmental, and genetic manipulations on the precision of repair at a single DNA double-strand break (DSB in pluripotent and somatic human cells. DSBs in mammalian cells are primarily repaired by either homologous recombination (HR or nonhomologous end-joining (NHEJ. For the most part, previous studies of DSB repair in human cells have utilized nonspecific clastogens like ionizing radiation, which are highly nonphysiologic, or assayed repair at randomly integrated reporters. Measuring repair after random integration is potentially confounded by locus-specific effects on the efficiency and precision of repair. We show that the frequency of HR at a single DSB differs up to 20-fold between otherwise isogenic human embryonic stem cells (hESCs based on the site of the DSB within the genome. To overcome locus-specific effects on DSB repair, we used zinc finger nucleases to efficiently target a DSB repair reporter to a safe-harbor locus in hESCs and a panel of somatic human cell lines. We demonstrate that repair at a targeted DSB is highly precise in hESCs, compared to either the somatic human cells or murine embryonic stem cells. Differentiation of hESCs harboring the targeted reporter into astrocytes reduces both the efficiency and precision of repair. Thus, the phenotype of repair at a single DSB can differ based on either the site of damage within the genome or the stage of cellular differentiation. Our approach to single DSB analysis has broad utility for defining the effects of genetic and environmental modifications on repair precision in pluripotent cells and their differentiated progeny.

  13. Dipeptidyl peptidase IV in two human glioma cell lines

    Directory of Open Access Journals (Sweden)

    A Sedo

    2009-12-01

    Full Text Available There is growing evidence that dipeptidyl peptidase IV [DPP-IV, EC 3.4.14.5] takes part in the metabolism of biologically active peptides participating in the regulation of growth and transformation of glial cells. However, the knowledge on the DPP-IV expression in human glial and glioma cells is still very limited. In this study, using histochemical and biochemical techniques, the DPP-IV activity was demonstrated in two commercially available human glioma cell lines of different transformation degree, as represented by U373 astrocytoma (Grade III and U87 glioblastoma multiforme (Grade IV lines. Higher total activity of the enzyme, as well as its preferential localisation in the plasma membrane, was observed in U87 cells. Compared to U373 population, U87 cells were morphologically more pleiomorphic, they were cycling at lower rate and expressing less Glial Fibrillary Acidic Protein. The data revealed positive correlation between the degree of transformation of cells and activity of DPP-IV. Great difference in expression of this enzyme, together with the phenotypic differences of cells, makes these lines a suitable standard model for further 57 studies of function of this enzyme in human glioma cells.

  14. Oral bioavailability of glyphosate: studies using two intestinal cell lines.

    Science.gov (United States)

    Vasiluk, Luba; Pinto, Linda J; Moore, Margo M

    2005-01-01

    Glyphosate is a commonly used nonselective herbicide that inhibits plant growth through interference with the production of essential aromatic amino acids. In vivo studies in mammals with radiolabeled glyphosate have shown that 34% of radioactivity was associated with intestinal tissue 2 h after oral administration. The aim of our research was to investigate the transport, binding, and toxicity of glyphosate to the cultured human intestinal epithelial cell line, Caco-2, and the rat small intestinal crypt-derived cell line, ileum epithelial cells-18 (IEC-18). An in vitro analysis of the transport kinetics of [14C]-glyphosate showed that 4 h after exposure, approximately 8% of radiolabeled glyphosate moved through the Caco-2 monolayer in a dose-dependent manner. Binding of glyphosate to cells was saturable and approximately 4 x 10(11) binding sites/cell were estimated from bound [14C]. Exposure of Caco-2 cells to > or =10 mg/ml glyphosate reduced transmembrane electrical resistance (TEER) by 82 to 96% and increased permeability to [3H]-mannitol, indicating that paracellular permeability increased in glyphosate-treated cells. At 10-mg/ml glyphosate, both IEC-18 and Caco-2 cells showed disruption in the actin cytoskeleton. In Caco-2 cells, significant lactate dehydrogenase leakage was observed when cells were exposed to 15 mg/ml of glyphosate. These data indicate that at doses >10 mg/ml, glyphosate significantly disrupts the barrier properties of cultured intestinal cells.

  15. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    Science.gov (United States)

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  16. Antiproliferative effect of Tualang honey on oral squamous cell carcinoma and osteosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Ismail Noorliza M

    2010-09-01

    Full Text Available Abstract Background The treatment of oral squamous cell carcinomas (OSCC and human osteosarcoma (HOS includes surgery and/or radiotherapy which often lead to reduced quality of life. This study was aimed to study the antiproliferative activity of local honey (Tualang on OSCC and HOS cell lines. Methods Several concentrations of Tualang honey (1% - 20% were applied on OSCC and HOS cell lines for 3, 6, 12, 24, 48 and 72 hours. Morphological characteristics were observed under light and fluorescent microscope. Cell viability was assessed using MTT assay and the optical density for absorbance values in each experiment was measured at 570 nm by an ELISA reader. Detection of cellular apoptosis was done using the Annexin V-FITC Apoptosis Detection Kit. Results Morphological appearance showed apoptotic cellular changes like becoming rounded, reduction in cell number, blebbed membrane and apoptotic nuclear changes like nuclear shrinkage, chromatin condensation and fragmented nucleus on OSCC and HOS cell lines. Cell viability assay showed a time and dose-dependent inhibitory effect of honey on both cell lines. The 50% inhibitory concentration (IC50 for OSCC and HOS cell lines was found to be 4% and 3.5% respectively. The maximum inhibition of cell growth of ≥80% was obtained at 15% for both cell lines. Early apoptosis was evident by flow cytometry where percentage of early apoptotic cells increased in dose and time dependent manner. Conclusion Tualang honey showed antiproliferative effect on OSCC and HOS cell lines by inducing early apoptosis.

  17. Identification and Characterization of Cancer Stem Cells from Head and Neck Squamous Cell Carcinoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Valentina Pozzi

    2015-05-01

    Full Text Available Background/Aims: Head and neck squamous cell carcinoma (HNSCC ranks sixth worldwide for tumor-related mortality. A subpopulation of tumor cells, termed cancer stem cells (CSCs, has the ability to support cancer growth. Therefore, profiling CSC-enriched populations could be a reliable tool to study cancer biology. Methods: We performed phenotypic characterization of 7 HNSCC cell lines and evaluated the presence of CSCs. CSCs from Hep-2 cell line and HNSCC primary cultures were enriched through sphere formation and sphere-forming cells have been characterized both in vitro and in vivo. In addition, we investigated the expression levels of Nicotinamide N-methyltransferase (NNMT, an enzyme overexpressed in several malignancies. Results: CSC markers were markedly expressed in Hep-2 cell line, which was found to be highly tumorigenic. CSC-enriched populations displayed increased expression of CSC markers and a strong capability to form tumors in vivo. We also found an overexpression of CSC markers in tumor formed by CSC-enriched populations. Interestingly, NNMT levels were significantly higher in CSC-enriched populations compared with parental cells. Conclusion: Our study provides an useful procedure for CSC identification and enrichment in HNSCC. Moreover, results obtained seem to suggest that CSCs may represent a promising target for an anticancer therapy.

  18. Boldine: a potential new antiproliferative drug against glioma cell lines.

    Science.gov (United States)

    Gerhardt, Daniéli; Horn, Ana Paula; Gaelzer, Mariana Maier; Frozza, Rudimar Luiz; Delgado-Cañedo, Andrés; Pelegrini, Alessandra Luiza; Henriques, Amélia T; Lenz, Guido; Salbego, Christianne

    2009-12-01

    Malignant gliomas are the most common and devastating primary tumors of the central nervous system. Currently no efficient treatment is available. This study evaluated the effect and underlying mechanisms of boldine, an aporphine alkaloid of Peumus boldus, on glioma proliferation and cell death. Boldine decreased the cell number of U138-MG, U87-MG and C6 glioma lines at concentrations of 80, 250 and 500 muM. We observed that cell death caused by boldine was cell-type specific and dose-dependent. Exposure to boldine for 24 h did not activate key mediators of apoptosis. However, it induced alterations in the cell cycle suggesting a G(2)/M arrest in U138-MG cells. Boldine had no toxic effect on non-tumor cells when used at the same concentrations as those used on tumor cells. Based on these results, we speculate that boldine may be a promising compound for evaluation as an anti-cancer agent.

  19. Characterization of cloned cells from an immortalized fetal pulmonary type II cell line

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, R.F.; Waide, J.J.; Lechner, J.F.

    1995-12-01

    A cultured cell line that maintained expression of pulmonary type II cell markers of differentiation would be advantageous to generate a large number of homogenous cells in which to study the biochemical functions of type II cells. Type II epithelial cells are the source of pulmonary surfactant and a cell of origin for pulmonary adenomas. Last year our laboratory reported the induction of expression of two phenotypic markers of pulmonary type II cells (alkaline phosphatase activity and surfactant lipid synthesis) in cultured fetal rat lung epithelial (FRLE) cells, a spontaneously immortalized cell line of fetal rat lung type II cell origin. Subsequently, the induction of the ability to synthesize surfactant lipid became difficult to repeat. We hypothesized that the cell line was heterogenuous and some cells were more like type II cells than others. The purpose of this study was to test this hypothesis and to obtain a cultured cell line with type II cell phenotypic markers by cloning several FRLE cells and characterizing them for phenotypic markers of type II cells (alkaline phosphatase activity and presence of surfactant lipids). Thirty cloned cell lines were analyzed for induced alkaline phosphatase activity (on x-axis) and for percent of phospholipids that were disaturated (i.e., surfactant).

  20. LINEing germ and embryonic stem cells' silencing of retrotransposons.

    Science.gov (United States)

    Ishiuchi, Takashi; Torres-Padilla, Maria-Elena

    2014-07-01

    Almost half of our genome is occupied by transposable elements. Although most of them are inactive, one type of non-long terminal repeat (LTR) retrotransposon, long interspersed nuclear element 1 (LINE1), is capable of retrotransposition. Two studies in this issue, Pezic and colleagues (pp. 1410-1428) and Castro-Diaz and colleagues (pp. 1397-1409), provide novel insight into the regulation of LINE1s in human embryonic stem cells and mouse germ cells and shed new light on the conservation of complex mechanisms to ensure silencing of transposable elements in mammals.

  1. Cell death in mammalian cell culture: molecular mechanisms and cell line engineering strategies.

    Science.gov (United States)

    Krampe, Britta; Al-Rubeai, Mohamed

    2010-07-01

    Cell death is a fundamentally important problem in cell lines used by the biopharmaceutical industry. Environmental stress, which can result from nutrient depletion, by-product accumulation and chemical agents, activates through signalling cascades regulators that promote death. The best known key regulators of death process are the Bcl-2 family proteins which constitute a critical intracellular checkpoint of apoptosis cell death within a common death pathway. Engineering of several members of the anti-apoptosis Bcl-2 family genes in several cell types has extended the knowledge of their molecular function and interaction with other proteins, and their regulation of cell death. In this review, we describe the various modes of cell death and their death pathways at molecular and organelle level and discuss the relevance of the growing knowledge of anti-apoptotic engineering strategies to inhibit cell death and increase productivity in mammalian cell culture.

  2. A new FACS approach isolates hESC derived endoderm using transcription factors.

    Directory of Open Access Journals (Sweden)

    Yuqiong Pan

    Full Text Available We show that high quality microarray gene expression profiles can be obtained following FACS sorting of cells using combinations of transcription factors. We use this transcription factor FACS (tfFACS methodology to perform a genomic analysis of hESC-derived endodermal lineages marked by combinations of SOX17, GATA4, and CXCR4, and find that triple positive cells have a much stronger definitive endoderm signature than other combinations of these markers. Additionally, SOX17(+ GATA4(+ cells can be obtained at a much earlier stage of differentiation, prior to expression of CXCR4(+ cells, providing an important new tool to isolate this earlier definitive endoderm subtype. Overall, tfFACS represents an advancement in FACS technology which broadly crosses multiple disciplines, most notably in regenerative medicine to redefine cellular populations.

  3. TALEN/CRISPR-mediated eGFP knock-in add-on at the OCT4 locus does not impact differentiation of human embryonic stem cells towards endoderm.

    Directory of Open Access Journals (Sweden)

    Nicole A J Krentz

    Full Text Available Human embryonic stem cells (hESCs have great promise as a source of unlimited transplantable cells for regenerative medicine. However, current progress on producing the desired cell type for disease treatment has been limited due to an insufficient understanding of the developmental processes that govern their differentiation, as well as a paucity of tools to systematically study differentiation in the lab. In order to overcome these limitations, cell-type reporter hESC lines will be required. Here we outline two strategies using Transcription Activator Like Effector Nucleases (TALENs and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR-CRISPR-Associated protein (Cas to create OCT4-eGFP knock-in add-on hESC lines. Thirty-one and forty-seven percent of clones were correctly modified using the TALEN and CRISPR-Cas9 systems, respectively. Further analysis of three correctly targeted clones demonstrated that the insertion of eGFP in-frame with OCT4 neither significantly impacted expression from the wild type allele nor did the fusion protein have a dramatically different biological stability. Importantly, the OCT4-eGFP fusion was easily detected using microscopy, flow cytometry and western blotting. The OCT4 reporter lines remained equally competent at producing CXCR4+ definitive endoderm that expressed a panel of endodermal genes. Moreover, the genomic modification did not impact the formation of NKX6.1+/SOX9+ pancreatic progenitor cells following directed differentiation. In conclusion, these findings demonstrate for the first time that CRISPR-Cas9 can be used to modify OCT4 and highlight the feasibility of creating cell-type specific reporter hESC lines utilizing genome-editing tools that facilitate homologous recombination.

  4. The ROCK inhibitor Y-27632 improves recovery of human embryonic stem cells after fluorescence-activated cell sorting with multiple cell surface markers.

    Directory of Open Access Journals (Sweden)

    Nil Emre

    Full Text Available BACKGROUND: Due to the inherent sensitivity of human embryonic stem cells (hESCs to manipulations, the recovery and survival of hESCs after fluorescence-activated cell sorting (FACS can be low. Additionally, a well characterized and robust methodology for performing FACS on hESCs using multiple-cell surface markers has not been described. The p160-Rho-associated coiled kinase (ROCK inhibitor, Y-27632, previously has been identified as enhancing survival of hESCs upon single-cell dissociation, as well as enhancing recovery from cryopreservation. Here we examined the application of Y-27632 to hESCs after FACS to improve survival in both feeder-dependent and feeder-independent growth conditions. METHODOLOGY/PRINCIPAL FINDINGS: HESCs were sorted using markers for SSEA-3, TRA-1-81, and SSEA-1. Cells were plated after sorting for 24 hours in either the presence or the absence of Y-27632. In both feeder-dependent and feeder-independent conditions, cell survival was greater when Y-27632 was applied to the hESCs after sort. Specifically, treatment of cells with Y-27632 improved post-sort recovery up to four fold. To determine the long-term effects of sorting with and without the application of Y-27632, hESCs were further analyzed. Specifically, hESCs sorted with and without the addition of Y-27632 retained normal morphology, expressed hESC-specific markers as measured by immunocytochemistry and flow cytometry, and maintained a stable karyotype. In addition, the hESCs could differentiate into three germ layers in vitro and in vivo in both feeder-dependent and feeder-independent growth conditions. CONCLUSIONS/SIGNIFICANCE: The application of Y-27632 to hESCs after cell sorting improves cell recovery with no observed effect on pluripotency, and enables the consistent recovery of hESCs by FACS using multiple surface markers. This improved methodology for cell sorting of hESCs will aid many applications such as removal of hESCs from secondary cell types

  5. Cellular and Phenotypic Characterization of Canine Osteosarcoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Marie E. Legare, Jamie Bush, Amanda K. Ashley, Taka Kato, William H. Hanneman

    2011-01-01

    Full Text Available Canine and human osteosarcoma (OSA have many similarities, with the majority of reported cases occurring in the appendicular skeleton, gender predominance noted, high rate of metastasis at the time of presentation, and a lack of known etiology for this devastating disease. Due to poor understanding of the molecular mechanisms underlying OSA, we have characterized seven different OSA canine cell lines: Abrams, D17, Grey, Hughes, Ingles, Jarques, and Marisco and compared them to U2, a human OSA cell line, for the following parameters: morphology, growth, contact inhibition, migrational tendencies, alkaline phosphatase staining, heterologous tumor growth, double-strand DNA breaks, and oxidative damage. All results demonstrated the positive characteristics of the Abrams cell line for use in future studies of OSA. Of particular interest, the robust growth of a subcutaneous tumor and rapid pulmonary metastasis of the Abrams cell line in an immunocompromised mouse shows incredible potential for the future use of Abrams as a canine OSA model. Further investigations utilizing a canine cell model of OSA, such as Abrams, will be invaluable to understanding the molecular events underlying OSA, pharmaceutical inhibition of metastasis, and eventual prevention of this devastating disease.

  6. Non-invasive Imaging of Human Embryonic Stem Cells

    OpenAIRE

    Hong, Hao; Yang, Yunan; Zhang, Yin; Cai, Weibo

    2010-01-01

    Human embryonic stem cells (hESCs) hold tremendous therapeutic potential in a variety of diseases. Over the last decade, non-invasive imaging techniques have proven to be of great value in tracking transplanted hESCs. This review article will briefly summarize the various techniques used for non-invasive imaging of hESCs, which include magnetic resonance imaging (MRI), bioluminescence imaging (BLI), fluorescence, single-photon emission computed tomography (SPECT), positron emission tomography...

  7. Osmotic stress affects functional properties of human melanoma cell lines

    CERN Document Server

    La Porta, Caterina A M; Pasini, Maria; Laurson, Lasse; Alava, Mikko J; Zapperi, Stefano; Amar, Martine Ben

    2015-01-01

    Understanding the role of microenvironment in cancer growth and metastasis is a key issue for cancer research. Here, we study the effect of osmotic pressure on the functional properties of primary and metastatic melanoma cell lines. In particular, we experimentally quantify individual cell motility and transmigration capability. We then perform a circular scratch assay to study how a cancer cell front invades an empty space. Our results show that primary melanoma cells are sensitive to a low osmotic pressure, while metastatic cells are less. To better understand the experimental results, we introduce and study a continuous model for the dynamics of a cell layer and a stochastic discrete model for cell proliferation and diffusion. The two models capture essential features of the experimental results and allow to make predictions for a wide range of experimentally measurable parameters.

  8. Cysteine modified polyaniline films improve biocompatibility for two cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yslas, Edith I., E-mail: eyslas@exa.unrc.edu.ar [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Cavallo, Pablo; Acevedo, Diego F.; Barbero, César A. [Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Rivarola, Viviana A. [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina)

    2015-06-01

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using L-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV–visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86° ± 1 to 90° ± 1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. - Highlights: • A new surface PANI-Cys was produced on films of polyethylene terephthalate. • The relationship between surface characteristics and biocompatibility is analyzed. • The PANI-Cys film presents good biocompatibility for two cell lines.

  9. Early events in xenograft development from the human embryonic stem cell line HS181--resemblance with an initial multiple epiblast formation.

    Science.gov (United States)

    Gertow, Karin; Cedervall, Jessica; Jamil, Seema; Ali, Rouknuddin; Imreh, Marta P; Gulyas, Miklos; Sandstedt, Bengt; Ahrlund-Richter, Lars

    2011-01-01

    Xenografting is widely used for assessing in vivo pluripotency of human stem cell populations. Here, we report on early to late events in the development of mature experimental teratoma from a well-characterized human embryonic stem cell (HESC) line, HS181. The results show an embryonic process, increasingly chaotic. Active proliferation of the stem cell derived cellular progeny was detected already at day 5, and characterized by the appearance of multiple sites of engraftment, with structures of single or pseudostratified columnar epithelium surrounding small cavities. The striking histological resemblance to developing embryonic ectoderm, and the formation of epiblast-like structures was supported by the expression of the markers OCT4, NANOG, SSEA-4 and KLF4, but a lack of REX1. The early neural marker NESTIN was uniformly expressed, while markers linked to gastrulation, such as BMP-4, NODAL or BRACHYURY were not detected. Thus, observations on day 5 indicated differentiation comparable to the most early transient cell populations in human post implantation development. Confirming and expanding on previous findings from HS181 xenografts, these early events were followed by an increasingly chaotic development, incorporated in the formation of a benign teratoma with complex embryonic components. In the mature HS181 teratomas not all types of organs/tissues were detected, indicating a restricted differentiation, and a lack of adequate spatial developmental cues during the further teratoma formation. Uniquely, a kinetic alignment of rare complex structures was made to human embryos at diagnosed gestation stages, showing minor kinetic deviations between HS181 teratoma and the human counterpart.

  10. UOK 268 Cell Line for Hereditary Leiomyomatosis and Renal Cell Carcinoma | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute’s Urologic Oncology Branch seeks parties to co-develop the UOK 262 immortalized cell line as research tool to study aggressive hereditary leiomyomatosis and renal cell carcinoma (HLRCC)-associated recurring kidney cancer.

  11. Third-line chemotherapy for small cell lung cancer

    NARCIS (Netherlands)

    de Jong, WK; ten Hacken, NHT; Groen, HJM

    2006-01-01

    Efficacy of third-line chemotherapy treatment for small cell lung cancer (SCLC) is unknown. We present our experience with third-tine chemotherapy for recurrent SCLC. Between January 1996 and July 2004 all. consecutive patients treated for SCLC were retrospectively studied. We recorded patient chara

  12. UV light blocks EGFR signalling in human cancer cell lines

    DEFF Research Database (Denmark)

    Olsen, BB; Neves-Petersen, M T; Klitgaard, S

    2007-01-01

    UV light excites aromatic residues, causing these to disrupt nearby disulphide bridges. The EGF receptor is rich in aromatic residues near the disulphide bridges. Herein we show that laser-pulsed UV illumination of two different skin-derived cancer cell lines i.e. Cal-39 and A431, which both...

  13. Silicon Carbide Tiles for Sidewall Lining in Aluminium Electrolysis Cells

    Institute of Scientific and Technical Information of China (English)

    RUANBo; ZHAOJunguo; 等

    1999-01-01

    The paper introduces the nitride bonded silicon carbide used for sidewall lining in aluminium eletrolysis cells ,including technical process,main properties and application results.Comparison tests on various physical properties of silicon carbide products made by LIRR and other producers worldwide have also been conducted in an independent laboratory.

  14. 76 FR 16609 - Proposed Information Collection; Comment Request; Identification of Human Cell Lines Project

    Science.gov (United States)

    2011-03-24

    ...; Identification of Human Cell Lines Project AGENCY: National Institute of Standards and Technology (NIST...) profiling up to 1500 human cell line samples as part of the Identification of Human Cell Lines Project. All... for Biotechnology Information (NCBI) and will be used to differentiate among cell lines, as...

  15. Differentiation Potential of O Bombay Human-Induced Pluripotent Stem Cells and Human Embryonic Stem Cells into Fetal Erythroid-Like Cells

    Directory of Open Access Journals (Sweden)

    Fatemeh Ganji,

    2015-01-01

    Full Text Available Objective: There is constant difficulty in obtaining adequate supplies of blood components, as well as disappointing performance of "universal" red blood cells. Advances in somatic cell reprogramming of human-induced pluripotent stem cells (hiPSCs have provided a valuable alternative source to differentiate into any desired cell type as a therapeutic promise to cure many human disease. Materials and Methods: In this experimental study, we examined the erythroid differentiation potential of normal Bombay hiPSCs (B-hiPSCs and compared results to human embryonic stem cell (hESC lines. Because of lacking ABO blood group expression in B-hiPSCs, it has been highlighted as a valuable source to produce any cell type in vitro. Results: Similar to hESC lines, hemangioblasts derived from B-hiPSCs expressed approximately 9% KDR+CD31+ and approximately 5% CD31+CD34+. In semisolid media, iPSC and hESC-derived hemangioblast formed mixed type of hematopoietic colony. In mixed colonies, erythroid progenitors were capable to express CD71+GPA+HbF+ and accompanied by endothelial cells differentiation. Conclusion: Finally, iPS and ES cells have been directly induced to erythropoiesis without hemangioblast formation that produced CD71+HbF+erythroid cells. Although we observed some variations in the efficiency of hematopoietic differentiation between iPSC and ES cells, the pattern of differentiation was similar among all three tested lines.

  16. Effects of Low Doses of Ionizing Radiation Exposures on Stress-Responsive Gene Expression in Human Embryonic Stem Cells

    Science.gov (United States)

    Sokolov, Mykyta; Neumann, Ronald

    2014-01-01

    There is a great deal of uncertainty on how low (≤0.1 Gy) doses of ionizing radiation (IR) affect human cells, partly due to a lack of suitable experimental model systems for such studies. The uncertainties arising from low-dose IR human data undermine practical societal needs to predict health risks emerging from diagnostic medical tests’ radiation, natural background radiation, and environmental radiological accidents. To eliminate a variability associated with remarkable differences in radioresponses of hundreds of differentiated cell types, we established a novel, human embryonic stem cell (hESC)-based model to examine the radiobiological effects in human cells. Our aim is to comprehensively elucidate the gene expression changes in a panel of various hESC lines following low IR doses of 0.01; 0.05; 0.1 Gy; and, as a reference, relatively high dose of 1 Gy of IR. Here, we examined the dynamics of transcriptional changes of well-established IR-responsive set of genes, including CDKN1A, GADD45A, etc. at 2 and 16 h post-IR, representing “early” and “late” radioresponses of hESCs. Our findings suggest the temporal- and hESC line-dependence of stress gene radioresponses with no statistically significant evidence for a linear dose-response relationship within the lowest doses of IR exposures. PMID:24398983

  17. Effects of Low Doses of Ionizing Radiation Exposures on Stress-Responsive Gene Expression in Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Mykyta Sokolov

    2014-01-01

    Full Text Available There is a great deal of uncertainty on how low (≤0.1 Gy doses of ionizing radiation (IR affect human cells, partly due to a lack of suitable experimental model systems for such studies. The uncertainties arising from low-dose IR human data undermine practical societal needs to predict health risks emerging from diagnostic medical tests’ radiation, natural background radiation, and environmental radiological accidents. To eliminate a variability associated with remarkable differences in radioresponses of hundreds of differentiated cell types, we established a novel, human embryonic stem cell (hESC-based model to examine the radiobiological effects in human cells. Our aim is to comprehensively elucidate the gene expression changes in a panel of various hESC lines following low IR doses of 0.01; 0.05; 0.1 Gy; and, as a reference, relatively high dose of 1 Gy of IR. Here, we examined the dynamics of transcriptional changes of well-established IR-responsive set of genes, including CDKN1A, GADD45A, etc. at 2 and 16 h post-IR, representing “early” and “late” radioresponses of hESCs. Our findings suggest the temporal- and hESC line-dependence of stress gene radioresponses with no statistically significant evidence for a linear dose-response relationship within the lowest doses of IR exposures.

  18. Crude subcellular fractionation of cultured mammalian cell lines

    Directory of Open Access Journals (Sweden)

    Holden Paul

    2009-12-01

    Full Text Available Abstract Background The expression and study of recombinant proteins in mammalian culture systems can be complicated during the cell lysis procedure by contaminating proteins from cellular compartments distinct from those within which the protein of interest resides and also by solubility issues that may arise from the use of a single lysis buffer. Partial subcellular fractionation using buffers of increasing stringency, rather than whole cell lysis is one way in which to avoid or reduce this contamination and ensure complete recovery of the target protein. Currently published protocols involve time consuming centrifugation steps which may require expensive equipment and commercially available kits can be prohibitively expensive when handling large or multiple samples. Findings We have established a protocol to sequentially extract proteins from cultured mammalian cells in fractions enriched for cytosolic, membrane bound organellar, nuclear and insoluble proteins. All of the buffers used can be made inexpensively and easily and the protocol requires no costly equipment. While the method was optimized for a specific cell type, we demonstrate that the protocol can be applied to a variety of commonly used cell lines and anticipate that it can be applied to any cell line via simple optimization of the primary extraction step. Conclusion We describe a protocol for the crude subcellular fractionation of cultured mammalian cells that is both straightforward and cost effective and may facilitate the more accurate study of recombinant proteins and the generation of purer preparations of said proteins from cell extracts.

  19. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines

    Directory of Open Access Journals (Sweden)

    Chen Lei

    2011-06-01

    Full Text Available Abstract Background Cancer stem cells (CSCs are regarded as the cause of tumor formation and recurrence. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. Methods Human hepatoma cell lines were plated in stem cell conditioned culture system allowed for sphere forming. To evaluate the stemness characteristics of spheres, the self-renewal, proliferation, chemoresistance, tumorigenicity of the PLC/PRF/5 sphere-forming cells, and the expression levels of stem cell related proteins in the PLC/PRF/5 sphere-forming cells were assessed, comparing with the parental cells. The stem cell RT-PCR array was performed to further explore the biological properties of liver CSCs. Results The PLC/PRF/5, MHCC97H and HepG2 cells could form clonal nonadherent 3-D spheres and be serially passaged. The PLC/PRF/5 sphere-forming cells possessed a key criteria that define CSCs: persistent self-renewal, extensive proliferation, drug resistance, overexpression of liver CSCs related proteins (Oct3/4, OV6, EpCAM, CD133 and CD44. Even 500 sphere-forming cells were able to form tumors in NOD/SCID mice, and the tumor initiating capability was not decreased when spheres were passaged. Besides, downstream proteins DTX1 and Ep300 of the CSL (CBF1 in humans, Suppressor of hairless in Drosophila and LAG1 in C. elegans -independent Notch signaling pathway were highly expressed in the spheres, and a gamma-secretase inhibitor MRK003 could significantly inhibit the sphere formation ability. Conclusions Nonadherent tumor spheres from hepatoma cell lines cultured in stem cell conditioned medium possess liver CSC properties, and the CSL-independent Notch signaling pathway may play a role in liver CSCs.

  20. THP-1 cell line: an in vitro cell model for immune-modulation approach : Review

    NARCIS (Netherlands)

    Chanput, W.; Mes, J.J.; Wichers, H.J.

    2014-01-01

    THP-1 is a human leukemia monocytic cell line, which has been extensively used to study monocyte/macrophage functions, mechanisms, signaling pathways, and nutrient and drug transport. This cell line has become a common model to estimate modulation of monocyte and macrophage activities. This review a

  1. Human Embryonic St me Cell Lines fromthe Chinese Population and Differentiation to Liver and Muscle Cell Types

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    We have established 6 hES cell lines from IVF surplus blastocysts. Characterization of these lines have shown that 4 of the 6 lines meet all of the criterion (Science) for hES cell lines and 2 of them display most characteristics of hES cells but do not form teratoma. In order to produce hES cell lines without using mouse feeders, we have produced a hES cell line using feeders derived from hES cells themselves, and showed that hES-derived feeders are capable of supporting the derivation of new hES cell line...

  2. Cytotoxicity and genotoxicity of phenazine in two human cell lines.

    Science.gov (United States)

    McGuigan, Claire F; Li, Xing-Fang

    2014-06-01

    Phenazine was recently identified as a drinking water disinfection byproduct (DBP), but little is known of its toxic effects. We examined in vitro cytotoxicity and genotoxicity of phenazine (1.9-123 μM) in HepG2 and T24 cell lines. Cytotoxicity was determined by an impedance-based real-time cell analysis instrument. The BrdU (5-bromo-2'-deoxyuridine) proliferation and MTT ((3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) viability assays were used to examine mechanisms of cytotoxicity. Genotoxicity was determined using the alkaline comet assay. Concentration-dependent cytotoxicity was observed in HepG2 cells, primarily due to an antiproliferative effect (BrdU 24 h IC50: 11 μM; 48 h IC50: 7.8 μM) observed as low as 1.9 μM. T24 cells experienced a minor antiproliferative effect (BrdU 24 h IC50: 47 μM; 48 h IC50: 17 μM). IC50 values for HepG2 proliferation and viability were 54-77% lower compared to T24 cells. In both cell lines, IC50 values for proliferation were 66-90% lower than those for viability. At phenazine concentrations producing equivalent cytotoxicity, HepG2 cells (1.9-30.8 μM) experienced no significant genotoxic effects, while T24 cells (7.7-123 μM) experienced significant genotoxicity at ⩾61.5 μM. While these effects were seen at phenazine concentrations above those found in disinfected water, the persistence of the antiproliferative effect and the differential toxicity in each cell line deserves further study.

  3. Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells.

    Science.gov (United States)

    Ruiz, Sergio; Diep, Dinh; Gore, Athurva; Panopoulos, Athanasia D; Montserrat, Nuria; Plongthongkum, Nongluk; Kumar, Sachin; Fung, Ho-Lim; Giorgetti, Alessandra; Bilic, Josipa; Batchelder, Erika M; Zaehres, Holm; Kan, Natalia G; Schöler, Hans Robert; Mercola, Mark; Zhang, Kun; Izpisua Belmonte, Juan Carlos

    2012-10-02

    Generation of human induced pluripotent stem cells (hiPSCs) by the expression of specific transcription factors depends on successful epigenetic reprogramming to a pluripotent state. Although hiPSCs and human embryonic stem cells (hESCs) display a similar epigenome, recent reports demonstrated the persistence of specific epigenetic marks from the somatic cell type of origin and aberrant methylation patterns in hiPSCs. However, it remains unknown whether the use of different somatic cell sources, encompassing variable levels of selection pressure during reprogramming, influences the level of epigenetic aberrations in hiPSCs. In this work, we characterized the epigenomic integrity of 17 hiPSC lines derived from six different cell types with varied reprogramming efficiencies. We demonstrate that epigenetic aberrations are a general feature of the hiPSC state and are independent of the somatic cell source. Interestingly, we observe that the reprogramming efficiency of somatic cell lines inversely correlates with the amount of methylation change needed to acquire pluripotency. Additionally, we determine that both shared and line-specific epigenetic aberrations in hiPSCs can directly translate into changes in gene expression in both the pluripotent and differentiated states. Significantly, our analysis of different hiPSC lines from multiple cell types of origin allow us to identify a reprogramming-specific epigenetic signature comprised of nine aberrantly methylated genes that is able to segregate hESC and hiPSC lines regardless of the somatic cell source or differentiation state.

  4. Effect of cell confluence on production of cloned mice using an inbred embryonic stem cell line.

    Science.gov (United States)

    Gao, Shaorong; McGarry, Michelle; Ferrier, Tricia; Pallante, Benedetta; Priddle, Helen; Gasparrini, Bianca; Fletcher, Judy; Harkness, Linda; De Sousa, Paul; McWhir, Jim; Wilmut, Ian

    2003-02-01

    Mice have been successfully cloned from both somatic cells and hybrid embryonic stem (ES) cells. Heterozygosity of the donor ES cell genome has been suggested as a crucial factor for long-term survival of cloned mice. In the present study, an inbred ES cell line, HM-1 (129/Ola), and a well-tested ES cell line, R1 (129/Sv x 129/Sv-CP), were used as donor cells to evaluate the developmental potential of nuclear transfer embryos. We found that ES cell confluence dramatically affects the developmental potential of reconstructed embryos. With the ES cell line HM-1 and 80-90% confluence, 49% of reconstructed embryos developed to the morula/blastocyst stage, 9% of these embryos developed to live pups when transferred to the surrogate mothers, and 5 of 18 live pups survived to adulthood. By contrast, at 60-70% confluence, only 22% of embryos developed to the morula/blastocyst stage, and after transfer, only a single fetus reached term. Consistent with previous reports, the nuclei of R1 ES cells were also shown to direct development to term, but no live pups were derived from cells at later passages (>20). Our results show that the developmental potential of reconstructed embryos is determined by both cell confluence and cell passage. These results also demonstrate that the inbred ES cell line, HM-1, can be used to produce viable cloned mice, although less efficiently than most heterozygous ES cell lines.

  5. Relation of cell proliferation to expression of peripheral benzodiazepine receptors in human breast cancer cell lines.

    Science.gov (United States)

    Beinlich, A; Strohmeier, R; Kaufmann, M; Kuhl, H

    2000-08-01

    Peripheral benzodiazepine receptor (PBR) agonist [(3)H]Ro5-4864 has been shown to bind with high affinity to the human breast cancer cell line BT-20. Therefore, we investigated different human breast cancer cell lines with regard to binding to [(3)H]Ro5-4864 and staining with the PBR-specific monoclonal antibody 8D7. Results were correlated with cell proliferation characteristics. In flow cytometric analysis, the estrogen receptor (ER)-negative breast cancer cell lines BT-20, MDA-MB-435-S, and SK-BR-3 showed significantly higher PBR expression (relative fluorescence intensity) than the ER-positive cells T47-D, MCF-7 and BT-474 (Pdiazepam-binding inhibitor are possibly involved in the regulation of cell proliferation of human breast cancer cell lines.

  6. Mitochondrial DNA sequence analysis of two mouse hepatocarcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Ji-Gang Dai; Xia Lei; Jia-Xin Min; Guo-Qiang Zhang; Hong Wei

    2005-01-01

    AIM: To study genetic difference of mitochondrial DNA (mtDNA)between two hepatocarcinoma cell lines (Hca-F and Hca-P)with diverse metastatic characteristics and the relationship between mtDNA changes in cancer cells and their oncogenic phenotype.METHODS: Mitochondrial DNA D-loop, tRNAMet+Glu+Ile and ND3gene fragments from the hepatocarcinoma cell lines with 1100, 1126 and 534 bp in length respectively were analysed by PCR amplification and restriction fragment length polymorphism techniques. The D-loop 3' end sequence of the hepatocarcinoma cell lines was determined by sequencing.RESULTS: No amplification fragment length polymorphism and restriction fragment length polymorphism were observed in tRNAMet+Glu+Ile,ND3 and D-loop of mitochondrial DNA of the hepatocarcinoma cells. Sequence differences between Hca-F and Hca-P were found in mtDNA D-loop.CONCLUSION: Deletion mutations of mitochondrial DNA restriction fragment may not play a significant role in carcinogenesis. Genetic difference of mtDNA D-loop between Hca-F and Hca-P, which may reflect the environmental and genetic influences during tumor progression, could be linked to their tumorigenic phenotypes.

  7. Centrosomal dysregulation in human metastatic melanoma cell lines.

    Science.gov (United States)

    Charters, Geoffrey A; Stones, Clare J; Shelling, Andrew N; Baguley, Bruce C; Finlay, Graeme J

    2011-09-01

    Correct partitioning of the replicated genome during mitosis is orchestrated by centrosomes, and chromosomal instability is a commonly reported feature of human cancer. Melanomas are notorious for their genetic instability and rapid clonal evolution that may be manifested as aggressive growth and facile generation of therapy-resistant variants. We characterized the centrosomal status, ploidy, and gene status (TP53, CDKN2A/B, BRAF, and NRAS) of 15 human metastatic melanoma cell lines. Cells were labelled for pericentrin (a centrosomal marker), DNA and α-tubulin, and scored for centrosome morphology, supernumerary centrosomes, and mitotic symmetry. The incidence of supernumerary centrosomes correlated with that of gross centrosomal abnormalities (r = 0.90), mitotic asymmetry (r = 0.90), and, surprisingly, increased content of G/M cells (r = 0.79). Centrosomal numerical dysregulation, observed in all cell lines, was found not to be specifically related to the status of any of the characterized gene mutations that were found in 13/15 cell lines. We conclude that centrosomal dysregulation may arise from multiple mechanisms and may drive the generation of genetic and phenotypic diversity in melanoma.

  8. BRITER: a BMP responsive osteoblast reporter cell line.

    Directory of Open Access Journals (Sweden)

    Prem Swaroop Yadav

    Full Text Available BACKGROUND: BMP signaling pathway is critical for vertebrate development and tissue homeostasis. High-throughput molecular genetic screening may reveal novel players regulating BMP signaling response while chemical genetic screening of BMP signaling modifiers may have clinical significance. It is therefore important to generate a cell-based tool to execute such screens. METHODOLOGY/PRINCIPAL FINDINGS: We have established a BMP responsive reporter cell line by stably integrating a BMP responsive dual luciferase reporter construct in the immortalized calvarial osteoblast cells isolated from tamoxifen inducible Bmp2; Bmp4 double conditional knockout mouse strain. This cell line, named BRITER (BMP Responsive Immortalized Reporter cell line, responds robustly, promptly and specifically to exogenously added BMP2 protein. The sensitivity to added BMP may be further increased by depleting the endogenous BMP2 and BMP4 proteins. CONCLUSION: As the dynamic range of the assay (for BMP responsiveness is very high for BRITER and as it responds specifically and promptly to exogenously added BMP2 protein, BRITER may be used effectively for chemical or molecular genetic screening for BMP signaling modifiers. Identification of novel molecular players capable of influencing BMP signaling pathway may have clinical significance.

  9. Differences in radiosensitivity between three HER2 overexpressing cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Ann-Charlott; Tolmachev, Vladimir; Stenerloew, Bo [Uppsala University, Unit of Biomedical Radiation Sciences, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala (Sweden); Goestring, Lovisa [Affibody AB, Bromma (Sweden); Palm, Stig [Sahlgrenska Academy at Goeteborg University, Department of Radiation Physics, Goeteborg (Sweden); Carlsson, Joergen [Uppsala University, Unit of Biomedical Radiation Sciences, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala (Sweden); Rudbeck Laboratory, Biomedical Radiation Sciences, Uppsala (Sweden)

    2008-06-15

    HER2 is a potential target for radionuclide therapy, especially when HER2 overexpressing breast cancer cells are resistant to Herceptin {sup registered} treatment. Therefore, it is of interest to analyse whether HER2 overexpressing tumour cells have different inherent radiosensitivity. The radiosensitivity of three often used HER2 overexpressing cell lines, SKOV-3, SKBR-3 and BT-474, was analysed. The cells were exposed to conventional photon irradiation, low linear energy transfer (LET), to characterise their inherent radiosensitivity. The analysis was made with clonogenic survival and growth extrapolation assays. The cells were also exposed to alpha particles, high LET, from {sup 211}At decays using the HER2-binding affibody molecule {sup 211}At-(Z{sub HER2:4}){sub 2} as targeting agent. Assays for studies of internalisation of the affibody molecule were applied. SKOV-3 cells were most radioresistant, SKBR-3 cells were intermediate and BT-474 cells were most sensitive as measured with the clonogenic and growth extrapolation assays after photon irradiation. The HER2 dependent cellular uptake of {sup 211}At was qualitatively similar for all three cell lines. However, the sensitivity to the alpha particles from {sup 211}At differed; SKOV-3 was most resistant, SKBR-3 intermediate and BT-474 most sensitive. These differences were unexpected because it is assumed that all types of cells should have similar sensitivity to high-LET radiation. The sensitivity to alpha particle exposure correlated with internalisation of the affibody molecule and with size of the cell nucleus. There can be differences in radiosensitivity, which, if they also exist between patient breast cancer cells, are important to consider for both conventional radiotherapy and for HER2-targeted radionuclide therapy. (orig.)

  10. Effect of 8-Chloroadenosine on Undifferentiatied HL-60 Cell Line

    Institute of Scientific and Technical Information of China (English)

    CUIJing-rong; HUIYu; XIANGYou-qing; ZHANGLi-he

    2003-01-01

    Aim To study the effect of 8-chloroadenosine (8-CA)on undifferentiatied HL-60 cell line. Methods The IC50 of cancer cell proliferation was determined using a microculture plate reader at 570 nm (MTT) and 540 nm (SRB).Morphology of HL-60 cells was observed under a scanning electron microscope and a transmission electron microscope. The differentiation of HL-60 cells was examined by nitro blue tetrazolium reduction (NBT) and acid phosphatase assay. The cycle of HL-60 cells was analyzed by flow cytometry. Results 8-CA inhibited proliferation of eight human cancer cell lines.The IC50 ranked in the following order; KB (0.05 μmol·L-1 ) < HL-60 (0.25 μmol·L-1) < Bel-7402 (0.56μmol·L-1 )< MCF-7 (0.65μmol·L-1) < HCT (0.79 μmol·L-1) < HeLa (0.89μmol·L-1) < BGC-823 ( 1.149μmol·L-1) cell surface shortened, and the shape of HL-60 cells nuclei changed to kidney-shaped, horse shoe-shaped and bilob ated after treatment with 8-CA. Meanwhile, 8-CA promoted NBT reduction and increased activity of acid phosphatase in HL-60 ceils in a time and concentration-dependent manner. Flow cytometry analysis indicated that 8-CA induced an appreciable increase of the cell population in G1 phase with a marked reduction in S phase. Conclusion 8-CA can induce differentiation of HL-60 cells and block the cells at G1 phase, thus inhibiting proliferation of HL-60 cells.

  11. Plasmids and packaging cell lines for use in phage display

    Science.gov (United States)

    Bradbury, Andrew M.

    2012-07-24

    The invention relates to a novel phagemid display system for packaging phagemid DNA into phagemid particles which completely avoids the use of helper phage. The system of the invention incorporates the use of bacterial packaging cell lines which have been transformed with helper plasmids containing all required phage proteins but not the packaging signals. The absence of packaging signals in these helper plasmids prevents their DNA from being packaged in the bacterial cell, which provides a number of significant advantages over the use of both standard and modified helper phage. Packaged phagemids expressing a protein or peptide of interest, in fusion with a phage coat protein such as g3p, are generated simply by transfecting phagemid into the packaging cell line.

  12. Marked Differences in C9orf72 Methylation Status and Isoform Expression between C9/ALS Human Embryonic and Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Yaara Cohen-Hadad

    2016-11-01

    Full Text Available We established two human embryonic stem cell (hESC lines with a GGGGCC expansion in the C9orf72 gene (C9, and compared them with haploidentical and unrelated C9 induced pluripotent stem cells (iPSCs. We found a marked difference in C9 methylation between the cells. hESCs and parental fibroblasts are entirely unmethylated while the iPSCs are hypermethylated. In addition, we show that the expansion alters promoter usage and interferes with the proper splicing of intron 1, eventually leading to the accumulation of repeat-containing mRNA following neural differentiation. These changes are attenuated in C9 iPSCs, presumably owing to hypermethylation. Altogether, this study highlights the importance of neural differentiation in the pathogenesis of disease and points to the potential role of hypermethylation as a neuroprotective mechanism against pathogenic mRNAs, envisaging a milder phenotype in C9 iPSCs.

  13. Survey of Differentially Methylated Promoters in Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    2005-08-01

    Full Text Available DNA methylation, copy number in the genomes of three immortalized prostate epithelial, five cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, PC3MLN4 were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme Hpall, followed by linker ligation, polymerase chain reaction (PCR amplification, labeling, hybridization to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5% showed differential hybridization between immortalized prostate epithelial, cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight (CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, TSPY previously observed in prostate cancer, 13 previously known methylation targets in other cancers (ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, WIT-1. The majority of genes that appear to be both differentially methylated, differentially regulated between prostate epithelial, cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, GG2-1, representing a rich new source of candidate genes used to study the role of DNA methylation in prostate tumors.

  14. Highly efficient site-specific transgenesis in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Michael Iacovos P

    2012-12-01

    Full Text Available Abstract Background Transgenes introduced into cancer cell lines serve as powerful tools for identification of genes involved in cancer. However, the random nature of genomic integration site of a transgene highly influences the fidelity, reliability and level of its expression. In order to alleviate this bottleneck, we characterized the potential utility of a novel PhiC31 integrase-mediated site-specific insertion system (PhiC31-IMSI for introduction of transgenes into a pre-inserted docking site in the genome of cancer cells. Methods According to this system, a “docking-site” was first randomly inserted into human cancer cell lines and clones with a single copy were selected. Subsequently, an “incoming” vector containing the gene of interest was specifically inserted in the docking-site using PhiC31. Results Using the Pc-3 and SKOV-3 cancer cell lines, we showed that transgene insertion is reproducible and reliable. Furthermore, the selection system ensured that all surviving stable transgenic lines harbored the correct integration site. We demonstrated that the expression levels of reporter genes, such as green fluorescent protein and luciferase, from the same locus were comparable among sister, isogenic clones. Using in vivo xenograft studies, we showed that the genetically altered cancer cell lines retain the properties of the parental line. To achieve temporal control of transgene expression, we coupled our insertion strategy with the doxycycline inducible system and demonstrated tight regulation of the expression of the antiangiogenic molecule sFlt-1-Fc in Pc-3 cells. Furthermore, we introduced the luciferase gene into the insertion cassette allowing for possible live imaging of cancer cells in transplantation assays. We also generated a series of Gateway cloning-compatible intermediate cassettes ready for high-throughput cloning of transgenes and demonstrated that PhiC31-IMSI can be achieved in a high throughput 96-well plate

  15. Correlation between Twist expression and multidrug resistance of breast cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Yue-Xi Wang; Xiao-Mei Chen; Jun Yan; Zhi-Ping Li

    2016-01-01

    Objective:To study the correlation between Twist expression and multidrug resistance of breast cancer cell lines. Methods:Human breast cancer cell lines MCF-7, cisplatin-resistant human breast cancer cell lines MCF-7/DDP, doxorubicin-resistant human breast cancer cell lines MCF-7/Adr and taxol-resistant human breast cancer cell lines MCF/PTX were cultured, Twist in human breast cancer cell lines MCF-7 was overexpressed and treated with doxorubicin, and then cell viability and expression levels of EMT marker molecules and related signaling pathway molecules were detected. Results:mRNA contents and protein contents of Twist in drug-resistant breast cancer cell lines MCF-7/DDP, MCF-7/Adr and MCF/PTX were higher than those in MCF-7 cell lines;after doxorubicin treatment, inhibitory rates of cell viability in MCF-7 cell lines were higher than those in MCF-7/Adr and MCF-7/Twist cell lines;E-cadherin expression levels in MCF-7/Adr cell lines and MCF-7/Twist cell lines were lower than those in MCF-7 cell lines, and mRNA contents and protein contents of N-cadherin, Vimentin, TGF-β, Smad, Wnt,β-catenin, TNF-αand NF-kB were higher than those in MCF-7 cell lines. Conclusion:Increased expression of Twist is associated with the occurrence of drug resistance in breast cancer cells.

  16. Human Endometrial Stromal Cells Are Highly Permissive To Productive Infection by Zika Virus

    Science.gov (United States)

    Pagani, Isabel; Ghezzi, Silvia; Ulisse, Adele; Rubio, Alicia; Turrini, Filippo; Garavaglia, Elisabetta; Candiani, Massimo; Castilletti, Concetta; Ippolito, Giuseppe; Poli, Guido; Broccoli, Vania; Panina-Bordignon, Paola; Vicenzi, Elisa

    2017-01-01

    Zika virus (ZIKV) is a recently re-emerged flavivirus transmitted to humans by mosquito bites but also from mother to fetus and by sexual intercourse. We here show that primary human endometrial stromal cells (HESC) are highly permissive to ZIKV infection and support its in vitro replication. ZIKV envelope expression was detected in the endoplasmic reticulum whereas double-stranded viral RNA colocalized with vimentin filaments to the perinuclear region. ZIKV productive infection also occurred in the human T-HESC cell line together with the induction of interferon-β (IFN-β) and of IFN-stimulated genes. Notably, in vitro decidualization of T-HESC with cyclic AMP and progesterone upregulated the cell surface expression of the ZIKV entry co-receptor AXL and boosted ZIKV replication by ca. 100-fold. Thus, endometrial stromal cells, particularly if decidualized, likely represent a crucial cell target of ZIKV reaching them, either via the uterine vasculature in the viremic phase of the infection or by sexual viral transmission, and a potential source of virus spreading to placental trophoblasts during pregnancy. PMID:28281680

  17. Human embryonic and induced pluripotent stem cell research trends: complementation and diversification of the field.

    Science.gov (United States)

    Kobold, Sabine; Guhr, Anke; Kurtz, Andreas; Löser, Peter

    2015-05-12

    Research in human induced pluripotent stem cells (hiPSCs) is rapidly developing and there are expectations that this research may obviate the need to use human embryonic stem cells (hESCs), the ethics of which has been a subject of controversy for more than 15 years. In this study, we investigated approximately 3,400 original research papers that reported an experimental use of these types of human pluripotent stem cells (hPSCs) and were published from 2008 to 2013. We found that research into both cell types was conducted independently and further expanded, accompanied by a growing intersection of both research fields. Moreover, an in-depth analysis of papers that reported the use of both cell types indicates that hESCs are still being used as a "gold standard," but in a declining proportion of publications. Instead, the expanding research field is diversifying and hESC and hiPSC lines are increasingly being used in more independent research and application areas.

  18. "Helicobacter Pylori Attachment To 7 Mamalian Cell Lines "

    Directory of Open Access Journals (Sweden)

    N. Rahimi-Fard

    2006-06-01

    Full Text Available Background and Aim: Helicobacter pylori is the etiologic agent of chronic –active gastritis, gastroduodenal ulcers in humans, and a co-factor in the occurrence of gastric cancer and mucosa-associated lymphoid tumors, Adhesion of H.pylori to the gastric mucosa is a critical and also initial step in the pathogenesis of the disease. Bacterial adhesion inhibitory agents provide a novel pharmacologic approach to the management of infectious diseases. Materials and Methods: 22 H. pylori strains, isolated from the antral biopsies of 49 patients with dyspepsia, gastritis, gastric ulcer, duodenal ulcer,…were assayed by ELISA (UPRto investigate the diversity of attachment to 7 mamalian cell lines. Results: The concentration of H.pylori and cell suspention ,the condition and temperature, can alter the attachment rate.Best bacterial concentration was equal to 1 Mc farland,and for cell suspension was 5*10 cells/ml.90 minutes in 37C incubation period result in maximum attachment. H.pylori can attach to all 7 cell lines, there are no significant differences between 22 H.pylori strains in attachment to cells. The attachment pattern of H.pylori to the cells showed significant reduction respectly from HepII, HeLa, SW742, AGS,HT29/219, HT29 to Caco-2.Maximum attachment were seen to HepII, HeLa and SW742 cells, and among these HepII was the best cells for this purpose. Conclusion: Our studies suggest that Hep II, HeLa and SW742 cells could serve as a suitable in-vitro model for the study of H.pylori adhesions, attachment, inhibition of attachment and detachment assays and among these Hep II cell is prefer recommended.

  19. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    for the gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage...... of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  20. Hematopoietic and nature killer cell development from human pluripotent stem cells.

    Science.gov (United States)

    Ni, Zhenya; Knorr, David A; Kaufman, Dan S

    2013-01-01

    Natural killer (NK) cells are key effectors of the innate immune system, protecting the host from a variety of infections, as well as malignant cells. Recent advances in the field of NK cell biology have led to a better understanding of how NK cells develop. This progress has directly translated to improved outcomes in patients receiving hematopoietic stem cell transplants to treat potentially lethal malignancies. However, key differences between mouse and human NK cell development and biology limits the use of rodents to attain a more in depth understanding of NK cell development. Therefore, a readily accessible and genetically tractable cell source to study human NK cell development is warranted. Our lab has pioneered the development of lymphocytes, specifically NK cells, from human embryonic stem cells (hESCs) and more recently induced pluripotent stem cells (iPSCs). This chapter describes a reliable method to generate NK cells from hESCs and iPSCs using murine stromal cell lines. Additionally, we include an updated approach using a spin-embryoid body (spin-EB) differentiation system that allows for human NK cell development completely defined in vitro conditions.

  1. Feeder-independent continuous culture of the PICM-19 pig liver stem cell line

    Science.gov (United States)

    The PICM-19 pig liver stem cell line is a bipotent cell line, i.e., capable of forming either bile ductules or hepatocyte monolayers in vitro, that was derived from the primary culture of pig embryonic stem cells. The cell line has been strictly feeder-dependent in that cell replication morphology,...

  2. Cytolytic replication of echoviruses in colon cancer cell lines

    Directory of Open Access Journals (Sweden)

    Gullberg Maria

    2011-10-01

    Full Text Available Abstract Background Colorectal cancer is one of the most common cancers in the world, killing nearly 50% of patients afflicted. Though progress is being made within surgery and other complementary treatments, there is still need for new and more effective treatments. Oncolytic virotherapy, meaning that a cancer is cured by viral infection, is a promising field for finding new and improved treatments. We have investigated the oncolytic potential of several low-pathogenic echoviruses with rare clinical occurrence. Echoviruses are members of the enterovirus genus within the family Picornaviridae. Methods Six colon cancer cell lines (CaCo-2, HT29, LoVo, SW480, SW620 and T84 were infected by the human enterovirus B species echovirus 12, 15, 17, 26 and 29, and cytopathic effects as well as viral replication efficacy were investigated. Infectivity was also tested in spheroids grown from HT29 cells. Results Echovirus 12, 17, 26 and 29 replicated efficiently in almost all cell lines and were considered highly cytolytic. The infectivity of these four viruses was further evaluated in artificial tumors (spheroids, where it was found that echovirus 12, 17 and 26 easily infected the spheroids. Conclusions We have found that echovirus 12, 17 and 26 have potential as oncolytic agents against colon cancer, by comparing the cytolytic capacity of five low-pathogenic echoviruses in six colon cancer cell lines and in artificial tumors.

  3. Genetic instability of cell lines derived from a single human small cell carcinoma of the lung

    DEFF Research Database (Denmark)

    Engelholm, S A; Vindeløv, L L; Spang-Thomsen, M

    1985-01-01

    Specimens from a human small cell carcinoma of the lung were established as a cell line in vitro. Flow cytometric DNA analysis demonstrated only one tumor cell population in the parent tumor as well as in the early passages in vitro. After six passages in vitro, two new subpopulations with differ......Specimens from a human small cell carcinoma of the lung were established as a cell line in vitro. Flow cytometric DNA analysis demonstrated only one tumor cell population in the parent tumor as well as in the early passages in vitro. After six passages in vitro, two new subpopulations...

  4. Melatonin and Doxorubicin synergistically induce cell apoptosis in human hepatoma cell lines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To investigate whether Melatonin has synergistic effects with Doxorubicin in the growth-inhibition and apoptosis-induction of human hepatoma cell lines HepG2 and Bel-7402.METHODS:The synergism of Melatonin and Doxorubicin inhibited the cell growth and induced cell apoptosis in human hepatoma cell lines HepG2 and Bel-7402.Cell viability was analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide(MTT)assay.Cell apoptosis was evaluated using TUNEL method and flow cytometry.Apoptosis-r...

  5. Regulation of cholesterol synthesis in four colonic adenocarcinoma cell lines.

    Science.gov (United States)

    Cerda, S R; Wilkinson, J; Broitman, S A

    1995-12-01

    Colon tumor cells, unlike normal human fibroblasts, exhibited an uncoupling of low density lipoprotein (LDL)-derived cholesterol from cellular growth, when endogenous cholesterol synthesis was inhibited by mevinolin, a hydroxymethylglutaryl-CoA reductase (HMG-CoAR) competitive inhibitor [Fabricant, M., and Broitman, S.A. (1990) Cancer Res. 50, 632-636]. Further evaluation of cholesterol metabolism was conducted in two undifferentiated (SW480, SW1417) and two differentiated (HT29, CACO2) colonic adenocarcinoma (adeno-CA) cell lines and an untransformed human fibroblast, AG1519A. Cells grown in monolayer culture to near subconfluency were used to assess endogenous cholesterol synthesis by 14C-acetate incorporation, in response to the following treatments in lipoprotein-deficient serum (LPDS)-supplemented minimum essential medium (MEM): LPDS alone, LDL, mevinolin, mevinolin with LDL, and 25-hydroxy-cholesterol (25-OH-CH). Complete fetal bovine serum (FBS)-supplemented MEM was used as control. All colon tumor lines exhibited similarly high endogenous cholesterol synthesis in both FBS and LPDS relative to the fibroblasts which demonstrated low basal levels in FBS and maximal synthesis in LPDS. LDL treatment did not inhibit cholesterol synthesis in colon tumor cells, but suppressed that in the fibroblast by 70%. Sterol repression of cholesterol synthesis mediated by 25-OH-CH occurred in all cells. Mevinolin caused a reduction in cholesterol synthesis in the colonic cancer cell lines, which was not further decreased by concurrent addition of LDL. In contrast, in mevinolin-treated fibroblasts, LDL further inhibited cholesterol synthesis. When the effect of cell density on cholesterol synthesis regulation was evaluated under conditions of sparse density in SW480 and SW147, results indicated that (i) basal rates of cholesterol synthesis were higher, (ii) LDL inhibited cholesterol synthesis more effectively, and (iii) mevinolin or 25-OH-CH had a more pronounced effect than in

  6. Derivation of vascular endothelial cells from human embryonic stem cells under GMP-compliant conditions: towards clinical studies in ischaemic disease.

    Science.gov (United States)

    Kaupisch, A; Kennedy, L; Stelmanis, V; Tye, B; Kane, N M; Mountford, J C; Courtney, A; Baker, A H

    2012-10-01

    Revascularisation of ischaemic tissue remains an area of substantial unmet clinical need in cardiovascular disease. Strategies to induce therapeutic angiogenesis are therefore attractive. Our recent focus has been on human embryonic stem cell (hESC) strategies since hESC can be maintained in a pluripotent state or differentiated into any desired cell type, including endothelial cells (EC), under defined differentiation culture conditions. We recently published a protocol for non-good manufacturing practice (GMP) feeder- and serum-free hESC-EC-directed monolayer differentiation to vascular EC demonstrating the potential to generate hESC-derived EC in a GMP-compliant manner suitable for use in clinical trials. In this study we modified that laboratory protocol to GMP compliance. EC production was confirmed by flow cytometry, qRT-PCR and production of vascular structures in Matrigel®, yielding approximately 30 % mature VE-cadherin(+)/PECAM-1(+) cells using the GMP-compliant hESC line RC13. In conclusion, we have successfully demonstrated the production of vascular EC under GMP-compliant conditions suitable for clinical evaluation.

  7. Regulation of osteoprotegerin expression by Notch signaling in human oral squamous cell carcinoma cell line

    Institute of Scientific and Technical Information of China (English)

    Jeeranan Manokawinchoke; Thanaphum Osathanon; Prasit Pavasant

    2016-01-01

    Objective: To investigate the influence of Notch signaling on osteoprotegerin (OPG) expression in a human oral squamous cell carcinoma cell line. Methods: Activation of Notch signaling was performed by seeding cells on Jagged1 immobilized surfaces. In other experiments, a γ-secretase inhibitor was added to the culture medium to inhibit intracellular Notch signaling. OPG mRNA and protein were determined by real-time PCR and ELISA, respectively. Finally, publicly available microarray database analysis was performed using connection up- or down-regulation expression analysis of microarrays software. Results: Jagged1-treatment of HSC-4 cells enhanced HES1 and HEY1 mRNA expres-sion, confirming the intracellular activation of Notch signaling. OPG mRNA and protein levels were significantly suppressed upon Jagged1 treatment. Correspondingly, HSC-4 cells treated with a γ-secretase inhibitor resulted in a significant reduction of HES1 and HEY1 mRNA levels, and a marked increase in OPG protein expression was observed. These results implied that Notch signaling regulated OPG expression in HSC-4 cells. However, Jagged1 did not alter OPG expression in another human oral squamous cell carcinoma cell line (HSC-5) or a human head and neck squamous cell carcinoma cell line (HN22). Conclusions: Notch signaling regulated OPG expression in an HSC-4 cell line and this mechanism could be cell line specific.

  8. Regulation of osteoprotegerin expression by Notch signaling in human oral squamous cell carcinoma cell line

    Institute of Scientific and Technical Information of China (English)

    Jeeranan Manokawinchoke; Thanaphum Osathanon; Prasit Pavasant

    2016-01-01

    Objective: To investigate the influence of Notch signaling on osteoprotegerin(OPG)expression in a human oral squamous cell carcinoma cell line.Methods: Activation of Notch signaling was performed by seeding cells on Jagged1 immobilized surfaces. In other experiments, a g-secretase inhibitor was added to the culture medium to inhibit intracellular Notch signaling. OPG m RNA and protein were determined by real-time PCR and ELISA, respectively. Finally, publicly available microarray database analysis was performed using connection up- or down-regulation expression analysis of microarrays software.Results: Jagged1-treatment of HSC-4 cells enhanced HES1 and HEY1 m RNA expression, confirming the intracellular activation of Notch signaling. OPG m RNA and protein levels were significantly suppressed upon Jagged1 treatment. Correspondingly, HSC-4 cells treated with a g-secretase inhibitor resulted in a significant reduction of HES1 and HEY1 m RNA levels, and a marked increase in OPG protein expression was observed.These results implied that Notch signaling regulated OPG expression in HSC-4 cells.However, Jagged1 did not alter OPG expression in another human oral squamous cell carcinoma cell line(HSC-5) or a human head and neck squamous cell carcinoma cell line(HN22).Conclusions: Notch signaling regulated OPG expression in an HSC-4 cell line and this mechanism could be cell line specific.

  9. Apoptosis in Raji cell line induced by influenza A virus

    Institute of Scientific and Technical Information of China (English)

    李虹; 肖丽英; 李华林; 李婉宜; 蒋中华; 张林; 李明远

    2003-01-01

    Objective To study the apoptotic effects of influenza A virus on the Raji cell line. Methods Cultured Raji cells were infected with influenza A virus at a multiplicity of infection (m.o.i) of 20 and the effects of apoptosis were detected at different time points post infection using the following methods: electron microscope, DNA agarose gel electrophoresis, PI stained flow cytometry (FCM) and Annexin-V FITC/PI stained FCM.Results Raji cells infected with influenza A virus showed changes of morphology apoptotis, DNA agarose electrophoresis also demonstrated a ladder-like pattern of DNA fragments in a time-dependent manner. PI stained FCM showed "apoptosis peak" and FITC/PI stained FCM showed apoptotic cells. Quantitative analysis indicated that the percentage of apoptotic Raji cells increased after infection, and cycloheximide (CHX), an eukaryotic transcription inhibitor, could effectively inhibit the apoptotic effects of influenza A virus in vitro.Conclusions Influenza A virus can induce apoptosis in Raji cell line suggesting that it may lead to a potential method for tumor therapy.

  10. Absence of C-type virus production in human leukemic B cell, T cell and null cell lines.

    Directory of Open Access Journals (Sweden)

    Ogura,Hajime

    1978-06-01

    Full Text Available Electron microscope observation of cultured human leukemic B cell, T cell and null cell lines and reverse transcriptase assay of the culture supernatants were all negative for the presence of C-type virus. Bat cell line, which propagates primate C-type viruses well, was cocultivated with the human leukemic cell lines, in the hope of amplification of virus if present. Three weeks after mixed culture, the culture supernatants were again examined for reverse transcriptase activity and the cells were tested for syncytia formation by cocultivation with rat XC, human KC and RSb cell lines. All these tests, except for the positive control using a simian sarcoma virus, were negative, suggesting that no C-type was produced from these human leukemic cell lines.

  11. Growth dynamics and cyclin expression in cutaneous T-cell lymphoma cell lines

    Directory of Open Access Journals (Sweden)

    Edyta Biskup

    2010-05-01

    Full Text Available We have investigated cell growth dynamics and cyclins B1 and E expression in cell lines derived from mycosis fungoides (MyLa, Sézary syndrome (SeAx, and CD30+ lympho-proliferative diseases (Mac1, Mac2a, JK. Mac1 and Mac2a had the highest growth rate (doubling time 18-28 h, >90% cycling cells whereas SeAx was proliferating slowly (doub-ling time 55 h, approximately 35% cycling cells. Expression of cyclin B1 correlated positively with doubling time whereas expression of cyclin E was unscheduled and constant across the investigated cell lines. All cell lines exhibited high expression of PCNA. Thus, we concluded that cyclin B1 could be used for rapid screening of cell proliferation in malignant lymphocytes derived from cutaneous T-cell lymphoma.

  12. Mistaken identity of widely used esophageal adenocarcinoma cell line TE-7.

    Science.gov (United States)

    Boonstra, Jurjen J; van der Velden, Albertina W; Beerens, Erwin C W; van Marion, Ronald; Morita-Fujimura, Yuiko; Matsui, Yasuhisa; Nishihira, Tetsuro; Tselepis, Chris; Hainaut, Pierre; Lowe, Anson W; Beverloo, Berna H; van Dekken, Herman; Tilanus, Hugo W; Dinjens, Winand N M

    2007-09-01

    Cancer of the esophagus is the seventh leading cause of cancer death worldwide. Esophageal carcinoma cell lines are useful models to study the biological and genetic alterations in these tumors. An important prerequisite of cell line research is the authenticity of the used cell lines because the mistaken identity of a cell line may lead to invalid conclusions. Estimates indicate that up to 36% of the cell lines are of a different origin or species than supposed. The TE series, established in late 1970s and early 1980s by Nishihira et al. in Japan, is one of the first esophageal cancer cell line series that was used throughout the world. Fourteen TE cell lines were derived from human esophageal squamous cell carcinomas and one, TE-7, was derived from a primary esophageal adenocarcinoma. In numerous studies, this TE-7 cell line was used as a model for esophageal adenocarcinoma because it is one of the few esophageal adenocarcinoma cell lines existing. We investigated the authenticity of the esophageal adenocarcinoma cell line TE-7 by xenografting, short tandem repeat profiling, mutation analyses, and array-comparative genomic hybridization and showed that cell line TE-7 shared the same genotype as the esophageal squamous cell carcinoma cell lines TE-2, TE-3, TE-12, and TE-13. In addition, for more than a decade, independent TE-7 cultures from Japan, United States, United Kingdom, France, and the Netherlands had the same genotype. Examination of the TE-7 cell line xenograft revealed the histology of a squamous cell carcinoma. We conclude that the TE-7 cell line, used in several laboratories throughout the world, is not an adenocarcinoma, but a squamous cell carcinoma cell line. Furthermore, the cell lines TE-2, TE-3, TE-7, TE-12, and TE-13 should be regarded as one single squamous cell carcinoma cell line.

  13. Feeder-free monolayer cultures of human embryonic stem cells express an epithelial plasma membrane protein profile.

    NARCIS (Netherlands)

    van Hoof, D.; Braam, S.R.; Dormeyer, W.; Ward-van Oostwaard, D.; Heck, A.; Krijgsveld, J.; Mummery, C.L.

    2008-01-01

    Human embryonic stem cells (hESCs) are often cocultured on mitotically inactive fibroblast feeder cells to maintain their undifferentiated state. Under these growth conditions, hESCs form multilayered colonies of morphologically heterogeneous cells surrounded by flattened mesenchymal cells. In contr

  14. Establishment and characterization of primary lung cancer cell lines from Chinese population

    Institute of Scientific and Technical Information of China (English)

    Chao ZHENG; Yi-hua SUN; Xiao-lei YE; Hai-quan CHEN; Hong-bin JI

    2011-01-01

    Aim: To establish and characterize primary lung cancer cell lines from Chinese population.Methods: Lung cancer specimens or pleural effusions were collected from Chinese lung cancer patients and cultured in vitro with ACL4 medium (for non-small cell lung carcinomas (NSCLC)) or HITES medium (for small cell lung carcinomas (SCLC)) supplemented with 5%FBS. All cell lines were maintained in culture for more than 25 passages. Most of these cell lines were further analyzed for oncogenic mutations, karyotype, cell growth kinetics, and tumorigenicity in nude mice.Results: Eight primary cell lines from Chinese lung cancer patients were established and characterized, including seven NSCLC cell lines and one SCLC cell line. Five NSCLC cell lines were found to harbor epidermal growth factor receptor (EGFR) kinase domain mutations.Conclusion: These well-characterized primary lung cancer cell lines from Chinese population provide a unique platform for future studies of the ethnic differences in lung cancer biology and drug response.

  15. Efficient genetic method for establishing Drosophila cell lines unlocks the potential to create lines of specific genotypes.

    Science.gov (United States)

    Simcox, Amanda; Mitra, Sayan; Truesdell, Sharon; Paul, Litty; Chen, Ting; Butchar, Jonathan P; Justiniano, Steven

    2008-08-01

    Analysis of cells in culture has made substantial contributions to biological research. The versatility and scale of in vitro manipulation and new applications such as high-throughput gene silencing screens ensure the continued importance of cell-culture studies. In comparison to mammalian systems, Drosophila cell culture is underdeveloped, primarily because there is no general genetic method for deriving new cell lines. Here we found expression of the conserved oncogene Ras(V12) (a constitutively activated form of Ras) profoundly influences the development of primary cultures derived from embryos. The cultures become confluent in about three weeks and can be passaged with great success. The lines have undergone more than 90 population doublings and therefore constitute continuous cell lines. Most lines are composed of spindle-shaped cells of mesodermal type. We tested the use of the method for deriving Drosophila cell lines of a specific genotype by establishing cultures from embryos in which the warts (wts) tumor suppressor gene was targeted. We successfully created several cell lines and found that these differ from controls because they are primarily polyploid. This phenotype likely reflects the known role for the mammalian wts counterparts in the tetraploidy checkpoint. We conclude that expression of Ras(V12) is a powerful genetic mechanism to promote proliferation in Drosophila primary culture cells and serves as an efficient means to generate continuous cell lines of a given genotype.

  16. Efficient genetic method for establishing Drosophila cell lines unlocks the potential to create lines of specific genotypes.

    Directory of Open Access Journals (Sweden)

    Amanda Simcox

    2008-08-01

    Full Text Available Analysis of cells in culture has made substantial contributions to biological research. The versatility and scale of in vitro manipulation and new applications such as high-throughput gene silencing screens ensure the continued importance of cell-culture studies. In comparison to mammalian systems, Drosophila cell culture is underdeveloped, primarily because there is no general genetic method for deriving new cell lines. Here we found expression of the conserved oncogene Ras(V12 (a constitutively activated form of Ras profoundly influences the development of primary cultures derived from embryos. The cultures become confluent in about three weeks and can be passaged with great success. The lines have undergone more than 90 population doublings and therefore constitute continuous cell lines. Most lines are composed of spindle-shaped cells of mesodermal type. We tested the use of the method for deriving Drosophila cell lines of a specific genotype by establishing cultures from embryos in which the warts (wts tumor suppressor gene was targeted. We successfully created several cell lines and found that these differ from controls because they are primarily polyploid. This phenotype likely reflects the known role for the mammalian wts counterparts in the tetraploidy checkpoint. We conclude that expression of Ras(V12 is a powerful genetic mechanism to promote proliferation in Drosophila primary culture cells and serves as an efficient means to generate continuous cell lines of a given genotype.

  17. Apoptosis induced by propolis in human hepatocellular carcinoma cell line.

    Science.gov (United States)

    Choi, Y H; Lee, W Y; Nam, S Y; Choi, K C; Park, Y E

    1999-07-01

    Propolis has been reported to exhibit a wide spectrum of activities including antibiotic, antiviral, anti-inflammatory, immunostimulatory and tumor carcinostatic properties. We showed propolis induced apoptosis in a human hepatoma cell line (SNU449) by FITC-Annexin V/PI staining. We also compared the apoptosis inducing effect between Korean and Commercial (Sigma # p-1010) propolis. There was no difference on apoptosis between them.

  18. Effect of histone deacetylase inhibitor on proliferation of biliary tract cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Li-Ning Xu; Xin Wang; Sheng-Quan Zou

    2008-01-01

    AIM: To explore the effect of histone deacetylase inhibitor, trichostatin A (TSA) on the growth of biliary tract cancer cell lines (gallbladder carcinoma cell line and cholangiocarcinoma cell line) in v/vo and in vitro,and to investigate the perspective of histone deacetylase inhibitor in its clinical application.METHODS: The survival rates of gallbladder carcinoma cell line (Mz-ChA-I cell line) and cholangiocarcinoma cell lines (QBC939, KMBC and OZ cell lines) treated with various doses of TSA were detected by methylthiazoy tetrazolium (MTT) assay.A nude mouse model of transplanted gallbladder carcinoma (Mz-ChA-I cell line)was successfully established, and changes in the growth of transplanted tumor after treated with TSAwere measured.RESULTS: TSA could inhibit the proliferation of gallbladder carcinoma cell line (Mz-ChA-I cell line) and cholangiocarcinoma cell lines (QBC939, KMBC and OZ cell lines) in a dose-dependent manner.After the nude mouse model of transplanted gallbladder carcinoma (Mz-ChA-I cell line) was successfully established, the growth of cancer was inhibited in the model, after treated with TSA.CONCLUSION: TSA can inhibit the growth of cholangiocarcinoma and gallbladder carcinoma cell lines in vitro and in vivo.

  19. Variable allelic expression of imprinted genes in human pluripotent stem cells during differentiation into specialized cell types in vitro.

    Science.gov (United States)

    Park, Sang-Wook; Kim, Jihoon; Park, Jong-Lyul; Ko, Ji-Yun; Im, Ilkyun; Do, Hyo-Sang; Kim, Hyemin; Tran, Ngoc-Tung; Lee, Sang-Hun; Kim, Yong Sung; Cho, Yee Sook; Lee, Dong Ryul; Han, Yong-Mahn

    2014-04-01

    Genomic imprinting is an epigenetic phenomenon by which a subset of genes is asymmetrically expressed in a parent-of-origin manner. However, little is known regarding the epigenetic behaviors of imprinted genes during human development. Here, we show dynamic epigenetic changes in imprinted genes in hESCs during in vitro differentiation into specialized cell types. Out of 9 imprinted genes with single nucleotide polymorphisms, mono-allelic expression for three imprinted genes (H19, KCNQ1OT1, and IPW), and bi- or partial-allelic expression for three imprinted genes (OSBPL5, PPP1R9A, and RTL1) were stably retained in H9-hESCs throughout differentiation, representing imprinting stability. Three imprinted genes (KCNK9, ATP10A, and SLC22A3) showed a loss and a gain of imprinting in a lineage-specific manner during differentiation. Changes in allelic expression of imprinted genes were observed in another hESC line during in vitro differentiation. These findings indicate that the allelic expression of imprinted genes may be vulnerable in a lineage-specific manner in human pluripotent stem cells during differentiation.

  20. Pseudoislet of hybrid cellular spheroids from commercial cell lines.

    Science.gov (United States)

    Jo, Y H; Nam, B M; Kim, B Y; Nemeno, J G; Lee, S; Yeo, J E; Yang, W; Park, S H; Kim, Y S; Lee, J I

    2013-10-01

    Investigators conducting diabetes-related research have focused on islet transplantation as a radical therapy for type 1 diabetes mellitus. Pancreatic islet isolation, an essential process, is a very demanding work because of the proteolytic enzymes, species, treatment time, and individual difference. Replacement of primary isolated pancreatic islets must be carried out continuously for various in vitro tests, making primary isolated islets a useful tool for cell transplantation research. Hence, we sought to develop pseudoislets from commercial pancreas-derived cell lines. In this study, we used RIN-5F and RIN-m cells, which secrete insulin, somatostatin, or glucagon. To manufacture hybrid cellular spheroids, the cells were cultured under hanging drop plate and nonadhesive plate methods. We observed that hybrid cellular pseudoislets exhibited an oval shape, with sizes ranging from 590 to 1200 μm. Their morphology was similar to naïve islets. Cell line pseudoislets secreted and expressed insulin, glucagon, and somatostatin, as confirmed by reverse transcriptase polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemistry analyses. Thus, the current artificially manufactured biomimetic pseudoislets resembled pancreatic islets of the endocrine system, appearing as cellular aggregates that secreted insulin, glucagon, and somatostatin. Enhanced immunoisolation techniques may lead to the development of new islet sources for pancreatic transplantation through this pseudoislet strategy.

  1. Propranolol induced chromosomal aberrations in Chinese hamster ovary cell line

    Directory of Open Access Journals (Sweden)

    Mozhgan Sedigh-Ardekani

    2013-03-01

    Full Text Available Propranolol (PL, a non-selective beta-blocker, is a cardiovascular drug widely used to treat hypertension. The present study was concerned with assessing the cytogenetic effects of this drug on Chinese hamster ovary (CHO cell line. MTT assay was then carried out to determine the cytotoxicity index (IC50 of the drug. The IC50 value of PL was 0.43±0.02 mM. To investigate the clastogenic effects of the drug, chromatid and chromosome breaks and polyploidy in metaphases were analyzed. CHO cells were exposed to different concentrations of the drug (0.1, 0.2, 0.3, 0.4 mM for 24 hours. Considering that PL has liver metabolism, experiments were carried out in the presence and absence of the metabolic activation system (S9 mix. Mitomycin-C and sodium arsenite were used as positive controls. It was observed that in cells treated with different PL concentrations as 0.1, 0.2 and 0.3 mM, the frequency of chromatid and chromosome breaks as well as polyploidy increased when compared with untreated CHO cells. The addition of S9 mix significantly decreased the chromatid breaks, chromosome breaks and polyploidy compared to the treatment of PL alone. It is concluded that, PL causes chromatid and chromosome aberrations in CHO cell line and the metabolic activation system (S9 mix, playing an important role in drug cytotoxicity reduction.

  2. Off-line test of the KISS gas cell

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Yoshikazu, E-mail: yoshikazu.hirayama@kek.jp [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Watanabe, Yutaka; Imai, Nobuaki; Ishiyama, Hironobu; Jeong, Sun-Chan; Miyatake, Hiroari; Oyaizu, Michihiro [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Kim, Yung Hee [Seoul National University, Seoul 151 742 (Korea, Republic of); Mukai, Momo [Tsukuba University, Ibaraki 305 0006 (Japan); Matsuo, Yukari; Sonoda, Tetsu; Wada, Michiharu [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351 0198 (Japan); Huyse, Mark; Kudryavtsev, Yuri; Van Duppen, Piet [Instituut voor Kern-en Stralingsfysica, KU Leuven, B-3001 Leuven (Belgium)

    2013-12-15

    Highlights: • Construction of the KEK Isotope Separation System (KISS) at RIKEN. • Ionization scheme of an iron. • Measurement of transport time profile in a gas cell. -- Abstract: The KEK Isotope Separation System (KISS) has been constructed at RIKEN to study the β-decay properties of neutron-rich isotopes with neutron numbers around N = 126 for application to astrophysics. A key component of KISS is a gas cell filled with argon gas at a pressure of 50 kPa to stop and collect the unstable nuclei, where the isotopes of interest will be selectively ionized using laser resonance ionization. We have performed off-line tests to study the basic properties of the gas cell and of KISS using nickel and iron filaments placed in the gas cell.

  3. In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor

    DEFF Research Database (Denmark)

    Damstrup, L; Rude Voldborg, B; Spang-Thomsen, M;

    1998-01-01

    analysis. In vitro invasion in a Boyden chamber assay was found in all EGFR-positive cell lines, whereas no invasion was detected in the EGFR-negative cell lines. Quantification of the in vitro invasion in 12 selected SCLC cell lines demonstrated that, in the EGFR-positive cell lines, between 5% and 16......-PCR). However, in vitro invasive SCLC cell lines could not be distinguished from non-invasive cell lines based on the expression pattern of these molecules. In six SCLC cell lines, in vitro invasion was also determined in the presence of the EGFR-neutralizing monoclonal antibody mAb528. The addition...... of this antibody resulted in a significant reduction of the in vitro invasion in three selected EGFR-positive cell lines. Our results show that only EGFR-positive SCLC cell lines had the in vitro invasive phenotype, and it is therefore suggested that the EGFR might play an important role for the invasion potential...

  4. Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells.

    Science.gov (United States)

    Park, Tae Sub; Galic, Zoran; Conway, Anne E; Lindgren, Anne; van Handel, Benjamin J; Magnusson, Mattias; Richter, Laura; Teitell, Michael A; Mikkola, Hanna K A; Lowry, William E; Plath, Kathrin; Clark, Amander T

    2009-04-01

    The derivation of germ cells from human embryonic stem cells (hESCs) or human induced pluripotent stem (hIPS) cells represents a desirable experimental model and potential strategy for treating infertility. In the current study, we developed a triple biomarker assay for identifying and isolating human primordial germ cells (PGCs) by first evaluating human PGC formation during the first trimester in vivo. Next, we applied this technology to characterizing in vitro derived PGCs (iPGCs) from pluripotent cells. Our results show that codifferentiation of hESCs on human fetal gonadal stromal cells significantly improves the efficiency of generating iPGCs. Furthermore, the efficiency was comparable between various pluripotent cell lines regardless of origin from the inner cell mass of human blastocysts (hESCs), or reprogramming of human skin fibroblasts (hIPS). To better characterize the iPGCs, we performed Real-time polymerase chain reaction, microarray, and bisulfite sequencing. Our results show that iPGCs at day 7 of differentiation are transcriptionally distinct from the somatic cells, expressing genes associated with pluripotency and germ cell development while repressing genes associated with somatic differentiation (specifically multiple HOX genes). Using bisulfite sequencing, we show that iPGCs initiate imprint erasure from differentially methylated imprinted regions by day 7 of differentiation. However, iPGCs derived from hIPS cells do not initiate imprint erasure as efficiently. In conclusion, our results indicate that triple positive iPGCs derived from pluripotent cells differentiated on hFGS cells correspond to committed first trimester germ cells (before 9 weeks) that have initiated the process of imprint erasure.

  5. Generation, isolation, and maintenance of rodent mast cells and mast cell lines

    DEFF Research Database (Denmark)

    Jensen, Bettina M; Swindle, Emily J; Iwaki, Shoko;

    2006-01-01

    Antigen-mediated mast cell activation, with subsequent mediator release, is a major initiator of the inflammatory allergic response associated with such conditions as asthma. A comprehensive understanding of the principles involved in this process therefore is key to the development of novel...... therapies for the treatment of these disease states. In vitro models of mast cell function have allowed significant progress to be made in the recognition of the fundamental principles of mast cell activation via the high-affinity IgE receptor (FcvarepsilonRI) and, more recently, other receptors expressed...... on mast cells. In addition to human mast cells, the major cell culture systems employed to investigate these responses are rat and mouse peritoneal mast cells, mouse bone-marrow-derived mast cells, the rat basophilic leukemia cell line RBL-2H3, and the mouse MC/9 mast cell line. In this unit, we describe...

  6. Immunological considerations for embryonic and induced pluripotent stem cell banking.

    Science.gov (United States)

    Taylor, Craig J; Bolton, Eleanor M; Bradley, J Andrew

    2011-08-12

    Recent advances in stem cell technology have generated enthusiasm for their potential to study and treat a diverse range of human disease. Pluripotent human stem cells for therapeutic use may, in principle, be obtained from two sources: embryonic stem cells (hESCs), which are capable of extensive self-renewal and expansion and have the potential to differentiate into any somatic tissue, and induced pluripotent stem cells (iPSCs), which are derived from differentiated tissue such as adult skin fibroblasts and appear to have the same properties and potential, but their generation is not dependent upon a source of embryos. The likelihood that clinical transplantation of hESC- or iPSC-derived tissues from an unrelated (allogeneic) donor that express foreign human leucocyte antigens (HLA) may undergo immunological rejection requires the formulation of strategies to attenuate the host immune response to transplanted tissue. In clinical practice, individualized iPSC tissue derived from the intended recipient offers the possibility of personalized stem cell therapy in which graft rejection would not occur, but the logistics of achieving this on a large scale are problematic owing to relatively inefficient reprogramming techniques and high costs. The creation of stem cell banks comprising HLA-typed hESCs and iPSCs is a strategy that is proposed to overcome the immunological barrier by providing HLA-matched (histocompatible) tissue for the target population. Estimates have shown that a stem cell bank containing around 10 highly selected cell lines with conserved homozygous HLA haplotypes would provide matched tissue for the majority of the UK population. These simulations have practical, financial, political and ethical implications for the establishment and design of stem cell banks incorporating cell lines with HLA types that are compatible with different ethnic populations throughout the world.

  7. Impairment of cell cycle progression by aflatoxin B1 in human cell lines.

    Science.gov (United States)

    Ricordy, R; Gensabella, G; Cacci, E; Augusti-Tocco, G

    2002-05-01

    Aflatoxin B1 is a mycotoxin produced by Aspergillus flavus and Aspergillus parasiticum, which may be present as a food contaminant. It is known to cause acute toxic effects and act as a carcinogenic agent. The carcinogenic action has been related to its ability to form unstable adducts with DNA, which represent possible mutagenic sites. On the other hand, the primary cellular target responsible for its toxic action has not yet been clearly identified. Previous data suggested a possible correlation between cell proliferation and responsiveness to aflatoxin toxicity. These observations led us to investigate the effect of the toxin on cell cycle progression of three human cell lines (HepG2, SK-N-MC and SK-N-SH derived from liver and nervous tissue tumours); they were shown to display different responses to toxin exposure and have different growth kinetics. We performed analysis of the cell cycle, DNA synthesis and expression of p21 and p53 in the presence and absence of the toxin in all cell lines exposed. The results of cell cycle cytofluorometric analysis show significant alterations of cell cycle progression as a result of toxin treatment. In all cell lines exposure to a 24 h toxin treatment causes a dose-dependent accumulation in S phase, however, the ability to recover from impairment to traverse S phase varies in the cell lines under study. SK-N-MC cells appear more prone to resume DNA synthesis when the toxin is removed, while the other two cell lines maintain a significant inhibition of DNA synthesis, as indicated by cytofluorimetry and [(3)H]dTR incorporation. The level of p53 and p21 expression in the three cell lines was examined by western blot analysis and significant differences were detected. The ready resumption of DNA synthesis displayed by SK-N-MC cells could possibly be related to the absence of p53 control of cell cycle progression.

  8. Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Carlberg, Bjoern; Liu, Johan [BioNano Systems Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Goeteborg, SE-412 96 (Sweden); Axell, Mathilda Zetterstroem; Kuhn, H Georg [Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Goeteborg, SE-413 45 (Sweden); Nannmark, Ulf, E-mail: bjorn.carlberg@chalmers.s, E-mail: mathilda.zetterstrom@neuro.gu.s, E-mail: georg.kuhn@neuro.gu.s, E-mail: ulf.nannmark@anatcell.gu.s, E-mail: jliu@chalmers.s [Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Goeteborg, SE-405 30 (Sweden)

    2009-08-15

    Adult central nervous system (CNS) tissue has a limited capacity to recover after trauma or disease. Hence, tissue engineering scaffolds intended for CNS repair and rehabilitation have been subject to intense research effort. Electrospun porous scaffolds, mimicking the natural three-dimensional environment of the in vivo extracellular matrix (ECM) and providing physical support, have been identified as promising candidates for CNS tissue engineering. The present study demonstrates in vitro culturing and neuronal differentiation of human embryonic stem cells (hESCs) on electrospun fibrous polyurethane scaffolds. Electrospun scaffolds composed of biocompatible polyurethane resin (Desmopan 9370A, Bayer MaterialScience AG) were prepared with a vertical electrospinning setup. Resulting scaffolds, with a thickness of approximately 150{mu}m, exhibited high porosity (84%) and a bimodal pore size distribution with peaks at 5-6 and 1{mu}m. The mean fiber diameter was measured to approximately 360 nm with a standard deviation of 80 nm. The undifferentiated hESC line SA002 (Cellartis AB, Goeteborg, Sweden) was seeded and cultured on the produced scaffolds and allowed propagation and then differentiation for up to 47 days. Cultivation of hESC on electrospun fibrous scaffolds proved successful and neuronal differentiation was observed via standard immunocytochemistry. The results indicate that predominantly dopaminergic tyrosine hydroxylase (TH) positive neurons are derived in co-culture with fibrous scaffolds, in comparison to reference cultures under the same differentiation conditions displaying large proportions of GFAP positive cell types. Scanning electron micrographs confirm neurite outgrowth and connection to adjacent cells, as well as cell attachment to individual fibers of the fibrous scaffold. Consequently, electrospun polyurethane scaffolds have been proven feasible as a substrate for hESC propagation and neuronal differentiation. The physical interaction between

  9. A novel marker for undifferentiated human embryonic stem cells.

    Science.gov (United States)

    Higashi, Kiyoshi; Yagi, Masaki; Arakawa, Tatsuhiko; Asano, Kouji; Kobayashi, Kumiko; Tachibana, Taro; Saito, Koichi

    2015-02-01

    Human embryonic stem cells (hESCs) are pluripotent stem cells from early embryos, and their self-renewal capacity depends on the sustained expression of hESC-specific molecules and the suppressed expression of differentiation-associated genes. To discover novel molecules expressed on hESCs, we generated a panel of monoclonal antibodies against undifferentiated hESCs. The antigen recognized by MAb2 is expressed on the cell surface of undifferentiated hESCs; three diffused bands with molecular mass between 30 and 60 kDa in the lysates of hESCs were diminished during hESC differentiation into neural cells. The expression of MAb2 antigen was also observed on the plasma membrane of lung cancer cells, and MAb2 detected 55, 50, and 35 kDa protein bands in the cell lysates. Immunoprecipitation followed by proteomics analyses identified CD147/basigin as a MAb2 antigen. Finally, the positive expression of CD147/basigin protein in undifferentiated hESCs was confirmed. These results suggested that CD147/basigin could be another undifferentiated hESC marker.

  10. Preparation of cell lines for single-cell analysis of transcriptional activation dynamics.

    Science.gov (United States)

    Rafalska-Metcalf, Ilona U; Janicki, Susan M

    2013-01-01

    Imaging molecularly defined regions of chromatin in single living cells during transcriptional activation has the potential to provide new insight into gene regulatory mechanisms. Here, we describe a method for isolating cell lines with multi-copy arrays of reporter transgenes, which can be used for real-time high-resolution imaging of transcriptional activation dynamics in single cells.

  11. Establishment and characterization of feeder-cell-dependent bovine fetal liver cell lines

    Science.gov (United States)

    The establishment and initial characterization of bovine fetal liver cell lines is described. Bovine fetal hepatocytes were cultured from the liver of a 34-day bovine fetus by physical disruption of the liver tissue. Released liver cells and clumps of cells were plated on STO feeder layers and wer...

  12. Discovery of HeLa Cell Contamination in HES Cells: Call for Cell Line Authentication in Reproductive Biology Research.

    Science.gov (United States)

    Kniss, Douglas A; Summerfield, Taryn L

    2014-08-01

    Continuous cell lines are used frequently in reproductive biology research to study problems in early pregnancy events and parturition. It has been recognized for 50 years that many mammalian cell lines contain inter- or intraspecies contaminations with other cells. However, most investigators do not routinely test their culture systems for cross-contamination. The most frequent contributor to cross-contamination of cell lines is the HeLa cell isolated from an aggressive cervical adenocarcinoma. We report on the discovery of HeLa cell contamination of the human endometrial epithelial cell line HES isolated in our laboratory. Short tandem repeat analysis of 9 unique genetic loci demonstrated molecular identity between HES and HeLa cells. In addition, we verified that WISH cells, isolated originally from human amnion epithelium, were also contaminated with HeLa cells. Inasmuch as our laboratory did not culture HeLa cells at the time of HES cell derivations, the source of contamination was the WISH cell line. These data highlight the need for continued diligence in authenticating cell lines used in reproductive biology research.

  13. Effects of Genistein on Cell Cycle and Apoptosis of Two Murine Melanoma Cell Lines

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effects of genistein on several tumor cell lines were investigated to study the effects of genistein on cell growth, cell cycle, and apoptosis of two murine melanoma cell lines, B16 and K1735M2. These two closely related murine melanoma cell lines, however, have different responses to the genistein treatment. Genistein inhibits the growth of both the B16 and K1735M2 cell lines and arrests the growth at the G2/M phase. After treatment with 60 μmol/L genistein for 72 h, apoptosis and caspase activities were detected in B16 cells, while such effects were not found in K1735M2. Further tests showed that after genistein treatment the protein content and mRNA levels of p53 increased in B16, but remained the same in K1735M2. The protein content and mRNA levels of p21WAF1/CIP1 increased in both cell lines after treatment.The results show that genistein might induce apoptosis in B16 cells by damaging the DNA, inhibiting topoisomerase Ⅱ, increasing p53 expression, releasing cytochrome c from the mitochondria, and activating the caspases which will lead to apoptosis.

  14. Detection of tumor stem cell markers in pancreatic carcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Monika Olempska; Patricia Alice Eisenach; Ole Ammerpohl; Hendrik Ungefroren; Fred Fandrich; Holger Kalthoff

    2007-01-01

    BACKGROUND: Cancer of the pancreas is the fourth leading cause of cancer death in industrialized countries. In malignancy, actively proliferating cells may be effectively targeted and killed by anti-cancer therapies, but stem cells may survive and support re-growth of the tumor. Thus, new strategies for the treatment of cancer clearly will also have to target cancer stem cells. The goal of the present study was to determine whether pancreatic carcinoma cell growth may be driven by a subpopulation of cancer stem cells. Because previous data implicated ABCG2 and CD133 as stem cell markers in hematopoietic and neural stem/progenitor cells, we analyzed the expression of these two proteins in pancreatic carcinoma cell lines. METHODS:Five established pancreatic adenocarcinoma cell lines were analyzed. Total RNA was isolated and real-time RT-PCR was performed to determine the expression of ABCG2 and CD133. Surface expression of ABCG2 and CD133 was analyzed by lfow cytometric analysis. RESULTS:All pancreatic carcinoma cell lines tested expressed signiifcantly higher levels of ABCG2 than non-malignant ifbroblasts or two other malignant non-pancreatic cell lines, i.e., SaOS2 osteosarcoma and SKOV3 ovarian cancer. Elevated CD133 expression was found in two out of ifve pancreatic carcinoma cell lines tested. Using lfow cytometric analysis we conifrmed surface expression of ABCG2 in all ifve lines. Yet, CD133 surface expression was detectable in the two cell lines, A818-6 and PancTu1, which exhibited higher mRNA levels. CONCLUSIONS: Two stem cell markers, ABCG2 and CD133 are expressed in pancreatic carcinoma cell lines. ABCG2 and/or CD133 positive cells may represent subpopulation of putative cancer stem cells also in this malignancy. Because cancer stem cells are thought to be responsible for tumor initiation and its recurrence after an initial response to chemotherapy, they may be a very promising target for new drug developments.

  15. Chromosome abnormalities in Japanese Burkitt lymphoma cell lines.

    Directory of Open Access Journals (Sweden)

    Hamasaki,Kazuhide

    1982-02-01

    Full Text Available Six established Japanese Burkitt lymphoma (BL cell lines including one case with null cell type were studied by chromosomal banding techniques. The modal chromosome number was diploid or nearly diploid in five cases and hyperdiploid in one case. The marker chromosome 14q+ was observed in four of the six cases; the origin of the extra band was a chromosome 8 in three including the null cell case but could not be identified in the other. The two cases lacking the 14q+ marker had variant translocations involving the long arm of chromosome 8, one of which carried a translocation, t(8;22 (q24;q13 and the other a translocation, t(2;8 (p12;q24. Although structural and/or numerical aberrations were found in all six cell lines, chromosome 8 was the one most consistently involved. This frequent involvement of chromosome 8 in aberrations; therefore, may be an important event in the development of BL rather than the presence of a 14q+ marker chromosome.

  16. Characterization of cell lines stably transfected with rubella virus replicons

    Energy Technology Data Exchange (ETDEWEB)

    Tzeng, Wen-Pin; Xu, Jie [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States); Frey, Teryl K., E-mail: tfrey@gsu.edu [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States)

    2012-07-20

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  17. Cloned goats (Gapra hircus) from foetal fibroblast cell lines

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Mammalian cloning has been one of the most active research topics in the world.Cloning with in vitro culured foetal fibroblast cells,in comparison with embryonic cells,can be used not only to theoretically study the embryonic or cellular development and differentiation in mammals,but also to utilize the unlimited fibroblast cells to produce large numbers of clonings.The preliminary results are as follows:(i) The division and development of the cloned embryos with embryonic donor cells and goat foetal fibroblast donor cells were 55%,77% and 35%,31%,respectively.There is no significant statistical difference between them.(ii) These studies result in the birth of two cloned goats derived from two 30-day foetal fibroblast cell lines,which are the first cloned mammals from somatic cells in China.This project has established a technological data base for the furture research on adult mammalian somatic cloning and nucleocytoplasmic interactions in animal development,and a novel technique for the cloning of animals with a high-level expression of transgene(s).

  18. LINE-1 induces hTERT and ensures telomere maintenance in tumour cell lines.

    Science.gov (United States)

    Aschacher, T; Wolf, B; Enzmann, F; Kienzl, P; Messner, B; Sampl, S; Svoboda, M; Mechtcheriakova, D; Holzmann, K; Bergmann, M

    2016-01-01

    A hallmark of cancer cells is an activated telomere maintenance mechanism, which allows prolonged survival of the malignant cells. In more than 80% of tumours, telomeres are elongated by the enzyme telomerase, which adds de novo telomere repeats to the ends of chromosomes. Cancer cells are also characterized by expression of active LINE-1 elements (L1s, long interspersed nuclear elements-1). L1 elements are abundant retrotransposons in the eukaryotic genome that are primarily known for facilitating aberrant recombination. Using L1-knockdown (KD), we show for the first time that L1 is critical for telomere maintenance in telomerase-positive tumour cells. The reduced length of telomeres in the L1-KD-treated cells correlated with an increased rate of telomere dysfunction foci, a reduced expression of shelterin proteins and an increased rate of anaphase bridges. The decreased telomere length was associated with a decreased telomerase activity and decreased telomerase mRNA level; the latter was increased upon L1 overexpression. L1-KD also led to a decrease in mRNA and protein expression of cMyc and KLF-4, two main transcription factors of telomerase and altered mRNA levels of other stem-cell-associated proteins such as CD44 and hMyb, as well as a corresponding reduced growth of spheroids. The KD of KLF-4 or cMyc decreased the level of L1-ORF1 mRNA, suggesting a specific reciprocal regulation with L1. Thus, our findings contribute to the understanding of L1 as a pathogenicity factor in cancer cells. As L1 is only expressed in pathophysiological conditions, L1 now appears to be target in the rational treatment of telomerase-positive cancer.

  19. Molecular signatures in response to Isoliquiritigenin in lymphoblastoid cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Eun; Hong, Eun-Jung; Nam, Hye-Young [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of); Hwang, Meeyul [Research Center for Biomedical Resource of Oriental Medicine, Daegu Haany University (Korea, Republic of); Kim, Ji-Hyun [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of); Han, Bok-Ghee, E-mail: bokghee@nih.go.kr [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of); Jeon, Jae-Pil, E-mail: jpjeon@cdc.go.kr [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer We identified the inhibitory effect of ISL on cell proliferation of LCLs. Black-Right-Pointing-Pointer We found ISL-induced genes and miRNAs through microarray approach. Black-Right-Pointing-Pointer ISL-treated LCLs represented gene expression changes in cell cycle and p53 pathway. Black-Right-Pointing-Pointer We revealed 12 putative mRNA-miRNA functional pairs associated with ISL effect. -- Abstract: Isoliquiritigenin (ISL) has been known to induce cell cycle arrest and apoptosis of various cancer cells. However, genetic factors regulating ISL effects remain unclear. The aim of this study was to identify the molecular signatures involved in ISL-induced cell death of EBV-transformed lymphoblastoid cell lines (LCLs) using microarray analyses. For gene expression and microRNA (miRNA) microarray experiments, each of 12 LCL strains was independently treated with ISL or DMSO as a vehicle control for a day prior to total RNA extraction. ISL treatment inhibited cell proliferation of LCLs in a dose-dependent manner. Microarray analysis showed that ISL-treated LCLs represented gene expression changes in cell cycle and p53 signaling pathway, having a potential as regulators in LCL survival and sensitivity to ISL-induced cytotoxicity. In addition, 36 miRNAs including five miRNAs with unknown functions were differentially expressed in ISL-treated LCLs. The integrative analysis of miRNA and gene expression profiles revealed 12 putative mRNA-miRNA functional pairs. Among them, miR-1207-5p and miR-575 were negatively correlated with p53 pathway- and cell cycle-associated genes, respectively. In conclusion, our study suggests that miRNAs play an important role in ISL-induced cytotoxicity in LCLs by targeting signaling pathways including p53 pathway and cell cycle.

  20. Internalization of cystatin C in human cell lines.

    Science.gov (United States)

    Ekström, Ulf; Wallin, Hanna; Lorenzo, Julia; Holmqvist, Bo; Abrahamson, Magnus; Avilés, Francesc X

    2008-09-01

    Altered protease activity is considered important for tumour invasion and metastasis, processes in which the cysteine proteases cathepsin B and L are involved. Their natural inhibitor cystatin C is a secreted protein, suggesting that it functions to control extracellular protease activity. Because cystatins added to cell cultures can inhibit polio, herpes simplex and coronavirus replication, which are intracellular processes, the internalization and intracellular regulation of cysteine proteases by cystatin C should be considered. The extension, mechanism and biological importance of this hypothetical process are unknown. We investigated whether internalization of cystatin C occurs in a set of human cell lines. Demonstrated by flow cytometry and confocal microscopy, A-431, MCF-7, MDA-MB-453, MDA-MB-468 and Capan-1 cells internalized fluorophore-conjugated cystatin C when exposed to physiological concentrations (1 microm). During cystatin C incubation, intracellular cystatin C increased after 5 min and accumulated for at least 6 h, reaching four to six times the baseline level. Western blotting showed that the internalized inhibitor was not degraded. It was functionally intact and extracts of cells exposed to cystatin C showed a higher capacity to inhibit papain and cathepsin B than control cells (decrease in enzyme activity of 34% and 37%, respectively). The uptake of labelled cystatin C was inhibited by unlabelled inhibitor, suggesting a specific pathway for the internalization. We conclude that the cysteine protease inhibitor cystatin C is internalized in significant quantities in various cancer cell lines. This is a potentially important physiological phenomenon not previously described for this group of inhibitors.

  1. Evaluating Electroporation and Lipofectamine Approaches for Transient and Stable Transgene Expressions in Human Fibroblasts and Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Mehdi Sharifi Tabar

    2015-10-01

    Full Text Available Objective: Genetic modification of human embryonic stem cells (hESCs is critical for their extensive use as a fundamental tool for cell therapy and basic research. Despite the fact that various methods such as lipofection and electroporation have been applied to transfer the gene of interest (GOI into the target cell line, however, there are few reports that compare all parameters, which influence transfection efficiency. In this study, we examine all parameters that affect the efficiency of electroporation and lipofection for transient and long-term gene expression in three different cell lines to introduce the best method and determinant factor. Materials and Methods: In this experimental study, both electroporation and lipofection approaches were employed for genetic modification. pCAG-EGFP was applied for transient expression of green fluorescent protein in two genetically different hESC lines, Royan H5 (XX and Royan H6 (XY, as well as human foreskin fibroblasts (hFF. For long-term EGFP expression VASA and OLIG2 promoters (germ cell and motoneuron specific genes, respectively, were isolated and subsequently cloned into a pBluMAR5 plasmid backbone to drive EGFP expression. Flow cytometry analysis was performed two days after transfection to determine transient expression efficiency. Differentiation of drug resistant hESC colonies toward primordial germ cells (PGCs was conducted to confirm stable integration of the transgene. Results: Transient and stable expression suggested a variable potential for different cell lines against transfection. Analysis of parameters that influenced gene transformation efficiency revealed that the vector concentrations from 20-60 μg and the density of the subjected cells (5×105 and 1×106 cells were not as effective as the genetic background and voltage rate. The present data indicated that in contrast to the circular form, the linearized vector generated more distinctive drug resistant colonies. Conclusion

  2. Expression of cadherin and NCAM in human small cell lung cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Møller, C; Bock, E

    1992-01-01

    characterised, the cadherin family and the Ig superfamily member, neural cell adhesion molecule (NCAM). We investigated expression of these two adhesion molecule families in small cell lung cancer (SCLC) cell lines and xenografts by immunoblotting. Nineteen tumours established from 15 patients with SCLC were...... embryonic development, which may play a role in connection with tumour invasion and metastasis, was found in 14/18 NCAM expressing SCLC tumours. Individual tumours grown as cell lines and as nude mouse xenografts showed no qualitative differences in cadherin or NCAM expression....

  3. Creation and characterization of a cell-death reporter cell line for hepatitis C virus infection

    Science.gov (United States)

    Chen, Zhilei; Simeon, Rudo; Chockalingam, Karuppiah; Rice, Charles M.

    2010-01-01

    The present study describes the creation and characterization of a hepatoma cell line, n4mBid, that supports all stages of the hepatitis C virus (HCV) life cycle and strongly reports HCV infection by a cell-death phenotype. The n4mBid cell line is derived from the highly HCV-permissive Huh-7.5 hepatoma cell line and contains a modified Bid protein (mBid) that is cleaved and activated by the HCV serine protease NS3-4A. N4mBid exhibited a 10–20 fold difference in cell viability between the HCV-infected and mock-infected states, while the parental Huh-7.5 cells showed <2 fold difference under the same conditions. The pronounced difference in n4mBid cell viability between the HCV- and mock-infected states in a 96-well plate format points to its usefulness in cell survival-based high-throughput screens for anti-HCV molecules. The degree of cell death was found to be proportional to the intracellular load of HCV. HCV-low n4mBid cells, expressing an anti-HCV short hairpin RNA, showed a significant growth advantage over naïve cells and could be rapidly enriched after HCV infection, suggesting the possibility of using n4mBid cells for the cell survival-based selection of genetic anti-HCV factors. PMID:20188762

  4. Characterization of hybrids between bovine (MDBK) and mouse (L-cell) cell lines.

    Science.gov (United States)

    Chinchar, V G; Floyd, A D; Chinchar, G D; Taylor, M W

    1979-02-01

    Hypoxanthine-guanine phosphoribosyltransferase (HGPRT)-deficient mutants of a bovine kidney cell line (MDBK) were selected following mutagenesis with ethylmethane sulfonate or ICR-170G. MDBK mutants were hybridized to thymidine kinase-deficient L cells and selected in HAT medium. Parental and hybrid cells were characterized for isozyme patterns of lactic dehydrogenase malate dehydrogenase, glucose-6-phosphate dehydrogenase, and glutamate oxalate transaminase. Chromosomes of MDBK can be distinguished from mouse L cells by configuration and by fluorescent staining with Hoechst 33-258 stain. Hybrid cells contained both MDBK and L-cell chromosomes and had elevated DNA content. MDBK cells are normally restrictive for mengovirus replication. Both permissive and restrictive hybrids were found. Our data indicate that there was preferential loss of MDBK chromosomes in the hybrid cell lines.

  5. New model for gastroenteropancreatic large-cell neuroendocrine carcinoma: establishment of two clinically relevant cell lines.

    Directory of Open Access Journals (Sweden)

    Andreas Krieg

    Full Text Available Recently, a novel WHO-classification has been introduced that divided gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN according to their proliferation index into G1- or G2-neuroendocrine tumors (NET and poorly differentiated small-cell or large-cell G3-neuroendocrine carcinomas (NEC. Our knowledge on primary NECs of the GEP-system is limited due to the rarity of these tumors and chemotherapeutic concepts of highly aggressive NEC do not provide convincing results. The aim of this study was to establish a reliable cell line model for NEC that could be helpful in identifying novel druggable molecular targets. Cell lines were established from liver (NEC-DUE1 or lymph node metastases (NEC-DUE2 from large cell NECs of the gastroesophageal junction and the large intestine, respectively. Morphological characteristics and expression of neuroendocrine markers were extensively analyzed. Chromosomal aberrations were mapped by array comparative genomic hybridization and DNA profiling was analyzed by DNA fingerprinting. In vitro and in vivo tumorigenicity was evaluated and the sensitivity against chemotherapeutic agents assessed. Both cell lines exhibited typical morphological and molecular features of large cell NEC. In vitro and in vivo experiments demonstrated that both cell lines retained their malignant properties. Whereas NEC-DUE1 and -DUE2 were resistant to chemotherapeutic drugs such as cisplatin, etoposide and oxaliplatin, a high sensitivity to 5-fluorouracil was observed for the NEC-DUE1 cell line. Taken together, we established and characterized the first GEP large-cell NEC cell lines that might serve as a helpful tool not only to understand the biology of these tumors, but also to establish novel targeted therapies in a preclinical setup.

  6. The combination of inhibitors of FGF/MEK/Erk and GSK3β signaling increases the number of OCT3/4- and NANOG-positive cells in the human inner cell mass, but does not improve stem cell derivation.

    Science.gov (United States)

    Van der Jeught, Margot; O'Leary, Thomas; Ghimire, Sabitri; Lierman, Sylvie; Duggal, Galbha; Versieren, Karen; Deforce, Dieter; Chuva de Sousa Lopes, Susana; Heindryckx, Björn; De Sutter, Petra

    2013-01-15

    In embryonic stem cell culture, small molecules can be used to alter key signaling pathways to promote self-renewal and inhibit differentiation. In mice, small-molecule inhibition of both the FGF/MEK/Erk and the GSK3β pathways during preimplantation development suppresses hypoblast formation, and this results in more pluripotent cells of the inner cell mass (ICM). In this study, we evaluated the effects of different small-molecule inhibitors of the FGF/MEK/Erk and GSK3β pathway on embryo preimplantation development, early lineage segregation, and subsequent embryonic stem cell derivation in the humans. We did not observe any effect on blastocyst formation, but small-molecule inhibition did affect the number of OCT3/4- and NANOG-positive cells in the human ICM. We found that combined inhibition of the FGF/MEK/Erk and GSK3β pathways by PD0325901 and CHIR99021, respectively, resulted in ICMs containing significantly more OCT3/4-positive cells. Inhibition of FGF/MEK/Erk alone as well as in combination with inhibition of GSK3β significantly increased the number of NANOG-positive cells in blastocysts possessing good-quality ICMs. Secondly, we verified the influence of this increased pluripotency after 2i culture on the efficiency of stem cell derivation. Similar human embryonic stem cell (hESC) derivation rates were observed after 2i compared to control conditions, resulting in 2 control hESC lines and 1 hESC line from an embryo cultured in 2i conditions. In conclusion, we demonstrated that FGF/MEK/Erk and GSK3β signaling increases the number of OCT3/4- and NANOG-positive cells in the human ICM, but does not improve stem cell derivation.

  7. Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines.

    Science.gov (United States)

    Bock, Christoph; Kiskinis, Evangelos; Verstappen, Griet; Gu, Hongcang; Boulting, Gabriella; Smith, Zachary D; Ziller, Michael; Croft, Gist F; Amoroso, Mackenzie W; Oakley, Derek H; Gnirke, Andreas; Eggan, Kevin; Meissner, Alexander

    2011-02-04

    The developmental potential of human pluripotent stem cells suggests that they can produce disease-relevant cell types for biomedical research. However, substantial variation has been reported among pluripotent cell lines, which could affect their utility and clinical safety. Such cell-line-specific differences must be better understood before one can confidently use embryonic stem (ES) or induced pluripotent stem (iPS) cells in translational research. Toward this goal we have established genome-wide reference maps of DNA methylation and gene expression for 20 previously derived human ES lines and 12 human iPS cell lines, and we have measured the in vitro differentiation propensity of these cell lines. This resource enabled us to assess the epigenetic and transcriptional similarity of ES and iPS cells and to predict the differentiation efficiency of individual cell lines. The combination of assays yields a scorecard for quick and comprehensive characterization of pluripotent cell lines.

  8. Fluorouracil selectively enriches stem-like cells in the lung adenocarcinoma cell line SPC.

    Science.gov (United States)

    Shi, Mu-mu; Xiong, Yan-lei; Jia, Xin-shan; Li, Xin; Zhang, Li; Li, Xiao-lei; Wang, En-Hua

    2013-06-01

    Most adult stem cells are in the G0 or quiescent phase of the cell cycle and account for only a small percentage of the cells in the tissue. Thus, isolation of stem cells from tissues for further study represents a major challenge. This study sought to enrich cancer stem cells and explore cancer stem-like cell clones using 5-fluorouracil (5-FU) in the lung adenocarcinoma cell line, SPC. Proliferation inhibition was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, according to which half maximal inhibitory concentration values were calculated. Expression levels of stem cell markers after treatment with 5-FU were examined using immunofluorescence and Western blotting. Additionally, side population (SP) cells were sorted using FACS. Properties of SP cells were evaluated by using Transwell, colony-forming assays, and tumor formation experiments. 5-FU greatly inhibits proliferation, especially of cells in S phase. SP cells possess greater invasive potential, higher clone-forming potential, and greater tumor-forming ability than non-SP cells. Treatment with 5-FU enriches the SP cells with stem cell properties in human lung adenocarcinoma cell lines.

  9. Isolation and characterization of cancer stem-like cells from MHCC97H Cell Lines

    Institute of Scientific and Technical Information of China (English)

    Shanyong Yi; Kejun Nan; Aihua Yuan; Chuangxin Lu

    2009-01-01

    Objective:To identify and isolate CD133 positive cancer stem-like cells (CD133+ cells) from the highly invasive human hepatocellular carcinoma cell line(MHCC97H), and examine their potential for clonogenicity and tumorigenicity. Methods: CD133+ and CD133- cells were isolated from MHCC97H cell line by magnetic bead cell sorting(MACS), and the potentials of CD133+ cells for colony formation and tumorigenicity were evaluated by soft agar cloning and tumor formation following nude mice inoculation. Results:CD133+ cells represent a minority(0.5-2.0%) of the tumor cell population with a greater colony-forming efficiency and greater tumor production ability. The colony-forming efficiency of CD133+ cells in soft agar was significantly higher than CD133- cells(36.8±1.4 vs 12.9±0.8, P<0.05).After 6 weeks, 3/5 mice inoculated with 1 × 103 CD133+ cells, 4/5 with 1 × 104 CD133+ cells and 5/5 with 1 × 105 CD133+ cells developed detectable tumors at the injection site, while only one tumor was found in mice treated with same numbers of CD133- cells. Conclusion: CD133 may be a hallmark of liver cancer stem cells (CSC) in human hepatocellular carcinoma(HCC), because the CD133+ cells identified and isolated with anti-CD133 labeled magnetic beads from MHCC97H cell line exhibit high potentials for clonogenicity and tumorigenicity. These CD133+ cells might contribute to hepatocarcinogenesis, as well as the growth and recurrence of human HCC, and therefore may be a useful target for anti-cancer therapy.

  10. Effects of small interfering RNAs targeting fascin on human esophageal squamous cell carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Garcia Jose

    2010-06-01

    Full Text Available Abstract Background Fascin induces membrane protrusions and cell motility. Fascin overexpression was associated with poor prognosis, and its downregulation reduces cell motility and invasiveness in esophageal squamous cell carcinoma (ESCC. Using a stable knockdown cell line, we revealed the effect of fascin on cell growth, cell adhesion and tumor formation. Methods We examined whether fascin is a potential target in ESCC using in vitro and in vivo studies utilizing a specific siRNA. We established a stable transfectant with downregulated fascin from KYSE170 cell line. Results The fascin downregulated cell lines showed a slower growth pattern by 40.3% (p In vivo, the tumor size was significantly smaller in the tumor with fascin knockdown cells than in mock cells by 95% at 30 days after inoculation. Conclusions These findings suggest that fascin overexpression plays a role in tumor growth and progression in ESCC and that cell death caused by its downregulation might be induced by cell adhesion loss. This indicates that targeting fascin pathway could be a novel therapeutic strategy for the human ESCC.

  11. Differential carbohydrate binding and cell surface glycosylation of human cancer cell lines.

    Science.gov (United States)

    Arndt, Nadia X; Tiralongo, Joe; Madge, Paul D; von Itzstein, Mark; Day, Christopher J

    2011-09-01

    Currently there is only a modest level knowledge of the glycosylation status of immortalised cell lines that are commonly used in cancer biology as well as their binding affinities to different glycan structures. Through use of glycan and lectin microarray technology, this study has endeavoured to define the different bindings of cell surface carbohydrate structures to glycan-binding lectins. The screening of breast cancer MDA-MB435 cells, cervical cancer HeLa cells and colon cancer Caco-2, HCT116 and HCT116-FM6 cells was conducted to determine their differential bindings to a variety of glycan and lectin structures printed on the array slides. An inverse relationship between the number of glycan structures recognised and the variety of cell surface glycosylation was observed. Of the cell lines tested, it was found that four bound to sialylated structures in initial screening. Secondary screening in the presence of a neuraminidase inhibitor (4-deoxy-4-guanidino-Neu5Ac2en) significantly reduced sialic acid binding. The array technology has proven to be useful in determining the glycosylation signatures of various cell-lines as well as their glycan binding preferences. The findings of this study provide the groundwork for further investigation into the numerous glycan-lectin interactions that are exhibited by immortalised cell lines.

  12. Expand and Regularize Federal Funding for Human Pluripotent Stem Cell Research

    Science.gov (United States)

    Owen-Smith, Jason; Scott, Christopher Thomas; McCormick, Jennifer B.

    2012-01-01

    Human embryonic stem cell (hESC) research has sparked incredible scientific and public excitement, as well as significant controversy. hESCs are pluripotent, which means, in theory, that they can be differentiated into any type of cell found in the human body. Thus, they evoke great enthusiasm about potential clinical applications. They are…

  13. Specific binding of benzodiazepines to human breast cancer cell lines.

    Science.gov (United States)

    Beinlich, A; Strohmeier, R; Kaufmann, M; Kuhl, H

    1999-01-01

    Binding of [3H]Ro5-4864, a peripheral benzodiazepine receptor (PBR) agonist, to BT-20 human, estrogen- (ER) and progesterone- (PR) receptor negative breast cancer cells was characterized. It was found to be specific, dose-dependent and saturable with a single population of binding sites. Dissociation constant (K(D)) was 8.5 nM, maximal binding capacity (Bmax) 339 fM/10(6) cells. Ro5-4864 (IC50 17.3 nM) and PK 11195 (IC50 12.3 nM) were able to compete with [3H]Ro5-4864 for binding, indicating specificity of interaction with PBR. Diazepam was able to displace [3H]Ro5-4864 from binding only at high concentrations (>1 microM), while ODN did not compete for PBR binding. Thymidine-uptake assay showed a biphasic response of cell proliferation. While low concentrations (100 nM) of Ro5-4864, PK 11195 and diazepam increased cell growth by 10 to 20%, higher concentrations (10-100 microM) significantly inhibited cell proliferation. PK 11195, a potent PBR ligand, was able to attenuate growth of BT-20 cells stimulated by 100 nM Ro5-4864 and to reverse growth reduction caused by 1 and 10 microM Ro5-4864, but not by 50 microM and 100 microM. This indicates that the antimitotic activity of higher concentrations of Ro5-4864 is independent of PBR binding. It is suggested, that PBR are involved in growth regulation of certain human breast cancer cell lines, possibly by supplying proliferating cells with energy, as their endogenous ligand is a polypeptide transporting Acyl-CoA.

  14. Development of buffalo (Bubalus bubalis embryonic stem cell lines from somatic cell nuclear transferred blastocysts

    Directory of Open Access Journals (Sweden)

    Syed Mohmad Shah

    2015-11-01

    Full Text Available We developed buffalo embryonic stem cell lines from somatic cell nuclear transfer derived blastocysts, produced by hand-guided cloning technique. The inner cell mass of the blastocyst was cut mechanically using a Microblade and cultured onto feeder cells in buffalo embryonic stem (ES cell culture medium at 38 °C in a 5% CO2 incubator. The stem cell colonies were characterized for alkaline phosphatase activity, karyotype, pluripotency and self-renewal markers like OCT4, NANOG, SOX2, c-Myc, FOXD3, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 and CD90. The cell lines also possessed the capability to differentiate across all the three germ layers under spontaneous differentiation conditions.

  15. Teratoma Formation by Human Embryonic Stem Cells is site-dependent and enhanced by the presence of Matrigel

    DEFF Research Database (Denmark)

    Prokhorova, Tatyana A; Harkness, Linda M; Frandsen, Ulrik

    2008-01-01

    discomfort to the mice. Also, subcutaneous teratomas displayed more complex structures and larger proportion of solid tissues as opposed to cyst formation which dominated the teratomas formed at the other sites. Interestingly, a chromosomally abnormal hESC with trisomy 20 formed teratomas where the ratio...... formation can be employed to study the development defects exhibited by the chromosomally abnormal hESC lines....

  16. Characterization and comparison of embryonic stem cell-derived KDR+ cells with endothelial cells.

    Science.gov (United States)

    Sun, Xuan; Cheng, Lamei; Duan, Huaxin; Lin, Ge; Lu, Guangxiu

    2012-09-01

    Growing interest in utilizing endothelial cells (ECs) for therapeutic purposes has led to the exploration of human embryonic stem cells (hESCs) as a potential source for endothelial progenitors. In this study, ECs were induced from hESC lines and their biological characteristics were analyzed and compared with both cord blood endothelial progenitor cells (CBEPCs) and human umbilical vein endothelial cells (HUVECs) in vitro. The results showed that isolated embryonic KDR+ cells (EC-KDR+) display characteristics that were similar to CBEPCs and HUVECs. EC-KDR+, CBEPCs and HUVECs all expressed CD31 and CD144, incorporated DiI-Ac-LDL, bound UEA1 lectin, and were able to form tube-like structures on Matrigel. Compared with CBEPCs and HUVECs, the expression level of endothelial progenitor cell markers such as CD133 and KDR in EC-KDR+ was significantly higher, while the mature endothelial marker vWF was lowly expressed in EC-KDR+. In summary, the study showed that EC-KDR+ are primitive endothelial-like progenitors and might be a potential source for therapeutic vascular regeneration and tissue engineering.

  17. File list: Pol.Bld.20.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.AllAg.Lymphoblastoid_cell_line hg19 RNA polymerase Blood Lymphoblastoid cell line... SRX306580,SRX306578,SRX306576,SRX306575 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.20.AllAg.Lymphoblastoid_cell_line.bed ...

  18. File list: His.Bld.50.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.AllAg.Lymphoblastoid_cell_line hg19 Histone Blood Lymphoblastoid cell line...5,SRX306570,SRX106080,SRX306566,SRX306568 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.50.AllAg.Lymphoblastoid_cell_line.bed ...

  19. File list: ALL.Bld.20.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.20.AllAg.Lymphoblastoid_cell_line hg19 All antigens Blood Lymphoblastoid cell line...ve.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.20.AllAg.Lymphoblastoid_cell_line.bed ...

  20. File list: Oth.Bld.10.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.AllAg.Lymphoblastoid_cell_line hg19 TFs and others Blood Lymphoblastoid cell line...ciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.10.AllAg.Lymphoblastoid_cell_line.bed ...

  1. File list: Oth.Bld.20.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.20.AllAg.Lymphoblastoid_cell_line hg19 TFs and others Blood Lymphoblastoid cell line...ciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.20.AllAg.Lymphoblastoid_cell_line.bed ...

  2. File list: His.Bld.05.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.Lymphoblastoid_cell_line hg19 Histone Blood Lymphoblastoid cell line...2,SRX306570,SRX356718,SRX356754,SRX026069 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.05.AllAg.Lymphoblastoid_cell_line.bed ...

  3. File list: DNS.Bld.50.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.50.AllAg.Lymphoblastoid_cell_line hg19 DNase-seq Blood Lymphoblastoid cell line...091606,SRX469953,SRX091596 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.50.AllAg.Lymphoblastoid_cell_line.bed ...

  4. File list: Unc.Bld.20.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.Lymphoblastoid_cell_line hg19 Unclassified Blood Lymphoblastoid cell line... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.20.AllAg.Lymphoblastoid_cell_line.bed ...

  5. File list: Pol.Bld.50.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.AllAg.Lymphoblastoid_cell_line hg19 RNA polymerase Blood Lymphoblastoid cell line... SRX306580,SRX306575,SRX306578,SRX306576 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.50.AllAg.Lymphoblastoid_cell_line.bed ...

  6. File list: Unc.Bld.10.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.10.AllAg.Lymphoblastoid_cell_line hg19 Unclassified Blood Lymphoblastoid cell line... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.10.AllAg.Lymphoblastoid_cell_line.bed ...

  7. File list: His.Bld.10.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.AllAg.Lymphoblastoid_cell_line hg19 Histone Blood Lymphoblastoid cell line...7,SRX356718,SRX356754,SRX026054,SRX026069 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.10.AllAg.Lymphoblastoid_cell_line.bed ...

  8. File list: Unc.Bld.05.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.Lymphoblastoid_cell_line hg19 Unclassified Blood Lymphoblastoid cell line... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.05.AllAg.Lymphoblastoid_cell_line.bed ...

  9. File list: His.Bld.20.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.AllAg.Lymphoblastoid_cell_line hg19 Histone Blood Lymphoblastoid cell line...8,SRX356735,SRX356754,SRX306535,SRX026069 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.20.AllAg.Lymphoblastoid_cell_line.bed ...

  10. File list: DNS.Bld.10.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.10.AllAg.Lymphoblastoid_cell_line hg19 DNase-seq Blood Lymphoblastoid cell line...8,SRX091598,SRX091626,SRX469951,SRX469953,SRX469955 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.10.AllAg.Lymphoblastoid_cell_line.bed ...

  11. File list: Pol.Bld.10.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.10.AllAg.Lymphoblastoid_cell_line hg19 RNA polymerase Blood Lymphoblastoid cell line... SRX306575,SRX306580,SRX306576,SRX306578 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.10.AllAg.Lymphoblastoid_cell_line.bed ...

  12. File list: DNS.Bld.20.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.20.AllAg.Lymphoblastoid_cell_line hg19 DNase-seq Blood Lymphoblastoid cell line...0,SRX091618,SRX091595,SRX091598,SRX469953 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.20.AllAg.Lymphoblastoid_cell_line.bed ...

  13. File list: Unc.Bld.50.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Lymphoblastoid_cell_line hg19 Unclassified Blood Lymphoblastoid cell line... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.50.AllAg.Lymphoblastoid_cell_line.bed ...

  14. File list: Pol.Bld.05.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.05.AllAg.Lymphoblastoid_cell_line hg19 RNA polymerase Blood Lymphoblastoid cell line... SRX306575,SRX306580,SRX306576,SRX306578 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.05.AllAg.Lymphoblastoid_cell_line.bed ...

  15. File list: DNS.Bld.05.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.05.AllAg.Lymphoblastoid_cell_line hg19 DNase-seq Blood Lymphoblastoid cell line...8,SRX091623,SRX091605,SRX469953,SRX469951,SRX469955 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.05.AllAg.Lymphoblastoid_cell_line.bed ...

  16. File list: ALL.Bld.10.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.Lymphoblastoid_cell_line hg19 All antigens Blood Lymphoblastoid cell line...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.10.AllAg.Lymphoblastoid_cell_line.bed ...

  17. File list: ALL.Bld.05.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.05.AllAg.Lymphoblastoid_cell_line hg19 All antigens Blood Lymphoblastoid cell line...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.05.AllAg.Lymphoblastoid_cell_line.bed ...

  18. File list: Oth.Bld.50.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.AllAg.Lymphoblastoid_cell_line hg19 TFs and others Blood Lymphoblastoid cell line...ciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.50.AllAg.Lymphoblastoid_cell_line.bed ...

  19. File list: ALL.Bld.50.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.Lymphoblastoid_cell_line hg19 All antigens Blood Lymphoblastoid cell line...6,SRX306568,SRX469953,SRX144527,SRX144520,SRX091596 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.50.AllAg.Lymphoblastoid_cell_line.bed ...

  20. File list: Oth.Bld.05.AllAg.Lymphoblastoid_cell_line [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.05.AllAg.Lymphoblastoid_cell_line hg19 TFs and others Blood Lymphoblastoid cell line...ciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.05.AllAg.Lymphoblastoid_cell_line.bed ...

  1. Label-free separation of human embryonic stem cells and their differentiating progenies by phasor fluorescence lifetime microscopy

    Science.gov (United States)

    Stringari, Chiara; Sierra, Robert; Donovan, Peter J.; Gratton, Enrico

    2012-04-01

    We develop a label-free optical technique to image and discriminate undifferentiated human embryonic stem cells (hESCs) from their differentiating progenies in vitro. Using intrinsic cellular fluorophores, we perform fluorescence lifetime microscopy (FLIM) and phasor analysis to obtain hESC metabolic signatures. We identify two optical biomarkers to define the differentiation status of hESCs: Nicotinamide adenine dinucleotide (NADH) and lipid droplet-associated granules (LDAGs). These granules have a unique lifetime signature and could be formed by the interaction of reactive oxygen species and unsaturated metabolic precursor that are known to be abundant in hESC. Changes in the relative concentrations of these two intrinsic biomarkers allow for the discrimination of undifferentiated hESCs from differentiating hESCs. During early hESC differentiation we show that NADH concentrations increase, while the concentration of LDAGs decrease. These results are in agreement with a decrease in oxidative phosphorylation rate. Single-cell phasor FLIM signatures reveal an increased heterogeneity in the metabolic states of differentiating H9 and H1 hESC colonies. This technique is a promising noninvasive tool to monitor hESC metabolism during differentiation, which can have applications in high throughput analysis, drug screening, functional metabolomics and induced pluripotent stem cell generation.

  2. Oxidative stress induces hypomethylation of LINE-1 and hypermethylation of the RUNX3 promoter in a bladder cancer cell line.

    Science.gov (United States)

    Wongpaiboonwattana, Wikrom; Tosukhowong, Piyaratana; Dissayabutra, Thasinas; Mutirangura, Apiwat; Boonla, Chanchai

    2013-01-01

    Increased oxidative stress and changes in DNA methylation are frequently detected in bladder cancer patients. We previously demonstrated a relationship between increased oxidative stress and hypomethylation of the transposable long-interspersed nuclear element-1 (LINE-1). Promoter hypermethylation of a tumor suppressor gene, runt-related transcription factor 3 (RUNX3), may also be associated with bladder cancer genesis. In this study, we investigated changes of DNA methylation in LINE-1 and RUNX3 promoter in a bladder cancer cell (UM-UC-3) under oxidative stress conditions, stimulated by challenge with H2O2 for 72 h. Cells were pretreated with an antioxidant, tocopheryl acetate for 1 h to attenuate oxidative stress. Methylation levels of LINE-1 and RUNX3 promoter were measured by combined bisulfite restriction analysis PCR and methylation-specific PCR, respectively. Levels of LINE-1 methylation were significantly decreased in H2O2-treated cells, and reestablished after pretreated with tocopheryl acetate. Methylation of RUNX3 promoter was significantly increased in cells exposed to H2O2. In tocopheryl acetate pretreated cells, it was markedly decreased. In conclusion, hypomethylation of LINE-1 and hypermethylation of RUNX3 promoter in bladder cancer cell line was experimentally induced by reactive oxygen species (ROS). The present findings support the hypothesis that oxidative stress promotes urothelial cell carcinogenesis through modulation of DNA methylation. Our data also imply that mechanistic pathways of ROS-induced alteration of DNA methylation in a repetitive DNA element and a gene promoter might differ.

  3. Analysis of G-banding in tumor cell lines derived from human neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Junhua Zou; Yanhui Li

    2006-01-01

    BACKGROUND: The application of neural stem cell (NSC) is restricted because of its tumorigenesis, and the possible pathogenesis needs investigation.OBJECTIVE: To compare the differences of chromosomal G-banding between human NSCs (hNSCs) derived tumor cell line and hNSCs derived normal cell lines.DESIGN: A randomized controlled observation.SETTING: Building of Anatomy, Peking University Health Science Center.MATERIALS: The hNSC lines and hNSC-derived tumor cell lines were provided by the Research Center of Stem Cells, Peking University; DMEM/F12 (1:1) medium, N2 additive, B27 additive epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) were produced by GIBCO BRL Company (USA); fetal bovine serum by HYCLONE Company (USA).METHODS: The experiments were carried out in the Department of Genetics, Peking University Health Science Center from February 2003 to July 2004. Human fetal striatal NSCs were inoculated hypodermically on the right scapular of nude mice; Normal human fetal striatal NSCs were cultured to 5-8 passages as controls. Karyotyping was performed on the 5th passage of hNSC-derived tumor cells at 6 weeks after hN-SC transplantation into nude mice (T1) and tumor cells at 15 weeks after transplantation (T2). Metaphase chromosomes were examined with microscope, G-banding cytogenetic analysis and karyotyping were performed according to the Cytoscan Karyotyping FISH and CGH software system (United biotechnology USA Corporation).MAIN OUTCOME MEASURES: G-banded analytical results of human fetal striatal nerve stem cells derived tumor cell lines (T1 and T2) of metaphase chromosomes were observed.RESULTS: ① Chromosome analysis of hNSC-derived tumor cell lines 1 (T1): Twenty-five well-spread metaphases were randomly selected for analysis. The karyotypes were 64, XX (8, 32%); 65, XX (1, 4%); 67,XX (5, 20%); 68, XX (11, 44%). The modal number of chromosomes in this cell lines was 68, which were all hypotriploid. The analysis of 8 G

  4. Ago2 immunoprecipitation identifies predicted microRNAs in human embryonic stem cells and neural precursors.

    Directory of Open Access Journals (Sweden)

    Loyal A Goff

    Full Text Available BACKGROUND: MicroRNAs are required for maintenance of pluripotency as well as differentiation, but since more microRNAs have been computationally predicted in genome than have been found, there are likely to be undiscovered microRNAs expressed early in stem cell differentiation. METHODOLOGY/PRINCIPAL FINDINGS: SOLiD ultra-deep sequencing identified >10(7 unique small RNAs from human embryonic stem cells (hESC and neural-restricted precursors that were fit to a model of microRNA biogenesis to computationally predict 818 new microRNA genes. These predicted genomic loci are associated with chromatin patterns of modified histones that are predictive of regulated gene expression. 146 of the predicted microRNAs were enriched in Ago2-containing complexes along with 609 known microRNAs, demonstrating association with a functional RISC complex. This Ago2 IP-selected subset was consistently expressed in four independent hESC lines and exhibited complex patterns of regulation over development similar to previously-known microRNAs, including pluripotency-specific expression in both hESC and iPS cells. More than 30% of the Ago2 IP-enriched predicted microRNAs are new members of existing families since they share seed sequences with known microRNAs. CONCLUSIONS/SIGNIFICANCE: Extending the classic definition of microRNAs, this large number of new microRNA genes, the majority of which are less conserved than their canonical counterparts, likely represent evolutionarily recent regulators of early differentiation. The enrichment in Ago2 containing complexes, the presence of chromatin marks indicative of regulated gene expression, and differential expression over development all support the identification of 146 new microRNAs active during early hESC differentiation.

  5. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    Directory of Open Access Journals (Sweden)

    Zhang Ping

    2006-09-01

    Full Text Available Abstract Background Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. Methods A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differentiated tongue squamous cell carcinoma. Global gene expression in this resistant cell line and its sensitive parent cell line was analyzed using Affymetrix HG-U95Av2 microarrays. Candidate genes involved in DNA repair, the MAP pathway and cell cycle regulation were chosen to validate the microarray analysis results. Cell cycle distribution and apoptosis following cisplatin exposure were also investigated. Results Cisplatin resistance in Tca/cisplatin cells was stable for two years in cisplatin-free culture medium. The IC50 for cisplatin in Tca/cisplatin was 6.5-fold higher than that in Tca8113. Microarray analysis identified 38 genes that were up-regulated and 25 that were down-regulated in this cell line. Some were novel candidates, while others are involved in well-characterized mechanisms that could be relevant to cisplatin resistance, such as RECQL for DNA repair and MAP2K6 in the MAP pathway; all the genes were further validated by Real-time PCR. The cell cycle-regulated genes CCND1 and CCND3 were involved in cisplatin resistance; 24-hour exposure to 10 μM cisplatin induced a marked S phase block in Tca/cisplatin cells but not in Tca8113 cells. Conclusion The Tca8113 cell line and its stable drug-resistant variant Tca/cisplatin provided a useful model for identifying candidate genes responsible for the mechanism of cisplatin resistance in oral squamous cell carcinoma. Our data provide a useful basis for screening candidate targets for early diagnosis

  6. A vertically integrated dynamic RAM-cell: Buried bit line memory cell with floating transfer layer

    NARCIS (Netherlands)

    Mouthaan, Ton; Vertregt, Maarten

    1986-01-01

    A charge injection device has been realized in which charge can be injected on to an MOS-capacitor from a buried layer via an isolated transfer layer. The cell is positioned vertically between word and bit line. LOCOS (local oxidation) is used to isolate the cells and (deep) ion implantation to real

  7. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines.

    Science.gov (United States)

    Qin, J-Z; Xin, H; Nickoloff, B J

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  8. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Qin, J.-Z.; Xin, H. [Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University of Chicago Medical Center (United States); Nickoloff, B.J., E-mail: bnickol@lumc.edu [Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University of Chicago Medical Center (United States)

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  9. Characterisation and Manipulation of Docetaxel Resistant Prostate Cancer Cell Lines

    LENUS (Irish Health Repository)

    O'Neill, Amanda J

    2011-10-07

    Abstract Background There is no effective treatment strategy for advanced castration-resistant prostate cancer. Although Docetaxel (Taxotere®) represents the most active chemotherapeutic agent it only gives a modest survival advantage with most patients eventually progressing because of inherent or acquired drug resistance. The aims of this study were to further investigate the mechanisms of resistance to Docetaxel. Three Docetaxel resistant sub-lines were generated and confirmed to be resistant to the apoptotic and anti-proliferative effects of increasing concentrations of Docetaxel. Results The resistant DU-145 R and 22RV1 R had expression of P-glycoprotein and its inhibition with Elacridar partially and totally reversed the resistant phenotype in the two cell lines respectively, which was not seen in the PC-3 resistant sublines. Resistance was also not mediated in the PC-3 cells by cellular senescence or autophagy but multiple changes in pro- and anti-apoptotic genes and proteins were demonstrated. Even though there were lower basal levels of NF-κB activity in the PC-3 D12 cells compared to the Parental PC-3, docetaxel induced higher NF-κB activity and IκB phosphorylation at 3 and 6 hours with only minor changes in the DU-145 cells. Inhibition of NF-κB with the BAY 11-7082 inhibitor reversed the resistance to Docetaxel. Conclusion This study confirms that multiple mechanisms contribute to Docetaxel resistance and the central transcription factor NF-κB plays an immensely important role in determining docetaxel-resistance which may represent an appropriate therapeutic target.

  10. Isolation and Enrichment of Mouse Female Germ Line Stem Cells

    Directory of Open Access Journals (Sweden)

    Somayeh Khosravi-Farsani

    2015-01-01

    Full Text Available Objective: The existence of female germ-line stem cells (FGSCs has been the subject of a wide range of recent studies. Successful isolation and culture of FGSCs could facilitate studies on regenerative medicine and infertility treatments in the near future. Our aim in the present study was evaluation of the most commonly used techniques in enrichment of FGSCs and in establishment of the best procedure. Materials and Methods: In this experimental study, after digesting neonate ovary from C57Bl/6 mice, we performed 2 different isolation experiments: magnetic activated cell sorting (MACS and pre-plating. MACS was applied using two different antibodies against mouse vasa homolog (MVH and stage-specific embryonic antigen-1 (SSEA1 markers. After the cells were passaged and proliferated in vitro, colony-forming cells were characterized using reverse transcription-polymerase chain reaction (RT-PCR (for analysis of expression of Oct4, Nanog, C-kit, Fragilis, Mvh, Dazl, Scp3 and Zp3, alkaline phosphatase (AP activity test and immunocytochemistry. Results: Data showed that colonies can be seen more frequently in pre-plating technique than that in MACS. Using the SSEA1 antibody with MACS, 1.98 ± 0.49% (Mean ± SDV positive cells were yield as compared to the total cells sorted. The colonies formed after pre-plating expressed pluripotency and germ stem cell markers (Oct4, Nanog, C-kit, Fragilis, Mvh and Dazl whereas did not express Zp3 and Scp3 at the mRNA level. Immunocytochemistry in these colonies further confirmed the presence of OCT4 and MVH proteins, and AP activity measured by AP-kit showed positive reaction. Conclusion: We established a simple and an efficient pre-plating technique to culture and to enrich FGSCs from neonatal mouse ovaries.

  11. Efflux protein expression in human stem cell-derived retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Kati Juuti-Uusitalo

    Full Text Available Retinal pigment epithelial (RPE cells in the back of the eye nourish photoreceptor cells and form a selective barrier that influences drug transport from the blood to the photoreceptor cells. At the molecular level, ATP-dependent efflux transporters have a major role in drug delivery in human RPE. In this study, we assessed the relative expression of several ATP-dependent efflux transporter genes (MRP1, -2, -3, -4, -5, -6, p-gp, and BCRP, the protein expression and localization of MRP1, MRP4, and MRP5, and the functionality of MRP1 efflux pumps at different maturation stages of undifferentiated human embryonic stem cells (hESC and RPE derived from the hESC (hESC-RPE. Our findings revealed that the gene expression of ATP-dependent efflux transporters MRP1, -3, -4, -5, and p-gp fluctuated during hESC-RPE maturation from undifferentiated hESC to fusiform, epithelioid, and finally to cobblestone hESC-RPE. Epithelioid hESC-RPE had the highest expression of MRP1, -3, -4, and P-gp, whereas the most mature cobblestone hESC-RPE had the highest expression of MRP5 and MRP6. These findings indicate that a similar efflux protein profile is shared between hESC-RPE and the human RPE cell line, ARPE-19, and suggest that hESC-RPE cells are suitable in vitro RPE models for drug transport studies. Embryonic stem cell model might provide a novel tool to study retinal cell differentiation, mechanisms of RPE-derived diseases, drug testing and targeted drug therapy.

  12. Characterization of cancer stem-like cells in the side population cells of human gastric cancer cell line MKN-45

    Institute of Scientific and Technical Information of China (English)

    Hai-hong ZHANG; Ai-zhen CAI; Xue-ming WEI; Li DING; Feng-zhi LI; Ai-ming ZHENG; Da-jiang DAI

    2013-01-01

    Objective:Side population (SP) cells may play a crucial role in tumorigenesis and the recurrence of cancer.Many kinds of cell lines and tissues have demonstrated the presence of SP cells,including several gastric cancer cell lines.This study is aimed to identify the cancer stem-like cells in the SP of gastric cancer cell line MKN-45.Methods:We used fluorescence activated cell sorting (FACS) to sort SP cells in the human gastric carcinoma cell line MKN-45 (cells labeled with Hoechst 33342) and then characterized the cancer stem-like properties of SP cells.Results:This study found that the SP cells had higher clone formation efficiency than major population (MP) cells.Five stemness-related gene expression profiles,including OCT-4,SOX-2,NANOG,CD44,and adenosine triphosphate (ATP)-binding cassette transporters gene ABCG2,were tested in SP and MP cells using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR).Western blot was used to show the difference of protein expression between SP and MP cells.Both results show that there was significantly higher protein expression in SP cells than in MP cells.When inoculated into non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice,SP cells show higher tumorigenesis tendency than MP cells.Conclusions:These results indicate that SP cells possess cancer stem cell properties and prove that SP cells from MKN-45 are gastric cancer stem-like cells.

  13. Inhibitory effects of xanthohumol from hops (Humulus lupulus L.) on human hepatocellular carcinoma cell lines.

    Science.gov (United States)

    Ho, Yi-Chien; Liu, Chi-Hsien; Chen, Chien-Nan; Duan, Kow-Jen; Lin, Ming-Tse

    2008-11-01

    Xanthohumol is one of the main flavonoids in hop extracts and in beer. Very few investigations of xanthohumol have studied hepatocellular carcinoma. In this study, the inhibitory effects of xanthohumol on human hepatocellular carcinoma cell lines were investigated. The IC(50) values of xanthohumol for two hepatocellular carcinoma cell lines and one normal hepatocyte cell line were 108, 166 and 211 microm, respectively. Normal murine hepatocyte cell line had more resistance to xanthohumol than hepatocellular carcinoma cell lines. Besides, the inhibitory effects of xanthohumol on human hepatocellular carcinoma cell lines were attributed to apoptosis as indicated in the results of flow cytometry, fluorescent nuclear staining and electrophoresis of oligonucleosomal DNA fragments. Hop xanthohumol was more efficient in the growth inhibition of hepatocellular carcinoma cell lines than the flavonoids silibinin and naringin from thistle and citrus. It was shown for the first time that xanthohumol from hops effectively inhibits proliferation of human hepatocellular carcinoma cells in vitro.

  14. Origin of the U87MG glioma cell line: Good news and bad news.

    Science.gov (United States)

    Allen, Marie; Bjerke, Mia; Edlund, Hanna; Nelander, Sven; Westermark, Bengt

    2016-08-31

    Human tumor-derived cell lines are indispensable tools for basic and translational oncology. They have an infinite life span and are easy to handle and scalable, and results can be obtained with high reproducibility. However, a tumor-derived cell line may not be authentic to the tumor of origin. Two major questions emerge: Have the identity of the donor and the actual tumor origin of the cell line been accurately determined? To what extent does the cell line reflect the phenotype of the tumor type of origin? The importance of these questions is greatest in translational research. We have examined these questions using genetic profiling and transcriptome analysis in human glioma cell lines. We find that the DNA profile of the widely used glioma cell line U87MG is different from that of the original cells and that it is likely to be a bona fide human glioblastoma cell line of unknown origin.

  15. Growth inhibitory activity of Ankaferd hemostat on primary melanoma cells and cell lines

    Science.gov (United States)

    Turk, Seyhan; Malkan, Umit Yavuz; Ghasemi, Mehdi; Hocaoglu, Helin; Mutlu, Duygu; Gunes, Gursel; Aksu, Salih; Haznedaroglu, Ibrahim Celalettin

    2017-01-01

    Objective: Ankaferd hemostat is the first topical hemostatic agent about the red blood cell–fibrinogen relations tested in the clinical trials. Ankaferd hemostat consists of standardized plant extracts including Alpinia officinarum, Glycyrrhiza glabra, Thymus vulgaris, Urtica dioica, and Vitis vinifera. The aim of this study was to determine the effect of Ankaferd hemostat on viability of melanoma cell lines. Methods: Dissimilar melanoma cell lines and primary cells were used in this study. These cells were treated with different concentrations of Ankaferd hemostat to assess the impact of different dosages of the drug. All cells treated with different concentrations were incubated for different time intervals. After the data had been obtained, one-tailed T-test was used to determine whether the Ankaferd hemostat would have any significant inhibitory impact on cell growth. Results: We demonstrated in this study that cells treated with Ankaferd hemostat showed a significant decrease in cell viability compared to control groups. The cells showed different resistances against Ankaferd hemostat which depended on the dosage applied and the time treated cells had been incubated. We also demonstrated an inverse relationship between the concentration of the drug and the incubation time on one hand and the viability of the cells on the other hand, that is, increasing the concentration of the drug and the incubation time had a negative impact on cell viability. Conclusion: The findings in our study contribute to our knowledge about the anticancer impact of Ankaferd hemostat on different melanoma cells. PMID:28293423

  16. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus.

    Directory of Open Access Journals (Sweden)

    Yonatan Y Mahller

    Full Text Available BACKGROUND: Although disease remission can frequently be achieved for patients with neuroblastoma, relapse is common. The cancer stem cell theory suggests that rare tumorigenic cells, resistant to conventional therapy, are responsible for relapse. If true for neuroblastoma, improved cure rates may only be achieved via identification and therapeutic targeting of the neuroblastoma tumor initiating cell. Based on cues from normal stem cells, evidence for tumor populating progenitor cells has been found in a variety of cancers. METHODOLOGY/PRINCIPAL FINDINGS: Four of eight human neuroblastoma cell lines formed tumorspheres in neural stem cell media, and all contained some cells that expressed neurogenic stem cell markers including CD133, ABCG2, and nestin. Three lines tested could be induced into multi-lineage differentiation. LA-N-5 spheres were further studied and showed a verapamil-sensitive side population, relative resistance to doxorubicin, and CD133+ cells showed increased sphere formation and tumorigenicity. Oncolytic viruses, engineered to be clinically safe by genetic mutation, are emerging as next generation anticancer therapeutics. Because oncolytic viruses circumvent typical drug-resistance mechanisms, they may represent an effective therapy for chemotherapy-resistant tumor initiating cells. A Nestin-targeted oncolytic herpes simplex virus efficiently replicated within and killed neuroblastoma tumor initiating cells preventing their ability to form tumors in athymic nude mice. CONCLUSIONS/SIGNIFICANCE: These results suggest that human neuroblastoma contains tumor initiating cells that may be effectively targeted by an oncolytic virus.

  17. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M;

    1992-01-01

    Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression...... of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell...

  18. Cell Motility and Invasiveness of Neurofibromin-Deficient Neural Crest Cells and Malignant Triton Tumor Lines

    Science.gov (United States)

    2005-06-01

    immunoblotting techniques to characterize signaling pathways activated by TGF-beta and PDGF-BB in MPNST -like sarcoma cell lines isolated from cisNfl+/-;p53...mouse model to include characterizations of genomic instability in the context of malignant transformation, and to test possible modifiers of MPNST ...growth and invasiveness. 15. SUBJECT TERMS neurofibromatosis type 1; neural crest cells; cell motility and Migration; PDGF; TGF-beta; MPNST

  19. Embryonic Stem Cells: Isolation, Characterization and Culture

    Science.gov (United States)

    Amit, Michal; Itskovitz-Eldor, Joseph

    Embryonic stem cells are pluripotent cells isolated from the mammalian blastocyst. Traditionally, these cells have been derived and cultured with mouse embryonic fibroblast (MEF) supportive layers, which allow their continuous growth in an undifferentiated state. However, for any future industrial or clinical application hESCs should be cultured in reproducible, defined, and xeno-free culture system, where exposure to animal pathogens is prevented. From their derivation in 1998 the methods for culturing hESCs were significantly improved. This chapter wills discuss hESC characterization and the basic methods for their derivation and maintenance.

  20. GLUT3 and PKM2 regulate OCT4 expression and support the hypoxic culture of human embryonic stem cells.

    Science.gov (United States)

    Christensen, David R; Calder, Philip C; Houghton, Franchesca D

    2015-12-07

    Human embryonic stem cells (hESCs) have the capacity to differentiate into all cell types and thus have great potential for regenerative medicine. hESCs cultured at low oxygen tensions are more pluripotent and display an increased glycolytic rate but how this is regulated is unknown. This study therefore aimed to investigate the regulation of glucose metabolism in hESCs and whether this might impact OCT4 expression. In contrast to the glucose transporter GLUT1, GLUT3 was regulated by environmental oxygen and localised to hESC membranes. Silencing GLUT3 caused a reduction in glucose uptake and lactate production as well as OCT4 expression. GLUT3 and OCT4 expression were correlated suggesting that hESC self-renewal is regulated by the rate of glucose uptake. Surprisingly, PKM2, a rate limiting enzyme of glycolysis displayed a nuclear localisation in hESCs and silencing PKM2 did not alter glucose metabolism suggesting a role other than as a glycolytic enzyme. PKM2 expression was increased in hESCs cultured at 5% oxygen compared to 20% oxygen and silencing PKM2 reduced OCT4 expression highlighting a transcriptional role for PKM2 in hESCs. Together, these data demonstrate two separate mechanisms by which genes regulating glucose uptake and metabolism are involved in the hypoxic support of pluripotency in hESCs.

  1. Gene expression analysis of cell death induction by Taurolidine in different malignant cell lines

    Directory of Open Access Journals (Sweden)

    Weyhe Dirk

    2010-10-01

    Full Text Available Abstract Background The anti-infective agent Taurolidine (TRD has been shown to have cell death inducing properties, but the mechanism of its action is largely unknown. The aim of this study was to identify potential common target genes modulated at the transcriptional level following TRD treatment in tumour cell lines originating from different cancer types. Methods Five different malignant cell lines (HT29, Chang Liver, HT1080, AsPC-1 and BxPC-3 were incubated with TRD (100 μM, 250 μM and 1000 μM. Proliferation after 8 h and cell viability after 24 h were analyzed by BrdU assay and FACS analysis, respectively. Gene expression analyses were carried out using the Agilent -microarray platform to indentify genes which displayed conjoint regulation following the addition of TRD in all cell lines. Candidate genes were subjected to Ingenuity Pathways Analysis and selected genes were validated by qRT-PCR and Western Blot. Results TRD 250 μM caused a significant inhibition of proliferation as well as apoptotic cell death in all cell lines. Among cell death associated genes with the strongest regulation in gene expression, we identified pro-apoptotic transcription factors (EGR1, ATF3 as well as genes involved in the ER stress response (PPP1R15A, in ubiquitination (TRAF6 and mitochondrial apoptotic pathways (PMAIP1. Conclusions This is the first conjoint analysis of potential target genes of TRD which was performed simultaneously in different malignant cell lines. The results indicate that TRD might be involved in different signal transduction pathways leading to apoptosis.

  2. In vitro Acute Cytotoxicity of Abamectin to the Gill Cell Line of Flounder Paralichthy olivaceus

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The cytotoxicity of abamectin to the Gill Cell Line of Flounder (FG cell line) was examined in this study. It was found that the exposure of FG cells to abamectin caused the decreases of both cell growth rate and antioxidant enzyme activities, and the increase of intracellular O2- content. It was proposed that the reduction of antioxidant enzyme activities in FG cells caused the accumulation of O2- content in FG cells, leading to the change of cell morphology and even the death of cells. The results showed that FG cell line is suitable for the evaluation of the acute toxicity of abamectin.

  3. Tooth regeneration from newly established cell lines from a molar tooth germ epithelium.

    Science.gov (United States)

    Komine, Akihiko; Suenaga, Momoko; Nakao, Kazuhisa; Tsuji, Takashi; Tomooka, Yasuhiro

    2007-04-13

    In order to investigate tooth development, several cell lines of the dental epithelium and ectomesenchyme have been established. However, no attempt has been reported to regenerate teeth with cell lines. Here, we have established several clonal cell lines of the dental epithelium from a p53-deficient fetal mouse. They expressed specific markers of the dental epithelium such as ameloblastin and amelogenin. A new method has been developed to bioengineer tooth germs with dental epithelial and mesenchymal cells. Reconstructed tooth germs with cell lines and fetal mesenchymal cells were implanted under kidney capsule. The germs regenerated teeth with well-calcified structures as seen in natural tooth. Germs without the cell lines developed bone. This is the first success to regenerate teeth with dental epithelial cell lines. They are useful models in vitro for investigation of mechanisms in morphogenesis and of cell lineage in differentiation, and for clinical application for tooth regeneration.

  4. Electrophysiological Characteristics of Embryonic Stem Cell-Derived Cardiomyocytes are Cell Line-Dependent

    Directory of Open Access Journals (Sweden)

    Tobias Hannes

    2015-01-01

    Full Text Available Background: Modelling of cardiac development, physiology and pharmacology by differentiation of embryonic stem cells (ESCs requires comparability of cardiac differentiation between different ESC lines. To investigate whether the outcome of cardiac differentiation is consistent between different ESC lines, we compared electrophysiological properties of ESC-derived cardiomyocytes (ESC-CMs of different murine ESC lines. Methods: Two wild-type (D3 and R1 and two transgenic ESC lines (D3/aPIG44 and CGR8/AMPIGX-7 were differentiated under identical culture conditions. The transgenic cell lines expressed enhanced green fluorescent protein (eGFP and puromycin-N-acetyltransferase under control of the cardiac specific α-myosin heavy chain (αMHC promoter. Action potentials (APs were recorded using sharp electrodes and multielectrode arrays in beating clusters of ESC-CMs. Results: Spontaneous AP frequency and AP duration (APD as well as maximal upstroke velocity differed markedly between unpurified CMs of the four ESC lines. APD heterogeneity was negligible in D3/aPIG44, moderate in D3 and R1 and extensive in CGR8/AMPIGX-7. Interspike intervals calculated from long-term recordings showed a high degree of variability within and between recordings in CGR8/AMPIGX-7, but not in D3/aPIG44. Purification of the αMHC+ population by puromycin treatment posed only minor changes to APD in D3/aPIG44, but significantly shortened APD in CGR8/AMPIGX-7. Conclusion: Electrophysiological properties of ESC-CMs are strongly cell line-dependent and can be influenced by purification of cardiomyocytes by antibiotic selection. Thus, conclusions on cardiac development, physiology and pharmacology derived from single stem cell lines have to be interpreted carefully.

  5. Transcriptional signature of accessory cells in the lateral line, using the Tnk1bp1:EGFP transgenic zebrafish line

    Directory of Open Access Journals (Sweden)

    Behra Martine

    2012-01-01

    Full Text Available Abstract Background Because of the structural and molecular similarities between the two systems, the lateral line, a fish and amphibian specific sensory organ, has been widely used in zebrafish as a model to study the development/biology of neuroepithelia of the inner ear. Both organs have hair cells, which are the mechanoreceptor cells, and supporting cells providing other functions to the epithelium. In most vertebrates (excluding mammals, supporting cells comprise a pool of progenitors that replace damaged or dead hair cells. However, the lack of regenerative capacity in mammals is the single leading cause for acquired hearing disorders in humans. Results In an effort to understand the regenerative process of hair cells in fish, we characterized and cloned an egfp transgenic stable fish line that trapped tnks1bp1, a highly conserved gene that has been implicated in the maintenance of telomeres' length. We then used this Tg(tnks1bp1:EGFP line in a FACsorting strategy combined with microarrays to identify new molecular markers for supporting cells. Conclusions We present a Tg(tnks1bp1:EGFP stable transgenic line, which we used to establish a transcriptional profile of supporting cells in the zebrafish lateral line. Therefore we are providing a new set of markers specific for supporting cells as well as candidates for functional analysis of this important cell type. This will prove to be a valuable tool for the study of regeneration in the lateral line of zebrafish in particular and for regeneration of neuroepithelia in general.

  6. Transfection of the glial cell line-derived neurotrophic factor gene promotes neuronal differentiation

    Institute of Scientific and Technical Information of China (English)

    Jie Du; Xiaoqing Gao; Li Deng; Nengbin Chang; Huailin Xiong; Yu Zheng

    2014-01-01

    Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic acid and epidermal growth factor. Cell viability, micro-tubule-associated protein 2-positive cell ratio, and the expression levels of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43 protein in the su-pernatant were signiifcantly higher in glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells compared with empty virus plasmid-transfected bone marrow mes-enchymal stem cells. Furthermore, microtubule-associated protein 2, glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43 mRNA levels in cell pellets were statistically higher in glial cell line-derived neurotrophic factor/bone marrow mesen-chymal stem cells compared with empty virus plasmid-transfected bone marrow mesenchymal stem cells. These results suggest that glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells have a higher rate of induction into neuron-like cells, and this enhanced differentiation into neuron-like cells may be associated with up-regulated expression of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43.

  7. In vitro platinum drug chemosensitivity of human cervical squamous cell carcinoma cell lines with intrinsic and acquired resistance to cisplatin.

    OpenAIRE

    Mellish, K. J.; Kelland, L R; Harrap, K. R.

    1993-01-01

    The platinum drug chemosensitivity of five human cervical squamous cell carcinoma cell lines (HX/151, HX/155, HX/156, HX/160 and HX/171) derived from previously untreated patients has been determined. Compared to our data obtained previously using human ovarian carcinoma cell lines, all five lines were relatively resistant to cisplatin, carboplatin, iproplatin and tetraplatin. One of the lines (HX/156) was exceptionally sensitive to the novel platinum (IV) ammine/amine dicarboxylates JM216 [b...

  8. Expression of tumor antigens on primary ovarian cancer cells compared to established ovarian cancer cell lines

    Science.gov (United States)

    Kloudová, Kamila; Hromádková, Hana; Partlová, Simona; Brtnický, Tomáš; Rob, Lukáš; Bartůňková, Jiřina; Hensler, Michal; Halaška, Michael J.; Špíšek, Radek; Fialová, Anna

    2016-01-01

    In order to select a suitable combination of cancer cell lines as an appropriate source of antigens for dendritic cell-based immunotherapy of ovarian cancer, we analyzed the expression level of 21 tumor associated antigens (BIRC5, CA125, CEA, DDX43, EPCAM, FOLR1, Her-2/neu, MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A10, MAGE-A12, MUC-1, NY-ESO-1, PRAME, p53, TPBG, TRT, WT1) in 4 established ovarian cancer cell lines and in primary tumor cells isolated from the high-grade serous epithelial ovarian cancer tissue. More than 90% of tumor samples expressed very high levels of CA125, FOLR1, EPCAM and MUC-1 and elevated levels of Her-2/neu, similarly to OVCAR-3 cell line. The combination of OV-90 and OVCAR-3 cell lines showed the highest overlap with patients' samples in the TAA expression profile. PMID:27323861

  9. Development of improved vaccine cell lines against rotavirus

    Science.gov (United States)

    Wu, Weilin; Orr-Burks, Nichole; Karpilow, Jon; Tripp, Ralph A.

    2017-01-01

    Rotavirus is a major cause of severe gastroenteritis among very young children. In developing countries, rotavirus is the major cause of mortality in children under five years old, causing up to 20% of all childhood deaths in countries with high diarrheal disease burden, with more than 90% of these deaths occurring in Africa and Asia. Rotavirus vaccination mimics the first infection without causing illness, thus inducing strong and broad heterotypic immunity against prospective rotavirus infections. Two live vaccines are available, Rotarix and RotaTeq, but vaccination efforts are hampered by high production costs. Here, we present a dataset containing a genome-wide RNA interference (RNAi) screen that identified silencing events that enhanced rotavirus replication. Evaluated against several rotavirus vaccine strains, hits were validated in a Vero vaccine cell line as well as CRISPR/Cas9 generated cells permanently and stably lacking the genes that affect RV replication. Knockout cells were dramatically more permissive to RV replication and permitted an increase in rotavirus replication. These data show a means to improve manufacturing of rotavirus vaccine. PMID:28248921

  10. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.; Chubb, C.; Huberman, E.; Giometti, C.S.

    1997-07-01

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteins were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.

  11. Comprehensive characterization of genomic instability in pluripotent stem cells and their derived neuroprogenitor cell lines

    Directory of Open Access Journals (Sweden)

    Nestor Luis Lopez Corrales

    2012-12-01

    Full Text Available The genomic integrity of two human pluripotent stem cells and their derived neuroprogenitor cell lines was studied, applying a combination of high-resolution genetic methodologies. The usefulness of combining array-comparative genomic hybridization (aCGH and multiplex fluorescence in situ hybridization (M-FISH techniques should be delineated to exclude/detect a maximum of possible genomic structural aberrations. Interestingly, in parts different genomic imbalances at chromosomal and subchromosomal levels were detected in pluripotent stem cells and their derivatives. Some of the copy number variations were inherited from the original cell line, whereas other modifications were presumably acquired during the differentiation and manipulation procedures. These results underline the necessity to study both pluripotent stem cells and their differentiated progeny by as many approaches as possible in order to assess their genomic stability before using them in clinical therapies.

  12. Lipid analysis of eight human breast cancer cell lines with ToF-SIMS.

    Science.gov (United States)

    Robinson, Michael A; Graham, Daniel J; Morrish, Fionnuala; Hockenbery, David; Gamble, Lara J

    2015-06-28

    In this work, four triple negative (TN) cell lines, three ER+ and PR+ receptor positive (RP) cell lines, and one ER+, PR+, and HER2+ cell line were chemically distinguished from one another using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and principal component analysis (PCA). PCA scores separation was observed between the individual cell lines within a given classification (TN and RP) and there were distinctly different trends found in the fatty acid and lipid compositions of the two different classifications. These trends indicated that the RP cell lines separated out based on the carbon chain length of the lipids while the TN cell lines showed separation based on cholesterol-related peaks (in the positive ion data). Both cell types separated out by trends in fatty acid chain length and saturation in the negative ions. These chemical differences may be manifestations of unique metabolic processes within each of the different cell lines. Additionally, the HER2+ cell line was distinguished from three other RP cell types as having a unique distribution of fatty acids including anticorrelation to 18-carbon chain fatty acids. As these cell lines could not be grown in the same growth media, a combination of chemical fixation, rinsing, C60 (+) presputtering, and selection of cellular regions-of-interest is also presented as a successful method to acquire ToF-SIMS data from cell lines grown in different media.

  13. Cell cycle analysis and cytotoxic potential of Ruta graveolens against human tumor cell lines.

    Science.gov (United States)

    Varamini, P; Soltani, M; Ghaderi, A

    2009-01-01

    There are reports on the presence of various compounds exerting different biological activities in Ruta graveolens, a plant of Rutaceae family. The aim of the present study was to evaluate in vitro cytotoxicity of the total extract of R. graveolens against tumor cell lines of different origin. Aerial parts of the plant was extracted with 70% ethanol by sonication method and cytotoxic activity was examined on RAJI, RAMOS, RPMI8866, U937, Jurkat, MDA-MB-453, MCF-7, LNCap-FGC-10, 5637, HeLa, SK-OV-3, A549, Mehr-80 and also peripheral blood mononuclear cells (PBMC) by the use of WST-1 assay. Results were expressed as IC(50) values. R. graveolens extract showed high cytotoxic activity against RAJI and RAMOS, two Burkitt's lymphoma cell lines, with an IC(50) equal to 24.3 microg/ml and 35.2 microg/ml respectively and LNCap-FGC-10, a prostate adenocarcinoma cell line with an IC(50) equal to 27.6 microg/ml as well as Mehr-80, a newly established Large Cell Lung Carcinoma (IC(50)=46.2 microg/ml). No significant anti-proliferative activity was observed on other cell lines including MCF-7, MDA-MB-453, SK-OV-3, HeLa, 5637, JURKAT and RPMI8866. Adverse cytotoxic effect of R. graveolens was investigated against PBMCs and a significantly lower effect of this extract (IC(50)=104 microg/ml) was seen on normal cells compared with RAJI and RAMOS, two haematopoietic cell lines.

  14. Single-cell printing to form three-dimensional lines of olfactory ensheathing cells

    Energy Technology Data Exchange (ETDEWEB)

    Othon, Christina M; Ringeisen, Bradley R [Naval Research Laboratory/Code 6113, 4555 Overlook Ave. SW, Washington, DC 20375 (United States); Wu Xingjia; Anders, Juanita J [Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 (United States)], E-mail: ringeisen@nrl.navy.mil

    2008-09-01

    Biological laser printing (BioLP(TM)) is a unique tool capable of printing high resolution two- and three-dimensional patterns of living mammalian cells, with greater than 95% viability. These results have been extended to primary cultured olfactory ensheathing cells (OECs), harvested from adult Sprague-Dawley rats. OECs have been found to provide stimulating environments for neurite outgrowth in spinal cord injury models. BioLP is unique in that small load volumes ({approx}{mu}Ls) are required to achieve printing, enabling low numbers of OECs to be harvested, concentrated and printed. BioLP was used to form several 8 mm lines of OECs throughout a multilayer hydrogel scaffold. The line width was as low as 20 {mu}m, with most lines comprising aligned single cells. Fluorescent confocal microscopy was used to determine the functionality of the printed OECs, to monitor interactions between printed OECs, and to determine the extent of cell migration throughout the 3D scaffold. High-resolution printing of low cell count, harvested OECs is an important advancement for in vitro study of cell interactions and functionality. In addition, these cell-printed scaffolds may provide an alternative for spinal cord repair studies, as the single-cell patterns formed here are on relevant size scales for neurite outgrowth.

  15. Derivation and characterization of matched cell lines from primary and recurrent serous ovarian cancer

    Directory of Open Access Journals (Sweden)

    Létourneau Isabelle J

    2012-08-01

    Full Text Available Abstract Background Cell line models have proven to be effective tools to investigate a variety of ovarian cancer features. Due to the limited number of cell lines, particularly of the serous subtype, the heterogeneity of the disease, and the lack of cell lines that model disease progression, there is a need to further develop cell line resources available for research. This study describes nine cell lines derived from three ovarian cancer cases that were established at initial diagnosis and at subsequent relapse after chemotherapy. Methods The cell lines from three women diagnosed with high-grade serous ovarian cancer (1369, 2295 and 3133 were derived from solid tumor (TOV and ascites (OV, at specific time points at diagnosis and relapse (R. Primary treatment was a combination of paclitaxel/carboplatin (1369, 3133, or cisplatin/topotecan (2295. Second line treatment included doxorubicin, gemcitabine and topotecan. In addition to molecular characterization (p53, HER2, the cell lines were characterized based on cell growth characteristics including spheroid growth, migration potential, and anchorage independence. The in vivo tumorigenicity potential of the cell lines was measured. Response to paclitaxel and carboplatin was assessed using a clonogenic assay. Results All cell lines had either a nonsense or missense TP53 mutations. The ability to form compact spheroids or aggregates was observed in six of nine cell lines. Limited ability for migration and anchorage independence was observed. The OV3133(R cell line, formed tumors at subcutaneous sites in SCID mice. Based on IC50 values and dose response curves, there was clear evidence of acquired resistance to carboplatin for TOV2295(R and OV2295(R2 cell lines. Conclusion The study identified nine new high-grade serous ovarian cancer cell lines, derived before and after chemotherapy that provides a unique resource for investigating the evolution of this common histopathological subtype of ovarian

  16. Integrin-Associated Focal Adhesion Kinase Protects Human Embryonic Stem Cells from Apoptosis, Detachment, and Differentiation

    Directory of Open Access Journals (Sweden)

    Loriana Vitillo

    2016-08-01

    Full Text Available Human embryonic stem cells (hESCs can be maintained in a fully defined niche on extracellular matrix substrates, to which they attach through integrin receptors. However, the underlying integrin signaling mechanisms, and their contribution to hESC behavior, are largely unknown. Here, we show that focal adhesion kinase (FAK transduces integrin activation and supports hESC survival, substrate adhesion, and maintenance of the undifferentiated state. After inhibiting FAK kinase activity we show that hESCs undergo cell detachment-dependent apoptosis or differentiation. We also report deactivation of FAK downstream targets, AKT and MDM2, and upregulation of p53, all key players in hESC regulatory networks. Loss of integrin activity or FAK also induces cell aggregation, revealing a role in the cell-cell interactions of hESCs. This study provides insight into the integrin signaling cascade activated in hESCs and reveals in FAK a key player in the maintenance of hESC survival and undifferentiated state.

  17. Effect of Docosahexaenoic Acid on Cell Cycle Pathways in Breast Cell Lines With Different Transformation Degree.

    Science.gov (United States)

    Rescigno, Tania; Capasso, Anna; Tecce, Mario Felice

    2016-06-01

    n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), abundant in fish, have been shown to affect development and progression of some types of cancer, including breast cancer. The aim of our study was to further analyze and clarify the effects of these nutrients on the molecular mechanisms underlying breast cancer. Following treatments with DHA we examined cell viability, death, cell cycle, and some molecular effects in breast cell lines with different transformation, phenotypic, and biochemical characteristics (MCF-10A, MCF-7, SK-BR-3, ZR-75-1). These investigations showed that DHA is able to affect cell viability, proliferation, and cell cycle progression in a different way in each assayed breast cell line. The activation of ERK1/2 and STAT3 pathways and the expression and/or activation of molecules involved in cell cycle regulation such as p21(Waf1/Cip1) and p53, are very differently regulated by DHA treatments in each cell model. DHA selectively: (i) arrests non tumoral MCF-10A breast cells in G0 /G1 cycle phase, activating p21(Waf1/Cip1) , and p53, (ii) induces to death highly transformed breast cells SK-BR-3, reducing ERK1/2 and STAT3 phosphorylation and (iii) only slightly affects each analyzed process in MCF-7 breast cell line with transformation degree lower than SK-BR-3 cells. These findings suggest a more relevant inhibitory role of DHA within early development and late progression of breast cancer cell transformation and a variable effect in the other phases, depending on individual molecular properties and degree of malignancy of each clinical case.

  18. A cell-permeable fluorescent polymeric thermometer for intracellular temperature mapping in mammalian cell lines.

    Directory of Open Access Journals (Sweden)

    Teruyuki Hayashi

    Full Text Available Changes in intracellular temperatures reflect the activity of the cell. Thus, the tool to measure intracellular temperatures could provide valuable information about cellular status. We previously reported a method to analyze the intracellular temperature distribution using a fluorescent polymeric thermometer (FPT in combination with fluorescence lifetime imaging microscopy (FLIM. Intracellular delivery of the FPT used in the previous study required microinjection. We now report a novel FPT that is cell permeable and highly photostable, and we describe the application of this FPT to the imaging of intracellular temperature distributions in various types of mammalian cell lines. This cell-permeable FPT displayed a temperature resolution of 0.05°C to 0.54°C within the range from 28°C to 38°C in HeLa cell extracts. Using our optimized protocol, this cell-permeable FPT spontaneously diffused into HeLa cells within 10 min of incubation and exhibited minimal toxicity over several hours of observation. FLIM analysis confirmed a temperature difference between the nucleus and the cytoplasm and heat production near the mitochondria, which were also detected previously using the microinjected FPT. We also showed that this cell-permeable FPT protocol can be applied to other mammalian cell lines, COS7 and NIH/3T3 cells. Thus, this cell-permeable FPT represents a promising tool to study cellular states and functions with respect to temperature.

  19. A cell-permeable fluorescent polymeric thermometer for intracellular temperature mapping in mammalian cell lines.

    Science.gov (United States)

    Hayashi, Teruyuki; Fukuda, Nanaho; Uchiyama, Seiichi; Inada, Noriko

    2015-01-01

    Changes in intracellular temperatures reflect the activity of the cell. Thus, the tool to measure intracellular temperatures could provide valuable information about cellular status. We previously reported a method to analyze the intracellular temperature distribution using a fluorescent polymeric thermometer (FPT) in combination with fluorescence lifetime imaging microscopy (FLIM). Intracellular delivery of the FPT used in the previous study required microinjection. We now report a novel FPT that is cell permeable and highly photostable, and we describe the application of this FPT to the imaging of intracellular temperature distributions in various types of mammalian cell lines. This cell-permeable FPT displayed a temperature resolution of 0.05°C to 0.54°C within the range from 28°C to 38°C in HeLa cell extracts. Using our optimized protocol, this cell-permeable FPT spontaneously diffused into HeLa cells within 10 min of incubation and exhibited minimal toxicity over several hours of observation. FLIM analysis confirmed a temperature difference between the nucleus and the cytoplasm and heat production near the mitochondria, which were also detected previously using the microinjected FPT. We also showed that this cell-permeable FPT protocol can be applied to other mammalian cell lines, COS7 and NIH/3T3 cells. Thus, this cell-permeable FPT represents a promising tool to study cellular states and functions with respect to temperature.

  20. [Neuronal differentiation of human small cell lung cancer cell line PC-6 by Solcoseryl].

    Science.gov (United States)

    Shimizu, T

    1997-11-01

    Solcoseryl is composed of extracts from calf blood, and is a drug known to activate tissue respiration. In the present study, I demonstrated the cell biological effects of Solcoseryl on a human small cell lung cancer cell line, PC-6, by analyzing cell morphology, cell growth, expression of neuronal differentiation markers, and the ras proto-oncogene product(ras p21). Exposure of PC-6 cells to Solcoseryl at the concentration of 200 microliters/ml induced (1) cell morphological changes, including neurodendrite-like projections from the cell surface, and (2) complete inhibition of cell growth, that was shown by the loss of Ki-67 expression. Solcoseryl also induced the expression of neurofilament protein and acetylcholinesterase, both of which are markers of neuronal differentiation. Moreover, it upregulated the expression of the ras proto-oncogene product, ras p21. Taken together, these data suggest that Solcoseryl is composed of component(s) which can induce neuronal differentiation of the human small cell lung cancer cell line, PC-6.

  1. Heterotransplantation of human leukemic B-cell, T-cell and null-cell lines in hamsters.

    Directory of Open Access Journals (Sweden)

    Hiraki,Shunkichi

    1979-02-01

    Full Text Available Human leukemic B-cell (BALL-1, T-cell (TALL-1 and null-cell (NALL-1 lines have been established from three patients with acute lymphoblastic leukemia (ALL. To study the heterotransplantability and in vivo growth characteristics, attempts were made to transplant these ALL cell lines into newborn Syrian hamsters treated with rabbit anti-hamster thymocyte serum. Intraperitoneal implantation of 1.8-3.5 x 10(7 cells gave rise to invasive tumors in all recipients after 15 to 41 days. In addition to a common in vivo feature of mesenteric and retroperitoneal tumors, BALL-1 line was characterized by infiltration of the skin, massive ascites and bone marrow invasion. TALL-1 cells infiltrated various organs including the lymph nodes, liver, gallbladder, spleen, bone marrow, central nervous system and eyes. NALL-1 line grew slowly, producing the least tumors, although there were distant metastases in the lungs. Tumor cells were detected in the blood of 2 of 3 BALL-1-bearing hamsters and in the blood of 4 of 5 TALL-1-bearing hamsters. Thus, these three ALL cell lines were found to exhibit a characteristic biological behavior in hamsters, which might be related to the different cell lineage.

  2. Human embryonic stem cells carrying mutations for severe genetic disorders.

    Science.gov (United States)

    Frumkin, Tsvia; Malcov, Mira; Telias, Michael; Gold, Veronica; Schwartz, Tamar; Azem, Foad; Amit, Ami; Yaron, Yuval; Ben-Yosef, Dalit

    2010-04-01

    Human embryonic stem cells (HESCs) carrying specific mutations potentially provide a valuable tool for studying genetic disorders in humans. One preferable approach for obtaining these cell lines is by deriving them from affected preimplantation genetically diagnosed embryos. These unique cells are especially important for modeling human genetic disorders for which there are no adequate research models. They can be further used to gain new insights into developmentally regulated events that occur during human embryo development and that are responsible for the manifestation of genetically inherited disorders. They also have great value for the exploration of new therapeutic protocols, including gene-therapy-based treatments and disease-oriented drug screening and discovery. Here, we report the establishment of 15 different mutant human embryonic stem cell lines derived from genetically affected embryos, all donated by couples undergoing preimplantation genetic diagnosis in our in vitro fertilization unit. For further information regarding access to HESC lines from our repository, for research purposes, please email dalitb@tasmc.health.gov.il.

  3. Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts.

    Science.gov (United States)

    Swijnenburg, Rutger-Jan; Schrepfer, Sonja; Govaert, Johannes A; Cao, Feng; Ransohoff, Katie; Sheikh, Ahmad Y; Haddad, Munif; Connolly, Andrew J; Davis, Mark M; Robbins, Robert C; Wu, Joseph C

    2008-09-02

    Given their self-renewing and pluripotent capabilities, human embryonic stem cells (hESCs) are well poised as a cellular source for tissue regeneration therapy. However, the host immune response against transplanted hESCs is not well characterized. In fact, controversy remains as to whether hESCs have immune-privileged properties. To address this issue, we used in vivo bioluminescent imaging to track the fate of transplanted hESCs stably transduced with a double-fusion reporter gene consisting of firefly luciferase and enhanced GFP. We show that survival after transplant is significantly limited in immunocompetent as opposed to immunodeficient mice. Repeated transplantation of hESCs into immunocompetent hosts results in accelerated hESC death, suggesting an adaptive donor-specific immune response. Our data demonstrate that transplanted hESCs trigger robust cellular and humoral immune responses, resulting in intragraft infiltration of inflammatory cells and subsequent hESC rejection. Moreover, we have found CD4(+) T cells to be an important modulator of hESC immune-mediated rejection. Finally, we show that immunosuppressive drug regimens can mitigate the anti-hESC immune response and that a regimen of combined tacrolimus and sirolimus therapies significantly prolongs survival of hESCs for up to 28 days. Taken together, these data suggest that hESCs are immunogenic, trigger both cellular and humoral-mediated pathways, and, as a result, are rapidly rejected in xenogeneic hosts. This process can be mitigated by a combined immunosuppressive regimen as assessed by molecular imaging approaches.

  4. Drug treatment of cancer cell lines: a way to select for cancer stem cells?

    Science.gov (United States)

    Chiodi, Ilaria; Belgiovine, Cristina; Donà, Francesca; Scovassi, A Ivana; Mondello, Chiara

    2011-03-04

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs.

  5. Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?

    Directory of Open Access Journals (Sweden)

    Ilaria Chiodi

    2011-03-01

    Full Text Available Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs.

  6. Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?

    Energy Technology Data Exchange (ETDEWEB)

    Chiodi, Ilaria; Belgiovine, Cristina; Donà, Francesca; Scovassi, A. Ivana; Mondello, Chiara, E-mail: mondello@igm.cnr.it [Institute of Molecular Genetics, CNR, via Abbiategrasso 207, 27100 Pavia (Italy)

    2011-03-04

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs.

  7. Photodynamic therapy-induced programmed cell death in carcinoma cell lines

    Science.gov (United States)

    He, Xiao-Yan; Sikes, Robert A.; Thomsen, Sharon L.; Chung, L.; Jacques, Steven L.

    1993-06-01

    The mode of cell death following photodynamic therapy (PDT) was investigated from the perspective of programmed cell death (apoptosis). Human prostate carcinoma cells (PC3), human non-small cell lung carcinoma (H322a), and rat mammary carcinoma (MTF7) were treated by PDT following sensitization with dihematoporphyrin ether (DHE). The response of these carcinoma cell lines to PDT was variable. An examination of extracted cellular DNA by gel electrophoresis showed the characteristic DNA ladder pattern indicative of internucleosomal cleavage of DNA during apoptosis. MTF7 and PC3 responded to PDT by inducing apoptosis while H322a had no apoptotic response. The magnitude of the response and the PDT dosage required to induce the effect were different in PC3 and MTF7. MTF7 cells responded with rapid apoptosis at the dose of light and drug that yielded 50% cell death (LD50). In contrast, PC3 showed only marginal apoptosis at the LD50 but had a marked response at the LD85. Furthermore, the onset of apoptosis followed slower kinetics in PC3 (2 hr - 4 hr) than in MTF7 (cells were killed by PDT but failed to exhibit any apoptotic response. This study indicates that apoptosis may occur during PDT induced cell death, but this pathway is not universal for all cancer cell lines.

  8. Interaction between x-irradiated plateau-phase bone marrow stromal cell lines and co-cultivated factor-dependent cell lines leading to leukemogenesis in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Naparstek, E.; Anklesaria, P.; FitzGerald, T.J.; Sakakeeny, M.A.; Greenberger, J.S.

    1987-03-01

    Plateau-phase mouse clonal bone marrow stromal cell lines D2XRII and C3H cl 11 produce decreasing levels of M-CSF (CSF-1), a specific macrophage progenitor cell humoral regulator, following X-irradiation in vitro. The decrease did not go below 40% of control levels, even after irradiation doses of 50,000 rad (500 Gy). In contrast, a distinct humoral regulator stimulating growth of GM-CSF/IL-3 factor-dependent (FD) hematopoietic progenitor cell lines was detected following radiation to doses above 2000 rad. This humoral factor was not detectable in conditioned medium from irradiated cells, weakly detected using factor-dependent target cell populations in agar overlay, and was prominently detected by liquid co-cultivation of factor-dependent cells with irradiated stromal cell cultures. Subclonal lines of FD cells, derived after co-cultivation revealed karyotypic abnormalities and induced myeloblastic tumors in syngeneic mice. Five-eight weeks co-cultivation was required for induction of factor independence and malignancy and was associated with dense cell to cell contact between FD cells and stromal cells demonstrated by light and electron microscopy. Increases in hematopoietic to stromal cell surface area, total number of adherent cells per flask, total non-adherent cell colonies per flask, and cumulative non-adherent cell production were observed after irradiation. The present data may prove very relevant to an understanding of the cell to cell interactions during X-irradiation-induced leukemia.

  9. Changes in Laminin Expression Pattern during Early Differentiation of Human Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Martin Pook

    Full Text Available Laminin isoforms laminin-511 and -521 are expressed by human embryonic stem cells (hESC and can be used as a growth matrix to culture these cells under pluripotent conditions. However, the expression of these laminins during the induction of hESC differentiation has not been studied in detail. Furthermore, the data regarding the expression pattern of laminin chains in differentiating hESC is scarce. In the current study we aimed to fill this gap and investigated the potential changes in laminin expression during early hESC differentiation induced by retinoic acid (RA. We found that laminin-511 but not -521 accumulates in the committed cells during early steps of hESC differentiation. We also performed a comprehensive analysis of the laminin chain repertoire and found that pluripotent hESC express a more diverse range of laminin chains than shown previously. In particular, we provide the evidence that in addition to α1, α5, β1, β2 and γ1 chains, hESC express α2, α3, β3, γ2 and γ3 chain proteins and mRNA. Additionally, we found that a variant of laminin α3 chain-145 kDa-accumulated in RA-treated hESC showing that these cells produce prevalently specifically modified version of α3 chain in early phase of differentiation.

  10. Changes in Laminin Expression Pattern during Early Differentiation of Human Embryonic Stem Cells.

    Science.gov (United States)

    Pook, Martin; Teino, Indrek; Kallas, Ade; Maimets, Toivo; Ingerpuu, Sulev; Jaks, Viljar

    2015-01-01

    Laminin isoforms laminin-511 and -521 are expressed by human embryonic stem cells (hESC) and can be used as a growth matrix to culture these cells under pluripotent conditions. However, the expression of these laminins during the induction of hESC differentiation has not been studied in detail. Furthermore, the data regarding the expression pattern of laminin chains in differentiating hESC is scarce. In the current study we aimed to fill this gap and investigated the potential changes in laminin expression during early hESC differentiation induced by retinoic acid (RA). We found that laminin-511 but not -521 accumulates in the committed cells during early steps of hESC differentiation. We also performed a comprehensive analysis of the laminin chain repertoire and found that pluripotent hESC express a more diverse range of laminin chains than shown previously. In particular, we provide the evidence that in addition to α1, α5, β1, β2 and γ1 chains, hESC express α2, α3, β3, γ2 and γ3 chain proteins and mRNA. Additionally, we found that a variant of laminin α3 chain-145 kDa-accumulated in RA-treated hESC showing that these cells produce prevalently specifically modified version of α3 chain in early phase of differentiation.

  11. Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK.

    NARCIS (Netherlands)

    Graichen, R.; Xu, X.; Braam, S.R.; Balakrishnan, T.; Norfiza, S.; Sieh, S.; Soo, S.Y.; Tham, S.C.; Mummery, C.L.; Colman, A.; Zweigerdt, R.; Davidson, B.P.

    2008-01-01

    Human embryonic stem cells (hESC) can differentiate to cardiomyocytes in vitro but with generally poor efficiency. Here, we describe a novel method for the efficient generation of cardiomyocytes from hESC in a scalable suspension culture process. Differentiation in serum-free medium conditioned by t

  12. Activin B mediated induction of Pdx1 in human embryonic stem cell derived embryoid bodies

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Pørneki, Ann Dorte Storm; Floridon, Charlotte

    2007-01-01

    Human embryonic stem cells (hESCs) have the potential to provide alternative sources for pancreatic islet grafts. In the present study we have investigated the influence of Activin A and Activin B on the expression of the pancreas marker gene Pdx1 in hESCs differentiated as embryoid bodies (EBs...

  13. Histamine as a Radiosensitizer of Malignant Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, E. S.; Medina, V.; Cricco, G.; Mohamed, N.; Croci, M.; Martin, G.; Nunez, M.; Bergoc, R. M.

    2004-07-01

    It has been established that the treatment with Histamine (Hi) produces a significant growth inhibition of different cell lines derived from human neoplasia. In a model of Knockout mice completely depleted of endogenous Hi, it was observed a significant delay in bone marroe repopulation after whole body irradiation. These results are in agreement with the hypothesis that histamine has a role in the regulation of haematopoiesis as well as an inhibitory effect on apoptosis. The objective of this paper was to study the possible effect of Hi as protector of normal cells and radiosensitizer of malignant ones. To study the effect of Hi on small-intestine and bone marrow, thirty made mice were randomly separeted into two groups: Control irradiated (C), and irradiated receiving Histamine (HI-group). All animals received a single dose of 10 Gy on whole-body employing a ''137Cs source of 189 TB{sub q} (Dose rate: 7.7 Gy/min) calibrated with TLD 700 dosimeter. Hi-group recieved a daily se injection (0.1 mg/kg) starting 20 hs before irradiation. Mice were sacrificed 5 days after irradiation. Histopathological analysis indicated that intestinal mucosae of C group showed important injury, whist mucosae of Hi-treated mice showed mild mucosal atrophy with conservation of villous projections and absence of vascular congestive changes. In order to investigate the effect of Hi on radiosensitivity of transformed cells, MDA-MB-231 (human breast carcinoma cells) were irradiated in vitro with doses ranging from 0 to 10 Gy. Results of radiobiological parameters indicate a significant increase on radiosensitivity of malignant cells. Employing specific fluorescent dyes and flow cytometric analysis we determined that the intracellular levels of hydrogen peroxide (H{sub 2}O{sub 2}) are significant increased by Hi 10 {mu}M in control and also in irradiated MDA-MB-231 cells, while the levels of superoxide (SO{sub 2}) were not significantly modified by Hi-treatment. (Author) 9 refs.

  14. Evaluation of Stem Cell Markers, CD44/CD24 in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Masoud Hashemi Arabi

    2014-05-01

    Four breast cancer cell lines, MCF-7 ، T47D ، MDA-MB231 and MDA-MB468 were purchased from National cell Bank of Iran based in Iran Pasture Institute and were cultured in high glucose DMEM supplemented with 10% FCS. Cells were stained with antiCD44-PE and antiCD24-FITC antibodies and Status of CD44 and CD24 as markers of breast cancer stem cells were evaluated using flow cytometer and fluorescent microscopy.Evaluation of CD44 and CD24 as markers of breast cancer stem cells showed that MDA-MB231 with 97±1.2% CD44+/CD24-/low cells is significantly different from the others that they were mainly CD44 and CD24 positive cells(p

  15. Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity

    OpenAIRE

    D’Angelo, Rosemarie C.; Ouzounova, Maria; Davis, April; Choi, Daejin; Tchuenkam, Stevie M.; Kim, Gwangil; Luther, Tahra; Quraishi, Ahmed A.; Senbabaoglu, Yasin; Conley, Sarah J; Shawn G Clouthier; Hassan, Khaled A.; Wicha, Max S; Korkaya, Hasan

    2015-01-01

    Developmental pathways such as Notch play a pivotal role in tissue specific stem cell self-renewal as well as in tumor development. However, the role of Notch signaling in breast cancer stem cells (CSC) remains to be determined. We utilized a lentiviral Notch reporter system to identify a subset of cells with a higher Notch activity (Notch+) or reduced activity (Notch-) in multiple breast cancer cell lines. Using in vitro and mouse xenotransplantation assays we investigated the role of Notch ...

  16. In vitro evaluation of a new nitrosourea, TCNU, against human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Roed, H; Vindeløv, L L; Spang-Thomsen, M;

    1987-01-01

    The cytotoxic activity of a new nitrosourea, TCNU, was compared with that of BCNU in five human small cell lung cancer cell lines in vitro. TCNU was found to be equivalent or inferior to BCNU when compared on a microgram to microgram basis. If the potential of in vitro phase II trials for selecti...... of new drugs can be validated, it can be concluded that TCNU is not superior to other nitrosoureas for the treatment of SCCL....

  17. Comparative In Vitro Immune Stimulation Analysis of Primary Human B Cells and B Cell Lines

    Science.gov (United States)

    Van Belle, Kristien; Herman, Jean; Boon, Louis; Waer, Mark

    2016-01-01

    B cell specific immunomodulatory drugs still remain an unmet medical need. Utilisation of validated simplified in vitro models would allow readily obtaining new insights in the complexity of B cell regulation. For this purpose we investigated which human B lymphocyte stimulation assays may be ideally suited to investigate new B lymphocyte immunosuppressants. Primary polyclonal human B cells underwent in vitro stimulation and their proliferation, production of immunoglobulins (Igs) and of cytokines, and expression of cell surface molecules were analysed using various stimuli. ODN2006, a toll-like receptor 9 (TLR9) agonist, was the most potent general B cell stimulus. Subsequently, we investigated on which human B cell lines ODN2006 evoked the broadest immunostimulatory effects. The Namalwa cell line proved to be the most responsive upon TLR9 stimulation and hence may serve as a relevant, homogeneous, and stable B cell model in an in vitro phenotypic assay for the discovery of new targets and inhibitors of the B cell activation processes. As for the read-out for such screening assay, it is proposed that the expression of activation and costimulatory surface markers reliably reflects B lymphocyte activation. PMID:28116319

  18. Oncolytic adenovirus SG600-IL24 selectively kills hepatocellular carcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To investigate the effect of oncolytic adenovirus SG600-IL24 and replication-incompetent adenovirus Ad.IL-24 on hepatocellular carcinoma (HCC) cell lines and normal liver cell line. METHODS: HCC cell lines (HepG2, Hep3B and MHCC97L) and normal liver cell line (L02) with a different p53 status were infected with SG600-IL24 and Ad.IL-24, respectively. Melanoma differentiation-associated (MDA)-7/interleukin (IL)-24 mRNA and protein expressions in infected cells were detected by reverse transcription-polym...

  19. Establishment, Growth kinetics, and Susceptibility to AcMNPV of Heat Tolerant Lepidop teran Cell Lines

    Institute of Scientific and Technical Information of China (English)

    Yan-lei Wu; Lei Jiang; Yoshifumi Hashimoto; Robert R.Granados; Guo-xun Li

    2011-01-01

    Lepidopteran heat-tolerant(ht)cell lines have been obtained with sf-9,sf-21 and several Bombyx cells.They have a distinct karyotype,membrane lipid composition,morphology and growth kinetics from the parental cell lines.In this paper,we report the development of ht cell lines from other insect species and examination of their growth characteristics and virus susceptibility.Adaptation of cell lines sf-9,BTI-TN-5131-4(High5)and BTI-TN-MG1(MG 1)to 33℃ and 35℃ was carried out by shifting the culture temperature between 28℃ and higher temperatures by a gradual stepwise increase in temperature.The process of adaption to a higher culture temperature was accomplished over a period of 2 months.The cell lines with the temperature adaption were designated as sf9-ht33,sf9-ht35,High5-ht33,High5-ht35,MG1-ht33,MG1-ht35.These cell lines have been subcultured over 70 passages.Adaption to high temperatures was confirmed by a constant population doubling time with individual cell lines.The population doubling time of heat adapted cell lines were 1-4 h less than these of parental cell lines.Cell shapes did not show obvious change,however,the cell size of sf9-ht cells was enlarged and those of High5 and MG1 ht cells were reduced after heat adaption.When the cell lines were infected with Autographa californica nuclear polyhedrosis virus(AcMNPV)at 28℃,33℃,35℃ and 37℃,production of budded virus and occlusion bodies in each cell line was optimum at its own adapted temperature.

  20. Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines

    Directory of Open Access Journals (Sweden)

    Maria Bernard L

    2006-01-01

    Full Text Available Abstract Background Pluripotent mouse embryonic stem (ES cells can be induced in vitro to become neural progenitors. Upon transplantation, neural progenitors migrate toward areas of damage and inflammation in the CNS. We tested whether undifferentiated and neuralized mouse ES cells migrate toward media conditioned by glioma cell lines (C6, U87 & N1321 or Stem Cell Factor (SCF. Results Cell migration assays revealed selective migration by neuralized ES cells to conditioned media as well as to synthetic SCF. Migration of undifferentiated ES cells was extensive, but not significantly different from that of controls (Unconditioned Medium. RT-PCR analysis revealed that all the three tumor cell lines tested synthesized SCF and that both undifferentiated and neuralized ES cells expressed c-kit, the receptor for SCF. Conclusion Our results demonstrate that undifferentiated ES cells are highly mobile and that neural progenitors derived from ES cells are selectively attracted toward factors produced by gliomas. Given that the glioma cell lines synthesize SCF, SCF may be one of several factors that contribute to the selective migration observed.

  1. Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines

    Science.gov (United States)

    Serfozo, Peter; Schlarman, Maggie S; Pierret, Chris; Maria, Bernard L; Kirk, Mark D

    2006-01-01

    Background Pluripotent mouse embryonic stem (ES) cells can be induced in vitro to become neural progenitors. Upon transplantation, neural progenitors migrate toward areas of damage and inflammation in the CNS. We tested whether undifferentiated and neuralized mouse ES cells migrate toward media conditioned by glioma cell lines (C6, U87 & N1321) or Stem Cell Factor (SCF). Results Cell migration assays revealed selective migration by neuralized ES cells to conditioned media as well as to synthetic SCF. Migration of undifferentiated ES cells was extensive, but not significantly different from that of controls (Unconditioned Medium). RT-PCR analysis revealed that all the three tumor cell lines tested synthesized SCF and that both undifferentiated and neuralized ES cells expressed c-kit, the receptor for SCF. Conclusion Our results demonstrate that undifferentiated ES cells are highly mobile and that neural progenitors derived from ES cells are selectively attracted toward factors produced by gliomas. Given that the glioma cell lines synthesize SCF, SCF may be one of several factors that contribute to the selective migration observed. PMID:16436212

  2. Establishment and characterization of a cell line (OMC-9) originating from a human endometrial stromal sarcoma.

    Science.gov (United States)

    Kakuno, Yoshiteru; Yamada, Takashi; Mori, Hiroshi; Narabayashi, Isamu

    2008-05-01

    Cell lines are very useful for clinical and basic research. The establishment of uterine malignant tumor cell lines with unusual histology is especially important. We describe the establishment and characterization of a new human endometrial stromal sarcoma cell line of the uterus. The cell line OMC-9 was established from a tumor mass in the uterine body of a 55-year-old woman. Characteristics of the cell line studied include morphology, chromosome analysis, heterotransplantation, tumor markers and chemosensitivity. This cell line has grown well for 196 months and has been subcultured more than 50 times. Monolayer cultured cells are polygonal in shape, appear to be spindle-shaped or multipolar and have a tendency to pile up without contact inhibition. The cells exhibit a human karyotype with a modal chromosomal number in the diploid range. The cells were able to be transplanted into the subcutis of nude mice and produced tumors resembling the original tumor. OMC-9 cells produced tissue polypeptide antigen. Both CD10, a sensitive and diagnostically useful marker of endometrial stromal neoplasms, and vimentin were identified immunohistochemically in the original tumor and the heterotransplanted tumor. The cells were sensitive to actinomycin D, doxorubicin, carboplatin, cisplatin and etoposide, drugs used commonly in the treatment of gynecologic cancer. Only three reports of uterine endometrial stromal sarcoma cell lines have thus far been reported in the literature. OMC-9 is the first endometrial stromal sarcoma cell line in which CD10 expression and chemosensitivity have been identified.

  3. Derivation and osmotolerance characterization of three immortalized tilapia (Oreochromis mossambicus) cell lines.

    Science.gov (United States)

    Gardell, Alison M; Qin, Qin; Rice, Robert H; Li, Johnathan; Kültz, Dietmar

    2014-01-01

    Fish cell cultures are becoming more widely used models for investigating molecular mechanisms of physiological response to environmental challenge. In this study, we derived two immortalized Mozambique tilapia (Oreochromis mossambicus) cell lines from brain (OmB) and lip epithelium (OmL), and compared them to a previously immortalized bulbus arteriosus (TmB) cell line. The OmB and OmL cell lines were generated without or with Rho-associated kinase (ROCK) inhibitor/3T3 feeder layer supplementation. Although both approaches were successful, ROCK inhibitor/feeder layer supplementation was found to offer the advantages of selecting for epithelial-like cell type and decreasing time to immortalization. After immortalization (≥ passage 5), we characterized the proteomes of the newly derived cell lines (OmB and OmL) using LCMS and identified several unique cell markers for each line. Subsequently, osmotolerance for each of the three cell lines following acute exposure to elevated sodium chloride was evaluated. The acute maximum osmotolerance of these tilapia cell lines (>700 mOsm/kg) was markedly higher than that of any other known vertebrate cell line, but was significantly higher in the epithelial-like OmL cell line. To validate the physiological relevance of these tilapia cell lines, we quantified the effects of acute hyperosmotic challenge (450 mOsm/kg and 700 mOsm/kg) on the transcriptional regulation of two enzymes involved in biosynthesis of the compatible organic osmolyte, myo-inositol. Both enzymes were found to be robustly upregulated in all three tilapia cell lines. Therefore, the newly established tilapia cells lines represent valuable tools for studying molecular mechanisms involved in the osmotic stress response of euryhaline fish.

  4. Gene probes to detect cross-culture contamination in hormone producing cell lines

    DEFF Research Database (Denmark)

    Matsuba, I; Lernmark, A; Madsen, Ole Dragsbæk;

    1988-01-01

    Cross-culture contamination of cell lines propagated in continuous culture is a frequent event and particularly difficult to resolve in cells expressing similar phenotypes. We demonstrate that DNA-DNA hybridization to blotted endonuclease-digested cell DNA effectively detects cross-culture...... the effective use of gene probes to control the origin of cell cultures....... contamination to monitor inter-species as well as intra-species cross contamination. An insulin-producing cell-line, Clone-16, originally cloned from a human fetal endocrine pancreatic cell line did not produce human c-peptide as anticipated. DNA from these cells showed no hybridization to the human ALU...

  5. Effect of arginase II on L-arginine depletion and cell growth in murine cell lines of renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Patterson John R

    2008-09-01

    Full Text Available Abstract Background L-arginine is the common substrate for the two isoforms of arginase. Arginase I, highly expressed in the liver and arginase II mainly expressed in the kidney. Arginase I-producing myeloid derived suppressor cells have been shown to inhibit T-cell function by the depletion of L-arginine. On the other hand, arginase II has been detected in patients with cancer and is thought to metabolize L-arginine to L-ornithine needed to sustain rapid tumor growth; however its role in L-arginine depletion is unclear. Thus, in tumor biology, L-arginine metabolism may play a dual role in tumor growth and in the induction of T cell dysfunction. Therefore, we studied in murine renal cell carcinoma (RCC cell lines, the effect of arginase II on tumor cell proliferation and L-arginine depletion. The effect of arginase inhibitors on cell proliferation was also tested. Methods Three murine renal cell carcinoma (mRCC cell lines were tested for the presence of arginase. nor-NOHA, an arginase inhibitor was used to substantiate the effect of arginase on cell growth and L-arginine depletion. Amino acid levels were tested by HPLC. Results Our results show that mRCC cell lines express only arginase II and were able to deplete L-arginine from the medium. Cell growth was independent of the amount of arginase activity expressed by the cells. nor-NOHA significantly (P = 0.01 reduced arginase II activity and suppressed cell growth in cells exhibiting high arginase activity. The depletion of L-arginine by mRCC induced the decrease expression of CD3ζ a key element for T-cell function. Conclusion The results of this study show for the first time that arginase II produced by RCC cell lines depletes L-arginine resulting in decreased expression of CD3ζ. These results indicate that RCC cell lines expressing arginase II can modulate the L-arginine metabolic pathway to regulate both cell growth and T-cell function. Blocking arginase may lead to a decrease in RCC cell

  6. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells.

    Science.gov (United States)

    Martin, G R

    1981-12-01

    This report describes the establishment directly from normal preimplantation mouse embryos of a cell line that forms teratocarcinomas when injected into mice. The pluripotency of these embryonic stem cells was demonstrated conclusively by the observation that subclonal cultures, derived from isolated single cells, can differentiate into a wide variety of cell types. Such embryonic stem cells were isolated from inner cell masses of late blastocysts cultured in medium conditioned by an established teratocarcinoma stem cell line. This suggests that such conditioned medium might contain a growth factor that stimulates the proliferation or inhibits the differentiation of normal pluripotent embryonic cells, or both. This method of obtaining embryonic stem cells makes feasible the isolation of pluripotent cells lines from various types of noninbred embryo, including those carrying mutant genes. The availability of such cell lines should made possible new approaches to the study of early mammalian development.

  7. Network signatures of cellular immortalization in human lymphoblastoid cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Sung-Mi; Jung, So-Young; Nam, Hye-Young; Kim, Hye-Ryun; Lee, Mee-Hee; Kim, Jun-Woo; Han, Bok-Ghee [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of); Jeon, Jae-Pil, E-mail: jaepiljeon@hanmail.net [Division of Brain Diseases, Center for Biomedical Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of)

    2013-11-15

    Highlights: •We identified network signatures of LCL immortalization from transcriptomic profiles. •More than 41% of DEGs are possibly regulated by miRNAs in LCLs. •MicroRNA target genes in LCLs are involved in apoptosis and immune-related functions. •This approach is useful to find functional miRNA targets in specific cell conditions. -- Abstract: Human lymphoblastoid cell line (LCL) has been used as an in vitro cell model in genetic and pharmacogenomic studies, as well as a good model for studying gene expression regulatory machinery using integrated genomic analyses. In this study, we aimed to identify biological networks of LCL immortalization from transcriptomic profiles of microRNAs and their target genes in LCLs. We first selected differentially expressed genes (DEGs) and microRNAs (DEmiRs) between early passage LCLs (eLCLs) and terminally differentiated late passage LCLs (tLCLs). The in silico and correlation analysis of these DEGs and DEmiRs revealed that 1098 DEG–DEmiR pairs were found to be positively (n = 591 pairs) or negatively (n = 507 pairs) correlated with each other. More than 41% of DEGs are possibly regulated by miRNAs in LCL immortalizations. The target DEGs of DEmiRs were enriched for cellular functions associated with apoptosis, immune response, cell death, JAK–STAT cascade and lymphocyte activation while non-miRNA target DEGs were over-represented for basic cell metabolisms. The target DEGs correlated negatively with miR-548a-3p and miR-219-5p were significantly associated with protein kinase cascade, and the lymphocyte proliferation and apoptosis, respectively. In addition, the miR-106a and miR-424 clusters located in the X chromosome were enriched in DEmiR–mRNA pairs for LCL immortalization. In this study, the integrated transcriptomic analysis of LCLs could identify functional networks of biologically active microRNAs and their target genes involved in LCL immortalization.

  8. Induction of enamel matrix protein expression in an ameloblast cell line co-cultured with a mesenchymal cell line in vitro.

    Science.gov (United States)

    Matsumoto, Asako; Harada, Hidemitsu; Saito, Masahiro; Taniguchi, Akiyoshi

    2011-01-01

    Interactions between epithelium and mesenchyme are important for organ and tissue development. In this study, in order to mimic interactions between epithelium and mesenchyme during native tooth development, we constructed three-dimensional culture systems in vitro using a collagen membrane. Two types of collagen membrane-based in vitro culture systems were constructed in which dental epithelial and dental follicle cell lines were cultured. One co-culture method involved inoculation of one cell line into one side of the collagen membrane, and the other cell line into the opposite side of the membrane (sandwich co-culture). As a control, the second method involved culture of one of the cell lines on a culture dish and the second cell line on a collagen membrane, facing away from the first cell line (separate co-culture). The HAT-7 cells were also grown as a monolayer culture on collagen. Ameloblast differentiation in these cultures was investigated by analysis of the mRNA and/or protein expression of ameloblastin and amelogenin. Our results suggest that interaction of epithelial and mesenchymal cells via the extracellular matrix is important for tooth differentiation in vitro. Our culture system should be a useful method for investigation of epithelial-mesenchymal interactions.

  9. The telomerase inhibitor imetelstat depletes cancer stem cells in breast and pancreatic cancer cell lines.

    Science.gov (United States)

    Joseph, Immanual; Tressler, Robert; Bassett, Ekaterina; Harley, Calvin; Buseman, Christen M; Pattamatta, Preeti; Wright, Woodring E; Shay, Jerry W; Go, Ning F

    2010-11-15

    Cancer stem cells (CSC) are rare drug-resistant cancer cell subsets proposed to be responsible for the maintenance and recurrence of cancer and metastasis. Telomerase is constitutively active in both bulk tumor cell and CSC populations but has only limited expression in normal tissues. Thus, inhibition of telomerase has been shown to be a viable approach in controlling cancer growth in nonclinical studies and is currently in phase II clinical trials. In this study, we investigated the effects of imetelstat (GRN163L), a potent telomerase inhibitor, on both the bulk cancer cells and putative CSCs. When breast and pancreatic cancer cell lines were treated with imetelstat in vitro, telomerase activity in the bulk tumor cells and CSC subpopulations were inhibited. Additionally, imetelstat treatment reduced the CSC fractions present in the breast and pancreatic cell lines. In vitro treatment with imetelstat, but not control oligonucleotides, also reduced the proliferation and self-renewal potential of MCF7 mammospheres and resulted in cell death after imetelstat, suggesting a mechanism of action independent of telomere shortening for the effects of imetelstat on the CSC subpopulations. Our results suggest that imetelstat-mediated depletion of CSCs may offer an alternative mechanism by which telomerase inhibition may be exploited for cancer therapy.

  10. Electroporation enhances mitomycin C cytotoxicity on T24 bladder cancer cell line

    DEFF Research Database (Denmark)

    Vasquez, Juan Luis; Gehl, Julie; Hermann, Gregers G

    2012-01-01

    improves the cytotoxicity of mitomycin. In two cell lines, T24 (bladder cancer cell line) and DC3F (Chinese hamster fibroblast), exposure to different concentrations of mitomycin (0.01-2000μM) was tested with and without electroporation (6 pulses of 1kV/cm, duration: 99μs, frequency: 1Hz). Cell viability...

  11. Molecular characterization of neoplastic and normal "sister" lymphoblastoid B-cell lines from chronic lymphocytic leukemia

    DEFF Research Database (Denmark)

    Lanemo Myhrinder, Anna; Hellqvist, Eva; Bergh, Ann-Charlotte;

    2013-01-01

    /short tandem repeat (STR) fingerprinting. Innate B-cell features, i.e. natural Ab production and CD5 receptors, were present in most CLL cell lines, but in none of the normal LCLs. This panel of immortalized CLL-derived cell lines is a valuable reference representing a renewable source of authentic Abs and DNA....

  12. A suspended cell line from Trichoplusia ni (Lepidoptera):Characterization and expression of recombinant proteins

    Institute of Scientific and Technical Information of China (English)

    Min-Juan Meng; Tian-Long Li; Chang-You Li; Guo-Xun Li

    2008-01-01

    A suspended cell line from Trichoplusia ni embryos was established, and its susceptibility to Autographa californica multiple nuclear polyhedrosis virus (AcMNPV)infection was investigated. This cell line had characteristics distinct from the BTI-Tn5B 14 cell line (Tn5B 1-4) from T. ni in growth, and showed approximately the same responses to AcMNPV infection, production of occlusion bodies, and levels of recombinant protein expression. No clumps were observed at maximum cell density at late-log phase in shakeflask or T-flask cultures, and thus the cells represent a useful new contribution for baculovirus research. The cells consist of two major morphological types: approximately 70% spindle-shaped cells and 30% round cells. The cell line was highly susceptible to virus infection and produced around 107 AcMNPV occlusion bodies per cell, on average.Production of β-galactosidase and secreted alkaline phosphatase was high with 3.97 + 0.13×104 IU/mL and 3.48±0.40 IU/mL, respectively. This cell line may be applicable for studies of scale-up production of viruses or baculovirus-insect cell expression. We also believe the new line can be a source for cell clones with higher production of virus and recombinant proteins compared to the parent or other existing cell lines such as Tn5B 1-4.

  13. Prediction of epigenetically regulated genes in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria EH; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-05-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the

  14. Prediction of epigenetically regulated genes in breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Lu Yontao

    2010-06-01

    Full Text Available Abstract Background Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP. The pipeline (i reduces the dimensionality of the methylation data, (ii associates the reduced methylation data with gene expression data, and (iii ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i methylation sites are grouped across the genome to identify regions of interest, and (ii methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Results Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between

  15. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna

    2015-01-01

    Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines...... based on RNA-Seq data and validated the functionality of these models with data from metabolite profiling. We used cell line-specific GEMs to analyze the differences in the metabolism of cancer cell lines, and to explore the heterogeneous expression of the metabolic subsystems. Furthermore, we predicted...... antimetabolites using two cell lines with different phenotypic origins, and found that it is effective in inhibiting the growth of these cell lines. Using immunohistochemistry, we also showed high or moderate expression levels of proteins targeted by the validated antimetabolite. Identified anti-growth factors...

  16. EXPRESSION OF THE O6-METHYLGUANINE-DNA METHYLTRANSFERASE GENE IN EIGHT HUMAN TUMOR CELL LINES

    Institute of Scientific and Technical Information of China (English)

    陈建敏; 章扬培; 吴英

    1994-01-01

    O6-methylguanine-DNA methltransferase(MGMT) gene expression in 6 Mer+(HeLa S3,SMMC-7721,SGC-7901,B-239,AGZY83-a,and Cc801)and 2Mer-(SHG-44,AND HeLa MR) haman tumor cell lines was examined.Southern blot analysis revealed no deletion,amplification,or rearrangement of the MGMT gene in these cell lines.However,-1.0kb transcripts were detected in the 6 Mer+ cell lines but not in the 2 Mer- cell lines by Northern blot analysis.Furthermore,a rough correlation between MGMT activity and mRNA level in these cell lines was observed.These results suggest that transcriptional regulation of the MGMT gene is the molecular basis of the absence of MGMT activity in Mer- cell lines.

  17. The Importance of Physiologically Relevant Cell Lines for Studying Virus–Host Interactions

    Directory of Open Access Journals (Sweden)

    David Hare

    2016-11-01

    Full Text Available Viruses interact intimately with the host cell at nearly every stage of replication, and the cell model that is chosen to study virus infection is critically important. Although primary cells reflect the phenotype of healthy cells in vivo better than cell lines, their limited lifespan makes experimental manipulation challenging. However, many tumor-derived and artificially immortalized cell lines have defects in induction of interferon-stimulated genes and other antiviral defenses. These defects can affect virus replication, especially when cells are infected at lower, more physiologically relevant, multiplicities of infection. Understanding the selective pressures and mechanisms underlying the loss of innate signaling pathways is helpful to choose immortalized cell lines without impaired antiviral defense. We describe the trials and tribulations we encountered while searching for an immortalized cell line with intact innate signaling, and how directed immortalization of primary cells avoids many of the pitfalls of spontaneous immortalization.

  18. CELLULAR BASIS FOR DIFFERENTIAL SENSITIVITY TO CISPLATIN IN HUMAN GERM-CELL TUMOR AND COLON-CARCINOMA CELL-LINES

    NARCIS (Netherlands)

    SARK, MWJ; TIMMERBOSSCHA, H; MEIJER, C; UGES, DRA; SLUITER, WJ; PETERS, WHM; MULDER, NH; DEVRIES, EGE

    1995-01-01

    Cisplatin (CDDP) resistance mechanisms were studied in a model of three germ cell tumour and three colon carcinoma cell lines representing intrinsically CDDP-sensitive and -resistant tumours respectively. The CDDP sensitivity of the cell lines mimicked the clinical situation. The glutathione levels

  19. A comparative study of the FcepsilonRI molecule on human mast cell and basophil cell lines

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Dissing, S; Skov, P S;

    2005-01-01

    Mast cells and basophils express the high-affinity IgE receptor FcepsilonRI. We have analysed the human mast cell line LAD2 and four subclones of the basophil cell line KU812 in order to reveal possible differences concerning the FcepsilonRI surface regulation, anti-IgE-triggered activation...

  20. Restriction of human adenovirus replication in Chinese hamster cell lines and their hybrids with human cells.

    Science.gov (United States)

    Radna, R L; Foellmer, B; Feldman, L A; Francke, U; Ozer, H L

    1987-11-01

    We have found that the replication of human adenovirus (Ad2) is restricted in multiple Chinese hamster cell lines including CHO and V79. The major site of restriction involves differential accumulation of late viral proteins as demonstrated by immunofluorescence assay and polyacrylamide gel electrophoresis with and without prior immunoprecipitation. Synthesis of fiber and penton base are markedly reduced, whereas others, such as the 100K polypeptide, are synthesized efficiently. This pattern of restriction is similar to that previously reported for Ad2 infection of several monkey cell lines; however, the restriction is more marked in the Chinese hamster cell lines. The restriction is most likely due to a deficient cellular function since stable cell hybrids between V79 or CHO and human cells are permissive for virus replication. By analysis of a series of hybrids with reduced numbers of human chromosomes, fiber synthesis was correlated with the presence of the short arm of human chromosome 3. More hybrids showed restoration of fiber synthesis than production of progeny virus, suggesting that more than one unlinked function is required for the latter.

  1. Experimental impact of aspirin exposure on rat intestinal bacteria, epithelial cells and cell line.

    Science.gov (United States)

    Upreti, Raj K; Kannan, A; Pant, A B

    2010-10-01

    Aspirin, a commonly used therapeutic non-steroidal anti-inflammatory drug (NSAID) is known to cause gastric mucosal damage. Intestinal bacteria having a regulatory effect on intestinal homeostasis play significant role in NSAID-induced intestinal injury. Bacteria and specific cell lines are considered to be suitable for toxicity screening and testing of chemicals. Therefore, to evaluate and compare in vitro toxicity, cultures of rat intestinal epithelial cells (IEC), isolated bacteria and IEC-6 cell line were assessed for viability, morphometric analysis, membrane transport enzymes and structural constituents for membrane damage, dehydrogenase activity test for respiratory and energy producing processes and esterase activity test for intra- and extra-cellular degradation, following the post exposure to aspirin (0-50 µg mL(- 1)). Similar pattern of dose-dependent changes in these parameters were observed in three types of cells. Similar in situ effects on IEC validated the in vitro findings. These findings indicate that higher aspirin concentrations may alter cellular functions of IEC and gut bacteria. Furthermore, results suggest that gut bacteria and IEC-6 cell line can be used for the initial screening of gastrointestinal cellular toxicity caused by NSAIDs.

  2. A Human Corneal Epithelial Cell Line Model for Limbal Stem Cell Biology and Limbal Immunobiology.

    Science.gov (United States)

    Shaharuddin, Bakiah; Ahmad, Sajjad; Md Latar, Nani; Ali, Simi; Meeson, Annette

    2016-10-14

    : Limbal stem cell (LSC) deficiency is a visually debilitating condition caused by abnormal maintenance of LSCs. It is treated by transplantation of donor-derived limbal epithelial cells (LECs), the success of which depends on the presence and quality of LSCs within the transplant. Understanding the immunobiological responses of these cells within the transplants could improve cell engraftment and survival. However, human corneal rings used as a source of LSCs are not always readily available for research purposes. As an alternative, we hypothesized that a human telomerase-immortalized corneal epithelial cell (HTCEC) line could be used as a model for studying LSC immunobiology. HTCEC constitutively expressed human leukocyte antigen (HLA) class I but not class II molecules. However, when stimulated by interferon-γ, HTCECs then expressed HLA class II antigens. Some HTCECs were also migratory in response to CXCL12 and expressed stem cell markers, Nanog, Oct4, and Sox2. In addition because both HTCECs and LECs contain side population (SP) cells, which are an enriched LSC population, we used these SP cells to show that some HTCEC SP cells coexpressed ABCG2 and ABCB5. HTCEC SP and non-side population (NSP) cells also expressed CXCR4, but the SP cells expressed higher levels. Both were capable of colony formation, but the NSP colonies were smaller and contained fewer cells. In addition, HTCECs expressed ΔNp63α. These results suggest the HTCEC line is a useful model for further understanding LSC biology by using an in vitro approach without reliance on a supply of human tissue.

  3. Rapid selection and proliferation of CD133+ cells from cancer cell lines: chemotherapeutic implications.

    Directory of Open Access Journals (Sweden)

    Sarah E Kelly

    Full Text Available Cancer stem cells (CSCs are considered a subset of the bulk tumor responsible for initiating and maintaining the disease. Several surface cellular markers have been recently used to identify CSCs. Among those is CD133, which is expressed by hematopoietic progenitor cells as well as embryonic stem cells and various cancers. We have recently isolated and cultured CD133 positive [CD133+] cells from various cancer cell lines using a NASA developed Hydrodynamic Focusing Bioreactor (HFB (Celdyne, Houston, TX. For comparison, another bioreactor, the rotary cell culture system (RCCS manufactured by Synthecon (Houston, TX was used. Both the HFB and the RCCS bioreactors simulate aspects of hypogravity. In our study, the HFB increased CD133+ cell growth from various cell lines compared to the RCCS vessel and to normal gravity control. We observed a +15-fold proliferation of the CD133+ cellular fraction with cancer cells that were cultured for 7-days at optimized conditions. The RCCS vessel instead yielded a (-4.8-fold decrease in the CD133+cellular fraction respect to the HFB after 7-days of culture. Interestingly, we also found that the hypogravity environment of the HFB greatly sensitized the CD133+ cancer cells, which are normally resistant to chemo treatment, to become susceptible to various chemotherapeutic agents, paving the way to less toxic and more effective chemotherapeutic treatment in patients. To be able to test the efficacy of cytotoxic agents in vitro prior to their use in clinical setting on cancer cells as well as on cancer stem cells may pave the way to more effective chemotherapeutic strategies in patients. This could be an important advancement in the therapeutic options of oncologic patients, allowing for more targeted and personalized chemotherapy regimens as well as for higher response rates.

  4. Nuclear motility in glioma cells reveals a cell-line dependent role of various cytoskeletal components.

    Directory of Open Access Journals (Sweden)

    Alexa Kiss

    Full Text Available Nuclear migration is a general term for the movement of the nucleus towards a specific site in the cell. These movements are involved in a number of fundamental biological processes, such as fertilization, cell division, and embryonic development. Despite of its importance, the mechanism of nuclear migration is still poorly understood in mammalian cells. In order to shed light on the mechanical processes underlying nuclear movements, we adapted a micro-patterning based assay. C6 rat and U87 human glioma cells seeded on fibronectin patterns--thereby forced into a bipolar morphology--displayed oscillatory movements of the nucleus or the whole cell, respectively. We found that both the actomyosin system and microtubules are involved in the nuclear/cellular movements of both cell lines, but their contributions are cell-/migration-type specific. Dynein activity was necessary for nuclear migration of C6 cells but active myosin-II was dispensable. On the other hand, coupled nuclear and cellular movements of U87 cells were driven by actomyosin contraction. We explain these cell-line dependent effects by the intrinsic differences in the overall mechanical tension due to the various cytoskeletal elements inside the cell. Our observations showed that the movements of the nucleus and the centrosome are strongly correlated and display large variation, indicating a tight but flexible coupling between them. The data also indicate that the forces responsible for nuclear movements are not acting directly via the centrosome. Based on our observations, we propose a new model for nuclear oscillations in C6 cells in which dynein and microtubule dynamics are the main drivers of nuclear movements. This mechanism is similar to the meiotic nuclear oscillations of Schizosaccharomyces pombe and may be evolutionary conserved.

  5. Micro-RNA expression in cisplatin resistant germ cell tumor cell lines

    Directory of Open Access Journals (Sweden)

    Meineke Viktor

    2011-05-01

    Full Text Available Abstract Background We compared microRNA expression patterns in three cisplatin resistant sublines derived from paternal cisplatin sensitive germ cell tumor cell lines in order to improve our understanding of the mechanisms of cisplatin resistance. Methods Three cisplatin resistant sublines (NTERA-2-R, NCCIT-R, 2102EP-R showing 2.7-11.3-fold increase in drug resistance after intermittent exposure to increasing doses of cisplatin were compared to their parental counterparts, three well established relatively cisplatin sensitive germ cell tumor cell lines (NTERA-2, NCCIT, 2102EP. Cells were cultured and total RNA was isolated from all 6 cell lines in three independent experiments. RNA was converted into cDNA and quantitative RT-PCR was run using 384 well low density arrays covering almost all (738 known microRNA species of human origin. Results Altogether 72 of 738 (9.8% microRNAs appeared differentially expressed between sensitive and resistant cell line pairs (NTERA-2R/NTERA-2 = 43, NCCIT-R/NCCIT = 53, 2102EP-R/2102EP = 15 of which 46.7-95.3% were up-regulated (NTERA-2R/NTERA-2 = 95.3%, NCCIT-R/NCCIT = 62.3%, 2102EP-R/2102EP = 46.7%. The number of genes showing differential expression in more than one of the cell line pairs was 34 between NTERA-2R/NTERA-2 (79% and NCCIT-R/NCCIT (64%, and 3 and 4, respectively, between these two cell lines and 2102EP-R/2102EP (about 27%. Only the has-miR-10b involved in breast cancer invasion and metastasis and has-miR-512-3p appeared to be up-regulated (2-3-fold in all three cell lines. The hsa-miR-371-373 cluster (counteracting cellular senescence and linked with differentiation potency, as well as hsa-miR-520c/-520h (inhibiting the tumor suppressor p21 were 3.9-16.3 fold up-regulated in two of the three cisplatin resistant cell lines. Several new micro-RNA species missing an annotation towards cisplatin resistance could be identified. These were hsa-miR-512-3p/-515/-517/-518/-525 (up to 8.1-fold up

  6. Microencapsulation technology: a powerful tool for integrating expansion and cryopreservation of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Margarida Serra

    Full Text Available The successful implementation of human embryonic stem cells (hESCs-based technologies requires the production of relevant numbers of well-characterized cells and their efficient long-term storage. In this study, cells were microencapsulated in alginate to develop an integrated bioprocess for expansion and cryopreservation of pluripotent hESCs. Different three-dimensional (3D culture strategies were evaluated and compared, specifically, microencapsulation of hESCs as: i single cells, ii aggregates and iii immobilized on microcarriers. In order to establish a scalable bioprocess, hESC-microcapsules were cultured in stirred tank bioreactors.The combination of microencapsulation and microcarrier technology resulted in a highly efficient protocol for the production and storage of pluripotent hESCs. This strategy ensured high expansion ratios (an approximately twenty-fold increase in cell concentration and high cell recovery yields (>70% after cryopreservation. When compared with non-encapsulated cells, cell survival post-thawing demonstrated a three-fold improvement without compromising hESC characteristics.Microencapsulation also improved the culture of hESC aggregates by protecting cells from hydrodynamic shear stress, controlling aggregate size and maintaining cell pluripotency for two weeks.This work establishes that microencapsulation technology may prove a powerful tool for integrating the expansion and cryopreservation of pluripotent hESCs. The 3D culture strategy developed herein represents a significant breakthrough towards the implementation of hESCs in clinical and industrial applications.

  7. Microencapsulation technology: a powerful tool for integrating expansion and cryopreservation of human embryonic stem cells.

    Science.gov (United States)

    Serra, Margarida; Correia, Cláudia; Malpique, Rita; Brito, Catarina; Jensen, Janne; Bjorquist, Petter; Carrondo, Manuel J T; Alves, Paula M

    2011-01-01

    The successful implementation of human embryonic stem cells (hESCs)-based technologies requires the production of relevant numbers of well-characterized cells and their efficient long-term storage. In this study, cells were microencapsulated in alginate to develop an integrated bioprocess for expansion and cryopreservation of pluripotent hESCs. Different three-dimensional (3D) culture strategies were evaluated and compared, specifically, microencapsulation of hESCs as: i) single cells, ii) aggregates and iii) immobilized on microcarriers. In order to establish a scalable bioprocess, hESC-microcapsules were cultured in stirred tank bioreactors.The combination of microencapsulation and microcarrier technology resulted in a highly efficient protocol for the production and storage of pluripotent hESCs. This strategy ensured high expansion ratios (an approximately twenty-fold increase in cell concentration) and high cell recovery yields (>70%) after cryopreservation. When compared with non-encapsulated cells, cell survival post-thawing demonstrated a three-fold improvement without compromising hESC characteristics.Microencapsulation also improved the culture of hESC aggregates by protecting cells from hydrodynamic shear stress, controlling aggregate size and maintaining cell pluripotency for two weeks.This work establishes that microencapsulation technology may prove a powerful tool for integrating the expansion and cryopreservation of pluripotent hESCs. The 3D culture strategy developed herein represents a significant breakthrough towards the implementation of hESCs in clinical and industrial applications.

  8. Effects of Dioscin Extracted from Polygonatum Zanlanscianense Pamp on Several Human Tumor Cell Lines

    Institute of Scientific and Technical Information of China (English)

    王钊; 周江兵; 巨勇; 姚沈勤; 张洪钧

    2001-01-01

    Dioscin was extracted and isolated from Polygonatum Zanlanscianense Pamp. The effects of dioscin on HL60, HeLa, H14, and MDA-MB-435 cell lines were studied with the results showing that dioscin dramatically inhibited the growth of the MDA-MB-435, H14, HL60, and HeLa cell lines. The IC50 of dioscin on these cell lines were 2.6, 0.8, 7. 5, and 4.5 μ mol/L respectively.

  9. A bovine cell line that can be infected by natural sheep scrapie prions.

    Science.gov (United States)

    Oelschlegel, Anja M; Geissen, Markus; Lenk, Matthias; Riebe, Roland; Angermann, Marlies; Schatzl, Herman; Schaetzl, Hermann; Groschup, Martin H

    2015-01-01

    Cell culture systems represent a crucial part in basic prion research; yet, cell lines that are susceptible to prions, especially to field isolated prions that were not adapted to rodents, are very rare. The purpose of this study was to identify and characterize a cell line that was susceptible to ruminant-derived prions and to establish a stable prion infection within it. Based on species and tissue of origin as well as PrP expression rate, we pre-selected a total of 33 cell lines that were then challenged with natural and with mouse propagated BSE or scrapie inocula. Here, we report the successful infection of a non-transgenic bovine cell line, a sub-line of the bovine kidney cell line MDBK, with natural sheep scrapie prions. This cell line retained the scrapie infection for more than 200 passages. Selective cloning resulted in cell populations with increased accumulation of PrPres, although this treatment was not mandatory for retaining the infection. The infection remained stable, even under suboptimal culture conditions. The resulting infectivity of the cells was confirmed by mouse bioassay (Tgbov mice, Tgshp mice). We believe that PES cells used together with other prion permissive cell lines will prove a valuable tool for ongoing efforts to understand and defeat prions and prion diseases.

  10. A bovine cell line that can be infected by natural sheep scrapie prions.

    Directory of Open Access Journals (Sweden)

    Anja M Oelschlegel

    Full Text Available Cell culture systems represent a crucial part in basic prion research; yet, cell lines that are susceptible to prions, especially to field isolated prions that were not adapted to rodents, are very rare. The purpose of this study was to identify and characterize a cell line that was susceptible to ruminant-derived prions and to establish a stable prion infection within it. Based on species and tissue of origin as well as PrP expression rate, we pre-selected a total of 33 cell lines that were then challenged with natural and with mouse propagated BSE or scrapie inocula. Here, we report the successful infection of a non-transgenic bovine cell line, a sub-line of the bovine kidney cell line MDBK, with natural sheep scrapie prions. This cell line retained the scrapie infection for more than 200 passages. Selective cloning resulted in cell populations with increased accumulation of PrPres, although this treatment was not mandatory for retaining the infection. The infection remained stable, even under suboptimal culture conditions. The resulting infectivity of the cells was confirmed by mouse bioassay (Tgbov mice, Tgshp mice. We believe that PES cells used together with other prion permissive cell lines will prove a valuable tool for ongoing efforts to understand and defeat prions and prion diseases.

  11. Comparison of the effect of interferon on two human hepatoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, M.; Schoub, B.D.; Lyons, S.F.; Chiu, M.N. (University of the Witwatersrand, Johannesburg (South Africa). Dept. of Virology)

    1985-06-01

    Two human hepatoma cell lines, the PLC/PRF/5 and the Mahlavu cells, which differ in their production of the hepatitis B surface antigen (HBsAg), responded differently to interferon (IFN). After IFN treatment both cell lines were able to inhibit Sindbis virus replication. Oligo A synthetase (E enzyme) could be activated in the PLC/PRF/5 cells although they were not sensitive to exogenous 2 - 5 oligoadenylic acid (2 - 5 A). In contrast, the Mahlavu cells were sensitive to exogenous 2 - 5 A, but unable to activate the E enzyme. Both cell lines were unable to stimulate phosphorylation of the exogenous initiator factor eIF-2.

  12. Inhibition of geranylgeranylation mediates sensitivity to CHOP-induced cell death of DLBCL cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Ageberg, Malin, E-mail: Malin.Ageberg@med.lu.se [Division of Hematology and Transfusion Medicine, Lund University, BMC C14, 221 84 Lund (Sweden); Rydstroem, Karin, E-mail: Karin.Rydstom@skane.se [Department of Oncology, Skanes University Hospital, Allmaenmott, Onkologiska kliniken i Lund, 221 85 Lund (Sweden); Linden, Ola, E-mail: Ola.Linden@skane.se [Department of Oncology, Skanes University Hospital, Allmaenmott, Onkologiska kliniken i Lund, 221 85 Lund (Sweden); Linderoth, Johan, E-mail: Johan.Linderoth@skane.se [Department of Oncology, Skanes University Hospital, Allmaenmott, Onkologiska kliniken i Lund, 221 85 Lund (Sweden); Jerkeman, Mats, E-mail: Mats.Jerkeman@skane.se [Department of Oncology, Skanes University Hospital, Allmaenmott, Onkologiska kliniken i Lund, 221 85 Lund (Sweden); Drott, Kristina, E-mail: Kristina.Drott@med.lu.se [Division of Hematology and Transfusion Medicine, Lund University, BMC C14, 221 84 Lund (Sweden)

    2011-05-01

    Prenylation is a post-translational hydrophobic modification of proteins, important for their membrane localization and biological function. The use of inhibitors of prenylation has proven to be a useful tool in the activation of apoptotic pathways in tumor cell lines. Rab geranylgeranyl transferase (Rab GGT) is responsible for the prenylation of the Rab family. Overexpression of Rab GGTbeta has been identified in CHOP refractory diffuse large B cell lymphoma (DLBCL). Using a cell line-based model for CHOP resistant DLBCL, we show that treatment with simvastatin, which inhibits protein farnesylation and geranylgeranylation, sensitizes DLBCL cells to cytotoxic treatment. Treatment with the farnesyl transferase inhibitor FTI-277 or the geranylgeranyl transferase I inhibitor GGTI-298 indicates that the reduction in cell viability was restricted to inhibition of geranylgeranylation. In addition, treatment with BMS1, a combined inhibitor of farnesyl transferase and Rab GGT, resulted in a high cytostatic effect in WSU-NHL cells, demonstrated by reduced cell viability and decreased proliferation. Co-treatment of BMS1 or GGTI-298 with CHOP showed synergistic effects with regard to markers of apoptosis. We propose that inhibition of protein geranylgeranylation together with conventional cytostatic therapy is a potential novel strategy for treating patients with CHOP refractory DLBCL.

  13. Tumor suppressors status in cancer cell line Encyclopedia.

    Science.gov (United States)

    Sonkin, Dmitriy; Hassan, Mehedi; Murphy, Denis J; Tatarinova, Tatiana V

    2013-08-01

    Tumor suppressors play a major role in the etiology of human cancer, and typically achieve a tumor-promoting effect upon complete functional inactivation. Bi-allelic inactivation of tumor suppressors may occur through genetic mechanisms (such as loss of function mutation, copy number (CN) loss, or loss of heterozygosity (LOH)), epigenetic mechanisms (such as promoter methylation or histone modification), or a combination of the two. We report systematically derived status of 69 known or putative tumor suppressors, across 799 samples of the Cancer Cell Line Encyclopedia. In order to generate such resource we constructed a novel comprehensive computational framework for the assessment of tumor suppressor functional "status". This approach utilizes several orthogonal genomic data types, including mutation data, copy number, LOH and expression. Through correlation with additional data types (compound sensitivity and gene set activity) we show that this integrative method provides a more accurate assessment of tumor suppressor status than can be inferred by expression, copy number, or mutation alone. This approach has the potential for a more realistic assessment of tumor suppressor genes for both basic and translational oncology research.

  14. NMR metabolic fingerprints of murine melanocyte and melanoma cell lines: application to biomarker discovery

    Science.gov (United States)

    Santana-Filho, Arquimedes Paixão de; Jacomasso, Thiago; Riter, Daniel Suss; Barison, Andersson; Iacomini, Marcello; Winnischofer, Sheila Maria Brochado; Sassaki, Guilherme Lanzi

    2017-01-01

    Melanoma is the most aggressive type of skin cancer and efforts to improve the diagnosis of this neoplasia are largely based on the use of cell lines. Metabolomics is currently undergoing great advancements towards its use to screening for disease biomarkers. Although NMR metabolomics includes both 1D and 2D methodologies, there is a lack of data in the literature regarding heteronuclear 2D NMR assignments of the metabolome from eukaryotic cell lines. The present study applied NMR-based metabolomics strategies to characterize aqueous and lipid extracts from murine melanocytes and melanoma cell lines with distinct tumorigenic potential, successfully obtaining fingerprints of the metabolites from the extracts of the cell lines by means of 2D NMR HSQC correlation maps. Relative amounts of the identified metabolites were compared between the 4 cell lines. Multivariate analysis of 1H NMR data was able not only to differentiate the melanocyte cell line from the tumorigenic ones but also distinguish among the 3 tumorigenic cell lines. We also investigated the effects of mitogenic agents, and found that they can markedly influence the metabolome of the melanocyte cell line, resembling the pattern of most proliferative cell lines. PMID:28198377

  15. Glioma cells on the run – the migratory transcriptome of 10 human glioma cell lines

    Directory of Open Access Journals (Sweden)

    Holz David

    2008-01-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is the most common primary intracranial tumor and despite recent advances in treatment regimens, prognosis for affected patients remains poor. Active cell migration and invasion of GBM cells ultimately lead to ubiquitous tumor recurrence and patient death. To further understand the genetic mechanisms underlying the ability of glioma cells to migrate, we compared the matched transcriptional profiles of migratory and stationary populations of human glioma cells. Using a monolayer radial migration assay, motile and stationary cell populations from seven human long term glioma cell lines and three primary GBM cultures were isolated and prepared for expression analysis. Results Gene expression signatures of stationary and migratory populations across all cell lines were identified using a pattern recognition approach that integrates a priori knowledge with expression data. Principal component analysis (PCA revealed two discriminating patterns between migrating and stationary glioma cells: i global down-regulation and ii global up-regulation profiles that were used in a proband-based rule function implemented in GABRIEL to find subsets of genes having similar expression patterns. Genes with up-regulation pattern in migrating glioma cells were found to be overexpressed in 75% of human GBM biopsy specimens compared to normal brain. A 22 gene signature capable of classifying glioma cultures based on their migration rate was developed. Fidelity of this discovery algorithm was assessed by validation of the invasion candidate gene, connective tissue growth factor (CTGF. siRNA mediated knockdown yielded reduced in vitro migration and ex vivo invasion; immunohistochemistry on glioma invasion tissue microarray confirmed up-regulation of CTGF in invasive glioma cells. Conclusion Gene expression profiling of migratory glioma cells induced to disperse in vitro affords discovery of genomic signatures; selected

  16. Tick cell lines for study of Crimean-Congo hemorrhagic fever virus and other arboviruses.

    Science.gov (United States)

    Bell-Sakyi, Lesley; Kohl, Alain; Bente, Dennis A; Fazakerley, John K

    2012-09-01

    Continuous cell lines derived from many of the vectors of tick-borne arboviruses of medical and veterinary importance are now available. Their role as tools in arbovirus research to date is reviewed and their potential application in studies of tick cell responses to virus infection is explored, by comparison with recent progress in understanding mosquito immunity to arbovirus infection. A preliminary study of propagation of the human pathogen Crimean-Congo hemorrhagic fever virus (CCHFV) in tick cell lines is reported; CCHFV replicated in seven cell lines derived from the ticks Hyalomma anatolicum (a known vector), Amblyomma variegatum, Rhipicephalus (Boophilus) decoloratus, Rhipicephalus (Boophilus) microplus, and Ixodes ricinus, but not in three cell lines derived from Rhipicephalus appendiculatus and Ornithodoros moubata. This indicates that tick cell lines can be used to study growth of CCHFV in arthropod cells and that there may be species-specific restriction in permissive CCHFV infection at the cellular level.

  17. Phytoestrogens regulate the proliferation and expression of stem cell factors in cell lines of malignant testicular germ cell tumors.

    Science.gov (United States)

    Hasibeder, Astrid; Venkataramani, Vivek; Thelen, Paul; Radzun, Heinz-Joachim; Schweyer, Stefan

    2013-11-01

    Phytoestrogens have been shown to exert anti-proliferative effects on different cancer cells. In addition it could be demonstrated that inhibition of proliferation is associated with downregulation of the known stem cell factors NANOG, POU5F1 and SOX2 in tumor cells. We demonstrate the potential of Belamcanda chinensis extract (BCE) and tectorigenin as anticancer drugs in cell lines of malignant testicular germ cell tumor cells (TGCT) by inhibition of proliferation and regulating the expression of stem cell factors. The TGCT cell lines TCam-2 and NTera-2 were treated with BCE or tectorigenin and MTT assay was used to measure the proliferation of tumor cells. In addition, the expression of stem cell factors was analyzed by quantitative PCR and western blot analysis. Furthermore, global expression analysis was performed by microarray technique. BCE and tectorigenin inhibited proliferation and downregulated the stem cell factors NANOG and POU5F1 in TGCT cells. In addition, gene expression profiling revealed induction of genes important for the differentiation and inhibition of oncogenes. Utilizing connectivity map in an attempt to elucidate mechanism underlying BCE treatments we found highly positive association to histone deacetylase inhibitors (HDACi) amongst others. Causing no histone deacetylase inhibition, the effects of BCE on proliferation and stem cell facto