WorldWideScience

Sample records for cell growth processes

  1. Three Dimensional Simulation Method in Early Process of Division and Growth for Tumour Cells

    Institute of Scientific and Technical Information of China (English)

    XIA Zhi-qiu; ZHAO Ting-ting

    2014-01-01

    The process of division, growth and death for tumour cell mass in the early is simulated. An integrated GUI is provided for users to set the value of each parameters, which are cell growth rates, cell mass division rates, cell mass death rates, simulate type, maximum running time, polarity and cell colour. It can display the growth process of each cell on result GUI. Also, it can display the values of each parameters for observing and analysing in current life cycle on result GUI, which are cell mass division times, cell mass death rate, cell mass division rate and cell mass growth rate. In the process of simulation, The cell growth rate is described by the approach to combine the exponential model with the linear model. In addition, a linked list data structure to store the tumour cells is used by the cellular automata for a reference to determine the position of each cell. It sets up two linked list to store the cells, one of them save the new small division cells and the other one save the big cell. That can make the painting process of cells on result GUI clearer and more organized. At last, the polarity of tumour growth is described for determining the growth direction of cells.

  2. Time delay and noise explaining the behaviour of the cell growth in fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Ayuobi, Tawfiqullah; Rosli, Norhayati [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Salleh, Madihah Md [Department of Biotechnology Industry, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2015-02-03

    This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.

  3. Time delay and noise explaining the behaviour of the cell growth in fermentation process

    Science.gov (United States)

    Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah; Salleh, Madihah Md

    2015-02-01

    This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.

  4. Effects on cell growth processes (mitosis, synthesis of nucleic acids and of proteins). Chapter 7

    International Nuclear Information System (INIS)

    A review is presented of reports of the interference of -SH radioprotective agents with cell division and with the processes of nucleic acid and protein synthesis which are a prerequisite for mitosis. Mitotic activity is inhibited to the same extent in mammalian tissues as in cultures of animal and plant cells and bacteria. With cultured cells, the toxicity and the antimitotic activity have been found to be at their highest level for intermediate concentrations of the compound and to decrease for higher and lower concentrations. Inhibition of the synthesis of nucleic acids by -SH radioprotective substances has been observed with cultures of cells and bacteria and in mammalian tissues. In vitro interactions with the structures of free DNA and nucleoprotein have also been studied. The extent to which such complexes between the protective agent and DNA or nucleoprotein occur in vivo is not known. A depression of protein synthesis has been observed, and participates in the more general inhibition of growth processes. Possible mechanisms of these effects are discussed. (U.K.)

  5. Low temperature plasma processing for cell growth inspired carbon thin films fabrication.

    Science.gov (United States)

    Kumar, Manish; Piao, Jin Xiang; Jin, Su Bong; Lee, Jung Heon; Tajima, Satomi; Hori, Masaru; Han, Jeon Geon

    2016-09-01

    The recent bio-applications (i.e. bio-sensing, tissue engineering and cell proliferation etc.) are driving the fundamental research in carbon based materials with functional perspectives. High stability in carbon based coatings usually demands the high density deposition. However, the standard techniques, used for the large area and high throughput deposition of crystalline carbon films, often require very high temperature processing (typically >800 °C in inert atmosphere). Here, we present a low temperature (thermal treatments. It is found that the control over plasma power density and pulsed frequency governs the density and kinetic energy of carbon ions participating during the film growth. Subsequently, it controls the contents of sp(3) and sp(2) hybridizations via conversion of sp(2) to sp(3) hybridization by ion's energy relaxation. The role of plasma parameters on the chemical and surface properties are presented and correlated to the bio-activity. Bioactivity tests, carried out in mouse fibroblast L-929 and Sarcoma osteogenic (Saos-2) bone cell lines, demonstrate promising cell-proliferation in these films. PMID:27036854

  6. Growth Accounting and Growth Processes

    OpenAIRE

    Jahangir Aziz

    1996-01-01

    The standard growth accounting framework, which weights various inputs by their factor shares to measure their contributions to output growth, is known to underestimate the contribution of inputs in the presence of externalities and increasing returns. This paper develops a model in which, in the absence of such departures from the standard neoclassical framework, growth can occur through either embodied technological progress or firms replication of existing technology. The standard growth a...

  7. Effect of proline rich domain of an RNA-binding protein Sam68 in cell growth process, death and B cell signal transduction

    Institute of Scientific and Technical Information of China (English)

    LI Qing-hua; FAN Tian-xue; PANG Tian-xiang; YUAN Wen-su; HAN Zhong-chao

    2006-01-01

    Background Sam68 plays an important role as a multiple functional RNA binding nuclear protein in cell cycle progress, RNA usage, signal transduction, and tyrosine phosphorylation by Src during mitosis. However, its precise impact on these essential cellular functions remains unclear. The purpose of this study is to further elucidate Sam68 functions in RNA metabolism, signal transduction regulation of cell growth and cell proliferation in DT40 cell line.Methods By using gene targeting method, we isolated a mutation form of Sam68 in DT40 cells and described its effect on cell growth process and signal transduction. Southern, Northern, and Western blot, phosphorylation and flow-cytometfic analyses were performed to investigate the Sam68 functions.Results A slower growth rate (2.1 hours growth elongation) and longer S phase (1.7 hours elongation) was observed in the Sam68 mutant cells. Serum depletion resulted in increased amounts of dead cells, and expansion of S phase in mutant cells. Upon B cell cross-linking, the maximal level of tyrosine phosphorylation on BLNK was observed to be significantly lower in mutant cells.Conclusions The proline rich domain of Sam68 is involved in cell growth control by modulating the function of mRNAs in S phase or earlier and the functions as an adaptor molecule in B cell signal transduction pathways.

  8. Growth and process optimization of GdTe and GdZnTe polycrystalline films for high efficiency solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, A.; Sundharsanan, R.; Ringel, S.A.; MacDougal, M.H. (Georgia Inst. of Tech., Atlanta (USA). School of Electrical Engineering Georgia Inst. of Tech., Atlanta, GA (USA). Microelectronics Research Center)

    1991-05-01

    Polycrystalline CdTe solar cells with efficiencies of approximately 10% were achieved by metal organic chemical vapor deposition growth of CdTe on glass/SnO{sub 2}/CdS substrates. An in situ pre-heat treatment of the CdS substrate at 450deg C in an H{sub 2} ambient was found to be essential for high performance devices because it removes oxygen-related defects on the CdS surface. This heat treatment also results in a cadmium-deficient CdS surface which may, in part, limit the CdTe cell efficiency to 10% owing to cadmium vacancy related interface defects. The CdCl{sub 2} treatment used in CdTe cell processing was found to promote grain growth, reduce series resistance and interface state density, and change the dominant current transport mechanism from thermally assisted tunneling and recombination via interface states to recombination in the depletion region. These beneficial effects resulted in an increase in the CdTe/CdS cell efficiency from around 2% to approximately 9%. In addition to the CdTe cells, polycrystalline 1.7 eV CdZnTe films were grown by molecular beam epitaxy for tandem cell applications. CdZnTe/CdS cells processed using the standard CdTe cell fabrication procedure resulted in 4.4% efficiency, high series resistance, and a band gap shift to 1.55 eV. Formation of Zn-O at and near the CdZnTe surface was found to be the source of high contact resistance. A saturated dichromate etch instead of the Br{sub 2}:CH{sub 3}OH etch prior to contact deposition was found to solve the contact resistance problem. The CdCl{sub 2} treatment was identified to be the cause of the observed band gap shift owing to the preferred formation of ZnCl{sub 2}. A model for the band gap shift along with a possible solution using an overpressure of ZnCl{sub 2} in the annealing ambient is proposed. Development of a sintering aid which promotes grain growth and preserves the optimum 1.7 eV band gap is shown to be the key to successful wide gap CdZnTe cells. (orig.).

  9. Monitoring cell growth.

    Science.gov (United States)

    Strober, W

    2001-05-01

    This appendix provides two protocols for monitoring cell growth. Counting cells using a hemacytometer is tedious but it allows one to effectively distinguish live cells from dead cells (using Trypan Blue exclusion). In addition, this procedure is less subject to errors due to cell clumping or heterogeneity of cell size. The use of an electronic cell counter is quicker and easier than counting cells using a hemacytometer. However, an electronic cell counter as currently constructed does not distinguish live from dead cells in a reliable fashion and is subject to error due to the presence of cell clumps. Overall, the electronic cell counter is best reserved for repetitive and rapid counting of fresh peripheral blood cells and should be used with caution when counting cell populations derived from tissues. PMID:18432653

  10. Process for inhibiting the growth of a culture of lactic acid bacteria, and optionally lysing the bacterial cells, and uses of the resulting lysed culture

    NARCIS (Netherlands)

    Nauta, Arjen; Venema, Gerard; Kok, Jan; Ledeboer, Aat M.

    1995-01-01

    The invention provides a process for inhibiting the growth of a culture of lactic acid bacteria, or a product containing such culture e.g. a cheese product, in which in the cells of the lactic acid bacteria a holin obtainable from bacteriophages of Gram-positive bacteria, esp. from bacteriophages of

  11. Post-growth process for flexible CdS/CdTe thin film solar cells with high specific power.

    Science.gov (United States)

    Cho, Eunwoo; Kang, Yoonmook; Kim, Donghwan; Kim, Jihyun

    2016-05-16

    We demonstrated a flexible CdS/CdTe thin film solar cell with high specific power of approximately 254 W/kg. A flexible and ultra-light weight CdS/CdTe cell treated with pre-NP etch process exhibited high conversion efficiency of 13.56% in superstrate configuration. Morphological, structural and optical changes of CdS/CdTe thin films were characterized when pre-NP etch step was incorporated to the conventional post-deposition process. Improvement of photovoltaic parameters can be attributed to the removal of the oxide and the formation of Te-rich layer, which benefit the activation process. Pre-NP etched cell maintained their flexibility and performance under the repeated tensile strain of 0.13%. Our method can pave a way for manufacturing flexible CdS/CdTe thin film solar cells with high specific power for mobile and aerospace applications. PMID:27409952

  12. A gene expression programme induced by bovine colostrum whey promotes growth and wound-healing processes in intestinal epithelial cells.

    Science.gov (United States)

    Blais, M; Pouliot, Y; Gauthier, S; Boutin, Y; Lessard, M

    2014-01-01

    Bovine colostrum is well known for its beneficial properties on health and development. It contains a wide variety of bioactive ingredients that are known to promote a number of cellular processes. Therefore the use of colostrum whey as a feed additive to promote intestinal health has been proposed, yet little is known about mechanisms implicated in its beneficial properties on intestinal epithelial cells. In the present paper, casein were removed from bovine colostrum and the remaining liquid, rich in bioactive compounds, was evaluated for its capacity to modulate cellular processes in porcine intestinal epithelial cell line IPEC-J2 and human colon adenocarcinoma cell line Caco-2/15. First, we verified the effect of colostrum whey and cheese whey on processes involved in intestinal wound healing, including cell proliferation, attachment, morphology and migration. Our results showed that colostrum whey promoted proliferation and migration, and decreased specifically the attachment of Caco-2/15 cells on the culture dish. On the other hand, cheese whey induced proliferation and morphological changes in IPEC-J2 cells, but failed to induce migration. The gene expression profile of IPEC-J2 cells following colostrum whey treatment was evaluated by microarray analysis. Results revealed that the expression of a significant number of genes involved in cell migration, adhesion and proliferation was indeed affected in colostrum whey-treated cells. In conclusion, colostrum specific bioactive content could be beneficial for intestinal epithelial cell homoeostasis by controlling biological processes implicated in wound healing through a precise gene expression programme. PMID:26101625

  13. Thermodynamics of irreversible plant cell growth

    Directory of Open Access Journals (Sweden)

    Mariusz Pietruszka

    2011-04-01

    Full Text Available The time-irreversible cell enlargement of plant cells at a constant temperature results from two independent physical processes, e.g. water absorption and cell wall yielding. In such a model cell growth starts with reduction in wall stress because of irreversible extension of the wall. The water absorption and physical expansion are spontaneous consequences of this initial modification of the cell wall (the juvenile cell vacuolate, takes up water and expands. In this model the irreversible aspect of growth arises from the extension of the cell wall. Such theory expressed quantitatively by time-dependent growth equation was elaborated by Lockhart in the 60's.The growth equation omit however a very important factor, namely the environmental temperature at which the plant cells grow. In this paper we put forward a simple phenomenological model which introduces into the growth equation the notion of temperature. Moreover, we introduce into the modified growth equation the possible influence of external growth stimulator or inhibitor (phytohormones or abiotic factors. In the presence of such external perturbations two possible theoretical solutions have been found: the linear reaction to the application of growth hormones/abiotic factors and the non-linear one. Both solutions reflect and predict two different experimental conditions, respectively (growth at constant or increasing concentration of stimulator/inhibitor. The non-linear solution reflects a common situation interesting from an environmental pollution point of view e.g. the influence of increasing (with time concentration of toxins on plant growth. Having obtained temperature modified growth equations we can draw further qualitative and, especially, quantitative conclusions about the mechanical properties of the cell wall itself. This also concerns a new and interesting result obtained in our model: We have calculated the magnitude of the cell wall yielding coefficient (T [m3 J-1•s-1] in

  14. A gene expression programme induced by bovine colostrum whey promotes growth and wound-healing processes in intestinal epithelial cells

    OpenAIRE

    Blais, M.; Pouliot, Y.; Gauthier, S; Boutin, Y.; Lessard, M.

    2014-01-01

    Bovine colostrum is well known for its beneficial properties on health and development. It contains a wide variety of bioactive ingredients that are known to promote a number of cellular processes. Therefore the use of colostrum whey as a feed additive to promote intestinal health has been proposed, yet little is known about mechanisms implicated in its beneficial properties on intestinal epithelial cells. In the present paper, casein were removed from bovine colostrum and the remaining liqui...

  15. Improving the efficiency of perovskite solar cells through optimization of the CH3NH3PbI3 film growth in solution process method

    Science.gov (United States)

    Zhao, Ying; Liu, Jian; Lu, Xinrong; Gao, Yandong; You, Xiaozeng; Xu, Xiangxing

    2015-12-01

    Perovskite-structured organic-inorganic materials such as CH3NH3PbI3 are attracting much interest in the scientific community because of their abilities to function as revolutionary light harvesters and charge transfer materials for solar cells. To achieve high power conversion efficiency (PCE), it is critical to optimize the perovskite film layer. This paper reports the temperature and concentration controls on the two-step solution process. A diffusion-controlled growth mechanism is proposed for this process in tuning the morphology and purity of the perovskite film, which are proven to be important factors contributing to the photovoltaic performance. The highest PCE of 11.92% is achieved with an optimized perovskite crystal size of ∼150 nm and an appropriate amount of residual PbI2. This study sheds light on the design and fabrication of highly efficient, low-cost, solution-processed perovskite solar cells.

  16. Ethylene antagonizes salt-induced growth retardation and cell death process via transcriptional controlling of ethylene-, BAG- and senescence-associated genes in Arabidopsis

    Directory of Open Access Journals (Sweden)

    YaJie ePan

    2016-05-01

    Full Text Available The existing question whether ethylene is involved in the modulation of salt-induced cell death to mediate plant salt tolerance is important for understanding the salt tolerance mechanisms. Here, we employed Arabidopsis plants to study the possible role of ethylene in salt-induced growth inhibition and programmed cell death (PCD profiles. The root length, DNA ladder and cell death indicated by Evan’s blue detection were measured by compared to the control or salt-stressed seedlings. Secondly, the protoplasts isolated from plant leaves and dyed with Annexin V-FITC were subjected to flow cytometric (FCM assay. Our results showed that ethylene works effectively in seedling protoplasts, antagonizing salt-included root retardation and restraining cell death both in seedlings or protoplasts. Due to salinity, the entire or partial insensitivity of ethylene signaling resulted in an elevated levels of cell death in ein2-5 and ein3-1 plants and the event were amended in ctr1-1 plants after salt treatment. The subsequent experiment with exogenous ACC further corroborated that ethylene could modulate salt-induced PCD process actively. Plant Bcl-2-associated athanogene (BAG family genes are recently identified to play an extensive role in plant PCD processes ranging from growth, development to stress responses and even cell death. Our result showed that salinity alone significantly suppressed the transcripts of BAG6, BAG7 and addition of ACC in the saline solution could obviously re-activate BAG6 and BAG7 expressions, which might play a key role to inhibit the salt-induced cell death. In summary, our research implies that ethylene and salinity antagonistically control BAG family-, ethylene-, and senescence-related genes to alleviate the salt-induced cell death.

  17. Ethylene Antagonizes Salt-Induced Growth Retardation and Cell Death Process via Transcriptional Controlling of Ethylene-, BAG- and Senescence-Associated Genes in Arabidopsis.

    Science.gov (United States)

    Pan, Ya-Jie; Liu, Ling; Lin, Ying-Chao; Zu, Yuan-Gang; Li, Lei-Peng; Tang, Zhong-Hua

    2016-01-01

    The existing question whether ethylene is involved in the modulation of salt-induced cell death to mediate plant salt tolerance is important for understanding the salt tolerance mechanisms. Here, we employed Arabidopsis plants to study the possible role of ethylene in salt-induced growth inhibition and programmed cell death (PCD) profiles. The root length, DNA ladder and cell death indicated by Evan's blue detection were measured by compared to the control or salt-stressed seedlings. Secondly, the protoplasts isolated from plant leaves and dyed with Annexin V-FITC were subjected to flow cytometric (FCM) assay. Our results showed that ethylene works effectively in seedling protoplasts, antagonizing salt-included root retardation and restraining cell death both in seedlings or protoplasts. Due to salinity, the entire or partial insensitivity of ethylene signaling resulted in an elevated levels of cell death in ein2-5 and ein3-1 plants and the event were amended in ctr1-1 plants after salt treatment. The subsequent experiment with exogenous ACC further corroborated that ethylene could modulate salt-induced PCD process actively. Plant Bcl-2-associated athanogene (BAG) family genes are recently identified to play an extensive role in plant PCD processes ranging from growth, development to stress responses and even cell death. Our result showed that salinity alone significantly suppressed the transcripts of BAG6, BAG7 and addition of ACC in the saline solution could obviously re-activate BAG6 and BAG7 expressions, which might play a key role to inhibit the salt-induced cell death. In summary, our research implies that ethylene and salinity antagonistically control BAG family-, ethylene-, and senescence-related genes to alleviate the salt-induced cell death. PMID:27242886

  18. Large Perovskite Grain Growth in Low-Temperature Solution-Processed Planar p-i-n Solar Cells by Sodium Addition.

    Science.gov (United States)

    Bag, Santanu; Durstock, Michael F

    2016-03-01

    Thin-film p-i-n type planar heterojunction perovskite solar cells have the advantage of full low temperature solution processability and can, therefore, be adopted in roll-to-roll production and flexible devices. One of the main challenges with these devices, however, is the ability to finely control the film morphology during the deposition and crystallization of the perovskite layer. Processes suitable for optimization of the perovskite layer film morphology with large grains are highly desirable for reduced recombination of charge carriers. Here, we show how uniform thin films with micron size perovskite grains can be made through the use of a controlled amount of sodium ions in the precursor solution. Large micrometer-size CH3NH3PbI3 perovskite grains are formed during low-temperature thin-film growth by adding sodium ions to the PbI2 precursor solution in a two-step interdiffusion process. By adjusting additive concentration, film morphologies were optimized and the fabricated p-i-n planar perovskite-PCBM solar cells showed improved power conversion efficiences (an average of 3-4% absolute efficiency enhancement) compared to the nonsodium based devices. Overall, the additive enhanced grain growth process helped to reach a high 14.2% solar cell device efficiency with low hysteresis. This method of grain growth is quite general and provides a facile way to fabricate large-grained CH3NH3PbI3 on any arbitrary surface by an all solution-processed route. PMID:26862869

  19. Large Perovskite Grain Growth in Low-Temperature Solution-Processed Planar p-i-n Solar Cells by Sodium Addition.

    Science.gov (United States)

    Bag, Santanu; Durstock, Michael F

    2016-03-01

    Thin-film p-i-n type planar heterojunction perovskite solar cells have the advantage of full low temperature solution processability and can, therefore, be adopted in roll-to-roll production and flexible devices. One of the main challenges with these devices, however, is the ability to finely control the film morphology during the deposition and crystallization of the perovskite layer. Processes suitable for optimization of the perovskite layer film morphology with large grains are highly desirable for reduced recombination of charge carriers. Here, we show how uniform thin films with micron size perovskite grains can be made through the use of a controlled amount of sodium ions in the precursor solution. Large micrometer-size CH3NH3PbI3 perovskite grains are formed during low-temperature thin-film growth by adding sodium ions to the PbI2 precursor solution in a two-step interdiffusion process. By adjusting additive concentration, film morphologies were optimized and the fabricated p-i-n planar perovskite-PCBM solar cells showed improved power conversion efficiences (an average of 3-4% absolute efficiency enhancement) compared to the nonsodium based devices. Overall, the additive enhanced grain growth process helped to reach a high 14.2% solar cell device efficiency with low hysteresis. This method of grain growth is quite general and provides a facile way to fabricate large-grained CH3NH3PbI3 on any arbitrary surface by an all solution-processed route.

  20. Assessing the effect of leachate of copper slag from the ISASMELT process on cell growth and proximate components in microalgae, Chlorella vulgaris (Beijerinck)

    Digital Repository Service at National Institute of Oceanography (India)

    Harish, V.; Sreepada, R.A.; Suryavanshi, U.; Shanmuganathan, P.; Sumathy, A.

    vulgaris (Beijerinck), were assessed under laboratory conditions. An inhibitory effect of CSL on cell growth (14.3%) was well below the defined criteria of 50% using algal growth inhibition test. Cellular concentrations of the total protein (TP) in CSL...

  1. Firms' age, process innovation and productivity growth

    OpenAIRE

    Huergo, Elena; Jaumandreu, Jordi

    2004-01-01

    This paper looks directly at the impact of firms' age and (process) innovations on productivity growth. A model that specifies productivity growth as an unknown function of these variables is devised and estimated using semiparametric methods. Results show that firms enter the market experiencing high productivity growth and that above-average growth rates tend to last for many years, but also that productivity growth of surviving firms converges. Process innovations at some point then lead t...

  2. [Stem cells and growth factors in wound healing].

    Science.gov (United States)

    Pikuła, Michał; Langa, Paulina; Kosikowska, Paulina; Trzonkowski, Piotr

    2015-01-01

    Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), vascular endothelial growth factor (VEGF). Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.

  3. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette;

    1999-01-01

    Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood little...... cloned a novel GH/PRL stimulated rat islet gene product, Pref-1 (preadipocyte factor-1). This protein contains six EGF-like motifs and may play a role both in embryonic pancreas differentiation and in beta cell growth and function. In summary, the increasing knowledge about the mechanisms involved...... increase in the beta cell number seems to occur. In pregnancy, however, a marked hyperplasia of the beta cells is observed both in rodents and man. Increased mitotic activity has been seen both in vivo and in vitro in islets exposed to placental lactogen (PL), prolactin (PRL) and growth hormone (GH...

  4. Continuous wet-process growth of ZnO nanoarrays for wire-shaped photoanode of dye-sensitized solar cell.

    Science.gov (United States)

    Tao, Pan; Guo, Wanwan; Du, Jun; Tao, Changyuan; Qing, Shenglan; Fan, Xing

    2016-09-15

    Well-aligned ZnO nanorod arrays have been grown on metal-plated polymer fiber via a mild wet process in a newly-designed continuous reactor, aiming to provide wire-shaped photoanodes for wearable dye-sensitized solar cells. The growth conditions were systematically optimized with the help of computational flow-field simulation. The flow field in the reactor will not only affect the morphology of the ZnO nanorod⧹nanowire but also affect the pattern distribution of nanoarray on the electrode surface. Unlike the sectional structure from the traditional batch-type reactor, ZnO nanorods with finely-controlled length and uniform morphology could be grown from the continuous reactor. After optimization, the wire-shaped ZnO-type photoanode grown from the continuous reactor exhibited better photovoltaic performance than that from the traditional batch-type reactor. PMID:27289432

  5. Re-imagining the Growth Process

    DEFF Research Database (Denmark)

    Clarke, Jean; Holt, Robin; Blundel, Richard

    2014-01-01

    We investigate the role and influence of the biological metaphor 'growth' in studies of organizations, specifically in entrepreneurial settings. We argue that we need to reconsider metaphorical expressions of growth processes in entrepreneurship studies in order to better understand growth in the...

  6. Growth of gold nanoparticles in human cells.

    Science.gov (United States)

    Anshup, Anshup; Venkataraman, J Sai; Subramaniam, Chandramouli; Kumar, R Rajeev; Priya, Suma; Kumar, T R Santhosh; Omkumar, R V; John, Annie; Pradeep, T

    2005-12-01

    Gold nanoparticles of 20-100 nm diameter were synthesized within HEK-293 (human embryonic kidney), HeLa (human cervical cancer), SiHa (human cervical cancer), and SKNSH (human neuroblastoma) cells. Incubation of 1 mM tetrachloroaurate solution, prepared in phosphate buffered saline (PBS), pH 7.4, with human cells grown to approximately 80% confluency yielded systematic growth of nanoparticles over a period of 96 h. The cells, stained due to nanoparticle growth, were adherent to the bottom of the wells of the tissue culture plates, with their morphology preserved, indicating that the cell membrane was intact. Transmission electron microscopy of ultrathin sections showed the presence of nanoparticles within the cytoplasm and in the nucleus, the latter being much smaller in dimension. Scanning near field microscopic images confirmed the growth of large particles within the cytoplasm. Normal cells gave UV-visible signatures of higher intensity than the cancer cells. Differences in the cellular metabolism of cancer and noncancer cells were manifested, presumably in their ability to carry out the reduction process. PMID:16316080

  7. New Firm Growth: Exploring Processes and Paths

    OpenAIRE

    Garnsey, E.; Stam, Erik; Heffernan, P.; Hugo, O.

    2003-01-01

    textabstractThis paper provides a new methodology for the diachronic study of new firm growth, theoretically grounded in the work of Penrose (1995). We show that a model of firm growth as an unfolding process makes possible draw simple, measurable inferences from firm level to aggregate evidence on growth paths of new firms, expressed as propositions. Metrics on growth paths of new firms in three longitudinal samples of new firms are examined for evidence at the aggregate level consistent wit...

  8. Ethylene Antagonizes Salt-Induced Growth Retardation and Cell Death Process via Transcriptional Controlling of Ethylene-, BAG- and Senescence-Associated Genes in Arabidopsis

    OpenAIRE

    Pan, Ya-Jie; Liu, Ling; Lin, Ying-Chao; Zu, Yuan-Gang; Li, Lei-Peng; Tang, Zhong-Hua

    2016-01-01

    The existing question whether ethylene is involved in the modulation of salt-induced cell death to mediate plant salt tolerance is important for understanding the salt tolerance mechanisms. Here, we employed Arabidopsis plants to study the possible role of ethylene in salt-induced growth inhibition and programmed cell death (PCD) profiles. The root length, DNA ladder and cell death indicated by Evan's blue detection were measured by compared to the control or salt-stressed seedlings. Secondly...

  9. Ethylene antagonizes salt-induced growth retardation and cell death process via transcriptional controlling of ethylene-, BAG- and senescence-associated genes in Arabidopsis

    OpenAIRE

    YaJie ePan; Ling eLiu; YingChao eLin; YuanGang eZu; Zhonghua eTang; LeiPeng eLi

    2016-01-01

    The existing question whether ethylene is involved in the modulation of salt-induced cell death to mediate plant salt tolerance is important for understanding the salt tolerance mechanisms. Here, we employed Arabidopsis plants to study the possible role of ethylene in salt-induced growth inhibition and programmed cell death (PCD) profiles. The root length, DNA ladder and cell death indicated by Evan’s blue detection were measured by compared to the control or salt-stressed seedlings. Secondly...

  10. Beyond growth: novel functions for bacterial cell wall hydrolases.

    Science.gov (United States)

    Wyckoff, Timna J; Taylor, Jennifer A; Salama, Nina R

    2012-11-01

    The peptidoglycan cell wall maintains turgor pressure and cell shape of most bacteria. Cell wall hydrolases are essential, together with synthases, for growth and daughter cell separation. Recent work in diverse organisms has uncovered new cell wall hydrolases that act autonomously or on neighboring cells to modulate invasion of prey cells, cell shape, innate immune detection, intercellular communication, and competitor lysis. The hydrolases involved in these processes catalyze the cleavage of bonds throughout the sugar and peptide moities of peptidoglycan. Phenotypes associated with these diverse hydrolases reveal new functions of the bacterial cell wall beyond growth and division.

  11. New Firm Growth: Exploring Processes and Paths

    NARCIS (Netherlands)

    E. Garnsey; F.C. Stam (Erik); P. Heffernan; O. Hugo

    2003-01-01

    textabstractThis paper provides a new methodology for the diachronic study of new firm growth, theoretically grounded in the work of Penrose (1995). We show that a model of firm growth as an unfolding process makes possible draw simple, measurable inferences from firm level to aggregate evidence on

  12. Advanced Materials Growth and Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This most extensive of U.S. Army materials growth and processing facilities houses seven dedicated, state-of-the-art, molecular beam epitaxy and three metal organic...

  13. Bounds on bacterial cell growth rates

    CERN Document Server

    Landy, Jonathan

    2013-01-01

    Recent experiments have shown that rod-like bacteria in nutrient-rich media grow in length at an exponential rate. Here, I point out that it is the elongated shape of these bacteria that allows for this behavior. Further, I show that when a bacterium's growth is limited by some nutrient -- taken in by the cell through a diffusion-to-capture process -- its growth is suppressed: In three-dimensional geometries, the length $L$ is bounded by $\\log L \\lesssim t^{1/2}$, while in two dimensions the length is bounded by a power-law form. Fits of experimental growth curves to these predicted, sub-exponential forms could allow for direct measures of quantities relating to cellular metabolic rates.

  14. Growth and differentiation: Life processes in crops

    OpenAIRE

    Bloksma, Joke; Huber, Machteld

    2002-01-01

    This booklet discusses two basic life processes in nature:growth and differentiation.It uses the examples of apples,carrots and wheat to illustrate how growers can recognize these processes and can take practical measures to correct the balance between them in order to optimize the quality of their products.Thinking in growth and differentiation has proved valuable in the support,offered to growers by the Louis Bolk Instituut. It also speculates about the possible significance of these proces...

  15. Circadian rhythm and cell population growth

    CERN Document Server

    Clairambault, Jean; Lepoutre, Thomas

    2010-01-01

    Molecular circadian clocks, that are found in all nucleated cells of mammals, are known to dictate rhythms of approximately 24 hours (circa diem) to many physiological processes. This includes metabolism (e.g., temperature, hormonal blood levels) and cell proliferation. It has been observed in tumor-bearing laboratory rodents that a severe disruption of these physiological rhythms results in accelerated tumor growth. The question of accurately representing the control exerted by circadian clocks on healthy and tumour tissue proliferation to explain this phenomenon has given rise to mathematical developments, which we review. The main goal of these previous works was to examine the influence of a periodic control on the cell division cycle in physiologically structured cell populations, comparing the effects of periodic control with no control, and of different periodic controls between them. We state here a general convexity result that may give a theoretical justification to the concept of cancer chronothera...

  16. A dynamic model of tomato fruit growth integrating cell division, cell growth and endoreduplication

    NARCIS (Netherlands)

    Fanwoua, J.; Visser, de P.H.B.; Heuvelink, E.; Yin, X.; Struik, P.C.; Marcelis, L.F.M.

    2013-01-01

    In this study, we developed a model of tomato (Solanum lycopersicum L.) fruit growth integrating cell division, cell growth and endoreduplication. The fruit was considered as a population of cells grouped in cell classes differing in their initial cell age and cell mass. The model describes fruit gr

  17. On size and growth of cells

    CERN Document Server

    Boudaoud, A

    2002-01-01

    Understanding how growth induces form is a longstanding biological question. Many studies concentrated on the shapes of plant cells, fungi or bacteria. Some others have shown the importance of the mechanical properties of bacterial walls and plant tissues in pattern formation. Here I sketch a simple physical picture of cell growth. The study is focussed on isolated cells that have walls. They are modeled as thin elastic shells containing a liquid, which pressure drives the growth as generally admitted for bacteria or plant cells. Requiring mechanical equilibrium leads to estimations of typical cell sizes, in quantitative agreement with compiled data including bacteria, cochlear outer hair, fungi, yeast, root hair and giant alga cells.

  18. CdS/Cd Te solar cells. Part I. Solar cells processed by the gradient recrystallization and growth technique (GREG); Celdas solares de heterounion de CdS/CdTe. Parte I. Celdas solares procesadas por la tecnica GREG

    Energy Technology Data Exchange (ETDEWEB)

    Tufino V, M.; Contreras P, G.; Albor A, M.L.; Gonzalez T, M.A. [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional , 07738 Mexico D.F. (Mexico); Compaan, A.D. [Department of Physics and Astronomy and Center for Materials Science and Engineering, The University of Toledo, Toledo OH 43606 (United States)

    1998-12-31

    In this paper we present the processing and characterization of thin film CdS/Cd Te solar cells obtained by the gradient recrystallization and growth technique, GREG. The cells were deposited on soda-lime LOF{sup TM} conducting glass substrates and Cu-Au contacts were evaporated on top of the Cd Te film. The films deposition conditions were: for CdS the source temperature T{sub f} varied between 750 and 800 Centigrade and the substrate temperature T{sub s} varied between 480 and 550 Centigrade, while for Cd Te T{sub f} varied between 570 and 650 Centigrade and T{sub s} from 460 to 480 Centigrade; both films were deposited under a constant Ar gas pressure. The films were characterized by X-ray diffraction, atomic force microscopy, optical absorption and photoluminescence . Both CdS and Cd Te films were polycrystalline with preferential orientation in the (002) direction for CdS and in the (111) direction for Cd Te; the grain size ranges for the films were 0.2-1 {mu} m for CdS and 0.5-5 {mu} m for Cd Te. The solar cell photoconductive parameters were determined yielding the best cell performance values of V{sub OC} = 0.7 V, J{sub SC} = 31 m A/cm{sup 2} , f f = 50% , SQE{sub max} = 0.6 elect./photon at 550 nm and 8 % solar energy conversion efficiency. (Author)

  19. Stochastic Gompertz model of tumour cell growth.

    Science.gov (United States)

    Lo, C F

    2007-09-21

    In this communication, based upon the deterministic Gompertz law of cell growth, a stochastic model in tumour growth is proposed. This model takes account of both cell fission and mortality too. The corresponding density function of the size of the tumour cells obeys a functional Fokker--Planck equation which can be solved analytically. It is found that the density function exhibits an interesting "multi-peak" structure generated by cell fission as time evolves. Within this framework the action of therapy is also examined by simply incorporating a therapy term into the deterministic cell growth term.

  20. Deciphering dynamical patterns of growth processes

    International Nuclear Information System (INIS)

    Large systems of statistical physics often display properties that are independent of particulars that characterize their microscopic components. Universal dynamical patterns are manifested by the presence of scaling laws, which provides a common insight into governing physics of processes as vastly diverse as, e.g., growth of geological formations and processes underlying social patterns. Here, the author provides highlights from this vibrant arena of interdisciplinary research and suggests that times call for augmenting undergraduate physics curriculum.

  1. Another brick in the cell wall: biosynthesis dependent growth model.

    Directory of Open Access Journals (Sweden)

    Adelin Barbacci

    Full Text Available Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  2. Growth kinetics of Thiobacillus ferrooxidans in bioelectrochemical cell

    Institute of Scientific and Technical Information of China (English)

    李宏煦; 王淀佐; 邱冠周; 胡岳华

    2004-01-01

    Thiobacillus ferrooxidans might be the most important bacteria used in biometallurgy. The foundation way of its growth process is oxidizing ferrous in order to obtain energy needed for metabolism, but the variation of ferrous concentration and mixed potential of the culture media would have crucial effect on the bacteria growth.Based on the characteristics of Thiobacillus ferrooxidans growth and redox potential of ferric and ferrous, an electrochemical cell was designed conventionally to study growth rule and the relationship between redox potential and bacteria growth was built up, and some growth kinetics of Thiobacillus ferrooxidans were elucidated. It demonstrates that the variation of open potential of electrochemical cell △E shows the growth tendency of Thiobacillus ferrooxidans, at the initial growth stage, the value of △E increases slowly, when at logistic growth stage, it increases drastically, and the growth rate of bacteria is linear with the oxidation rate of ferrous. The bacteria growth kinetics model is proposed using Monod and Michealis-Menten equation, and the kinetics parameters are got. The consistence of the measured and the calculated results proves that it is proper to use the proposed kinetics model and the electrochemical cell method to describe the growth rule of Thiobacillus ferrooxidans.

  3. Human vascular smooth muscle cells both express and respond to heparin-binding growth factor I (endothelial cell growth factor).

    OpenAIRE

    Winkles, J A; Friesel, R; Burgess, W H; Howk, R; Mehlman, T; Weinstein, R.; T. MACIAG

    1987-01-01

    The control of vascular endothelial and smooth muscle cell proliferation is important in such processes as tumor angiogenesis, wound healing, and the pathogenesis of atherosclerosis. Class I heparin-binding growth factor (HBGF-I) is a potent mitogen and chemoattractant for human endothelial cells in vitro and will induce angiogenesis in vivo. RNA gel blot hybridization experiments demonstrate that cultured human vascular smooth muscle cells, but not human umbilical vein endothelial cells, exp...

  4. Growth regulation of cultured human nevus cells.

    Science.gov (United States)

    Mancianti, M L; Györfi, T; Shih, I M; Valyi-Nagy, I; Levengood, G; Menssen, H D; Halpern, A C; Elder, D E; Herlyn, M

    1993-03-01

    Cells isolated from congenital melanocytic nevi and cultured in vitro have growth characteristics that resemble their premalignant stage in situ. A serum-free, chemically defined medium has been developed that allows continuous growth of established nevus cultures for up to several months. Like primary melanoma cells, nevus cells in high-calcium-containing W489 medium require insulin for growth. In contrast to melanoma cells, nevus cells in serum-free medium require the presence of alpha-melanocyte-stimulating hormone, which enhanced intracellular levels of cyclic adenosine monophosphate. In contrast to the requirements of normal human melanocytes from newborn foreskin, congenital nevus cells grow with less dependency on basic fibroblast growth factor (bFGF). Nevus cultures contain bFGF-like activity, and they express bFGF mRNA. Nevic cells of compound nevi also express bFGF mRNA in situ but only in the junctional areas. These results indicate that bFGF plays an important growth regulatory role for nevus cells in vitro and in vivo. PMID:8440904

  5. Tomato fruit growth : integrating cell division, cell growth and endoreduplication by experimentation and modelling

    NARCIS (Netherlands)

    Fanwoua, J.

    2012-01-01

    Keywords: cell division, cell growth, cell endoreduplication, fruit growth, genotype, G×E interaction, model, tomato. Fruit size is a major component of fruit yield and quality of many crops. Variations in fruit size can be tremendous due to genotypic and environmental factors. The mechanisms

  6. Growth mechanism of thermally processed Cu(In,Ga)S{sub 2} precursors for printed Cu(In,Ga)(S,Se){sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Klugius, Ines; Quintilla, Aina; Friedlmeier, Theresa M.; Blazquez-Sanchez, David; Ahlswede, Erik; Powalla, Michael [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany); Miller, Rebekah [EMD Millipore, Waltham, MA (United States)

    2012-07-15

    We investigate a process used for the selenisation of particle-based precursors to prepare low-cost Cu(In,Ga)(S,Se){sub 2} (CIGS) solar cells. It is suitable for high throughput with a short optimum selenisation duration of 3-5 min and employs a rapid thermal annealing system with elemental selenium vapour. Homogeneous crack-free Cu(In,Ga)S{sub 2} precursor films of up to 1 {mu}m are obtained via doctor blading. The high selenium vapour pressure in the selenisation reaction chamber results in the formation of a compact Cu(In,Ga)(S,Se){sub 2} layer on top of a carbon-rich underlayer. In order to investigate the phase development in the film, the selenisation process was interrupted at different stages and the samples were monitored via XRD and surface-sensitive Raman measurements. We find the formation of a polycrystalline Cu(In,Ga)Se{sub 2} phase already after 1 s at the target temperature of 550 C. Furthermore, the effect of initial precursor thickness on solar cell parameters is discussed. Complete solar cells are prepared by conventional methods, leading to conversion efficiencies well above 8%. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Shape of growth cells in directional solidification.

    Science.gov (United States)

    Pocheau, A; Georgelin, M

    2006-01-01

    The purpose of this study is to characterize experimentally the whole shape of the growth cells displayed in directional solidification and its evolution with respect to control parameters. A library of cells is first built up from observation of directional solidification of a succinonitrile alloy in a large range of pulling velocity, cell spacing, and thermal gradient. Cell boundaries are then extracted from these images and fitted by trial functions on their whole profile, from cell tip to cell grooves. A coherent evolution of the fit parameters with the control parameters is evidenced. It enables us to characterize the whole cell shape by a single function involving only two parameters which vary smoothly in the control parameter space. This, in particular, evidences a continuous evolution of the cell geometry at the cell to dendrite transition which denies the existence of a change of branch of solutions at the occurrence of sidebranching. More generally, this global determination of cell shape complemented with a previous determination of the position of cells in the thermal field (the cell tip undercooling) provides a complete characterization of growth solutions and of their evolutions in this system. It thus brings about a relevant framework for testing and improving theoretical and numerical understanding of cell shapes and cell stability in directional solidification.

  8. Growth process of helium bubbles in aluminum

    International Nuclear Information System (INIS)

    The growth process of helium bubbles in α-particle bombarded pure aluminum during isothermal anneal at 200 to 6450C for 1 hr to 100 hr was observed by transmission electronmicroscopy and possible mechanisms are discussed. The effects of helium concentration and cold work were investigated. Helium bubbles are detectable only by annealing above 5500C for 1 hr in both the annealed and cold worked samples. The cold work does not cause any extra coarsening trend of bubbles. The observed types of the bubble distribution are divided into two categories, irrespective of helium concentration and cold work; (1) fine and uniform bubble distribution, in which case the average size is limited to about 200 A or less in diameter even by the anneal just below the melting point, and (2) the coarsened and nonuniform bubble distribution ranging from 500 to 4000 A in diameter. The intermediate size bubbles are scarcely found in any cases. In the above fine bubble distribution, the increase of helium concentration by a factor of two increases the density by the same factor of two, but does not change the mean size of bubbles. From these two characteristic bubble distributions, it is concluded that two different mechanisms are operative in this experiment (1) the growth of bubbles by Brownian motion, in which the growth rate of bubbles is decreased to almost zero by bubble faceting and this results in the bubble size constancy during the prolonged annealing, and (2) the growth of bubbles by the grain boundary sweep-out mechanism, by which the abrupt coarsening of bubbles is caused. The lack of the intermediate size bubble is explained in this way. (auth.)

  9. Cell-specific precursor processing

    DEFF Research Database (Denmark)

    Rehfeld, Jens F; Bundgaard, Jens R

    2010-01-01

    The singular gene for a peptide hormone is expressed not only in a specific endocrine cell type but also in other endocrine cells as well as in entirely different cells such as neurons, adipocytes, myocytes, immune cells, and cells of the sex-glands. The cellular expression pattern for each gene...... varies with development, time and species. Endocrine regulation is, however, based on the release of a given hormone from an endocrine cell to the general circulation from whose cappilaries the hormone reaches the specific target cell elsewhere in the body. The widespread expression of hormone genes in...... different cells and tissues therefore requires control of biogenesis and secretion in order to avoid interference with the function of a specific hormonal peptide from a particular endocrine cell. Several mechanisms are involved in such control, one of them being cell-specific processing of prohormones. The...

  10. Modeling Stem Cell Induction Processes

    OpenAIRE

    Filipe Grácio; Joaquim Cabral; Bruce Tidor

    2012-01-01

    Technology for converting human cells to pluripotent stem cell using induction processes has the potential to revolutionize regenerative medicine. However, the production of these so called iPS cells is still quite inefficient and may be dominated by stochastic effects. In this work we build mass-action models of the core regulatory elements controlling stem cell induction and maintenance. The models include not only the network of transcription factors NANOG, OCT4, SOX2, but also important e...

  11. Aspects of plant cell growth and the actin cytoskeleton: lessons from root hairs

    NARCIS (Netherlands)

    Ruijter, de N.C.A.

    1999-01-01

    The main topic the thesis addresses is the role of the actin cytoskeleton in the growth process of plant cells. Plant growth implies a combination of cell division and cell expansion. The cytoskeleton, which exists of microtubules and actin filaments, plays a major role in both processes. Before cel

  12. The pituitary growth hormone cell in space

    Science.gov (United States)

    Hymer, Wesley C.; Grindeland, R.

    1989-01-01

    Growth hormone (GH), produced and secreted from specialized cells in the pituitary gland, controls the metabolism of protein, fat, and carbohydrate. It is also probably involved in the regulation of proper function of bone, muscle and immune systems. The behavior of the GH cell system was studied by flying either isolated pituitary cells or live rats. In the latter case, pituitary GH cells are prepared on return to earth and then either transplanted into hypophysectomized rats or placed into cell culture so that function of GH cells in-vivo vs. in-vitro can be compared. The results from three flights to date (STS-8, 1983; SL-3, 1985; Cosmos 1887, 1987) established that the ability of GH cells to release hormone, on return to earth, is compromised. The mechanism(s) responsible for this attenuation response is unknown. However, the data are sufficiently positive to indicate that the nature of the secretory defect resides directly within the GH cells.

  13. Engraftment and Differentiation of Embryonic Stem Cell–Derived Neural Progenitor Cells in the Cochlear Nerve Trunk: Growth of Processes into the Organ of Corti

    OpenAIRE

    Corrales, C. Eduardo; Pan, Luying; Li, Huawei; Liberman, M. Charles; Heller, Stefan; Edge, Albert S. B.

    2006-01-01

    Hearing loss in mammals is irreversible because cochlear neurons and hair cells do not regenerate. To determine whether we could replace neurons lost to primary neuronal degeneration, we injected EYFP-expressing embryonic stem cell–derived mouse neural progenitor cells into the cochlear nerve trunk in immunosuppressed animals 1 week after destroying the cochlear nerve (spiral ganglion) cells while leaving hair cells intact by ouabain application to the round window at the base of the cochlea ...

  14. Human vascular smooth muscle cells both express and respond to heparin-binding growth factor I (endothelial cell growth factor)

    Energy Technology Data Exchange (ETDEWEB)

    Winkles, J.A.; Friesel, R.; Burgess, W.H.; Howk, R.; Mehlman, T.; Weinstein, R.; Maciag, T.

    1987-10-01

    The control of vascular endothelial and muscle cell proliferation is important in such processes as tumor angiogenesis, wound healing, and the pathogenesis of atherosclerosis. Class I heparin-binding growth factor (HBGF-I) is a potent mitogen and chemoattractant for human endothelial cells in vitro and will induce angiogenesis in vivo. RNA gel blot hybridization experiments demonstrate that cultured human vascular smooth muscle cells, but not human umbilical cells also synthesize an HBGF-I mRNA. Smooth muscle cells also synthesize an HBGF-I-like polypeptide since (i) extract prepared from smooth muscle cells will compete with /sup 125/I-labeled HBGF-I for binding to the HBGF-I cell surface receptor, and (ii) the competing ligand is eluted from heparin-Sepharose affinity resin at a NaCl concentration similar to that required by purified bovine brain HBGF-I and stimulates endothelial cell proliferation in vitro. Furthermore, like endothelial cells, smooth muscle cells possess cell-surface-associated HBGF-I receptors and respond to HBGF-I as a mitogen. These results indicate the potential for an additional autocrine component of vascular smooth muscle cell growth control and establish a vessel wall source of HBGF-I for endothelial cell division in vivo.

  15. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C

    2014-01-01

    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  16. Terrestrial photovoltaic cell process testing

    Science.gov (United States)

    Burger, D. R.

    1985-01-01

    The paper examines critical test parameters, criteria for selecting appropriate tests, and the use of statistical controls and test patterns to enhance PV-cell process test results. The coverage of critical test parameters is evaluated by examining available test methods and then screening these methods by considering the ability to measure those critical parameters which are most affected by the generic process, the cost of the test equipment and test performance, and the feasibility for process testing.

  17. Obtaining Communities with a Fitness Growth Process

    CERN Document Server

    Beiró, Mariano G; Grynberg, Sebastian P; Alvarez-Hamelin, J Ignacio

    2015-01-01

    The study of community structure has been a hot topic of research over the last years. But, while successfully applied in several areas, the concept lacks of a general and precise notion. Facts like the hierarchical structure and heterogeneity of complex networks make it difficult to unify the idea of community and its evaluation. The global functional known as modularity is probably the most used technique in this area. Nevertheless, its limits have been deeply studied. Local techniques as the ones by Lancichinetti et al. and Palla et al. arose as an answer to the resolution limit and degeneracies that modularity has. Here we start from the algorithm by Lancichinetti et al. and propose a unique growth process for a fitness function that, while being local, finds a community partition that covers the whole network, updating the scale parameter dynamically. We test the quality of our results by using a set of benchmarks of heterogeneous graphs. We discuss alternative measures for evaluating the community struc...

  18. Role of Rate of Specific Growth Rate in Different Growth Processes: A First Principle Approach

    CERN Document Server

    Biswas, Dibyendu; Patra, Sankar Nayaran

    2015-01-01

    In the present communication, effort is given for the development of a common platform that helps to address several growth processes found in literature. Based on first principle approach, the role of rate of specific growth rate in different growth processes has been considered in an unified manner. It is found that different growth equations can be derived from the same rate equation of specific growth rate. The dependence of growth features of different growth processes on the parameters of the rate equation of specific growth rate has been examined in detail. It is found that competitive environment may increase the saturation level of population size. The exponential growth could also be addressed in terms of two important factors of growth dynamics, as reproduction and competition. These features are, most probably, not reported earlier.

  19. Sustained growth in small enterprises: a process management approach

    OpenAIRE

    Rose, T. J.

    2003-01-01

    This thesis illustrates that given the necessary resource and a structured Business Growth Framework, Small and Medium Enterprises can lay the foundation for sustained growth. The author investigated the essence of Small and Medium Enterprises, conducted a literature review in SME growth, and asserted the importance of the application of structure to business processes in achieving sustainable business growth. The author introduced the SME business process structure deficit,...

  20. An open source image processing method to quantitatively assess tissue growth after non-invasive magnetic resonance imaging in human bone marrow stromal cell seeded 3D polymeric scaffolds.

    Directory of Open Access Journals (Sweden)

    Anne M Leferink

    Full Text Available Monitoring extracellular matrix (ECM components is one of the key methods used to determine tissue quality in three-dimensional (3D scaffolds for regenerative medicine and clinical purposes. This is even more important when multipotent human bone marrow stromal cells (hMSCs are used, as it could offer a method to understand in real time the dynamics of stromal cell differentiation and eventually steer it into the desired lineage. Magnetic Resonance Imaging (MRI is a promising tool to overcome the challenge of a limited transparency in opaque 3D scaffolds. Technical limitations of MRI involve non-uniform background intensity leading to fluctuating background signals and therewith complicating quantifications on the retrieved images. We present a post-imaging processing sequence that is able to correct for this non-uniform background intensity. To test the processing sequence we investigated the use of MRI for in vitro monitoring of tissue growth in three-dimensional poly(ethylene oxide terephthalate-poly(butylene terephthalate (PEOT/PBT scaffolds. Results showed that MRI, without the need to use contrast agents, is a promising non-invasive tool to quantitatively monitor ECM production and cell distribution during in vitro culture in 3D porous tissue engineered constructs.

  1. Budding yeast colony growth study based on circular granular cell

    Science.gov (United States)

    Aprianti, Devi; Khotimah, S. N.; Viridi, S.

    2016-08-01

    Yeast colony growth can be modelled by using circular granular cells, which can grow and produce buds. The bud growth angle can be set to regulate cell budding pattern. Cohesion force, contact force and Stokes force were adopted to accommodate the behaviour and interactions among cells. Simulation steps are divided into two steps, the explicit step is due to cell growing and implicit step for the cell rearrangement. Only in explicit step that time change was performed. In this study, we examine the influence of cell diameter growth time and reproduction time combination toward the growth of cell number and colony formation. We find a commutative relation between the cell diameter growth time and reproduction time to the specific growth rate. The greater value of the multiplication of the parameters, the smaller specific growth rate is obtained. It also shows a linear correlation between the specific growth rate and colony diameter growth rate.

  2. Adrenomedullin as a Growth and Cell Fate Regulatory Factor for Adult Neural Stem Cells

    OpenAIRE

    Sonia Martínez-Herrero; Ignacio M Larráyoz; Laura Ochoa-Callejero; Josune García-Sanmartín; Alfredo Martínez

    2012-01-01

    The use of stem cells as a strategy for tissue repair and regeneration is one of the biomedical research areas that has attracted more interest in the past few years. Despite the classic belief that the central nervous system (CNS) was immutable, now it is well known that cell turnover occurs in the mature CNS. Postnatal neurogenesis is subjected to tight regulation by many growth factors, cell signals, and transcription factors. An emerging molecule involved in this process is adrenomedullin...

  3. Models of lipid droplets growth and fission in adipocyte cells

    International Nuclear Information System (INIS)

    Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the

  4. Models of lipid droplets growth and fission in adipocyte cells

    Energy Technology Data Exchange (ETDEWEB)

    Boschi, Federico, E-mail: federico.boschi@univr.it [Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Rizzatti, Vanni; Zamboni, Mauro [Department of Medicine, Geriatric Section, University of Verona, Piazzale Stefani 1, 37126 Verona (Italy); Sbarbati, Andrea [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2015-08-15

    Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the

  5. Arabidopsis Growth Simulation Using Image Processing Technology

    Directory of Open Access Journals (Sweden)

    Junmei Zhang

    2014-01-01

    Full Text Available This paper aims to provide a method to represent the virtual Arabidopsis plant at each growth stage. It includes simulating the shape and providing growth parameters. The shape is described with elliptic Fourier descriptors. First, the plant is segmented from the background with the chromatic coordinates. With the segmentation result, the outer boundary series are obtained by using boundary tracking algorithm. The elliptic Fourier analysis is then carried out to extract the coefficients of the contour. The coefficients require less storage than the original contour points and can be used to simulate the shape of the plant. The growth parameters include total area and the number of leaves of the plant. The total area is obtained with the number of the plant pixels and the image calibration result. The number of leaves is derived by detecting the apex of each leaf. It is achieved by using wavelet transform to identify the local maximum of the distance signal between the contour points and the region centroid. Experiment result shows that this method can record the growth stage of Arabidopsis plant with fewer data and provide a visual platform for plant growth research.

  6. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  7. Analysis of Vero cell growth behavior on microcarrier by means of environmental scanning electron microscopy

    Institute of Scientific and Technical Information of China (English)

    邵曼君; 姜蕾; 丛威; 欧阳藩

    2002-01-01

    By using environmental scanning electron microscopy, the morphological changes of Vero cells attached to and grown on the microcarrier Cytodex-3 were observed, and their behavior of adhesion, spreading and proliferation was analyzed. The effect of exogenous fibronectin/ laminin on adhesion and spreading of MCC/Vero cell was studied. The images of ESEM showed that expansion of cell growth was directed toward vacancy space. The growth curve and cell concentration change during the whole culture process were obtained from the statistical counting method based on ESEM images and the crystal violet method. The growth rate of Vero cells increases with increasing the concentration of cell inoculation, that is, the specific growth rate increases quickly with increasing the concentration of cell inoculation. When serum concentration in medium #199 ranged from 5% to 10%, experimental results indicated that serum concentration is one of the important factors influencing cell growth, particularly in the cell adhesion and spreading stage.

  8. Analysis of Vero cell growth behavior on microcarrier by means of environmental scanning electron microscopy.

    Science.gov (United States)

    Shao, Manjun; Jiang, Lei; Cong, Wei; Ouyang, Fan

    2002-04-01

    By using environmental scanning electron microscopy, the morphological changes of Vero cells attached to and grown on the microcarrier Cytodex-3 were observed, and their behavior of adhesion, spreading and proliferation was analyzed. The effect of exogenous fibronectin/ laminin on adhesion and spreading of MCC/Vero cell was studied. The images of ESEM showed that expansion of cell growth was directed toward vacancy space. The growth curve and cell concentration change during the whole culture process were obtained from the statistical counting method based on ESEM images and the crystal violet method. The growth rate of Vero cells increases with increasing the concentration of cell inoculation, that is, the specific growth rate increases quickly with increasing the concentration of cell inoculation. When serum concentration in medium #199 ranged from 5% to 10%, experimental results indicated that serum concentration is one of the important factors influencing cell growth, particularly in the cell adhesion and spreading stage. PMID:18763074

  9. Thermally activated processes of fatigue crack growth in steels

    Science.gov (United States)

    Tanaka, Masaki; Fujii, Atsushi; Noguchi, Hiroshi; Higashida, Kenji

    2014-02-01

    Fatigue crack growth rates in steels at high and low temperatures have been investigated using Paris curves. The fatigue crack growth rates at high temperatures are quite different from those at low temperatures. Arrhenius plots between fatigue crack growth rate (da/dN) and test temperatures at constant stress intensity factor range (ΔKI) indicate a difference of the rate-controlling process for fatigue crack growth with temperature. Slip deformation at the crack tip governs fatigue crack growth at high temperatures, while hydrogen diffusion is associated with crack growth at low temperatures.

  10. Mechanisms of pancreatic beta-cell growth and regeneration

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1989-01-01

    Information about the mechanism of beta-cell growth and regeneration may be obtained by studies of insulinoma cells. In the present study the growth and function of the rat insulinoma cell lines RINm5F and 5AH were evaluated by addition of serum, hormones, and growth factors. It was found...... that transferrin is the only obligatory factor whereas growth hormone, epidermal growth factor, fibroblast growth factor, and TRH had modulating effects. A heat-labile heparin binding serum factor which stimulated thymidine incorporation but not cell proliferation was demonstrated in human serum. Measurements...... of insulin mRNA content showed that the insulinoma cells only contained about 2% of that of normal rat beta-cells. These results are discussed in relation to the role of growth factors, oncogenes, and differentiation in the growth and regeneration of beta-cells....

  11. Wall relaxation and the driving forces for cell expansive growth

    Science.gov (United States)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  12. Imatinib alters cell viability but not growth factors levels in TM4 Sertoli cells

    Science.gov (United States)

    Hashemnia, Seyyed Mohammad Reza; Atari-Hajipirloo, Somayeh; Roshan-Milani, Shiva; Valizadeh, Nasim; Mahabadi, Sonya; Kheradmand, Fatemeh

    2016-01-01

    Background: The anticancer agent imatinib (IM) is a small molecular analog of ATP that inhibits tyrosine kinase activity of platelet derived growth factors (PDGFs) and stem cell factor (SCF) receptor in cancer cells. However these factors have a key role in regulating growth and development of normal Sertoli, Leydig and germ cells. Objective: The aim of this study was to determine cell viability, PDGF and SCF levels in mouse normal Sertoli cells exposed to IM. Materials and Methods: In this experimental study, the mouse TM4 Sertoli cells were treated with 0, 2.5, 5, 10 and 20 μM IM for 2, 4 or 6 days. The cell viability and growth factors levels were assessed by MTT and ELISA methods, respectively. For statistical analysis, One-Way ANOVA was performed. Results: IM showed significant decrease in Sertoli cell viability compared to control group (p=0.001). However, IM increased PDGF and SCF level insignificantly (p>0.05). Conclusion: Results suggested that IM treatment induced a dose dependent reduction of cell viability in Sertoli cells. It seems that treatment with this anticancer drug is involved in the fertility process. Further studies are needed to evaluate the role of PDGF and SCF in this cell. PMID:27738659

  13. FEM simulations and experimental studies of the temperature field in a large diamond crystal growth cell

    Institute of Scientific and Technical Information of China (English)

    Li Zhan-Chang; Jia Xiao-Peng; Huang Guo-Feng; Hu Mei-Hua; Li Yong; Yan Bing-Min; Ma Hong-An

    2013-01-01

    We investigate the temperature field variation in the growth region of a diamond crystal in a sealed cell during the whole process of crystal growth by using the temperature gradient method (TGM) at high pressure and high temperature (HPHT).We employ both the finite element method (FEM) and in situ experiments.Simulation results show that the temperature in the center area of the growth cell continues to decrease during the process of large diamond crystal growth.These results are in good agreement with our experimental data,which demonstrates that the finite element model can successfully predict the temperature field variations in the growth cell.The FEM simulation will be useful to grow larger high-quality diamond crystal by using the TGM.Furthermore,this method will be helpful in designing better cells and improving the growth process of gem-quality diamond crystal.

  14. FEM simulations and experimental studies of the temperature field in a large diamond crystal growth cell

    International Nuclear Information System (INIS)

    We investigate the temperature field variation in the growth region of a diamond crystal in a sealed cell during the whole process of crystal growth by using the temperature gradient method (TGM) at high pressure and high temperature (HPHT). We employ both the finite element method (FEM) and in situ experiments. Simulation results show that the temperature in the center area of the growth cell continues to decrease during the process of large diamond crystal growth. These results are in good agreement with our experimental data, which demonstrates that the finite element model can successfully predict the temperature field variations in the growth cell. The FEM simulation will be useful to grow larger high-quality diamond crystal by using the TGM. Furthermore, this method will be helpful in designing better cells and improving the growth process of gem-quality diamond crystal. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. Automated inference procedure for the determination of cell growth parameters

    Science.gov (United States)

    Harris, Edouard A.; Koh, Eun Jee; Moffat, Jason; McMillen, David R.

    2016-01-01

    The growth rate and carrying capacity of a cell population are key to the characterization of the population's viability and to the quantification of its responses to perturbations such as drug treatments. Accurate estimation of these parameters necessitates careful analysis. Here, we present a rigorous mathematical approach for the robust analysis of cell count data, in which all the experimental stages of the cell counting process are investigated in detail with the machinery of Bayesian probability theory. We advance a flexible theoretical framework that permits accurate estimates of the growth parameters of cell populations and of the logical correlations between them. Moreover, our approach naturally produces an objective metric of avoidable experimental error, which may be tracked over time in a laboratory to detect instrumentation failures or lapses in protocol. We apply our method to the analysis of cell count data in the context of a logistic growth model by means of a user-friendly computer program that automates this analysis, and present some samples of its output. Finally, we note that a traditional least squares fit can provide misleading estimates of parameter values, because it ignores available information with regard to the way in which the data have actually been collected.

  16. Cellular automata simulations on nanocrystallization processes: From instantaneous growth approximation to limited growth

    OpenAIRE

    Blázquez, J.S.; Conde, C. F.; Conde, A.

    2011-01-01

    Cellular automata simulations have been performed to simulate the crystallization process under a limited growth approximation. This approximation resembles several characteristics exhibited by nanocrystalline microstructures and nanocrystallization kinetics. Avrami exponent decreases from a value n = 4 indicating interface controlled growth and constant nucleation rate to a value n ~ 1 indicating absence of growth. A continuous change of the growth contribution to the Avrami exponent from ze...

  17. Quantum Process in Living Cells

    CERN Document Server

    Finkel, Robert W

    2012-01-01

    Quantum effects have been confirmed in photosynthesis and other biological phenomena. Here we explore the idea of a cooperative quantum process in cells and introduce a model based on coherent waves of established ultrafast energy transfers in water. We compute wave speed, ~156 km/s, and wavelength, ~9.3 nm, and determine that the waves retain local coherence. Diverse numerical applications lend support to the hypothesis that rapid energy transfers in water are characteristic of living cells. Close agreements are found for the dipole moment of water dimers, microwave radiation on yeast, and the Kleiber law of metabolic rates. We find a sphere with diameter ~20 nm is a lower bound for life in this theory. The quantum properties of the model suggest that cellular chemistry favors reactions that support perpetuation of the energy waves

  18. TWF process cell throughput study

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.L.

    1992-02-28

    The TWF will prepare transuranic (TRU) waste for permanent disposal at the Waste Isolation Pilot Plant (WIPP). WH MP's early participation in the TWF project included the installation and testing of a WPC mockup (using the conceptual design). Operating experience indicated significant improvements could be made in the WPC scheme, so we conducted a process cell equipment study with Equipment Engineering to identify better equipment and methods (ref. 4). The results of that study were used to construct the WPC computer simulation model.

  19. TWF process cell throughput study

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.L.

    1992-02-28

    The TWF will prepare transuranic (TRU) waste for permanent disposal at the Waste Isolation Pilot Plant (WIPP). WH&MP`s early participation in the TWF project included the installation and testing of a WPC mockup (using the conceptual design). Operating experience indicated significant improvements could be made in the WPC scheme, so we conducted a process cell equipment study with Equipment Engineering to identify better equipment and methods (ref. 4). The results of that study were used to construct the WPC computer simulation model.

  20. Cell Processing Engineering for Regenerative Medicine : Noninvasive Cell Quality Estimation and Automatic Cell Processing.

    Science.gov (United States)

    Takagi, Mutsumi

    2016-01-01

    The cell processing engineering including automatic cell processing and noninvasive cell quality estimation of adherent mammalian cells for regenerative medicine was reviewed. Automatic cell processing necessary for the industrialization of regenerative medicine was introduced. The cell quality such as cell heterogeneity should be noninvasively estimated before transplantation to patient, because cultured cells are usually not homogeneous but heterogeneous and most protocols of regenerative medicine are autologous system. The differentiation level could be estimated by two-dimensional cell morphology analysis using a conventional phase-contrast microscope. The phase-shifting laser microscope (PLM) could determine laser phase shift at all pixel in a view, which is caused by the transmitted laser through cell, and might be more noninvasive and more useful than the atomic force microscope and digital holographic microscope. The noninvasive determination of the laser phase shift of a cell using a PLM was carried out to determine the three-dimensional cell morphology and estimate the cell cycle phase of each adhesive cell and the mean proliferation activity of a cell population. The noninvasive discrimination of cancer cells from normal cells by measuring the phase shift was performed based on the difference in cytoskeleton density. Chemical analysis of the culture supernatant was also useful to estimate the differentiation level of a cell population. A probe beam, an infrared beam, and Raman spectroscopy are useful for diagnosing the viability, apoptosis, and differentiation of each adhesive cell. PMID:25373455

  1. 42% 500X Bi-Facial Growth Concentrator Cells

    Science.gov (United States)

    Wojtczuk, S.; Chiu, P.; Zhang, X.; Pulver, D.; Harris, C.; Siskavich, B.

    2011-12-01

    Data are presented from three-junction concentrator photovoltaic cells using a new cell architecture (1.9 eV InGaP top cell lattice-matched to a 1.42 eV GaAs middle cells on one side of a infrared-transparent GaAs wafer with a lattice-mismatched 0.95 eV InGaAs bottom cell grown isolated on the wafer backside). The cell uses a new epitaxial bifacial growth (BFG) technique. The impetus is to replace the 0.67 eV Ge bottom cell in the standard three junction InGaP/GaAs/Ge tandems with a higher bandgap 0.95 eV InGaAs cell that boosts the bottom cell voltage by about 40% while maintaining a simple high-yield cell process without use of complex large area epitaxial liftoff or wafer bonding steps used to make similar cell stacks. Efficiency was independently-verified by NREL for a 1 cm×1 cm cell (42.3% at 406 suns, with Voc 3.452V, 87.1% FF and 1xJsc of 14.07 mA/cm2, at 25 °C AM1.5D, 100 mW/cm2), which was the world record at the time of the CPV-7 conference. No degradation was seen during concentrated solar operation after a 2000 hr 165C burn-in and PbSn solder tests. Average efficiency of 1 cm2 cells designed for 500 suns at 1018 suns was 40.5% (Spire test, 25 °C, spectrally corrected flash simulator). Measured efficiency temperature coefficient for gen2 cells is -0.06%/°C, similar to InGaP/GaAs/Ge tandems.

  2. Modelling competitive coadsorption in electrochemical growth processes

    CERN Document Server

    Aarão-Reis, F D A; Pauporte, T; Lincot, D; Reis, Fabio D. A. Aarao; Pauporte, Thierry; Lincot, Daniel

    2006-01-01

    We present models of electrodeposition of ZnO films with organic additives, with focus on the growth of hybrid films with eosin Y. First we propose a rate equation model which assumes that the additives form branches with an exposed part above the ZnO deposit, growing with larger rate than the pure film, and that the rate of production of ZnO near those branches is proportional to the height exposed to the solution. This accounts for the production of OH- ions near the branches and the reactions with Zn++ ions. The steady state solution shows both species growing with the rate of the branches, and qualitatively explains their catalytic effect. Subsequently, we propose a more realistic statistical model for the formation of the hybrid deposits from Zn++ ions, a hydroxide precursor and eosin in solution. Simple probabilistic rules are used for reactions of eosin and oxygen, taking into account diffusion from solution along the same lines of the diffusion-limited aggregation models. The catalytic effect is repre...

  3. Investigation of atomic processes during film growth using semiempirical calculations

    CERN Document Server

    Leonardelli, G

    2001-01-01

    Growth of thin films on solid surfaces is strongly determined by the rates of the individual atomic processes and therefore depends on the energy barriers which must be surmounted during these processes. The diffusion barriers of interlayer diffusion processes are calculated in this work using embedded atom method (EAM) potentials. Great attention is paid to effects of small simulation cells preventing the atoms near the step edge from relaxing completely and thereby modifying the barriers for step descent on steps of the Pt(111) surface. Calculations in this work can also explain experimental data which show Co atoms sitting in special sites like corners and kinks when small amounts of Co are deposited on the Pt(111) surface. The results show why these sites are occupied and why configurations along A-steps are different from those on B-steps. Furthermore, calculations explain the intermixing of adlayer and substrate atoms on fcc(111) surfaces in the vicinity of rough steps occurring when these steps smoothe...

  4. Periodic optimization of continuous microbial growth processes.

    Science.gov (United States)

    Abulesz, E M; Lyberatos, G

    1987-06-01

    Steady-state operation of continuous bioreactors is not necessarily the optimum type of operation. The method of pi-criterion is used in this work to determine whether periodic variation of the dilution rate can enhance the performance of continuous fermentation processes. It is found that the presence of time delay in the dynamic response of the chemostat renders a periodic operation of bioreactors, used for biomass production, superior to any steady-state operation. Also, employing Williams' structured model it is shown that cycling improves the average protein productivity. PMID:18576558

  5. Agent-Based Modeling of Growth Processes

    Science.gov (United States)

    Abraham, Ralph

    2014-01-01

    Growth processes abound in nature, and are frequently the target of modeling exercises in the sciences. In this article we illustrate an agent-based approach to modeling, in the case of a single example from the social sciences: bullying.

  6. Stochastic modeling of cell growth with symmetric or asymmetric division

    Science.gov (United States)

    Marantan, Andrew; Amir, Ariel

    2016-07-01

    We consider a class of biologically motivated stochastic processes in which a unicellular organism divides its resources (volume or damaged proteins, in particular) symmetrically or asymmetrically between its progeny. Assuming the final amount of the resource is controlled by a growth policy and subject to additive and multiplicative noise, we derive the recursive integral equation describing the evolution of the resource distribution over subsequent generations and use it to study the properties of stable resource distributions. We find conditions under which a unique stable resource distribution exists and calculate its moments for the class of affine linear growth policies. Moreover, we apply an asymptotic analysis to elucidate the conditions under which the stable distribution (when it exists) has a power-law tail. Finally, we use the results of this asymptotic analysis along with the moment equations to draw a stability phase diagram for the system that reveals the counterintuitive result that asymmetry serves to increase stability while at the same time widening the stable distribution. We also briefly discuss how cells can divide damaged proteins asymmetrically between their progeny as a form of damage control. In the appendixes, motivated by the asymmetric division of cell volume in Saccharomyces cerevisiae, we extend our results to the case wherein mother and daughter cells follow different growth policies.

  7. Stochastic modeling of cell growth with symmetric or asymmetric division.

    Science.gov (United States)

    Marantan, Andrew; Amir, Ariel

    2016-07-01

    We consider a class of biologically motivated stochastic processes in which a unicellular organism divides its resources (volume or damaged proteins, in particular) symmetrically or asymmetrically between its progeny. Assuming the final amount of the resource is controlled by a growth policy and subject to additive and multiplicative noise, we derive the recursive integral equation describing the evolution of the resource distribution over subsequent generations and use it to study the properties of stable resource distributions. We find conditions under which a unique stable resource distribution exists and calculate its moments for the class of affine linear growth policies. Moreover, we apply an asymptotic analysis to elucidate the conditions under which the stable distribution (when it exists) has a power-law tail. Finally, we use the results of this asymptotic analysis along with the moment equations to draw a stability phase diagram for the system that reveals the counterintuitive result that asymmetry serves to increase stability while at the same time widening the stable distribution. We also briefly discuss how cells can divide damaged proteins asymmetrically between their progeny as a form of damage control. In the appendixes, motivated by the asymmetric division of cell volume in Saccharomyces cerevisiae, we extend our results to the case wherein mother and daughter cells follow different growth policies. PMID:27575162

  8. Progress in modeling of fluid flows in crystal growth processes

    Institute of Scientific and Technical Information of China (English)

    Qisheng Chen; Yanni Jiang; Junyi Yan; Ming Qin

    2008-01-01

    Modeling of fluid flows in crystal growth processes has become an important research area in theoretical and applied mechanics.Most crystal growth processes involve fluid flows,such as flows in the melt,solution or vapor.Theoretical modeling has played an important role in developing technologies used for growing semiconductor crystals for high performance electronic and optoelectronic devices.The application of devices requires large diameter crystals with a high degree of crystallographic perfection,low defect density and uniform dopant distribution.In this article,the flow models developed in modeling of the crystal growth processes such as Czochralski,ammono-thermal and physical vapor transport methods are reviewed.In the Czochralski growth modeling,the flow models for thermocapillary flow,turbulent flow and MHD flow have been developed.In the ammonothermal growth modeling,the buoyancy and porous media flow models have been developed based on a single-domain and continuum approach for the composite fluid-porous layer systems.In the physical vapor transport growth modeling,the Stefan flow model has been proposed based on the flow-kinetics theory for the vapor growth.In addition,perspectives for future studies on crystal growth modeling are proposed.

  9. In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth

    OpenAIRE

    Müller, Kerstin; Linkies, Ada; Vreeburg, Robert A. M.; Fry, Stephen C; Krieger-Liszkay, Anja; Leubner-Metzger, Gerhard

    2009-01-01

    Loosening of cell walls is an important developmental process in key stages of plant life cycles, including seed germination, elongation growth and fruit ripening. Here we report direct in vivo evidence for hydroxyl radical (•OH)-mediated cell wall loosening during plant seed germination and seedling growth. We used electron paramagnetic resonance (EPR)-spectroscopy to show that •OH is generated in the cell wall during radicle elongation and weakening of the endosperm of cress (Lepidium sativ...

  10. Designed CVD growth of graphene via process engineering.

    Science.gov (United States)

    Yan, Kai; Fu, Lei; Peng, Hailin; Liu, Zhongfan

    2013-10-15

    Graphene, the atomic thin carbon film with honeycomb lattice, holds great promise in a wide range of applications, due to its unique band structure and excellent electronic, optical, mechanical, and thermal properties. Scientists are researching this star material because of the development of various emerging preparation techniques, among which chemical vapor deposition (CVD) has received the fastest advances in the past few years. For the CVD growth of graphene, the ultimate goal is to achieve the highest quality in the largest scale and lowest cost with a precise control of layer thickness, stacking order, and crystallinity. To meet this goal, researchers need a comprehensive understanding and effective controlling of the growth process, especially to its elementary steps. In this Account, we focus on our recent progresses toward the controlled surface growth of graphene and its two-dimensional (2D) hybrids via rational designs of CVD elementary processes, namely, process engineering. A typical CVD process consists of four main elementary steps: (A) adsorption and catalytic decomposition of precursor gas, (B) diffusion and dissolution of decomposed carbon species into bulk metal, (C) segregation of dissolved carbon atoms onto the metal surface, and finally, (D) surface nucleation and growth of graphene. Absence or enhancement of each elementary step would lead to significant changes in the whole growth process. Metals with certain carbon solubility, such as nickel and cobalt, involve all four elementary steps in a typical CVD process, thus providing us an ideal system for process engineering. The elementary segregation process can be completely blocked if molybdenum is introduced into the system as an alloy catalyst, yielding perfect monolayer graphene almost independent of growth parameters. On the other hand, the segregation-only process of predissolved solid carbons is also capable of high-quality graphene growth. By using a synergetic Cu-Ni alloy, we are

  11. Stochastic growth logistic model with aftereffect for batch fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Norhayati; Ayoubi, Tawfiqullah [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah; Rahman, Haliza Abdul [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Salleh, Madihah Md [Department of Biotechnology Industry, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2014-06-19

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  12. Stochastic growth logistic model with aftereffect for batch fermentation process

    Science.gov (United States)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-06-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  13. Features of Localization of ARG-X Protease-processing in the Suprastructures of Interphase Chromatin under Conditions of Cell Cycle Arrest by Sodium Butyrate, upon Induction of Growth Morphogenesis of Mature Embryos of Winter and Spring Wheat

    Directory of Open Access Journals (Sweden)

    Ivanov R.S.

    2016-08-01

    Full Text Available A fundamental property of many organisms is the ability to feel, to assess direction of the signal action and respond to the environmental conditions. It is known that chromatin plays a major role in organizing the regulation of gene activity. However, our understanding of how state of the suprastructure organization of chromatin and its proteins reacts not only to changes in the environment, but also on the development of specific signals remains largely unclear. In the course of this work, we have analyzed the result of the various ways of chromatin modifications: the regulatory Arg-X protease-processing and inhibition of protein deacetylation with sodium butyrate. Sodium butyrate causes cell cycle arrest in the G0/G1 phase, and promotes of duration of the transcriptional activity of chromatin. Experiments on molecular-genetic state of the chromatin matrix were carried out at the induction of growth morphogenesis in the physiological period of active water absorption of mature seeds and wheat germs, which were purposefully transformed and formed in different environmental conditions. During focused, long-term transforming of spring wheat Artemovka into winter wheat Mironovskaya 808 and the last of them again into Mironovskaya Spring wheat while stopping of the cell cycle in the G0/G1 phase, mainly occurs the active Arg-X protease-processing at the level of non-histone proteins, and linker histones of suprastructures chromatin. We assume that the regulatory proteolytic processing and prolongation of acetylation of proteins can be interconnected in the regulation of conformational transitions of chromatin at the different levels of its organization: both suprastructures and at the more profound proteomic level of non-histone and histone blocks, and have its peculiarities during the period of transcriptional activation. We hope that the study peculiarities of locations of regulatory proteolysis in the conditions of inhibition of deacetylation in

  14. Fibroblast growth factor 8 increases breast cancer cell growth by promoting cell cycle progression and by protecting against cell death

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Emeli M., E-mail: Emeli.Nilsson@med.lu.se [Department of Laboratory Medicine, Tumour Biology, Lund University, CRC, Building 91, Plan 10, Entrance 72, UMAS, 205 02 Malmoe (Sweden); Brokken, Leon J.S., E-mail: Leon.Brokken@med.lu.se [Department of Laboratory Medicine, Tumour Biology, Lund University, CRC, Building 91, Plan 10, Entrance 72, UMAS, 205 02 Malmoe (Sweden); Haerkoenen, Pirkko L., E-mail: Pirkko.Harkonen@med.lu.se [Department of Laboratory Medicine, Tumour Biology, Lund University, CRC, Building 91, Plan 10, Entrance 72, UMAS, 205 02 Malmoe (Sweden)

    2010-03-10

    Fibroblast growth factor 8 (FGF-8) is expressed in a large proportion of breast cancers, whereas its level in normal mammary gland epithelium is low. Previous studies have shown that FGF-8b stimulates breast cancer cell growth in vitro and in vivo. To explore the mechanisms by which FGF-8b promotes growth, we studied its effects on cell cycle regulatory proteins and signalling pathways in mouse S115 and human MCF-7 breast cancer cells. We also studied the effect of FGF-8b on cell survival. FGF-8b induced cell cycle progression and up-regulated particularly cyclin D1 mRNA and protein in S115 cells. Silencing cyclin D1 with siRNA inhibited most but not all FGF-8b-induced proliferation. Inhibition of the FGF-8b-activated ERK/MAPK pathway decreased FGF-8b-stimulated proliferation. Blocking the constitutively active PI3K/Akt and p38 MAPK pathways also lowered FGF-8b-induced cyclin D1 expression and proliferation. Corresponding results were obtained in MCF-7 cells. In S115 and MCF-7 mouse tumours, FGF-8b increased cyclin D1 and Ki67 levels. Moreover, FGF-8b opposed staurosporine-induced S115 cell death which effect was blocked by inhibiting the PI3K/Akt pathway but not the ERK/MAPK pathway. In conclusion, our results suggest that FGF-8b increases breast cancer cell growth both by stimulating cell cycle progression and by protecting against cell death.

  15. Lipid raft involvement in yeast cell growth and death.

    Science.gov (United States)

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na(+), K(+), and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  16. Lipid raft involvement in yeast cell growth and death

    Directory of Open Access Journals (Sweden)

    Faustino eMollinedo

    2012-10-01

    Full Text Available The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Crytococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+ and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  17. Cell growth characterization using multi-electrode bioimpedance spectroscopy

    International Nuclear Information System (INIS)

    Cell growth characterization during culturing is an important issue in a variety of biomedical applications. In this study an electrical bioimpedance spectroscopy-based multi-electrode culture monitoring system was developed to characterize cell growth. A PC12 cell line was cultured for the cell growth study. The bioimpedance variations for PC12 cell growth within the initial 12 h were measured over a range between 1 kHz and 4 MHz at three different medium concentrations. Within this frequency range, the largest bioimpedance value was 1.9 times the smallest bioimpedance value. The phase angle decreased over the range from 1 to 10 kHz when cells were growing. Then, the phase angle approached a constant over the frequency range between 10 kHz and 2 MHz. Thereafter, the phase angle increased rapidly from 20 to 52 degrees during cell culturing between 8 and 12 h at 4 MHz. The maximum cell number after culturing for 12 h increased by 25.8% for the control sites with poly-D-lysine (PDL) pastes. For the normal growth factor, the cell number increased up to 4.78 times from 8 to 12 h, but only 0.96 and 1.60 times for the other two medium growth factors. The correlation coefficients between impedance and cell number were 0.868 (coating with PDL), and 0.836 (without PDL) for the normal concentration medium. Thus, impedance may be used as an index for cell growth characterization. (paper)

  18. Cell growth characterization using multi-electrode bioimpedance spectroscopy

    Science.gov (United States)

    Lu, Yi-Yu; Huang, Ji-Jer; Huang, Yu-Jie; Cheng, Kuo-Sheng

    2013-03-01

    Cell growth characterization during culturing is an important issue in a variety of biomedical applications. In this study an electrical bioimpedance spectroscopy-based multi-electrode culture monitoring system was developed to characterize cell growth. A PC12 cell line was cultured for the cell growth study. The bioimpedance variations for PC12 cell growth within the initial 12 h were measured over a range between 1 kHz and 4 MHz at three different medium concentrations. Within this frequency range, the largest bioimpedance value was 1.9 times the smallest bioimpedance value. The phase angle decreased over the range from 1 to 10 kHz when cells were growing. Then, the phase angle approached a constant over the frequency range between 10 kHz and 2 MHz. Thereafter, the phase angle increased rapidly from 20 to 52 degrees during cell culturing between 8 and 12 h at 4 MHz. The maximum cell number after culturing for 12 h increased by 25.8% for the control sites with poly-D-lysine (PDL) pastes. For the normal growth factor, the cell number increased up to 4.78 times from 8 to 12 h, but only 0.96 and 1.60 times for the other two medium growth factors. The correlation coefficients between impedance and cell number were 0.868 (coating with PDL), and 0.836 (without PDL) for the normal concentration medium. Thus, impedance may be used as an index for cell growth characterization.

  19. Cells from the adult corneal stroma can be reprogrammed to a neuron-like cell using exogenous growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Carol Ann, E-mail: carol.greene@auckland.ac.nz; Chang, Chuan-Yuan; Fraser, Cameron J.; Nelidova, Dasha E.; Chen, Jing A.; Lim, Angela; Brebner, Alex; McGhee, Jennifer; Sherwin, Trevor; Green, Colin R.

    2014-03-10

    Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. The switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors.

  20. Effects of Cross-Correlation Colour Noises on Tumour Growth Process

    Institute of Scientific and Technical Information of China (English)

    WANG Xian-Ju; ZENG Chang-Chun; DENG Xiao-Yuan; LIU Song-Hao; LIU Liang-Gang

    2005-01-01

    @@ We present a tumour cell growth process model including a multiplicative coloured noise and an additive coloured noise correlated. How the noise cross-correlation intensity λ and correlation time - can affect the steady state properties of tumour cell growth model are discussed by solving an approximative Fokker-Planck equation. It is found that the increase of noise correlation time т- can cause the tumour cell number increasing, but the increase of multiplicative noise intensity can cause the tumour cell number extinction. We also find that the increase of cross-correlation intensity λ in the case of 0 <λ< 1 can cause the tumour cell number extinction, whereas increase of cross-correlation intensity λ in the case of λ< 0 can cause the tumour cell number increasing.

  1. Glucose Signaling-Mediated Coordination of Cell Growth and Cell Cycle in Saccharomyces Cerevisiae

    Directory of Open Access Journals (Sweden)

    Stefano Busti

    2010-06-01

    Full Text Available Besides being the favorite carbon and energy source for the budding yeast Sacchromyces cerevisiae, glucose can act as a signaling molecule to regulate multiple aspects of yeast physiology. Yeast cells have evolved several mechanisms for monitoring the level of glucose in their habitat and respond quickly to frequent changes in the sugar availability in the environment: the cAMP/PKA pathways (with its two branches comprising Ras and the Gpr1/Gpa2 module, the Rgt2/Snf3-Rgt1 pathway and the main repression pathway involving the kinase Snf1. The cAMP/PKA pathway plays the prominent role in responding to changes in glucose availability and initiating the signaling processes that promote cell growth and division. Snf1 (the yeast homologous to mammalian AMP-activated protein kinase is primarily required for the adaptation of yeast cell to glucose limitation and for growth on alternative carbon source, but it is also involved in the cellular response to various environmental stresses. The Rgt2/Snf3-Rgt1 pathway regulates the expression of genes required for glucose uptake. Many interconnections exist between the diverse glucose sensing systems, which enables yeast cells to fine tune cell growth, cell cycle and their coordination in response to nutritional changes.

  2. Epitaxial Growth, Processing and Characterization of Semiconductor Nanostructures

    OpenAIRE

    Borgström, Magnus

    2003-01-01

    This thesis deals with the growth, processing and characterization of nano-sized structures, eg., self-assembled quantum dots and nano-wires. Such structures are promising candidates for the realization of nano-scale electronic and optical devices, like for instance single electron transistors, resonant tunneling devices, and single photon emitters. For such purposes, the main focus of this work has been on the controlled growth of self-assembled quantum dots. For epitaxy, which is the fundam...

  3. The Study on Business Growth Process Management Entropy Model

    Science.gov (United States)

    Jing, Duan

    Enterprise's growth is a dynamic process. The factors of enterprise development are changing all the time. For this reason, it is difficult to study management entropy growth-oriented enterprises from static view. Its characteristic is the business enterprise growth stage, and puts forward a kind of measuring and calculating model based on enterprise management entropy for business scale, the enterprise ability and development speed. According to entropy measured by the model, enterprise can adopt revolution measure in the moment of truth. It can make the enterprise avoid crisis and take the road of sustainable development.

  4. Electrospun silk fibroin nanofibers promote Schwann cell adhesion, growth and proliferation

    Institute of Scientific and Technical Information of China (English)

    Aijun Hu; Baoqi Zuo; Feng Zhang; Qing Lan; Huanxiang Zhang

    2012-01-01

    In this study, Schwann cells, at a density of 1 × 105 cells/well, were cultured on regenerated silk fibroin nanofibers (305 ± 84 nm) prepared using the electrospinning method. Schwann cells cultured on the silk fibroin nanofibers appeared more ordered, their processes extended further, and they formed more extensive and complex interconnections. In addition, the silk fibroin nanofibers had no impact on the proliferation of Schwann cells or on the secretion of ciliary neurotrophic factor, brain-derived neurotrophic factor or nerve growth factor. These findings indicate that regenerated electrospun silk fibroin nanofibers can promote Schwann cell adhesion, growth and proliferation, and have excellent biocompatibility.

  5. 2D growth processes: SLE and Loewner chains

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Michel [Service de Physique Theorique de Saclay, CE-Saclay, 91191 Gif-sur-Yvette (France) and Laboratoire de Physique Theorique, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris (France)]. E-mail: michel.bauer@cea.fr; Bernard, Denis [Service de Physique Theorique de Saclay, CE-Saclay, 91191 Gif-sur-Yvette (France) and Laboratoire de Physique Theorique, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris (France)]. E-mail: denis.bernard@cea.fr

    2006-10-15

    This review provides an introduction to two dimensional growth processes. Although it covers a variety of processes such as diffusion limited aggregation, it is mostly devoted to a detailed presentation of stochastic Schramm-Loewner evolutions (SLE) which are Markov processes describing interfaces in 2D critical systems. It starts with an informal discussion, using numerical simulations, of various examples of 2D growth processes and their connections with statistical mechanics. SLE is then introduced and Schramm's argument mapping conformally invariant interfaces to SLE is explained. A substantial part of the review is devoted to reveal the deep connections between statistical mechanics and processes, and more specifically to the present context, between 2D critical systems and SLE. Some of the remarkable properties of SLE are explained, together with the tools for computing with it. This review has been written with the aim of filling the gap between the mathematical and the physical literature on the subject.

  6. Explaining tomato fruit growth by a multi-scale model on regulation of cell division, cell growth and carbohydrate dynamics

    NARCIS (Netherlands)

    Visser, de P.H.B.; Kromdijk, W.; Okello, R.C.; Fanwoua, J.; Struik, P.C.; Yin, X.; Heuvelink, E.; Marcelis, L.F.M.

    2012-01-01

    A multi-scale approach to model tomato fruit growth is proposed, in order to account for the interaction between gene functioning and growth conditions, and, ultimately, to explain the fruit phenotype of various genotypes in diverse growth environments. There is particular focus on: (I) cell divisio

  7. Alpine treeline growth variability: Simulation using an ecosystem process model

    Energy Technology Data Exchange (ETDEWEB)

    Scuderi, L.A.; Orth, K.U. (Univ. of Boston, MA (United States)); Schaaf, C.B. (Univ. of Boston, MA (United States) Phillips Laboratory, Hanscom AFB, MA (United States)); Band, L.E. (Univ. of Toronto, Ontario (Canada))

    1993-08-01

    Standard approaches in dendroclimatology used to determine climate-tree growth relationships at individual alpine treeline sites have primarily focused on empirically based statistical reconstructions. While such statistical relationships produce highly significant results, it is not possible to explore the underlying biophysiology in the links between climate and forest growth. Use of a deterministic forest ecosystem process model (FOREST-BGC) allows an evaluation of the impact of growing season and prior year meteorological conditions on phenological parameters such as net canopy photosynthesis (PSN) and net carbon gain (NETC). These variables were modeled over the course of a year and were statistically related to tree growth at an upper treeline site in the Sierra Nevada Mountains of California. The predicted growth increments over a 40-yr period exhibit trends similar to the measured variation in increment growth and perform better (R[sup 2][sub adj] = 0.62) than regression models based on monthly/seasonal mean temperature and precipitation totals (R[sup 2][sub adj] = 0.52). The standard principal component based approach, while producing results similar to the components identified in the forest ecosystem (FOREST-BGC) analysis, provided a better reconstruction of increment growth (R[sup 2][sub adj] = 0.79). However, site- and species-specific tuning of the FOREST-BGC model could make this approach a viable alternative to standard response function analysis and potentially a valuable tool for pursuing a theoretically based explanation of treeline processes. 40 refs., 6 figs., 1 tab.

  8. MHC class II molecules regulate growth in human T cells

    DEFF Research Database (Denmark)

    Nielsen, M; Odum, Niels; Bendtzen, K;

    1994-01-01

    modulate several T cell responses. Here, we studied further the role of class II molecules in the regulation of T cell growth. Costimulation of class II molecules by immobilized HLA-DR mAb significantly enhanced interleukin (IL)-2-supported T cell growth of the majority of CD4+, CD45RAlow, ROhigh T cell......-like) as well as T cells producing both cytokines (THO-like) responded to class II mAb. The costimulatory effect was not restricted to IL-2-driven T cell growth, since TCR/CD3-induced T cell activation was also enhanced by HLA-DR mAb. Moreover, class II costimulation potentiated CD28-mAb-induced T cell...

  9. Sexual dimorphism in epigenomicresponses of stem cells to extreme fetal growth

    Science.gov (United States)

    Delahaye, Fabien; Wijetunga, N. Ari; Heo, Hye J.; Tozour, Jessica N.; Zhao, Yong Mei; Greally, John M.; Einstein, Francine H.

    2014-01-01

    Extreme fetal growth is associated with increased susceptibility to a range of adult diseases through an unknown mechanism of cellular memory. We tested whether heritable epigenetic processes in long-lived CD34+ hematopoietic stem/progenitor cells (HSPCs) showed evidence for re-programming associated with the extremes of fetal growth. Here we show that both fetal growth restriction and over-growth are associated with global shifts towards DNA hypermethylation, targeting cis-regulatory elements in proximity to genes involved in glucose homeostasis and stem cell function. We find a sexually dimorphic response; intrauterine growth restriction (IUGR) is associated with substantially greater epigenetic dysregulation in males, whereas large for gestational age (LGA) growth predominantly affects females. The findings are consistent with extreme fetal growth interacting with variable fetal susceptibility to influence cellular aging and metabolic characteristics through epigenetic mechanisms, potentially generating biomarkers that could identify infants at higher risk for chronic disease later in life. PMID:25300954

  10. Sexual dimorphism in epigenomic responses of stem cells to extreme fetal growth.

    Science.gov (United States)

    Delahaye, Fabien; Wijetunga, N Ari; Heo, Hye J; Tozour, Jessica N; Zhao, Yong Mei; Greally, John M; Einstein, Francine H

    2014-10-10

    Extreme fetal growth is associated with increased susceptibility to a range of adult diseases through an unknown mechanism of cellular memory. We tested whether heritable epigenetic processes in long-lived CD34(+) haematopoietic stem/progenitor cells showed evidence for re-programming associated with the extremes of fetal growth. Here we show that both fetal growth restriction and over-growth are associated with global shifts towards DNA hypermethylation, targeting cis-regulatory elements in proximity to genes involved in glucose homeostasis and stem cell function. We find a sexually dimorphic response; intrauterine growth restriction is associated with substantially greater epigenetic dysregulation in males, whereas large for gestational age growth predominantly affects females. The findings are consistent with extreme fetal growth interacting with variable fetal susceptibility to influence cellular ageing and metabolic characteristics through epigenetic mechanisms, potentially generating biomarkers that could identify infants at higher risk for chronic disease later in life.

  11. Growth of children with Langerhans cell histiocytosis

    NARCIS (Netherlands)

    A.C.J. van den Hoek (A. C J); A. Karstens (A.); R.M. Egeler (Maarten); K. Hählen (Karel)

    1995-01-01

    textabstractConclusion: GH deficiency is not a common manifestation of LCH in childhood and GH provocation tests are only indicated when there is a poor or decelerating growth rate. In our patients the number of organs involved and/or the treatment modality did not influence the growth in all but on

  12. Crystal growth process of Y123 film fabricated by modified TFA-MOD process

    International Nuclear Information System (INIS)

    Modified metal-organic deposition (MOD) process using precursor solution of trifluoroacetates (TFA) for Y and Ba and F-free salt for Cu is one of the most promising low cost non-vacuum methods to fabricate the coated conductor of YBa2Cu3O7-X (Y123) film with high critical current density. Since Y123 phase grows in the precursor film by the release of HF with supplying H2O, liquid/gas evolution affects the growth process, microstructure and properties of Y123 film. However, details of the growth mechanism of Y123 crystals are still unknown. To clarify the growth mechanism of Y123 film, the growth process of Y123 crystal was studied by the experimental method and the numerical method (FDM analysis). The quenching experiments during the growth of Y123 crystals on LaAlO3 (LAO) and/or CeO2/LAO substrates revealed the microstructures of growing Y123 crystals through TEM observations. The growth model for Y123 crystals in YBCO film with some process-controlling parameters was obtained on the basis of the experimental results. The growth processes of faceted Y123 crystals with various crystal orientations were simulated by the two-dimensional numerical method using c-axis and a-axis growth rate functions, and the effects of initial distributions of nucleated crystals and particles were discussed

  13. Dihydroartemisinin is an inhibitor of ovarian cancer cell growth

    Institute of Scientific and Technical Information of China (English)

    Yang JIAO; Chun-min GE; Qing-hui MENG; Jian-ping CAO; Jian TONG; Sai-jun FAN

    2007-01-01

    Aim: To investigate the anticancer activity of dihydroartemisinin (DHA), a deriva-tive of antimalaria drug artemisinin in a panel of human ovarian cancer cell lines. Methods: Cell growth was determined by the MTT viability assay. Apoptosis and cell cycle progression were evaluated by a DNA fragmentation gel electro-phoresis, flow cytometry assay, and TUNEL assay; protein and mRNA expression were analyzed by Western blotting and RT-PCR assay. Results: Artemisinin and its derivatives, including artesunate, arteether, artemether, arteannuin, and DHA, exhibit anticancer growth activities in human ovarian cancer cells. Among them, DHA is the most effective in inhibiting cell growth. Ovarian cancer cell lines are more sensitive (5-10-fold) to DHA treatment compared to normal ovarian cell lines. DHA at micromolar dose levels exhibits a dose- and time-dependent cyto-toxicity in ovarian cancer cell lines. Furthermore, DHA induced apoptosis and G2 cell cycle arrest, accompanied by a decrease of Bcl-xL and Bcl-2 and an increase of Bax and Bad. Conclusion: The promising results show for the first time that DHA inhibits the growth of human ovarian cancer cells. The selective inhibition of ovarian cancer cell growth, apoptosis induction, and G2 arrest provide in vitro evidence for further studies of DHA as a possible anticancer drug in the clinical treatment of ovarian cancer.

  14. Accommodating the difference in students’ prior knowledge of cell growth kinetics

    OpenAIRE

    Seters, van, J.R.; Ossevoort, M.A.; Goedhart, M.J.; Tramper, J.

    2011-01-01

    This paper describes the development and benefits of an adaptive digital module on cell growth to tackle the problem of educating a heterogeneous group of students at the beginning of an undergraduate course on process engineering. Aim of the digital module is to provide students with the minimal level of knowledge on cell growth kinetics they need to comprehend the content knowledge of the subsequent lectures and pass the exam. The module was organised to offer the subject matter in a differ...

  15. Optimization of energy-consuming pathways towards rapid growth in HPV-transformed cells.

    Directory of Open Access Journals (Sweden)

    Sarit Mizrachy-Schwartz

    Full Text Available Cancer is a complex, multi-step process characterized by misregulated signal transduction and altered metabolism. Cancer cells divide faster than normal cells and their growth rates have been reported to correlate with increased metabolic flux during cell transformation. Here we report on progressive changes in essential elements of the biochemical network, in an in vitro model of transformation, consisting of primary human keratinocytes, human keratinocytes immortalized by human papillomavirus 16 (HPV16 and passaged repeatedly in vitro, and the extensively-passaged cells subsequently treated with the carcinogen benzo[a]pyrene. We monitored changes in cell growth, cell size and energy metabolism. The more transformed cells were smaller and divided faster, but the cellular energy flux was unchanged. During cell transformation the protein synthesis network contracted, as shown by the reduction in key cap-dependent translation factors. Moreover, there was a progressive shift towards internal ribosome entry site (IRES-dependent translation. The switch from cap to IRES-dependent translation correlated with progressive activation of c-Src, an activator of AMP-activated protein kinase (AMPK, which controls energy-consuming processes, including protein translation. As cellular protein synthesis is a major energy-consuming process, we propose that the reduction in cell size and protein amount provide energy required for cell survival and proliferation. The cap to IRES-dependent switch seems to be part of a gradual optimization of energy-consuming mechanisms that redirects cellular processes to enhance cell growth, in the course of transformation.

  16. A comparison of the effect of epidermal growth factor, platelet-derived growth factor, and fibroblast growth factor on rat periodontal ligament fibroblast-like cells' DNA synthesis and morphology

    DEFF Research Database (Denmark)

    Blom, S; Holmstrup, P; Dabelsteen, Erik

    1994-01-01

    An enhanced formation of bone, dentin, and collagen fibers in periodontal wounds after application of polypeptide growth factors has recently been reported. However, the complex environment in vivo makes it impossible to determine the specific effects of growth factors on various cells involved...... in the wound-healing process. We have therefore investigated the mitogenic and morphogenic effects of recombinant epidermal growth factor (rEGF), natural platelet-derived growth factor (nPDGF), and natural fibroblast growth factor (nFGF) on periodontal ligament fibroblast-like cells. A cell line...... was established from rat PDL tissue. The cell line was characterized according to morphology, growth pattern, cytoskeletal proteins, and growth kinetics. The mitogenic effect of growth factors was assessed by incorporation of [3H]thymidine in the cellular DNA for 4 hours. Differences between groups...

  17. Engineering considerations for process development in mammalian cell cultivation.

    Science.gov (United States)

    Zhang, Hu; Wang, Weixiang; Quan, Chunshan; Fan, Shengdi

    2010-01-01

    Mammalian cell cultivation plays a great role in producing protein therapeutics in the last decades. Many engineering parameters are considered for optimization during process development in mammalian cell cultivation, only shear and mixing are especially highlighted in this paper. It is believed that shear stress due to agitation has been over-estimated to damage cells, but shear may result in nonlethal physiological responses. There is no cell damage in the regions where bubbles form, break up and coalescence, but shear stress becomes significant in the wake of rising bubbles and causes great damage to cells in bubble burst regions. Mixing is not sufficient to provide homogeneous dissolved oxygen tension, pH, CO2 and nutrients in large-scale bioreactors, which can bring severe problems for cell growth, product formation and process control. Scale-down reactors have been developed to address mixing and shear problems for parallel operations. Engineering characterization in conventional and recently developed scale-down bioreactors has been briefly introduced. Process challenges for cultivation of industrial cell lines in high cell densities as well as cultivation of stem cells and other human cells for regenerative medicine, tissue engineering and gene therapy are prospected. Important techniques, such as micromanipulation and nanomanipulation (optical tweezers) for single cell analysis, computational fluid dynamics (CFD) for shear and mixing characterization, and miniaturized bioreactors, are being developed to address those challenges. PMID:19929819

  18. Calcium influences sensitivity to growth inhibition induced by a cell surface sialoglycopeptide

    Science.gov (United States)

    Betz, N. A.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    While studies concerning mitogenic factors have been an important area of research for many years, much less is understood about the mechanisms of action of cell surface growth inhibitors. We have purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) which can reversibly inhibit the proliferation of diverse cell types. The studies discussed in this article show that three mouse keratinocyte cell lines exhibit sixty-fold greater sensitivity than other fibroblasts and epithelial-like cells to CeReS-18-induced growth inhibition. Growth inhibition induced by CeReS-18 treatment is a reversible process, and the three mouse keratinocyte cell lines exhibited either single or multiple cell cycle arrest points, although a predominantly G0/G1 cell cycle arrest point was exhibited in Swiss 3T3 fibroblasts. The sensitivity of the mouse keratinocyte cell lines to CeReS-18-induced growth inhibition was not affected by the degree of tumorigenic progression in the cell lines and was not due to differences in CeReS-18 binding affinity or number of cell surface receptors per cell. However, the sensitivity of both murine fibroblasts and keratinocytes could be altered by changing the extracellular calcium concentration, such that increased extracellular calcium concentrations resulted in decreased sensitivity to CeReS-18-induced proliferation inhibition. Thus the increased sensitivity of the murine keratinocyte cell lines to CeReS-18 could be ascribed to the low calcium concentration used in their propagation. Studies are currently under way investigating the role of calcium in CeReS-18-induced growth arrest. The CeReS-18 may serve as a very useful tool to study negative growth control and the signal transduction events associated with cell cycling.

  19. Growth-stimulatory effect of resveratrol in human cancer cells.

    Science.gov (United States)

    Fukui, Masayuki; Yamabe, Noriko; Kang, Ki Sung; Zhu, Bao Ting

    2010-08-01

    Earlier studies have shown that resveratrol could induce death in several human cancer cell lines in culture. Here we report our observation that resveratrol can also promote the growth of certain human cancer cells when they are grown either in culture or in athymic nude mice as xenografts. At relatively low concentrations (cells, but this effect was not observed in several other human cell lines tested. Analysis of cell signaling molecules showed that resveratrol induced the activation of JNK, p38, Akt, and NF-kappaB signaling pathways in these cells. Further analysis using pharmacological inhibitors showed that only the NF-kappaB inhibitor (BAY11-7082) abrogated the growth-stimulatory effect of resveratrol in cultured cells. In athymic nude mice, resveratrol at 16.5 mg/kg body weight enhanced the growth of MDA-MB-435s xenografts compared to the control group, while resveratrol at the 33 mg/kg body weight dose did not have a similar effect. Additional analyses confirmed that resveratrol stimulated cancer cell growth in vivo through activation of the NF-kappaB signaling pathway. Taken together, these observations suggest that resveratrol at low concentrations could stimulate the growth of certain types of human cancer cells in vivo. This cell type-specific mitogenic effect of resveratrol may also partly contribute to the procarcinogenic effect of alcohol consumption (rich in resveratrol) in the development of certain human cancers.

  20. Endothelial cell-derived interleukin-6 regulates tumor growth

    International Nuclear Information System (INIS)

    Endothelial cells play a complex role in the pathobiology of cancer. This role is not limited to the making of blood vessels to allow for influx of oxygen and nutrients required for the high metabolic demands of tumor cells. Indeed, it has been recently shown that tumor-associated endothelial cells secrete molecules that enhance tumor cell survival and cancer stem cell self-renewal. The hypothesis underlying this work is that specific disruption of endothelial cell-initiated signaling inhibits tumor growth. Conditioned medium from primary human dermal microvascular endothelial cells (HDMEC) stably transduced with silencing RNA for IL-6 (or controls) was used to evaluate the role of endothelial-derived IL-6 on the activation of key signaling pathways in tumor cells. In addition, these endothelial cells were co-transplanted with tumor cells into immunodefficient mice to determine the impact of endothelial cell-derived IL-6 on tumor growth and angiogenesis. We observed that tumor cells adjacent to blood vessels show strong phosphorylation of STAT3, a key mediator of tumor progression. In search for a possible mechanism for the activation of the STAT3 signaling pathway, we observed that silencing interleukin (IL)-6 in tumor-associated endothelial cells inhibited STAT3 phosphorylation in tumor cells. Notably, tumors vascularized with IL-6-silenced endothelial cells showed lower intratumoral microvessel density, lower tumor cell proliferation, and slower growth than tumors vascularized with control endothelial cells. Collectively, these results demonstrate that IL-6 secreted by endothelial cells enhance tumor growth, and suggest that cancer patients might benefit from targeted approaches that block signaling events initiated by endothelial cells

  1. Polycation-mediated integrated cell death processes

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Andersen, Helene; Wu, Linping;

    2014-01-01

    standard. PEIs are highly efficient transfectants, but depending on their architecture and size they induce cytotoxicity through different modes of cell death pathways. Here, we briefly review dynamic and integrated cell death processes and pathways, and discuss considerations in cell death assay design...

  2. Fundamental studies of chemical vapor deposition diamond growth processes

    International Nuclear Information System (INIS)

    We are developing laser spectroscopic techniques to foster a fundamental understanding of diamond film growth by hot filament chemical vapor deposition (CVD). Several spectroscopic techniques are under investigation to identify intermediate species present in the bulk reactor volume, the thin active volume immediately above the growing film, and the actual growing surface. Such a comprehensive examination of the overall deposition process is necessary because a combination of gas phase and surface chemistry is probably operating. Resonantly enhanced multiphoton ionization (REMPI) techniques have been emphasized. A growth rector that permits through-the-substrate gas sampling for REMPI/time-of-flight mass spectroscopy has been developed. 7 refs., 2 figs

  3. Growth mechanism of YBCO film by TFA-MOD process

    International Nuclear Information System (INIS)

    The growth rate expression in the TFA-MOD process for fabrication of coated conductors was revised according to the measurement of the growth rate using a long tape. The P(H2O) distribution along the gas flow-direction was calculated by the advection diffusion model. The above two outputs were combined to predict the minimum annealing time for complete reaction in the sample tape with a finite width. The prediction from the model was in good agreement with the experimental results

  4. Modelisation and numerical simulation for bulk crystal growth processes

    International Nuclear Information System (INIS)

    The aim of this work is to study the relevance of numerical simulation for improving the process control in the field of crystal growth. This investigation focused on the growth of semiconductor and halide crystals by the Bridgman solidification technique, the principle of which is to cool a seeded feed material contained in a crucible, either by pulling the crucible or by decreasing the temperature in the furnace. Calculations are performed with the finite element method, and for comparison, experiments are carried out on Bridgman pulling machines operating either in a laboratory or in industrial plants. Calculations and experimental data have shown a good agreement and a satisfactory reliability

  5. Kinetic Processes Crystal Growth, Diffusion, and Phase Transformations in Materials

    CERN Document Server

    Jackson, Kenneth A

    2004-01-01

    The formation of solids is governed by kinetic processes, which are closely related to the macroscopic behaviour of the resulting materials. With the main focus on ease of understanding, the author begins with the basic processes at the atomic level to illustrate their connections to material properties. Diffusion processes during crystal growth and phase transformations are examined in detail. Since the underlying mathematics are very complex, approximation methods typically used in practice are the prime choice of approach. Apart from metals and alloys, the book places special emphasis on th

  6. Targeting and Regulation of Cell Wall Synthesis During Tip Growth in Plants

    Institute of Scientific and Technical Information of China (English)

    Fangwei Gu; Erik Nielsen

    2013-01-01

    Root hairs and pollen tubes are formed through tip growth, a process requiring synthesis of new cell wall material and the precise targeting and integration of these components to a selected apical plasma membrane domain in the growing tips of these cells. Presence of a tip-focused calcium gradient, control of actin cytoskeleton dynamics, and formation and targeting of secretory vesicles are essential to tip growth. Similar to cells undergoing diffuse growth, cellulose, hemi-celluloses, and pectins are also deposited in the growing apices of tip-growing cells. However, differences in the manner in which these cell wall components are targeted and inserted in the expanding portion of tip-growing cells is reflected by the identification of elements of the plant cell wall synthesis machinery which have been shown to play unique roles in tip-growing cells. In this review, we summarize our current understanding of the tip growth process, with a particular focus on the subcellular targeting of newly synthesized cell wall components, and their roles in this form of plant cell expansion.

  7. Silicon-on ceramic process. Silicon sheet growth and device development for the large-area silicon sheet and cell development tasks of the low-cost solar array project. Quarterly report No. 12, April 2, 1979-June 29, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, P.W.; Zook, J.D.; Heaps, J.D.; Grung, B.L.; Koepke, B.; Schuldt, S.B.

    1979-07-31

    The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon. We plan to do this by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. During the quarter, significant progress was demonstrated in several areas: (1) a 10-cm/sup 2/ cell having 9.9 percent conversion efficiency (AM1, AR) was fabricated; (2) the Honeywall-sponsored SCIM coating development succeeded in producing a 225-cm/sup 2/ layer of sheet silicon (18 inches x 2 inches); and (3) 100 ..mu..m-thick coatings at pull speed of 0.15 cm/sec wer$obta9ned, although apoproximately 50 percent of the layer exhibited dendritic growth. Other results and accomplishments during the quarter are reported in detail. (WHK)

  8. The growth process of natural poplar-birch forests

    Institute of Scientific and Technical Information of China (English)

    LAN Shibo; LUO Xu; LUO Yuliang

    2006-01-01

    With a combination of permanent and temporary sample plots,we investigated the growth conditions of natural poplar-birch forests.The forests were divided into four site classes,using statistical and analytical techniques in a quantitative model,in descending order where site class I was the best.On this basis,the growth of natural poplar-birch forests in the different site classes was studied.The growth processes of height and diameter at breast height were divided into three stages:a fast growing period,a stable growing period and a slow growing period.Results of this study provide a theoretical basis for the directive cultivation of natural poplar-birch forests.

  9. Targeting Btk with ibrutinib inhibit gastric carcinoma cells growth

    Science.gov (United States)

    Wang, Jin Dao; Chen, Xiao Ying; Ji, Ke Wei; Tao, Feng

    2016-01-01

    Bruton’s tyrosine kinase (Btk) is a member of the Tec-family non-receptor tyrosine kinases family. It has previously been reported to be expressed in B cells and has an important role in B-cell malignancies. While the roles of Btk in the pathogenesis of certain B-cell malignancies are well established, the functions of Btk in gastric carcinoma have never been investigated. Herein, we found that Btk is over-expressed in gastric carcinoma tissues and gastric cancer cells. Knockdown of Btk expression selectively inhibits the growth of gastric cancer cells, but not that of the normal gastric mucosa epithelial cell, which express very little Btk. Inhibition of Btk by its inhibitor ibrutinib has an additive inhibitory effect on gastric cancer cell growth. Treatment of gastric cancer cells, but not immortalized breast epithelial cells with ibrutinib results in effective cell killing, accompanied by the attenuation of Btk signals. Ibrutinib also induces apoptosis in gastric carcinoma cells as well as is a chemo-sensitizer for docetaxel (DTX), a standard of care for gastric carcinoma patients. Finally, ibrutinib markedly reduces tumor growth and increases tumor cell apoptosis in the tumors formed in mice inoculated with the gastric carcinoma cells. Given these promising preclinical results for ibrutinib in gastric carcinoma, a strategy combining Btk inhibitor warrants attention in gastric cancer. PMID:27508020

  10. Catalase regulates cell growth in HL60 human promyelocytic cells: evidence for growth regulation by H(2)O(2).

    Science.gov (United States)

    Hachiya, Misao; Akashi, Makoto

    2005-03-01

    Reactive oxygen species (ROS) including hydrogen peroxide (H(2)O(2)) are generated constitutively in mammalian cells. Because of its relatively long life and high permeability across membranes, H(2)O(2) is thought to be an important second messenger. Generation of H(2)O(2) is increased in response to external insults, including radiation. Catalase is located at the peroxisome and scavenges H(2)O(2). In this study, we investigated the role of catalase in cell growth using the H(2)O(2)-resistant variant HP100-1 of human promyelocytic HL60 cells. HP100-1 cells had an almost 10-fold higher activity of catalase than HL60 cells without differences in levels of glutathione peroxidase, manganese superoxide dismutase (MnSOD), and copper-zinc SOD (CuZnSOD). HP100-1 cells had higher proliferative activity than HL60 cells. Treatment with catalase or the introduction of catalase cDNA into HL60 cells stimulated cell growth. Exposure of HP100-1 cells to a catalase inhibitor resulted in suppression of cell growth with concomitant increased levels of intracellular H(2)O(2). Moreover, exogenously added H(2)O(2) or depletion of glutathione suppressed cell growth in HL60 cells. Extracellular signal regulated kinase 1/2 (ERK1/2) was constitutively phosphorylated in HP100-1 cells but not in HL60 cells. Inhibition of the ERK1/2 pathway suppressed the growth of HP100-1 cells, but inhibition of p38 mitogen-activated protein kinase (p38MAPK) did not affect growth. Moreover, inhibition of catalase blocked the phosphorylation of ERK1/2 but not of p38MAPK in HP100-1 cells. Thus our results suggest that catalase activates the growth of HL60 cells through dismutation of H(2)O(2), leading to activation of the ERK1/2 pathway; H(2)O(2) is an important regulator of growth in HL60 cells.

  11. Purification and cultivation of human pituitary growth hormone secreting cells

    Science.gov (United States)

    Hymer, W. C.

    1984-01-01

    A multiphase study was conducted to examine the properties of growth hormone cells. Topics investigated included: (1) to determine if growth hormone (GH) cells contained within the rat pituitary gland can be separated from the other hormone producing cell types by continuous flow electrophoresis (CFE); (2) to determine what role, if any, gravity plays in the electrophoretic separation of GH cells; (3) to compare in vitro GH release from rat pituitary cells previously exposed to microgravity conditions vs release from cells not exposed to microgravity; (4) to determine if the frequency of different hormone producing pituitary cell types contained in cell suspensions can be quantitated by flow cytometry; and (5) to determine if GH contained within the human post mortem pituitary gland can be purified by CFE. Specific experimental procedures and results are included.

  12. Large REBCO single crystals: growth processes and superconducting properties

    International Nuclear Information System (INIS)

    A low solubility of yttrium in the Ba-Cu-O melt and a steep liquidus slope near the peritectic temperature Tp lead to a very slow growth rate of YBa2Cu3O7-δ (YBCO or Y123) single crystals and this creates a problem in growth of large single crystals. To solve this problem, increasing the growth rate and extending the growth time are significant. Using the crystal pulling method, we have developed several processes and succeeded in growing large Y123 and Nd1-xBa2+xCu3O7-δ (NdBCO) single crystals with an edge size over 25 mm in the a - b plane and up to 20 mm in the c-axis direction. In this article, three methods of increasing growth rate are reviewed. They are (i) employing high oxygen partial pressure, (ii) choosing RE (rare earth) elements with higher solubilities in the Ba - Cu - O solution, and (iii) growing REBCO crystals including several RE elements. Using these methods the growth rate was effectively enhanced from two to five times that of Y123. The critical temperature Tc of 92.7 K was achieved from a Y123 single crystal grown under 1 atm oxygen partial pressure, indicating that Tc is insensitive to the oxygen pressure of the growth atmosphere in the YBCO system. A high Tc of about 95 K for NdBCO superconductors with a sharp transition was obtained by controlling the ratio of Ba to Cu (Ba/Cu) in the liquid, suggesting that the Ba/Cu ratio in the liquid composition has a significant importance in controlling Tc. By partial substitution of Sm at the Y sites up to 30%, Y1-xSmxBa2Cu3O7-δ (Y(Sm)BCO) crystals show a Tc of 91 ± 1 K and do not display Tc depression. (author)

  13. Connective Tissue Growth Factor Expression in Human Bronchial Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Amrita DOSANJH

    2006-01-01

    Connective tissue growth factor (CTGF) is a cysteine-rich protein that promotes extracellular matrix deposition. CTGF is selectively induced by transforming growth factor β and des-Arg kallidin in lung fibroblasts and increases steady-state mRNA levels of α type I collagen, 5α-integrin and fibronectin in fibroblasts. Bronchial epithelial cells have been proposed to functionally interact with lung fibroblasts. We therefore investigated if bronchial epithelial cells are able to synthesize CTGF. Human bronchial epithelial cells were grown to subconfluence in standard growth media. Proliferating cells grown in small airway growth media were harvested following starvation for up to 24 h. Expression of CTGF transcripts was measured by PCR. Immunocytochemistry was also completed using a commercially available antibody.The cells expressed readily detectable CTGF transcripts. Starvation of these cells resulted in a quantitative decline of CTGF transcripts. Direct sequencing of the PCR product identified human CTGF. Immunocytochemistry confirmed intracellular CTGF in the cells and none in negative control cells. We conclude that bronchial epithelial cells could be a novel source of CTGF. Bronchial epithelial cell-derived CTGF could thus directly influence the deposition of collagen in certain fibrotic lung diseases.

  14. Insulin-like growth factor binding protein-5 influences pancreatic cancer cell growth

    Institute of Scientific and Technical Information of China (English)

    Sarah K Johnson; Randy S Haun

    2009-01-01

    AIM: To investigate the functional significance of insulin-like growth factor binding protein-5 (IGFBP-5) overexpression in pancreatic cancer (PaC).METHODS: The effects of IGFBP-5 on cell growth were assessed by stable transfection of BxPC-3 and PANC-1 cell lines and measuring cell number and DNA synthesis. Alterations in the cell cycle were assessed by flow cytometry and immunoblot analyses.Changes in cell survival and signal transduction were evaluated after mitogen activated protein kinase and phosphatidylinositol 3-kinase (PI3K) inhibitor treatment.RESULTS: After serum depr ivat ion, IGFBP-5 expression increased both cell number and DNA synthesis in BxPC-3 cells, but reduced cell number in PANC-1 cells. Consistent with this observation, cell cycle analysis of IGFBP-5-expressing cells revealed accelerated cell cycle progression in BxPC-3 and G2/M arrest of PANC-1 cells. Signal transduction analysis revealed that Akt activation was increased in BxPC-3, but reduced in PANC-1 cells that express IGFBP-5. Inhibition of PI3K with LY294002 suppressed extracellular signal-regulated kinase-1 and -2 (ERK1/2) activation in BxPC-3, but enhanced ERK1/2 activation in PANC-1 cells that express IGFBP-5. When MEK1/2 was blocked, Akt activation remained elevated in IGFBP-5 expressing PaC cells; however, inhibition of PI3K or MEK1/2 abrogated IGFBP-5-mediated cell survival.CONCLUSION: These results indicate that IGFBP-5 expression affects the cell cycle and survival signal pathways and thus it may be an important mediator of PaC cell growth.

  15. TOR and paradigm change: cell growth is controlled.

    Science.gov (United States)

    Hall, Michael N

    2016-09-15

    This year marks the 25th anniversary of the discovery of target of rapamycin (TOR), a highly conserved kinase and central controller of cell growth. In this Retrospective, I briefly describe the discovery of TOR and the subsequent elucidation of its cellular role. I place particular emphasis on an article by Barbet et al. from 1996, the first suggesting that TOR controls cell growth in response to nutrients.

  16. TOR and paradigm change: cell growth is controlled.

    Science.gov (United States)

    Hall, Michael N

    2016-09-15

    This year marks the 25th anniversary of the discovery of target of rapamycin (TOR), a highly conserved kinase and central controller of cell growth. In this Retrospective, I briefly describe the discovery of TOR and the subsequent elucidation of its cellular role. I place particular emphasis on an article by Barbet et al. from 1996, the first suggesting that TOR controls cell growth in response to nutrients. PMID:27634743

  17. Coupling between the circadian clock and cell cycle oscillators: implication for healthy cells and malignant growth

    Directory of Open Access Journals (Sweden)

    Celine eFeillet

    2015-05-01

    Full Text Available Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two processes, the influence of the clock on the dynamics of the cell cycle has never been formally observed. Recently, two studies combining single live cell imaging with computational methods have shed light on robust coupling between clock and cell cycle oscillators. We recapitulate here these novel findings and integrate them with earlier results in both healthy and cancerous cells. Moreover, we propose that the cell cycle may be synchronized or slowed down through coupling with the circadian clock, which results in reduced tumour growth. More than ever, systems biology has become instrumental to understand the dynamic interaction between the circadian clock and cell cycle, which is critical in cellular coordination and for diseases such as cancer.

  18. Coupling between the Circadian Clock and Cell Cycle Oscillators: Implication for Healthy Cells and Malignant Growth

    Science.gov (United States)

    Feillet, Celine; van der Horst, Gijsbertus T. J.; Levi, Francis; Rand, David A.; Delaunay, Franck

    2015-01-01

    Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic, or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two processes, the influence of the clock on the dynamics of the cell cycle has never been formally observed. Recently, two studies combining single live cell imaging with computational methods have shed light on robust coupling between clock and cell cycle oscillators. We recapitulate here these novel findings and integrate them with earlier results in both healthy and cancerous cells. Moreover, we propose that the cell cycle may be synchronized or slowed down through coupling with the circadian clock, which results in reduced tumor growth. More than ever, systems biology has become instrumental to understand the dynamic interaction between the circadian clock and cell cycle, which is critical in cellular coordination and for diseases such as cancer. PMID:26029155

  19. Critical telomerase activity for uncontrolled cell growth.

    Science.gov (United States)

    Wesch, Neil L; Burlock, Laura J; Gooding, Robert J

    2016-01-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed. PMID:27500377

  20. Critical telomerase activity for uncontrolled cell growth

    Science.gov (United States)

    Wesch, Neil L.; Burlock, Laura J.; Gooding, Robert J.

    2016-08-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed.

  1. Evolution and the Growth Process: Natural Selection of Entrepreneurial Traits

    OpenAIRE

    Galor, Oded; Michalopoulos, Stelios

    2011-01-01

    This research suggests that a Darwinian evolution of entrepreneurial spirit played a significant role in the process of economic development and the dynamics of inequality within and across societies. The study argues that entrepreneurial spirit evolved non-monotonically in the course of human history. In early stages of development, risk-tolerant, growth promoting traits generated an evolutionary advantage and their increased representation accelerated the pace of technological progress and ...

  2. Evolution and the growth process: Natural selection of entrepreneurial traits

    OpenAIRE

    Galor, Oded

    2011-01-01

    This research suggests that the evolution of entrepreneurial spirit played a significant role in the process of economic development and the dynamics of inequality within and across societies. The study argues that entrepreneurial spirit evolved non-monotonically in the course of human history. In early stages of development, risk-tolerant, growth promoting traits generated an evolutionary advantage and their increased representation accelerated the pace of technological progress and the proc...

  3. Identification of Growth Phases and Influencing Factors in Cultivations with AGE1.HN Cells Using Set-Based Methods

    OpenAIRE

    Borchers, S.; Freund, S; Rath, A.; Streif, S; Reichl, U.; Findeisen, R.

    2013-01-01

    Production of bio-pharmaceuticals in cell culture, such as mammalian cells, is challenging. Mathematical models can provide support to the analysis, optimization, and the operation of production processes. In particular, unstructured models are suited for these purposes, since they can be tailored to particular process conditions. To this end, growth phases and the most relevant factors influencing cell growth and product formation have to be identified. Due to noisy and erroneous experimenta...

  4. Silicon-on-ceramic coating process. Silicon sheet growth development for the Large-Area Silicon Sheet and Cell Development Tasks of the Low-Cost Silicon Solar Array Project. Quarterly report No. 8, December 28, 1977--March 28, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, P.W. Zook, J.D.; Heaps, J D; Maclolek, R B; Koepke, B; Butter, C D; Schult, S B

    1978-04-20

    A research program to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating inexpensive ceramic substrates with a thin layer of polycrystalline silicon is described. The coating methods to be developed are directed toward a minimum-cost process for producing solar cells with a terrestrial conversion efficiency of 12 percent or greater. By applying a graphite coating to one face of a ceramic substrate, molten silicon can be caused to wet only that graphite-coated face and produce uniform thin layers of large-grain polycrystalline silicon; thus, only a minimal quantity of silicon is consumed. A dip-coating method for putting silicon on ceramic (SOC) has been shown to produce solar-cell-quality sheet silicon. This method and a continuous coating process also being investigated have excellent scale-up potential which offers an outstanding cost-effective way to manufacture large-area solar cells. A variety of ceramic materials have been dip-coated with silicon. The investigation has shown that mullite substrates containing an excess of SiO/sub 2/ best match the thermal expansion coefficient of silicon and hence produce the best SOC layers. With such substrates, smooth and uniform silicon layers 25 cm/sup 2/ in area have been achieved with single-crystal grains as large as 4 mm in width and several cm in length. Solar cells with areas from 1 to 10 cm/sup 2/ have been fabricated from material withas-grown surface. Recently, an antireflection (AR) coating has been applied to SOC cells. Conversion efficiencies greater than 9% have been achieved without optimizing series resistance characteristics. Such cells typically have open-circuit voltages and short-circuit current densities of 0.51 V and 20 mA/cm/sup 2/, respectively.

  5. Molecular mobility of scaffolds' biopolymers influences cell growth.

    Science.gov (United States)

    Podlipec, Rok; Gorgieva, Selestina; Jurašin, Darija; Urbančič, Iztok; Kokol, Vanja; Strancar, Janez

    2014-09-24

    Understanding biocompatibility of materials and scaffolds is one of the main challenges in the field of tissue engineering and regeneration. The complex nature of cell-biomaterial interaction requires extensive preclinical functionality testing by studying specific cell responses to different biomaterial properties, from morphology and mechanics to surface characteristics at the molecular level. Despite constant improvements, a more general picture of biocompatibility is still lacking and tailormade scaffolds are not yet available. The scope of our study was thus the investigation of the correlation of fibroblast cell growth on different gelatin scaffolds with their morphological, mechanical as well as surface molecular properties. The latter were thoroughly investigated via polymer molecular mobility studied by site-directed spin labeling and electron paramagnetic resonance spectroscopy (EPR) for the first time. Anisotropy of the rotational motion of the gelatin side chain mobility was identified as the most correlated quantity with cell growth in the first days after adhesion, while weaker correlations were found with scaffold viscoelasticity and no correlations with scaffold morphology. Namely, the scaffolds with highly mobile or unrestricted polymers identified with the cell growth being five times less efficient (N(cells) = 60 ± 25 mm(-2)) as compared to cell growth on the scaffolds with considerable part of polymers with the restricted rotational motion (N(cells) = 290 ± 25 mm(-2)). This suggests that molecular mobility of scaffold components could play an important role in cell response to medical devices, reflecting a new aspect of the biocompatibility concept.

  6. Bacterial strains from floodplain soils perform different plant-growth promoting processes and enhance cowpea growth

    Directory of Open Access Journals (Sweden)

    Elaine Martins da Costa

    2016-08-01

    Full Text Available ABSTRACT Certain nodulating nitrogen-fixing bacteria in legumes and other nodule endophytes perform different plant-growth promoting processes. The objective of this study was to evaluate 26 bacterial strains isolated from cowpea nodules grown in floodplain soils in the Brazilian savannas, regarding performance of plant-growth promoting processes and ability to enhance cowpea growth. We also identified these strains by 16S rRNA sequencing. The following processes were evaluated: free-living biological nitrogen fixation (BNF, solubilization of calcium, aluminum and iron phosphates and production of indole-3-acetic acid (IAA. The abilities to nodulate and promote cowpea growth were evaluated in Leonard jars. Partial sequencing of the 16S rRNA gene identified 60 % of the strains as belonging to genus Paenibacillus. The following four genera were also identified: Bacillus, Bradyrhizobium, Enterobacter and Pseudomonas. None of the strains fixed N2 free-living. Among the strains, 80 % solubilized Ca phosphate and one solubilized Al phosphate and none solubilized Fe phosphate. The highest IAA concentrations (52.37, 51.52 and 51.00 μg mL−1 were obtained in the 79 medium with tryptophan by Enterobacter strains UFPI B5-7A, UFPI B5-4 and UFPI B5-6, respectively. Only eight strains nodulated cowpea, however, all increased production of total dry matter. The fact that the strains evaluated perform different biological processes to promote plant growth indicates that these strains have potential use in agricultural crops to increase production and environmental sustainability.

  7. Proteomic and phosphoproteomic analysis of signalling by adhesion and growth factor receptors in mammary epithelial cells

    OpenAIRE

    Paul, Nikki

    2014-01-01

    Cell adhesion and communication are essential for tissue morphogenesis and repair in healthy multicellular organisms. However, dysregulation of these processes can drive disease progression in conditions such as cancer. Selective cell adhesion to the extracellular matrix is mediated by integrins, a family of transmembrane receptors that compartmentalise signalling and organise the cytoskeleton. Adhesion receptors provide spatial cues to cells to allow them to respond to growth factor and cyto...

  8. Industrialization drive of radiation processing for economic growth in China

    International Nuclear Information System (INIS)

    The transfer of research and development achievements of radiation processing to routine industrial applications in China is reviewed. While making a brief survey of historical background, the paper indicates the different roles that various domestic organizations played in the industrialization drive of radiation processing. Among them the Government's role is the most important one. In accordance with recent growth of the number of industrial radiation facilities (e.g. cobalt-60 irradiators and electron beam accelerators) and current application of radiation processing in main fields in different parts of the country, it can be said that a new radiation processing industry is shaping up in its developing stage to satisfy the growing requirements for economic booming in China. (16 refs.)

  9. Atrial natriuretic factor inhibits mitogen-induced growth in aortic smooth muscle cells.

    Science.gov (United States)

    Baldini, P M; De Vito, P; Fraziano, M; Mattioli, P; Luly, P; Di Nardo, P

    2002-10-01

    Atrial natriuretic factor (ANF) is a polypeptide able to affect cardiovascular homeostasis exhibiting diuretic, natriuretic, and vasorelaxant activities. ANF shows antimitogenic effects in different cell types acting through R(2) receptor. Excessive proliferation of smooth muscle cells is a common phenomenon in diseases such as atherosclerosis, but the role of growth factors in the mechanism which modulate this process has yet to be clarified. The potential antimitogenic role of ANF on the cell growth induced by growth factors appears very intriguing. Aim of the present study was to investigate the possible involvement of ANF on rat aortic smooth muscle (RASM) cells proliferation induced by known mitogens and the mechanism involved. Our data show that ANF, at physiological concentration range, inhibits RASM cell proliferation induced by known mitogens such as PDGF and insulin, and the effect seems to be elicited through the modulation of phosphatidic acid (PA) production and MAP kinases involvement.

  10. Wall extensibility: its nature, measurement and relationship to plant cell growth

    Science.gov (United States)

    Cosgrove, D. J.

    1993-01-01

    Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.

  11. In vitro effects of recombinant human growth hormone on growth of human gastric cancer cell line BGC823 cells

    Institute of Scientific and Technical Information of China (English)

    Jia-Yong Chen; Dao-Ming Liang; Ping Gan; Yi Zhang; Jie Lin

    2004-01-01

    AIM: To study the effects of recombinant human growth hormone (rhGH) on growth of human gastric cancer cell line in vitro.METHODS: Experiment was divided into control group,rhGH group, oxaliplatin (L-OHP) group and rhGH+L-OHP group. Cell inhibitory rate, cell cycle, cell proliferation index (PI) and DNA inhibitory rate of human gastric cancer line BGC823, at different concentrations of rhGH treatment were studied by cell culture, MTT assay and flow cytometry.RESULTS: The distinctly accelerated effects of rhGH on multiplication of BGC823 cell line were not found in vitro.There was no statistical significance between rhGH group and control group, or between rhGH+L-OHP group and LOHP group (P>0.05). The cell growth curve did not rise.Cell inhibitory rate and cells arrested in G0-G1 phase were obviously increased. Meanwhile, cells in S phase and PI were distinctly decreased and DNA inhibitory rate was obviously increased in rhGH+L-OHP group in comparison with control group and rhGH group, respectively (P<0.01).Cell inhibitory rate showed an increasing trend and PI showed a decreasing trend in rhGH+L-OHP group compared with L-OHP group.CONCLUSION: In vitro rhGH does not accelerate the multiplication of human gastric cancer cells. It may increase the therapeutic efficacy when it is used in combination with anticancer drugs.

  12. Dictyostelium possesses highly diverged presenilin/γ-secretase that regulates growth and cell-fate specification and can accurately process human APP: a system for functional studies of the presenilin/γ-secretase complex

    Science.gov (United States)

    McMains, Vanessa C.; Myre, Michael; Kreppel, Lisa; Kimmel, Alan R.

    2010-01-01

    SUMMARY Presenilin (PS) is the catalytic moiety of the γ-secretase complex. PS and other γ-secretase components are well conserved among metazoa, but their presence and function in more-distant species are not resolved. Because inappropriate γ-secretase processing of amyloid precursor protein (APP) in humans is associated with familial Alzheimer’s disease, understanding essential elements within each γ-secretase component is crucial to functional studies. Diverged proteins have been identified in primitive plants but experiments have failed to demonstrate γ-secretase activity. We have identified highly diverged orthologs for each γ-secretase component in the ancient eukaryote Dictyostelium, which lacks equivalents of APP, Notch and other characterized PS/γ-secretase substrates. We show that wild-type (WT) Dictyostelium is capable of amyloidogenic processing of ectopically expressed human APP to generate amyloid-β peptides Aβ40 and Aβ42; strains deficient in γ-secretase cannot produce Aβ peptides but accumulate processed intermediates of APP that co-migrate with the C-terminal fragments α- and β-CTF of APP that are found in mammalian cells. We further demonstrate that Dictyostelium requires PS for phagocytosis and cell-fate specification in a cell-autonomous manner, and show that regulation of phagocytosis requires an active γ-secretase, a pathway suggested, but not proven, to occur in mammalian and Drosophila cells. Our results indicate that PS signaling is an ancient process that arose prior to metazoan radiation, perhaps independently of Notch. Dictyostelium might serve to identify novel PS/γ-secretase signaling targets and provide a unique system for high-throughput screening of small-molecule libraries to select new therapeutic targets for diseases associated with this pathway. PMID:20699477

  13. Dictyostelium possesses highly diverged presenilin/gamma-secretase that regulates growth and cell-fate specification and can accurately process human APP: a system for functional studies of the presenilin/gamma-secretase complex.

    Science.gov (United States)

    McMains, Vanessa C; Myre, Michael; Kreppel, Lisa; Kimmel, Alan R

    2010-01-01

    Presenilin (PS) is the catalytic moiety of the gamma-secretase complex. PS and other gamma-secretase components are well conserved among metazoa, but their presence and function in more-distant species are not resolved. Because inappropriate gamma-secretase processing of amyloid precursor protein (APP) in humans is associated with familial Alzheimer's disease, understanding essential elements within each gamma-secretase component is crucial to functional studies. Diverged proteins have been identified in primitive plants but experiments have failed to demonstrate gamma-secretase activity. We have identified highly diverged orthologs for each gamma-secretase component in the ancient eukaryote Dictyostelium, which lacks equivalents of APP, Notch and other characterized PS/gamma-secretase substrates. We show that wild-type (WT) Dictyostelium is capable of amyloidogenic processing of ectopically expressed human APP to generate amyloid-beta peptides Abeta(40) and Abeta(42); strains deficient in gamma-secretase cannot produce Abeta peptides but accumulate processed intermediates of APP that co-migrate with the C-terminal fragments alpha- and beta-CTF of APP that are found in mammalian cells. We further demonstrate that Dictyostelium requires PS for phagocytosis and cell-fate specification in a cell-autonomous manner, and show that regulation of phagocytosis requires an active gamma-secretase, a pathway suggested, but not proven, to occur in mammalian and Drosophila cells. Our results indicate that PS signaling is an ancient process that arose prior to metazoan radiation, perhaps independently of Notch. Dictyostelium might serve to identify novel PS/gamma-secretase signaling targets and provide a unique system for high-throughput screening of small-molecule libraries to select new therapeutic targets for diseases associated with this pathway. PMID:20699477

  14. Silicon-on-ceramic process: silicon sheet growth and device development for the Large-Area Silicon Sheet and Cell Development Tasks of the Low-Cost Solar Array Project. Quarterly report No. 11, January 1-March 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, P.W.; Zook, J.D.; Heaps, J.D.; Grung, B.L.; Koepke, B.; Schuldt, S.B.

    1979-04-30

    The purpose of the research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating inexpensive ceramic substrates with a thin layer of polycrystalline silicon. The coating methods to be developed are directed toward a minimum-cost process for producing solar cells with a terrestrial conversion efficiency of 12 percent or greater. By applying a graphite coating to one face of a ceramic substrate, molten silicon can be caused to wet only that graphite-coated face and produce uniform thin layers of large-grain polycrystalline silicon; thus, only a minimal quantity of silicon is consumed. A dip-coating method for putting silicon on ceramic (SOC) has been shown to produce solar-cell-quality sheet silicon. This method and a continuous coating process also being investigated have excellent scale-up potential which offers an outstanding, cost-effective way to manufacture large-area solar cells. Results and accomplishments are described.

  15. Virtual microstructural leaf tissue generation based on cell growth modeling

    NARCIS (Netherlands)

    Abera, M.K.; Retta, M.A.; Verboven, P.; Nicolai, B.M.; Berghuijs, H.; Struik, P.

    2016-01-01

    A cell growth algorithm for virtual leaf tissue generation is presented based on the biomechanics of plant cells in tissues. The algorithm can account for typical differences in epidermal layers, palisade mesophyll layer and spongy mesophyll layer which have characteristic differences in the shap

  16. Nerve Growth Factor in Cancer Cell Death and Survival

    International Nuclear Information System (INIS)

    One of the major challenges for cancer therapeutics is the resistance of many tumor cells to induction of cell death due to pro-survival signaling in the cancer cells. Here we review the growing literature which shows that neurotrophins contribute to pro-survival signaling in many different types of cancer. In particular, nerve growth factor, the archetypal neurotrophin, has been shown to play a role in tumorigenesis over the past decade. Nerve growth factor mediates its effects through its two cognate receptors, TrkA, a receptor tyrosine kinase and p75NTR, a member of the death receptor superfamily. Depending on the tumor origin, pro-survival signaling can be mediated by TrkA receptors or by p75NTR. For example, in breast cancer the aberrant expression of nerve growth factor stimulates proliferative signaling through TrkA and pro-survival signaling through p75NTR. This latter signaling through p75NTR promotes increased resistance to the induction of cell death by chemotherapeutic treatments. In contrast, in prostate cells the p75NTR mediates cell death and prevents metastasis. In prostate cancer, expression of this receptor is lost, which contributes to tumor progression by allowing cells to survive, proliferate and metastasize. This review focuses on our current knowledge of neurotrophin signaling in cancer, with a particular emphasis on nerve growth factor regulation of cell death and survival in cancer

  17. Development of a Xeno-Free Substrate for Human Embryonic Stem Cell Growth

    OpenAIRE

    Hailin Zhu; Jinliang Yang; Yuquan Wei; Harry Huimin Chen

    2015-01-01

    Traditionally, human embryonic stem cells (hESCs) are cultured on inactivated live feeder cells. For clinical application using hESCs, there is a requirement to minimize the risk of contamination with animal components. Extracellular matrix (ECM) derived from feeder cells is the most natural way to provide xeno-free substrates for hESC growth. In this study, we optimized the step-by-step procedure for ECM processing to develop a xeno-free ECM that supports the growth of undifferentiated hESCs...

  18. Regulation of MCF-7 breast cancer cell growth by beta-estradiol sulfation.

    Science.gov (United States)

    Falany, Josie L; Macrina, Nancy; Falany, Charles N

    2002-07-01

    Estrogen stimulation is an important factor in human breast cancer cell growth and development. Metabolism of beta-estradiol (E2), the major endogenous human estrogen, is important in regulating both the level and activity of the hormone in breast tissues. Conjugation of E2 with a sulfonate moiety is an inactivation process since the sulfate ester formed by this reaction can not bind and activate the estrogen receptor. In human tissues including the breast, estrogen sulfotransferase (EST, SULT1E1) is responsible for high affinity E2 sulfation activity. EST is expressed in human mammary epithelial (HME) cells but not in most cultured breast cancer cell lines, including estrogen responsive MCF-7 cells. Stable expression of EST in MCF-7 cells at levels similar to those detected in HME cells significantly inhibits cell growth at physiologically relevant E2 concentrations. The mechanism of cell growth inhibition involves the abrogation of responses observed in growth factor expression in MCF-7 cells following E2 stimulation. MCF-7 cells expressing EST activity did not show a decrease in estrogen receptor-alpha levels, nor a characteristic increase in progesterone receptor or decrease in transforming growth factor-beta expression upon exposure to 100 pM or 1 nM E2. The lack of response in these MCF-7 cells is apparently due to the rapid sulfation and inactivation of free E2 by EST. These results suggest that loss of EST expression in the transformation of normal breast tissues to breast cancer may be an important factor in increasing the growth responsiveness of preneoplastic or tumor cells to estrogen stimulation.

  19. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate.

  20. Autonomous growth potential of leukemia blast cells is associated with poor prognosis in human acute leukemias

    Directory of Open Access Journals (Sweden)

    Jakubowski Ann A

    2009-12-01

    Full Text Available Abstract We have described a severe combined immunodeficiency (SCID mouse model that permits the subcutaneous growth of primary human acute leukemia blast cells into a measurable subcutaneous nodule which may be followed by the development of disseminated disease. Utilizing the SCID mouse model, we examined the growth potential of leukemic blasts from 133 patients with acute leukemia, (67 acute lymphoblastic leukemia (ALL and 66 acute myeloid leukemia (AML in the animals after subcutaneous inoculation without conditioning treatment. The blasts displayed three distinct growth patterns: "aggressive", "indolent", or "no tumor growth". Out of 133 leukemias, 45 (33.8% displayed an aggressive growth pattern, 14 (10.5% displayed an indolent growth pattern and 74 (55.6% did not grow in SCID mice. The growth probability of leukemias from relapsed and/or refractory disease was nearly 3 fold higher than that from patients with newly diagnosed disease. Serial observations found that leukemic blasts from the same individual, which did not initiate tumor growth at initial presentation and/or at early relapse, may engraft and grow in the later stages of disease, suggesting that the ability of leukemia cells for engraftment and proliferation was gradually acquired following the process of leukemia progression. Nine autonomous growing leukemia cell lines were established in vitro. These displayed an aggressive proliferation pattern, suggesting a possible correlation between the capacity of human leukemia cells for autonomous proliferation in vitro and an aggressive growth potential in SCID mice. In addition, we demonstrated that patients whose leukemic blasts displayed an aggressive growth and dissemination pattern in SClD mice had a poor clinical outcome in patients with ALL as well as AML. Patients whose leukemic blasts grew indolently or whose leukemia cells failed to induce growth had a significantly longer DFS and more favorable clinical course.

  1. Identification of growth phases and influencing factors in cultivations with AGE1.HN cells using set-based methods.

    Directory of Open Access Journals (Sweden)

    Steffen Borchers

    Full Text Available Production of bio-pharmaceuticals in cell culture, such as mammalian cells, is challenging. Mathematical models can provide support to the analysis, optimization, and the operation of production processes. In particular, unstructured models are suited for these purposes, since they can be tailored to particular process conditions. To this end, growth phases and the most relevant factors influencing cell growth and product formation have to be identified. Due to noisy and erroneous experimental data, unknown kinetic parameters, and the large number of combinations of influencing factors, currently there are only limited structured approaches to tackle these issues. We outline a structured set-based approach to identify different growth phases and the factors influencing cell growth and metabolism. To this end, measurement uncertainties are taken explicitly into account to bound the time-dependent specific growth rate based on the observed increase of the cell concentration. Based on the bounds on the specific growth rate, we can identify qualitatively different growth phases and (in-validate hypotheses on the factors influencing cell growth and metabolism. We apply the approach to a mammalian suspension cell line (AGE1.HN. We show that growth in batch culture can be divided into two main growth phases. The initial phase is characterized by exponential growth dynamics, which can be described consistently by a relatively simple unstructured and segregated model. The subsequent phase is characterized by a decrease in the specific growth rate, which, as shown, results from substrate limitation and the pH of the medium. An extended model is provided which describes the observed dynamics of cell growth and main metabolites, and the corresponding kinetic parameters as well as their confidence intervals are estimated. The study is complemented by an uncertainty and outlier analysis. Overall, we demonstrate utility of set-based methods for analyzing cell

  2. Identification of growth phases and influencing factors in cultivations with AGE1.HN cells using set-based methods.

    Science.gov (United States)

    Borchers, Steffen; Freund, Susann; Rath, Alexander; Streif, Stefan; Reichl, Udo; Findeisen, Rolf

    2013-01-01

    Production of bio-pharmaceuticals in cell culture, such as mammalian cells, is challenging. Mathematical models can provide support to the analysis, optimization, and the operation of production processes. In particular, unstructured models are suited for these purposes, since they can be tailored to particular process conditions. To this end, growth phases and the most relevant factors influencing cell growth and product formation have to be identified. Due to noisy and erroneous experimental data, unknown kinetic parameters, and the large number of combinations of influencing factors, currently there are only limited structured approaches to tackle these issues. We outline a structured set-based approach to identify different growth phases and the factors influencing cell growth and metabolism. To this end, measurement uncertainties are taken explicitly into account to bound the time-dependent specific growth rate based on the observed increase of the cell concentration. Based on the bounds on the specific growth rate, we can identify qualitatively different growth phases and (in-)validate hypotheses on the factors influencing cell growth and metabolism. We apply the approach to a mammalian suspension cell line (AGE1.HN). We show that growth in batch culture can be divided into two main growth phases. The initial phase is characterized by exponential growth dynamics, which can be described consistently by a relatively simple unstructured and segregated model. The subsequent phase is characterized by a decrease in the specific growth rate, which, as shown, results from substrate limitation and the pH of the medium. An extended model is provided which describes the observed dynamics of cell growth and main metabolites, and the corresponding kinetic parameters as well as their confidence intervals are estimated. The study is complemented by an uncertainty and outlier analysis. Overall, we demonstrate utility of set-based methods for analyzing cell growth and

  3. Effect of transforming growth factor-β1 on human intrahepatic cholangiocarcinoma cell growth

    Institute of Scientific and Technical Information of China (English)

    Tetsuya Shimizu; Takashi Tajiri; Shigeki Yokomuro; Yoshiaki Mizuguchi; Yutaka Kawahigashi; Yasuo Arima; Nobuhiko Taniai; Yasuhiro Mamada; Hiroshi Yoshida; Koho Akimaru

    2006-01-01

    AIM: To elucidate the biological effects of transforming growth factor-β1 (TGF-β1) on intrahepatic cholangiocarcinoma (ICC).METHODS: We investigated the effects of TGF-β1 on human ICC cell lines (HuCCT1, MEC, and HuH-28) by monitoring the influence of TGF-β1 on tumor growth and interleukin-6 (IL-6) expression in ICC cells.RESULTS: All three human ICC cell lines produced TGF-β1 and demonstrated accelerated growth in the presence of TGF-β1 with no apoptotic effect. Studies on HuCCT1 revealed a TGF-β1-induced stimulation of the expression of TGF-β1, as well as a decrease in TGF-β1 mRNA expression induced by neutralizing anti-TGF-β1 antibody. These results indicate that TGF-β1 stimulates the production and function of TGF-β1 in an autocrine fashion. Further, IL-6 secretion was observed in all three cell lines and exhibited an inhibitory response to neutralizing anti-TGF-β1 antibody. Experiments using HuCCT1 revealed a TGF-β1-induced acceleration of IL-6 protein expression and mRNA levels. These findings demonstrate a functional interaction between TGF-β1 and IL-6. All three cell lines proliferated in the presence of IL-6. In contrast, TGF-β1 induced no growth effect in HuCCT1 in the presence of small interfering RNA against a specific cell surface receptor of IL-6 and signal transducer and activator of transcription-3.CONCLUSION: ICC cells produce TGF-β1 and confer a TGF-β1-induced growth effect in an autocrine fashion.TGF-β1 activates IL-6 production, and the functional interaction between TGF-β1 and IL-6 contributes to ICC cell growth by TGF-β1.

  4. Preparing T Cell Growth Factor from Rat Splenocytes

    OpenAIRE

    Beeton, Christine; Chandy, K. George

    2007-01-01

    Maintenance of antigen-specific T cell lines or clones in culture requires rounds of antigen-induced activation separated by phases of cell expansion 1,2. Addition of interleukin 2 to the culture media during the expansion phase is necessary to prevent cell death and sufficient to maintain short-term T cell lines but has been shown to increase Th1 polarization 3. Replacement of interleukin 2 by T cell growth factor (TCGF) which contains a mix of cytokines is more effective than interleukin 2...

  5. Evaluating Cell Processes, Quality, and Biomarkers in Pluripotent Stem Cells Using Video Bioinformatics.

    Science.gov (United States)

    Zahedi, Atena; On, Vincent; Lin, Sabrina C; Bays, Brett C; Omaiye, Esther; Bhanu, Bir; Talbot, Prue

    2016-01-01

    There is a foundational need for quality control tools in stem cell laboratories engaged in basic research, regenerative therapies, and toxicological studies. These tools require automated methods for evaluating cell processes and quality during in vitro passaging, expansion, maintenance, and differentiation. In this paper, an unbiased, automated high-content profiling toolkit, StemCellQC, is presented that non-invasively extracts information on cell quality and cellular processes from time-lapse phase-contrast videos. Twenty four (24) morphological and dynamic features were analyzed in healthy, unhealthy, and dying human embryonic stem cell (hESC) colonies to identify those features that were affected in each group. Multiple features differed in the healthy versus unhealthy/dying groups, and these features were linked to growth, motility, and death. Biomarkers were discovered that predicted cell processes before they were detectable by manual observation. StemCellQC distinguished healthy and unhealthy/dying hESC colonies with 96% accuracy by non-invasively measuring and tracking dynamic and morphological features over 48 hours. Changes in cellular processes can be monitored by StemCellQC and predictions can be made about the quality of pluripotent stem cell colonies. This toolkit reduced the time and resources required to track multiple pluripotent stem cell colonies and eliminated handling errors and false classifications due to human bias. StemCellQC provided both user-specified and classifier-determined analysis in cases where the affected features are not intuitive or anticipated. Video analysis algorithms allowed assessment of biological phenomena using automatic detection analysis, which can aid facilities where maintaining stem cell quality and/or monitoring changes in cellular processes are essential. In the future StemCellQC can be expanded to include other features, cell types, treatments, and differentiating cells.

  6. Evaluating Cell Processes, Quality, and Biomarkers in Pluripotent Stem Cells Using Video Bioinformatics.

    Science.gov (United States)

    Zahedi, Atena; On, Vincent; Lin, Sabrina C; Bays, Brett C; Omaiye, Esther; Bhanu, Bir; Talbot, Prue

    2016-01-01

    There is a foundational need for quality control tools in stem cell laboratories engaged in basic research, regenerative therapies, and toxicological studies. These tools require automated methods for evaluating cell processes and quality during in vitro passaging, expansion, maintenance, and differentiation. In this paper, an unbiased, automated high-content profiling toolkit, StemCellQC, is presented that non-invasively extracts information on cell quality and cellular processes from time-lapse phase-contrast videos. Twenty four (24) morphological and dynamic features were analyzed in healthy, unhealthy, and dying human embryonic stem cell (hESC) colonies to identify those features that were affected in each group. Multiple features differed in the healthy versus unhealthy/dying groups, and these features were linked to growth, motility, and death. Biomarkers were discovered that predicted cell processes before they were detectable by manual observation. StemCellQC distinguished healthy and unhealthy/dying hESC colonies with 96% accuracy by non-invasively measuring and tracking dynamic and morphological features over 48 hours. Changes in cellular processes can be monitored by StemCellQC and predictions can be made about the quality of pluripotent stem cell colonies. This toolkit reduced the time and resources required to track multiple pluripotent stem cell colonies and eliminated handling errors and false classifications due to human bias. StemCellQC provided both user-specified and classifier-determined analysis in cases where the affected features are not intuitive or anticipated. Video analysis algorithms allowed assessment of biological phenomena using automatic detection analysis, which can aid facilities where maintaining stem cell quality and/or monitoring changes in cellular processes are essential. In the future StemCellQC can be expanded to include other features, cell types, treatments, and differentiating cells. PMID:26848582

  7. Evaluating Cell Processes, Quality, and Biomarkers in Pluripotent Stem Cells Using Video Bioinformatics.

    Directory of Open Access Journals (Sweden)

    Atena Zahedi

    Full Text Available There is a foundational need for quality control tools in stem cell laboratories engaged in basic research, regenerative therapies, and toxicological studies. These tools require automated methods for evaluating cell processes and quality during in vitro passaging, expansion, maintenance, and differentiation. In this paper, an unbiased, automated high-content profiling toolkit, StemCellQC, is presented that non-invasively extracts information on cell quality and cellular processes from time-lapse phase-contrast videos. Twenty four (24 morphological and dynamic features were analyzed in healthy, unhealthy, and dying human embryonic stem cell (hESC colonies to identify those features that were affected in each group. Multiple features differed in the healthy versus unhealthy/dying groups, and these features were linked to growth, motility, and death. Biomarkers were discovered that predicted cell processes before they were detectable by manual observation. StemCellQC distinguished healthy and unhealthy/dying hESC colonies with 96% accuracy by non-invasively measuring and tracking dynamic and morphological features over 48 hours. Changes in cellular processes can be monitored by StemCellQC and predictions can be made about the quality of pluripotent stem cell colonies. This toolkit reduced the time and resources required to track multiple pluripotent stem cell colonies and eliminated handling errors and false classifications due to human bias. StemCellQC provided both user-specified and classifier-determined analysis in cases where the affected features are not intuitive or anticipated. Video analysis algorithms allowed assessment of biological phenomena using automatic detection analysis, which can aid facilities where maintaining stem cell quality and/or monitoring changes in cellular processes are essential. In the future StemCellQC can be expanded to include other features, cell types, treatments, and differentiating cells.

  8. Meloxicam inhibits the growth of colorectal cancer cells.

    Science.gov (United States)

    Goldman, A P; Williams, C S; Sheng, H; Lamps, L W; Williams, V P; Pairet, M; Morrow, J D; DuBois, R N

    1998-12-01

    Cyclooxygenase-2 has been reported to play an important role in colorectal carcinogenesis. The effects of meloxicam (a COX-2 inhibitor) on the growth of two colon cancer cell lines that express COX-2 (HCA-7 and Moser-S) and a COX-2 negative cell line (HCT-116) were evaluated. The growth rate of these cells was measured following treatment with meloxicam. HCA-7 and Moser-S colony size were significantly reduced following treatment with meloxicam; however, there was no significant change in HCT-116 colony size with treatment. In vivo studies were performed to evaluate the effect of meloxicam on the growth of HCA-7 cells when xenografted into nude mice. We observed a 51% reduction in tumor size after 4 weeks of treatment. Analysis of COX-1 and COX-2 protein levels in HCA-7 tumor lysates revealed a slight decrease in COX-2 expression levels in tumors taken from mice treated with meloxicam and no detectable COX-1 expression. Here we report that meloxicam significantly inhibited HCA-7 colony and tumor growth but had no effect on the growth of the COX-2 negative HCT-116 cells. PMID:9886578

  9. DREF Is Required for Efficient Growth and Cell Cycle Progression in Drosophila Imaginal Discs

    OpenAIRE

    Hyun, Joogyung; Jasper, Heinrich; Bohmann, Dirk

    2005-01-01

    Based on overexpression studies and target gene analyses, the transcription factor DNA replication-related element factor (DREF) has been proposed to regulate growth and replication in Drosophila melanogaster. Here we present loss-of-function experiments to analyze the contribution of DREF to these processes. RNA interference-mediated extinction of DREF function in vivo demonstrates a requirement for the protein for normal progression through the cell cycle and consequently for growth of imag...

  10. Turning a plant tissue into a living cell froth through isotropic growth.

    Science.gov (United States)

    Corson, Francis; Hamant, Olivier; Bohn, Steffen; Traas, Jan; Boudaoud, Arezki; Couder, Yves

    2009-05-26

    The forms resulting from growth processes are highly sensitive to the nature of the driving impetus, and to the local properties of the medium, in particular, its isotropy or anisotropy. In turn, these local properties can be organized by growth. Here, we consider a growing plant tissue, the shoot apical meristem of Arabidopsis thaliana. In plants, the resistance of the cell wall to the growing internal turgor pressure is the main factor shaping the cells and the tissues. It is well established that the physical properties of the walls depend on the oriented deposition of the cellulose microfibrils in the extracellular matrix or cell wall; this order is correlated to the highly oriented cortical array of microtubules attached to the inner side of the plasma membrane. We used oryzalin to depolymerize microtubules and analyzed its influence on the growing meristem. This had no short-term effect, but it had a profound impact on the cell anisotropy and the resulting tissue growth. The geometry of the cells became similar to that of bubbles in a soap froth. At a multicellular scale, this switch to a local isotropy induced growth into spherical structures. A theoretical model is presented in which a cellular structure grows through the plastic yielding of its walls under turgor pressure. The simulations reproduce the geometrical properties of a normal tissue if cell division is included. If not, a "cell froth" very similar to that observed experimentally is obtained. Our results suggest strong physical constraints on the mechanisms of growth regulation. PMID:19423667

  11. Expression of AT1amRNA in rat hepatic stellate cells and its effects on cell growth collagen production

    Institute of Scientific and Technical Information of China (English)

    张艺军; 杨希山; 吴平生; 廖贵清; 杨国平; 张晓峰; 陈晓清

    2004-01-01

    @@ Activated hepatic stellate cells (HSCs) play important roles in hepatic fibrosis. Studies on HSCs activation in vitro have shown that this process is regulated by a wide variety of growth factors and cytokines.1 Recent data indicate that AngⅡ is responsible for the mechanisms of myocardial fibrosis and kidney fibrosis; but there are only few reports on hepatic fibrosis.2-8

  12. Total triterpenoids from Ganoderma Lucidum suppresses prostate cancer cell growth by inducing growth arrest and apoptosis.

    Science.gov (United States)

    Wang, Tao; Xie, Zi-ping; Huang, Zhan-sen; Li, Hao; Wei, An-yang; Di, Jin-ming; Xiao, Heng-jun; Zhang, Zhi-gang; Cai, Liu-hong; Tao, Xin; Qi, Tao; Chen, Di-ling; Chen, Jun

    2015-10-01

    In this study, one immortalized human normal prostatic epithelial cell line (BPH) and four human prostate cancer cell lines (LNCaP, 22Rv1, PC-3, and DU-145) were treated with Ganoderma Lucidum triterpenoids (GLT) at different doses and for different time periods. Cell viability, apoptosis, and cell cycle were analyzed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR and Western blotting. It was found that GLT dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. GLT-induced apoptosis was due to activation of Caspases-9 and -3 and turning on the downstream apoptotic events. GLT-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and E2F1 expression at the late time. These findings demonstrate that GLT suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which might suggest that GLT or Ganoderma Lucidum could be used as a potential therapeutic drug for prostate cancer.

  13. Total triterpenoids from Ganoderma Lucidum suppresses prostate cancer cell growth by inducing growth arrest and apoptosis.

    Science.gov (United States)

    Wang, Tao; Xie, Zi-ping; Huang, Zhan-sen; Li, Hao; Wei, An-yang; Di, Jin-ming; Xiao, Heng-jun; Zhang, Zhi-gang; Cai, Liu-hong; Tao, Xin; Qi, Tao; Chen, Di-ling; Chen, Jun

    2015-10-01

    In this study, one immortalized human normal prostatic epithelial cell line (BPH) and four human prostate cancer cell lines (LNCaP, 22Rv1, PC-3, and DU-145) were treated with Ganoderma Lucidum triterpenoids (GLT) at different doses and for different time periods. Cell viability, apoptosis, and cell cycle were analyzed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR and Western blotting. It was found that GLT dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. GLT-induced apoptosis was due to activation of Caspases-9 and -3 and turning on the downstream apoptotic events. GLT-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and E2F1 expression at the late time. These findings demonstrate that GLT suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which might suggest that GLT or Ganoderma Lucidum could be used as a potential therapeutic drug for prostate cancer. PMID:26489631

  14. Evolutionary process development towards next generation crystalline silicon solar cells : a semiconductor process toolbox application

    Science.gov (United States)

    John, J.; Prajapati, V.; Vermang, B.; Lorenz, A.; Allebe, C.; Rothschild, A.; Tous, L.; Uruena, A.; Baert, K.; Poortmans, J.

    2012-08-01

    Bulk crystalline Silicon solar cells are covering more than 85% of the world's roof top module installation in 2010. With a growth rate of over 30% in the last 10 years this technology remains the working horse of solar cell industry. The full Aluminum back-side field (Al BSF) technology has been developed in the 90's and provides a production learning curve on module price of constant 20% in average. The main reason for the decrease of module prices with increasing production capacity is due to the effect of up scaling industrial production. For further decreasing of the price per wattpeak silicon consumption has to be reduced and efficiency has to be improved. In this paper we describe a successive efficiency improving process development starting from the existing full Al BSF cell concept. We propose an evolutionary development includes all parts of the solar cell process: optical enhancement (texturing, polishing, anti-reflection coating), junction formation and contacting. Novel processes are benchmarked on industrial like baseline flows using high-efficiency cell concepts like i-PERC (Passivated Emitter and Rear Cell). While the full Al BSF crystalline silicon solar cell technology provides efficiencies of up to 18% (on cz-Si) in production, we are achieving up to 19.4% conversion efficiency for industrial fabricated, large area solar cells with copper based front side metallization and local Al BSF applying the semiconductor toolbox.

  15. Nanowire growth process modeling and reliability models for nanodevices

    Science.gov (United States)

    Fathi Aghdam, Faranak

    Nowadays, nanotechnology is becoming an inescapable part of everyday life. The big barrier in front of its rapid growth is our incapability of producing nanoscale materials in a reliable and cost-effective way. In fact, the current yield of nano-devices is very low (around 10 %), which makes fabrications of nano-devices very expensive and uncertain. To overcome this challenge, the first and most important step is to investigate how to control nano-structure synthesis variations. The main directions of reliability research in nanotechnology can be classified either from a material perspective or from a device perspective. The first direction focuses on restructuring materials and/or optimizing process conditions at the nano-level (nanomaterials). The other direction is linked to nano-devices and includes the creation of nano-electronic and electro-mechanical systems at nano-level architectures by taking into account the reliability of future products. In this dissertation, we have investigated two topics on both nano-materials and nano-devices. In the first research work, we have studied the optimization of one of the most important nanowire growth processes using statistical methods. Research on nanowire growth with patterned arrays of catalyst has shown that the wire-to-wire spacing is an important factor affecting the quality of resulting nanowires. To improve the process yield and the length uniformity of fabricated nanowires, it is important to reduce the resource competition between nanowires during the growth process. We have proposed a physical-statistical nanowire-interaction model considering the shadowing effect and shared substrate diffusion area to determine the optimal pitch that would ensure the minimum competition between nanowires. A sigmoid function is used in the model, and the least squares estimation method is used to estimate the model parameters. The estimated model is then used to determine the optimal spatial arrangement of catalyst arrays

  16. Hydrodynamic effects on cell growth in agitated microcarrier bioreactors

    Science.gov (United States)

    Cherry, Robert S.; Papoutsakis, E. Terry

    1988-01-01

    The net growth rate of bovine embryonic kidney cells in microcarrier bioreactor is the result of a variable death rate imposed on a cell culture trying to grow at a constant intrinsic growth rate. The death rate is a function of the agitation conditions in the system, and increases at higher agitation because of increasingly energetic interactions of the cell covered microcarriers with turbulent eddies in the fluid. At very low agitation rates bead-bead bridging becomes important; the large clumps formed by bridging can interact with larger eddies than single beads, leading to a higher death rate at low agitation. The growth and death rate were correlated with a dimensionless eddy number which compares eddy forces to the buoyant force on the bead.

  17. Modelling of Verneuil process for the sapphire crystal growth

    Science.gov (United States)

    Barvinschi, Floricica; Santailler, Jean-Louis; Duffar, Thierry; Le Gal, Hervé

    1999-03-01

    The finite element software FIDAP was used to simulate the Verneuil crystal growth process. The turbulent combustion between hydrogen and oxygen, giving water, the hydrodynamics of the gas phase, the inlet and outlet chemical species flow resulting from the combustion and the heat transfer in the furnace (including internal wall-to-wall radiation) are taken into account. A problem with 10 degrees of freedom per node is generated, solved and the results of the axisymmetric model have shown that the coupling of all these phenomena can be achieved in one numerical model. The effects of transparency of the crystal is discussed. A qualitative agreement between some experimental observations and the model is found, so that modelling may be a good tool for studying the Verneuil process. Nevertheless, some improvements of the model in conjunction with other experimental validations appear necessary.

  18. Mesenchymal stem cell printing and process regulated cell properties.

    Science.gov (United States)

    Snyder, Jessica; Rin Son, Ae; Hamid, Qudus; Wang, Chengyang; Lui, Yigong; Sun, Wei

    2015-01-01

    This topical review with original analysis and empirical results compares cell sensitivity to physical stress during printing. The objective is to frame a reproducible causation between printing environment and printed cell morphology, viability and phenotype stability. Content includes: (1) a topical review classifies the overlap between physical stress vectors during printing and mesenchymal stem cell sensitivities. (2) Original flow analysis frames the feasible range of stress duration and intensity during manufacturing. (3) Preliminary empirical results define cell properties as a function of minimum, mean and maximum stress conditions. The review and analytical characterization serve as an essential precursor to interpret surprising empirical results. Results identify key cell properties are stress-dependent and controllable based on printing process parameter selection. Printing's minimum stress condition preserves cell viability. The maximum stress increases heterogeneity of cell response, induces inelastic ultra-structural distortion of the cell membrane and chromatin, and increases necrotic subpopulations post-printing. The review, analysis and preliminary results support the feasibility of modulating cell properties during fabrication by prescriptively tuning the stress environment. The process control over cell morphology, health and the rate of differentiation is both a direct result of strain during printing and an in-direct result of increased distress signaling from necrotic sub-populations. PMID:26696405

  19. The role of stem cells in midgut growth and regeneration.

    Science.gov (United States)

    Hakim, R S; Baldwin, K M; Loeb, M

    2001-06-01

    The Manduca sexta (L.) [Lepidoptera: Sphingidae] and Heliothis virescens (F.) [Lepidoptera: Noctuidae] midguts consist of a pseudostratified epithelium surrounded by striated muscle and tracheae. This epithelium contains goblet, columnar, and basal stem cells. The stem cells are critically important in that they are capable of massive proliferation and differentiation. This growth results in a fourfold enlargement of the midgut at each larval molt. The stem cells are also responsible for limited cell replacement during repair. While the characteristics of the stem cell population vary over the course of an instar, stem cells collected early in an instar and those collected late can start in vitro cultures. Cultures of larval stem, goblet, and columnar cells survive in vitro for several mo through proliferation and differentiation of the stem cells. One of the two polypeptide differentiation factors which have been identified and characterized from the culture medium has now been shown to be present in midgut in vivo. Thus the ability to examine lepidopteran midgut stem cell growth in vitro and in vivo is proving to be effective in determining the basic features of stem cell action and regulation. PMID:11515964

  20. Purification and cultivation of human pituitary growth hormone secreting cells

    Science.gov (United States)

    Hymer, W. C.

    1979-01-01

    Efforts were directed towards maintenance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro. The production of human growth hormone (hGH) by this means would be of benefit for the treatment of certain human hypopituitary diseases such as dwarfism. One of the primary approaches was the testing of agents which may logically be expected to increase hGH release. The progress towards this goal is summarized. Results from preliminary experiments dealing with electrophoresis of pituitary cell for the purpose of somatotroph separation are described.

  1. Growth and Plating of Cell Suspension Cultures of Datura Innoxia

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1974-01-01

    Suspension cultures of Datura innoxia Mill, were successfully grown on a modified Murashige and Skoog medium with 2,4–D, NAA or BAP as growth substances, provided the micronutrient levels were reduced to 1/10. Normal amounts of micronutrients were toxic. Attempts to identify the toxic elements did...... malate) or on NO3−-N alone. Dry weight yield was proportional to the amount of nitrate-N added (47 mg/mg N). Filtered suspension cultures containing single cells (plating cultures) could be grown in agar in petri dishes when NAA or 2,4-D were used as growth substances. Cells grew at densities above 500...

  2. Bacterial cell curvature through mechanical control of cell growth

    DEFF Research Database (Denmark)

    Cabeen, M.; Charbon, Godefroid; Vollmer, W.;

    2009-01-01

    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure...

  3. In vitro growth, differentiation and biological characteristics of neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Meijiang Yun; Lianzhong Wang; Yongcai Wang; Xiaolian Jiang

    2006-01-01

    of NSCs, such as transforming growth factor (TGF) is an important player in repairing organs, NGF accelerates the process of growth, insulin-like growth factor serves importantly in the differentiation of stem cells into neuron-like cells.CONCLUSTON: As unipotent stem cells, NSCs have the abilities of self-renewal and potential of high differentiation. The method of mechanical dissociation is better than trypsin digestion in e separating ESCs. However,density gradient centrifuge separation is better than other methods in the separation of the BMSCs. NGF and other factors play an important role in the growth of NSCs.

  4. Reversal of an immunity associated plant cell death program by the growth regulator auxin

    Directory of Open Access Journals (Sweden)

    Gopalan Suresh

    2008-12-01

    Full Text Available Abstract Background One form of plant immunity against pathogens involves a rapid host programmed cell death at the site of infection accompanied by the activation of local and systemic resistance to pathogens, termed the hypersensitive response (HR. In this work it was tested (i if the plant growth regulator auxin can inhibit the cell death elicited by a purified proteinaceous HR elicitor, (ii how far down the process this inhibition can be achieved, and (iii if the inhibition affects reporters of immune response. The effect of constitutive modulation of endogenous auxin levels in transgenic plants on this cell death program was also evaluated. Results The HR programmed cell death initiated by a bacterial type III secretion system dependent proteinaceous elicitor harpin (from Erwinia amylovora can be reversed till very late in the process by the plant growth regulator auxin. Early inhibition or late reversal of this cell death program does not affect marker genes correlated with local and systemic resistance. Transgenic plants constitutively modulated in endogenous levels of auxin are not affected in ability or timing of cell death initiated by harpin. Conclusion These data indicate that the cell death program initiated by harpin can be reversed till late in the process without effect on markers strongly correlated with local and systemic immunity. The constitutive modulation of endogenous auxin does not affect equivalent signaling processes affecting cell death or buffers these signals. The concept and its further study has utility in choosing better strategies for treating mammalian and agricultural diseases.

  5. Accommodating the difference in students' prior knowledge of cell growth kinetics

    NARCIS (Netherlands)

    van Seters, Janneke; Ossevoort, Miriam; Goedhart, Martin; Tramper, Johannes

    2011-01-01

    This paper describes the development and benefits of an adaptive digital module on cell growth to tackle the problem of educating a heterogeneous group of students at the beginning of an undergraduate course on process engineering. Aim of the digital module is to provide students with the minimal le

  6. Quantifying in vitro growth and metabolism kinetics of human mesenchymal stem cells using a mathematical model

    NARCIS (Netherlands)

    Higuera-Sierra, G.; Schop, D.; Janssen, F.; Dijkhuizen-Radersma, R.; Boxtel, van A.J.B.; Blitterswijk, van C.A.

    2009-01-01

    Better quantitative understanding of human mesenchymal stem cells (hMSCs) metabolism is needed to identify, understand, and subsequently optimize the processes in expansion of hMSCs in vitro. For this purpose, we analyzed growth of hMSCs in vitro with a mathematical model based on the mass balances

  7. Quantifying In Vitro Growth and Metabolism Kinetics of Human Mesenchymal Stem Cells Using a Mathematical Model

    NARCIS (Netherlands)

    Higuera, Gustavo; Schop, Deborah; Janssen, Frank; Dijkhuizen-Radersma, van Riemke; Boxtel, van Ton; Blitterswijk, van Clemens A.

    2009-01-01

    Better quantitative understanding of human mesenchymal stem cells (hMSCs) metabolism is needed to identify, understand, and subsequently optimize the processes in expansion of hMSCs in vitro. For this purpose, we analyzed growth of hMSCs in vitro with a mathematical model based on the mass balances

  8. Accommodating the difference in students’ prior knowledge of cell growth kinetics

    NARCIS (Netherlands)

    Seters, van J.R.; Ossevoort, M.A.; Goedhart, M.J.; Tramper, J.

    2011-01-01

    This paper describes the development and benefits of an adaptive digital module on cell growth to tackle the problem of educating a heterogeneous group of students at the beginning of an undergraduate course on process engineering. Aim of the digital module is to provide students with the minimal le

  9. Two-dimension tissue growth model based on circular granular cells for cells with small overlap

    CERN Document Server

    Viridi, Sparisoma; Aprianti, Devi; Haris, Luman; Haryanto, Freddy

    2014-01-01

    Tissue growth can be modeled in two dimension by only using circular granular cells, which can grow and produce child. Linear spring-dashpot model is used to bind the cells with a cut-off interaction range of 1.1 times sum of radii of interacted cells. Simulation steps must be divided into explicit and implicit ones due to cell growing stage and cell position rearrangement. This division is aimed to avoid simulation problem. Only in the explicit steps time changes is performed. Large cells overlap is chosen as termination condition of tissue growth. Only some cells configuration can growth to infinite time without encountering the large cells overlap. These configurations, and the other also, are presented in this work.

  10. Immunoreactive transforming growth factor alpha and epidermal growth factor in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Therkildsen, M H; Poulsen, Steen Seier; Bretlau, P

    1993-01-01

    Forty oral squamous cell carcinomas have been investigated immunohistochemically for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF). The same cases were recently characterized for the expression of EGF-receptors. TGF-alpha was detected...... with a monoclonal mouse antibody and EGF with polyclonal rabbit antiserum. Thirty-five of the tumours were positive for TGF-alpha and 26 of the tumours for EGF. None of the poorly differentiated tumours was positive for EGF, but they all were for TGF-alpha. In sections including normal differentiated oral mucosa......, the cells above the basal cell layer were positive for both TGF-alpha and EGF. The same staining pattern was observed in oral mucosa obtained from healthy persons. In moderately to well differentiated carcinomas, the immunoreactivity was mainly confined to the cytologically more differentiated cells, thus...

  11. Rapamycin promotes Schwann cell migration and nerve growth factor secretion

    Institute of Scientific and Technical Information of China (English)

    Fang Liu; Haiwei Zhang; Kaiming Zhang; Xinyu Wang; Shipu Li; Yixia Yin

    2014-01-01

    Rapamycin, similar to FK506, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the effects of different concentrations of rapamycin and FK506 on Sc hwann cells and investigated effects and mechanisms of rapamycin on improving peripheral nerve regeneration. Results demonstrated that the lowest rapamycin concentration (1.53 nmol/L) more signiifcantly promoted Schwann cell migration than the highest FK506 concentration (100μmol/L). Rapamycin promoted the secretion of nerve growth factors and upregulated growth-associated protein 43 expression in Schwann cells, but did not signiifcantly affect Schwann cell proliferation. Therefore, rapamycin has potential application in peripheral nerve regeneration therapy.

  12. Applicability of bacterial growth models in spreadable processed cheese

    Directory of Open Access Journals (Sweden)

    Dorota Weiss

    2015-09-01

    Full Text Available Background. Food spoilage is a process in which the quality parameters decrease and products are no longer edible. This is a cumulative effect of bacteria growth and their metabolite production, which is a factor limiting shelf life. Thus, the aim of the study was to evaluate whether microbiological growth models for total viable count (TVC and Clostridium strain bacteria are reliable tools for prediction of microbiological changes in spreadable processed cheese. Material and methods. Investigations were conducted for two types of bacteria: TVC and Clostridium in following temperature: 8°C, 20°C and 30°C. A total number of aerobic bacteria was determined based on standard PN-EN ISO 4833:2004 and Clostridium was detected by using microbiological procedure for sulphite-reducing anaerobic spore-bacteria with a selective nourishment. During the analysis nonlinear regression and Baranyi and Roberts primary model were used. Results. For temperatures 20°C and 30°C, Baranyi and Roberts model, for total viable count showed determination coeffi cient of 70%. The models prepared for Clostridium, in these temperatures, showed much lower R2, respectively 25% and 30%. At the abovementioned temperatures also the expiration of product shelf life was much shorter and amounted 70 days at 20°C and 7 days at 30°C. For both types of bacteria incubated at 8°C the numbers of bacteria decrease until the expiration of product shelf life. Conclusions. Models used in the analyses, Baranyi and Roberts and nonlinear regression, poorly matched the experimental data, hence they are not reliable tools. Nevertheless, they gave information about dynamic of microbiological changes in spreadable processed cheese.

  13. A novel cell growth-promoting factor identified in a B cell leukemia cell line, BALL-1

    International Nuclear Information System (INIS)

    A novel leukemia cell growth-promoting activity has been identified in the culture supernatant from a human B cell leukemia cell line, BALL-1. The supernatant from unstimulated cultures of the BALL-1 cells significantly promoted the growth of 16 out of 24 leukemia/lymphoma cell lines of different lineages (T, B and non-lymphoid) in a minimal concentration of fetal bovine serum (FBS), and 5 out of 12 cases of fresh leukemia cells in FBS-free medium. The growth-promoting sieve filtration and dialysis. The MW of the factor was less than 10 kDa. The growth-promoting activity was heat and acid stable and resistant to trypsin treatment. The factor isolated from the BALL-1 supernatant was distinct from known polypeptide growth factors with MW below 10 kDa, such as epidermal growth factor, transforming growth factor α, insulin-like growth factor I (IGF-I), IGF-II and insulin, as determine by specific antibodies and by cell-growth-promoting tests. The factor is the BALL-1 supernatant did not promote the proliferation of normal human fresh peripheral blood lymphocytes or mouse fibroblast cell line, BALB/C 3T3. In addition to the BALL-1 supernatant, a similar growth-promoting activity was found in the culture supernatant from 13 of 17 leukemia/lymphoma cell lines tested. The activity in these culture supernatant promoted the growth of leukemia/lymphoma cell lines in autocrine and/or paracrine fashions. These observations suggest that the low MW cell growth-promoting activity found in the BALL-1 culture supernatant is mediated by a novel factor which may be responsible for the clonal expansion of particular leukemic clones. (author)

  14. Insulin-like Growth Factor Binding Protein 7 Mediates Glioma Cell Growth and Migration

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2008-12-01

    Full Text Available Insulin-like growth factor binding protein 7 (IGFBP-7 is the only member of the IGFBP superfamily that binds strongly to insulin, suggesting that IGFBP-7 may have different functions from other IGFBPs. Unlike other IGFBPs, the expression and functions of IGFBP-7 in glioma tumors have not been reported. Using cDNA microarray analysis, we found that expression of IGFBP-7 correlated with the grade of glioma tumors and the overall patient survival. This finding was further validated by real-time reverse transcription-polymerase chain reaction and Western blot analysis. We used RNAi to examine the role of IGFBP-7 in glioma cells, inhibiting IGFBP-7 expression by short interfering RNA transfection. Cell proliferation was suppressed after IGFBP-7 expression was inhibited for 5 days, and glioma cell growth was stimulated consistently by the addition of recombinant IGFBP-7 protein. Moreover, glioma cell migration was attenuated by IGFBP-7 depletion but enhanced by IGFBP-7 overexpression and addition. Overexpression of AKT1 in IGFBP-7-overxpressed cells attenuated the IGFBP-7-promoted migration and further enhanced inhibition of IGFBP-7 depletion on the migration. Phosphorylation of AKT and Erk1/2 was also inversely regulated by IGFBP-7 expression. These two factors together suggest that IGFBP-7 can regulate glioma cell migration through the AKT-ERK pathway, thereby playing an important role in glioma growth and migration.

  15. Growth of hybridoma cells in serum-free medium: ethanolamine is an essential component.

    OpenAIRE

    Murakami, H.; Masui, H; Sato, G H; Sueoka, N; Chow, T P; Kano-Sueoka, T

    1982-01-01

    A serum-free medium supplemented with a few growth factors was devised to grow lymphocyte hybridomas. The medium was developed with the hybridoma line MPC11-BL, a fusion product between a mouse plasmacytoma cell line (MPC11TG70na3) and mouse (BALB/c) spleen cells. In the process of developing the medium, ethanolamine was found to be an essential growth factor for the hybridoma. Phosphoethanolamine at 10-fold higher concentration could substitute for ethanolamine. Long-term cultivation of the ...

  16. Targeting the erythropoietin receptor on glioma cells reduces tumour growth

    International Nuclear Information System (INIS)

    Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cells leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.

  17. Targeting the erythropoietin receptor on glioma cells reduces tumour growth

    Energy Technology Data Exchange (ETDEWEB)

    Peres, Elodie A.; Valable, Samuel [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Guillamo, Jean-Sebastien [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Departement de Neurologie, CHU de Caen (France); Marteau, Lena [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Bernaudin, Jean-Francois [Service d' Histologie-Biologie Tumorale, ER2UPMC, Universite Paris 6, Hopital Tenon, Paris (France); Roussel, Simon [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Lechapt-Zalcman, Emmanuele [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Service d' Anatomie Pathologique, CHU de Caen (France); Bernaudin, Myriam [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Petit, Edwige, E-mail: epetit@cyceron.fr [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France)

    2011-10-01

    Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cells leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.

  18. Inhibition of Cell Growth and Telomerase Activity in Osteosarcoma Cells by DN-hTERT

    Institute of Scientific and Technical Information of China (English)

    XU Tao; RAO Yaojian; ZHU Wentao; GUO Fengjin

    2006-01-01

    In order to study the effects of dominant negative human telomerase reverse transcriptase (DN-hTERT) on cell growth and telomerase activity in osteosarcoma cell line MG63, MG63 cells were transfected with DN-hTERT-IRES2-EGFP9 (DN) or IRES2-EGF (I, blank vector) with lipofectamine 2000. The stably transfected cells were selected with G-418. Cell growth properties were examined under a fluorescence microscope. The hTERT mRNA expression was detected by reverse transcription-polymerase chain reaction (RT-PCR). Telomerase activities were measured by TRAP-ELISE. The tumorigenicity was studied with tumor xenografts by subcutaneous injection of cancer cells into nude mice. The results showed that cell growth was suppressed in MG63 cells transfected with DN-hTERT. The hTERT mRNA was increased in N-hTERT transfected-MG63 cells (MG63/DN). The telomerase activity was 2.45±0.11 in MG63/DN cells, while 3.40±0.12 in the cells transfected with blank vector (MG63/I), (P<0.05); DN-hTERT-expressing clones did not form tumors in 2 weeks, but the ratio of tumorigenesis was 30 % in nude mice bearing MG63/I (P<0.01). It was concluded that DN-hTERT could specifically inhibit the cell growth and telomerase activity in MG63 cells.

  19. Celecoxib and tauro-ursodeoxycholic acid co-treatment inhibits cell growth in familial adenomatous polyposis derived LT97 colon adenoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Heumen, Bjorn W.H. van, E-mail: b.vanheumen@mdl.umcn.nl [Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Roelofs, Hennie M.J.; Morsche, Rene H.M. te [Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Marian, Brigitte [Institute of Cancer Research, Wien University, Vienna (Austria); Nagengast, Fokko M.; Peters, Wilbert H.M. [Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)

    2012-04-15

    Chemoprevention would be a desirable strategy to avoid duodenectomy in patients with familial adenomatous polyposis (FAP) suffering from duodenal adenomatosis. We investigated the in vitro effects on cell proliferation, apoptosis, and COX-2 expression of the potential chemopreventives celecoxib and tauro-ursodeoxycholic acid (UDCA). HT-29 colon cancer cells and LT97 colorectal micro-adenoma cells derived from a patient with FAP, were exposed to low dose celecoxib and UDCA alone or in combination with tauro-cholic acid (CA) and tauro-chenodeoxycholic acid (CDCA), mimicking bile of FAP patients treated with UDCA. In HT-29 cells, co-treatment with low dose celecoxib and UDCA resulted in a decreased cell growth (14-17%, p < 0.01). A more pronounced decrease (23-27%, p < 0.01) was observed in LT97 cells. Cell growth of HT-29 cells exposed to 'artificial bile' enriched with UDCA, was decreased (p < 0.001), either in the absence or presence of celecoxib. In LT97 cells incubated with 'artificial bile' enriched with UDCA, cell growth was decreased only in the presence of celecoxib (p < 0.05). No clear evidence was found for involvement of proliferating cell nuclear antigen, caspase-3, or COX-2 in the cellular processes leading to the observed changes in cell growth. In conclusion, co-treatment with low dose celecoxib and UDCA has growth inhibitory effects on colorectal adenoma cells derived from a patient with FAP, and further research on this combination as promising chemopreventive strategy is desired. -- Highlights: Black-Right-Pointing-Pointer Celecoxib and UDCA acid co-treatment decreases cell growth in colon tumor cells. Black-Right-Pointing-Pointer UDCA enriched 'artificial bile' decreases LT-97 cell growth only in presence of celecoxib. Black-Right-Pointing-Pointer PCNA, caspase-3, nor COX-2 seem to be involved in the observed changes in cell growth.

  20. Regulated growth of diatom cells on self-assembled monolayers

    Directory of Open Access Journals (Sweden)

    Kobayashi Koichi

    2007-03-01

    Full Text Available Abstract We succeeded in regulating the growth of diatom cells on chemically modified glass surfaces. Glass surfaces were functionalized with -CF3, -CH3, -COOH, and -NH2 groups using the technique of self-assembled monolayers (SAM, and diatom cells were subsequently cultured on these surfaces. When the samples were rinsed after the adhesion of the diatom cells on the modified surfaces, the diatoms formed two dimensional arrays; this was not possible without the rinsing treatment. Furthermore, we examined the number of cells that grew and their motility by time-lapse imaging in order to clarify the interaction between the cells and SAMs. We hope that our results will be a basis for developing biodevices using living photosynthetic diatom cells.

  1. Systems-biology dissection of eukaryotic cell growth

    OpenAIRE

    Andrews Justen; Przytycka Teresa M

    2010-01-01

    Abstract A recent article in BMC Biology illustrates the use of a systems-biology approach to integrate data across the transcriptome, proteome and metabolome of budding yeast in order to dissect the relationship between nutrient conditions and cell growth. See research article http://jbiol.com/content/6/2/4 and http://www.biomedcentral.com/1741-7007/8/68

  2. Effect of acute exercise on prostate cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Helene Rundqvist

    Full Text Available Physical activity is associated with reduced risk of several cancers, including aggressive prostate cancer. The mechanisms mediating the effects are not yet understood; among the candidates are modifications of endogenous hormone levels. Long-term exercise is known to reduce serum levels of growth stimulating hormones. In contrast, the endocrine effects of acute endurance exercise include increased levels of mitogenic factors such as GH and IGF-1. It can be speculated that the elevation of serum growth factors may be detrimental to prostate cancer progression into malignancy. The incentive of the current study is to evaluate the effect of acute exercise serum on prostate cancer cell growth. We designed an exercise intervention where 10 male individuals performed 60 minutes of bicycle exercise at increasing intensity. Serum samples were obtained before (rest serum and after completed exercise (exercise serum. The established prostate cancer cell line LNCaP was exposed to exercise or rest serum. Exercise serum from 9 out of 10 individuals had a growth inhibitory effect on LNCaP cells. Incubation with pooled exercise serum resulted in a 31% inhibition of LNCaP growth and pre-incubation before subcutaneous injection into SCID mice caused a delay in tumor formation. Serum analyses indicated two possible candidates for the effect; increased levels of IGFBP-1 and reduced levels of EGF. In conclusion, despite the fear of possible detrimental effects of acute exercise serum on tumor cell growth, we show that even the short-term effects seem to add to the overall beneficial influence of exercise on neoplasia.

  3. Glial cells are involved in itch processing

    DEFF Research Database (Denmark)

    Andersen, Hjalte H.; Arendt-Nielsen, Lars; Gazerani, Parisa

    2016-01-01

    Recent discoveries in itch neurophysiology include itch-selective neuronal pathways, the clinically relevant non-histaminergic pathway, and elucidation of the notable similarities and differences between itch and pain. Potential involvement of glial cells in itch processing and the possibility...

  4. Two-dimensional diffusion limited system for cell growth

    International Nuclear Information System (INIS)

    A new cell system, the ''sandwich'' system, was developed to supplement multicellular spheroids as tumor analogues. Sandwiches allow new experimental approaches to questions of diffusion, cell cycle effects and radiation resistance in tumors. In this thesis the method for setting up sandwiches is described both theoretically and experimentally followed by its use in x-ray irradiation studies. In the sandwich system, cells are grown in a narrow gap between two glass slides. Where nutrients and waste products can move into or out of the local environment of the cells only by diffusing through the narrow gap between the slides. Due to the competition between cells, self-created gradients of nutrients and metabolic products are set up resulting in a layer of cells which resembles a living spheroid cross section. Unlike the cells of the spheroid, however, cells in all regions of the sandwich are visible. Therefore, the relative sizes of the regions and their time-dependent growth can be monitored visually without fixation or sectioning. The oxygen and nutrient gradients can be ''turned off'' at any time without disrupting the spatial arrangement of the cells by removing the top slide of the assembly and subsequently turned back on if desired. Removal of the top slide also provides access to all the cells, including those near the necrotic center, of the sandwich. The cells can then be removed for analysis outside the sandwich system. 61 refs., 17 figs

  5. Two-dimensional diffusion limited system for cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Hlatky, L.

    1985-11-01

    A new cell system, the ''sandwich'' system, was developed to supplement multicellular spheroids as tumor analogues. Sandwiches allow new experimental approaches to questions of diffusion, cell cycle effects and radiation resistance in tumors. In this thesis the method for setting up sandwiches is described both theoretically and experimentally followed by its use in x-ray irradiation studies. In the sandwich system, cells are grown in a narrow gap between two glass slides. Where nutrients and waste products can move into or out of the local environment of the cells only by diffusing through the narrow gap between the slides. Due to the competition between cells, self-created gradients of nutrients and metabolic products are set up resulting in a layer of cells which resembles a living spheroid cross section. Unlike the cells of the spheroid, however, cells in all regions of the sandwich are visible. Therefore, the relative sizes of the regions and their time-dependent growth can be monitored visually without fixation or sectioning. The oxygen and nutrient gradients can be ''turned off'' at any time without disrupting the spatial arrangement of the cells by removing the top slide of the assembly and subsequently turned back on if desired. Removal of the top slide also provides access to all the cells, including those near the necrotic center, of the sandwich. The cells can then be removed for analysis outside the sandwich system. 61 refs., 17 figs.

  6. Cell lineages, growth and repair of the mouse heart.

    Science.gov (United States)

    Lescroart, Fabienne; Meilhac, Sigolène M

    2012-01-01

    The formation of the heart involves diversification of lineages which differentiate into distinct cardiac cell types or contribute to different regions such as the four cardiac chambers. The heart is the first organ to form in the embryo. However, in parallel with the growth of the organism, before or after birth, the heart has to adapt its size to maintain pumping efficiency. The adult heart has only a mild regeneration potential; thus, strategies to repair the heart after injury are based on the mobilisation of resident cardiac stem cells or the transplantation of external sources of stem cells. We discuss current knowledge on these aspects and raise questions for future research.

  7. Suppressing The Growth Of Dendrites In Secondary Li Cells

    Science.gov (United States)

    Davies, Evan D.; Perrone, David E.; Shen, David H.

    1996-01-01

    Proposed technique for suppressing growth of lithium dendrites in rechargeable lithium electrochemical power cells involves periodic interruption of steady charging current with short, high-current discharge pulses. Technique applicable to lithium cells of several different types, including Li/TiS(2), Li/NbSe(3), Li/CoO(2), Li/MoS(2), Li/Vo(x), and Li/MnO(2). Cells candidates for use in spacecraft, military, communications, automotive, and other applications in which high-energy-density rechargeable batteries needed.

  8. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. PMID:26976217

  9. C. elegans nucleostemin is required for larval growth and germline stem cell division.

    Directory of Open Access Journals (Sweden)

    Michelle M Kudron

    Full Text Available The nucleolus has shown to be integral for many processes related to cell growth and proliferation. Stem cells in particular are likely to depend upon nucleolus-based processes to remain in a proliferative state. A highly conserved nucleolar factor named nucleostemin is proposed to be a critical link between nucleolar function and stem-cell-specific processes. Currently, it is unclear whether nucleostemin modulates proliferation by affecting ribosome biogenesis or by another nucleolus-based activity that is specific to stem cells and/or highly proliferating cells. Here, we investigate nucleostemin (nst-1 in the nematode C. elegans, which enables us to examine nst-1 function during both proliferation and differentiation in vivo. Like mammalian nucleostemin, the NST-1 protein is localized to the nucleolus and the nucleoplasm; however, its expression is found in both differentiated and proliferating cells. Global loss of C. elegans nucleostemin (nst-1 leads to a larval arrest phenotype due to a growth defect in the soma, while loss of nst-1 specifically in the germ line causes germline stem cells to undergo a cell cycle arrest. nst-1 mutants exhibit reduced levels of rRNAs, suggesting defects in ribosome biogenesis. However, NST-1 is generally not present in regions of the nucleolus where rRNA transcription and processing occurs, so this reduction is likely secondary to a different defect in ribosome biogenesis. Transgenic studies indicate that NST-1 requires its N-terminal domain for stable expression and both its G1 GTPase and intermediate domains for proper germ line function. Our data support a role for C. elegans nucleostemin in cell growth and proliferation by promoting ribosome biogenesis.

  10. Matrix rigidity regulates cancer cell growth and cellular phenotype.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    Full Text Available BACKGROUND: The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness of the microenvironment and how this response varies among cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: "rigidity dependent" (those which show an increase in cell growth as extracellular rigidity is increased, and "rigidity independent" (those which grow equally on both soft and stiff substrates. Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug. CONCLUSIONS/SIGNIFICANCE: These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.

  11. Thin film solar cells from earth abundant materials growth and characterization of Cu2(ZnSn)(SSe)4 thin films and their solar cells

    CERN Document Server

    Kodigala, Subba Ramaiah

    2013-01-01

    The fundamental concept of the book is to explain how to make thin film solar cells from the abundant solar energy materials by low cost. The proper and optimized growth conditions are very essential while sandwiching thin films to make solar cell otherwise secondary phases play a role to undermine the working function of solar cells. The book illustrates growth and characterization of Cu2ZnSn(S1-xSex)4 thin film absorbers and their solar cells. The fabrication process of absorber layers by either vacuum or non-vacuum process is readily elaborated in the book, which helps for further developm

  12. Distribution and number of epidermal growth factor receptors in skin is related to epithelial cell growth

    DEFF Research Database (Denmark)

    Green, M R; Basketter, D A; Couchman, J R;

    1983-01-01

    an undetectable or sharply reduced number of EGF receptors. The EGF receptor number and receptor affinity of epidermal basal cells freshly isolated from rats of increasing age has also been determined. We find that receptor affinity remains unchanged (3.3 nM) but that basal cell surface receptor number decreases...... markedly with age. This decrease in receptor number is similar in trend to the known drop in basal cell [3H]thymidine labelling index which occurs over the same time period. The data suggest that the distribution of EGF receptors and EGF cell surface receptor number in skin are important in the spatial...... receptors are detected on the epithelial cells overlying the basement membranes of the epidermis, sebaceous gland, and regions of the hair follicle all of which have proliferative capacity. In marked contrast, tissues which have started to differentiate and lost their growth potential, carry either...

  13. Purification and Cultivation of Human Pituitary Growth Hormones Secreting Cells

    Science.gov (United States)

    Hymer, W. C.; Todd, P.; Grindeland, R.; Lanham, W.; Morrison, D.

    1985-01-01

    The rat and human pituitary gland contains a mixture of hormone producing cell types. The separation of cells which make growth hormone (GH) is attempted for the purpose of understanding how the hormone molecule is made within the pituitary cell; what form(s) it takes within the cell; and what form(s) GH assumes as it leaves the cell. Since GH has a number of biological targets (e.g., muscle, liver, bone), the assessment of the activities of the intracellular/extracellular GH by new and sensitive bioassays. GH cells contained in the mixture was separated by free flow electrophoresis. These experiments show that GH cells have different electrophoretic mobilities. This is relevant to NASA since a lack of GH could be a prime causative factor in muscle atrophy. Further, GH has recently been implicated in the etiology of motion sickness in space. Continous flow electrophoresis experiment on STS-8 showed that GH cells could be partially separated in microgravity. However, definitive cell culture studies could not be done due to insufficient cell recoveries.

  14. miR-526a regulates apoptotic cell growth in human carcinoma cells.

    Science.gov (United States)

    Yang, Xiaoli; Wang, Cui; Xu, Changzhi; Yan, Zhifeng; Wei, Congwen; Guan, Kai; Ma, Shengli; Cao, Ye; Liu, Liping; Zou, Deyong; He, Xiang; Zhang, Buchang; Ma, Qingjun; Zheng, Zirui

    2015-09-01

    MicroRNAs (miRNAs) play vital roles in the regulation of cell cycle, cell growth, apoptosis, and tumorigenesis. Our previous studies showed that miR-526a positively regulated innate immune response by suppressing CYLD expression, however, the functional relevance of miR-526a expression and cell growth remains to be evaluated. In this study, miR-526a overexpression was found to promote cancer cell proliferation, migration, and anchor-independent colony formation. The molecular mechanism(s) of miR-526a-mediated growth stimulation is associated with rapid cell cycle progression and inhibition of cell apoptosis by targeting CYLD. Taken together, these results provide evidence to show the stimulatory role of miR-526a in tumor migration and invasion through modulation of the canonical NF-κB signaling pathway. PMID:26002288

  15. Decreased expression of the mannose 6- phosphate/insulin-like growth factor-II receptor promotes growth of human breast cancer cells

    International Nuclear Information System (INIS)

    Loss or mutation of the mannose 6-phosphate/insulin-like growth factor-II receptor (M6P/IGF2R) has been found in breast cancer. However, whether or not decreased levels of functional M6P/IGF2R directly contribute to the process of carcinogenesis needs to be further verified by functional studies. In this study, using viral and ribozyme strategies we reduced the expression of M6P/IGF2R in human breast cancer cells and then examined the effect on growth and apoptosis of these cells. Our results showed that infection of MCF-7 cells with the adenovirus carrying a ribozyme targeted against the M6P/IGF2R mRNA dramatically reduced the level of transcripts and the functional activity of M6P/IGF2R in these cells. Accordingly, cells treated with the ribozyme exhibited a higher growth rate and a lower apoptotic index than control cells (infected with a control vector). Furthermore, decreased expression of M6P/IGF2R enhanced IGF-II-induced proliferation and reduced cell susceptibility to TNF-induced apoptosis. These results suggest that M6P/IGF2R functions as a growth suppressor and its loss or mutation may contribute to development and progression of cancer. This study also demonstrates that adenoviral delivery of the ribozyme provides a useful tool for investigating the role of M6P/IGF2R in regulation of cell growth

  16. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  17. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    International Nuclear Information System (INIS)

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK

  18. Regulation of chain length in two diatoms as a growth-fragmentation process

    Science.gov (United States)

    Gherardi, Marco; Amato, Alberto; Bouly, Jean-Pierre; Cheminant, Soizic; Ferrante, Maria Immacolata; d'Alcalá, Maurizio Ribera; Iudicone, Daniele; Falciatore, Angela; Cosentino Lagomarsino, Marco

    2016-08-01

    Chain formation in diatoms is relevant because of several aspects of their adaptation to the ecosystem. However, the tools to quantify the regulation of their assemblage and infer specific mechanisms in a laboratory setting are scarce. To address this problem, we define an approach based on a statistical physics model of chain growth and separation in combination with experimental evaluation of chain-length distributions. Applying this combined analysis to data from Chaetoceros decipiens and Phaeodactylum tricornutum, we find that cells of the first species control chain separation, likely through a cell-to-cell communication process, while the second species only modulates the separation rate. These results promote quantitative methods for characterizing chain formation in several chain-forming species and in diatoms in particular.

  19. Designer cell signal processing circuits for biotechnology.

    Science.gov (United States)

    Bradley, Robert W; Wang, Baojun

    2015-12-25

    Microorganisms are able to respond effectively to diverse signals from their environment and internal metabolism owing to their inherent sophisticated information processing capacity. A central aim of synthetic biology is to control and reprogramme the signal processing pathways within living cells so as to realise repurposed, beneficial applications ranging from disease diagnosis and environmental sensing to chemical bioproduction. To date most examples of synthetic biological signal processing have been built based on digital information flow, though analogue computing is being developed to cope with more complex operations and larger sets of variables. Great progress has been made in expanding the categories of characterised biological components that can be used for cellular signal manipulation, thereby allowing synthetic biologists to more rationally programme increasingly complex behaviours into living cells. Here we present a current overview of the components and strategies that exist for designer cell signal processing and decision making, discuss how these have been implemented in prototype systems for therapeutic, environmental, and industrial biotechnological applications, and examine emerging challenges in this promising field.

  20. Relationship between Microcellular Foaming Injection Molding Process Parameters and Cell Size

    Institute of Scientific and Technical Information of China (English)

    HU Guang-hong; JIANG Chao-dong; CUI Zhen-shan

    2008-01-01

    In order to study the relationship between the main process parameters and the cell size, the mathematical model of cell growth of microcellular foaming injection process is built. Then numeric simulation is employed as experimental method, and the Taguchi method is used to analyze significance of effect of process parameters on the cell size. At last the process parameters are focused on melt temperature, injection time, mold temperature and pre- filled volume. The significance order from big to small of the effect of each process parameters on cell size is melt temperature, pre-filled volume, injection time, and mold temperature. On the basis of above research, the effect of each process parameter on cell size is further researched.Appropriate reduction of the melt temperature and increase of the we-filled volume can optimize the cell size effectively, while the effects of injection time and mold temperature on cell size are less significant.

  1. Cell proliferation along vascular islands during microvascular network growth

    Directory of Open Access Journals (Sweden)

    Kelly-Goss Molly R

    2012-06-01

    Full Text Available Abstract Background Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth. Results Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels. Conclusions These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.

  2. Surface nanotopography of an anodized Ti–6Al–7Nb alloy enhances cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Her-Hsiung [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan (China); Department of Biomedical Informatics, Asia University, Taichung 413, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan (China); Wu, Chia-Ping [Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Sun, Ying-Sui [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Yang, Wei-En [Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Tzu-Hsin, E-mail: biomaterials@hotmail.com [School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan (China); Oral Medicine Center, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China)

    2014-12-05

    Highlights: • An electrochemical anodization was applied to α/β-type Ti–6Al–7Nb alloy surface. • Anodized surface had a nontoxic nanoporous topography. • Anodized surface increased proteins adsorption due to nanotopography. • Anodized surface enhanced cell growth due to nanotopography. • Electrochemical anodization has potential as implant surface treatment. - Abstract: The α/β-type Ti–6Al–7Nb alloy is a potential replacement for α/β-type Ti–6Al–4V alloy, which is widely used in biomedical implant applications. The biological response to implant material is dependent on the surface characteristics of the material. In the present study, a simple and fast process was developed to perform an electrochemical anodization treatment on Ti–6Al–7Nb alloy. The proposed process yielded a thin surface nanotopography, which enhanced cell growth on the Ti–6Al–7Nb alloy. The surface characteristics, including the morphology, wettability, and protein adsorption, were investigated, and the cytotoxicity was evaluated according to International Organization for Standardization 10993-5 specifications. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed via fluorescence microscopy and scanning electron microscopy. The anodization process produced a surface nanotopography (pore size <100 nm) on anodized Ti–6Al–7Nb alloy, which enhanced the wettability, protein adsorption, cell adhesion, cell migration, and cell mineralization. The results showed that the surface nanotopography produced using the proposed electrochemical anodization process enhanced cell growth on anodized Ti–6Al–7Nb alloy for implant applications.

  3. Surface nanotopography of an anodized Ti–6Al–7Nb alloy enhances cell growth

    International Nuclear Information System (INIS)

    Highlights: • An electrochemical anodization was applied to α/β-type Ti–6Al–7Nb alloy surface. • Anodized surface had a nontoxic nanoporous topography. • Anodized surface increased proteins adsorption due to nanotopography. • Anodized surface enhanced cell growth due to nanotopography. • Electrochemical anodization has potential as implant surface treatment. - Abstract: The α/β-type Ti–6Al–7Nb alloy is a potential replacement for α/β-type Ti–6Al–4V alloy, which is widely used in biomedical implant applications. The biological response to implant material is dependent on the surface characteristics of the material. In the present study, a simple and fast process was developed to perform an electrochemical anodization treatment on Ti–6Al–7Nb alloy. The proposed process yielded a thin surface nanotopography, which enhanced cell growth on the Ti–6Al–7Nb alloy. The surface characteristics, including the morphology, wettability, and protein adsorption, were investigated, and the cytotoxicity was evaluated according to International Organization for Standardization 10993-5 specifications. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed via fluorescence microscopy and scanning electron microscopy. The anodization process produced a surface nanotopography (pore size <100 nm) on anodized Ti–6Al–7Nb alloy, which enhanced the wettability, protein adsorption, cell adhesion, cell migration, and cell mineralization. The results showed that the surface nanotopography produced using the proposed electrochemical anodization process enhanced cell growth on anodized Ti–6Al–7Nb alloy for implant applications

  4. Inhibition of Tumor Growth in Mice by Endostatin Derived from Abdominal Transplanted Encapsulated Cells

    Institute of Scientific and Technical Information of China (English)

    Huaining TENG; Ying ZHANG; Wei WANG; Xiaojun MA; Jian FEI

    2007-01-01

    Endostatin, a C-terminal fragment of collagen 18a, inhibits the growth of established tumors and metastases in vivo by inhibiting angiogenesis. However, the purification procedures required for largescale production and the attendant cost of these processes, together with the low effectiveness in clinical tests, suggest that alternative delivery methods might be required for efficient therapeutic use of endostatin.In the present study, we transfected Chinese hamster ovary (CHO) cells with a human endostatin gene expression vector and encapsulated the CHO cells in alginate-poly-L-lysine microcapsules. The release of biologically active endostatin was confirmed using the chicken chorioallantoic membrane assay. The encapsulated endostatin-expressing CHO cells can inhibit the growth of primary tumors in a subcutaneous B16 tumor model when injected into the abdominal cavity of mouse. These results widen the clinical application of the microencapsulated cell endostatin delivery system in cancer treatment.

  5. Analysis of a mathematical model for the growth of cancer cells

    CERN Document Server

    Kohlmann, Martin

    2011-01-01

    In this paper, a two-dimensional model for the growth of multi-layer tumors is presented. The model consists of a free boundary problem for the tumor cell membrane and the tumor is supposed to grow or shrink due to cell proliferation or cell dead. The growth process is caused by a diffusing nutrient concentration $\\sigma$ and is controlled by an internal cell pressure $p$. We assume that the tumor occupies a strip-like domain with a fixed boundary at $y=0$ and a free boundary $y=\\rho(x)$, where $\\rho$ is a $2\\pi$-periodic function. First, we prove the existence of solutions $(\\sigma,p,\\rho)$ and that the model allows for peculiar stationary solutions. As a main result we establish that these equilibrium points are locally asymptotically stable under small perturbations.

  6. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  7. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth.

    Science.gov (United States)

    El Ghazal, Roland; Yin, Xin; Johns, Scott C; Swanson, Lee; Macal, Monica; Ghosh, Pradipta; Zuniga, Elina I; Fuster, Mark M

    2016-05-01

    In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs) in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1) in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21)-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt) were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4-deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  8. Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing-Ping; Lin, Kai-Han; Liu, Chun-Yen; Yu, Ya-Chu; Wu, Pei-Tsun [Department of Life Science, National Taiwan Normal University, Taipei, Taiwan (China); Chiu, Chien-Chih [Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Su, Chun-Li [Department of Human Development and Family Studies, National Taiwan Normal University, Taipei, Taiwan (China); Chen, Kwun-Min [Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan (China); Fang, Kang, E-mail: kangfang@ntnu.edu.tw [Department of Life Science, National Taiwan Normal University, Taipei, Taiwan (China)

    2013-11-15

    In this work, we demonstrated that the growth of human non-small-cell-lung-cancer cells H460 and A549 cells can be inhibited by low concentrations of an epoxide derivative, teroxirone, in both in vitro and in vivo models. The cytotoxicity was mediated by apoptotic cell death through DNA damage. The onset of ultimate apoptosis is dependent on the status of p53. Teroxirone caused transient elevation of p53 that activates downstream p21 and procaspase-3 cleavage. The presence of caspase-3 inhibitor reverted apoptotic phenotype. Furthermore, we showed the cytotoxicity of teroxirone in H1299 cells with stable ectopic expression of p53, but not those of mutant p53. A siRNA-mediated knockdown of p53 expression attenuated drug sensitivity. The in vivo experiments demonstrated that teroxirone suppressed growth of xenograft tumors in nude mice. Being a potential therapeutic agent by restraining cell growth through apoptotic death at low concentrations, teroxirone provides a feasible perspective in reversing tumorigenic phenotype of human lung cancer cells. - Highlights: • Teroxirone repressed tumor cell growth in nude mice of human lung cancer cells. • The apoptotic cell death reverted by caspase-3 inhibitor is related to p53 status. • Teroxirone provides a good candidate for lung cancer treatment.

  9. Linking pseudouridine synthases to growth, development and cell competition.

    Science.gov (United States)

    Tortoriello, Giuseppe; de Celis, José F; Furia, Maria

    2010-08-01

    Eukaryotic pseudouridine synthases direct RNA pseudouridylation and bind H/ACA small nucleolar RNA (snoRNAs), which, in turn, may act as precursors of microRNA-like molecules. In humans, loss of pseudouridine synthase activity causes dyskeratosis congenita (DC), a complex systemic disorder characterized by cancer susceptibility, failures in ribosome biogenesis and telomere stability, and defects in stem cell formation. Considering the significant interest in deciphering the various molecular consequences of pseudouridine synthase failure, we performed a loss of function analysis of minifly (mfl), the pseudouridine synthase gene of Drosophila, in the wing disc, an advantageous model system for studies of cell growth and differentiation. In this organ, depletion of the mfl-encoded pseudouridine synthase causes a severe reduction in size by decreasing both the number and the size of wing cells. Reduction of cell number was mainly attributable to cell death rather than reduced proliferation, establishing that apoptosis plays a key role in the development of the loss of function mutant phenotype. Depletion of Mfl also causes a proliferative disadvantage in mosaic tissues that leads to the elimination of mutant cells by cell competition. Intriguingly, mfl silencing also triggered unexpected effects on wing patterning and cell differentiation, including deviations from normal lineage boundaries, mingling of cells of different compartments, and defects in the formation of the wing margin that closely mimic the phenotype of reduced Notch activity. These results suggest that a component of the pseudouridine synthase loss of function phenotype is caused by defects in Notch signalling.

  10. Controlled Cell Growth and Cell Migration in Periodic Mesoporous Organosilica/Alginate Nanocomposite Hydrogels.

    Science.gov (United States)

    Seda Kehr, Nermin; Riehemann, Kristina

    2016-01-21

    Nanocomposite (NC) hydrogels with different periodic mesoporous organosilica (PMO) concentrations and a NC hydrogel bilayer with various PMO concentrations inside the layers of the hydrogel matrix are prepared. The effect of the PMO concentration on cell growth and migration of cells is reported. The cells migrate in the bilayer NC hydrogel towards higher PMO concentrations and from cell culture plates to NC hydrogel scaffolds. PMID:26648333

  11. Methyl Jasmonate Represses Growth and Affects Cell Cycle Progression in Cultured Taxus Cells

    OpenAIRE

    Patil, Rohan A.; Lenka, Sangram K.; Normanly, Jennifer; Walker, Elsbeth L.; Roberts, Susan C.

    2014-01-01

    Methyl jasmonate (MeJA) elicitation is an effective strategy to induce and enhance synthesis of the anticancer agent paclitaxel (Taxol®) in Taxus cell suspension cultures; however, concurrent decreases in growth are often observed, which is problematic for large scale bioprocessing. Here, increased accumulation of paclitaxel in Taxus cuspidata suspension cultures with MeJA elicitation was accompanied by a concomitant decrease in cell growth, evident within the first three days post-elicitatio...

  12. Establishment, Growth kinetics, and Susceptibility to AcMNPV of Heat Tolerant Lepidop teran Cell Lines

    Institute of Scientific and Technical Information of China (English)

    Yan-lei Wu; Lei Jiang; Yoshifumi Hashimoto; Robert R.Granados; Guo-xun Li

    2011-01-01

    Lepidopteran heat-tolerant(ht)cell lines have been obtained with sf-9,sf-21 and several Bombyx cells.They have a distinct karyotype,membrane lipid composition,morphology and growth kinetics from the parental cell lines.In this paper,we report the development of ht cell lines from other insect species and examination of their growth characteristics and virus susceptibility.Adaptation of cell lines sf-9,BTI-TN-5131-4(High5)and BTI-TN-MG1(MG 1)to 33℃ and 35℃ was carried out by shifting the culture temperature between 28℃ and higher temperatures by a gradual stepwise increase in temperature.The process of adaption to a higher culture temperature was accomplished over a period of 2 months.The cell lines with the temperature adaption were designated as sf9-ht33,sf9-ht35,High5-ht33,High5-ht35,MG1-ht33,MG1-ht35.These cell lines have been subcultured over 70 passages.Adaption to high temperatures was confirmed by a constant population doubling time with individual cell lines.The population doubling time of heat adapted cell lines were 1-4 h less than these of parental cell lines.Cell shapes did not show obvious change,however,the cell size of sf9-ht cells was enlarged and those of High5 and MG1 ht cells were reduced after heat adaption.When the cell lines were infected with Autographa californica nuclear polyhedrosis virus(AcMNPV)at 28℃,33℃,35℃ and 37℃,production of budded virus and occlusion bodies in each cell line was optimum at its own adapted temperature.

  13. Production Process for Stem Cell Based Therapeutic Implants: Expansion of the Production Cell Line and Cultivation of Encapsulated Cells

    Science.gov (United States)

    Weber, C.; Pohl, S.; Poertner, R.; Pino-Grace, Pablo; Freimark, D.; Wallrapp, C.; Geigle, P.; Czermak, P.

    Cell based therapy promises the treatment of many diseases like diabetes mellitus, Parkinson disease or stroke. Microencapsulation of the cells protects them against host-vs-graft reactions and thus enables the usage of allogenic cell lines for the manufacturing of cell therapeutic implants. The production process of such implants consists mainly of the three steps expansion of the cells, encapsulation of the cells, and cultivation of the encapsulated cells in order to increase their vitality and thus quality. This chapter deals with the development of fixed-bed bioreactor-based cultivation procedures used in the first and third step of production. The bioreactor system for the expansion of the stem cell line (hMSC-TERT) is based on non-porous glass spheres, which support cell growth and harvesting with high yield and vitality. The cultivation process for the spherical cell based implants leads to an increase of vitality and additionally enables the application of a medium-based differentiation protocol.

  14. Damaged DNA binding protein 2 plays a role in breast cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Zilal Kattan

    Full Text Available The Damaged DNA binding protein 2 (DDB2, is involved in nucleotide excision repair as well as in other biological processes in normal cells, including transcription and cell cycle regulation. Loss of DDB2 function may be related to tumor susceptibility. However, hypothesis of this study was that DDB2 could play a role in breast cancer cell growth, resulting in its well known interaction with the proliferative marker E2F1 in breast neoplasia. DDB2 gene was overexpressed in estrogen receptor (ER-positive (MCF-7 and T47D, but not in ER-negative breast cancer (MDA-MB231 and SKBR3 or normal mammary epithelial cell lines. In addition, DDB2 expression was significantly (3.0-fold higher in ER-positive than in ER-negative tumor samples (P = 0.0208 from 16 patients with breast carcinoma. Knockdown of DDB2 by small interfering RNA in MCF-7 cells caused a decrease in cancer cell growth and colony formation. Inversely, introduction of the DDB2 gene into MDA-MB231 cells stimulated growth and colony formation. Cell cycle distribution and 5 Bromodeoxyuridine incorporation by flow cytometry analysis showed that the growth-inhibiting effect of DDB2 knockdown was the consequence of a delayed G1/S transition and a slowed progression through the S phase of MCF-7 cells. These results were supported by a strong decrease in the expression of S phase markers (Proliferating Cell Nuclear Antigen, cyclin E and dihydrofolate reductase. These findings demonstrate for the first time that DDB2 can play a role as oncogene and may become a promising candidate as a predictive marker in breast cancer.

  15. Full process for integrating silicon nanowire arrays into solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Perraud, Simon; Poncet, Severine; Noel, Sebastien; Levis, Michel; Faucherand, Pascal; Rouviere, Emmanuelle [CEA, LITEN, Laboratoire des Composants pour la Recuperation d' Energie, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Thony, Philippe; Jaussaud, Claude; Delsol, Regis [CEA, LITEN, Laboratoire des Composants Solaires, INES-RDI, Savoie Technolac, 50 avenue du Lac Leman, 73377 Le-Bourget-du-Lac (France)

    2009-09-15

    A novel process was developed for integrating silicon nanowire arrays into solar cells. n-Type silicon nanowires were grown by chemical-vapour deposition via the gold-catalysed vapour-liquid-solid method, on a p-type silicon substrate. After the growth, the nanowire array was planarized, by embedding the nanowires in a spin-on glass matrix and subsequent chemical-mechanical polishing of the front surface. This planarization step allows to deposit a continuous and uniform conductive film on top of the nanowire array, and thus to form a high-quality front electrical contact. For an illumination intensity of 100 mW/cm{sup 2}, our devices exhibit an energy conversion efficiency of 1.9%. The main performance limiting factor is a high pn junction reverse current, due to contamination by the growth catalyst or to a lack of passivation of surface electronic defects. (author)

  16. Mechanical downstream processing of Single Cell Oils

    OpenAIRE

    De Coninck, Maarten; Van Hecke, Renaat; Deprez, Koen; De Baerdemaeker, Josse

    2011-01-01

    During the last years, the third generation of bio fuels has been arousing more and more interest. Under certain conditions some micro organisms: yeasts, algae, fungi and bacteria, can accumulate up to 50% oil (based on dry weight). These so-called ‘Single cell oils’ (SCO) are well known in this context. Nowadays, harvesting and recovery of interesting products from microalgae is one of the most problematic areas of algal biofuel production technology. The traditional downstream process,...

  17. Growth process and microstructure of Y123 film fabricated by advanced TFA-MOD process

    International Nuclear Information System (INIS)

    The advanced metal organic deposition (MOD) process using F-free salt of Cu and trifluroacetates (TFA) salts (Superconductivity Research Laboratory (SRL)-Method) was applied to form well oriented Y123 film on LaAlO3 substrate. In order to clarify the growth mechanism of the Y123 film by the advanced TFA-MOD process, two methods were introduced. One was the quenching method to get samples under several different conditions during the process, and the microstructures were observed by transmission electron microscopy (TEM). The other was in situ observation method to know surface changes of the film by the generation of liquid and/or gas. From the θ-2θ X-ray diffraction (XRD) analysis of YBa2Cu3O7-δ (YBCO) films fabricated by suitable conditions (0 0 n) diffraction peaks were obtained indicating they had strongly c-axis oriented structure. The thin YBCO films had critical current density (J C) of 3.8-4.9 MA/cm2 (77 K,0 T) measured by the four-probe-method. A growth model with some process-controlling parameters was proposed based on the above observed results

  18. Growth hormone action in rat insulinoma cells expressing truncated growth hormone receptors

    DEFF Research Database (Denmark)

    Møldrup, Annette; Allevato, G; Dyrberg, Thomas;

    1991-01-01

    Transfection of the insulin-producing rat islet tumor cell line RIN-5AH with a full length cDNA of the rat hepatic growth hormone (GH) receptor (GH-R1-638) augments the GH-responsive insulin synthesis in these cells. Using this functional system we analyzed the effect of COOH-terminal truncation...... a markedly reduced capability of GH internalization. In contrast to cells transfected with GH-R1-638, none of the cell lines expressing truncated GH receptors exhibited any increase of the GH-stimulated insulin production. We conclude that domains within the COOH-terminal half of the cytoplasmic part...... of the GH receptor are required for transduction of the signal for GH-stimulated insulin synthesis, whereas cytoplasmic domains proximal to the transmembrane region are involved in receptor-mediated GH internalization....

  19. Aerosol chemistry in Titan's ionosphere: simultaneous growth and etching processes

    Science.gov (United States)

    Carrasco, Nathalie; Cernogora, Guy; Jomard, François; Etcheberry, Arnaud; Vigneron, Jackie

    2016-10-01

    Since the Cassini-CAPS measurements, organic aerosols are known to be present and formed at high altitudes in the diluted and partially ionized medium that is Titan's ionosphere [1]. This unexpected chemistry can be further investigated in the laboratory with plasma experiments simulating the complex ion-neutral chemistry starting from N2-CH4 [2]. Two sorts of solid organic samples can be produced in laboratory experiments simulating Titan's atmospheric reactivity: grains in the volume and thin films on the reactor walls. We expect that grains are more representative of Titan's atmospheric aerosols, but films are used to provide optical indices for radiative models of Titan's atmosphere.The aim of the present study is to address if these two sorts of analogues are chemically equivalent or not, when produced in the same N2-CH4 plasma discharge. The chemical compositions of both these materials are measured by using elemental analysis, XPS analysis and Secondary Ion Mass Spectrometry. We find that films are homogeneous but significantly less rich in nitrogen and hydrogen than grains produced in the same experimental conditions. This surprising difference in their chemical compositions is explained by the efficient etching occurring on the films, which stay in the discharge during the whole plasma duration, whereas the grains are ejected after a few minutes [3]. The impact for our understanding of Titan's aerosols chemical composition is important. Our study shows that chemical growth and etching process are simultaneously at stake in Titan's ionosphere. The more the aerosols stay in the ionosphere, the more graphitized they get through etching process. In order to infer Titan's aerosols composition, our work highlights a need for constraints on the residence time of aerosols in Titan's ionosphere. [1] Waite et al. (2009) Science , 316, p. 870[2] Szopa et al. (2006) PSS, 54, p. 394[3] Carrasco et al. (2016) PSS, 128, p. 52

  20. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Claire [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); Lafosse, Jean-Michel [CHU Toulouse, Hopital Rangueil, Service d' orthopedie et Traumatologie, Toulouse F-31000 (France); Malavaud, Bernard [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); CHU Toulouse, Hopital Rangueil, Service d' Urologie et de Transplantation Renale, Toulouse F-31000 (France); Cuvillier, Olivier, E-mail: olivier.cuvillier@ipbs.fr [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France)

    2010-01-01

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK.

  1. Cell transfection as a tool to study growth hormone action

    DEFF Research Database (Denmark)

    Norstedt, G; Enberg, B; Francis, S;

    1994-01-01

    The isolation of growth hormone receptor (GHR) cDNA clones has made possible the transfection of GHRs into cultured cells. Our aim in this minireview is to show how the application of such approaches have benefited GHR research. GH stimulation of cells expressing GHR cDNAs can cause an alteration...... of cellular function that mimic those of the endogenous GHR. GHR cDNA transfected cells also offer a system where the mechanism of GH action can be studied. Such a system has been used to demonstrate that the GHR itself becomes tyrosine phosphorylated and that further phosphorylation of downstream proteins...... is important in GH action. The GH signals are transmitted to the nucleus and GH regulated genes have now begun to be characterized. The ability to use cell transfection for mechanistic studies of GH action will be instrumental to define domains within the receptor that are of functional importance...

  2. Fluctuation of Parameters in Tumor Cell Growth Model

    Institute of Scientific and Technical Information of China (English)

    AI Bao-Quan; WANG Xian-Ju; LIU Guo-Tao; LIU Liang-Gang

    2003-01-01

    We study the steady state properties of a logistic growth model in the presence of Gaussian white noise.Based on the corresponding Fokker-Planck equation the steady state solution of the probability distribution functionand its extrema have been investigated. It is found that the fluctuation of the tumor birth rate reduces the populationof the cells while the fluctuation of predation rate can prevent the population of tumor cells from going into extinction.Noise in the system can induce the phase transition.

  3. Seasonal variations in ectotherm growth rates: Quantifying growth as an intermittent non steady state compensatory process

    Science.gov (United States)

    Guarini, J.-M.; Chauvaud, Laurent; Cloern, J.E.; Clavier, J.; Coston-Guarini, J.; Patry, Y.

    2011-01-01

    Generally, growth rates of living organisms are considered to be at steady state, varying only under environmental forcing factors. For example, these rates may be described as a function of light for plants or organic food resources for animals and these could be regulated (or not) by temperature or other conditions. But, what are the consequences for an individual's growth (and also for the population growth) if growth rate variations are themselves dynamic and not steady state? For organisms presenting phases of dormancy or long periods of stress, this is a crucial question. A dynamic perspective for quantifying short-term growth was explored using the daily growth record of the scallop Pecten maximus (L.). This species is a good biological model for ectotherm growth because the shell records growth striae daily. Independently, a generic mathematical function representing the dynamics of mean daily growth rate (MDGR) was implemented to simulate a diverse set of growth patterns. Once the function was calibrated with the striae patterns, the growth rate dynamics appeared as a forced damped oscillation during the growth period having a basic periodicity during two transitory phases (mean duration 43. days) and appearing at both growth start and growth end. This phase is most likely due to the internal dynamics of energy transfer within the organism rather than to external forcing factors. After growth restart, the transitory regime represents successive phases of over-growth and regulation. This pattern corresponds to a typical representation of compensatory growth, which from an evolutionary perspective can be interpreted as an adaptive strategy to coping with a fluctuating environment. ?? 2011 Elsevier B.V.

  4. Disrupting the oncogenic synergism between nucleolin and Ras results in cell growth inhibition and cell death.

    Directory of Open Access Journals (Sweden)

    Sari Schokoroy

    Full Text Available BACKGROUND: The ErbB receptors, Ras proteins and nucleolin are major contributors to malignant transformation. The pleiotropic protein nucleolin can bind to both Ras protein and ErbB receptors. Previously, we have demonstrated a crosstalk between Ras, nucleolin and the ErbB1 receptor. Activated Ras facilitates nucleolin interaction with ErbB1 and stabilizes ErbB1 levels. The three oncogenes synergistically facilitate anchorage independent growth and tumor growth in nude mice. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we used several cancer cell lines. The effect of Ras and nucleolin inhibition was determined using cell growth, cell death and cell motility assays. Protein expression was determined by immunohistochemistry. We found that inhibition of Ras and nucleolin reduces tumor cell growth, enhances cell death and inhibits anchorage independent growth. Our results reveal that the combined treatment affects Ras and nucleolin levels and localization. Our study also indicates that Salirasib (FTS, Ras inhibitor reduces cell motility, which is not affected by the nucleolin inhibitor. CONCLUSIONS/SIGNIFICANCE: These results suggest that targeting both nucleolin and Ras may represent an additional avenue for inhibiting cancers driven by these oncogenes.

  5. Photoresist Derived Carbon for Growth and Differentiation of Neuronal Cells

    Directory of Open Access Journals (Sweden)

    Tie Zou

    2007-08-01

    Full Text Available Apoptosis or necrosis of neurons in the central nervous system (CNS is thehallmark of many neurodegenerative diseases and Traumatic Brain Injury (TBI. Theinability to regenerate in CNS offers little hope for naturally repairing the damagedneurons. However, with the rapid development of new technologies, regenerative medicineoffers great promises to patients with these disorders. Among many events for furtheradvancement of regenerative medicine, extracellular matrix (ECM plays a critical role forcellular migration and differentiation. To develop a biocompatible and electricallyconductive substrate that can be potentially used to promote growth and regeneration ofneurons and to record intracellular and multisite signals from brain as a probe, a polymericprecursor – SPR 220.7 was fabricated by pyrolysis at temperatures higher than 700 oC.Human Neuroblastoma cells - SK-N-MC, SY5Y, mouse teratocarcinoma cells P-19 and ratPC12 cells were found to attach and proliferate on photoresist derived carbon film.Significantly, neuronal differentiation of PC12 cells induced by NGF was demonstrated byobserving cell shape and size, and measuring the length of neurites under SEM. Our resultsindicated that fabricated carbon could potentially be explored in regenerative medicine forpromoting neuronal growth and differentiation in CNS with neurodegeneration.

  6. Polyamines in relation to growth in carrot cell cultures.

    Science.gov (United States)

    Fallon, K M; Phillips, R

    1988-09-01

    Changes in polyamine metabolism were investigated in relation to growth of cell suspension cultures of carrot (Daucus carota, cv Chantenay). Changes in levels of the major amines putrescine and spermidine throughout the culture period correlated poorly with changes in fresh weight, but a closer correlation with the minor component spermine was observed. The arginine decarboxylase (ADC) inhibitor difluoromethylarginine (DFMA) strongly and specifically inhibited ADC activity in the supernatant, reduced the major amine (putrescine) by 95% and the total amine content by 80%. It had no effect on cell number and stimulated fresh weight by over 25% through increased cell expansion. Spermine content, in contrast, increased with DFMA concentration in parallel with fresh weight increases. Difluoromethylornithine strongly inhibited ornithine decarboxylase activity in the pellet, but had little effect on either polyamine levels or culture growth. It was concluded that little evidence for a correlation between free polyamines and cell number in carrot cultures could be detected, but that a possible correlation between spermine content and cell expansion was observed.

  7. Polyamines in Relation to Growth in Carrot Cell Cultures 1

    Science.gov (United States)

    Fallon, Kevin M.; Phillips, Richard

    1988-01-01

    Changes in polyamine metabolism were investigated in relation to growth of cell suspension cultures of carrot (Daucus carota, cv Chantenay). Changes in levels of the major amines putrescine and spermidine throughout the culture period correlated poorly with changes in fresh weight, but a closer correlation with the minor component spermine was observed. The arginine decarboxylase (ADC) inhibitor difluoromethylarginine (DFMA) strongly and specifically inhibited ADC activity in the supernatant, reduced the major amine (putrescine) by 95% and the total amine content by 80%. It had no effect on cell number and stimulated fresh weight by over 25% through increased cell expansion. Spermine content, in contrast, increased with DFMA concentration in parallel with fresh weight increases. Difluoromethylornithine strongly inhibited ornithine decarboxylase activity in the pellet, but had little effect on either polyamine levels or culture growth. It was concluded that little evidence for a correlation between free polyamines and cell number in carrot cultures could be detected, but that a possible correlation between spermine content and cell expansion was observed. PMID:16666271

  8. Growth inhibition by tyrosine kinase inhibitors in mesothelioma cell lines.

    Science.gov (United States)

    Nutt, Joyce E; O'Toole, Kieran; Gonzalez, David; Lunec, John

    2009-06-01

    Clinical outcome following chemotherapy for malignant pleural mesothelioma is poor and improvements are needed. This preclinical study investigates the effect of five tyrosine kinase inhibitors (PTK787, ZD6474, ZD1839, SU6668 and SU11248) on the growth of three mesothelioma cell lines (NCI H226, NCI H28 and MSTO 211H), the presence of growth factor receptors and inhibition of their downstream signalling pathways. GI50 values were determined: ZD6474 and SU11248, mainly VEGFR2 inhibitors, gave the lowest GI50 across all cell lines (3.5-6.9 microM) whereas ZD1839 gave a GI50 in this range only in H28 cells. All cell lines were positive for EGFR, but only H226 cells were positive for VEGFR2 by Western blotting. ZD6474 and ZD1839 inhibited EGF-induced phosphorylation of EGFR, AKT and ERK, whereas VEGF-induced phosphorylation of VEGFR2 was completely inhibited with 0.1 microM SU11248. VEGFR2 was detected in tumour samples by immunohistochemistry. VEGFR2 tyrosine kinase inhibitors warrant further investigation in mesothelioma. PMID:19318229

  9. Identification and automatic segmentation of multiphasic cell growth using a linear hybrid model.

    Science.gov (United States)

    Hartmann, András; Neves, Ana Rute; Lemos, João M; Vinga, Susana

    2016-09-01

    This article considers a new mathematical model for the description of multiphasic cell growth. A linear hybrid model is proposed and it is shown that the two-parameter logistic model with switching parameters can be represented by a Switched affine AutoRegressive model with eXogenous inputs (SARX). The growth phases are modeled as continuous processes, while the switches between the phases are considered to be discrete events triggering a change in growth parameters. This framework provides an easily interpretable model, because the intrinsic behavior is the same along all the phases but with a different parameterization. Another advantage of the hybrid model is that it offers a simpler alternative to recent more complex nonlinear models. The growth phases and parameters from datasets of different microorganisms exhibiting multiphasic growth behavior such as Lactococcus lactis, Streptococcus pneumoniae, and Saccharomyces cerevisiae, were inferred. The segments and parameters obtained from the growth data are close to the ones determined by the experts. The fact that the model could explain the data from three different microorganisms and experiments demonstrates the strength of this modeling approach for multiphasic growth, and presumably other processes consisting of multiple phases. PMID:27424949

  10. Systems-biology dissection of eukaryotic cell growth

    Directory of Open Access Journals (Sweden)

    Andrews Justen

    2010-05-01

    Full Text Available Abstract A recent article in BMC Biology illustrates the use of a systems-biology approach to integrate data across the transcriptome, proteome and metabolome of budding yeast in order to dissect the relationship between nutrient conditions and cell growth. See research article http://jbiol.com/content/6/2/4 and http://www.biomedcentral.com/1741-7007/8/68

  11. Proton beam writing of microstructures in Agar gel for patterned cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Larisch, Wolfgang, E-mail: wolfgang.larisch@studserv.uni-leipzig.de [Nukleare Festkoerperphysik, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany); Koal, Torsten; Werner, Ronald; Hohlweg, Marcus; Reinert, Tilo; Butz, Tilman [Nukleare Festkoerperphysik, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany)

    2011-10-15

    A rather useful prerequisite for many biological and biophysical studies, e.g., for cell-cell communication or neuronal networks, is confined cell growth on micro-structured surfaces. Solidified Agar layers have smooth surfaces which are electrically neutral and thus inhibit receptor binding and cell adhesion. For the first time, Agar microstructures have been manufactured using proton beam writing (PBW). In the irradiated Agar material the polysaccharides are split into oligosaccharides which can easily be washed off leaving Agar-free areas for cell adhesion. The beam diameter of 1 {mu}m allows the fabrication of compartments accommodating single cells which are connected by micrometer-sized channels. Using the external beam the production process is very fast. Up to 50 Petri dishes can be produced per day which makes this technique very suitable for biological investigations which require large throughputs.

  12. Harvesting, processing and inventory management of peripheral blood stem cells

    Directory of Open Access Journals (Sweden)

    Mijovic Aleksandar

    2007-01-01

    Full Text Available By 2003, 97% autologous transplants and 65% of allogeneic transplants in Europe used mobilised peripheral blood stem cells (PBSC. Soon after their introduction in the early 1990′s, PBSC were associated with faster haemopoietic recovery, fewer transfusions and antibiotic usage, and a shorter hospital stay. Furthermore, ease and convenience of PBSC collection made them more appealing than BM harvests. Improved survival has hitherto been demonstrated in patients with high risk AML and CML. However, the advantages of PBSC come at a price of a higher incidence of extensive chronic GVHD. In order to be present in the blood, stem cells undergo the process of "mobilisation" from their bone marrow habitat. Mobilisation, and its reciprocal process - homing - are regulated by a complex network of molecules on the surface of stem cells and stromal cells, and enzymes and cytokines released from granulocytes and osteoclasts. Knowledge of these mechanisms is beginning to be exploited for clinical purposes. In current practice, stem cell are mobilised by use of chemotherapy in conjunction with haemopoietic growth factors (HGF, or with HGF alone. Granulocyte colony stimulating factor has emerged as the single most important mobilising agent, due to its efficacy and a relative paucity of serious side effects. Over a decade of use in healthy donors has resulted in vast experience of optimal dosing and administration, and safety matters. PBSC harvesting can be performed on a variety of cell separators. Apheresis procedures are nowadays routine, but it is important to be well versed in the possible complications in order to avoid harm to the patient or donor. To ensure efficient collection, harvesting must begin when sufficient stem cells have been mobilised. A rapid, reliable, standardized blood test is essential to decide when to begin harvesting; currently, blood CD34+ cell counting by flow cytometry fulfils these criteria. Blood CD34+ cell counts strongly

  13. Growth process of Ba-poor YBCO film fabricated by TFA-MOD process

    International Nuclear Information System (INIS)

    Metal organic deposition process using trifluoroacetates (TFA-MOD) is one of the most promising processes to fabricate YBCO film. It has been reported that YBCO films grown by the starting solution with Ba-poor (cation ratio as Y:Ba:Cu = 1:1.5:3) have higher JC value and has smaller and less pores than those of the YBCO film with stoichiometric composition. It is important to investigate the growth mechanism of YBCO crystals to obtain a high JC film by controlling the crystal structures. In this study, YBCO films were fabricated under various Ba concentrations in the TFA starting solution, and the influences of Ba composition on the growth process and microstructures were investigated. As a result, the Ba-poor YBCO film with Ba/Y = 1.5 and high JC had less a-axis oriented Y123 in comparison with the film with Ba/Y = 2. Furthermore, pores in the Ba-poor film were less than that in the stoichiometric composition film. This decrease of pores in the Ba-poor film was considered to be caused by the smaller size of non-reacted phases especially such as Ba-F rich particles entrapped by growing Y123 in the growing Y123 layer. It is considered that both the reductions of a-axis oriented Y123 and pores were the reasons of improving JC values in Ba-poor film

  14. Effect of arginase II on L-arginine depletion and cell growth in murine cell lines of renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Patterson John R

    2008-09-01

    Full Text Available Abstract Background L-arginine is the common substrate for the two isoforms of arginase. Arginase I, highly expressed in the liver and arginase II mainly expressed in the kidney. Arginase I-producing myeloid derived suppressor cells have been shown to inhibit T-cell function by the depletion of L-arginine. On the other hand, arginase II has been detected in patients with cancer and is thought to metabolize L-arginine to L-ornithine needed to sustain rapid tumor growth; however its role in L-arginine depletion is unclear. Thus, in tumor biology, L-arginine metabolism may play a dual role in tumor growth and in the induction of T cell dysfunction. Therefore, we studied in murine renal cell carcinoma (RCC cell lines, the effect of arginase II on tumor cell proliferation and L-arginine depletion. The effect of arginase inhibitors on cell proliferation was also tested. Methods Three murine renal cell carcinoma (mRCC cell lines were tested for the presence of arginase. nor-NOHA, an arginase inhibitor was used to substantiate the effect of arginase on cell growth and L-arginine depletion. Amino acid levels were tested by HPLC. Results Our results show that mRCC cell lines express only arginase II and were able to deplete L-arginine from the medium. Cell growth was independent of the amount of arginase activity expressed by the cells. nor-NOHA significantly (P = 0.01 reduced arginase II activity and suppressed cell growth in cells exhibiting high arginase activity. The depletion of L-arginine by mRCC induced the decrease expression of CD3ζ a key element for T-cell function. Conclusion The results of this study show for the first time that arginase II produced by RCC cell lines depletes L-arginine resulting in decreased expression of CD3ζ. These results indicate that RCC cell lines expressing arginase II can modulate the L-arginine metabolic pathway to regulate both cell growth and T-cell function. Blocking arginase may lead to a decrease in RCC cell

  15. Growth and differentiation of neural stem cells in a three-dimensional collagen gel scaffold

    Institute of Scientific and Technical Information of China (English)

    Fei Huang; Qiang Shen; Jitong Zhao

    2013-01-01

    Collagen protein is an ideal scaffold material for the transplantation of neural stem cells. In this study, rat neural stem cells were seeded into a three-dimensional collagen gel scaffold, with suspension cultured neural stem cells being used as a control group. Neural stem cells, which were cultured in medium containing epidermal growth factor and basic fibroblast growth factor, actively expanded and formed neurospheres in both culture groups. In serum-free medium conditions, the processes extended from neurospheres in the collagen gel group were much longer than those in the suspension culture group. Immunofluorescence staining showed that neurospheres cultured in collagen gels were stained positive for nestin and differentiated cells were stained positive for the neuronal marker βIII-tubulin, the astrocytic marker glial fibrillary acidic protein and the oligodendrocytic marker 2',3'-cyclic nucleotide 3'-phosphodiesterase. Compared with neurospheres cultured in suspension, the differentiation potential of neural stem cells cultured in collagen gels increased, with the formation of neurons at an early stage. Our results show that the three-dimensional collagen gel culture system is superior to suspension culture in the proliferation, differentiation and process outgrowth of neural stem cells.

  16. Transforming growth factor-alpha abrogates glucocorticoid-stimulated tight junction formation and growth suppression in rat mammary epithelial tumor cells.

    Science.gov (United States)

    Buse, P; Woo, P L; Alexander, D B; Cha, H H; Reza, A; Sirota, N D; Firestone, G L

    1995-03-24

    The glucocorticoid and transforming growth factor-alpha (TGF-alpha) regulation of growth and cell-cell contact was investigated in the Con8 mammary epithelial tumor cell line derived from a 7,12-dimethylbenz(alpha)anthracene-induced rat mammary adenocarcinoma. In Con8 cell monolayers cultured on permeable filter supports, the synthetic glucocorticoid, dexamethasone, coordinately suppressed [3H]thymidine incorporation, stimulated monolayer transepithelial electrical resistance (TER), and decreased the paracellular leakage of [3H]inulin or [14C]mannitol across the monolayer. These processes dose dependently correlated with glucocorticoid receptor occupancy and function. Constitutive production of TGF-alpha in transfected cells or exogenous treatment with TGF-alpha prevented the glucocorticoid growth suppression response and disrupted tight junction formation without affecting glucocorticoid responsiveness. Treatment with hydroxyurea or araC demonstrated that de novo DNA synthesis is not a requirement for the growth factor disruption of tight junctions. Immunofluorescence analysis revealed that the ZO-1 tight junction protein is localized exclusively at the cell periphery in dexamethasone-treated cells and that TGF-alpha caused-ZO-1 to relocalize from the cell periphery back to a cytoplasmic compartment. Taken together, our results demonstrate that glucocorticoids can coordinately regulate growth inhibition and cell-cell contact of mammary tumor cells and that TGF-alpha, can override both effects of glucocorticoids. These results have uncovered a novel functional "cross-talk" between glucocorticoids and TGF-alpha which potentially regulates the proliferation and differentiation of mammary epithelial cells.

  17. Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Huang Jennifer

    2007-12-01

    Full Text Available Abstract Background Ginger (Zingiber officinale Rosc is a natural dietary component with antioxidant and anticarcinogenic properties. The ginger component [6]-gingerol has been shown to exert anti-inflammatory effects through mediation of NF-κB. NF-κB can be constitutively activated in epithelial ovarian cancer cells and may contribute towards increased transcription and translation of angiogenic factors. In the present study, we investigated the effect of ginger on tumor cell growth and modulation of angiogenic factors in ovarian cancer cells in vitro. Methods The effect of ginger and the major ginger components on cell growth was determined in a panel of epithelial ovarian cancer cell lines. Activation of NF-κB and and production of VEGF and IL-8 was determined in the presence or absence of ginger. Results Ginger treatment of cultured ovarian cancer cells induced profound growth inhibition in all cell lines tested. We found that in vitro, 6-shogaol is the most active of the individual ginger components tested. Ginger treatment resulted in inhibition of NF-kB activation as well as diminished secretion of VEGF and IL-8. Conclusion Ginger inhibits growth and modulates secretion of angiogenic factors in ovarian cancer cells. The use of dietary agents such as ginger may have potential in the treatment and prevention of ovarian cancer.

  18. Intracellular Angiotensin II and cell growth of vascular smooth muscle cells

    NARCIS (Netherlands)

    Filipeanu, CM; Henning, RH; de Zeeuw, D; Nelemans, A

    2001-01-01

    1 We recently demonstrated that intracellular application of Angiotensin II (Angiotensin IIintr) induces rat aorta contraction independent of plasma membrane Angiotensin II receptors. In this study we investigated the effects of Angiotensin IIintr on cell growth in A7r5 smooth muscle cells. 2 DNA-sy

  19. Growth control in colon epithelial cells: gadolinium enhances calcium-mediated growth regulation.

    Science.gov (United States)

    Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K; Varani, James

    2012-12-01

    Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1-5 μM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable effect on calcium-induced differentiation in the same cells based on change in cell morphology, induction of E-cadherin synthesis, and translocation of E-cadherin from the cytosol to the cell surface. When the colon epithelial cells were treated with gadolinium and then exposed to increased calcium concentrations, movement of extracellular calcium into the cell was suppressed. In contrast, gadolinium treatment had no effect on ionomycin-induced release of stored intracellular calcium into the cytoplasm. Whether these in vitro observations can be translated into an approach for reducing abnormal proliferation in the colonic mucosa (including polyp formation) is not known. These results do, however, provide an explanation for our recent findings that a multi-mineral supplement containing all of the naturally occurring lanthanoid metals including gadolinium are more effective than calcium alone in preventing colon polyp formation in mice on a high-fat diet.

  20. Regulation of IGFBP secretion and modulation of cell growth in MDBK cells.

    Science.gov (United States)

    Cohick, W S; Clemmons, D R

    1993-03-01

    The ability of IGF binding proteins (IGFBP) to modulate cell growth and IGF-I responsiveness of epithelial cells was examined using the Madin-Darby bovine kidney (MDBK) cell line. The predominant IGFBP present in conditioned media (CM) of untreated cells was found to be IGFBP-2. Following exposure to forskolin, the abundance of IGFBP-2 in CM was decreased, while IGFBP-3 and -4 were induced. These changes corresponded with alterations in mRNA abundance. Growth of MDBK cells in serum-free media was stimulated by addition of 2.5 to 50 ng/ml of IGF-I in a dose responsive manner. Coincubation with equimolar amounts of IGF-I and exogenous bovine IGFBP-3 potentiated the growth response observed with IGF-I alone. In order to alter endogenous IGFBP-3 secretion, cells were exposed to transfection with an expression vector containing sense IGFBP-3 cDNA. Following selection and amplification with methotrexate, cells underwent a permanent alteration in cell morphology, exhibiting characteristics of transporting epithelia. This was associated with secretion of IGFBP-3 under basal conditions. Secretion of IGFBP-3 was due to expression of endogenous IGFBP-3 and not to expression of the transgene. Cells expressing IGFBP-3 under basal conditions grew slower in serum, but were more responsive to 100 ng/ml of IGF-1 in serum-free media compared to wild-type MDBK cells. The role of IGFBP-3 in mediating these responses requires further study.

  1. Tomato waste: Carotenoids content, antioxidant and cell growth activities.

    Science.gov (United States)

    Stajčić, Sladjana; Ćetković, Gordana; Čanadanović-Brunet, Jasna; Djilas, Sonja; Mandić, Anamarija; Četojević-Simin, Dragana

    2015-04-01

    The carotenoid content, antioxidant and cell growth activities of tomato waste extracts, obtained from five different tomato genotypes, was investigated. High performance liquid chromatography was used to identify and quantify the main carotenoids present in tomato waste extracts. The antioxidant activity of tomato waste extracts was tested using spectrophotometric methods, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity and reducing power assay. The highest DPPH scavenging activity (IC50 = 0.057 mg/ml) was obtained for Bačka extract. The Knjaz extract showed the best reducing power (IC50 = 2.12 mg/ml). Cell growth effects were determined in HeLa, MCF7 and MRC-5 cell lines by sulforhodamine B test. Anti-proliferative effects were observed in all cell lines at higher concentrations (⩾ 0.125 mg/ml). The carotenoid contents exhibited a strong correlation with antioxidant and anti-proliferation activity. The results obtained indicated that tomato waste should be regarded as potential nutraceutic resource and may be used as a functional food ingredient. PMID:25442547

  2. Role of CaECM25 in cell morphogenesis, cell growth and virulence in Candida albicans

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Candida albicans is the most prominent opportunistic fungal pathogen in humans. Multiple factors are associated with the virulence of C. albicans, including morphogenesis, cell wall organization and growth rate. Here, we describe the identification and functional characterization of CaECM25, a gene that has not been reported before. We constructed Caecm25?/? mutants and investigated the role of the gene in morphogenesis, cell wall organization and virulence. CaECM25 deletion resulted in defects in cell separation, a slower growth rate, reduced filamentous growth and attenuated adherence to plastic surfaces. The Caecm25?/? mutant was also significantly less virulent than wild type when tested for systemic infection in mice. Therefore, CaECM25 plays important roles in morphogenesis, cell wall organization and virulence.

  3. Role of CaECM25 in cell morphogenesis, cell growth and virulence in Candida albicans

    Institute of Scientific and Technical Information of China (English)

    ZHANG TingTing; LI WanJie; LI Di; WANG Yue; SANG JianLi

    2008-01-01

    Candida albicans is the most prominent opportunistic fungal pathogen in humans. Multiple factors are associated with the virulence of C. albicans, including morphogenesis, cell wall organization and growth rate. Here, we describe the identification and functional characterization of CaECM25, a gene that has not been reported before. We constructed Caecm25△/△ mutants and investigated the role of the gene In morphogenesis, cell wall organization and virulence. CaECM25 deletion resulted in defects in cell separation, a slower growth rate, reduced filamentous growth and attenuated adherence to plastic surfaces. The Caecm25△/△ mutant was also significantly less virulent than wild type when tested for systemic infection in mice. Therefore, CaECM25 plays important roles in morphogenesis, cell wall organization and virulence.

  4. Solution processing of next-generation nanocrystal solar cells

    Science.gov (United States)

    van Embden, J.; Chesman, A. S. R.; Duffy, N. W.; Della Gaspera, E.; Jasieniak, J. J.

    2013-12-01

    Next-generation solar cells will be fabricated from low-cost and earth abundant elements, using processes that are amenable to printing on a variety of light-weight substrates. The utilization of compositionally and structurally controlled colloidal nanocrystals as building blocks for such devices fulfills these criteria. Our recent efforts in developing kesterite Cu2ZnSnS4 (CZTS) nanocrystals, one of the most promising materials to emerge in this area, enable the deposition of CZTS thin-films directly from a variety of solution-processed methods. Nanocrystalline thin films possess poor electronic properties, which precludes their use in solar cell devices. In order to overcome this, thermal treatment steps under an atmosphere of vaporous selenium are applied to induce large scale crystallite growth and the production of selenized CZTSSe films. This process results in a highly photoactive p-type layer. The n-type cadmium sulfide layer is also deposited from solution using chemical bath deposition. We will discuss each of these accomplishments in detail, highlighting the significant challenges that need to be overcome in order to fabricate working CZTSSe thin film solar cells.

  5. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  6. Length-scale mediated adhesion and directed growth of neural cells by surface-patterned poly(ethylene glycol) hydrogels.

    Science.gov (United States)

    Krsko, Peter; McCann, Thomas E; Thach, Thu-Trang; Laabs, Tracy L; Geller, Herbert M; Libera, Matthew R

    2009-02-01

    We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes but that prevent the adhesion of astrocytes. This effect was achieved based on the spatial distribution of sub-micron-sized cell-repulsive poly(ethylene glycol) [PEG] hydrogels patterned on an otherwise cell-adhesive substrate. Patterns were identified that promoted cellular responses ranging from complete non-attachment, selective attachment, and directed growth at both cellular and subcellular length scales. At the highest patterning density where the individual hydrogels almost overlapped, there was no cellular adhesion. As the spacing between individual hydrogels was increased, patterns were identified where neurites could grow on the adhesive surface between hydrogels while astrocytes were unable to adhere. Patterns such as lines or arrays were identified that could direct the growth of these subcellular neuronal processes. At higher hydrogel spacings, both neurons and astrocytes adhered and grew in a manner approaching that of unpatterned control surfaces. Patterned lines could once again direct growth at cellular length scales. Significantly, we have demonstrated that the patterning of sub-micron/nano scale cell-repulsive features at microscale lengths on an otherwise cell-adhesive surface can differently control the adhesion and growth of cells and cell processes based on the difference in their characteristic sizes. This concept could potentially be applied to an implantable nerve-guidance device that would selectively enable regrowing axons to bridge a spinal-cord injury without interference from the glial scar.

  7. Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy

    OpenAIRE

    Liu, Xinfeng; Johnson, Sara; Liu, Shou; Kanojia, Deepak; Yue, Wei; Singn, Udai; Wang, Qian; Wang, Qi; Nie, Qing; Chen, Hexin

    2013-01-01

    Cancer stem cells (CSCs) have been identified in primary breast cancer tissues and cell lines. The CSC population varies widely among cancerous tissues and cell lines, and is often associated with aggressive breast cancers. Despite of intensive research, how the CSC population is regulated within a tumor is still not well understood so far. In this paper, we present a mathematical model to explore the growth kinetics of CSC population both in vitro and in vivo. Our mathematical models and sup...

  8. Metformin inhibits cell growth by upregulating microRNA-26a in renal cancer cells

    OpenAIRE

    Yang, Feng-Qiang; Wang, Ji-Jiao; Yan, Jia-Sheng; Huang, Jian-Hua; Li, Wei; Che, Jian-Ping; Wang, Guang-Chun; Liu, Min; Zheng, Jun-Hua

    2014-01-01

    Accumulating evidence suggests that metformin, a biguanide class of anti-diabetic drugs, possesses anti-cancer properties and may reduce cancer risk and improve prognosis. However, the mechanism by which metformin affects various cancers, including renal cancer still unknown. MiR-26a induces cell growth, cell cycle and cell apoptosis progression via direct targeting of Bcl-2, clyclin D1 and PTEN in cancer cells. In the present study, we used 786-O human renal cancer cell lines to study the ef...

  9. Cheiradone: a vascular endothelial cell growth factor receptor antagonist

    Directory of Open Access Journals (Sweden)

    Ahmed Nessar

    2008-01-01

    Full Text Available Abstract Background Angiogenesis, the growth of new blood vessels from the pre-existing vasculature is associated with physiological (for example wound healing and pathological conditions (tumour development. Vascular endothelial growth factor (VEGF, fibroblast growth factor-2 (FGF-2 and epidermal growth factor (EGF are the major angiogenic regulators. We have identified a natural product (cheiradone isolated from a Euphorbia species which inhibited in vivo and in vitro VEGF- stimulated angiogenesis but had no effect on FGF-2 or EGF activity. Two primary cultures, bovine aortic and human dermal endothelial cells were used in in vitro (proliferation, wound healing, invasion in Matrigel and tube formation and in vivo (the chick chorioallantoic membrane models of angiogenesis in the presence of growth factors and cheiradone. In all cases, the concentration of cheiradone which caused 50% inhibition (IC50 was determined. The effect of cheiradone on the binding of growth factors to their receptors was also investigated. Results Cheiradone inhibited all stages of VEGF-induced angiogenesis with IC50 values in the range 5.20–7.50 μM but did not inhibit FGF-2 or EGF-induced angiogenesis. It also inhibited VEGF binding to VEGF receptor-1 and 2 with IC50 values of 2.9 and 0.61 μM respectively. Conclusion Cheiradone inhibited VEGF-induced angiogenesis by binding to VEGF receptors -1 and -2 and may be a useful investigative tool to study the specific contribution of VEGF to angiogenesis and may have therapeutic potential.

  10. Entrainability of cell cycle oscillator models with exponential growth of cell mass.

    Science.gov (United States)

    Nakao, Mitsuyuki; Enkhkhudulmur, Tsog-Erdene; Katayama, Norihiro; Karashima, Akihiro

    2014-01-01

    Among various aspects of cell cycle, understanding synchronization mechanism of cell cycle is important because of the following reasons. (1)Cycles of cell assembly should synchronize to form an organ. (2) Synchronizing cell cycles are required to experimental analysis of regulatory mechanisms of cell cycles. (3) Cell cycle has a distinct phase relationship with the other biological rhythms such as circadian rhythm. However, forced as well as mutual entrainment mechanisms are not clearly known. In this study, we investigated entrainability of cell cycle models of yeast cell under the periodic forcing to both of the cell mass and molecular dynamics. Dynamics of models under study involve the cell mass growing exponentially. In our result, they are shown to allow only a limited frequency range for being entrained by the periodic forcing. In contrast, models with linear growth are shown to be entrained in a wider frequency range. It is concluded that if the cell mass is included in the cell cycle regulation, its entrainability is sensitive to a shape of growth curve assumed in the model. PMID:25571564

  11. Physical activity counteracts tumor cell growth in colon carcinoma C26-injected muscles: an interim report

    Directory of Open Access Journals (Sweden)

    Charlotte Hiroux

    2016-06-01

    Full Text Available Skeletal muscle tissue is a rare site of tumor metastasis but is the main target of the degenerative processes occurring in cancer-associated cachexia syndrome. Beneficial effects of physical activity in counteracting cancer-related muscle wasting have been described in the last decades. Recently it has been shown that, in tumor xeno-transplanted mouse models, physical activity is able to directly affect tumor growth by modulating inflammatory responses in the tumor mass microenvironment. Here, we investigated the effect of physical activity on tumor cell growth in colon carcinoma C26 cells injected tibialis anterior muscles of BALB/c mice. Histological analyses revealed that 4 days of voluntary wheel running significantly counteracts tumor cell growth in C26-injected muscles compared to the non-injected sedentary controls. Since striated skeletal muscle tissue is the site of voluntary contraction, our results confirm that physical activity can also directly counteract tumor cell growth in a metabolically active tissue that is usually not a target for metastasis.

  12. High-throughput quantitative analysis with cell growth kinetic curves for low copy number mutant cells.

    Science.gov (United States)

    Xing, James Z; Gabos, Stephan; Huang, Biao; Pan, Tianhong; Huang, Min; Chen, Jie

    2012-10-01

    The mutation rate in cells induced by environmental genotoxic hazards is very low and difficult to detect using traditional cell counting assays. The established genetic toxicity tests currently recognized by regulatory authorities, such as conventional Ames and hypoxanthine guanine phosphoribosyl-transferase (HPRT) assays, are not well suited for higher-throughput screening as they require large amounts of test compounds and are very time consuming. In this study, we developed a novel cell-based assay for quantitative analysis of low numbers of cell copies with HPRT mutation induced by an environmental mutagen. The HPRT gene mutant cells induced by the mutagen were selected by 6-thioguanine (6-TG) and the cell's kinetic growth curve monitored by a real-time cell electronic sensor (RT-CES) system. When a threshold is set at a certain cell index (CI) level, samples with different initial mutant cell copies take different amounts of time in order for their growth (or CI accumulation) to cross this threshold. The more cells that are initially seeded in the test well, the faster the cell accumulation and therefore the shorter the time required to cross this threshold. Therefore, the culture time period required to cross the threshold of each sample corresponds to the original number of cells in the sample. A mutant cell growth time threshold (MT) value of each sample can be calculated to predict the number of original mutant cells. For mutagenesis determination, the RT-CES assay displayed an equal sensitivity (p > 0.05) and coefficients of variation values with good correlation to conventional HPRT mutagenic assays. Most importantly, the RT-CES mutation assay has a higher throughput than conventional cellular assays.

  13. Numerical Simulations of the Physical Process for Hailstone Growth

    Institute of Scientific and Technical Information of China (English)

    FANG Wen; ZHENG Guoguang; HU Zhijin

    2005-01-01

    Theoretical and experimental studies show that during hail growth the heat and mass transfers play a determinant role in growth rates and different structures. However, many numerical model researchers made extrapolation of the key heat transfer coefficient of the thermal balance expression from measurements of evaporating water droplets obtained under small Renolds numbers (Re ≤ 200) introduced by Ranz and Marshall, leading to great difference from reality. This paper is devoted to the parameterization of measured heat transfer coefficients under Renolds numbers related to actual hail scales proposed by Zheng, which are then applied, to Hu-He 1D and 3D models for hail growth respectively, indicating that the melting rate of a hailstone is 12%-50% bigger, the evaporation rate is 10%-200% higher and the dry-wet growth rate is 10%-40% larger from the present simulations than from the prototype models.

  14. Cytokines and growth factors which regulate bone cell function

    Science.gov (United States)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  15. Evidence against the involvement of ionically bound cell wall proteins in pea epicotyl growth

    Science.gov (United States)

    Melan, M. A.; Cosgrove, D. J.

    1988-01-01

    Ionically bound cell wall proteins were extracted from 7 day old etiolated pea (Pisum sativum L. cv Alaska) epicotyls with 3 molar LiCl. Polyclonal antiserum was raised in rabbits against the cell wall proteins. Growth assays showed that treatment of growing region segments (5-7 millimeters) of peas with either dialyzed serum, serum globulin fraction, affinity purified immunoglobulin, or papain-cleaved antibody fragments had no effect on growth. Immunofluorescence microscopy confirmed antibody binding to cell walls and penetration of the antibodies into the tissues. Western blot analysis, immunoassay results, and affinity chromatography utilizing Sepharose-bound antibodies confirmed recognition of the protein preparation by the antibodies. Experiments employing in vitro extension as a screening measure indicated no effect upon extension by antibodies, by 50 millimolar LiCl perfusion of the apoplast or by 3 molar LiCl extraction. Addition of cell wall protein to protease pretreated segments did not restore extension nor did addition of cell wall protein to untreated segments increase extension. It is concluded that, although evidence suggests that protein is responsible for the process of extension, the class(es) of proteins which are extracted from pea cell walls with 3 molar LiCl are probably not involved in this process.

  16. Allogeneic Platelet Releasate Preparations Derived via a Novel Rapid Thrombin Activation Process Promote Rapid Growth and Increased BMP-2 and BMP-4 Expression in Human Adipose-Derived Stem Cells.

    Science.gov (United States)

    McLaughlin, Michael; Gagnet, Paul; Cunningham, Elizabeth; Yeager, Randi; D'Amico, Michael; Guski, Katie; Scarpone, Michael; Kuebler, Daniel

    2016-01-01

    The administration of human adipose-derived stem cells (ASCs) represents a promising regenerative therapy for the treatment of orthopedic injuries. While ASCs can be easily isolated from liposuction-derived adipose tissue, most clinical applications will likely require in vitro culture expansion of these cells using nonxenogeneic components. In this study, platelet releasate was generated using a novel rapid thrombin activation method (tPR). ASCs grown in media supplemented with tPR proliferated much faster than ASCs grown in media supplemented with 10% fetal bovine serum. The cells also retained the ability to differentiate along chondrogenic, adipogenic, and osteogenic lineages. The tPR cultured ASCs displayed elevated expression of BMP-4 (5.7 ± 0.97-fold increase) and BMP-2 (4.7 ± 1.3-fold increase) and decreased expression of PDGF-B (4.0 ± 1.4-fold decrease) and FGF-2 (33 ± 9.0-fold decrease). No significant changes in expression were seen with TGF-β and VEGF. This pattern of gene expression was consistent across different allogeneic tPR samples and different ASC lines. The use of allogeneic rapidly activated tPR to culture ASCs is associated with both an increased cell yield and a defined gene expression profile making it an attractive option for cell expansion prior to cell-based therapy for orthopedic applications.

  17. Allogeneic Platelet Releasate Preparations Derived via a Novel Rapid Thrombin Activation Process Promote Rapid Growth and Increased BMP-2 and BMP-4 Expression in Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Michael McLaughlin

    2016-01-01

    Full Text Available The administration of human adipose-derived stem cells (ASCs represents a promising regenerative therapy for the treatment of orthopedic injuries. While ASCs can be easily isolated from liposuction-derived adipose tissue, most clinical applications will likely require in vitro culture expansion of these cells using nonxenogeneic components. In this study, platelet releasate was generated using a novel rapid thrombin activation method (tPR. ASCs grown in media supplemented with tPR proliferated much faster than ASCs grown in media supplemented with 10% fetal bovine serum. The cells also retained the ability to differentiate along chondrogenic, adipogenic, and osteogenic lineages. The tPR cultured ASCs displayed elevated expression of BMP-4 (5.7 ± 0.97-fold increase and BMP-2 (4.7 ± 1.3-fold increase and decreased expression of PDGF-B (4.0 ± 1.4-fold decrease and FGF-2 (33 ± 9.0-fold decrease. No significant changes in expression were seen with TGF-β and VEGF. This pattern of gene expression was consistent across different allogeneic tPR samples and different ASC lines. The use of allogeneic rapidly activated tPR to culture ASCs is associated with both an increased cell yield and a defined gene expression profile making it an attractive option for cell expansion prior to cell-based therapy for orthopedic applications.

  18. Dickkopf3 overexpression inhibits pancreatic cancer cell growth in vitro

    Institute of Scientific and Technical Information of China (English)

    Yu-Mei Gu; Yi-Hui Ma; Wu-Gan Zhao; Jie Chen

    2011-01-01

    AIM: To elucidate the role of dickkopf3 (Dkk3) in human pancreatic cancer cell growth.METHODS: Dkk3 mRNA and protein expression in human pancreatic cancer cell lines were detected by real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blotting and immunofluorescence. Methylation of the Dkk3 promoter sequence was examined by methylation-specific polymerase chain reaction (MSP) and Dkk3 mRNA expression was determined by real-time RT-PCR after 5-aza-2'-deoxycytidine (5-aza-dC) treatment. The effects of Dkk3 on cancer cell proliferation and in vitro sensitivity to gemcitabine were investigated by CellTiter 96. AQueous One Solution Cell Proliferation Assay (MTS) after transfecting the Dkk3 expression plasmid into human pancreatic cancer cells. The expression of β-catenin, phosphorylated extracellular signal-regulated protein kinases (pERK) and extracellular signal-regulated protein kinases (ERK) was also examined by real-time RT-PCR and Western blotting after upregulating Dkk3 expression in human pancreatic cancer cells.RESULTS: The results show that the expression levels of both Dkk3 mRNA and protein were low in all pancreatic cancer cell lines tested. The Dkk3 promoter sequence was methylated in the MIA PaCa-2 and AsPC-1 cell lines, which showed reduced Dkk3 expression. These two cell lines, which initially had a methylated Dkk3 promoter, showed increased Dkk3 mRNA expression that was dependent upon the dosage and timing of the DNA demethylating agent, 5-aza-dC, treatment (P < 0.05 or P < 0.01). When Dkk3 expression was upregulated following the transfection of a Dkk3 expression plasmid into MIA PaCa-2 cells, the ability of cells to proliferate decreased (P < 0.01), and the expression of β-catenin and pERK was downregulated (P < 0.01). Sensitivity to gemcitabine was enhanced in Dkk3 expression plasmid-transfected cells.CONCLUSION: Our findings, for the first time, implicate Dkk3 as a tumor suppressor in human pancreatic cancer

  19. Beta cell count instead of beta cell mass to assess and localize growth in beta cell population following pancreatic duct ligation in mice.

    Directory of Open Access Journals (Sweden)

    Marie Chintinne

    Full Text Available BACKGROUND: Pancreatic-tail duct ligation (PDL in adult rodents has been reported to induce beta cell generation and increase beta cell mass but increases in beta cell number have not been demonstrated. This study examines whether PDL increases beta cell number and whether this is caused by neogenesis of small clusters and/or their growth to larger aggregates. METHODOLOGY: Total beta cell number and its distribution over small (100 µm clusters was determined in pancreatic tails of 10-week-old mice, 2 weeks after PDL or sham. PRINCIPAL FINDINGS: PDL increased total beta cell mass but not total beta cell number. It induced neogenesis of small beta cell clusters (2.2-fold higher number which contained a higher percent proliferating beta cells (1.9% Ki67+cells than sham tails (<0.2%; their higher beta cell number represented <5% of total beta cell number and was associated with a similar increase in alpha cell number. It is unknown whether the regenerative process is causally related to the inflammatory infiltration in PDL-tails. Human pancreases with inflammatory infiltration also exhibited activation of proliferation in small beta cell clusters. CONCLUSIONS/SIGNIFICANCE: The PDL model illustrates the advantage of direct beta cell counts over beta cell mass measurements when assessing and localizing beta cell regeneration in the pancreas. It demonstrates the ability of the adult mouse pancreas for neogenesis of small beta cell clusters with activated beta cell proliferation. Further studies should investigate conditions under which neoformed small beta cell clusters grow to larger aggregates and hence to higher total beta cell numbers.

  20. Making a tooth: growth factors, transcription factors, and stem cells

    Institute of Scientific and Technical Information of China (English)

    Yah Ding ZHANG; Zhi CHEN; Yi Qiang SONG; Chao LIU; Yi Ping CHEN

    2005-01-01

    Mammalian tooth development is largely dependent on sequential and reciprocal epithelial-mesenchymal interactions.These processes involve a series of inductive and permissive interactions that result in the determination, differentiation,and organization of odontogenic tissues. Multiple signaling molecules, including BMPs, FGFs, Shh, and Wnt proteins,have been implicated in mediating these tissue interactions. Transcription factors participate in epithelial-mesenchymal interactions via linking the signaling loops between tissue layers by responding to inductive signals and regulating the expression of other signaling molecules. Adult stem cells are highly plastic and multipotent. These cells including dental pulp stem cells and bone marrow stromal cells could be reprogrammed into odontogenic fate and participated in tooth formation. Recent progress in the studies of molecular basis of tooth development, adult stem cell biology, and regeneration will provide fundamental knowledge for the realization of human tooth regeneration in the near future.

  1. IL-35 over-expression increases apoptosis sensitivity and suppresses cell growth in human cancer cells.

    Science.gov (United States)

    Long, Jun; Zhang, Xulong; Wen, Mingjie; Kong, Qingli; Lv, Zhe; An, Yunqing; Wei, Xiao-Qing

    2013-01-01

    Interleukin (IL)-35 is a novel heterodimeric cytokine in the IL-12 family and is composed of two subunits: Epstein-Barr virus-induced gene 3 (EBI3) and IL-12p35. IL-35 is expressed in T regulatory (Treg) cells and contributes to the immune suppression function of these cells. In contrast, we found that both IL-35 subunits were expressed concurrently in most human cancer cell lines compared to normal cell lines. In addition, we found that TNF-α and IFN-γ stimulation led to increased IL-35 expression in human cancer cells. Furthermore, over-expression of IL-35 in human cancer cells suppressed cell growth in vitro, induced cell cycle arrest at the G1 phase, and mediated robust apoptosis induced by serum starvation, TNF-α, and IFN-γ stimulation through the up-regulation of Fas and concurrent down-regulation of cyclinD1, survivin, and Bcl-2 expression. In conclusion, our results reveal a novel functional role for IL-35 in suppressing cancer activity, inhibiting cancer cell growth, and increasing the apoptosis sensitivity of human cancer cells through the regulation of genes related to the cell cycle and apoptosis. Thus, this research provides new insights into IL-35 function and presents a possible target for the development of novel cancer therapies.

  2. Cloning and analysis of genes regulating plant cell growth

    International Nuclear Information System (INIS)

    The aims of this work are to identify, clone and analyze genes involved in the regulation of plant cell growth. To do this, we have induced tumors on Arabidopsis thaliana by exposing seed or germinating seedlings to ionizing radiation. The tumors which developed on the plants derived from these seed were excised and established in culture. Unlike normal tissue explants, the tumors are able to grow on hormone-free medium suggesting changes in growth control (either hormonal or other) induced by the radiation exposure. This progress report describes work aimed at characterizing these tumors at the physiological and cellular levels and at determining the molecular basis of the changes leading to the tumorous phenotype

  3. Inverted Metamorphic Multijunction (IMM) Cell Processing Instructions

    Energy Technology Data Exchange (ETDEWEB)

    Duda, A.; Ward, S.; Young, M.

    2012-02-01

    This technical report details the processing schedule used to fabricate Inverted Metamorphic Multijunction (IMM) concentrator solar cells at The National Renewable Energy Laboratory (NREL). These devices are used as experimental test structures to support the research at NREL that is focused on increasing the efficiency of photovoltaic power conversion. They are not intended to be devices suitable for deployment in working concentrator systems primarily because of heat sinking issues. The process schedule was developed to be compatible with small sample sizes and to afford relatively rapid turn-around times, in support of research efforts. The report describes the use of electro deposition of gold for both the back and front contacts. Electro-deposition is used because of its rapid turn around time and because it is a benign metallization technique that is seldom responsible for damage to the semiconductors. The layer transfer technique is detailed including the use of a commercially available adhesive and the etching away of the parent gallium arsenide substrate. Photolithography is used to define front contact grids as well as the mesa area of the cell. Finally, the selective wet chemical etchant system is introduced and its use to reveal the back contact is described.

  4. Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy

    Science.gov (United States)

    Liu, Xinfeng; Johnson, Sara; Liu, Shou; Kanojia, Deepak; Yue, Wei; Singn, Udai; Wang, Qian; Wang, Qi; Nie, Qing; Chen, Hexin

    2013-08-01

    Cancer stem cells (CSCs) have been identified in primary breast cancer tissues and cell lines. The CSC population varies widely among cancerous tissues and cell lines, and is often associated with aggressive breast cancers. Despite of intensive research, how the CSC population is regulated within a tumor is still not well understood so far. In this paper, we present a mathematical model to explore the growth kinetics of CSC population both in vitro and in vivo. Our mathematical models and supporting experiments suggest that there exist non-linear growth kinetics of CSCs and negative feedback mechanisms to control the balance between the population of CSCs and that of non-stem cancer cells. The model predictions can help us explain a few long-standing questions in the field of cancer stem cell research, and can be potentially used to predict the efficicacy of anti-cancer therapy.

  5. Single-cell analysis of growth and cell division of the anaerobe Desulfovibrio vulgaris Hildenborough

    Directory of Open Access Journals (Sweden)

    Anouchka eFievet

    2015-12-01

    Full Text Available Recent years have seen significant progress in understanding basic bacterial cell cycle properties such as cell growth and cell division. While characterization and regulation of bacterial cell cycle is quite well documented in the case of fast growing aerobic model organisms, no data has been so far reported for anaerobic bacteria. This lack of information in anaerobic microorganisms can mainly be explained by the absence of molecular and cellular tools such as single cell microscopy and fluorescent probes usable for anaerobes and essential to study cellular events and/or subcellular localization of the actors involved in cell cycle.In this study, single-cell microscopy has been adapted to study for the first time, in real time, the cell cycle of a bacterial anaerobe, Desulfovibrio vulgaris Hildenborough (DvH. This single-cell analysis provides mechanistic insights into the cell division cycle of DvH, which seems to be governed by the recently discussed so-called incremental model that generates remarkably homogeneous cell sizes. Furthermore, cell division was reversibly blocked during oxygen exposure. This may constitute a strategy for anaerobic cells to cope with transient exposure to oxygen that they may encounter in their natural environment, thereby contributing to their aerotolerance. This study lays the foundation for the first molecular, single-cell assay that will address factors that cannot otherwise be resolved in bulk assays and that will allow visualization of a wide range of molecular mechanisms within living anaerobic cells.

  6. Characteristics of the Dendrite Growth in the Electrochemical Alane Production Process

    Directory of Open Access Journals (Sweden)

    Park Hyun-Kyu

    2016-01-01

    Full Text Available The electrochemical alane production process was proposed for a feasible production of alane. The operation of process was difficult because of short circuit by a dendrite growth in the reactor. Therefore, characteristics of the dendrite growth in the process were investigated. We conducted the electrochemical alane production process using Teflon block for inhibition of the dendrite growth. The obtained dendrite was characterized by XRD, SEM and ICP-AES. It was concluded that the dendrite growth was attributed to a melting and agglomeration of Al fine particles existed in the solution.

  7. Growth and radiosensitivity of irradiated human glioma cell progeny

    Institute of Scientific and Technical Information of China (English)

    Chao Li; Li Li; Changshao Xu; Juying Zhou

    2008-01-01

    BACKGROUND: Progenitors of the immortalized human glioma cell line, SHG-44, are significantly less sensitive to irradiation. Two hypotheses regarding the mechanism of this effect exist: several studies have suggested that there is a subgroup with different radiosensitivities in identical cell group, and the progenitors of irradiate is a adaptive response subgroup, so its radiosensitivity is descend. A second hypothesis suggests that irradiated glioma progeny have a stronger ability to repair DNA damage. This would suggest that when progeny are continuously irradiated, resistance to irradiation-induced DNA increases, and radiosensitivity decreases.OBJECTIVE: To investigate radiosensitivity and growth features after irradiation to progeny of the human glioma cell line SHG-44.DESIGN, TIME AND SETTING: A randomized, controlled experiment, which was performed at the Department of Radiology Laboratory, the First Hospital Affiliated to Soochow University, between September 2004 and January 2006.MATERIALS: The glioma cell line SHG-44 was provided by the Institute of Neuroscience, First Affiliated Hospital of Suzhou University. Propidium iodide reagent was provided by Coulter Corporation. A linear accelerator, KD-2 type, was provided by Siemens, Germany. The flow cytometer EPICS-XL was provided by Coulter Corporation.METHODS: Brain glioma SHG-44 cells were divided into four groups: SHG-44, SHG-44-2, SHG-44-6, and SHG-44-10. The SHG-44-2, SHG-44-6, and SHG-44-10 cells were vertically irradiated with varying doses of 2,6 and 10 Gy by a linear accelerator (6 MVX). The cells were passaged for 15 generations and cultured in RPMI-1640 culture media.MAIN OUTCOME MEASURES: Community re-double time, mean lethal dose (D0), extrapolation number (N), fraction surviving fraction irradiated by 2 Gy dose (SF2), quasi-threshold dose (Dq), and cell cycle.RESULTS: The Population doubling time (PDT) of SHG-44-2, SHG-44-6, and SHG-44-10 cell groups was not significant (P=0.052). Compared to

  8. Nerve growth factor: role in growth, differentiation and controlling cancer cell development.

    Science.gov (United States)

    Aloe, Luigi; Rocco, Maria Luisa; Balzamino, Bijorn Omar; Micera, Alessandra

    2016-01-01

    Recent progress in the Nerve Growth Factor (NGF) research has shown that this factor acts not only outside its classical domain of the peripheral and central nervous system, but also on non-neuronal and cancer cells. This latter observation has led to divergent hypothesis about the role of NGF, its specific distribution pattern within the tissues and its implication in induction as well as progression of carcinogenesis. Moreover, other recent studies have shown that NGF has direct clinical relevance in certain human brain neuron degeneration and a number of human ocular disorders. These studies, by suggesting that NGF is involved in a plethora of physiological function in health and disease, warrant further investigation regarding the true role of NGF in carcinogenesis. Based on our long-lasting experience in the physiopathology of NGF, we aimed to review previous and recent in vivo and in vitro NGF studies on tumor cell induction, progression and arrest. Overall, these studies indicate that the only presence of NGF is unable to generate cell carcinogenesis, both in normal neuronal and non-neuronal cells/tissues. However, it cannot be excluded the possibility that the co-expression of NGF and pro-carcinogenic molecules might open to different consequence. Whether NGF plays a direct or an indirect role in cell proliferation during carcinogenesis remains to demonstrate. PMID:27439311

  9. Physical growth of children with sickle cell disease

    Directory of Open Access Journals (Sweden)

    Mukherjee Malay

    2004-01-01

    Full Text Available Anthropometric measurements were used to study the physical growth of 58 sickle cell disease(SS children with severe clinical manifestations and compared with 86 normal(AA children from Nagpur district of Maharashtra. Both sickle cell disease male and female children were shown to have statistically significant lower weights, heights, sitting heights, mid arm circumferences, skin fold thickness and body mass indexes but not upper/ lower segment ratio as compared to normal children with comparable sex and ages. No significant differences were observed between the male and female children with sickle cell disease or normal for any of the anthropometric measurements. A significant lower values of all the measurements except U/L ratio was observed in the age group of 11-14 years than the earlier age among the sickle cell disease children as compared to the normal children of the same age and sex groups. Thus, these results indicate that as a group, children with sickle cell disease weigh less, are shorter and undernourished as compared to normal children.

  10. Effect of graphene oxide ratio on the cell adhesion and growth behavior on a graphene oxide-coated silicon substrate

    Science.gov (United States)

    Jeong, Jin-Tak; Choi, Mun-Ki; Sim, Yumin; Lim, Jung-Taek; Kim, Gil-Sung; Seong, Maeng-Je; Hyung, Jung-Hwan; Kim, Keun Soo; Umar, Ahmad; Lee, Sang-Kwon

    2016-01-01

    Control of living cells on biocompatible materials or on modified substrates is important for the development of bio-applications, including biosensors and implant biomaterials. The topography and hydrophobicity of substrates highly affect cell adhesion, growth, and cell growth kinetics, which is of great importance in bio-applications. Herein, we investigate the adhesion, growth, and morphology of cultured breast cancer cells on a silicon substrate, on which graphene oxides (GO) was partially formed. By minimizing the size and amount of the GO-containing solution and the further annealing process, GO-coated Si samples were prepared which partially covered the Si substrates. The coverage of GO on Si samples decreases upon annealing. The behaviors of cells cultured on two samples have been observed, i.e. partially GO-coated Si (P-GO) and annealed partially GO-coated Si (Annealed p-GO), with a different coverage of GO. Indeed, the spreading area covered by the cells and the number of cells for a given culture period in the incubator were highly dependent on the hydrophobicity and the presence of oxygenated groups on GO and Si substrates, suggesting hydrophobicity-driven cell growth. Thus, the presented method can be used to control the cell growth via an appropriate surface modification. PMID:27652886

  11. Fluctuation of Parameters in Tumor Cell Growth Model

    Institute of Scientific and Technical Information of China (English)

    AIBao-Quan; WANGXian-Ju; LIUGuo-Tao; LIULiang-Gang

    2003-01-01

    We study the steady state properties of a logistic growth model in the presence of Gaussian white noise.Based on the corresponding Fokker-Planck equation the steady state solution of the probability distribution function and its extrema have been investigated. It is found that the fluctuation of the tumor birth rate reduces the population of the cells while the fluctuation of predation rate can prevent the population of tumor ceils from going into extinction.Noise in the system can induce the phase transition.

  12. Centriole Age Underlies Asynchronous Primary Cilium Growth in Mammalian Cells

    OpenAIRE

    Anderson, Charles T; Stearns, Tim

    2009-01-01

    Primary cilia are microtubule-based sensory organelles that are present in most mammalian tissues and play important roles in development and disease [1]. They are required for the Sonic hedgehog (Shh) [2-4] and PDGF [5] signalling pathways. Primary cilia grow from the older of the two centrioles of the centrosome, referred to as the mother centriole. In cycling cells the cilium typically grows in G1 and is lost before mitosis, but the regulation of its growth is poorly understood. Centriole ...

  13. Yeast Extract Promotes Cell Growth and Induces Production of Polyvinyl Alcohol-Degrading Enzymes

    OpenAIRE

    Min Li; Xianyan Liao; Dongxu Zhang; Guocheng Du; Jian Chen

    2011-01-01

    Polyvinyl alcohol-degrading enzymes (PVAases) have a great potential in bio-desizing processes for its low environmental impact and low energy consumption. In this study, the effect of yeast extract on PVAases production was investigated. A strategy of four-point yeast extract addition was developed and applied to maximize cell growth and PVAases production. As a result, the maximum dry cell weight achieved was 1.48 g/L and the corresponding PVAases activity was 2.99 U/mL, which are 46.5% and...

  14. CVD growth and processing of graphene for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Shishir; Rezvani, Ehsan; Nolan, Hugo; Duesberg, Georg S. [School of Chemistry, Trinity College Dublin, Dublin 2 (Ireland); Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); McEvoy, Niall; Kim, Hye-Young; Lee, Kangho; Peltekis, Nikos; Weidlich, Anne; Daly, Ronan [Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland)

    2011-11-15

    The remarkable properties of graphene have potential for numerous applications; however, their exploitation depends on its reliable production. The chemical vapour deposition (CVD) growth of graphene on metal surfaces has become one of the most promising strategies for the production of high quality graphene in a scaleable manner. Here, we discuss graphene growth on nickel (Ni) and copper (Cu) directly from both gaseous hydrocarbons and solid carbon precursors. Further, we discuss in detail the transfer of graphene films to insulating substrates, by direct and polymer supported transfer methods. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. An Open Source Image Processing Method to Quantitatively Assess Tissue Growth after Non-Invasive Magnetic Resonance Imaging in Human Bone Marrow Stromal Cell Seeded 3D Polymeric Scaffolds

    NARCIS (Netherlands)

    Leferink, A.M.; Fratila, R.M.; Koenrades, M.A.; Blitterswijk, van C.A.; Velders, A.H.; Moroni, L.

    2014-01-01

    Monitoring extracellular matrix (ECM) components is one of the key methods used to determine tissue quality in three-dimensional (3D) scaffolds for regenerative medicine and clinical purposes. This is even more important when multipotent human bone marrow stromal cells (hMSCs) are used, as it could

  16. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    International Nuclear Information System (INIS)

    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 μm) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering

  17. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Huang Sha [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Wang Yijuan [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Deng, Tianzheng [Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Jin Fang [Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi' an, 710032 (China); Liu Shouxin [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Zhang Yongjie [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Feng Feng [Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Jin Yan [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China)], E-mail: yanjin@fmmu.edu.cn

    2008-07-28

    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 {mu}m) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering.

  18. Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2.

    Science.gov (United States)

    Miyahara, Daichi; Oishi, Isao; Makino, Ryuichi; Kurumisawa, Nozomi; Nakaya, Ryuma; Ono, Tamao; Kagami, Hiroshi; Tagami, Takahiro

    2016-04-22

    An in vitro culture system of chicken primordial germ cells (PGCs) has been recently developed, but the growth factor involved in the proliferation of PGCs is largely unknown. In the present study, we investigated the growth effects of chicken stem cell factor (chSCF) on the in vitro proliferation of chicken PGCs. We established two feeder cell lines (buffalo rat liver cells; BRL cells) that stably express the putative secreted form of chSCF (chSCF1-BRL) and membrane bound form of chSCF (chSCF2-BRL). Cultured PGC lines were incubated on chSCF1 or chSCF2-BRL feeder cells with fibroblast growth factor 2 (FGF2), and growth effects of each chSCF isoform were investigated. The in vitro proliferation rate of the PGCs cultured on chSCF2-BRL at 20 days of culture was more than threefold higher than those cultured on chSCF1-BRL cells and more than fivefold higher than those cultured on normal BRL cells. Thus, use of chSCF2-BRL feeder layer was effective for in vitro proliferation of chicken PGCs. However, the acceleration of PGC proliferation on chSCF2-BRL was not observed without FGF2, suggesting that chSCF2 would act as a proliferation co-factor of FGF2. We transferred the PGCs cultured on chSCF2-BRL cells to recipient embryos, generated germline chimeric chickens and assessed the germline competency of cultured PGCs by progeny test. Donor-derived progenies were obtained, and the frequency of germline transmission was 3.39%. The results of this study demonstrate that chSCF2 induces hyperproliferation of chicken PGCs retaining germline competency in vitro in cooperation with FGF2. PMID:26727404

  19. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Payton-Stewart, Florastina [Department of Chemistry, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA (United States); Tilghman, Syreeta L. [Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA (United States); Williams, LaKeisha G. [Division of Clinical and Administrative Sciences, College of Pharmacy Xavier University of Louisiana, New Orleans, LA (United States); Winfield, Leyte L., E-mail: lwinfield@spelman.edu [Department of Chemistry, Spelman College, Atlanta, GA (United States)

    2014-08-08

    Highlights: • The methyl-substituted benzimidazole was more effective at inhibiting growth in MDA-MB 231 cells. • The naphthyl-substituted benzimidazole was more effective at inhibiting growth in MCF-7 cells than ICI. • The benzimidazole molecules demonstrated a dose-dependent reduction in ERE transcriptional activity. • The benzimidazole molecules had binding mode in ERα and ERβ comparable to that of the co-crystallized ligand. - Abstract: Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules

  20. Approaches to Optimizing Animal Cell Culture Process: Substrate Metabolism Regulation and Protein Expression Improvement

    Science.gov (United States)

    Zhang, Yuanxing

    Some high value proteins and vaccines for medical and veterinary applications by animal cell culture have an increasing market in China. In order to meet the demands of large-scale productions of proteins and vaccines, animal cell culture technology has been widely developed. In general, an animal cell culture process can be divided into two stages in a batch culture. In cell growth stage a high specific growth rate is expected to achieve a high cell density. In production stage a high specific production rate is stressed for the expression and secretion of qualified protein or replication of virus. It is always critical to maintain high cell viability in fed-batch and perfusion cultures. More concern has been focused on two points by the researchers in China. First, the cell metabolism of substrates is analyzed and the accumulation of toxic by-products is decreased through regulating cell metabolism in the culture process. Second, some important factors effecting protein expression are understood at the molecular level and the production ability of protein is improved. In pace with the rapid development of large-scale cell culture for the production of vaccines, antibodies and other recombinant proteins in China, the medium design and process optimization based on cell metabolism regulation and protein expression improvement will play an important role. The chapter outlines the main advances in metabolic regulation of cell and expression improvement of protein in animal cell culture in recent years.

  1. Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR.

    Directory of Open Access Journals (Sweden)

    Takeshi Chiyomaru

    Full Text Available OBJECTIVE: Genistein is a soy isoflavone that has antitumor activity both in vitro and in vivo. It has been shown that genistein inhibits many type of cancers including prostate cancer (PCa by regulating several cell signaling pathways and microRNAs (miRNAs. Recent studies suggest that the long non-coding RNAs (lncRNAs are also involved in many cellular processes. At present there are no reports about the relationship between gensitein, miRNAs and lncRNAs. In this study, we focused on miRNAs, lncRNA that are regulated by genistein and investigated their functional role in PCa. METHOD: Microarray (SurePrint G3 Human GE 8×60K was used for expression profiling of genistein treated and control PCa cells (PC3 and DU145. Functional assay (cell proliferation, migration, invasion, apoptosis and cell cycle assays were performed with the PCa cell lines, PC3 and DU145. Both in vitro and in vivo (nude mouse models were used for growth assays. Luciferase reporter assays were used for binding of miR-34a to HOTAIR. RESULTS: LncRNA profiling showed that HOTAIR was highly regulated by genistein and its expression was higher in castration-resistant PCa cell lines than in normal prostate cells. Knockdown (siRNA of HOTAIR decreased PCa cell proliferation, migration and invasion and induced apoptosis and cell cycle arrest. miR-34a was also up-regulated by genistein and may directly target HOTAIR in both PC3 and DU145 PCa cells. CONCLUSIONS: Our results indicated that genistein inhibited PCa cell growth through down-regulation of oncogenic HOTAIR that is also targeted by tumor suppressor miR-34a. These findings enhance understanding of how genistein regulates lncRNA HOTAIR and miR-34a in PCa.

  2. Adenovirus-mediated expression of SSAT inhibits colorectal cancer cell growth in vitro

    Institute of Scientific and Technical Information of China (English)

    Hui SUN; Bin LIU; Ya-pei YANG; Chun-xiao XU; Yun-fei YAN; Wei WANG; Xian-xi LIU

    2008-01-01

    Aim: To construct a recombinant adenovirus that can express human spermidine/ spermine N1-acetyltransferase (SSAT) and detect its inhibitory effect on colorectal cancer cell growth in vitro. Methods: A 516 bp eDNA of SSAT was amplified and cloned into a pGL3-hTERT plasmid. The pGL3-hTERT-SSAT recombinant was digested, and the small fragment was cloned into the shuttle vector pAdTrack. The pAdTrack-hTERT-SSAT plasmids were recombined with pAdEasy-1 vectors in AdEasy-1 cells. Positive clones were selected and transfected into the HEK293 packaging cells (transformed human embryonic kidney cells) after they were lin-earized by PacI. The process of adenovirus packaging and amplification was monitored by green fluorescent protein (GFP) expression. The SSAT protein levels were determined by Western blotting, and the intracellular polyamine con-tent was detected by reverse-phase high performance liquid chromatography. The MTS (3-(4, 5-dimethylthiaol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(-4-sulfophenyl)-2H-tetrazolium, inner salt) and colony-forming assays were used to analyze the gene transduction efficiency and effect on the growth of HT-29 and LoVo cells. A viable cell count was used to determine the cell growth with or without exogenous polyamines. Results: The GFP expression in 293 cells during virus packing and amplification was observed by fluorescence microscopy. Western blotting results demonstrated that Ad-hTERT-SSAT could increase the expres-sion of SSAT, and consequently, spermidine and spermine were reduced to low levels. The MTS and colony-forming assay results showed that HT-29 and LoVo cell growth were significantly inhibited, and the inhibitory effect could be partially reversed by exogenous spermidine and spermine. Conclusion: The successfully constructed recombinant adenovirus Ad-hTERT-SSAT could accelerate polyamine catabolism and inhibit the colorectal cell growth in vitro. It also has therapeutic potential in the treatment of colorectal cancer.

  3. Effect of Growth factors, estradiol 17-ß, and short chain fatty acids on the intestinal HT29-MTX cells

    DEFF Research Database (Denmark)

    Giromini, Carlotta; Baldi, Antonella; Fusi, Eleonora;

    2015-01-01

    Peptides growth factors, hormones, and short chain fatty acids (SCFAs) are constantly in contact with the human bowel when secreted by gland or ingested by food, as milk and colostrum, or, as in the case of SCFAs, produced by fermentation processes. This study considers the effect of growth factors......, estradiol 17-β, and SCFAs on the metabolic activity and proliferation of undifferentiated HT29-MTX-E12 (E12) cells. In particular, the aim of the present study was the characterization of the human intestinal cell line E12 for its suitability as an in vitro intestinal model for cell-nutrient interaction...... state, showed to be a suitable in vitro model for cell-nutrient interaction studies, providing an opportunity to examine the potential role of growth factors, hormones and SCFAs in the regulation of the intestinal cell viability....

  4. Nerve Growth Factor Modulate Proliferation of Cultured Rabbit Corneal Endothelial Cells and Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to investigate the effect of nerve growth factor (NGF) on the proliferation of rabbit corneal endothelial cells and epithelial cells, the in vitro cultured rabbit corneal endothelial cells and epithelial cells were treated with different concentrations of NGF.MTT assay was used to examine the clonal growth and proliferation of the cells by determining the absorbency values at 570nm. The results showed that NGF with three concentrations ranging from 5 U/mL to 500 U/mL enhanced the proliferation of rabbit corneal endothelial cells in a concentration-dependent manner.50 U/mL and 500 U/mL NGF got more increase of proliferation than that of 5 U/mL NGF did.Meanwhile, 50 U/mL and 500 U/mL NGF could promote the proliferation of the rabbit corneal epithelial cells significantly in a concentration-dependent manner. However, 5 U/mL NGF did not enhance the proliferation of epithelial cells. It was suggested that exogenous NGF can stimulate the proliferation of both rabbit corneal endothelial and epithelial cells, but the extent of modulation is different.

  5. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna;

    2015-01-01

    85 antimetabolites that can inhibit growth of, or even kill, any of the cell lines, while at the same time not being toxic for 83 different healthy human cell types. 60 of these antimetabolites were found to inhibit growth in all cell lines. Finally, we experimentally validated one of the predicted...... for inhibition of cell growth may provide leads for the development of efficient cancer treatment strategies.......Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines...

  6. Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology.

    Directory of Open Access Journals (Sweden)

    Guy eElston

    2014-08-01

    Full Text Available Here we review recent findings related to postnatal spinogenesis, dendritic and axon growth, pruning and electrophysiology of neocortical pyramidal cells in the developing primate brain. Pyramidal cells in sensory, association and executive cortex grow dendrites, spines and axons at different rates, and vary in the degree of pruning. Of particular note is the fact that pyramidal cells in primary visual area (V1 prune more spines than they grow during postnatal development, whereas those in inferotemporal (TEO and TE and granular prefrontal cortex (gPFC; Brodmann’s area 12 grow more than they prune. Moreover, pyramidal cells in TEO, TE and the gPFC continue to grow larger dendritic territories from birth into adulthood, replete with spines, whereas those in V1 become smaller during this time. The developmental profile of intrinsic axons also varies between cortical areas: those in V1, for example, undergo an early proliferation followed by pruning and local consolidation into adulthood, whereas those in area TE tend to establish their territory and consolidate it into adulthood with little pruning. We correlate the anatomical findings with the electrophysiological properties of cells in the different cortical areas, including membrane time constant, depolarizing sag, duration of individual action potentials, and spike-frequency adaptation. All of the electrophysiological variables ramped up before 7 months of age in V1, but continued to ramp up over a protracted period of time in area TE. These data suggest that the anatomical and electrophysiological profiles of pyramidal cells vary among cortical areas at birth, and continue to diverge into adulthood. Moreover, the data reveal that the use it or lose it notion of synaptic reinforcement may speak to only part of the story, use it but you still might lose it may be just as prevalent in the cerebral cortex.

  7. Why Cells Grow and Divide? General Growth Mechanism and How it Defines Cells’ Growth, Reproduction and Metabolic Properties

    Science.gov (United States)

    Shestopaloff, Yuri K.

    2015-02-01

    We consider a general growth mechanism, which acts at cellular level and above (organs, systems and whole organisms). Using its mathematical representation, the growth equation, we study the growth and division mechanisms of amoeba and fission yeast Schizosaccharomyces pombe. We show how this mechanism, together with biomolecular machinery, governs growth and reproduction of cells, and these organisms in particular. This mechanism provides revealing answers to fundamental questions of biology, like why cells grow and divide, why and when cells’ growth stops. It also sheds light on questions like why and how life originated and developed. Solving the growth equation, we obtain analytical expression for the growth curve of fission yeast as a function of geometrical characteristics and nutrient influxes for RNA and protein synthesis, and compare the computed growth curves with 85 experiments. Statistical evaluation shows that these growth curves correspond to experimental data significantly better than all previous approximations. Also, using the general growth mechanism, we show how metabolic characteristics of cells, their size and evolutionary traits relate, considering fission yeast. In particular, we found that fission yeast S. pombe consumes about 16-18 times more nutrients for maintenance needs than for biomass synthesis.

  8. Effects of different Helicobacter pylori culture filtrates on growth of gastric epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Yan-Guo Yan; Gang Zhao; Jin-Ping Ma; Shi-Rong Cai; Wen-Hua Zhan

    2008-01-01

    AIM: To study the effects of different Helicobacter pylori (H py/orl) culture filtrates on growth of gastric epithelial cells.METHODS: Broth culture filtrates of H pylori were prepared. Gastric epithelial cells were treated with the filtrates, and cell growth was determined by growth curve and flow cytometry. DNA damage of gastric epithelial cells was measured by single-cell microgel electrophoresis.RESULTS: Gastric epithelial cells proliferated actively when treated by CagA-gene-positive broth culture filtrates, and colony formation reached 40%. The number of cells in S phase increased compared to controls. Comet assay showed 41.2% comet cells in GES-1 cells treated with CagA-positive filtrates (P<0.05).CONCLUSION: CagA-positive filtrates enhance the changes in morphology and growth characteristics of human gastric epithelial tumor cells. DNA damage maybe one of the mechanisms involved in the growth changes.

  9. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  10. Bacteria-induced release of white cell--and platelet-derived vascular endothelial growth factor in vitro

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørgen; Werther, K; Mynster, T;

    2001-01-01

    BACKGROUND AND OBJECTIVES: Poor prognosis after resection of primary colorectal cancer may be related to the combination of perioperative blood transfusion and subsequent development of infectious complications. White blood cell--and platelet-derived cancer growth substances, including vascular...... endothelial growth factor (VEGF), may be involved in this process. Therefore, we studied the in vitro release of VEGF from white blood cells and platelets stimulated by bacterial antigens and supernatants from stored red cell components. MATERIALS AND METHODS: Eight units of whole blood (WB) and eight units...

  11. Inhibitory Effect of Melatonin on the Growth of H22 Hepatocarcinoma Cells by Inducing Apoptosis

    Institute of Scientific and Technical Information of China (English)

    泰莉; 王西明; 段秋红; 陈蓓蓓; 何善述

    2004-01-01

    Summary: Whether melatonin not only inhibits the growth of H22 hepatocarcinoma cells but also induces apoptosis in vitro was assessed. The anti-proliferative effects of melatonin on tumor cells was observed by MTT assay and tumor cells growth curve assay. And the apoptosis of the cells was studied by acridine orange fluorescence assay and flow cytometry. The cell cycle of the tumor cells was also observed by flow cytometry. It was found that melatonin could significantly inhibit the growth of H22 hepatocarcinoma cells. Incubated with melatonin, chromatin condensation of the tumor cells was observed by fluorescence microscopy. Compared with control, the percentage of apoptotic cells was increased, and the proportion of G0/S increased but that of G2/M decreased. It was suggested that melatonin could directly inhibit the growth of H22 hepatocarcinoma cells by inducing apoptosis and extending the length of cell cycle of the tumor cells.

  12. A Marketing approach on how continuous processes improvement can contribute to hotel business Organic Growth

    OpenAIRE

    Ioana-Simona IVASCIUC; Gheorghe EPURAN

    2015-01-01

    Generating sustainable growth and profits is like finding a unicorn for most managers. Organic growth should be considered as an alternative for long-term growth in the hotel business. Designing the service process to deliver what customers expect from the hotel offer is a crucial component of encounter marketing. Hotels need to embrace the changes and ensure that their internal processes are aligned not just to current trends, but also to the expected future changes. Keeping u...

  13. Glycogen Synthase Kinase-3 regulates multiple myeloma cell growth and bortezomib-induced cell death

    Directory of Open Access Journals (Sweden)

    Colpo Anna

    2010-10-01

    Full Text Available Abstract Background Glycogen Synthase Kinase-3 (GSK-3 α and β are two serine-threonine kinases controlling insulin, Wnt/β-catenin, NF-κB signaling and other cancer-associated transduction pathways. Recent evidence suggests that GSK-3 could function as growth-promoting kinases, especially in malignant cells. In this study, we have investigated GSK-3α and GSK-3β function in multiple myeloma (MM. Methods GSK-3 α and β expression and cellular localization were investigated by Western blot (WB and immunofluorescence analysis in a panel of MM cell lines and in freshly isolated plasma cells from patients. MM cell growth, viability and sensitivity to bortezomib was assessed upon treatment with GSK-3 specific inhibitors or transfection with siRNAs against GSK-3 α and β isoforms. Survival signaling pathways were studied with WB analysis. Results GSK-3α and GSK-3β were differently expressed and phosphorylated in MM cells. Inhibition of GSK-3 with the ATP-competitive, small chemical compounds SB216763 and SB415286 caused MM cell growth arrest and apoptosis through the activation of the intrinsic pathway. Importantly, the two inhibitors augmented the bortezomib-induced MM cell cytotoxicity. RNA interference experiments showed that the two GSK-3 isoforms have distinct roles: GSK-3β knock down decreased MM cell viability, while GSK-3α knock down was associated with a higher rate of bortezomib-induced cytotoxicity. GSK-3 inhibition caused accumulation of β-catenin and nuclear phospho-ERK1, 2. Moreover, GSK-3 inhibition and GSK-3α knockdown enhanced bortezomib-induced AKT and MCL-1 protein degradation. Interestingly, bortezomib caused a reduction of GSK-3 serine phosphorylation and its nuclear accumulation with a mechanism that resulted partly dependent on GSK-3 itself. Conclusions These data suggest that in MM cells GSK-3α and β i play distinct roles in cell survival and ii modulate the sensitivity to proteasome inhibitors.

  14. Enhanced cell growth by nanoengineering zirconia to stimulate electrostatic fibronectin activation

    International Nuclear Information System (INIS)

    We address the enhanced bone growth on designed nanocrystalline zirconia implants as reported by in vivo experiments. In vitro experiments demonstrate that the activation of adhesive proteins on nanoengineered zirconia stimulates cell adhesion and growth as shown by confocal microscopy. Fibrillar fibronectin (FN) forms a matrix assembly on the nanostructured surface in the cell adhesion process. We discuss the importance of FN dimer activation due to its immobilization on the designed nanocrystalline ZrO2 implant fabricated by ion beam assisted deposition. The Monte-Carlo analysis indicates that FN activation on the surface can be promoted by selective electrostatic interactions between negatively charged ZrO2 surface patches and oppositely charged FN domains. (paper)

  15. Effect of microgravity environment on cell wall regeneration, cell divisions, growth, and differentiation of plants from protoplasts (7-IML-1)

    Science.gov (United States)

    Rasmussen, Ole

    1992-01-01

    The primary goal of this project is to investigate if microgravity has any influence on growth and differentiation of protoplasts. Formation of new cell walls on rapeseed protoplasts takes place within the first 24 hours after isolation. Cell division can be observed after 2-4 days and formation of cell aggregates after 5-7 days. Therefore, it is possible during the 7 day IML-1 Mission to investigate if cell wall formation, cell division, and cell differentiation are influenced by microgravity. Protoplasts of rapeseeds and carrot will be prepared shortly before launch and injected into 0.6 ml polyethylene bags. Eight bags are placed in an aluminum block inside the ESA Type 1 container. The containers are placed at 4 C in PTCU's and transferred to orbiter mid-deck. At 4 C all cell processes are slowed down, including cell wall formation. Latest access to the shuttle will be 12 hours before launch. In orbit the containers will be transferred from the PTC box to the 22 C Biorack incubator. The installation of a 1 g centrifuge in Biorack will make it possible to distinguish between effects of near weightlessness and effects caused by cosmic radiation and other space flight factors including vibrations. Parallel control experiments will be carried out on the ground. Other aspects of the experiment are discussed.

  16. Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells

    Science.gov (United States)

    Suman, S; Das, T P; Damodaran, C

    2013-01-01

    Background: Breast cancer stem cells (BCSCs) are characterized by high aldehyde dehydrogenase (ALDH) enzyme activity and are refractory to current treatment modalities, show a higher risk for metastasis, and influence the epithelial to mesenchymal transition (EMT), leading to a shorter time to recurrence and death. In this study, we focused on examination of the mechanism of action of a small herbal molecule, psoralidin (Pso) that has been shown to effectively suppress the growth of BSCSs and breast cancer cells (BCCs), in breast cancer (BC) models. Methods: ALDH− and ALDH+ BCCs were isolated from MDA-MB-231 cells, and the anticancer effects of Pso were measured using cell viability, apoptosis, colony formation, invasion, migration, mammosphere formation, immunofluorescence, and western blot analysis. Results: Psoralidin significantly downregulated NOTCH1 signaling, and this downregulation resulted in growth inhibition and induction of apoptosis in both ALDH− and ALDH+ cells. Molecularly, Pso inhibited NOTCH1 signaling, which facilitated inhibition of EMT markers (β-catenin and vimentin) and upregulated E-cadherin expression, resulting in reduced migration and invasion of both ALDH− and ALDH+ cells. Conclusion: Together, our results suggest that inhibition of NOTCH1 by Pso resulted in growth arrest and inhibition of EMT in BCSCs and BCCs. Psoralidin appears to be a novel agent that targets both BCSCs and BCCs. PMID:24129237

  17. Neural stem cell regulation, fibroblast growth factors, and the developmental origins of neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Hanna E Stevens

    2010-09-01

    Full Text Available There is increasing appreciation for the neurodevelopmental underpinnings of many psychiatric disorders. Disorders that begin in childhood such as autism, language disorders or mental retardation as well as adult-onset mental disorders may have origins early in neurodevelopment. Neural stem cells (NSCs can be defined as self-renewing, multipotent cells that are present in both the embryonic and adult brain. Several recent research findings demonstrate that psychiatric illness may begin with abnormal specification, growth, expansion and differentiation of embryonic NSCs. For example, candidate susceptibility genes for schizophrenia, autism and major depression include the signaling molecule Disrupted In Schizophrenia-1 (DISC-1, the homeodomain gene engrailed-2 (EN-2, and several receptor tyrosine kinases (RTKs, including MET, brain-derived growth factor (BDNF and fibroblast growth factors (FGF, all of which have been shown to play important roles in NSCs or neuronal precursors. We will discuss here stem cell biology, signaling factors that affect these cells, and the potential contribution of these processes to the etiology of neuropsychiatric disorders. Hypotheses about how some of these factors relate to psychiatric disorders will be reviewed.

  18. RASSF1A expression inhibits cell growth and enhances cell chemosensitivity to mitomycin in BEL-7402 hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    GUAN Hong-geng; XUE Wan-jiang; QIAN Hai-xin; ZHOU Xiao-jun; QIN Lei; LAN Jing

    2009-01-01

    Background The antitumor role of Ras association domain family 1A (RASSFIA) gene and its potential molecular mechanisms are not well understood. The objective of this study was to observe the antitumor ability of RASSFIA in hepatoceliular carcinoma, and study the mechanisms of cell apoptosis induced by RASSFIA.Methods After stably transfecting a RASSF1A (wild-type or mutant) expression vector into the BEL-7402 hepatocellular carcinoma cell line, RT-PCR and Westem blotting was used to detect the RASSF1A expression levels in recombinant cells. The effects of wild-type RASSF1A on cell growth were observed in vitro by analyzing cell proliferation rate, cell colony formation, and in vivo by analyzing tumorigenesis in nude mice. In addition, the effect of RASSF1A gene expression on the chemosensitivity of human hepatocellular carcinoma cells to antitumor drugs was examined by inhibition of cell proliferation and the percentage of apoptotic cells.Results Wild-type RASSF1A, not the mutant, suppressed cell growth in vitro and in vivo. Re-expression of wild-type RASSF1A could enhance the inhibition of cell proliferation and the percentage of apoptotic cells following cell treatment with mitomycin, but had no significant effect when combined with adriamycin, etoposide, 5-fluorouracil and cisplatJn treatment.Conclusion Wild-type RASSF1A inhibits cell growth and enhances cell chemosensitivity to mitomycin in hepatocellular carcinoma, suggesting that RASSF1A may serve as a new target for gene therapy in hepatocellular carcinoma patients.

  19. Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Grassi Rici Rose

    2012-02-01

    Full Text Available Abstract Background The bone morphogenetic proteins (BMPs belong to a unique group of proteins that includes the growth factor TGF-β. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs and belong to the University of São Paulo, College of Veterinary Medicine (FMVZ-USP stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. Results We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p

  20. NK4, an antagonist of hepatocyte growth factor (HGF), inhibits growth of multiple myeloma cells: molecular targeting of angiogenic growth factor.

    Science.gov (United States)

    Du, Wenlin; Hattori, Yutaka; Yamada, Taketo; Matsumoto, Kunio; Nakamura, Toshikazu; Sagawa, Morihiko; Otsuki, Takemi; Niikura, Takako; Nukiwa, Toshihiro; Ikeda, Yasuo

    2007-04-01

    Hepatocyte growth factor (HGF) promotes cell growth and motility and also increases neovascularization. Multiple myeloma (MM) cells produce HGF, and the plasma concentration of HGF is significantly elevated in patients with clinically active MM, suggesting that HGF might play a role in the pathogenesis of MM. NK4, an antagonist of HGF, is structurally homologous to angiostatin, and our previous report showed that NK4 inhibited the proliferation of vascular endothelial cells induced by HGF stimulation. The purposes of this study were to elucidate the contribution of HGF to the growth of MM cells as well as to investigate the possibility of the therapeutic use of NK4. In vitro study showed that NK4 protein stabilized the growth of MM cell lines and regulated the activation of c-MET, ERK1/2, STAT3, and AKT-1. Recombinant adenovirus containing NK4 cDNA (AdCMV.NK4) was injected intramuscularly into Icr/scid mice bearing tumors derived from HGF-producing MM cells. AdCMV.NK4 significantly inhibited the growth of these tumors in vivo. Histologic examination revealed that AdCMV.NK4 induced apoptosis of MM cells, accompanied by a reduction in neovascularization in the tumors. Thus, NK4 inhibited the growth of MM cells via antiangiogenic as well as direct antitumor mechanisms. The molecular targeting of HGF by NK4 could be applied as a novel therapeutic approach to MM. PMID:17179234

  1. Influence of different ammonium, lactate and glutamine concentrations on CCO cell growth

    OpenAIRE

    Slivac, Igor; Blajić, Višnja; Radošević, Kristina; Kniewald, Zlatko; Gaurina Srček, Višnja

    2010-01-01

    In this study the effects of ammonium and lactate on a culture of channel catfish ovary (CCO) cells were examined. We also made investigation on the influence of glutamine, since our previous research revealed that this amino acid stimulated CCO cell growth more than glucose in a concentration-dependent manner. The effect of ammonium in cell culture included the considerable decrease in cell growth rate with eventual growth arrest as well as the retardation of glucose consumption. At ammonium...

  2. Adenovirus Mediated BIMS Transfer Induces Growth Supression and Apoptosis in Raji Lymphoma Cells

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ya Ning; LI Qiang

    2014-01-01

    Objective To transfer pro-apoptotic BIM directly into tumor cells bypass the complicated biological processes of BIM activation so as to reverse the chemoresistance of cancer cells. Methods BIMS was specifically amplified from HL-60 cells by RT-PCR, confirmed to be correct by sequencing and cloned into shuttle vector pAdTrack-CMV carrying a green fluorescence protein gene to generate a recombinant plasmid pAdTrack-CMV-BIMS. This plasmid and adenovirus backbone plasmid pAdEasy-1 were linearized and electroporated into E.coli BJ5183 host bacteria to mediate homologous recombination. The positive clone was identified by restrict endonuclease digestion. The recombinant pAdEasy-CMV-BIMS was transferred into HEK293 cells for packaging and amplification. The successful construction of recombinant human BIMS adenovirus (Ad-BIMS) was demonstrated by Western blot. To test whether Ad-BIMS has the capability of inducing apoptosis of tumor cells, Ad-BIMS was used to infect GC resistant Burkitt lymphoma Raji cells. Results After infected for 2-5 days, BIMS expression in Raji cells was detected by RT-PCR and Western blot. The significant growth retardation and apoptosis of Raji cells were also observed by MTT and flow cytometry. Conclusion These results indicated that BIMS might be a potential candidate of gene therapy for chemoresistant tumor cells.

  3. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth

    DEFF Research Database (Denmark)

    Bennewith, Kevin L; Huang, Xin; Ham, Christine M;

    2009-01-01

    RNA-expressing clones showed dramatically reduced growth in soft agar and when implanted s.c. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by positron emission tomography imaging. Mechanistically, CCN2 protects cells from hypoxia...

  4. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation

    Science.gov (United States)

    Bennett, Darin C.; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K. K.; McElwee, Kevin J.; Cheng, Kimberly M.

    2015-01-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51 × faster), ostrich oil (1.46 × faster), and rhea oil (1.64 × faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35 × slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  5. Root responses to soil physical conditions; growth dynamics from field to cell.

    Science.gov (United States)

    Bengough, A Glyn; Bransby, M Fraser; Hans, Joachim; McKenna, Stephen J; Roberts, Tim J; Valentine, Tracy A

    2006-01-01

    Root growth in the field is often slowed by a combination of soil physical stresses, including mechanical impedance, water stress, and oxygen deficiency. The stresses operating may vary continually, depending on the location of the root in the soil profile, the prevailing soil water conditions, and the degree to which the soil has been compacted. The dynamics of root growth responses are considered in this paper, together with the cellular responses that underlie them. Certain root responses facilitate elongation in hard soil, for example, increased sloughing of border cells and exudation from the root cap decreases friction; and thickening of the root relieves stress in front of the root apex and decreases buckling. Whole root systems may also grow preferentially in loose versus dense soil, but this response depends on genotype and the spatial arrangement of loose and compact soil with respect to the main root axes. Decreased root elongation is often accompanied by a decrease in both cell flux and axial cell extension, and recent computer-based models are increasing our understanding of these processes. In the case of mechanical impedance, large changes in cell shape occur, giving rise to shorter fatter cells. There is still uncertainty about many aspects of this response, including the changes in cell walls that control axial versus radial extension, and the degree to which the epidermis, cortex, and stele control root elongation. Optical flow techniques enable tracking of root surfaces with time to yield estimates of two-dimensional velocity fields. It is demonstrated that these techniques can be applied successfully to time-lapse sequences of confocal microscope images of living roots, in order to determine velocity fields and strain rates of groups of cells. In combination with new molecular approaches this provides a promising way of investigating and modelling the mechanisms controlling growth perturbations in response to environmental stresses.

  6. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Science.gov (United States)

    Damodaran, Shima P; Eberhard, Stephan; Boitard, Laurent; Rodriguez, Jairo Garnica; Wang, Yuxing; Bremond, Nicolas; Baudry, Jean; Bibette, Jérôme; Wollman, Francis-André

    2015-01-01

    To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers) and a significant subpopulation of slowly dividing cells (slow-growers). These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes. PMID:25760649

  7. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Shima P Damodaran

    Full Text Available To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers and a significant subpopulation of slowly dividing cells (slow-growers. These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.

  8. Growth hormone promotes skeletal muscle cell fusion independent of insulin-like growth factor 1 up-regulation

    OpenAIRE

    Sotiropoulos, Athanassia; Ohanna, Mickaël; Kedzia, Cécile; Menon, Ram K.; Kopchick, John J.; Kelly, Paul A; Pende, Mario

    2006-01-01

    Growth hormone (GH) participates in the postnatal regulation of skeletal muscle growth, although the mechanism of action is unclear. Here we show that the mass of skeletal muscles lacking GH receptors is reduced because of a decrease in myofiber size with normal myofiber number. GH signaling controls the size of the differentiated myotubes in a cell-autonomous manner while having no effect on size, proliferation, and differentiation of the myoblast precursor cells. The GH hypertrophic action ...

  9. NFkB signaling is important for growth of antiestrogen resistant breast cancer cells

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Emdal, Kristina Bennet; Guerra, Barbara;

    2012-01-01

    resistant cell growth and a potential target for re-sensitizing resistant cells to endocrine therapy. We used an MCF-7-derived cell model for antiestrogen resistant breast cancer to investigate dependence on NF¿B signaling for antiestrogen resistant cell growth. We found that targeting NF¿B preferentially...... inhibited resistant cell growth. Antiestrogen resistant cells expressed increased p50 and RelB, and displayed increased phosphorylation of p65 at Ser529 and Ser536. Moreover, transcriptional activity of NF¿B after stimulation with tumor necrosis factor a was enhanced in antiestrogen resistant cell lines...... resistant cells increased sensitivity to tamoxifen treatment. Our data provide evidence that NF¿B signaling is enhanced in antiestrogen resistant breast cancer cells and plays an important role for antiestrogen resistant cell growth and for sensitivity to tamoxifen treatment in resistant cells. Our results...

  10. Berberine slows cell growth in autosomal dominant polycystic kidney disease cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonon, Anna; Mangolini, Alessandra [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy); Pinton, Paolo [Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, 44121 Ferrara (Italy); Senno, Laura del [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy); Aguiari, Gianluca, E-mail: dsn@unife.it [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy)

    2013-11-22

    Highlights: •Berberine at appropriate doses slows cell proliferation in ADPKD cystic cells. •Reduction of cell growth by berberine occurs by inhibition of ERK and p70-S6 kinase. •Higher doses of berberine cause an overall cytotoxic effect. •Berberine overdose induces apoptotic bodies formation and DNA fragmentation. •Antiproliferative properties of this drug make it a new candidate for ADPKD therapy. -- Abstract: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary monogenic disorder characterized by development and enlargement of kidney cysts that lead to loss of renal function. It is caused by mutations in two genes (PKD1 and PKD2) encoding for polycystin-1 and polycystin-2 proteins which regulate different signals including cAMP, mTOR and EGFR pathways. Abnormal activation of these signals following PC1 or PC2 loss of function causes an increased cell proliferation which is a typical hallmark of this disease. Despite the promising findings obtained in animal models with targeted inhibitors able to reduce cystic cell growth, currently, no specific approved therapy for ADPKD is available. Therefore, the research of new more effective molecules could be crucial for the treatment of this severe pathology. In this regard, we have studied the effect of berberine, an isoquinoline quaternary alkaloid, on cell proliferation and apoptosis in human and mouse ADPKD cystic cell lines. Berberine treatment slows cell proliferation of ADPKD cystic cells in a dose-dependent manner and at high doses (100 μg/mL) it induces cell death in cystic cells as well as in normal kidney tubule cells. However, at 10 μg/mL, berberine reduces cell growth in ADPKD cystic cells only enhancing G{sub 0}/G{sub 1} phase of cell cycle and inhibiting ERK and p70-S6 kinases. Our results indicate that berberine shows a selected antiproliferative activity in cellular models for ADPKD, suggesting that this molecule and similar natural compounds could open new

  11. Downregulation of Akt1 Inhibits Anchorage-Independent Cell Growth and Induces Apoptosis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xuesong Liu

    2001-01-01

    Full Text Available The serine/threonine kinases, Akti/PKBα, Akt2/PKBβ, and Akt3/PKBγ, play a critical role in preventing cancer cells from undergoing apoptosis. However, the function of individual Akt isoforms in the tumorigenicity of cancer cells is still not well defined. In the current study, we used an AM antisense oligonucleotide (AS to specifically downregulate Akti protein in both cancer and normal cells. Our data indicate that AM AS treatment inhibits the ability of MiaPaCa-2, H460, HCT-15, and HT1080 cells to grow in soft agar. The treatment also induces apoptosis in these cancer cells as demonstrated by FRCS analysis and a caspase activity assay. Conversely, Akti AS treatment has little effect on the cell growth and survival of normal human cells including normal human fibroblast (NHF, fibroblast from muscle (FBM, and mammary gland epithelial 184135 cells. In addition, AM AS specifically sensitizes cancer cells to typical chemotherapeutic agents. Thus, Akti is indispensable for maintaining the tumorigenicity of cancer cells. Inhibition of AM may provide a powerful sensitization agent for chemotherapy specifically in cancer cells.

  12. Formation and growth of crystal defects in directionally solidified multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryningen, Birgit

    2008-07-01

    Included in this thesis are five publications and one report. The common theme is characterisation of directionally solidified multicrystalline silicon for solar cells. Material characterisation of solar cell silicon is naturally closely linked to both the casting process and to the solar cell processing: Many of the material properties are determined by the casting process, and the solar cell processing will to some extend determine which properties will influence the solar cell performance. Solar grade silicon (SoG-Si) made by metallurgical refining route and supplied by Elkem Solar was directionally solidified and subsequently characterised, and a simple solar cell process was applied. Except from some metallic co-precipitates in the top of the ingot, no abnormalities were found, and it is suggested that within the limits of the tests performed in this thesis, the casting and the solar cell processing, rather than the assumed higher impurity content, was the limiting factor. It is suggested in this thesis that the main quality problem in multicrystalline silicon wafers is the existence of dislocation clusters covering large wafer areas. The clusters will reduce the effect of gettering and even if gettering could be performed successfully, the clusters will still reduce the minority carrier mobility and hence the solar cell performance. It has further been pointed out that ingots solidified under seemingly equal conditions might have a pronounced difference in minority carrier lifetime. Ingots with low minority carrier lifetime have high dislocation densities. The ingots with the substantially higher lifetime seem all to be dominated by twins. It is also found a link between a higher undercooling and the ingots dominated by twins. It is suggested that the two types of ingots are subject to different nucleation and crystal growth mechanisms: For the ingots dominated by dislocations, which are over represented, the crystal growth is randomly nucleated at the

  13. Fluid flow and solute segregation in EFG crystal growth process

    Science.gov (United States)

    Bunoiu, O.; Nicoara, I.; Santailler, J. L.; Duffar, T.

    2005-02-01

    The influence of the die geometry and various growth conditions on the fluid flow and on the solute distribution in EFG method has been studied using numerical simulation. The commercial FIDAP software has been used in order to solve the momentum and mass transfer equations in the capillary channel and in the melt meniscus. Two types of shaper design are studied and the results are in good agreement with the void distribution observed in rod-shaped sapphire crystals grown by the EFG method in the various configurations.

  14. Analysis and Stochastics of Growth Processes and Interface Models

    CERN Document Server

    Mörters, Peter; Penrose, Mathew

    2008-01-01

    This book is a collection of topical survey articles by leading researchers in the fields of applied analysis and probability theory, working on the mathematical description of growth phenomena. Particular emphasis is on the interplay of the two fields, with articles by analysts being accessible for researchers in probability, and vice versa. Mathematical methods discussed in the book comprise large deviation theory, lace expansion, harmonic multi-scale techniques andhomogenisation of partial differential equations. Models based on the physics of individual particles are discussed alongside mo

  15. Mesenchymal stem cells directly interact with breast cancer cells and promote tumor cell growth in vitro and in vivo.

    Science.gov (United States)

    Mandel, Katharina; Yang, Yuanyuan; Schambach, Axel; Glage, Silke; Otte, Anna; Hass, Ralf

    2013-12-01

    Cellular interactions were investigated between human mesenchymal stem cells (MSC) and human breast cancer cells. Co-culture of the two cell populations was associated with an MSC-mediated growth stimulation of MDA-MB-231 breast cancer cells. A continuous expansion of tumor cell colonies was progressively surrounded by MSC(GFP) displaying elongated cell bodies. Moreover, some MSC(GFP) and MDA-MB-231(cherry) cells spontaneously generated hybrid/chimeric cell populations, demonstrating a dual (green fluorescent protein+cherry) fluorescence. During a co-culture of 5-6 days, MSC also induced expression of the GPI-anchored CD90 molecule in breast cancer cells, which could not be observed in a transwell assay, suggesting the requirement of direct cellular interactions. Indeed, MSC-mediated CD90 induction in the breast cancer cells could be partially blocked by a gap junction inhibitor and by inhibition of the notch signaling pathway, respectively. Similar findings were observed in vivo by which a subcutaneous injection of a co-culture of primary MSC with MDA-MB-231(GFP) cells into NOD/scid mice exhibited an about 10-fold increased tumor size and enhanced metastatic capacity as compared with the MDA-MB-231(GFP) mono-culture. Flow cytometric evaluation of the co-culture tumors revealed more than 90% of breast cancer cells with about 3% of CD90-positive cells, also suggesting an MSC-mediated in vivo induction of CD90 in MDA-MB-231 cells. Furthermore, immunohistochemical analysis demonstrated an elevated neovascularization and viability in the MSC/MDA-MB-231(GFP)-derived tumors. Together, these data suggested an MSC-mediated growth stimulation of breast cancer cells in vitro and in vivo by which the altered MSC morphology and the appearance of hybrid/chimeric cells and breast cancer-expressing CD90(+) cells indicate mutual cellular alterations.

  16. Bomapin is a redox-sensitive nuclear serpin that affects responsiveness of myeloid progenitor cells to growth environment

    OpenAIRE

    Larsson Göran; Tengel Tobias; Ramstedt Björn; Przygodzka Patrycja; Wilczynska Malgorzata

    2010-01-01

    Abstract Background Haematopoiesis is a process of formation of mature blood cells from hematopoietic progenitors in bone marrow. Haematopoietic progenitors are stimulated by growth factors and cytokines to proliferate and differentiate, and they die via apoptosis when these factors are depleted. An aberrant response to growth environment may lead to haematological disorders. Bomapin (serpinb10) is a hematopoietic- and myeloid leukaemia-specific protease inhibitor with unknown function. Resul...

  17. Direct numerical simulation of homogeneous nucleation and growth in a phase-field model using cell dynamics method

    OpenAIRE

    Iwamatsu, Masao

    2008-01-01

    Homogeneous nucleation and growth in a simplest two-dimensional phase field model is numerically studied using the cell dynamics method. Whole process from nucleation to growth is simulated and is shown to follow closely the Kolmogorov-Johnson-Mehl-Avrami (KJMA) scenario of phase transformation. Specifically the time evolution of the volume fraction of new stable phase is found to follow closely the KJMA formula. By fitting the KJMA formula directly to the simulation data, not only the Avrami...

  18. A general framework for modeling growth and division of mammalian cells

    Directory of Open Access Journals (Sweden)

    Pohl Phillip I

    2011-01-01

    Full Text Available Abstract Background Modeling the cell-division cycle has been practiced for many years. As time has progressed, this work has gone from understanding the basic principles to addressing distinct biological problems, e.g., the nature of the restriction point, how checkpoints operate, the nonlinear dynamics of the cell cycle, the effect of localization, etc. Most models consist of coupled ordinary differential equations developed by the researchers, restricted to deal with the interactions of a limited number of molecules. In the future, cell-cycle modeling--and indeed all modeling of complex biologic processes--will increase in scope and detail. Results A framework for modeling complex cell-biologic processes is proposed here. The framework is based on two constructs: one describing the entire lifecycle of a molecule and the second describing the basic cellular machinery. Use of these constructs allows complex models to be built in a straightforward manner that fosters rigor and completeness. To demonstrate the framework, an example model of the mammalian cell cycle is presented that consists of several hundred differential equations of simple mass action kinetics. The model calculates energy usage, amino acid and nucleotide usage, membrane transport, RNA synthesis and destruction, and protein synthesis and destruction for 33 proteins to give an in-depth look at the cell cycle. Conclusions The framework presented here addresses how to develop increasingly descriptive models of complex cell-biologic processes. The example model of cellular growth and division constructed with the framework demonstrates that large structured models can be created with the framework, and these models can generate non-trivial descriptions of cellular processes. Predictions from the example model include those at both the molecular level--e.g., Wee1 spontaneously reactivates--and at the system level--e.g., pathways for timing-critical processes must shut down redundant

  19. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Simian, M.; Harail, Y.; Navre, M.; Werb, Z.; Lochter, A.; Bissell, M.J.

    2002-03-06

    The mammary gland develops its adult form by a process referred to as branching morphogenesis. Many factors have been reported to affect this process. We have used cultured primary mammary epithelial organoids and mammary epithelial cell lines in three-dimensional collagen gels to elucidate which growth factors, matrix metalloproteinases (MMPs) and mammary morphogens interact in branching morphogenesis. Branching stimulated by stromal fibroblasts, epidermal growth factor, fibroblast growth factor 7, fibroblast growth factor 2 and hepatocyte growth factor was strongly reduced by inhibitors of MMPs, indicating the requirement of MMPs for three-dimensional growth involved in morphogenesis. Recombinant stromelysin 1/MMP-3 alone was sufficient to drive branching in the absence of growth factors in the organoids. Plasmin also stimulated branching; however, plasmin-dependent branching was abolished by both inhibitors of plasmin and MMPs, suggesting that plasmin activates MMPs. To differentiate between signals for proliferation and morphogenesis, we used a cloned mammary epithelial cell line that lacks epimorphin, an essential mammary morphogen. Both epimorphin and MMPs were required for morphogenesis, but neither was required for epithelial cell proliferation. These results provide direct evidence for a critical role of MMPs in branching in mammary epithelium and suggest that, in addition to epimorphin, MMP activity is a minimum requirement for branching morphogenesis in the mammary gland.

  20. Growth hormone and retinal ganglion cell function: QNR/D cells as an experimental model.

    Science.gov (United States)

    Martínez-Moreno, Carlos; Andres, Alexis; Giterman, Daniel; Karpinski, Edward; Harvey, Steve

    2014-01-01

    Retinal ganglion cells (RGCs) have been shown to be sites of growth hormone (GH) production and GH action in the embryonic (embryo day 7, ED7) chick neural retina. Primary RGC cell cultures were previously used to determine autocrine or paracrine actions of GH in the retina, but the antibody used in their immunopanning (anti-Thy-1) is no longer available. We have therefore characterized an immortalized neural retina (QNR/D) cell line derived from ED7 embryonic quail as a replacement experimental model. These cells express the GH gene and have GH receptor (GHR)-immunoreactivity. They are also immunoreactive for RGC markers (islet-1, calretinin, RA4) and neural fibers (neurofilament, GAP 43, vimentin) and they express the genes for Thy-1, neurotrophin 3 (NTF3), neuritin 1 (NRN1) and brn3 (POU4F). These cells are also electrically active and therefore resemble the RGCs in the neural retina. They are also similarly responsive to exogenous GH, which induces overexpression of the neurotrophin 3 and insulin-like growth factor (IGF) 1 genes and stimulates cell survival, as in the chick embryo neural retina. QNR/D cells are therefore a useful experimental model to assess the actions of GH in retinal function. PMID:24239556

  1. BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Koopman, D.

    2012-04-09

    The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower

  2. BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Koopman, D.

    2012-04-09

    The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower

  3. A mathematical model and computational framework for three-dimensional chondrocyte cell growth in a porous tissue scaffold placed inside a bi-directional flow perfusion bioreactor.

    Science.gov (United States)

    Shakhawath Hossain, Md; Bergstrom, D J; Chen, X B

    2015-12-01

    The in vitro chondrocyte cell culture for cartilage tissue regeneration in a perfusion bioreactor is a complex process. Mathematical modeling and computational simulation can provide important insights into the culture process, which would be helpful for selecting culture conditions to improve the quality of the developed tissue constructs. However, simulation of the cell culture process is a challenging task due to the complicated interaction between the cells and local fluid flow and nutrient transport inside the complex porous scaffolds. In this study, a mathematical model and computational framework has been developed to simulate the three-dimensional (3D) cell growth in a porous scaffold placed inside a bi-directional flow perfusion bioreactor. The model was developed by taking into account the two-way coupling between the cell growth and local flow field and associated glucose concentration, and then used to perform a resolved-scale simulation based on the lattice Boltzmann method (LBM). The simulation predicts the local shear stress, glucose concentration, and 3D cell growth inside the porous scaffold for a period of 30 days of cell culture. The predicted cell growth rate was in good overall agreement with the experimental results available in the literature. This study demonstrates that the bi-directional flow perfusion culture system can enhance the homogeneity of the cell growth inside the scaffold. The model and computational framework developed is capable of providing significant insight into the culture process, thus providing a powerful tool for the design and optimization of the cell culture process.

  4. Media fill for validation of a good manufacturing practice-compliant cell production process.

    Science.gov (United States)

    Serra, Marta; Roseti, Livia; Bassi, Alessandra

    2015-01-01

    According to the European Regulation EC 1394/2007, the clinical use of Advanced Therapy Medicinal Products, such as Human Bone Marrow Mesenchymal Stem Cells expanded for the regeneration of bone tissue or Chondrocytes for Autologous Implantation, requires the development of a process in compliance with the Good Manufacturing Practices. The Media Fill test, consisting of a simulation of the expansion process by using a microbial growth medium instead of the cells, is considered one of the most effective ways to validate a cell production process. Such simulation, in fact, allows to identify any weakness in production that can lead to microbiological contamination of the final cell product as well as qualifying operators. Here, we report the critical aspects concerning the design of a Media Fill test to be used as a tool for the further validation of the sterility of a cell-based Good Manufacturing Practice-compliant production process.

  5. Vascular endothelial growth factor and its receptor expression during the process of fracture healing

    Institute of Scientific and Technical Information of China (English)

    CHU Tong-wei; LIU Yu-gang; WANG Zheng-guo; ZHU Pei-fang; LIU Da-wei

    2008-01-01

    Objective: To study the expression regularity of vascular endothelial growth factor (VEGF) during the process of fracture healing, and the type of VEGF receptor expressed in the vascular endothelial cells of the fracture site.Methods: The fracture model was made in the middle part of left radius in 35 rabbits. The specimens from the fracture site were harvested at 8, 24, 72 hours and 1, 3, 5, 8 weeks, and then fixed, decalcified, and sectioned frozenly to detect the expression of VEGF and its receptor at the fracture site by in situ hybridization and immunochemical assays. Results: VEGF mRNA and VEGF expression was detected in many kinds of cells at the fracture site during 8hours to 8 weeks after fracture. Flt1 receptor of VEGF was found in the vascular endothelial cells at the fracture site during 8 hours to 8 weeks after fracture, and strong expression of flk1 receptor was detected from 3 days to 3 weeks after fracture. Conclusions: The expression of VEGF and flt1 receptor appears during the whole course of fracture healing, especially from 1 to 3 weeks. Flk1 receptor is highly expressed in a definite period after fracture. VEGF is proved to be involved in the vascular reconstruction and fracture healing.

  6. Hydrophobic fractal surface from glycerol tripalmitate and the effects on C6 glioma cell growth.

    Science.gov (United States)

    Zhang, Shanshan; Chen, Xuerui; Yu, Jing; Hong, Biyuan; Lei, Qunfang; Fang, Wenjun

    2016-06-01

    To provide a biomimic environment for glial cell culture, glycerol tripalmitate (PPP) has been used as a raw material to prepare fractal surfaces with different degrees of hydrophobicity. The spontaneous formation of the hydrophobic fractal surfaces was monitored by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The surface morphologies were observed by a scanning electron microscope (SEM), and then the fractal dimension (FD) values of the surfaces were determined with the box-counting method. C6 glioma cells were cultured and compared on different hydrophobic PPP surfaces and poly-L-lysine (PLL)-coated surface. The cell numbers as a function of incubation time on different surfaces during the cell proliferation process were measured, and the cell morphologies were observed under a fluorescence microscope. Influences of hydrophobic fractal surfaces on the cell number and morphology were analyzed. The experimental results show that the cell proliferation rates decrease while the cell morphology complexities increase with the growth of the fractal dimensions of the PPP surfaces. PMID:26970826

  7. Angiogenic factors stimulate growth of adult neural stem cells.

    Directory of Open Access Journals (Sweden)

    Andreas Androutsellis-Theotokis

    Full Text Available BACKGROUND: The ability to grow a uniform cell type from the adult central nervous system (CNS is valuable for developing cell therapies and new strategies for drug discovery. The adult mammalian brain is a source of neural stem cells (NSC found in both neurogenic and non-neurogenic zones but difficulties in culturing these hinders their use as research tools. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that NSCs can be efficiently grown in adherent cell cultures when angiogenic signals are included in the medium. These signals include both anti-angiogenic factors (the soluble form of the Notch receptor ligand, Dll4 and pro-angiogenic factors (the Tie-2 receptor ligand, Angiopoietin 2. These treatments support the self renewal state of cultured NSCs and expression of the transcription factor Hes3, which also identifies the cancer stem cell population in human tumors. In an organotypic slice model, angiogenic factors maintain vascular structure and increase the density of dopamine neuron processes. CONCLUSIONS/SIGNIFICANCE: We demonstrate new properties of adult NSCs and a method to generate efficient adult NSC cultures from various central nervous system areas. These findings will help establish cellular models relevant to cancer and regeneration.

  8. Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains.

    Science.gov (United States)

    Nie, Wanyi; Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Neukirch, Amanda J; Gupta, Gautam; Crochet, Jared J; Chhowalla, Manish; Tretiak, Sergei; Alam, Muhammad A; Wang, Hsing-Lin; Mohite, Aditya D

    2015-01-30

    State-of-the-art photovoltaics use high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high-temperature crystal growth processes. We demonstrate a solution-based hot-casting technique to grow continuous, pinhole-free thin films of organometallic perovskites with millimeter-scale crystalline grains. We fabricated planar solar cells with efficiencies approaching 18%, with little cell-to-cell variability. The devices show hysteresis-free photovoltaic response, which had been a fundamental bottleneck for the stable operation of perovskite devices. Characterization and modeling attribute the improved performance to reduced bulk defects and improved charge carrier mobility in large-grain devices. We anticipate that this technique will lead the field toward synthesis of wafer-scale crystalline perovskites, necessary for the fabrication of high-efficiency solar cells, and will be applicable to several other material systems plagued by polydispersity, defects, and grain boundary recombination in solution-processed thin films.

  9. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews

    Institute of Scientific and Technical Information of China (English)

    Liu-lin Xiong; Zhi-wei Chen; Ting-hua Wang

    2016-01-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promotein vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, lfuorescence mi-croscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These ifndings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  10. Controlled growth of silver nanoparticles in a hydrothermal process

    Institute of Scientific and Technical Information of China (English)

    Juan Zou; Yao Xu; Bo Hou; Dong Wu; Yuhan Sun

    2007-01-01

    A two-step synthesis was used to control the shape of silver nanoparticles. First, a few spherical silver nanoparticles, ~10 nm in size, were prepared via reduction of Ag+ ions in aqueous Ag(NH3)2NO3 by poly(N-vinyl-2-pyrrolidone) (PVP). Then, in a subsequent hydrothermal treatment,the remaining Ag+ ions were reduced by PVP into polyhedral nanoparticles, or larger spherical nanoparticles formed from the small spherical seed silver nanoparticles in the first step. The morphology and size of the resultant particles depend on the hydrothermal temperature, PVP/Ag molar ratio and concentration of Ag+ ions. By using UV-visible spectroscopy (UV-vis), transmission electron microscopy (TEM) and powder X-ray diffraction (XRD), the possible growth mechanism of the silver nanoparticles was discussed.

  11. Cell growth characteristics, differentiation frequency, and immunophenotype of adult ear mesenchymal stem cells.

    Science.gov (United States)

    Staszkiewicz, Jaroslaw; Frazier, Trivia P; Rowan, Brian G; Bunnell, Bruce A; Chiu, Ernest S; Gimble, Jeffrey M; Gawronska-Kozak, Barbara

    2010-01-01

    Ear mesenchymal stem cells (EMSCs) represent a readily accessible population of stem-like cells that are adherent, clonogenic, and have the ability to self-renew. Previously, we have demonstrated that they can be induced to differentiate into adipocyte, osteocyte, chondrocyte, and myocyte lineages. The purpose of the current study was to characterize the growth kinetics of the cells and to determine their ability to form colonies of fibroblasts, adipocytes, osteocytes, and chondrocytes. In addition, the immunophenotypes of freshly isolated and culture-expanded cells were evaluated. From 1 g of tissue, we were able to isolate an average of 7.8 x 10(6) cells exhibiting a cell cycle length of approximately 2-3 days. Colony-forming unit (CFU) assays indicated high proliferation potential, and confirmed previously observed multipotentiality of the cells. Fluorescence-activated cell sorting (FACS) showed that EMSCs were negative for hematopoietic markers (CD4, CD45), proving that they did not derive from circulating hematopoietic cells. The FACS analyses also showed high expression of stem cell antigen-1 (Sca-1) with only a minor population of cells expressing CD117, thus identifying Sca-1 as the more robust stem cell biomarker. Additionally, flow cytometry data revealed that the expression patterns of hematopoietic, stromal, and stem cell markers were maintained in the passaged EMSCs, consistent with the persistence of an undifferentiated state. This study indicates that EMSCs provide an alternative model for in vitro analyses of adult mesenchymal stem cells (MSCs). Further studies will be necessary to determine their utility for tissue engineering and regenerative medical applications. PMID:19400629

  12. Cis-hydroxyproline-induced inhibition of pancreatic cancer cell growth is mediated by endoplasmic reticulum stress

    Institute of Scientific and Technical Information of China (English)

    Christoph Mueller; Joerg Emmrich; Robert Jaster; Dagmar Braun; Stefan Liebe; Gisela Sparmann

    2006-01-01

    AIM: To investigate the biological effects of cishydroxyproline (CHP) on the rat pancreatic carcinoma cell line DSL6A, and to examine the underlying molecular mechanisms.METHODS: The effect of CHP on DSL6A cell proliferation was assessed by using BrdU incorporation. The expression of focal adhesion kinase (FAK) was characterized by Western blotting and immunofluorescence.Induction of endoplasmic reticulum (ER) stress was investigated by using RT-PCR and Western blotting for the glucose-related protein-78 (GRP78) and growth arrest and DNA inducible gene (GADD153). Cell viability was determined through measuring the metabolic activity based on the reduction potential of DSL6A cells. Apoptosis was analyzed by detection of caspase-3 activation and cleavage of poly(ADP-ribose) polymerase (PARP) as well as DNA laddering.RESULTS: In addition to inhibition of proliferation,incubation with CHP induced proteolytic cleavage of FAK and a delocalisation of the enzyme from focal adhesions,followed by a loss of cell adherence. Simultaneously,we could show an increased expression of GRP78 and GADD153, indicating a CHP-mediated activation of the ER stress cascade in the DSL6A cell line. Prolonged incubation of DSL6A cells with CHP finally resulted in apoptotic cell death. Beside L-proline, the inhibition of intracellular proteolysis by addition of a broad spectrum protease inhibitor could abolish the effects of CHP on cellular functions and the molecular processes. In contrast, impeding the activity of apoptosis-executing caspases had no influence on CHP-mediated cell damage.CONCLUSION: Our data suggest that the initiation of ER stress machinery by CHP leads to an activation of intracellular proteolytic processes, including caspaseindependent FAK degradation, resulting in damaging pancreatic carcinoma cells.

  13. Endogenous growth and environmental policy: are the processes of growth and tertiarization in developed economies reversible?

    OpenAIRE

    Desmarchelier, Benoît; Gallouj, FaÏz

    2013-01-01

    International audience The starting point for this article is the idea put forward by Gadrey (2008 [21]; 2010 [22]) that environmental problems and a policy of addressing them by introducing an environmental tax could trigger economic contraction and downscaling and a shrinking of the service sector in developed economies. The purpose of this article is to test these hypotheses using an evolutionary simulation model. To this end, we use a model of endogenous growth and structural change in...

  14. Straw blood cell count, growth, inhibition and comparison to apoptotic bodies

    Directory of Open Access Journals (Sweden)

    Tomkins Jeffrey P

    2008-05-01

    Full Text Available Abstract Background Mammalian cells transform into individual tubular straw cells naturally in tissues and in response to desiccation related stress in vitro. The transformation event is characterized by a dramatic cellular deformation process which includes: condensation of certain cellular materials into a much smaller tubular structure, synthesis of a tubular wall and growth of filamentous extensions. This study continues the characterization of straw cells in blood, as well as the mechanisms of tubular transformation in response to stress; with specific emphasis placed on investigating whether tubular transformation shares the same signaling pathway as apoptosis. Results There are approximately 100 billion, unconventional, tubular straw cells in human blood at any given time. The straw blood cell count (SBC is 45 million/ml, which accounts for 6.9% of the bloods dry weight. Straw cells originating from the lungs, liver and lymphocytes have varying nodules, hairiness and dimensions. Lipid profiling reveals severe disruption of the plasma membrane in CACO cells during transformation. The growth rates for the elongation of filaments and enlargement of rabbit straw cells is 0.6~1.1 (μm/hr and 3.8 (μm3/hr, respectively. Studies using apoptosis inhibitors and a tubular transformation inhibitor in CACO2 cells and in mice suggested apoptosis produced apoptotic bodies are mediated differently than tubular transformation produced straw cells. A single dose of 0.01 mg/kg/day of p38 MAPK inhibitor in wild type mice results in a 30% reduction in the SBC. In 9 domestic animals SBC appears to correlate inversely with an animal's average lifespan (R2 = 0.7. Conclusion Straw cells are observed residing in the mammalian blood with large quantities. Production of SBC appears to be constant for a given animal and may involve a stress-inducible protein kinase (P38 MAPK. Tubular transformation is a programmed cell survival process that diverges from apoptosis

  15. Investigating Processes of Nanocrystal Formation and Transformation via Liquid Cell TEM

    DEFF Research Database (Denmark)

    Nielsen, Michael H.; Li, Dongsheng; Zhang, Hengzhong;

    2014-01-01

    and spatial resolution of experimental techniques that can observe dynamic processes in a bulk solution. Here we report results from liquid cell transmission electron microscopy studies of nucleation and growth of Au, CaCO3, and iron oxide nanoparticles. We show how these in situ data can be used to obtain...

  16. Handbook of compound semiconductors growth, processing, characterization, and devices

    CERN Document Server

    Holloway, Paul H

    1996-01-01

    This book reviews the recent advances and current technologies used to produce microelectronic and optoelectronic devices from compound semiconductors. It provides a complete overview of the technologies necessary to grow bulk single-crystal substrates, grow hetero-or homoepitaxial films, and process advanced devices such as HBT's, QW diode lasers, etc.

  17. The control of cell growth and body size in Caenorhabditis elegans.

    Science.gov (United States)

    Tuck, Simon

    2014-02-01

    One of the most important ways in which animal species vary is in their size. Individuals of the largest animal ever thought to have lived, the blue whale (Balaenoptera musculus), can reach a weight of 190 t and a length of over 30 m. At the other extreme, among the smallest multicellular animals are males of the parasitic wasp, Dicopomorpha echmepterygis, which even as adults are just 140 μm in length. In terms of volume, these species differ by more than 14 orders of magnitude. Since size has such profound effects on an organism's ecology, anatomy and physiology, an important task for evolutionary biology and ecology is to account for why organisms grow to their characteristic sizes. Equally, a full description of an organism's development must include an explanation of how its growth and body size are regulated. Here I review research on how these processes are controlled in the nematode, Caenorhabditis elegans. Analyses of small and long mutants have revealed that in the worm, DBL-1, a ligand in the TGFβ superfamily family, promotes growth in a dose-dependent manner. DBL-1 signaling affects body size by stimulating the growth of syncytial hypodermal cells rather than controlling cell division. Signals from chemosensory neurons and from the gonad also modulate body size, in part, independently of DBL-1-mediated signaling. Organismal size and morphology is heavily influenced by the cuticle, which acts as the exoskeleton. Finally, I summarize research on several genes that appear to regulate body size by cell autonomously regulating cell growth throughout the worm. PMID:24262077

  18. Constitutive SOCS-3 expression protects T-cell lymphoma against growth inhibition by IFNalpha

    DEFF Research Database (Denmark)

    Brender, C; Lovato, P; Sommer, V H;

    2005-01-01

    expression in tumour cells is equal to or higher than in cytokine-stimulated nonmalignant T cells, (ii) SOCS-3 is not mutated in CTCL, (iii) overexpression of SOCS-3 blocks IFNalpha-mediated growth inhibition without affecting Stat3 activation, growth, and apoptosis, and (iv) inhibition of SOCS-3...... by a dominant negative Stat3 (Stat3D) increases the IFNalpha-mediated growth inhibition. Taken together, these data show that SOCS-3 does not inhibit Stat3 activation, growth, and survival in CTCL. In contrast, SOCS3 protects tumour cells against growth inhibition by IFNalpha. Unlike SOCS-1, SOCS-3 is therefore...

  19. Topoisomerase I inhibitors, shikonin and topotecan, inhibit growth and induce apoptosis of glioma cells and glioma stem cells.

    Directory of Open Access Journals (Sweden)

    Feng-Lei Zhang

    Full Text Available Gliomas, the most malignant form of brain tumors, contain a small subpopulation of glioma stem cells (GSCs that are implicated in therapeutic resistance and tumor recurrence. Topoisomerase I inhibitors, shikonin and topotecan, play a crucial role in anti-cancer therapies. After isolated and identified the GSCs from glioma cells successfully, U251, U87, GSCs-U251 and GSCs-U87 cells were administrated with various concentrations of shikonin or topotecan at different time points to seek for the optimal administration concentration and time point. The cell viability, cell cycle and apoptosis were detected using cell counting kit-8 and flow cytometer to observe the inhibitory effects on glioma cells and GSCs. We demonstrated that shikonin and topotecan obviously inhibited proliferation of not only human glioma cells but also GSCs in a dose- and time-dependent manner. According to the IC50 values at 24 h, 2 μmol/L of shikonin and 3 μmol/L of topotecan were selected as the optimal administration concentration. In addition, shikonin and topotecan induced cell cycle arrest in G0/G1 and S phases and promoted apoptosis. The down-regulation of Bcl-2 expression with the activation of caspase 9/3-dependent pathway was involved in the apoptosis process. Therefore, the above results showed that topoisomerase I inhibitors, shikonin and topotecan, inhibited growth and induced apoptosis of GSCs as well as glioma cells, which suggested that they might be the potential anticancer agents targeting gliomas to provide a novel therapeutic strategy.

  20. Eugenol and its synthetic analogues inhibit cell growth of human cancer cells (Part I)

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco A, H.; Cardona, W. [Universidad Andres Bello, Vina del Mar (Chile). Dept. de Ciencias Quimicas]. E-mail: hcarrasco@unab.cl; Espinoza C, L.; Gallardo, C.; Catalan M, K. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Quimica; Cardile, V.; Lombardo, L. [University of Catania (Italy). Dept. of Physiological Sciences; Cuellar F, M. [Universidad de Valparaiso (Chile). Facultad de Farmacia; Russo, A. [University of Catania (Italy). Dept. of Biological Chemistry, Medical Chemistry and Molecular Biology

    2008-07-01

    Eugenol (4-allyl-2-methoxyphenol) (1) has been reported to possess antioxidant and anticancer properties. In an attempt to enhance intrinsic activity of this natural compound, some derivatives were synthesized. Eugenol was extracted from cloves oil and further, the eugenol analogues (2-6) were obtained through acetylation and nitration reactions. Eugenol (1) and its analogues (2-6) were examined by in vitro model of cancer using two human cancer cell lines: DU-145 (androgeninsensitive prostate cancer cells) and KB (oral squamous carcinoma cells). Cell viability, by tetrazolium salts assay, was measured. Lactic dehydrogenase (LDH) release was also investigated to evaluate the presence of cell toxicity as a result of cell disruption, subsequent to membrane rupture. In the examined cancer cells, all compounds showed cell-growth inhibition activity. The obtained results demonstrate that the compounds 5-allyl-3-nitrobenzene-1,2-diol (3) and 4-allyl- 2-methoxy-5-nitrophenyl acetate (5) were significantly (p < 0,001) more active than eugenol, with IC{sub 50} values in DU-145 cells of 19.02 x 10{sup -6} and 21.5 x 10{sup -6} mol L{sup -1}, respectively, and in KB cells of 18.11 x 10{sup -6} and 21.26 x 10{sup -6} mol L{sup -1}, respectively, suggesting that the presence of nitro and hydroxyl groups could be important in the activity of these compounds. In addition, our results seem to indicate that apoptotic cell demise appears to be induced in KB and DU-145 cells. In fact, in our experimental conditions, no statistically significant increase in LDH release was observed in cancer cells treated with eugenol and its analogues. (author)

  1. Temperature control and calibration issues in the growth, processing and characterization of electronic materials

    Science.gov (United States)

    Wilson, B. A.

    1989-01-01

    The temperature control and calibration issues encountered in the growth, processing, and characterization of electronic materials are summarized. The primary problem area is identified as temperature control during epitaxial materials growth. While qualitative thermal measurements are feasible and reproducibility is often achievable within a given system, absolute calibration is essentially impossible in many cases, precluding the possibility of portability from one system to another. The procedures utilized for thermal measurements during epitaxial growth are described, and their limitations discussed.

  2. Knockdown of asparagine synthetase by RNAi suppresses cell growth in human melanoma cells and epidermoid carcinoma cells.

    Science.gov (United States)

    Li, Hui; Zhou, Fusheng; Du, Wenhui; Dou, Jinfa; Xu, Yu; Gao, Wanwan; Chen, Gang; Zuo, Xianbo; Sun, Liangdan; Zhang, Xuejun; Yang, Sen

    2016-05-01

    Melanoma, the most aggressive form of skin cancer, causes more than 40,000 deaths each year worldwide. And epidermoid carcinoma is another major form of skin cancer, which could be studied together with melanoma in several aspects. Asparagine synthetase (ASNS) gene encodes an enzyme that catalyzes the glutamine- and ATP-dependent conversion of aspartic acid to asparagine, and its expression is associated with the chemotherapy resistance and prognosis in several human cancers. The present study aims to explore the potential role of ASNS in melanoma cells A375 and human epidermoid carcinoma cell line A431. We applied a lentivirus-mediated RNA interference (RNAi) system to study its function in cell growth of both cells. The results revealed that inhibition of ASNS expression by RNAi significantly suppressed the growth of melanoma cells and epidermoid carcinoma cells, and induced a G0/G1 cell cycle arrest in melanoma cells. Knockdown of ASNS in A375 cells remarkably downregulated the expression levels of CDK4, CDK6, and Cyclin D1, and upregulated the expression of p21. Therefore, our study provides evidence that ASNS may represent a potential therapeutic target for the treatment of melanoma. PMID:25858017

  3. Fuel Cell Stations Automate Processes, Catalyst Testing

    Science.gov (United States)

    2010-01-01

    Glenn Research Center looks for ways to improve fuel cells, which are an important source of power for space missions, as well as the equipment used to test fuel cells. With Small Business Innovation Research (SBIR) awards from Glenn, Lynntech Inc., of College Station, Texas, addressed a major limitation of fuel cell testing equipment. Five years later, the company obtained a patent and provided the equipment to the commercial world. Now offered through TesSol Inc., of Battle Ground, Washington, the technology is used for fuel cell work, catalyst testing, sensor testing, gas blending, and other applications. It can be found at universities, national laboratories, and businesses around the world.

  4. Computer modeling of dendritic web growth processes and characterization of the material

    Science.gov (United States)

    Seidensticker, R. G.; Kothmann, R. E.; Mchugh, J. P.; Duncan, C. S.; Hopkins, R. H.; Blais, P. D.; Davis, J. R.; Rohatgi, A.

    1978-01-01

    High area throughput rate will be required for the economical production of silicon dendritic web for solar cells. Web width depends largely on the temperature distribution on the melt surface while growth speed is controlled by the dissipation of the latent heat of fusion. Thermal models were developed to investigate each of these aspects, and were used to engineer the design of laboratory equipment capable of producing crystals over 4 cm wide; growth speeds up to 10 cm/min were achieved. The web crystals were characterized by resistivity, lifetime and etch pit density data as well as by detailed solar cell I-V data. Solar cells ranged in efficiency from about 10 to 14.5% (AM-1) depending on growth conditions. Cells with lower efficiency displayed lowered bulk lifetime believed to be due to surface contamination.

  5. Introduction of exogenous growth hormone receptors augments growth hormone-responsive insulin biosynthesis in rat insulinoma cells.

    OpenAIRE

    Billestrup, N; Møldrup, A; Serup, P.; Mathews, L S; Norstedt, G; Nielsen, J H

    1990-01-01

    The stimulation of insulin biosynthesis in the pancreatic insulinoma cell line RIN5-AH by growth hormone (GH) is initiated by GH binding to specific receptors. To determine whether the recently cloned rat hepatic GH receptor is able to mediate the insulinotropic effect of GH, we have transfected a GH receptor cDNA under the transcriptional control of the human metallothionein promoter into RIN5-AH cells. The transfected cells were found to exhibit an increased expression of GH receptors and t...

  6. Survival and growth of foodborne microorganisms in processed and individually wrapped cheese slices.

    Science.gov (United States)

    Linton, Richard H; Harper, Nigel

    2008-03-01

    The objectives of the research reported here were to determine the growth, survival, or inactivation of selected microorganisms on individually wrapped processed cheese (IWC) slices stored at 5 degrees C and 22 degrees C, and to compare quality indices. IWC slices were spot-inoculated with foodborne pathogenic bacteria (Listeria monocytogenes, Staphylococcus aureus, and Salmonella spp.), spoilage bacteria (Pseudomonas spp. and Lactobacillus spp.), and spoilage molds (Penicillium spp. and Cladosporium spp.). Each bacterium was inoculated at 10(5) CFUs/g for determination of growth, survival, or inactivation. Molds were inoculated at 10(2) spores per gram and observed for growth. Fifty percent of the inoculated product samples were held at 5 degrees C (to simulate refrigeration), and the other 50 percent were held at 22 degrees C (to simulate ambient temperature) throughout shelf life. Samples taken on days 0, 3, 7,10, 14, and 28 and after 2, 3, 6, and 9 months, and were evaluated for surviving cells (by means of appropriate selective media), color (with the cheese color guide), and lipid oxidation (by means of peroxide values). Bacterial inactivation was observed in all conditions. At 14 days, a 5-log reduction was observed for Listeria monocytogenes and Salmonella, while a 3-log reduction was observed for Staphylococcus aureus. For Pseudomonas spp. and Lactobacillus spp., a 2-log reduction was observed within 3 days, with an additional 1-log reduction noted after several months. Mold levels showed no change during the first several weeks of storage. At 84 days, mold levels decreased at 5 degrees C, but they showed growth at 22 degrees C, to approximately 10(5) CFUs/g. Visual color was evaluated on a 10-point National Cheese Institute scale. During storage at 5 degrees C or 22 degrees C, color became darker and values increased from 4 to 5 and 4 to 7, respectively. Higher peroxide values were also obtained for the samples held at 22 degrees C versus 5 degrees C

  7. Study of wavy laminar growth of human urinary bladder cancer cell line in vitro

    Institute of Scientific and Technical Information of China (English)

    DENG Guo-hong; CONG Yan-guang; LIU Jun-kang; XU Qi-wang; YUAN Ze-tao

    2001-01-01

    To observe the ordered growth behavior of human urinary bladder cancer cell line (BIU) under culture in vitro. Methods: The suspension of BIU cells was spread locally in a culture container. When the cells grew along the wall to form a cellular colony, macroscopic and microscopic observations complemented with measurements of the parameters including expanding diameter, expanding rate, cell shape, average cell density, average cell size, dehydrogenase activity and sensitivity to pH were conducted dynamically. Results: During cell culture, obvious laminar characteristics appeared in localized growing BIU cell colonies and there was difference between the cells of different zones in shape, size, density, dehydrogenase activity and sensitivity to pH. Conclusion: Space closing and bio-dissipation result in self-organization of BIU cells with ordered growth behavior. The present experiment offers a simple, controllable model for the study of wavy growth of human cells.

  8. Cluster-cluster aggregation with particle replication and chemotaxy: a simple model for the growth of animal cells in culture

    OpenAIRE

    Alves, S. G.; M. L. Martins

    2010-01-01

    Aggregation of animal cells in culture comprises a series of motility, collision and adhesion processes of basic relevance for tissue engineering, bioseparations, oncology research and \\textit{in vitro} drug testing. In the present paper, a cluster-cluster aggregation model with stochastic particle replication and chemotactically driven motility is investigated as a model for the growth of animal cells in culture. The focus is on the scaling laws governing the aggregation kinetics. Our simula...

  9. Recombinant Protein Production and Insect Cell Culture and Process

    Science.gov (United States)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  10. Inhibitory effect of maple syrup on the cell growth and invasion of human colorectal cancer cells.

    Science.gov (United States)

    Yamamoto, Tetsushi; Uemura, Kentaro; Moriyama, Kaho; Mitamura, Kuniko; Taga, Atsushi

    2015-04-01

    Maple syrup is a natural sweetener consumed by individuals of all ages throughout the world. Maple syrup contains not only carbohydrates such as sucrose but also various components such as organic acids, amino acids, vitamins and phenolic compounds. Recent studies have shown that these phenolic compounds in maple syrup may possess various activities such as decreasing the blood glucose level and an anticancer effect. In this study, we examined the effect of three types of maple syrup, classified by color, on the cell proliferation, migration and invasion of colorectal cancer (CRC) cells in order to investigate whether the maple syrup is suitable as a phytomedicine for cancer treatment. CRC cells that were administered maple syrup showed significantly lower growth rates than cells that were administered sucrose. In addition, administration of maple syrup to CRC cells caused inhibition of cell invasion, while there was no effect on cell migration. Administration of maple syrup clearly inhibited AKT phosphorylation, while there was no effect on ERK phosphorylation. These data suggest that maple syrup might inhibit cell proliferation and invasion through suppression of AKT activation and be suitable as a phytomedicine for CRC treatment, with fewer adverse effects than traditional chemotherapy.

  11. Metformin inhibits cell growth by upregulating microRNA-26a in renal cancer cells.

    Science.gov (United States)

    Yang, Feng-Qiang; Wang, Ji-Jiao; Yan, Jia-Sheng; Huang, Jian-Hua; Li, Wei; Che, Jian-Ping; Wang, Guang-Chun; Liu, Min; Zheng, Jun-Hua

    2014-01-01

    Accumulating evidence suggests that metformin, a biguanide class of anti-diabetic drugs, possesses anti-cancer properties and may reduce cancer risk and improve prognosis. However, the mechanism by which metformin affects various cancers, including renal cancer still unknown. MiR-26a induces cell growth, cell cycle and cell apoptosis progression via direct targeting of Bcl-2, clyclin D1 and PTEN in cancer cells. In the present study, we used 786-O human renal cancer cell lines to study the effects and mechanisms of metformin. Metformin treatment inhibited RCC cells proliferation by increasing expression of miR-26a in 786-O cells (P metformin. Also over-expression of miR-26a can inhibited cell proliferation by down-regulating Bcl-2, cyclin D1 and up-regulating PTEN expression. Therefore, these data for the first time provide novel evidence for a mechanism that the anticancer activities of metformin are due to upregulation of miR-26a and affect its downstream target gene. PMID:25419360

  12. The development of a growth regime map for a novel reverse-phase wet granulation process.

    Science.gov (United States)

    Wade, Jonathan B; Martin, Gary P; Long, David F

    2016-10-15

    The feasibility of a novel reverse-phase wet granulation process has been established and potential advantages identified. Granule growth in the reverse-phase process proceeds via a steady state growth mechanism controlled by capillary forces, whereas granule growth in the conventional process proceeds via an induction growth regime controlled by viscous forces. The resultant reverse-phase granules generally have greater mass mean diameter and lower intragranular porosity when compared to conventional granules prepared under the same liquid saturation and impeller speed conditions indicating the two processes may be operating under different growth regimes. Given the observed differences in growth mechanism and consolidation behaviour of the reverse-phase and conventional granules the applicability of the current conventional granulation regime map is unclear. The aim of the present study was therefore to construct and evaluate a growth regime map, which depicts the regime as a function of liquid saturation and Stokes deformation number, for the reverse-phase granulation process. Stokes deformation number was shown to be a good predictor of both granule mass mean diameter and intragranular porosity over a wide range of process conditions. The data presented support the hypothesis that reverse-phase granules have a greater amount of surface liquid present which can dissipate collision energy and resist granule rebound resulting in the greater granule growth observed. As a result the reverse-phase granulation process results in a greater degree of granule consolidation than that produced using the conventional granulation process. Stokes deformation number was capable of differentiating these differences in the granulation process.

  13. [Is it possible to "cancel" aging process of cell cultures under optimal conditions for cultivation?].

    Science.gov (United States)

    Bozhkov, A I; Kovaleva, M K; Menzianova, N G

    2011-01-01

    The characteristics of the cells epigenotypes Dunaliella viridis Teod. in the process of chronological and replicative aging were investigated. By 40th day of accumulative cultivation (which coincided with the stationary growth phase) DNA content in the cells of Dunaliella viridis increased 2 times, triacylglycerides 3 times, beta-carotene and carbonyl proteins 2 times, RNA content decreased in comparison with cells in exponential growth phase, i. e., the 40th day of growth of culture forms the age-related epigenotype. 4 received subcultures were being transplanted during 2 years in mid-logarithmic growth phase (subculture-10), early stationary phase of growth (subculture-20), in the mid-stationary growth phase (subculture-30), and late stationary growth phase (subculture-40). It is shown that epigenotype of subculture-10 remained unchanged over 2 years of cultivation, i. e., it does not manifest replicative aging. At the same time, the subculture-20, although long enough (at least 40 passages), maintained epigenotype characteristic of young cultures, and showed age-related changes. Pronounced age-dependent changes of epigenotype in the course of cultivation were identified for subculture-30, and subculture-40 was characterized by unstable epigenotype. Thus, cultivation conditions determine the intensity of replicative aging in Dunaliella viridis.

  14. [Is it possible to "cancel" aging process of cell cultures under optimal conditions for cultivation?].

    Science.gov (United States)

    Bozhkov, A I; Kovaleva, M K; Menzianova, N G

    2011-01-01

    The characteristics of the cells epigenotypes Dunaliella viridis Teod. in the process of chronological and replicative aging were investigated. By 40th day of accumulative cultivation (which coincided with the stationary growth phase) DNA content in the cells of Dunaliella viridis increased 2 times, triacylglycerides 3 times, beta-carotene and carbonyl proteins 2 times, RNA content decreased in comparison with cells in exponential growth phase, i. e., the 40th day of growth of culture forms the age-related epigenotype. 4 received subcultures were being transplanted during 2 years in mid-logarithmic growth phase (subculture-10), early stationary phase of growth (subculture-20), in the mid-stationary growth phase (subculture-30), and late stationary growth phase (subculture-40). It is shown that epigenotype of subculture-10 remained unchanged over 2 years of cultivation, i. e., it does not manifest replicative aging. At the same time, the subculture-20, although long enough (at least 40 passages), maintained epigenotype characteristic of young cultures, and showed age-related changes. Pronounced age-dependent changes of epigenotype in the course of cultivation were identified for subculture-30, and subculture-40 was characterized by unstable epigenotype. Thus, cultivation conditions determine the intensity of replicative aging in Dunaliella viridis. PMID:21809617

  15. Reconciling Estimates of Earnings Processes in Growth Rates and Levels

    DEFF Research Database (Denmark)

    Daly, Moira; Hryshko, Dmytro; Manovskii, Iourii

    The stochastic process for earnings is the key element of incomplete markets models in modern quantitative macroeconomics. It determines both the equilibrium distributions of endogenous outcomes and the design of optimal policies. Yet, there is no consensus in the literature on the relative...... of earnings spells quantitatively accounts for the full amount of discrepancy in the estimates. Using data from the Panel Study of Income Dynamics, we show that this property of earnings induces a substantial upward bias in the estimate of consumption insurance against permanent shocks....

  16. Effects of medium nutrition on cell growth and isocamptothecin A and B production by suspension cell culture of Camptotheca acuminata

    Institute of Scientific and Technical Information of China (English)

    Zhang Dongyan; Yu Fang; Bai Fengwu; An Lijia

    2006-01-01

    The effects of initial sucrose concentration, nitrate to ammonium ratio, total N concentration and phosphate concentration in medium on cell growth and isocamptothecin A and B synthesis by suspension cell culture of Camptotheca acuminata were investigated in 250 mL shake flasks. 30 g L-1 sucrose concentration was beneficial to secondary metabolites synthesis. The cell growth and metabolites synthesis were also affected by the ratio of NO-3/NH+4, and nitrate was favourable for cell growth. The maximum dry weight was achieved when nitrate was used as the sole N source. The effect of total initial N on the cell cultures was also investigated with NO-3/NH+4 ratio of 1∶2. The final dry cell weight was similar throughout culture period and 50 mM initial N was favourable for secondary metabolite synthesis. 50 mM initial phosphate concentration facilitated both cell growth and secondary metabolites synthesis.

  17. Hierarchical polymeric scaffolds support the growth of MC3T3-E1 cells.

    Science.gov (United States)

    Akbarzadeh, Rosa; Minton, Joshua A; Janney, Cara S; Smith, Tyler A; James, Paul F; Yousefi, Azizeh-Mitra

    2015-02-01

    Tissue engineering makes use of the principles of biology and engineering to sustain 3D cell growth and promote tissue repair and/or regeneration. In this study, macro/microporous scaffold architectures have been developed using a hybrid solid freeform fabrication/thermally induced phase separation (TIPS) technique. Poly(lactic-co-glycolic acid) (PLGA) dissolved in 1,4-dioxane was used to generate a microporous matrix by the TIPS method. The 3D-bioplotting technique was used to fabricate 3D macroporous constructs made of polyethylene glycol (PEG). Embedding the PEG constructs inside the PLGA solution prior to the TIPS process and subsequent extraction of PEG following solvent removal (1,4-dioaxane) resulted in a macro/microporous structure. These hierarchical scaffolds with a bimodal pore size distribution (300 μm) contained orthogonally interconnected macro-channels generated by the extracted PEG. The diameter of the macro-channels was varied by tuning the dispensing parameters of the 3D bioplotter. The in vitro cell culture using murine MC3T3-E1 cell line for 21 days demonstrated that these scaffolds could provide a favorable environment to support cell adhesion and growth.

  18. Effects of TFAR19 gene on the growth and biorheological properties of mouse erythroleukemia cell line MEL

    Institute of Scientific and Technical Information of China (English)

    顾黎; 姚伟娟; 严宗毅; 谢利德; 孙大公; 李丹; 曾柱; 文宗曜

    2003-01-01

    Using the method of gene transfection with liposome, we obtained the mouse erythroleukemia cell line MEL-TF19, which stably carries TFAR19, a novel apoptosis-related gene. The expression of TFAR19 was detected by Western blot. Growth curve and flow cytometry analysis showed that after being transfected with TFAR19 gene, the growth of MEL-TF19 is suppressed and its apoptosis is accelerated because of the serum deprivation. Our biorheological study indicated that in the apoptotic process, compared with MEL cells, MEL-TF19 cells exhibit larger osmotic fragility, lower cell surface charge density, increased elastic modulus K1 which is inversely proportional to cells' maximal deformation ability, obviouslydiminished surface viscosity μ, with elastic modulus K2 having no distinct changes. The above results provided some bases for recognizing the function of TFAR19 completely from the viewpoint of biorheology.

  19. Oocyte-granulosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth

    Directory of Open Access Journals (Sweden)

    Vanderhyden Barbara C

    2006-04-01

    Full Text Available Abstract Ovarian folliculogenesis is regulated by both endocrine and intraovarian mechanisms that coordinate the processes of oocyte growth and somatic cell proliferation and differentiation. Within the follicle, paracrine interactions between the oocyte and surrounding granulosa cells are critical for normal cell development and function. This review focuses on the role of paracrine interactions during early oocyte and follicular development that ensure proper coordination of oocyte and somatic cell function. Particular emphasis is given to granulosa cell-derived Kit Ligand (KitL, whose functional importance for oocyte growth has been demonstrated by a wide range of in vivo and in vitro studies. Reported interactions between KitL and oocyte-derived growth differentiation factor-9 (GDF9 and bone morphogenetic protein-15 (BMP15 suggest the molecular basis of oocyte-granulosa cell interactions, but also hint at the complexity of these communications. These paracrine interactions and the structure of the oocyte-granulosa cell interface are follicle stage-specific and regulated by FSH. Elucidation of the molecular mechanisms that promote the development of healthy oocytes with good developmental competence has potential applications for improving fertility and for in vitro growth systems for oocytes from domestic animals and humans.

  20. Relation of spontaneous transformation in cell culture to adaptive growth and clonal heterogeneity.

    Science.gov (United States)

    Rubin, A L; Yao, A; Rubin, H

    1990-01-01

    Cell transformation in culture is marked by the appearance of morphologically altered cells that continue to multiply to form discrete foci in confluent sheets when the surrounding cells are inhibited. These foci occur spontaneously in early-passage NIH 3T3 cells grown to confluency in 10% calf serum (CS) but are not seen in cultures grown to confluency in 2% CS. However, repeated passage of the cells at low density in 2% CS gives rise to an adapted population that grows to increasingly higher saturation densities and produces large numbers of foci in 2% CS. The increased saturation density of the adapted population in 2% CS is retained upon repeated passage in 10% CS, but the number and size of the foci produced in 2% CS gradually decrease under this regime. Clonal analysis confirms that the focus-forming potential of most if not all of the cells in a population increases in response to a continuously applied growth constraint, although only a small fraction of the population may actually form foci in a given assay. The acquired capacity for focus formation varies widely in clones derived from the adapted population and changes in diverse ways upon further passage of the clones. We propose that the adaptive changes result from progressive selection of successive phenotypic variations in growth capacity that occur spontaneously. The process designated progressive state selection resolves the apparent dichotomy between spontaneous mutation with selection on the one hand and induction on the other, by introducing selection among fluctuating states or metabolic patterns rather than among genetically altered cells.

  1. Cohesive zone laws for void growth — II. Numerical field projection of elasto-plastic fracture processes with vapor pressure

    Science.gov (United States)

    Chew, Huck Beng; Hong, Soonsung; Kim, Kyung-Suk

    2009-08-01

    Modeling ductile fracture processes using Gurson-type cell elements has achieved considerable success in recent years. However, incorporating the full mechanisms of void growth and coalescence in cohesive zone laws for ductile fracture still remains an open challenge. In this work, a planar field projection method, combined with equilibrium field regularization, is used to extract crack-tip cohesive zone laws of void growth in an elastic-plastic solid. To this end, a single row of void-containing cell elements is deployed directly ahead of a crack in an elastic-plastic medium subjected to a remote K-field loading; the macroscopic behavior of each cell element is governed by the Gurson porous material relation, extended to incorporate vapor pressure effects. A thin elastic strip surrounding this fracture process zone is introduced, from which the cohesive zone variables can be extracted via the planar field projection method. We show that the material's initial porosity induces a highly convex traction-separation relationship — the cohesive traction reaches the peak almost instantaneously and decreases gradually with void growth, before succumbing to rapid softening during coalescence. The profile of this numerically extracted cohesive zone law is consistent with experimentally determined cohesive zone law in Part I for multiple micro-crazing in HIPS. In the presence of vapor pressure, both the cohesive traction and energy are dramatically lowered; the shape of the cohesive zone law, however, remains highly convex, which suggests that diffusive damage is still the governing failure mechanism.

  2. Growth suppression by transforming growth factor beta 1 of human small-cell lung cancer cell lines is associated with expression of the type II receptor

    DEFF Research Database (Denmark)

    Nørgaard, P; Damstrup, L; Rygaard, K;

    1994-01-01

    was observed in two cell lines expressing only type III receptor and in TGF-beta-r negative cell lines. In two cell lines expressing all three receptor types, growth suppression was accompanied by morphological changes. To evaluate the possible involvement of the retinoblastoma protein (pRb) in mediating...... the growth-suppressive effect of TGF-beta 1, the expression of functional pRb, as characterised by nuclear localisation, was examined by immunocytochemistry. Nuclear association of pRb was only seen in two of the five TGF-beta 1-responsive cell lines. These results indicate that in SCLC pRb is not required...

  3. Insulin and insulin-like growth factor I exert different effects on plasminogen activator production or cell growth in the ovine thyroid cell line OVNIS.

    Science.gov (United States)

    Degryse, B; Maisonobe, F; Hovsépian, S; Fayet, G

    1991-11-01

    Insulin and Insulin-like Growth Factor I (IGF-I) are evaluated for their capacity to affect cell proliferation and plasminogen activator (PA) activity production in an ovine thyroid cell line OVNIS. Insulin at physiological and supraphysiological doses induces cell proliferation and increases PA activity. IGF-I, which is also clearly mitogenic for these cells, surprisingly does not modulate PA activity. The results indicate that the growth promoting effect is mediated through the insulin and IGF-I receptors whereas PA activity is solely regulated via the insulin receptors. PMID:1802921

  4. An experimental platform for studying growth and invasiveness of tumor cells within teratomas derived from human embryonic stem cells

    OpenAIRE

    Tzukerman, Maty; Rosenberg, Tzur; Ravel, Yael; Reiter, Irena; Coleman, Raymond; Skorecki, Karl

    2003-01-01

    There is currently no available experimental system wherein human cancer cells can be grown in the context of a mixed population of normal differentiated human cells for testing biological aspects of cancer cell growth (e.g., tumor cell invasion and angiogenesis) or response to anti-cancer therapies. When implanted into immunocompromised mice, human embryonic stem cells develop teratomas containing complex structures comprising differentiated cell types representing the major germ line-derive...

  5. The effects of antisense PTEN gene transfection on the growth and invasion of glioma cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong-jie; ZHENG Zhao-cong; WANG Ru-mi; WANG Shou-sen; YANG Wei-zhong

    2006-01-01

    Objective:To study the effects of antisense PTEN gene on the growth and invasion of glioma cells. Methods:A pcDNA3. 1/Hygro (-) recombinant plasmid containing antisense PTEN gene fragment was constructed. Glioma cells of primary culture were transfected with antisense PTEN gene vector and stably transfected clones were selected. Then, the different growth and invasion abilities and the different MMP9 mRNA expressions of three kinds of cells were observed, including the transfected cells, untransfected cells and the cells transfected with empty vector. Results :The abilities of growth and invasion of the transfected cells and the expressions of MMP9 mRNA were obviously enhanced. Conclusion: Antisense PTEN gene could have a negative impact on the growth and invasion of primary culture glioma cells.

  6. Control of Vascular Smooth Muscle Cell Growth by Connexin 43

    Directory of Open Access Journals (Sweden)

    Chintamani eJoshi

    2012-06-01

    Full Text Available Connexin 43 (Cx43, the principal gap junction protein in vascular smooth muscle cells (VSMCs, regulates movement of ions and other signaling molecules through gap junction intercellular communication (GJIC and plays important roles in maintaining normal vessel function; however, many of the signaling mechanisms controlling Cx43 in VSMCs are not clearly described. The goal of this study was to investigate mechanisms of Cx43 regulation with respect to VSMC proliferation. Treatment of rat primary VSMCs with the cAMP analog 8Br-cAMP, the soluble guanylate cyclase (sGC stimulator BAY 41-2272 (BAY, or the Cx inducer diallyl disulfide (DADS significantly reduced proliferation after 72 h compared to vehicle controls. Bromodeoxyuridine uptake revealed reduction (p<.001 in DNA synthesis after 6 h and flow cytometry showed reduced (40% S phase cell numbers after 16 h in DADS-treated cells compared to controls. Cx43 expression significantly increased after 270 min treatment with 8Br-cAMP, 8Br-cGMP, BAY or DADS. Inhibition of PKA, PKG or PKC reversed 8Br-cAMP-stimulated increases in Cx43 expression, whereas only PKG or PKC inhibition reversed 8Br-cGMP- and BAY-stimulated increases in total Cx43. Interestingly, stimulation of Cx43 expression by DADS was not dependent on PKA, PKG or PKC. Using fluorescence recovery after photobleaching, only 8Br-cAMP or DADS increased GJIC with 8Br-cAMP mediated by PKC and DADS mediated by PKG. Further, DADS significantly increased phosphorylation at the MAPK-sensitive serine (Ser255 and Ser279, the cell cycle regulatory kinase-sensitive Ser262 and the PKC-sensitive Ser368 after 30 min while 8Br-cAMP significantly increased phosphorylation only at Ser279 compared to controls. This study demonstrates that 8Br-cAMP- and DADS-enhanced GJIC rather than Cx43 expression and/or phosphorylation plays an important role in regulation of VSMC proliferation and provides new insights into the growth-regulatory capacities of Cx43 in VSMCs.

  7. Growth processes and surface properties of diamondlike carbon films

    International Nuclear Information System (INIS)

    In this study, we compare the deposition processes and surface properties of tetrahedral amorphous carbon (ta-C) films from filtered pulsed cathodic arc discharge (PCAD) and hydrogenated amorphous carbon (a-C:H) films from electron cyclotron resonance (ECR)-plasma source ion implantation. The ion energy distributions (IEDs) of filtered-PCAD at various filter inductances and Ar gas pressures were measured using an ion energy analyzer. The IEDs of the carbon species in the absence of background gas and at low gas pressures are well fitted by shifted Maxwellian distributions. Film hardness and surface properties show a clear dependence on the IEDs. ta-C films with surface roughness at an atomic level and thin (0.3-0.9 nm) graphitelike layers at the film surfaces were deposited at various filter inductances in the highly ionized plasmas with the full width at half maximum ion energy distributions of 9-16 eV. The a-C:H films deposited at higher H/C ratios of reactive gases were covered with hydrogen and sp3 bonded carbon-enriched layers due to the simultaneous interaction of hydrocarbon species and atomic hydrogen. The effects of deposited species and ion energies on film surface properties were analyzed. Some carbon species have insufficient energies to break the delocalized π(nC) bonds at the graphitelike film surface, and they can govern film formation via surface diffusion and coalescence of nuclei. Dangling bonds created by atomic hydrogen lead to uniform chemisorption of hydrocarbon species from the ECR plasmas. The deposition processes of ta-C and a-C:H films are discussed on the basis of the experimental results

  8. A model for simulating structure-function relationships in walnut tree growth processes.

    OpenAIRE

    Le DizÚs, Séverine; Cruiziat, Pierre; Lacointe, André; Sinoquet, Hervé; Le Roux, Xavier; Balandier, Philippe; Jacquet, Patrick

    1997-01-01

    An ecophysiological growth process model, called INCA, for simulating the growth and development of a young walnut tree (Juglans regia L.) during three or four years, is presented. This tool, currently under development, aims at integrating architectural and physiological knowledge of the processes involved, in order to give a more rational understanding of the pruning operation. The model describes a simple three-dimensional representation of tree crown, solar radiation interception, photosy...

  9. Cyclical cell stretching of skin-derived fibroblasts downregulates connective tissue growth factor (CTGF) production.

    Science.gov (United States)

    Kanazawa, Yuichiro; Nomura, Jun; Yoshimoto, Shinya; Suzuki, Toshikazu; Kita, Kazuko; Suzuki, Nobuo; Ichinose, Masaharu

    2009-01-01

    Delayed healing of skin wounds can be caused by wound instability, whereas appropriate massage or exercise prevents sclerosis and scar contracture. However, the mechanism by which wound healing is related to mechanical stress has not been fully elucidated. The present study aimed to identify whether mechanical stretching of fibroblasts reduces their production of extracellular matrix. We transferred skin fibroblasts into collagen-coated elastic silicone chambers, cultured them on a stretching apparatus, and used RT-PCR to examine the effects of mechanical stretching on the expression levels of 17 genes related to extracellular matrix production and growth factor secretion. We found that connective tissue growth factor (CTGF) was downregulated after 24 hr of cell stretching. Specifically, the CTGF mRNA and protein levels were 50% and 48% of the control levels, respectively. These findings suggest that cyclic stretching of fibroblasts contributes to anti-fibrotic processes by reducing CTGF production.

  10. Spatial Patterning of Newly-Inserted Material during Bacterial Cell Growth

    Science.gov (United States)

    Ursell, Tristan

    2012-02-01

    In the life cycle of a bacterium, rudimentary microscopy demonstrates that cell growth and elongation are essential characteristics of cellular reproduction. The peptidoglycan cell wall is the main load-bearing structure that determines both cell shape and overall size. However, simple imaging of cellular growth gives no indication of the spatial patterning nor mechanism by which material is being incorporated into the pre-existing cell wall. We employ a combination of high-resolution pulse-chase fluorescence microscopy, 3D computational microscopy, and detailed mechanistic simulations to explore how spatial patterning results in uniform growth and maintenance of cell shape. We show that growth is happening in discrete bursts randomly distributed over the cell surface, with a well-defined mean size and average rate. We further use these techniques to explore the effects of division and cell wall disrupting antibiotics, like cephalexin and A22, respectively, on the patterning of cell wall growth in E. coli. Finally, we explore the spatial correlation between presence of the bacterial actin-like cytoskeletal protein, MreB, and local cell wall growth. Together these techniques form a powerful method for exploring the detailed dynamics and involvement of antibiotics and cell wall-associated proteins in bacterial cell growth.[4pt] In collaboration with Kerwyn Huang, Stanford University.

  11. Coating Processes Boost Performance of Solar Cells

    Science.gov (United States)

    2012-01-01

    NASA currently has spacecraft orbiting Mercury (MESSENGER), imaging the asteroid Vesta (Dawn), roaming the red plains of Mars (the Opportunity rover), and providing a laboratory for humans to advance scientific research in space (the International Space Station, or ISS). The heart of the technology that powers those missions and many others can be held in the palm of your hand - the solar cell. Solar, or photovoltaic (PV), cells are what make up the panels and arrays that draw on the Sun s light to generate electricity for everything from the Hubble Space Telescope s imaging equipment to the life support systems for the ISS. To enable NASA spacecraft to utilize the Sun s energy for exploring destinations as distant as Jupiter, the Agency has invested significant research into improving solar cell design and efficiency. Glenn Research Center has been a national leader in advancing PV technology. The Center s Photovoltaic and Power Technologies Branch has conducted numerous experiments aimed at developing lighter, more efficient solar cells that are less expensive to manufacture. Initiatives like the Forward Technology Solar Cell Experiments I and II in which PV cells developed by NASA and private industry were mounted outside the ISS have tested how various solar technologies perform in the harsh conditions of space. While NASA seeks to improve solar cells for space applications, the results are returning to Earth to benefit the solar energy industry.

  12. Mesenchymal stem cell 1 (MSC1-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ruth S Waterman

    Full Text Available BACKGROUND: Currently, there are many promising clinical trials using mesenchymal stem cells (MSCs in cell-based therapies of numerous diseases. Increasingly, however, there is a concern over the use of MSCs because they home to tumors and can support tumor growth and metastasis. For instance, we established that MSCs in the ovarian tumor microenvironment promoted tumor growth and favored angiogenesis. In parallel studies, we also developed a new approach to induce the conventional mixed pool of MSCs into two uniform but distinct phenotypes we termed MSC1 and MSC2. METHODOLOGY/PRINCIPAL FINDINGS: Here we tested the in vitro and in vivo stability of MSC1 and MSC2 phenotypes as well as their effects on tumor growth and spread. In vitro co-culture of MSC1 with various cancer cells diminished growth in colony forming units and tumor spheroid assays, while conventional MSCs or MSC2 co-culture had the opposite effect in these assays. Co-culture of MSC1 and cancer cells also distinctly affected their migration and invasion potential when compared to MSCs or MSC2 treated samples. The expression of bioactive molecules also differed dramatically among these samples. MSC1-based treatment of established tumors in an immune competent model attenuated tumor growth and metastasis in contrast to MSCs- and MSC2-treated animals in which tumor growth and spread was increased. Also, in contrast to these groups, MSC1-therapy led to less ascites accumulation, increased CD45+leukocytes, decreased collagen deposition, and mast cell degranulation. CONCLUSION/SIGNIFICANCE: These observations indicate that the MSC1 and MSC2 phenotypes may be convenient tools for the discovery of critical components of the tumor stroma. The continued investigation of these cells may help ensure that cell based-therapy is used safely and effectively in human disease.

  13. An Atypical Acidophil Cell Line Tumor Showing Focal Differentiation Toward Both Growth Hormone and Prolactin Cells.

    Science.gov (United States)

    Naritaka, Heiji; Kameya, Toru; Sato, Yuichi; Furuhata, Shigeru; Okui, Junichi; Kamiguchi, Yuji; Otani, Mitsuhiro; Toya, Shigeo

    1995-01-01

    We report a case of giant pituitary adenoma in a child. Computerized tomography (CT) scan revealed a suprasellar extension tumor mass with hydrocephalus. There was no clinical evidence of acromegaly, gigantism, and other hormonal symptoms. Endocrinologic studies showed within normal value of serum growth hormone (GH: 4.2 ng/mL) and slightly increased levels of prolactin (PRL: 78 ng/mL) and other pituitary hormone values were within normal range. On suppression test by bromocryptin, both GH and PRL levels were reduced. Histopathological findings revealed that the tumor consisted of predominantly chromophobic and partly eosinophilic adenoma cells. Immunohistochemical staining detected GH and PRL in a small number of distinctly different adenoma cells, respectively. Nonradioactive in situ hybridization (ISH) also showed GH and PRL mRNA expression in identical immunopositive cells. Electron microscopy (EM) demonstrated adenoma cells with moderate or small numbers of two types of dense granules and without fibrous body which are characteristic of sparsely granulated GH-cell adenomas. The adenoma does not fit into any classification but may be an atypical acidophil cell line tumor showing focal differentiation toward both GH and PRL cells. PMID:12114745

  14. Inducing effects of hepatocyte growth factor on the expression of vascular endothelial growth factor in human colorectal carcinoma cells through MEK and PI3K signaling pathways

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-hua; WEI Wei; XU Hao; WANG Yan-yan; WU Wen-xi

    2007-01-01

    Background Vascular endothelial growth factor plays a key role in human colorectal carcinoma invasion and metastasis. However, the regulation mechanism remains unknown. Recent studies have shown that several cytokines can regulate the expression of vascular endothelial growth factor in tumor cells. In this study, we investigated whether hepatocyte growth factor can regulate the expression of vascular endothelial growth factor in colorectal carcinoma cells.Methods Hepatocyte growth factor and vascular endothelial growth factor in human serum were measured by ELISA.The mRNA level of vascular endothelial growth factor was analyzed by reverse transcription-PCR. Western blot assay was performed to evaluate levels of c-Met and several other proteins involved in the MAPK and PI3K signaling pathways in colorectal carcinoma cells.Results Serum hepatocyte growth factor and vascular endothelial growth factor were significantly increased in colorectal carcinoma subjects. In vitro extraneous hepatocyte growth factor markedly increased protein and mRNA levels of vascular endothelial growth factor in colorectal carcinoma cells. Hepatocyte growth factor induced phosphorylation of c-Met, ERK1/2 and AKT in a dose-dependent manner. Specific inhibitors on MEK and PI3K inhibited the hepatocyte growth factor-induced expression of vascular endothelial growth factor in colorectal carcinoma cells.Conclusion This present study indicates that hepatocyte growth factor upregulates the expression of vascular endothelial growth factor in colorectal carcinoma cells via the MEK/ERK and PI3K/AKT signaling pathways.

  15. Effects of Basic Fibroblast Growth Factor and Insulin-like Growth Factor on Cultured Cartilage Cells from Skate Raja porasa

    Institute of Scientific and Technical Information of China (English)

    樊廷俊; 晋凌云; 汪小锋

    2003-01-01

    Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24℃. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.

  16. OPTICAL DIAGNOSTIC AND MODELING SOLUTION GROWTH PROCESS OF SODIUM CHLORATE CRYSTALS

    Institute of Scientific and Technical Information of China (English)

    WANG Tao; DUAN Li

    2006-01-01

    Both a real time optical interferometric experiment and a numerical simulation of two-dimension non-steady state model were employed to study the growth process of aqueous sodium chlorate crystals. The parameters such as solution concentration distribution, crystal dimensions, growth rate and velocity field were obtained by both experiment and numerical simulation. The influence of earth gravity during crystal growth process was analyzed. A reasonable theory model corresponding to the present experiment is advanced. The thickness of concentration boundary layer was investigated especially. The results from the experiment and numerical simulation match well.

  17. MicroRNA-497 impairs the growth of chemoresistant neuroblastoma cells by targeting cell cycle, survival and vascular permeability genes

    Science.gov (United States)

    Soriano, Aroa; París-Coderch, Laia; Jubierre, Luz; Martínez, Alba; Zhou, Xiangyu; Piskareva, Olga; Bray, Isabella; Vidal, Isaac; Almazán-Moga, Ana; Molist, Carla; Roma, Josep; Bayascas, José R.; Casanovas, Oriol; Stallings, Raymond L.; de Toledo, José Sánchez; Gallego, Soledad; Segura, Miguel F.

    2016-01-01

    Despite multimodal therapies, a high percentage of high-risk neuroblastoma (NB) become refractory to current treatments, most of which interfere with cell cycle and DNA synthesis or function, activating the DNA damage response (DDR). In cancer, this process is frequently altered by deregulated expression or function of several genes which contribute to multidrug resistance (MDR). MicroRNAs are outstanding candidates for therapy since a single microRNA can modulate the expression of multiple genes of the same or different pathways, thus hindering the development of resistance mechanisms by the tumor. We found several genes implicated in the MDR to be overexpressed in high-risk NB which could be targeted by microRNAs simultaneously. Our functional screening identified several of those microRNAs that reduced proliferation of chemoresistant NB cell lines, the best of which was miR-497. Low expression of miR-497 correlated with poor patient outcome. The overexpression of miR-497 reduced the proliferation of multiple chemoresistant NB cell lines and induced apoptosis in MYCN-amplified cell lines. Moreover, the conditional expression of miR-497 in NB xenografts reduced tumor growth and inhibited vascular permeabilization. MiR-497 targets multiple genes related to the DDR, cell cycle, survival and angiogenesis, which renders this molecule a promising candidate for NB therapy. PMID:26824183

  18. Transfection of gene Livin α/β into A549 cells and separate effect on the cell growth

    Institute of Scientific and Technical Information of China (English)

    SUN Jian-guo; LIAO Rong-xia; CHEN Zheng-tang; WANG Zhi-xin; ZHANG Qing; HU Yi-de; WANG Dong-lin

    2005-01-01

    Objective:To express two Livin isoforms (Livin α & β genes) with transfection techniques in A549 cell line respectively in order to observe their effect on growth of cell line. Methods:Two eukaryotic expression vectors of Livin, pcDNA3.1-Livin α & β, were transfected into A549 cell line by electroporation. Then G418-resistant clones were screened. RT-PCR, Northern blot and immunofluorescence cytochemistry were used to detect Livin α & β expression level in the transfected cells. Finally, observation of cell morphology, growth curve assay and colony formation analysis were performed to explore the effect of Livin on growth of the cells. Results:Livin α & β were expressed in transfected A549 cells, and induced a faster cell growth, shorter doubling time and stronger cell colony forming ability, yet had no morphology change.Conclusion:Both isoforms can accelerate the growth of A549 cells, indicating a close relationship between Livin expression and the genesis and development of lung cancer. The expression of Livin α & β in A549 cells provides basis for further study of their different biological functions of anti-apoptosis and of their role in lung cancer cell resistance to radiotherapy and chemotherapy.

  19. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  20. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  1. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    International Nuclear Information System (INIS)

    Cholangiocarcinoma (CC) is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Expression of EGFR (epithelial growth factor receptor), HGFR (hepatocyte growth factor receptor) IGF1R (insulin-like growth factor 1 receptor), IGF2R (insulin-like growth factor 2 receptor) and VEGFR1-3 (vascular endothelial growth factor receptor 1-3) were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1). The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml), with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D). HuH28, OZ and TFK-1 lacked KRAS mutation. CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab

  2. Solution-processing of ultra-thin CdTe/ZnO nanocrystal solar cells

    International Nuclear Information System (INIS)

    We have carried out a detailed study into how modifications of the physical, chemical and optical properties of solution-processed, nanocrystalline CdTe layers influence the photovoltaic performance of sintered CdTe/ZnO nanocrystal solar cells. Such solar cells are fabricated through layer-by-layer assembly, which is enabled through an inter layer chemical and thermal treatment cycle. In this manner we are able to fabricate working solar cells with sintered CdTe layers as low as 90 nm, provided that grain size is precisely controlled. We show that the extent of grain growth achieved during the CdTe sintering process is strongly dependent on nanocrystal surface chemistry and chemical environment, with the removal of the organic capping ligands and the introduction of CdCl2 prior to annealing leading to greatly enhanced growth. Due to the air processing involved and the nanocrystalline nature of the CdTe, the overall performance of these solar cells is shown to be strongly dependent on both annealing temperature and time, with optimal results requiring a balance between crystal growth and degradation due to oxidation. Using this simple bi-layer device structure, optimized treatment conditions result in power conversion efficiencies of up to 7.7% and peak internal quantum efficiencies in excess of 95%. - Highlights: • We study the growth of nanocrystalline CdTe thin films from colloidal nanocrystals. • We examine the CdTe growth profiles as a function of surface chemistry. • We show that nanocrystalline CdTe is susceptible to oxidation under air annealing. • We show how this oxidation influences performance in CdTe/ZnO solar cells. • We demonstrate CdTe/ZnO solar cells with an efficiency of 7.7% fabricated in air

  3. Evidence for osmoregulation of cell growth and buoyant density in Escherichia coli.

    OpenAIRE

    Baldwin, W W; Kubitschek, H. E.

    1984-01-01

    The buoyant density of cells of Escherichia coli B/r NC32 increased with the osmolarity of the growth medium. Growth rate and its variability were also dependent upon the osmolarity of the medium. Maximum growth rates and minimum variability of these rates were obtained in Luria broth by addition of NaCl to a concentration of about 0.23 M.

  4. Growth factors have a protective effect on neomycin-induced hair cell loss.

    Science.gov (United States)

    Lou, Xiangxin; Yuan, Huihua; Xie, Jing; Wang, Xianliu; Yang, Liangliang; Zhang, Yanzhong

    2015-01-01

    We have demonstrated that selected growth factors are involved in regulating survival and proliferation of progenitor cells derived from the neonatal rat organ of Corti (OC). The protective and regenerative effects of these defined growth factors on the injured organ of Corti were therefore investigated. The organ of Corti dissected from the Wistar rat pups (P3-P5) was split into apical, middle, and basal parts, explanted and cultured with or without neomycin and growth factors. Insulin-like growth factor-1 (IGF-1), fibroblast growth factor-2 (FGF-2), and epidermal growth factor (EGF) protected the inner hair cells (IHCs) and outer hair cells (OHCs) from neomycin ototoxicity. Using EGF, IGF-1, and FGF-2 alone induced no protective effect on the survival of auditory hair cells. Combining 2 growth factors (EGF + IGF-1, EGF + FGF-2, or IGF-1 + FGF-2) gave statistically protective effects. Similarly, combining all three growth factors effectively protected auditory hair cells from the ototoxic insult. None of the growth factors induced regeneration of hair cells in the explants injured with neomycin. Thus various combinations of the three defined factors (IGF-1, FGF-2, and EGF) can protect the auditory hair cells from the neomycin-induced ototoxic damage, but no regeneration was seen. This offers a possible novel approach to the treatment of hearing loss.

  5. Rice Coleoptile Growth under Water and in Air-Possible Effect of Buoyancy on Growth and Cell Walls

    OpenAIRE

    Kah-Siew, Tan; Takayuki, Hoson; Seiichiro, Kamisaka; Yoshio, Masuda

    1992-01-01

    Maximum growth was achieved in rice coleoptiles (Oryza sativa L. cv. Sasanishiki) grown under water; they reached maximum length of 81.2 mm on day 5. The maximum length of coleoptiles grown in air or under water with air bubbling was 12.4 mm and 23.5 mm in day 5,respectively. Differences in coleoptile growth between air bubbling and air conditions, namely approximately 11 mm at day 5,could be due to buoyancy effect under water. Promoted growth under water was due to a decrease in cell wall ex...

  6. Simulation of transport processes during Czochralski growth of YAG crystals

    Science.gov (United States)

    Banerjee, Jyotirmay; Muralidhar, K.

    2006-01-01

    Numerical simulation of transport phenomena in the solid, liquid and gaseous phases of a Czochralski process is reported. The Czochralski domain comprises a YAG melt, crystal and gas within the enclosure. The mathematical model is axisymmetric in space and unsteady in time. The governing equations are those of conservation of mass, momentum and energy. The simulation includes a bulk radiation model to account for the semi-transparency of the YAG melt and the growing crystal. Results have been obtained for thermal boundary conditions that do not change with time, a constant diameter growing crystal for which the pull velocity changes with time. Buoyant convection in the melt is seen to produce a melt-crystal interface that is convex into the melt. When the crystal is given rotation, centrifugal forces drive a clockwise roll that counteracts the thermally driven motion. At a specific rotation rate, the interface shape changes from convex to concave. The critical rotation rate for interface inversion has been obtained in the study as a function of the radius ratio and the aspect ratio. Marangoni convection has an effect of strengthening buoyancy-driven flow. Unsteadiness in the YAG melt is observed at high Grashof numbers. The introduction of crystal rotation at high Grashof numbers is found to change the periodic oscillations to aperiodic high amplitude fluctuations. Simulation that includes the crystal and the gas phases along with the melt reveals the possibility of superheating of the crystal beyond its melting point. Similarly, the possibility of subcooling of the melt near the crystal edge below the melting point of YAG is indicated for a certain range of parameters. The internal absorption of radiation in the crystal increases thermal losses from the melt, steepens temperature gradients and is found to create deeply convex melt-crystal interface towards the melt. Additionally, the bulk of the melt is found to become cooler. Scattering is found to have an

  7. GROWTH AND METABOLISM OF INDIVIDUAL BACTERIAL CELLS UTILIZING NANOSIMS

    Energy Technology Data Exchange (ETDEWEB)

    NEALSON, H. K.

    2007-08-03

    This work involved the use of the Nano-SIMS Instrument at Lawrence Livermore Laboratory, in an effort to utilize this unique tool for experiments in Biology. The work consisted primarily of experiments to measure in real time, C and N fixation in cyanobacteria. The work revealed a number of the difficulties in using the nano-SIMS approach with biological material, but with collaboration from a number of individuals at USC and LLNL, major progress was made. The collaborators from LLNL were from the Chemistry Group (Dr. Peter Weber), and the Biology Group (Dr. Jennifer Pett-Ridge). In addition, there were a number of other scientists involved from LLNL. The USC group consisted of Dr. K.H. Nealson, the PI on the grant, Dr. R. Popa, a postdoctoral fellow and research associate at USC, Professor Douglas Capone, and Juliet Finze, a graduate student in biology. Two major experiments were done, both of which yielded new and exciting data. (1) We studied nitrogen and carbon fixation in Anabaena, demonstrating that fixation ofN occurred rapidly in the heterocysts, and that the fixed N was transported rapidly and completely to the vegetative cells. C fixation occurred in the vegetative cells, with labeled C remaining in these cells in support of their growth and metabolism. This work was accepted in the ISME Journal (Nature Publication), and published last month. (2) We studied nitrogen and carbon fixation in Trichodesmium, a non-heterocystous cyanobacterium that also fixes nitrogen. Interestingly, the nitrogen fixation was confined to regions within the filaments that seem to be identical to the so-called cyanophycaen granules. The fixed N is then transported to other parts of the cyanobacterium, as judged by movement of the heavy N throughout the filaments. On the basis of these very exciting results, we have applied for funding from the NSF to continue the collaboration with LLNL. The results of both studies were presented in the summer of 2007 at the Gordon Research

  8. Solar cell and its manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hisashi; Komatsu, Yasumitsu.

    1989-01-20

    The solar cell with a structure of the Cds sintered film/CdTe sintered film is excellent at mass productivity because of usage of screen printing, but its conversion efficiency is insufficient in comparison with that of the single crystal silicon solar cell. Since the CdS/CdTe solar cell is a heterojunction solar cell, it is necessary that lattice constants of two materials are close each other in order to improve its performance. However, the mismatching of the lattices of CdS and CdTe is as fairly big as 11%. In order to ameliorate this mismatching, this invention substitutes the CdTe sintered film with the CdS-CdTe mixed crystal sintered film. Besides, the CdS-CdTe mixed crystal phase has its narrow forbidden bandwidth at or below 50 mol % of its CdS content, hence with it, a solar cell can be obtained which is highly sensitive to the light of long wave lengths. 2 tabs.

  9. Process analytical technology tools for perfusion cell culture

    NARCIS (Netherlands)

    Mercier, S.M.; Rouel, P.M.; Lebrun, P.M.; Diepenbroek, B.; Wijffels, R.H.; Streefland, M.

    2016-01-01

    During cell cultivation processes for the production of biopharmaceuticals, good process performance and good product quality can be ensured by online monitoring of critical process parameters (e.g. temperature, pH, or dissolved oxygen). These data can be used in real-time for process control, as su

  10. The biochemical control of the cell cycle by growth regulators in higher plants

    Institute of Scientific and Technical Information of China (English)

    TANGWei; LatoyaHarris; RonaldJ.Newton

    2004-01-01

    The cell cycle is an important research field in cell biology and it is genetically and developmentally regulated in animals and plants. The aim of this study was to review knowledge about the biochemical regulation of the cell cycle by plant growth regulators through molecular checkpoints that regulate the transition from G0-G1-S-phase and G2-M in higher plants.Recent research has shown that zeatin treatment led to the up-regulation of CycD3 in Arabidopsis. Benzyladenine treatment can also shorten the duration of S-phase through recruitment of latent origins of DNA replication. Kinetin is involved in the phosphoregulation of the G2-M checkpoint; the major cyclin-dependent kinase (Cdk) at this checkpoint has recently shown to be dephosphorylated as a result of cytokinin treatment, an effect that can also be mimicked by the fission yeast Cdc25 phosphatase. Gibberellic acid (GA) treatment induces internode elongation in deepwater rice, this response is mediated by a GA-induced up-regulation of a cyclin-Cdk at the G2-M checkpoint. Recent evidence has also linked abscisic acid to a cyclin-dependent kinase inhibitor. A new D-type cyclin, recently discovered in Arabidopsis may have a key role in this process. A brief review on plant growth regulator-cell cycle interfacing during development and a cytokinin-induced continuum of cell cycle activation through the up-regulation of a plant D-type cyclin at the G1 checkpoint and the phosphoregulation of the Cdk at the G2/M checkpoint had been concluded. This review could be valuable to research on cell and developmental biology in plants.

  11. A single dividing cell population with imbalanced fate drives oesophageal tumour growth.

    Science.gov (United States)

    Frede, Julia; Greulich, Philip; Nagy, Tibor; Simons, Benjamin D; Jones, Philip H

    2016-09-01

    Understanding the cellular mechanisms of tumour growth is key for designing rational anticancer treatment. Here we used genetic lineage tracing to quantify cell behaviour during neoplastic transformation in a model of oesophageal carcinogenesis. We found that cell behaviour was convergent across premalignant tumours, which contained a single proliferating cell population. The rate of cell division was not significantly different in the lesions and the surrounding epithelium. However, dividing tumour cells had a uniform, small bias in cell fate so that, on average, slightly more dividing than non-dividing daughter cells were generated at each round of cell division. In invasive cancers induced by Kras(G12D) expression, dividing cell fate became more strongly biased towards producing dividing over non-dividing cells in a subset of clones. These observations argue that agents that restore the balance of cell fate may prove effective in checking tumour growth, whereas those targeting cycling cells may show little selectivity. PMID:27548914

  12. Pharmacological targeting of the KIT growth factor receptor: a therapeutic consideration for mast cell disorders

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Akin, C; Gilfillan, A M

    2008-01-01

    KIT is a member of the tyrosine kinase family of growth factor receptors which is expressed on a variety of haematopoietic cells including mast cells. Stem cell factor (SCF)-dependent activation of KIT is critical for mast cell homeostasis and function. However, when KIT is inappropriately activa...

  13. Multiseeding with (100)/(100) Grain Junctions in Top Seeded Melt Growth Processed YBCO Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.J.; Gee, Y.A.; Hong, G.W. [Korea Atomic Energy Research Institute, Taejon (Korea); Kim, H.J.; Joo, J.H. [Sungkyunkwan University, Suwon (Korea); Han, S.C.; Han, Y.H.; Sung, T.H.; Kim, S.J. [Korea Electric Power Research Institute, Taejon (Korea)

    2000-06-01

    Multiseeding with (100)/(100) grain junctions of top-seeded melt growth (TSMG) processed YBCO superconductors was studied. Multiple seeding shortened the processing time for the fabrication of TSMG-processed YBCO superconductors. The relationship among the number of seeds, the levitation forces and the trapped magnetic fields of the TSMG-processed YBCO samples is reported. The characteristic of the (100)/(100) grain junction is discussed in terms of a wetting angle of a melt. (author). 25 refs., 7 figs.

  14. Transient processes in cell proliferation kinetics

    CERN Document Server

    Yakovlev, Andrej Yu

    1989-01-01

    A mathematician who has taken the romantic decision to devote himself to biology will doubtlessly look upon cell kinetics as the most simple and natural field of application for his knowledge and skills. Indeed, the thesaurus he is to master is not so complicated as, say, in molecular biology, the structural elements of the system, i. e. ceils, have been segregated by Nature itself, simple considerations of balance may be used for deducing basic equations, and numerous analogies in other areas of science also superficial add to one"s confidence. Generally speaking, this number of impression is correct, as evidenced by the very great theoretical studies on population kinetics, unmatched in other branches of mathematical biology. This, however, does not mean that mathematical theory of cell systems has traversed in its development a pathway free of difficulties or errors. The seeming ease of formalizing the phenomena of cell kinetics not infrequently led to the appearance of mathematical models lacking in adequ...

  15. The FGFR/MEK/ERK/brachyury pathway is critical for chordoma cell growth and survival

    Science.gov (United States)

    Hu, Yunping; Mintz, Akiva; Shah, Sagar R.; Quinones-Hinojosa, Alfredo; Hsu, Wesley

    2014-01-01

    Recent evidence suggests that the expression of brachyury is necessary for chordoma growth. However, the mechanism associated with brachyury-regulated cell growth is poorly understood. Fibroblast growth factor (FGF), a regulator of brachyury expression in normal tissue, may also play an important role in chordoma pathophysiology. Using a panel of chordoma cell lines, we explored the role of FGF signaling and brachyury in cell growth and survival. Western blots showed that all chordoma cell lines expressed fibroblast growth factor receptor 2 (FGFR2), FGFR3, mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase (ERK), whereas no cell lines expressed FGFR1 and FGFR4. Results of enzyme-linked immunosorbent assay indicated that chordoma cells produced FGF2. Neutralization of FGF2 inhibited MEK/ERK phosphorylation, decreased brachyury expression and induced apoptosis while reducing cell growth. Activation of the FGFR/MEK/ERK/brachyury pathway by FGF2-initiated phosphorylation of FGFR substrate 2 (FRS2)-α (Tyr196) prevented apoptosis while promoting cell growth and epithelial-mesenchymal transition (EMT). Immunofluorescence staining showed that FGF2 promoted the translocation of phosphorylated ERK to the nucleus and increased brachyury expression. The selective inhibition of FGFR, MEK and ERK phosphorylation by PD173074, PD0325901 and PD184352, respectively, decreased brachyury expression, induced apoptosis, and inhibited cell growth and EMT. Moreover, knockdown of brachyury by small hairpin RNA reduced FGF2 secretion, inhibited FGFR/MEK/ERK phosphorylation and blocked the effects of FGF2 on cell growth, apoptosis and EMT. Those findings highlight that FGFR/MEK/ERK/brachyury pathway coordinately regulates chordoma cell growth and survival and may represent a novel chemotherapeutic target for chordoma. PMID:24445144

  16. Inhibition of connective tissue growth factor overexpression decreases growth of hepatocellular carcinoma cells in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    JIA Xiao-qin; CHENG Hai-qing; LI Hong; ZHU Yan; LI Yu-hua; FENG Zhen-qing; ZHANG Jian-ping

    2011-01-01

    Background We have previously found that connective tissue growth factor (CTGF) is highly expressed in a rat model of liver cancer.Here,we examined expression of CTGFin human hepatocellular carcinoma (HCC) cells and its effect on cell growth.Methods Real-time PCR was used to observe expression of CTGF in human HCC cell lines HepG2,SMMC-7721,MHCC-97H and LO2.siRNA for the CTGFgene was designed,synthesized and cloned into a Plk0.1-GFP-SP6 vector to construct a lentivirus-mediated shRNA/CTGF.CTGF mRNA and protein expression in HepG2 cells treated by CTGF-specific shRNA was evaluated by real-time PCR and Western blotting.3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was utilized to evaluate the growth effect,and a colony formation assay was used for observing clonogenic growth.In vivo,tumor cell proliferation was evaluated in a nude mouse model of xenotransplantation.Statistical significance was determined by t test for comparison between two groups,or analysis of variance (ANOVA) for multiple groups.Results Immunohistochemical staining of CTGF was seen in 35 of 40 HCC samples (87.5%).CTGF was overexpressed 5-fold in 20 HCC tissues,compared with surrounding non-tumor liver tissue.CTGF mRNA level was 5-8-fold higher in HepG2,SMMC-7721 and MHCC-97H than in LO2 cells.This indicated that the inhibition rate of cell growth was 43% after knockdown of CTGF expression (P <0.05).Soft agar colony formation assay showed that siRNA mediated knockdown of CTGF inhibited colony formation in soft agar of HepG2 cells (P <0.05).The volume of tumors from CTGF-shRNA-expressing cells only accounted for 35% of the tumors from the scrambled control-infected HepG2 cells (P <0.05).Conclusions CTGF was overexpressed in human HCC cells and downregulation of CTGF inhibited HCC growth in vitro and in vivo.Knockdown of CTGF may be a potential therapeutic strategy for treatment of HCC.

  17. Inhibition of human gastric carcinoma cell growth by atofluding derivative N3-o-toluyl-fluorouracil

    Institute of Scientific and Technical Information of China (English)

    Jian Liu; Wei Tang; Xian-Jun Qu; Wen-Fang Xu; Shu-Xiang Cui; Yong Zhou; Yun-Xia Yuan; Ming-Hui Chen; Ruo-Han Wang; Ruo-Yan Gai; Masatoshi Makuuchi

    2006-01-01

    AIM:To evaluate the growth inhibition efficacy of atofluding derivative N3-o-toluyl-fluorouracil (TFU)on human gastric carcinoma cell lines SGC-7901 and MKN-45.METHODS:Cell growth inhibition by TFU was measured by MTT and clonogenic assays without or with liver microsomal enzymes. Xenografts of cancer cells in nude mice were employed to study the anti-proliferative effects of TFU in vivo,RESULTS:TFU inhibited the growth of SGC-7901 and MKN-45 cells. However, the inhibitory effects of TFU on cell growth were not significant. The inhibition rates were enhanced in the presence of liver microsomal enzymes, ranging 4.73%-48.57% in SGC-7901 cells and 9.0%-62.02% in MKN-45 cells. In vivo, TFU delayed the growth of SGC-7901 and MKN-45 cells in nude mice. The inhibition rates were 40.49%, 63.24%, and 75.98% in SGC-7901 cells and 40.76%, 61.41%, and 82.07% in MKN-45 cells when the oral doses were 25, 50, and 100 mg/kg, respectively. TFU treatment was generally well tolerated by mice with less than 20% reduction in body weight.CONCLUSION:TFU inhibits the growth of human gastric carcinoma cells. The inhibition rates are increased in the presence of liver microsomal enzymes. The efficacy of TFU may be associated with the sustaining release of 5-fluorouracil (5-FU) mediated by the enzymes.

  18. Correlation between dielectric property by dielectrophoretic levitation and growth activity of cells exposed to electric field.

    Science.gov (United States)

    Hakoda, Masaru; Hirota, Yusuke

    2013-09-01

    The purpose of this study is to develop a system analyzing cell activity by the dielectrophoresis method. Our previous studies revealed a correlation between the growth activity and dielectric property (Re[K(ω)]) of mouse hybridoma 3-2H3 cells using dielectrophoretic levitation. Furthermore, it was clarified that the differentiation activity of many stem cells could be evaluated by the Re[K(ω)] without differentiation induction. In this paper, 3-2H3 cells exposed to an alternating current (AC) electric field or a direct current (DC) electric field were cultivated, and the influence of damage by the electric field on the growth activity of the cells was examined. To evaluate the activity of the cells by measuring the Re[K(ω)], the correlation between the growth activity and the Re[K(ω)] of the cells exposed to the electric field was examined. The relations between the cell viability, growth activity, and Re[K(ω)] in the cells exposed to the AC electric field were obtained. The growth activity of the cells exposed to the AC electric field could be evaluated by the Re[K(ω)]. Furthermore, it was found that the adverse effects of the electric field on the cell viability and the growth activity were smaller in the AC electric field than the DC electric field.

  19. Bone marrow processing for transplantation using Cobe Spectra cell separator.

    Science.gov (United States)

    Veljković, Dobrila; Nonković, Olivera Šerbić; Radonjić, Zorica; Kuzmanović, Miloš; Zečević, Zeljko

    2013-06-01

    Concentration of bone marrow aspirates is an important prerequisite prior to infusion of ABO incompatible allogeneic marrow and prior to cryopreservation and storage of autologous marrow. In this paper we present our experience in processing 15 harvested bone marrow for ABO incompatible allogeneic and autologous bone marrow (BM) transplantation using Cobe Spectra® cell separator. BM processing resulted in the median recovery of 91.5% CD34+ cells, erythrocyte depletion of 91% and volume reduction of 81%. BM processing using cell separator is safe and effective technique providing high rate of erythrocyte depletion and volume reduction, and acceptable recovery of the CD34+ cells.

  20. Live-Cell Imaging Visualizes Frequent Mitotic Skipping During Senescence-Like Growth Arrest in Mammary Carcinoma Cells Exposed to Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masatoshi, E-mail: msuzuki@nagasaki-u.ac.jp [Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan); Yamauchi, Motohiro; Oka, Yasuyoshi; Suzuki, Keiji; Yamashita, Shunichi [Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan)

    2012-06-01

    Purpose: Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Methods and Materials: Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Results: Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% and 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO{sub 2}-hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ss-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. Conclusions: The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation.

  1. Mesenchymal stem cell isolation from human umbilical cord tissue: understanding and minimizing variability in cell yield for process optimization.

    Science.gov (United States)

    Iftimia-Mander, Andreea; Hourd, Paul; Dainty, Roger; Thomas, Robert J

    2013-10-01

    Human tissue banks are a potential source of cellular material for the nascent cell-based therapy industry; umbilical cord (UC) tissue is increasingly privately banked in such facilities as a source of mesenchymal stem cells for future therapeutic use. However, early handling of UC tissue is relatively uncontrolled due to the clinical demands of the birth environment and subsequent transport logistics. It is therefore necessary to develop extraction methods that are robust to real-world operating conditions, rather than idealized operation. Cell yield, growth, and differentiation potential of UC tissue extracted cells was analyzed from tissue processed by explant and enzymatic digestion. Variability of cell yield extracted with the digestion method was significantly greater than with the explant method. This was primarily due to location within the cord tissue (higher yield from placental end) and time delay before tissue processing (substantially reduced yield with time). In contrast, extraction of cells by explant culture was more robust to these processing variables. All cells isolated showed comparable proliferative and differentiation functionality. In conclusion, given the challenge of tightly controlled operating conditions associated with isolation and shipping of UC tissue to banking facilities, explant extraction of cells offers a more robust and lower-variability extraction method than enzymatic digestion. PMID:24835260

  2. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Hwang, Pyoung-Han [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Research Institute of Clinical Medicine, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Yi, Ho-Keun [Department of Biochemistry, School of Dentistry, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Nam, Sang-Yun [Department of Alternative Therapy, School of Alternative Medicine and Health Science, Jeonju University, Jeonju 561-712 (Korea, Republic of); Lee, Dae-Yeol, E-mail: leedy@chonbuk.ac.kr [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Research Institute of Clinical Medicine, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of)

    2009-07-17

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, and IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.

  3. Trafficking of epidermal growth factor receptor ligands in polarized epithelial cells.

    Science.gov (United States)

    Singh, Bhuminder; Coffey, Robert J

    2014-01-01

    A largely unilamellar epithelial layer lines body cavities and organ ducts such as the digestive tract and kidney tubules. This polarized epithelium is composed of biochemically and functionally separate apical and basolateral surfaces. The epidermal growth factor receptor (EGFR) signaling pathway is a critical regulator of epithelial homeostasis and is perturbed in a number of epithelial disorders. It is underappreciated that in vivo EGFR signaling is most often initiated by cell-surface delivery and processing of one of seven transmembrane ligands, resulting in release of the soluble form that binds EGFR. In polarized epithelial cells, EGFR is restricted largely to the basolateral surface, and apical or basolateral ligand delivery therefore has important biological consequences. In vitro approaches have been used to study the biosynthesis, cell-surface delivery, proteolytic processing, and release of soluble EGFR ligands in polarized epithelial cells. We review these results, discuss their relevance to normal physiology, and demonstrate the pathophysiological consequences of aberrant trafficking. These studies have uncovered a rich diversity of apico-basolateral trafficking mechanisms among the EGFR ligands, provided insights into the pathogenesis of an inherited magnesium-wasting disorder of the kidney (isolated renal hypomagnesemia), and identified a new mode of EGFR ligand signaling via exosomes. PMID:24215440

  4. PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage

    Science.gov (United States)

    Bobrovnikova-Marjon, Ekaterina; Grigoriadou, Christina; Pytel, Dariusz; Zhang, Fang; Ye, Jiangbin; Koumenis, Constantinos; Cavener, Douglas; Diehl, J. Alan

    2010-01-01

    In order to proliferate and expand in an environment with limited nutrients, cancer cells co-opt cellular regulatory pathways that facilitate adaptation and thereby maintain tumor growth and survival potential. The endoplasmic reticulum (ER) is uniquely positioned to sense nutrient deprivation stress and subsequently engage signaling pathways that promote adaptive strategies. As such, components of the ER stress-signaling pathway represent potential anti-neoplastic targets. However, recent investigations into the role of the ER resident protein kinase PERK have paradoxically suggested both pro- and anti-tumorigenic properties. We have utilized animal models of mammary carcinoma to interrogate PERK contribution in the neoplastic process. The ablation of PERK in tumor cells resulted in impaired regeneration of intracellular antioxidants and accumulation of reactive oxygen species triggering oxidative DNA damage. Ultimately, PERK deficiency impeded progression through the cell cycle due to the activation of the DNA damage checkpoint. Our data reveal that PERK-dependent signaling is utilized during both tumor initiation and expansion to maintain redox homeostasis and thereby facilitates tumor growth. PMID:20453876

  5. PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage.

    Science.gov (United States)

    Bobrovnikova-Marjon, E; Grigoriadou, C; Pytel, D; Zhang, F; Ye, J; Koumenis, C; Cavener, D; Diehl, J A

    2010-07-01

    To proliferate and expand in an environment with limited nutrients, cancer cells co-opt cellular regulatory pathways that facilitate adaptation and thereby maintain tumor growth and survival potential. The endoplasmic reticulum (ER) is uniquely positioned to sense nutrient deprivation stress and subsequently engage signaling pathways that promote adaptive strategies. As such, components of the ER stress-signaling pathway represent potential antineoplastic targets. However, recent investigations into the role of the ER resident protein kinase, RNA-dependent protein kinase (PKR)-like ER kinase (PERK) have paradoxically suggested both pro- and anti-tumorigenic properties. We have used animal models of mammary carcinoma to interrogate the contribution of PERK in the neoplastic process. The ablation of PERK in tumor cells resulted in impaired regeneration of intracellular antioxidants and accumulation of reactive oxygen species triggering oxidative DNA damage. Ultimately, PERK deficiency impeded progression through the cell cycle because of the activation of the DNA damage checkpoint. Our data reveal that PERK-dependent signaling is used during both tumor initiation and expansion to maintain redox homeostasis, thereby facilitating tumor growth.

  6. Big-Data RHEED analysis for understanding epitaxial film growth processes

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Rama K [ORNL; Tselev, Alexander [ORNL; Baddorf, Arthur P [ORNL; Kalinin, Sergei V [ORNL

    2014-10-28

    Reflection high energy electron diffraction (RHEED) has by now become a standard tool for in-situ monitoring of film growth by pulsed laser deposition and molecular beam epitaxy. Yet despite the widespread adoption and wealth of information in RHEED image, most applications are limited to observing intensity oscillations of the specular spot, and much additional information on growth is discarded. With ease of data acquisition and increased computation speeds, statistical methods to rapidly mine the dataset are now feasible. Here, we develop such an approach to the analysis of the fundamental growth processes through multivariate statistical analysis of RHEED image sequence. This approach is illustrated for growth of LaxCa1-xMnO3 films grown on etched (001) SrTiO3 substrates, but is universal. The multivariate methods including principal component analysis and k-means clustering provide insight into the relevant behaviors, the timing and nature of a disordered to ordered growth change, and highlight statistically significant patterns. Fourier analysis yields the harmonic components of the signal and allows separation of the relevant components and baselines, isolating the assymetric nature of the step density function and the transmission spots from the imperfect layer-by-layer (LBL) growth. These studies show the promise of big data approaches to obtaining more insight into film properties during and after epitaxial film growth. Furthermore, these studies open the pathway to use forward prediction methods to potentially allow significantly more control over growth process and hence final film quality.

  7. Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes.

    Science.gov (United States)

    Morena, Deborah; Maestro, Nicola; Bersani, Francesca; Forni, Paolo Emanuele; Lingua, Marcello Francesco; Foglizzo, Valentina; Šćepanović, Petar; Miretti, Silvia; Morotti, Alessandro; Shern, Jack F; Khan, Javed; Ala, Ugo; Provero, Paolo; Sala, Valentina; Crepaldi, Tiziana; Gasparini, Patrizia; Casanova, Michela; Ferrari, Andrea; Sozzi, Gabriella; Chiarle, Roberto; Ponzetto, Carola; Taulli, Riccardo

    2016-03-17

    Embryonal Rhabdomyosarcoma (ERMS) and Undifferentiated Pleomorphic Sarcoma (UPS) are distinct sarcoma subtypes. Here we investigate the relevance of the satellite cell (SC) niche in sarcoma development by using Hepatocyte Growth Factor (HGF) to perturb the niche microenvironment. In a Pax7 wild type background, HGF stimulation mainly causes ERMS that originate from satellite cells following a process of multistep progression. Conversely, in a Pax7 null genotype ERMS incidence drops, while UPS becomes the most frequent subtype. Murine EfRMS display genetic heterogeneity similar to their human counterpart. Altogether, our data demonstrate that selective perturbation of the SC niche results in distinct sarcoma subtypes in a Pax7 lineage-dependent manner, and define a critical role for the Met axis in sarcoma initiation. Finally, our results provide a rationale for the use of combination therapy, tailored on specific amplifications and activated signaling pathways, to minimize resistance emerging from sarcomas heterogeneity.

  8. Transactivation of the TIEG1 confers growth inhibition of transforming growth factor-β-susceptible hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Lei Jiang; Yiu-Kay Lai; Jin-Fang Zhang; Chu-Yan Chan; Gang Lu; Marie CM Lin; Ming-Liang He; Ji-Cheng Li; Hsiang-Fu Kung

    2012-01-01

    AIM:To investigate the role of transforming growth factor (TGF)-β-inducible early gene 1 (TIEG1) in TGF-β-induced growth inhibition in hepatocellular carcinoma (HCC) cells.METHODS:Human hepatocyte and HCC cell lines with varied susceptibilities to TGF-β1 were tested by methylthiazoletetrazolium (MTT) assay.The expression changes of Smad2,Smad3,Smad4,Smad7,TIEG1 and TIEG2 gene following treatment with TGF-β1 in a TGF-β-sensitive hepatocyte cell line (MIHA),a TGF-β-sensitive hepatoma cell line (Hep3B) and two TGF-β-insensitive hepatoma cell lines (HepG2 and Bel7404)were examined.SiRNA targeting TIEG1 was transfected into Hep3B cells and the sensitivity of cells to TGF-β1 was examined.Overexpression of TIEG1 was induced by lentiviral-mediated transduction in TGF-β1-resistant hepatoma cell lines (Bel7404 and HepG2).MTT assay and 4',6-Diamidino-2-phenylindole staining were used to identify cell viability and apoptosis,respectively.The expression level of stathmin was measured by reverse transcriptase polymerase chain reaction and Western-blotting analysis,and stathmin promoter activity by TIEG1 was monitored by a luciferase reporter gene system.RESULTS:TIEG1 was significantly upregulated by TGF-β1 in the TGF-β1-sensitive HCC cell line,Hep3B,but not in the resistant cell lines.The suppression of TIEG1 by siRNAs decreased the sensitivity of Hep3B cells to TGF-β1,whereas the overexpression of TIEG1 mediated growth inhibition and apoptosis in TGF-β1-resistant HCC cell lines,which resembled those of TGF-β1-sensitive HCC cells treated with TGF-β1.Our data further suggested that stathmin was a direct target of TIEG1,as stathmin was significantly downregulated by TIEG1 overexpression,and stathmin promoter activity was inhibited by TIEG1 in a dose-dependent manner.CONCLUSION:Our data suggest that transactivation of TIEG1 conferred growth inhibition of TGF-β-susceptible human HCC cells.

  9. Redefining circulating tumor cells by image processing

    NARCIS (Netherlands)

    Ligthart, S.T.

    2012-01-01

    Circulating tumor cells (CTC) in the blood of patients with metastatic carcinomas are associated with poor survival and can be used to guide therapy. However, CTC are very heterogeneous in size and shape, and are present at very low frequencies. Missing or misjudging a few events may have great cons

  10. Hormone activities and the cell cycle machinery in immunity-triggered growth inhibition.

    Science.gov (United States)

    Reitz, M U; Gifford, M L; Schäfer, P

    2015-04-01

    Biotic stress and diseases caused by pathogen attack pose threats in crop production and significantly reduce crop yields. Enhancing immunity against pathogens is therefore of outstanding importance in crop breeding. However, this must be balanced, as immune activation inhibits plant growth. This immunity-coupled growth trade-off does not support resistance but is postulated to reflect the reallocation of resources to drive immunity. There is, however, increasing evidence that growth-immunity trade-offs are based on the reconfiguration of hormone pathways, shared by growth and immunity signalling. Studies in roots revealed the role of hormones in orchestrating growth across different cell types, with some hormones showing a defined cell type-specific activity. This is apparently highly relevant for the regulation of the cell cycle machinery and might be part of the growth-immunity cross-talk. Since plants are constantly exposed to Immuno-activating microbes under agricultural conditions, the transition from a growth to an immunity operating mode can significantly reduce crop yield and can conflict our efforts to generate next-generation crops with improved yield under climate change conditions. By focusing on roots, we outline the current knowledge of hormone signalling on the cell cycle machinery to explain growth trade-offs induced by immunity. By referring to abiotic stress studies, we further introduce how root cell type-specific hormone activities might contribute to growth under immunity and discuss the feasibility of uncoupling the growth-immunity cross-talk.

  11. Growth

    Science.gov (United States)

    Waag, Andreas

    , molecular beam epitaxy (MBE) delivers high quality ZnMgO-ZnO quantum well structures. Other thin film techniques such as PLD or MOCVD are also widely used. The main problem at present is to consistently achieve reliable p-type doping. For this topic, see also Chap. 5. In the past years, there have been numerous publications on p-type doping of ZnO, as well as ZnO p-n junctions and light emitting diodes (LEDs). However, a lot of these reports are in one way or the other inconsistent or at least incomplete. It is quite clear from optical data that once a reliable hole injection can be achieved, high brightness ZnO LEDs should be possible. In contrast to that expectation, none of the LEDs reported so far shows efficient light emission, as would be expected from a reasonable quality ZnO-based LED. See also Chap. 13. As a matter of fact, there seems to be no generally accepted and reliable technique for p-type doping available at present. The reason for this is the unfavorable position of the band structure of ZnO relative to the vacuum level, with a very low lying valence band. See also Fig. 5.1. This makes the incorporation of electrically active acceptors difficult. Another difficulty is the huge defect density in ZnO. There are many indications that defects play a major role in transport and doping. In order to solve the doping problem, it is generally accepted that the quality of the ZnO material grown by the various techniques needs to be improved. Therefore, the optimization of ZnO epitaxy is thought to play a key role in the further development of this material system. Besides being used as an active material in optoelectronic devices, ZnO plays a major role as transparent contact material in thin film solar cells. Polycrystalline, heavily n-type doped ZnO is used for this, combining a high electrical conductivity with a good optical transparency. In this case, ZnO thin films are fabricated by large area growth techniques such as sputtering. For this and other

  12. Biodegradable photo-crosslinked alginate nanofibre scaffolds with tuneable physical properties, cell adhesivity and growth factor release

    Directory of Open Access Journals (Sweden)

    SI Jeong

    2012-10-01

    Full Text Available Nanofibrous scaffolds are of interest in tissue engineering due to their high surface area to volume ratio, interconnected pores, and architectural similarity to the native extracellular matrix. Our laboratory recently developed a biodegradable, photo-crosslinkable alginate biopolymer. Here, we show the capacity of the material to be electrospun into a nanofibrous matrix, and the ability to enhance cell adhesion and proliferation on these matrices by covalent modification with cell adhesion peptides. Additionally, the potential of covalently incorporating heparin into the hydrogels during the photopolymerisation process to sustain the release of a heparin binding growth factor via affinity interactions was demonstrated. Electrospun photo-crosslinkable alginate nanofibrous scaffolds endowed with cell adhesion ligands and controlled delivery of growth factors may allow for improved regulation of cell behaviour for regenerative medicine.

  13. Research on the Structure of Fish Collagen Nanofibers Influenced Cell Growth

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2013-01-01

    Full Text Available Electrospinning is highlighted in biomaterials field. The structures of nanofibers depend on various parameters, which are related closely to the bioactivity of biomaterials. The aim of this research is to analyze the structure of fish collagen nanofibers and to propose the new criterion for cell growth. This paper focused on the flow rate of solvent during the electrospinning. Through the cell culture, the relationship of the structure and cell growth is investigated. The results obtained in this study provide an understanding of the behaviors of cell growth under different structure of fish collagen nanofibers scaffold.

  14. Retinoic acid. Inhibition of the clonal growth of human myeloid leukemia cells.

    OpenAIRE

    Douer, D; Koeffler, H P

    1982-01-01

    Vitamin A and its analogues (retinoids) affect normal and malignant hematopoietic cells. We examined the effect of retinoids on the clonal growth in vitro of myeloid leukemia cells. Retinoic acid inhibited the clonal growth of the KG-1, acute myeloblastic leukemia, and the HL-60, acute promyelocytic leukemia, human cell lines. The KG-1 cells were extremely sensitive to retinoic acid, with 50% of the colonies inhibited by 2.4-nM concentrations of the drug. A 50% growth inhibition of HL-60 was ...

  15. Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kanayo [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Sakaguchi, Minoru, E-mail: sakaguti@gly.oups.ac.jp [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Tanaka, Satoshi [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Yoshimoto, Tadashi [Department of Life Science, Setsunan University, 17-8 Ikeda-Nakamachi, Neyagawa, Osaka 572-8508 (Japan); Takaoka, Masanori [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan)

    2014-01-03

    Highlights: •We examined the effects of prolyl oligopeptidase (POP) inhibition on p53 null gastric cancer cell growth. •POP inhibition-induced cell growth suppression was associated with an increase in a quiescent G{sub 0} state. •POP might regulate the exit from and/or reentry into the cell cycle. -- Abstract: Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G{sub 0}/G{sub 1} cell cycle arrest and increased levels of the CDK inhibitor p27{sup kip1} and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-((4-[2-(E)-styrylphenoxy]butanoyl)-L-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G{sub 0}/G{sub 1} cell cycle phase arrest and increased levels of p27{sup kip1} in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G{sub 0} state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.

  16. A method for an experimental determination of the growth process of water droplets

    OpenAIRE

    Cohen, Ariel

    2011-01-01

    When condensation nuclei are injected into a chamber where supersaturation conditions prevail, water droplet, sstart to form. The growth process is then dependent on the physical and chemical characteristics of the nuclei and on the process of diffusion of water vapour (Jiusto, 1967)DOI: 10.1111/j.2153-3490.1969.tb00482.x

  17. Cell growth stimulating effect of Ganoderma lucidum spores and their potential application for Chinese hamster ovary K1 cell cultivation.

    Science.gov (United States)

    Li, Ding; Zhong, Qi; Liu, Tingting; Wang, Jufang

    2016-06-01

    In this work, water-soluble extracts of Ganoderma lucidum spores (Gls), a Chinese medicinal herb that possesses cell growth stimulating function, were found to be an effective growth factor for Chinese hamster ovary (CHO) cell cultivation. The Gls extract was prepared and supplemented to CHO K1 cell culture media with various serum levels. Our results obtained from both the static culture and the spinner-flask suspension culture showed that use of small-amount Gls extract effectively promoted cell growth and suppressed cell apoptosis induced by serum deprivation with normal cell cycle maintained in a low-serum medium. The low-serum medium containing 1 % (v/v) fetal bovine serum (FBS) and 0.01 % (w/v) Gls extract showed a comparable performance on both cell growth and fusion protein productivity with the conventional CHO culture medium containing 10 % (v/v) FBS and a commercial serum-free medium. This is the first study of the potential of Gls extracts for use as an alternative cell growth factor and nutrient for CHO cells. The findings have presented a new approach to economic cultivation of CHO cells for therapeutic protein production.

  18. Cell growth stimulating effect of Ganoderma lucidum spores and their potential application for Chinese hamster ovary K1 cell cultivation.

    Science.gov (United States)

    Li, Ding; Zhong, Qi; Liu, Tingting; Wang, Jufang

    2016-06-01

    In this work, water-soluble extracts of Ganoderma lucidum spores (Gls), a Chinese medicinal herb that possesses cell growth stimulating function, were found to be an effective growth factor for Chinese hamster ovary (CHO) cell cultivation. The Gls extract was prepared and supplemented to CHO K1 cell culture media with various serum levels. Our results obtained from both the static culture and the spinner-flask suspension culture showed that use of small-amount Gls extract effectively promoted cell growth and suppressed cell apoptosis induced by serum deprivation with normal cell cycle maintained in a low-serum medium. The low-serum medium containing 1 % (v/v) fetal bovine serum (FBS) and 0.01 % (w/v) Gls extract showed a comparable performance on both cell growth and fusion protein productivity with the conventional CHO culture medium containing 10 % (v/v) FBS and a commercial serum-free medium. This is the first study of the potential of Gls extracts for use as an alternative cell growth factor and nutrient for CHO cells. The findings have presented a new approach to economic cultivation of CHO cells for therapeutic protein production. PMID:26921102

  19. Growth activity of epidermal cells from different parts of human body

    Institute of Scientific and Technical Information of China (English)

    CHAI Jia-ke; SHENG Zhi-yong; MA Zhong-feng; YANG Hong-ming; LIU Qiang; Liang Li-ming

    2007-01-01

    Background Most epidermal cells used in skin tissue engineering are obtained from the skins of fetuses or prepuces,which can not be widely used in culturing and transplanting autologous epidermis for patients with extensive burn wounds. To solve the problem, in this study, we cultured epidermal cells from different parts of human body in vitro, and detected their growth activity.Methods Normal epidermal cells obtained from the prepuce, scalp, and axilla of male patients, were cultured and passaged. Their growth characteristics including adherent rate and growth activity were compared. Data were analyzed by homogeneity test of variance.Results In primary culture, the growth of epidermal cells from the prepuce was significantly faster than that of the epidermal cells from the scalp and axilla. In the cells obtained from the prepuce, 80% confluence was achieved on day 12, while on day 16 and day 20 in the cells from the scalp and axilla, respectively. However, no significant difference was detected in their growth and proliferation in the second passage.Conclusions Although the growth of epidermal cells obtained from the scalp and axilla is slower than that from the prepuce in primary culture, stable cell line can be established and used in preparation of auto-epidermal grafts for patients with extensive burn wounds. Therefore, the scalp and axillary skin should be considered as important sources of epidermal cells other than the prepuce.

  20. Mead acid inhibits the growth of KPL-1 human breast cancer cells in vitro and in vivo.

    Science.gov (United States)

    Kinoshita, Yuichi; Yoshizawa, Katsuhiko; Hamazaki, Kei; Emoto, Yuko; Yuri, Takashi; Yuki, Michiko; Shikata, Nobuaki; Kawashima, Hiroshi; Tsubura, Airo

    2014-10-01

    The effects of mead acid (MA; 5,8,11-eicosatrienoic acid) on the suppression of breast cancer cell growth and metastasis were examined in vitro and in vivo by using the KPL-1 human breast cancer cell line. MA suppressed KPL-1 cell growth in culture with an IC50 value of 214.2 µM (65.7 µg/ml) for 72 h, and MA significantly suppressed transplanted KPL-1 tumor growth (tumor volume and tumor weight: 872±103 mm3 and 1,000±116 mg vs. 376±66 mm3 and 517±84 mg) and regional (axillary) lymph node metastasis (67%, 10/15 vs. 10%, 1/10) in female athymic mice fed an MA-rich diet for 8 weeks. Tumor suppression was due to the suppression of cell proliferation. In ELISA, although vascular endothelial growth factor (VEGF) levels were unchanged, VEGF receptor (VEGFR)1 and VEGFR2 levels were significantly decreased after treatment with a 214.2-µM dose of MA for 72 h; E-cadherin levels were unchanged. As VEGF, VEGFR1 and VEGFR2 expression was co-localized in KPL-1 cells, the mechanism leading to cell growth suppression was VEGF signaling directly to KPL-1 cells by an autocrine process. In contrast, MA did not influence angiogenesis. The mechanisms of action were through VEGF signaling directly to cancer cells. PMID:25109488

  1. Current efficiency in the chlorate cell process

    Directory of Open Access Journals (Sweden)

    Spasojević Miroslav D.

    2014-01-01

    Full Text Available A mathematical model has been set up for current efficiency in a chlorate cell acting as an ideal electrochemical tubular reactor with a linear increase in hypochlorite concentration from the entrance to the exit. Good agreement was found between the results on current efficiency experimentally obtained under simulated industrial chlorate production conditions and the theoretical values provided by the mathematical model. [Projekat Ministarstva nauke Republike Srbije, br. 172057 i br. 172062

  2. Insulin-like growth factor binding protein-3 is required for the regulation of rat oval cell proliferation and differentiation in the 2AAF/PHX model

    OpenAIRE

    Steiger-Luther, Nicole C; Darwiche, Houda; Oh, Seh-Hoon; Williams, Jennifer M.; PETERSEN, BRYON E.

    2010-01-01

    Oval cell-mediated liver regeneration is a highly complex process that involves the coordination of several signaling factors, chemokines and cytokines to allow for proper maintenance of the liver architecture. When hepatocyte proliferation is inhibited, an hepatic stem cell population, often referred to as “oval cells”, is activated to aid in liver regeneration. The function of insulin-like growth factor binding protein-3 (IGFBP-3) during this process of oval cell activation is of particular...

  3. Altered growth, differentiation, and responsiveness to epidermal growth factor of human embryonic mesenchymal cells of palate by persistent rubella virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, T.; Urade, M.; Sakuda, M.; Miyazaki, T.

    1986-05-01

    We previously demonstrated that human embryonic mesenchymal cells derived from the palate (HEMP cells) retain alkaline phosphatase (ALP) content and capacity for collagen synthesis after long-term culture, and their growth is markedly stimulated by epidermal growth factor (EGF). There was a dramatic decrease in ALP content and capacity to synthesize collagen in HEMP cells (HEMP-RV cells) persistently infected with rubella virus (RV). EGF increased ALP activity and decreased collagen synthesis in HEMP cells, whereas EGF showed no effect on these activities in HEMP-RV cells. Growth of HEMP-RV cells was slightly reduced compared with that of HEMP cells. EGF stimulated growth of HEMP cells and to a lesser extent of HEMP-RV cells. Binding of /sup 125/I-EGF to cell-surface receptors in HEMP-RV cells was, to our surprise, twice as much as that in HEMP cells. However, internalization of bound /sup 125/I-EGF in HEMP-RV cells was profoundly diminished. Thus, persistent RV infection causes not only changes in HEMP cell growth and differentiation but a decrease in or loss of HEMP cell responsiveness to EGF. The effects of persistent RV infection on palatal cell differentiation as well as growth may be responsible for the pathogenesis of congenital rubella. Furthermore, since HEMP cells appear to be closely related to osteoblasts, these results suggest a mechanism for RV-induced osseous abnormalities manifested in congenital rubella patients.

  4. Discovering aptamers by cell-SELEX against human soluble growth factors ectopically expressed on yeast cell surface.

    Directory of Open Access Journals (Sweden)

    Hsien-Wei Meng

    Full Text Available SELEX, the process of selecting aptamers, is often hampered by the difficulty of preparing target molecules in their native forms and by a lack of a simple yet quantitative assay for monitoring enrichment and affinity of reactive aptamers. In this study, we sought to discover DNA aptamers against human serum markers for potential therapeutic and diagnostic applications. To circumvent soluble expression and immobilization for performing SELEX, we ectopically expressed soluble growth factors on the surface of yeast cells to enable cell-SELEX and devised a flow cytometry-based method to quantitatively monitor progressive enrichment of specific aptamers. High-throughput sequencing of selected pools revealed that the emergence of highly enriched sequences concurred with the increase in the percentage of reactive aptamers shown by flow cytometry. Particularly, selected DNA aptamers against VEGF were specific and of high affinity (K(D  = ∼ 1 nM and demonstrated a potent inhibition of capillary tube formation of endothelial cells, comparable to the effect of a clinically approved anti-VEGF antibody drug, bevacizumab. Considering the fact that many mammalian secretory proteins have been functionally expressed in yeast, the strategy of implementing cell-SELEX and quantitative binding assay can be extended to discover aptamers against a broad array of soluble antigens.

  5. Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells.

    Science.gov (United States)

    Li, Lingmei; Qi, Lisha; Liang, Zhijie; Song, Wangzhao; Liu, Yanxue; Wang, Yalei; Sun, Baocun; Zhang, Bin; Cao, Wenfeng

    2015-07-01

    Epithelial-mesenchymal transition (EMT), a process closely related to tumor development, is regulated by a variety of signaling pathways and growth factors, such as transforming growth factor-β1 (TGF-β1) and epidermal growth factor (EGF). Hyaluronan (HA) has been shown to induce EMT through either TGF-β1 or EGF signaling and to be a regulator of the crosstalk between these two pathways in fibroblasts. In this study, in order to clarify whether HA has the same effect in tumor cells, we utilized the lung cancer cell line, A549, and the breast cancer cell line, MCF-7, and found that the effects of stimulation with TGF-β1 were more potent than those of EGF in regulating the expression of EMT-associated proteins and in enhancing cell migration and invasion. In addition, we observed that TGF-β1 activated EGF receptor (EGFR) and its downstream AKT and extracellular signal-regulated kinase (ERK) pathways. Furthermore, we found that TGF-β1 upregulated the expression of hyaluronan synthases (HAS1, HAS2 and HAS3) and promoted the expression of CD44, a cell surface receptor for HA, which interacts with EGFR, resulting in the activation of the downstream AKT and ERK pathways. Conversely, treatment with 4-methylumbelliferone (4-MU; an inhibitor of HAS) prior to stimulation with TGF-β1, inhibited the expression of CD44 and EGFR, abolished the interaction between CD44 and EGFR. Furthermore, the use of shRNA targeting CD44 impaired the expression of EGFR, deactivated the AKT and ERK pathways, reversed EMT and decreased the migration and invasion ability of cells. In conclusion, our data demonstrate that TGF-β1 induces EMT by the transactivation of EGF signaling through HA/CD44 in lung and breast cancer cells.

  6. Gremlin is overexpressed in lung adenocarcinoma and increases cell growth and proliferation in normal lung cells.

    Directory of Open Access Journals (Sweden)

    Michael S Mulvihill

    Full Text Available BACKGROUND: Gremlin, a member of the Dan family of BMP antagonists, is a glycosylated extracellular protein. Previously Gremlin has been shown to play a role in dorsal-ventral patterning, in tissue remodeling, and recently in angiogenesis. Evidence has previously been presented showing both over- and under-expression of Gremlin in different tumor tissues. Here, we sought to quantify expression of Gremlin in cancers of the lung and performed in vitro experiments to check whether Gremlin promotes cell growth and proliferation. METHODOLOGY/PRINCIPAL FINDINGS: Expression of Gremlin in 161 matched tumor and normal lung cancer specimens is quantified by quantitative real-time PCR and protein level is measured by immunohistochemistry. GREM1 was transfected into lung fibroblast and epithelial cell lines to assess the impact of overexpression of Gremlin in vitro. RESULTS: Lung adenocarcinoma but not squamous cell carcinoma shows a significant increase in Gremlin expression by mRNA and protein level. Lung fibroblast and epithelial cell lines transfected with GREM1 show significantly increased cell proliferation. CONCLUSIONS/SIGNIFICANCE: Our data suggest that Gremlin acts in an oncogenic manner in lung adenocarcinoma and could hold promise as a new diagnostic marker or potential therapeutic target in lung AD or general thoracic malignancies.

  7. Molecular solution processing of metal chalcogenide thin film solar cells

    OpenAIRE

    Yang, Wenbing

    2013-01-01

    The barrier to utilize solar generated electricity mainly comes from their higher cost relative to fossil fuels. However, innovations with new materials and processing techniques can potentially make cost effective photovoltaics. One such strategy is to develop solution processed photovoltaics which avoid the expensive vacuum processing required by traditional solar cells. The dissertation is mainly focused on two absorber material system for thin film solar cells: chalcopyrite CuIn(S,Se)2 (C...

  8. Sirt2 suppresses glioma cell growth through targeting NF-κB–miR-21 axis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ya’nan; Dai, Dongwei [Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Lu, Qiong; Fei, Mingyu [Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai (China); Li, Mengmeng [Department of Rheumatology, Changzheng Hospital, Second Military Medical University, Shanghai (China); Wu, Xi, E-mail: xiwuchh@sina.com [Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai (China)

    2013-11-22

    Highlights: •Sirt2 expression is down-regulated in human glioma tissues and cell lines. •Sirt2 regresses glioma cell growth and colony formation via inducing apoptosis. •miR-21 is essential for the functions of Sirt2 in glioma cells. •Sirt2 deacetylates p65 to decrease miR-21 expression. -- Abstract: Sirtuins are NAD{sup +}-dependent deacetylases that regulate numerous cellular processes including aging, DNA repair, cell cycle, metabolism, and survival under stress conditions. The roles of sirtuin family members are widely studied in carcinogenesis. However, their roles in glioma remain unclear. Here we report that Sir2 was under expressed in human glioma tissues and cell lines. We found that Sirt2 overexpression decreased cell proliferation and colony formation capacity. In addition, Sirt2 overexpression induced cellular apoptosis via up-regulating cleaved caspase 3 and Bax, and down-regulating anti-apoptotic protein Bcl-2. Sirt2 knockdown obtained opposing results. We showed that Sirt2 overexpression inhibited miR-21 expression, and Sirt2 was not sufficient to reduce cell proliferation and colony formation as well as to induce apoptosis when miR-21 was knocked down in glioma cells. Mechanically, we demonstrated that Sirt2 deacetylated p65 at K310 and blocked p65 binding to the promoter region of miR-21, thus regressing the transcription of miR-21. In summary, Sirt2 is critical in human glioma via NF-κB–miR-21 pathway and Sirt2 activator may serve as candidate drug for glioma therapy.

  9. Forced Expression of ZNF143 Restrains Cancer Cell Growth

    Directory of Open Access Journals (Sweden)

    Kimitoshi Kohno

    2011-10-01

    Full Text Available We previously reported that the transcription factor Zinc Finger Protein 143 (ZNF143 regulates the expression of genes associated with cell cycle and cell division, and that downregulation of ZNF143 induces cell cycle arrest at G2/M. To assess the function of ZNF143 expression in the cell cycle, we established two cells with forced expression of ZNF143 derived from PC3 prostate cancer cell lines. These cell lines overexpress genes associated with cell cycle and cell division, such as polo-like kinase 1 (PLK1, aurora kinase B (AURKB and some minichromosome maintenance complex components (MCM. However, the doubling time of cells with forced expression of ZNF143 was approximately twice as long as its control counterpart cell line. Analysis following serum starvation and re-seeding showed that PC3 cells were synchronized at G1 in the cell cycle. Also, ZNF143 expression fluctuated, and was at its lowest level in G2/M. However, PC3 cells with forced expression of ZNF143 synchronized at G2/M, and showed lack of cell cycle-dependent fluctuation of nuclear expression of MCM proteins. Furthermore, G2/M population of both cisplatin-resistant PCDP6 cells over-expressing ZNF143 (derived from PC3 cells and cells with forced expression of ZNF143 was significantly higher than that of each counterpart, and the doubling time of PCDP6 cells is about 2.5 times longer than that of PC3 cells. These data suggested that fluctuations in ZNF143 expression are required both for gene expression associated with cell cycle and for cell division.

  10. Forced Expression of ZNF143 Restrains Cancer Cell Growth

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Hiroto, E-mail: h-izumi@med.uoeh-u.ac.jp; Yasuniwa, Yoshihiro; Akiyama, Masaki; Yamaguchi, Takahiro; Kuma, Akihiro; Kitamura, Noriaki; Kohno, Kimitoshi [Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555 (Japan)

    2011-10-19

    We previously reported that the transcription factor Zinc Finger Protein 143 (ZNF143) regulates the expression of genes associated with cell cycle and cell division, and that downregulation of ZNF143 induces cell cycle arrest at G2/M. To assess the function of ZNF143 expression in the cell cycle, we established two cells with forced expression of ZNF143 derived from PC3 prostate cancer cell lines. These cell lines overexpress genes associated with cell cycle and cell division, such as polo-like kinase 1 (PLK1), aurora kinase B (AURKB) and some minichromosome maintenance complex components (MCM). However, the doubling time of cells with forced expression of ZNF143 was approximately twice as long as its control counterpart cell line. Analysis following serum starvation and re-seeding showed that PC3 cells were synchronized at G1 in the cell cycle. Also, ZNF143 expression fluctuated, and was at its lowest level in G2/M. However, PC3 cells with forced expression of ZNF143 synchronized at G2/M, and showed lack of cell cycle-dependent fluctuation of nuclear expression of MCM proteins. Furthermore, G2/M population of both cisplatin-resistant PCDP6 cells over-expressing ZNF143 (derived from PC3 cells) and cells with forced expression of ZNF143 was significantly higher than that of each counterpart, and the doubling time of PCDP6 cells is about 2.5 times longer than that of PC3 cells. These data suggested that fluctuations in ZNF143 expression are required both for gene expression associated with cell cycle and for cell division.

  11. Long-term delivery of nerve growth factor by encapsulated cell biodelivery in the Göttingen minipig basal forebrain

    DEFF Research Database (Denmark)

    Fjord-Larsen, L; Kusk, P; Tornøe, Jens;

    2010-01-01

    Nerve growth factor (NGF) prevents cholinergic degeneration in Alzheimer's disease (AD) and improves memory in AD animal models. In humans, the safe delivery of therapeutic doses of NGF is challenging. For clinical use, we have therefore developed an encapsulated cell (EC) biodelivery device......, capable of local delivery of NGF. The clinical device, named NsG0202, houses an NGF-secreting cell line (NGC-0295), which is derived from a human retinal pigment epithelial (RPE) cell line, stably genetically modified to secrete NGF. Bioactivity and correct processing of NGF was confirmed in vitro. Ns...

  12. A Marketing approach on how continuous processes improvement can contribute to hotel business Organic Growth

    Directory of Open Access Journals (Sweden)

    Ioana-Simona IVASCIUC

    2015-12-01

    Full Text Available Generating sustainable growth and profits is like finding a unicorn for most managers. Organic growth should be considered as an alternative for long-term growth in the hotel business. Designing the service process to deliver what customers expect from the hotel offer is a crucial component of encounter marketing. Hotels need to embrace the changes and ensure that their internal processes are aligned not just to current trends, but also to the expected future changes. Keeping up with global changes and trends of any kind, evaluating their impact on your business, continuous improving of the services using PDCA cycle, Six Sigma or Lean principles, are the keys to long-term organic growth.

  13. The Inhibitory Effect of Somatostatin Analogue RC-160 on the Growth of Endometrial Carcinoma Cell Line HEC-1A

    Institute of Scientific and Technical Information of China (English)

    Liang Rui; Tang Xiaohui; Zhu Gaixia; Gao Yane; Guo Yin

    2004-01-01

    Objective:To evaluate the inhibitory effect of somatostatin analogue RC-160 on the growth of human endometrial cancer cells (HEC-1A) in vitro. Method: RT-PCR was used to examine the existence of somatostatin receptors on the HEC-1A cells. The anti-proliferative effect of RC-160 on the growth of HEC-1A cells was detected by using BrdU incorporation test. TUNEL staining was used to find out whether apoptosis was involved in the inhibitory process. Result: All the five somatostatin receptor subtypes were demonstrated in HEC-1A cells. RC-160 reduced the HEC-1A cell growth stimulated by serum in a dose-dependent manner. The effect was maximal at the concentration of 10-5M after 48 hours' treatment. No apoptosis was detected. Conclusion:Somatostatin analogue RC-160 can inhibit the proliferation of endometrial carcinoma cell line HEC-1A through binding to the somatostatin receptors on the cells. It seems that apoptosis is not mainly responsible for the inhibition.

  14. Simulation of sub-micron particle formation and growth during combustion processes

    Institute of Scientific and Technical Information of China (English)

    WEI Feng; ZHANG Junying; ZHENG Chuguang

    2005-01-01

    Sub-micron particle formation and growth during combustion processes is very complex because of its strong uncertainty and randomness. A model to simulate the sub-micron particle formation and growth during the combustion process is developed based on the gas kinetic theory and is expressed by the vapor concentration changes and particle loading changes, which reflects effect characteristics of different mechanism (nucleation, condensation and coagulation) in particle formation processes. The developed characteristic time is used to token the three mechanisms. It is thought that environmental temperature and pressure, vapor temperature and critical pressure are important factors influencing the sub-micron particle formation and growth. The sub-micron particle formation processes under different conditions are studied and the effect characteristics of these mechanisms are analyzed, which show that the nucleation, condensation,and coagulation occur simultaneously during the sub-micron particle formation and growth process. Nucleation contributes to the sub-micron particle formation, while condensation and coagulation is helpful to the growth of the particle size.

  15. Fatty acid control of growth of human cervical and endometrial cancer cells.

    OpenAIRE

    Gleeson, R P; Ayub, M.; Wright, J T; Wood, C B; Habib, N.A.; Soutter, W P; Sullivan, M. H.; White, J. O.

    1990-01-01

    Stearic acid and iodo-stearic and inhibited cell growth in a cervical cancer cell line (HOG-1) in a dose-related manner, with a half maximal effect at 50 microM stearic acid. Addition of oleic acid abrogated the effect of stearic acid. EGF-stimulated DNA synthesis and growth of HOG-1 cells was inhibited in the presence of stearic acid without any apparent effect on EGF receptor number or affinity.

  16. Amphiregulin enhances regulatory T cell suppressive function via the epidermal growth factor receptor

    OpenAIRE

    Zaiss, Dietmar M.W.; van Loosdregt, Jorg; Gorlani, Andrea; Bekker, Cornelis P.J.; Gröne, Andrea; Sibilia, Maria; van Bergen en Henegouwen, Paul M. P.; Roovers, Rob C.; Coffer, Paul J.; Sijts, Alice J.A.M.

    2013-01-01

    Epidermal growth factor receptor (EGFR) is known to be critically involved in tissue development and homeostasis as well as in the pathogenesis of cancer. Here we showed that Foxp3+ regulatory T (Treg) cells express EGFR under inflammatory conditions. Stimulation with the EGF-like growth factor Amphiregulin (AREG) markedly enhanced Treg cell function in vitro, and in a colitis and tumor vaccination model we showed that AREG was critical for efficient Treg cell function in vivo. In addition, m...

  17. Expression of a hyperactive androgen receptor leads to androgen-independent growth of prostate cancer cells.

    Science.gov (United States)

    Hsieh, Chen-Lin; Cai, Changmeng; Giwa, Ahmed; Bivins, Aaronica; Chen, Shao-Yong; Sabry, Dina; Govardhan, Kumara; Shemshedini, Lirim

    2008-07-01

    Cellular changes that affect the androgen receptor (AR) can cause prostate cancer to transition from androgen dependent to androgen independent, which is usually lethal. One common change in prostate tumors is overexpression of the AR, which has been shown to lead to androgen-independent growth of prostate cancer cells. This led us to hypothesize that expression of a hyperactive AR would be sufficient for androgen-independent growth of prostate cancer cells. To test this hypothesis, stable lune cancer prostate (LNCaP) cell lines were generated, which express a virion phosphoprotein (VP)16-AR hybrid protein that contains full-length AR fused to the strong viral transcriptional activation domain VP16. This fusion protein elicited as much as a 20-fold stronger transcriptional activity than the natural AR. Stable expression of VP16-AR in LNCaP cells yielded androgen-independent cell proliferation, while under the same growth conditions the parental LNCaP cells exhibited only androgen-dependent growth. These results show that expression of a hyperactive AR is sufficient for androgen-independent growth of prostate cancer cells. To study the molecular basis of this enhanced growth, we measured the expression of soluble guanylyl cyclase-alpha1 (sGCalpha1), a subunit of the sGC, an androgen-regulated gene that has been shown to be involved in prostate cancer cell growth. Interestingly, the expression of sGCalpha1 is androgen independent in VP16-AR-expressing cells, in contrast to its androgen-induced expression in control LNCaP cells. RNA(I)-dependent inhibition of sGCalpha1 expression resulted in significantly reduced proliferation of VP16-AR cells, implicating an important role for sGCalpha1 in the androgen-independent growth of these cells. PMID:18469090

  18. Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF - opioid growth factor receptor (OGFr axis

    Directory of Open Access Journals (Sweden)

    Donahue Renee N

    2009-10-01

    Full Text Available Abstract Background Carcinoma of the thyroid gland is an uncommon cancer, but the most frequent malignancy of the endocrine system. Most thyroid cancers are derived from the follicular cell. Follicular carcinoma (FTC is considered more malignant than papillary thyroid carcinoma (PTC, and anaplastic thyroid cancer (ATC is one of the most lethal human cancers. Opioid Growth Factor (OGF; chemical term - [Met5]-enkephalin and its receptor, OGFr, form an inhibitory axis regulating cell proliferation. Both the peptide and receptor have been detected in a wide variety of cancers, and OGF is currently used clinically as a biotherapy for some non-thyroid neoplasias. This study addressed the question of whether the OGF-OGFr axis is present and functional in human thyroid follicular cell - derived cancer. Methods Utilizing human ATC (KAT-18, PTC (KTC-1, and FTC (WRO 82-1 cell lines, immunohistochemistry was employed to ascertain the presence and location of OGF and OGFr. The growth characteristics in the presence of OGF or the opioid antagonist naltrexone (NTX, and the specificity of opioid peptides for proliferation of ATC, were established in KAT-18 cells. Dependence on peptide and receptor were investigated using neutralization studies with antibodies and siRNA experiments, respectively. The mechanism of peptide action on DNA synthesis and cell survival was ascertained. The ubiquity of the OGF-OGFr axis in thyroid follicular cell-derived cancer was assessed in KTC-1 (PTC and WRO 82-1 (FTC tumor cells. Results OGF and OGFr were present in KAT-18 cells. Concentrations of 10-6 M OGF inhibited cell replication up to 30%, whereas NTX increased cell growth up to 35% relative to cultures treated with sterile water. OGF treatment reduced cell number by as much as 38% in KAT-18 ATC in a dose-dependent and receptor-mediated manner. OGF antibodies neutralized the inhibitory effects of OGF, and siRNA knockdown of OGFr negated growth inhibition by OGF. Cell survival

  19. Growth of cultured porcine retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Wiencke, A.K.; Kiilgaard, Jens Folke; Nicolini, Jair;

    2003-01-01

    To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation.......To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation....

  20. The Impact of Receiving an HIV Diagnosis and Cognitive Processing on Psychological Distress and Posttraumatic Growth

    OpenAIRE

    Nightingale, Vienna R.; Sher, Tamara G.; Hansen, Nathan B.

    2010-01-01

    This study examined human immunodeficiency virus (HIV) as a traumatic stressor, intrusive and deliberate cognitive processing, psychological distress, and posttraumatic growth. One-hundred twelve participants completed interviews on posttraumatic stress disorder (PTSD) Criterion A, Rumination Scale-Revised, Impact of Event Scale, and the Posttraumatic Growth Inventory; relationships were modeled using path analysis. Model 1 attempted to replicate prior empirical research, Model 2 attempted to...

  1. Growth Process of Eucalyptus urophylla × E.grandis Stand Based on Logistic Equation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Eucalyptus is the most valuable cultivated forest genus in the tropical and subtropical areas nowadays. It has been a challenge for foresters to model growth due to the genetic variations, management regimes, and multiple products generated from the plantations. In this paper, Logistic equation was used to study the stock growth process of E. urophylla × E. grandis plantation at age of 14 with 6 spacing treatments. And the biological interpretation of the parameters of Logistic equation was analyzed. The re...

  2. Influence of Carbon Monoxide on Growth and Apoptosis of Human Umbilical Artery Smooth Muscle Cells and Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Yajuan Li, Hai Wang, Bin Yang, Jichen Yang, Xiuyan Ruan, Yadong Yang, Edward K. Wakeland, Quanzhen Li, Xiangdong Fang

    2012-01-01

    Full Text Available Carbon monoxide (CO is a vasoactive molecule that is generated by vascular cells as a byproduct of heme catabolism and it plays an important physiological role in circulation system. In order to investigate whether exogenous CO can mediate the growth and proliferation of vascular cells, in this study, we used 250 parts per million (ppm of CO to treat human umbilical artery smooth muscle cell (hUASMC and human umbilical vein endothelial cell (HuVEC and further evaluated the growth and apoptosis status of SMC and HuVEC. After SMC and HuVEC were exposed to CO for 7-day, the growth of SMC and HuVEC was significantly inhibited by CO in vitro on day 5 of CO exposure. And CO blocked cell cycle progress of SMC and HuVEC, more SMC and HuVEC stagnated at G0/G1 phase by flow cytometric analysis. Moreover, CO treatment inhibited SMC and HuVEC apoptosis caused by hydrogen peroxide through decreasing caspase 3 and 9 activities. To confirm the molecular mechanism of CO effect on SMC and HuVEC growth, we compared the gene expression profile in SMC and CO-treated SMC, HuVEC and CO-treated HuVEC. By microarray analysis, we found the expression level of some genes which are related to cell cycle regulation, cell growth and proliferation, and apoptosis were changed during CO exposure. We further identified that the down-regulated CDK2 contributed to arresting cell growth and the down-regulated Caspase 3 (CASP3 and Caspase 9 (CASP9 were associated with the inhibition of cell apoptosis. Therefore, CO exerts a certain growth arrest on SMC and HuVEC by inhibiting cell cycle transition from G0/G1 phase to S phase and has regulatory effect on cell apoptosis by regulating the expression of apoptosis-associated genes.

  3. Fatigue-induced damage and crack growth of Cu processed by ECAP

    Science.gov (United States)

    Goto, Masahiro; Morita, Kakeru; Kitamura, Jyunichi; Baba, Masataka; Han, Seung-Zeon; Ahn, Jee-Hyuk; Kim, Sangshik

    2015-03-01

    The fatigue-induced damage and crack growth behavior were studied on the ultrafine grained copper processed by equal channel angular pressing (ECAP). At high stresses, fatigue cracks were initiated at the shear bands (SBs) formed along the shear plane of the final ECAP. At low stresses, the grain coarsening occurred due to dynamic recrystallization. The slip bands were then formed inside these grains and subsequently served as an initiation sites for cracks. The direction of crack growth, either 45° or perpendicular to the loading axis, varied depending on the stress. The formation and growth mechanisms of fatigue crack are discussed based on the micrographic observation of surface damage.

  4. Effects of EPO Gene on Growth and Apoptosis of Lung Adenocarcinoma Cell Line A549

    Directory of Open Access Journals (Sweden)

    Jianqing WU

    2009-09-01

    Full Text Available Background and objective Published data on the association between erythropoietin (EPO and cancer cell are inconclusive. The aim of this study is to investigate the effect of erythropoietin (EPO on the growth and survival of lung adenocarcinoma cell line A549. Methods The recombinant plasmid pcDNA3.1(--hEPO was constructed and transfected into A549 cells by liposome protoco1. The Levels of EPO in culture supernatant were detected by ELISA. Effects of EPO gene on growth and survival of the transfected cells were evaluated by MTT assay and flow cytometry (FCM . Levels of vascular endothelial growth factor (VEGF were also evaluated by ELISA. Results The recombinant eukaryotic expression vector pcDNA3.1(--hEPO was successfully constructed. The growth of cells in hEPO transfected cells was significantly inhibited after transfection (P < 0.01. More cells were blocked in S phase in hEPO transfected group compared with control group (P < 0.05, and the apoptotic rate were also significantly higher than those of their controls (P < 0.01. Levels of VEGF in hEPO transfected cells were significantly lower than controls (P < 0.01. Conclusion Exogenous EPO gene expression in A549 cells can induce cell growth inhibition and apoptosis of A549 cells, and expression of VEGF can also be inhibited.

  5. Effects of transforming growth interacting factor on biological behaviors of gastric carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Zhong-Liang Hu; Ji-Fang Wen; De-Sheng Xiao; Hui Zhen; Chun-Yan Fu

    2005-01-01

    AIM:Transforming growth interacting factor (TGIF) is an inhibitor of both transforming growth factor β (TGF-β) and retinoid signaling pathways. Moreover, the activation of MAPK pathway can prolong its half-life. However, its role in carcinogenesis is still unknown. Thus we attempted to investigate the effect of TGIF on biologic behaviors of gastric carcinoma cells.METHODS: Gastric carcinoma cell line, SGC-7901, was stably transfected with plasmid PcDNA3.1-TGIF. Western blotting and cell immunohistochemistry screening for the highly expressing clone of TGIF were employed. The growth of transfected cells was investigated by MTT and colonyformation assays, and apoptosis was measured by flow cytometry (FCM) and transmission electron microscopy.Tumorigenicity of the transfectant cells was also analyzed.RESULTS: TGIF had no effect on the proliferation, cell cycle and apoptosis of SGC-7901 cells, but cellular organelles of cells transfected with TGIF were richer than those of vector control or parental cells. Its clones were smaller than the control ones in plate efficiency, and its tumor tissues also had no obvious necrosis compared with the vector control or parental cells. Moreover, TGIF could resist TGF-β mediated growth inhibition.CONCLUSION: TGIF may induce differentiation of stomach neoplastic cells. In addition, TGIF can counteract the growth inhibition induced by TGF-β.

  6. Effect of tumor suppressor in lung cancer-1 on growth inhibition of MG63 cell line

    Institute of Scientific and Technical Information of China (English)

    Li Qin; Yang Lin; Wenjian Chen; Wentao Zhu

    2013-01-01

    Objective: The aim of this study was to establish the osteosarcoma cell sublines which stably expressing tumor suppressor in lung cancer-1 (TSLC1) gene and evaluate its effect on growth inhibition of human osteosarcoma cell line MG63. Methods: The recombinant plasmid pCI-TSLC1 was stably transfected into MG63 cells with Lipofectamine 2000. The positive clones were developed by selection by G418. Biological characteristics of one of the 6 cell lines which highly expressing TSLC1, namely, the M8T were studied. Cell growth was analyzed with MTT assay. 2 × 107 cells suspended in 0.2 mL phosphate buffered saline (PBS) were injected into the two flanks of 5-6-week-old female BALB/C nu/nu athymic nude mice. The volumes of subcutaneous of tumor growth were evaluated and calculated by the formula V= Length × Width × Height × 0.5 once a week. Results: The M8T cell subline which stably expressing TSLC1 was characterized by Western blot. The genetic stability and purity of M8T cells were stable. TSLC1 significantly suppressed the growth of M8T cells in vitro. Moreover, the tumorigenicity of M8T cells was suppressed in vivo. Conclusion: The osteosarcoma cell sublines M8T which stably expressing TSLC1 had been successfully established. The ability of growth and metastasis of M8T was significantly suppressed both in vitro and in vivo.

  7. Curcumin inhibits cell growth and invasion and induces apoptosis through down-regulation of Skp2 in pancreatic cancer cells

    Science.gov (United States)

    Su, Jingna; Zhou, Xiuxia; Wang, Lixia; Yin, Xuyuan; Wang, Zhiwei

    2016-01-01

    Natural polyphenol compound curcumin has been found to exhibit its anticancer activity in a variety of human malignancies including pancreatic cancer (PC). However, the underlying mechanism has not been fully understood. Accumulating evidence has demonstrated that Skp2 (S-phase kinase associated protein 2) plays an oncogenic role in the development and progression of human cancers. In this study, we aim to explore the molecular basis of curcumin-induced cell growth inhibition in PC cells.Multiple methods such as CTG assay, Flow cytometry, clonogenic assay, wound healing assay, Transwell invasion assay, Western blotting, and transfection were performed to validate the oncogenic role of curcumin in PC cells. We found that curcumin suppressed cell growth, clonogenic potential, migration and invasion, and induced cell apoptosis and cell cycle arrest. Moreover, we observed thatover-expression of Skp2 significantly promoted cell growth, whereas down-regulation of Skp2 with siRNAs inhibited cell growth. The molecular basis of curcumin-mediated cell growth inhibition we identified is that curcumin significantly suppressed Skp2 expression and subsequently induced p21 expression. These findings suggested thattargeting Skp2 by curcumin could be a promising therapeutic strategy for the treatment of PC patients.

  8. A Molecular Dynamics Study on the Constraint Conditions of the Particle Growth Process in Laser Synthesis of Nanopowders

    OpenAIRE

    Shiwei Zhang; Jun Liu; Zhijun Zhang; Wenhui Zhang

    2012-01-01

    Laser-induced chemical vapor deposition (LICVD) is a nanopowder synthesis method in which the nanoparticles of a synthetic product undergo nucleation, growth, and agglomeration. The growth process is crucial because it directly determines the growth rate and final size of nanoparticles. In this paper, the nanoparticle growth process is analyzed through a molecular dynamics study, and the process is divided into five steps. In addition, this study explains the microscopic heat and mass transfe...

  9. Analysis of a stochastic model for bacterial growth and the lognormality in the cell-size distribution

    CERN Document Server

    Yamamoto, Ken

    2016-01-01

    This paper theoretically analyzes a phenomenological stochastic model for bacterial growth. This model comprises cell divisions and linear growth of cells, where growth rates and cell cycles are drawn from lognormal distributions. We derive that the cell size is expressed as a sum of independent lognormal variables. We show numerically that the quality of the lognormal approximation greatly depends on the distributions of the growth rate and cell cycle. Furthermore, we show that actual parameters of the growth rate and cell cycle take values which give good lognormal approximation, so the experimental cell-size distribution is in good agreement with a lognormal distribution.

  10. Analysis of a Stochastic Model for Bacterial Growth and the Lognormality of the Cell-Size Distribution

    Science.gov (United States)

    Yamamoto, Ken; Wakita, Jun-ichi

    2016-07-01

    This paper theoretically analyzes a phenomenological stochastic model for bacterial growth. This model comprises cell division and the linear growth of cells, where growth rates and cell cycles are drawn from lognormal distributions. We find that the cell size is expressed as a sum of independent lognormal variables. We show numerically that the quality of the lognormal approximation greatly depends on the distributions of the growth rate and cell cycle. Furthermore, we show that actual parameters of the growth rate and cell cycle take values that give a good lognormal approximation; thus, the experimental cell-size distribution is in good agreement with a lognormal distribution.

  11. Optimization of the cell seeding density and modeling of cell growth and metabolism using the modified Gompertz model for microencapsulated animal cell culture.

    Science.gov (United States)

    Wen-tao, Qi; Ying, Zhang; Juan, Ma; Xin, Guo; Yu-bing, Xie; Wei, Wang; Xiaojun, Ma

    2006-04-01

    Cell microencapsulation is one of the promising strategies for the in vitro production of proteins or in vivo delivery of therapeutic products. In order to design and fabricate the optimized microencapsulated cell system, the Gompertz model was applied and modified to describe the growth and metabolism of microencapsulated cell, including substrate consumption and product formation. The Gompertz model successfully described the cell growth kinetics and the modified Gompertz models fitted the substrate consumption and product formation well. It was demonstrated that the optimal initial cell seeding density was about 4-5 x 10(6) cells/mL of microcapsule, in terms of the maximum specific growth rate, the glucose consumption potential and the product formation potential calculated by the Gompertz and modified Gompertz models. Modeling of cell growth and metabolism in microcapsules provides a guideline for optimizing the culture of microencapsulated cells.

  12. The Kinetic of Growth Cell of Neurospora Sitophila at Phythohormone Production Medium

    International Nuclear Information System (INIS)

    The study of growth cell kinetic of Neurospora Sitophila at Phythohormone production medium has been done. The growth of this mould at Mendel broth medium is affected by pH and glucose concentration. In the enriched medium by 2 % glucose content and pH 4.5 shows the optimal growth of cell with specific growth rate by 0.0785 per hour. The changing of pH connected with the growth cell curve, so this moment as an indicator of cell harvest time. At the stationary phase to dead phase is explained by pH changed between 2.80-2.85. This phase may be estimated as a time of Phythohormone synthesize by mold. (author)

  13. L-Methionine inhibits growth of human pancreatic cancer cells.

    Science.gov (United States)

    Benavides, Maximo A; Bosland, Maarten C; da Silva, Cássio P; Gomes Sares, Claudia T; de Oliveira, Alana M Cerqueira; Kemp, Rafael; dos Reis, Rodolfo B; Martins, Vilma R; Sampaio, Suely V; Bland, Kirby I; Grizzle, William E; dos Santos, José S

    2014-02-01

    We have previously shown that L-methionine inhibits proliferation of breast, prostate, and colon cancer cells. This study extends these findings to BXPC-3 (mutated p53) and HPAC (wild-type p53) pancreatic cancer cells and explores the reversibility of these effects. Cells were exposed to L-methionine (5 mg/ml) for 7 days or for 3 days, followed by 4 days of culture without L-methionine (recovery). Cell proliferation, apoptosis, and cell cycle effects were assessed by flow cytometry after staining for Ki-67 or annexin V/propidium iodide. Cell proliferation was reduced by 31-35% after 7 days of methionine exposure; the effect persisted in BXPC-3 and HPAC cells after 4 days of recovery. Methionine increased apoptosis by 40-75% in HPAC cells, but not in BXPC-3 cells. Continuous exposure to methionine caused accumulation of BXPC-3 cells in the S phase and HPAC cells in both the G0/G1 and S phases; however, after 4 days of recovery, these effects disappeared. In conclusion, L-methionine inhibits proliferation and interferes with the cell cycle of BXPC-3 and HPAC pancreatic cancer cells; the effects on apoptosis remarkably persisted after methionine withdrawal. Apoptosis was induced only in BXPC-3 cells. Some of the differences in the effects of methionine between cell lines may be related to disparate p53 status. These findings warrant further studies on the potential therapeutic benefit of L-methionine against pancreatic cancer.

  14. Roll-to-roll processed polymer tandem solar cells partially processed from water

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Andersen, Thomas Rieks; Andreasen, Birgitta;

    2012-01-01

    Large area polymer tandem solar cells completely processed using roll-to-roll (R2R) coating and printing techniques are demonstrated. A stable tandem structure was achieved by the use of orthogonal ink solvents for the coating of all layers, including both active layers. Processing solvents...... included water, alcohols and chlorobenzene. Open-circuit voltages close to the expected sum of sub cell voltages were achieved, while the overall efficiency of the tandem cells was found to be limited by the low yielding back cell, which was processed from water based ink. Many of the challenges associated...

  15. Direct Image-Based Enumeration of Clostridium phytofermentans Cells on Insoluble Plant Biomass Growth Substrates.

    Science.gov (United States)

    Alvelo-Maurosa, Jesús G; Lee, Scott J; Hazen, Samuel P; Leschine, Susan B

    2016-02-01

    A dual-fluorescent-dye protocol to visualize and quantify Clostridium phytofermentans ISDg (ATCC 700394) cells growing on insoluble cellulosic substrates was developed by combining calcofluor white staining of the growth substrate with cell staining using the nucleic acid dye Syto 9. Cell growth, cell substrate attachment, and fermentation product formation were investigated in cultures containing either Whatman no. 1 filter paper, wild-type Sorghum bicolor, or a reduced-lignin S. bicolor double mutant (bmr-6 bmr-12 double mutant) as the growth substrate. After 3 days of growth, cell numbers in cultures grown on filter paper as the substrate were 6.0- and 2.2-fold higher than cell numbers in cultures with wild-type sorghum and double mutant sorghum, respectively. However, cells produced more ethanol per cell when grown with either sorghum substrate than with filter paper as the substrate. Ethanol yields of cultures were significantly higher with double mutant sorghum than with wild-type sorghum or filter paper as the substrate. Moreover, ethanol production correlated with cell attachment in sorghum cultures: 90% of cells were directly attached to the double mutant sorghum substrate, while only 76% of cells were attached to wild-type sorghum substrate. With filter paper as the growth substrate, ethanol production was correlated with cell number; however, with either wild-type or mutant sorghum, ethanol production did not correlate with cell number, suggesting that only a portion of the microbial cell population was active during growth on sorghum. The dual-staining procedure described here may be used to visualize and enumerate cells directly on insoluble cellulosic substrates, enabling in-depth studies of interactions of microbes with plant biomass. PMID:26637592

  16. Nerve growth factor injected into the gastric ulcer base incorporates into endothelial, neuronal, glial and epithelial cells: implications for angiogenesis, mucosal regeneration and ulcer healing.

    Science.gov (United States)

    Tanigawa, T; Ahluwalia, A; Watanabe, T; Arakawa, T; Tarnawski, A S

    2015-08-01

    A previous study has demonstrated that locally administered growth factors such as epidermal growth factor, basic fibroblast growth factor and hepatocyte growth factor can accelerate healing of experimental gastric ulcers in rats. That study indicates that locally administered growth factors can exert potent biological effects resulting in enhanced gastric ulcers healing. However, the fate of injected growth factors, their retention and localization to specific cellular compartments have not been examined. In our preliminary study, we demonstrated that local injection of nerve growth factor to the base of experimental gastric ulcers dramatically accelerates ulcer healing, increases angiogenesis - new blood vessel formation, and improves the quality of vascular and epithelial regeneration. Before embarking on larger, definitive and time sequence studies, we wished to determine whether locally injected nerve growth factor is retained in gastric ulcer's tissues and taken up by specific cells during gastric ulcer healing. Gastric ulcers were induced in anesthetized rats by local application of acetic acid using standard methods; and, 60 min later fluorescein isothiocyanate-labeled nerve growth factor was injected locally to the ulcer base. Rats were euthanized 2, 5 and 10 days later. Gastric specimens were obtained and processed for histology. Unstained paraffin sections were examined under a fluorescence microscope, and the incorporation of fluorescein isothiocyanate-labeled nerve growth factor into various gastric tissue cells was determined and quantified. In addition, we performed immunostaining for S100β protein that is expressed in neural components. Five and ten days after ulcer induction labeled nerve growth factor (injected to the gastric ulcer base) was incorporated into endothelial cells of blood vessels, neuronal, glial and epithelial cells, myofibroblasts and muscle cells. This study demonstrates for the first time that during gastric ulcer healing

  17. Nanoscale imaging of the growth and division of bacterial cells on planar substrates with the atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Van Der Hofstadt, M. [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Hüttener, M.; Juárez, A. [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Departament de Microbiologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona (Spain); Gomila, G., E-mail: ggomila@ibecbarcelona.eu [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Departament d' Electronica, Universitat de Barcelona, C/ Marti i Franqués 1, 08028 Barcelona (Spain)

    2015-07-15

    With the use of the atomic force microscope (AFM), the Nanomicrobiology field has advanced drastically. Due to the complexity of imaging living bacterial processes in their natural growing environments, improvements have come to a standstill. Here we show the in situ nanoscale imaging of the growth and division of single bacterial cells on planar substrates with the atomic force microscope. To achieve this, we minimized the lateral shear forces responsible for the detachment of weakly adsorbed bacteria on planar substrates with the use of the so called dynamic jumping mode with very soft cantilever probes. With this approach, gentle imaging conditions can be maintained for long periods of time, enabling the continuous imaging of the bacterial cell growth and division, even on planar substrates. Present results offer the possibility to observe living processes of untrapped bacteria weakly attached to planar substrates. - Highlights: • Gelatine coatings used to weakly attach bacterial cells onto planar substrates. • Use of the dynamic jumping mode as a non-perturbing bacterial imaging mode. • Nanoscale resolution imaging of unperturbed single living bacterial cells. • Growth and division of single bacteria cells on planar substrates observed.

  18. FUNDAMENTAL TUNNELING PROCESSES IN MOSa SOLAR CELLS

    OpenAIRE

    Balberg, I.; Hanak, J.; Weakliem, H.; Gal, E.

    1981-01-01

    In previous studies of tunneling through a MOSa tunnel junction, where Sa was a-Si : H, it was shown that their characteristics resemble those of MOSc devices where Sc was crystalline silicon. In the present work we would like to report a demonstration of fundamental tunneling processes in such tunnel junctions. In particular, the transition from semiconductor controlled regime to tunneling controlled regime can be clearly distinguished. The present results represent one of the rare cases whe...

  19. miR-134 inhibits non-small cell lung cancer growth by targeting the epidermal growth factor receptor.

    Science.gov (United States)

    Qin, Qin; Wei, Furong; Zhang, Jianbo; Wang, Xingwu; Li, Baosheng

    2016-10-01

    The epidermal growth factor receptor (EGFR) is frequently activated in a wide range of solid tumours and represents an important therapeutic target. MicroRNAs (miRNAs) have recently been recognized as a rational and potential modality for anti-EGFR therapies. However, more EGFR-targeting miRNAs need to be explored. In this study, we identified a novel EGFR-targeting miRNA, miRNA-134 (miR-134), in non-small-cell lung cancer (NSCLC) cell lines. Luciferase assays confirmed that EGFR is a direct target of miR-134. In addition, the overexpression of miR-134 inhibited EGFR-related signaling and suppressed NSCLC cells proliferation by inducing cell cycle arrest and/or apoptosis, suggesting that miR-134 functions as a tumour suppressor in NSCLC. Further mechanistic investigation including RNAi and rescue experiments suggested that the down-regulation of EGFR by miR-134 partially contributes to the antiproliferative role of miR-134. Last, in vivo experiments demonstrated that miR-134 suppressed tumour growth of A549 xenograft in nude mice. Taken together, our findings suggest that miR-134 inhibits non-small cell lung cancer growth by targeting the EGFR.

  20. Theoretical study of the nucleation/growth process of carbon clusters under pressure.

    Science.gov (United States)

    Pineau, N; Soulard, L; Los, J H; Fasolino, A

    2008-07-14

    We used molecular dynamics and the empirical potential for carbon LCBOPII to simulate the nucleation/growth process of carbon clusters both in vacuum and under pressure. In vacuum, our results show that the growth process is homogeneous and yields mainly sp(2) structures such as fullerenes. We used an argon gas and Lennard-Jones potentials to mimic the high pressures and temperatures reached during the detonation of carbon-rich explosives. We found that these extreme thermodynamic conditions do not affect substantially the topologies of the clusters formed in the process. However, our estimation of the growth rates under pressure are in much better agreement with the values estimated experimentally than our vacuum simulations. The formation of sp(3) carbon was negligible both in vacuum and under pressure which suggests that larger simulation times and cluster sizes are needed to allow the nucleation of nanodiamonds. PMID:18624553

  1. Growth Inhibition Effect of DL-Lysine Acetylalicylate on sw480 Colon Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    WANG Shu; TIAN Xiao-feng; WANG Li-ming

    2007-01-01

    Objective: To investigate the effect of DL-lysine acetylsalicylate on proliferation of colon carcinoma cells line sw480. Methods: After treatment of DL-lysine acetylsalicylate, the study was performed by observing sw480 colorectal cancer cells with phase contrast microscope, making growth curve, and examining the inhibition rate of sw480 cells with MTT assay. Results: The morphology of sw480 cells showed characteristics of apoptosis, the cell growth curve showed inhibited proliferation of sw480 cells when treated with DL-lysine acetylsalicylate (P<0.05). The rate of inhibition was upward when the drug concentration increased. Conclusion: DL-lysine acetylsalicylate for injection can inhibit the growth of sw480 colorectal cancer cells obviously in a dose dependent manner.

  2. Angiogenin mediates androgen-stimulated growth of prostate cancer cells and correlates with castration resistance

    OpenAIRE

    Li, Shuping; Hu, Miaofen G.; Sun, Yeqing; YOSHIOKA, NORIE; IBARAGI, SOICHIRO; Sheng, Jinghao; Sun, Guangjie; Kishimoto, Koji; Hu, Guo-fu

    2013-01-01

    Androgen receptor (AR) is a critical effector of prostate cancer (PCa) development and progression. Androgen-dependent PCa rely on the function of AR for growth and progression. Many castration-resistant PCa continue to depend on AR signaling for survival and growth. Ribosomal RNA (rRNA) is essential for both androgen-dependent and castration-resistant growth of PCa cells. During androgen-dependent growth of prostate cells, androgen-AR signaling leads to the accumulation of rRNA. However, the...

  3. FACTORS LIMITING BACTERIAL GROWTH : III. CELL SIZE AND "PHYSIOLOGIC YOUTH" IN BACTERIUM COLI CULTURES.

    Science.gov (United States)

    Hershey, A D; Bronfenbrenner, J

    1938-07-20

    1. Measurements of the rate of oxygen uptake per cell in transplants of Bacterium coli from cultures of this organism in different phases of growth have given results in essential agreement with the observations of others. 2. Correlations of viable count, centrifugable nitrogen, and turbidity, with oxygen consumption, indicate that the increased metabolism during the early portion of the growth period is quantitatively referable to increased average size of cells. 3. Indirect evidence has suggested that the initial rate of growth of transplants is not related to the phase of growth of the parent culture.

  4. Analysis of the growth of concomitant nitride layers produced by a post-discharge assisted process

    Energy Technology Data Exchange (ETDEWEB)

    Oseguera, J. [ITESM-CEM, Carretera al Lago de Guadalupe km. 3.5 Atizapan, 52926 (Mexico)]. E-mail: joseguer@itesm.mx; Castillo, F. [ITESM-CEM, Carretera al Lago de Guadalupe km. 3.5 Atizapan, 52926 (Mexico); Gomez, A. [UFRO, Av. Francisco Salazar 01145, Temuco, Casilla 54-d (Chile); Fraguela, A. [BUAP, Rio Verde y Ave. San Claudio, San Manuel, Puebla, 72570 (Mexico)

    2006-11-23

    In the present work, the growth of concomitant nitride layers during a post-discharge process is studied. The analysis takes into account the similarities and differences between nitriding post-discharge processes and other nitriding processes, employing a mathematical simulation of nitrogen diffusion. The considered differences are related to the thermodynamic standard states, the nitrogen concentration on the surface and the sputtering of the surface (this one for plasma processes). Nitrogen diffusion and layer formation are described from the beginning of the process by means of a mathematical model.

  5. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling

    Science.gov (United States)

    Cheng, C.-Y.; Perevedentseva, E.; Tu, J.-S.; Chung, P.-H.; Cheng, C.-L.; Liu, K.-K.; Chao, J.-I.; Chen, P.-H.; Chang, C.-C.

    2007-04-01

    This letter presents direct observation of growth hormone receptor in one single cancer cell using nanodiamond-growth hormone complex as a specific probe. The interaction of surface growth hormone receptor of A549 human lung epithelial cells with growth hormone was observed using nanodiamond's unique spectroscopic signal via confocal Raman mapping. The growth hormone molecules were covalent conjugated to 100nm diameter carboxylated nanodiamonds, which can be recognized specifically by the growth hormone receptors of A549 cell. The Raman spectroscopic signal of diamond provides direct and in vitro observation of growth hormone receptors in physiology condition in a single cell level.