WorldWideScience

Sample records for cell growth inhibition

  1. Canine tracheal epithelial cells are more sensitive than rat tracheal epithelial cells to transforming growth factor beta induced growth inhibition

    International Nuclear Information System (INIS)

    Hubbs, A.F.; Hahn, F.F.; Kelly, G.; Thomassen, D.G.

    1988-01-01

    Transforming growth factor beta (TGFβ) markedly inhibited growth of canine tracheal epithelial (CTE) cells. Reduced responsiveness to TGFβ-induced growth inhibition accompanied neoplastic progression of these cells from primary to transformed to neoplastic. This was similar to the relationship between neoplastic progression and increased resistance to TGFβ-induced growth inhibition seen for rat tracheal epithelial (RTE) cells. The canine cells were more sensitive than rat cells to TGFβ-induced growth inhibition at all stages in the neoplastic process. (author)

  2. Fluoxetine regulates cell growth inhibition of interferon-α.

    Science.gov (United States)

    Lin, Yu-Min; Yu, Bu-Chin; Chiu, Wen-Tai; Sun, Hung-Yu; Chien, Yu-Chieh; Su, Hui-Chen; Yen, Shu-Yang; Lai, Hsin-Wen; Bai, Chyi-Huey; Young, Kung-Chia; Tsao, Chiung-Wen

    2016-10-01

    Fluoxetine, a well-known anti-depression agent, may act as a chemosensitizer to assist and promote cancer therapy. However, how fluoxetine regulates cellular signaling to enhance cellular responses against tumor cell growth remains unclear. In the present study, addition of fluoxetine promoted growth inhibition of interferon-alpha (IFN-α) in human bladder carcinoma cells but not in normal uroepithelial cells through lessening the IFN-α-induced apoptosis but switching to cause G1 arrest, and maintaining the IFN-α-mediated reduction in G2/M phase. Activations and signal transducer and transactivator (STAT)-1 and peroxisome proliferator-activated receptor alpha (PPAR-α) were involved in this process. Chemical inhibitions of STAT-1 or PPAR-α partially rescued bladder carcinoma cells from IFN-α-mediated growth inhibition via blockades of G1 arrest, cyclin D1 reduction, p53 downregulation and p27 upregulation in the presence of fluoxetine. However, the functions of both proteins were not involved in the control of fluoxetine over apoptosis and maintained the declined G2/M phase of IFN-α. These results indicated that activation of PPAR-α and STAT-1 participated, at least in part, in growth inhibition of IFN-α in the presence of fluoxetine.

  3. Mullerian Inhibiting Substances (MIS) Augments IFN-gamma Mediated Inhibition of Breast Cancer Cell Growth

    National Research Council Canada - National Science Library

    Gupta, Vandana

    2006-01-01

    MIS is a member of the TGF family. The purpose of this study is to test the hypothesis that MIS and IFN-gamma might be more effective in the inhibition of breast cancer cell growth than either agent alone...

  4. Mullerian Inhibiting Substance (MIS) Augments IFN-gamma Mediated Inhibition of Breast Cancer Cell Growth

    National Research Council Canada - National Science Library

    Gupta, Vandana

    2004-01-01

    Mullerian Inhibiting Substance (MIS), a member of the TGFB family regulates growth, differentiation, and apoptosis in many cell types In the male embryo, MIS causes regression of the Mullerian duct...

  5. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  6. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    International Nuclear Information System (INIS)

    Chang, Cheng-Yi; Kuan, Yu-Hsiang; Ou, Yen-Chuan; Li, Jian-Ri; Wu, Chih-Cheng; Pan, Pin-Ho; Chen, Wen-Ying; Huang, Hsuan-Yi; Chen, Chun-Jung

    2014-01-01

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK

  7. ITE inhibits growth of human pulmonary artery endothelial cells.

    Science.gov (United States)

    Pang, Ling-Pin; Li, Yan; Zou, Qing-Yun; Zhou, Chi; Lei, Wei; Zheng, Jing; Huang, Shi-An

    2017-10-01

    Pulmonary arterial hypertension (PAH), a deadly disorder is associated with excessive growth of human pulmonary artery endothelial (HPAECs) and smooth muscle (HPASMCs) cells. Current therapies primarily aim at promoting vasodilation, which only ameliorates clinical symptoms without a cure. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is an endogenous aryl hydrocarbon receptor (AhR) ligand, and mediates many cellular function including cell growth. However, the roles of ITE in human lung endothelial cells remain elusive. Herein, we tested a hypothesis that ITE inhibits growth of human pulmonary artery endothelial cells via AhR. Immunohistochemistry was performed to localize AhR expression in human lung tissues. The crystal violet method and MTT assay were used to determine ITE's effects on growth of HPAECs. The AhR activation in HPAECs was confirmed using Western blotting and RT-qPCR. The role of AhR in ITE-affected proliferation of HPAECs was assessed using siRNA knockdown method followed by the crystal violet method. Immunohistochemistry revealed that AhR was present in human lung tissues, primarily in endothelial and smooth muscle cells of pulmonary veins and arteries, as well as in bronchial and alveolar sac epithelia. We also found that ITE dose- and time-dependently inhibited proliferation of HPAECs with a maximum inhibition of 83% at 20 µM after 6 days of treatment. ITE rapidly decreased AhR protein levels, while it increased mRNA levels of cytochrome P450 (CYP), family 1, member A1 (CYP1A1) and B1 (CYP1B1), indicating activation of the AhR/CYP1A1 and AhR/CYP1B1 pathways in HPAECs. The AhR siRNA significantly suppressed AhR protein expression, whereas it did not significantly alter ITE-inhibited growth of HPAECs. ITE suppresses growth of HPAECs independent of AhR, suggesting that ITE may play an important role in preventing excessive growth of lung endothelial cells.

  8. Improved Performance in Mammalian Cell Perfusion Cultures by Growth Inhibition.

    Science.gov (United States)

    Wolf, Moritz K F; Closet, Aurélie; Bzowska, Monika; Bielser, Jean-Marc; Souquet, Jonathan; Broly, Hervé; Morbidelli, Massimo

    2018-05-21

    Mammalian cell perfusion cultures represent a promising alternative to the current fed-batch technology for the production of various biopharmaceuticals. Long-term operation at a fixed viable cell density (VCD) requires a viable culture and a constant removal of excessive cells. Product loss in the cell removing bleed stream deteriorates the process yield. In this study, the authors investigate the use of chemical and environmental growth inhibition on culture performance by either adding valeric acid (VA) to the production media or by reducing the culture temperature (33.0 °C) with respect to control conditions (36.5 °C, no VA). Low temperature significantly reduces cellular growth, thus, resulting in lower bleed rates accompanied by a reduced product loss of 11% compared to 26% under control conditions. Additionally, the cell specific productivity of the target protein improves and maintained stable leading to media savings per mass of product. VA shows initially an inhibitory effect on cellular growth. However, cells seemed to adapt to the presence of the inhibitor resulting in a recovery of the cellular growth. Cell cycle and Western blot analyses support the observed results. This work underlines the role of temperature as a key operating variable for the optimization of perfusion cultures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions

    DEFF Research Database (Denmark)

    Perrais, Michaël; Chen, Xiao; Perez-Moreno, Mirna

    2007-01-01

    growth inhibitory signals. To address this question, we have selectively formed E-cadherin homophilic bonds at the cell surface of isolated epithelial cells by using functionally active recombinant E-cadherin protein attached to microspheres. We find that E-cadherin ligation alone reduces the frequency...... of cells entering the S phase, demonstrating that E-cadherin ligation directly transduces growth inhibitory signals. E-cadherin binding to beta-catenin is required for cell growth inhibition, but beta-catenin/T-cell factor transcriptional activity is not involved in growth inhibition resulting from...... homophilic binding. Neither E-cadherin binding to p120-catenin nor beta-catenin binding to alpha-catenin, and thereby the actin cytoskeleton, is required for growth inhibition. E-cadherin ligation also inhibits epidermal growth factor (EGF) receptor-mediated growth signaling by a beta...

  10. Praziquantel synergistically enhances paclitaxel efficacy to inhibit cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Zhen Hua Wu

    Full Text Available The major challenges we are facing in cancer therapy with paclitaxel (PTX are the drug resistance and severe side effects. Massive efforts have been made to overcome these clinical challenges by combining PTX with other drugs. In this study, we reported the first preclinical data that praziquantel (PZQ, an anti-parasite agent, could greatly enhance the anticancer efficacy of PTX in various cancer cell lines, including PTX-resistant cell lines. Based on the combination index value, we demonstrated that PZQ synergistically enhanced PTX-induced cell growth inhibition. The co-treatment of PZQ and PTX also induced significant mitotic arrest and activated the apoptotic cascade. Moreover, PZQ combined with PTX resulted in a more pronounced inhibition of tumor growth compared with either drug alone in a mouse xenograft model. We tried to investigate the possible mechanisms of this synergistic efficacy induced by PZQ and PTX, and we found that the co-treatment of the two drugs could markedly decrease expression of X-linked inhibitor of apoptosis protein (XIAP, an anti-apoptotic protein. Our data further demonstrated that down-regulation of XIAP was required for the synergistic interaction between PZQ and PTX. Together, this study suggested that the combination of PZQ and PTX may represent a novel and effective anticancer strategy for optimizing PTX therapy.

  11. Inhibition of canonical WNT signaling attenuates human leiomyoma cell growth

    Science.gov (United States)

    Ono, Masanori; Yin, Ping; Navarro, Antonia; Moravek, Molly B.; Coon, John S.; Druschitz, Stacy A.; Gottardi, Cara J.; Bulun, Serdar E.

    2014-01-01

    Objective Dysregulation of WNT signaling plays a central role in tumor cell growth and progression. Our goal was to assess the effect of three WNT/β-catenin pathway inhibitors, Inhibitor of β-Catenin And TCF4 (ICAT), niclosamide, and XAV939 on the proliferation of primary cultures of human uterine leiomyoma cells. Design Prospective study of human leiomyoma cells obtained from myomectomy or hysterectomy. Setting University research laboratory. Patient(s) Women (n=38) aged 27–53 years undergoing surgery. Intervention(s) Adenoviral ICAT overexpression or treatment with varying concentrations of niclosamide or XAV939. Main Outcome Measure(s) Cell proliferation, cell death, WNT/β-catenin target gene expression or reporter gene regulation, β-catenin levels and cellular localization. Result(s) ICAT, niclosamide, or XAV939 inhibit WNT/β-catenin pathway activation and exert anti-proliferative effects in primary cultures of human leiomyoma cells. Conclusion(s) Three WNT/β-catenin pathway inhibitors specifically block human leiomyoma growth and proliferation, suggesting that the canonical WNT pathway may be a potential therapeutic target for the treatment of uterine leiomyoma. Our findings provide rationale for further preclinical and clinical evaluation of ICAT, niclosamide, and XAV939 as candidate anti-tumor agents for uterine leiomyoma. PMID:24534281

  12. Blue light inhibits the growth of B16 melanoma cells

    International Nuclear Information System (INIS)

    Ohara, Masayuki; Katoh, Osamu; Watanabe, Hiromitsu

    2002-01-01

    Although a number of studies have been carried out to examine the biological effects of radiation and ultraviolet radiation (UV), little is known concerning the effects of visible light. In the present study, exposure of B16 melanoma cells to blue light (wavelength 470 nm, irradiance 5.7 mW/cm 2 ) from a light-emitting diode (LED) inhibited cell growth in proportion to the period of exposure, with no increase observed in the number of dead cells. The number of B16 melanoma colonies that formed after exposure to blue light for 20 min was only slightly less than that in non-exposed controls, but the colony size as assessed by the area covered by colonies and cell counts per colony were markedly decreased. The percentages of G0/G1 and G2/M phase cells were markedly increased, with a reduction in S phase cells as determined by flow cytometry after exposure to blue light. Furthermore, analysis of the incorporation of 5-bromo-2'-deoxyuridine (BrdU) into DNA also showed a reduction in the percentage of S phase cells after exposure. These results indicate that blue light exerts cytostatic effects, but not a cytocidal action, on B16 melanoma cells. (author)

  13. Blue light inhibits the growth of B16 melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, Masayuki; Katoh, Osamu; Watanabe, Hiromitsu [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine; Kawashima, Yuzo [Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima (Japan)

    2002-05-01

    Although a number of studies have been carried out to examine the biological effects of radiation and ultraviolet radiation (UV), little is known concerning the effects of visible light. In the present study, exposure of B16 melanoma cells to blue light (wavelength 470 nm, irradiance 5.7 mW/cm{sup 2}) from a light-emitting diode (LED) inhibited cell growth in proportion to the period of exposure, with no increase observed in the number of dead cells. The number of B16 melanoma colonies that formed after exposure to blue light for 20 min was only slightly less than that in non-exposed controls, but the colony size as assessed by the area covered by colonies and cell counts per colony were markedly decreased. The percentages of G0/G1 and G2/M phase cells were markedly increased, with a reduction in S phase cells as determined by flow cytometry after exposure to blue light. Furthermore, analysis of the incorporation of 5-bromo-2'-deoxyuridine (BrdU) into DNA also showed a reduction in the percentage of S phase cells after exposure. These results indicate that blue light exerts cytostatic effects, but not a cytocidal action, on B16 melanoma cells. (author)

  14. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis.

    Science.gov (United States)

    Li, Qingli; Lambrechts, Mark J; Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Yin, Rutie; Xi, Mingrong; You, Zongbing

    2013-01-01

    Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose) polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy.

  15. p8 inhibits the growth of human pancreatic cancer cells and its expression is induced through pathways involved in growth inhibition and repressed by factors promoting cell growth

    Directory of Open Access Journals (Sweden)

    Vasseur Sophie

    2003-11-01

    Full Text Available Abstract Background p8 is a stress-induced protein with multiple functions and biochemically related to the architectural factor HMG-I/Y. We analyzed the expression and function of p8 in pancreatic cancer-derived cells. Methods Expression of p8 was silenced in the human pancreatic cancer cell lines Panc-1 and BxPc-3 by infection with a retrovirus expressing p8 RNA in the antisense orientation. Cell growth was measured in control and p8-silenced cells. Influence on p8 expression of the induction of intracellular pathways promoting cellular growth or growth arrest was monitored. Results p8-silenced cells grew more rapidly than control cells transfected with the empty retrovirus. Activation of the Ras→Raf→MEK→ERK and JNK intracellular pathways down-regulated p8 expression. In addition, the MEK1/2 inhibitor U0126 and the JNK inhibitor SP600125 up-regulates expression of p8. Conversely, p38 or TGFβ-1 induced p8 expression whereas the specific p38 inhibitor SB203580 down-regulated p8 expression. Finally, TGFβ-1 induction was in part mediated through p38. Conclusions p8 inhibits the growth of human pancreatic cancer cells. p8 expression is induced through pathways involved in growth inhibition and repressed by factors that promote cell growth. These results suggest that p8 belongs to a pathway regulating the growth of pancreatic cancer cells.

  16. Paeoniflorin inhibits cell growth and induces cell cycle arrest through inhibition of FoxM1 in colorectal cancer cells.

    Science.gov (United States)

    Yue, Meng; Li, Shiquan; Yan, Guoqiang; Li, Chenyao; Kang, Zhenhua

    2018-01-01

    Paeoniflorin (PF) exhibits tumor suppressive functions in a variety of human cancers. However, the function of PF and molecular mechanism in colorectal cancer are elusive. In the present study, we investigated whether PF could exert its antiproliferative activity, anti-migration, and anti-invasive function in colorectal cancer cells. We found that PF inhibited cell growth and induced apoptosis and blocked cell cycle progression in the G0/G1 phase in colorectal cancer cells. Moreover, we found that PF suppressed cell migration and invasion in colorectal cancer cells. FoxM1 has been reported to play an important oncogenic role in human cancers. We also determine whether PF inhibited the expression of FoxM1, leading to its anti-cancer activity. We found that PF treatment in colorectal cancer cells resulted in down-regulation of FoxM1. The rescue experiments showed that overexpression of FoxM1 abrogated the tumor suppressive function induced by PF treatment. Notably, depletion of FoxM1 promoted the anti-tumor activity of PF in colorectal cancer cells. Therefore, inhibition of FoxM1 could participate in the anti-tumor activity of PF in colorectal cancer cells.

  17. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis

    Directory of Open Access Journals (Sweden)

    Li Q

    2013-07-01

    Full Text Available Qingli Li,1,2 Mark J Lambrechts,1 Qiuyang Zhang,1 Sen Liu,1 Dongxia Ge,1 Rutie Yin,2 Mingrong Xi,2 Zongbing You1 1Departments of Structural and Cellular Biology and Orthopaedic Surgery, Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane Center for Stem Cell Research and Regenerative Medicine, and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, USA; 2Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China Abstract: Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA, are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy. Keywords: serine hydroxymethyltransferase, prostate cancer, apoptosis

  18. Arecoline inhibits endothelial cell growth and migration and the attachment to mononuclear cells

    Directory of Open Access Journals (Sweden)

    Shuei-Kuen Tseng

    2014-09-01

    Conclusion: Arecoline impaired vascular endothelial cells by inhibiting their growth and migration and their adhesion to U937 mononuclear cells. These results reveal that arecoline may contribute to the pathogenesis of oral submucous fibrosis and cardiovascular diseases by affecting endothelial cell function in BQ chewers.

  19. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Magnolol Inhibits the Growth of Non-Small Cell Lung Cancer via Inhibiting Microtubule Polymerization

    Directory of Open Access Journals (Sweden)

    Jia Shen

    2017-07-01

    Full Text Available Background: The tubulin/microtubule system, which is an integral component of the cytoskeleton, plays an essential role in mitosis. Targeting mitotic progression by disturbing microtubule dynamics is a rational strategy for cancer treatment. Methods: Microtubule polymerization assay was performed to examine the effect of Magnolol (a novel natural phenolic compound isolated from Magnolia obovata on cellular microtubule polymerization in human non-small cell lung cancer (NSCLC cells. Cell cycle analysis, mitotic index assay, cell proliferation assay, colony formation assay, western blotting analysis of cell cycle regulators, Annexin V-FITC/PI staining, and live/dead viability staining were carried out to investigate the Magnolol’s inhibitory effect on proliferation and viability of NSCLS cells in vitro. Xenograft model of human A549 NSCLC tumor was used to determine the Magnolol’s efficacy in vivo. Results: Magnolol treatment effectively inhibited cell proliferation and colony formation of NSCLC cells. Further study proved that Magnolol induced the mitotic phase arrest and inhibited G2/M progression in a dose-dependent manner, which were mechanistically associated with expression alteration of a series of cell cycle regulators. Furthermore, Magnolol treatment disrupted the cellular microtubule organization via inhibiting the polymerization of microtubule. We also found treatment with NSCLC cells with Magnolol resulted in apoptosis activation through a p53-independent pathway, and autophgy induction via down-regulation of the Akt/mTOR pathway. Finally, Magnolol treatment significantly suppressed the NSCLC tumor growth in mouse xenograft model in vivo. Conclusion: These findings identify Magnolol as a promising candidate with anti-microtubule polymerization activity for NSCLC treatment.

  1. Mevastatin-induced inhibition of cell growth in avocado suspension ...

    African Journals Online (AJOL)

    Research Centre for Plant Growth and Development, School of Agricultural Sciences and Agribusiness, University of .... source of regulatory molecules that modulate cell division .... nucellar tissue from embryo callus derived from seed of.

  2. Depletion of Pokemon gene inhibits hepatocellular carcinoma cell growth through inhibition of H-ras.

    Science.gov (United States)

    Zhang, Quan-Le; Tian, De-An; Xu, Xiang-Jiang

    2011-01-01

    Pokemon is a transcription repressor which plays a critical role in cell transformation and malignancy. However, little is known about its effect on the development and progression of hepatocellular carcinoma (HCC). The aim of this study was to investigate the expression of Pokemon in human HCC tissues and the biological behavior of Pokemon in HCC cells in which it is overexpressed. We also explored the expression of potential downstream cofactors of Pokemon. Reverse transcription polymerase chain reaction and Western blot analysis were used to investigate the expression of Pokemon in tissues of 30 HCC patients. We then examined cell proliferation or apoptosis and β-catenin or H-ras expression in Pokemon-depleted HepG(2) cells using DNA vector-based RNA interference technology. Pokemon was markedly expressed in 22/30 (73.3%) HCC tissues, with expression levels higher than in adjacent normal liver tissues (p Pokemon inhibited proliferation of HepG(2) or induced apoptosis. Also, H-ras expression decreased to a large extent. Pokemon exerts its oncogenic activity in the development of HCC by promoting cancer cell growth and reducing apoptosis, and the effect may be mediated by H-ras. Copyright © 2011 S. Karger AG, Basel.

  3. Cold atmospheric plasma treatment inhibits growth in colorectal cancer cells.

    Science.gov (United States)

    Schneider, Christin; Arndt, Stephanie; Zimmermann, Julia L; Li, Yangfang; Karrer, Sigrid; Bosserhoff, Anja-Katrin

    2018-06-01

    Plasma oncology is a relatively new field of research. Recent developments have indicated that cold atmospheric plasma (CAP) technology is an interesting new therapeutic approach to cancer treatment. In this study, p53 wildtype (LoVo) and human p53 mutated (HT29 and SW480) colorectal cancer cells were treated with the miniFlatPlaSter - a device particularly developed for the treatment of tumor cells - that uses the Surface Micro Discharge (SMD) technology for plasma production in air. The present study analyzed the effects of plasma on colorectal cancer cells in vitro and on normal colon tissue ex vivo. Plasma treatment had strong effects on colon cancer cells, such as inhibition of cell proliferation, induction of cell death, and modulation of p21 expression. In contrast, CAP treatment of murine colon tissue ex vivo for up to 2 min did not show any toxic effect on normal colon cells compared to H2O2 positive control. In summary, these results suggest that the miniFlatPlaSter plasma device is able to kill colorectal cancer cells independent of their p53 mutation status. Thus, this device presents a promising new approach in colon cancer therapy.

  4. Enzalutamide inhibits androgen receptor-positive bladder cancer cell growth.

    Science.gov (United States)

    Kawahara, Takashi; Ide, Hiroki; Kashiwagi, Eiji; El-Shishtawy, Kareem A; Li, Yi; Reis, Leonardo O; Zheng, Yichun; Miyamoto, Hiroshi

    2016-10-01

    Emerging preclinical evidence suggests that androgen-mediated androgen receptor (AR) signals promote bladder cancer progression. However, little is known about the efficacy of an AR signaling inhibitor, enzalutamide, in the growth of bladder cancer cells. In this study, we compared the effects of enzalutamide and 2 other classic antiandrogens, flutamide and bicalutamide, on androgen-induced bladder cancer cell proliferation, migration, and invasion as well as tumor growth in vivo. Thiazolyl blue cell viability assay, flow cytometry, scratch wound-healing assay, transwell invasion assay, real-time polymerase chain reaction, and reporter gene assay were performed in AR-positive (e.g., UMUC3, TCCSUP, and 647V-AR) and AR-negative (e.g., UMUC3-AR-short hairpin RNA [shRNA], TCCSUP-AR-shRNA, 647V) bladder cancer lines treated with dihydrotestosterone and each AR antagonist. We also used a mouse xenograft model for bladder cancer. Dihydrotestosterone increased bladder cancer cell proliferation, migration, and invasion indicating that endogenous or exogenous AR was functional. Enzalutamide, hydroxyflutamide, and bicalutamide showed similar inhibitory effects, without significant agonist activity, on androgen-mediated cell viability/apoptosis, cell migration, and cell invasion in AR-positive lines. No significant effects of dihydrotestosterone as well as AR antagonists on the growth of AR-negative cells were seen. Correspondingly, in UMUC3 cells, these AR antagonists down-regulated androgen-induced expression of AR, matrix metalloproteinase-2, and interleukin-6. Androgen-enhanced AR-mediated transcriptional activity was also blocked by each AR antagonist exhibiting insignificant agonist activity. In UMUC3 xenograft-bearing mice, oral gavage treatment with each antiandrogen retarded tumor growth, and only enzalutamide demonstrated a statistically significant suppression compared with mock treatment. Our current data support recent observations indicating the involvement of

  5. All-trans retinoic acid inhibits craniopharyngioma cell growth: study on an explant cell model.

    Science.gov (United States)

    Li, Qiang; You, Chao; Zhou, Liangxue; Sima, Xiutian; Liu, Zhiyong; Liu, Hao; Xu, Jianguo

    2013-05-01

    The ratio between FABP5 and CRABPII determines cellular response to physiological level of retinoic acid; tumor cells undergo proliferation with high level of FABP5 and apoptosis with high level of CRABPII. We intended to study FABP5 and CRABPII expression in craniopharyngiomas, to establish craniopharyngioma cell model using explants method, and to study the effect of pharmacological dose of retinoic acid on craniopharyngioma cells. Expression of FABP5 and CRABPII in craniopharyngioma tissue from 20 patients was studied using immunohistochemistry. Primary craniopharyngioma cell cultures were established using tissue explants method. Craniopharyngioma cells were treated using various concentrations of all-trans retinoic acid, and cell growth curve, apoptosis, expression of FABP5, CRABPII and NF-κB were assayed in different groups. FABP5/CRABPII ratio was significantly higher in adamatinomatous group than that in papillary group. Cell cultures were established in 19 cases (95 %). Pharmacological level retinoic acid inhibited cell growth and induced cellular apoptosis in dose dependent manner, and apoptosis rate cells treated with 30 μM retinoic acid for 24 h was 43 %. Also, retinoic acid increased CRABPII, and decreased FABP5 and NF-κB expression in craniopharyngioma cells. High FABP5/CRABPII ratio is observed in adamatinomatous craniopharyngioma. Retinoic acid at pharmacological level induced craniopharyngioma cell apoptosis via increasing FABP5/CRABPII ratio and inhibiting NF-κB signaling pathway. Our study demonstrated that all-trans retinoic acid might be a candidate for craniopharyngioma adjuvant chemotherapy in future.

  6. Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus.

    Science.gov (United States)

    Siedlecka, Anna; Wiklund, Susanne; Péronne, Marie-Amélie; Micheli, Fabienne; Lesniewska, Joanna; Sethson, Ingmar; Edlund, Ulf; Richard, Luc; Sundberg, Björn; Mellerowicz, Ewa J

    2008-02-01

    Wood cells, unlike most other cells in plants, grow by a unique combination of intrusive and symplastic growth. Fibers grow in diameter by diffuse symplastic growth, but they elongate solely by intrusive apical growth penetrating the pectin-rich middle lamella that cements neighboring cells together. In contrast, vessel elements grow in diameter by a combination of intrusive and symplastic growth. We demonstrate that an abundant pectin methyl esterase (PME; EC 3.1.1.11) from wood-forming tissues of hybrid aspen (Populus tremula x tremuloides) acts as a negative regulator of both symplastic and intrusive growth of developing wood cells. When PttPME1 expression was up- and down-regulated in transgenic aspen trees, the PME activity in wood-forming tissues was correspondingly altered. PME removes methyl ester groups from homogalacturonan (HG) and transgenic trees had modified HG methylesterification patterns, as demonstrated by two-dimensional nuclear magnetic resonance and immunostaining using PAM1 and LM7 antibodies. In situ distributions of PAM1 and LM7 epitopes revealed changes in pectin methylesterification in transgenic trees that were specifically localized in expanding wood cells. The results show that en block deesterification of HG by PttPME1 inhibits both symplastic growth and intrusive growth. PttPME1 is therefore involved in mechanisms determining fiber width and length in the wood of aspen trees.

  7. Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kanayo [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Sakaguchi, Minoru, E-mail: sakaguti@gly.oups.ac.jp [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Tanaka, Satoshi [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Yoshimoto, Tadashi [Department of Life Science, Setsunan University, 17-8 Ikeda-Nakamachi, Neyagawa, Osaka 572-8508 (Japan); Takaoka, Masanori [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan)

    2014-01-03

    Highlights: •We examined the effects of prolyl oligopeptidase (POP) inhibition on p53 null gastric cancer cell growth. •POP inhibition-induced cell growth suppression was associated with an increase in a quiescent G{sub 0} state. •POP might regulate the exit from and/or reentry into the cell cycle. -- Abstract: Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G{sub 0}/G{sub 1} cell cycle arrest and increased levels of the CDK inhibitor p27{sup kip1} and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-((4-[2-(E)-styrylphenoxy]butanoyl)-L-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G{sub 0}/G{sub 1} cell cycle phase arrest and increased levels of p27{sup kip1} in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G{sub 0} state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.

  8. Mixed metal oxide nanoparticles inhibit growth of Mycobacterium tuberculosis into THP-1 cells

    Directory of Open Access Journals (Sweden)

    A R Jafari

    2016-01-01

    Conclusion: Although Ag NPs exhibited low cytotoxicity, they were unable to inhibit Mtb growth in vitro. ZnO NPs exhibited strong anti-Mtb activity and inhibited bacterial growth, but exhibited high cytotoxicity to human macrophage cells. By mixing Ag and ZnO NPs at a ratio of 8ZnO/2Ag, we acquired a mixture that exhibited potent antibacterial activity against Mtb and no cytotoxic effects on THP-1 cells, resulting in inhibition of both in vitro and ex vivo Mtb growth [Figure 1],[Figure 2],[Figure 3], [Table 1],[Table 2],[Table 3].{Figure 1}{Figure 2}{Figure 3} {Table 1}{Table 2}{Table 3}

  9. Downregulation of Akt1 Inhibits Anchorage-Independent Cell Growth and Induces Apoptosis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xuesong Liu

    2001-01-01

    Full Text Available The serine/threonine kinases, Akti/PKBα, Akt2/PKBβ, and Akt3/PKBγ, play a critical role in preventing cancer cells from undergoing apoptosis. However, the function of individual Akt isoforms in the tumorigenicity of cancer cells is still not well defined. In the current study, we used an AM antisense oligonucleotide (AS to specifically downregulate Akti protein in both cancer and normal cells. Our data indicate that AM AS treatment inhibits the ability of MiaPaCa-2, H460, HCT-15, and HT1080 cells to grow in soft agar. The treatment also induces apoptosis in these cancer cells as demonstrated by FRCS analysis and a caspase activity assay. Conversely, Akti AS treatment has little effect on the cell growth and survival of normal human cells including normal human fibroblast (NHF, fibroblast from muscle (FBM, and mammary gland epithelial 184135 cells. In addition, AM AS specifically sensitizes cancer cells to typical chemotherapeutic agents. Thus, Akti is indispensable for maintaining the tumorigenicity of cancer cells. Inhibition of AM may provide a powerful sensitization agent for chemotherapy specifically in cancer cells.

  10. Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Grassi Rici Rose

    2012-02-01

    Full Text Available Abstract Background The bone morphogenetic proteins (BMPs belong to a unique group of proteins that includes the growth factor TGF-β. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs and belong to the University of São Paulo, College of Veterinary Medicine (FMVZ-USP stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. Results We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p

  11. Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells.

    Science.gov (United States)

    Rici, Rose Eli Grassi; Alcântara, Dayane; Fratini, Paula; Wenceslau, Cristiane Valverde; Ambrósio, Carlos Eduardo; Miglino, Maria Angelica; Maria, Durvanei Augusto

    2012-02-22

    The bone morphogenetic proteins (BMPs) belong to a unique group of proteins that includes the growth factor TGF-β. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs) and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST) cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs) and belong to the University of São Paulo, College of Veterinary Medicine (FMVZ-USP) stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p53. We propose that rhBMP-2 has great

  12. Synergistic growth inhibition of cancer cells harboring the RET/PTC1 ...

    Indian Academy of Sciences (India)

    Synergistic growth inhibition of cancer cells harboring the RET/PTC1 oncogene by staurosporine and rotenone involves enhanced cell death. ANTÓNIO PEDRO GONÇALVES, ARNALDO VIDEIRA, VALDEMAR MÁXIMO and PAULA SOARES. J. Biosci. 36(4), September 2011, 639-648, © Indian Academy of Sciences.

  13. Raman spectrum reveals Mesenchymal stem cells inhibiting HL60 cells growth

    Science.gov (United States)

    Su, Xin; Fang, Shaoyin; Zhang, Daosen; Zhang, Qinnan; Lu, Xiaoxu; Tian, Jindong; Fan, Jinping; Zhong, Liyun

    2017-04-01

    Though some research results reveals that Mesenchymal stem cells (MSCs) have the ability of inhibiting tumor cells proliferation, it remains controversial about the precise interaction mechanism during MSCs and tumor cells co-culture. In this study, combing Raman spectroscopic data and principle component analysis (PCA), the biochemical changes of MSCs or Human promyelocytic leukemia (HL60) cells during their co-culture were presented. The obtained results showed that some main Raman peaks of HL60 assigned to nucleic acids or proteins were greatly higher in intensity in the late stage of co-culture than those in the early stage of co-culture while they were still lower relative to the control group, implicating that the effect of MSCs inhibiting HL60 proliferation appeared in the early stage but gradually lost the inhibiting ability in the late stage of co-culture. Moreover, some other peaks of HL60 assigned to proteins were decreased in intensity in the early stage of co-culture relative to the control group but rebounded to the level similar to the control group in the late stage, showing that the content and structure changes of these proteins might be generated in the early stage but returned to the original state in the late stage of co-culture. As a result, in the early stage of MSCs-HL60 co-culture, along with the level of Akt phosphorylation of HL60 was lowered relative to its control group, the proliferation rate of HL60 cells was decreased. And in the late stage of co-culture, along with the level of Akt phosphorylation was rebounded, the reverse transfer of Raman peaks within 875-880 cm- 1 appeared, thus MSCs lost the ability to inhibit HL60 growth and HL60 proliferation was increased. In addition, it was observed that the peak at 811 cm- 1, which is a marker of RNA, was higher in intensity in the late stage than that in the control group, indicating that MSCs might be differentiated into myofibroblast-like MSCs. In addition, PCA results also exhibited

  14. Eugenol and its synthetic analogues inhibit cell growth of human cancer cells (Part I)

    International Nuclear Information System (INIS)

    Carrasco A, H.; Cardona, W.; Espinoza C, L.; Gallardo, C.; Catalan M, K.; Cardile, V.; Lombardo, L.; Cuellar F, M.; Russo, A.

    2008-01-01

    Eugenol (4-allyl-2-methoxyphenol) (1) has been reported to possess antioxidant and anticancer properties. In an attempt to enhance intrinsic activity of this natural compound, some derivatives were synthesized. Eugenol was extracted from cloves oil and further, the eugenol analogues (2-6) were obtained through acetylation and nitration reactions. Eugenol (1) and its analogues (2-6) were examined by in vitro model of cancer using two human cancer cell lines: DU-145 (androgeninsensitive prostate cancer cells) and KB (oral squamous carcinoma cells). Cell viability, by tetrazolium salts assay, was measured. Lactic dehydrogenase (LDH) release was also investigated to evaluate the presence of cell toxicity as a result of cell disruption, subsequent to membrane rupture. In the examined cancer cells, all compounds showed cell-growth inhibition activity. The obtained results demonstrate that the compounds 5-allyl-3-nitrobenzene-1,2-diol (3) and 4-allyl- 2-methoxy-5-nitrophenyl acetate (5) were significantly (p 50 values in DU-145 cells of 19.02 x 10 -6 and 21.5 x 10 -6 mol L -1 , respectively, and in KB cells of 18.11 x 10 -6 and 21.26 x 10 -6 mol L -1 , respectively, suggesting that the presence of nitro and hydroxyl groups could be important in the activity of these compounds. In addition, our results seem to indicate that apoptotic cell demise appears to be induced in KB and DU-145 cells. In fact, in our experimental conditions, no statistically significant increase in LDH release was observed in cancer cells treated with eugenol and its analogues. (author)

  15. Eugenol and its synthetic analogues inhibit cell growth of human cancer cells (Part I)

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco A, H.; Cardona, W. [Universidad Andres Bello, Vina del Mar (Chile). Dept. de Ciencias Quimicas]. E-mail: hcarrasco@unab.cl; Espinoza C, L.; Gallardo, C.; Catalan M, K. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Quimica; Cardile, V.; Lombardo, L. [University of Catania (Italy). Dept. of Physiological Sciences; Cuellar F, M. [Universidad de Valparaiso (Chile). Facultad de Farmacia; Russo, A. [University of Catania (Italy). Dept. of Biological Chemistry, Medical Chemistry and Molecular Biology

    2008-07-01

    Eugenol (4-allyl-2-methoxyphenol) (1) has been reported to possess antioxidant and anticancer properties. In an attempt to enhance intrinsic activity of this natural compound, some derivatives were synthesized. Eugenol was extracted from cloves oil and further, the eugenol analogues (2-6) were obtained through acetylation and nitration reactions. Eugenol (1) and its analogues (2-6) were examined by in vitro model of cancer using two human cancer cell lines: DU-145 (androgeninsensitive prostate cancer cells) and KB (oral squamous carcinoma cells). Cell viability, by tetrazolium salts assay, was measured. Lactic dehydrogenase (LDH) release was also investigated to evaluate the presence of cell toxicity as a result of cell disruption, subsequent to membrane rupture. In the examined cancer cells, all compounds showed cell-growth inhibition activity. The obtained results demonstrate that the compounds 5-allyl-3-nitrobenzene-1,2-diol (3) and 4-allyl- 2-methoxy-5-nitrophenyl acetate (5) were significantly (p < 0,001) more active than eugenol, with IC{sub 50} values in DU-145 cells of 19.02 x 10{sup -6} and 21.5 x 10{sup -6} mol L{sup -1}, respectively, and in KB cells of 18.11 x 10{sup -6} and 21.26 x 10{sup -6} mol L{sup -1}, respectively, suggesting that the presence of nitro and hydroxyl groups could be important in the activity of these compounds. In addition, our results seem to indicate that apoptotic cell demise appears to be induced in KB and DU-145 cells. In fact, in our experimental conditions, no statistically significant increase in LDH release was observed in cancer cells treated with eugenol and its analogues. (author)

  16. Expression of PML tumor suppressor in A 431 cells reduces cellular growth by inhibiting the epidermal growth factor receptor expression

    International Nuclear Information System (INIS)

    Vallian, S.; Chang, K.S.

    2004-01-01

    Our previous studies showed that the promyelocytic leukemia, PML, protein functions as a cellular and growth suppressor. Transient expression of PML was also found to repress the activity of the epidermal growth factor receptor gene promoter. In this study we have examined the effects of PML on A431 cells, which express a high level of + protein. The PML gene was introduced into the cells using the adenovirus-mediated gene transfer system. Western blot analysis on the extracts from the cells expressing PML showed a significant repression in the expression of the epidermal growth factor receptor protein. The cells were examined for growth and DNA synthesis. The data showed a marked reduction in both growth and DNA synthesis rate in the cells expressing PML compared with the control cells. Furthermore, in comparison with the controls, the cells expressing PML were found to be more in G1 phase, fewer in S and about the same number in the G2/M phase. This data clearly demonstrated that the repression of epidermal growth factor receptor expression in A 431 cells by PML was associated with inhibition of cell growth and alteration of the cell cycle distribution, suggesting a novel mechanism for the known growth inhibitory effects of PML

  17. Mevastatin-induced inhibition of cell growth in avocado suspension ...

    African Journals Online (AJOL)

    Cell suspension cultures were established using soft, friable callus derived from nucellar tissue of 'Hass' avocado (Persea americana Mill.) seed from fruit harvested 190 days after full bloom. Cell cultures were maintained in liquid medium supplemented with naphthalene acetic acid (NAA), isopentenyl adenine (iP) and ...

  18. Inhibition of telomerase activity and cell growth by free and ...

    African Journals Online (AJOL)

    found in some plants such as Punica granatum,. Terminalia catappa and Combretum molle [10]. It has inhibitory effect on different kinds of cancer cells including prostate and colon cancer cells. [11,12]. However, the in vivo instability of punicalagin has restricted its use in biomedical research [13]. Previous studies showed ...

  19. Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells

    International Nuclear Information System (INIS)

    Lin, Y.-J.; Hou, Y.C.; Lin, C.-H.; Hsu, Y.-A.; Sheu, Jim J.C.; Lai, C.-H.; Chen, B.-H.; Lee Chao, Pei-Dawn; Wan Lei; Tsai, F.-J.

    2009-01-01

    Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has antithrombotic and anti-allergic properties and stimulates estrogenic activity. In the present study, we investigated the effects of the PR isoflavones puerarin, daidzein, and genistein on the growth of breast cancer cells. Our data revealed that after treatment with PR isoflavones, a dose-dependent inhibition of cell growth occurred in HS578T, MDA-MB-231, and MCF-7 cell lines. Results from cell cycle distribution and apoptosis assays revealed that PR isoflavones induced cell apoptosis through a caspase-3-dependent pathway and mediated cell cycle arrest in the G2/M phase. Furthermore, we observed that the serum metabolites of PR (daidzein sulfates/glucuronides) inhibited proliferation of the breast cancer cells at a 50% cell growth inhibition (GI 50 ) concentration of 2.35 μM. These results indicate that the daidzein constituent of PR can be metabolized to daidzein sulfates or daidzein glucuronides that exhibit anticancer activities. The protein expression levels of the active forms of caspase-9 and Bax in breast cancer cells were significantly increased by treatment with PR metabolites. These metabolites also increased the protein expression levels of p53 and p21. We therefore suggest that PR may act as a chemopreventive and/or chemotherapeutic agent against breast cancer by reducing cell viability and inducing apoptosis.

  20. Pu-erh Tea Inhibits Tumor Cell Growth by Down-Regulating Mutant p53

    Science.gov (United States)

    Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying

    2011-01-01

    Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms’ metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects. PMID:22174618

  1. Novel Midkine Inhibitor iMDK Inhibits Tumor Growth and Angiogenesis in Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Masui, Masanori; Okui, Tatsuo; Shimo, Tsuyoshi; Takabatake, Kiyofumi; Fukazawa, Takuya; Matsumoto, Kenichi; Kurio, Naito; Ibaragi, Soichiro; Naomoto, Yoshio; Nagatsuka, Hitoshi; Sasaki, Akira

    2016-06-01

    Midkine is a heparin-binding growth factor highly expressed in various human malignant tumors. However, its role in the growth of oral squamous cell carcinoma is not well understood. In this study, we analyzed the antitumor effect of a novel midkine inhibitor (iMDK) against oral squamous cell carcinoma. Administration of iMDK induced a robust antitumor response and suppressed cluster of differentiation 31 (CD31) expression in oral squamous cell carcinoma HSC-2 cells and SAS cells xenograft models. iMDK inhibited the proliferation of these cells dose-dependently, as well as the expression of midkine and phospho-extracellular signal-regulated kinase in HSC-2 and SAS cells. Moreover, iMDK significantly inhibited vascular endothelial growth factor and induced tube growth of human umbilical vein endothelial cells in a dose-dependent fashion. These findings suggest that midkine is critically involved in oral squamous cell carcinoma and iMDK can be effectively used for the treatment of oral squamous cell carcinoma. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Fluoro-sorafenib (Regorafenib) effects on hepatoma cells: growth inhibition, quiescence and recovery

    Science.gov (United States)

    Carr, Brian I.; Cavallini, Aldo; Lippolis, Catia; D’Alessandro, Rosalba; Messa, Caterina; Refolo, Maria Grazia; Tafaro, Angela

    2015-01-01

    To evaluate the growth-inhibitory properties of the potent multi-kinase antagonist Regorafenib (Fluoro-Sorafenib), which was synthesized as a more potent Sorafenib, a Raf inhibitor and to determine whether similar mechanisms were involved, human hepatoma cell lines were grown in the presence or absence of Regorafanib and examined for growth inhibition. Western blots were performed for Raf targets, for apoptosis and autophagy. Regorafenib inhibited growth of human Hep3B, PLC/PRF/5 and HepG2 cells in a concentration- and time-dependent manner. Multiple signaling pathways were altered, including MAP kinases phospho-ERK and phospho-JNK and its target phospho-c-Jun. There was evidence for apoptosis by FACS, cleavage of caspases and increased Bax levels; as well as induction of autophagy, as judged by increased Beclin-1 and LC3 (II) levels. Prolonged drug exposure resulted in cell quiescence. Full growth recovery occurred after drug removal, unlike with doxorubicin chemotherapy. Regorafenib is a potent inhibitor of cell growth. Cells surviving Regorafenib treatment remain viable, but quiescent and capable of regrowth following drug removal. The reversibility of tumor cell growth suppression after drug removal may have clinical implications. PMID:22777740

  3. STAT6 Mediates Interleukin-4 Growth Inhibition in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jennifer L. Gooch

    2002-01-01

    Full Text Available In addition to acting as a hematopoietic growth factor, interleukin-4 (IL-4 inhibits growth of some transformed cells in vitro and in vivo. In this study, we show that insulin receptor substrate (IRS-1, IRS-2, and signal transducer and activator of transcription 6 (STAT6 are phosphorylated following IL-4 treatment in MCF-7 breast cancer cells. STAT6 DNA binding is enhanced by IL-4 treatment. STAT6 activation occurs even after IRS-1 depletion, suggesting the two pathways are independent. To examine the role of STAT6 in IL-4-mediated growth inhibition and apoptosis, a fulllength STAT6 cDNA was transfected into MCF-7 cells. Transient overexpression of STAT6 resulted in both cytoplasmic and nuclear expression of the protein, increased DNA binding in response to IL-4, and increased transactivation of an IL-4 responsive promoter. In STAT6-transfected cells, basal proliferation was reduced whereas apoptosis was increased. Finally, stable expression of STAT6 resulted in reduced foci formation compared to vector-transfected cells alone. These results suggest STAT6 is required for IL-4mediated growth inhibition and induction of apoptosis in human breast cancer cells.

  4. Troglitazone inhibits cell growth and induces apoptosis of B-cell acute lymphoblastic leukemia cells with t(14;18).

    Science.gov (United States)

    Takenokuchi, M; Saigo, K; Nakamachi, Y; Kawano, S; Hashimoto, M; Fujioka, T; Koizumi, T; Tatsumi, E; Kumagai, S

    2006-01-01

    Peroxisome proliferator-activated receptor-gamma (PPARgamma), a member of the nuclear receptor superfamily, has been detected in several human leukemia cells. Recent studies reported that PPARgamma ligands inhibit cell proliferation and induce apoptosis in both normal and malignant B-lineage cells. We investigated the expression of PPARgamma and the effects of PPARgamma ligands on UTree-O2, Bay91 and 380, three B-cell acute lymphoblastic leukemia (B-ALL) cell lines with t(14;18), which show a poor prognosis, accompanying c-myc abnormality. Western blot analysis identified expression of PPARgamma protein and real-time PCR that of PPARgamma mRNA on the three cell lines. Troglitazone (TGZ), a synthetic PPARgamma ligand, inhibited cell growth in these cell lines in a dose-dependent manner, which was associated with G(1) cell cycle arrest and apoptosis. We also found this effect PPARgamma independent since PPARgamma antagonists failed to reverse this effect. We assessed the expression of c-myc, an apoptosis-regulatory gene, since c-myc abnormality was detected in most B-ALL cells with t(14;18). TGZ was found to dose-dependently downregulate the expression of c-myc mRNA and c-myc protein in the three cell lines. These results suggest that TGZ inhibits cell growth via induction of G(1) cell cycle arrest and apoptosis in these cell lines and that TGZ-induced apoptosis, at least in part, may be related to the downregulation of c-myc expression. Moreover, the downregulation of c-myc expression by TGZ may depend on a PPARgamma-independent mechanism. Further studies indicate that PPARgamma ligands may serve as a therapeutic agent in B-ALL with t(14;18).

  5. Instability of the Null Steady State: The Fundamental Problem of Inhibiting Malignant Cell Growth

    Science.gov (United States)

    Varfolomeev, S. D.; Lukovenkov, A. V.

    2018-07-01

    Mathematical modeling of the process of inhibiting malignant growth by common chemotherapeutic agents and biological therapeutics is used to investigate the effect kinetic parameters of the model have on the outcome of treatment. It is shown that the ultimate suppression of growth, i.e., the formation of a stable steady-state with no cancer cells, cannot be attained if only the means of classical chemotherapy are used.

  6. Rapamycin causes growth arrest and inhibition of invasion in human chondrosarcoma cells.

    Science.gov (United States)

    Song, Jian; Wang, Xiaobo; Zhu, Jiaxue; Liu, Jun

    2016-01-01

    Chondrosarcoma is a highly malignant tumor that is characterized by a potent capacity to invade locally and cause distant metastasis and notable for its lack of response to conventional chemotherapy or radiotherapy. Rapamycin, the inhibitor of mammalian target of rapamycin (mTOR), is a valuable drug with diverse clinical applications and regulates many cellular processes. However, the effects of rapamycin on cell growth and invasion of human chondrosarcoma cells are not well known. We determined the effect of rapamycin on cell proliferation, cell cycle arrest and invasion by using MTS, flow cytometry and invasion assays in two human chondrosarcoma cell lines, SW1353 and JJ012. Cell cycle regulatory and invasion-related genes' expression analysis was performed by quantitative RT-PCR (qRT-PCR). We also evaluated the effect of rapamycin on tumor growth by using mice xenograph models. Rapamycin significantly inhibited the cell proliferation, induced cell cycle arrest and decreased the invasion ability of human chondrosarcoma cells. Meanwhile, rapamycin modulated the cell cycle regulatory and invasion-related genes' expression. Furthermore, the tumor growth of mice xenograph models with human chondrosarcoma cells was significantly inhibited by rapamycin. These results provided further insight into the role of rapamycin in chondrosarcoma. Therefore, rapamycin targeted therapy may be a potential treatment strategy for chondrosarcoma.

  7. Potential mechanisms for the inhibition of tumor cell growth by manganese superoxide dismutase.

    Science.gov (United States)

    Kim, K H; Rodriguez, A M; Carrico, P M; Melendez, J A

    2001-06-01

    Studies from many laboratories have shown that overexpression of manganese superoxide dismutase (MnSOD) inhibits the growth of numerous tumor cell types. The inhibition of tumor cell growth can be attributed to the increase in the steady-state levels of H2O2 as a result of the increased dismuting activity of MnSOD. Here we demonstrate that overexpression of MnSOD enhances the activity of the superoxide (O2*-)-sensitive enzyme aconitase, decreases the intracellular GSH/GSSG ratio, and dose-dependently inhibits pyruvate carboxylase activity. Thus, alterations in the steady-state concentrations of mitochondrial O2*- and H2O2 as a result of MnSOD overexpression can alter the metabolic capacity of the cell leading to inhibition of cell growth. Furthermore, we propose that MnSOD overexpression can modulate the activity of nitric oxide (*NO) by preventing its reaction with O2*-. This hypothesis suggests that the redox environment of the mitochondria can be altered to favor the activity of *NO rather than peroxynitrite (ONOO-) and may explain the enhanced toxicity of *NO-generating compounds toward MnSOD-overexpressing cell lines. These findings indicate that therapeutic strategies targeted at overexpressing MnSOD in tumor tissue may be more effective when used in combination with agents that deplete the oxidant-buffering and enhance the *NO-generating capacity of the tumor and host, respectively.

  8. Overexpression of Hiwi Inhibits the Growth and Migration of Chronic Myeloid Leukemia Cells.

    Science.gov (United States)

    Wang, Yalin; Jiang, Yan; Ma, Ning; Sang, Bailu; Hu, Xiaolin; Cong, Xiaofeng; Liu, Ziling

    2015-09-01

    Chronic myeloid leukemia (CML) is a hematopoietic malignancy characterized by dysregulated growth and proliferation of hematopoietic stem/progenitor cells in bone marrow and excessive expansion of hematopoietic compartments in peripheral blood. Expression deletion of Hiwi, a human Piwi homolog, has been reported to be implicated in leukemogenesis. We here explored Hiwi's role in CML pathogenesis by determining how and whether its forced overexpression could affect CML cell growth and migration. The present results showed that lentivirus-mediated overexpression of Hiwi significantly suppressed cell proliferation and induced obvious apoptosis in K562 cells, a CML line cell line. Tumors in BALB/c nude mice generated by the K562 cells expressing Hiwi were much smaller than those formed by the control cells. Like in vitro, Hiwi upregulation induced cell apoptosis in the tumor tissues in vivo. Additionally, Hiwi elevation suppressed K562 cell migration and inhibited the activity and expression of matrix metalloproteinase-2 and -9. In summary, our study demonstrates that Hiwi overexpression inhibits CML cell growth and migration, providing insights into its role in CML pathogenesis.

  9. Synergistic growth inhibition by sorafenib and vitamin K2 in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Zhang, Yafei; Zhang, Bicheng; Zhang, Anran; Zhao, Yong; Zhao, Jie; Liu, Jian; Gao, Jianfei; Fang, Dianchun; Rao, Zhiguo

    2012-09-01

    Sorafenib is an oral multikinase inhibitor that has been proven effective as a single-agent therapy in hepatocellular carcinoma, and there is a strong rationale for investigating its use in combination with other agents. Vitamin K2 is nearly non-toxic to humans and has been shown to inhibit the growth of hepatocellular carcinoma. In this study, we evaluated the effects of a combination of sorafenib and vitamin K2 on the growth of hepatocellular carcinoma cells. Flow cytometry, 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide) and nude mouse xenograft assays were used to examine the effects of sorafenib and vitamin K2 on the growth of hepatocellular carcinoma cells. Western blotting was used to elucidate the possible mechanisms underlying these effects. Assays for 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide) revealed a strong synergistic growth-inhibitory effect between sorafenib and vitamin K2. Flow cytometry showed an increase in cell cycle arrest and apoptosis after treatment with a combination of these two drugs at low concentrations. Sorafenib-mediated inhibition of extracellular signal-regulated kinase phosphorylation was promoted by vitamin K2, and downregulation of Mcl-1, which is required for sorafenib-induced apoptosis, was observed after combined treatment. Vitamin K2 also attenuated the downregulation of p21 expression induced by sorafenib, which may represent the mechanism by which vitamin K2 promotes the inhibitory effects of sorafenib on cell proliferation. Moreover, the combination of sorafenib and vitamin K2 significantly inhibited the growth of hepatocellular carcinoma xenografts in nude mice. Our results determined that combined treatment with sorafenib and vitamin K2 can work synergistically to inhibit the growth of hepatocellular carcinoma cells. This finding raises the possibility that this combined treatment strategy might be promising as a new therapy against hepatocellular carcinoma, especially for patients

  10. Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells.

    Science.gov (United States)

    Devhare, Pradip; Meyer, Keith; Steele, Robert; Ray, Ratna B; Ray, Ranjit

    2017-10-12

    The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. A strong link between Zika virus and microcephaly exists, and the potential mechanisms associated with microcephaly are under intense investigation. In this study, we evaluated the effect of Zika virus infection of Asian and African lineages (PRVABC59 and MR766) in human neural stem cells (hNSCs). These two Zika virus strains displayed distinct infection pattern and growth rates in hNSCs. Zika virus MR766 strain increased serine 139 phosphorylation of histone H2AX (γH2AX), a known early cellular response proteins to DNA damage. On the other hand, PRVABC59 strain upregulated serine 15 phosphorylation of p53, p21 and PUMA expression. MR766-infected cells displayed poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavage. Interestingly, infection of hNSCs by both strains of Zika virus for 24 h, followed by incubation in astrocyte differentiation medium, induced rounding and cell death. However, astrocytes generated from hNSCs by incubation in differentiation medium when infected with Zika virus displayed minimal cytopathic effect at an early time point. Infected hNSCs incubated in astrocyte differentiating medium displayed PARP cleavage within 24-36 h. Together, these results showed that two distinct strains of Zika virus potentiate hNSC growth inhibition by different mechanisms, but both viruses strongly induce death in early differentiating neuroprogenitor cells even at a very low multiplicity of infection. Our observations demonstrate further mechanistic insights for impaired neuronal homeostasis during active Zika virus infection.

  11. Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells

    Science.gov (United States)

    Devhare, Pradip; Meyer, Keith; Steele, Robert; Ray, Ratna B; Ray, Ranjit

    2017-01-01

    The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. A strong link between Zika virus and microcephaly exists, and the potential mechanisms associated with microcephaly are under intense investigation. In this study, we evaluated the effect of Zika virus infection of Asian and African lineages (PRVABC59 and MR766) in human neural stem cells (hNSCs). These two Zika virus strains displayed distinct infection pattern and growth rates in hNSCs. Zika virus MR766 strain increased serine 139 phosphorylation of histone H2AX (γH2AX), a known early cellular response proteins to DNA damage. On the other hand, PRVABC59 strain upregulated serine 15 phosphorylation of p53, p21 and PUMA expression. MR766-infected cells displayed poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavage. Interestingly, infection of hNSCs by both strains of Zika virus for 24 h, followed by incubation in astrocyte differentiation medium, induced rounding and cell death. However, astrocytes generated from hNSCs by incubation in differentiation medium when infected with Zika virus displayed minimal cytopathic effect at an early time point. Infected hNSCs incubated in astrocyte differentiating medium displayed PARP cleavage within 24–36 h. Together, these results showed that two distinct strains of Zika virus potentiate hNSC growth inhibition by different mechanisms, but both viruses strongly induce death in early differentiating neuroprogenitor cells even at a very low multiplicity of infection. Our observations demonstrate further mechanistic insights for impaired neuronal homeostasis during active Zika virus infection. PMID:29022904

  12. SKLB188 inhibits the growth of head and neck squamous cell carcinoma by suppressing EGFR signalling.

    Science.gov (United States)

    Barzegar, Mansoureh; Ma, Shuang; Zhang, Chao; Chen, Xin; Gu, Ying; Shang, Chaowei; Jiang, Xiaojuan; Yang, Jiao; Nathan, Cherie-Ann; Yang, Shengyong; Huang, Shile

    2017-10-10

    Overexpression of epidermal growth factor receptor (EGFR) occurs in approximately 90% of head and neck squamous cell carcinoma (HNSCC), and is correlated with poor prognosis. Thus, targeting EGFR is a promising strategy for treatment of HNSCC. Several small molecule EGFR inhibitors have been tested in clinical trials for treatment of HNSCC, but none of them are more effective than the current chemotherapeutic drugs. Thus, it is urgently needed to develop novel EGFR inhibitors for HNSCC treatment. By screening an in-house focused library containing approximately 650 000 known kinase inhibitors and kinase inhibitor-like compounds containing common kinase inhibitor core scaffolds, we identified SKLB188 as a lead compound for inhibition of EGFR. The anticancer effects of SKLB188 on HNSCC cells were investigated by in vitro cell growth, cell cycle and apoptosis assays, as well as in vivo FaDu xenograft mouse model. Molecular docking, in vitro kinase profiling and western blotting were performed to characterise EGFR as the molecular target. SKLB188 inhibited HNSCC cell proliferation by inducing G 1 cell cycle arrest, which was associated with downregulating the expression of Cdc25A, cyclins D1/A and cyclin-dependent kinases (CDK2/4), and upregulating the expression of cyclin-dependent kinase (CDK) inhibitors (p21 Cip1 and p27 Kip1 ), leading to decreased phosphorylation of Rb. SKLB188 also induced caspase-dependent apoptosis of HNSCC cells by downregulating the expression of Mcl-1 and survivin. Molecular docking revealed that SKLB188 could bind to the kinase domain of EGFR through hydrogen bonds and hydrophobic interactions. In vitro kinase assay showed that SKLB188 inhibited the activity of a recombinant human EGFR very potently (IC 50 =5 nM). Western blot analysis demonstrated that SKLB188 inhibited the phosphorylation of EGFR and its downstream targets, extracellular signal-regulated protein kinases 1 and 2 (Erk1/2) and Akt in the cells. In addition, SKLB188 dose

  13. RGS16 inhibits breast cancer cell growth by mitigating phosphatidylinositol 3-kinase signaling.

    Science.gov (United States)

    Liang, Genqing; Bansal, Geetanjali; Xie, Zhihui; Druey, Kirk M

    2009-08-07

    Aberrant activity of the phosphatidylinositol 3-kinase (PI3K) pathway supports growth of many tumors including those of breast, lung, and prostate. Resistance of breast cancer cells to targeted chemotherapies including tyrosine kinase inhibitors (TKI) has been linked to persistent PI3K activity, which may in part be due to increased membrane expression of epidermal growth factor (EGF) receptors (HER2 and HER3). Recently we found that proteins of the RGS (regulator of G protein signaling) family suppress PI3K activity downstream of the receptor by sequestering its p85alpha subunit from signaling complexes. Because a substantial percentage of breast tumors have RGS16 mutations and reduced RGS16 protein expression, we investigated the link between regulation of PI3K activity by RGS16 and breast cancer cell growth. RGS16 overexpression in MCF7 breast cancer cells inhibited EGF-induced proliferation and Akt phosphorylation, whereas shRNA-mediated extinction of RGS16 augmented cell growth and resistance to TKI treatment. Exposure to TKI also reduced RGS16 expression in MCF7 and BT474 cell lines. RGS16 bound the amino-terminal SH2 and inter-SH2 domains of p85alpha and inhibited its interaction with the EGF receptor-associated adapter protein Gab1. These results suggest that the loss of RGS16 in some breast tumors enhances PI3K signaling elicited by growth factors and thereby promotes proliferation and TKI evasion downstream of HER activation.

  14. Ibrutinib Inhibits ERBB Receptor Tyrosine Kinases and HER2-Amplified Breast Cancer Cell Growth.

    Science.gov (United States)

    Chen, Jun; Kinoshita, Taisei; Sukbuntherng, Juthamas; Chang, Betty Y; Elias, Laurence

    2016-12-01

    Ibrutinib is a potent, small-molecule Bruton tyrosine kinase (BTK) inhibitor developed for the treatment of B-cell malignancies. Ibrutinib covalently binds to Cys481 in the ATP-binding domain of BTK. This cysteine residue is conserved among 9 other tyrosine kinases, including HER2 and EGFR, which can be targeted. Screening large panels of cell lines demonstrated that ibrutinib was growth inhibitory against some solid tumor cells, including those inhibited by other HER2/EGFR inhibitors. Among sensitive cell lines, breast cancer lines with HER2 overexpression were most potently inhibited by ibrutinib (ibrutinib coincided with downregulation of phosphorylation on HER2 and EGFR and their downstream targets, AKT and ERK. Irreversible inhibition of HER2 and EGFR in breast cancer cells was established after 30-minute incubation above 100 nmol/L or following 2-hour incubation at lower concentrations. Furthermore, ibrutinib inhibited recombinant HER2 and EGFR activity that was resistant to dialysis and rapid dilution, suggesting an irreversible interaction. The dual activity toward TEC family (BTK and ITK) and ERBB family kinases was unique to ibrutinib, as ERBB inhibitors do not inhibit or covalently bind BTK or ITK. Xenograft studies with HER2 + MDA-MB-453 and BT-474 cells in mice in conjunction with determination of pharmacokinetics demonstrated significant exposure-dependent inhibition of growth and key signaling molecules at levels that are clinically achievable. Ibrutinib's unique dual spectrum of activity against both TEC family and ERBB kinases suggests broader applications of ibrutinib in oncology. Mol Cancer Ther; 15(12); 2835-44. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. Transactivation of the TIEG1 confers growth inhibition of transforming growth factor-β-susceptible hepatocellular carcinoma cells

    Science.gov (United States)

    Jiang, Lei; Lai, Yiu-Kay; Zhang, Jin-Fang; Chan, Chu-Yan; Lu, Gang; Lin, Marie CM; He, Ming-Liang; Li, Ji-Cheng; Kung, Hsiang-Fu

    2012-01-01

    AIM: To investigate the role of transforming growth factor (TGF)-β-inducible early gene 1 (TIEG1) in TGF-β-induced growth inhibition in hepatocellular carcinoma (HCC) cells. METHODS: Human hepatocyte and HCC cell lines with varied susceptibilities to TGF-β1 were tested by methylthiazoletetrazolium (MTT) assay. The expression changes of Smad2, Smad3, Smad4, Smad7, TIEG1 and TIEG2 gene following treatment with TGF-β1 in a TGF-β-sensitive hepatocyte cell line (MIHA), a TGF-β-sensitive hepatoma cell line (Hep3B) and two TGF-β-insensitive hepatoma cell lines (HepG2 and Bel7404) were examined. SiRNA targeting TIEG1 was transfected into Hep3B cells and the sensitivity of cells to TGF-β1 was examined. Overexpression of TIEG1 was induced by lentiviral-mediated transduction in TGF-β1-resistant hepatoma cell lines (Bel7404 and HepG2). MTT assay and 4’,6-Diamidino-2-phenylindole staining were used to identify cell viability and apoptosis, respectively. The expression level of stathmin was measured by reverse transcriptase polymerase chain reaction and Western-blotting analysis, and stathmin promoter activity by TIEG1 was monitored by a luciferase reporter gene system. RESULTS: TIEG1 was significantly upregulated by TGF-β1 in the TGF-β1-sensitive HCC cell line, Hep3B, but not in the resistant cell lines. The suppression of TIEG1 by siRNAs decreased the sensitivity of Hep3B cells to TGF-β1, whereas the overexpression of TIEG1 mediated growth inhibition and apoptosis in TGF-β1-resistant HCC cell lines, which resembled those of TGF-β1-sensitive HCC cells treated with TGF-β1. Our data further suggested that stathmin was a direct target of TIEG1, as stathmin was significantly downregulated by TIEG1 overexpression, and stathmin promoter activity was inhibited by TIEG1 in a dose-dependent manner. CONCLUSION: Our data suggest that transactivation of TIEG1 conferred growth inhibition of TGF-β-susceptible human HCC cells. PMID:22563190

  16. Human adipose tissue-derived mesenchymal stem cells inhibit T-cell lymphoma growth in vitro and in vivo.

    Science.gov (United States)

    Ahn, Jin-Ok; Chae, Ji-Sang; Coh, Ye-Rin; Jung, Woo-Sung; Lee, Hee-Woo; Shin, Il-Seob; Kang, Sung-Keun; Youn, Hwa-Young

    2014-09-01

    Human mesenchymal stem cells (hMSCs) are thought to be one of the most reliable stem cell sources for a variety of cell therapies. This study investigated the anti-tumor effect of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) on EL4 murine T-cell lymphoma in vitro and in vivo. The growth-inhibitory effect of hAT-MSCs on EL4 tumor cells was evaluated using a WST-1 cell proliferation assay. Cell-cycle arrest and apoptosis were investigated by flow cytometry and western blot. To evaluate an anti-tumor effect of hAT-MSCs on T-cell lymphoma in vivo, CM-DiI-labeled hAT-MSCs were circumtumorally injected in tumor-bearing nude mice, and tumor size was measured. hAT-MSCs inhibited T-cell lymphoma growth by altering cell-cycle progression and inducing apoptosis in vitro. hAT-MSCs inhibited tumor growth in tumor-bearing nude mice and prolonged survival time. Immunofluorescence analysis showed that hAT-MSCs migrated to tumor sites. hAT-MSCs suppress the growth of T-cell lymphoma, suggesting a therapeutic option for T-cell lymphoma. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. MK-2206, an AKT Inhibitor, Promotes Caspase-Independent Cell Death and Inhibits Leiomyoma Growth

    Science.gov (United States)

    Sefton, Elizabeth C.; Qiang, Wenan; Serna, Vanida; Kurita, Takeshi; Wei, Jian-Jun; Chakravarti, Debabrata

    2013-01-01

    Uterine leiomyomas (ULs), benign tumors of the myometrium, are the number one indication for hysterectomies in the United States due to a lack of an effective alternative therapy. ULs show activation of the pro-survival AKT pathway compared with normal myometrium; however, substantial data directly linking AKT to UL cell survival are lacking. We hypothesized that AKT promotes UL cell survival and that it is a viable target for inhibiting UL growth. We used the investigational AKT inhibitor MK-2206, currently in phase II trials, on cultured primary human UL and myometrial cells, immortalized leiomyoma cells, and in leiomyoma grafts grown under the kidney capsule in mice. MK-2206 inhibited AKT and PRAS40 phosphorylation but did not regulate serum- and glucocorticoid-induced kinase and ERK1/2, demonstrating its specificity for AKT. MK-2206 reduced UL cell viability and decreased UL tumor volumes. UL cells exhibited disruption of mitochondrial structures and underwent cell death that was independent of caspases. Additionally, mammalian target of rapamycin and p70S6K phosphorylation were reduced, indicating that mammalian target of rapamycin complex 1 signaling was compromised by AKT inhibition in UL cells. MK-2206 also induced autophagy in UL cells. Pretreatment of primary UL cells with 3-methyladenine enhanced MK-2206-mediated UL cell death, whereas knockdown of ATG5 and/or ATG7 did not significantly influence UL cell viability in the presence of MK-2206. Our data provide molecular evidence for the involvement of AKT in UL cell survival and suggest that AKT inhibition by MK-2206 may be a viable option to consider for the treatment of ULs. PMID:24002033

  18. Curcumin Inhibits Growth of Human NCI-H292 Lung Squamous Cell Carcinoma Cells by Increasing FOXA2 Expression

    Directory of Open Access Journals (Sweden)

    Lingling Tang

    2018-02-01

    Full Text Available Lung squamous cell carcinoma (LSCC is a common histological lung cancer subtype, but unlike lung adenocarcinoma, limited therapeutic options are available for treatment. Curcumin, a natural compound, may have anticancer effects in various cancer cells, but how it may be used to treat LSCC has not been well studied. Here, we applied curcumin to a human NCI-H292 LSCC cell line to test anticancer effects and explored underlying potential mechanisms of action. Curcumin treatment inhibited NCI-H292 cell growth and increased FOXA2 expression in a time-dependent manner. FOXA2 expression was decreased in LSCC tissues compared with adjacent normal tissues and knockdown of FOXA2 increased NCI-H292 cells proliferation. Inhibition of cell proliferation by curcumin was attenuated by FOXA2 knockdown. Moreover inhibition of STAT3 pathways by curcumin increased FOXA2 expression in NCI-H292 cells whereas a STAT3 activator (IL-6 significantly inhibited curcumin-induced FOXA2 expression. Also, SOCS1 and SOCS3, negative regulators of STAT3 activity, were upregulated by curcumin treatment. Thus, curcumin inhibited human NCI-H292 cells growth by increasing FOXA2 expression via regulation of STAT3 signaling pathways.

  19. KAEMPFEROL, A FLAVONOID COMPOUND FROM GYNURA MEDICA INDUCED APOPTOSIS AND GROWTH INHIBITION IN MCF-7 BREAST CANCER CELL

    OpenAIRE

    Yi, Xiaofang; Zuo, Jiangcheng; Tan, Chao; Xian, Sheng; Luo, Chunhua; Chen, Sai; Yu, Liangfang; Luo, Yucheng

    2016-01-01

    Background: Kaempferol, a natural flavonoid, has been shown to induce cancer cell apoptosis and cell growth inhibition in several tumors. Previously we have conducted a full investigation on the chemical constituents of Gynura medica, kaempferol and its glycosides are the major constituents of G. medica. Here we investigated the growth inhibition and apoptosis induction effect of kaempferol extracted from G. medica. Materials and Methods: The inhibition effects of kaempferol were evaluated by...

  20. A novel peptide sansalvamide analogue inhibits pancreatic cancer cell growth through G0/G1 cell-cycle arrest

    International Nuclear Information System (INIS)

    Ujiki, Michael B.; Milam, Ben; Ding Xianzhong; Roginsky, Alexandra B.; Salabat, M. Reza; Talamonti, Mark S.; Bell, Richard H.; Gu Wenxin; Silverman, Richard B.; Adrian, Thomas E.

    2006-01-01

    Patients with pancreatic cancer have little hope for cure because no effective therapies are available. Sansalvamide A is a cyclic depsipeptide produced by a marine fungus. We investigated the effect of a novel sansalvamide A analogue on growth, cell-cycle phases, and induction of apoptosis in human pancreatic cancer cells in vitro. The sansalvamide analogue caused marked time- and concentration-dependent inhibition of DNA synthesis and cell proliferation of two human pancreatic cancer cell lines (AsPC-1 and S2-013). The analogue induced G0/G1 phase cell-cycle arrest and morphological changes suggesting induction of apoptosis. Apoptosis was confirmed by annexin V binding. This novel sansalvamide analogue inhibits growth of pancreatic cancer cells through G0/G1 arrest and induces apoptosis. Sansalvamide analogues may be valuable for the treatment of pancreatic cancer

  1. Hormone activities and the cell cycle machinery in immunity-triggered growth inhibition.

    Science.gov (United States)

    Reitz, M U; Gifford, M L; Schäfer, P

    2015-04-01

    Biotic stress and diseases caused by pathogen attack pose threats in crop production and significantly reduce crop yields. Enhancing immunity against pathogens is therefore of outstanding importance in crop breeding. However, this must be balanced, as immune activation inhibits plant growth. This immunity-coupled growth trade-off does not support resistance but is postulated to reflect the reallocation of resources to drive immunity. There is, however, increasing evidence that growth-immunity trade-offs are based on the reconfiguration of hormone pathways, shared by growth and immunity signalling. Studies in roots revealed the role of hormones in orchestrating growth across different cell types, with some hormones showing a defined cell type-specific activity. This is apparently highly relevant for the regulation of the cell cycle machinery and might be part of the growth-immunity cross-talk. Since plants are constantly exposed to Immuno-activating microbes under agricultural conditions, the transition from a growth to an immunity operating mode can significantly reduce crop yield and can conflict our efforts to generate next-generation crops with improved yield under climate change conditions. By focusing on roots, we outline the current knowledge of hormone signalling on the cell cycle machinery to explain growth trade-offs induced by immunity. By referring to abiotic stress studies, we further introduce how root cell type-specific hormone activities might contribute to growth under immunity and discuss the feasibility of uncoupling the growth-immunity cross-talk. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Pekinenin E Inhibits the Growth of Hepatocellular Carcinoma by Promoting Endoplasmic Reticulum Stress Mediated Cell Death

    Directory of Open Access Journals (Sweden)

    Lu Fan

    2017-06-01

    Full Text Available Hepatocellular carcinoma (HCC is a malignant primary liver cancer with poor prognosis. In the present study, we report that pekinenin E (PE, a casbane diterpenoid derived from the roots of Euphorbia pekinensis, has a strong antitumor activity against human HCC cells both in vitro and in vivo. PE suppressed the growth of human HCC cells Hep G2 and SMMC-7721. In addition, PE-mediated endoplasmic reticulum (ER stress caused increasing expressions of C/EBP homologous protein (CHOP, leading to apoptosis in HCC cells both in vitro and in vivo. Inhibition of ER stress with CHOP small interfering RNA or 4-phenyl-butyric acid partially reversed PE-induced cell death. Furthermore, PE induced S cell cycle arrest, which could also be partially reversed by CHOP knockdown. In all, these findings suggest that PE causes ER stress-associated cell death and cell cycle arrest, and it may serve as a potent agent for curing human HCC.

  3. Inhibition of connective tissue growth factor overexpression decreases growth of hepatocellular carcinoma cells in vitro and in vivo.

    Science.gov (United States)

    Jia, Xiao-Qin; Cheng, Hai-Qing; Li, Hong; Zhu, Yan; Li, Yu-Hua; Feng, Zhen-Qing; Zhang, Jian-Ping

    2011-11-01

    We have previously found that connective tissue growth factor (CTGF) is highly expressed in a rat model of liver cancer. Here, we examined expression of CTGF in human hepatocellular carcinoma (HCC) cells and its effect on cell growth. Real-time PCR was used to observe expression of CTGF in human HCC cell lines HepG2, SMMC-7721, MHCC-97H and LO2. siRNA for the CTGF gene was designed, synthesized and cloned into a Plk0.1-GFP-SP6 vector to construct a lentivirus-mediated shRNA/CTGF. CTGF mRNA and protein expression in HepG2 cells treated by CTGF-specific shRNA was evaluated by real-time PCR and Western blotting. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was utilized to evaluate the growth effect, and a colony formation assay was used for observing clonogenic growth. In vivo, tumor cell proliferation was evaluated in a nude mouse model of xenotransplantation. Statistical significance was determined by t test for comparison between two groups, or analysis of variance (ANOVA) for multiple groups. Immunohistochemical staining of CTGF was seen in 35 of 40 HCC samples (87.5%). CTGF was overexpressed 5-fold in 20 HCC tissues, compared with surrounding non-tumor liver tissue. CTGF mRNA level was 5 - 8-fold higher in HepG2, SMMC-7721 and MHCC-97H than in LO2 cells. This indicated that the inhibition rate of cell growth was 43% after knockdown of CTGF expression (P < 0.05). Soft agar colony formation assay showed that siRNA mediated knockdown of CTGF inhibited colony formation in soft agar of HepG2 cells (P < 0.05). The volume of tumors from CTGF-shRNA-expressing cells only accounted for 35% of the tumors from the scrambled control-infected HepG2 cells (P < 0.05). CTGF was overexpressed in human HCC cells and downregulation of CTGF inhibited HCC growth in vitro and in vivo. Knockdown of CTGF may be a potential therapeutic strategy for treatment of HCC.

  4. Effect of Sterols Isolated from Myrtillocactus geometrizans on Growth Inhibition of Colon and Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mario Augusto Bolaños-Carrillo

    2015-01-01

    Full Text Available Objective. To explore the effect of peniocerol and macdougallin on HCT-15 and MCF-7 cells proliferation, cell cycle, apoptosis, and PARP cleavage. Methods. HCT-15 and MCF-7 cells were treated with various concentrations of peniocerol and macdougallin (10–80 μM during 24 or 48 h. Crystal Violet Assay was used to evaluate the inhibition effect. Cell cycle regulation was examined by a propidium iodide method. Cell apoptosis was detected through both Annexin–V FLUOS/PI double-labeled cytometry assays and Western blot was applied to assess PARP cleavage. Results. Peniocerol and macdougallin induced growth inhibition and apoptosis in vitro in a time- and dose-dependent manner. Moreover, peniocerol and macdougallin induced arrest of cell cycle-dependent manner and increased the proportion of cells in G0/G1 phase. PARP cleavage in HCT-15 and MCF-7 cells was induced by treatment with peniocerol and macdougallin after 36 hours. Conclusions. Our results showed that the mechanism of cytotoxicity displayed by peniocerol and macdougallin is related to cell cycle arrest and apoptosis in both cell lines. This is a significant observation because it helps to understand the way some oxysterols isolated from Myrtillocactus geometrizans develop their biological activities against cancer cells.

  5. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions.

    Science.gov (United States)

    Hesketh, Andy; Vergnano, Marta; Wan, Chris; Oliver, Stephen G

    2017-07-25

    We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP), cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA) and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR) inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection. IMPORTANCE During infections, pathogenic bacteria can release nucleotides into the cells of their eukaryotic hosts. These nucleotides are recognized as signals that contribute to the initiation of defensive immune responses that help the infected

  6. Growth-arrest-specific protein 2 inhibits cell division in Xenopus embryos.

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    Full Text Available Growth-arrest-specific 2 gene was originally identified in murine fibroblasts under growth arrest conditions. Furthermore, serum stimulation of quiescent, non-dividing cells leads to the down-regulation of gas2 and results in re-entry into the cell cycle. Cytoskeleton rearrangements are critical for cell cycle progression and cell division and the Gas2 protein has been shown to co-localize with actin and microtubules in interphase mammalian cells. Despite these findings, direct evidence supporting a role for Gas2 in the mechanism of cell division has not been reported.To determine whether the Gas2 protein plays a role in cell division, we over-expressed the full-length Gas2 protein and Gas2 truncations containing either the actin-binding CH domain or the tubulin-binding Gas2 domain in Xenopus laevis embryos. We found that both the full-length Gas2 protein and the Gas2 domain, but not the CH domain, inhibited cell division and resulted in multinucleated cells. The observation that Gas2 domain alone can arrest cell division suggests that Gas2 function is mediated by microtubule binding. Gas2 co-localized with microtubules at the cell cortex of Gas2-injected Xenopus embryos using cryo-confocal microscopy and co-sedimented with microtubules in cytoskeleton co-sedimentation assays. To investigate the mechanism of Gas2-induced cell division arrest, we showed, using a wound-induced contractile array assay, that Gas2 stabilized microtubules. Finally, electron microscopy studies demonstrated that Gas2 bundled microtubules into higher-order structures.Our experiments show that Gas2 inhibits cell division in Xenopus embryos. We propose that Gas2 function is mediated by binding and bundling microtubules, leading to cell division arrest.

  7. Glutamate/glutamine metabolism coupling between astrocytes and glioma cells: neuroprotection and inhibition of glioma growth.

    Science.gov (United States)

    Yao, Pei-Sen; Kang, De-Zhi; Lin, Ru-Ying; Ye, Bing; Wang, Wei; Ye, Zu-Cheng

    2014-07-18

    Glioma glutamate release has been shown to promote the growth of glioma cells and induce neuronal injuries from epilepsy to neuronal death. However, potential counteractions from normal astrocytes against glioma glutamate release have not been fully evaluated. In this study, we investigated the glutamate/glutamine cycling between glioma cells and astrocytes and their impact on neuronal function. Co-cultures of glioma cells with astrocytes (CGA) in direct contact were established under different mix ratio of astrocyte/glioma. Culture medium conditioned in these CGAs were sampled for HPLC measurement, for neuronal ratiometric calcium imaging, and for neuronal survival assay. We found: (1) High levels of glutaminase expression in glioma cells, but not in astrocytes, glutaminase enables glioma cells to release large amount of glutamate in the presence of glutamine. (2) Glutamate levels in CGAs were directly determined by the astrocyte/glioma ratios, indicating a balance between glioma glutamate release and astrocyte glutamate uptake. (3) Culture media from CGAs of higher glioma/astrocyte ratios induced stronger neuronal Ca(2+) response and more severe neuronal death. (4) Co-culturing with astrocytes significantly reduced the growth rate of glioma cells. These results indicate that normal astrocytes in the brain play pivotal roles in glioma growth inhibition and in reducing neuronal injuries from glioma glutamate release. However, as tumor growth, the protective role of astrocytes gradually succumb to glioma cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Inhibition of oxidative stress-elicited AKT activation facilitates PPARγ agonist-mediated inhibition of stem cell character and tumor growth of liver cancer cells.

    Directory of Open Access Journals (Sweden)

    Lanlan Liu

    Full Text Available Emerging evidence suggests that tumor-initiating cells (TICs are the most malignant cell subpopulation in tumors because of their resistance to chemotherapy or radiation treatment. Targeting TICs may be a key innovation for cancer treatment. In this study, we found that PPARγ agonists inhibited the cancer stem cell-like phenotype and attenuated tumor growth of human hepatocellular carcinoma (HCC cells. Reactive oxygen species (ROS initiated by NOX2 upregulation were partially responsible for the inhibitory effects mediated by PPARγ agonists. However, PPARγ agonist-mediated ROS production significantly activated AKT, which in turn promoted TIC survival by limiting ROS generation. Inhibition of AKT, by either pharmacological inhibitors or AKT siRNA, significantly enhanced PPARγ agonist-mediated inhibition of cell proliferation and stem cell-like properties in HCC cells. Importantly, in nude mice inoculated with HCC Huh7 cells, we demonstrated a synergistic inhibitory effect of the PPARγ agonist rosiglitazone and the AKT inhibitor triciribine on tumor growth. In conclusion, we observed a negative feedback loop between oxidative stress and AKT hyperactivation in PPARγ agonist-mediated suppressive effects on HCCs. Combinatory application of an AKT inhibitor and a PPARγ agonist may provide a new strategy for inhibition of stem cell-like properties in HCCs and treatment of liver cancer.

  9. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Dang, Qiang; Song, Wenbin; Xu, Defeng; Ma, Yanmin; Li, Feng; Zeng, Jin; Zhu, Guodong; Wang, Xinyang; Chang, Luke S; He, Dalin; Li, Lei

    2015-09-01

    The effects of the flavonoid compound, kaempferol, which is an inhibitor of cancer cell proliferation and an inducer of cell apoptosis have been shown in various cancers, including lung, pancreatic, and ovarian, but its effect has never been studied in bladder cancer. Here, we investigated the effects of kaempferol on bladder cancer using multiple in vitro cell lines and in vivo mice studies. The MTT assay results on various bladder cancer cell lines showed that kaempferol enhanced bladder cancer cell cytotoxicity. In contrast, when analyzed by the flow cytometric analysis, DNA ladder experiment, and TUNEL assay, kaempferol significantly was shown to induce apoptosis and cell cycle arrest. These in vitro results were confirmed in in vivo mice studies using subcutaneous xenografted mouse models. Consistent with the in vitro results, we found that treating mice with kaempferol significant suppression in tumor growth compared to the control group mice. Tumor tissue staining results showed decreased expressions of the growth related markers, yet increased expressions in apoptosis markers in the kaempferol treated group mice tissues compared to the control group mice. In addition, our in vitro and in vivo data showed kaempferol can also inhibit bladder cancer invasion and metastasis. Further mechanism dissection studies showed that significant down-regulation of the c-Met/p38 signaling pathway is responsible for the kaempferol mediated cell proliferation inhibition. All these findings suggest kaempferol might be an effective and novel chemotherapeutic drug to apply for the future therapeutic agent to combat bladder cancer. © 2014 Wiley Periodicals, Inc.

  10. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions

    Directory of Open Access Journals (Sweden)

    Andy Hesketh

    2017-07-01

    Full Text Available We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP, cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection.

  11. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    International Nuclear Information System (INIS)

    Tsang, Chi Man; Cheung, Yuk Chun; Lui, Vivian Wai-Yan; Yip, Yim Ling; Zhang, Guitao; Lin, Victor Weitao; Cheung, Kenneth Chat-Pan; Feng, Yibin; Tsao, Sai Wah

    2013-01-01

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC

  12. Parafibromin inhibits cancer cell growth and causes G1 phase arrest

    International Nuclear Information System (INIS)

    Zhang Chun; Kong Dong; Tan, M.-H.; Pappas, Donald L.; Wang, P.-F.; Chen, Jindong; Farber, Leslie; Zhang Nian; Koo, H.-M.; Weinreich, Michael; Williams, Bart O.; Teh, B.T.

    2006-01-01

    The HRPT2 (hereditary hyperparathyroidism type 2) tumor suppressor gene encodes a ubiquitously expressed 531 amino acid protein termed parafibromin. Inactivation of parafibromin predisposes one to the development of HPT-JT syndrome. To date, the role of parafibromin in tumorigenesis is largely unknown. Here, we report that parafibromin is a nuclear protein that possesses anti-proliferative properties. We show that overexpression of parafibromin inhibits colony formation and cellular proliferation, and induces cell cycle arrest in the G1 phase. Moreover, HPT-JT syndrome-derived mutations in HRPT2 behave in a dominant-negative manner by abolishing the ability of parafibromin to suppress cell proliferation. These findings suggest that parafibromin has a critical role in cell growth, and mutations in HRPT2 can directly inhibit this role

  13. Effects of epidermal growth factor receptor kinase inhibition on radiation response in canine osteosarcoma cells.

    Science.gov (United States)

    Mantovani, Fernanda B; Morrison, Jodi A; Mutsaers, Anthony J

    2016-05-31

    Radiation therapy is a palliative treatment modality for canine osteosarcoma, with transient improvement in analgesia observed in many cases. However there is room for improvement in outcome for these patients. It is possible that the addition of sensitizing agents may increase tumor response to radiation therapy and prolong quality of life. Epidermal growth factor receptor (EGFR) expression has been documented in canine osteosarcoma and higher EGFR levels have been correlated to a worse prognosis. However, effects of EGFR inhibition on radiation responsiveness in canine osteosarcoma have not been previously characterized. This study examined the effects of the small molecule EGFR inhibitor erlotinib on canine osteosarcoma radiation responses, target and downstream protein expression in vitro. Additionally, to assess the potential impact of treatment on tumor angiogenesis, vascular endothelial growth factor (VEGF) levels in conditioned media were measured. Erlotinib as a single agent reduced clonogenic survival in two canine osteosarcoma cell lines and enhanced the impact of radiation in one out of three cell lines investigated. In cell viability assays, erlotinib enhanced radiation effects and demonstrated single agent effects. Erlotinib did not alter total levels of EGFR, nor inhibit downstream protein kinase B (PKB/Akt) activation. On the contrary, erlotinib treatment increased phosphorylated Akt in these osteosarcoma cell lines. VEGF levels in conditioned media increased after erlotinib treatment as a single agent and in combination with radiation in two out of three cell lines investigated. However, VEGF levels decreased with erlotinib treatment in the third cell line. Erlotinib treatment promoted modest enhancement of radiation effects in canine osteosarcoma cells, and possessed activity as a single agent in some cell lines, indicating a potential role for EGFR inhibition in the treatment of a subset of osteosarcoma patients. The relative radioresistance of

  14. Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation

    DEFF Research Database (Denmark)

    Boissy, Patrice; Andersen, Thomas L; Abdallah, Basem M

    2005-01-01

    , a challenge for treating multiple myeloma is discovering drugs targeting not only myeloma cells but also osteoclasts and osteoblasts. Because resveratrol (trans-3,4',5-trihydroxystilbene) is reported to display antitumor activities on a variety of human cancer cells, we investigated the effects...... of this natural compound on myeloma and bone cells. We found that resveratrol reduces dose-dependently the growth of myeloma cell lines (RPMI 8226 and OPM-2) by a mechanism involving cell apoptosis. In cultures of human primary monocytes, resveratrol inhibits dose-dependently receptor activator of nuclear factor......RNA and cell surface protein levels and a decrease of NFATc1 stimulation and NF-kappaB nuclear translocation, whereas the gene expression of c-fms, CD14, and CD11a is up-regulated. Finally, resveratrol promotes dose-dependently the expression of osteoblast markers like osteocalcin and osteopontin in human bone...

  15. Correlation between live attenuated measles viral load and growth inhibition percentage in non-small cell lung cancer cell line

    Directory of Open Access Journals (Sweden)

    Rasha Fadhel Obaid

    2018-03-01

    Conclusion Live attenuated measles virus strain induced cytotoxic effect against human lung cancer cell line (A549 by induction of apoptosis as an important mechanism of anti-tumor activity, in addition, it indicates a correlation between the quantity of MV genomesand percentage of growth inhibition. This relation  has proved that measles virus had anticancer effect.

  16. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    Science.gov (United States)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  17. Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis

    International Nuclear Information System (INIS)

    Chen, Jie; Shi, Dehuan; Liu, Xiaoyan; Fang, Shuang; Zhang, Jie; Zhao, Yueran

    2012-01-01

    Secreted protein acidic and rich in cysteine (SPARC), a calcium-binding matricellular glycoprotein, is implicated in the progressions of some cancers. However, no information has been available to date regarding the function of SPARC in cervical cancer cell growth and metastasis. In this study, we isolated and established high invasive subclones and low invasive subclones from human cervical cancer cell lines HeLa and SiHa by the limited dilution method. Real-time q-RT-PCR, Western Blot and ICC were performed to investigate SPARC mRNA and protein expressions in high invasive subclones and low invasive subclones. Then lentivirus vector with SPARC shRNA was constructed and infected the highly invasive subclones. Real-time q-RT-PCR, Western Blot and ICC were also performed to investigate the changes of SPARC expression after viral infection. In functional assays, effects of SPARC knockdown on the biological behaviors of cervical cancer cells were investigated. The mechanisms of SPARC in cervical cancer proliferation, apoptosis and invasion were also researched. SPARC was over-expressed in the highly invasive subclones compared with the low invasive subclones. Knockdown of SPARC significantly suppressed cervical cancer cell proliferation, and induced cell cycle arrest at the G1/G0 phase through the p53/p21 pathway, also caused cell apoptosis accompanied by the decreased ratio of Bcl-2/Bax, and inhibited cell invasion and metastasis accompanied by down-regulated MMP2 and MMP9 expressions and up-regulated E-cadherin expression. SPARC is related to the invasive phenotype of cervical cancer cells. Knockdown of SPARC significantly suppresses cervical cancer cell proliferation, induces cell apoptosis and inhibits cell invasion and metastasis. SPARC as a promoter improves cervical cancer cell growth and metastasis

  18. Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis

    Directory of Open Access Journals (Sweden)

    Chen Jie

    2012-10-01

    Full Text Available Abstract Background Secreted protein acidic and rich in cysteine (SPARC, a calcium-binding matricellular glycoprotein, is implicated in the progressions of some cancers. However, no information has been available to date regarding the function of SPARC in cervical cancer cell growth and metastasis. Methods In this study, we isolated and established high invasive subclones and low invasive subclones from human cervical cancer cell lines HeLa and SiHa by the limited dilution method. Real-time q-RT-PCR, Western Blot and ICC were performed to investigate SPARC mRNA and protein expressions in high invasive subclones and low invasive subclones. Then lentivirus vector with SPARC shRNA was constructed and infected the highly invasive subclones. Real-time q-RT-PCR, Western Blot and ICC were also performed to investigate the changes of SPARC expression after viral infection. In functional assays, effects of SPARC knockdown on the biological behaviors of cervical cancer cells were investigated. The mechanisms of SPARC in cervical cancer proliferation, apoptosis and invasion were also researched. Results SPARC was over-expressed in the highly invasive subclones compared with the low invasive subclones. Knockdown of SPARC significantly suppressed cervical cancer cell proliferation, and induced cell cycle arrest at the G1/G0 phase through the p53/p21 pathway, also caused cell apoptosis accompanied by the decreased ratio of Bcl-2/Bax, and inhibited cell invasion and metastasis accompanied by down-regulated MMP2 and MMP9 expressions and up-regulated E-cadherin expression. Conclusion SPARC is related to the invasive phenotype of cervical cancer cells. Knockdown of SPARC significantly suppresses cervical cancer cell proliferation, induces cell apoptosis and inhibits cell invasion and metastasis. SPARC as a promoter improves cervical cancer cell growth and metastasis.

  19. Effect of crude saponins from Gaultheria trichophylla extract on growth inhibition in human colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Fiaz Alam

    2015-03-01

    Full Text Available The genus Gaultheria also comprised of species with reported cytotoxic activities. Current research work was carried out to evaluate G. trichophylla crude extract and respective saponins fraction against human colorectal cancer cell line (Caco-2 based on cell viability assays. Caco-2 cells treated with the crude extract showed significant growth inhibition (p< 0.001 in a dose dependent manner with apparent IC50 value of 200 μg/mL and 100 μg/mL in MTT and NRU assays respectively. The fractioned crude saponins showed an enhanced response and inhibited the growth of Caco-2 by 93.6 and 97.4% in MTT and NRU assays respectively, with compared to actinomycin-D (65%. The DAPI staining of cell treated with crude saponins observed under confocal microscope showed shrunken nuclei with apparent nuclear fragmentation and chromatin condensation indicating apoptosis mode of cell death. The study exhibited that the G. Trichophylla saponins induced apoptosis of Caco-2 cell lines. This study provides new evidences to further explore this plant for the novel targets in anticancer drug development.

  20. Imatinib mesylate inhibits Leydig cell tumor growth: evidence for in vitro and in vivo activity.

    Science.gov (United States)

    Basciani, Sabrina; Brama, Marina; Mariani, Stefania; De Luca, Gabriele; Arizzi, Mario; Vesci, Loredana; Pisano, Claudio; Dolci, Susanna; Spera, Giovanni; Gnessi, Lucio

    2005-03-01

    Leydig cell tumors are usually benign tumors of the male gonad. However, if the tumor is malignant, no effective treatments are currently available. Leydig cell tumors express platelet-derived growth factor (PDGF), kit ligand and their respective receptors, PDGFR and c-kit. We therefore evaluated the effects of imatinib mesylate (imatinib), a selective inhibitor of the c-kit and PDGFR tyrosine kinases, on the growth of rodent Leydig tumor cell lines in vivo and in vitro, and examined, in human Leydig cell tumor samples, the expression of activated PDGFR and c-kit and the mutations in exons of the c-kit gene commonly associated with solid tumors. Imatinib caused concentration-dependent decreases in the viability of Leydig tumor cell lines, which coincided with apoptosis and inhibition of proliferation and ligand-stimulated phosphorylation of c-kit and PDGFRs. Mice bearing s.c. allografts of a Leydig tumor cell line treated with imatinib p.o., had an almost complete inhibition of tumor growth, less tumor cell proliferation, increased apoptosis, and a lesser amount of tumor-associated mean vessel density compared with controls. No drug-resistant tumors appeared during imatinib treatment but tumors regrew after drug withdrawal. Human Leydig cell tumors showed an intense expression of the phosphorylated form of c-kit and a less intense expression of phosphorylated PDGFRs. No activating mutations in common regions of mutation of the c-kit gene were found. Our studies suggest that Leydig cell tumors might be a potential target for imatinib therapy.

  1. Chloroquine and hydroxychloroquine inhibit bladder cancer cell growth by targeting basal autophagy and enhancing apoptosis

    Directory of Open Access Journals (Sweden)

    Yi-Chia Lin

    2017-05-01

    Full Text Available Chloroquine (CQ and hydroxychloroquine (HCQ, two antimalarial drugs, are suggested to have potential anticancer properties. in the present study, we investigated the effects of CQ and HCQ on cell growth of bladder cancer with emphasis on autophagy inhibition and apoptosis induction in vitro. The results showed that CQ and HCQ inhibited the proliferation of multiple human bladder cell lines (including RT4, 5637, and T24 in a time- and dose-dependent fashion, especially in advanced bladder cancer cell lines (5637 and T24 compared to immortalized uroepithelial cells (SV-Huc-1 or other reference cancer cell lines (PC3 and MCF-7. We found that 24-hour treatment of CQ or HCQ significantly decreased the clonogenic formation in 5637 and T24 cells compared to SV-Huc-1. As human bladder cancer tumor exhibits high basal level of autophagic activities, we detected the autophagic flux in cells treated with CQ and HCQ, showing an alternation in LC3 flux in CQ- or HCQ-treated cells. Moreover, bladder cancer cells treated with CQ and HCQ underwent apoptosis, resulting in increased caspase 3/7 activities, increased level of cleaved poly(ADP-ribose polymerase (PARP, caspase 3, and DNA fragmentation. Given these results, targeting autophagy with CQ and HCQ represents an effective cancer therapeutic strategy against human bladder cancer.

  2. Chloroquine and hydroxychloroquine inhibit bladder cancer cell growth by targeting basal autophagy and enhancing apoptosis.

    Science.gov (United States)

    Lin, Yi-Chia; Lin, Ji-Fan; Wen, Sheng-I; Yang, Shan-Che; Tsai, Te-Fu; Chen, Hung-En; Chou, Kuang-Yu; Hwang, Thomas I-Sheng

    2017-05-01

    Chloroquine (CQ) and hydroxychloroquine (HCQ), two antimalarial drugs, are suggested to have potential anticancer properties. in the present study, we investigated the effects of CQ and HCQ on cell growth of bladder cancer with emphasis on autophagy inhibition and apoptosis induction in vitro. The results showed that CQ and HCQ inhibited the proliferation of multiple human bladder cell lines (including RT4, 5637, and T24) in a time- and dose-dependent fashion, especially in advanced bladder cancer cell lines (5637 and T24) compared to immortalized uroepithelial cells (SV-Huc-1) or other reference cancer cell lines (PC3 and MCF-7). We found that 24-hour treatment of CQ or HCQ significantly decreased the clonogenic formation in 5637 and T24 cells compared to SV-Huc-1. As human bladder cancer tumor exhibits high basal level of autophagic activities, we detected the autophagic flux in cells treated with CQ and HCQ, showing an alternation in LC3 flux in CQ- or HCQ-treated cells. Moreover, bladder cancer cells treated with CQ and HCQ underwent apoptosis, resulting in increased caspase 3/7 activities, increased level of cleaved poly(ADP-ribose) polymerase (PARP), caspase 3, and DNA fragmentation. Given these results, targeting autophagy with CQ and HCQ represents an effective cancer therapeutic strategy against human bladder cancer. Copyright © 2017. Published by Elsevier Taiwan.

  3. Simvastatin and metformin inhibit cell growth in hepatitis C virus infected cells via mTOR increasing PTEN and autophagy.

    Directory of Open Access Journals (Sweden)

    José A Del Campo

    Full Text Available Hepatitis C virus (HCV infection has been related to increased risk of development of hepatocellular carcinoma (HCC while metformin (M and statins treatment seemed to protect against HCC development. In this work, we aim to identify the mechanisms by which metformin and simvastatin (S could protect from liver cancer. Huh7.5 cells were infected with HCV particles and treated with M+S. Human primary hepatocytes were treated with M+S. Treatment with both drugs inhibited Huh7.5 cell growth and HCV infection. In non-infected cells S increased translational controlled tumor protein (TCTP and phosphatase and tensin homolog (PTEN proteins while M inhibited mammalian target of rapamycin (mTOR and TCTP. Simvastatin and metformin co-administered down-regulated mTOR and TCTP, while PTEN was increased. In cells infected by HCV, mTOR, TCTP, p62 and light chain 3B II (LC3BII were increased and PTEN was decreased. S+M treatment increased PTEN, p62 and LC3BII in Huh7.5 cells. In human primary hepatocytes, metformin treatment inhibited mTOR and PTEN, but up-regulated p62, LC3BII and Caspase 3. In conclusion, simvastatin and metformin inhibited cell growth and HCV infection in vitro. In human hepatocytes, metformin increased cell-death markers. These findings suggest that M+S treatment could be useful in therapeutic prevention of HCV-related hepatocellular carcinoma.

  4. USP1 targeting impedes GBM growth by inhibiting stem cell maintenance and radioresistance.

    Science.gov (United States)

    Lee, Jin-Ku; Chang, Nakho; Yoon, Yeup; Yang, Heekyoung; Cho, Heejin; Kim, Eunhee; Shin, Yongjae; Kang, Wonyoung; Oh, Young Taek; Mun, Gyeong In; Joo, Kyeung Min; Nam, Do-Hyun; Lee, Jeongwu

    2016-01-01

    Clinical benefits from standard therapies against glioblastoma (GBM) are limited in part due to intrinsic radio- and chemoresistance of GBM and inefficient targeting of GBM stem-like cells (GSCs). Novel therapeutic approaches that overcome treatment resistance and diminish stem-like properties of GBM are needed. We determined the expression levels of ubiquitination-specific proteases (USPs) by transcriptome analysis and found that USP1 is highly expressed in GBM. Using the patient GBM-derived primary tumor cells, we inhibited USP1 by shRNA-mediated knockdown or its specific inhibitor pimozide and evaluated the effects on stem cell marker expression, proliferation, and clonogenic growth of tumor cells. USP1 was highly expressed in gliomas relative to normal brain tissues and more preferentially in GSC enrichment marker (CD133 or CD15) positive cells. USP1 positively regulated the protein stability of the ID1 and CHEK1, critical regulators of DNA damage response and stem cell maintenance. Targeting USP1 by RNA interference or treatment with a chemical USP1 inhibitor attenuated clonogenic growth and survival of GSCs and enhanced radiosensitivity of GBM cells. Finally, USP1 inhibition alone or in combination with radiation significantly prolonged the survival of tumor-bearing mice. USP1-mediated protein stabilization promotes GSC maintenance and treatment resistance, thereby providing a rationale for USP1 inhibition as a potential therapeutic approach against GBM. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Nexrutine Inhibits Cancer Cell Growth as a Consequence of Mitochondrial Damage and Mitophagy

    Directory of Open Access Journals (Sweden)

    Xiang Wu

    2015-05-01

    Full Text Available Background/Aims: Nexrutine is an herbal extract of Phellodendron amurense and has been used as nutrient supplement in China as well as America. Potential protection effect of Nexrutine has been reported. Methods: To investigate the mechanism of Nexrutine, we used the HeLa, U2OS and HCT116 as a model. Based on the acidification of cell culture media, we examined the lactate, mitochondria damage as well as mitophagy status by corresponding assay. Results: Our data suggest that Nexrutine alters the cellular glucose metabolism to promote lactate production. This effect is caused by mitochondrial damage, not an alteration to lactate dehydrogenase activity. As a result of the mitochondrial damage, cell proliferation was inhibited and was associated with an elevation in p21/p27 proteins, which are both important cell cycle inhibitors. As another consequence of the mitochondrial damage, mitophagy was highly activated in Nexrutine-treated cells in a dose-dependent manner. When the autophagy pathway was blocked by siRNAs against BECN1 or ATG7, the growth inhibition caused by Nexrutine was reversed. Conclusion: Our study revealed that autophagy plays an important role in the inhibition of cancer cell proliferation by Nexrutine.

  6. Growth inhibition and radiosensitization of Celecoxib in nasopharyngeal caricnoma cell line CNE-2

    International Nuclear Information System (INIS)

    Xu Xinhua; Yi Fang; Fu Xiangyang; Zhang Xiaohong; Wang Yanlin; Zhang Changju; Du Jingtao

    2009-01-01

    Objective: To investigate the growth inhibition and radiosensitization of Celecoxib in human nasopharyngeal carcinoma cell line CNE-2. Methods: CNE-2 growth inhibition by Celecoxib was evaluated by MTT method. Apoptosis-related changes in morphology were observed by transmission electron microscopy(TEM). Cell cycle distribution and apoptosis rate were measured by flowcytometry(FCM). The expression of COX-2 protein was observed by SP method after the treatment of Celecoxib. Cells were randomly planted into four groups: irradiation control (Ci), drug group (Cd), irradiation group (R), and Celecoxib plus irradiation group (D + R). Single irradiation of 2,4,6,8, and 10 Gy were administered for colonogenic assay. Cell cycle distribution and apoptosis rate were analyzed at 6 Gy irradiation. Results: The growth of CNE-2 cell was inhibited by celecoxib in a dose-and time-dependent manner, the IC 50 was 80 μmol/L. After the treatment, cell ratio of G 0 and G 1 phases wasinereased (47.03 ± 2.76 vs 56.17 ± 1.95, t=4.68, P=0.010), whereas the ratio of S and G 2 /M phases was decreased (33.07 ± 1.86 vs 24.87 ± 1.76, t=5.54,P =0.010;19.30 ± 0.53:17.73 ± 0.83, t=2.75, P=0.050), and the apoptosis rate was increased (1.57 ± 0.47:10.47 ± 0.31,t=27.39, P=0.000) in a dose-dependent manner. Apoptosis with nuclear chromatin condensation, fragmentation and cell shrinkage was found by TEM. SP method showed that Celeib decreased COX-2 expression (17.48 ± 0.34 vs 12.82 ± 0.51, t=13.20, P=0.00). The sensitivity ratio (D 0 ) was 1.15. FCM showed that the percentage of cells in G 2 /M phase was significanty more in R and D + R groups than in Ci and Cd groups (68.00 ± 1.65, 54.27 ± 5.74,17.60 ± 0.80,14.86 ± 1.23, t=47.70,P=0.000; t=11.63, P=0.000), and also significantly different between R group and D + R group (t=3.99, P= 0.020). The apoptosis rate was higher in R and D + R groups than Ci and Cd groups(4.83 ± 0.97,9.50 ± 1.35,1.33 ± 0.86 and 2.28 ± 0.42, t=4.67, P=0.010; t

  7. CASK inhibits ECV304 cell growth and interacts with Id1

    International Nuclear Information System (INIS)

    Qi Jie; Su Yongyue; Sun Rongju; Zhang Fang; Luo Xiaofeng; Yang Zongcheng; Luo Xiangdong

    2005-01-01

    Calcium/calmodulin-dependent serine protein kinase (CASK) is generally known as a scaffold protein. Here we show that overexpression of CASK resulted in a reduced rate of cell growth, while inhibition of expression of endogenous CASK via RNA-mediated interference resulted in an increased rate of cell growth in ECV304 cells. To explore the molecular mechanism, we identified a novel CASK-interacting protein, inhibitor of differentiation 1 (Id1) with a yeast two-hybrid screening. Furthermore, endogenous CASK and Id1 proteins were co-precipitated from the lysates of ECV304 cells by immunoprecipitation. Mammalian two-hybrid protein-protein interaction assays indicated that CASK possessed a different binding activity for Id1 and its alternative splicing variant. It is known that Id proteins play important roles in regulation of cell proliferation and differentiation. Thus, we speculate that the regulation of cell growth mediated by CASK may be involved in Id1. Our findings indicate a novel function of CASK, the mechanism that remains to be further investigated

  8. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Chu SH

    2012-07-01

    Full Text Available Sheng-Hua Chu,1 Dong-Fu Feng,1 Yan-Bin Ma,1 Zhi-Qiang Li21Department of Neurosurgery, No 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; 2Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, ChinaAbstract: Hydroxyapatite nanoparticles (nano-HAPs have been reported to exhibit antitumor effects on various human cancers, but the effects of nano-HAPs on human glioma cells remain unclear. The aim of this study was to explore the inhibitory effect of nano-HAPs on the growth of human glioma U251 and SHG44 cells in vitro and in vivo. Nano-HAPs could inhibit the growth of U251 and SHG44 cells in a dose- and time-dependent manner, according to methyl thiazoletetrazolium assay and flow cytometry. Treated with 120 mg/L and 240 mg/L nano-HAPs for 48 hours, typical apoptotic morphological changes were noted under Hoechst staining and transmission electron microscopy. The tumor growth of cells was inhibited after the injection in vivo, and the related side effects significantly decreased in the nano-HAP-and-drug combination group. Because of the function of nano-HAPs, the expression of c-Met, SATB1, Ki-67, and bcl-2 protein decreased, and the expression of SLC22A18 and caspase-3 protein decreased noticeably. The findings indicate that nano-HAPs have an evident inhibitory action and induce apoptosis of human glioma cells in vitro and in vivo. In a drug combination, they can significantly reduce the adverse reaction related to the chemotherapeutic drug 1,3-bis(2-chloroethyl-1-nitrosourea (BCNU.Keywords: glioma, hydroxyapatite nanoparticles, growth mechanism

  9. 92R Monoclonal Antibody Inhibits Human CCR9+ Leukemia Cells Growth in NSG Mice Xenografts.

    Science.gov (United States)

    Somovilla-Crespo, Beatriz; Martín Monzón, Maria Teresa; Vela, Maria; Corraliza-Gorjón, Isabel; Santamaria, Silvia; Garcia-Sanz, Jose A; Kremer, Leonor

    2018-01-01

    CCR9 is as an interesting target for the treatment of human CCR9 + -T cell acute lymphoblastic leukemia, since its expression is limited to immature cells in the thymus, infiltrating leukocytes in the small intestine and a small fraction of mature circulating T lymphocytes. 92R, a new mouse mAb (IgG2a isotype), was raised using the A-isoform of hCCR9 as immunogen. Its initial characterization demonstrates that binds with high affinity to the CCR9 N-terminal domain, competing with the previously described 91R mAb for receptor binding. 92R inhibits human CCR9 + tumor growth in T and B-cell deficient Rag2 -/- mice. In vitro assays suggested complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity as possible in vivo mechanisms of action. Unexpectedly, 92R strongly inhibited tumor growth also in a model with compromised NK and complement activities, suggesting that other mechanisms, including phagocytosis or apoptosis, might also be playing a role on 92R-mediated tumor elimination. Taken together, these data contribute to strengthen the hypothesis of the immune system's opportunistic nature.

  10. Inhibition of Human Cervical Cancer Cell Growth by Ethanolic Extract of Boerhaavia diffusa Linn. (Punarnava Root

    Directory of Open Access Journals (Sweden)

    Rakhi Srivastava

    2011-01-01

    Full Text Available In Indian traditional medicine, Boerhaavia diffusa (punarnava roots have been widely used for the treatment of dyspepsia, jaundice, enlargement of spleen, abdominal pain and as an anti-stress agent. Pharmacological evaluation of the crude ethanolic extract of B. diffusa roots has been shown to possess antiproliferative and immunomodulatory properties. The extract of B. diffusa was studied for anti-proliferative effects on the growth of HeLa cells and for its effect on cell cycle. Bio-assays of extracts from B. diffusa root showed that a methanol : chloroform fraction (BDF 5 had an antiproliferative effect on HeLa cells. After 48 h of exposure, this fraction at a concentration of 200 μg mL−1 significantly reduced cell proliferation with visible morphological changes in HeLa cells. Cell cycle analysis suggests that antiproliferative effect of BDF 5 could be due to inhibition of DNA synthesis in S-phase of cell cycle in HeLa cells, whereas no significant change in cell cycle was detected in control cells. The fraction BDF 5 caused cell death via apoptosis as evident from DNA fragmentation and caspase-9 activation. Thus the extract has potential to be evaluated in detail to assess the molecular mechanism-mediated anticancer activities of this plant.

  11. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Zhengfu, He; Hu, Zhang; Huiwen, Miao; Zhijun, Li [Department of Thoracic Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China); Jiaojie, Zhou [Zhejiang University School of Medicine, Hangzhou (China); Xiaoyi, Yan, E-mail: xiaoyiyan163@163.com [Zhejiang University School of Medicine, Hangzhou (China); Xiujun, Cai, E-mail: xiujuncaomaj@163.com [Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China)

    2015-08-21

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.

  12. Cetuximab insufficiently inhibits glioma cell growth due to persistent EGFR downstream signaling

    DEFF Research Database (Denmark)

    Hasselbalch, Benedikte; Lassen, Ulrik; Poulsen, Hans S

    2010-01-01

    Overexpression and/or amplification of the epidermal growth factor receptor (EGFR) is present in 35-45% of primary glioblastoma multiforme tumors and has been correlated with a poor prognosis. In this study, we investigated the effect of cetuximab and intracellular signaling pathways downstream...... of EGFR, important for cell survival and proliferation. We show insufficient EGFR downregulation and competition with endogenous EGFR ligands upon cetuximab treatment. Dose-response experiments showed inhibition of EGFR phosphorylation without affecting two of the prominent downstream signaling pathways....... Our results indicate that amplification and/or overexpression of EGFR is an unsatisfactory predictor for response to cetuximab....

  13. Exposure time independent summary statistics for assessment of drug dependent cell line growth inhibition.

    Science.gov (United States)

    Falgreen, Steffen; Laursen, Maria Bach; Bødker, Julie Støve; Kjeldsen, Malene Krag; Schmitz, Alexander; Nyegaard, Mette; Johnsen, Hans Erik; Dybkær, Karen; Bøgsted, Martin

    2014-06-05

    In vitro generated dose-response curves of human cancer cell lines are widely used to develop new therapeutics. The curves are summarised by simplified statistics that ignore the conventionally used dose-response curves' dependency on drug exposure time and growth kinetics. This may lead to suboptimal exploitation of data and biased conclusions on the potential of the drug in question. Therefore we set out to improve the dose-response assessments by eliminating the impact of time dependency. First, a mathematical model for drug induced cell growth inhibition was formulated and used to derive novel dose-response curves and improved summary statistics that are independent of time under the proposed model. Next, a statistical analysis workflow for estimating the improved statistics was suggested consisting of 1) nonlinear regression models for estimation of cell counts and doubling times, 2) isotonic regression for modelling the suggested dose-response curves, and 3) resampling based method for assessing variation of the novel summary statistics. We document that conventionally used summary statistics for dose-response experiments depend on time so that fast growing cell lines compared to slowly growing ones are considered overly sensitive. The adequacy of the mathematical model is tested for doxorubicin and found to fit real data to an acceptable degree. Dose-response data from the NCI60 drug screen were used to illustrate the time dependency and demonstrate an adjustment correcting for it. The applicability of the workflow was illustrated by simulation and application on a doxorubicin growth inhibition screen. The simulations show that under the proposed mathematical model the suggested statistical workflow results in unbiased estimates of the time independent summary statistics. Variance estimates of the novel summary statistics are used to conclude that the doxorubicin screen covers a significant diverse range of responses ensuring it is useful for biological

  14. Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth.

    Science.gov (United States)

    Hojman, Pernille; Dethlefsen, Christine; Brandt, Claus; Hansen, Jakob; Pedersen, Line; Pedersen, Bente Klarlund

    2011-09-01

    Regular physical activity protects against the development of breast and colon cancer, since it reduces the risk of developing these by 25-30%. During exercise, humoral factors are released from the working muscles for endocrinal signaling to other organs. We hypothesized that these myokines mediate some of the inhibitory effects of exercise on mammary cancer cell proliferation. Serum and muscles were collected from mice after an exercise bout. Incubation with exercise-conditioned serum inhibited MCF-7 cell proliferation by 52% and increased caspase activity by 54%. A similar increase in caspase activity was found after incubation of MCF-7 cells with conditioned media from electrically stimulated myotubes. PCR array analysis (CAPM-0838E; SABiosciences) revealed that seven genes were upregulated in the muscles after exercise, and of these oncostatin M (OSM) proved to inhibit MCF-7 proliferation by 42%, increase caspase activity by 46%, and induce apoptosis. Blocking OSM signaling with anti-OSM antibodies reduced the induction of caspase activity by 51%. To verify that OSM was a myokine, we showed that it was significantly upregulated in serum and in three muscles, tibialis cranialis, gastronemius, and soleus, after an exercise bout. In contrast, OSM expression remained unchanged in subcutaneous and visceral adipose tissue, liver, and spleen (mononuclear cells). We conclude that postexercise serum inhibits mammary cancer cell proliferation and induces apoptosis of these cells. We suggest that one or more myokines secreted from working muscles may be mediating this effect and that OSM is a possible candidate. These findings emphasize that role of physical activity in cancer treatment, showing a direct link between exercise-induced humoral factors and decreased tumor cell growth.

  15. Inhibition effects of protein-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth

    International Nuclear Information System (INIS)

    Cao Ying; Wang Huajie; Cao Cui; Sun Yuanyuan; Yang Lin; Wang Baoqing; Zhou Jianguo

    2011-01-01

    In this article, a facile and environmentally friendly method was applied to fabricate BSA-conjugated amorphous zinc sulfide (ZnS) nanoparticles using bovine serum albumin (BSA) as the matrix. Transmission electron microscopy analysis indicated that the stable and well-dispersed nanoparticles with the diameter of 15.9 ± 2.1 nm were successfully prepared. The energy dispersive X-ray, X-ray powder diffraction, Fourier transform infrared spectrograph, high resolution transmission electron microscope, and selected area electron diffraction measurements showed that the obtained nanoparticles had the amorphous structure and the coordination occurred between zinc sulfide surfaces and BSA in the nanoparticles. In addition, the inhibition effects of BSA-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth were described in detail by cell viability analysis, optical and electron microscopy methods. The results showed that BSA-conjugated amorphous zinc sulfide nanoparticles could inhibit the metabolism and proliferation of human hepatocellular carcinoma cells, and the inhibition was dose dependent. The half maximal inhibitory concentration (IC50) was 0.36 mg/mL. Overall, this study suggested that BSA-conjugated amorphous zinc sulfide nanoparticles had the application potential as cytostatic agents and BSA in the nanoparticles could provide the modifiable site for the nanoparticles to improve their bioactivity or to endow them with the target function.

  16. Bithionol inhibits ovarian cancer cell growth In Vitro - studies on mechanism(s) of action

    International Nuclear Information System (INIS)

    Ayyagari, Vijayalakshmi N; Brard, Laurent

    2014-01-01

    Drug resistance is a cause of ovarian cancer recurrence and low overall survival rates. There is a need for more effective treatment approaches because the development of new drug is expensive and time consuming. Alternatively, the concept of ‘drug repurposing’ is promising. We focused on Bithionol (BT), a clinically approved anti-parasitic drug as an anti-ovarian cancer drug. BT has previously been shown to inhibit solid tumor growth in several preclinical cancer models. A better understanding of the anti-tumor effects and mechanism(s) of action of BT in ovarian cancer cells is essential for further exploring its therapeutic potential against ovarian cancer. The cytotoxic effects of BT against a panel of ovarian cancer cell lines were determined by Presto Blue cell viability assay. Markers of apoptosis such as caspases 3/7, cPARP induction, nuclear condensation and mitochondrial transmembrane depolarization were assessed using microscopic, FACS and immunoblotting methods. Mechanism(s) of action of BT such as cell cycle arrest, reactive oxygen species (ROS) generation, autotaxin (ATX) inhibition and effects on MAPK and NF-kB signalling were determined by FACS analysis, immunoblotting and colorimetric methods. BT caused dose dependent cytotoxicity against all ovarian cancer cell lines tested with IC 50 values ranging from 19 μM – 60 μM. Cisplatin-resistant variants of A2780 and IGROV-1 have shown almost similar IC 50 values compared to their sensitive counterparts. Apoptotic cell death was shown by expression of caspases 3/7, cPARP, loss of mitochondrial potential, nuclear condensation, and up-regulation of p38 and reduced expression of pAkt, pNF-κB, pIκBα, XIAP, bcl-2 and bcl-xl. BT treatment resulted in cell cycle arrest at G1/M phase and increased ROS generation. Treatment with ascorbic acid resulted in partial restoration of cell viability. In addition, dose and time dependent inhibition of ATX was observed. BT exhibits cytotoxic effects on various

  17. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis

    OpenAIRE

    Li, Qingli; Lambrechts, Mark J; Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Yin, Rutie; Xi, Mingrong; You, Zongbing

    2013-01-01

    Qingli Li,1,2 Mark J Lambrechts,1 Qiuyang Zhang,1 Sen Liu,1 Dongxia Ge,1 Rutie Yin,2 Mingrong Xi,2 Zongbing You1 1Departments of Structural and Cellular Biology and Orthopaedic Surgery, Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane Center for Stem Cell Research and Regenerative Medicine, and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, USA; 2Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan Un...

  18. Effect of dicycloplatin, a novel platinum chemotherapeutical drug, on inhibiting cell growth and inducing cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Guang-quan Li

    Full Text Available Dicycloplatin, a new supramolecular platinum-based antitumor drug, has been approved by the State Food and Administration (SFDA of China. In this study, we investigated the anticancer activity of dicycloplatin in cancer cells and signaling pathways involved in dicycloplatin-induced apoptosis. Dicycloplatin inhibited the proliferation of cancer cells and increased the percentage of apoptosis in a concentration-dependent manner. Besides, some apoptosis related events were observed after treatment with dicycloplatin, including increase of reactive oxygen species (ROS, collapse of mitochondrial membrane potential (Δψm, release of cytochrome c from the mitochondria to the cytosol, upregulation of p53, which were accompanied by activation of caspase-9, caspase-3, caspase-8, and poly (ADP-ribose polymerase cleavage in a concentration-dependent manner. The role of apoptosis in dicycloplatin-mediated cell death was further confirmed by the concomitant treatment with caspase-8 or caspase-9 inhibitors, which inhibited apoptosis and PARP cleavage. Intracellular glutathione (GSH was also found to inhibit the cytotoxic effect of dicycloplatin. In conclusion, these findings suggest that dicycloplatin induces apoptosis through ROS stress-mediated death receptor pathway and mitochondrial pathway which is similar to carboplatin.

  19. Suppression of SOX18 by siRNA inhibits cell growth and invasion of breast cancer cells.

    Science.gov (United States)

    Zhang, Jianxiang; Ma, Yanmei; Wang, Shoujun; Chen, Fu; Gu, Yuanting

    2016-06-01

    Breast cancer is the most common malignancy in women around the world, and its incidence and mortality rates are still rising. An increasing number of studies have reported that SOX18 plays an important role in various cancers. However, the role of SOX18 in breast cancer remains poorly understood. In this study, we aimed to investigate the biological role and potential molecular mechanism of SOX18 in breast cancer. We found that the mRNA and protein expression levels of SOX18 were prevalently and significantly overexpressed in human breast cancer cell lines. Next, we performed loss-of-function experiments by transfection of two breast cancer cell lines, BT-474 and MCF-7, with SOX18 small interfering RNAs (siRNA). Results showed that SOX18 siRNA transfection significantly suppressed mRNA and protein expression of SOX18 in breast cancer cells. Furthermore, knockdown of SOX18 significantly inhibited cell proliferation and invasion, but promoted apoptosis in breast cancer cells. Importantly, several oncogenic proteins, including the Ras homolog gene family member A (RhoA), platelet-derived growth factor B (PDGFB), Insulin-like growth factor 1 receptor (IGF-1R), and matrix metalloproteinase-7 (MMP-7), were markedly decreased by SOX18 siRNA. Taken together, the results of our study suggest that knockdown of SOX18 inhibits breast cancer cell growth and invasion, possibly by downregulating downstream oncogenic proteins, providing novel insights into the development of breast cancer therapy through targeting of SOX18.

  20. ONC201 activates ER stress to inhibit the growth of triple-negative breast cancer cells.

    Science.gov (United States)

    Yuan, Xun; Kho, Dhonghyo; Xu, Jing; Gajan, Ambikai; Wu, Kongming; Wu, Gen Sheng

    2017-03-28

    ONC201 was previously identified as a first-in-class antitumor agent and small-molecule inducer of the TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) gene that induces apoptosis in cancer cells. ONC201 has a safety profile and is currently in phase II clinical trials for the treatment of various malignancies. In the current study, we examine the effect of ONC201 on triple-negative breast cancer cells (TNBC), a subtype of breast cancer that is sensitive to TRAIL. We find that ONC201 inhibits the growth of TNBC cells including TNBC cells that have developed acquired TRAIL resistance. However, TNBC cells that have developed acquired ONC201 resistance are cross-resistant to TRAIL. Mechanistically, ONC201 triggers an integrated stress response (ISR) involving the activation of the transcription factor ATF4. Knockdown of ATF4 impairs ONC201-induced apoptosis of TNBC cells. Importantly, the activation of ATF4 is compromised in ONC201-resistant TNBC cells. Thus, our results indicate that ONC201 induces an ISR to cause TNBC cell death and suggest that TNBC patients may benefit from ONC201-based therapies.

  1. Irisin inhibition of growth hormone secretion in cultured tilapia pituitary cells.

    Science.gov (United States)

    Lian, Anji; Li, Xin; Jiang, Quan

    2017-01-05

    Irisin, the product of fibronectin type III domain-containing protein 5 (FNDC5) gene, is well-documented to be a regulator of energy metabolism. At present, not much is known about its biological function in non-mammalian species. In this study, a full-length tilapia FDNC5 was cloned and its tissue expression pattern has been confirmed. Based on the sequence obtained, we produced and purified recombinant irisin which could induce uncoupling protein 1 (UCP1) gene expression in tilapia hepatocytes. Further, the rabbit polyclonal irisin antiserum was produced and its specificity was confirmed by antiserum preabsorption. In tilapia pituitary cells, irisin inhibited growth hormone (GH) gene expression and secretion and triggered rapid phosphorylation of Akt, Erk1/2, and p38 MAPK. Furthermore, irisin-inhibited GH mRNA expression could be prevented by inhibiting PI3K/Akt, MEK1/2, and p38 MAPK, respectively. Apparently, fish irisin can act directly at the pituitary level to inhibit GH transcript expression via multiple signaling pathways. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Ginger Phytochemicals Inhibit Cell Growth and Modulate Drug Resistance Factors in Docetaxel Resistant Prostate Cancer Cell.

    Science.gov (United States)

    Liu, Chi-Ming; Kao, Chiu-Li; Tseng, Yu-Ting; Lo, Yi-Ching; Chen, Chung-Yi

    2017-09-05

    Ginger has many bioactive compounds with pharmacological activities. However, few studies are known about these bioactive compounds activity in chemoresistant cells. The aim of the present study was to investigate the anticancer properties of ginger phytochemicals in docetaxel-resistant human prostate cancer cells in vitro. In this study, we isolated 6-gingerol, 10-gingerol, 4-shogaol, 6-shogaol, 10-shogaol, and 6-dehydrogingerdione from ginger. Further, the antiproliferation activity of these compounds was examined in docetaxel-resistant (PC3R) and sensitive (PC3) human prostate cancer cell lines. 6-gingerol, 10-gingerol, 6-shogaol, and 10-shogaol at the concentration of 100 μM significantly inhibited the proliferation in PC3R but 6-gingerol, 6-shogaol, and 10-shogaol displayed similar activity in PC3. The protein expression of multidrug resistance associated protein 1 (MRP1) and glutathione-S-transferase (GSTπ) is higher in PC3R than in PC3. In summary, we isolated the bioactive compounds from ginger. Our results showed that 6-gingerol, 10-gingerol, 6-shogaol, and 10-shogaol inhibit the proliferation of PC3R cells through the downregulation of MRP1 and GSTπ protein expression.

  3. Cannabidiol rather than Cannabis sativa extracts inhibit cell growth and induce apoptosis in cervical cancer cells.

    Science.gov (United States)

    Lukhele, Sindiswa T; Motadi, Lesetja R

    2016-09-01

    Cervical cancer remains a global health related issue among females of Sub-Saharan Africa, with over half a million new cases reported each year. Different therapeutic regimens have been suggested in various regions of Africa, however, over a quarter of a million women die of cervical cancer, annually. This makes it the most lethal cancer amongst black women and calls for urgent therapeutic strategies. In this study we compare the anti-proliferative effects of crude extract of Cannabis sativa and its main compound cannabidiol on different cervical cancer cell lines. To achieve our aim, phytochemical screening, MTT assay, cell growth analysis, flow cytometry, morphology analysis, Western blot, caspase 3/7 assay, and ATP measurement assay were conducted. Results obtained indicate that both cannabidiol and Cannabis sativa extracts were able to halt cell proliferation in all cell lines at varying concentrations. They further revealed that apoptosis was induced by cannabidiol as shown by increased subG0/G1 and apoptosis through annexin V. Apoptosis was confirmed by overexpression of p53, caspase 3 and bax. Apoptosis induction was further confirmed by morphological changes, an increase in Caspase 3/7 and a decrease in the ATP levels. In conclusion, these data suggest that cannabidiol rather than Cannabis sativa crude extracts prevent cell growth and induce cell death in cervical cancer cell lines.

  4. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells.

    Science.gov (United States)

    Ruma, I Made Winarsa; Putranto, Endy Widya; Kondo, Eisaku; Watanabe, Risayo; Saito, Ken; Inoue, Yusuke; Yamamoto, Ken-Ichi; Nakata, Susumu; Kaihata, Masaji; Murata, Hitoshi; Sakaguchi, Masakiyo

    2014-07-01

    Angiogenesis is essential for tumor development and metastasis. Among several angiogenic factors, vascular endothelial growth factor receptor (VEGF) is important for tumor-derived angiogenesis and commonly overexpressed in solid tumors. Thus, many antitumor strategies targeting VEGF have been developed to inhibit cancer angiogenesis, offering insights into the successful treatment of solid cancers. However, there are a number of issues such as harmful effects on normal vascularity in clinical trials. Taking this into consideration, we employed Cordyceps militaris as an antitumor approach due to its biological safety in vivo. The herbal medicinal mushroom Cordyceps militaris has been reported to show potential anticancer properties including anti-angiogenic capacity; however, its concrete properties have yet to be fully demonstrated. In this study, we aimed to elucidate the biological role of Cordyceps militaris extract in tumor cells, especially in regulating angiogenesis and tumor growth of a human malignant melanoma cell line. We demonstrated that Cordyceps militaris extract remarkably suppressed tumor growth via induction of apoptotic cell death in culture that links to the abrogation of VEGF production in melanoma cells. This was followed by mitigation of Akt1 and GSK-3β activation, while p38α phosphorylation levels were increased. Extract treatment in mouse model xenografted with human melanoma cells resulted in a dramatic antitumor effect with down-regulation of VEGF expression. The results suggest that suppression of tumor growth by Cordyceps militaris extract is, at least, mediated by its anti-angiogenicity and apoptosis induction capacities. Cordyceps militaris extract may be a potent antitumor herbal drug for solid tumors.

  5. 1082-39, an analogue of sorafenib, inhibited human cancer cell growth more potently than sorafenib.

    Science.gov (United States)

    Chu, Jia-Hui; Zhao, Cui-Rong; Song, Zhi-Yu; Wang, Rui-Qi; Qin, Yi-Zhuo; Li, Wen-Bao; Qu, Xian-Jun

    2014-04-01

    1082-39, an analogue of sorafenib, is a derivative of indazole diarylurea. We evaluated the activity of 1082-39 against human cancer cell growth. Its effects and mechanisms of action were then compared with those of sorafenib. The experiments were performed in human melanoma M21 cells. Cell viability was estimated by using the colorimetric assay. Annexin V-FITC/PI staining assay was used to recognize the apoptotic cells. Further analysis of the mitochondria membrane potential (MMP) was performed by the JC-1 fluorescence probe staining. The levels of apoptotic proteins and kinases related to cancer proliferation were determined by western blotting assay. 1082-39 possessed the activity against cancer cell proliferation with time- and dose-dependent manner. 1082-39 induced M21 cell to apoptosis, showing the increase of annexin V-FITC/PI staining cells, the MMP collapse and releasing cytochrome c from mitochondria. Western blotting analysis showed the activation of the mitochondria-mediated intrinsic pathway, showing the increase of cleaved caspase-9, cleaved caspase-3 and cleaved PARP. Statistical analysis suggested that 1082-39 possessed greater activities than sorafenib in the inhibition of M21 proliferation and induction of apoptosis. These effects of 1082-39 might arise from its activity of regulation the PI3K/Akt and Wnt/β-catenin signaling pathways. 1082-39 is a promising candidate compound which could develop as a potent anticancer agent. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Polo-like kinase 1 (PLK1) inhibition suppresses cell growth and enhances radiation sensitivity in medulloblastoma cells

    International Nuclear Information System (INIS)

    Harris, Peter S; Foreman, Nicholas K; Vibhakar, Rajeev; Venkataraman, Sujatha; Alimova, Irina; Birks, Diane K; Donson, Andrew M; Knipstein, Jeffrey; Dubuc, Adrian; Taylor, Michael D; Handler, Michael H

    2012-01-01

    Medulloblastoma is the most common malignant brain tumor in children and remains a therapeutic challenge due to its significant therapy-related morbidity. Polo-like kinase 1 (PLK1) is highly expressed in many cancers and regulates critical steps in mitotic progression. Recent studies suggest that targeting PLK1 with small molecule inhibitors is a promising approach to tumor therapy. We examined the expression of PLK1 mRNA in medulloblastoma tumor samples using microarray analysis. The impact of PLK1 on cell proliferation was evaluated by depleting expression with RNA interference (RNAi) or by inhibiting function with the small molecule inhibitor BI 2536. Colony formation studies were performed to examine the impact of BI 2536 on medulloblastoma cell radiosensitivity. In addition, the impact of depleting PLK1 mRNA on tumor-initiating cells was evaluated using tumor sphere assays. Analysis of gene expression in two independent cohorts revealed that PLK1 mRNA is overexpressed in some, but not all, medulloblastoma patient samples when compared to normal cerebellum. Inhibition of PLK1 by RNAi significantly decreased medulloblastoma cell proliferation and clonogenic potential and increased cell apoptosis. Similarly, a low nanomolar concentration of BI 2536, a small molecule inhibitor of PLK1, potently inhibited cell growth, strongly suppressed the colony-forming ability, and increased cellular apoptosis of medulloblastoma cells. Furthermore, BI 2536 pretreatment sensitized medulloblastoma cells to ionizing radiation. Inhibition of PLK1 impaired tumor sphere formation of medulloblastoma cells and decreased the expression of SRY (sex determining region Y)-box 2 (SOX2) mRNA in tumor spheres indicating a possible role in targeting tumor inititiating cells. Our data suggest that targeting PLK1 with small molecule inhibitors, in combination with radiation therapy, is a novel strategy in the treatment of medulloblastoma that warrants further investigation

  7. Lentivirus-mediated knockdown of NLK inhibits small-cell lung cancer growth and metastasis

    Directory of Open Access Journals (Sweden)

    Lv MT

    2016-11-01

    Full Text Available Mutian Lv,1 Yaming Li,1 Xin Tian,2 Shundong Dai,3,4 Jing Sun,5 Guojiang Jin,6 Shenyi Jiang7 1Department of Nuclear Medicine, 2Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, 3Department of Pathology, The First Affiliated Hospital, College of Basic Medical Sciences of China Medical University, 4Department of Pathology, Institute of Pathology and Pathophysiology, 5Department of Immunology and Biotherapy, Liaoning Cancer Hospital and Institute, 6Department of Laboratory Medicine, 7Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China Abstract: Nemo-like kinase (NLK, an evolutionarily conserved serine/threonine kinase, has been recognized as a critical regulator of various cancers. In this study, we investigated the role of NLK in human small-cell lung cancer (SCLC, which is the most aggressive form of lung cancer. NLK expression was evaluated by quantitative real-time polymerase chain reaction in 20 paired fresh SCLC tissue samples and found to be noticeably elevated in tumor tissues. Lentivirus-mediated RNAi efficiently suppressed NLK expression in NCI-H446 cells, resulting in a significant reduction in cell viability and proliferation in vitro. Moreover, knockdown of NLK led to cell cycle arrest at the S-phase via suppression of Cyclin A, CDK2, and CDC25A, which could contribute to cell growth inhibition. Furthermore, knockdown of NLK decreased the migration of NCI-H446 cells and downregulated matrix metalloproteinase 9. Treatment with NLK short hairpin RNA significantly reduced SCLC tumor growth in vivo. In conclusion, this study suggests that NLK plays an important role in the growth and metastasis of SCLC and may serve as a potential therapeutic target for the treatment of SCLC. Keywords: NLK, SCLC, RNAi, proliferation, migration

  8. Growth inhibition and differentiation of murine melanoma B16-BL6 cells caused by the combination of cisplatin and caffeine.

    Science.gov (United States)

    Tsuchiya, H; Tomita, K; Yasutake, H; Ueda, Y; Tanaka, M; Sasaki, T

    1989-12-01

    We preliminarily investigated the combined effects of cisplatin and caffeine on murine melanoma B16-BL6 cells in vitro. When caffeine was added before or simultaneously with cisplatin, there was little growth inhibition. The addition of 2.0 mM caffeine after 1 h of exposure to cisplatin inhibited growth and induced cell differentiation. This treatment resulted in fewer cells, and the numbers of melanosomes and mitochondria and the amount of Golgi's complex and endoplasmic reticulum were increased. DNA histograms obtained by flow cytometry showed that cells treated with cisplatin alone accumulated in the G2/M phase, with a partial G2 block. The addition of 2.0 mM caffeine after 1 h of treatment with cisplatin reduced this block. Caffeine caused murine melanoma B16-BL6 cells treated with cisplatin to differentiate, and this inhibited growth.

  9. Mixed metal oxide nanoparticles inhibit growth of Mycobacterium tuberculosis into THP-1 cells.

    Science.gov (United States)

    Jafari, A R; Mosavi, T; Mosavari, N; Majid, A; Movahedzade, F; Tebyaniyan, M; Kamalzadeh, M; Dehgan, M; Jafari, S; Arastoo, S

    2016-12-01

    Humans have been in a constant battle with tuberculosis (TB). Currently, overuse of antibiotics has resulted in the spread of multidrug-resistant Mycobacterium tuberculosis (MDR), leading to antibiotic ineffectiveness at controlling the spread of TB infection in host cells and especially macrophages. Additionally, the Mycobacterium tuberculosis (Mtb) has developed methods to evade the immune system and survive. With the discovery of nanoparticle (NP)-based drugs, it is necessary to research their anti-mycobacterial properties and bactericidal mechanisms. In this study, we synthesized mixed metal oxide NPs and tested their ability to inhibit Mtb growth into macrophages and investigated the cytotoxic effects of NPs in THP-1 cells. Silver (Ag) NPs and zinc oxide (ZnO) NPs were synthesized by chemical reduction and chemical deposition in aqueous solution, and the diffraction light scattering, scanning electron microscopy, transmission electron microscopy, and ultraviolet-visible light-absorption spectra were used to identify NP properties. Ag and ZnO NPs were mixed together at a ratio of 8 ZnO /2 Ag and diluted into Löwenstein-Jensen medium followed by the addition of bacteria and incubation for 28days at 37°C. The toxicity of NPs to THP-1 cells was assessed by MTT test, and macrophages were infected with Mtb for 4h at 37°C under 5% CO 2 . Nano-sized particles were estimated at ∼30-80nm, and the initial concentration of Ag NPs and ZnO NPs were estimated at ∼20ppm and ∼60ppm. The minimal inhibitory concentration ratio of 8 ZnO /2 Ag NPs against Mtb was detected at ∼1/32 of the initial concentration. Ag NPs in the range of concentrations exhibited no anti-Mtb effects, whereas ZnO NPs showed potent antibacterial activity at ∼1/128 of the initial concentration. ZnO NPs at all concentrations showed cytotoxic activity, whereas 100% of THP-1 cells remained viable in the presence of Ag NPs at ∼1/32 and ∼1/64 of the initial concentrations. However, at ratios of

  10. Inhibition of cell growth by EGR-1 in human primary cultures from malignant glioma

    Directory of Open Access Journals (Sweden)

    Gagliardi Franco

    2004-01-01

    Full Text Available Abstract Background The aim of this work was to investigate in vitro the putative role of EGR-1 in the growth of glioma cells. EGR-1 expression was examined during the early passages in vitro of 17 primary cell lines grown from 3 grade III and from 14 grade IV malignant astrocytoma explants. The explanted tumors were genetically characterized at the p53, MDM2 and INK4a/ARF loci, and fibronectin expression and growth characteristics were examined. A recombinant adenovirus overexpressing EGR-1 was tested in the primary cell lines. Results Low levels of EGR-1 protein were found in all primary cultures examined, with lower values present in grade IV tumors and in cultures carrying wild-type copies of p53 gene. The levels of EGR-1 protein were significantly correlated to the amount of intracellular fibronectin, but only in tumors carrying wild-type copies of the p53 gene (R = 0,78, p = 0.0082. Duplication time, plating efficiency, colony formation in agarose, and contact inhibition were also altered in the p53 mutated tumor cultures compared to those carrying wild-type p53. Growth arrest was achieved in both types of tumor within 1–2 weeks following infection with a recombinant adenovirus overexpressing EGR-1 but not with the control adenovirus. Conclusions Suppression of EGR-1 is a common event in gliomas and in most cases this is achieved through down-regulation of gene expression. Expression of EGR-1 by recombinant adenovirus infection almost completely abolishes the growth of tumor cells in vitro, regardless of the mutational status of the p53 gene.

  11. Arctigenin inhibits prostate tumor cell growth in vitro and in vivo

    Science.gov (United States)

    Wang, Piwen; Solorzano, Walter; Diaz, Tanya; Magyar, Clara E.; Henning, Susanne M.; Vadgama, Jaydutt V.

    2017-01-01

    The low bioavailability of most phytochemicals limits their translation to humans. We investigated whether arctigenin, a novel anti-inflammatory lignan from the seeds of Arctium lappa, has favorable bioavailability/potency against prostate cancer. The anticarcinogenic activity of arctigenin was investigated both in vitro using the androgen-sensitive LNCaP and LAPC-4 human prostate cancer cells and pre-malignant WPE1-NA22 cells, and in vivo using xenograft mouse models. Arctigenin at lower doses (< 2μM) significantly inhibited the proliferation of LNCaP and LAPC-4 cells by 30-50% at 48h compared to control, and inhibited WPE1-NA22 cells by 75%, while did not affect normal prostate epithelial cells. Male severe combined immunodeficiency (SCID) mice were implanted subcutaneously with LAPC-4 cells for in vivo studies. In one experiment, the intervention started one week after tumor implantation. Mice received arctigenin at 50mg/kg (LD) or 100mg/kg (HD) b.w. daily or vehicle control by oral gavage. After 6 weeks, tumor growth was inhibited by 50% (LD) and 70% (HD) compared to control. A stronger tumor inhibitory effect was observed in a second experiment where arctigenin intervention started two weeks prior to tumor implantation. Arc was detectable in blood and tumors in Arc groups, with a mean value up to 2.0 μM in blood, and 8.3 nmol/g tissue in tumors. Tumor levels of proliferation marker Ki67, total and nuclear androgen receptor, and growth factors including VEGF, EGF, and FGF-β were significantly decreased by Arc, along with an increase in apoptosis marker of Bax/Bcl-2 ratio. Genes responsive to arctigenin were identified including TIMP3 and ZNF185, and microRNAs including miR-126-5p, and miR-21-5p. This study provides the first in vivo evidence of the strong anticancer activity of arctigenin in prostate cancer. The effective dose of arctigenin in vitro is physiologically achievable in vivo, which provides a high promise in its translation to human application

  12. Arctigenin inhibits prostate tumor cell growth in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Piwen Wang

    2017-06-01

    Full Text Available The low bioavailability of most phytochemicals limits their translation to humans. We investigated whether arctigenin, a novel anti-inflammatory lignan from the seeds of Arctium lappa, has favorable bioavailability/potency against prostate cancer. The anticarcinogenic activity of arctigenin was investigated both in vitro using the androgen-sensitive LNCaP and LAPC-4 human prostate cancer cells and pre-malignant WPE1-NA22 cells, and in vivo using xenograft mouse models. Arctigenin at lower doses (<2 μM significantly inhibited the proliferation of LNCaP and LAPC-4 cells by 30–50% at 48 h compared to control, and inhibited WPE1-NA22 cells by 75%, while did not affect normal prostate epithelial cells. Male severe combined immunodeficiency (SCID mice were implanted subcutaneously with LAPC-4 cells for in vivo studies. In one experiment, the intervention started one week after tumor implantation. Mice received arctigenin at 50 mg/kg (LD or 100 mg/kg (HD b.w. daily or vehicle control by oral gavage. After 6 weeks, tumor growth was inhibited by 50% (LD and 70% (HD compared to control. A stronger tumor inhibitory effect was observed in a second experiment where arctigenin intervention started two weeks prior to tumor implantation. Arc was detectable in blood and tumors in Arc groups, with a mean value up to 2.0 μM in blood, and 8.3 nmol/g tissue in tumors. Tumor levels of proliferation marker Ki67, total and nuclear androgen receptor, and growth factors including VEGF, EGF, and FGF-β were significantly decreased by Arc, along with an increase in apoptosis marker of Bax/Bcl-2 ratio. Genes responsive to arctigenin were identified including TIMP3 and ZNF185, and microRNAs including miR-126-5p, and miR-21-5p. This study provides the first in vivo evidence of the strong anticancer activity of arctigenin in prostate cancer. The effective dose of arctigenin in vitro is physiologically achievable in vivo, which provides a high promise in its

  13. Inhibition of tumor cell growth by Sigma1 ligand mediated translational repression

    International Nuclear Information System (INIS)

    Kim, Felix J.; Schrock, Joel M.; Spino, Christina M.; Marino, Jacqueline C.; Pasternak, Gavril W.

    2012-01-01

    Highlights: ► Sigma1 ligand treatment mediates decrease in tumor cell mass. ► Identification of a Sigma1 ligand with reversible translational repressor actions. ► Demonstration of a role for Sigma1 in cellular protein synthesis. -- Abstract: Treatment with sigma1 receptor (Sigma1) ligands can inhibit cell proliferation in vitro and tumor growth in vivo. However, the cellular pathways engaged in response to Sigma1 ligand treatment that contribute to these outcomes remain largely undefined. Here, we show that treatment with putative antagonists of Sigma1 decreases cell mass. This effect corresponds with repressed cap-dependent translation initiation in multiple breast and prostate cancer cell lines. Sigma1 antagonist treatment suppresses phosphorylation of translational regulator proteins p70S6K, S6, and 4E-BP1. RNAi-mediated knockdown of Sigma1 also results in translational repression, consistent with the effects of antagonist treatment. Sigma1 antagonist mediated translational repression and decreased cell size are both reversible. Together, these data reveal a role for Sigma1 in tumor cell protein synthesis, and demonstrate that small molecule Sigma1 ligands can be used as modulators of protein translation.

  14. A novel HDAC inhibitor, CG200745, inhibits pancreatic cancer cell growth and overcomes gemcitabine resistance.

    Science.gov (United States)

    Lee, Hee Seung; Park, Soo Been; Kim, Sun A; Kwon, Sool Ki; Cha, Hyunju; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Song, Si Young

    2017-01-30

    Pancreatic cancer is predominantly lethal, and is primarily treated using gemcitabine, with increasing resistance. Therefore, novel agents that increase tumor sensitivity to gemcitabine are needed. Histone deacetylase (HDAC) inhibitors are emerging therapeutic agents, since HDAC plays an important role in cancer initiation and progression. We evaluated the antitumor effect of a novel HDAC inhibitor, CG200745, combined with gemcitabine/erlotinib on pancreatic cancer cells and gemcitabine-resistant pancreatic cancer cells. Three pancreatic cancer-cell lines were used to evaluate the antitumor effect of CG200745 combined with gemcitabine/erlotinib. CG200745 induced the expression of apoptotic proteins (PARP and caspase-3) and increased the levels of acetylated histone H3. CG200745 with gemcitabine/erlotinib showed significant growth inhibition and synergistic antitumor effects in vitro. In vivo, gemcitabine/erlotinib and CG200745 reduced tumor size up to 50%. CG200745 enhanced the sensitivity of gemcitabine-resistant pancreatic cancer cells to gemcitabine, and decreased the level of ATP-binding cassette-transporter genes, especially multidrug resistance protein 3 (MRP3) and MRP4. The novel HDAC inhibitor, CG200745, with gemcitabine/erlotinib had a synergistic anti-tumor effect on pancreatic cancer cells. CG200745 significantly improved pancreatic cancer sensitivity to gemcitabine, with a prominent antitumor effect on gemcitabine-resistant pancreatic cancer cells. Therefore, improved clinical outcome is expected in the future.

  15. Suppression of progranulin expression inhibits bladder cancer growth and sensitizes cancer cells to cisplatin.

    Science.gov (United States)

    Buraschi, Simone; Xu, Shi-Qiong; Stefanello, Manuela; Moskalev, Igor; Morcavallo, Alaide; Genua, Marco; Tanimoto, Ryuta; Birbe, Ruth; Peiper, Stephen C; Gomella, Leonard G; Belfiore, Antonino; Black, Peter C; Iozzo, Renato V; Morrione, Andrea

    2016-06-28

    We have recently demonstrated a critical role for progranulin in bladder cancer. Progranulin contributes, as an autocrine growth factor, to the transformed phenotype by modulating Akt-and MAPK-driven motility, invasion and anchorage-independent growth. Progranulin also induces F-actin remodeling by interacting with the F-actin binding protein drebrin. In addition, progranulin is overexpressed in invasive bladder cancer compared to normal tissue controls, suggesting that progranulin might play a key role in driving the transition to the invasive phenotype of urothelial cancer. However, it is not established whether targeting progranulin could have therapeutic effects on bladder cancer. In this study, we stably depleted urothelial cancer cells of endogenous progranulin by shRNA approaches and determined that progranulin depletion severely inhibited the ability of tumorigenic urothelial cancer cells to migrate, invade and grow in anchorage-independency. We further demonstrate that progranulin expression is critical for tumor growth in vivo, in both xenograft and orthotopic tumor models. Notably, progranulin levels correlated with response to cisplatin treatment and were upregulated in bladder tumors. Our data indicate that progranulin may constitute a novel target for therapeutic intervention in bladder tumors. In addition, progranulin may serve as a novel biomarker for bladder cancer.

  16. Resveratrol induces growth inhibition and apoptosis in metastatic breast cancer cells via de novo ceramide signaling.

    Science.gov (United States)

    Scarlatti, Francesca; Sala, Giusy; Somenzi, Giulia; Signorelli, Paola; Sacchi, Nicoletta; Ghidoni, Riccardo

    2003-12-01

    Resveratrol (3,4',5-trans-trihydroxystilbene), a phytoalexin present in grapes and red wine, is emerging as a natural compound with potential anticancer properties. Here we show that resveratrol can induce growth inhibition and apoptosis in MDA-MB-231, a highly invasive and metastatic breast cancer cell line, in concomitance with a dramatic endogenous increase of growth inhibitory/proapoptotic ceramide. We found that accumulation of ceramide derives from both de novo ceramide synthesis and sphingomyelin hydrolysis. More specifically we demonstrated that ceramide accumulation induced by resveratrol can be traced to the activation of serine palmitoyltransferase (SPT), the key enzyme of de novo ceramide biosynthetic pathway, and neutral sphingomyelinase (nSMase), a main enzyme involved in the sphingomyelin/ceramide pathway. However, by using specific inhibitors of SPT, myriocin and L-cycloserine, and nSMase, gluthatione and manumycin, we found that only the SPT inhibitors could counteract the biological effects induced by resveratrol. Thus, resveratrol seems to exert its growth inhibitory/apoptotic effect on the metastatic breast cancer cell line MDA-MB-231 by activating the de novo ceramide synthesis pathway.

  17. Silencing VDAC1 Expression by siRNA Inhibits Cancer Cell Proliferation and Tumor Growth In Vivo

    Directory of Open Access Journals (Sweden)

    Tasleem Arif

    2014-01-01

    Full Text Available Alterations in cellular metabolism and bioenergetics are vital for cancer cell growth and motility. Here, the role of the mitochondrial protein voltage-dependent anion channel (VDAC1, a master gatekeeper regulating the flux of metabolites and ions between mitochondria and the cytoplasm, in regulating the growth of several cancer cell lines was investigated by silencing VDAC1 expression using small interfering RNA (siRNA. A single siRNA specific to the human VDAC1 sequence at nanomolar concentrations led to some 90% decrease in VDAC1 levels in the lung A549 and H358, prostate PC-3, colon HCT116, glioblastoma U87, liver HepG2, and pancreas Panc-1 cancer cell lines. VDAC1 silencing persisted 144 hours post-transfection and resulted in profound inhibition of cell growth in cancer but not in noncancerous cells, with up to 90% inhibition being observed over 5 days that was prolonged by a second transfection. Cells expressing low VDAC1 levels showed decreased mitochondrial membrane potential and adenoside triphosphate (ATP levels, suggesting limited metabolite exchange between mitochondria and cytosol. Moreover, cells silenced for VDAC1 expression showed decreased migration, even in the presence of the wound healing accelerator basic fibroblast growth factor (bFGF. VDAC1-siRNA inhibited cancer cell growth in a Matrigel-based assay in host nude mice. Finally, in a xenograft lung cancer mouse model, chemically modified VDAC1-siRNA not only inhibited tumor growth but also resulted in tumor regression. This study thus shows that VDAC1 silencing by means of RNA interference (RNAi dramatically inhibits cancer cell growth and tumor development by disabling the abnormal metabolic behavior of cancer cells, potentially paving the way for a more effective pipeline of anticancer drugs.

  18. Components in aqueous Hibiscus rosa-sinensis flower extract inhibit in vitro melanoma cell growth

    Directory of Open Access Journals (Sweden)

    Karina H. Goldberg

    2017-01-01

    Full Text Available Skin cancer is extremely common, and melanoma causes about 80% of skin cancer deaths. In fact, melanoma kills over 50 thousand people around the world each year, and these numbers are rising. Clearly, standard treatments are not effectively treating melanoma, and alternative therapies are needed to address this problem. Hibiscus tea has been noted to have medicinal properties, including anticancer effects. Extracts from Hibiscus have been shown to inhibit the growth of a variety of cancer cells. In particular, recent studies found that polyphenols extracted from Hibiscus sabdariffa by organic solvents can inhibit melanoma cell growth. However, effects of aqueous extracts from Hibiscus rosa-sinesis flowers, which are commonly used to make traditional medicinal beverages, have not been examined on melanoma cells. Here, we report that aqueous H. rosa-sinesis flower extract contains compounds that inhibit melanoma cell growth in a dose dependent manner at concentrations that did not affect the growth of nontransformed cells. In addition, these extracts contain low molecular weight growth inhibitory compounds below 3 kD in size that combine with larger compounds to more effectively inhibit melanoma cell growth. Future work should identify these compounds, and evaluate their potential to prevent and treat melanoma and other cancers.

  19. Transcriptional and post-transcriptional upregulation of p27 mediates growth inhibition of isorhapontigenin (ISO) on human bladder cancer cells.

    Science.gov (United States)

    Jiang, Guosong; Huang, Chao; Li, Jingxia; Huang, Haishan; Wang, Jingjing; Li, Yawei; Xie, Fei; Jin, Honglei; Zhu, Junlan; Huang, Chuanshu

    2018-03-08

    There are few approved drugs available for the treatment of muscle-invasive bladder cancer (MIBC). Recently, we have demonstrated that isorhapontigenin (ISO), a new derivative isolated from the Chinese herb Gnetum cleistostachyum, effectively induces cell-cycle arrest at the G0/G1 phase and inhibits anchorage-independent cell growth through the miR-137/Sp1/cyclin D1 axis in human MIBC cells. Herein, we found that treatment of bladder cancer (BC) cells with ISO resulted in a significant upregulation of p27, which was also observed in ISO-treated mouse BCs that were induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Importantly, knockdown of p27 caused a decline in the ISO-induced G0-G1 growth arrest and reversed ISO suppression of anchorage-independent growth in BC cells. Mechanistic studies revealed that ISO promoted p27 expression at mRNA transcription level through increasing direct binding of forkhead box class O1 (FOXO1) to its promoter, while knockdown of FOXO1 attenuated ISO inhibition of BC cell growth. On the other hand, ISO upregulated the 3'-untranslated region (3'-UTR) activity of p27, which was accompanied by a reduction of miR-182 expression. In line with these observations, ectopic expression of miR-182 significantly blocked p27 3'-UTR activity, whereas mutation of the miR-182-binding site at p27 mRNA 3'-UTR effectively reversed this inhibition. Accordingly, ectopic expression of miR-182 also attenuated ISO upregulation of p27 expression and impaired ISO inhibition of BC cell growth. Our results not only provide novel insight into understanding of the underlying mechanism related to regulation of MIBC cell growth but also identify new roles and mechanisms underlying ISO inhibition of BC cell growth.

  20. H32, a non-quinone sulfone analog of vitamin K3, inhibits human hepatoma cell growth by inhibiting Cdc25 and activating ERK.

    Science.gov (United States)

    Kar, Siddhartha; Wang, Meifang; Ham, Seung Wook; Carr, Brian I

    2006-10-01

    We previously synthesized a K-vitamin derivative, Cpd 5, which was a potent growth inhibitor of human tumor cells, including Hep3B hepatoma cells. However, being a quinone compound, Cpd 5 has the potential for generating toxic reactive oxygen species (ROS). We therefore synthesized a nonquinone sulfone derivative, H32, which has a sufone group substituting the quinone. The IC50 of H32 for Hep3B cells was found to be 2.5 microM, which was 2.5 and 3.2 times more potent than Cpd 5 and vitamin K3 respectively. It induced apoptosis in Hep3B cells but did not generate ROS when compared to Cpd 5. Interestingly, under similar culture conditions, normal rat hepatocytes were 14-fold more and 7-fold more resistant to the growth inhibitory effects of H32 than Hep3B and PLC/PRF5 cells respectively. H32 preferentially inhibited the activities of the cell cycle controlling Cdc25A phosphatase likely by binding to its catalytic cysteine. As a consequence, it induced inhibitory tyrosine phosphorylation of the Cdc25 substrate kinases Cdk2 and Cdk4 in Hep3B cells and the cells undergo an arrest in the G1 phase of the cell cycle. H32 also induced persistent phosphorylation of the MAPK protein ERK1/2, but marginal JNK1/2 and p38 phosphorylation. The ERK inhibitor U0126, added at least 30 min prior to H32, antagonized the growth inhibition induced by H32. However, the JNK and p38 inhibitors, JNKI-II and SB203580, were not able to antagonize H32 induced growth inhibition. Thus, H32 differentially inhibited growth of normal and liver tumor cells by preferentially inhibiting the actions of Cdc25 phosphatases and inducing persistent ERK phosphorylation.

  1. Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer

    International Nuclear Information System (INIS)

    Forghani, Parvin; Khorramizadeh, Mohammad R; Waller, Edmund K

    2014-01-01

    Myeloid-derived suppressor cells (MDSC)s increase in blood and accumulate in the tumor microenvironment of tumor-bearing animals, contributing to immune suppression in cancer. Silibinin, a natural flavonoid from the seeds of milk thistle, has been developed as an anti-inflammatory agent and supportive care agent to reduce the toxicity of cancer chemotherapy. The goals of this study were to evaluate the effect of silibinin on MDSCs in tumor-bearing mice and antitumor activity of silibinin in a mouse model of breast cancer. 4T1 luciferase-transfected mammary carcinoma cells were injected into in the mammary fat pad female BALB/c mice, and female CB17-Prkdc Scid/J mice. Silibinin treatment started on day 4 or day 14 after tumor inoculation continued every other day. Tumor growth was monitored by bioluminescent imaging (BLI) measuring total photon flux. Flow cytometry measured total leukocytes, CD11b + Gr-1 + MDSC, and T cells in the blood and tumors of tumor-bearing mice. The effects of silibinin on 4T1 cell viability in vitro were measured by BLI. Treatment with silibinin increased overall survival in mice harboring tumors derived from the 4T1-luciferase breast cancer cell line, and reduced tumor volumes and numbers of CD11b + Gr-1 + MDSCs in the blood and tumor, and increased the content of T cells in the tumor microenvironment. Silibinin failed to inhibit tumor growth in immunocompromised severe combined immunodeficiency mice, supporting the hypothesis that anticancer effect of silibinin is immune-mediated. The antitumor activity of silibinin requires an intact host immune system and is associated with decreased accumulation of blood and tumor-associated MDSCs

  2. Epidermal growth factor receptor inhibition by anti-CD147 therapy in cutaneous squamous cell carcinoma.

    Science.gov (United States)

    Frederick, John W; Sweeny, Larissa; Hartman, Yolanda; Zhou, Tong; Rosenthal, Eben L

    2016-02-01

    Advanced cutaneous squamous cell carcinoma (SCC) is an uncommon and aggressive malignancy. As a result, there is limited understanding of its biology and pathogenesis. CD147 and epidermal growth factor receptor (EGFR) have been identified as oncologically important targets, but their relationship remains undefined in cutaneous SCC. Multiple cutaneous SCC cell lines (Colo-16, SRB-1, and SRB-12), were treated in vitro with a range of chimeric anti-CD147 monoclonal antibody (mAb) (0, 50, 100, and 200 µg/mL) or transfected with a small interfering RNA against CD147 (SiCD147). Cell proliferation, migration (scratch wound healing assay), and protein expression was then assessed. In vivo, Colo-16 flank xenografts were treated anti-CD147 mAb (150 µg i.p. triweekly). After treatment with anti-CD147 (200 µg/mL), there was a significant decrease in proliferation for all cell lines relative to controls (p CD147 (200 µg/mL) resulted in decreased cell migration for all cell lines, with an average of 43% reduction in closure compared to controls (p CD147 antibody therapy and siRNA mediated reduction in CD147 expression were both found to decrease protein expression of EGFR, which correlated with a reduction in downstream total and phosphorylated protein kinase B (pAKT). Tumor growth in vivo was reduced for both the anti-CD147 treatment group and the SiCD147 group relative to controls. Inhibition and downregulation of CD147 in cutaneous SCC resulted in suppression of the malignant phenotype in vitro and in vivo, which may be mediated in part by an alteration in EGFR expression. As a result, CD147 may serve as a potential therapeutic target for advanced cutaneous SCC. © 2014 Wiley Periodicals, Inc.

  3. PANC-1 pancreatic cancer cell growth inhibited by cucurmosin alone and in combination with an epidermal growth factor receptor-targeted drug.

    Science.gov (United States)

    Wang, Congfei; Yang, Aiqin; Zhang, Baoming; Yin, Qiang; Huang, Heguang; Chen, Minghuang; Xie, Jieming

    2014-03-01

    To investigate the inhibition of PANC-1 pancreatic cancer cell growth by cucurmosin (CUS) and its possible mechanism. We observed the inhibition of PANC-1 cell growth by sulforhodamine B and colony-forming experiments in vitro and established nonobese diabetic/severe combined immunodeficiency mouse subcutaneous tumor models in vivo. We used Western blot to analyze protein levels related to apoptosis and epidermal growth factor receptor (EGFR) signaling pathways after drug intervention, whereas the messenger RNA expression of EGFR was analyzed by quantitative real-time polymerase chain reaction. Sulforhodamine B and colony-forming experiments indicated that CUS inhibited PANC-1 cell proliferation in a dose- and time-dependent manner. A stronger inhibitory effect was observed when CUS was combined with gefitinib. The subcutaneous tumor growth was also inhibited. Western blot showed that all the examined proteins decreased, except for 4E-BP1 and the active fragments of caspase 3 and caspase 9 increased. Epidermal growth factor receptor expression did not change significantly in quantitative real-time polymerase chain reaction. Cucurmosin can strongly inhibit the growth of PANC-1 cells in vitro and in vivo. Cucurmosin can down-regulate EGFR protein expression, but not at the messenger RNA level. Cucurmosin can also inhibit the ras/raf and phosphatidylinositol 3-kinase/Akt downstream signaling pathways and enhance the sensitivity of the EGFR-targeted drug gefitinib.

  4. Stochastic cellular automata model of neurosphere growth: Roles of proliferative potential, contact inhibition, cell death, and phagocytosis.

    Science.gov (United States)

    Sipahi, Rifat; Zupanc, Günther K H

    2018-05-14

    Neural stem and progenitor cells isolated from the central nervous system form, under specific culture conditions, clonal cell clusters known as neurospheres. The neurosphere assay has proven to be a powerful in vitro system to study the behavior of such cells and the development of their progeny. However, the theory of neurosphere growth has remained poorly understood. To overcome this limitation, we have, in the present paper, developed a cellular automata model, with which we examined the effects of proliferative potential, contact inhibition, cell death, and clearance of dead cells on growth rate, final size, and composition of neurospheres. Simulations based on this model indicated that the proliferative potential of the founder cell and its progenitors has a major influence on neurosphere size. On the other hand, contact inhibition of proliferation limits the final size, and reduces the growth rate, of neurospheres. The effect of this inhibition is particularly dramatic when a stem cell becomes encapsulated by differentiated or other non-proliferating cells, thereby suppressing any further mitotic division - despite the existing proliferative potential of the stem cell. Conversely, clearance of dead cells through phagocytosis is predicted to accelerate growth by reducing contact inhibition. A surprising prediction derived from our model is that cell death, while resulting in a decrease in growth rate and final size of neurospheres, increases the degree of differentiation of neurosphere cells. It is likely that the cellular automata model developed as part of the present investigation is applicable to the study of tissue growth in a wide range of systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Huarong Huang

    Full Text Available α-Tomatine is a glycoalkaloid found in tomatoes and curcumin is a major yellow pigment of turmeric. In the present study, the combined effect of these two compounds on prostate cancer cells was studied. Treatment of different prostate cancer cells with curcumin or α-tomatine alone resulted in growth inhibition and apoptosis in a concentration-dependent manner. Combinations of α-tomatine and curcumin synergistically inhibited the growth and induced apoptosis in prostate cancer PC-3 cells. Effects of the α-tomatine and curcumin combination were associated with synergistic inhibition of NF-κB activity and a potent decrease in the expression of its downstream gene Bcl-2 in the cells. Moreover, strong decreases in the levels of phospho-Akt and phosphor-ERK1/2 were found in PC-3 cells treated with α-tomatine and curcumin in combination. In animal experiment, SCID mice with PC-3 xenograft tumors were treated with α-tomatine and curcumin. Combination of α-tomatine and curcumin more potently inhibited the growth of PC-3 tumors than either agent alone. Results from the present study indicate that α-tomatine in combination with curcumin may be an effective strategy for inhibiting the growth of prostate cancer.

  6. Effusanin E suppresses nasopharyngeal carcinoma cell growth by inhibiting NF-κB and COX-2 signaling.

    Directory of Open Access Journals (Sweden)

    Mingzhu Zhuang

    Full Text Available Rabdosia serra is well known for its antibacterial, anti-inflammatory and antitumor activities, but no information has been available for the active compounds derived from this plant in inhibiting human nasopharyngeal carcinoma (NPC cell growth. In this study, we isolated and purified a natural diterpenoid from Rabdosia serra and identified its chemical structure as effusanin E and elucidated its underlying mechanism of action in inhibiting NPC cell growth. Effusanin E significantly inhibited cell proliferation and induced apoptosis in NPC cells. Effusanin E also induced the cleavage of PARP, caspase-3 and -9 proteins and inhibited the nuclear translocation of p65 NF-κB proteins. Moreover, effusanin E abrogated the binding of NF-κB to the COX-2 promoter, thereby inhibiting the expression and promoter activity of COX-2. Pretreatment with a COX-2 or NF-κB-selective inhibitor (celecoxib or ammonium pyrrolidinedithiocarbamate had an additive effect on the effusanin E-mediated inhibition of proliferation, while pretreatment with an activator of NF-κB/COX-2 (lipopolysaccharides abrogated the effusanin E-mediated inhibition of proliferation. Effusanin E also significantly suppressed tumor growth in a xenograft mouse model without obvious toxicity, furthermore, the expression of p50 NF-κB and COX-2 were down-regulated in the tumors of nude mice. These data suggest that effusanin E suppresses p50/p65 proteins to down-regulate COX-2 expression, thereby inhibiting NPC cell growth. Our findings provide new insights into exploring effusanin E as a potential therapeutic compound for the treatment of human nasopharyngeal carcinoma.

  7. A novel muscarinic antagonist R2HBJJ inhibits non-small cell lung cancer cell growth and arrests the cell cycle in G0/G1.

    Directory of Open Access Journals (Sweden)

    Nan Hua

    Full Text Available Lung cancers express the cholinergic autocrine loop, which facilitates the progression of cancer cells. The antagonists of mAChRs have been demonstrated to depress the growth of small cell lung cancers (SCLCs. In this study we intended to investigate the growth inhibitory effect of R2HBJJ, a novel muscarinic antagonist, on non-small cell lung cancer (NSCLC cells and the possible mechanisms. The competitive binding assay revealed that R2HBJJ had a high affinity to M3 and M1 AChRs. R2HBJJ presented a strong anticholinergic activity on carbachol-induced contraction of guinea-pig trachea. R2HBJJ markedly suppressed the growth of NSCLC cells, such as H1299, H460 and H157. In H1299 cells, both R2HBJJ and its leading compound R2-PHC displayed significant anti-proliferative activity as M3 receptor antagonist darifenacin. Exogenous replenish of ACh could attenuate R2HBJJ-induced growth inhibition. Silencing M3 receptor or ChAT by specific-siRNAs resulted in a growth inhibition of 55.5% and 37.9% on H1299 cells 96 h post transfection, respectively. Further studies revealed that treatment with R2HBJJ arrested the cell cycle in G0/G1 by down-regulation of cyclin D1-CDK4/6-Rb. Therefore, the current study reveals that NSCLC cells express an autocrine and paracrine cholinergic system which stimulates the growth of NSCLC cells. R2HBJJ, as a novel mAChRs antagonist, can block the local cholinergic loop by antagonizing predominantly M3 receptors and inhibit NSCLC cell growth, which suggest that M3 receptor antagonist might be a potential chemotherapeutic regimen for NSCLC.

  8. Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF) - opioid growth factor receptor (OGFr) axis

    International Nuclear Information System (INIS)

    McLaughlin, Patricia J; Zagon, Ian S; Park, Sunny S; Conway, Andrea; Donahue, Renee N; Goldenberg, David

    2009-01-01

    Carcinoma of the thyroid gland is an uncommon cancer, but the most frequent malignancy of the endocrine system. Most thyroid cancers are derived from the follicular cell. Follicular carcinoma (FTC) is considered more malignant than papillary thyroid carcinoma (PTC), and anaplastic thyroid cancer (ATC) is one of the most lethal human cancers. Opioid Growth Factor (OGF; chemical term - [Met 5 ]-enkephalin) and its receptor, OGFr, form an inhibitory axis regulating cell proliferation. Both the peptide and receptor have been detected in a wide variety of cancers, and OGF is currently used clinically as a biotherapy for some non-thyroid neoplasias. This study addressed the question of whether the OGF-OGFr axis is present and functional in human thyroid follicular cell - derived cancer. Utilizing human ATC (KAT-18), PTC (KTC-1), and FTC (WRO 82-1) cell lines, immunohistochemistry was employed to ascertain the presence and location of OGF and OGFr. The growth characteristics in the presence of OGF or the opioid antagonist naltrexone (NTX), and the specificity of opioid peptides for proliferation of ATC, were established in KAT-18 cells. Dependence on peptide and receptor were investigated using neutralization studies with antibodies and siRNA experiments, respectively. The mechanism of peptide action on DNA synthesis and cell survival was ascertained. The ubiquity of the OGF-OGFr axis in thyroid follicular cell-derived cancer was assessed in KTC-1 (PTC) and WRO 82-1 (FTC) tumor cells. OGF and OGFr were present in KAT-18 cells. Concentrations of 10 -6 M OGF inhibited cell replication up to 30%, whereas NTX increased cell growth up to 35% relative to cultures treated with sterile water. OGF treatment reduced cell number by as much as 38% in KAT-18 ATC in a dose-dependent and receptor-mediated manner. OGF antibodies neutralized the inhibitory effects of OGF, and siRNA knockdown of OGFr negated growth inhibition by OGF. Cell survival was not altered by OGF, but DNA synthesis

  9. Ganoderma lucidum suppresses growth of breast cancer cells through the inhibition of Akt/NF-kappaB signaling.

    Science.gov (United States)

    Jiang, Jiahua; Slivova, Veronika; Harvey, Kevin; Valachovicova, Tatiana; Sliva, Daniel

    2004-01-01

    Ganoderma lucidum (Reishi, Lingzhi) is a popular Asian mushroom that has been used for more than 2 millennia for the general promotion of health and was therefore called the "Mushroom of Immortality." Ganoderma lucidum was also used in traditional Chinese medicine to prevent or treat a variety of diseases, including cancer. We previously demonstrated that Ganoderma lucidum suppresses the invasive behavior of breast cancer cells by inhibiting the transcription factor NF-kappaB. However, the molecular mechanisms responsible for the inhibitory effects of Ganoderma lucidum on the growth of highly invasive and metastatic breast cancer cells has not been fully elucidated. Here, we show that Ganoderma lucidum inhibits proliferation of breast cancer MDA-MB-231 cells by downregulating Akt/NF-kappaB signaling. Ganoderma lucidum suppresses phosphorylation of Akt on Ser473 and downregulates the expression of Akt, which results in the inhibition of NF-kappaB activity in MDA-MB-231 cells. The biological effect of Ganoderma lucidum was demonstrated by cell cycle arrest at G0/G1, which was the result of the downregulation of expression of NF-kappaB-regulated cyclin D1, followed by the inhibition of cdk4. Our results suggest that Ganoderma lucidum inhibits the growth of MDA-MB-231 breast cancer cells by modulating Akt/NF-kappaB signaling and could have potential therapeutic use for the treatment of breast cancer.

  10. A class of DNA-binding peptides from wheat bud causes growth inhibition, G2 cell cycle arrest and apoptosis induction in HeLa cells

    Directory of Open Access Journals (Sweden)

    Elgjo Kjell

    2009-07-01

    Full Text Available Abstract Background Deproteinized DNA from eukaryotic and prokaryotic cells still contains a low-molecular weight peptidic fraction which can be dissociated by alkalinization of the medium. This fraction inhibits RNA transcription and tumor cell growth. Removal from DNA of normal cells causes amplification of DNA template activity. This effect is lower or absent in several cancer cell lines. Likewise, the amount of active peptides in cancer cell DNA extracts is lower than in DNA preparation of the corresponding normal cells. Such evidence, and their ubiquitous presence, suggests that they are a regulatory, conserved factor involved in the control of normal cell growth and gene expression. Results We report that peptides extracted from wheat bud chromatin induce growth inhibition, G2 arrest and caspase-dependent apoptosis in HeLa cells. The growth rate is decreased in cells treated during the S phase only and it is accompanied by DNA damage and DNA synthesis inhibition. In G2 cells, this treatment induces inactivation of the CDK1-cyclin B1 complex and an increase of active chk1 kinase expression. Conclusion The data indicate that the chromatin peptidic pool inhibits HeLa cell growth by causing defective DNA replication which, in turn, arrests cell cycle progression to mitosis via G2 checkpoint pathway activation.

  11. FXR blocks the growth of liver cancer cells through inhibiting mTOR-s6K pathway

    International Nuclear Information System (INIS)

    Huang, Xiongfei; Zeng, Yeting; Wang, Xinrui; Ma, Xiaoxiao; Li, Qianqian; Li, Ningbo; Su, Hongying; Huang, Wendong

    2016-01-01

    The nuclear receptor Farnesoid X Receptor (FXR) is likely a tumor suppressor in liver tissue but its molecular mechanism of suppression is not well understood. In this study, the gene expression profile of human liver cancer cells was investigated by microarray. Bioinformatics analysis of these data revealed that FXR might regulate the mTOR/S6K signaling pathway. This was confirmed by altering the expression level of FXR in liver cancer cells. Overexpression of FXR prevented the growth of cells and induced cell cycle arrest, which was enhanced by the mTOR/S6K inhibitor rapamycin. FXR upregulation also intensified the inhibition of cell growth by rapamycin. Downregulation of FXR produced the opposite effect. Finally, we found that ectopic expression of FXR in SK-Hep-1 xenografts inhibits tumor growth and reduces expression of the phosphorylated protein S6K. Taken together, our data provide the first evidence that FXR suppresses proliferation of human liver cancer cells via the inhibition of the mTOR/S6K signaling pathway. FXR expression can be used as a biomarker of personalized mTOR inhibitor treatment assessment for liver cancer patients. -- Highlights: •FXR inhibits the proliferation of liver cancer cells by prolonging G0/G1 phase. •Microarray results indicate that mTOR-S6k signaling is involved in cellular processes in which FXR plays an important role. •FXR blocks the growth of liver cancer cells via the inhibition of the mTOR/S6K signaling pathway in vitro and in vivo.

  12. FXR blocks the growth of liver cancer cells through inhibiting mTOR-s6K pathway

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiongfei, E-mail: xiongfeihuang@hotmail.com [Department of Pathology and Institute of Oncology, Preclinical School, Fujian Medical University, Fuzhou 350108, Fujian (China); Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian (China); Zeng, Yeting [Department of Pathology and Institute of Oncology, Preclinical School, Fujian Medical University, Fuzhou 350108, Fujian (China); Wang, Xinrui [Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350108, Fujian (China); Ma, Xiaoxiao [Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, CA 91010 (United States); Li, Qianqian; Li, Ningbo; Su, Hongying [Department of Pathology and Institute of Oncology, Preclinical School, Fujian Medical University, Fuzhou 350108, Fujian (China); Huang, Wendong [Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, CA 91010 (United States)

    2016-05-27

    The nuclear receptor Farnesoid X Receptor (FXR) is likely a tumor suppressor in liver tissue but its molecular mechanism of suppression is not well understood. In this study, the gene expression profile of human liver cancer cells was investigated by microarray. Bioinformatics analysis of these data revealed that FXR might regulate the mTOR/S6K signaling pathway. This was confirmed by altering the expression level of FXR in liver cancer cells. Overexpression of FXR prevented the growth of cells and induced cell cycle arrest, which was enhanced by the mTOR/S6K inhibitor rapamycin. FXR upregulation also intensified the inhibition of cell growth by rapamycin. Downregulation of FXR produced the opposite effect. Finally, we found that ectopic expression of FXR in SK-Hep-1 xenografts inhibits tumor growth and reduces expression of the phosphorylated protein S6K. Taken together, our data provide the first evidence that FXR suppresses proliferation of human liver cancer cells via the inhibition of the mTOR/S6K signaling pathway. FXR expression can be used as a biomarker of personalized mTOR inhibitor treatment assessment for liver cancer patients. -- Highlights: •FXR inhibits the proliferation of liver cancer cells by prolonging G0/G1 phase. •Microarray results indicate that mTOR-S6k signaling is involved in cellular processes in which FXR plays an important role. •FXR blocks the growth of liver cancer cells via the inhibition of the mTOR/S6K signaling pathway in vitro and in vivo.

  13. Arctigenin inhibits prostate tumor cell growth in vitro and in vivo.

    Science.gov (United States)

    Wang, Piwen; Solorzano, Walter; Diaz, Tanya; Magyar, Clara E; Henning, Susanne M; Vadgama, Jaydutt V

    2017-06-01

    The low bioavailability of most phytochemicals limits their translation to humans. We investigated whether arctigenin, a novel anti-inflammatory lignan from the seeds of Arctium lappa , has favorable bioavailability/potency against prostate cancer. The anticarcinogenic activity of arctigenin was investigated both in vitro using the androgen-sensitive LNCaP and LAPC-4 human prostate cancer cells and pre-malignant WPE1-NA22 cells, and in vivo using xenograft mouse models. Arctigenin at lower doses (arctigenin at 50mg/kg (LD) or 100mg/kg (HD) b.w. daily or vehicle control by oral gavage. After 6 weeks, tumor growth was inhibited by 50% (LD) and 70% (HD) compared to control. A stronger tumor inhibitory effect was observed in a second experiment where arctigenin intervention started two weeks prior to tumor implantation. Arc was detectable in blood and tumors in Arc groups, with a mean value up to 2.0 μM in blood, and 8.3 nmol/g tissue in tumors. Tumor levels of proliferation marker Ki67, total and nuclear androgen receptor, and growth factors including VEGF, EGF, and FGF-β were significantly decreased by Arc, along with an increase in apoptosis marker of Bax/Bcl-2 ratio. Genes responsive to arctigenin were identified including TIMP3 and ZNF185, and microRNAs including miR-126-5p, and miR-21-5p. This study provides the first in vivo evidence of the strong anticancer activity of arctigenin in prostate cancer. The effective dose of arctigenin in vitro is physiologically achievable in vivo , which provides a high promise in its translation to human application.

  14. Mechanisms involved in growth inhibition induced by clofibrate in hepatoma cells

    International Nuclear Information System (INIS)

    Muzio, Giuliana; Maggiora, Marina; Trombetta, Antonella; Martinasso, Germana; Reffo, Patrizia; Colombatto, Sebastiano; Canuto, Rosa Angela

    2003-01-01

    Low concentrations of some peroxisome proliferators have been found to decrease apoptosis in rat liver cells, whereas higher but pharmacological concentrations have been found to inhibit cell proliferation or to induce apoptosis in human and rat hepatoma cells. The highly deviated JM2 rat hepatoma cell line was used to examine the mechanisms underlying the inhibitory effect on cell proliferation. Clofibrate chiefly inhibited cell proliferation in these cells. Parallel to the decrease in cell proliferation there was an increase of peroxisome proliferator activated receptor (PPAR) gamma and of protein phosphatase 2A, whose importance was confirmed, respectively, by using antisense oliginucleotides (AS-ODN) or okadaic acid. The increase of protein phosphatase 2A induced by PPARgamma caused a decrease of MAPK, an intracellular signaling transduction pathway, as shown by evaluation of Erk1,2 and c-myc. In light of these results, clofibrate, like conventional synthetic ligands of PPARgamma, may be regarded as a possible prototype anti-tumour drug

  15. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth

    Directory of Open Access Journals (Sweden)

    Yallapu Murali M

    2010-04-01

    Full Text Available Abstract Background Chemo/radio-resistance is a major obstacle in treating advanced ovarian cancer. The efficacy of current treatments may be improved by increasing the sensitivity of cancer cells to chemo/radiation therapies. Curcumin is a naturally occurring compound with anti-cancer activity in multiple cancers; however, its chemo/radio-sensitizing potential is not well studied in ovarian cancer. Herein, we demonstrate the effectiveness of a curcumin pre-treatment strategy for chemo/radio-sensitizing cisplatin resistant ovarian cancer cells. To improve the efficacy and specificity of curcumin induced chemo/radio sensitization, we developed a curcumin nanoparticle formulation conjugated with a monoclonal antibody specific for cancer cells. Methods Cisplatin resistant A2780CP ovarian cancer cells were pre-treated with curcumin followed by exposure to cisplatin or radiation and the effect on cell growth was determined by MTS and colony formation assays. The effect of curcumin pre-treatment on the expression of apoptosis related proteins and β-catenin was determined by Western blotting or Flow Cytometry. A luciferase reporter assay was used to determine the effect of curcumin on β-catenin transcription activity. The poly(lactic acid-co-glycolic acid (PLGA nanoparticle formulation of curcumin (Nano-CUR was developed by a modified nano-precipitation method and physico-chemical characterization was performed by transmission electron microscopy and dynamic light scattering methods. Results Curcumin pre-treatment considerably reduced the dose of cisplatin and radiation required to inhibit the growth of cisplatin resistant ovarian cancer cells. During the 6 hr pre-treatment, curcumin down regulated the expression of Bcl-XL and Mcl-1 pro-survival proteins. Curcumin pre-treatment followed by exposure to low doses of cisplatin increased apoptosis as indicated by annexin V staining and cleavage of caspase 9 and PARP. Additionally, curcumin pre

  16. BAD overexpression inhibits cell growth and induces apoptosis via mitochondrial-dependent pathway in non-small cell lung cancer.

    Science.gov (United States)

    Jiang, Li; Luo, Man; Liu, Dan; Chen, Bojiang; Zhang, Wen; Mai, Lin; Zeng, Jing; Huang, Na; Huang, Yi; Mo, Xianming; Li, Weimin

    2013-06-01

    The pro-apoptotic Bcl-2 protein BAD initiated apoptosis in human cells and has been identified as a prognostic marker in non-small cell lung cancer (NSCLC). In this study, we aimed to explore the functions of BAD in NSCLC. Overexpression of BAD was performed by transfecting different NSCLC cell lines with wild-type BAD. Cell proliferation, cell cycle, apoptosis, and invasion were characterized in vitro. Tumorigenicity was analyzed in vivo. Western blot was performed to determine the effects of BAD overexpression on the Bcl-2 family proteins and apoptosis-related proteins. Overexpression of BAD significantly inhibited cell proliferation in H1299, H292, and SPC-A1 but not in SK-MES-1 and H460 cell lines in vitro. BAD overexpression also reduced the tumorigenicity of H1299/SPC-A1 cell in vivo. However, no appreciable effects on cell cycle distribution and invasion were observed in all these cell lines. BAD overexpression also induced apoptosis in all cell types, in which process expression of mitochondrial cytochrom c (cyto-c) and caspase 3 were increased, whereas Bcl-xl, Bcl-2, Bax and caspase 8 expressions did not changed. These findings indicated that a mitochondrial pathway, in which process cyto-c was released from mitochondrial to activate caspase 3, was involved in BAD overexpression-mediated apoptosis. Our data suggested that increased expression of BAD enhance apoptosis and has negative influence on cell proliferation and tumor growth in NSCLC. Bad is a new potential target for tumor interventions.

  17. BMP9 inhibits the bone metastasis of breast cancer cells by downregulating CCN2 (connective tissue growth factor, CTGF) expression.

    Science.gov (United States)

    Ren, Wei; Sun, Xiaoxiao; Wang, Ke; Feng, Honglei; Liu, Yuehong; Fei, Chang; Wan, Shaoheng; Wang, Wei; Luo, Jinyong; Shi, Qiong; Tang, Min; Zuo, Guowei; Weng, Yaguang; He, Tongchuan; Zhang, Yan

    2014-03-01

    Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor-β superfamily, regulate a wide range of cellular responses including cell proliferation, differentiation, adhesion, migration, and apoptosis. BMP9, the latest BMP to be discovered, is reportedly expressed in a variety of human carcinoma cell lines, but the role of BMP9 in breast cancer has not been fully clarified. In a previous study, BMP9 was found to inhibit the growth, migration, and invasiveness of MDA-MB-231 breast cancer cells. In the current study, the effect of BMP9 on the bone metastasis of breast cancer cells was investigated. After absent or low expression of BMP9 was detected in the MDA-MB-231 breast cancer cells and breast non-tumor adjacent tissues using Western blot and immunohistochemistry, In our previous study, BMP9 could inhibit the proliferation and invasiveness of breast cancer cells MDA-MB-231 in vitro and in vivo. This paper shows that BMP9 inhibit the bone metastasis of breast cancer cells by activating the BMP/Smad signaling pathway and downregulating connective tissue growth factor (CTGF); however, when CTGF expression was maintained, the inhibitory effect of BMP9 on the MDA-MB-231 cells was abolished. Together, these observations indicate that BMP9 is an important mediator of breast cancer bone metastasis and a potential therapeutic target for treating this deadly disease.

  18. Antiprogestin mifepristone inhibits the growth of cancer cells of reproductive and non-reproductive origin regardless of progesterone receptor expression

    International Nuclear Information System (INIS)

    Tieszen, Chelsea R; Goyeneche, Alicia A; Brandhagen, BreeAnn N; Ortbahn, Casey T; Telleria, Carlos M

    2011-01-01

    Mifepristone (MF) has been largely used in reproductive medicine due to its capacity to modulate the progesterone receptor (PR). The study of MF has been expanded to the field of oncology; yet it remains unclear whether the expression of PR is required for MF to act as an anti-cancer agent. Our laboratory has shown that MF is a potent inhibitor of ovarian cancer cell growth. In this study we questioned whether the growth inhibitory properties of MF observed in ovarian cancer cells would translate to other cancers of reproductive and non-reproductive origin and, importantly, whether its efficacy is related to the expression of cognate PR. Dose-response experiments were conducted with cancer cell lines of the nervous system, breast, prostate, ovary, and bone. Cultures were exposed to vehicle or increasing concentrations of MF for 72 h and analysed for cell number and cell cycle traverse, and hypodiploid DNA content characteristic of apoptotic cell death. For all cell lines, expression of steroid hormone receptors upon treatment with vehicle or cytostatic doses of MF for 24 h was studied by Western blot, whereas the activity of the G1/S regulatory protein Cdk2 in both treatment groups was monitored in vitro by the capacity of Cdk2 to phosphorylate histone H1. MF growth inhibited all cancer cell lines regardless of tissue of origin and hormone responsiveness, and reduced the activity of Cdk2. Cancer cells in which MF induced G1 growth arrest were less susceptible to lethality in the presence of high concentrations of MF, when compared to cancer cells that did not accumulate in G1. While all cancer cell lines were growth inhibited by MF, only the breast cancer MCF-7 cells expressed cognate PR. Antiprogestin MF inhibits the growth of different cancer cell lines with a cytostatic effect at lower concentrations in association with a decline in the activity of the cell cycle regulatory protein Cdk2, and apoptotic lethality at higher doses in association with increased

  19. Antiprogestin mifepristone inhibits the growth of cancer cells of reproductive and non-reproductive origin regardless of progesterone receptor expression

    Directory of Open Access Journals (Sweden)

    Ortbahn Casey T

    2011-05-01

    Full Text Available Abstract Background Mifepristone (MF has been largely used in reproductive medicine due to its capacity to modulate the progesterone receptor (PR. The study of MF has been expanded to the field of oncology; yet it remains unclear whether the expression of PR is required for MF to act as an anti-cancer agent. Our laboratory has shown that MF is a potent inhibitor of ovarian cancer cell growth. In this study we questioned whether the growth inhibitory properties of MF observed in ovarian cancer cells would translate to other cancers of reproductive and non-reproductive origin and, importantly, whether its efficacy is related to the expression of cognate PR. Methods Dose-response experiments were conducted with cancer cell lines of the nervous system, breast, prostate, ovary, and bone. Cultures were exposed to vehicle or increasing concentrations of MF for 72 h and analysed for cell number and cell cycle traverse, and hypodiploid DNA content characteristic of apoptotic cell death. For all cell lines, expression of steroid hormone receptors upon treatment with vehicle or cytostatic doses of MF for 24 h was studied by Western blot, whereas the activity of the G1/S regulatory protein Cdk2 in both treatment groups was monitored in vitro by the capacity of Cdk2 to phosphorylate histone H1. Results MF growth inhibited all cancer cell lines regardless of tissue of origin and hormone responsiveness, and reduced the activity of Cdk2. Cancer cells in which MF induced G1 growth arrest were less susceptible to lethality in the presence of high concentrations of MF, when compared to cancer cells that did not accumulate in G1. While all cancer cell lines were growth inhibited by MF, only the breast cancer MCF-7 cells expressed cognate PR. Conclusions Antiprogestin MF inhibits the growth of different cancer cell lines with a cytostatic effect at lower concentrations in association with a decline in the activity of the cell cycle regulatory protein Cdk2, and

  20. Enalapril and ASS inhibit tumor growth in a transgenic mouse model of islet cell tumors.

    Science.gov (United States)

    Fendrich, V; Lopez, C L; Manoharan, J; Maschuw, K; Wichmann, S; Baier, A; Holler, J P; Ramaswamy, A; Bartsch, D K; Waldmann, J

    2014-10-01

    Accumulating evidence suggests a role for angiotensin-converting enzymes involving the angiotensin II-receptor 1 (AT1-R) and the cyclooxygenase pathway in carcinogenesis. The effects of ASS and enalapril were assessed in vitro and in a transgenic mouse model of pancreatic neuroendocrine neoplasms (pNENs). The effects of enalapril and ASS on proliferation and expression of the AGTR1A and its target gene vascular endothelial growth factor (Vegfa) were assessed in the neuroendocrine cell line BON1. Rip1-Tag2 mice were treated daily with either 0.6 mg/kg bodyweight of enalapril i.p., 20 mg/kg bodyweight of ASS i.p., or a vehicle in a prevention (weeks 5-12) and a survival group (week 5 till death). Tumor surface, weight of pancreatic glands, immunostaining for AT1-R and nuclear factor kappa beta (NFKB), and mice survival were analyzed. In addition, sections from human specimens of 20 insulinomas, ten gastrinomas, and 12 non-functional pNENs were evaluated for AT1-R and NFKB (NFKB1) expression and grouped according to the current WHO classification. Proliferation was significantly inhibited by enalapril and ASS in BON1 cells, with the combination being the most effective. Treatment with enalapril and ASS led to significant downregulation of known target genes Vegf and Rela at RNA level. Tumor growth was significantly inhibited by enalapril and ASS in the prevention group displayed by a reduction of tumor size (84%/67%) and number (30%/45%). Furthermore, daily treatment with enalapril and ASS prolonged the overall median survival compared with vehicle-treated Rip1-Tag2 (107 days) mice by 9 and 17 days (P=0.016 and P=0.013). The AT1-R and the inflammatory transcription factor NFKB were abolished completely upon enalapril and ASS treatment. AT1-R and NFKB expressions were observed in 80% of human pNENs. Enalapril and ASS may provide an approach for chemoprevention and treatment of pNENs. © 2014 Society for Endocrinology.

  1. Plant lectin can target receptors containing sialic acid, exemplified by podoplanin, to inhibit transformed cell growth and migration.

    Directory of Open Access Journals (Sweden)

    Jhon Alberto Ochoa-Alvarez

    Full Text Available Cancer is a leading cause of death of men and women worldwide. Tumor cell motility contributes to metastatic invasion that causes the vast majority of cancer deaths. Extracellular receptors modified by α2,3-sialic acids that promote this motility can serve as ideal chemotherapeutic targets. For example, the extracellular domain of the mucin receptor podoplanin (PDPN is highly O-glycosylated with α2,3-sialic acid linked to galactose. PDPN is activated by endogenous ligands to induce tumor cell motility and metastasis. Dietary lectins that target proteins containing α2,3-sialic acid inhibit tumor cell growth. However, anti-cancer lectins that have been examined thus far target receptors that have not been identified. We report here that a lectin from the seeds of Maackia amurensis (MASL with affinity for O-linked carbohydrate chains containing sialic acid targets PDPN to inhibit transformed cell growth and motility at nanomolar concentrations. Interestingly, the biological activity of this lectin survives gastrointestinal proteolysis and enters the cardiovascular system to inhibit melanoma cell growth, migration, and tumorigenesis. These studies demonstrate how lectins may be used to help develop dietary agents that target specific receptors to combat malignant cell growth.

  2. miR-449 overexpression inhibits papillary thyroid carcinoma cell growth by targeting RET kinase-β-catenin signaling pathway.

    Science.gov (United States)

    Li, Zongyu; Huang, Xin; Xu, Jinkai; Su, Qinghua; Zhao, Jun; Ma, Jiancang

    2016-10-01

    Papillary thyroid carcinoma (PTC) is the most common thyroid cancer and represent approximately 80% of all thyroid cancers. The present study is aimed to investigate the role of microRNA (miR)-449 in the progression of PTC. Our results revealed that miR-449 was underexpressed in the collected PTC specimens compared with non-cancerous PTC tissues. Overexpression of miR-449 induced a cell cycle arrest at G0/G1 phase and inhibited PTC cell growth in vitro. Further studies revealed that RET proto-oncogene (RET) is a novel miR-449 target, due to miR-449 bound directly to its 3'-untranslated region and miR-449 mimic reduced the protein expression of RET. Similar to the effects of miR-449 overexpression, RET downregulation inhibited cell growth, whereas RET overexpression reversed the inhibitive effect of miR-449 mimic. Furthermore, miR-449 overexpression inhibited the nuclear translocation of β-catenin and reduced the expression of several downstream genes, including c-Myc, cyclin D1, T cell-specific transcription factor (TCF) and lymphoid enhancer-binding factor 1 (LEF-1), and inactivated the β-catenin pathway in TPC-1 cells. Moreover, overexpression of β-catenin prevented miR-449-reduced cell cycle arrest and cell viability. In xenograft animal experiments, miR-449 overexpression effectively suppressed the tumor growth of PTC. Taken together, our research indicated that miR-449 functions as an anti-oncogene by targeting RET, and that miR-449 overexpression inhibited the growth of PTC by inactivating the β-catenin pathway. Thus, miR-449 may serve as a potential therapeutic strategy for the treatment of PTC.

  3. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    International Nuclear Information System (INIS)

    Wang, Bing; Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

    2013-01-01

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells

  4. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bing, E-mail: wangbin69@yahoo.com; Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

    2013-07-19

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells.

  5. Andrographis paniculata extracts and major constituent diterpenoids inhibit growth of intrahepatic cholangiocarcinoma cells by inducing cell cycle arrest and apoptosis.

    Science.gov (United States)

    Suriyo, Tawit; Pholphana, Nanthanit; Rangkadilok, Nuchanart; Thiantanawat, Apinya; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2014-05-01

    Andrographis paniculata is an important herbal medicine widely used in several Asian countries for the treatment of various diseases due to its broad range of pharmacological activities. The present study reports that A. paniculata extracts potently inhibit the growth of liver (HepG2 and SK-Hep1) and bile duct (HuCCA-1 and RMCCA-1) cancer cells. A. paniculata extracts with different contents of major diterpenoids, including andrographolide, 14-deoxy-11,12-didehydroandrographolide, neoandrographolide, and 14-deoxyandrographolide, exhibited a different potency of growth inhibition. The ethanolic extract of A. paniculata at the first true leaf stage, which contained a high amount of 14-deoxyandrographolide but a low amount of andrographolide, showed a cytotoxic effect to cancer cells about 4 times higher than the water extract of A. paniculata at the mature leaf stage, which contained a high amount of andrographolide but a low amount of 14-deoxyandrographolide. Andrographolide, not 14-deoxy-11,12-didehydroandrographolide, neoandrographolide, or 14-deoxyandrographolide, possessed potent cytotoxic activity against the growth of liver and bile duct cancer cells. The cytotoxic effect of the water extract of A. paniculata at the mature leaf stage could be explained by the present amount of andrographolide, while the cytotoxic effect of the ethanolic extract of A. paniculata at the first true leaf stage could not. HuCCA-1 cells showed more sensitivity to A. paniculata extracts and andrographolide than RMCCA-1 cells. Furthermore, the ethanolic extract of A. paniculata at the first true leaf stage increased cell cycle arrest at the G0/G1 and G2/M phases, and induced apoptosis in both HuCCA-1 and RMCCA-1 cells. The expressions of cyclin-D1, Bcl-2, and the inactive proenzyme form of caspase-3 were reduced by the ethanolic extract of A. paniculata in the first true leaf stage treatment, while a proapoptotic protein Bax was increased. The cleavage of poly (ADP

  6. Splenectomy inhibits non-small cell lung cancer growth by modulating anti-tumor adaptive and innate immune response

    Science.gov (United States)

    Levy, Liran; Mishalian, Inbal; Bayuch, Rachel; Zolotarov, Lida; Michaeli, Janna; Fridlender, Zvi G

    2015-01-01

    It has been shown that inhibitors of the immune system reside in the spleen and inhibit the endogenous antitumor effects of the immune system. We hypothesized that splenectomy would inhibit the growth of relatively large non-small lung cancer (NSCLC) tumors by modulating the systemic inhibition of the immune system, and in particular Myeloid Derived Suppressor Cells (MDSC). The effect of splenectomy was evaluated in several murine lung cancer models. We found that splenectomy reduces tumor growth and the development of lung metastases, but only in advanced tumors. In immune-deficient NOD-SCID mice the effect of splenectomy on tumor growth and metastatic spread disappeared. Splenectomy significantly reduced the presence of MDSC, and especially monocytic-MDSC in the circulation and inside the tumor. Specific reduction of the CCR2+ subset of monocytic MDSC was demonstrated, and the importance of the CCL2-CCR2 axis was further shown by a marked reduction in CCL2 following splenectomy. These changes were followed by changes in the macrophages contents of the tumors to become more antitumorigenic, and by increased activation of CD8+ Cytotoxic T-cells (CTL). By MDSC depletion, and adoptive transfer of MDSCs, we demonstrated that the effect of splenectomy on tumor growth was substantially mediated by MDSC cells. We conclude that the spleen is an important contributor to tumor growth and metastases, and that splenectomy can blunt this effect by depletion of MDSC, changing the amount and characteristics of myeloid cells and enhancing activation of CTL. PMID:26137413

  7. CP-31398 inhibits the growth of p53-mutated liver cancer cells in vitro and in vivo.

    Science.gov (United States)

    He, Xing-Xing; Zhang, Yu-Nan; Yan, Jun-Wei; Yan, Jing-Jun; Wu, Qian; Song, Yu-Hu

    2016-01-01

    The tumor suppressor p53 is one of the most frequently mutated genes in hepatocellular carcinoma (HCC). Previous studies demonstrated that CP-31398 restored the native conformation of mutant p53 and trans-activated p53 downstream genes in tumor cells. However, the research on the application of CP-31398 to liver cancer has not been reported. Here, we investigated the effects of CP-31398 on the phenotype of HCC cells carrying p53 mutation. The effects of CP-31398 on the characteristic of p53-mutated HCC cells were evaluated through analyzing cell cycle, cell apoptosis, cell proliferation, and the expression of p53 downstream genes. In tumor xenografts developed by PLC/PRF/5 cells, the inhibition of tumor growth by CP-31398 was analyzed through gross morphology, growth curve, and the expression of p53-related genes. Firstly, we demonstrated that CP-31398 inhibited the growth of p53-mutated liver cancer cells in a dose-dependent and p53-dependent manner. Then, further study showed that CP-31398 re-activated wild-type p53 function in p53-mutated HCC cells, which resulted in inhibitive response of cell proliferation and an induction of cell-cycle arrest and apoptosis. Finally, in vivo data confirmed that CP-31398 blocked the growth of xenografts tumors through transactivation of p53-responsive downstream molecules. Our results demonstrated that CP-31398 induced desired phenotypic change of p53-mutated HCC cells in vitro and in vivo, which revealed that CP-31398 would be developed as a therapeutic candidate for HCC carrying p53 mutation.

  8. MG132 as a proteasome inhibitor induces cell growth inhibition and cell death in A549 lung cancer cells via influencing reactive oxygen species and GSH level.

    Science.gov (United States)

    Han, Yong Hwan; Park, Woo Hyun

    2010-07-01

    Carbobenzoxy-Leu-Leu-leucinal (MG132) as a proteasome inhibitor has been shown to induce apoptotic cell death through formation of reactive oxygen species (ROS). In the present study, we evaluated the effects of MG132 on the growth of A549 lung cancer cells in relation to cell growth, ROS and glutathione (GSH) levels. Treatment with MG132 inhibited the growth of A549 cells with an IC(50) of approximately 20 microM at 24 hours. DNA flow cytometric analysis indicated that 0.5 approximately 30 microM MG132 induced a G1 phase arrest of the cell cycle in A549 cells. Treatment with 10 or 30 microM MG132 also induced apoptosis, as evidenced by sub-G1 cells and annexin V staining cells. This was accompanied by the loss of mitochondrial membrane potential (MMP; Delta psi m). The intracellular ROS levels including O(2) (*-) were strongly increased in 10 or 30 microM MG132-treated A549 cells but were down-regulated in 0.1, 0.5 or 1 microM MG132-treated cells. Furthermore, 10 or 30 microM MG132 increased mitochondrial O(2) (*- ) level but 0.1, 0.5 or 1 microM MG132 decreased that. In addition, 10 or 30 microM MG132 induced GSH depletion in A549 cells. In conclusion, MG132 inhibited the growth of human A549 cells via inducing the cell cycle arrest as well as triggering apoptosis, which was in part correlated with the changes of ROS and GSH levels. Our present data provide important information on the anti-growth mechanisms of MG132 in A549 lung cancer cells in relation to ROS and GSH.

  9. Regorafenib inhibited gastric cancer cells growth and invasion via CXCR4 activated Wnt pathway.

    Science.gov (United States)

    Lin, Xiao-Lin; Xu, Qi; Tang, Lei; Sun, Li; Han, Ting; Wang, Li-Wei; Xiao, Xiu-Ying

    2017-01-01

    Regorafenib is an oral small-molecule multi kinase inhibitor. Recently, several clinical trials have revealed that regorafenib has an anti-tumor activity in gastric cancer. However, only part of patients benefit from regorafenib, and the mechanisms of regorafenib's anti-tumor effect need further demonstrating. In this study, we would assess the potential anti-tumor effects and the underlying mechanisms of regorafenib in gastric cancer cells, and explore novel biomarkers for patients selecting of regorafenib. The anti-tumor effects of regorafenib on gastric cancer cells were analyzed via cell proliferation and invasion. The underlying mechanisms were demonstrated using molecular biology techniques. We found that regorafenib inhibited cell proliferation and invasion at the concentration of 20μmol/L and in a dose dependent manner. The anti-tumor effects of regorafenib related to the decreased expression of CXCR4, and elevated expression and activation of CXCR4 could reverse the inhibition effect of regorafenib on gastric cancer cells. Further studies revealed that regorafenib reduced the transcriptional activity of Wnt/β-Catenin pathway and led to decreased expression of Wnt pathway target genes, while overexpression and activation of CXCR4 could attenuate the inhibition effect of regorafenib on Wnt/β-Catenin pathway. Our findings demonstrated that regorafenib effectively inhibited cell proliferation and invasion of gastric cancer cells via decreasing the expression of CXCR4 and further reducing the transcriptional activity of Wnt/β-Catenin pathway.

  10. Picropodophyllin inhibits the growth of Ewing's sarcoma cells through the insulin‑like growth factor‑1 receptor/Akt signaling pathway.

    Science.gov (United States)

    Wu, Yong-Tao; Wang, Bao-Jun; Miao, Sheng-Wu; Gao, Jian-Jun

    2015-11-01

    Ewing's sarcoma (ES) is the second most common type of pediatric bone tumor, and is associated with a poor prognosis. Picropodophyllin (PPP), a novel selective inhibitor of insulin‑like growth factor‑1 receptor (IGF‑1R), is able to strongly inhibit various types of cancers. However, the effect of IGF‑1R on ES remains unclear. Following treatment with various concentrations of PPP for various times, cell viability was determined using an MTT assay. In addition, cell proliferation and apoptosis was investigated separately by bromodeoxyuridine staining and flow cytometry, respectively. The PPP‑associated signaling pathway was also investigated. The results of the present study suggested that PPP inhibited cell proliferation and viability of A673 and SK‑ES‑1 human Ewing's sarcoma cells in a dose- and time‑dependent manner. In addition, cell apoptosis rates were increased following treatment with PPP. Further investigation of the underlying mechanism revealed that PPP inhibited Akt phosphorylation. Fumonisin B1, an Akt‑specific activator, reversed the inhibitory effects of PPP on cell growth. Furthermore, the results suggested that PPP decreased the expression levels of IGF‑1R, a common activator of Akt signaling. PPP inhibited the growth of human Ewing's sarcoma cells by targeting the IGF‑1R/Akt signaling pathway. Therefore, PPP may prove useful in the development of an effective strategy for the treatment of Ewing's sarcoma.

  11. Inhibition by 2-deoxy-D-ribose of DNA synthesis and growth in Raji cells

    International Nuclear Information System (INIS)

    Ulrich, F.

    1988-01-01

    When Raji cells were cultured for 3 days in serum-free medium, addition of 2-deoxy-D-ribose at the start of culture inhibited incorporation of [ 3 H]thymidine and cell division. At deoxyribose concentrations between 1 and 5 mM, viability was 80% or greater after 3 days of culture even though 5 mM deoxyribose inhibited thymidine incorporation 95-99%. Inhibition by deoxyribose could be completely reversed if the culture medium was replaced with fresh medium up to 8 hr after the start of culture. The inhibition was specific for deoxyribose since other monosaccharides had no effect. Inhibition of DNA synthesis did not appear to be due to depletion of essential nutrients in the medium since the percentage inhibition of thymidine incorporation by cells cultured either in suboptimal serum-free media or in media supplemented with 0.025-5% human AB serum was similar. When DNA repair synthesis was measured as hydroxyurea-resistant thymidine incorporation, addition of deoxyribose to Raji cultures caused increased thymidine incorporation. These results, together with data from others,suggest that deoxyribose damages DNA

  12. 5-Geranyloxy-7-methoxycoumarin inhibits colon cancer (SW480) cells growth by inducing apoptosis.

    Science.gov (United States)

    Patil, Jaiprakash R; Jayaprakasha, Guddadarangavvanahally K; Kim, Jinhee; Murthy, Kotamballi N Chidambara; Chetti, Mahadev B; Nam, Sang-Yong; Patil, Bhimanagouda S

    2013-03-01

    For the first time, three coumarins were isolated from the hexane extract of limes (Citrus aurantifolia) and purified by flash chromatography. The structures were identified by NMR (1D, 2D) and mass spectral analyses as 5-geranyloxy-7-methoxycoumarin, limettin, and isopimpinellin. These compounds inhibited human colon cancer (SW-480) cell proliferation, with 5-geranyloxy-7-methoxycoumarin showing the highest inhibition activity (67 %) at 25 µM. Suppression of SW480 cell proliferation by 5-geranyloxy-7-methoxycoumarin was associated with induction of apoptosis, as evidenced by annexin V staining and DNA fragmentation. In addition, 5-geranyloxy-7-methoxycoumarin arrested cells at the G0/G1 phase, and induction of apoptosis was demonstrated through the activation of tumour suppressor gene p53, caspase8/3, regulation of Bcl2, and inhibition of p38 MAPK phosphorylation. These findings suggest that 5-geranyloxy-7-methoxycoumarin has potential as a cancer preventive agent. Georg Thieme Verlag KG Stuttgart · New York.

  13. Phenethyl isothiocyanate inhibits growth of human chronic myeloid leukemia K562 cells via reactive oxygen species generation and caspases.

    Science.gov (United States)

    Wang, Yating; Wei, Sixi; Wang, Jishi; Fang, Qin; Chai, Qixiang

    2014-07-01

    Phenethyl isothiocyanate (PEITC), a potential cancer chemopreventive constituent of cruciferous vegetables, including watercress, has been reported to inhibit cancer cell growth by arresting the cell cycle and inducing apoptosis in various human cancer cell models. However, the role of PEITC in the inhibition of human chronic myeloid leukemia (CML) K562 cell growth and its underlying mechanisms have yet to be elucidated. In the present study, PEITC was found to induce cell death through the induction of reactive oxygen species (ROS) stress and oxidative damage. Heme oxygenase‑1 (HO‑1), which participates in the development of numerous tumors and the sensitivity of these tumors to chemotherapeutic drugs, plays a protective role by modulating oxidative injury. Therefore, the present study assessed the inhibitory effect of PEITC on K562 cells and whether HO‑1 facilitated cell apoptosis and ROS generation. PEITC was found to suppress cell growth and cause apoptosis by promoting Fas and Fas ligand expression, increasing ROS generation and by the successive release of cytochrome c as well as the activation of caspase‑9 and caspase‑3. PEITC was also combined with the HO‑1 inhibitor zinc protoporphyrin IX and the inducer hemin to assess whether HO‑1 determines cell survival and ROS generation. The results of the present study suggest that PEITC may be a potential anti‑tumor compound for CML therapy, and that HO‑1 has a critical function in PEITC‑induced apoptosis and ROS generation.

  14. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming, E-mail: wsenming@126.com

    2014-01-10

    Highlight: •We first evaluated the effect of salinomycin on nasopharyngeal carcinoma (NPC). •Salinomycin could inhibit Wnt/β-catenin signaling and induce apoptosis in NPC. •So salinomycin may be a good potential candidate for the chemotherapy of NPC. -- Abstract: Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  15. Sorafenib inhibits tumor growth and vascularization of rhabdomyosarcoma cells by blocking IGF-1R-mediated signaling

    Directory of Open Access Journals (Sweden)

    Wessen Maruwge

    2008-11-01

    Full Text Available Wessen Maruwge1, Pádraig D’Arcy1, Annika Folin1,2, Slavica Brnjic1, Johan Wejde1, Anthony Davis1, Fredrik Erlandsson3, Jonas Bergh1,2, Bertha Brodin11Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; 2Radiumhemmet, Karolinska University Hospital, Stockholm, Sweden; 3Bayer Pharmaceutical Corporation, SwedenAbstract: The growth of many soft tissue sarcomas is dependent on aberrant growth factor signaling, which promotes their proliferation and motility. With this in mind, we evaluated the effect of sorafenib, a receptor tyrosine kinase inhibitor, on cell growth and apoptosis in sarcoma cell lines of various histological subtypes. We found that sorafenib effectively inhibited cell proliferation in rhabdomyosarcoma, synovial sarcoma and Ewing’s sarcoma with IC50 values <5 µM. Sorafenib effectively induced growth arrest in rhabdomyosarcoma cells, which was concurrent with inhibition of Akt and Erk signaling. Studies of ligand-induced phosphorylation of Erk and Akt in rhabdomyosarcoma cells showed that insulin-like growth factor-1 is a potent activator, which can be blocked by treatment with sorafenib. In vivo sorafenib treatment of rhabdomyosarcoma xenografts had a significant inhibitory effect on tumor growth, which was associated with inhibited vascularization and enhanced necrosis in the adjacent tumor stroma. Our results demonstrate that in vitro and in vivo growth of rhabdomyosarcoma can be suppressed by treatment with sorafenib, and suggests the possibilities of using sorafenib as a potential adjuvant therapy for the treatment of rhabdomyosarcoma.Keywords: soft tissue sarcoma, kinase inhibitors, targeted therapy, vascularization

  16. Nitrogen deficiency inhibits leaf blade growth in Lolium perenne by increasing cell cycle duration and decreasing mitotic and post-mitotic growth rates.

    Science.gov (United States)

    Kavanová, Monika; Lattanzi, Fernando Alfredo; Schnyder, Hans

    2008-06-01

    Nitrogen deficiency severely inhibits leaf growth. This response was analysed at the cellular level by growing Lolium perenne L. under 7.5 mM (high) or 1 mM (low) nitrate supply, and performing a kinematic analysis to assess the effect of nitrogen status on cell proliferation and cell growth in the leaf blade epidermis. Low nitrogen supply reduced leaf elongation rate (LER) by 43% through a similar decrease in the cell production rate and final cell length. The former was entirely because of a decreased average cell division rate (0.023 versus 0.032 h(-1)) and thus longer cell cycle duration (30 versus 22 h). Nitrogen status did not affect the number of division cycles of the initial cell's progeny (5.7), and accordingly the meristematic cell number (53). Meristematic cell length was unaffected by nitrogen deficiency, implying that the division and mitotic growth rates were equally impaired. The shorter mature cell length arose from a considerably reduced post-mitotic growth rate (0.033 versus 0.049 h(-1)). But, nitrogen stress did not affect the position where elongation stopped, and increased cell elongation duration. In conclusion, nitrogen deficiency limited leaf growth by increasing the cell cycle duration and decreasing mitotic and post-mitotic elongation rates, delaying cell maturation.

  17. Targeted inhibition of αvβ3 integrin with an RNA aptamer impairs endothelial cell growth and survival

    International Nuclear Information System (INIS)

    Mi Jing; Zhang Xiuwu; Giangrande, Paloma H.; McNamara, James O.; Nimjee, Shahid M.; Sarraf-Yazdi, Shiva; Sullenger, Bruce A.; Clary, Bryan M.

    2005-01-01

    αvβ3 integrin is a crucial factor involved in a variety of physiological processes, such as cell growth and migration, tumor invasion and metastasis, angiogenesis, and wound healing. αvβ3 integrin exerts its effect by regulating endothelial cell (EC) migration, proliferation, and survival. Inhibiting the function of αvβ3 integrin, therefore, represents a potential anti-cancer, anti-thrombotic, and anti-inflammatory strategy. In this study, we tested an RNA aptamer, Apt-αvβ3 that binds recombinant αvβ3 integrin, for its ability to bind endogenous αvβ3 integrin on the surface of cells in culture and to subsequently affect cellular response. Our data illustrate that Apt-αvβ3 binds αvβ3 integrin expressed on the surface of live HUVECs. This interaction significantly decreases both basal and PDGF-induced cell proliferation as well as inhibition of cell adhesion. Apt-αvβ3 can also reduce PDGF-stimulated tube formation and increase HUVEC apoptosis through inhibition of FAK phosphorylation pathway. Our results demonstrate that by binding to its target, Apt-αvβ3 can efficiently inhibit human EC proliferation and survival, resulting in reduced angiogenesis. It predicts that Apt-αvβ3 could become useful in both tumor imaging and the treatment of tumor growth, atherosclerosis, thrombosis, and inflammation

  18. Interleukin-24 induces neuroblastoma SH-SY5Y cell differentiation, growth inhibition, and apoptosis by promoting ROS production.

    Science.gov (United States)

    Li, Yuan; Zhang, Hongwei; Zhu, Xiaoyu; Feng, Dongchuan; Gong, Jinchao; Han, Tao

    2013-11-01

    Neuroblastoma is among the most aggressive tumors that occur in childhood and infancy. The clinical prognosis of children with advanced-stage neuroblastoma is still poor. Interleukin-24 (IL-24) is emerging as a new cytokine involved in tumor cellular proliferation, differentiation, and apoptosis and has been widely studied as a tumor inhibitor. However, little is known about this cytokine's role in neuroblastoma. In this study, we investigated the possible effects of IL-24 on inducing neuroblastoma cell differentiation, growth inhibition, and apoptosis in vitro. Our data show that IL-24 promotes neuroblastoma SH-SY5Y cell differentiation, growth inhibition, and apoptosis. Furthermore, we found that the differentiation- and apoptosis-inducing action of IL-24 depends on the accumulation of reactive oxygen species (ROS). These results suggest that IL-24 can induce neuroblastoma cell differentiation and apoptosis and may be a potential therapeutic agent for neuroblastoma.

  19. Combined inhibition of EMMPRIN and epidermal growth factor receptor prevents the growth and migration of head and neck squamous cell carcinoma cells.

    Science.gov (United States)

    Suzuki, Shinsuke; Ishikawa, Kazuo

    2014-03-01

    It has been reported that the epidermal growth factor receptor (EGFR) expression is associated with the extracellular matrix metalloproteinase inducer (EMMPRIN) in some solid tumors; however, the relationship of EMMPRIN with EGFR in head and neck cancers is not fully understood. To determine the relationship between EMMPRIN and EGFR in head and neck squamous cell carcinoma (HNSCC), HNSCC cells were stimulated with epidermal growth factor (EGF), a ligand of EGFR. EMMPRIN expression in HNSCC cells was upregulated by EGF. In addition, EGF stimulation induced HNSCC cell invasion and MMP-9 expression. This increase in invasion and MMP-9 expression was abrogated by downmodulation of EMMPRIN. Furthermore, to determine the effects of combined EMMPRIN and EGFR targeting in HNSCC, HNSCC cells were treated with an EMMPRIN function-blocking antibody and the EGFR inhibitor AG1478. This combined treatment resulted in greater inhibition of HNSCC cell proliferation and migration compared with the individual agents alone. These results suggest that EMMPRIN mediates EGFR-induced tumorigenicity and that combined targeting of EMMPRIN and EGFR may be an efficacious treatment approach.

  20. Inhibition of connective tissue growth factor (CTGF/CCN2) in gallbladder cancer cells leads to decreased growth in vitro.

    Science.gov (United States)

    Garcia, Patricia; Leal, Pamela; Ili, Carmen; Brebi, Priscilla; Alvarez, Hector; Roa, Juan C

    2013-06-01

    Gallbladder cancer (GBC) is an aggressive neoplasm associated with late diagnosis, unsatisfactory treatment and poor prognosis. Previous work showed that connective tissue growth factor (CTGF) expression is increased in this malignancy. This matricellular protein plays an important role in various cellular processes and its involvement in the tumorigenesis of several human cancers has been demonstrated. However, the precise function of CTGF expression in cancer cells is yet to be determined. The aim of this study was to evaluate the CTGF expression in gallbladder cancer cell lines, and its effect on cell viability, colony formation and in vitro cell migration. CTGF expression was evaluated in seven GBC cell lines by Western blot assay. Endogenous CTGF expression was downregulated by lentiviral shRNA directed against CTGF mRNA in G-415 cells, and the effects on cell viability, anchorage-independent growth and migration was assessed by comparing them to scrambled vector-transfected cells. Knockdown of CTGF resulted in significant reduction in cell viability, colony formation and anchorage-independent growth (P cancer may confer a growth advantage for neoplastic cells. © 2013 The Authors. International Journal of Experimental Pathology © 2013 International Journal of Experimental Pathology.

  1. KAEMPFEROL, A FLAVONOID COMPOUND FROM GYNURA MEDICA INDUCED APOPTOSIS AND GROWTH INHIBITION IN MCF-7 BREAST CANCER CELL.

    Science.gov (United States)

    Yi, Xiaofang; Zuo, Jiangcheng; Tan, Chao; Xian, Sheng; Luo, Chunhua; Chen, Sai; Yu, Liangfang; Luo, Yucheng

    2016-01-01

    Kaempferol, a natural flavonoid, has been shown to induce cancer cell apoptosis and cell growth inhibition in several tumors. Previously we have conducted a full investigation on the chemical constituents of Gynura medica , kaempferol and its glycosides are the major constituents of G. medica . Here we investigated the growth inhibition and apoptosis induction effect of kaempferol extracted from G. medica . The inhibition effects of kaempferol were evaluated by MTS assay and soft agar colony formation assay. Fluorescence staining and western blotting were be used to study the apoptosis. The structure was identified by 1 H- NMR), 13 C-NMR and ESI-MS analyses. Our results showed that kaempferol's inhibition of MCF-7 breast cancer cell growth may through inducing apoptosis and downregulation of Bcl2 expression. Kaempferol is a promising cancer preventive and therapeutic agent for breast cancer. List of non-standard abbreviations: MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, HPLC: High-performance liquid chromatography, NMR: Nuclear Magnetic Resonance, ESI-MS Electrospray Ionization Mass Spectral, PARP: Poly ADP-ribose polymerase.

  2. A rapid [3H]glucose incorporation assay for determination of lymphoid cell-mediated inhibition of Candida albicans growth

    International Nuclear Information System (INIS)

    Djeu, J.Y.; Parapanissios, A.; Halkias, D.; Friedman, H.

    1986-01-01

    [ 3 H]glucose uptake by Candida albicans after interaction with lymphoid effector cells was used to provide a quick, accurate and objective assessment of the growth inhibitory potential of lymphoid cells on candida. After 18 h coincubation of effector cells with candida, [ 3 H]glucose was added for 3 h and the amount of radiolabel incorporated into residual candida was measured. The results showed that [ 3 H]glucose uptake was proportional to the number of candida organisms left in the microwell and is dose dependent on the effector/target (E/T) ratio. At an E/T ratio of 300/1, complete inhibition of candida was seen, with significant inhibition still present at 30/1. In addition, monocytes and polymorphonuclear cells were found to be the primary cells responsible for eliminating candida. (Auth.)

  3. Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth

    DEFF Research Database (Denmark)

    Hojman, Pernille; Dethlefsen, Christine; Brandt, Claus

    2011-01-01

    in caspase activity was found after incubation of MCF-7 cells with conditioned media from electrically stimulated myotubes. PCR array analysis (CAPM-0838E; SABiosciences) revealed that seven genes were upregulated in the muscles after exercise, and of these oncostatin M (OSM) proved to inhibit MCF-7...

  4. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    International Nuclear Information System (INIS)

    Kang, Khong Bee; Zhu Congju; Wong Yinling; Gao Qiuhan; Ty, Albert; Wong, Meng Cheong

    2012-01-01

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)–Akt-DNA–dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, γ-H 2 AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, γ-H 2 AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G 2 /M arrest and increased γ-H 2 AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased γ-H 2 AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are resistant to irradiation

  5. Gefitinib radiosensitizes stem-like glioma cells: inhibition of epidermal growth factor receptor-Akt-DNA-PK signaling, accompanied by inhibition of DNA double-strand break repair.

    Science.gov (United States)

    Kang, Khong Bee; Zhu, Congju; Wong, Yin Ling; Gao, Qiuhan; Ty, Albert; Wong, Meng Cheong

    2012-05-01

    We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, γ-H(2)AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, γ-H(2)AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G(2)/M arrest and increased γ-H(2)AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased γ-H(2)AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Stem-like gliomaspheres are resistant to irradiation-induced cytotoxicity, G(2)/M arrest, and DNA DSBs, compared with nonstem

  6. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Khong Bee, E-mail: dmskkb@nccs.com.sg [Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore (Singapore); Zhu Congju; Wong Yinling; Gao Qiuhan; Ty, Albert; Wong, Meng Cheong [Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore (Singapore)

    2012-05-01

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, {gamma}-H{sub 2}AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, {gamma}-H{sub 2}AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G{sub 2}/M arrest and increased {gamma}-H{sub 2}AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased {gamma}-H{sub 2}AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are

  7. Isoalantolactone inhibits UM-SCC-10A cell growth via cell cycle arrest and apoptosis induction.

    Directory of Open Access Journals (Sweden)

    Minjun Wu

    Full Text Available Isoalantolactone is a sesquiterpene lactone compound isolated from the roots of Inula helenium L. Previous studies have demonstrated that isoalantolactone possesses antifungal, anti-bacterial, anti-helminthic and anti-proliferative properties in a variety of cells, but there are no studies concerning its effects on head and neck squamous cell carcinoma (HNSCC. In the present study, an MTT assay demonstrated that isoalantolactone has anti-proliferative activity against the HNSCC cell line (UM-SCC-10A. Immunostaining identified that this compound induced UM-SCC-10A cell apoptosis but not necrosis. To explain the molecular mechanisms underlying its effects, flow cytometry and western blot analysis showed that the apoptosis was associated with cell cycle arrest during the G1 phase, up-regulation of p53 and p21, and down-regulation of cyclin D. Furthermore, our results revealed that induction of apoptosis through a mitochondrial pathway led to up-regulation of pro-apoptotic protein expression (Bax, down-regulation of anti-apoptotic protein expression (Bcl-2, mitochondrial release of cytochrome c (Cyto c, reduction of mitochondrial membrane potential (MMP and activation of caspase-3 (Casp-3. Involvement of the caspase apoptosis pathway was confirmed using caspase inhibitor Z-VAD-FMK pretreatment. Together, our findings suggest that isoalantolactone induced caspase-dependent apoptosis via a mitochondrial pathway and was associated with cell cycle arrest in the G1 phase in UM-SCC-10A cells. Therefore, isoalantolactone may become a potential drug for treating HNSCC.

  8. Maintaining glycogen synthase kinase-3 activity is critical for mTOR kinase inhibitors to inhibit cancer cell growth.

    Science.gov (United States)

    Koo, Junghui; Yue, Ping; Gal, Anthony A; Khuri, Fadlo R; Sun, Shi-Yong

    2014-05-01

    mTOR kinase inhibitors that target both mTORC1 and mTORC2 are being evaluated in cancer clinical trials. Here, we report that glycogen synthase kinase-3 (GSK3) is a critical determinant for the therapeutic response to this class of experimental drugs. Pharmacologic inhibition of GSK3 antagonized their suppressive effects on the growth of cancer cells similarly to genetic attenuation of GSK3. Conversely, expression of a constitutively activated form of GSK3β sensitized cancer cells to mTOR inhibition. Consistent with these findings, higher basal levels of GSK3 activity in a panel of human lung cancer cell lines correlated with more efficacious responses. Mechanistic investigations showed that mTOR kinase inhibitors reduced cyclin D1 levels in a GSK3β-dependent manner, independent of their effects on suppressing mTORC1 signaling and cap binding. Notably, selective inhibition of mTORC2 triggered proteasome-mediated cyclin D1 degradation, suggesting that mTORC2 blockade is responsible for GSK3-dependent reduction of cyclin D1. Silencing expression of the ubiquitin E3 ligase FBX4 rescued this reduction, implicating FBX4 in mediating this effect of mTOR inhibition. Together, our findings define a novel mechanism by which mTORC2 promotes cell growth, with potential implications for understanding the clinical action of mTOR kinase inhibitors. ©2014 AACR.

  9. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    International Nuclear Information System (INIS)

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye; Hong, Darong; Jung, Bom; Park, Min-Ju; Kim, Jong-Ho

    2015-01-01

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer

  10. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Hong, Darong [Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Jung, Bom; Park, Min-Ju [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Kim, Jong-Ho, E-mail: jonghokim@khu.ac.kr [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2015-08-07

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer.

  11. Growth inhibition and chemosensitization of exogenous nitric oxide released from NONOates in glioma cells in vitro.

    Science.gov (United States)

    Weyerbrock, Astrid; Baumer, Brunhilde; Papazoglou, Anna

    2009-01-01

    Exogenous nitric oxide (NO) from NO donors has cytotoxic, chemosensitizing, and radiosensitizing effects, and increases vascular permeability and blood flow in tumors. Yet little is known about whether these cytotoxic and chemosensitizing effects can be observed in glioma cells at doses that alter tumor physiological characteristics in vivo and whether these effects are tumor selective. The effect of NO released from proline NONOate, diethylamine NONOate, spermine NONOate, and sodium nitrite on cell proliferation, apoptosis, and chemosensitivity to carboplatin of cultured glioma cells was studied in C6, U87 glioma cells, human glioblastoma cells, and human astrocytes and fibroblasts. Although proline NONOate failed to induce cell death, the other NO donors induced growth arrest when present in high concentrations (10(-2) M) in all cell lines. Chemosensitization was observed after concomitant incubation with spermine NONOate and carboplatin in C6 and human glioblastoma cells. There is strong evidence that cell death occurs primarily by necrosis and to a lesser degree by apoptosis. The NO doses, which altered tumor physiology in vivo, were not cytotoxic, indicating that NO alters vascular permeability and cell viability in vivo by different mechanisms. The authors found that NO-generating agents at high concentrations are potent growth inhibitors and might also be useful as chemosensitizers in glioma cells. These data corroborate the theory that the use of NOgenerating agents may play a role in the multimodal treatment of malignant gliomas but that the NO release must be targeted more specifically to tumor cells to improve selectivity and efficacy.

  12. Simultaneous inhibition of key growth pathways in melanoma cells and tumor regression by a designed bidentate constrained helical peptide.

    Science.gov (United States)

    Dhar, Amlanjyoti; Mallick, Shampa; Ghosh, Piya; Maiti, Atanu; Ahmed, Israr; Bhattacharya, Seemana; Mandal, Tapashi; Manna, Asit; Roy, Koushik; Singh, Sandeep; Nayak, Dipak Kumar; Wilder, Paul T; Markowitz, Joseph; Weber, David; Ghosh, Mrinal K; Chattopadhyay, Samit; Guha, Rajdeep; Konar, Aditya; Bandyopadhyay, Santu; Roy, Siddhartha

    2014-07-01

    Protein-protein interactions are part of a large number of signaling networks and potential targets for drug development. However, discovering molecules that can specifically inhibit such interactions is a major challenge. S100B, a calcium-regulated protein, plays a crucial role in the proliferation of melanoma cells through protein-protein interactions. In this article, we report the design and development of a bidentate conformationally constrained peptide against dimeric S100B based on a natural tight-binding peptide, TRTK-12. The helical conformation of the peptide was constrained by the substitution of α-amino isobutyric acid--an amino acid having high helical propensity--in positions which do not interact with S100B. A branched bidentate version of the peptide was bound to S100B tightly with a dissociation constant of 8 nM. When conjugated to a cell-penetrating peptide, it caused growth inhibition and rapid apoptosis in melanoma cells. The molecule exerts antiproliferative action through simultaneous inhibition of key growth pathways, including reactivation of wild-type p53 and inhibition of Akt and STAT3 phosphorylation. The apoptosis induced by the bidentate constrained helix is caused by direct migration of p53 to mitochondria. At moderate intravenous dose, the peptide completely inhibits melanoma growth in a mouse model without any significant observable toxicity. The specificity was shown by lack of ability of a double mutant peptide to cause tumor regression at the same dose level. The methodology described here for direct protein-protein interaction inhibition may be effective for rapid development of inhibitors against relatively weak protein-protein interactions for de novo drug development. © 2014 Wiley Periodicals, Inc.

  13. Derricin and derricidin inhibit Wnt/β-catenin signaling and suppress colon cancer cell growth in vitro.

    Directory of Open Access Journals (Sweden)

    Barbara F Fonseca

    Full Text Available Overactivation of the Wnt/β-catenin pathway in adult tissues has been implicated in many diseases, such as colorectal cancer. Finding chemical substances that can prevent this phenomenon is an emerging problem. Recently, several natural compounds have been described as Wnt/β-catenin inhibitors and might be promising agents for the control of carcinogenesis. Here, we describe two natural substances, derricin and derricidin, belonging to the chalcone subclass, that show potent transcriptional inhibition of the Wnt/β-catenin pathway. Both chalcones are able to affect the cell distribution of β-catenin, and inhibit Wnt-specific reporter activity in HCT116 cells and in Xenopus embryos. Derricin and derricidin also strongly inhibited canonical Wnt activity in vitro, and rescued the Wnt-induced double axis phenotype in Xenopus embryos. As a consequence of Wnt/β-catenin inhibition, derricin and derricidin treatments reduce cell viability and lead to cell cycle arrest in colorectal cancer cell lines. Taken together, our results strongly support these chalcones as novel negative modulators of the Wnt/β-catenin pathway and colon cancer cell growth in vitro.

  14. Inhibition of Curcumin on ZAKα Activity Resultant in Apoptosis and Anchorage-Independent Growth in Cancer Cells.

    Science.gov (United States)

    Lee, Jin-Sun; Wang, Tsu-Shing; Lin, Ming Cheng; Lin, Wei-Wen; Yang, Jaw-Ji

    2017-10-31

    Curcumin, a popular yellow pigment of the dietary spice turmeric, has been reported to inhibit cell growth and to induce apoptosis in a wide variety of cancer cells. Although numerous studies have investigated anticancer effects of curcumin, the precise molecular mechanism of action remains unidentified. Whereas curcumin mediates cell survival and apoptosis through mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling cascades, its impact on the upstream regulation of MAPK is unclear. The leucine-zipper and sterile-α motif kinase alpha (ZAKα), a mitogen-activated protein kinase kinase kinase (MAP3K), activates the c-Jun N-terminal kinase (JNK) and NF-κB pathway. This paper investigated the prospective involvement of ZAKα in curcumin-induced effects on cancer cells. Our results suggest that the antitumor activity of curcumin is mediated via a mechanism involving inhibition of ZAKα activity.

  15. Transient mTOR inhibition facilitates continuous growth of liver tumors by modulating the maintenance of CD133+ cell populations.

    Directory of Open Access Journals (Sweden)

    Zhaojuan Yang

    Full Text Available The mammalian target of the rapamycin (mTOR pathway, which drives cell proliferation, is frequently hyperactivated in a variety of malignancies. Therefore, the inhibition of the mTOR pathway has been considered as an appropriate approach for cancer therapy. In this study, we examined the roles of mTOR in the maintenance and differentiation of cancer stem-like cells (CSCs, the conversion of conventional cancer cells to CSCs and continuous tumor growth in vivo. In H-Ras-transformed mouse liver tumor cells, we found that pharmacological inhibition of mTOR with rapamycin greatly increased not only the CD133+ populations both in vitro and in vivo but also the expression of stem cell-like genes. Enhancing mTOR activity by over-expressing Rheb significantly decreased CD133 expression, whereas knockdown of the mTOR yielded an opposite effect. In addition, mTOR inhibition severely blocked the differentiation of CD133+ to CD133- liver tumor cells. Strikingly, single-cell culture experiments revealed that CD133- liver tumor cells were capable of converting to CD133+ cells and the inhibition of mTOR signaling substantially promoted this conversion. In serial implantation of tumor xenografts in nude BALB/c mice, the residual tumor cells that were exposed to rapamycin in vivo displayed higher CD133 expression and had increased secondary tumorigenicity compared with the control group. Moreover, rapamycin treatment also enhanced the level of stem cell-associated genes and CD133 expression in certain human liver tumor cell lines, such as Huh7, PLC/PRC/7 and Hep3B. The mTOR pathway is significantly involved in the generation and the differentiation of tumorigenic liver CSCs. These results may be valuable for the design of more rational strategies to control clinical malignant HCC using mTOR inhibitors.

  16. Prostate Cancer Cell Growth: Stimulatory Role of Neurotensin and Mechanism of Inhibition by Flavonoids as Related to Protein Kinase C

    Science.gov (United States)

    2010-01-01

    cell lines (NCI-N417, NCI-H345, NCI-N592) were found to convert exogenous NT into the fragments NT1 –8 and NT9–13, reflecting the presence of...secrete NT. However, exogenous NT was degraded primarily to NT1 –11, consistent with the presence of neutral endopeptidase 3.4.24.11 in these cells . This...TITLE: Prostate Cancer Cell Growth: Stimulatory Role of Neurotensin and Mechanism of Inhibition by Flavonoids as Related to Protein Kinase C

  17. Effects of vinegar–egg on growth inhibition, differentiation human leukemic U937 cells and its immunomodulatory activity

    Directory of Open Access Journals (Sweden)

    Shiu-Yu Wang

    2018-04-01

    Full Text Available Vinegar and eggs have rich nutrients. In this study, the mixed form of both derived products, vinegar–egg solution and its products (vinegar–egg concentrate and vinegar–egg condensate were chosen for an assessment of their biological activity. To further our understanding regarding the anticancer and immunomodulatory effects of vinegar–egg, we investigated its effects on the proliferation and differentiation of U937 cells. Vinegar–egg was treated using spray drying, freeze drying and vacuum concentration and used to stimulate human mononuclear cells. The conditioned media obtained from these cultures by filtration were used to treat U937 cells. Three conditioned media inhibited U937 cell growth by 22.1–67.25% more effectively than PHA-treated control (22.53%. CD11b and CD14 expression on the treated U937 cells were 29.1–45.4% and 31.6–47.2%, respectively. High levels of cytokines IL-1β, IFN-γ and TNF-α were detected in the three conditioned media. Vinegar–egg stimulates human mononuclear cells to secrete cytokines, which inhibit the growth of U937 cells and induce their differentiation. Keywords: Cytokines, Differentiation, Immunomodulatory activity, Leukemic U937 cells, Vinegar–egg

  18. Effect of β,β-Dimethylacrylshikonin on Inhibition of Human Colorectal Cancer Cell Growth in Vitro and in Vivo

    OpenAIRE

    Fan, Yingying; Jin, Shaoju; He, Jun; Shao, Zhenjun; Yan, Jiao; Feng, Ting; Li, Hong

    2012-01-01

    In traditional Chinese medicine, shikonin and its derivatives, has been used in East Asia for several years for the prevention and treatment of several diseases, including cancer. We previously identified that β,β-dimethylacrylshikonin (DA) could inhibit hepatocellular carcinoma growth. In the present study, we investigated the inhibitory effects of DA on human colorectal cancer (CRC) cell line HCT-116 in vitro and in vivo. A viability assay showed th...

  19. Secreted phosphoprotein 24 kD (Spp24) inhibits growth of human pancreatic cancer cells caused by BMP-2

    International Nuclear Information System (INIS)

    Li, Chen-Shuang; Tian, Haijun; Zou, Min; Zhao, Ke-Wei; Li, Yawei; Lao, Lifeng; Brochmann, Elsa J.; Duarte, M. Eugenia L.; Daubs, Michael D.; Zhou, Yan-Heng; Murray, Samuel S.; Wang, Jeffrey C.

    2015-01-01

    The emerging role of bone morphogenetic proteins (BMPs) in the initiation and progression of multiple cancers has drawn great attention in cancer research. In this study, we report that BMP-2 can promote the proliferation of the pancreatic tumor cell line, PANC-1. Secreted phosphoprotein 24 kD (Spp24), a BMP binding protein, did not affect the proliferation of the cells but promoted the apoptosis of the cells in vitro. In a xeneograft tumor model using PANC-1 cells, BMP-2 dramatically promoted tumor growth, while Spp24 not only abolished the effect of BMP-2, but also dramatically induced tumor shrinking when used alone. Activation of Smad1/5/8 participated in this process as demonstrated by immunohistochemical staining of phosphorylated Smad 1/5/8. We conclude that Spp24 can be developed into a therapeutic agent that could be employed in clinical situations where the inhibition of BMPs and related proteins is advantageous. - Highlights: • Spp24 effectively inhibited the in vivo tumor growth of PANC-1. • BMP-2 dramatically promoted tumor growth by promoting PANC-1 proliferation. • Spp24 abolished the tumor growth effect of BMP-2 by promoting PANC-1 apoptosis. • Spp24 may be a candidate as a therapeutic agent of pancreatic cancer.

  20. Secreted phosphoprotein 24 kD (Spp24) inhibits growth of human pancreatic cancer cells caused by BMP-2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chen-Shuang [Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing (China); Tian, Haijun, E-mail: haijuntianmd@gmail.com [Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai (China); Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA (United States); Department of Surgery, Bethune School of Medics, Shijiazhuang (China); Zou, Min [Department of Orthodontics, School and Hospital of Stomatology, Xi' an Jiaotong University, Xi' an (China); Zhao, Ke-Wei [Research Service, VA Greater Los Angeles Healthcare System, North Hills, CA (United States); Li, Yawei; Lao, Lifeng [Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA (United States); Brochmann, Elsa J. [Research Service, VA Greater Los Angeles Healthcare System, North Hills, CA (United States); Geriatric Research, Education and Clinical Center, VA Greater Los Angeles Healthcare System, North Hills, CA (United States); Department of Medicine, University of California, Los Angeles, Los Angeles, CA (United States); Duarte, M. Eugenia L. [National Institute of Traumatology and Orthopaedics, Rio de Janeiro (Brazil); Daubs, Michael D. [Division of Orthopaedic Surgery, Department of Surgery, University of Nevada School of Medicine, Las Vegas, NV (United States); Zhou, Yan-Heng, E-mail: yanhengzhou@vip.163.com [Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing (China); Murray, Samuel S. [Research Service, VA Greater Los Angeles Healthcare System, North Hills, CA (United States); Geriatric Research, Education and Clinical Center, VA Greater Los Angeles Healthcare System, North Hills, CA (United States); Department of Medicine, University of California, Los Angeles, Los Angeles, CA (United States); Wang, Jeffrey C. [Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA (United States)

    2015-10-16

    The emerging role of bone morphogenetic proteins (BMPs) in the initiation and progression of multiple cancers has drawn great attention in cancer research. In this study, we report that BMP-2 can promote the proliferation of the pancreatic tumor cell line, PANC-1. Secreted phosphoprotein 24 kD (Spp24), a BMP binding protein, did not affect the proliferation of the cells but promoted the apoptosis of the cells in vitro. In a xeneograft tumor model using PANC-1 cells, BMP-2 dramatically promoted tumor growth, while Spp24 not only abolished the effect of BMP-2, but also dramatically induced tumor shrinking when used alone. Activation of Smad1/5/8 participated in this process as demonstrated by immunohistochemical staining of phosphorylated Smad 1/5/8. We conclude that Spp24 can be developed into a therapeutic agent that could be employed in clinical situations where the inhibition of BMPs and related proteins is advantageous. - Highlights: • Spp24 effectively inhibited the in vivo tumor growth of PANC-1. • BMP-2 dramatically promoted tumor growth by promoting PANC-1 proliferation. • Spp24 abolished the tumor growth effect of BMP-2 by promoting PANC-1 apoptosis. • Spp24 may be a candidate as a therapeutic agent of pancreatic cancer.

  1. Downregulation of connective tissue growth factor inhibits the growth and invasion of gastric cancer cells and attenuates peritoneal dissemination.

    Science.gov (United States)

    Jiang, Cheng-Gang; Lv, Ling; Liu, Fu-Rong; Wang, Zhen-Ning; Liu, Fu-Nan; Li, Yan-Shu; Wang, Chun-Yu; Zhang, Hong-Yan; Sun, Zhe; Xu, Hui-Mian

    2011-09-28

    Connective tissue growth factor (CTGF) has been shown to be implicated in tumor development and progression. However, the role of CTGF in gastric cancer remains largely unknown. In this study, we showed that CTGF was highly expressed in gastric cancer tissues compared with matched normal gastric tissues. The CTGF expression in tumor tissue was associated with histologic grade, lymph node metastasis and peritoneal dissemination (P cancer cells and decreased cyclin D1 expression. Moreover, knockdown of CTGF expression also markedly reduced the migration and invasion of gastric cancer cells and decreased the expression of matrix metalloproteinase (MMP)-2 and MMP-9. Animal studies revealed that nude mice injected with the CTGF knockdown stable cell lines featured a smaller number of peritoneal seeding nodules than the control cell lines. These data suggest that CTGF plays an important role in cell growth and invasion in human gastric cancer and it appears to be a potential prognostic marker for patients with gastric cancer.

  2. Blocking the NOTCH pathway can inhibit the growth of CD133-positive A549 cells and sensitize to chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juntao; Mao, Zhangfan; Huang, Jie; Xie, Songping; Liu, Tianshu; Mao, Zhifu, E-mail: 48151660@qq.com

    2014-02-21

    Highlights: • Notch signaling pathway members are expressed lower levels in CD133+ cells. • CD133+ cells are not as sensitive as CD133− cells to chemotherapy. • GSI could inhibit the growth of both CD133+ and CD133− cells. • Blockade of Notch signaling pathway enhanced the effect of chemotherapy with CDDP. • DAPT/CDDP co-therapy caused G2/M arrest and elimination in CD133+ cells. - Abstract: Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatments that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133− cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133− cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G{sub 2}/M phase, and there were half as many cells in S phase compared with the CD133− cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells were

  3. Synergistic Effects of Natural Medicinal Plant Extracts on Growth Inhibition of Carcinoma (KB) Cells under Oxidative Stress

    International Nuclear Information System (INIS)

    Kim, Jeong Hee; Ju, Eun Mi; Kim, Jin Kyu

    2000-01-01

    Medicinal plants with synergistic effects on growth inhibition of cancer cells under oxidative stress were screened in this study. Methanol extracts from 51 natural medicinal plants, which were reported to have anticancer effect on hepatoma, stomach cancer or colon cancers which are frequently found in Korean, were prepared and screened for their synergistic activity on growth inhibition of cancer cells under chemically-induced oxidative stress by using MTT assay. Twenty seven samples showed synergistic activity on the growth inhibition in various extent under chemically-induced oxidative stress. Among those samples, eleven samples, such as Melia azedarach, Agastache rugosa, Catalpa ovata, Prunus persica, Sinomenium acutum, Pulsatilla koreana, Oldenlandia diffiusa, Anthriscus sylvestris, Schizandra chinensis, Gleditsia sinensis, Cridium officinale, showed decrease in IC 50 values more than 50%, other 16 samples showed decrease in IC 50 values between 50-25%, compared with the value acquired when medicinal plant sample was used alone. Among those 11 samples, extract of Catalpa ovata showed the highest activity. IC 50 values were decrease to 61% and 28% when carcinoma cells were treated with Catalpa ovata extract in combination of 75 and 100 μM of hydrogen peroxide, respectively

  4. NO-donating aspirin inhibits the growth of leukemic Jurkat cells and modulates β-catenin expression

    International Nuclear Information System (INIS)

    Nath, Niharika; Labaze, Georges; Rigas, Basil; Kashfi, Khosrow

    2004-01-01

    β-Catenin has been implicated in leukemic cell proliferation. We compared the effects of aspirin (ASA) and the ortho, meta, and para positional isomers of NO-donating aspirin (NO-ASA) on cell growth and β-catenin expression in human Jurkat T leukemic cells. Cell growth inhibition was strong: IC 50 for p-, o-, and m- were 20 ± 1.6 (mean ± SEM), 15 ± 1.5, and 200 ± 12 μM, respectively, in contrast to that of ASA (3200 ± 375 μM). The para isomer of NO-ASA degraded β-catenin in a dose- and time-dependent manner coinciding with increasing expression of activated caspase-3. The caspase inhibitor ZVAD blocked β-catenin cleavage by p-NO-ASA and partially reversed cell growth inhibition by p-NO-ASA but not that by ASA. A denitrated analog of p-NO-ASA did not degrade β-catenin indicating the importance of the NO-donating moiety. Our findings suggest that NO-ASA merits further study as an agent against leukemia

  5. beta-TrCP inhibition reduces prostate cancer cell growth via upregulation of the aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Udi Gluschnaider

    2010-02-01

    Full Text Available Prostate cancer is a common and heterogeneous disease, where androgen receptor (AR signaling plays a pivotal role in development and progression. The initial treatment for advanced prostate cancer is suppression of androgen signaling. Later on, essentially all patients develop an androgen independent stage which does not respond to anti hormonal treatment. Thus, alternative strategies targeting novel molecular mechanisms are required. beta-TrCP is an E3 ligase that targets various substrates essential for many aspects of tumorigenesis.Here we show that beta-TrCP depletion suppresses prostate cancer and identify a relevant growth control mechanism. shRNA targeted against beta-TrCP reduced prostate cancer cell growth and cooperated with androgen ablation in vitro and in vivo. We found that beta-TrCP inhibition leads to upregulation of the aryl hydrocarbon receptor (AhR mediating the therapeutic effect. This phenomenon could be ligand independent, as the AhR ligand 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD did not alter prostate cancer cell growth. We detected high AhR expression and activation in basal cells and atrophic epithelial cells of human cancer bearing prostates. AhR expression and activation is also significantly higher in tumor cells compared to benign glandular epithelium.Together these observations suggest that AhR activation may be a cancer counteracting mechanism in the prostate. We maintain that combining beta-TrCP inhibition with androgen ablation could benefit advanced prostate cancer patients.

  6. Effect of beta-carotene-rich tomato lycopene beta-cyclase ( tlcy-b) on cell growth inhibition in HT-29 colon adenocarcinoma cells.

    Science.gov (United States)

    Palozza, Paola; Bellovino, Diana; Simone, Rossella; Boninsegna, Alma; Cellini, Francesco; Monastra, Giovanni; Gaetani, Sancia

    2009-07-01

    Lycopene beta-cyclase (tlcy-b) tomatoes, obtained by modulating carotenogenesis via genetic engineering, contain a large amount of beta-carotene, as clearly visible by their intense orange colour. In the present study we have subjected tlcy-b tomatoes to an in vitro simulated digestion and analysed the effects of digestate on cell proliferation. To this aim we used HT-29 human colon adenocarcinoma cells, grown in monolayers, as a model. Digested tomatoes were diluted (20 ml, 50 ml and 100 ml/l) in culture medium and added to the cells for different incubation times (24 h, 48 h and 72 h). Inhibition of cell growth by tomato digestate was dose-dependent and resulted from an arrest of cell cycle progression at the G0/G1 and G2/M phase and by apoptosis induction. A down-regulation of cyclin D1, Bcl-2 and Bcl-xl expression was observed. We also found that heat treatment of samples before digestion enhanced beta-carotene release and therefore cell growth inhibition. To induce with purified beta-carotene solubilised in tetrahydrofuran the same cell growth inhibition obtained with the tomato digestate, a higher amount of the carotenoid was necessary, suggesting that beta-carotene micellarised during digestion is utilised more efficiently by the cells, but also that other tomato molecules, reasonably made available during digestion, may be present and cooperate with beta-carotene in promoting cell growth arrest.

  7. Oxamate, but Not Selective Targeting of LDH-A, Inhibits Medulloblastoma Cell Glycolysis, Growth and Motility

    Directory of Open Access Journals (Sweden)

    Cara J. Valvona

    2018-03-01

    Full Text Available Medulloblastoma is the most common malignant paediatric brain tumour and current therapies often leave patients with severe neurological disabilities. Four major molecular groups of medulloblastoma have been identified (Wnt, Shh, Group 3 and Group 4, which include additional, recently defined subgroups with different prognosis and genetic characteristics. Lactate dehydrogenase A (LDHA is a key enzyme in the aerobic glycolysis pathway, an abnormal metabolic pathway commonly observed in cancers, associated with tumour progression and metastasis. Studies indicate MBs have a glycolytic phenotype; however, LDHA has not yet been explored as a therapeutic target for medulloblastoma. LDHA expression was examined in medulloblastoma subgroups and cell lines. The effects of LDHA inhibition by oxamate or LDHA siRNA on medulloblastoma cell line metabolism, migration and proliferation were examined. LDHA was significantly overexpressed in Group 3 and Wnt MBs compared to non-neoplastic cerebellum. Furthermore, we found that oxamate significantly attenuated glycolysis, proliferation and motility in medulloblastoma cell lines, but LDHA siRNA did not. We established that aerobic glycolysis is a potential therapeutic target for medulloblastoma, but broader LDH inhibition (LDHA, B, and C may be more appropriate than LDHA inhibition alone.

  8. Co-inhibition of epidermal growth factor receptor and insulin-like growth factor receptor 1 enhances radiosensitivity in human breast cancer cells

    International Nuclear Information System (INIS)

    Li, Ping; Veldwijk, Marlon R; Zhang, Qing; Li, Zhao-bin; Xu, Wen-cai; Fu, Shen

    2013-01-01

    Over-expression of epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor (IGF-1R) have been shown to closely correlate with radioresistance of breast cancer cells. This study aimed to investigate the impact of co-inhibition of EGFR and IGF-1R on the radiosensitivity of two breast cancer cells with different profiles of EGFR and IGF-1R expression. The MCF-7 (EGFR +/−, IGF-1R +++) and MDA-MB-468 (EGFR +++, IGF-1R +++) breast cancer cell lines were used. Radiosensitizing effects were determined by colony formation assay. Apoptosis and cell cycle distribution were measured by flow cytometry. Phospho-Akt and phospho-Erk1/2 were quantified by western blot. In vivo studies were conducted using MDA-MB-468 cells xenografted in nu/nu mice. In MDA-MB-468 cells, the inhibition of IGF-1R upregulated the p-EGFR expression. Either EGFR (AG1478) or IGF-1R inhibitor (AG1024) radiosensitized MDA-MB-468 cells. In MCF-7 cells, radiosensitivity was enhanced by AG1024, but not by AG1478. Synergistical radiosensitizing effect was observed by co-inhibition of EGFR and IGF-1R only in MDA-MB-468 cells with a DMF 10% of 1.90. The co-inhibition plus irradiation significantly induced more apoptosis and arrested the cells at G0/G1 phase in MDA-MB-468 cells. Only co-inhibition of EGFR and IGF-1R synergistically diminished the expression of p-Akt and p-Erk1/2 in MDA-MB-468 cells. In vivo studies further verified the radiosensitizing effects by co-inhibition of both pathways in a MDA-MB-468 xenograft model. Our data suggested that co-inhibition of EGFR and IGF-1R synergistically radiosensitized breast cancer cells with both EGFR and IGF-1R high expression. The approach may have an important therapeutic implication in the treatment of breast cancer patients with high expression of EGFR and IGF-1R

  9. The inhibition of superoxide production in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Arnold, Robyn E; Weigent, Douglas A

    2003-05-01

    A substantial body of research exists to support the production of growth hormone by cells of the immune system. However, the function and mechanism of action of lymphocyte-derived growth hormone remain largely unelucidated. Since, it has been found that exogenous growth hormone (GH) primes neutrophils for the production of reactive oxygen intermediates (ROI) and in particular superoxide (O2-), we investigated the role of GH on the production of O2- in T cells. Furthermore, we examined whether endogenous and exogenous GH act similarly. Our studies show that overexpression of GH in EL4, a T-cell lymphoma cell line, results in a decrease in the production of O2- compared to control cells, as detected using the fluorescent dye, dihydroethidium. O2- production in control cells was not affected by treatment with inhibitors of xanthine oxidase or a non-specific NADPH-oxidase inhibitor. However, treatment with diallyl sulfide, an inhibitor of cytochrome P450 2E1 mimicked the reduction in O2- production seen in cells overexpressing GH. Although no significant change could be detected in CYP2E1 protein levels, CYP2E1 activity was found to be greater in control EL4 than in cells overexpressing GH. Both the decrease in O2- production and the lower CYP2E1 activity in GH overexpressing cells could be abrogated by treatment with N(G)-monomethyl-L-arginine, an inhibitor of nitric oxide synthase. The overexpression of GH protects cells from apoptosis induced by isoniazid, a CYP2E1 inducer, suggesting a role for nitric oxide as a mediator in the regulation of xenobiotic metabolism and apoptosis-protection by lymphocyte GH.

  10. Growth Inhibition of Osteosarcoma Cell Lines in 3D Cultures: Role of Nitrosative and Oxidative Stress.

    Science.gov (United States)

    Gorska, Magdalena; Krzywiec, Pawel Bieniasz; Kuban-Jankowska, Alicja; Zmijewski, Michal; Wozniak, Michal; Wierzbicka, Justyna; Piotrowska, Anna; Siwicka, Karolina

    2016-01-01

    3D cell cultures have revolutionized the understanding of cell behavior, allowing culture of cells with the possibility of resembling in vivo intercellular signaling and cell-extracellular matrix interaction. The effect of limited oxygen penetration into 3D culture of highly metastatic osteosarcoma 143B cells in terms of expression of nitro-oxidative stress markers was investigated and compared to standard 2D cell culture. Human osteosarcoma (143B cell line) cells were cultured as monolayers, in collagen and Matrigel. Cell viability, gene expression of nitro-oxidative stress markers, and vascular endothelial growth factor were determined using Trypan blue assay, quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Three-dimensional environments modify nitro-oxidative stress and influence gene expression and cell proliferation of OS 143B cells. Commercial cell lines might not constitute a good model of 3D cultures for bone tissue engineering, as they are highly sensitive to hypoxia, and hypoxic conditions can induce oxidation of the cellular environment. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Demethoxycurcumin inhibited human epithelia ovarian cancer cells' growth via up-regulating miR-551a.

    Science.gov (United States)

    Du, Zhenhua; Sha, Xianqun

    2017-03-01

    Curcumin is a natural agent that has ability to dampen tumor cells' growth. However, the natural form of curcumin is prone to degrade and unstable in vitro. Here, we demonstrated that demethoxycurcumin (a curcumin-related demethoxy compound) could inhibit cell proliferation and induce apoptosis of ovarian cancer cells. Moreover, IRS2/PI3K/Akt axis was inactivated in cells treated with demethoxycurcumin. Quantitative real-time reverse transcription polymerase chain reaction demonstrated that miR-551a was down-regulated in ovarian cancer tissues and ovarian cancer cell lines. Over-expression of miR-551a inhibited cell proliferation and induced apoptosis of ovarian cancer cells, whereas down-regulation of miR-551a exerted the opposite function. Luciferase assays confirmed that there was a binding site of miR-551a in IRS2, and we found that miR-551a exerted tumor-suppressive function by targeting IRS2 in ovarian cancer cells. Remarkably, miR-551a was up-regulated in the cells treated with demethoxycurcumin, and demethoxycurcumin suppressed IRS2 by restoration of miR-551a. In conclusion, demethoxycurcumin hindered ovarian cancer cells' malignant progress via up-regulating miR-551a.

  12. Downregulation of connective tissue growth factor inhibits the growth and invasion of gastric cancer cells and attenuates peritoneal dissemination

    Directory of Open Access Journals (Sweden)

    Zhang Hong-Yan

    2011-09-01

    Full Text Available Abstract Background Connective tissue growth factor (CTGF has been shown to be implicated in tumor development and progression. However, the role of CTGF in gastric cancer remains largely unknown. Results In this study, we showed that CTGF was highly expressed in gastric cancer tissues compared with matched normal gastric tissues. The CTGF expression in tumor tissue was associated with histologic grade, lymph node metastasis and peritoneal dissemination (P 1 expression. Moreover, knockdown of CTGF expression also markedly reduced the migration and invasion of gastric cancer cells and decreased the expression of matrix metalloproteinase (MMP-2 and MMP-9. Animal studies revealed that nude mice injected with the CTGF knockdown stable cell lines featured a smaller number of peritoneal seeding nodules than the control cell lines. Conclusions These data suggest that CTGF plays an important role in cell growth and invasion in human gastric cancer and it appears to be a potential prognostic marker for patients with gastric cancer.

  13. Direct interaction between caffeic acid phenethyl ester and human neutrophil elastase inhibits the growth and migration of PANC-1 cells.

    Science.gov (United States)

    Duan, Jianhui; Xiaokaiti, Yilixiati; Fan, Shengjun; Pan, Yan; Li, Xin; Li, Xuejun

    2017-05-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant tumors of the digestive system, but the mechanisms of its development and progression are unclear. Inflammation is thought to be fundamental to pancreatic cancer development and caffeic acid phenethyl ester (CAPE) is an active component of honey bee resin or propolis with anti-inflammatory and anticancer activities. We investigated the inhibitory effects of CAPE on cell growth and migration induced by human neutrophil elastase (HNE) and report that HNE induced cancer cell migration at low doses and growth at higher doses. In contrast, lower CAPE doses inhibited migration and higher doses of CAPE inhibited the growth induced by HNE. HNE activity was significantly inhibited by CAPE (7.5-120 µM). Using quantitative real-time PCR and western blotting, we observed that CAPE (18-60 µM) did not affect transcription and translation of α1-antitrypsin (α1-AT), an endogenous HNE inhibitor. However, in an in silico drug target docking model, we found that CAPE directly bound to the binding pocket of HNE (25.66 kcal/mol) according to CDOCKER, and the residue of the catalytic site stabilized the interaction between CAPE and HNE as evidenced by molecular dynamic simulation. Response unit (RU) values of surface plasmon resonance (SPR) significantly increased with incremental CAPE doses (7.5-120 µM), indicating that CAPE could directly bind to HNE in a concentration-dependent manner. Thus, CAPE is an effective inhibitor of HNE via direct interaction whereby it inhibits the migration and growth of PANC-1 cells in a dose-dependent manner.

  14. Flurbiprofen benzyl nitrate (NBS-242) inhibits the growth of A-431 human epidermoid carcinoma cells and targets β-catenin.

    Science.gov (United States)

    Nath, Niharika; Liu, Xiaoping; Jacobs, Lloydine; Kashfi, Khosrow

    2013-01-01

    The Wnt/β-catenin/T cell factor (TCF) signaling pathway is important in the development of nonmelanoma skin cancers (NMSCs). Nitric-oxide-releasing nonsteroidal anti-inflammatory drugs (NO-NSAIDs) are chemopreventive agents consisting of a traditional NSAID attached to an NO-releasing moiety through a chemical spacer. Previously we showed that an aromatic spacer enhanced the potency of a particular NO-NSAID compared to an aliphatic spacer. We synthesized an NO-releasing NSAID with an aromatic spacer (flurbiprofen benzyl nitrate, NBS-242), and using the human skin cancer cell line A-431, we evaluated its effects on cell kinetics, Wnt/β-catenin, cyclin D1, and caspase-3. NBS-242 inhibited the growth of A-431 cancer cells, being ~15-fold more potent than flurbiprofen and up to 5-fold more potent than NO-flurbiprofen with an aliphatic spacer, the half maximal inhibitory concentrations (IC50) for growth inhibition being 60 ± 4 μM, 320 ± 20 μM, and 880 ± 65 μM for NBS-242, NO-flurbiprofen, and flurbiprofen, respectively. This effect was associated with inhibition of proliferation, accumulation of cells in the G0/G1 phase of the cell cycle, and an increase in apoptotic cell population. NBS-242 cleaved β-catenin both in the cytoplasm and the nucleus of A-431 cells. NBS-242 activated caspase-3 whose activation was reflected in the cleavage of procaspase-3. To test the functional consequence of β-catenin cleavage, we determined the expression of cyclin D1, a Wnt-response gene. NBS-242 reduced cyclin D1 levels in a concentration dependent manner. These findings establish a strong inhibitory effect of NBS-242 in A-431 human epidermoid carcinoma cells. NBS-242 modulates parameters that are important in determining cellular mass.

  15. (−-Gossypol Inhibits Growth and Promotes Apoptosis of Human Head and Neck Squamous Cell Carcinoma In Vivo

    Directory of Open Access Journals (Sweden)

    Keith G. Wolter

    2006-03-01

    Full Text Available Resistance to chemotherapy is a common problem encountered in the treatment of head and neck squamous cell carcinoma (HNSCC. Chemoresistant HNSCC tumors frequently overexpress antiapoptotic proteins, such as BCI-xL. (−-Gossypol, the negative enantiomer of a cottonseed polyphenol, binds to BCI-xL and was recently been shown to inhibit HNSCC proliferation in vitro. In this study, we assessed the in vivo efficacy of (−-gossypol in an orthotopic xenograff model of HNSCC, using two human HNSCC cell lines with high BCI-xL expression levels. Both produced tumors in a murine floor-of-mouth model that mimics human HNSCC, exhibiting growth and invasion into adjacent tissues. Mice were randomized into three groups: vehicle control and two daily intraperitoneal (−-gossypol treatment groups (5 and 15 mg/kg. Tumors were measured twice weekly. In the control group, tumors grew progressively, whereas in (−-gossypol treatment groups, tumor growth was significantly suppressed. The mitotic rate in tumors from (−-gossypol-treated animals was significantly lower than that in controls, and an increase in the percentage of apoptotic cells was observed in treated tumors versus controls. Residual tumors remained growth-suppressed for 2 weeks after cessation of (−-gossypol treatment. Our results demonstrate that (−-gossypol can inhibit tumor growth in an orthotopic model of aggressive HNSCC.

  16. Traditional Chinese Medicine CFF-1 induced cell growth inhibition, autophagy, and apoptosis via inhibiting EGFR-related pathways in prostate cancer.

    Science.gov (United States)

    Wu, Zhaomeng; Zhu, Qingyi; Yin, Yingying; Kang, Dan; Cao, Runyi; Tian, Qian; Zhang, Yu; Lu, Shan; Liu, Ping

    2018-04-01

    Traditional Chinese medicine (TCM) has a combined therapeutic result in cancer treatment by integrating holistic and local therapeutical effects, by which TCM can enhance the curative effect and reduce the side effect. In this study, we analyzed the effect of CFF-1 (alcohol extract from an anticancer compound Chinese medicine) on prostate cancer (PCa) cell lines and studied in detail the mechanism of cell death induced by CFF-1 in vitro and in vivo. From our data, we found for the first time that CFF-1 obviously arrested cell cycle in G1 phase, decreased cell viability and then increased nuclear rupture in a dose-dependent manner and finally resulted in apoptosis in prostate cancer cells. In molecular level, our data showed that CFF-1 induced inhibition of EGFR auto-phosphorylation and inactivation of EGFR. Disruption of EGFR activity in turn suppressed downstream PI3K/AKT and Raf/Erk signal pathways, resulted in the decrease of p-FOXO1 (Ser256) and regulated the expression of apoptosis-related and cycle-related genes. Moreover, CFF-1 markedly induced cell autophagy through inhibiting PI3K/AKT/mTOR pathway and then up-regulating Beclin-1 and LC-3II and down-regulating phosphorylation of p70S6K. In vivo, CFF-1-treated group exhibited a significant decrease in tumor volume compared with the negative control group in subcutaneous xenograft tumor in nude mice via inhibiting EGFR-related signal pathways. Thus, bio-functions of Chinese medicine CFF-1 in inducing PCa cell growth inhibition, autophagy, and apoptosis suggested that CFF-1 had the clinical potential to treat patients with prostate cancer. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  17. Impact of CHO Metabolism on Cell Growth and Protein Production: An Overview of Toxic and Inhibiting Metabolites and Nutrients

    DEFF Research Database (Denmark)

    Pereira, Sara; Kildegaard, Helene F.; Andersen, Mikael R.

    2018-01-01

    and process optimization and monitoring to perform efficiently. One of the main reasons for this is the production and accumulation of toxic and growth-inhibiting metabolites during culture. Lactate and ammonium are the most known, but many more have been identified. In this review, we present an overview...... of metabolites that deplete and accumulate throughout the course of cultivations with toxic and growth inhibitory effects to the cells. We further provide an overview of the CHO metabolism with emphasis to metabolic pathways of amino acids, glutathione (GSH), and related compounds which have growth...... of resources that describe the cellular mechanisms of CHO and are available on-line. Finally, we discuss the application of this knowledge for bioprocess and medium development and cell line engineering....

  18. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    International Nuclear Information System (INIS)

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing; Wang, Mingchao; Wu, Haiyang; Xu, Liwei; Rui, Xuefang; Zhang, Zhigen

    2015-01-01

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacy and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice

  19. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing; Wang, Mingchao; Wu, Haiyang; Xu, Liwei; Rui, Xuefang; Zhang, Zhigen, E-mail: srrshurology@163.com

    2015-08-14

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacy and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice.

  20. STAT6 silencing induces hepatocellular carcinoma-derived cell apoptosis and growth inhibition by decreasing the RANKL expression.

    Science.gov (United States)

    Qing, Tian; Yamin, Zhang; Guijie, Wang; Yan, Jin; Zhongyang, Shen

    2017-08-01

    Signal transducer and activator of transcription-6 (STAT6) is highly expressed in various human cancers and considered a regulator of multiple biological processes in cancers, including cell apoptosis. Evidence has indicated that STAT6 predicts a worse prognosis in hepatocellular carcinoma (HCC) patients. The objective of this study was to investigate the effects and mechanism of STAT6 in human HCC cells. We found that STAT6 silencing significantly inhibited HepG2 and Hep3B cell survival and proliferation. We observed that depletion of STAT6 increased HepG2 and Hep3B cell apoptosis by using a histone DNA ELISA detection kit. STAT6 silencing induced expression of apoptosis-associated genes Bax and caspase-3/7 and inhibited anti-apoptosis gene Bcl-2 levels. We also observed that STAT6 silencing downregulated the expression of receptor activator of NF-κB ligand (RANKL). Our results demonstrated that treatment with pcDNA3.1-RANKL abolished STAT6 depletion-induced HepG2 and Hep3B cell apoptosis and growth inhibition. Based on these findings, we believe that RANKL plays a major role in STAT6-induced HCC cell apoptosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Suppression of Homologous Recombination by insulin-like growth factor-1 inhibition sensitizes cancer cells to PARP inhibitors

    International Nuclear Information System (INIS)

    Amin, Oreekha; Beauchamp, Marie-Claude; Nader, Paul Abou; Laskov, Ido; Iqbal, Sanaa; Philip, Charles-André; Yasmeen, Amber; Gotlieb, Walter H.

    2015-01-01

    Impairment of homologous recombination (HR) is found in close to 50 % of ovarian and breast cancer. Tumors with BRCA1 mutations show increased expression of the Insulin-like growth factor type 1 receptor (IGF-1R). We previously have shown that inhibition of IGF-1R results in growth inhibition and apoptosis of ovarian tumor cells. In the current study, we aimed to investigate the correlation between HR and sensitivity to IGF-1R inhibition. Further, we hypothesized that IGF-1R inhibition might sensitize HR proficient cancers to Poly ADP ribose polymerase (PARP) inhibitors. Using ovarian and breast cancer cellular models with known BRCA1 status, we evaluated their HR functionality by RAD51 foci formation assay. The 50 % lethal concentration (LC50) of Insulin-like growth factor type 1 receptor kinase inhibitor (IGF-1Rki) in these cells was assessed, and western immunoblotting was performed to determine the expression of proteins involved in the IGF-1R pathway. Moreover, IGF-1R inhibitors were added on HR proficient cell lines to assess mRNA and protein expression of RAD51 by qPCR and western blot. Also, we explored the interaction between RAD51 and Insulin receptor substance 1 (IRS-1) by immunoprecipitation. Next, combination effect of IGF-1R and PARP inhibitors was evaluated by clonogenic assay. Cells with mutated/methylated BRCA1 showed an impaired HR function, and had an overactivation of the IGF-1R pathway. These cells were more sensitive to IGF-1R inhibition compared to HR proficient cells. In addition, the IGF-IR inhibitor reduced RAD51 expression at mRNA and protein levels in HR proficient cells, and sensitized these cells to PARP inhibitor. Targeting IGF-1R might lead to improved personalized therapeutic approaches in cancer patients with HR deficiency. Targeting both PARP and IGF-1R might increase the clinical efficacy in HR deficient patients and increase the population of patients who may benefit from PARP inhibitors

  2. Chloroquine inhibits hepatocellular carcinoma cell growth in vitro and in vivo

    Science.gov (United States)

    HU, TAO; LI, PEI; LUO, ZHONGGUANG; CHEN, XIAOYU; ZHANG, JINGYANG; WANG, CHUNYAO; CHEN, PING; DONG, ZIMING

    2016-01-01

    Recently, chloroquine (CQ) has been widely used to improve the efficacy of different chemotherapy drugs to treat tumors. However, the effects of single treatment of CQ on liver cancer have not been investigated. In the present study, we examined the effects of CQ on the growth and viability of liver cancer cells in vitro and in vivo, and revealed that CQ treatment triggered G0/G1 cell cycle arrest, induced DNA damage and apoptosis in a dose- and time-dependent manner in liver cancer cells. Moreover, administration of CQ to tumor-bearing mice suppressed the tumor growth in an orthotopic xenograft model of liver cancer. These findings extend our understanding and suggest that CQ could be repositioned as a treatment option for liver cancer as a single treatment or in combination. PMID:26530158

  3. The Notch ligand delta-like 3 promotes tumor growth and inhibits Notch signaling in lung cancer cells in mice

    International Nuclear Information System (INIS)

    Deng, San-Ming; Yan, Xian-Chun; Liang, Liang; Wang, Li; Liu, Yuan; Duan, Juan-Li; Yang, Zi-Yan; Chang, Tian-Fang; Ruan, Bai; Zheng, Qi-Jun; Han, Hua

    2017-01-01

    Although it has been suggested that Dll3, one of the Notch ligands, promotes the proliferation and inhibits the apoptosis of cancer cells, the role of Dll3 in cancers remains unclear. In this study, we found that in the murine Lewis lung carcinoma (LLC) cells, the level of Dll3 mRNA changed upon tumor microenvironment (TME) stimulation, namely, decreased under hypoxia or stimulated with tumor necrosis factor (TNF)-α. Dll3 was also expressed at higher level in human lung carcinoma tissues than in the para-carcinoma tissues. Overexpression of Dll3 in LLC cells promoted cell proliferation and reduced apoptosis in vitro, and enhanced tumor growth when inoculated in vivo in mice. The Dll3-mediated proliferation could be due to increased Akt phosphorylation in LLC cells, because an Akt inhibitor counteracted Dll3-induced proliferation. Moreover, Dll3 overexpression promoted PI3K/Akt signaling through inhibiting Notch signaling. - Highlights: • The level of Dll3 in Lewis lung carcinoma changed upon tumor microenvironment (TME) stimulation, namely, decreased under hypoxia or stimulated with TNF-α. • The Dll3 was rarely detectable in the para-carcinoma tissues, but positive in 82.1% of NSCLC tissues from 84 patients. • Overexpression of Dll3 in LLC cells promoted tumor growth but did not remarkably alter TME after inoculated in mice. • Overexpression of Dll3 in LLC cells promoted cell proliferation and reduced apoptosis in vitro in an Akt-dependent way. • Dll3 overexpression promoted PI3K/Akt signaling through inhibiting Notch signaling.

  4. Okadaic acid inhibits cell growth and photosynthetic electron transport in the alga Dunaliella tertiolecta

    Energy Technology Data Exchange (ETDEWEB)

    Perreault, Francois; Matias, Marcelo Seleme; Oukarroum, Abdallah [Department of Chemistry, Universite du Quebec a Montreal, 2101, Rue Jeanne Mance, Montreal, QC, Canada H2X 2J6 (Canada); Matias, William Gerson [Department of Chemistry, Universite du Quebec a Montreal, 2101, Rue Jeanne Mance, Montreal, QC, Canada H2X 2J6 (Canada); Laboratorio de Toxicologia Ambiental, LABTOX, Depto. de Engenharia Sanitaria e Ambiental, Universidade Federal de Santa Catarina, Campus Universitario, CEP: 88040-970, Florianopolis, SC (Brazil); Popovic, Radovan, E-mail: popovic.radovan@uqam.ca [Department of Chemistry, Universite du Quebec a Montreal, 2101, Rue Jeanne Mance, Montreal, QC, Canada H2X 2J6 (Canada)

    2012-01-01

    Okadaic acid (OA), which is produced by several dinoflagellate species, is a phycotoxin known to induce a decrease of biomass production in phytoplankton. However, the mechanisms of OA cytotoxicity are still unknown in microalgae. In this study, we exposed the green microalga Dunaliella tertiolecta to OA concentrations of 0.05 to 0.5 {mu}M in order to evaluate its effects on cell division, reactive oxygen species production and photosynthetic electron transport. After 72 h of treatment under continuous illumination, OA concentrations higher than 0.10 {mu}M decreased culture cell density, induced oxidative stress and inhibited photosystem II electron transport capacity. OA effect in D. tertiolecta was strongly light dependent since no oxidative stress was observed when D. tertiolecta was exposed to OA in the dark. In the absence of light, the effect of OA on culture cell density and photosystem II activity was also significantly reduced. Therefore, light appears to have a significant role in the toxicity of OA in microalgae. Our results indicate that the site of OA interaction on photosynthetic electron transport is likely to be at the level of the plastoquinone pool, which can lead to photo-oxidative stress when light absorbed by the light-harvesting complex of photosystem II cannot be dissipated via photochemical pathways. These findings allowed for a better understanding of the mechanisms of OA toxicity in microalgae. - Highlights: Black-Right-Pointing-Pointer Exposition of Dunaliella tertiolecta to okadaic acid in light conditions results in reactive oxygen species formation. Black-Right-Pointing-Pointer Inhibition of photosystem II is dependent on oxidative stress and effects of okadaic acid on the plastoquinone pool. Black-Right-Pointing-Pointer Oxidative stress and inhibition of photosynthesis increase okadaic acid effect on cell density in light conditions. Black-Right-Pointing-Pointer Okadaic acid induces toxicity in algae via both light-dependent and light

  5. Graphene oxide significantly inhibits cell growth at sublethal concentrations by causing extracellular iron deficiency.

    Science.gov (United States)

    Yu, Qilin; Zhang, Bing; Li, Jianrong; Du, Tingting; Yi, Xiao; Li, Mingchun; Chen, Wei; Alvarez, Pedro J J

    Graphene oxide (GO)-based materials are increasingly being used in medical materials and consumer products. However, their sublethal effects on biological systems are poorly understood. Here, we report that GO (at 10 to 160 mg/L) induced significant inhibitory effects on the growth of different unicellular organisms, including eukaryotes (i.e. Saccharomyces cerevisiae, Candida albicans, and Komagataella pastoris) and prokaryotes (Pseudomonas fluorescens). Growth inhibition could not be explained by commonly reported cytotoxicity mechanisms such as plasma membrane damage or oxidative stress. Based on transcriptomic analysis and measurement of extra- and intracellular iron concentrations, we show that the inhibitory effect of GO was mainly attributable to iron deficiency caused by binding to the O-functional groups of GO, which sequestered iron and disrupted iron-related physiological and metabolic processes. This inhibitory mechanism was corroborated with supplementary experiments, where adding bathophenanthroline disulfonate-an iron chelating agent-to the culture medium exerted similar inhibition, whereas removing surface O-functional groups of GO decreased iron sequestration and significantly alleviated the inhibitory effect. These findings highlight a potential indirect detrimental effect of nanomaterials (i.e. scavenging of critical nutrients), and encourage research on potential biomedical applications of GO-based materials to sequester iron and enhance treatment of iron-dependent diseases such as cancer and some pathogenic infections.

  6. Tofacitinib induces G1 cell-cycle arrest and inhibits tumor growth in Epstein-Barr virus-associated T and natural killer cell lymphoma cells.

    Science.gov (United States)

    Ando, Shotaro; Kawada, Jun-Ichi; Watanabe, Takahiro; Suzuki, Michio; Sato, Yoshitaka; Torii, Yuka; Asai, Masato; Goshima, Fumi; Murata, Takayuki; Shimizu, Norio; Ito, Yoshinori; Kimura, Hiroshi

    2016-11-22

    Epstein-Barr virus (EBV) infects not only B cells, but also T cells and natural killer (NK) cells, and is associated with T or NK cell lymphoma. These lymphoid malignancies are refractory to conventional chemotherapy. We examined the activation of the JAK3/STAT5 pathway in EBV-positive and -negative B, T and NK cell lines and in cell samples from patients with EBV-associated T cell lymphoma. We then evaluated the antitumor effects of the selective JAK3 inhibitor, tofacitinib, against these cell lines in vitro and in a murine xenograft model. We found that all EBV-positive T and NK cell lines and patient samples tested displayed activation of the JAK3/STAT5 pathway. Treatment of these cell lines with tofacitinib reduced the levels of phospho-STAT5, suppressed proliferation, induced G1 cell-cycle arrest and decreased EBV LMP1 and EBNA1 expression. An EBV-negative NK cell line was also sensitive to tofacitinib, whereas an EBV-infected NK cell line was more sensitive to tofacitinib than its parental line. Tofacitinib significantly inhibited the growth of established tumors in NOG mice. These findings suggest that tofacitinib may represent a useful therapeutic agent for patients with EBV-associated T and NK cell lymphoma.

  7. The inhibition of apoptosis in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Arnold, Robyn E; Weigent, Douglas A

    2004-01-01

    The antiapoptotic action of exogenous growth hormone (GH) has been reported for several lymphoid cell lines; however, the potential role of endogenous GH in apoptosis has not been thoroughly investigated. This study was designed to investigate the effects of endogenous GH on apoptosis induced by methyl methanesulfonate (MMS) in a T cell lymphoma overexpressing GH (GHo). The results of these experiments have shown that in EL4 lymphoma cells, overexpression of GH sustained viability after exposure to MMS compared to control cells. The extent of DNA fragmentation measured by ladder formation on agarose gels was reduced in GHo cells following treatment with MMS, when compared to control cells. Adding exogenous GH to control cells and treatment of GHo cells with antibodies to GH had no effect on MMS-induced DNA ladder formation. In further studies, DNA microarray analysis suggested a marked decrease in the constitutive expression of bax, BAD, and caspases 3, 8, and 9 in GHo cells compared to controls. In addition, after treatment with MMS, the activities of caspases 2, 3, 6, 8, and 9 were all lower than control in GHo cells. Western blot analysis detected an increase in Bcl-2 while the levels of nuclear factor kappa B (NFkappaB) remained unchanged in GHo cells. Treatment of EL4 cells with antisense deoxyoligonucleotides to GH and specific inhibitors of NFkappaB (SN-50) increased DNA fragmentation. GHo cells show increased levels of phosphorylated Akt and GSK-3, suggesting inactivation of this proapoptotic protein. The results, taken together with our previous data which showed increased nitric oxide formation in GHo cells, suggest a possible mechanism for the antiapoptotic effects of endogenous GH through the production of nitric oxide and support the idea that endogenous GH may play an important role in the survival of lymphocytes exposed to stressful stimuli. Copyright 2004 S. Karger AG, Basel

  8. Combination treatment with ionising radiation and gefitinib ('Iressa', ZD1839), an epidermal growth factor receptor (EGFR) inhibitor, significantly inhibits bladder cancer cell growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Colquhoun, AJ; Mchugh, LA; Tulchinsky, E.; Kriajevska, M.; Mellon, JK

    2007-01-01

    External beam radiotherapy (EBRT) is the principal bladder-preserving monotherapy for muscle-invasive bladder cancer. Seventy percent of muscle-invasive bladder cancers express epidermal growth factor receptor (EGFR), which is associated with poor prognosis. Ionising radiation (IR) stimulates EGFR causing activation of cytoprotective signalling cascades and thus may be an underlying cause of radioresistance in bladder tumours. We assessed the ability of IR to activate EGFR in bladder cancer cells and the effect of the anti-EGFR therapy, gefitinib on potential radiation-induced activation. Subsequently we assessed the effect of IR on signalling pathways downstream of EGFR. Finally we assessed the activity of gefitinib as a monotherapy, and in combination with IR, using clonogenic assay in vitro, and a murine model in vivo. IR activated EGFR and gefitinib partially inhibited this activation. Radiation-induced activation of EGFR activated the MAPK and Akt pathways. Gefitinib partially inhibited activation of the MAPK pathway but not the Akt pathway. Treatment with combined gefitinib and IR significantly inhibited bladder cancer cell colony formation more than treatment with gefitinib alone (p=0.001-0.03). J82 xenograft tumours treated with combined gefitinib and IR showed significantly greater growth inhibition than tumours treated with IR alone (p=0.04). Combining gefitinib and IR results in significantly greater inhibition of invasive bladder cancer cell colony formation in vitro and significantly greater tumour growth inhibition in vivo. Given the high frequency of EGFR expression by bladder tumours and the low toxicity of gefitinib there is justification to translate this work into a clinical trial. (author)

  9. MutY-Homolog (MYH) inhibition reduces pancreatic cancer cell growth and increases chemosensitivity.

    Science.gov (United States)

    Sharbeen, George; Youkhana, Janet; Mawson, Amanda; McCarroll, Joshua; Nunez, Andrea; Biankin, Andrew; Johns, Amber; Goldstein, David; Phillips, Phoebe

    2017-02-07

    Patients with pancreatic ductal adenocarcinoma (PC) have a poor prognosis due to metastases and chemoresistance. PC is characterized by extensive fibrosis, which creates a hypoxic microenvironment, and leads to increased chemoresistance and intracellular oxidative stress. Thus, proteins that protect against oxidative stress are potential therapeutic targets for PC. A key protein that maintains genomic integrity against oxidative damage is MutY-Homolog (MYH). No prior studies have investigated the function of MYH in PC cells. Using siRNA, we showed that knockdown of MYH in PC cells 1) reduced PC cell proliferation and increased apoptosis; 2) further decreased PC cell growth in the presence of oxidative stress and chemotherapy agents (gemcitabine, paclitaxel and vincristine); 3) reduced PC cell metastatic potential; and 4) decreased PC tumor growth in a subcutaneous mouse model in vivo. The results from this study suggest MYH may be a novel therapeutic target for PC that could potentially improve patient outcome by reducing PC cell survival, increasing the efficacy of existing drugs and reducing metastatic spread.

  10. [Gefitineb inhibits the growth and induces the apoptosis of mouse I-10 Leydig testicular cancer cells in vitro].

    Science.gov (United States)

    Ji, Jie; Tong, Xu-hui; Zhang, Xin-yu; Gao, Qin; Li, Bei-bei; Wu, Xiao-xiang

    2015-09-01

    To observe the inhibitory effect of gefitineb on the proliferation and its inducing effect on the apoptosis of mouse I-10 Leydig testicular cancer cells in vitro. We treated I-10 Leydig testicular cancer cells of mice with gefitineb at 0, 1.25, 2.5, 5, 10, 20, and 40 µmol/L. Then we determined the inhibitory effect of gefitineb on the growth of the cells by MTT, detected their early and late apoptosis by Annexin V-FITC/propidium iodide double staining and Hoechst 33258 nuclear staining, respectively, and observed the expressions of apoptosis-related proteins Bcl-2, Bax and caspase 3/9 by Western blot. Compared with the blank control group, gefitineb significantly inhibited the proliferation of the I-10 cells at 10 and 20 µmol/L (P testicular cancer cells of mice and induce their apoptosis via the mitochondria-mediated apoptosis signaling pathway.

  11. Phytochemical Compositions of Immature Wheat Bran, and Its Antioxidant Capacity, Cell Growth Inhibition, and Apoptosis Induction through Tumor Suppressor Gene

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2016-09-01

    Full Text Available The purpose of this study was to investigate the phytochemical compositions and antioxidant capacity, cell growth inhibition, and apoptosis induction in extracts of immature wheat bran. Immature wheat bran (IWB was obtained from immature wheat harvested 10 days earlier than mature wheat. The phytochemical compositions of bran extract samples were analyzed by ultra-high performance liquid chromatography. The total ferulic acid (3.09 mg/g and p-coumaric acid (75 µg/g in IWB were significantly higher than in mature wheat bran (MWB, ferulic acid: 1.79 mg/g; p-coumaric acid: 55 µg/g. The oxygen radical absorbance capacity (ORAC: 327 µM Trolox equivalents (TE/g and cellular antioxidant activity (CAA: 4.59 µM Quercetin equivalents (QE/g of the IWB were higher than those of the MWB (ORAC: 281 µM TE/g; CAA: 0.63 µM QE/g. When assessing cell proliferation, the IWB extracts resulted in the lowest EC50 values against HT-29 (18.9 mg/mL, Caco-2 (7.74 mg/mL, and HeLa cells (8.17 mg/mL among bran extract samples. Additionally, the IWB extracts increased the gene expression of p53 and PTEN (tumor suppressor genes in HT-29 cells, indicating inhibited cell growth and induced apoptosis through tumor suppressor genes.

  12. Polysaccharides from Tricholoma matsutake and Lentinus edodes enhance 5-fluorouracil-mediated H22 cell growth inhibition.

    Science.gov (United States)

    Ren, Ming; Ye, Lingyan; Hao, Xiaoshi; Ren, Zhixing; Ren, Shuping; Xu, Kun; Li, Juan

    2014-06-01

    Few studies have investigated the effects produced by combinations of polysaccharides and chemotherapeutic drugs in cancer treatment. We hypothesized that a combination of polysaccharides (COP) from Lentinus edodes and Tricholoma matsutake would improve the efficacy of 5-fluorouracil (5-FU)-mediated inhibition of H22 cell growth. Mice were injected H22 cells and then treated with either 5-FU, polysaccharides from Tricholoma matsutake (PTM), polysaccharides from Lentinus edodes (PL), PTM+PL, 5-FU+PTM, 5-FU+ PL, or 5-FU + COP. The tumor weight and volume, and splenic CD4 + and CD8 + T cell frequencies, were determined. Additionally, splenic natural killer (NK) cell and cytotoxic T lymphocyte (CTL) activities were assessed and the serum levels of tumor necrosis factor-alpha (TNF-alpha), Interleukin-2 (IL-2), and Interferon-gamma (IFN-gamma) were measured. Compared with mice from the control, 5-FU, PL, PTM, PTM + PL, 5-FU + PL, and 5-FU + PTM groups, mice treated with 5-FU + COP showed: (a) significantly reduced tumor weight and volume (P Lentinus edodes and Tricholoma matsutake could enhance the efficacy of 5-FU-mediated H22 cell growth inhibition.

  13. Growth inhibition of human breast cancer cells and down-regulation of ODC1 and ADA genes by Nepeta binaloudensis

    Directory of Open Access Journals (Sweden)

    Akbar Safipour Afshar

    Full Text Available ABSTRACT Nepeta binaloudensis Jamzad, Lamiaceae, is a rare medicinal plant endemic to Iran. In spite of many studies about the chemical constituents and antibacterial effects of this species, no report has been provided about its cytotoxic and anticancer activities. In this study we have evaluated the effects of EtOH 70%, hexane and aqueous extracts of N. binaloudensis on the cell proliferation and n-hexane extract on the expression of adenosine deaminase and ornithine decarboxylase 1 genes in breast cancer cell lines (MCF-7, MDA-MB-231 compared to non-cancer line (MCF-10A. The cell lines were subjected to increasing doses of the extracts ranging from 10 to 320 µg/ml. Cell viability was quantified by MTS assay. Expression of adenosine deaminase and ornithine decarboxylase 1 genes was analyzed by real time PCR. N. binaloudensis inhibited the growth of malignant cells in a time and dose-dependent manner. Among extracts of N. binaloudensis, the hexane extract was found to be more toxic compared to other extracts. Results showed a marked decrease in the expression of ornithine decarboxylase 1 and adenosine deaminase genes in cancer cell lines. At 60 µg/ml concentration of N. binaloudensis hexane extract ornithine decarboxylase 1 and adenosine deaminase mRNA expression were reduced 4.9 fold and 3.5 fold in MCF-7 cell line and 3.6 fold and 2.6 fold in MDA-MB-231 cell line compared to control, respectively. The result of our study highlights the potential influences of N. binaloudensis hexane extract on ornithine decarboxylase 1 and adenosine deaminase genes expression in breast cancer cells and its relation to inhibition of cancer cell growth.

  14. Targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin squamous cell carcinoma cell growth in vitro and in vivo.

    Science.gov (United States)

    Zou, Ying; Ge, Minggai; Wang, Xuemin

    2017-08-19

    Abnormal activation of PI3K-AKT-mTOR signaling is detected in human skin squamous cell carcinoma (SCC). LY3023414 is a novel, potent, and orally bio-available PI3K-AKT-mTOR inhibitor. Its activity against human skin SCC cells was tested. We demonstrated that LY3023414 was cytotoxic when added to established (A431 line) and primary (patient-derived) human skin SCC cells. LY3023414 induced G0/1-S arrest and inhibited proliferation of skin SCC cells. Moreover, LY3023414 induced activation of caspase-3/-9 and apoptosis in skin SCC cells. Intriguingly, LY3023414 was yet non-cytotoxic nor pro-apoptotic to normal human skin cells (melanocytes, keratinocytes and fibroblasts). At the molecular level, LY3023414 blocked PI3K-AKT-mTOR activation in skin SCC cells, as it dephosphorylated PI3K-AKT-mTOR substrates: P85, AKT and S6K1. In vivo studies showed that oral administration of LY3023414 at well-tolerated doses inhibited A431 xenograft tumor growth in severe combined immunodeficiency (SCID) mice. AKT-mTOR activation in LY3023414-treated tumors was also largely inhibited. Together, these results suggest that targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin SCC cell growth in vitro and in vivo, establishing the rationale for further clinical testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. ISG15 Inhibits IFN-α-Resistant Liver Cancer Cell Growth

    Directory of Open Access Journals (Sweden)

    Xin-xing Wan

    2013-01-01

    Full Text Available Hepatocellular carcinoma (HCC is one of the most prevalent tumors worldwide. Interferon-α (IFN-α has been widely used in the treatment of HCC, but patients eventually develop resistance. ISG15 ubiquitin-like modifier (ISG15 is a ubiquitin-like protein transcriptionally regulated by IFN-α which shows antivirus and antitumor activities. However, the exact role of ISG15 is unknown. In the present study, we showed that IFN-α significantly induced ISG15 expression but failed to induce HepG2 cell apoptosis, whereas transient overexpression of ISG15 dramatically increased HepG2 cell apoptosis. ISG15 overexpression increased overall protein ubiquitination, which was not observed in cells with IFN-α-induced ISG15 expression, suggesting that IFN-α treatment not only induced the expression of ISG15 but also inhibited ISG15-mediated ubiquitination. The tumor suppressor p53 and p21 proteins are the key regulators of cell survival and death in response to stress signals such as DNA damage. We showed that p53 or p21 is only up regulated in HepG2 cells ectopically expressing ISG15, but not in the presence of IFN-α-induced ISG15. Our results suggest that ISG15 overexpression could be developed into a powerful gene-therapeutic tool for treating IFN-α-resistant HCC.

  16. Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade

    International Nuclear Information System (INIS)

    Yung, Mingo Ming Ho; Chan, David Wai; Liu, Vincent Wing Sun; Yao, Kwok-Ming; Ngan, Hextan Yuen-Sheung

    2013-01-01

    Although advanced-stage cervical cancer can benefit from current treatments, approximately 30% patients may fail after definitive treatment eventually. Therefore, exploring alternative molecular therapeutic approaches is imperatively needed for this disease. We have recently shown that activation of AMP-activated protein kinase (AMPK), a metabolic sensor, hampers cervical cancer cell growth through blocking the Wnt/β-catenin signaling activity. Here, we report that activated AMPK (p-AMPK) also inhibits cervical cancer cell growth by counteracting FOXM1 function. Effect of the activation of AMPK on FOXM1 expression was examined by hypoxia and glucose deprivation, as well as pharmacological AMPK activators such as A23187, AICAR and metformin. RT Q-PCR and Western blot analysis were employed to investigate the activities of AMPK, FOXM1 and AKT/FOXO3a signaling. Consistent with our previous findings, the activation of AMPK by either AMPK activators such as AICAR, A23187, metformin, glucose deprivation or hypoxia significantly inhibited the cervical cancer cell growth. Importantly, we found that activated AMPK activity was concomitantly associated with the reduction of both the mRNA and protein levels of FOXM1. Mechanistically, we showed that activated AMPK was able to reduce AKT mediated phosphorylation of p-FOXO3a (Ser253). Interestingly, activated AMPK could not cause any significant changes in FOXM1 in cervical cancer cells in which endogenous FOXO3a levels were knocked down using siRNAs, suggesting that FOXO3a is involved in the suppression of FOXM1. Taken together, our results suggest the activated AMPK impedes cervical cancer cell growth through reducing the expression of FOXM1

  17. Straw blood cell count, growth, inhibition and comparison to apoptotic bodies

    Directory of Open Access Journals (Sweden)

    Tomkins Jeffrey P

    2008-05-01

    Full Text Available Abstract Background Mammalian cells transform into individual tubular straw cells naturally in tissues and in response to desiccation related stress in vitro. The transformation event is characterized by a dramatic cellular deformation process which includes: condensation of certain cellular materials into a much smaller tubular structure, synthesis of a tubular wall and growth of filamentous extensions. This study continues the characterization of straw cells in blood, as well as the mechanisms of tubular transformation in response to stress; with specific emphasis placed on investigating whether tubular transformation shares the same signaling pathway as apoptosis. Results There are approximately 100 billion, unconventional, tubular straw cells in human blood at any given time. The straw blood cell count (SBC is 45 million/ml, which accounts for 6.9% of the bloods dry weight. Straw cells originating from the lungs, liver and lymphocytes have varying nodules, hairiness and dimensions. Lipid profiling reveals severe disruption of the plasma membrane in CACO cells during transformation. The growth rates for the elongation of filaments and enlargement of rabbit straw cells is 0.6~1.1 (μm/hr and 3.8 (μm3/hr, respectively. Studies using apoptosis inhibitors and a tubular transformation inhibitor in CACO2 cells and in mice suggested apoptosis produced apoptotic bodies are mediated differently than tubular transformation produced straw cells. A single dose of 0.01 mg/kg/day of p38 MAPK inhibitor in wild type mice results in a 30% reduction in the SBC. In 9 domestic animals SBC appears to correlate inversely with an animal's average lifespan (R2 = 0.7. Conclusion Straw cells are observed residing in the mammalian blood with large quantities. Production of SBC appears to be constant for a given animal and may involve a stress-inducible protein kinase (P38 MAPK. Tubular transformation is a programmed cell survival process that diverges from apoptosis

  18. Resveratrol Suppresses Growth and Migration of Myelodysplastic Cells by Inhibiting the Expression of Elevated Cyclin D1 (CCND1).

    Science.gov (United States)

    Zhou, Wei; Xu, Shilin; Ying, Yi; Zhou, Ruiqing; Chen, Xiaowei

    2017-11-01

    Myelodysplastic syndromes (MDS) are a group of heterogeneous diseases characterized by poorly formed blood cells. We wanted to elucidate the underlying molecular mechanism to better determine pathogenesis, prognosis, diagnosis, and treatment for patients with MDS. We compared gene expression levels between normal and MDS tissue samples by immunohistochemical analysis. We studied the proliferation, survival, and migration of MDS cells using the EDU assay, colony formation, and transwell assays. We assessed the apoptotic rate and cell cycle status using flow cytometry and Hoechst staining. Finally, we evaluated RNA and protein expressions using polymerase chain reaction and Western blots, respectively. We found that resveratrol suppressed SKM-1 (an advanced MDS cell line) proliferation in a dose-dependent manner. Consistent with this finding, the EDU and colony formation assays also showed that resveratrol inhibited SKM-1 growth. Moreover, flow cytometry and Hoechst 33258 staining demonstrated that resveratrol induced apoptosis and a change in cell cycle status in SKM-1 cells, while the transwell assay showed that resveratrol reduced the migratory ability of SKM-1 cells. Resveratrol also decreased the expression of CCND1 (a gene that encodes the cyclin D1 protein) and increased expressions of KMT2A [lysine (K)-specific methyltransferase 2A] and caspase-3, suggesting that resveratrol exerts its effect by regulating CCND1 in SKM-1 cells. In addition, a combination of resveratrol and the PI3K/AKT inhibitor LY294002 exhibited a stronger inhibitory effect on the SKM-1 cells, compared with resveratrol alone. Our study proved that resveratrol suppresses SKM-1 growth and migration by inhibiting CCND1 expression. This finding provides novel insights into the pathogenesis of MDS and might help develop new diagnosis and treatment for patients with MDS.

  19. Mactosylceramide Prevents Glial Cell Overgrowth by Inhibiting Insulin and Fibroblast Growth Factor Receptor Signaling

    DEFF Research Database (Denmark)

    Gerdøe-Kristensen, Stine; Lund, Viktor K; Wandall, Hans H

    2017-01-01

    , in which the mannosyltransferase Egghead controls conversion of glucosylceramide (GlcCer) to mactosylceramide (MacCer). Lack of elongated GSL in egghead (egh) mutants causes overgrowth of subperineurial glia (SPG), largely due to aberrant activation of phosphatidylinositol 3-kinase (PI3K). However, to what...... of the Drosophila Insulin Receptor (InR) and the FGFR homolog Heartless (Htl) in wild type SPG, and is suppressed by inhibiting Htl and InR activity in egh. Knockdown of GlcCer synthase in the SPG fails to suppress glial overgrowth in egh nerves, and slightly promotes overgrowth in wild type, suggesting that RTK...... hyperactivation is caused by absence of MacCer and not by GlcCer accumulation. We conclude that an early product in GSL biosynthesis, MacCer, prevents inappropriate activation of Insulin and Fibroblast Growth Factor Receptors in Drosophila glia. This article is protected by copyright. All rights reserved....

  20. Growth inhibition of head and neck squamous cell carcinoma cells by sgRNA targeting the cyclin D1 mRNA based on TRUE gene silencing.

    Directory of Open Access Journals (Sweden)

    Satoshi Iizuka

    Full Text Available Head and neck squamous cell carcinoma (HNSCC exhibits increased expression of cyclin D1 (CCND1. Previous studies have shown a correlation between poor prognosis of HNSCC and cyclin D1 overexpression. tRNase ZL-utilizing efficacious gene silencing (TRUE gene silencing is one of the RNA-mediated gene expression control technologies that have therapeutic potential. This technology is based on a unique enzymatic property of mammalian tRNase ZL, which is that it can cleave any target RNA at any desired site by recognizing a pre-tRNA-like complex formed between the target RNA and an artificial small guide RNA (sgRNA. In this study, we designed several sgRNAs targeting human cyclin D1 mRNA to examine growth inhibition of HNSCC cells. Transfection of certain sgRNAs decreased levels of cyclin D1 mRNA and protein in HSC-2 and HSC-3 cells, and also inhibited their proliferation. The combination of these sgRNAs and cisplatin showed more than additive inhibition of cancer cell growth. These findings demonstrate that TRUE gene silencing of cyclin D1 leads to inhibition of the growth of HNSCC cells and suggest that these sgRNAs alone or combined with cisplatin may be a useful new therapy for HNSCCs.

  1. Stromal interaction molecule 1 (STIM1) silencing inhibits tumor growth and promotes cell cycle arrest and apoptosis in hypopharyngeal carcinoma.

    Science.gov (United States)

    Sun, Yuanhao; Cui, Xiaobo; Wang, Jun; Wu, Shuai; Bai, Yunfei; Wang, Yaping; Wang, Boqian; Fang, Jugao

    2015-05-01

    As an important pathway maintaining the balance of intracellular calcium (Ca(2+)), store-operated Ca(2+) entry (SOCE) is critical for cellular functions. Stromal interaction molecule 1 (STIM1), a key component of SOCE, plays a dual role as an endoplasmic reticulum Ca(2+) receptor and an SOCE exciter. Aberrant expression of STIM1 could be discovered in several human cancer cells. However, the role of STIM1 in regulating human hypopharyngeal carcinoma still remains unclear. Real-time polymerase chain reaction (PCR) was used to detect expression of STIM1 in human hypopharyngeal carcinoma cell line FaDu. STIM1 on FaDu cells was knocked down by lentiviral transduction method. The biological impacts after knocking down of STIM1 on FaDu cells were investigated in vitro and in vivo. The result of real-time PCR showed that STIM1 was expressed in FaDu cells. Lentiviral transduction efficiently downregulated the expression of STIM1 in FaDu cells at both mRNA and protein levels. Significant downregulation of STIM1 on FaDu cells inhibited cell proliferation, induced cell cycle arrest in G0/G1 phase, promoted cell apoptosis, and restrained cell growth rate. The antigrowth effect of STIM1 silencing was also discovered in FaDu hypopharyngeal tumor model. Our findings indicate that STIM1 is likely to become a new therapeutic target for hypopharyngeal carcinoma treatment.

  2. A Vitex agnus-castus extract inhibits cell growth and induces apoptosis in prostate epithelial cell lines.

    Science.gov (United States)

    Weisskopf, M; Schaffner, W; Jundt, G; Sulser, T; Wyler, S; Tullberg-Reinert, H

    2005-10-01

    Extracts of Vitex agnus-castus fruits (VACF) are described to have beneficial effects on disorders related to hyperprolactinemia (cycle disorders, premenstrual syndrome). A VACF extract has recently been shown to exhibit antitumor activities in different human cancer cell lines. In the present study, we explored the antiproliferative effects of a VACF extract with a particular focus on apoptosis-inducing and potential cytotoxic effects. Three different human prostate epithelial cell lines (BPH-1, LNCaP, PC-3) representing different disease stages and androgen responsiveness were chosen. The action of VACF on cell viability was assessed using the WST-8-tetrazolium assay. Cell proliferation in cells receiving VACF alone or in combination with a pan-caspase inhibitor (Z-VAD-fmk) was quantified using a Crystal Violet assay. Flow cytometric cell cycle analysis and measurement of DNA fragmentation using an ELISA method were used for studying the induction of apoptosis. Lactate dehydrogenase (LDH) activity was determined as a marker of cytotoxicity. The extract inhibited proliferation of all three cell lines in a concentration-dependent manner with IC (50) values below 10 microg/mL after treatment for 48 h. Cell cycle analysis and DNA fragmentation assays suggest that part of the cells were undergoing apoptosis. The VACF-induced decrease in cell number was partially inhibited by Z-VAD-fmk, indicating a caspase-dependent apoptotic cell death. However, the concentration-dependent LDH activity of VACF treated cells indicated cytotoxic effects as well. These data suggest that VACF contains components that inhibit proliferation and induce apoptosis in human prostate epithelial cell lines. The extract may be useful for the prevention and/or treatment not only of benign prostatic hyperplasia but also of human prostate cancer.

  3. Ursodeoxycholic acid inhibits the proliferation of colon cancer cells by regulating oxidative stress and cancer stem-like cell growth

    Science.gov (United States)

    Kim, EuiJoo

    2017-01-01

    Introduction The regulation of reactive oxygen species (ROS) exists as a therapeutic target for cancer treatments. Previous studies have shown that ursodeoxycholic acid (UDCA) suppresses the proliferation of colon cancer cells. The aim of this study was to evaluate the effect of UDCA upon the proliferation of colon cancer cells as a direct result of the regulation of ROS. Method Colon cancer cell lines (HT29 and HCT116) were treated with UDCA. The total number of cells and the number of dead cells were determined using cell counters. A fluorescein isothiocyanate-bromodeoxyuridine flow kit was used to analyze cell cycle variations. Upon exposure to UDCA, the protein levels of p27, p21, CDK2, CDK4 and CDK6 were determined using western blotting, and qRT-PCR was used to determine levels of mRNA. We preformed dichlorofluorescindiacetate (DCF-DA) staining to detect alteration of intracellular ROS using fluorescence activated cell sorting (FACS). Colon cancer stem-like cell lines were generated by tumorsphere culture and treated with UDCA for seven days. The total number of tumorspheres was determined using microscopy. Results We found that UDCA reduced the total number of colon cancer cells, but did not increase the number of dead cells. UDCA inhibited the G1/S and G2/M transition phases in colon cancer cells. UDCA induced expression of cell cycle inhibitors such as p27 and p21. However, it was determined that UDCA suppressed levels of CDK2, CDK4, and CDK6. UDCA regulated intracellular ROS generation in colon cancer cells, and induced activation of Erk1/2. Finally, UDCA inhibited formation of colon cancer stem-like cells. Conclusion Our results indicate that UDCA suppresses proliferation through regulation of oxidative stress in colon cancer cells, as well as colon cancer stem-like cells. PMID:28708871

  4. Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase.

    Science.gov (United States)

    Pandey, Puspa R; Okuda, Hiroshi; Watabe, Misako; Pai, Sudha K; Liu, Wen; Kobayashi, Aya; Xing, Fei; Fukuda, Koji; Hirota, Shigeru; Sugai, Tamotsu; Wakabayashi, Go; Koeda, Keisuke; Kashiwaba, Masahiro; Suzuki, Kazuyuki; Chiba, Toshimi; Endo, Masaki; Fujioka, Tomoaki; Tanji, Susumu; Mo, Yin-Yuan; Cao, Deliang; Wilber, Andrew C; Watabe, Kounosuke

    2011-11-01

    Resveratrol is a natural polyphenolic compound and has been shown to exhibit cardio-protective as well as anti-neoplastic effects on various types of cancers. However, the exact mechanism of its anti-tumor effect is not clearly defined. Resveratrol has been shown to have strong hypolipidemic effect on normal adipocytes and as hyper-lipogenesis is a hallmark of cancer cell physiology, the effect of resveratrol on lipid synthesis in cancer stem-like cells (CD24(-)/CD44(+)/ESA(+)) that were isolated from both ER+ and ER- breast cancer cell lines was examined. The authors found that resveratrol significantly reduced the cell viability and mammosphere formation followed by inducing apoptosis in cancer stem-like cells. This inhibitory effect of resveratrol is accompanied by a significant reduction in lipid synthesis which is caused by the down-regulation of the fatty acid synthase (FAS) gene followed by up-regulation of pro-apoptotic genes, DAPK2 and BNIP3. The activation of apoptotic pathway in the cancer stem-like cells was suppressed by TOFA and by Fumonisin B1, suggesting that resveratrol-induced apoptosis is indeed through the modulation of FAS-mediated cell survival signaling. Importantly, resveratrol was able to significantly suppress the growth of cancer stem-like cells in an animal model of xenograft without showing apparental toxicity. Taken together, the results of this study indicate that resveratrol is capable of inducing apoptosis in the cancer stem-like cells through suppression of lipogenesis by modulating FAS expression, which highlights a novel mechanism of anti-tumor effect of resveratrol.

  5. NF-kappa B signaling pathway is involved in growth inhibition, G2/M arrest and apoptosis induced by Trichostatin A in human tongue carcinoma cells

    NARCIS (Netherlands)

    Yao, Jun; Duan, Li; Fan, Mingwen; Wu, Xinxing

    2006-01-01

    The HDAC inhibitor Trichostatin A (TSA) exhibits antiturnour activity in various tumour cells. However, little is known about the effect of TSA on growth of human tongue carcinoma cells. In this study, we observed that TSA concentration-dependently inhibited growth of human tongue carcinoma Tca8113

  6. Concurrent Autophagy Inhibition Overcomes the Resistance of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Human Bladder Cancer Cells.

    Science.gov (United States)

    Kang, Minyong; Lee, Kyoung-Hwa; Lee, Hye Sun; Jeong, Chang Wook; Kwak, Cheol; Kim, Hyeon Hoe; Ku, Ja Hyeon

    2017-02-04

    Despite the potential therapeutic efficacy of epithelial growth factor receptor (EGFR) inhibitors in the treatment of advanced stage bladder cancer, there currently is no clear evidence to support this hypothesis. In this study, we investigate whether the concurrent treatment of autophagy-blocking agents with EGFR inhibitors exerts synergistic anti-cancer effects in T24 and J82 human bladder cancer cells. Lapatinib and gefitinib were used as EGFR inhibitors, and bafilomycin A1 (BFA1), chloroquine (CQ) and 3-methyladenine (3-MA) were used as the pharmacologic inhibitors of autophagy activities. To assess the proliferative and self-renewal capabilities, the Cell Counting Kit-8 (CCK-8) assay and a clonogenic assay were performed, respectively. To examine apoptotic cell death, flow cytometry using annexin-V/propidium iodide (PI) was used. To measure the autophagy activities, the expression levels of LC3I and II was determined by Western blot analysis. To validate the synergistic effects of autophagy inhibition with EGFR inhibitors, we specifically blocked key autophagy regulatory gene ATG12 by transfection of small interference RNA and examined the phenotypic changes. Of note, lapatinib and gefitinib triggered autophagy activities in T24 and J82 human bladder cancer cells, as indicated by upregulation of LC3II. More importantly, inhibiting autophagy activities with pharmacologic inhibitors (BFA1, CQ or 3-MA) remarkably reduced the cell viabilities and clonal proliferation of T24 and J82 cells, compared to those treated with either of the agents alone. We also obtained similar results of the enhanced anti-cancer effects of EGFR inhibitors by suppressing the expression of ATG12. Notably, the apoptotic assay showed that synergistic anti-cancer effects were induced via the increase of apoptotic cell death. In summary, concomitant inhibition of autophagy activities potentiated the anti-cancer effects of EGFR inhibitors in human bladder cancer cells, indicating a novel

  7. Concurrent Autophagy Inhibition Overcomes the Resistance of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Human Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Minyong Kang

    2017-02-01

    Full Text Available Despite the potential therapeutic efficacy of epithelial growth factor receptor (EGFR inhibitors in the treatment of advanced stage bladder cancer, there currently is no clear evidence to support this hypothesis. In this study, we investigate whether the concurrent treatment of autophagy-blocking agents with EGFR inhibitors exerts synergistic anti-cancer effects in T24 and J82 human bladder cancer cells. Lapatinib and gefitinib were used as EGFR inhibitors, and bafilomycin A1 (BFA1, chloroquine (CQ and 3-methyladenine (3-MA were used as the pharmacologic inhibitors of autophagy activities. To assess the proliferative and self-renewal capabilities, the Cell Counting Kit-8 (CCK-8 assay and a clonogenic assay were performed, respectively. To examine apoptotic cell death, flow cytometry using annexin-V/propidium iodide (PI was used. To measure the autophagy activities, the expression levels of LC3I and II was determined by Western blot analysis. To validate the synergistic effects of autophagy inhibition with EGFR inhibitors, we specifically blocked key autophagy regulatory gene ATG12 by transfection of small interference RNA and examined the phenotypic changes. Of note, lapatinib and gefitinib triggered autophagy activities in T24 and J82 human bladder cancer cells, as indicated by upregulation of LC3II. More importantly, inhibiting autophagy activities with pharmacologic inhibitors (BFA1, CQ or 3-MA remarkably reduced the cell viabilities and clonal proliferation of T24 and J82 cells, compared to those treated with either of the agents alone. We also obtained similar results of the enhanced anti-cancer effects of EGFR inhibitors by suppressing the expression of ATG12. Notably, the apoptotic assay showed that synergistic anti-cancer effects were induced via the increase of apoptotic cell death. In summary, concomitant inhibition of autophagy activities potentiated the anti-cancer effects of EGFR inhibitors in human bladder cancer cells, indicating

  8. Methylseleninic acid (MSA) inhibits 17β-estradiol-induced cell growth in breast cancer T47D cells via enhancement of the antioxidative thioredoxin/ thioredoxin reductase system.

    Science.gov (United States)

    Okuno, Tomofumi; Miura, Kiyoshi; Sakazaki, Fumitoshi; Nakamuro, Katsuhiko; Ueno, Hitoshi

    2012-01-01

    The purpose of this study was to clarify the cell growth inhibitory mechanism of human breast cancer cells caused by selenium (Se) compounds. In the presence of 17β-estradiol (E(2)) at physiological concentrations, growth of estrogen receptor α (ERα)-positive T47D cells was markedly inhibited by 1 × 10(-6) mol/L methylseleninic acid (MSA) with no Se related toxicity.Under conditions where cell growth was inhibited, MSA decreased ERα mRNA levels and subsequent protein levels; further decreasing expression of estrogen-responsive finger protein (Efp) which is a target gene product of ERα and promotes G2/M progression of the cell cycle. Therefore, the decline in Efp expression is presumed to be involved in G2 arrest. Coincidentally, the antioxidative thioredoxin/ thioredoxin reductase (Trx/TrxR) system in cells was enhanced by the synergistic action of E(2) and MSA. It has been reported that ROS-induced oxidative stress enhanced ERα expression. E(2) increased production of intracellular ROS in T47D cells. Meanwhile, MSA significantly decreased E(2)-induced ROS accumulation. From these results, activation of the Trx/TrxR system induced by the coexistence of MSA and E(2) suppresses oxidative stress and decreases expression of ERα, and finally induces the growth arrest of T47D cells through disruption of ERα signaling.

  9. PI3K/Akt signaling mediated Hexokinase-2 expression inhibits cell apoptosis and promotes tumor growth in pediatric osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, Baobiao; Li, Yuan; Li, Zhengwei; Qin, Haihui; Sun, Qingzeng; Zhang, Fengfei; Shen, Yang; Shi, Yingchun [Department of Surgery, The Children' s Hospital of Xuzhou, Xuzhou, Jiangsu Province 221006 (China); Wang, Rong, E-mail: wangrong2008163@163.com [Department of Ultrasonography, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province 221006 (China)

    2015-08-21

    Accumulating evidence has shown that PI3K/Akt pathway is frequently hyperactivated in osteosarcoma (OS) and contributes to tumor initiation and progression. Altered phenotype of glucose metabolism is a key hallmark of cancer cells including OS. However, the relationship between PI3K/Akt pathway and glucose metabolism in OS remains largely unexplored. In this study, we showed that elevated Hexokinase-2 (HK2) expression, which catalyzes the first essential step of glucose metabolism by conversion of glucose into glucose-6-phosphate, was induced by activated PI3K/Akt signaling. Immunohistochemical analysis showed that HK2 was overexpressed in 83.3% (25/30) specimens detected and was closely correlated with Ki67, a cell proliferation index. Silencing of endogenous HK2 resulted in decreased aerobic glycolysis as demonstrated by reduced glucose consumption and lactate production. Inhibition of PI3K/Akt signaling also suppressed aerobic glycolysis and this effect can be reversed by reintroduction of HK2. Furthermore, knockdown of HK2 led to increased cell apoptosis and reduced ability of colony formation; meanwhile, these effects were blocked by 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor through its actions on hexokinase, indicating that HK2 functions in cell apoptosis and growth were mediated by altered aerobic glycolysis. Taken together, our study reveals a novel relationship between PI3K/Akt signaling and aerobic glycolysis and indicates that PI3K/Akt/HK2 might be potential therapeutic approaches for OS. - Highlights: • PI3K/Akt signaling contributes to elevated expression of HK2 in osteosarcoma. • HK2 inhibits cell apoptosis and promotes tumor growth through enhanced Warburg effect. • Inhibition of glycolysis blocks the oncogenic activity of HK2.

  10. Cell growth state determines susceptibility of repair DNA synthesis to inhibition by hydroxyurea and 1-beta-D-arabinofuranosylcytosine

    International Nuclear Information System (INIS)

    Mullinger, A.M.; Collins, A.R.; Johnson, R.T.

    1983-01-01

    The effects of inhibitors of replicative DNA synthesis on repair DNA synthesis have been examined by autoradiography in several different cell types and in cells in different growth states. Hydroxyurea (HU) and 1-beta-D-arabinofuranosylcytosine (ara C), administered together, influence unscheduled DNA synthesis (UDS) in a manner which is independent of the status of the cell culture (normal or transformed) and of the species, but which is strongly affected by whether the cells are proliferating or quiescent. In proliferating human, Chinese hamster and Microtus cell cultures, UDS is not inhibited by HU and ara C, and may even appear to be stimulated. In quiescent cultures of these cells UDS is reduced by HU and ara C. In cells reseeded from a confluent culture and followed during proliferation and back to quiescence the effect of inhibitors parallels the growth pattern. The results are interpreted in terms of changes in the sizes of endogenous DNA precursor pools; they underline the potential problems associated with quantitating UDS in the presence of inhibitors

  11. Inhibition of growth of human breast cancer cells in culture by neutron capture using liposomes containing 10B.

    Science.gov (United States)

    Yanagië, H; Kobayashi, H; Takeda, Y; Yoshizaki, I; Nonaka, Y; Naka, S; Nojiri, A; Shinnkawa, H; Furuya, Y; Niwa, H; Ariki, K; Yasuhara, H; Eriguchi, M

    2002-03-01

    Cell destruction in boron neutron capture therapy is effected by nuclear reaction between 10B and thermal neutrons with the release of alpha-particles (4He) and lithium-7 ions (7Li). 4He kills cells within 10 microm of the site of 4He generation, therefore it is theoretically possible to destroy tumour cells without affecting adjacent healthy tissue, given selective delivery of compounds containing 10B. Liposomes wore prepared by vortex dispersion of solutions containing 10B compounds with dried lipid films and the effects of those compounds on human breast cancer cells in culture were examined after thermal neutral irradiation. [3H]-TdR incorporation by MRKnu/nu-1 cells treated with 10B-containing liposomes showed 40% suppression compared with liposomes without 10B, at 2 x 1012 n/cm2 thermal neutron fluence. Inhibition of tumour cell growth with liposomes prepared with 100 mm 10B-compound was as significant as with those made with 500 ppm 10B solution. The concentration of 10B in liposomes was 76.5 +/- 3.4 microg/mL. Boronated liposomes can thus deliver sufficient 10B atoms to this line of breast cancer cells in culture to effect cytotoxicity and suppression of growth after thermal neutron irradiation.

  12. L-carnitine is an endogenous HDAC inhibitor selectively inhibiting cancer cell growth in vivo and in vitro.

    Science.gov (United States)

    Huang, Hongbiao; Liu, Ningning; Guo, Haiping; Liao, Siyan; Li, Xiaofen; Yang, Changshan; Liu, Shouting; Song, Wenbin; Liu, Chunjiao; Guan, Lixia; Li, Bing; Xu, Li; Zhang, Change; Wang, Xuejun; Dou, Q Ping; Liu, Jinbao

    2012-01-01

    L-carnitine (LC) is generally believed to transport long-chain acyl groups from fatty acids into the mitochondrial matrix for ATP generation via the citric acid cycle. Based on Warburg's theory that most cancer cells mainly depend on glycolysis for ATP generation, we hypothesize that, LC treatment would lead to disturbance of cellular metabolism and cytotoxicity in cancer cells. In this study, Human hepatoma HepG2, SMMC-7721 cell lines, primary cultured thymocytes and mice bearing HepG2 tumor were used. ATP content was detected by HPLC assay. Cell cycle, cell death and cell viability were assayed by flow cytometry and MTS respectively. Gene, mRNA expression and protein level were detected by gene microarray, Real-time PCR and Western blot respectively. HDAC activities and histone acetylation were detected both in test tube and in cultured cells. A molecular docking study was carried out with CDOCKER protocol of Discovery Studio 2.0 to predict the molecular interaction between L-carnitine and HDAC. Here we found that (1) LC treatment selectively inhibited cancer cell growth in vivo and in vitro; (2) LC treatment selectively induces the expression of p21(cip1) gene, mRNA and protein in cancer cells but not p27(kip1); (4) LC increases histone acetylation and induces accumulation of acetylated histones both in normal thymocytes and cancer cells; (5) LC directly inhibits HDAC I/II activities via binding to the active sites of HDAC and induces histone acetylation and lysine-acetylation accumulation in vitro; (6) LC treatment induces accumulation of acetylated histones in chromatin associated with the p21(cip1) gene but not p27(kip1) detected by ChIP assay. These data support that LC, besides transporting acyl group, works as an endogenous HDAC inhibitor in the cell, which would be of physiological and pathological importance.

  13. BMP-6 inhibits growth of mature human B cells; induction of Smad phosphorylation and upregulation of Id1

    Directory of Open Access Journals (Sweden)

    Kersten Christian

    2005-05-01

    Full Text Available Abstract Background Bone morphogenetic proteins (BMPs belong to the TGF-β superfamily and are secreted proteins with pleiotropic roles in many different cell types. A potential role of BMP-6 in the immune system has been implied by various studies of malignant and rheumatoid diseases. In the present study, we explored the role of BMP-6 in normal human peripheral blood B cells. Results The B cells were found to express BMP type I and type II receptors and BMP-6 rapidly induced phosphorylation of Smad1/5/8. Furthermore, Smad-phosphorylation was followed by upregulation of Id1 mRNA and Id1 protein, whereas Id2 and Id3 expression was not affected. Furthermore, we found that BMP-6 had an antiproliferative effect both in naïve (CD19+CD27- and memory B cells (CD19+CD27+ stimulated with anti-IgM alone or the combined action of anti-IgM and CD40L. Additionally, BMP-6 induced cell death in activated memory B cells. Importantly, the antiproliferative effect of BMP-6 in B-cells was completely neutralized by the natural antagonist, noggin. Furthermore, B cells were demonstrated to upregulate BMP-6 mRNA upon stimulation with anti-IgM. Conclusion In mature human B cells, BMP-6 inhibited cell growth, and rapidly induced phosphorylation of Smad1/5/8 followed by an upregulation of Id1.

  14. Targeting non-small cell lung cancer cells by dual inhibition of the insulin receptor and the insulin-like growth factor-1 receptor.

    Directory of Open Access Journals (Sweden)

    Emma E Vincent

    Full Text Available Phase III trials of the anti-insulin-like growth factor-1 receptor (IGF1R antibody figitumumab in non-small cell lung cancer (NSCLC patients have been discontinued owing to lack of survival benefit. We investigated whether inhibition of the highly homologous insulin receptor (IR in addition to the IGF1R would be more effective than inhibition of the IGF1R alone at preventing the proliferation of NSCLC cells. Signalling through IGF1R and IR in the NSCLC cell lines A549 and Hcc193 was stimulated by a combination of IGF1, IGF2 and insulin. It was inhibited by antibodies that block ligand binding, αIR3 (IGF1R and IR47-9 (IR, and by the ATP-competitive small molecule tyrosine kinase inhibitors AZ12253801 and NVPAWD742 which inhibit both IGF1R and IR tyrosine kinases. The effect of inhibitors was determined by an anchorage-independent proliferation assay and by analysis of Akt phosphorylation. In Hcc193 cells the reduction in cell proliferation and Akt phosphorylation due to anti-IGF1R antibody was enhanced by antibody-mediated inhibition of the IR whereas in A549 cells, with a relatively low IR:IGF1R expression ratio, it was not. In each cell line proliferation and Akt phosphorylation were more effectively inhibited by AZ12253801 and NVPAWD742 than by combined αIR3 and IR47-9. When the IGF1R alone is inhibited, unencumbered signalling through the IR can contribute to continued NSCLC cell proliferation. We conclude that small molecule inhibitors targeting both the IR and IGF1R more effectively reduce NSCLC cell proliferation in a manner independent of the IR:IGF1R expression ratio, providing a therapeutic rationale for the treatment of this disease.

  15. The addition of calcitriol or its synthetic analog EB1089 to lapatinib and neratinib treatment inhibits cell growth and promotes apoptosis in breast cancer cells.

    Science.gov (United States)

    Segovia-Mendoza, Mariana; Díaz, Lorenza; Prado-Garcia, Heriberto; Reginato, Mauricio J; Larrea, Fernando; García-Becerra, Rocío

    2017-01-01

    In breast cancer the use of small molecule inhibitors of tyrosine kinase activity of the ERBB family members improves survival thus represents a valuable therapeutic strategy. The addition of calcitriol, the most active metabolite of vitamin D, or some of its analogs, to conventional anticancer drugs, including tyrosine kinase inhibitors (TKIs), has shown an increased effect on the inhibition of cancer cell growth. In this work, we have evaluated the effects and the mechanism of action of the combination of calcitriol or its analog EB1089 with lapatinib or neratinib on EGFR and/or HER2 positive breast cancer cell lines. Lapatinib, neratinib, calcitriol and EB1089 inhibited breast cancer cell proliferation in a concentration-dependent manner. Addition of calcitriol or EB1089 to TKIs treatment induced more effective inhibiting effect on cell growth and AKT and MAPK phosphorylation than all compounds alone. The combined treatments incremented also the expression of active caspase 3 and induced cell death in two and three-dimensional cell culture and significantly inhibited anchorage-independent colony formation. Our results suggest that the addition of calcitriol or its analog EB1089 to conventional targeted therapies, including lapatinib or neratinib might be of benefit to patients with breast cancer, particularly those with an EGFR and/or HER2 positive phenotype.

  16. Synergistic Induction of Cyclooxygenase-2 by Transforming Growth Factor-β1 and Epidermal Growth Factor Inhibits Apoptosis in Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Debabrata Saha

    1999-12-01

    Full Text Available Increased expression of cyclooxygenase-2 (COX-2 expression has been observed in several human tumor types and in selected animal and cell culture models of carcinogenesis, including lung cancer. Increased expression of COX-2 and production of prostaglandins appear to provide a survival advantage to transformed cells through the inhibition of apoptosis, increased attachment to extracellular matrix, increased invasiveness, the stimulation of angiogenesis. In the present studies, we found that transforming growth factor β1 (TGF-β1 and epidermal growth factor (EGF synergistically induced the expression of COX-2 and prostaglandin E2 (PGE2 production in mink lung epithelial (Mvi Lu cells. EGF, but not PDGF or IGF-1, was able to inhibit TGF-β1-induced apoptosis in Mvi Lu cells and this effect was blocked by NS-398, a selective inhibitor of COX-2 activity, suggesting a possible role for COX-2 in the anti-apoptosic effect of EGF receptor ligands. The combination of TGF-β1 and EGF also significantly induced COX-2 expression in rat intestinal epithelial (RIE-1 cells and completely prevented sodium butyrate (NaBu-induced apoptosis. The synergistic induction of COX-2 by TGF-β1 and EGF was not observed in R1B-L17 cells, a line derived from Mvi Lu cells that lacks the TGF-β type-I receptor. AG1478, a selective inhibitor of EGF receptor tyrosine kinase activity, completely suppressed the induction of COX-2 expression by either EGF or TGF-β1+EGF. Also, PD98059, a specific inhibitor of MEK/ERK pathway, SB203580, a specific inhibitor of p38 MAPK activity, significantly inhibited the induction of COX-2 in response to combined EGF and TGF-β1. These results suggest an important collaborative interaction of TGF-β1 and EGF signaling in the induction of COX-2 and prostaglandin production in Mv1Lu cells.

  17. Inhibition of polo-like kinase 1 leads to the suppression of osteosarcoma cell growth in vitro and in vivo.

    Science.gov (United States)

    Liu, Xianzhe; Choy, Edwin; Harmon, David; Yang, Shuhua; Yang, Cao; Mankin, Henry; Hornicek, Francis J; Duan, Zhenfeng

    2011-06-01

    Osteosarcoma is the most common type of primary bone cancer in children and adolescents. Treatment options for osteosarcoma may include surgery, chemotherapy, and radiotherapy. Unfortunately, many patients eventually relapse, resulting in an unsatisfactory outcome. The serine/threonine-specific polo-like kinase 1 (PLK1) is a kinase that plays an important role in mitosis and the maintenance of genomic stability. PLK1 has been found to be highly expressed in the malignant cells of osteosarcoma. Here, we describe the in-vitro and in-vivo effects of BI 2536, a small-molecule inhibitor of PLK1, which through inhibiting PLK1 enzymatic activity, causes mitotic arrest and eventually induces cancer cell apoptosis. In this study, we show that the PLK1 inhibitor, BI 2536, inhibits proliferation and induces apoptosis in two-dimensional and three-dimensional cultures of osteosarcoma cell lines, KHOS and U-2OS. A proliferation assay performed both in two-dimensional and three-dimensional culture showed that the growth of both cell lines was inhibited by BI 2536. Cell cycle analysis showed that the cells treated with BI 2536 were mainly arrested in the G2/M phase. Immunofluorescence and western blotting analysis confirmed that the administration of BI 2536 led to significant decrease of PLK1 and Mcl-1 protein expression levels in dose-dependent and time-dependent manners. Furthermore, BI 2536-induced apoptosis in the osteosarcoma cell lines was shown by poly (ADP-ribose) polymerase cleavage and caspase assay. Finally, in mouse osteosarcoma xenografts, BI 2536-treated mice had significantly smaller tumors compared with the control mice. These findings offer evidence of the potential role for targeting PLK1 in osteosarcoma therapy.

  18. Galangin inhibits human osteosarcoma cells growth by inducing transforming growth factor-β1-dependent osteogenic differentiation.

    Science.gov (United States)

    Liu, Chunhong; Ma, Mingming; Zhang, Junde; Gui, Shaoliu; Zhang, Xiaohai; Xue, Shuangtao

    2017-05-01

    Osteosarcoma is the most common primary malignancy of the musculoskeletal system, and is associated with excessive proliferation and poor differentiation of osteoblasts. Currently, despite the use of traditional chemotherapy and radiotherapy, no satisfactory and effective agent has been developed to treat the disease. Herein, we found that a flavonoid natural product, galangin, could significantly attenuate human osteosarcoma cells proliferation, without causing obvious cell apoptosis. Moreover, galangin enhanced the expression of osteoblast differentiation markers (collagen type I, alkaline phosphatase, osteocalcin and osteopontin) remarkably and elevated the alkaline phosphatase activity in human osteosarcoma cells. And galangin could also attenuated osteosarcoma growth in vivo. These bioactivities of galangin resulted from its selective activation of the transforming growth factor (TGF)-β1/Smad2/3 signaling pathway, which was demonstrated by pathway blocking experiments. These findings suggested that galangin could be a promising agent to treat osteosarcoma. In addition, targeting TGF-β1 to induce osteogenic differentiation might represent a novel therapeutic strategy to treat osteosarcoma with minimal side effects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Growth inhibition of human pancreatic cancer cells by lipofection mediated IGF-1R antisense oligodeoxynucletides in combination with ionizing radiation

    International Nuclear Information System (INIS)

    Pan Yaozhen; Sun Chengyi; Wang Yuzhi

    2004-01-01

    Objective: To study the growth inhibition of human pancreatic cancer cells (PC-3) by lipofection-mediated and ionizing radiation improving transfection of IGF-1R antisense oligodeoxynucletides (ASON) in vitro. Methods: Colonigenicity of PC-3 cells in vitro after 60 Co γ-radiation was observed for ascertaining their radiosensitivity and optimal radiation dose was selected according to the radiation sensitivity. PC-3 cells were transfected by two ways: 1) by lipofection-mediated IGF-1R ASON combined with ionizing radiation. 2) by lipo-ASON alone without ionizing radiation. Cell growth was assessed by MTT method. The expression of IGF-1R at mRNA level was examined by RT-PCR. Flow cytometry was used to demonstrate apoptotic changes in lipo-ASON-treated cells. Results: The inhibitory efficiency of lipo-ASON combined with ionizing radiation was higher than that without ionizing radiation (P < 0.05). The apoptotic efficiency and the decreased level of IGF-1R at mRNA were significantly improved (P < 0.05). Conclusion: Lipofection-mediated and ionizing radiation-promoted transfection of IGF-1R antisense oligodeoxynucletides (ASON) significantly decreases IGF-1R at mRNA level and induces apoptosis of human pancreatic cancer cells in vitro

  20. Net expression inhibits the growth of pancreatic ductal adenocarcinoma cell PL45 in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Baiwen Li

    Full Text Available Pancreatic ductal adenocarcinoma has a poor prognosis due to late diagnosis and a lack of effective therapeutic options. Thus, it is important to better understand its molecular mechanisms and to develop more effective treatments for the disease. The ternary complex factor Net, which exerts its strong inhibitory function on transcription of proto-oncogene gene c-fos by forming ternary complexes with a second transcription factor, has been suspected of being involved in pancreatic cancer and other tumors biology. In this study, we found that the majority of pancreatic ductal adenocarcinoma tissues and cell lines had weak or no expression of Net, whereas significantly high level of Net expression occurred in paired adjacent normal tissues we studied. Furthermore, using in vitro and in vivo model systems, we found that overexpression of Net inhibited cell growth and survival and induced cell apoptosis in human pancreatic ductal adenocarcinoma cell PL45; the mechanisms by which Net inhibited the cell cycle progression were mainly through P21-Cyclin D1/CDK4 Pathway. Our data thus suggested that Net might play an important role in pancreatic carcinogenesis, possibly by acting as a tumor suppressor gene.

  1. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation.

    Directory of Open Access Journals (Sweden)

    Abel Martin-Garrido

    Full Text Available In adult tissue, vascular smooth muscle cells (VSMCs exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ and the pro-proliferative cytokine platelet derived growth factor (PDGF. In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.

  2. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation.

    Science.gov (United States)

    Martin-Garrido, Abel; Williams, Holly C; Lee, Minyoung; Seidel-Rogol, Bonnie; Ci, Xinpei; Dong, Jin-Tang; Lassègue, Bernard; Martín, Alejandra San; Griendling, Kathy K

    2013-01-01

    In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.

  3. α-Trinositol inhibits FGF-stimulated growth of smooth muscle and breast cancer cells

    International Nuclear Information System (INIS)

    Siren, Matti J.; Vainiomaeki, Maija; Vaeaenaenen, Kalervo; Haerkoenen, Pirkko

    2004-01-01

    α-Trinositol (D-myo-inositol-1,2,6-trisphosphate), an isomer of the intracellular messenger IP 3 , has been studied for its anti-inflammatory and other effects in animal experiments and in human. The mechanisms of action remain unknown. Several human pathologies are associated with uncontrolled production of fibroblast growth factors (FGFs). FGF-2 induces vascular smooth muscle cell proliferation, which contributes to restenosis after coronary balloon angioplasty. The expression of several FGFs is also increased in tumors. We studied the effects of the water- and lipid-soluble derivatives of α-trinositol on the FGF-2- and/or FGF-8-induced proliferation of human pulmonary artery smooth muscle cells (HPASMC) and S115 mouse breast cancer cells. α-Trinositol decreased the FGF-mediated proliferation of HPASMC and S115 cells. Membrane permeability did not seem obligatory since the lipid-soluble form of α-trinositol was less effective than the water-soluble derivative. These results suggest a new biological function for certain phosphoinositides in the modulation of FGF-regulated processes

  4. The chalcone butein from Rhus verniciflua Stokes inhibits clonogenic growth of human breast cancer cells co-cultured with fibroblasts

    Directory of Open Access Journals (Sweden)

    Tan Jenny

    2005-03-01

    Full Text Available Abstract Background Butein (3,4,2',4'-tetrahydroxychalone, a plant polyphenol, is a major biologically active component of the stems of Rhus verniciflua Stokes. It has long been used as a food additive in Korea and as an herbal medicine throughout Asia. Recently, butein has been shown to suppress the functions of fibroblasts. Because fibroblasts are believed to play an important role in promoting the growth of breast cancer cells, we investigated the ability of butein to inhibit the clonogenic growth of small numbers of breast cancer cells co-cultured with fibroblasts in vitro. Methods We first measured the clonogenic growth of small numbers of the UACC-812 human breast cancer cell line co-cultured on monolayers of serum-activated, human fibroblasts in the presence of butein (2 μg/mL or various other modulators of fibroblast function (troglitazone-1 μg/mL; GW9662-1 μM; meloxican-1 μM; and 3,4 dehydroproline-10 μg/mL. In a subsequent experiment, we measured the dose-response effect on the clonogenic growth of UACC-812 breast cancer cells by pre-incubating the fibroblasts with varying concentrations of butein (10 μg/ml-1.25 μg/mL. Finally, we measured the clonogenic growth of primary breast cancer cells obtained from 5 clinical specimens with normal fibroblasts and with fibroblasts that had been pre-treated with a fixed dose of butein (2.5 μg/mL. Results Of the five modulators of fibroblast function that we tested, butein was by far the most potent inhibitor of clonogenic growth of UACC-812 breast cancer cells co-cultured with fibroblasts. Pre-treatment of fibroblasts with concentrations of butein as low as 2.5 μg/mL nearly abolished subsequent clonogenic growth of UACC-812 breast cancer cells co-cultured with the fibroblasts. A similar dose of butein had no effect on the clonogenic growth of breast cancer cells cultured in the absence of fibroblasts. Significantly, clonogenic growth of the primary breast cancer cells was also

  5. Targeting both IGF-1R and mTOR synergistically inhibits growth of renal cell carcinoma in vitro

    International Nuclear Information System (INIS)

    Cardillo, Thomas M; Trisal, Preeti; Arrojo, Roberto; Goldenberg, David M; Chang, Chien-Hsing

    2013-01-01

    Advanced or metastatic renal cell carcinoma (RCC) has a poor prognosis, because it is relatively resistant to conventional chemotherapy or radiotherapy. Treatments with human interferon-α2b alone or in combination with mammalian target of rapamycin (mTOR) inhibitors have led to only a modest improvement in clinical outcome. One observation made with mTOR inhibitors is that carcinomas can overcome these inhibitory effects by activating the insulin-like growth factor-I (IGF-I) signaling pathway. Clinically, there is an association of IGF-I receptor (IGF-IR) expression in RCC and poor long-term patient survival. We have developed a humanized anti-IGF-IR monoclonal antibody, hR1, which binds to RCC, resulting in effective down-regulation of IGF-IR and moderate inhibition of cell proliferation in vitro. In this work, we evaluate the anti-tumor activity of two novel IGF-1R-targeting agents against renal cell carcinoma given alone or in combination with an mTOR inhibitor. hR1 was linked by the DOCK-AND-LOCK™ (DNL™) method to four Fabs of hR1, generating Hex-hR1, or to four molecules of interferon-α2b, generating 1R-2b. Eight human RCC cell lines were screened for IGF-1R expression and sensitivity to treatment with hR1 in vitro. Synergy with an mTOR inhibitor, temsirolimus, was tested in a cell line (ACHN) with low sensitivity to hR1. Hex-hR1 induced the down-regulation of IGF-IR at 10-fold lower concentrations compared to the parental hR1. Sensitivity to growth inhibition mediated by hR1 and Hex-hR1 treatments correlated with IGF-1R expression (higher expression was more sensitive). The potency of 1R-2b to inhibit the in vitro growth of RCC was also demonstrated in two human cell lines, ACHN and 786-O, with EC 50 –values of 63 and 48 pM, respectively. When combined with temsirolimus, a synergistic growth-inhibition with hR1, Hex-hR1, and 1R-2b was observed in ACHN cells at concentrations as low as 10 nM for hR1, 1 nM for Hex-hR1, and 2.6 nM for 1R-2b. Both Hex-hR1

  6. Immunization with mutant HPV16 E7 protein inhibits the growth of TC-1 cells in tumor-bearing mice.

    Science.gov (United States)

    Li, Yan-Li; Ma, Zhong-Liang; Zhao, Yue; Zhang, Jing

    2015-04-01

    Two human papillomavirus (HPV) 16 oncogenic proteins, E6 and E7, are co-expressed in the majority of HPV16-induced cervical cancer cells. Thus, the E6 and E7 proteins are good targets for developing therapeutic vaccines for cervical cancer. In the present study, immunization with the mutant non-transforming HPV16 E7 (mE7) protein was demonstrated to inhibit the growth of TC-1 cells in the TC-1 mouse model. The HPV16 mE7 gene was amplified by splicing overlap extension polymerase chain reaction using pET-28a(+)-E7 as a template, and the gene was cloned into pET-28a(+) to form pET-28a(+)-mE7. Compared with the E7 protein, mE7 lacks amino acid residues 94-98, and at residue 24, there is a Cys to Gly substitution. pET-28a(+)-mE7 was then introduced into Escherichia coli Rosetta. The expression of mE7 was induced by isopropyl β-D-1-thiogalactopyranoside. The mE7 protein was purified using Ni-NTA agarose and detected by SDS-PAGE and western blot analysis. In the tumor prevention model, no tumor was detected in the mice vaccinated with the mE7 protein. After 40 days, the tumor-free mice and control mice were challenged with 2×10 5 TC-1 cells. All control mice developed tumors six days later, but mE7 immunized mice were tumor free until 90 days. In the tumor therapy model, the TC-1 cells were initially injected subcutaneously, and the mice were subsequently vaccinated. Vaccination against the mE7 protein may significantly inhibit TC-1 cell growth compared to the control. These results demonstrated that immunization with the HPV16 mE7 protein elicited a long-term protective immunity against TC-1 tumor growth and generated a significant inhibition of TC-1 growth in a TC-1 mouse model.

  7. Flurbiprofen benzyl nitrate (NBS-242 inhibits the growth of A-431 human epidermoid carcinoma cells and targets ß-catenin

    Directory of Open Access Journals (Sweden)

    Nath N

    2013-05-01

    Full Text Available Niharika Nath,1,2 Xiaoping Liu,3 Lloydine Jacobs,1 Khosrow Kashfi1,3 1Department of Physiology, Pharmacology, and Neuroscience, Sophie Davis School of Biomedical Education, City University of New York Medical School, New York, NY, USA; 2Department of Life Sciences, New York Institute of Technology, New York, NY, USA; 3Division of Cancer Prevention, Department of Medicine, Stony Brook University, Stony Brook, NY, USA Background: The Wnt/ß-catenin/T cell factor (TCF signaling pathway is important in the development of nonmelanoma skin cancers (NMSCs. Nitric-oxide-releasing nonsteroidal anti-inflammatory drugs (NO-NSAIDs are chemopreventive agents consisting of a traditional NSAID attached to an NO-releasing moiety through a chemical spacer. Previously we showed that an aromatic spacer enhanced the potency of a particular NO-NSAID compared to an aliphatic spacer. Methods: We synthesized an NO-releasing NSAID with an aromatic spacer (flurbiprofen benzyl nitrate, NBS-242, and using the human skin cancer cell line A-431, we evaluated its effects on cell kinetics, Wnt/ß-catenin, cyclin D1, and caspase-3. Results: NBS-242 inhibited the growth of A-431 cancer cells, being ~15-fold more potent than flurbiprofen and up to 5-fold more potent than NO-flurbiprofen with an aliphatic spacer, the half maximal inhibitory concentrations (IC50 for growth inhibition being 60 ± 4 µM, 320 ± 20 µM, and 880 ± 65 µM for NBS-242, NO-flurbiprofen, and flurbiprofen, respectively. This effect was associated with inhibition of proliferation, accumulation of cells in the G0/G1 phase of the cell cycle, and an increase in apoptotic cell population. NBS-242 cleaved ß-catenin both in the cytoplasm and the nucleus of A-431 cells. NBS-242 activated caspase-3 whose activation was reflected in the cleavage of procaspase-3. To test the functional consequence of ß-catenin cleavage, we determined the expression of cyclin D1, a Wnt-response gene. NBS-242 reduced cyclin D1 levels

  8. Methylferulate from Tamarix aucheriana inhibits growth and enhances chemosensitivity of human colorectal cancer cells: possible mechanism of action.

    Science.gov (United States)

    Abaza, Mohamed Salah I; Afzal, Mohammad; Al-Attiyah, Raja'a J; Guleri, Radhika

    2016-10-01

    Natural products are valuable sources for anticancer agents. In the present study, methylferulate (MF) was identified for the first time from Tamarix aucheriana. Spectral data were used for identification of MF. The potential of MF to control cell growth, cell cycle, apoptosis, generation of reactive oxygen species (ROS), cancer cell invasion, nuclear factor kappa B (NFkB) DNA-binding activity and proteasomal activities, as well as the enhancement of chemosensitivity in human colorectal cancer cells, were evaluated. The possible molecular mechanism of MF's therapeutic efficacy was also assessed. Column chromatography and spectral data were used for isolation and identification of MF. MTT, immunofluorescence, flow cytometry, in vitro invasion, fluoremetry, EIA and Real time qPCR were used to measure antiproliferative, chemo-sensitizing effects and other biochemical parameters. MF showed a dose-dependent anti-proliferative effect on colorectal cancer cells (IC 50  = 1.73 - 1.9 mM) with a nonsignificant cytotoxicity toward normal human fibroblast. Colony formation inhibition (P ≤ 0.001, 0.0001) confirmed the growth inhibition by MF. MF arrested cell cycle progression in the S and G2/M phases; induced apoptosis and ROS generation; and inhibited NF-kB DNA-binding activity, proteasomal activities and cell invasion in colorectal cancer cells. MF up-regulated cyclin-dependent kinase inhibitors (p19 INK4D , p21 WAF1/CIP1 , p27 KIP1 ), pro-apoptotic gene expression (Bax, Bad, Apaf1, Bid, Bim, Smac) and caspases (caspase 2, 3, 6, 7, 8, 9). Moreover, MF down-regulated cyclin-dependent kinases (Cdk1, Cdk2) and anti-apoptotic gene expression (c-IAP-1, c-IAP-2, Bcl2,FLIP). In addition, MF differentially potentiated the sensitivity of colorectal cancer cells to standard chemotherapeutic drugs. MF showed a multifaceted anti-proliferative and chemosensitizing effects. These results suggest the chemotherapeutic and co-adjuvant potential of MF.

  9. The Iron Chelator, Dp44mT, Effectively Inhibits Human Oral Squamous Cell Carcinoma Cell Growth in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Jehn-Chuan Lee

    2016-08-01

    Full Text Available Oral squamous cell carcinoma (OSCC is a common malignancy with a growing worldwide incidence and prevalence. The N-myc downstream regulated gene (NDRG family of NDRG1, 2, 3, and mammary serine protease inhibitor (Maspin gene are well-known modulators in the neoplasia process. Current research has considered iron chelators as new anti-cancer agents; however, the anticancer activities of iron chelators and their target genes in OSCC have not been well investigated. We showed that iron chelators (Dp44mT, desferrioxamine (DFO, and deferasirox all significantly inhibit SAS cell growth. Flow cytometry further indicated that Dp44mT inhibition of SAS cells growth was partly due to induction of G1 cell cycle arrest. Iron chelators enhanced expressions of NDRG1 and NDRG3 while repressing cyclin D1 expression in OSCC cells. The in vivo antitumor effect on OSCC and safety of Dp44mT were further confirmed through a xenograft animal model. The Dp44mT treatment also increased Maspin protein levels in SAS and OECM-1 cells. NDRG3 knockdown enhanced the growth of OECM-1 cells in vitro and in vivo. Our results indicated that NDRG3 is a tumor suppressor gene in OSCC cells, and Dp44mT could be a promising therapeutic agent for OSCC treatment.

  10. Inhibition of erythroid cell growth by allogeneic murine lymphocytes. Evidence for a synergism between lymph node cells and thymocytes

    International Nuclear Information System (INIS)

    Blomgren, H.; Jacobsson, H.

    1974-01-01

    Murine lymphoid cells from thymus and lymph nodes were tested for synergistic response in a graft-vs-host test. The test is based on the principle that allogeneic lymphocytes inhibit erythroid cell proliferation in the spleens of irradiated mice infused with syngeneic bone marrow cells. Mixtures of thymocytes and lymph node cells from the same parental strain yielded graft-vs-host responses in irradiated F 1 -hybrids higher than expected by summing the responses of the two cell populations tested separately. A similar synergistic response was obtained using mixtures of thymocytes and lymph node cells obtained from the two parental strains of the hybrid, whereas such an effect was not detected using mixtures of lymph node cells or mixtures of thymocytes from the two parental strains. Nor could synergy be demonstrated between parental strain lymph node cells and thymocytes syngeneic with the bone marrow target cells. Thymocytes obtained from one parental strain which was injected into its irradiated F 1 -hybrid transformed into a population of sensitized cells in the spleens of the recipients. This transformation was suppressed by the simultaneous injection of lymph node cells from the second parental strain. Since there is a synergistic immune response by such cell mixtures it is concluded that thymocytes may enhance the graft-vs-host response of lymph node cells. Parental strain thymocytes and lymph node cells, the latter being specifically immunologically tolerant to the bone marrow target cells, failed to give a synergistic response indicating that thymocytes do not transform unresponsive lymphocytes into responsive, but rather enhance the reactivity of existing, specifically responsive cells. The results thus show that thymocytes may enhance the response of lymph node cells in this specific graft-vs-host assay

  11. MicroRNA-375 Inhibits Growth and Enhances Radiosensitivity in Oral Squamous Cell Carcinoma by Targeting Insulin Like Growth Factor 1 Receptor

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2017-08-01

    Full Text Available Background: MicroRNAs (miRNAs have emerged as key players in various human biological processes, including tumorigenesis. Here, we investigated the roles of miR-375 in the pathogenesis of oral squamous cell carcinoma (OSCC. Methods: We performed quantitative real-time PCR (qRT-PCR to detect miR-375 expression in OSCC tissues and corresponding normal oral epithelial tissues and analyze the correlation of miR-375 expression with OSCC metastasis and patient’s survival. Then, the effects of miR-375 expression on proliferation, cell cycle, apoptosis and radiosensitivity in OSCC cells were determined by using MTT, flow cytometry and clonogenic survival assays. A dual-luciferase reporter assay was performed to test whether miR-375 binds to the 3’-untranslated region (3’-UTR of target mRNA. Results: The expression level of miR-375 in OSCC tissues was significantly lower than that in normal oral epithelial tissues, and low miR-375 expression was correlated with higher incidence of lymph node metastasis and poor survival of OSCC patients. Upregulation of miR-375 significantly inhibits growth, induces cell cycle arrest in G0/G1 phase, increases apoptosis and enhances radiosensitivity in OSCC cells. Analysis of luciferase activity demonstrated that miR-375 binds to the 3’-UTR of insulin like growth factor 1 receptor (IGF-1R. Small interfering RNA (shRNA-mediated IGF-1R knockdown mimics the effects of miR-375 upregulation, while overexpression of IGF-1R partially reverses those effects in OSCC cells. Conclusion: It was obviously demonstrated that miRNA-375 inhibits growth and enhances radiosensitivity in OSCC cells by targeting IGF-1R, suggesting that miR-375 may be a potential therapeutic target for OSCC patients.

  12. The antimicrobial peptide, lactoferricin B, is cytotoxic to neuroblastoma cells in vitro and inhibits xenograft growth in vivo.

    Science.gov (United States)

    Eliassen, Liv Tone; Berge, Gerd; Leknessund, Arild; Wikman, Mari; Lindin, Inger; Løkke, Cecilie; Ponthan, Frida; Johnsen, John Inge; Sveinbjørnsson, Baldur; Kogner, Per; Flaegstad, Trond; Rekdal, Øystein

    2006-08-01

    Antimicrobial peptides have been shown to exert cytotoxic activity towards cancer cells through their ability to interact with negatively charged cell membranes. In this study the cytotoxic effect of the antimicrobial peptide, LfcinB was tested in a panel of human neuroblastoma cell lines. LfcinB displayed a selective cytotoxic activity against both MYCN-amplified and non-MYCN-amplified cell lines. Non-transformed fibroblasts were not substantially affected by LfcinB. Treatment of neuroblastoma cells with LfcinB induced rapid destabilization of the cytoplasmic membrane and formation of membrane blebs. Depolarization of the mitochondria membranes and irreversible changes in the mitochondria morphology was also evident. Immuno- and fluorescence-labeled LfcinB revealed that the peptide co-localized with mitochondria. Furthermore, treatment of neuroblastoma cells with LfcinB induced cleavage of caspase-6, -7 and -9 followed by cell death. However, neither addition of the pan-caspase inhibitor, zVAD-fmk, or specific caspase inhibitors could reverse the cytotoxic effect induced by LfcinB. Treatment of established SH-SY-5Y neuroblastoma xenografts with repeated injections of LfcinB resulted in significant tumor growth inhibition. These results revealed a selective destabilizing effect of LfcinB on two important targets in the neuroblastoma cells, the cytoplasmic- and the mitochondria membrane. Copyright (c) 2006 Wiley-Liss, Inc.

  13. Inhibition effect of proteasome inhibitor MG132 combined with X-ray irradiation on cell growth, metastasis and cycle distribution of human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Liu Jing; Tang Yiting; Zhou Jundong; Zhang Shuyu; Cao Han; Wu Jinchang; Luo Judong; Chen Guanglie; Cao Jianping

    2014-01-01

    Objective: To study the effects of proteasome inhibitor MG132 on the growth, metastasis, and cell cycle distribution of human lung adenocarcinoma cells A549 irradiated by X-rays. Methods: After treatment of MG132 and irradiation,cell proliferation was detected by MTT assay. Survival was measured by clonogenic assay. Cell migration ability was detected by the Scratch migration assay. Cell invasion ability was detected by transwell migration assay. Cell cycle distribution were analyzed by flow cytometry assay. Protein expression was detected by Western blot assay. Results: MG132 alone inhibited cell growth in a dose-and time-dependent manner. MG132 in combination with radiation significantly suppressed the growth, migration and invasion of A549 cells compared to the control (F =554.78, 954.64, P<0.01). MG132 enhanced radiation-induced G 1 -arrest (t =4.44, 12.41, 3.52, 6.72, P<0.05). The G 1 cell cycle distribution rate of MG132 plus RT group was increased to (71.05 ± 4.17)%. The expressions of MMP-2, MMP-9 and Cyclin D1 were significantly suppressed by MG132 in combination with radiation, while the expression of P53 was up-regulated. Conclusions: MG132 inhibits cell growth, migration and invasion ability, and induces G 1 cell cycle arrest of A549 cells treated with MG132 in combination with radiation, in which the down-regulation of MMPs and Cyclin D1 and up-regulation of P53 may be involved. (authors)

  14. Nrf2 but not autophagy inhibition is associated with the survival of wild-type epidermal growth factor receptor non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Zhou, Yan; Li, Yuan; Ni, Hong-Min; Ding, Wen-Xing; Zhong, Hua

    2016-01-01

    Non-small cell lung cancer (NSCLC) is one of the most common malignancies in the world. Icotinib and Gefitinib are two epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) that have been used to treat NSCLC. While it is well known that mutations of EGFR can affect the sensitivity of NSCLC to the EGFR-TKI, other mechanisms may also be adopted by lung cancer cells to develop resistance to EGFR-TKI treatment. Cancer cells can use multiple adaptive mechanisms such as activation of autophagy and Nrf2 to protect against various stresses and chemotherapeutic drugs. Whether autophagy or Nrf2 activation contributes to the resistance of NSCLC to EGFR-TKI treatment in wild-type EGFR NSCLC cells remains elusive. In the present study, we confirmed that Icotinib and Gefitinib induced apoptosis in EGFR mutant HCC827 but not in EGFR wild-type A549 NSCLC cells. Icotinib and Gefitinib did not induce autophagic flux or inhibit mTOR in A549 cells. Moreover, suppression of autophagy by chloroquine, a lysosomal inhibitor, did not affect Icotinib- or Gefitinib-induced cell death in A549 cells. In contrast, Brusatol, an Nrf2 inhibitor, significantly suppressed the cell survival of A549 cells. However, Brusatol did not further sensitize A549 cells to EGFR TKI-induced cell death. Results from this study suggest that inhibition of Nrf2 can decrease cell vitality of EGFR wild-type A549 cells independent of autophagy. - Highlights: • Cancer cells use adaptive mechanisms against chemotherapy. • Autophagy is not essential for the drug resistance of lung cancer A549 cells. • Inhibition of Nrf2 decreases cell survival of lung cancer A549 cells.

  15. Nrf2 but not autophagy inhibition is associated with the survival of wild-type epidermal growth factor receptor non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan [Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030 (China); Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160 (United States); Li, Yuan; Ni, Hong-Min; Ding, Wen-Xing [Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160 (United States); Zhong, Hua, E-mail: eddiedong8@hotmail.com [Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2016-11-01

    Non-small cell lung cancer (NSCLC) is one of the most common malignancies in the world. Icotinib and Gefitinib are two epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) that have been used to treat NSCLC. While it is well known that mutations of EGFR can affect the sensitivity of NSCLC to the EGFR-TKI, other mechanisms may also be adopted by lung cancer cells to develop resistance to EGFR-TKI treatment. Cancer cells can use multiple adaptive mechanisms such as activation of autophagy and Nrf2 to protect against various stresses and chemotherapeutic drugs. Whether autophagy or Nrf2 activation contributes to the resistance of NSCLC to EGFR-TKI treatment in wild-type EGFR NSCLC cells remains elusive. In the present study, we confirmed that Icotinib and Gefitinib induced apoptosis in EGFR mutant HCC827 but not in EGFR wild-type A549 NSCLC cells. Icotinib and Gefitinib did not induce autophagic flux or inhibit mTOR in A549 cells. Moreover, suppression of autophagy by chloroquine, a lysosomal inhibitor, did not affect Icotinib- or Gefitinib-induced cell death in A549 cells. In contrast, Brusatol, an Nrf2 inhibitor, significantly suppressed the cell survival of A549 cells. However, Brusatol did not further sensitize A549 cells to EGFR TKI-induced cell death. Results from this study suggest that inhibition of Nrf2 can decrease cell vitality of EGFR wild-type A549 cells independent of autophagy. - Highlights: • Cancer cells use adaptive mechanisms against chemotherapy. • Autophagy is not essential for the drug resistance of lung cancer A549 cells. • Inhibition of Nrf2 decreases cell survival of lung cancer A549 cells.

  16. Antimicrobial peptides secreted by equine mesenchymal stromal cells inhibit the growth of bacteria commonly found in skin wounds.

    Science.gov (United States)

    Harman, Rebecca M; Yang, Steven; He, Megan K; Van de Walle, Gerlinde R

    2017-07-04

    The prevalence of chronic skin wounds in humans is high, and treatment is often complicated by the presence of pathogenic bacteria. Therefore, safe and innovative treatments to reduce the bacterial load in cutaneous wounds are needed. Mesenchymal stromal cells (MSC) are known to provide paracrine signals that act on resident skin cells to promote wound healing, but their potential antibacterial activities are not well described. The present study was designed to examine the antibacterial properties of MSC from horses, as this animal model offers a readily translatable model for MSC therapies in humans. Specifically, we aimed to (i) evaluate the in vitro effects of equine MSC on the growth of representative gram-negative and gram-positive bacterial species commonly found in skin wounds and (ii) define the mechanisms by which MSC inhibit bacterial growth. MSC were isolated from the peripheral blood of healthy horses. Gram-negative E. coli and gram-positive S. aureus were cultured in the presence of MSC and MSC conditioned medium (CM), containing all factors secreted by MSC. Bacterial growth was measured by plating bacteria and counting viable colonies or by reading the absorbance of bacterial cultures. Bacterial membrane damage was detected by incorporation of N-phenyl-1-naphthylamine (NPN). Antimicrobial peptide (AMP) gene and protein expression by equine MSC were determined by RT-PCR and Western blot analysis, respectively. Blocking of AMP activity of MSC CM was achieved using AMP-specific antibodies. We found that equine MSC and MSC CM inhibit the growth of E. coli and S. aureus, and that MSC CM depolarizes the cell membranes of these bacteria. In addition, we found that equine MSC CM contains AMPs, and blocking these AMPs with antibodies reduces the effects of MSC CM on bacteria. Our results demonstrate that equine MSC inhibit bacterial growth and secrete factors that compromise the membrane integrity of bacteria commonly found in skin wounds. We also identified

  17. MiR-375 inhibits the hepatocyte growth factor-elicited migration of mesenchymal stem cells by downregulating Akt signaling.

    Science.gov (United States)

    He, Lihong; Wang, Xianyao; Kang, Naixin; Xu, Jianwei; Dai, Nan; Xu, Xiaojing; Zhang, Huanxiang

    2018-04-01

    The migration of mesenchymal stem cells (MSCs) is critical for their use in cell-based therapies. Accumulating evidence suggests that microRNAs are important regulators of MSC migration. Here, we report that the expression of miR-375 was downregulated in MSCs treated with hepatocyte growth factor (HGF), which strongly stimulates the migration of these cells. Overexpression of miR-375 decreased the transfilter migration and the migration velocity of MSCs triggered by HGF. In our efforts to determine the mechanism by which miR-375 affects MSC migration, we found that miR-375 significantly inhibited the activation of Akt by downregulating its phosphorylation at T308 and S473, but had no effect on the activity of mitogen-activated protein kinases. Further, we showed that 3'phosphoinositide-dependent protein kinase-1 (PDK1), an upstream kinase necessary for full activation of Akt, was negatively regulated by miR-375 at the protein level. Moreover, miR-375 suppressed the phosphorylation of focal adhesion kinase (FAK) and paxillin, two important regulators of focal adhesion (FA) assembly and turnover, and decreased the number of FAs at cell periphery. Taken together, our results demonstrate that miR-375 inhibits HGF-elicited migration of MSCs through downregulating the expression of PDK1 and suppressing the activation of Akt, as well as influencing the tyrosine phosphorylation of FAK and paxillin and FA periphery distribution.

  18. Achillea millefolium L. hydroethanolic extract inhibits growth of human tumor cell lines by interfering with cell cycle and inducing apoptosis.

    Science.gov (United States)

    Pereira, Joana M; Peixoto, Vanessa; Teixeira, Alexandra; Sousa, Diana; Barros, Lillian; Ferreira, Isabel C F R; Vasconcelos, M Helena

    2018-06-05

    The cell growth inhibitory activity of the hydroethanolic extract of Achillea millefolium was studied in human tumor cell lines (NCI-H460 and HCT-15) and its mechanism of action was investigated. The GI 50 concentration was determined with the sulforhodamine B assay and cell cycle and apoptosis were analyzed by flow cytometry following incubation with PI or Annexin V FITC/PI, respectively. The expression levels of proteins involved in cell cycle and apoptosis were analyzed by Western blot. The extracts were characterized regarding their phenolic composition by LC-DAD-ESI/MS. 3,5-O-Dicaffeoylquinic acid, followed by 5-O-caffeoylquinic acid, were the main phenolic acids, while, luteolin-O-acetylhexoside and apigenin-O-acetylhexoside were the main flavonoids. This extract decreased the growth of the tested cell lines, being more potent in HCT-15 and then in NCI-H460 cells. Two different concentrations of the extract (75 and 100 μg/mL) caused alterations in cell cycle profile and increased apoptosis levels in HCT-15 and NCI-H460 cells. Moreover, the extract caused an increase in p53 and p21 expression in NCI-H460 cells (which have wt p53), and reduced XIAP levels in HCT-15 cells (with mutant p53). This work enhances the importance of A. millefolium as source of bioactive phenolic compounds, particularly of XIAP inhibitors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Methionine enkephalin (MENK) inhibits tumor growth through regulating CD4+Foxp3+ regulatory T cells (Tregs) in mice.

    Science.gov (United States)

    Li, Xuan; Meng, Yiming; Plotnikoff, Nicolas P; Youkilis, Gene; Griffin, Noreen; Wang, Enhua; Lu, Changlong; Shan, Fengping

    2015-01-01

    Methionine enkephalin (MENK), an endogenous neuropeptide, plays an crucial role in both neuroendocrine and immune systems. CD4+Foxp3+ regulatory T cells (Tregs) are identified as a major subpopulation of T lymphocytes in suppressing immune system to keep balanced immunity. The aim of this research work was to elucidate the mechanisms via which MENK interacts with Tregs in cancer situation. The influence of MENK on transforming growth factor-β (TGF-β) mediated conversion from naïve CD4+CD25- T cells to CD4+CD25+ Tregs was determined and the data from flow cytometry (FCM) analysis indicated that MENK effectively inhibited the expression of Foxp3 during the process of TGF-βinduction. Furthermore, this inhibiting process was accompanied by diminishing phosphorylation and nuclear translocation of Smad2/3, confirmed by western blot (WB) analysis and immunofluorescence (IF) at molecular level. We established sarcoma mice model with S180 to investigate whether MENK could modulate Tregs in tumor circumstance. Our findings showed that MENK delayed the development of tumor in S180 tumor bearing mice and down-regulated level of Tregs. Together, these novel findings reached a conclusion that MENK could inhibit Tregs activity directly and retard tumor development through down-regulating Tregs in mice. This work advances the deepening understanding of the influence of MENK on Tregs in cancer situation, and relation of MENK with immune system, supporting the implication of MENK as a new strategy for cancer immunotherapy.

  20. Methyl Sartortuoate Inhibits Colon Cancer Cell Growth by Inducing Apoptosis and G2/M-Phase Arrest.

    Science.gov (United States)

    Lan, Qiusheng; Li, Shoufeng; Lai, Wei; Xu, Heyang; Zhang, Yang; Zeng, Yujie; Lan, Wenjian; Chu, Zhonghua

    2015-08-17

    The potential anti-neoplastic activity of terpenoids is of continued interest. In this study, we investigate whether methyl sartortuoate, a terpenoid isolated from soft coral, induced cell cycle arrest and apoptosis in a human colon cancer cell line. Culture studies found that methyl sartortuoate inhibited colon cancer cell (LoVo and RKO) growth and caused apoptotic death in a concentration- and time-dependent manner, by activation of caspase-8, caspase-9, caspase-3, p53 and Bax, and inactivation of B-cell lymphoma 2 (Bcl-2) apoptosis regulating proteins. Methyl sartortuoate treatment led to reduced expression of cdc2 and up-regulated p21 and p53, suggesting that Methyl sartortuoate induced G2-M arrest through modulation of p53/p21/cdc2 pathways. Methyl sartortuoate also up-regulated phospho-JNK and phospho-p38 expression levels. This resulted in cell cycle arrest at the G2-M phase and apoptosis in LoVo and RKO cells. Treatment with the JNK inhibitor SP600125 and the p38 MAPK inhibitor SB203580 prevented methyl sartortuoate-induced apoptosis in LoVo cells. Moreover, methyl sartortuoate also prevented neoplasm growth in NOD-SCID nude mice inoculated with LoVo cells. Taken together, these findings suggest that methyl sartortuoate is capable of leading to activation of caspase-8, -9, -3, increasing p53 and Bax/Bcl-2 ratio apoptosis through MAPK-dependent apoptosis and results in G2-M phase arrest in LoVo and RKO cells. Thus, methyl sartortuoate may be a promising anticancer candidate.

  1. Combination of interferon-alpha and 5-fluorouracil inhibits endothelial cell growth directly and by regulation of angiogenic factors released by tumor cells

    International Nuclear Information System (INIS)

    Wada, Hiroshi; Tanemura, Masahiro; Umeshita, Koji; Doki, Yuichiro; Mori, Masaki; Nagano, Hiroaki; Yamamoto, Hirofumi; Noda, Takehiro; Murakami, Masahiro; Kobayashi, Shogo; Marubashi, Shigeru; Eguchi, Hidetoshi; Takeda, Yutaka

    2009-01-01

    The combination therapy of interferon (IFN)-alpha and 5-fluorouracil (5-FU) improved the prognosis of the patients with hepatocellular carcinoma (HCC). To determine the molecular mechanisms of the anti-tumor and anti-angiogenic effects, we examined the direct anti-proliferative effects on human umbilical vein endothelial cells (HUVEC) and indirect effects by regulating secretion of angiogenic factors from HCC cells. The direct effects on HUVEC were examined by TUNEL, Annexin-V assays and cell cycles analysis. For analysis of the indirect effects, the apoptosis induced by the conditioned medium from HCC cell treated by IFN-alpha/5-FU and expression of angiogenic factors was examined. IFN-alpha and 5-FU alone had anti-proliferative properties on HUVEC and their combination significantly inhibited the growth (compared with control, 5-FU or IFN alone). TUNEL and Annexin-V assays showed no apoptosis. Cell cycle analysis revealed that IFN-alpha and 5-FU delayed cell cycle progression in HUVEC with S-phase accumulation. The conditioned medium from HuH-7 cells after treatment with IFN/5-FU significantly inhibited HUVEC growth and induced apoptosis, and contained high levels of angiopoietin (Ang)-1 and low levels of vascular endothelial growth factor (VEGF) and Ang-2. Knockdown of Ang-1 in HuH-7 cells abrogated the anti-proliferative effects on HUVEC while knockdown of Ang-2 partially rescue the cells. These results suggested that IFN-alpha and 5-FU had direct growth inhibitory effects on endothelial cells, as well as anti-angiogenic effects through regulation of angiogenic factors released from HCC cells. Modulation of VEGF and Angs secretion by IFN-alpha and 5-FU may contribute to their anti-angiogenic and anti-tumor effects on HCC

  2. A novel uPAg-KPI fusion protein inhibits the growth and invasion of human ovarian cancer cells in vitro.

    Science.gov (United States)

    Zhao, Li-Ping; Xu, Tian-Min; Kan, Mu-Jie; Xiao, Ye-Chen; Cui, Man-Hua

    2016-05-01

    Urokinase-type plasminogen activator (uPA) acts by breaking down the basement membrane and is involved in cell proliferation, migration and invasion. These actions are mediated by binding to the uPA receptor (uPAR) via its growth factor domain (GFD). The present study evaluated the effects of uPAg-KPI, a fusion protein of uPA-GFD and a kunitz protease inhibitor (KPI) domain that is present in the amyloid β-protein precursor. Using SKOV-3 cells, an ovarian cancer cell line, we examined cell viability, migration, invasion and also protein expression. Furthermore, we examined wound healing, and migration and invasion using a Transwell assay. Our data showed that uPAg-KPI treatment reduced the viability of ovarian cancer SKOV-3 cells in both a concentration and time-dependent manner by arresting tumor cells at G1/G0 phase of the cell cycle. The IC50 of uPAg-KPI was 0.5 µg/µl after 48 h treatment. At this concentration, uPAg-KPI also inhibited tumor cell colony formation, wound closure, as well as cell migration and invasion capacity. At the protein level, western blot analysis demonstrated that uPAg-KPI exerted no significant effect on the expression of total extracellular signal-regulated kinase (ERK)1/ERK2 and AKT, whereas it suppressed levels of phosphorylated ERK1/ERK2 and AKT. Thus, we suggest that this novel uPAg-KPI fusion protein reduced cell viability, colony formation, wound healing and the invasive ability of human ovarian cancer SKOV-3 cells in vitro by regulating ERK and AKT signaling. Further studies using other cell lines will confirm these findings.

  3. Inhibition of insulin-like growth factor-1 receptor signaling enhances growth-inhibitory and proapoptotic effects of gefitinib (Iressa) in human breast cancer cells

    International Nuclear Information System (INIS)

    Camirand, Anne; Zakikhani, Mahvash; Young, Fiona; Pollak, Michael

    2005-01-01

    Gefitinib (Iressa, ZD 1839, AstraZeneca) blocks the tyrosine kinase activity of the epidermal growth factor receptor (EGFR) and inhibits proliferation of several human cancer cell types including breast cancer. Phase II clinical trials with gefitinib monotherapy showed an objective response of 9 to 19% in non-small-cell lung cancer patients and less than 10% for breast cancer, and phase III results have indicated no benefit of gefitinib in combination with chemotherapy over chemotherapy alone. In order to improve the antineoplastic activity of gefitinib, we investigated the effects of blocking the signalling of the insulin-like growth factor 1 receptor (IGF-1R), a tyrosine kinase with a crucial role in malignancy that is coexpressed with EGFR in most human primary breast carcinomas. AG1024 (an inhibitor of IGF-1R) was used with gefitinib for treatment of MDA468, MDA231, SK-BR-3, and MCF-7 breast cancer lines, which express similar levels of IGF-1R but varying levels of EGFR. Proliferation assays, apoptosis induction studies, and Western blot analyses were conducted with cells treated with AG1024 and gefitinib as single agents and in combination. Gefitinib and AG1024 reduced proliferation in all lines when used as single agents, and when used in combination revealed an additive-to-synergistic effect on cell growth inhibition. Flow cytometry measurements of cells stained with annexin V-propidium iodide and cells stained for caspase-3 activation indicated that adding an IGF-1R-targeting strategy to gefitinib results in higher levels of apoptosis than are achieved with gefitinib alone. Gefitinib either reduced or completely inhibited p42/p44 Erk kinase phosphorylation, depending on the cell line, while Akt phosphorylation was reduced by a combination of the two agents. Overexpression of IGF-1R in SK-BR-3 cells was sufficient to cause a marked enhancement in gefitinib resistance. These results indicate that IGF-1R signaling reduces the antiproliferative effects of

  4. Emblica officinalis extract induces autophagy and inhibits human ovarian cancer cell proliferation, angiogenesis, growth of mouse xenograft tumors.

    Directory of Open Access Journals (Sweden)

    Alok De

    Full Text Available Patients with ovarian cancer (OC may be treated with surgery, chemotherapy and/or radiation therapy, although none of these strategies are very effective. Several plant-based natural products/dietary supplements, including extracts from Emblicaofficinalis (Amla, have demonstrated potent anti-neoplastic properties. In this study we determined that Amla extract (AE has anti-proliferative effects on OC cells under both in vitro and in vivo conditions. We also determined the anti-proliferative effects one of the components of AE, quercetin, on OC cells under in vitro conditions. AE did not induce apoptotic cell death, but did significantly increase the expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. Quercetin also increased the expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. AE also significantly reduced the expression of several angiogenic genes, including hypoxia-inducible factor 1α (HIF-1α in OVCAR3 cells. AE acted synergistically with cisplatin to reduce cell proliferation and increase expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. AE also had anti-proliferative effects and induced the expression of the autophagic proteins beclin1 and LC3B-II in mouse xenograft tumors. Additionally, AE reduced endothelial cell antigen - CD31 positive blood vessels and HIF-1α expression in mouse xenograft tumors. Together, these studies indicate that AE inhibits OC cell growth both in vitro and in vivo possibly via inhibition of angiogenesis and activation of autophagy in OC. Thus AE may prove useful as an alternative or adjunct therapeutic approach in helping to fight OC.

  5. Growth inhibition induced by antiprogestins RU-38486, ORG-31710, and CDB-2914 in ovarian cancer cells involves inhibition of cyclin dependent kinase 2.

    Science.gov (United States)

    Goyeneche, Alicia A; Seidel, Erin E; Telleria, Carlos M

    2012-06-01

    Antiprogestins have been largely utilized in reproductive medicine, yet their repositioning for oncologic use is rapidly emerging. In this study we investigated the molecular mediators of the anti-ovarian cancer activity of the structurally related antiprogestins RU-38486, ORG-31710 and CDB-2914. We studied the responses of wt p53 OV2008 and p53 null SK-OV-3 cells to varying doses of RU-38486, ORG-31710 and CDB-2914. The steroids inhibited the growth of both cell lines with a potency of RU-38486 > ORG-31710 > CDB-2914, and were cytostatic at lower doses but lethal at higher concentrations. Antiprogestin-induced lethality associated with morphological features of apoptosis, hypodiploid DNA content, DNA fragmentation, and cleavage of executer caspase substrate PARP. Cell death ensued despite RU-38486 caused transient up-regulation of anti-apoptotic Bcl-2, ORG-31710 induced transient up-regulation of inhibitor of apoptosis XIAP, and CDB-2914 up-regulated both XIAP and Bcl-2. The antiprogestins induced accumulation of Cdk inhibitors p21(cip1) and p27(kip1) and increased association of p21(cip1) and p27(kip1) with Cdk-2. They also promoted nuclear localization of p21(cip1) and p27(kip1), reduced the nuclear abundances of Cdk-2 and cyclin E, and blocked the activity of Cdk-2 in both nucleus and cytoplasm. The cytotoxic potency of the antiprogestins correlated with the magnitude of the inhibition of Cdk-2 activity, ranging from G1 cell cycle arrest towards cell death. Our results suggest that, as a consequence of their cytostatic and lethal effects, antiprogestin steroids of well-known contraceptive properties emerge as attractive new agents to be repositioned for ovarian cancer therapeutics.

  6. Metformin-mediated growth inhibition involves suppression of the IGF-I receptor signalling pathway in human pancreatic cancer cells

    International Nuclear Information System (INIS)

    Karnevi, Emelie; Said, Katarzyna; Andersson, Roland; Rosendahl, Ann H

    2013-01-01

    Epidemiological studies have shown direct associations between type 2 diabetes and obesity, both conditions associated with hyperglycaemia and hyperinsulinemia, and the risk of pancreatic cancer. Up to 80% of pancreatic cancer patients present with either new-onset type 2 diabetes or impaired glucose tolerance at the time of diagnosis. Recent population studies indicate that the incidence of pancreatic cancer is reduced among diabetics taking metformin. In this study, the effects of exposure of pancreatic cancer cells to high glucose levels on their growth and response to metformin were investigated. The human pancreatic cancer cell lines AsPC-1, BxPC-3, PANC-1 and MIAPaCa-2 were grown in normal (5 mM) or high (25 mM) glucose conditions, with or without metformin. The influence by metformin on proliferation, apoptosis and the AMPK and IGF-IR signalling pathways were evaluated in vitro. Metformin significantly reduced the proliferation of pancreatic cancer cells under normal glucose conditions. Hyperglycaemia however, protected against the metformin-induced growth inhibition. The anti-proliferative actions of metformin were associated with an activation of AMP-activated protein kinase AMPK Thr172 together with an inhibition of the insulin/insulin-like growth factor-I (IGF-I) receptor activation and downstream signalling mediators IRS-1 and phosphorylated Akt. Furthermore, exposure to metformin during normal glucose conditions led to increased apoptosis as measured by poly(ADP-ribose) polymerase (PARP) cleavage. In contrast, exposure to high glucose levels promoted a more robust IGF-I response and Akt activation which correlated to stimulated AMPK Ser485 phosphorylation and impaired AMPK Thr172 phosphorylation, resulting in reduced anti-proliferative and apoptotic effects by metformin. Our results indicate that metformin has direct anti-tumour activities in pancreatic cancer cells involving AMPK Thr172 activation and suppression of the insulin/IGF signalling pathways

  7. Bone morphogenetic protein-9 suppresses growth of myeloma cells by signaling through ALK2 but is inhibited by endoglin

    International Nuclear Information System (INIS)

    Olsen, O E; Wader, K F; Misund, K; Våtsveen, T K; Rø, T B; Mylin, A K; Turesson, I; Størdal, B F; Moen, S H; Standal, T; Waage, A; Sundan, A; Holien, T

    2014-01-01

    Multiple myeloma is a malignancy of plasma cells predominantly located in the bone marrow. A number of bone morphogenetic proteins (BMPs) induce apoptosis in myeloma cells in vitro, and with this study we add BMP-9 to the list. BMP-9 has been found in human serum at concentrations that inhibit cancer cell growth in vitro. We here show that the level of BMP-9 in serum was elevated in myeloma patients (median 176 pg/ml, range 8–809) compared with healthy controls (median 110 pg/ml, range 8–359). BMP-9 was also present in the bone marrow and was able to induce apoptosis in 4 out of 11 primary myeloma cell samples by signaling through ALK2. BMP-9-induced apoptosis in myeloma cells was associated with c-MYC downregulation. The effects of BMP-9 were counteracted by membrane-bound (CD105) or soluble endoglin present in the bone marrow microenvironment, suggesting a mechanism for how myeloma cells can evade the tumor suppressing activity of BMP-9 in multiple myeloma

  8. PPARγ induces growth inhibition and apoptosis through upregulation of insulin-like growth factor-binding protein-3 in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.Y. [Department of Pediatrics, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Biomedical Research Institute, School of Medicine, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, M.S.; Lee, M.K. [Department of Pediatrics, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, J.S.; Yi, H.K. [Department of Biochemistry, School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of); Nam, S.Y. [Department of Alternative Therapy, Jeonju University, Jeonju (Korea, Republic of); Lee, D.Y.; Hwang, P.H. [Department of Pediatrics, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Biomedical Research Institute, School of Medicine, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2015-01-13

    Peroxisome proliferator activator receptor-gamma (PPARγ) is a ligand-activated transcriptional factor involved in the carcinogenesis of various cancers. Insulin-like growth factor-binding protein-3 (IGFBP-3) is a tumor suppressor gene that has anti-apoptotic activity. The purpose of this study was to investigate the anticancer mechanism of PPARγ with respect to IGFBP-3. PPARγ was overexpressed in SNU-668 gastric cancer cells using an adenovirus gene transfer system. The cells in which PPARγ was overexpressed exhibited growth inhibition, induction of apoptosis, and a significant increase in IGFBP-3 expression. We investigated the underlying molecular mechanisms of PPARγ in SNU-668 cells using an IGFBP-3 promoter/luciferase reporter system. Luciferase activity was increased up to 15-fold in PPARγ transfected cells, suggesting that PPARγ may directly interact with IGFBP-3 promoter to induce its expression. Deletion analysis of the IGFBP-3 promoter showed that luciferase activity was markedly reduced in cells without putative p53-binding sites (-Δ1755, -Δ1795). This suggests that the critical PPARγ-response region is located within the p53-binding region of the IGFBP-3 promoter. We further demonstrated an increase in PPARγ-induced luciferase activity even in cells treated with siRNA to silence p53 expression. Taken together, these data suggest that PPARγ exhibits its anticancer effect by increasing IGFBP-3 expression, and that IGFBP-3 is a significant tumor suppressor.

  9. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun; Zhuang, Wen-Fang

    2015-01-01

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice

  10. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun, E-mail: majuntongrensh1@126.com; Zhuang, Wen-Fang, E-mail: wenfangzhuangmd@163.com

    2015-05-15

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice.

  11. Docosahexaenoic acid inhibits the growth of hormone-dependent prostate cancer cells by promoting the degradation of the androgen receptor.

    Science.gov (United States)

    Hu, Zhimei; Qi, Haixia; Zhang, Ruixue; Zhang, Kun; Shi, Zhemin; Chang, Yanan; Chen, Linfeng; Esmaeili, Mohsen; Baniahmad, Aria; Hong, Wei

    2015-09-01

    Epidemiological and preclinical data have demonstrated the preventative effects of ω-3 polyunsaturated fatty acids, including docosahexaenoic acid (DHA), on prostate cancer. However, there are inconsistencies in these previous studies and the underlying mechanisms remain to be elucidated. In the present study, the androgen receptor (AR), which is a transcription factor involved in cell proliferation and prostate carcinogenesis, was identified as a target of DHA. It was revealed that DHA inhibited hormone‑dependent growth of LNCaP prostate cancer cells. Reverse transcription-quantitative polymerase chain reaction analysis revealed that treatment with DHA caused no alteration in the transcribed mRNA expression levels of the AR gene. However, immunoblotting revealed that this treatment reduces the protein expression level of the AR. The androgen‑induced genes were subsequently repressed by treatment with DHA. It was demonstrated that DHA exhibits no effect on the translation process of the AR, however, it promotes the proteasome‑mediated degradation of the AR. Therefore, the present study provided a novel mechanism by which DHA exhibits an inhibitory effect on growth of prostate cancer cells.

  12. Growth inhibition of Chromatium D by L-methionine and its correlation to unusual accumulation of S-adenosyl-L-methionine in the cell

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y; Nakatani, K; Shirakashi, T; Ohmori, H; Toraya, T [Kyoto Univ. (Japan). Faculty of Engineering

    1976-07-01

    L-Methionine strongly inhibited the growth of Chromatium D when added at a low concentration to the growth medium containing both sulfide and thiosulfate. S-Adenosyl-L-methionine inhibited the growth, irrespective of the coexistence of sulfide and thiosulfate. Upon addition of L-methionine to the growth media, the presence of both sulfide and thiosulfate in the media stimulated the in vivo conversion of L-methionine to S-adenosyl-L-methionine, and consequently increased the intracellular level of S-adenosyl-L-methionine. From these data, it was strongly suggested that the unusual accumulation of S-adenosyl-L-methionine in the cells of Chromatium D is responsible for the growth inhibition by L-methionine. The level of S-adenosyl-L-methionine synthetase (ATP: L-methionine S-adenosyltransferase, EC2.5.16) was significantly enhanced by adding L-methionine, sulfide and thiosulfate to the growth medium.

  13. N-ω-chloroacetyl-l-ornithine, a new competitive inhibitor of ornithine decarboxylase, induces selective growth inhibition and cytotoxicity on human cancer cells versus normal cells.

    Science.gov (United States)

    Medina-Enríquez, Miriam Marlene; Alcántara-Farfán, Verónica; Aguilar-Faisal, Leopoldo; Trujillo-Ferrara, José Guadalupe; Rodríguez-Páez, Lorena; Vargas-Ramírez, Alba Laura

    2015-06-01

    Many cancer cells have high expression of ornithine decarboxylase (ODC) and there is a concerted effort to seek new inhibitors of this enzyme. The aim of the study was to initially characterize the inhibition properties, then to evaluate the cytotoxicity/antiproliferative cell based activity of N-ω-chloroacetyl-l-ornithine (NCAO) on three human cancer cell lines. Results showed NCAO to be a reversible competitive ODC inhibitor (Ki = 59 µM) with cytotoxic and antiproliferative effects, which were concentration- and time-dependent. The EC50,72h of NCAO was 15.8, 17.5 and 10.1 µM for HeLa, MCF-7 and HepG2 cells, respectively. NCAO at 500 µM completely inhibited growth of all cancer cells at 48 h treatment, with almost no effect on normal cells. Putrescine reversed NCAO effects on MCF-7 and HeLa cells, indicating that this antiproliferative activity is due to ODC inhibition.

  14. Progesterone receptor (PR) polyproline domain (PPD) mediates inhibition of epidermal growth factor receptor (EGFR) signaling in non-small cell lung cancer cells.

    Science.gov (United States)

    Kawprasertsri, Sornsawan; Pietras, Richard J; Marquez-Garban, Diana C; Boonyaratanakornkit, Viroj

    2016-05-01

    Recent evidence has suggested a possible role for progesterone receptor (PR) in the progression of non-small cell lung cancer (NSCLC). However, little is known concerning roles of PR in NSCLC. PR contains a polyproline domain (PPD), which directly binds to the SH3 domain of signaling molecules. Because PPD-SH3 interactions are essential for EGFR signaling, we hypothesized that the presence of PR-PPD interfered with EGFR-mediated signaling and cell proliferation. We examined the role of PR-PPD in cell proliferation and signaling by stably expressing PR-B, or PR-B with disrupting mutations in the PPD (PR-BΔSH3), from a tetracycline-regulated promoter in A549 NSCLC cells. PR-B dose-dependently inhibited cell growth in the absence of ligand, and progestin (R5020) treatment further suppressed the growth. Treatment with RU486 abolished PR-B- and R5020-mediated inhibition of cell proliferation. Expression of PR-BΔSH3 and treatment with R5020 or RU486 had no effect on cell proliferation. Furthermore, PR-B expression but not PR-BΔSH3 expression reduced EGF-induced A549 proliferation and activation of ERK1/2, in the absence of ligand. Taken together, our data demonstrated the significance of PR extranuclear signaling through PPD interactions in EGFR-mediated proliferation and signaling in NSCLC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Inhibition of free radical scavenging enzymes affects mitochondrial membrane permeability transition during growth and aging of yeast cells.

    Science.gov (United States)

    Deryabina, Yulia; Isakova, Elena; Sekova, Varvara; Antipov, Alexey; Saris, Nils-Erik L

    2014-12-01

    In this study, we investigated the change in the antioxidant enzymes activity, cell respiration, reactive oxygen species (ROS), and impairment of membrane mitochondria permeability in the Endomyces magnusii yeasts during culture growth and aging. We showed that the transition into stationary phase is the key tool to understanding interaction of these processes. This growth stage is distinguished by two-fold increase in ROS production and respiration rate as compared to those in the logarithmic phase. It results in induction of alternative oxidase (AO) in the stationary phase, decline of the main antioxidant enzymes activities, ROS-production, and mitochondria membrane permeability. Significant increase in the share of mitochondrial isoform of superoxide dismutase (SOD2) occurred in the stationary phase from 51.8% (24 h of cultivation) to 68.6% (48 h of cultivation). Upon blocking the essential ROS-scavenging enzymes, SODs and catalases (CATs) some heterogeneity of cell population was observed: 80-90% of cells displayed evident signs of early apoptosis (such as disorientation of mitochondria cristae, mitochondrial fragmentation and deformation of nuclear chromatine). However, 10-20% of the population were definitely healthy. It allowed to draw the conclusion that a complete system of cell antioxidant protection underlies normal mitochondria functioning while the E. magnusii yeasts grow and age. Moreover, this system provides unimpaired cell physiology under oxidative stress during culture aging in the stationary phase. Failures in mitochondria functions due to inhibition of ROS-scavenging enzymes of CATs and SODs could lead to damage of the cells and some signs of early apoptosis.

  16. Betulinic Acid Inhibits Growth of Cultured Vascular Smooth Muscle Cells In Vitro by Inducing G1 Arrest and Apoptosis

    Directory of Open Access Journals (Sweden)

    Raja Kumar Vadivelu

    2012-01-01

    Full Text Available Betulinic acid is a widely available plant-derived triterpene which is reported to possess selective cytotoxic activity against cancer cells of neuroectodermal origin and leukemia. However, the potential of betulinic acid as an antiproliferative and cytotoxic agent on vascular smooth muscle (VSMC is still unclear. This study was carried out to demonstrate the antiproliferative and cytotoxic effect of betulinic acid on VSMCs using 3-[4,5-dimethylthizol-2-yl]-2,5-diphenyltetrazolium bromide (MTT assay, flow cytometry cell cycle assay, BrdU proliferation assay, acridine orange/propidium iodide staining, and comet assay. Result from MTT and BrdU assays indicated that betulinic acid was able to inhibit the growth and proliferation of VSMCs in a dose-dependent manner with IC50 of 3.8 μg/mL significantly (P<0.05. Nevertheless, betulinic acid exhibited G1 cell cycle arrest in flow cytometry cell cycle profiling and low level of DNA damage against VSMC in acridine orange/propidium iodide and comet assay after 24 h of treatment. In conclusion, betulinic acid induced G1 cell cycle arrest and dose-dependent DNA damage on VSMC.

  17. Suppression of the epidermal growth factor receptor inhibits epithelial-mesenchymal transition in human pancreatic cancer PANC-1 cells.

    Science.gov (United States)

    Chang, Zhi-Gang; Wei, Jun-Min; Qin, Chang-Fu; Hao, Kun; Tian, Xiao-Dong; Xie, Kun; Xie, Xue-Hai; Yang, Yin-Mo

    2012-05-01

    Aberrant expression of epidermal growth factor receptor (EGFR) has been detected in pancreatic cancer; however, the mechanisms of EGFR in inducing pancreatic cancer development have not been adequately elucidated. The objective of this study was to determine the role of EGFR in mediating epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. Pancreatic cancer cell line PANC-1 was transfected with small interfering RNA of EGFR by use of a lentiviral expression vector to establish an EGFR-knockdown cell line (si-PANC-1). PANC-1 cells transfected with lentiviral vector expressing negative control sequence were used as negative control (NC-PANC-1). Scratch assay and transwell study were used to analyze cell migration and invasion. Real-time PCR and Western blotting were used to detect the expression of EMT markers E-cadherin, N-cadherin, vimentin, and fibronectin and transcription factors snail, slug, twist1, and sip1 in PANC-1, NC-PANC-1, and si-PANC-1 cells. Immunofluorescent staining with these antibodies and confocal microscopy were used to observe their cellular location and morphologic changes. After RNA interference of EGFR, the migration and invasion ability of si-PANC-1 cells decreased significantly. The expression of epithelial phenotype marker E-cadherin increased and the expression of mesenchymal phenotype markers N-cadherin, vimentin, and fibronectin decreased, indicating reversion of EMT. We also observed intracellular translocation of E-cadherin. Expression of transcription factors snail and slug in si-PANC-1 cells decreased significantly. Suppression of EGFR expression can significantly inhibit EMT of pancreatic cancer PANC-1 cells. The mechanism may be related with the down-regulation of the expression of transcription factors snail and slug.

  18. Total Alkaloids of Sophora alopecuroides Inhibit Growth and Induce Apoptosis in Human Cervical Tumor HeLa Cells In vitro.

    Science.gov (United States)

    Li, Jian-Guang; Yang, Xiao-Yi; Huang, Wei

    2016-05-01

    Uygur females of Xinjiang have the higher incidence of cervical tumor in the country. Alkaloids are the major active ingredients in Sophora alopecuroides, and its antitumor effect was recognized by the medical profession. Xinjiang is the main site of S. alopecuroides production in China so these plants are abundant in the region. Studies on the antitumor properties of total alkaloids of S. alopecuroides (TASA) can take full use of the traditional folk medicine in antitumor unique utility. To explore the effects of TASA on proliferation and apoptosis of human cervical tumor HeLa cells in vitro. TASA was extracted, purified, and each monomer component was analyzed by high-performance liquid chromatography. The effect of TASA at different concentrations on the survival of HeLa cells was determined after 24 h using the Cell Counting Kit-8. In addition, cells were photographed using an inverted microscope to document morphological changes. The effect of TASA on apoptotic rate of HeLa cells was assessed by flow cytometry. Monomers of TASA were found to be sophoridine, matrine, and sophocarpine. On treatment with 8.75 mg/ml of TASA, more than 50% of HeLa cells died, and cell death rate increased further with longer incubation. The apoptotic rates of HeLa cells in the experimental groups were 16.0% and 33.3% at concentrations of 6.25 mg/ml and 12.50 mg/ml, respectively. TASA can induce apoptosis in cervical tumor HeLa cells, and it has obvious inhibitory effects on cell growth. Total alkaloids of Sophora alopecuroides (TASA) exhibits anti-human cervical tumor propertiesMonomer component of TASA was analyzed by high-performance liquid chromatography, and its main effect component are sophoridine, matrine, and sophocarpineTASA inhibits growth and induces apoptosis in HeLa cells. Abbreviations used: TASA: Total alkaloids of S. alopecuroides, CCK-8: Cell Counting Kit-8, FBS: Fetal bovine serum, PBS: Phosphate buffered saline, DMEM: Dulbecco's modified Eagle medium.

  19. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Hsieh-Hsun [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan (China); Chang, Chi-Sen [Department of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Division of Gastroenterology, Taichung Veterans General Hospital, Taichung 402, Taiwan (China); Ho, Wei-Chi [Division of Gastroenterology, Jen-Ai Hospital, Taichung 402, Taiwan (China); Liao, Sheng-You [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan (China); Lin, Wea-Lung [Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Wang, Chau-Jong, E-mail: wcj@csmu.edu.tw [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China)

    2013-01-01

    Our previous study demonstrated the therapeutic potential of gallic acid (GA) for controlling tumor metastasis through its inhibitory effect on the motility of AGS cells. A noteworthy finding in our previous experiment was increased RhoB expression in GA-treated cells. The aim of this study was to evaluate the role of RhoB expression on the inhibitory effects of GA on AGS cells. By applying the transfection of RhoB siRNA into AGS cells and an animal model, we tested the effect of GA on inhibition of tumor growth and RhoB expression. The results confirmed that RhoB-siRNA transfection induced GA to inhibit AGS cells’ invasive growth involving blocking the AKT/small GTPase signals pathway and inhibition of NF-κB activity. Finally, we evaluated the effect of GA on AGS cell metastasis by colonization of tumor cells in nude mice. It showed GA inhibited tumor cells growth via the expression of RhoB. These data support the inhibitory effect of GA which was shown to inhibit gastric cancer cell metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Thus, GA might be a potential agent in treating gastric cancer. Highlights: ► GA could downregulate AKT signal via increased expression of RhoB. ► GA inhibits metastasis in vitro in gastric carcinoma. ► GA inhibits tumor growth in nude mice model.

  20. Overexpression of insulin-like growth factor (IGF)-I receptor enhances inhibition of DNA replication in mouse cells exposed to x-rays

    International Nuclear Information System (INIS)

    Wang, Y.; Cheong, N.; Miura, M.; Iliakis, G.

    1997-01-01

    Previous studies from our laboratory provided evidence for the operation of signal transduction pathways involving ras, myc, and staurosporine-sensitive protein kinases in the regulation of DNA replication in irradiated cells. Because ras and myc are also involved in the signal transduction elicited in response to ligand activation of growth factor receptors, we wondered whether growth factor receptors are upstream elements in the regulation of DNA replication in irradiated cells. Here, we report on the role of insulin-like growth factor I receptor (IGF-IR) in the regulation of DNA replication in irradiated cells. We compare radiation-induced inhibition of DNA replication in BALB/c 3T3 cells with that in P6 cells. P6 cells are derived from BALB/c 3T3 cells by transfection with a vector expressing IGF-IR, leading to 30-fold overexpression. We observe a significantly stronger inhibition of DNA replication after irradiation in P6 as compared with BALB/c 3T3 cells at all doses examined. Sedimentation in alkaline sucrose gradients shows that the increased inhibition in P6 cells is due to an increased inhibition of replicon initiation, the main controlling event in DNA replication. Staurosporine at 20 nM reduces radiation-induced inhibition of DNA replication in BALB/c 3T3 cells, but has only a small effect in P6 cells. Caffeine at a concentration of 1 mM, on the other hand, removes over 60% of the inhibition in both cell lines. The results implicate IGF-IR in the regulation of DNA replication in irradiated cells, but also suggest differences between cells of different origins in the proteins involved in the regulating signal transduction pathway. (orig.). With 5 figs

  1. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor

    International Nuclear Information System (INIS)

    Kato, Haruo; Sekine, Yoshitaka; Furuya, Yosuke; Miyazawa, Yoshiyuki; Koike, Hidekazu; Suzuki, Kazuhiro

    2015-01-01

    Metformin is a biguanide drug that is widely used for the treatment of type 2 diabetes. Recent studies have shown that metformin inhibits cancer cell proliferation and tumor growth both in vitro and in vivo. The anti-tumor mechanisms of metformin include activation of the AMP-activated protein kinase/mTOR pathway and direct inhibition of insulin/insulin-like growth factor (IGF)-mediated cellular proliferation. However, the anti-tumor mechanism in prostate cancer remains unclear. Because activation of the IGF-1 receptor (IGF-1R) is required for prostate cell proliferation, IGF-1R inhibitors may be of therapeutic value. Accordingly, we examined the effects of metformin on IGF-1R signaling in prostate cancer cells. Metformin significantly inhibited PC-3 cell proliferation, migration, and invasion. IGF-1R mRNA expression decreased significantly after 48 h of treatment, and IGF-1R protein expression decreased in a similar manner. IGF-1R knockdown by siRNA transfection led to inhibited proliferation, migration and invasion of PC-3 cells. IGF-1 activated both ERK1/2 and Akt, but these effects were attenuated by metformin treatment. In addition, intraperitoneal treatment with metformin significantly reduced tumor growth and IGF-1R mRNA expression in PC-3 xenografts. Our results suggest that metformin is a potent inhibitor of the IGF-1/IGF-1R system and may be beneficial in prostate cancer treatment. - Highlights: • Metformin inhibited PC-3 cell proliferation, migration, and invasion. • Metformin decreased IGF-1R mRNA and protein expressions in PC-3 cells. • Metformin inhibited IGF-1 induced ERK and Akt phosphorylations in PC-3 cells. • Metformin treatment inhibited PC-3 cell growth and IGF-1R expression in vivo. • Metformin may be a potent inhibitor of the IGF-1/IGF-1R signaling

  2. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Haruo, E-mail: hal.kato@gunma-u.ac.jp; Sekine, Yoshitaka; Furuya, Yosuke; Miyazawa, Yoshiyuki; Koike, Hidekazu; Suzuki, Kazuhiro

    2015-05-22

    Metformin is a biguanide drug that is widely used for the treatment of type 2 diabetes. Recent studies have shown that metformin inhibits cancer cell proliferation and tumor growth both in vitro and in vivo. The anti-tumor mechanisms of metformin include activation of the AMP-activated protein kinase/mTOR pathway and direct inhibition of insulin/insulin-like growth factor (IGF)-mediated cellular proliferation. However, the anti-tumor mechanism in prostate cancer remains unclear. Because activation of the IGF-1 receptor (IGF-1R) is required for prostate cell proliferation, IGF-1R inhibitors may be of therapeutic value. Accordingly, we examined the effects of metformin on IGF-1R signaling in prostate cancer cells. Metformin significantly inhibited PC-3 cell proliferation, migration, and invasion. IGF-1R mRNA expression decreased significantly after 48 h of treatment, and IGF-1R protein expression decreased in a similar manner. IGF-1R knockdown by siRNA transfection led to inhibited proliferation, migration and invasion of PC-3 cells. IGF-1 activated both ERK1/2 and Akt, but these effects were attenuated by metformin treatment. In addition, intraperitoneal treatment with metformin significantly reduced tumor growth and IGF-1R mRNA expression in PC-3 xenografts. Our results suggest that metformin is a potent inhibitor of the IGF-1/IGF-1R system and may be beneficial in prostate cancer treatment. - Highlights: • Metformin inhibited PC-3 cell proliferation, migration, and invasion. • Metformin decreased IGF-1R mRNA and protein expressions in PC-3 cells. • Metformin inhibited IGF-1 induced ERK and Akt phosphorylations in PC-3 cells. • Metformin treatment inhibited PC-3 cell growth and IGF-1R expression in vivo. • Metformin may be a potent inhibitor of the IGF-1/IGF-1R signaling.

  3. Peroxisome Proliferator-Activated Receptor-γ Inhibits Transformed Growth of Non-Small Cell Lung Cancer Cells through Selective Suppression of Snail

    Directory of Open Access Journals (Sweden)

    Rashmi Choudhary

    2010-03-01

    Full Text Available Work from our laboratory and others has demonstrated that activation of the nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ inhibits transformed growth of non-small cell lung cancer (NSCLC cell lines in vitro and in vivo. We have demonstrated that activation of PPARγ promotes epithelial differentiation of NSCLC by increasing expression of E-cadherin, as well as inhibiting expression of COX-2 and nuclear factor-κB. The Snail family of transcription factors, which includes Snail (Snail1, Slug (Snail2, and ZEB1, is an important regulator of epithelial-mesenchymal transition, as well as cell survival. The goal of this study was to determine whether the biological responses to rosiglitazone, a member of the thiazolidinedione family of PPARγ activators, are mediated through the regulation of Snail family members. Our results indicate that, in two independent NSCLC cell lines, rosiglitazone specifically decreased expression of Snail, with no significant effect on either Slug or ZEB1. Suppression of Snail using short hairpin RNA silencing mimicked the effects of PPARγ activation, in inhibiting anchorage-independent growth, promoting acinar formation in three-dimensional culture, and inhibiting invasiveness. This was associated with the increased expression of E-cadherin and decreased expression of COX-2 and matrix metaloproteinases. Conversely, overexpression of Snail blocked the biological responses to rosiglitazone, increasing anchorage-independent growth, invasiveness, and promoting epithelial-mesenchymal transition. The suppression of Snail expression by rosiglitazone seemed to be independent of GSK-3 signaling but was rather mediated through suppression of extracellular signal-regulated kinase activity. These findings suggest that selective regulation of Snail may be critical in mediating the antitumorigenic effects of PPARγ activators.

  4. Hericium erinaceus polysaccharide-protein HEG-5 inhibits SGC-7901 cell growth via cell cycle arrest and apoptosis.

    Science.gov (United States)

    Zan, Xinyi; Cui, Fengjie; Li, Yunhong; Yang, Yan; Wu, Di; Sun, Wenjing; Ping, Lifeng

    2015-05-01

    HEG-5 is a novel polysaccharide-protein purified from the fermented mycelia of Hericium erinaceus CZ-2. The present study aims to investigate the effects of HEG-5 on proliferation, cell cycle and apoptosis of human gastric cancer cells SGC-7901. Here, we first uncover that HEG-5 significantly inhibited the proliferation and colony formation of SGC-7901 cells by promoting apoptosis and cell cycle arrest at S phase. RT-PCR and Western blot analysis suggested that HEG-5 could decrease the expressions of Bcl2, PI3K and AKT1, while increase the expressions of Caspase-8, Caspase-3, p53, CDK4, Bax and Bad. These findings indicated that the Caspase-8/-3-dependent, p53-dependent mitochondrial-mediated and PI3k/Akt signaling pathways involved in the molecular events of HEG-5 induced apoptosis and cell cycle arrest. Thus, our study provides in vitro evidence that HEG-5 may be taken as a potential candidate for treating gastric cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. SOX4 inhibits GBM cell growth and induces G0/G1 cell cycle arrest through Akt-p53 axis.

    Science.gov (United States)

    Zhang, Jing; Jiang, Huawei; Shao, Jiaofang; Mao, Ruifang; Liu, Jie; Ma, Yingying; Fang, Xuefeng; Zhao, Na; Zheng, Shu; Lin, Biaoyang

    2014-11-01

    SOX4 is a transcription factor required for tissue development and differentiation in vertebrates. Overexpression of SOX4 has been reported in many cancers including glioblastoma multiforme (GBM), however, the underlying mechanism of actions has not been studied. In this study, we investigated the role of SOX4 in GBM. Kaplan-Meier analysis was performed to assess the association between SOX4 expression levels and survival times in primary GBM samples. Cre/lox P system was used to generate gain or loss of SOX4 in GBM cells, and microarray analysis uncovered the regulation network of SOX4 in GBM cells. High SOX4 expression was significantly associated with good prognosis of primary GBMs. SOX4 inhibited the growth of GBM cell line LN229, A172G and U87MG, partly via the activation of p53-p21 signaling and down-regulation of phosphorylated AKT1. Gene expression profiling and subsequent gene ontology analysis showed that SOX4 influenced several key pathways including the Wnt/ beta-catenin and TGF-beta signaling pathways. Our study found that SOX4 acts as a tumor suppressor in GBM cells by induce cell cycle arrest and inhibiting cell growth.

  6. Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-γ.

    Science.gov (United States)

    Pahl, Jens H W; Kwappenberg, Kitty M C; Varypataki, Eleni M; Santos, Susy J; Kuijjer, Marieke L; Mohamed, Susan; Wijnen, Juul T; van Tol, Maarten J D; Cleton-Jansen, Anne-Marie; Egeler, R Maarten; Jiskoot, Wim; Lankester, Arjan C; Schilham, Marco W

    2014-03-10

    In osteosarcoma, the presence of tumor-infiltrating macrophages positively correlates with patient survival in contrast to the negative effect of tumor-associated macrophages in patients with other tumors. Liposome-encapsulated muramyl tripeptide (L-MTP-PE) has been introduced in the treatment of osteosarcoma patients, which may enhance the potential anti-tumor activity of macrophages. Direct anti-tumor activity of human macrophages against human osteosarcoma cells has not been described so far. Hence, we assessed osteosarcoma cell growth after co-culture with human macrophages. Monocyte-derived M1-like and M2-like macrophages were polarized with LPS + IFN-γ, L-MTP-PE +/- IFN-γ or IL-10 and incubated with osteosarcoma cells. Two days later, viable tumor cell numbers were analyzed. Antibody-dependent effects were investigated using the therapeutic anti-EGFR antibody cetuximab. M1-like macrophages inhibited osteosarcoma cell growth when activated with LPS + IFN-γ. Likewise, stimulation of M1-like macrophages with liposomal muramyl tripeptide (L-MTP-PE) inhibited tumor growth, but only when combined with IFN-γ. Addition of the tumor-reactive anti-EGFR antibody cetuximab did not further improve the anti-tumor activity of activated M1-like macrophages. The inhibition was mediated by supernatants of activated M1-like macrophages, containing TNF-α and IL-1β. However, specific blockage of these cytokines, nitric oxide or reactive oxygen species did not inhibit the anti-tumor effect, suggesting the involvement of other soluble factors released upon macrophage activation. While LPS + IFN-γ-activated M2-like macrophages had low anti-tumor activity, IL-10-polarized M2-like macrophages were able to reduce osteosarcoma cell growth in the presence of the anti-EGFR cetuximab involving antibody-dependent tumor cell phagocytosis. This study demonstrates that human macrophages can be induced to exert direct anti-tumor activity against osteosarcoma cells. Our

  7. Inhibition of HeLa cell growth by doxorubicin-loaded and tuftsin-conjugated arginate-PEG microparticles

    Directory of Open Access Journals (Sweden)

    Tianmu Hu

    2018-03-01

    Full Text Available In order to improve the release pattern of chemotherapy drug and reduce the possibility of drug resistance, poly(ethylene glycol amine (PEG-modified alginate microparticles (ALG-PEG MPs were developed then two different mechanisms were employed to load doxorubicin (Dox: 1 forming Dox/ALG-PEG complex by electrostatic attractions between unsaturated functional groups in Dox and ALG-PEG; 2 forming Dox-ALG-PEG complex through EDC-reaction between the amino and carboxyl groups in Dox and ALG, respectively. Additionally, tuftsin (TFT, a natural immunomodulation peptide, was conjugated to MPs in order to enhance the efficiency of cellular uptake. It was found that the Dox-ALG-PEG-TFT MPs exhibited a significantly slower release of Dox than Dox/ALG-PEG-TFT MPs in neutral medium, suggesting the role of covalent bonding in prolonging Dox retention. Besides, the release of Dox from these MPs was pH-sensitive, and the release rate was observably increased at pH 6.5 compared to the case at pH 7.4. Compared with Dox/ALG-PEG MPs and Dox-ALG-PEG MPs, their counterparts further conjugated with TFT more efficiently inhibited the growth of HeLa cells over a period of 48 h, implying the effectiveness of TFT in enhancing cellular uptake of MPs. Over a period of 48 h, Dox-ALG-PEG-TFT MPs inhibited the growth of HeLa cells less efficiently than Dox/ALG-PEG-TFT MPs but the difference was not significant (p > 0.05. In consideration of the prolonged and sustained release of Dox, Dox-ALG-PEG-TFT MPs possess the advantages for long-term treatment.

  8. Knock-Down of Endogenous Bornavirus-Like Nucleoprotein 1 Inhibits Cell Growth and Induces Apoptosis in Human Oligodendroglia Cells

    Directory of Open Access Journals (Sweden)

    Peng He

    2016-03-01

    Full Text Available Endogenous bornavirus-like nucleoprotein elements (EBLNs have been discovered in the genomes of various animals including humans, whose functions have been seldom studied. To explore the biological functions of human EBLNs, we constructed a lentiviral vector expressing a short-hairpin RNA against human EBLN1, which successfully inhibited EBLN1 expression by above 80% in infected human oligodendroglia cells (OL cells. We found that EBLN1 silencing suppressed cell proliferation, induced G2/M phase arrest, and promoted apoptosis in OL cells. Gene expression profiling demonstrated that 1067 genes were up-regulated, and 2004 were down-regulated after EBLN1 silencing. The top 10 most upregulated genes were PI3, RND3, BLZF1, SOD2, EPGN, SBSN, INSIG1, OSMR, CREB3L2, and MSMO1, and the top 10 most-downregulated genes were KRTAP2-4, FLRT2, DIDO1, FAT4, ESCO2, ZNF804A, SUV420H1, ZC3H4, YAE1D1, and NCOA5. Pathway analysis revealed that these differentially expressed genes were mainly involved in pathways related to the cell cycle, the mitogen-activated protein kinase pathway, p53 signaling, and apoptosis. The gene expression profiles were validated by using quantitative reverse transcription polymerase chain reaction (RT-PCR for detecting these 20 most-changed genes. Three genes closely related to glioma, RND3, OSMR, and CREB3L2, were significantly upregulated and might be the key factors in EBLN1 regulating the proliferation and apoptosis of OL cells. This study provides evidence that EBLN1 plays a key role in regulating cell life and death, thereby opening several avenues of investigation regarding EBLN1 in the future.

  9. Inhibition of tumor growth in syngenetic chimeric mice mediated by a depletion of suppressor T cells

    International Nuclear Information System (INIS)

    Rotter, V.; Trainin, N.

    1975-01-01

    Syngeneic chimeric (lethally irradiated and reconstituted with syngeneic bone marrow cells) mice manifested an increased resistance to the development of Lewis lung carcinoma. In addition, these mice had a higher response to polyvinylpyrrolidone and a reduced reactivity to T mitogens. The present findings suggest that syngeneic chimeric mice lack suppressor T cells shown to regulate the development of Lewis lung tumor and the response to polyvinylpyrrolidone. Other components of the T cell population, such as helper cells responding to sheep red blood cells or cells involved in allograft rejection, assayed in these syngeneic chimeras were found unaffected. The fact that chimeric mice are deficient in a certain suppressor T cell population whereas other T activities are normal suggests the existence of different cell lines within the T cell population. (U.S.)

  10. The dual mTORC1 and mTORC2 inhibitor AZD8055 inhibits head and neck squamous cell carcinoma cell growth in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiang; Song, Xin-mao; Ji, Yang-yang; Jiang, Hui; Xu, Lin-gen, E-mail: drlingenxu@126.com

    2013-11-01

    Highlights: •AZD8055 induces significant cytotoxic effects in cultured HNSCC cells. •AZD8055 blocks mTORC1 and mTORC2 activation in cultured HNSCC cells. •JNK activation is required for AZD8055-induced HNSCC cell death. •AZD8055 inhibits Hep-2 cell growth in vivo, and was more efficient than rapamycin. -- Abstract: The serine/threonine kinase mammalian target of rapamycin (mTOR) promotes cell survival and proliferation, and is constitutively activated in head and neck squamous cell carcinoma (HNSCC). Thus mTOR is an important target for drug development in this disease. Here we tested the anti-tumor ability of AZD8055, the novel mTOR inhibitor, in HNSCC cells. AZD8055 induced dramatic cell death of HNSCC lines (Hep-2 and SCC-9) through autophagy. AZD8055 blocked both mTOR complex (mTORC) 1 and mTORC2 activation without affecting Erk in cultured HNSCC cells. Meanwhile, AZD8055 induced significant c-Jun N-terminal kinase (JNK) activation, which was also required for cancer cell death. JNK inhibition by its inhibitors (SP 600125 and JNK-IN-8), or by RNA interference (RNAi) alleviated AZD8055-induced cell death. Finally, AZD8055 markedly increased the survival of Hep-2 transplanted mice through a significant reduction of tumor growth, without apparent toxicity, and its anti-tumor ability was more potent than rapamycin. Meanwhile, AZD8055 administration activated JNK while blocking mTORC1/2 in Hep-2 tumor engrafts. Our current results strongly suggest that AZD8055 may be further investigated for HNSCC treatment in clinical trials.

  11. Novel piplartine-containing ruthenium complexes: synthesis, cell growth inhibition, apoptosis induction and ROS production on HCT116 cells.

    Science.gov (United States)

    D'Sousa Costa, Cinara O; Araujo Neto, João H; Baliza, Ingrid R S; Dias, Rosane B; Valverde, Ludmila de F; Vidal, Manuela T A; Sales, Caroline B S; Rocha, Clarissa A G; Moreira, Diogo R M; Soares, Milena B P; Batista, Alzir A; Bezerra, Daniel P

    2017-11-28

    Piplartine (piperlongumine) is a plant-derived molecule that has been receiving intense interest due to its anticancer characteristics that target the oxidative stress. In the present paper, two novel piplartine-containing ruthenium complexes [Ru(piplartine)(dppf)(bipy)](PF 6 ) 2 (1) and [Ru(piplartine)(dppb)(bipy)](PF 6 ) 2 (2) were synthesized and investigated for their cellular and molecular responses on cancer cell lines. We found that both complexes are more potent than metal-free piplartine in a panel of cancer cell lines on monolayer cultures, as well in 3D model of cancer multicellular spheroids formed from human colon carcinoma HCT116 cells. Mechanistic studies uncovered that the complexes reduced the cell growth and caused phosphatidylserine externalization, internucleosomal DNA fragmentation, caspase-3 activation and loss of the mitochondrial transmembrane potential on HCT116 cells. Moreover, the pre-treatment with Z-VAD(OMe)-FMK, a pan-caspase inhibitor, reduced the complexes-induced apoptosis, indicating cell death by apoptosis through caspase-dependent and mitochondrial intrinsic pathways. Treatment with the complexes also caused a marked increase in the production of reactive oxygen species (ROS), including hydrogen peroxide, superoxide anion and nitric oxide, and decreased reduced glutathione levels. Application of N-acetyl-cysteine, an antioxidant, reduced the ROS levels and apoptosis induced by the complexes, indicating activation of ROS-mediated apoptosis pathway. RNA transcripts of several genes, including gene related to the cell cycle, apoptosis and oxidative stress, were regulated under treatment. However, the complexes failed to induce DNA intercalation. In conclusion, the complexes are more potent than piplartine against different cancer cell lines and are able to induce caspase-dependent and mitochondrial intrinsic apoptosis on HCT116 cells by ROS-mediated pathway.

  12. Polymeric nanoparticle-based delivery of microRNA-199a-3p inhibits proliferation and growth of osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Zhang L

    2015-04-01

    Full Text Available Linlin Zhang,1,2,* Arun K lyer,3,4,* Xiaoqian Yang,1 Eisuke Kobayashi,1 Yuqi Guo,1,2 Henry Mankin,1 Francis J Hornicek,1 Mansoor M Amiji,3 Zhenfeng Duan1 1Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; 2Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China; 3Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, USA; 4Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA *These authors contributed equally to this work Abstract: Our prior screening of microRNAs (miRs identified that miR-199a-3p expression is reduced in osteosarcoma cells, one of the most common types of bone tumor. miR-199a-3p exhibited functions of tumor cell growth inhibition, suggesting the potential application of miR-199a-3p as an anticancer agent. In the study reported here, we designed and developed a lipid-modified dextran-based polymeric nanoparticle platform for encapsulation of miRs, and determined the efficiency and efficacy of delivering miR-199a-3p into osteosarcoma cells. In addition, another potent miR, let-7a, which also displayed tumor suppressive ability, was selected as a candidate miR for evaluation. Fluorescence microscopy studies and real-time polymerase chain reaction results showed that dextran nanoparticles could deliver both miR-199a-3p and let-7a into osteosarcoma cell lines (KHOS and U-2OS successfully. Western blotting analysis and 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays demonstrated that dextran nanoparticles loaded with miRs could efficiently downregulate the expression of target proteins and effectively inhibit the growth and proliferation of osteosarcoma cells. These results demonstrate that a lipid-modified dextran

  13. Concurrent inhibition of mTORC1 and mTORC2 by WYE-687 inhibits renal cell carcinoma cell growth in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Xiao-Dong Pan

    Full Text Available Mammalian target of rapamycin (mTORin renal cell carcinoma (RCC represents a valuable oncotarget for treatment. We here tested the potential anti-RCC activity by a novel mTOR kinase inhibitor WYE-687in vitro and in vivo.WYE-687 was cytotoxic and anti-proliferative to established RCC cell lines (786-O and A498 and primary human RCC cells. Yet, it was non-cytotoxic toHK-2 tubular epithelial cells.WYE-687 provoked caspase-dependent apoptosis in the RCC cells. At the molecular level, WYE-687 almost completely blocked mTORC1 (p-S6K1 and p-S6 and mTORC2 (p-Akt Ser 473 activation in both 786-Ocells and primary human RCC cells, where it downregulated both hypoxia-inducible factor (HIF-1α and HIF-2α expression. Significantly, oral administration of WYE-687 potently suppressed786-O tumor xenograft growth in nude mice. mTORC1/2 activation and HIF-1α/2α expression were also remarkably downregulated in WYE-687-treated tumor tissues. Thus, our preclinical results imply that WYE-687 may have important translational value for the treatment of RCC.

  14. Quercetin inhibits angiogenesis through thrombospondin-1 upregulation to antagonize human prostate cancer PC-3 cell growth in vitro and in vivo.

    Science.gov (United States)

    Yang, Feiya; Jiang, Xian; Song, Liming; Wang, Huiping; Mei, Zhu; Xu, Zhiqing; Xing, Nianzeng

    2016-03-01

    The rapid growth, morbidity and mortality of prostate cancer, and the lack of effective treatment have attracted great interests of researchers to find novel cancer therapies aiming to inhibit angiogenesis and tumor growth. Quercetin is a flavonoid compound that widely exists in the nature. Our previous study preliminarily demonstrated that quercetin effectively inhibited human prostate cancer cell xenograft tumor growth by inhibiting angiogenesis. Thrombospondin-1 (TSP-1) is the first reported endogenous anti-angiogenic factor that can inhibit angiogenesis and tumorigenesis. However, the relationship between quercetin inhibiting angiogenesis and TSP-1 upregulation in prostate cancer has not been determined. Thus, we explored the important role of TSP-1 upregulation in reducing angiogenesis and anti-prostate cancer effect of quercetin both in vitro and in vivo for the first time. After the selected doses were used for a certain time, quercetin i) significantly inhibited PC-3 and human umbilical vein endothelial cells (HUVECs) proliferation, migration and invasion in a dose-dependent manner; ⅱ) effectively inhibited prostate cancer PC-3 cell xenograft tumor growth by 37.5% with 75 mg/kg as compared to vehicle control group, more effective than 25 (22.85%) and 50 mg/kg (29.6%); ⅲ) was well tolerated by BALB/c mice and no obvious toxic reactions were observed; ⅳ) greatly reduced angiogenesis and led to higher TSP-1 protein and mRNA expression both in vitro and in vivo in a dose-dependent manner. Therefore, quercetin could increase TSP-1 expression to inhibit angiogenesis resulting in antagonizing prostate cancer PC-3 cell and xenograft tumor growth. The present study can lay a good basis for the subsequent concrete mechanism study and raise the possibility of applying quercetin to clinical for human prostate cancer in the near future.

  15. Suppression of progranulin expression inhibits bladder cancer growth and sensitizes cancer cells to cisplatin

    OpenAIRE

    Buraschi, Simone; Xu, Shi-Qiong; Stefanello, Manuela; Moskalev, Igor; Morcavallo, Alaide; Genua, Marco; Tanimoto, Ryuta; Birbe, Ruth; Peiper, Stephen C.; Gomella, Leonard G.; Belfiore, Antonino; Black, Peter C.; Iozzo, Renato V.; Morrione, Andrea

    2016-01-01

    We have recently demonstrated a critical role for progranulin in bladder cancer. Progranulin contributes, as an autocrine growth factor, to the transformed phenotype by modulating Akt-and MAPK-driven motility, invasion and anchorage-independent growth. Progranulin also induces F-actin remodeling by interacting with the F-actin binding protein drebrin. In addition, progranulin is overexpressed in invasive bladder cancer compared to normal tissue controls, suggesting that progranulin might play...

  16. Inhibition of Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor Phosphorylation on Tumor-Associated Endothelial Cells Leads to Treatment of Orthotopic Human Colon Cancer in Nude Mice

    Directory of Open Access Journals (Sweden)

    Takamitsu Sasaki

    2007-12-01

    Full Text Available The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR and vascular endothelial growth factor receptor (VEGFR signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-α and vascular endothelial growth factor (VEGF but were negative for EGFR, human epidermal growth factor receptor 2 (HER2, VEGFR. Double immunofluorescence staining revealed that tumorassociated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR, phosphorylated VEGFR (pVEGFR. Treatment of mice with either 7H-pyrrolo [2,3-d]-pyrimidine lead scaffold (AEE788; an inhibitor of EGFR and VEGFR tyrosine kinase or CPT-11 as single agents significantly inhibited the growth of cecal tumors (P < .01; this decrease was even more pronounced with AEE788 combined with CPT-11 (P < .001. AEE788 alone or combined with CPT-11 also inhibited the expression of pEGFR and pVEGFR on tumor-associated endothelial cells, significantly decreased vascularization and tumor cell proliferation, increased the level of apoptosis in both tumorassociated endothelial cells and tumor cells. These data demonstrate that targeting EGFR and VEGFR signaling on tumor-associated endothelial cells provides a viable approach for the treatment of colon cancer.

  17. Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands inhibit growth of UACC903 and MCF7 human cancer cell lines

    International Nuclear Information System (INIS)

    Girroir, Elizabeth E.; Hollingshead, Holly E.; Billin, Andrew N.; Willson, Timothy M.; Robertson, Gavin P.; Sharma, Arun K.; Amin, Shantu; Gonzalez, Frank J.; Peters, Jeffrey M.

    2008-01-01

    The development of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands for the treatment of diseases including metabolic syndrome, diabetes and obesity has been hampered due to contradictory findings on their potential safety. For example, while some reports show that ligand activation of PPARβ/δ promotes the induction of terminal differentiation and inhibition of cell growth, other reports suggest that PPARβ/δ ligands potentiate tumorigenesis by increasing cell proliferation. Some of the contradictory findings could be due in part to differences in the ligand examined, the presence or absence of serum in cell cultures, differences in cell lines or differences in the method used to quantify cell growth. For these reasons, this study examined the effect of ligand activation of PPARβ/δ on cell growth of two human cancer cell lines, MCF7 (breast cancer) and UACC903 (melanoma) in the presence or absence of serum using two highly specific PPARβ/δ ligands, GW0742 or GW501516. Culturing cells in the presence of either GW0742 or GW501516 caused upregulation of the known PPARβ/δ target gene angiopoietin-like protein 4 (ANGPTL4). Inhibition of cell growth was observed in both cell lines cultured in the presence of either GW0742 or GW501516, and the presence or absence of serum had little influence on this inhibition. Results from the present studies demonstrate that ligand activation of PPARβ/δ inhibits the growth of both MCF7 and UACC903 cell lines and provide further evidence that PPARβ/δ ligands are not mitogenic in human cancer cell lines

  18. Prostacyclin Inhibits Non-Small Cell Lung Cancer Growth by a Frizzled 9-Dependent Pathway That Is Blocked by Secreted Frizzled-Related Protein 1

    Directory of Open Access Journals (Sweden)

    Meredith A. Tennis

    2010-03-01

    Full Text Available The goal of this study was to assess the ability of iloprost, an orally active prostacyclin analog, to inhibit transformed growth of human non-small cell lung cancer (NSCLC and to define the mechanism of iloprost's tumor suppressive effects. In a panel of NSCLC cell lines, the ability of iloprost to inhibit transformed cell growth was not correlated with the expression of the cell surface receptor for prostacyclin, but instead was correlated with the presence of Frizzled 9 (Fzd 9 and the activation of peroxisome proliferator-activated receptor-γ (PPARγ. Silencing of Fzd 9 blocked PPARγ activation by iloprost, and expression of Fzd 9 in cells lacking the protein resulted in iloprost's activation of PPARγ and inhibition of transformed growth. Interestingly, soluble Frizzled-related protein-1, a well-known inhibitor of Wnt/Fzd signaling, also blocked the effects of iloprost and Fzd 9. Moreover, mice treated with iloprost had reduced lung tumors and increased Fzd 9 expression. These studies define a novel paradigm, linking the eicosanoid pathway and Wnt signaling. In addition, these data also suggest that prostacyclin analogs may represent a new class of therapeutic agents in the treatment of NSCLC where the restoration of noncanonical Wnt signaling maybe important for the inhibition of transformed cell growth.

  19. Reduction of the Earth's magnetic field inhibits growth rates of model cancer cell lines.

    Science.gov (United States)

    Martino, Carlos F; Portelli, Lucas; McCabe, Kevin; Hernandez, Mark; Barnes, Frank

    2010-12-01

    Small alterations in static magnetic fields have been shown to affect certain chemical reaction rates ex vivo. In this manuscript, we present data demonstrating that similar small changes in static magnetic fields between individual cell culture incubators results in significantly altered cell cycle rates for multiple cancer-derived cell lines. This change as assessed by cell number is not a result of apoptosis, necrosis, or cell cycle alterations. While the underlying mechanism is unclear, the implications for all cell culture experiments are clear; static magnetic field conditions within incubators must be considered and/or controlled just as one does for temperature, humidity, and carbon dioxide concentration. Copyright © 2010 Wiley-Liss, Inc.

  20. SUN1 silencing inhibits cell growth through G0/G1 phase arrest in lung adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Huang W

    2017-06-01

    Full Text Available Weiyi Huang,* Haihua Huang,* Lei Wang, Jiong Hu, Weifeng Song Department of Oncology, The First People’s Hospital Affiliated to Shanghai Jiaotong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Purpose: Cytoskeleton is critical for carcinoma cell proliferation, migration, and invasion. Sad-1 and UNC-84 domain containing 1 (SUN1 is one of the core linkers of nucleoskeleton and cytoskeleton. However, the functions of SUN1 in lung adenocarcinoma are largely unknown.Methods: In this study, we first transduced the lentivirus delivering the short hairpin RNA (shRNA against SUN1 to lung adenocarcinoma cells (A549 and 95D cells with high efficiency. After lentivirus infection, quantitative real-time polymerase chain reaction and Western blotting were used to detect the expressions of SUN1 mRNA and protein. The cell proliferation and colony formation were detected by MTT assay and colony formation assay, respectively. The cell distribution in the cell cycle was analyzed by flow cytometry.Results: Both mRNA and protein levels of SUN1 were significantly decreased in A549 and 95D cells after lentivirus infection, as indicated by quantitative real-time polymerase chain reaction and Western blot. Next, we found that cell proliferation and colony formation were markedly reduced in SUN1 silenced cells. Moreover, suppression of SUN1 led to cell cycle arrest at G0/G1 phase. Furthermore, Cyclin D1, CDK6, and CDK2 expressions were obviously reduced in A549 cells after SUN1 silencing.Conclusion: These results suggest that SUN1 plays an essential role in proliferation of lung adenocarcinoma cells in vitro and may be used as a potential therapeutic target for the treatment of lung adenocarcinoma in the future. Keywords: SUN1, lung cancer, proliferation

  1. Sulindac Sulfide, but Not Sulindac Sulfone, Inhibits Colorectal Cancer Growth

    Directory of Open Access Journals (Sweden)

    Christopher S. Williams

    1999-06-01

    Full Text Available Sulindac sulfide, a metabolite of the nonsteroidal antiinflammatory drug (NSAID sulindac sulfoxide, is effective at reducing tumor burden in both familial adenomatous polyposis patients and in animals with colorectal cancer. Another sulindac sulfoxide metabolite, sulindac sulfone, has been reported to have antitumor properties without inhibiting cyclooxygenase activity. Here we report the effect of sulindac sulfone treatment on the growth of colorectal carcinoma cells. We observed that sulindac sulfide or sulfone treatment of HCA-7 cells led to inhibition of prostaglandin E2 production. Both sulindac sulfide and sulfone inhibited HCA-7 and HCT-116 cell growth in vitro. Sulindac sulfone had no effect on the growth of either HCA-7 or HCT-116 xenografts, whereas the sulfide derivative inhibited HCA-7 growth in vivo. Both sulindac sulfide and sulfone inhibited colon carcinoma cell growth and prostaglandin production in vitro, but sulindac sulfone had no effect on the growth of colon cancer cell xenografts in nude mice.

  2. Pectic polysaccharide from corn (Zea mays L.) effectively inhibited multi-step mediated cancer cell growth and metastasis.

    Science.gov (United States)

    Jayaram, Smitha; Kapoor, Sabeeta; Dharmesh, Shylaja M

    2015-06-25

    Corn pectic polysaccharide (COPP) inhibited galectin-3 mediated hemagglutination at Minimum Inhibitory Concentration (MIC) of 4.08 μg/mL as opposed to citrus pectin (25 μg/mL), a well known galectin-3 inhibitor and lactose (4.16 μg/mL)--sugar specific to galectin-3. COPP effectively (72%) inhibited invasion and metastasis in experimental animals. In vivo results were substantiated by modulation of cancer specific markers such as galectin-3, which is a key molecule for initiation of metastatic cascade, vascular endothelial growth factor (VEGF) that enhances angiogenesis, matrix metalloproteinases 2 and 9 that are required for invasion, NF-κB, a transcription factor for proliferative potency of tumor cells and a phosphoglucoisomerase (PGI), the activity of which favors cancer cell growth. Structural characterization studies indicate the active component (relatively less acidic, 0.05 M ammonium carbonate, 160 kDa fraction) which showed antimetastatic potency in vitro with MIC of 0.09 μg/mL, and ∼ 45 fold increase in the activity when compared to that of COPP. Gas liquid chromatographic analysis indicated the presence of rhamnose (1%), arabinose (20%), xylose (3%), mannose (4%), galactose (54%) and uronic acid (10%) in different proportions. However, correlative data attributed galectin-3 inhibitory activity to enhanced levels of arabinose and galactose. FTIR, HPLC and NMR spectroscopic analysis further highlights that COPP is an arabinogalactan with methyl/ethyl esters. It is therefore suggested that the blockade of galectin-3 mediated lung metastasis appears to be a result of an inhibition of mixed functions induced during metastasis. The data signifies the importance of dietary carbohydrate as cancer-preventive agent. Although pectin digestibility and absorption are issues of concern, promising in vivo data provides evidence for the cancer preventive property of corn. The present study reveals for the first time a new component of corn, i.e.,--corn pectin

  3. Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways

    Directory of Open Access Journals (Sweden)

    Yang T

    2016-04-01

    Full Text Available Tingfang Yang,1 Shuluan Yao,2 Xianfeng Zhang,3 Yan Guo2 1Department of Pediatrics, Jining No 1 People’s Hospital, Shandong Province, People’s Republic of China; 2Department of Respiratory Medicine, Jining Medical University Affiliated Hospital, Shandong Province, People’s Republic of China; 3Department of Psychiatry, Jining Psychiatric Hospital, Shandong Province, People’s Republic of China Abstract: T-cell acute lymphoblastic leukemia (T-ALL as a prevalent hematologic malignancy is one of the most common malignant tumors worldwide in children. Andrographolide (Andro, the major active component from Andrographis paniculata, has been shown to possess antitumor activities in several types of cancer cells. However, whether Andro would inhibit T-ALL cell growth remains unclear. In this study, we investigated the cytotoxic effect of Andro on human T-ALL Jurkat cells and explored the mechanisms of cell death. Cell apoptosis was assayed by flow cytometry, and the signaling transduction for Andro was analyzed by Western blotting. The results indicated 10 µg/mL Andro could significantly induce Jurkat cells’ apoptosis, depending on the inhibition of PI3K/AKT pathway. Moreover, Andro-induced apoptosis is enhanced by AKT-selective inhibitor LY294002. ERK- or JNK-selective inhibitors PD98059 and SP600125 had no effect on Andro-induced apoptosis. In addition, p38 inhibitor SB203580 could reverse Andro-induced apoptosis in Jurkat cells. We also found that the protein expression of p-p53 and p-p38 were increased after Andro treatments. The result of an in vivo study also demonstrated Andro’s dose-dependent inhibition in subcutaneous Jurkat xenografts. In conclusion, our findings explained a novel mechanism of drug action by Andro in Jurkat cells and suggested that Andro might be developed into a new candidate therapy for T-ALL patients in the coming days. Keywords: andrographolide, PI3K, AKT, Burkitt lymphoma, Jurkat cell

  4. Recombinant FIP-gat, a Fungal Immunomodulatory Protein from Ganoderma atrum, Induces Growth Inhibition and Cell Death in Breast Cancer Cells.

    Science.gov (United States)

    Xu, Hui; Kong, Ying-Yu; Chen, Xin; Guo, Meng-Yuan; Bai, Xiao-Hui; Lu, Yu-Jia; Li, Wei; Zhou, Xuan-Wei

    2016-04-06

    FIP-gat, an immunomodulatory protein isolated from Ganoderma atrum, is a new member of the FIP family. Little is known, however, about its expressional properties and antitumor activities. It was availably expressed in Escherichia coli with a total yield of 29.75 mg/L. The migration of recombinant FIP-gat (rFIP-gat) on SDS-PAGE corresponded to the predicted molecular mass, and the band was correctly detected by a specific antibody. To characterize the direct effects of rFIP-gat on MDA-MB-231 breast cancer cells, MDA-MB-231 cells were treated with different concentrations of rFIP-gat in vitro; the results showed that this protein could reduce cell viability dose-dependently with a median inhibitory concentration (IC50) of 9.96 μg/mL and agglutinate the MDA-MB-231 cells at a concentration as low as 5 μg/mL. Furthermore, FIP-gat at a concentration of 10 μg/mL can induce significant growth inhibition and cell death in MDA-MB-231 cells. Notably, FIP-gat treatment triggers significant cell cycle arrest at the G1/S transition and pronounced increase in apoptotic cell population. Molecular assays based on microarray and real-time PCR further revealed the potential mechanisms encompassing growth arrest, apoptosis, and autophagy underlying the phenotypic effects.

  5. Overexpression of high molecular weight FGF-2 forms inhibits glioma growth by acting on cell-cycle progression and protein translation

    International Nuclear Information System (INIS)

    Lemiere, Sylvie; Azar, Rania; Belloc, Francis; Guersel, Demir; Pyronnet, Stephane; Bikfalvi, Andreas; Auguste, Patrick

    2008-01-01

    In order to clarify the role of HMW FGF-2 in glioma development and angiogenesis, we over-expressed different human FGF-2 isoforms in C6 rat glioma cell line using a tetracycline-regulated expression system. Phenotypic modifications were analyzed in vitro and compared to untransfected cells or to cells over-expressing 18 kDa FGF-2 or all FGF-2 isoforms. In particular, we demonstrate that HMW FGF-2 has unique features in inhibiting glioma cell proliferation. HMW FGF-2 expressing cells showed a cell-cycle arrest at the G2M, demonstrating a role of HMW FGF-2 in controlling the entry in mitosis. Moreover, hydroxyurea was ineffective in blocking cells at the G1S boundary when HMW FGF-2 was expressed. We also show that the HMW FGF-2 isoforms inhibit 4E-BP1 phosphorylation at critical sites restoring the translation inhibitory activity of 4E-BP1. In vivo, inhibition of tumor growth was observed when cells expressed HMW FGF-2. This indicates that HMW FGF-2 inhibits tumor growth in glioma cells by acting on cell-cycle progression and protein translation

  6. Lawsone inhibits cell growth and improves the efficacy of cisplatin in ...

    African Journals Online (AJOL)

    Cell cycle analysis was done by Flow cytometric studies, Immunoblotting studies for protein expression was done, proteins controlling cell cycle such as cyclinD1, cyclin E, cyclin A, cyclin B1 and Cip1/p21 and p53 which also are cyclin dependent inhibitors of protein kinase were estimated. Annexin V staining was done to ...

  7. Role of pigment epithelium-derived factor in the involution of hemangioma: Autocrine growth inhibition of hemangioma-derived endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-Jin [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Yun, Jang-Hyuk; Heo, Jong-Ik [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Lee, Eun Hui [Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Min, Hye Sook [Department of Pathology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Choi, Tae Hyun, E-mail: psthchoi@snu.ac.kr [Department of Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Department of Pediatric Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Cho, Chung-Hyun, E-mail: iamhyun@snu.ac.kr [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Cancer Research Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of)

    2014-11-14

    Highlights: • PEDF was expressed and induced during the involuting phase of IH. • PEDF inhibited the cell growth of the involuting HemECs in an autocrine manner. • PEDF suppression restored the impaired cell growth of the involuting HemECs. - Abstract: Hemangioma is a benign tumor derived from abnormal blood vessel growth. Unlike other vascular tumor counterparts, a hemangioma is known to proliferate during its early stage but it is followed by a stage of involution where regression of the tumor occurs. The critical onset leading to the involution of hemangioma is currently not well understood. This study focused on the molecular identities of the involution of hemangioma. We demonstrated that a soluble factor released from the involuting phase of hemangioma-derived endothelial cells (HemECs) and identified pigment epithelium-derived factor (PEDF) as an anti-angiogenic factor that was associated with the growth inhibition of the involuting HemECs. The growth inhibition of the involuting HemECs was reversed by suppression of PEDF in the involuting HemECs. Furthermore, we found that PEDF was more up-regulated in the involuting phase of hemangioma tissues than in the proliferating or the involuted. Taken together, we propose that PEDF accelerates the involution of hemangioma by growth inhibition of HemECs in an autocrine manner. The regulatory mechanism of PEDF expression could be a potential therapeutic target to treat hemangiomas.

  8. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth

    DEFF Research Database (Denmark)

    Greenberger, Lee M; Horak, Ivan D; Filpula, David

    2008-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that plays a critical role in angiogenesis, survival, metastasis, drug resistance, and glucose metabolism. Elevated expression of the alpha-subunit of HIF-1 (HIF-1alpha), which occurs in response to hypoxia or activation of growth facto...

  9. TASK-3 Downregulation Triggers Cellular Senescence and Growth Inhibition in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Rafael Zúñiga

    2018-03-01

    Full Text Available TASK-3 potassium channels are believed to promote proliferation and survival of cancer cells, in part, by augmenting their resistance to both hypoxia and serum deprivation. While overexpression of TASK-3 is frequently observed in cancers, the understanding of its role and regulation during tumorigenesis remains incomplete. Here, we evaluated the effect of reducing the expression of TASK-3 in MDA-MB-231 and MCF-10F human mammary epithelial cell lines through small hairpin RNA (shRNA-mediated knockdown. Our results show that knocking down TASK-3 in fully transformed MDA-MB-231 cells reduces proliferation, which was accompanied by an induction of cellular senescence and cell cycle arrest, with an upregulation of cyclin-dependent kinase (CDK inhibitors p21 and p27. In non-tumorigenic MCF-10F cells, however, TASK-3 downregulation did not lead to senescence induction, although cell proliferation was impaired and an upregulation of CDK inhibitors was also evident. Our observations implicate TASK-3 as a critical factor in cell cycle progression and corroborate its potential as a therapeutic target in breast cancer treatment.

  10. 3-bromopyruvate and sodium citrate target glycolysis, suppress survivin, and induce mitochondrial-mediated apoptosis in gastric cancer cells and inhibit gastric orthotopic transplantation tumor growth.

    Science.gov (United States)

    Wang, Ting-An; Zhang, Xiao-Dong; Guo, Xing-Yu; Xian, Shu-Lin; Lu, Yun-Fei

    2016-03-01

    Glycolysis is the primary method utilized by cancer cells to produce the energy (adenosine triphosphate, ATP) required for cell proliferation. Therefore, inhibition of glycolysis may inhibit tumor growth. We previously found that both 3-bromopyruvate (3-BrPA) and sodium citrate (SCT) can inhibit glycolysis in vitro; however, the underlying inhibitory mechanisms remain unclear. In the present study, we used a human gastric cancer cell line (SGC-7901) and an orthotopic transplantation tumor model in nude mice to explore the specific mechanisms of 3-BrPA and SCT. We found that both 3-BrPA and SCT effectively suppressed cancer cell proliferation, arrested the cell cycle, induced apoptosis, and decreased the production of lactate and ATP. 3-BrPA significantly reduced the glycolytic enzyme hexokinase activity, while SCT selectively inhibited phosphofructokinase-1 activity. Furthermore, 3-BrPA and SCT upregulated the expression of pro-apoptotic proteins (Bax, cytochrome c, and cleaved caspase-3) and downregulated the expression of anti-apoptotic proteins (Bcl-2 and survivin). Finally, our animal model of gastric cancer indicated that intraperitoneal injection of 3-BrPA and SCT suppressed orthotopic transplantation tumor growth and induced tumor apoptosis. Taken together, these results suggest that 3-BrPA and SCT selectively suppress glycolytic enzymes, decrease ATP production, induce mitochondrial-mediated apoptosis, downregulate survivin, and inhibit tumor growth. Moreover, an intraperitoneal injection is an effective form of administration of 3-BrPA and SCT.

  11. Herbal Extract SH003 Suppresses Tumor Growth and Metastasis of MDA-MB-231 Breast Cancer Cells by Inhibiting STAT3-IL-6 Signaling

    Directory of Open Access Journals (Sweden)

    Youn Kyung Choi

    2014-01-01

    Full Text Available Cancer inflammation promotes cancer progression, resulting in a high risk of cancer. Here, we demonstrate that our new herbal extract, SH003, suppresses both tumor growth and metastasis of MDA-MB-231 breast cancer cells via inhibiting STAT3-IL-6 signaling path. Our new herbal formula, SH003, mixed extract from Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii Maximowicz, suppressed MDA-MB-231 tumor growth and lung metastasis in vivo and reduced the viability and metastatic abilities of MDA-MB-231 cells in vitro. Furthermore, SH003 inhibited STAT3 activation, which resulted in a reduction of IL-6 production. Therefore, we conclude that SH003 suppresses highly metastatic breast cancer growth and metastasis by inhibiting STAT3-IL-6 signaling path.

  12. Inhibition of SENP5 by Cucurbitacin B Suppresses Cell Growth and ...

    African Journals Online (AJOL)

    (Cucurbitaceae family). Cucurbitacins exhibit cytotoxicity and anti-cancer ... molecule with role in the treatment of osteosarcoma is ..... Induction of Apoptosis in Pancreatic Cancer Cells by ... Marina N, Gebhardt M, Teot L, Gorlick R. Biology and.

  13. Dipeptidyl peptidase-IV inhibits glioma cell growth independent of its enzymatic activity

    Czech Academy of Sciences Publication Activity Database

    Busek, P.; Stremeňová, J.; Sromová, L.; Hilser, M.; Balaziová, E.; Kosek, D.; Trylcová, J.; Strnad, Hynek; Křepela, E.; Šedo, A.

    2012-01-01

    Roč. 44, č. 5 (2012), s. 738-747 ISSN 1357-2725 Institutional support: RVO:68378050 Keywords : protease * tumour suppression * primary cell cultures * astrocytoma Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.152, year: 2012

  14. Yongdamsagan-tang, a traditional herbal formula, inhibits cell growth through the suppression of proliferation and inflammation in benign prostatic hyperplasia epithelial-1 cells.

    Science.gov (United States)

    Park, Eunsook; Lee, Mee-Young; Seo, Chang-Seob; Jeon, Woo-Young; Shin, Hyeun-Kyoo

    2017-09-14

    Benign prostatic hyperplasia (BPH), also called benign enlargement of the prostate, is a progressive disease that is observed in most elderly men. Yongdamsagan-tang, a traditional herbal formula, is used commonly for the treatment of inflammation-related diseases. Although the therapeutic efficacy of Yongdamsagan-tang against BPH in vivo was reported previously, its underlying mechanisms are not clearly understood. In this study, we investigated the effect of Yongdamsagan-tang water extract (YSTE) and its mechanism on the growth of human BPH epithelial BPH-1 cells. YSTE was extracted from 11 herbaceous plants and its chemical composition was analyzed by High-performance liquid chromatography (HPLC). YSTE was treated in the epithelial BPH-1 cell line and then cell lysates or supernant were used to evaluate cell viability, cell cycle, proliferation and cytokine production. HPLC revealed that Baicalin and gentiopicroside were involved as the major compounds of YSTE. YSTE treatment in BPH-1 cells repressed cell viability in a dose-dependent manner. Regarding the inhibitory mechanisms of YSTE on cell growth, YSTE inhibited cell proliferation via a decrease in endogenous cyclin D1 protein levels and arrest at the S phase during cell-cycle progression. Furthermore, YSTE treatment in BPH-1 cells suppressed prostaglandin E 2 production and cyclooxygenase-2 (COX-2) protein levels. The secretion of the proinflammatory cytokines, interleukin-8 and interleukin-6, was also reduced by YSTE treatment. YSTE in BPH-1 cells showed antiproliferative and anti-inflammatory activities via cell-cycle arrest and downregulation of COX-2 expression, respectively. Taken together, the results of the present study will enhance our understanding of the mechanisms underlying the effect of YSTE in BPH. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  15. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells

    OpenAIRE

    Urue?a, Claudia; Cifuentes, Claudia; Casta?eda, Diana; Arango, Amparo; Kaur, Punit; Asea, Alexzander; Fiorentino, Susana

    2008-01-01

    Abstract Background There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Methods Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], flow cytometry, cytosk...

  16. Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways

    Science.gov (United States)

    Yang, Tingfang; Yao, Shuluan; Zhang, Xianfeng; Guo, Yan

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) as a prevalent hematologic malignancy is one of the most common malignant tumors worldwide in children. Andrographolide (Andro), the major active component from Andrographis paniculata, has been shown to possess antitumor activities in several types of cancer cells. However, whether Andro would inhibit T-ALL cell growth remains unclear. In this study, we investigated the cytotoxic effect of Andro on human T-ALL Jurkat cells and explored the mechanisms of cell death. Cell apoptosis was assayed by flow cytometry, and the signaling transduction for Andro was analyzed by Western blotting. The results indicated 10 μg/mL Andro could significantly induce Jurkat cells’ apoptosis, depending on the inhibition of PI3K/AKT pathway. Moreover, Andro-induced apoptosis is enhanced by AKT-selective inhibitor LY294002. ERK- or JNK-selective inhibitors PD98059 and SP600125 had no effect on Andro-induced apoptosis. In addition, p38 inhibitor SB203580 could reverse Andro-induced apoptosis in Jurkat cells. We also found that the protein expression of p-p53 and p-p38 were increased after Andro treatments. The result of an in vivo study also demonstrated Andro’s dose-dependent inhibition in subcutaneous Jurkat xenografts. In conclusion, our findings explained a novel mechanism of drug action by Andro in Jurkat cells and suggested that Andro might be developed into a new candidate therapy for T-ALL patients in the coming days. PMID:27114702

  17. Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels.

    Directory of Open Access Journals (Sweden)

    Carly A Buckner

    Full Text Available Electromagnetic field (EMF exposures affect many biological systems. The reproducibility of these effects is related to the intensity, duration, frequency, and pattern of the EMF. We have shown that exposure to a specific time-varying EMF can inhibit the growth of malignant cells. Thomas-EMF is a low-intensity, frequency-modulated (25-6 Hz EMF pattern. Daily, 1 h, exposures to Thomas-EMF inhibited the growth of malignant cell lines including B16-BL6, MDA-MB-231, MCF-7, and HeLa cells but did not affect the growth of non-malignant cells. Thomas-EMF also inhibited B16-BL6 cell proliferation in vivo. B16-BL6 cells implanted in syngeneic C57b mice and exposed daily to Thomas-EMF produced smaller tumours than in sham-treated controls. In vitro studies showed that exposure of malignant cells to Thomas-EMF for > 15 min promoted Ca(2+ influx which could be blocked by inhibitors of voltage-gated T-type Ca(2+ channels. Blocking Ca(2+ uptake also blocked Thomas-EMF-dependent inhibition of cell proliferation. Exposure to Thomas-EMF delayed cell cycle progression and altered cyclin expression consistent with the decrease in cell proliferation. Non-malignant cells did not show any EMF-dependent changes in Ca(2+ influx or cell growth. These data confirm that exposure to a specific EMF pattern can affect cellular processes and that exposure to Thomas-EMF may provide a potential anti-cancer therapy.

  18. Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels.

    Science.gov (United States)

    Buckner, Carly A; Buckner, Alison L; Koren, Stan A; Persinger, Michael A; Lafrenie, Robert M

    2015-01-01

    Electromagnetic field (EMF) exposures affect many biological systems. The reproducibility of these effects is related to the intensity, duration, frequency, and pattern of the EMF. We have shown that exposure to a specific time-varying EMF can inhibit the growth of malignant cells. Thomas-EMF is a low-intensity, frequency-modulated (25-6 Hz) EMF pattern. Daily, 1 h, exposures to Thomas-EMF inhibited the growth of malignant cell lines including B16-BL6, MDA-MB-231, MCF-7, and HeLa cells but did not affect the growth of non-malignant cells. Thomas-EMF also inhibited B16-BL6 cell proliferation in vivo. B16-BL6 cells implanted in syngeneic C57b mice and exposed daily to Thomas-EMF produced smaller tumours than in sham-treated controls. In vitro studies showed that exposure of malignant cells to Thomas-EMF for > 15 min promoted Ca(2+) influx which could be blocked by inhibitors of voltage-gated T-type Ca(2+) channels. Blocking Ca(2+) uptake also blocked Thomas-EMF-dependent inhibition of cell proliferation. Exposure to Thomas-EMF delayed cell cycle progression and altered cyclin expression consistent with the decrease in cell proliferation. Non-malignant cells did not show any EMF-dependent changes in Ca(2+) influx or cell growth. These data confirm that exposure to a specific EMF pattern can affect cellular processes and that exposure to Thomas-EMF may provide a potential anti-cancer therapy.

  19. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    Science.gov (United States)

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  20. Knockdown of Indian hedgehog protein induces an inhibition of cell growth and differentiation in osteoblast MC3T3-E1 cells

    Science.gov (United States)

    Deng, Ang; Zhang, Hongqi; Hu, Minyu; Liu, Shaohua; Gao, Qile; Wang, Yuxiang; Guo, Chaofeng

    2017-01-01

    Indian hedgehog protein (Ihh) is evolutionarily conserved and serves important roles in controlling the differentiation of progenitor cells into osteoblasts. Ihh null mutant mice exhibit a failure of osteoblast development in endochondral bone. Although studies have demonstrated that Ihh signaling is a potent local factor that regulates osteoblast differentiation, the specific transcription factors that determine osteoblast differentiation remain unclear. Further studies are required to determine the precise mechanism through which Ihh regulates osteoblast differentiation. In the present study, Ihh was knocked down in osteoblast MC3T3-E1 cells using short hairpin RNA, to investigate the function of Ihh in osteoblast proliferation and differentiation and to examine the potential mechanism through which Ihh induces osteoblast apoptosis and cell cycle arrest. It was observed that the knockdown of Ihh induced a marked inhibition of cell growth and increased the apoptosis rate compared with the negative control osteoblasts. Downregulation of Ihh resulted in a cell cycle arrest at the G1 to S phase boundary in osteoblasts. In addition, the knockdown of Ihh decreased the alkaline phosphatase activity and mineral deposition of osteoblasts. The inhibitory roles of Ihh downregulation in osteoblast growth and differentiation may be associated with the transforming growth factor-β/mothers against decapentaplegic homolog and tumor necrosis factor receptor superfamily member 11B/tumor necrosis factor ligand superfamily member 11 signaling pathways. Manipulating either Ihh expression or its signaling components may be of benefit for the treatment of skeletal diseases. PMID:28990069

  1. Knockdown of Indian hedgehog protein induces an inhibition of cell growth and differentiation in osteoblast MC3T3‑E1 cells.

    Science.gov (United States)

    Deng, Ang; Zhang, Hongqi; Hu, Minyu; Liu, Shaohua; Gao, Qile; Wang, Yuxiang; Guo, Chaofeng

    2017-12-01

    Indian hedgehog protein (Ihh) is evolutionarily conserved and serves important roles in controlling the differentiation of progenitor cells into osteoblasts. Ihh null mutant mice exhibit a failure of osteoblast development in endochondral bone. Although studies have demonstrated that Ihh signaling is a potent local factor that regulates osteoblast differentiation, the specific transcription factors that determine osteoblast differentiation remain unclear. Further studies are required to determine the precise mechanism through which Ihh regulates osteoblast differentiation. In the present study, Ihh was knocked down in osteoblast MC3T3‑E1 cells using short hairpin RNA, to investigate the function of Ihh in osteoblast proliferation and differentiation and to examine the potential mechanism through which Ihh induces osteoblast apoptosis and cell cycle arrest. It was observed that the knockdown of Ihh induced a marked inhibition of cell growth and increased the apoptosis rate compared with the negative control osteoblasts. Downregulation of Ihh resulted in a cell cycle arrest at the G1 to S phase boundary in osteoblasts. In addition, the knockdown of Ihh decreased the alkaline phosphatase activity and mineral deposition of osteoblasts. The inhibitory roles of Ihh downregulation in osteoblast growth and differentiation may be associated with the transforming growth factor‑β/mothers against decapentaplegic homolog and tumor necrosis factor receptor superfamily member 11B/tumor necrosis factor ligand superfamily member 11 signaling pathways. Manipulating either Ihh expression or its signaling components may be of benefit for the treatment of skeletal diseases.

  2. Growth differentiation factor-15 secreted by prostate cancer cells inhibits differentiation of osteoclasts

    Czech Academy of Sciences Publication Activity Database

    Vaňhara, P.; Lincová, Eva; Souček, Karel; Šmarda, J.

    2009-01-01

    Roč. 276, č. 1 (2009), s. 226 ISSN 1742-464X. [34th FEBS Congress. 04.07.2009-09.07.2009, Prague] R&D Projects: GA ČR(CZ) GA204/07/0834 Grant - others:GA ČR(CZ) GA301/09/1115 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : growth-differentiation factor-15 * osteoclasts * differentiation Subject RIV: BO - Biophysics

  3. Pterostilbene Inhibits the Growth of Human Esophageal Cancer Cells by Regulating Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Yingtong Feng

    2016-03-01

    Full Text Available Background/Aims: Pterostilbene (PTE, a natural dimethylated resveratrol analog from blueberries, is known to have diverse pharmacological activities, including anticancer properties. In this study, we investigated the anticancer activity of PTE against human esophageal cancer cells both in vitro and in vivo and explored the role of endoplasmic reticulum (ER stress (ERS signaling in this process. Methods: Cell viability, the apoptotic index, Caspase 3 activity, adhesion, migration, reactive oxygen species (ROS levels, and glutathione (GSH levels were detected to explore the effect of PTE on human EC109 esophageal cancer cells. Furthermore, siRNA transfection and a chemical inhibitor were employed to confirm the role of ERS. Results: PTE treatment dose- and time-dependently decreased the viability of human esophageal cancer EC109 cells. PTE also decreased tumor cell adhesion, migration and intracellular GSH levels while increasing the apoptotic index, Caspase 3 activity and ROS levels, which suggest the strong anticancer activity of PTE. Furthermore, PTE treatment increased the expression of ERS-related molecules (GRP78, ATF6, p-PERK, p-eIF2α and CHOP, upregulated the pro-apoptosis-related protein PUMA and downregulated the anti-apoptosis-related protein Bcl-2 while promoting the translocation of cytochrome c from mitochondria to cytosol and the activation of Caspase 9 and Caspase 12. The downregulation of ERS signaling by CHOP siRNA desensitized esophageal cancer cells to PTE treatment, whereas upregulation of ERS signaling by thapsigargin (THA had the opposite effect. N-Acetylcysteine (NAC, a ROS scavenger, also desensitized esophageal cancer cells to PTE treatment. Conclusions: Overall, the results indicate that PTE is a potent anti-cancer pharmaceutical against human esophageal cancer, and the possible mechanism involves the activation of ERS signaling pathways.

  4. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells

    Directory of Open Access Journals (Sweden)

    Kaur Punit

    2008-11-01

    Full Text Available Abstract Background There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Methods Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide], flow cytometry, cytoskeleton organization analysis, cell cycle, mitochondria membrane depolarization, clonogenicity test, DNA fragmentation test and differential protein expression by HPLC-Chip/MS analysis. F4 fraction characterization was made by HPLC-MS. Results Petiveria alliacea fraction characterized by de-replication was found to alter actin cytoskeleton organization, induce G2 cell cycle arrest and cause apoptotic cell death in a mitochondria independent way. In addition, we found down regulation of cytoskeleton, chaperone, signal transduction proteins, and proteins involved in metabolic pathways. Finally up regulation of proteins involved in translation and intracellular degradation was also observed. Conclusion The results of this study indicate that Petiveria alliacea exerts multiple biological activities in vitro consistent with cytotoxicity. Further studies in animal models are needed but Petiveria alliacea appears to be a good candidate to be used as an antitumor agent.

  5. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells.

    Science.gov (United States)

    Urueña, Claudia; Cifuentes, Claudia; Castañeda, Diana; Arango, Amparo; Kaur, Punit; Asea, Alexzander; Fiorentino, Susana

    2008-11-18

    There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], flow cytometry, cytoskeleton organization analysis, cell cycle, mitochondria membrane depolarization, clonogenicity test, DNA fragmentation test and differential protein expression by HPLC-Chip/MS analysis. F4 fraction characterization was made by HPLC-MS. Petiveria alliacea fraction characterized by de-replication was found to alter actin cytoskeleton organization, induce G2 cell cycle arrest and cause apoptotic cell death in a mitochondria independent way. In addition, we found down regulation of cytoskeleton, chaperone, signal transduction proteins, and proteins involved in metabolic pathways. Finally up regulation of proteins involved in translation and intracellular degradation was also observed. The results of this study indicate that Petiveria alliacea exerts multiple biological activities in vitro consistent with cytotoxicity. Further studies in animal models are needed but Petiveria alliacea appears to be a good candidate to be used as an antitumor agent.

  6. Melatonin prevents human pancreatic carcinoma cell PANC-1-induced human umbilical vein endothelial cell proliferation and migration by inhibiting vascular endothelial growth factor expression.

    Science.gov (United States)

    Cui, Peilin; Yu, Minghua; Peng, Xingchun; Dong, Lv; Yang, Zhaoxu

    2012-03-01

    Melatonin is an important natural oncostatic agent, and our previous studies have found its inhibitory action on tumor angiogenesis, but the mechanism remains unclear. It is well known that vascular endothelial growth factor (VEGF) plays key roles in tumor angiogenesis and has become an important target for antitumor therapy. Pancreatic cancer is a representative of the most highly vascularized and angiogenic solid tumors, which responds poorly to chemotherapy and radiation. Thus, seeking new treatment strategies targeting which have anti-angiogenic capability is urgent in clinical practice. In this study, a co-culture system between human umbilical vein endothelial cells (HUVECs) and pancreatic carcinoma cells (PANC-1) was used to investigate the direct effect of melatonin on the tumor angiogenesis and its possible action on VEGF expression. We found HUVECs exhibited an increased cell proliferation and cell migration when co-cultured with PANC-1 cells, but the process was prevented when melatonin added to the incubation medium. Melatonin at concentrations of 1 μm and 1 mm inhibited the cell proliferation and migration of HUVECs and also decreased both the VEGF protein secreted to the cultured medium and the protein produced by the PANC-1 cells. In addition, the VEGF mRNA expression was also down-regulated by melatonin. Taken together, our present study shows that melatonin at pharmacological concentrations inhibited the elevated cell proliferation and cell migration of HUVECs stimulated by co-culturing them with PANC-1 cells; this was associated with a suppression of VEGF expression in PANC-1 cells. © 2011 John Wiley & Sons A/S.

  7. Inhibition of adipose triglyceride lipase (ATGL) by the putative tumor suppressor G0S2 or a small molecule inhibitor attenuates the growth of cancer cells.

    Science.gov (United States)

    Zagani, Rachid; El-Assaad, Wissal; Gamache, Isabelle; Teodoro, Jose G

    2015-09-29

    The G0/G1 switch gene 2 (G0S2) is methylated and silenced in a wide range of human cancers. The protein encoded by G0S2 is an endogenous inhibitor of lipid catabolism that directly binds adipose triglyceride lipase (ATGL). ATGL is the rate-limiting step in triglyceride metabolism. Although the G0S2 gene is silenced in cancer, the impact of ATGL in the growth and survival of cancer cells has never been addressed. Here we show that ectopic expression of G0S2 in non-small cell lung carcinomas (NSCL) inhibits triglyceride catabolism and results in lower cell growth. Similarly, knockdown of ATGL increased triglyceride levels, attenuated cell growth and promoted apoptosis. Conversely, knockdown of endogenous G0S2 enhanced the growth and invasiveness of cancer cells. G0S2 is strongly induced in acute promyelocytic leukemia (APL) cells in response to all trans retinoic acid (ATRA) and we show that inhibition of ATGL in these cells by G0S2 is required for efficacy of ATRA treatment. Our data uncover a novel tumor suppressor mechanism by which G0S2 directly inhibits activity of a key intracellular lipase. Our results suggest that elevated ATGL activity may be a general property of many cancer types and potentially represents a novel target for chemotherapy.

  8. Piper betle leaf extract enhances the cytotoxicity effect of 5-fluorouracil in inhibiting the growth of HT29 and HCT116 colon cancer cells*

    Science.gov (United States)

    Ng, Pek Leng; Rajab, Nor Fadilah; Then, Sue Mian; Mohd Yusof, Yasmin Anum; Wan Ngah, Wan Zurinah; Pin, Kar Yong; Looi, Mee Lee

    2014-01-01

    Objective: The combination effect of Piper betle (PB) and 5-fluorouracil (5-FU) in enhancing the cytotoxic potential of 5-FU in inhibiting the growth of colon cancer cells was investigated. Methods: HT29 and HCT116 cells were subjected to 5-FU or PB treatment. 5-FU and PB were then combined and their effects on both cell lines were observed after 24 h of treatment. PB-5-FU interaction was elucidated by isobologram analysis. Apoptosis features of the treated cells were revealed by annexin V/PI stain. High-performance liquid chromatography (HPLC) was performed to exclude any possible chemical interaction between the compounds. Results: In the presence of PB extract, the cytotoxicity of 5-FU was observed at a lower dose (IC50 12.5 μmol/L) and a shorter time (24 h) in both cell lines. Both cell lines treated with 5-FU or PB alone induced a greater apoptosis effect compared with the combination treatment. Isobologram analysis indicated that PB and 5-FU interacted synergistically and antagonistically in inhibiting the growth of HT29 and HCT116 cells, respectively. Conclusions: In the presence of PB, a lower dosage of 5-FU is required to achieve the maximum drug effect in inhibiting the growth of HT29 cells. However, PB did not significantly reduce 5-FU dosage in HCT116 cells. Our result showed that this interaction may not solely contribute to the apoptosis pathway. PMID:25091987

  9. Piper betle leaf extract enhances the cytotoxicity effect of 5-fluorouracil in inhibiting the growth of HT29 and HCT116 colon cancer cells.

    Science.gov (United States)

    Ng, Pek Leng; Rajab, Nor Fadilah; Then, Sue Mian; Mohd Yusof, Yasmin Anum; Wan Ngah, Wan Zurinah; Pin, Kar Yong; Looi, Mee Lee

    2014-08-01

    The combination effect of Piper betle (PB) and 5-fluorouracil (5-FU) in enhancing the cytotoxic potential of 5-FU in inhibiting the growth of colon cancer cells was investigated. HT29 and HCT116 cells were subjected to 5-FU or PB treatment. 5-FU and PB were then combined and their effects on both cell lines were observed after 24 h of treatment. PB-5-FU interaction was elucidated by isobologram analysis. Apoptosis features of the treated cells were revealed by annexin V/PI stain. High-performance liquid chromatography (HPLC) was performed to exclude any possible chemical interaction between the compounds. In the presence of PB extract, the cytotoxicity of 5-FU was observed at a lower dose (IC50 12.5 µmol/L) and a shorter time (24 h) in both cell lines. Both cell lines treated with 5-FU or PB alone induced a greater apoptosis effect compared with the combination treatment. Isobologram analysis indicated that PB and 5-FU interacted synergistically and antagonistically in inhibiting the growth of HT29 and HCT116 cells, respectively. In the presence of PB, a lower dosage of 5-FU is required to achieve the maximum drug effect in inhibiting the growth of HT29 cells. However, PB did not significantly reduce 5-FU dosage in HCT116 cells. Our result showed that this interaction may not solely contribute to the apoptosis pathway.

  10. Arctigenin inhibits prostate tumor cell growth in vitro and in vivo

    OpenAIRE

    Piwen Wang; Walter Solorzano; Tanya Diaz; Clara E. Magyar; Susanne M. Henning; Jaydutt V. Vadgama

    2017-01-01

    The low bioavailability of most phytochemicals limits their translation to humans. We investigated whether arctigenin, a novel anti-inflammatory lignan from the seeds of Arctium lappa, has favorable bioavailability/potency against prostate cancer. The anticarcinogenic activity of arctigenin was investigated both in vitro using the androgen-sensitive LNCaP and LAPC-4 human prostate cancer cells and pre-malignant WPE1-NA22 cells, and in vivo using xenograft mouse models. Arctigenin at lower dos...

  11. ONC201 activates ER stress to inhibit the growth of triple-negative breast cancer cells

    OpenAIRE

    Yuan, Xun; Kho, Dhonghyo; Xu, Jing; Gajan, Ambikai; Wu, Kongming; Wu, Gen Sheng

    2017-01-01

    ONC201 was previously identified as a first-in-class antitumor agent and small-molecule inducer of the TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) gene that induces apoptosis in cancer cells. ONC201 has a safety profile and is currently in phase II clinical trials for the treatment of various malignancies. In the current study, we examine the effect of ONC201 on triple-negative breast cancer cells (TNBC), a subtype of breast cancer that is sensitive to TRAIL. We find that ...

  12. RNA interference-mediated c-MYC inhibition prevents cell growth and decreases sensitivity to radio- and chemotherapy in childhood medulloblastoma cells

    International Nuclear Information System (INIS)

    Bueren, André O von; Shalaby, Tarek; Oehler-Jänne, Christoph; Arnold, Lucia; Stearns, Duncan; Eberhart, Charles G; Arcaro, Alexandre; Pruschy, Martin; Grotzer, Michael A

    2009-01-01

    With current treatment strategies, nearly half of all medulloblastoma (MB) patients die from progressive tumors. Accordingly, the identification of novel therapeutic strategies remains a major goal. Deregulation of c-MYC is evident in numerous human cancers. In MB, over-expression of c-MYC has been shown to cause anaplasia and correlate with unfavorable prognosis. To study the role of c-MYC in MB biology, we down-regulated c-MYC expression by using small interfering RNA (siRNA) and investigated changes in cellular proliferation, cell cycle analysis, apoptosis, telomere maintenance, and response to ionizing radiation (IR) and chemotherapeutics in a representative panel of human MB cell lines expressing different levels of c-MYC (DAOY wild-type, DAOY transfected with the empty vector, DAOY transfected with c-MYC, D341, and D425). siRNA-mediated c-MYC down-regulation resulted in an inhibition of cellular proliferation and clonogenic growth, inhibition of G1-S phase cell cycle progression, and a decrease in human telomerase reverse transcriptase (hTERT) expression and telomerase activity. On the other hand, down-regulation of c-MYC reduced apoptosis and decreased the sensitivity of human MB cells to IR, cisplatin, and etoposide. This effect was more pronounced in DAOY cells expressing high levels of c-MYC when compared with DAOY wild-type or DAOY cells transfected with the empty vector. In human MB cells, in addition to its roles in growth and proliferation, c-MYC is also a potent inducer of apoptosis. Therefore, targeting c-MYC might be of therapeutic benefit when used sequentially with chemo- and radiotherapy rather than concomitantly

  13. RNA interference-mediated c-MYC inhibition prevents cell growth and decreases sensitivity to radio- and chemotherapy in childhood medulloblastoma cells

    Directory of Open Access Journals (Sweden)

    Arcaro Alexandre

    2009-01-01

    Full Text Available Abstract Background With current treatment strategies, nearly half of all medulloblastoma (MB patients die from progressive tumors. Accordingly, the identification of novel therapeutic strategies remains a major goal. Deregulation of c-MYC is evident in numerous human cancers. In MB, over-expression of c-MYC has been shown to cause anaplasia and correlate with unfavorable prognosis. Methods To study the role of c-MYC in MB biology, we down-regulated c-MYC expression by using small interfering RNA (siRNA and investigated changes in cellular proliferation, cell cycle analysis, apoptosis, telomere maintenance, and response to ionizing radiation (IR and chemotherapeutics in a representative panel of human MB cell lines expressing different levels of c-MYC (DAOY wild-type, DAOY transfected with the empty vector, DAOY transfected with c-MYC, D341, and D425. Results siRNA-mediated c-MYC down-regulation resulted in an inhibition of cellular proliferation and clonogenic growth, inhibition of G1-S phase cell cycle progression, and a decrease in human telomerase reverse transcriptase (hTERT expression and telomerase activity. On the other hand, down-regulation of c-MYC reduced apoptosis and decreased the sensitivity of human MB cells to IR, cisplatin, and etoposide. This effect was more pronounced in DAOY cells expressing high levels of c-MYC when compared with DAOY wild-type or DAOY cells transfected with the empty vector. Conclusion In human MB cells, in addition to its roles in growth and proliferation, c-MYC is also a potent inducer of apoptosis. Therefore, targeting c-MYC might be of therapeutic benefit when used sequentially with chemo- and radiotherapy rather than concomitantly.

  14. Molecular mechanisms involved in the inhibition of tumor cells proliferation exposed to elevated concentrations of the epidermal growth factor

    International Nuclear Information System (INIS)

    Guillen, Isabel A; Berlanga, Jorge; Camacho, Hanlet

    2013-01-01

    The EGF promotes inhibition of cell proliferation in vitro and in vivo models depending on its concentration, application schema and the type of tumor cells on which it acts. Our research hypothesis was based on the fact that the EGF varies the expression of genes involved in a negative regulation of tumor cell lines proliferation carrying high levels of its receptor (EGFR). Our objectives were, to obtain information about the effect of EGF on tumor cell proliferation in vitro and in vivo models and, know the gene expression patterns of a group of genes involved in cancer signaling pathways and EGFR. The results showed that EGF at nanomolar concentrations inhibits the tumor cells proliferation bearing high levels of EGFR and, promotes the survival of treated animals, establishing a direct relationship between the inhibition of cell proliferation, high concentrations of EGF and, high amount of EGFR in the cells. The differential gene expression profile showed a variation in a group of genes which exert a powerful control over the cell cycle progression, gene transcription and apoptosis. It was concluded that the inhibition of tumor cell proliferation by the action of EGF is due to activation of molecular mechanisms controlling cell cycle progression. This work won the Annual Award of the Cuban Academy of Sciences in 2012

  15. Green Approach To Synthesize Crystalline Nanoscale ZnII-Coordination Polymers: Cell Growth Inhibition and Immunofluorescence Study.

    Science.gov (United States)

    Mukherjee, Somali; Ganguly, Sumi; Manna, Krishnendu; Mondal, Sanchaita; Mahapatra, Supratim; Das, Debasis

    2018-04-02

    Five new coordination polymers (CPs) namely, [{Zn(μ 2 -H 2 O) 0.5 (5N 3 -IPA)(2,2'-bpe)}] ∞ (1), [{Zn(μ 2 -H 2 O) 0.5 (5N 3 -IPA)(1,10-phen)}] ∞ (2), [{Zn(5N 3 -IPA)(1,2-bpe)}] ∞ (3), [{Zn(5N 3 -IPA)(1,2-bpey)}] ∞ (4), and [{Zn(H 2 O)(5N 3 -IPA)(4,4'-tme)}(H 2 O) 0.5 ] ∞ (5) (5N 3 -H 2 IPA = 5-azidoisophthalic acid, 2,2'-bpe= 2,2'-bipyridine, 1,10-phen = 1,10-phenanthroline, 1,2-bpe = 1,2-bis(4-pyridyl)ethane, 1,2-bpey = 1,2-bis(4-pyridyl)ethylene, 4,4'-tme = 4,4'-trimethylenedipyridine), have been synthesized based on a mixed ligand approach adopting a solvothermal technique. Depending upon the intrinsic structural flexibility of the bis-pyridyl coligands, interesting structural topologies have also been observed in the resulting CPs: Sra SrAl2 type topology for 3 and a 3-fold interpenetrated dmp topology for 4. A green hand grinding technique has been implemented to reduce the particle size of the CPs to generate nanoscale CPs (NCPs). SEM studies of NCPs reveal the formation of square and spherical particles for NCP 1 and 2, respectively, and nano rod for NCP 3, 4, and 5. Remarkably, when scaled down to nano range all the NCPs retain their crystalline nature. The cytotoxic activity of the NCPs (1-5) has been studied using human colorectal carcinoma cells (HCT 116). Significant cell death is observed for NCP 2, which is further corroborated by cell growth inhibition study. The observed cell death is likely to be due to mitochondrial-assisted apoptosis as is evident from immunofluorescence study.

  16. Embelin suppresses growth of human pancreatic cancer xenografts, and pancreatic cancer cells isolated from KrasG12D mice by inhibiting Akt and Sonic hedgehog pathways.

    Directory of Open Access Journals (Sweden)

    Minzhao Huang

    Full Text Available Pancreatic cancer is a deadly disease, and therefore effective treatment and/or prevention strategies are urgently needed. The objectives of this study were to examine the molecular mechanisms by which embelin inhibited human pancreatic cancer cell growth in vitro, and xenografts in Balb C nude mice, and pancreatic cancer cell growth isolated from KrasG12D transgenic mice. XTT assays were performed to measure cell viability. AsPC-1 cells were injected subcutaneously into Balb c nude mice and treated with embelin. Cell proliferation and apoptosis were measured by Ki67 and TUNEL staining, respectively. The expression of Akt, and Sonic Hedgehog (Shh and their target gene products were measured by the immunohistochemistry, and Western blot analysis. The effects of embelin on pancreatic cancer cells isolated from 10-months old KrasG12D mice were also examined. Embelin inhibited cell viability in pancreatic cancer AsPC-1, PANC-1, MIA PaCa-2 and Hs 766T cell lines, and these inhibitory effects were blocked either by constitutively active Akt or Shh protein. Embelin-treated mice showed significant inhibition in tumor growth which was associated with reduced expression of markers of cell proliferation (Ki67, PCNA and Bcl-2 and cell cycle (cyclin D1, CDK2, and CDK6, and induction of apoptosis (activation of caspase-3 and cleavage of PARP, and increased expression of Bax. In addition, embelin inhibited the expression of markers of angiogenesis (COX-2, VEGF, VEGFR, and IL-8, and metastasis (MMP-2 and MMP-9 in tumor tissues. Antitumor activity of embelin was associated with inhibition of Akt and Shh pathways in xenografts, and pancreatic cancer cells isolated from KrasG12D mice. Furthermore, embelin also inhibited epithelial-to-mesenchymal transition (EMT by up-regulating E-cadherin and inhibiting the expression of Snail, Slug, and ZEB1. These data suggest that embelin can inhibit pancreatic cancer growth, angiogenesis and metastasis by suppressing Akt and

  17. Regorafenib inhibited gastric cancer cells growth and invasion via CXCR4 activated Wnt pathway

    OpenAIRE

    Lin, Xiao-Lin; Xu, Qi; Tang, Lei; Sun, Li; Han, Ting; Wang, Li-Wei; Xiao, Xiu-Ying

    2017-01-01

    Aim Regorafenib is an oral small-molecule multi kinase inhibitor. Recently, several clinical trials have revealed that regorafenib has an anti-tumor activity in gastric cancer. However, only part of patients benefit from regorafenib, and the mechanisms of regorafenib?s anti-tumor effect need further demonstrating. In this study, we would assess the potential anti-tumor effects and the underlying mechanisms of regorafenib in gastric cancer cells, and explore novel biomarkers for patients selec...

  18. A novel HDAC inhibitor, CG200745, inhibits pancreatic cancer cell growth and overcomes gemcitabine resistance

    OpenAIRE

    Lee, Hee Seung; Park, Soo Been; Kim, Sun A; Kwon, Sool Ki; Cha, Hyunju; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Song, Si Young

    2017-01-01

    Pancreatic cancer is predominantly lethal, and is primarily treated using gemcitabine, with increasing resistance. Therefore, novel agents that increase tumor sensitivity to gemcitabine are needed. Histone deacetylase (HDAC) inhibitors are emerging therapeutic agents, since HDAC plays an important role in cancer initiation and progression. We evaluated the antitumor effect of a novel HDAC inhibitor, CG200745, combined with gemcitabine/erlotinib on pancreatic cancer cells and gemcitabine-resis...

  19. GROWTH-INHIBITION OF 2 SOLID TUMORS IN MICE, CAUSED BY POLYAMINE DEPLETION, IS NOT ATTENDED BY ALTERATIONS IN CELL-CYCLE PHASE DISTRIBUTION

    NARCIS (Netherlands)

    HESSELS, J; KINGMA, AW; MUSKIET, FAJ; SARHAN, S; SEILER, N

    1991-01-01

    We studied the effect of polyamine depletion on growth and cell cycle characteristics of subcutaneously grown Lewis lung carcinoma (LLC) and fibrosarcoma (FIO 26) in mice. Polyamine depletion was achieved by inhibition of ornithine decarboxylase using 2-(difluoromethyl)ornithine, limitation of

  20. Curcumin inhibited growth of human melanoma A375 cells via inciting oxidative stress.

    Science.gov (United States)

    Liao, Wang; Xiang, Wei; Wang, Fei-Fei; Wang, Rui; Ding, Yan

    2017-11-01

    Curcumin, a polyphenol compound, possesses potent pharmacological properties in preventing cancers, which make it as a potential anti-cancer mediator. However, it is still unknown that whether Curcumin induced melanoma A375 cell was associated with oxidative stress. Here, we firstly found a fascinating result that Curcumin could reduce the proliferation and induced apoptosis of human melanoma A375 cells. Meanwhile, IC 50 of Curcumin on A375 cells is 80μM at 48h. In addition, Curcumin caused oxidative stress through inducing further ROS burst, decreasing GSH, and wrecking mitochondria membrane potential (MMP), which were reversed by ROS inhibitor N-acetylcysteine (NAC). Moreover, MMP disruption led to the release of Cytochrome c from mitochondria and subsequently led to intracellular apoptosis. Furthermore, we found that ROS-dependent HIF-1α and its downstream proteins also play an important role on Curcumin induced apoptosis. In conclusion, our results shed new lights on the therapy of melanoma that Curcumin may be a promising candidate. Copyright © 2017. Published by Elsevier Masson SAS.

  1. MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence.

    Directory of Open Access Journals (Sweden)

    Sujatha Venkataraman

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are a class of short non-coding RNAs that regulate cell homeostasis by inhibiting translation or degrading mRNA of target genes, and thereby can act as tumor suppressor genes or oncogenes. The role of microRNAs in medulloblastoma has only recently been addressed. We hypothesized that microRNAs differentially expressed during normal CNS development might be abnormally regulated in medulloblastoma and are functionally important for medulloblastoma cell growth. METHODOLOGY AND PRINCIPAL FINDINGS: We examined the expression of microRNAs in medulloblastoma and then investigated the functional role of one specific one, miR-128a, in regulating medulloblastoma cell growth. We found that many microRNAs associated with normal neuronal differentiation are significantly down regulated in medulloblastoma. One of these, miR-128a, inhibits growth of medulloblastoma cells by targeting the Bmi-1 oncogene. In addition, miR-128a alters the intracellular redox state of the tumor cells and promotes cellular senescence. CONCLUSIONS AND SIGNIFICANCE: Here we report the novel regulation of reactive oxygen species (ROS by microRNA 128a via the specific inhibition of the Bmi-1 oncogene. We demonstrate that miR-128a has growth suppressive activity in medulloblastoma and that this activity is partially mediated by targeting Bmi-1. This data has implications for the modulation of redox states in cancer stem cells, which are thought to be resistant to therapy due to their low ROS states.

  2. UV-B inhibition of hypocotyl growth in etiolated Arabidopsis thaliana seedlings is a consequence of cell cycle arrest initiated by photodimer accumulation

    Science.gov (United States)

    Biever, Jessica J.; Brinkman, Doug; Gardner, Gary

    2014-01-01

    Ultraviolet (UV) radiation is an important constituent of sunlight that determines plant morphology and growth. It induces photomorphogenic responses but also causes damage to DNA. Arabidopsis mutants of the endonucleases that function in nucleotide excision repair, xpf-3 and uvr1-1, showed hypersensitivity to UV-B (280–320nm) in terms of inhibition of hypocotyl growth. SOG1 is a transcription factor that functions in the DNA damage signalling response after γ-irradiation. xpf mutants that carry the sog1-1 mutation showed hypocotyl growth inhibition after UV-B irradiation similar to the wild type. A DNA replication inhibitor, hydroxyurea (HU), also inhibited hypocotyl growth in etiolated seedlings, but xpf-3 was not hypersensitive to HU. UV-B irradiation induced accumulation of the G2/M-specific cell cycle reporter construct CYCB1;1-GUS in wild-type Arabidopsis seedlings that was consistent with the expected accumulation of photodimers and coincided with the time course of hypocotyl growth inhibition after UV-B treatment. Etiolated mutants of UVR8, a recently described UV-B photoreceptor gene, irradiated with UV-B showed inhibition of hypocotyl growth that was not different from that of the wild type, but they lacked UV-B-specific expression of chalcone synthase (CHS), as expected from previous reports. CHS expression after UV-B irradiation was not different in xpf-3 compared with the wild type, nor was it altered after HU treatment. These results suggest that hypocotyl growth inhibition by UV-B light in etiolated Arabidopsis seedlings, a photomorphogenic response, is dictated by signals originating from UV-B absorption by DNA that lead to cell cycle arrest. This process occurs distinct from UVR8 and its signalling pathway responsible for CHS induction. PMID:24591052

  3. Heat Inactivation of Garlic (Allium sativum) Extract Abrogates Growth Inhibition of HeLa Cells.

    Science.gov (United States)

    Chintapalli, Renuka; Murray, Matthew J J; Murray, James T

    2016-07-01

    The potential anticancer properties of garlic (Allium sativum) may depend on the method of preparation and its storage. Storage of garlic has not been thoroughly investigated to determine whether anticancer properties are retained. Garlic was prepared and processed to mimic normal options for storage and preparation for consumption. Cytotoxicity was determined by crystal violet assay and mechanisms of cytotoxicity were established by microscopy, SDS-PAGE, and Western immunoblotting. Significant (P < 0.0001) cytotoxicity was observed in all preparations, except with boiled (cooked) garlic. Depending on the method of storage, garlic extract induced either type I or type II programmed cell death, detectable by caspase 9 cleavage, or Poly (adenosine diphosphate-ribose) polymerase (PARP) cleavage and LC3-II accumulation, respectively. The conflicting literature on the anticancer properties of garlic may be explained by differences in processing and storage. This study has highlighted that the potency of the antiproliferative properties of cooked garlic, compared to the uncooked form, is diminished in HeLa cells.

  4. HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth.

    Science.gov (United States)

    Naksuriya, Ornchuma; Shi, Yang; van Nostrum, Cornelus F; Anuchapreeda, Songyot; Hennink, Wim E; Okonogi, Siriporn

    2015-08-01

    Curcumin (CM) has been reported as a potential anticancer agent. However, its pharmaceutical applications as therapeutic agent are hampered because of its poor aqueous solubility. The present study explores the advantages of polymeric micelles composed of block copolymers of methoxypoly(ethylene glycol) (mPEG) and N-(2-hydroxypropyl) methacrylamide (HPMA) modified with monolactate, dilactate and benzoyl side groups to enhance CM solubility and inhibitory activity against cancer cells. Amphiphilic block copolymers, ω-methoxypoly(ethylene glycol)-b-(N-(2-benzoyloxypropyl) methacrylamide) (PEG-HPMA-Bz) were synthesized and characterized by (1)H NMR and GPC. One polymer with a molecular weight of 28,000Da was used to formulate CM and compared with other aromatic substituted polymers. CM was loaded by a fast heating method (PEG-HPMA-DL and PEG-HPMA-Bz-L) and a nanoprecipitation method (PEG-HPMA-Bz). Physicochemical characteristics and cytotoxicity/cytocompatibility of the CM loaded polymeric micelles were evaluated. It was found that HPMA-based polymeric micelles significantly enhanced the solubility of CM. The PEG-HPMA-Bz micelles showed the best solubilization properties. CM loaded polymeric micelles showed sustained release of the loading CM for more than 20days. All of CM loaded polymeric micelles formulations showed a significantly potent cytotoxic effect against three cancer cell lines. HPMA-based polymeric micelles are therefore promising nanodelivery systems of CM for cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Enhanced Growth Inhibition of Osteosarcoma by Cytotoxic Polymerized Liposomal Nanoparticles Targeting the Alcam Cell Surface Receptor

    Directory of Open Access Journals (Sweden)

    Noah Federman

    2012-01-01

    Full Text Available Osteosarcoma is the most common primary malignancy of bone in children, adolescents, and adults. Despite extensive surgery and adjuvant aggressive high-dose systemic chemotherapy with potentially severe bystander side effects, cure is attainable in about 70% of patients with localized disease and only 20%–30% of those patients with metastatic disease. Targeted therapies clearly are warranted in improving our treatment of this adolescent killer. However, a lack of osteosarcoma-associated/specific markers has hindered development of targeted therapeutics. We describe a novel osteosarcoma-associated cell surface antigen, ALCAM. We, then, create an engineered anti-ALCAM-hybrid polymerized liposomal nanoparticle immunoconjugate (α-AL-HPLN to specifically target osteosarcoma cells and deliver a cytotoxic chemotherapeutic agent, doxorubicin. We have demonstrated that α-AL-HPLNs have significantly enhanced cytotoxicity over untargeted HPLNs and over a conventional liposomal doxorubicin formulation. In this way, α-AL-HPLNs are a promising new strategy to specifically deliver cytotoxic agents in osteosarcoma.

  6. Glycation-assisted synthesized gold nanoparticles inhibit growth of bone cancer cells.

    Science.gov (United States)

    Rahim, Moniba; Iram, Sana; Khan, Mohd Sajid; Khan, M Salman; Shukla, Ankur R; Srivastava, A K; Ahmad, Saheem

    2014-05-01

    This study presents a novel approach to synthesize glycogenic gold nanoparticles (glycogenic GNps) capped with glycated products (Schiff's base, Heyns products, fructosylamine etc.). These glycogenic GNps have been found to be active against human osteosarcoma cell line (Saos-2) with an IC50 of 0.187 mM, while the normal human embryonic lung cell line (L-132) remained unaffected up to 1mM concentration. The size of glycogenic GNps can also be controlled by varying the time of incubation of gold solution. Glycation reactions involving a combination of fructose and HSA (Human Serum Albumin) were found to be effective in the reduction of gold to glycogenic GNps whereas glucose in combination with HSA did not result in the reduction of gold. The progress of the reaction was followed using UV-visible spectroscopy and NBT (Nitroblue tetrazolium) assay. The glycogenic GNps were found to be spherical in shape with an average size of 24.3 nm, in a stable emulsion. These GNps were characterized using UV-visible spectroscopy, zeta potential analysis, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Effects of short-hairpin RNA-inhibited {beta}-catenin expression on the growth of human multiple myeloma cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Wenqing, E-mail: liangwenqing_1234@126.com [Department of Orthopaedics, Shaoxing People' s Hospital, 568 Zhongxing North Road, Shaoxing 312000 (China); Yang, Chengwei [Department of Spinal Surgery, Lanzhou General Hospital, Lanzhou Military Area Command, 333 Nanbinhe Road, Lanzhou 730050 (China); Qian, Yu [Department of Orthopaedics, Shaoxing People' s Hospital, 568 Zhongxing North Road, Shaoxing 312000 (China); Fu, Qiang, E-mail: chyygklwq@hotmail.com [Department of Orthopaedics, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer {beta}-Catenin expression were markedly down-regulated by CTNNB1 shRNA. Black-Right-Pointing-Pointer CTNNB1 shRNA could inhibit the proliferation of RPMI8226 cells. Black-Right-Pointing-Pointer Significantly profound apoptotic cell death in CTNNB1 shRNA cells. Black-Right-Pointing-Pointer In vivo, CTNNB1 silence led to a growth inhibition of myeloma growth. Black-Right-Pointing-Pointer c-myc and {beta}-catenin in the expression cells of cleaved caspase-3 were increased. -- Abstract: Multiple myeloma (MM) is thrombogenic as a consequence of multiple hemostatic effects. Overexpression of {beta}-catenin has been observed in several types of malignant tumors, including MM. However, the relationship between {beta}-catenin expression and MM remains unclear. In the present study, RNA interference was used to inhibit {beta}-catenin expression in RPMI8226 cells. RT-PCR and Western blotting analyses showed that {beta}-catenin mRNA and protein expression were markedly down-regulated by CTNNB1 shRNA. Western blotting showed that the protein levels of cyclin D1 and glutamine synthetase were downregulated and supported the transcriptional regulatory function of {beta}-catenin. The MTT assay showed that CTNNB1 shRNA could have significant inhibitory effects on the proliferation of RPMI8226 cells. The TOPflash reporter assay demonstrated significant downregulation after CTNNB1 shRNA transfection in RPMI8226 cells. Flow cytometric analyses also showed significantly profound apoptosis in CTNNB1 shRNA cells. We found CTNNB1 silence led to growth inhibition of MM growth in vivo. Immunohistochemical analyses showed that c-myc and {beta}-catenin were reduced in CTNNB1 shRNA tumor tissues, but that expression of cleaved caspase-3 was increased. These results show that {beta}-catenin could be a new therapeutic agent that targets the biology of MM cells.

  8. AS1411-Induced Growth Inhibition of Glioma Cells by Up-Regulation of p53 and Down-Regulation of Bcl-2 and Akt1 via Nucleolin.

    Directory of Open Access Journals (Sweden)

    Ye Cheng

    Full Text Available AS1411 binds nucleolin (NCL and is the first oligodeoxynucleotide aptamer to reach phase I and II clinical trials for the treatment of several cancers. However, the mechanisms by which AS1411 targets and kills glioma cells and tissues remain unclear. Here we report that AS1411 induces cell apoptosis and cycle arrest, and inhibits cell viability by up-regulation of p53 and down-regulation of Bcl-2 and Akt1 in human glioma cells. NCL was overexpressed in both nucleus and cytoplasm in human glioma U87, U251 and SHG44 cells compared to normal human astrocytes (NHA. AS1411 bound NCL and inhibited the proliferation of glioma cells but not NHA, which was accompanied with up-regulation of p53 and down-regulation of Bcl-2 and Akt1. Moreover, AS1411 treatment resulted in the G2/M cell cycle arrest in glioma cells, which was however abolished by overexpression of NCL. Further, AS1411 induced cell apoptosis, which was prevented by silencing of p53 and overexpression of Bcl-2. In addition, AS1411 inhibited the migration and invasion of glioma cells in an Akt1-dependent manner. Importantly, AS1411 inhibited the growth of glioma xenograft and prolonged the survival time of glioma tumor-bearing mice. These results revealed a promising treatment of glioma by oligodeoxynucleotide aptamer.

  9. Induction of reactive oxygen intermediates-dependent programmed cell death in human malignant ex vivo glioma cells and inhibition of the vascular endothelial growth factor production by taurolidine.

    Science.gov (United States)

    Rodak, Roksana; Kubota, Hisashi; Ishihara, Hideyuki; Eugster, Hans-Pietro; Könü, Dilek; Möhler, Hanns; Yonekawa, Yasuhiro; Frei, Karl

    2005-06-01

    Taurolidine, a derivative of the amino acid taurin, was recently found to display a potent antineoplastic effect both in vitro and in vivo. The authors therefore initiated studies to assess the potential antineoplastic activity of taurolidine in human glioma cell lines and in ex vivo malignant cell cultures. They also studied the mechanisms that induce cell death and the impact of taurolidine on tumor-derived vascular endothelial growth factor (VEGF) production. Cytotoxicity and clonogenic assays were performed using crystal violet staining. In the cytotoxicity assay 100% of glioma cell lines (eight of eight) and 74% of ex vivo glioma cultures (14 of 19) demonstrated sensitivity to taurolidine, with a mean median effective concentration (EC50) of 51 +/- 28 microg/ml and 56 +/- 23 microg/ml, respectively. Colony formation was inhibited by taurolidine, with a mean EC50 of 7 +/- 3 microg/ml for the cell lines and a mean EC50 of 3.5 +/- 1.7 microg/ml for the ex vivo glioma cultures. On observing this high activity of taurolidine in both assays, the authors decided to evaluate its cell death mechanisms. Fragmentation of DNA, externalization of phosphatidylserine, activation of poly(adenosine diphosphate-ribose) polymerase, loss of the mitochondrial membrane potential followed by a release of apoptosis-inducing factor, and typical apoptotic features were found after taurolidine treatment. Cell death was preceded by the generation of reactive O2 intermediates, which was abrogated by N-acetylcysteine but not by benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Moreover, taurolidine also induced suppression of VEGF production on the protein and messenger RNA level, as shown by an enzyme-linked immunosorbent assay and by reverse transcription-polymerase chain reaction. Given all these findings, taurolidine may be a promising new agent in the treatment of malignant gliomas; it displays a combination of antineoplastic and antiangiogenic activities, inducing tumor cell

  10. SL-401 and SL-501, Targeted Therapeutics Directed at the Interleukin-3 Receptor, Inhibit the Growth of Leukaemic Cells and Stem Cells in Advanced Phase Chronic Myeloid Leukaemia

    Science.gov (United States)

    Frolova, Olga; Benito, Juliana; Brooks, Chris; Wang, Rui-Yu; Korchin, Borys; Rowinsky, Eric K.; Cortes, Jorge; Kantarjian, Hagop; Andreeff, Michael; Frankel, Arthur E.; Konopleva, Marina

    2014-01-01

    SUMMARY While imatinib and other tyrosine kinase inhibitors (TKIs) are highly efficacious in the treatment of chronic myeloid leukaemia (CML), some patients become refractory to these therapies. After confirming that interleukin-3 receptor (IL3R, CD123) is highly expressed on CD34+/CD38− BCR-ABL1+ CML stem cells, we investigated whether targeting IL3R with diphtheria toxin (DT)-IL3 fusion proteins SL-401 (DT388-IL3) and SL-501 (DT388-IL3[K116W]) could eradicate these stem cells. SL-401 and SL-501 inhibited cell growth and induced apoptosis in the KBM5 cell line and its TKI-resistant KBM5-STI subline. Combinations of imatinib with these agents increased apoptosis in KBM5 and in primary CML cells. In six primary CML samples, including CML cells harbouring the ABL1 T315I mutation, SL-401 and SL-501 decreased the absolute numbers of viable CD34+/CD38−/CD123+ CML progenitor cells by inducing apoptosis. IL3-targeting agents reduced clonogenic growth and diminished the fraction of primitive long-term culture-initiating cells in samples from patients with advanced phase CML that were resistant to TKIs or harboured an ABL1 mutation. Survival was also extended in a mouse model of primary TKI-resistant CML blast crisis. These data suggest that the DT-IL3 fusion proteins, SL-401 and SL-501, deplete CML stem cells and may increase the effectiveness of current CML treatment, which principally targets tumour bulk. PMID:24942980

  11. Lactoferrin release and interleukin-1, interleukin-6, and tumor necrosis factor production by human polymorphonuclear cells stimulated by various lipopolysaccharides: relationship to growth inhibition of Candida albicans.

    OpenAIRE

    Palma, C; Cassone, A; Serbousek, D; Pearson, C A; Djeu, J Y

    1992-01-01

    Lipopolysaccharides (LPSs) from Escherichia coli, Serratia marcescens, and Salmonella typhimurium, at doses from 1 to 100 ng/ml, strongly enhanced growth inhibition of Candida albicans by human polymorphonuclear leukocytes (PMN) in vitro. Flow cytometry analysis demonstrated that LPS markedly augmented phagocytosis of Candida cells by increasing the number of yeasts ingested per neutrophil as well as the number of neutrophils capable of ingesting fungal cells. LPS activation caused augmented ...

  12. Non-small-cell lung cancer cells combat epidermal growth factor receptor tyrosine kinase inhibition through immediate adhesion-related responses

    Directory of Open Access Journals (Sweden)

    Wang HY

    2016-05-01

    Full Text Available Hsian-Yu Wang,1,2 Min-Kung Hsu,3,4 Kai-Hsuan Wang,1 Ching-Ping Tseng,2,4 Feng-Chi Chen,3,4 John T-A Hsu1,4 1Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes (NHRI, Zhunan, Miaoli County, 2Institute of Molecular Medicine and Bioengineering, National Chiao Tung University (NCTU, Hsinchu, 3Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes (NHRI, Zhunan, Miaoli County, 4Department of Biological Science and Technology, National Chiao Tung University (NCTU, Hsinchu, Taiwan, Republic of China Background: Epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKIs, such as gefitinib, erlotinib, and afatinib, have greatly improved treatment efficacy in non-small cell lung cancer (NSCLC patients with drug-sensitive EGFR mutations. However, in some TKI responders, the benefits of such targeted therapies are limited by the rapid development of resistance, and strategies to overcome this resistance are urgently needed. Studies of drug resistance in cancer cells typically involve long term in vitro induction to obtain stably acquired drug-resistant cells followed by elucidation of resistance mechanisms, but the immediate responses of cancer cells upon drug treatment have been ignored. The aim of this study was to investigate the immediate responses of NSCLC cells upon treatment with EGFR TKIs.Results: Both NSCLC cells, ie, PC9 and H1975, showed immediate enhanced adhesion-related responses as an apoptosis-countering mechanism upon first-time TKI treatment. By gene expression and pathway analysis, adhesion-related pathways were enriched in gefitinib-treated PC9 cells. Pathway inhibition by small-hairpin RNAs or small-molecule drugs revealed that within hours of EGFR TKI treatment, NSCLC cells used adhesion-related responses to combat the drugs. Importantly, we show here that the Src family inhibitor, dasatinib, dramatically inhibits

  13. Cantharidin Inhibits the Growth of Triple-Negative Breast Cancer Cells by Suppressing Autophagy and Inducing Apoptosis in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Hong-chang Li

    2017-10-01

    Full Text Available Background/Aims: Cantharidin, a type of terpenoid secreted by the blister beetle Mylabris phalerata (Pallas, has attracted great attention in cancer therapy because of its potential anti-cancer activities. Here, we report the effects on apoptosis and autophagy in human triple-negative breast cancer (TNBC cell lines after treatment with cantharidin and attempt to elucidate the underlying mechanisms. Methods: MDA-MB-231 and MDA-MB-468 cells were treated with cantharidin and cell proliferation was examined using CCK-8 and clone formation assays. The expression of apoptosis- and autophagy-associated proteins was detected by western blotting. Cells were infected with lentivirus carrying the Beclin-1 gene, and MDA-MB-231-beclin1 (MB231-Bec and MDA-MB-468-beclin-1(MB468-Bec cells stably expressing Beclin-1 were established. Autophagic vacuoles in cells were observed with LC3 staining using fluorescence microscopy, and apoptotic cells were detected via flow cytometry. Tumor growth was assessed by subcutaneous inoculation of TNBC cells into BALB/c nude mice. Results: Cantharidin inhibited the proliferation of MDA-MB-231 and MDA-MB-468 cells, and induced cell apoptosis. Cantharidin additionally inhibited the conversion of LC3 I to LC3 II and autophagosome formation by suppressing the expression of Beclin-1. Furthermore, overexpression of Beclin-1 in TNBC cells attenuated the cytotoxicity of cantharidin. In vivo, cantharidin inhibited the growth of MDA-MB-231 and MDA-MB-468 xenografts in nude mice by suppressing autophagy and inducing apoptosis, and Beclin-1 overexpression in TNBC cells reduced the efficacy of cantharidin. Conclusions: Cantharidin inhibits autophagy by suppressing Beclin-1 expression and inducing apoptosis of TNBC cells in vitro and in vivo, thereby representing a potential strategy for the treatment of TNBC.

  14. MicroRNA-145 Inhibits Cell Migration and Invasion and Regulates Epithelial-Mesenchymal Transition (EMT) by Targeting Connective Tissue Growth Factor (CTGF) in Esophageal Squamous Cell Carcinoma.

    Science.gov (United States)

    Han, Qiang; Zhang, Hua-Yong; Zhong, Bei-Long; Wang, Xiao-Jing; Zhang, Bing; Chen, Hua

    2016-10-23

    BACKGROUND This study investigated the mechanism of miR-145 in targeting connective tissue growth factor (CTGF), which affects the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of ESCC cells. MATERIAL AND METHODS A total of 50 ESCC tissues and their corresponding normal adjacent esophageal tissue samples were collected. Then, miR-145 expression in both ESCC clinical specimens and cell lines was detected using quantitative real-time PCR. CTGF protein was detected using immunohistochemistry. Dual luciferase reporter gene assay was employed to assess the effect of miR-145 on the 3'UTR luciferase activity of CTGF. Eca109 cells were transfected with miR-145 mimics and CTGF siRNA, respectively, and changes in cellular proliferation, migration, and invasion were detected via MTT assay, wound-healing assay, and Transwell assay, respectively. Western blotting assay was used to detect the expression of marker genes related to EMT. RESULTS MiR-145 was significantly down-regulated in ESCC tissues and cell lines compared with normal tissues and cell lines (Ptissues was than in normal adjacent esophageal tissues (Ptissues and cell lines, while the protein expression of CTGF exhibited the opposite trend. MiR-145 inhibited the proliferation, migration, invasiveness, and the EMT process of ESCC cells through targeted regulation of CTGF expression.

  15. Inhibition of connective tissue growth factor (CTGF/CCN2) expression decreases the survival and myogenic differentiation of human rhabdomyosarcoma cells.

    Science.gov (United States)

    Croci, Stefania; Landuzzi, Lorena; Astolfi, Annalisa; Nicoletti, Giordano; Rosolen, Angelo; Sartori, Francesca; Follo, Matilde Y; Oliver, Noelynn; De Giovanni, Carla; Nanni, Patrizia; Lollini, Pier-Luigi

    2004-03-01

    Connective tissue growth factor (CTGF/CCN2), a cysteine-rich protein of the CCN (Cyr61, CTGF, Nov) family of genes, emerged from a microarray screen of genes expressed by human rhabdomyosarcoma cells. Rhabdomyosarcoma is a soft tissue sarcoma of childhood deriving from skeletal muscle cells. In this study, we investigated the role of CTGF in rhabdomyosarcoma. Human rhabdomyosarcoma cells of the embryonal (RD/12, RD/18, CCA) and the alveolar histotype (RMZ-RC2, SJ-RH4, SJ-RH30), rhabdomyosarcoma tumor specimens, and normal skeletal muscle cells expressed CTGF. To determine the function of CTGF, we treated rhabdomyosarcoma cells with a CTGF antisense oligonucleotide or with a CTGF small interfering RNA (siRNA). Both treatments inhibited rhabdomyosarcoma cell growth, suggesting the existence of a new autocrine loop based on CTGF. CTGF antisense oligonucleotide-mediated growth inhibition was specifically due to a significant increase in apoptosis, whereas cell proliferation was unchanged. CTGF antisense oligonucleotide induced a strong decrease in the level of myogenic differentiation of rhabdomyosarcoma cells, whereas the addition of recombinant CTGF significantly increased the proportion of myosin-positive cells. CTGF emerges as a survival and differentiation factor and could be a new therapeutic target in human rhabdomyosarcoma.

  16. Growth-inhibiting effect of tumor necrosis factor on human umbilical vein endothelial cells is enhanced with advancing age in vitro

    International Nuclear Information System (INIS)

    Shimada, Y.; Kaji, K.; Ito, H.; Noda, K.; Matsuo, M.

    1990-01-01

    We have examined the effects of in vitro aging on the growth capacity of human umbilical vein endothelial cells (HUVECs) under the influence of tumor necrosis factor (TNF) with or without interferon-gamma (IFN-gamma). The growth and colony-forming abilities of control cells were impaired with advancing age in vitro, especially at later stages (more than 70-80% of life span completed). It was found that treatment with TNF inhibited growth and colony-forming efficiency at any in vitro age. The effects of TNF were shown to increase with increasing in vitro age, as reflected by a more pronounced increase in doubling times, a decrease in saturation density, and a reduction in colony-forming efficiency. However, the characteristics of TNF receptors, including the dissociation constant, and the number of TNF-binding sites per cell-surface area remained rather constant. The effect of TNF was augmented by IFN-gamma at a dose that alone affected growth and colony formation only slightly. The augmentation by IFN-gamma was also found to depend on in vitro age; the synergy with TNF in the deterioration of colony-forming ability was observed only in aged cells. These results suggest that the intrinsic responsiveness of HUVECs to growth-inhibiting factors, as well as to growth-stimulating factors, changes during aging in vitro

  17. Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp transcription factors

    Directory of Open Access Journals (Sweden)

    Pathi Satya

    2011-08-01

    Full Text Available Abstract Background Betulinic acid (BA inhibits growth of several cancer cell lines and tumors and the effects of BA have been attributed to its mitochondriotoxicity and inhibition of multiple pro-oncogenic factors. Previous studies show that BA induces proteasome-dependent degradation of specificity protein (Sp transcription factors Sp1, Sp3 and Sp4 in prostate cancer cells and this study focused on the mechanism of action of BA in colon cancer cells. Methods The effects of BA on colon cancer cell proliferation and apoptosis and tumor growth in vivo were determined using standardized assays. The effects of BA on Sp proteins and Sp-regulated gene products were analyzed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a and ZBTB10 mRNA expression. Results BA inhibited growth and induced apoptosis in RKO and SW480 colon cancer cells and inhibited tumor growth in athymic nude mice bearing RKO cells as xenograft. BA also decreased expression of Sp1, Sp3 and Sp4 transcription factors which are overexpressed in colon cancer cells and decreased levels of several Sp-regulated genes including survivin, vascular endothelial growth factor, p65 sub-unit of NFκB, epidermal growth factor receptor, cyclin D1, and pituitary tumor transforming gene-1. The mechanism of action of BA was dependent on cell context, since BA induced proteasome-dependent and proteasome-independent downregulation of Sp1, Sp3 and Sp4 in SW480 and RKO cells, respectively. In RKO cells, the mechanism of BA-induced repression of Sp1, Sp3 and Sp4 was due to induction of reactive oxygen species (ROS, ROS-mediated repression of microRNA-27a, and induction of the Sp repressor gene ZBTB10. Conclusions These results suggest that the anticancer activity of BA in colon cancer cells is due, in part, to downregulation of Sp1, Sp3 and Sp4 transcription factors; however, the mechanism of this response is cell context-dependent.

  18. Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors

    International Nuclear Information System (INIS)

    Chintharlapalli, Sudhakar; Papineni, Sabitha; Lei, Ping; Pathi, Satya; Safe, Stephen

    2011-01-01

    Betulinic acid (BA) inhibits growth of several cancer cell lines and tumors and the effects of BA have been attributed to its mitochondriotoxicity and inhibition of multiple pro-oncogenic factors. Previous studies show that BA induces proteasome-dependent degradation of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 in prostate cancer cells and this study focused on the mechanism of action of BA in colon cancer cells. The effects of BA on colon cancer cell proliferation and apoptosis and tumor growth in vivo were determined using standardized assays. The effects of BA on Sp proteins and Sp-regulated gene products were analyzed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a) and ZBTB10 mRNA expression. BA inhibited growth and induced apoptosis in RKO and SW480 colon cancer cells and inhibited tumor growth in athymic nude mice bearing RKO cells as xenograft. BA also decreased expression of Sp1, Sp3 and Sp4 transcription factors which are overexpressed in colon cancer cells and decreased levels of several Sp-regulated genes including survivin, vascular endothelial growth factor, p65 sub-unit of NFκB, epidermal growth factor receptor, cyclin D1, and pituitary tumor transforming gene-1. The mechanism of action of BA was dependent on cell context, since BA induced proteasome-dependent and proteasome-independent downregulation of Sp1, Sp3 and Sp4 in SW480 and RKO cells, respectively. In RKO cells, the mechanism of BA-induced repression of Sp1, Sp3 and Sp4 was due to induction of reactive oxygen species (ROS), ROS-mediated repression of microRNA-27a, and induction of the Sp repressor gene ZBTB10. These results suggest that the anticancer activity of BA in colon cancer cells is due, in part, to downregulation of Sp1, Sp3 and Sp4 transcription factors; however, the mechanism of this response is cell context-dependent

  19. Optimizing bone morphogenic protein 4-mediated human embryonic stem cell differentiation into trophoblast-like cells using fibroblast growth factor 2 and transforming growth factor-β/activin/nodal signalling inhibition.

    Science.gov (United States)

    Koel, Mariann; Võsa, Urmo; Krjutškov, Kaarel; Einarsdottir, Elisabet; Kere, Juha; Tapanainen, Juha; Katayama, Shintaro; Ingerpuu, Sulev; Jaks, Viljar; Stenman, Ulf-Hakan; Lundin, Karolina; Tuuri, Timo; Salumets, Andres

    2017-09-01

    Several studies have demonstrated that human embryonic stem cells (hESC) can be differentiated into trophoblast-like cells if exposed to bone morphogenic protein 4 (BMP4) and/or inhibitors of fibroblast growth factor 2 (FGF2) and the transforming growth factor beta (TGF-β)/activin/nodal signalling pathways. The goal of this study was to investigate how the inhibitors of these pathways improve the efficiency of hESC differentiation when compared with basic BMP4 treatment. RNA sequencing was used to analyse the effects of all possible inhibitor combinations on the differentiation of hESC into trophoblast-like cells over 12 days. Genes differentially expressed compared with untreated cells were identified at seven time points. Additionally, expression of total human chorionic gonadotrophin (HCG) and its hyperglycosylated form (HCG-H) were determined by immunoassay from cell culture media. We showed that FGF2 inhibition with BMP4 activation up-regulates syncytiotrophoblast-specific genes (CGA, CGB and LGALS16), induces several molecular pathways involved in embryo implantation and triggers HCG-H production. In contrast, inhibition of the TGF-β/activin/nodal pathway decreases the ability of hESC to form trophoblast-like cells. Information about the conditions needed for hESC differentiation toward trophoblast-like cells helps us to find an optimal model for studying the early development of human trophoblasts in normal and in complicated pregnancy. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  20. Transforming growth factor-beta, but not ciliary neurotrophic factor, inhibits DNA synthesis of adrenal medullary cells in vitro

    DEFF Research Database (Denmark)

    Wolf, N; Krohn, K; Bieger, S

    1999-01-01

    by the neuroendocrine chromaffin cells, which also express the transforming growth factor-beta receptor type II. In contrast to the developmentally related sympathetic neurons, chromaffin cells continue to proliferate throughout postnatal life. Using 5-bromo-2'-deoxyuridine pulse labeling and tyrosine hydroxylase...... immunocytochemistry as a marker for young postnatal rat chromaffin cells, we show that treatment with fibroblast growth factor-2 (1 nM) and insulin-like growth factor-II (10 nM) increased the fraction of 5-bromo-2'-deoxyuridine-labeled nuclei from 1% to about 40% of the cells in the absence of serum. In the presence...... of fibroblast growth factor-2 and insulin-like growth factor-II, transforming growth factor-beta1 (0.08 nM) reduced 5-bromo-2'-deoxyuridine labeling by about 50%, without interfering with chromaffin cell survival or death. Doses lower and higher than 0.08 nM were less effective. Similar effects were seen...

  1. Odontogenic ameloblast-associated protein (ODAM) inhibits growth and migration of human melanoma cells and elicits PTEN elevation and inactivation of PI3K/AKT signaling

    International Nuclear Information System (INIS)

    Foster, James S; Fish, Lindsay M; Phipps, Jonathan E; Bruker, Charles T; Lewis, James M; Bell, John L; Solomon, Alan; Kestler, Daniel P

    2013-01-01

    The Odontogenic Ameloblast-associated Protein (ODAM) is expressed in a wide range of normal epithelial, and neoplastic tissues, and we have posited that ODAM serves as a novel prognostic biomarker for breast cancer and melanoma. Transfection of ODAM into breast cancer cells yields suppression of cellular growth, motility, and in vivo tumorigenicity. Herein we have extended these studies to the effects of ODAM on cultured melanoma cell lines. The A375 and C8161 melanoma cell lines were stably transfected with ODAM and assayed for properties associated with tumorigenicity including cell growth, motility, and extracellular matrix adhesion. In addition, ODAM–transfected cells were assayed for signal transduction via AKT which promotes cell proliferation and survival in many neoplasms. ODAM expression in A375 and C8161 cells strongly inhibited cell growth and motility in vitro, increased cell adhesion to extracellular matrix, and yielded significant cytoskeletal/morphologic rearrangement. Furthermore, AKT activity was downregulated by ODAM expression while an increase was noted in expression of the PTEN (phosphatase and tensin homolog on chromosome 10) tumor suppressor gene, an antagonist of AKT activation. Increased PTEN in ODAM-expressing cells was associated with increases in PTEN mRNA levels and de novo protein synthesis. Silencing of PTEN expression yielded recovery of AKT activity in ODAM-expressing melanoma cells. Similar PTEN elevation and inhibition of AKT by ODAM was observed in MDA-MB-231 breast cancer cells while ODAM expression had no effect in PTEN-deficient BT-549 breast cancer cells. The apparent anti-neoplastic effects of ODAM in cultured melanoma and breast cancer cells are associated with increased PTEN expression, and suppression of AKT activity. This association should serve to clarify the clinical import of ODAM expression and any role it may serve as an indicator of tumor behavior

  2. Structural analysis and unique molecular recognition properties of a Bauhinia forficata lectin that inhibits cancer cell growth.

    Science.gov (United States)

    Lubkowski, Jacek; Durbin, Sarah V; Silva, Mariana C C; Farnsworth, David; Gildersleeve, Jeffrey C; Oliva, Maria Luiza V; Wlodawer, Alexander

    2017-02-01

    Lectins have been used at length for basic research and clinical applications. New insights into the molecular recognition properties enhance our basic understanding of carbohydrate-protein interactions and aid in the design/development of new lectins. In this study, we used a combination of cell-based assays, glycan microarrays, and X-ray crystallography to evaluate the structure and function of the recombinant Bauhinia forficata lectin (BfL). The lectin was shown to be cytostatic for several cancer cell lines included in the NCI-60 panel; in particular, it inhibited growth of melanoma cancer cells (LOX IMVI) by over 95%. BfL is dimeric in solution and highly specific for binding of oligosaccharides and glycopeptides with terminal N-acetylgalactosamine (GalNAc). BfL was found to have especially strong binding (apparent K d  = 0.5-1.0 nm) to the tumor-associated Tn antigen. High-resolution crystal structures were determined for the ligand-free lectin, as well as for its complexes with three Tn glycopeptides, globotetraose, and the blood group A antigen. Extensive analysis of the eight crystal structures and comparison to structures of related lectins revealed several unique features of GalNAc recognition. Of special note, the carboxylate group of Glu126, lining the glycan-binding pocket, forms H-bonds with both the N-acetyl of GalNAc and the peptide amido group of Tn antigens. Stabilization provided by Glu126 is described here for the first time for any GalNAc-specific lectin. Taken together, the results provide new insights into the molecular recognition of carbohydrates and provide a structural understanding that will enable rational engineering of BfL for a variety of applications. Structural data are available in the PDB under the accession numbers 5T50, 5T52, 5T55, 5T54, 5T5L, 5T5J, 5T5P, and 5T5O. © 2016 Federation of European Biochemical Societies.

  3. Licoricidin inhibits the growth of SW480 human colorectal adenocarcinoma cells in vitro and in vivo by inducing cycle arrest, apoptosis and autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Shuai [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 (China); Tang, Shunan; Li, Kai; Li, Ziwei; Liang, Wenfei; Qiao, Xue; Wang, Qi [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Yu, Siwang, E-mail: swang_yu@bjmu.edu.cn [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Ye, Min, E-mail: yemin@bjmu.edu.cn [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China)

    2017-07-01

    Licorice (Glycyrrhiza uralensis Fisch.) possesses significant anti-cancer activities, but the active ingredients and underlying mechanisms have not been revealed. By screening the cytotoxic activities of 122 licorice compounds against SW480 human colorectal adenocarcinoma cells, we found that licoricidin (LCD) inhibited SW480 cell viability with an IC{sub 50} value of 7.2 μM. Further studies indicated that LCD significantly induced G1/S cell cycle arrest and apoptosis in SW480 cells, accompanied by inhibition of cyclins/CDK1 expression and activation of caspase-dependent pro-apoptotic signaling. Meanwhile, LCD promoted autophagy in SW480 cells, and activated AMPK signaling and inhibited Akt/mTOR pathway. Overexpression of a dominant-negative AMPKα2 abolished LCD-induced inhibition of Akt/mTOR, autophagic and pro-apoptotic signaling pathways, and significantly reversed loss of cell viability, suggesting activation of AMPK is essential for the anti-cancer activity of LCD. In vivo anti-tumor experiments indicated that LCD (20 mg/kg, i.p.) significantly inhibited the growth of SW480 xenografts in nude mice with an inhibitory rate of 43.5%. In addition, we obtained the glycosylated product LCDG by microbial transformation, and found that glycosylation slightly enhanced the in vivo anti-cancer activities of LCD. This study indicates that LCD could inhibit SW480 cells by inducing cycle arrest, apoptosis and autophagy, and is a potential chemopreventive or chemotherapeutic agent against colorectal cancer. - Highlights: • Molecular mechanisms for cytotoxic activity of licoricidin (LCD) were investigated. • LCD promoted autophagy of SW480 cells through AMPK and Akt/mTOR signaling pathways. • Both LCD and its glucoside showed in vivo anti-colorectal cancer activities.

  4. Transforming growth factor-β-induced gene product-h3 inhibits odontoblastic differentiation of dental pulp cells.

    Science.gov (United States)

    Serita, Suguru; Tomokiyo, Atsushi; Hasegawa, Daigaku; Hamano, Sayuri; Sugii, Hideki; Yoshida, Shinichiro; Mizumachi, Hiroyuki; Mitarai, Hiromi; Monnouchi, Satoshi; Wada, Naohisa; Maeda, Hidefumi

    2017-06-01

    The aim of this study was to investigate transforming growth factor-β-induced gene product-h3 (βig-h3) expression in dental pulp tissue and its effects on odontoblastic differentiation of dental pulp cells (DPCs). A rat direct pulp capping model was prepared using perforated rat upper first molars capped with mineral trioxide aggregate cement. Human DPCs (HDPCs) were isolated from extracted teeth. βig-h3 expression in rat dental pulp tissue and HDPCs was assessed by immunostaining. Mineralization of HDPCs was assessed by Alizarin red-S staining. Odontoblast-related gene expression in HDPCs was analyzed by quantitative RT-PCR. Expression of βig-h3 was detected in rat dental pulp tissue, and attenuated by direct pulp capping, while expression of interleukin-1β and tumor necrosis factor-α was increased in exposed pulp tissue. βig-h3 expression was also detected in HDPCs, with reduced expression during odontoblastic differentiation. The above cytokines reduced βig-h3 expression in HDPCs, and promoted their mineralization. Recombinant βig-h3 inhibited the expression of odontoblast-related genes and mineralization of HDPCs, while knockdown of βig-h3 gene expression promoted the expression of odontoblast-related genes in HDPCs. The present findings suggest that βig-h3 in DPCs may be involved in reparative dentin formation and that its expression is likely to negatively regulate this process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. EGCG Inhibits Proliferation, Invasiveness and Tumor Growth by Up-Regulation of Adhesion Molecules, Suppression of Gelatinases Activity, and Induction of Apoptosis in Nasopharyngeal Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Chih-Yeu Fang

    2015-01-01

    Full Text Available (−-Epigallocatechin-3-gallate (EGCG, a major green tea polyphenol, has been shown to inhibit the proliferation of a variety of tumor cells. Epidemiological studies have shown that drinking green tea can reduce the incidence of nasopharyngeal carcinoma (NPC, yet the underlying mechanism is not well understood. In this study, the inhibitory effect of EGCG was tested on a set of Epstein Barr virus-negative and -positive NPC cell lines. Treatment with EGCG inhibited the proliferation of NPC cells but did not affect the growth of a non-malignant nasopharyngeal cell line, NP460hTert. Moreover, EGCG treated cells had reduced migration and invasive properties. The expression of the cell adhesion molecules E-cadherin and β-catenin was found to be up-regulated by EGCG treatment, while the down-regulation of matrix metalloproteinases (MMP-2 and MMP-9 were found to be mediated by suppression of extracellular signal-regulated kinase (ERK phosphorylation and AP-1 and Sp1 transactivation. Spheroid formation by NPC cells in suspension was significantly inhibited by EGCG. Oral administration of EGCG was capable of suppressing tumor growth in xenografted mice bearing NPC tumors. Treatment with EGCG was found to elevate the expression of p53 and p21, and eventually led to apoptosis of NPC cells via caspase 3 activation. The nuclear translocation of NF-κB and β-catenin was also suppressed by EGCG treatment. These results indicate that EGCG can inhibit the proliferation and invasiveness, and induce apoptosis, of NPC cells, making it a promising agent for chemoprevention or adjuvant therapy of NPC.

  6. SENP1 inhibition induces apoptosis and growth arrest of multiple myeloma cells through modulation of NF-κB signaling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jun [Graduate School of Anhui Medical University, Hefei (China); Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Sun, Hui-Yan; Xiao, Feng-Jun; Wang, Hua [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Yang, Yang [Department of Hematology, General Hospital of Air Force, Beijing (China); Wang, Lu; Gao, Chun-Ji [Department of Hematology, PLA General Hospital, Beijing (China); Guo, Zi-Kuan [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Wu, Chu-Tse [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Wang, Li-Sheng, E-mail: Wangls@bmi.ac.cn [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu (China)

    2015-05-01

    SUMO/sentrin specific protease 1 (Senp1) is an important regulation protease in the protein sumoylation, which affects the cell cycle, proliferation and differentiation. The role of Senp1 mediated protein desumoylation in pathophysiological progression of multiple myeloma is unknown. In this study, we demonstrated that Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. Lentivirus-mediated Senp1 knockdown triggers apoptosis and reduces viability, proliferation and colony forming ability of MM cells. The NF-κB family members including P65 and inhibitor protein IkBα play important roles in regulation of MM cell survival and proliferation. We further demonstrated that Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation, leading to inactivation of NF-kB signaling in MM cells. These results delineate a key role for Senp1in IL-6 induced proliferation and survival of MM cells, suggesting it may be a potential new therapeutic target in MM. - Highlights: • Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. • Senp1 knockdown triggers apoptosis and reduces proliferation of MM cells. • Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation.

  7. SENP1 inhibition induces apoptosis and growth arrest of multiple myeloma cells through modulation of NF-κB signaling

    International Nuclear Information System (INIS)

    Xu, Jun; Sun, Hui-Yan; Xiao, Feng-Jun; Wang, Hua; Yang, Yang; Wang, Lu; Gao, Chun-Ji; Guo, Zi-Kuan; Wu, Chu-Tse; Wang, Li-Sheng

    2015-01-01

    SUMO/sentrin specific protease 1 (Senp1) is an important regulation protease in the protein sumoylation, which affects the cell cycle, proliferation and differentiation. The role of Senp1 mediated protein desumoylation in pathophysiological progression of multiple myeloma is unknown. In this study, we demonstrated that Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. Lentivirus-mediated Senp1 knockdown triggers apoptosis and reduces viability, proliferation and colony forming ability of MM cells. The NF-κB family members including P65 and inhibitor protein IkBα play important roles in regulation of MM cell survival and proliferation. We further demonstrated that Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation, leading to inactivation of NF-kB signaling in MM cells. These results delineate a key role for Senp1in IL-6 induced proliferation and survival of MM cells, suggesting it may be a potential new therapeutic target in MM. - Highlights: • Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. • Senp1 knockdown triggers apoptosis and reduces proliferation of MM cells. • Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation

  8. Imatinib mesylate exerts anti-proliferative effects on osteosarcoma cells and inhibits the tumour growth in immunocompetent murine models.

    Directory of Open Access Journals (Sweden)

    Bérengère Gobin

    Full Text Available Osteosarcoma is the most common primary malignant bone tumour characterized by osteoid production and/or osteolytic lesions of bone. A lack of response to chemotherapeutic treatments shows the importance of exploring new therapeutic methods. Imatinib mesylate (Gleevec, Novartis Pharma, a tyrosine kinase inhibitor, was originally developed for the treatment of chronic myeloid leukemia. Several studies revealed that imatinib mesylate inhibits osteoclast differentiation through the M-CSFR pathway and activates osteoblast differentiation through PDGFR pathway, two key cells involved in the vicious cycle controlling the tumour development. The present study investigated the in vitro effects of imatinib mesylate on the proliferation, apoptosis, cell cycle, and migration ability of five osteosarcoma cell lines (human: MG-63, HOS; rat: OSRGA; mice: MOS-J, POS-1. Imatinib mesylate was also assessed as a curative and preventive treatment in two syngenic osteosarcoma models: MOS-J (mixed osteoblastic/osteolytic osteosarcoma and POS-1 (undifferentiated osteosarcoma. Imatinib mesylate exhibited a dose-dependent anti-proliferative effect in all cell lines studied. The drug induced a G0/G1 cell cycle arrest in most cell lines, except for POS-1 and HOS cells that were blocked in the S phase. In addition, imatinib mesylate induced cell death and strongly inhibited osteosarcoma cell migration. In the MOS-J osteosarcoma model, oral administration of imatinib mesylate significantly inhibited the tumour development in both preventive and curative approaches. A phospho-receptor tyrosine kinase array kit revealed that PDGFRα, among 7 other receptors (PDFGFRβ, Axl, RYK, EGFR, EphA2 and 10, IGF1R, appears as one of the main molecular targets for imatinib mesylate. In the light of the present study and the literature, it would be particularly interesting to revisit therapeutic evaluation of imatinib mesylate in osteosarcoma according to the tyrosine-kinase receptor

  9. Role of isothiocyanate conjugate of pterostilbene on the inhibition of MCF-7 cell proliferation and tumor growth in Ehrlich ascitic cell induced tumor bearing mice

    Energy Technology Data Exchange (ETDEWEB)

    Nikhil, Kumar; Sharan, Shruti; Chakraborty, Ajanta [Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India); Bodipati, Naganjaneyulu; Krishna Peddinti, Rama [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India); Roy, Partha, E-mail: paroyfbs@iitr.ernet.in [Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India)

    2014-01-15

    Naturally occurring pterostilbene (PTER) and isothiocyanate (ITC) attract great attention due to their wide range of biological properties, including anti-cancer, anti-leukemic, anti-bacterial and anti-inflammatory activities. A novel class of hybrid compound synthesized by introducing an ITC moiety on PTER backbone was evaluated for its anti-cancer efficacy in hormone-dependent breast cancer cell line (MCF-7) in vitro and Ehrlich ascitic tumor bearing mice model in vivo. The novel hybrid molecule showed significant in vitro anti-cancer activity (IC{sub 50}=25±0.38) when compared to reference compound PTER (IC{sub 50}=65±0.42). The conjugate molecule induced both S and G2/M phase cell cycle arrest as indicated by flow cytometry analysis. In addition, the conjugate induced cell death was characterized by changes in cell morphology, DNA fragmentation, activation of caspase-9, release of cytochrome-c into cytosol and increased Bax: Bcl-2 ratio. The conjugate also suppressed the phosphorylation of Akt and ERK. The conjugate induced cell death was significantly increased in presence of A6730 (a potent Akt1/2 kinase inhibitor) and PD98059 (a specific ERK inhibitor). Moreover, the conjugated PTER inhibited tumor growth in Ehrlich ascitic cell induced tumor bearing mice as observed by reduction in tumor volume compared to untreated animals. Collectively, the pro-apoptotic effect of conjugate is mediated through the activation of caspases, and is correlated with the blockade of the Akt and ERK signaling pathways in MCF-7 cells. - Highlights: • Conjugate was prepared by appending isothiocyanate moiety on pterostilbene backbone. • Conjugate showed anticancer effects at comparatively lower dose than pterostilbene. • Conjugate caused blockage of the Akt and ERK signaling pathways in MCF-7 cells. • Conjugate significantly reduced solid tumor volume as compared to pterostilbene.

  10. Role of isothiocyanate conjugate of pterostilbene on the inhibition of MCF-7 cell proliferation and tumor growth in Ehrlich ascitic cell induced tumor bearing mice

    International Nuclear Information System (INIS)

    Nikhil, Kumar; Sharan, Shruti; Chakraborty, Ajanta; Bodipati, Naganjaneyulu; Krishna Peddinti, Rama; Roy, Partha

    2014-01-01

    Naturally occurring pterostilbene (PTER) and isothiocyanate (ITC) attract great attention due to their wide range of biological properties, including anti-cancer, anti-leukemic, anti-bacterial and anti-inflammatory activities. A novel class of hybrid compound synthesized by introducing an ITC moiety on PTER backbone was evaluated for its anti-cancer efficacy in hormone-dependent breast cancer cell line (MCF-7) in vitro and Ehrlich ascitic tumor bearing mice model in vivo. The novel hybrid molecule showed significant in vitro anti-cancer activity (IC 50 =25±0.38) when compared to reference compound PTER (IC 50 =65±0.42). The conjugate molecule induced both S and G2/M phase cell cycle arrest as indicated by flow cytometry analysis. In addition, the conjugate induced cell death was characterized by changes in cell morphology, DNA fragmentation, activation of caspase-9, release of cytochrome-c into cytosol and increased Bax: Bcl-2 ratio. The conjugate also suppressed the phosphorylation of Akt and ERK. The conjugate induced cell death was significantly increased in presence of A6730 (a potent Akt1/2 kinase inhibitor) and PD98059 (a specific ERK inhibitor). Moreover, the conjugated PTER inhibited tumor growth in Ehrlich ascitic cell induced tumor bearing mice as observed by reduction in tumor volume compared to untreated animals. Collectively, the pro-apoptotic effect of conjugate is mediated through the activation of caspases, and is correlated with the blockade of the Akt and ERK signaling pathways in MCF-7 cells. - Highlights: • Conjugate was prepared by appending isothiocyanate moiety on pterostilbene backbone. • Conjugate showed anticancer effects at comparatively lower dose than pterostilbene. • Conjugate caused blockage of the Akt and ERK signaling pathways in MCF-7 cells. • Conjugate significantly reduced solid tumor volume as compared to pterostilbene

  11. Glycogen synthase kinase-3 inhibitors suppress the AR-V7-mediated transcription and selectively inhibit cell growth in AR-V7-positive prostate cancer cells.

    Science.gov (United States)

    Nakata, Daisuke; Koyama, Ryokichi; Nakayama, Kazuhide; Kitazawa, Satoshi; Watanabe, Tatsuya; Hara, Takahito

    2017-06-01

    Recent evidence suggests that androgen receptor (AR) splice variants, including AR-V7, play a pivotal role in resistance to androgen blockade in prostate cancer treatment. The development of new therapeutic agents that can suppress the transcriptional activities of AR splice variants has been anticipated as the next generation treatment of castration-resistant prostate cancer. High-throughput screening of AR-V7 signaling inhibitors was performed using an AR-V7 reporter system. The effects of a glycogen synthase kinase-3 (GSK3) inhibitor, LY-2090314, on endogenous AR-V7 signaling were evaluated in an AR-V7-positive cell line, JDCaP-hr, by quantitative reverse transcription polymerase chain reaction. The relationship between AR-V7 signaling and β-catenin signaling was assessed using RNA interference. The effect of LY-2090314 on cell growth in various prostate cancer cell lines was also evaluated. We identified GSK3 inhibitors as transcriptional suppressors of AR-V7 using a high-throughput screen with an AR-V7 reporter system. LY-2090314 suppressed the reporter activity and endogenous AR-V7 activity in JDCaP-hr cells. Because silencing of β-catenin partly rescued the suppression, it was evident that the suppression was mediated, at least partially, via the activation of β-catenin signaling. AR-V7 signaling and β-catenin signaling reciprocally regulate each other in JDCaP-hr cells, and therefore, GSK3 inhibition can repress AR-V7 transcriptional activity by accumulating intracellular β-catenin. Notably, LY-2090314 selectively inhibited the growth of AR-V7-positive prostate cancer cells in vitro. Our findings demonstrate the potential of GSK3 inhibitors in treating advanced prostate cancer driven by AR splice variants. In vivo evaluation of AR splice variant-positive prostate cancer models will help illustrate the overall significance of GSK3 inhibitors in treating prostate cancer. © 2017 Wiley Periodicals, Inc.

  12. Inhibition of Tumor Growth of Human Hepatocellular Carcinoma HepG2 Cells in a Nude Mouse Xenograft Model by the Total Flavonoids from Arachniodes exilis

    Directory of Open Access Journals (Sweden)

    Huimin Li

    2017-01-01

    Full Text Available A tumor growth model of human hepatocellular carcinoma HepG2 cells in nude mice was employed to investigate the antitumor activity of the total flavonoids extracted from Arachniodes exilis (TFAE in vivo. Several biochemical assays including hematoxylin-eosin (HE staining, immunohistochemistry, and Western blot were performed to elucidate the mechanism of action of total flavonoids extracted from Arachniodes exilis (TFAE. The results showed that TFAE effectively inhibited the tumor growth of hepatocellular carcinoma in nude mice and had no significant effect on body weight, blood system, and functions of liver and kidney. Expression levels of proapoptotic proteins Bax and cleaved caspase-3 remarkably increased while the expressions of Bcl-2, HIF-1α, and VEGF were suppressed by TFAE. These results suggested that the antitumor potential of TFEA was implied by the apoptosis of tumor cells and the inhibition of angiogenesis in tumor tissue.

  13. Dietary agent, benzyl isothiocyanate inhibits signal transducer and activator of transcription 3 phosphorylation and collaborates with sulforaphane in the growth suppression of PANC-1 cancer cells

    Directory of Open Access Journals (Sweden)

    Deangelis Stephanie

    2009-08-01

    Full Text Available Abstract The Signal Transducer and Activator of Transcription (STAT proteins comprise a family of latent transcription factors with diverse functions. STAT3 has well established roles in cell proliferation, growth and survival, and its persistent activation has been detected with high frequency in many human cancers. As constitutive activation of STAT3 appears to be vital for the continued survival of these cancerous cells, it has emerged as an attractive target for chemotherapeutics. We examined whether the inhibitory activities of bioactive compounds from cruciferous vegetables, such as Benzyl isothiocyanate (BITC and sulforaphane, extended to STAT3 activation in PANC-1 human pancreatic cancer cells. BITC and sulforaphane were both capable of inhibiting cell viability and inducing apoptosis in PANC-1. Sulforaphane had minimal effect on the direct inhibition of STAT3 tyrosine phosphorylation, however, suggesting its inhibitory activities are most likely STAT3-independent. Conversely, BITC was shown to inhibit the tyrosine phosphorylation of STAT3, but not the phosphorylation of ERK1/2, MAPK and p70S6 kinase. These results suggest that STAT3 may be one of the targets of BITC-mediated inhibition of cell viability in PANC-1 cancer cells. In addition, we show that BITC can prevent the induction of STAT3 activation by Interleukin-6 in MDA-MB-453 breast cancer cells. Furthermore, combinations of BITC and sulforaphane inhibited cell viability and STAT3 phosphorylation more dramatically than either agent alone. These findings suggest that the combination of the dietary agents BITC and sulforaphane has potent inhibitory activity in pancreatic cancer cells and that they may have translational potential as chemopreventative or therapeutic agents.

  14. Protein-bound polysaccharide from Phellinus linteus inhibits tumor growth, invasion, and angiogenesis and alters Wnt/β-catenin in SW480 human colon cancer cells

    Directory of Open Access Journals (Sweden)

    Park Hae-Duck

    2011-07-01

    Full Text Available Abstract Background Polysaccharides extracted from the Phellinus linteus (PL mushroom are known to possess anti-tumor effects. However, the molecular mechanisms responsible for the anti-tumor properties of PL remain to be explored. Experiments were carried out to unravel the anticancer effects of PL. Methods The anti-cancer effects of PL were examined in SW480 colon cancer cells by evaluating cell proliferation, invasion and matrix metallo-proteinase (MMP activity. The anti-angiogenic effects of PL were examined by assessing human umbilical vein endothelial cell (HUVEC proliferation and capillary tube formation. The in vivo effect of PL was evaluated in an athymic nude mouse SW480 tumor engraft model. Results PL (125-1000 μg/mL significantly inhibited cell proliferation and decreased β-catenin expression in SW480 cells. Expression of cyclin D1, one of the downstream-regulated genes of β-catenin, and T-cell factor/lymphocyte enhancer binding factor (TCF/LEF transcription activity were also significantly reduced by PL treatment. PL inhibited in vitro invasion and motility as well as the activity of MMP-9. In addition, PL treatment inhibited HUVEC proliferation and capillary tube formation. Tumor growth of SW480 cells implanted into nude mice was significantly decreased as a consequence of PL treatment, and tumor tissues from treated animals showed an increase in the apoptotic index and a decrease in β-catenin expression. Moreover, the proliferation index and microvessel density were significantly decreased. Conclusions These data suggest that PL suppresses tumor growth, invasion, and angiogenesis through the inhibition of Wnt/β-catenin signaling in certain colon cancer cells.

  15. Camptothecin inhibits platelet-derived growth factor-BB-induced proliferation of rat aortic vascular smooth muscle cells through inhibition of PI3K/Akt signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun-Seok [Department of Applied Biochemistry, Division of Life Science, College of Health and Biomedical Science, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Kang, Shin-il [College of Pharmacy Medical Research Center, Chungbuk National University, Cheongju (Korea, Republic of); Yoo, Kyu-dong [Hazardous Substances Analysis Division, Gwangju Regional Food and Drug Administration, Gwangju (Korea, Republic of); Lee, Mi-Yea [Department of Nursing Kyungbok University, Pocheon (Korea, Republic of); Yoo, Hwan-Soo; Hong, Jin-Tae [College of Pharmacy Medical Research Center, Chungbuk National University, Cheongju (Korea, Republic of); Shin, Hwa-Sup [Department of Applied Biochemistry, Division of Life Science, College of Health and Biomedical Science, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Kim, Bokyung [Department of Physiology, Konkuk Medical School, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Yun, Yeo-Pyo, E-mail: ypyun@chungbuk.ac.kr [College of Pharmacy Medical Research Center, Chungbuk National University, Cheongju (Korea, Republic of)

    2013-04-15

    The abnormal proliferation of vascular smooth muscle cells (VSMCs) in arterial wall is a major cause of vascular disorders such as atherosclerosis and restenosis after angioplasty. In this study, we investigated not only the inhibitory effects of camptothecin (CPT) on PDGF-BB-induced VSMC proliferation, but also its molecular mechanism of this inhibition. CPT significantly inhibited proliferation with IC50 value of 0.58 μM and the DNA synthesis of PDGF-BB-stimulated VSMCs in a dose-dependent manner (0.5–2 μM ) without any cytotoxicity. CPT induced the cell cycle arrest at G0/G1 phase. Also, CPT decreased the expressions of G0/G1-specific regulatory proteins including cyclin-dependent kinase (CDK)2, cyclin D1 and PCNA in PDGF-BB-stimulated VSMCs. Pre-incubation of VSMCs with CPT significantly inhibited PDGF-BB-induced Akt activation, whereas CPT did not affect PDGF-receptor beta phosphorylation, extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and phospholipase C (PLC)-γ1 phosphorylation in PDGF-BB signaling pathway. Our data showed that CPT pre-treatment inhibited VSMC proliferation, and that the inhibitory effect of CPT was enhanced by LY294002, a PI3K inhibitor, on PDGF-BB-induced VSMC proliferation. In addition, inhibiting the PI3K/Akt pathway by LY294002 significantly enhanced the suppression of PCNA expression and Akt activation by CPT. These results suggest that the anti-proliferative activity of CPT is mediated in part by downregulating the PI3K/Akt signaling pathway. - Highlights: ► CPT inhibits proliferation of PDGF-BB-induced VSMC without cytotoxicity. ► CPT arrests the cell cycle in G0/G1 phase by downregulation of cyclin D1 and CDK2. ► CPT significantly attenuates Akt phosphorylation in PDGF-BB signaling pathway. ► LY294002 enhanced the inhibitory effect of CPT on VSMC proliferation. ► Thus, CPT is mediated by downregulating the PI3K/Akt signaling pathway.

  16. Camptothecin inhibits platelet-derived growth factor-BB-induced proliferation of rat aortic vascular smooth muscle cells through inhibition of PI3K/Akt signaling pathway

    International Nuclear Information System (INIS)

    Park, Eun-Seok; Kang, Shin-il; Yoo, Kyu-dong; Lee, Mi-Yea; Yoo, Hwan-Soo; Hong, Jin-Tae; Shin, Hwa-Sup; Kim, Bokyung; Yun, Yeo-Pyo

    2013-01-01

    The abnormal proliferation of vascular smooth muscle cells (VSMCs) in arterial wall is a major cause of vascular disorders such as atherosclerosis and restenosis after angioplasty. In this study, we investigated not only the inhibitory effects of camptothecin (CPT) on PDGF-BB-induced VSMC proliferation, but also its molecular mechanism of this inhibition. CPT significantly inhibited proliferation with IC50 value of 0.58 μM and the DNA synthesis of PDGF-BB-stimulated VSMCs in a dose-dependent manner (0.5–2 μM ) without any cytotoxicity. CPT induced the cell cycle arrest at G0/G1 phase. Also, CPT decreased the expressions of G0/G1-specific regulatory proteins including cyclin-dependent kinase (CDK)2, cyclin D1 and PCNA in PDGF-BB-stimulated VSMCs. Pre-incubation of VSMCs with CPT significantly inhibited PDGF-BB-induced Akt activation, whereas CPT did not affect PDGF-receptor beta phosphorylation, extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and phospholipase C (PLC)-γ1 phosphorylation in PDGF-BB signaling pathway. Our data showed that CPT pre-treatment inhibited VSMC proliferation, and that the inhibitory effect of CPT was enhanced by LY294002, a PI3K inhibitor, on PDGF-BB-induced VSMC proliferation. In addition, inhibiting the PI3K/Akt pathway by LY294002 significantly enhanced the suppression of PCNA expression and Akt activation by CPT. These results suggest that the anti-proliferative activity of CPT is mediated in part by downregulating the PI3K/Akt signaling pathway. - Highlights: ► CPT inhibits proliferation of PDGF-BB-induced VSMC without cytotoxicity. ► CPT arrests the cell cycle in G0/G1 phase by downregulation of cyclin D1 and CDK2. ► CPT significantly attenuates Akt phosphorylation in PDGF-BB signaling pathway. ► LY294002 enhanced the inhibitory effect of CPT on VSMC proliferation. ► Thus, CPT is mediated by downregulating the PI3K/Akt signaling pathway

  17. Myc Decoy Oligodeoxynucleotide Inhibits Growth and Modulates Differentiation of Mouse Embryonic Stem Cells as a Model of Cancer Stem Cells.

    Science.gov (United States)

    Johari, Behrooz; Ebrahimi-Rad, Mina; Maghsood, Faezeh; Lotfinia, Majid; Saltanatpouri, Zohreh; Teimoori-Toolabi, Ladan; Sharifzadeh, Zahra; Karimipoor, Morteza; Kadivar, Mehdi

    2017-01-01

    Myc (c-Myc) alone activates the embryonic stem cell-like transcriptional module in both normal and transformed cells. Its dysregulation might lead to increased cancer stem cells (CSCs) population in some tumor cells. In order to investigate the potential of Myc decoy oligodeoxynucleotides for differentiation therapy, mouse embryonic stem cells (mESCs) were used in this study as a model of CSCs. To our best of knowledge this is the first report outlining the application of Myc decoy in transcription factor decoy "TFD" strategy for inducing differentiation in mESCs. A 20-mer double-stranded Myc transcription factor decoy and scrambled oligodeoxynucleotides (ODNs) were designed, analyzed by electrophoretic mobility shift (EMSA) assay and transfected into the mESCs under 2 inhibitors (2i) condition. Further investigations were carried out using fluorescence and confocal microscopy, cell proliferation and apoptosis analysis, alkaline phosphatase and embryoid body formation assay, real-time PCR and western blotting. EMSA data showed that Myc decoy ODNs bound specifically to c-Myc protein. They were found to be localized in both cytoplasm and nucleus of mESCs. Our results revealed the potential capability of Myc decoy ODNs to decrease cell viability by (16.1±2%), to increase the number of cells arrested in G0/G1 phases and apoptosis by (14.2±3.1%) and (12.1±3.2%), respectively regarding the controls. Myc decoy could also modulate differentiation in mESCs despite the presence of 2i/LIF in our medium the presence of 2i/LIF in our medium. The optimized Myc decoy ODNs approach might be considered as a promising alternative strategy for differentiation therapy investigations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Short-hairpin RNA-mediated Heat shock protein 90 gene silencing inhibits human breast cancer cell growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Zuo, Keqiang; Li, Dan; Pulli, Benjamin; Yu, Fei; Cai, Haidong; Yuan, Xueyu; Zhang, Xiaoping; Lv, Zhongwei

    2012-01-01

    Highlights: ► Hsp90 is over-expressed in human breast cancer. ► The shRNA-mediated gene silencing of Hsp90 resulted in inhibition of cell growth. ► Akt and NF-kB were down-regulation after transfection due to Hsp90 silencing. ► The tumor growth ratio was decline due to Hsp90 silencing. ► The PCNA expression was down-regulation due to Hsp90 silencing. -- Abstract: Hsp90 interacts with proteins that mediate signaling pathways involved in the regulation of essential processes such as proliferation, cell cycle control, angiogenesis and apoptosis. Hsp90 inhibition is therefore an attractive strategy for blocking abnormal pathways that are crucial for cancer cell growth. In the present study, the role of Hsp90 in human breast cancer MCF-7 cells was examined by stably silencing Hsp90 gene expression with an Hsp90-silencing vector (Hsp90-shRNA). RT-PCR and Western blot analyses showed that Hsp90-shRNA specifically and markedly down-regulated Hsp90 mRNA and protein expression. NF-kB and Akt protein levels were down-regulated in Hsp90-shRNA transfected cells, indicating that Hsp90 knockout caused a reduction of survival factors and induced apoptosis. Treatment with Hsp90-shRNA significantly increased apoptotic cell death and caused cell cycle arrest in the G1/S phase in MCF-7 cells, as shown by flow cytometry. Silencing of Hsp90 also reduced cell viability, as determined by MTT assay. In vivo experiments showed that MCF-7 cells stably transfected with Hsp90-shRNA grew slowly in nude mice as compared with control groups. In summary, the Hsp90-shRNA specifically silenced the Hsp90 gene, and inhibited MCF-7 cell growth in vitro and in vivo. Possible molecular mechanisms underlying the effects of Hsp90-shRNA include the degradation of Hsp90 breast cancer-related client proteins, the inhibition of survival signals and the upregulation of apoptotic pathways. shRNA-mediated interference may have potential therapeutic utility in human breast cancer.

  19. A novel long noncoding RNA AK001796 acts as an oncogene and is involved in cell growth inhibition by resveratrol in lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qiaoyuan [Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou 510182 (China); Xu, Enwu [Department of Thoracic Surgery, General Hospital of Guangzhou Military Command of Chinese People' s Liberation Army, Guangzhou 510010 (China); Dai, Jiabin; Liu, Binbin; Han, Zhiyuan; Wu, Jianjun; Zhang, Shaozhu; Peng, Baoying [Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou 510182 (China); Zhang, Yajie [Department of Pathology, Guangzhou Medical University, Guangzhou 510182 (China); Jiang, Yiguo, E-mail: jiangyiguo@vip.163.com [Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou 510182 (China)

    2015-06-01

    Lung cancer is the most common form of cancer throughout the world. The specific targeting of long noncoding RNAs (lncRNAs) by resveratrol opened a new avenue for cancer chemoprevention. In this study, we found that 21 lncRNAs were upregulated and 19 lncRNAs were downregulated in lung cancer A549 cells with 25 μmol/L resveratrol treatment determined by microarray analysis. AK001796, the lncRNA with the most clearly altered expression, was overexpressed in lung cancer tissues and cell lines, but its expression was downregulated in resveratrol-treated lung cancer cells. By monitoring cell proliferation and growth in vitro and tumor growth in vivo, we observed a significant reduction in cell viability in lung cancer cells and a slow growth in the tumorigenesis following AK001796 knockdown. We also found that AK001796 knockdown caused a cell-cycle arrest, with significant increases in the percentage of cells in G{sub 0}/G{sub 1} in lung cancer cells. By using cell cycle pathway-specific PCR arrays, we detected changes in a number of cell cycle-related genes related to lncRNA AK001796 knockdown. We further investigated whether AK001796 participated in the anticancer effect of resveratrol and the results showed that reduced lncRNA AK001796 level potentially impaired the inhibitory effect of resveratrol on cell proliferation. To our knowledge, this is the first study to report the changes in an lncRNA expression profile induced by resveratrol in lung cancer. - Highlights: • LncRNA AK001796 played an oncogenic role in lung carcinogenesis. • LncRNA AK001796 was downregulated in resveratrol-treated lung cancer cells. • LncRNA AK001796 was involved in the inhibition of cell growth by resveratrol.

  20. A novel long noncoding RNA AK001796 acts as an oncogene and is involved in cell growth inhibition by resveratrol in lung cancer

    International Nuclear Information System (INIS)

    Yang, Qiaoyuan; Xu, Enwu; Dai, Jiabin; Liu, Binbin; Han, Zhiyuan; Wu, Jianjun; Zhang, Shaozhu; Peng, Baoying; Zhang, Yajie; Jiang, Yiguo

    2015-01-01

    Lung cancer is the most common form of cancer throughout the world. The specific targeting of long noncoding RNAs (lncRNAs) by resveratrol opened a new avenue for cancer chemoprevention. In this study, we found that 21 lncRNAs were upregulated and 19 lncRNAs were downregulated in lung cancer A549 cells with 25 μmol/L resveratrol treatment determined by microarray analysis. AK001796, the lncRNA with the most clearly altered expression, was overexpressed in lung cancer tissues and cell lines, but its expression was downregulated in resveratrol-treated lung cancer cells. By monitoring cell proliferation and growth in vitro and tumor growth in vivo, we observed a significant reduction in cell viability in lung cancer cells and a slow growth in the tumorigenesis following AK001796 knockdown. We also found that AK001796 knockdown caused a cell-cycle arrest, with significant increases in the percentage of cells in G 0 /G 1 in lung cancer cells. By using cell cycle pathway-specific PCR arrays, we detected changes in a number of cell cycle-related genes related to lncRNA AK001796 knockdown. We further investigated whether AK001796 participated in the anticancer effect of resveratrol and the results showed that reduced lncRNA AK001796 level potentially impaired the inhibitory effect of resveratrol on cell proliferation. To our knowledge, this is the first study to report the changes in an lncRNA expression profile induced by resveratrol in lung cancer. - Highlights: • LncRNA AK001796 played an oncogenic role in lung carcinogenesis. • LncRNA AK001796 was downregulated in resveratrol-treated lung cancer cells. • LncRNA AK001796 was involved in the inhibition of cell growth by resveratrol

  1. Transforming growth factor-β inhibits CCAAT/enhancer-binding protein expression and PPARγ activity in unloaded bone marrow stromal cells

    International Nuclear Information System (INIS)

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.; Fromigue, O.; Modrowski, D.; Zerath, E.; Marie, P.J.

    2005-01-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-β2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP)α and C/EBPβ α at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor γ (PPARγ2) transcripts at 7 days. TGF-β2 administration in unloaded rats corrected the rise in C/EBPα and C/EBPβ transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPARγ2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBPα and C/EBPβ expression by TGF-β2 was associated with increased PPARγ serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPARγ transactivating activity. The sequential inhibitory effect of TGF-β2 on C/EBPα, C/EBPβ, and PPARγ2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-β2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBPα, C/EBPβ, and PPARγ expression and activity, which provides a sequential mechanism by which TGF-β2 regulates adipogenic differentiation of bone marrow stromal cells in vivo

  2. MiR-124 Inhibits Growth and Enhances Radiation-Induced Apoptosis in Non-Small Cell Lung Cancer by Inhibiting STAT3

    Directory of Open Access Journals (Sweden)

    Mengjie Wang

    2017-12-01

    Full Text Available Background/Aims: A growing body of evidence indicates that the abnormal expression of microRNAs (miRNAs play an important role in sensitizing the cellular response to ionizing radiation (IR. The aim of this study was to investigate whether the expression of miR-124 correlated with radiosensitivity in the context of non-small-cell lung carcinoma (NSCLC. Methods: Quantitative reverse transcription polymerase chain reaction (RT-PCR was used to quantify miR-124 expression in NSCLC tissues and cell lines. The role of miR-124 in NSCLC proliferation and radiosensitivity was analyzed using CCK-8 and flow cytometry apoptosis assays. Luciferase activity assays, RT-PCR, and Western blot assays were performed to confirm the target gene of miR-124. Results: In this study, we found that miR-124 was downregulated both in clinical NSCLC samples and in cell lines. miR-124 inhibited the proliferation of NSCLC cells and enhanced the apoptosis of NSCLC cells exposed to ionizing radiation. We identified signal transducer and activator of transcription 3 (STAT3 as a direct target of miR-124 by using target prediction algorithms and luciferase assays. Overexpression of STAT3 in A549 cell lines restored the enhanced radiosensitivity induced by miR-124. Conclusion: Taking these observations into consideration, we illustrated that miR-124 is a potential target for enhancing the radiosensitivity of NSCLC cells by targeting STAT3.

  3. Metformin combined with aspirin significantly inhibit pancreatic cancer cell growth in vitro and in vivo by suppressing anti-apoptotic proteins Mcl-1 and Bcl-2

    Science.gov (United States)

    Yue, Wen; Zheng, Xi; Lin, Yong; Yang, Chung S.; Xu, Qing; Carpizo, Darren; Huang, Huarong; DiPaola, Robert S.; Tan, Xiang-Lin

    2015-01-01

    Metformin and aspirin have been studied extensively as cancer preventive or therapeutic agents. However, the effects of their combination on pancreatic cancer cells have not been investigated. Herein, we evaluated the effects of metformin and aspirin, alone or in combination, on cell viability, migration, and apoptosis as well as the molecular changes in mTOR, STAT3 and apoptotic signaling pathways in PANC-1 and BxPC3 cells. Metformin and aspirin, at relatively low concentrations, demonstrated synergistically inhibitory effects on cell viability. Compared to the untreated control or individual drug, the combination of metformin and aspirin significantly inhibited cell migration and colony formation of both PANC-1 and BxPC-3 cells. Metformin combined with aspirin significantly inhibited the phosphorylation of mTOR and STAT3, and induced apoptosis as measured by caspase-3 and PARP cleavage. Remarkably, metformin combined with aspirin significantly downregulated the anti-apoptotic proteins Mcl-1 and Bcl-2, and upregulated the pro-apoptotic proteins Bim and Puma, as well as interrupted their interactions. The downregulation of Mcl-1 and Bcl-2 was independent of AMPK or STAT3 pathway but partially through mTOR signaling and proteasome degradation. In a PANC-1 xenograft mouse model, we demonstrated that the combination of metformin and aspirin significantly inhibited tumor growth and downregulated the protein expression of Mcl-1 and Bcl-2 in tumors. Taken together, the combination of metformin and aspirin significantly inhibited pancreatic cancer cell growth in vitro and in vivo by regulating the pro- and anti-apoptotic Bcl-2 family members, supporting the continued investigation of this two drug combination as chemopreventive or chemotherapeutic agents for pancreatic cancer. PMID:26056043

  4. Fluoroquinolone-mediated inhibition of cell growth, S-G2/M cell cycle arrest, and apoptosis in canine osteosarcoma cell lines.

    Science.gov (United States)

    Seo, Kyoung won; Holt, Roseline; Jung, Yong-Sam; Rodriguez, Carlos O; Chen, Xinbin; Rebhun, Robert B

    2012-01-01

    Despite significant advancements in osteosarcoma research, the overall survival of canine and human osteosarcoma patients has remained essentially static over the past 2 decades. Post-operative limb-spare infection has been associated with improved survival in both species, yet a mechanism for improved survival has not been clearly established. Given that the majority of canine osteosarcoma patients experiencing post-operative infections were treated with fluoroquinolone antibiotics, we hypothesized that fluoroquinolone antibiotics might directly inhibit the survival and proliferation of canine osteosarcoma cells. Ciprofloxacin or enrofloxacin were found to inhibit p21(WAF1) expression resulting in decreased proliferation and increased S-G(2)/M accumulation. Furthermore, fluoroquinolone exposure induced apoptosis of canine osteosarcoma cells as demonstrated by cleavage of caspase-3 and PARP, and activation of caspase-3/7. These results support further studies examining the potential impact of quinolones on survival and proliferation of osteosarcoma.

  5. Fluoroquinolone-mediated inhibition of cell growth, S-G2/M cell cycle arrest, and apoptosis in canine osteosarcoma cell lines.

    Directory of Open Access Journals (Sweden)

    Kyoung won Seo

    Full Text Available Despite significant advancements in osteosarcoma research, the overall survival of canine and human osteosarcoma patients has remained essentially static over the past 2 decades. Post-operative limb-spare infection has been associated with improved survival in both species, yet a mechanism for improved survival has not been clearly established. Given that the majority of canine osteosarcoma patients experiencing post-operative infections were treated with fluoroquinolone antibiotics, we hypothesized that fluoroquinolone antibiotics might directly inhibit the survival and proliferation of canine osteosarcoma cells. Ciprofloxacin or enrofloxacin were found to inhibit p21(WAF1 expression resulting in decreased proliferation and increased S-G(2/M accumulation. Furthermore, fluoroquinolone exposure induced apoptosis of canine osteosarcoma cells as demonstrated by cleavage of caspase-3 and PARP, and activation of caspase-3/7. These results support further studies examining the potential impact of quinolones on survival and proliferation of osteosarcoma.

  6. PHA665752, a small-molecule inhibitor of c-Met, inhibits hepatocyte growth factor-stimulated migration and proliferation of c-Met-positive neuroblastoma cells

    International Nuclear Information System (INIS)

    Crosswell, Hal E; Dasgupta, Anindya; Alvarado, Carlos S; Watt, Tanya; Christensen, James G; De, Pradip; Durden, Donald L; Findley, Harry W

    2009-01-01

    c-Met is a tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF/SF), and both c-Met and its ligand are expressed in a variety of tissues. C-Met/HGF/SF signaling is essential for normal embryogenesis, organogenesis, and tissue regeneration. Abnormal c-Met/HGF/SF signaling has been demonstrated in different tumors and linked to aggressive and metastatic tumor phenotypes. In vitro and in vivo studies have demonstrated inhibition of c-Met/HGF/SF signaling by the small-molecule inhibitor PHA665752. This study investigated c-Met and HGF expression in two neuroblastoma (NBL) cell lines and tumor tissue from patients with NBL, as well as the effects of PHA665752 on growth and motility of NBL cell lines. The effect of the tumor suppressor protein PTEN on migration and proliferation of tumor cells treated with PHA665752 was also evaluated. Expression of c-Met and HGF in NBL cell lines SH-EP and SH-SY5Y and primary tumor tissue was assessed by immunohistochemistry and quantitative RT-PCR. The effect of PHA665752 on c-Met/HGF signaling involved in NBL cell proliferation and migration was evaluated in c-Met-positive cells and c-Met-transfected cells. The transwell chemotaxis assay and the MTT assay were used to measure migration and proliferation/cell-survival of tumor cells, respectively. The PPAR-γ agonist rosiglitazone was used to assess the effect of PTEN on PHA665752-induced inhibition of NBL cell proliferation/cell-survival and migration High c-Met expression was detected in SH-EP cells and primary tumors from patients with advanced-stage disease. C-Met/HGF signaling induced both migration and proliferation of SH-EP cells. Migration and proliferation/cell-survival were inhibited by PHA665752 in a dose-dependent manner. We also found that induced overexpression of PTEN following treatment with rosiglitazone significantly enhanced the inhibitory effect of PHA665752 on NBL-cell migration and proliferation. c-Met is highly expressed in most tumors from

  7. [Adenovirus-mediated delivery of nm23-H1 gene inhibits growth of colorectal carcinoma cell line Lovo].

    Science.gov (United States)

    Wang, Qi; He, Xueling; Liu, Yan; Yin, Hailin

    2010-12-01

    This experimental study sought to find out the inhibitory effects of Ad-GFP-nm23-H1 on proliferation and metastasis of human colorectal carcinoma cell line Lovo, and, further, to gain an insight into some theoretical and methodical basis for instituting nm23-H1 gene therapy of cancers. MTT assay and Transwell chamber were used to detect the rates of proliferation and invasion as well as the adhesion of Lovo cells in vitro. The results demonstrated that the proliferation inhibition rates of Lovo cells treated with Ad-GFP-nm23-H1 of 10(10) PFU/ml, 10(9) PFU/ml and 10(8) PFU/ml were 84.9% +/- 1.51%, 48.5% +/- 7.23% and 22.5% +/- 5.47%, that the adherence inhibition rates of Lovo cells treated with Ad-GFP-nm23-H1 of 10(10) PFU/ml, 10(9) PFU/ml and 10(8) PFU/ml were 70.3% +/- 2.40%, 60.1% +/- 5.68% and 18.5% +/- 3.61%, and that the invasiveness inhibition rates of Lovo cells treated with Ad-GFP-nm23-H1 of 10(10) PFU/ml, 10(9) PFU/ml and 10(8) PFU/ml were 83.2% +/- 5.71%, 52.2% +/- 6.94% and 28.1% +/- 8.21%. These data suggested that Ad-GFP-nm23-H1 exerted significant inhibitory effects on the proliferation and metastasis of human colorectal carcinoma cell line Lovo in a dose-dependent way.

  8. Knockdown of NF-E2-related factor 2 inhibits the proliferation and growth of U251MG human glioma cells in a mouse xenograft model.

    Science.gov (United States)

    Ji, Xiang-Jun; Chen, Sui-Hua; Zhu, Lin; Pan, Hao; Zhou, Yuan; Li, Wei; You, Wan-Chun; Gao, Chao-Chao; Zhu, Jian-Hong; Jiang, Kuan; Wang, Han-Dong

    2013-07-01

    NF-E2-related factor 2 (Nrf2) is a pivotal transcription factor of cellular responses to oxidative stress and recent evidence suggests that Nrf2 plays an important role in cancer pathobiology. However, the underlying mechanism has yet to be elucidated, particularly in glioma. In the present study, we investigated the role of Nrf2 in the clinical prognosis, cell proliferation and tumor growth of human glioblastoma multiforme (GBM). We detected overexpression of Nrf2 protein levels in GBM compared to normal brain tissues. Notably, higher protein levels of Nrf2 were significantly associated with poorer overall survival and 1-year survival for GBM patients. Furthermore, we constructed the plasmid Si-Nrf2 and transduced it into U251MG cells to downregulate the expression of Nrf2 and established stable Nrf2 knockdown cells. The downregulation of Nrf2 suppressed cell proliferation in vitro and tumor growth in mouse xenograft models. We performed immunohistochemistry staining to detect the protein levels of Nrf2, Ki-67, caspase-3 and CD31 in the xenograft tumors and found that the expression levels of Nrf2 and Ki-67 were much lower in the Si-Nrf2 group compared to the Si-control group. In addition, the number of caspase-3-positive cells was significantly increased in the Si-Nrf2 group. By analysis of microvessel density (MVD) assessed by CD31, the MVD value in the Si-Nrf2 group decreased significantly compared to the Si-control group. These findings indicate that the knockdown of Nrf2 may suppress tumor growth by inhibiting cell proliferation, increasing cell apoptosis and inhibiting angiogenesis. These results highlight the potential of Nrf2 as a candidate molecular target to control GBM cell proliferation and tumor growth.

  9. EGFR‑associated pathways involved in traditional Chinese medicine (TCM)‑1‑induced cell growth inhibition, autophagy and apoptosis in prostate cancer.

    Science.gov (United States)

    Wu, Zhaomeng; Zhu, Qingyi; Zhang, Yu; Yin, Yingying; Kang, Dan; Cao, Runyi; Tian, Qian; Lu, Shan; Liu, Ping

    2018-06-01

    Traditional Chinese medicine (TCM) has the synergistic effect of the combination of a single ingredient and a monomer, and systemic and local therapeutic effects in cancer treatment, through which TCM is able to enhance the curative effect and reduce the side effects. The present study analyzed the effect of TCM‑1 (an anti‑cancer TCM) on prostate cancer (PCa) cell lines, and studied in detail the mechanism of cell death induced by TCM‑1 in vitro and in vivo. From the present results, it was identified for the first time, to the best of our knowledge, that TCM‑1 arrested the cell cycle at the G1 phase, decreased cell viability and increased nuclear rupture in a dose‑dependent manner; these effects finally resulted in apoptosis in PCa cells. At the molecular level, the data demonstrated that TCM‑1 competitively acted on epidermal growth factor receptor (EGFR) with EGF, and suppressed the auto‑phosphorylation and activity of EGFR. Inhibition of EGFR further suppressed the downstream phosphatidylinositol 3‑kinase (PI3K)/RAC‑α serine/threonine‑protein kinase (AKT) and RAF proto‑oncogene serine/threonine‑protein kinase/extracellular signal regulated kinase signaling pathways and resulted in a decrease in the phosphorylated‑forkhead box protein O1 (at Ser256, Thr24 and Ser319) expression level, and induced cell growth inhibition and apoptosis by regulating the expression of apoptosis‑and cell cycle‑associated genes. In addition, TCM‑1 markedly inhibited the PI3K/AKT/serine/threonine‑protein kinase mTOR signaling pathway and induced cell autophagy by downregulating the phosphorylation of p70S6K and upregulating the levels of Beclin‑1 and microtubule‑associated protein light chain‑3II. In vivo, the TCM‑1‑treated group exhibited a significant decrease in tumor volume compared with the negative control group in subcutaneous xenograft nude mice by inhibiting EGFR‑associated signaling pathways. Therefore, the bio‑functions of

  10. Aromatic hydrocarbon receptor inhibits lysophosphatidic acid-induced vascular endothelial growth factor-A expression in PC-3 prostate cancer cells

    International Nuclear Information System (INIS)

    Wu, Pei-Yi; Lin, Yueh-Chien; Lan, Shun-Yan; Huang, Yuan-Li; Lee, Hsinyu

    2013-01-01

    Highlights: •LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT. •PI3K mediated LPA-induced VEGF-A expression. •AHR signaling inhibited LPA-induced VEGF-A expression in PC-3 cells. -- Abstract: Lysophosphatidic acid (LPA) is a lipid growth factor with multiple biological functions and has been shown to stimulate cancer cell secretion of vascular endothelial growth factor-A (VEGF-A) and trigger angiogenesis. Hypoxia-inducible factor-1 (HIF-1), a heterodimer consisting of HIF-1α and HIF-1β (also known as aromatic hydrocarbon receptor nuclear translocator (ARNT)) subunits, is an important regulator of angiogenesis in prostate cancer (PC) through the enhancement of VEGF-A expression. In this study, we first confirmed the ability of LPA to induce VEGF-A expression in PC-3 cells and then validated that LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT through phosphatidylinositol 3-kinase activation. Aromatic hydrocarbon receptor (AHR), a receptor for dioxin-like compounds, functions as a transcription factor through dimerization with ARNT and was found to inhibit prostate carcinogenesis and vanadate-induced VEGF-A production. Since ARNT is a common dimerization partner of AHR and HIF-1α, we hypothesized that AHR might suppress LPA-induced VEGF-A expression in PC-3 cells by competing with HIF-1α for ARNT. Here we demonstrated that overexpression and ligand activation of AHR inhibited HIF-1-mediated VEGF-A induction by LPA treatment of PC-3 cells. In conclusion, our results suggested that AHR activation may inhibit LPA-induced VEGF-A expression in PC-3 cells by attenuating HIF-1α signaling, and subsequently, suppressing angiogenesis and metastasis of PC. These results suggested that AHR presents a potential therapeutic target for the prevention of PC metastasis

  11. Dendritic cells pulsed with tumor cells killed by high hydrostatic pressure inhibit prostate tumor growth in TRAMP mice

    Czech Academy of Sciences Publication Activity Database

    Mikyšková, Romana; Indrová, Marie; Štěpánek, Ivan; Kanchev, Ivan; Bieblová, Jana; Vošahlíková, Š.; Moserová, I.; Truxová, I.; Fučíková, J.; Bartunkova, J.; Spisek, R.; Sedláček, Radislav; Reiniš, Milan

    2017-01-01

    Roč. 6, č. 12 (2