WorldWideScience

Sample records for cell fusion activity

  1. Rho GTPase activity modulates paramyxovirus fusion protein-mediated cell-cell fusion

    International Nuclear Information System (INIS)

    Schowalter, Rachel M.; Wurth, Mark A.; Aguilar, Hector C.; Lee, Benhur; Moncman, Carole L.; McCann, Richard O.; Dutch, Rebecca Ellis

    2006-01-01

    The paramyxovirus fusion protein (F) promotes fusion of the viral envelope with the plasma membrane of target cells as well as cell-cell fusion. The plasma membrane is closely associated with the actin cytoskeleton, but the role of actin dynamics in paramyxovirus F-mediated membrane fusion is unclear. We examined cell-cell fusion promoted by two different paramyxovirus F proteins in three cell types in the presence of constitutively active Rho family GTPases, major cellular coordinators of actin dynamics. Reporter gene and syncytia assays demonstrated that expression of either Rac1 V12 or Cdc42 V12 could increase cell-cell fusion promoted by the Hendra or SV5 glycoproteins, though the effect was dependent on the cell type expressing the viral glycoproteins. In contrast, RhoA L63 decreased cell-cell fusion promoted by Hendra glycoproteins but had little affect on SV5 F-mediated fusion. Also, data suggested that GTPase activation in the viral glycoprotein-containing cell was primarily responsible for changes in fusion. Additionally, we found that activated Cdc42 promoted nuclear rearrangement in syncytia

  2. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    International Nuclear Information System (INIS)

    Garbe, Yvette; Klier, Ulrike; Linnebacher, Michael

    2011-01-01

    Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4 + , activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested) could be observed. Cellular fusions of MSI + carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These hybrid cells may have great potential for cellular immunotherapy and

  3. Premature activation of the paramyxovirus fusion protein before target cell attachment with corruption of the viral fusion machinery.

    Science.gov (United States)

    Farzan, Shohreh F; Palermo, Laura M; Yokoyama, Christine C; Orefice, Gianmarco; Fornabaio, Micaela; Sarkar, Aurijit; Kellogg, Glen E; Greengard, Olga; Porotto, Matteo; Moscona, Anne

    2011-11-04

    Paramyxoviruses, including the childhood pathogen human parainfluenza virus type 3, enter host cells by fusion of the viral and target cell membranes. This fusion results from the concerted action of its two envelope glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion protein (F). The receptor-bound HN triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We proposed that, if the fusion process could be activated prematurely before the virion reaches the target host cell, infection could be prevented. We identified a small molecule that inhibits paramyxovirus entry into target cells and prevents infection. We show here that this compound works by an interaction with HN that results in F-activation prior to receptor binding. The fusion process is thereby prematurely activated, preventing fusion of the viral membrane with target cells and precluding viral entry. This first evidence that activation of a paramyxovirus F can be specifically induced before the virus contacts its target cell suggests a new strategy with broad implications for the design of antiviral agents.

  4. Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion

    International Nuclear Information System (INIS)

    Mukai, Atsushi; Hashimoto, Naohiro

    2008-01-01

    Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a 'myosheet,' was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and the lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells

  5. Global epigenomic analysis indicates protocadherin-7 activates osteoclastogenesis by promoting cell–cell fusion

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Haruhiko [Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Cell Signaling, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan); Nakashima, Tomoki [Department of Cell Signaling, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan); Japan Science and Technology Agency, PRESTO, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan); Hayashi, Mikihito [Department of Cell Signaling, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan); Japan Science and Technology Agency, ERATO, Takayanagi Osteonetwork Project, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Izawa, Naohiro; Yasui, Tetsuro [Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aburatani, Hiroyuki [Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Tanaka, Sakae [Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Takayanagi, Hiroshi, E-mail: takayana@m.u-tokyo.ac.jp [Japan Science and Technology Agency, ERATO, Takayanagi Osteonetwork Project, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2014-12-12

    Highlights: • Identification of epigenetically regulated genes during osteoclastogenesis. • Pcdh7 is regulated by H3K4me3 and H3K27me3 during osteoclastogenesis. • Pcdh7 expression is increased by RANKL during osteoclastogenesis. • Establishment of novel cell fusion analysis for osteoclasts by imaging cytometer. • Pcdh7 regulates osteoclastogenesis by promoting cell fusion related gene expressions. - Abstract: Gene expression is dependent not only on genomic sequences, but also epigenetic control, in which the regulation of chromatin by histone modification plays a crucial role. Histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 trimethylation (H3K27me3) are related to transcriptionally activated and silenced sequences, respectively. Osteoclasts, the multinucleated cells that resorb bone, are generated by the fusion of precursor cells of monocyte/macrophage lineage. To elucidate the molecular and epigenetic regulation of osteoclast differentiation, we performed a chromatin immunoprecipitation sequencing (ChIP-seq) analysis for H3K4me3 and H3K27me3 in combination with RNA sequencing. We focused on the histone modification change from H3K4me3(+)H3K27me3(+) to H3K4me3(+)H3K27me3(–) and identified the protocadherin-7 gene (Pcdh7) to be among the genes epigenetically regulated during osteoclastogenesis. Pcdh7 was induced by RANKL stimulation in an NFAT-dependent manner. The knockdown of Pcdh7 inhibited RANKL-induced osteoclast differentiation due to the impairment of cell–cell fusion, accompanied by a decreased expression of the fusion-related genes Dcstamp, Ocstamp and Atp6v0d2. This study demonstrates that Pcdh7 plays a key role in osteoclastogenesis by promoting cell–cell fusion.

  6. Global epigenomic analysis indicates protocadherin-7 activates osteoclastogenesis by promoting cell–cell fusion

    International Nuclear Information System (INIS)

    Nakamura, Haruhiko; Nakashima, Tomoki; Hayashi, Mikihito; Izawa, Naohiro; Yasui, Tetsuro; Aburatani, Hiroyuki; Tanaka, Sakae; Takayanagi, Hiroshi

    2014-01-01

    Highlights: • Identification of epigenetically regulated genes during osteoclastogenesis. • Pcdh7 is regulated by H3K4me3 and H3K27me3 during osteoclastogenesis. • Pcdh7 expression is increased by RANKL during osteoclastogenesis. • Establishment of novel cell fusion analysis for osteoclasts by imaging cytometer. • Pcdh7 regulates osteoclastogenesis by promoting cell fusion related gene expressions. - Abstract: Gene expression is dependent not only on genomic sequences, but also epigenetic control, in which the regulation of chromatin by histone modification plays a crucial role. Histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 trimethylation (H3K27me3) are related to transcriptionally activated and silenced sequences, respectively. Osteoclasts, the multinucleated cells that resorb bone, are generated by the fusion of precursor cells of monocyte/macrophage lineage. To elucidate the molecular and epigenetic regulation of osteoclast differentiation, we performed a chromatin immunoprecipitation sequencing (ChIP-seq) analysis for H3K4me3 and H3K27me3 in combination with RNA sequencing. We focused on the histone modification change from H3K4me3(+)H3K27me3(+) to H3K4me3(+)H3K27me3(–) and identified the protocadherin-7 gene (Pcdh7) to be among the genes epigenetically regulated during osteoclastogenesis. Pcdh7 was induced by RANKL stimulation in an NFAT-dependent manner. The knockdown of Pcdh7 inhibited RANKL-induced osteoclast differentiation due to the impairment of cell–cell fusion, accompanied by a decreased expression of the fusion-related genes Dcstamp, Ocstamp and Atp6v0d2. This study demonstrates that Pcdh7 plays a key role in osteoclastogenesis by promoting cell–cell fusion

  7. Cell fusion in tumor progression: the isolation of cell fusion products by physical methods

    Directory of Open Access Journals (Sweden)

    Vincitorio Massimo

    2011-09-01

    Full Text Available Abstract Background Cell fusion induced by polyethylene glycol (PEG is an efficient but poorly controlled procedure for obtaining somatic cell hybrids used in gene mapping, monoclonal antibody production, and tumour immunotherapy. Genetic selection techniques and fluorescent cell sorting are usually employed to isolate cell fusion products, but both procedures have several drawbacks. Results Here we describe a simple improvement in PEG-mediated cell fusion that was obtained by modifying the standard single-step procedure. We found that the use of two PEG undertreatments obtains a better yield of cell fusion products than the standard method, and most of these products are bi- or trinucleated polykaryocytes. Fusion rate was quantified using fluorescent cell staining microscopy. We used this improved cell fusion and cell isolation method to compare giant cells obtained in vitro and giant cells obtained in vivo from patients with Hodgkin's disease and erythroleukemia. Conclusions In the present study we show how to improve PEG-mediated cell fusion and that cell separation by velocity sedimentation offers a simple alternative for the efficient purification of cell fusion products and to investigate giant cell formation in tumor development.

  8. Cell fusion in osteoclasts plays a critical role in controlling bone mass and osteoblastic activity

    International Nuclear Information System (INIS)

    Iwasaki, Ryotaro; Ninomiya, Ken; Miyamoto, Kana; Suzuki, Toru; Sato, Yuiko

    2008-01-01

    The balance between osteoclast and osteoblast activity is central for maintaining the integrity of bone homeostasis. Here we show that mice lacking dendritic cell specific transmembrane protein (DC-STAMP), an essential molecule for osteoclast cell-cell fusion, exhibited impaired bone resorption and upregulation of bone formation by osteoblasts, which do not express DC-STAMP, which led to increased bone mass. On the contrary, DC-STAMP over-expressing transgenic (DC-STAMP-Tg) mice under the control of an actin promoter showed significantly accelerated cell-cell fusion of osteoclasts and bone resorption, with decreased osteoblastic activity and bone mass. Bone resorption and formation are known to be regulated in a coupled manner, whereas DC-STAMP regulates bone homeostasis in an un-coupled manner. Thus our results indicate that inhibition of a single molecule provides both decreased osteoclast activity and increased bone formation by osteoblasts, thereby increasing bone mass in an un-coupled and a tissue specific manner.

  9. A new sensitive and quantitative HTLV-I-mediated cell fusion assay in T cells

    International Nuclear Information System (INIS)

    Pare, Marie-Eve; Gauthier, Sonia; Landry, Sebastien; Sun Jiangfeng; Legault, Eric; Leclerc, Denis; Tanaka, Yuetsu; Marriott, Susan J.; Tremblay, Michel J.; Barbeau, Benoit

    2005-01-01

    Similar to several other viruses, human T cell leukemia virus type I (HTLV-I) induces the formation of multinucleated giant cells (also known as syncytium) when amplified in tissue culture. These syncytia result from the fusion of infected cells with uninfected cells. Due to the intrinsic difficulty of infecting cells with cell-free HTLV-I virions, syncytium formation has become an important tool in the study of HTLV-I infection and transmission. Since most HTLV-I-based cell fusion assays rely on the use of non-T cells, the aim of this study was to optimize a new HTLV-I-induced cell fusion assay in which HTLV-I-infected T cell lines are co-cultured with T cells that have been transfected with an HTLV-I long terminal repeat (LTR) luciferase reporter construct. We demonstrate that co-culture of various HTLV-I-infected T cells with different transfected T cell lines resulted in induction of luciferase activity. Cell-to-cell contact and expression of the viral gp46 envelope protein was crucial for this induction while other cell surface proteins (including HSC70) did not have a significant effect. This quantitative assay was shown to be very sensitive. In this assay, the cell fusion-mediated activation of NF-κB and the HTLV-I LTR occurred through previously described Tax-dependent signaling pathways. This assay also showed that cell fusion could activate Tax-inducible cellular promoters. These results thus demonstrate that this new quantitative HTLV-I-dependent cell fusion assay is versatile, highly sensitive, and can provide an important tool to investigate cellular promoter activation and intrinsic signaling cascades that modulate cellular gene expression

  10. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential

    International Nuclear Information System (INIS)

    Song, Kai; Song, Yong; Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-lin; Liu, Ke; Shang, Zheng-jun

    2014-01-01

    Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo

  11. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kai [Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Shandong Province (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Song, Yong [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Department of Stomatology, Liu Zhou People' s Hospital, Guangxi (China); Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-lin [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Liu, Ke, E-mail: liuke.1999@aliyun.com [Department of Oral and Maxillofacial-Head and Neck oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Shang, Zheng-jun, E-mail: shangzhengjun@hotmail.com [Department of Oral and Maxillofacial-Head and Neck oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China)

    2014-10-15

    Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo.

  12. Expression and activity analysis of a new fusion protein targeting ovarian cancer cells.

    Science.gov (United States)

    Su, Manman; Chang, Weiqin; Wang, Dingding; Cui, Manhua; Lin, Yang; Wu, Shuying; Xu, Tianmin

    2015-09-01

    The aim of the present study was to develop a new therapeutic drug to improve the prognosis of ovarian cancer patients. Human urokinase-type plasminogen activator (uPA)17-34-kunitz-type protease inhibitor (KPI) eukaryotic expression vector was constructed and recombinant human uPA17-34-KPI (rhuPA17-34-KPI) in P. pastoris was expressed. In the present study, the DNA sequences that encode uPA 17-34 amino acids were created according to the native amino acids sequence and inserted into the KPI-pPICZαC vector, which was constructed. Then, uPA17‑34-KPI-pPICZαC was transformed into P. pastoris X-33, and rhuPA17-34-KPI was expressed by induction of methanol. The bioactivities of a recombinant fusion protein were detected with trypsin inhibition analysis, and the inhibitory effects on the growth of ovarian cancer cells were identified using the TUNEL assay, in vitro wound‑healing assay and Matrigel model analysis. The results of the DNA sequence analysis of the recombinant vector uPA17-34-KPI‑pPICZα demonstrated that the DNA‑encoding human uPA 17-34 amino acids, 285-288 amino acids of amyloid precursor protein (APP) and 1-57 amino acids of KPI were correctly inserted into the pPICZαC vector. Following induction by methonal, the fusion protein with a molecular weight of 8.8 kDa was observed using SDS-PAGE and western blot analysis. RhuPA17-34-KPI was expressed in P. pastoris with a yield of 50 mg/l in a 50-ml tube. The recombinant fusion protein was able to inhibit the activity of trypsin, inhibit growth and induce apoptosis of SKOV3 cells, and inhibit the invasion and metastasis of ovarian cancer cells. By considering uPA17-34 amino acid specific binding uPAR as the targeted part of fusion protein and utilizing the serine protease inhibitor activity of KPI, it was found that the recombinant fusion protein uPA17-34-KPI inhibited the invasion and metastasis of ovarian tumors, and may therefore be regarded as effective in targeted treatment.

  13. The yeast cell fusion protein Prm1p requires covalent dimerization to promote membrane fusion.

    Directory of Open Access Journals (Sweden)

    Alex Engel

    2010-05-01

    Full Text Available Prm1p is a multipass membrane protein that promotes plasma membrane fusion during yeast mating. The mechanism by which Prm1p and other putative regulators of developmentally controlled cell-cell fusion events facilitate membrane fusion has remained largely elusive. Here, we report that Prm1p forms covalently linked homodimers. Covalent Prm1p dimer formation occurs via intermolecular disulfide bonds of two cysteines, Cys-120 and Cys-545. PRM1 mutants in which these cysteines have been substituted are fusion defective. These PRM1 mutants are normally expressed, retain homotypic interaction and can traffic to the fusion zone. Because prm1-C120S and prm1-C545S mutants can form covalent dimers when coexpressed with wild-type PRM1, an intermolecular C120-C545 disulfide linkage is inferred. Cys-120 is adjacent to a highly conserved hydrophobic domain. Mutation of a charged residue within this hydrophobic domain abrogates formation of covalent dimers, trafficking to the fusion zone, and fusion-promoting activity. The importance of intermolecular disulfide bonding informs models regarding the mechanism of Prm1-mediated cell-cell fusion.

  14. Ecotropic murine leukemia virus-induced fusion of murine cells

    International Nuclear Information System (INIS)

    Pinter, A.; Chen, T.; Lowy, A.; Cortez, N.G.; Silagi, S.

    1986-01-01

    Extensive fusion occurs upon cocultivation of murine fibroblasts producing ecotropic murine leukemia viruses (MuLVs) with a large variety of murine cell lines in the presence of the polyene antibiotic amphotericin B, the active component of the antifungal agent Fungizone. The resulting polykaryocytes contain nuclei from both infected and uninfected cells, as evidenced by autoradiographic labeling experiments in which one or the other parent cell type was separately labeled with [ 3 H]thymidine and fused with an unlabeled parent. This cell fusion specifically requires the presence of an ecotropic MuLV-producing parent and is not observed for cells producing xenotropic, amphotropic, or dualtropic viruses. Mouse cells infected with nonecotropic viruses retain their sensitivity toward fusion, whereas infection with ecotropic viruses abrogates the fusion of these cells upon cocultivation with other ecotropic MuLV-producing cells. Nonmurine cells lacking the ecotropic gp70 receptor are not fused under similar conditions. Fusion is effectively inhibited by monospecific antisera to gp70, but not by antisera to p15(E), and studies with monoclonal antibodies identify distinct amino- and carboxy-terminal gp70 regions which play a role in the fusion reaction. The enhanced fusion which occurs in the presence of amphotericin B provides a rapid and sensitive assay for the expression of ecotropic MuLVs and should facilitate further mechanistic studies of MuLV-induced fusion of murine cells

  15. Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger.

    Directory of Open Access Journals (Sweden)

    Ruben M Markosyan

    2016-01-01

    Full Text Available Ebola virus (EBOV is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge-a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry.

  16. Induction of cell-cell fusion by ectromelia virus is not inhibited by its fusion inhibitory complex

    Directory of Open Access Journals (Sweden)

    Fuchs Pinhas

    2009-09-01

    Full Text Available Abstract Background Ectromelia virus, a member of the Orthopox genus, is the causative agent of the highly infectious mousepox disease. Previous studies have shown that different poxviruses induce cell-cell fusion which is manifested by the formation of multinucleated-giant cells (polykaryocytes. This phenomenon has been widely studied with vaccinia virus in conditions which require artificial acidification of the medium. Results We show that Ectromelia virus induces cell-cell fusion under neutral pH conditions and requires the presence of a sufficient amount of viral particles on the plasma membrane of infected cells. This could be achieved by infection with a replicating virus and its propagation in infected cells (fusion "from within" or by infection with a high amount of virus particles per cell (fusion "from without". Inhibition of virus maturation or inhibition of virus transport on microtubules towards the plasma membrane resulted in a complete inhibition of syncytia formation. We show that in contrast to vaccinia virus, Ectromelia virus induces cell-cell fusion irrespectively of its hemagglutination properties and cell-surface expression of the orthologs of the fusion inhibitory complex, A56 and K2. Additionally, cell-cell fusion was also detected in mice lungs following lethal respiratory infection. Conclusion Ectromelia virus induces spontaneous cell-cell fusion in-vitro and in-vivo although expressing an A56/K2 fusion inhibitory complex. This syncytia formation property cannot be attributed to the 37 amino acid deletion in ECTV A56.

  17. Point mutations in EBV gH that abrogate or differentially affect B cell and epithelial cell fusion

    International Nuclear Information System (INIS)

    Wu Liguo; Hutt-Fletcher, Lindsey M.

    2007-01-01

    Cell fusion mediated by Epstein-Barr virus requires three conserved glycoproteins, gB and gHgL, but activation is cell type specific. B cell fusion requires interaction between MHC class II and a fourth virus glycoprotein, gp42, which complexes non-covalently with gHgL. Epithelial cell fusion requires interaction between gHgL and a novel epithelial cell coreceptor and is blocked by excess gp42. We show here that gp42 interacts directly with gH and that point mutations in the region of gH recognized by an antibody that differentially inhibits epithelial and B cell fusion significantly impact both the core fusion machinery and cell-specific events. Substitution of alanine for glycine at residue 594 completely abrogates fusion with either B cells or epithelial cells. Substitution of alanine for glutamic acid at residue 595 reduces fusion with epithelial cells, greatly enhances fusion with B cells and allows low levels of B cell fusion even in the absence of gL

  18. Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy.

    Science.gov (United States)

    Goh, Qingnian; Millay, Douglas P

    2017-02-10

    Fusion of skeletal muscle stem/progenitor cells is required for proper development and regeneration, however the significance of this process during adult muscle hypertrophy has not been explored. In response to muscle overload after synergist ablation in mice, we show that myomaker, a muscle specific membrane protein essential for myoblast fusion, is activated mainly in muscle progenitors and not myofibers. We rendered muscle progenitors fusion-incompetent through genetic deletion of myomaker in muscle stem cells and observed a complete reduction of overload-induced hypertrophy. This blunted hypertrophic response was associated with a reduction in Akt and p70s6k signaling and protein synthesis, suggesting a link between myonuclear accretion and activation of pro-hypertrophic pathways. Furthermore, fusion-incompetent muscle exhibited increased fibrosis after muscle overload, indicating a protective role for normal stem cell activity in reducing myofiber strain associated with hypertrophy. These findings reveal an essential contribution of myomaker-mediated stem cell fusion during physiological adult muscle hypertrophy.

  19. Cell fusions in mammals

    DEFF Research Database (Denmark)

    Larsson, Lars-Inge; Bjerregaard, Bolette; Talts, Jan Fredrik

    2008-01-01

    Cell fusions are important to fertilization, placentation, development of skeletal muscle and bone, calcium homeostasis and the immune defense system. Additionally, cell fusions participate in tissue repair and may be important to cancer development and progression. A large number of factors appear...... to regulate cell fusions, including receptors and ligands, membrane domain organizing proteins, proteases, signaling molecules and fusogenic proteins forming alpha-helical bundles that bring membranes close together. The syncytin family of proteins represent true fusogens and the founding member, syncytin-1......, has been documented to be involved in fusions between placental trophoblasts, between cancer cells and between cancer cells and host ells. We review the literature with emphasis on the syncytin family and propose that syncytins may represent universal fusogens in primates and rodents, which work...

  20. Cell fusion and nuclear fusion in plants.

    Science.gov (United States)

    Maruyama, Daisuke; Ohtsu, Mina; Higashiyama, Tetsuya

    2016-12-01

    Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Sulforaphane inhibits osteoclast differentiation by suppressing the cell-cell fusion molecules DC-STAMP and OC-STAMP

    International Nuclear Information System (INIS)

    Takagi, Tomohiro; Inoue, Hirofumi; Takahashi, Nobuyuki; Katsumata-Tsuboi, Rie; Uehara, Mariko

    2017-01-01

    Sulforaphane (SFN), a kind of isothiocyanate, is derived from broccoli sprouts. It has anti-tumor, anti-inflammatory, and anti-oxidation activity. The molecular function of SFN in the inhibition of osteoclast differentiation is not well-documented. In this study, we assessed the effect of SFN on osteoclast differentiation in vitro. SFN inhibited osteoclast differentiation in both bone marrow cells and RAW264.7 cells. Key molecules involved in the inhibitory effects of SFN on osteoclast differentiation were determined using a microarray analysis, which showed that SFN inhibits osteoclast-associated genes, such as osteoclast-associated receptor (OSCAR), nuclear factor of activated T cells cytoplasmic-1, tartrate-resistant acid phosphatase, and cathepsin K. Moreover, the mRNA expression levels of the cell-cell fusion molecules dendritic cell specific transmembrane protein (DC-STAMP) and osteoclast stimulatory transmembrane protein (OC-STAMP) were strongly suppressed in cells treated with SFN. Furthermore, SFN increased the phosphorylation of signal transducer and activator of transcription 1 (STAT1), a regulator of macrophage and osteoclast cell fusion. Thus, our data suggested that SFN significantly inhibits the cell-cell fusion molecules DC-STAMP and OC-STAMP by inducing the phosphorylation of STAT1 (Tyr701), which might be regulated by interactions with OSCAR. - Highlights: • Sulforaphane inhibited osteoclast differentiation and osteoclast cell-fusion. • Sulforaphane suppressed not only NFATc1, but also cell-cell fusion molecules, DC-STAMP and OC-STAMP. • Sulforaphane decreased multinucleated osteoclasts, whereas increased mono-nucleated osteoclasts. • Sulforaphane inhibits the cell-cell fusion by inducing the phosphorylation of STAT1 (Tyr701).

  2. Recombinant fusion protein of albumin-retinol binding protein inactivates stellate cells

    International Nuclear Information System (INIS)

    Choi, Soyoung; Park, Sangeun; Kim, Suhyun; Lim, Chaeseung; Kim, Jungho; Cha, Dae Ryong; Oh, Junseo

    2012-01-01

    Highlights: ► We designed novel recombinant albumin-RBP fusion proteins. ► Expression of fusion proteins inactivates pancreatic stellate cells (PSCs). ► Fusion proteins are successfully internalized into and inactivate PSCs. ► RBP moiety mediates cell specific uptake of fusion protein. -- Abstract: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I–III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumin domain III (R-III) and albumin domain I -RBP-albumin III (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises of stellate cell inactivation-inducing moiety and targeting moiety, which may lead to the development of effective anti

  3. Design of Recombinant Stem Cell Factor macrophage Colony Stimulating Factor Fusion Proteins and their Biological Activity In Vitro

    Science.gov (United States)

    Chen, Tao; Yang, Jie; Wang, Yuelang; Zhan, Chenyang; Zang, Yuhui; Qin, Junchuan

    2005-05-01

    Stem cell factor (SCF) and macrophage colony stimulating factor (M-CSF) can act in synergistic way to promote the growth of mononuclear phagocytes. SCF-M-CSF fusion proteins were designed on the computer using the Homology and Biopolymer modules of the software packages InsightII. Several existing crystal structures were used as templates to generate models of the complexes of receptor with fusion protein. The structure rationality of the fusion protein incorporated a series of flexible linker peptide was analyzed on InsightII system. Then, a suitable peptide GGGGSGGGGSGG was chosen for the fusion protein. Two recombinant SCF-M-CSF fusion proteins were generated by construction of a plasmid in which the coding regions of human SCF (1-165aa) and M-CSF (1-149aa) cDNA were connected by this linker peptide coding sequence followed by subsequent expression in insect cell. The results of Western blot and activity analysis showed that these two recombinant fusion proteins existed as a dimer with a molecular weight of 84 KD under non-reducing conditions and a monomer of 42 KD at reducing condition. The results of cell proliferation assays showed that each fusion protein induced a dose-dependent proliferative response. At equimolar concentration, SCF/M-CSF was about 20 times more potent than the standard monomeric SCF in stimulating TF-1 cell line growth, while M-CSF/SCF was 10 times of monomeric SCF. No activity difference of M-CSF/SCF or SCF/M-CSF to M-CSF (at same molar) was found in stimulating the HL-60 cell linear growth. The synergistic effect of SCF and M-CSF moieties in the fusion proteins was demonstrated by the result of clonogenic assay performed with human bone mononuclear, in which both SCF/M-CSF and M-CSF/SCF induced much higher number of CFU-M than equimolar amount of SCF or M-CSF or that of two cytokines mixture.

  4. Cell fusion by ionizing radiation

    International Nuclear Information System (INIS)

    Khair, M.B.

    1993-08-01

    The relevance and importance of cell fusion are illustrated by the notion that current interest in this phenomenon is shared by scientists in quite varied disciplines. The diversity of cellular membrane fusion phenomena could provoke one to think that there must be a multitude of mechanisms that can account for such diversity. But, in general, the mechanism for the fusion reaction itself could be very similar in many, or even all, cases. Cell fusion can be induced by several factors such as virus Sendai, polyethylene glycol, electric current and ionizing radiation. This article provides the reader with short view of recent progress in research on cell fusion and gives some explanations about fusion mechanisms. This study shows for the first time, the results of the cell fusion induced by ionizing radiations that we have obtained in our researches and the work performed by other groups. (author). 44 refs

  5. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential.

    Science.gov (United States)

    Song, Kai; Song, Yong; Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-Lin; Liu, Ke; Shang, Zheng-Jun

    2014-10-15

    Most previous studies have linked cancer-macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Detection of association and fusion of giant vesicles using a fluorescence-activated cell sorter.

    Science.gov (United States)

    Sunami, Takeshi; Caschera, Filippo; Morita, Yuuki; Toyota, Taro; Nishimura, Kazuya; Matsuura, Tomoaki; Suzuki, Hiroaki; Hanczyc, Martin M; Yomo, Tetsuya

    2010-10-05

    We have developed a method to evaluate the fusion process of giant vesicles using a fluorescence-activated cell sorter (FACS). Three fluorescent markers and FACS technology were used to evaluate the extent of association and fusion of giant vesicles. Two fluorescent markers encapsulated in different vesicle populations were used as association markers; when these vesicles associate, the two independent markers should be observed simultaneously in a single detection event. The quenched fluorescent marker and the dequencher, which were encapsulated in separate vesicle populations, were used as the fusion marker. When the internal aqueous solutions mix, the quenched marker is liberated by the dequencher and emits the third fluorescent signal. Although populations of pure POPC vesicles showed no detectable association or fusion, the same populations, oppositely charged by the exogenous addition of charged amphiphiles, showed up to 50% association and 30% fusion upon population analysis of 100,000 giant vesicles. Although a substantial fraction of the vesicles associated in response to a small amount of the charged amphiphiles (5% mole fraction compared to POPC alone), a larger amount of the charged amphiphiles (25%) was needed to induce vesicle fusion. The present methodology also revealed that the association and fusion of giant vesicles was dependent on size, with larger giant vesicles associating and fusing more frequently.

  7. Fusomorphogenesis: cell fusion in organ formation.

    Science.gov (United States)

    Shemer, G; Podbilewicz, B

    2000-05-01

    Cell fusion is a universal process that occurs during fertilization and in the formation of organs such as muscles, placenta, and bones. Very little is known about the molecular and cellular mechanisms of cell fusion during pattern formation. Here we review the dynamic anatomy of all cell fusions during embryonic and postembryonic development in an organism. Nearly all the cell fates and cell lineages are invariant in the nematode C. elegans and one third of the cells that are born fuse to form 44 syncytia in a reproducible and stereotyped way. To explain the function of cell fusion in organ formation we propose the fusomorphogenetic model as a simple cellular mechanism to efficiently redistribute membranes using a combination of cell fusion and polarized membrane recycling during morphogenesis. Thus, regulated intercellular and intracellular membrane fusion processes may drive elongation of the embryo as well as postembryonic organ formation in C. elegans. Finally, we use the fusomorphogenetic hypothesis to explain the role of cell fusion in the formation of organs like muscles, bones, and placenta in mammals and other species and to speculate on how the intracellular machinery that drive fusomorphogenesis may have evolved.

  8. Recombinant fusion protein of albumin-retinol binding protein inactivates stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soyoung; Park, Sangeun; Kim, Suhyun [Laboratory of Cellular Oncology, Korea University Graduate School of Medicine, Ansan, Gyeonggi do 425-707 (Korea, Republic of); Lim, Chaeseung [Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 152-703 (Korea, Republic of); Kim, Jungho [Department of Life Science, Sogang University, Seoul 121-742 (Korea, Republic of); Cha, Dae Ryong [Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Gyeonggi do 425-020 (Korea, Republic of); Oh, Junseo, E-mail: ohjs@korea.ac.kr [Laboratory of Cellular Oncology, Korea University Graduate School of Medicine, Ansan, Gyeonggi do 425-707 (Korea, Republic of)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer We designed novel recombinant albumin-RBP fusion proteins. Black-Right-Pointing-Pointer Expression of fusion proteins inactivates pancreatic stellate cells (PSCs). Black-Right-Pointing-Pointer Fusion proteins are successfully internalized into and inactivate PSCs. Black-Right-Pointing-Pointer RBP moiety mediates cell specific uptake of fusion protein. -- Abstract: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I-III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumin{sup domain} {sup III} (R-III) and albumin{sup domain} {sup I}-RBP-albumin{sup III} (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises

  9. Production and characterization of active recombinant interleukin-12/eGFP fusion protein in stably-transfected DF1 chicken cells.

    Science.gov (United States)

    Wu, Hsing Chieh; Chen, Yu San; Shen, Pin Chun; Shien, Jui Hung; Lee, Long Huw; Chiu, Hua Hsien

    2015-01-01

    The adjuvant activity of chicken interleukin-12 (chIL-12) protein has been described as similar to that of mammalian IL-12. Recombinant chIL-12 can be produced using several methods, but chIL-12 production in eukaryotic cells is lower than that in prokaryotic cells. Stimulating compounds, such as dimethyl sulfoxide (DMSO), can be added to animal cell cultures to overcome this drawback. In this study, we constructed a cell line, DF1/chIL-12 which stably expressed a fusion protein, chIL-12 and enhanced green fluorescent protein (eGFP) connected by a (G4 S)3 linker sequence. Fusion protein production was increased when cells were cultured in the presence of DMSO. When 1 × 10(6) DF1/chIL-12 cells were inoculated in a T-175 flask containing 30 mL of media, incubated for 15 h, and further cultivated in the presence of 4% DMSO for 48 h, the production of total fusion protein was mostly enhanced compared with the production of total fusion protein by using cell lysates induced with DMSO at other concentrations. The concentrations of the unpurified and purified total fusion proteins in cell lysates were 2,781 ± 2.72 ng mL(-1) and 2,207 ± 3.28 ng mL(-1) , respectively. The recovery rate was 79%. The fusion protein stimulated chicken splenocytes to produce IFN-γ, which was measured using an enzyme-linked immunosorbent assay, in the culture supernatant, indicating that treating DF1/chIL-12 cells with DMSO or producing chIL-12 in a fusion protein form does not have adverse effects on the bioactivity of chIL-12. © 2015 American Institute of Chemical Engineers.

  10. Alanine substitution of conserved residues in the cytoplasmic tail of herpes simplex virus gB can enhance or abolish cell fusion activity and viral entry

    International Nuclear Information System (INIS)

    Ruel, Nancy; Zago, Anna; Spear, Patricia G.

    2006-01-01

    Herpes simplex virus (HSV) glycoprotein B (gB) is one of the four viral glycoproteins required for viral entry and cell fusion and is highly conserved among herpesviruses. Mutants of HSV type 2 gB were generated by substituting conserved residues in the cytoplasmic tail with alanine or by deleting 41 amino acids from the C-terminus. Some of the mutations abolished cell fusion activity and also prevented transport of gB to the cell surface, identifying residues in the gB cytoplasmic tail that are critical for intracellular transport of this glycoprotein. These mutations also prevented production of infectious virus, possibly because the mutant forms of gB were not transported to the site of envelopment. Other mutations, particularly the deletion, significantly enhanced cell fusion activity. These mutations, as well as others described previously, identify regions of the gB cytoplasmic domain that modulate cell fusion activity

  11. Localization of a Region in the Fusion Protein of Avian Metapneumovirus That Modulates Cell-Cell Fusion

    Science.gov (United States)

    Wei, Yongwei; Feng, Kurtis; Yao, Xiangjie; Cai, Hui; Li, Junan; Mirza, Anne M.; Iorio, Ronald M.

    2012-01-01

    The genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae includes two members, human metapneumovirus (hMPV) and avian metapneumovirus (aMPV), causing respiratory tract infections in humans and birds, respectively. Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Membrane fusion of hMPV appears to be unique, in that fusion of some hMPV strains requires low pH. Here, we show that the fusion (F) proteins of aMPV promote fusion in the absence of the attachment protein and low pH is not required. Furthermore, there are notable differences in cell-cell fusion among aMPV subtypes. Trypsin was required for cell-cell fusion induced by subtype B but not subtypes A and C. The F protein of aMPV subtype A was highly fusogenic, whereas those from subtypes B and C were not. By construction and evaluation of chimeric F proteins composed of domains from the F proteins of subtypes A and B, we localized a region composed of amino acid residues 170 to 338 in the F protein that is responsible for the hyperfusogenic phenotype of the F from subtype A. Further mutagenesis analysis revealed that residues R295, G297, and K323 in this region collectively contributed to the hyperfusogenicity. Taken together, we have identified a region in the aMPV F protein that modulates the extent of membrane fusion. A model for fusion consistent with these data is presented. PMID:22915815

  12. Localization of a region in the fusion protein of avian metapneumovirus that modulates cell-cell fusion.

    Science.gov (United States)

    Wei, Yongwei; Feng, Kurtis; Yao, Xiangjie; Cai, Hui; Li, Junan; Mirza, Anne M; Iorio, Ronald M; Li, Jianrong

    2012-11-01

    The genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae includes two members, human metapneumovirus (hMPV) and avian metapneumovirus (aMPV), causing respiratory tract infections in humans and birds, respectively. Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Membrane fusion of hMPV appears to be unique, in that fusion of some hMPV strains requires low pH. Here, we show that the fusion (F) proteins of aMPV promote fusion in the absence of the attachment protein and low pH is not required. Furthermore, there are notable differences in cell-cell fusion among aMPV subtypes. Trypsin was required for cell-cell fusion induced by subtype B but not subtypes A and C. The F protein of aMPV subtype A was highly fusogenic, whereas those from subtypes B and C were not. By construction and evaluation of chimeric F proteins composed of domains from the F proteins of subtypes A and B, we localized a region composed of amino acid residues 170 to 338 in the F protein that is responsible for the hyperfusogenic phenotype of the F from subtype A. Further mutagenesis analysis revealed that residues R295, G297, and K323 in this region collectively contributed to the hyperfusogenicity. Taken together, we have identified a region in the aMPV F protein that modulates the extent of membrane fusion. A model for fusion consistent with these data is presented.

  13. Relevance of Wnt10b and activation of β-catenin/GCMa/syncytin-1 pathway in BeWo cell fusion.

    Science.gov (United States)

    Malhotra, Sudha Saryu; Banerjee, Priyanka; Chaudhary, Piyush; Pal, Rahul; Gupta, Satish Kumar

    2017-10-01

    To study the involvement of specific Wnt(s) ligand during trophoblastic BeWo cell differentiation. BeWo cells on treatment with forskolin/human chorionic gonadotropin (hCG) were studied for cell fusion by desmoplakin I+II staining and/or hCG secretion by ELISA. Levels of Wnt10b/β-catenin/glial cell missing a (GCMa)/syncytin-1 were studied by qPCR/Western blotting in forskolin-/hCG-treated control siRNA and Wnt10b silenced BeWo cells. BeWo cells on treatment with hCG (5 IU/mL) led to a 94-fold increase in Wnt10b transcript. Wnt10b silencing showed significant decrease in forskolin-/hCG-mediated BeWo cell fusion and/or hCG secretion. It led to down-regulation of β-catenin (nuclear and cytoplasmic), GCMa and syncytin-1 expression. Treatment of BeWo cells with H89, protein kinase A (PKA) signaling inhibitor, significantly reduced forskolin-/hCG-induced Wnt10b, β-catenin, and syncytin-1 expression, which also resulted in reduced cell fusion. Wnt10b is involved in forskolin/hCG-mediated BeWo cell fusion via β-catenin/GCMa/syncytin pathway, which may also involve activation of PKA. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Automated image-based assay for evaluation of HIV neutralization and cell-to-cell fusion inhibition.

    Science.gov (United States)

    Sheik-Khalil, Enas; Bray, Mark-Anthony; Özkaya Şahin, Gülsen; Scarlatti, Gabriella; Jansson, Marianne; Carpenter, Anne E; Fenyö, Eva Maria

    2014-08-30

    Standardized techniques to detect HIV-neutralizing antibody responses are of great importance in the search for an HIV vaccine. Here, we present a high-throughput, high-content automated plaque reduction (APR) assay based on automated microscopy and image analysis that allows evaluation of neutralization and inhibition of cell-cell fusion within the same assay. Neutralization of virus particles is measured as a reduction in the number of fluorescent plaques, and inhibition of cell-cell fusion as a reduction in plaque area. We found neutralization strength to be a significant factor in the ability of virus to form syncytia. Further, we introduce the inhibitory concentration of plaque area reduction (ICpar) as an additional measure of antiviral activity, i.e. fusion inhibition. We present an automated image based high-throughput, high-content HIV plaque reduction assay. This allows, for the first time, simultaneous evaluation of neutralization and inhibition of cell-cell fusion within the same assay, by quantifying the reduction in number of plaques and mean plaque area, respectively. Inhibition of cell-to-cell fusion requires higher quantities of inhibitory reagent than inhibition of virus neutralization.

  15. Using a split luciferase assay (SLA) to measure the kinetics of cell-cell fusion mediated by herpes simplex virus glycoproteins.

    Science.gov (United States)

    Saw, Wan Ting; Matsuda, Zene; Eisenberg, Roselyn J; Cohen, Gary H; Atanasiu, Doina

    2015-11-15

    Herpes simplex virus (HSV) entry and cell-cell fusion require the envelope proteins gD, gH/gL and gB. We propose that receptor-activated conformational changes to gD activate gH/gL, which then triggers gB (the fusogen) into an active form. To study this dynamic process, we have adapted a dual split protein assay originally developed to study the kinetics of human immunodeficiency virus (HIV) mediated fusion. This assay uses a chimera of split forms of renilla luciferase (RL) and green fluorescent protein (GFP). Effector cells are co-transfected with the glycoproteins and one of the split reporters. Receptor-bearing target cells are transfected with the second reporter. Co-culture results in fusion and restoration of RL, which can convert a membrane permeable substrate into a luminescent product, thereby enabling one to monitor initiation and extent of fusion in live cells in real time. Restoration of GFP can also be studied by fluorescence microscopy. Two sets of split reporters have been developed: the original one allows one to measure fusion kinetics over hours whereas the more recent version was designed to enhance the sensitivity of RL activity allowing one to monitor both initiation and rates of fusion in minutes. Here, we provide a detailed, step-by-step protocol for the optimization of the assay (which we call the SLA for split luciferase assay) using the HSV system. We also show several examples of the power of this assay to examine both the initiation and kinetics of cell-cell fusion by wild type forms of gD, gB, gH/gL of both serotypes of HSV as well as the effect of mutations and antibodies that alter the kinetics of fusion. The SLA can be applied to other viral systems that carry out membrane fusion. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Cell fusion induced by ionizing radiation in various cell lines

    International Nuclear Information System (INIS)

    Khair, M.B.

    1994-07-01

    Cell fusion induced by ionizing radiation has been studied in rat's hepatocytes in vivo and in different cell lines in vitro. These cell lines were: Hela cells, V-79 fibroblasts, human and rat lymphocytes. For irradiation, 0.85 MeV fission neutrons and 14 MeV fast neutrons were used. Cell analyses were performed by fluorescent dyes using immunofluorescent microscope and flow cytometre. Our results in vivo showed that, regardless the dose-rate, a dose of 1 Gy approximately was enough to induce a significant level of cell fusion depending on neutron energy and the age of rats. The level of cell fusion was also significant in Hela cells at a dose of 0.5 Gy. Similar effect, but to a lesser extent, was observed in V-79 cells. Whereas, in lymphocytes insignificant cell fusion was noticed. The varying levels of cell-fusion in different cell lines could be attributed to the type of cells and mutual contact between cells. Furthermore irradiation did not show any influence on cell division ability in both hepatocytes and Hela cells and that fused cells were also able to divide forming a new generation of cells. (author). 36 refs., 8 figs., 10 tabs

  17. Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating virus of Japan envelope (HVJ-E)

    International Nuclear Information System (INIS)

    Yue, Xiao-shan; Fujishiro, Masako; Toyoda, Masashi; Akaike, Toshihiro; Ito, Yoshihiro

    2010-01-01

    In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells were tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.

  18. Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating virus of Japan envelope (HVJ-E)

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Xiao-shan [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501 (Japan); Fujishiro, Masako [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Toyoda, Masashi [Department of Reproductive Biology, National Institute for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo 157-8535 (Japan); Akaike, Toshihiro [Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501 (Japan); Ito, Yoshihiro, E-mail: y-ito@riken.jp [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501 (Japan)

    2010-04-16

    In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells were tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.

  19. Development and characterization of a Rift Valley fever virus cell-cell fusion assay using alphavirus replicon vectors

    International Nuclear Information System (INIS)

    Filone, Claire Marie; Heise, Mark; Doms, Robert W.; Bertolotti-Ciarlet, Andrea

    2006-01-01

    Rift Valley fever virus (RVFV), a member of the Phlebovirus genus in the Bunyaviridae family, is transmitted by mosquitoes and infects both humans and domestic animals, particularly cattle and sheep. Since primary RVFV strains must be handled in BSL-3+ or BSL-4 facilities, a RVFV cell-cell fusion assay will facilitate the investigation of RVFV glycoprotein function under BSL-2 conditions. As for other members of the Bunyaviridae family, RVFV glycoproteins are targeted to the Golgi, where the virus buds, and are not efficiently delivered to the cell surface. However, overexpression of RVFV glycoproteins using an alphavirus replicon vector resulted in the expression of the glycoproteins on the surface of multiple cell types. Brief treatment of RVFV glycoprotein expressing cells with mildly acidic media (pH 6.2 and below) resulted in rapid and efficient syncytia formation, which we quantified by β-galactosidase α-complementation. Fusion was observed with several cell types, suggesting that the receptor(s) for RVFV is widely expressed or that this acid-dependent virus does not require a specific receptor to mediate cell-cell fusion. Fusion occurred over a broad temperature range, as expected for a virus with both mosquito and mammalian hosts. In contrast to cell fusion mediated by the VSV-G glycoprotein, RVFV glycoprotein-dependent cell fusion could be prevented by treating target cells with trypsin, indicating that one or more proteins (or protein-associated carbohydrate) on the host cell surface are needed to support membrane fusion. The cell-cell fusion assay reported here will make it possible to study the membrane fusion activity of RVFV glycoproteins in a high-throughput format and to screen small molecule inhibitors for the ability to block virus-specific membrane fusion

  20. Effects of a perfusion bioreactor activated novel bone substitute in spine fusion in sheep

    DEFF Research Database (Denmark)

    Sørensen, Jesper Roed; Koroma, Kariatta Ester; Ding, Ming

    2012-01-01

    To evaluate the effect of a large perfusion-bioreactor cell-activated bone substitute, on a two-level large posterolateral spine fusion sheep model.......To evaluate the effect of a large perfusion-bioreactor cell-activated bone substitute, on a two-level large posterolateral spine fusion sheep model....

  1. Broad target cell selectivity of Kaposi's sarcoma-associated herpesvirus glycoprotein-mediated cell fusion and virion entry

    International Nuclear Information System (INIS)

    Kaleeba, Johnan A.R.; Berger, Edward A.

    2006-01-01

    The molecular mechanism of Kaposi's sarcoma-associated herpesvirus (KSHV, human herpesvirus 8) entry is poorly understood. We tested a broad variety of cell types of diverse species and tissue origin for their ability to function as targets in a quantitative reporter gene assay for KSHV-glycoprotein-mediated cell fusion. Several human, non-human primate, and rabbit cell lines were efficient targets, whereas rodent and all human lymphoblastoid cell lines were weak targets. Parallel findings were obtained with a virion entry assay using a recombinant KSHV encoding a reporter gene. No correlation was observed between target cell activity and surface expression of α3β1 integrin, a proposed KSHV receptor. We hypothesize that target cell permissiveness in both the cell fusion and virion entry assays reflects the presence of a putative KSHV fusion-entry receptor

  2. Characterization of Mason--Pfizer monkey virus-induced cell fusion

    International Nuclear Information System (INIS)

    Chatterjee, S.; Hunter, E.

    1979-01-01

    The characteristics and requirements of multinucleate cell (syncytium) induction by Mason--Pfizer monkey virus (M-PMV) on human and non-human primate cells have been investigated. Multinucleate cell induction by this D-type retrovirus shows single-hit kinetics on human foreskin and rhesus monkey fetal lung cells. The peak of syncytium-forming activity in an isopycnic sucrose gradient coincides with the peak of M-PMV virions as assessed by electron microscopy and analysis of viral polypeptides. Unlike the paramyxoviruses, M-PMV does not induce early cell fusion when added in high concentrations to the target cells. Furthermore, multinucleate cell formation is maximal 48 hr postinfection and the size of the syncytia remains constant after this time. Ultraviolet irradiation of M-PMV reduces its ability to form syncytia and to replicate with single-hit kinetics, suggesting that a functional viral genome is required for syncytium formation. Proviral DNA synthesis and assembly of virions are not necessary for cell fusion since the addition of cytosine arabinoside at concentrations which block virus replication has little effect on multinucleate cell formation. Moreover both multinucleate cells lacking detectable intracellular virus polypeptides, and groups of individual, nonfused but brightly staining cells can be observed in immunofluorescence assays at times when multinucleate cell formation is maximal. Cell fusion is inhibited by the addition of cycloheximide during the first 12 hr of infection, suggesting that de novo protein synthesis is required for multinucleate cell formation. The possibility that the translation of genomic RNA yields a fusion-inducing product is discussed

  3. Fusion research activities in China

    International Nuclear Information System (INIS)

    Deng Xiwen

    1998-01-01

    The fusion program in China has been executed in most areas of magnetic confinement fusion for more than 30 years. Basing on the situation of the power supply requirements of China, the fusion program is becoming an important and vital component of the nuclear power program in China. This paper reviews the status of fusion research and next step plans in China. The motivation and goal of the Chinese fusion program is explained. Research and development on tokamak physics and engineering in the southwestern institute of physics (SWIP) and the institute of plasma physics of Academic Sinica (ASIPP) are introduced. A fusion breeder program and a pure fusion reactor design program have been supported by the state science and technology commission (SSTC) and the China national nuclear corporation (CNNC), respectively. Some features and progress of fusion reactor R and D activities are reviewed. Non fusion applications of plasma science are an important part of China fusion research; a brief introduction about this area is given. Finally, an introductional collaboration network on fusion research activities in China is reported. (orig.)

  4. Virus-cell fusion inhibitory activity of novel analogue peptides based on the HP (2-20) derived from N-terminus of Helicobacter pylori Ribosomal Protein L1.

    Science.gov (United States)

    Woo, Eun-Rhan; Lee, Dong Gun; Chang, Young-Su; Park, Yoonkyung; Hahm, Kyung-Soo

    2002-12-01

    HP (2-20) (AKKVFKRLEKLFSKIQNDK) is the antibacterial sequence derived from N-terminus of Helicobacter pylori Ribosomal Protein L1 (RPL1). It has a broad-spectrum microbicidal activity in vitro that is thought to be related to the membrane-disruptive properties of the peptide. Based on the putative membrane-targeted mode of action, we postulated that HP (2-20) might be possessed virus-cell fusion inhibitory activity. To develop the novel virus-cell fusion inhibitory peptides, several analogues with amino acid substitution were designed to increase or decrease only net hydrophobic region. In particular, substitution of Gln and Asp for hydrophobic amino acid, Trp at position 17 and 19 of HP (2-20) (Anal 3) caused a dramatic increase in virus-cell fusion inhibitory activity without hemolytic effect.

  5. Mechanical stimulation of C2C12 cells increases m-calpain expression and activity, focal adhesion plaque degradation and cell fusion

    DEFF Research Database (Denmark)

    Grossi, Alberto; Karlsson, Anders Hans; Lawson, Moira A.

    2005-01-01

    Abstract Mechanical Stimulation of C2C12 Cells Increases m-calpain Expression and Activity, Focal Adhesion Plaque Degradation and Cell Fusion A. Grossi, A. H. Karlsson, M. A. Lawson; Department of Dairy and Food Science, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark...... Myogenesis is a complex sequence of events, including the irreversible transition from the proliferation-competent myoblast stage into fused, multinucleated myotubes. During embryonic development, myogenic differentiation is regulated by positive and negative signals from surrounding tissues. Stimulation due...... to the activity of ubiquitous proteolytic enzymes known as calpains has been reported. Whether there is a link between stretch- or load induced signaling and calpain expression and activation is not known. Using a magnetic bead stimulation assay and C2C12 mouse myoblasts cell population, we have demonstrated...

  6. The Wnt/β-catenin signaling pathway tips the balance between apoptosis and reprograming of cell fusion hybrids.

    Science.gov (United States)

    Lluis, Frederic; Pedone, Elisa; Pepe, Stefano; Cosma, Maria Pia

    2010-11-01

    Cell-cell fusion contributes to cell differentiation and developmental processes. We have previously showed that activation of Wnt/β-catenin enhances somatic cell reprograming after polyethylene glycol (PEG)-mediated fusion. Here, we show that neural stem cells and ESCs can fuse spontaneously in cocultures, although with very low efficiency (about 2%), as the hybrids undergo apoptosis. In contrast, when Wnt/β-catenin signaling is activated in ESCs and leads to accumulation of low amounts of β-catenin in the nucleus, activated ESCs can reprogram somatic cells with very high efficiency after spontaneous fusion. Furthermore, we also show that different levels of β-catenin accumulation in the ESC nuclei can modulate cell proliferation, although in our experimental setting, cell proliferation does not modulate the reprograming efficiency per se. Overall, the present study provides evidence that spontaneous fusion occurs, while the survival of the reprogramed clones is strictly dependent on induction of a Wnt-mediated reprograming pathway. Copyright © 2010 AlphaMed Press.

  7. Integrin αvβ1 Modulation Affects Subtype B Avian Metapneumovirus Fusion Protein-mediated Cell-Cell Fusion and Virus Infection.

    Science.gov (United States)

    Yun, Bing-Ling; Guan, Xiao-Lu; Liu, Yong-Zhen; Zhang, Yao; Wang, Yong-Qiang; Qi, Xiao-Le; Cui, Hong-Yu; Liu, Chang-Jun; Zhang, Yan-Ping; Gao, Hong-Lei; Gao, Li; Li, Kai; Gao, Yu-Long; Wang, Xiao-Mei

    2016-07-08

    Avian metapneumovirus (aMPV) fusion (F) protein mediates virus-cell membrane fusion to initiate viral infection, which requires F protein binding to its receptor(s) on the host cell surface. However, the receptor(s) for aMPV F protein is still not identified. All known subtype B aMPV (aMPV/B) F proteins contain a conserved Arg-Asp-Asp (RDD) motif, suggesting that the aMPV/B F protein may mediate membrane fusion via the binding of RDD to integrin. When blocked with integrin-specific peptides, aMPV/B F protein fusogenicity and viral replication were significantly reduced. Specifically we identified integrin αv and/or β1-mediated F protein fusogenicity and viral replication using antibody blocking, small interfering RNAs (siRNAs) knockdown, and overexpression. Additionally, overexpression of integrin αv and β1 in aMPV/B non-permissive cells conferred aMPV/B F protein binding and aMPV/B infection. When RDD was altered to RAE (Arg-Ala-Glu), aMPV/B F protein binding and fusogenic activity were profoundly impaired. These results suggest that integrin αvβ1 is a functional receptor for aMPV/B F protein-mediated membrane fusion and virus infection, which will provide new insights on the fusogenic mechanism and pathogenesis of aMPV. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Integrin αvβ1 Modulation Affects Subtype B Avian Metapneumovirus Fusion Protein-mediated Cell-Cell Fusion and Virus Infection*

    Science.gov (United States)

    Yun, Bing-Ling; Guan, Xiao-Lu; Liu, Yong-Zhen; Zhang, Yao; Wang, Yong-Qiang; Qi, Xiao-Le; Cui, Hong-Yu; Liu, Chang-Jun; Zhang, Yan-Ping; Gao, Hong-Lei; Gao, Li; Li, Kai; Gao, Yu-Long; Wang, Xiao-Mei

    2016-01-01

    Avian metapneumovirus (aMPV) fusion (F) protein mediates virus-cell membrane fusion to initiate viral infection, which requires F protein binding to its receptor(s) on the host cell surface. However, the receptor(s) for aMPV F protein is still not identified. All known subtype B aMPV (aMPV/B) F proteins contain a conserved Arg-Asp-Asp (RDD) motif, suggesting that the aMPV/B F protein may mediate membrane fusion via the binding of RDD to integrin. When blocked with integrin-specific peptides, aMPV/B F protein fusogenicity and viral replication were significantly reduced. Specifically we identified integrin αv and/or β1-mediated F protein fusogenicity and viral replication using antibody blocking, small interfering RNAs (siRNAs) knockdown, and overexpression. Additionally, overexpression of integrin αv and β1 in aMPV/B non-permissive cells conferred aMPV/B F protein binding and aMPV/B infection. When RDD was altered to RAE (Arg-Ala-Glu), aMPV/B F protein binding and fusogenic activity were profoundly impaired. These results suggest that integrin αvβ1 is a functional receptor for aMPV/B F protein-mediated membrane fusion and virus infection, which will provide new insights on the fusogenic mechanism and pathogenesis of aMPV. PMID:27226547

  9. Syncytin is involved in breast cancer-endothelial cell fusions

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Holck, S.; Christensen, I.J.

    2006-01-01

    Cancer cells can fuse spontaneously with normal host cells, including endothelial cells, and such fusions may strongly modulate the biological behaviour of tumors. However, the underlying mechanisms are unknown. We now show that human breast cancer cell lines and 63 out of 165 (38%) breast cancer...... specimens express syncytin, an endogenous retroviral envelope protein, previously implicated in fusions between placental trophoblast cells. Additionally, endothelial and cancer cells are shown to express ASCT-2, a receptor for syncytin. Syncytin antisense treatment decreases syncytin expression...... and inhibits fusions between breast cancer cells and endothelial cells. Moreover, a syncytin inhibitory peptide also inhibits fusions between cancer and endothelial cells. These results are the first to show that syncytin is expressed by human cancer cells and is involved in cancer-endothelial cell fusions....

  10. Rapid Elimination of the Persistent Synergid through a Cell Fusion Mechanism

    KAUST Repository

    Maruyama, Daisuke

    2015-05-01

    In flowering plants, fertilization-dependent degeneration of the persistent synergid cell ensures one-on-one pairings of male and female gametes. Here, we report that the fusion of the persistent synergid cell and the endosperm selectively inactivates the persistent synergid cell in Arabidopsis thaliana. The synergid-endosperm fusion causes rapid dilution of pre-secreted pollen tube attractant in the persistent synergid cell and selective disorganization of the synergid nucleus during the endosperm proliferation, preventing attractions of excess number of pollen tubes (polytubey). The synergid-endosperm fusion is induced by fertilization of the central cell, while the egg cell fertilization predominantly activates ethylene signaling, an inducer of the synergid nuclear disorganization. Therefore, two female gametes (the egg and the central cell) control independent pathways yet coordinately accomplish the elimination of the persistent synergid cell by double fertilization. Two female gametes (the egg cell and the central cell) in flowering plants coordinately prevent attractions of excess number of pollen tubes via two mechanisms to inactivate persistent synergid cell. © 2015 Elsevier Inc.

  11. Rapid Elimination of the Persistent Synergid through a Cell Fusion Mechanism

    KAUST Repository

    Maruyama, Daisuke; Volz, Ronny; Takeuchi, Hidenori; Mori, Toshiyuki; Igawa, Tomoko; Kurihara, Daisuke; Kawashima, Tomokazu; Ueda, Minako; Ito, Masaki; Umeda, Masaaki; Nishikawa, Shuhichi; Groß -Hardt, Rita; Higashiyama, Tetsuya

    2015-01-01

    the endosperm proliferation, preventing attractions of excess number of pollen tubes (polytubey). The synergid-endosperm fusion is induced by fertilization of the central cell, while the egg cell fertilization predominantly activates ethylene signaling

  12. PKC-Mediated ZYG1 Phosphorylation Induces Fusion of Myoblasts as well as of Dictyostelium Cells

    Directory of Open Access Journals (Sweden)

    Aiko Amagai

    2012-01-01

    Full Text Available We have previously demonstrated that a novel protein ZYG1 induces sexual cell fusion (zygote formation of Dictyostelium cells. In the process of cell fusion, involvements of signal transduction pathways via Ca2+ and PKC (protein kinase C have been suggested because zygote formation is greatly enhanced by PKC activators. In fact, there are several deduced sites phosphorylated by PKC in ZYG1 protein. Thereupon, we designed the present work to examine whether or not ZYG1 is actually phosphorylated by PKC and localized at the regions of cell-cell contacts where cell fusion occurs. These were ascertained, suggesting that ZYG1 might be the target protein for PKC. A humanized version of zyg1 cDNA (mzyg1 was introduced into myoblasts to know if ZYG1 is also effective in cell fusion of myoblasts. Quite interestingly, enforced expression of ZYG1 in myoblasts was found to induce markedly their cell fusion, thus strongly suggesting the existence of a common signaling pathway for cell fusion beyond the difference of species.

  13. Cell-to-Cell Measles Virus Spread between Human Neurons Is Dependent on Hemagglutinin and Hyperfusogenic Fusion Protein.

    Science.gov (United States)

    Sato, Yuma; Watanabe, Shumpei; Fukuda, Yoshinari; Hashiguchi, Takao; Yanagi, Yusuke; Ohno, Shinji

    2018-03-15

    Measles virus (MV) usually causes acute infection but in rare cases persists in the brain, resulting in subacute sclerosing panencephalitis (SSPE). Since human neurons, an important target affected in the disease, do not express the known MV receptors (signaling lymphocyte activation molecule [SLAM] and nectin 4), how MV infects neurons and spreads between them is unknown. Recent studies have shown that many virus strains isolated from SSPE patients possess substitutions in the extracellular domain of the fusion (F) protein which confer enhanced fusion activity. Hyperfusogenic viruses with such mutations, unlike the wild-type MV, can induce cell-cell fusion even in SLAM- and nectin 4-negative cells and spread efficiently in human primary neurons and the brains of animal models. We show here that a hyperfusogenic mutant MV, IC323-F(T461I)-EGFP (IC323 with a fusion-enhancing T461I substitution in the F protein and expressing enhanced green fluorescent protein), but not the wild-type MV, spreads in differentiated NT2 cells, a widely used human neuron model. Confocal time-lapse imaging revealed the cell-to-cell spread of IC323-F(T461I)-EGFP between NT2 neurons without syncytium formation. The production of virus particles was strongly suppressed in NT2 neurons, also supporting cell-to-cell viral transmission. The spread of IC323-F(T461I)-EGFP was inhibited by a fusion inhibitor peptide as well as by some but not all of the anti-hemagglutinin antibodies which neutralize SLAM- or nectin-4-dependent MV infection, suggesting the presence of a distinct neuronal receptor. Our results indicate that MV spreads in a cell-to-cell manner between human neurons without causing syncytium formation and that the spread is dependent on the hyperfusogenic F protein, the hemagglutinin, and the putative neuronal receptor for MV. IMPORTANCE Measles virus (MV), in rare cases, persists in the human central nervous system (CNS) and causes subacute sclerosing panencephalitis (SSPE) several

  14. Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype

    International Nuclear Information System (INIS)

    Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique; Licona-Limón, Ileana; Huerta, Leonor

    2017-01-01

    Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4"+ T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependent phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. - Highlights: • Jurkat T cells expressing the HIV-1 envelope fuse with THP-1 monocytes. • Heterokaryons display a dominant myeloid phenotype and monocyte function. • Heterokaryons exhibit activation features in the absence of activation agents. • Activation is not due to cell-cell interaction but requires cell-cell fusion. • The

  15. Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique; Licona-Limón, Ileana; Huerta, Leonor, E-mail: leonorhh@biomedicas.unam.mx

    2017-03-01

    Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4{sup +} T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependent phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. - Highlights: • Jurkat T cells expressing the HIV-1 envelope fuse with THP-1 monocytes. • Heterokaryons display a dominant myeloid phenotype and monocyte function. • Heterokaryons exhibit activation features in the absence of activation agents. • Activation is not due to cell-cell interaction but requires cell-cell fusion. • The

  16. TFG-MET fusion in an infantile spindle cell sarcoma with neural features.

    Science.gov (United States)

    Flucke, Uta; van Noesel, Max M; Wijnen, Marc; Zhang, Lei; Chen, Chun-Liang; Sung, Yun-Shao; Antonescu, Cristina R

    2017-09-01

    An increasing number of congenital and infantile sarcomas displaying a primitive, monomorphic spindle cell phenotype have been characterized to harbor recurrent gene fusions, including infantile fibrosarcoma and congenital spindle cell rhabdomyosarcoma. Here, we report an unusual spindle cell sarcoma presenting as a large and infiltrative pelvic soft tissue mass in a 4-month-old girl, which revealed a novel TFG-MET gene fusion by whole transcriptome RNA sequencing. The tumor resembled the morphology of an infantile fibrosarcoma with both fascicular and patternless growth, however, it expressed strong S100 protein immunoreactivity, while lacking SOX10 staining and retaining H3K27me3 expression. Although this immunoprofile suggested partial neural/neuroectodermal differentiation, overall features were unusual and did not fit into any known tumor types (cellular schwannoma, MPNST), raising the possibility of a novel pathologic entity. The TFG-MET gene fusion expands the genetic spectrum implicated in the pathogenesis of congenital spindle cell sarcomas, with yet another example of kinase oncogenic activation through chromosomal translocation. The discovery of this new fusion is significant since the resulting MET activation can potentially be inhibited by targeted therapy, as MET inhibitors are presently available in clinical trials. © 2017 Wiley Periodicals, Inc.

  17. The Cytoplasmic Tail Domain of Epstein-Barr Virus gH Regulates Membrane Fusion Activity through Altering gH Binding to gp42 and Epithelial Cell Attachment

    Directory of Open Access Journals (Sweden)

    Jia Chen

    2016-11-01

    Full Text Available Epstein-Barr virus (EBV is associated with infectious mononucleosis and a variety of cancers as well as lymphoproliferative disorders in immunocompromised patients. EBV mediates viral entry into epithelial and B cells using fusion machinery composed of four glycoproteins: gB, the gH/gL complex, and gp42. gB and gH/gL are required for both epithelial and B cell fusion. The specific role of gH/gL in fusion has been the most elusive among the required herpesvirus entry glycoproteins. Previous mutational studies have focused on the ectodomain of EBV gH and not on the gH cytoplasmic tail domain (CTD. In this study, we chose to examine the function of the gH CTD by making serial gH truncation mutants as well as amino acid substitution mutants to determine the importance of the gH CTD in epithelial and B cell fusion. Truncation of 8 amino acids (aa 698 to 706 of the gH CTD resulted in diminished fusion activity using a virus-free syncytium formation assay and fusion assay. The importance of the amino acid composition of the gH CTD was also investigated by amino acid substitutions that altered the hydrophobicity or hydrophilicity of the CTD. These mutations also resulted in diminished fusion activity. Interestingly, some of the gH CTD truncation mutants and hydrophilic tail substitution mutants lost the ability to bind to gp42 and epithelial cells. In summary, our studies indicate that the gH CTD is an important functional domain.

  18. Polyploidization and cell fusion contribute to wound healing in the adult Drosophila epithelium.

    Science.gov (United States)

    Losick, Vicki P; Fox, Donald T; Spradling, Allan C

    2013-11-18

    Reestablishing epithelial integrity and biosynthetic capacity is critically important following tissue damage. The adult Drosophila abdominal epithelium provides an attractive new system to address how postmitotic diploid cells contribute to repair. Puncture wounds to the adult Drosophila epidermis close initially by forming a melanized scab. We found that epithelial cells near the wound site fuse to form a giant syncytium, which sends lamellae under the scab to re-epithelialize the damaged site. Other large cells arise more peripherally by initiating endocycles and becoming polyploid, or by cell fusion. Rac GTPase activity is needed for syncytium formation, while the Hippo signaling effector Yorkie modulates both polyploidization and cell fusion. Large cell formation is functionally important because when both polyploidization and fusion are blocked, wounds do not re-epithelialize. Our observations indicate that cell mass lost upon wounding can be replaced by polyploidization instead of mitotic proliferation. We propose that large cells generated by polyploidization or cell fusion are essential because they are better able than diploid cells to mechanically stabilize wounds, especially those containing permanent acellular structures, such as scar tissue. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Inhibitory effect of PTD-OD-HA fusion protein on Bcr-Abl in K562 cells

    Directory of Open Access Journals (Sweden)

    Miao GAO

    2012-10-01

    Full Text Available Objective To study the transduction dynamics, location of PTD-OD-HA fusion protein and its interaction with Bcr-Abl oncoprotein in K562 cell lines, and explore the influence of PTD-OD-HA fusion protein on oligomerization and tyrosine kinase activity of Bcr-Abl. Methods PTD-OD-HA fusion protein was labeled with FITC and co-cultured with K562 cells. The transduction efficiency of labeled PTD-OD-HA at different doses and time intervals was observed under fluorescence microscope. The location of labeled PTD-OD-HA fusion protein in K562 cells was detected by confocal microscopy. The interaction of PTD-OD-HA fusion protein with Bcr-Abl oncoprotein was confirmed by coimmunoprecipitation. The phosphorylation of Bcr-Abl oncoprotein was detected by Western blotting. Results PTD-OD-HA fusion protein labeled with FITC was transduced into K562 cells in a dose- and time-dependent manner. PTD-OD-HA fusion protein was located in the cytoplasm of K562 cells and was consistent with the location of Bcr-Abl oncoprotein. The interaction of PTD-OD-HA fusion protein with Bcr-Abl oncoprotein was proved in K562 cells. This interaction could interrupt the homologous oligomerization of Bcr-Abl oncoprotein and reduce the phosphorylation of Bcr-Abl oncoprotein. Conclusion PTD-OD-HA fusion protein could be transduced into K562 cells efficiently, inhibit the oligomerization and reduce the phosphorylation of Bcr-Abl oncoprotein.

  20. Cell Fusion along the Anterior-Posterior Neuroaxis in Mice with Experimental Autoimmune Encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Sreenivasa R Sankavaram

    Full Text Available It is well documented that bone marrow-derived cells can fuse with a diverse range of cells, including brain cells, under normal or pathological conditions. Inflammation leads to robust fusion of bone marrow-derived cells with Purkinje cells and the formation of binucleate heterokaryons in the cerebellum. Heterokaryons form through the fusion of two developmentally differential cells and as a result contain two distinct nuclei without subsequent nuclear or chromosome loss.In the brain, fusion of bone marrow-derived cells appears to be restricted to the complex and large Purkinje cells, raising the question whether the size of the recipient cell is important for cell fusion in the central nervous system. Purkinje cells are among the largest neurons in the central nervous system and accordingly can harbor two nuclei.Using a well-characterized model for heterokaryon formation in the cerebellum (experimental autoimmune encephalomyelitis - a mouse model of multiple sclerosis, we report for the first time that green fluorescent protein-labeled bone marrow-derived cells can fuse and form heterokaryons with spinal cord motor neurons. These spinal cord heterokaryons are predominantly located in or adjacent to an active or previously active inflammation site, demonstrating that inflammation and infiltration of immune cells are key for cell fusion in the central nervous system. While some motor neurons were found to contain two nuclei, co-expressing green fluorescent protein and the neuronal marker, neuron-specific nuclear protein, a number of small interneurons also co-expressed green fluorescent protein and the neuronal marker, neuron-specific nuclear protein. These small heterokaryons were scattered in the gray matter of the spinal cord.This novel finding expands the repertoire of neurons that can form heterokaryons with bone marrow-derived cells in the central nervous system, albeit in low numbers, possibly leading to a novel therapy for spinal cord

  1. Trans-activation function of a 3' truncated X gene-cell fusion product from integrated hepatitis B virus DNA in chronic hepatitis tissues

    International Nuclear Information System (INIS)

    Takada, Shinako; Koike, Katsuro

    1990-01-01

    To investigate the expression and transactivation function of the X gene in integrated hepatitis B virus (HBV) DNA from chronic hepatitis tissues, a series of transfectants containing cloned integrated HBV DNAs was made and analyzed for X mRNA expression and trans-activation activity by using a chloramphenicol acetyltransferase assay. Most of the integrated HBV DNAs expressed X mRNA and encoded a product with trans-activation activity in spite of the loss of the 3' end region of the X gene due to integration. From cDNA cloning and sequence analysis of X mRNA transcribed from native or integrated HBV DNA, the X protein was found to be translated from the X open reading frame without splicing. For integrated HBV DNA, transcription was extended to a cellular flanking DNA and an X gene-cell fusion transcript was terminated by using a cellular poly(A) signal. The amino acid sequence deduced from an X-cell fusion transcript indicated truncation of the carboxyl-terminal five amino acids, but the upstream region of seven amino acids conserved among hepadnaviruses was retained in the integrated HBV DNA, suggesting that this conserved region is essential for the transactivation function of the X protein. These findings support the following explanation for hepatocarcinogenesis by HBV DNA integration: the expression of a cellular oncogene(s) is transactivated at the time of chronic infection by the increasing amounts of the integrated HBV gene product(s), such as the X-cell fusion product

  2. Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion.

    Directory of Open Access Journals (Sweden)

    Hyun Sik Jang

    Full Text Available Differentiated somatic cells can be reprogrammed into the pluripotent state by cell-cell fusion. In the pluripotent state, reprogrammed cells may then self-renew and differentiate into all three germ layers. Fusion-induced reprogramming also epigenetically modifies the somatic cell genome through DNA demethylation, X chromosome reactivation, and histone modification. In this study, we investigated whether fusion with embryonic stem cells (ESCs also reprograms genomic imprinting patterns in somatic cells. In particular, we examined imprinting changes in parthenogenetic neural stem cells fused with biparental ESCs, as well as in biparental neural stem cells fused with parthenogenetic ESCs. The resulting hybrid cells expressed the pluripotency markers Oct4 and Nanog. In addition, methylation of several imprinted genes except Peg3 was comparable between hybrid cells and ESCs. This finding indicates that reprogramming by cell fusion does not necessarily reverse the status of all imprinted genes to the state of pluripotent fusion partner.

  3. Laser-induced fusion of human embryonic stem cells with optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shuxun; Wang Xiaolin; Sun Dong [Department of Mechanical and Biomedical Engineering, City University of Hong Kong (Hong Kong); Cheng Jinping; Han Cheng, Shuk [Department of Biology and Chemistry, City University of Hong Kong (Hong Kong); Kong, Chi-Wing [Stem Cell and Regenerative Medicine Consortium, and Departments of Medicine and Physiology, LKS Faculty of Medicine, University of Hong Kong (Hong Kong); Li, Ronald A. [Stem Cell and Regenerative Medicine Consortium, and Departments of Medicine and Physiology, LKS Faculty of Medicine, University of Hong Kong (Hong Kong); Center of Cardiovascular Research, Mount Sinai School of Medicine, New York, New York 10029 (United States)

    2013-07-15

    We report a study on the laser-induced fusion of human embryonic stem cells (hESCs) at the single-cell level. Cells were manipulated by optical tweezers and fused under irradiation with pulsed UV laser at 355 nm. Successful fusion was indicated by green fluorescence protein transfer. The influence of laser pulse energy on the fusion efficiency was investigated. The fused products were viable as gauged by live cell staining. Successful fusion of hESCs with somatic cells was also demonstrated. The reported fusion outcome may facilitate studies of cell differentiation, maturation, and reprogramming.

  4. Trophoblast cell fusion and differentiation are mediated by both the protein kinase C and a pathways.

    Directory of Open Access Journals (Sweden)

    Waka Omata

    Full Text Available The syncytiotrophoblast of the human placenta is an epithelial barrier that interacts with maternal blood and is a key for the transfer of nutrients and other solutes to the developing fetus. The syncytiotrophoblast is a true syncytium and fusion of progenitor cytotrophoblasts is the cardinal event leading to the formation of this layer. BeWo cells are often used as a surrogate for cytotrophoblasts, since they can be induced to fuse, and then express certain differentiation markers associated with trophoblast syncytialization. Dysferlin, a syncytiotrophoblast membrane repair protein, is up-regulated in BeWo cells induced to fuse by treatment with forskolin; this fusion is thought to occur through cAMP/protein kinase A-dependent mechanisms. We hypothesized that dysferlin may also be up-regulated in response to fusion through other pathways. Here, we show that BeWo cells can also be induced to fuse by treatment with an activator of protein kinase C, and that this fusion is accompanied by increased expression of dysferlin. Moreover, a dramatic synergistic increase in dysferlin expression is observed when both the protein kinase A and protein kinase C pathways are activated in BeWo cells. This synergy in fusion is also accompanied by dramatic increases in mRNA for the placental fusion proteins syncytin 1, syncytin 2, as well as dysferlin. Dysferlin, however, was shown to be dispensable for stimulus-induced BeWo cell syncytialization, since dysferlin knockdown lines fused to the same extent as control cells. The classical trophoblast differentiation marker human chorionic gonadotropin was also monitored and changes in the expression closely parallel that of dysferlin in all of the experimental conditions employed. Thus different biochemical markers of trophoblast fusion behave in concert supporting the hypothesis that activation of both protein kinase C and A pathways lead to trophoblastic differentiation.

  5. Mesenchymal stem cells generate distinct functional hybrids in vitro via cell fusion or entosis.

    Science.gov (United States)

    Sottile, Francesco; Aulicino, Francesco; Theka, Ilda; Cosma, Maria Pia

    2016-11-09

    Homotypic and heterotypic cell-to-cell fusion are key processes during development and tissue regeneration. Nevertheless, aberrant cell fusion can contribute to tumour initiation and metastasis. Additionally, a form of cell-in-cell structure called entosis has been observed in several human tumours. Here we investigate cell-to-cell interaction between mouse mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs). MSCs represent an important source of adult stem cells since they have great potential for regenerative medicine, even though they are also involved in cancer progression. We report that MSCs can either fuse forming heterokaryons, or be invaded by ESCs through entosis. While entosis-derived hybrids never share their genomes and induce degradation of the target cell, fusion-derived hybrids can convert into synkaryons. Importantly we show that hetero-to-synkaryon transition occurs through cell division and not by nuclear membrane fusion. Additionally, we also observe that the ROCK-actin/myosin pathway is required for both fusion and entosis in ESCs but only for entosis in MSCs. Overall, we show that MSCs can undergo fusion or entosis in culture by generating distinct functional cellular entities. These two processes are profoundly different and their outcomes should be considered given the beneficial or possible detrimental effects of MSC-based therapeutic applications.

  6. Spatial focalization of pheromone/MAPK signaling triggers commitment to cell–cell fusion

    Science.gov (United States)

    Merlini, Laura

    2016-01-01

    Cell fusion is universal in eukaryotes for fertilization and development, but what signals this process is unknown. Here, we show in Schizosaccharomyces pombe that fusion does not require a dedicated signal but is triggered by spatial focalization of the same pheromone–GPCR (G-protein-coupled receptor)–MAPK signaling cascade that drives earlier mating events. Autocrine cells expressing the receptor for their own pheromone trigger fusion attempts independently of cell–cell contact by concentrating pheromone release at the fusion focus, a dynamic actin aster underlying the secretion of cell wall hydrolases. Pheromone receptor and MAPK cascade are similarly enriched at the fusion focus, concomitant with fusion commitment in wild-type mating pairs. This focalization promotes cell fusion by immobilizing the fusion focus, thus driving local cell wall dissolution. We propose that fusion commitment is imposed by a local increase in MAPK concentration at the fusion focus, driven by a positive feedback between fusion focus formation and focalization of pheromone release and perception. PMID:27798845

  7. Fusion peptide of influenza hemagglutinin requires a fixed angle boomerang structure for activity.

    Science.gov (United States)

    Lai, Alex L; Park, Heather; White, Judith M; Tamm, Lukas K

    2006-03-03

    The fusion peptide of influenza hemagglutinin is crucial for cell entry of this virus. Previous studies showed that this peptide adopts a boomerang-shaped structure in lipid model membranes at the pH of membrane fusion. To examine the role of the boomerang in fusion, we changed several residues proposed to stabilize the kink in this structure and measured fusion. Among these, mutants E11A and W14A expressed hemagglutinins with hemifusion and no fusion activities, and F9A and N12A had no effect on fusion, respectively. Binding enthalpies and free energies of mutant peptides to model membranes and their ability to perturb lipid bilayer structures correlated well with the fusion activities of the parent full-length molecules. The structure of W14A determined by NMR and site-directed spin labeling features a flexible kink that points out of the membrane, in sharp contrast to the more ordered boomerang of the wild-type, which points into the membrane. A specific fixed angle boomerang structure is thus required to support membrane fusion.

  8. Expression and Purification of Recombinant Human Basic Fibroblast Growth Factor Fusion Proteins and Their Uses in Human Stem Cell Culture.

    Science.gov (United States)

    Imsoonthornruksa, Sumeth; Pruksananonda, Kamthorn; Parnpai, Rangsun; Rungsiwiwut, Ruttachuk; Ketudat-Cairns, Mariena

    2015-01-01

    To reduce the cost of cytokines and growth factors in stem cell research, a simple method for the production of soluble and biological active human basic fibroblast growth factor (hbFGF) fusion protein in Escherichia coli was established. Under optimal conditions, approximately 60-80 mg of >95% pure hbFGF fusion proteins (Trx-6xHis-hbFGF and 6xHis-hbFGF) were obtained from 1 liter of culture broth. The purified hbFGF proteins, both with and without the fusion tags, were biologically active, which was confirmed by their ability to stimulate proliferation of NIH3T3 cells. The fusion proteins also have the ability to support several culture passages of undifferentiated human embryonic stem cells and induce pluripotent stem cells. This paper describes a low-cost and uncomplicated method for the production and purification of biologically active hbFGF fusion proteins. © 2015 S. Karger AG, Basel.

  9. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia.

    Science.gov (United States)

    Grembecka, Jolanta; He, Shihan; Shi, Aibin; Purohit, Trupta; Muntean, Andrew G; Sorenson, Roderick J; Showalter, Hollis D; Murai, Marcelo J; Belcher, Amalia M; Hartley, Thomas; Hess, Jay L; Cierpicki, Tomasz

    2012-01-29

    Translocations involving the mixed lineage leukemia (MLL) gene result in human acute leukemias with very poor prognosis. The leukemogenic activity of MLL fusion proteins is critically dependent on their direct interaction with menin, a product of the multiple endocrine neoplasia (MEN1) gene. Here we present what are to our knowledge the first small-molecule inhibitors of the menin-MLL fusion protein interaction that specifically bind menin with nanomolar affinities. These compounds effectively reverse MLL fusion protein-mediated leukemic transformation by downregulating the expression of target genes required for MLL fusion protein oncogenic activity. They also selectively block proliferation and induce both apoptosis and differentiation of leukemia cells harboring MLL translocations. Identification of these compounds provides a new tool for better understanding MLL-mediated leukemogenesis and represents a new approach for studying the role of menin as an oncogenic cofactor of MLL fusion proteins. Our findings also highlight a new therapeutic strategy for aggressive leukemias with MLL rearrangements.

  10. Exocytosis from chromaffin cells: hydrostatic pressure slows vesicle fusion

    Science.gov (United States)

    Stühmer, Walter

    2015-01-01

    Pressure affects reaction kinetics because chemical transitions involve changes in volume, and therefore pressure is a standard thermodynamic parameter to measure these volume changes. Many organisms live in environments at external pressures other than one atmosphere (0.1 MPa). Marine animals have adapted to live at depths of over 7000 m (at pressures over 70 MPa), and microorganisms living in trenches at over 110 MPa have been retrieved. Here, kinetic changes in secretion from chromaffin cells, measured as capacitance changes using the patch-clamp technique at pressures of up to 20 MPa are presented. It is known that these high pressures drastically slow down physiological functions. High hydrostatic pressure also affects the kinetics of ion channel gating and the amount of current carried by them, and it drastically slows down synaptic transmission. The results presented here indicate a similar change in volume (activation volume) of 390 ± 57 Å3 for large dense-core vesicles undergoing fusion in chromaffin cells and for degranulation of mast cells. It is significantly larger than activation volumes of voltage-gated ion channels in chromaffin cells. This information will be useful in finding possible protein conformational changes during the reactions involved in vesicle fusion and in testing possible molecular dynamic models of secretory processes. PMID:26009771

  11. A sensitive HIV-1 envelope induced fusion assay identifies fusion enhancement of thrombin

    International Nuclear Information System (INIS)

    Cheng, De-Chun; Zhong, Guo-Cai; Su, Ju-Xiang; Liu, Yan-Hong; Li, Yan; Wang, Jia-Ye; Hattori, Toshio; Ling, Hong; Zhang, Feng-Min

    2010-01-01

    To evaluate the interaction between HIV-1 envelope glycoprotein (Env) and target cell receptors, various cell-cell-fusion assays have been developed. In the present study, we established a novel fusion system. In this system, the expression of the sensitive reporter gene, firefly luciferase (FL) gene, in the target cells was used to evaluate cell fusion event. Simultaneously, constitutively expressed Renilla luciferase (RL) gene was used to monitor effector cell number and viability. FL gave a wider dynamic range than other known reporters and the introduction of RL made the assay accurate and reproducible. This system is especially beneficial for investigation of potential entry-influencing agents, for its power of ruling out the false inhibition or enhancement caused by the artificial cell-number variation. As a case study, we applied this fusion system to observe the effect of a serine protease, thrombin, on HIV Env-mediated cell-cell fusion and have found the fusion enhancement activity of thrombin over two R5-tropic HIV strains.

  12. Neuraminidase treatment of respiratory syncytial virus-infected cells or virions, but not target cells, enhances cell-cell fusion and infection

    International Nuclear Information System (INIS)

    Barretto, Naina; Hallak, Louay K.; Peeples, Mark E.

    2003-01-01

    Respiratory syncytial virus (RSV) infection of HeLa cells induces fusion, but transient expression of the three viral glycoproteins induces fusion poorly, if at all. We found that neuraminidase treatment of RSV-infected cells to remove sialic acid (SA) increases fusion dramatically and that the same treatment of transiently transfected cells expressing the three viral glycoproteins, or even cells expressing the fusion (F) protein alone, results in easily detectable fusion. Neuraminidase treatment of the effector cells, expressing the viral glycoproteins, enhanced fusion while treatment of the target cells did not. Likewise, infectivity was increased by treating virions with neuraminidase, but not by treating target cells. Reduction of charge repulsion by removal of the negatively charged SA is unlikely to explain this effect, since removal of negative charges from either membrane would reduce charge repulsion. Infection with neuraminidase-treated virus remained heparan-sulfate-dependent, indicating that a novel attachment mechanism is not revealed by SA removal. Interestingly, neuraminidase enhancement of RSV infectivity was less pronounced in a virus expressing both the G and the F glycoproteins, compared to virus expressing only the F glycoprotein, possibly suggesting that the G protein sterically hinders access of the neuraminidase to its fusion-enhancing target

  13. Autoprocessing of human immunodeficiency virus type 1 protease miniprecursor fusions in mammalian cells

    Directory of Open Access Journals (Sweden)

    Chen Chaoping

    2010-07-01

    Full Text Available Abstract Background HIV protease (PR is a virus-encoded aspartic protease that is essential for viral replication and infectivity. The fully active and mature dimeric protease is released from the Gag-Pol polyprotein as a result of precursor autoprocessing. Results We here describe a simple model system to directly examine HIV protease autoprocessing in transfected mammalian cells. A fusion precursor was engineered encoding GST fused to a well-characterized miniprecursor, consisting of the mature protease along with its upstream transframe region (TFR, and small peptide epitopes to facilitate detection of the precursor substrate and autoprocessing products. In HEK 293T cells, the resulting chimeric precursor undergoes effective autoprocessing, producing mature protease that is rapidly degraded likely via autoproteolysis. The known protease inhibitors Darunavir and Indinavir suppressed both precursor autoprocessing and autoproteolysis in a dose-dependent manner. Protease mutations that inhibit Gag processing as characterized using proviruses also reduced autoprocessing efficiency when they were introduced to the fusion precursor. Interestingly, autoprocessing of the fusion precursor requires neither the full proteolytic activity nor the majority of the N-terminal TFR region. Conclusions We suggest that the fusion precursors provide a useful system to study protease autoprocessing in mammalian cells, and may be further developed for screening of new drugs targeting HIV protease autoprocessing.

  14. A pharmacological study of Arabidopsis cell fusion between the persistent synergid and endosperm.

    Science.gov (United States)

    Motomura, Kazuki; Kawashima, Tomokazu; Berger, Frédéric; Kinoshita, Tetsu; Higashiyama, Tetsuya; Maruyama, Daisuke

    2018-01-29

    Cell fusion is a pivotal process in fertilization and multinucleate cell formation. A plant cell is ubiquitously surrounded by a hard cell wall, and very few cell fusions have been observed except for gamete fusions. We recently reported that the fertilized central cell (the endosperm) absorbs the persistent synergid, a highly differentiated cell necessary for pollen tube attraction. The synergid-endosperm fusion (SE fusion) appears to eliminate the persistent synergid from fertilized ovule in Arabidopsis thaliana Here, we analyzed the effects of various inhibitors on SE fusion in an in vitro culture system. Different from other cell fusions, neither disruption of actin polymerization nor protein secretion impaired SE fusion. However, transcriptional and translational inhibitors decreased the SE fusion success rate and also inhibited endosperm division. Failures of SE fusion and endosperm nuclear proliferation were also induced by roscovitine, an inhibitor of cyclin-dependent kinases (CDK). These data indicate unique aspects of SE fusion such as independence of filamentous actin support and the importance of CDK-mediated mitotic control. © 2018. Published by The Company of Biologists Ltd.

  15. Tumor necrosis factor-α enhanced fusions between oral squamous cell carcinoma cells and endothelial cells via VCAM-1/VLA-4 pathway

    International Nuclear Information System (INIS)

    Song, Kai; Zhu, Fei; Zhang, Han-zhong; Shang, Zheng-jun

    2012-01-01

    Fusion between cancer cells and host cells, including endothelial cells, may strongly modulate the biological behavior of tumors. However, no one is sure about the driving factors and underlying mechanism involved in such fusion. We hypothesized in this study that inflammation, one of the main characteristics in tumor microenvironment, serves as a prominent catalyst for fusion events. Our results showed that oral cancer cells can fuse spontaneously with endothelial cells in co-culture and inflammatory cytokine tumor necrosis factor-α (TNF-α) increased fusion of human umbilical vein endothelium cells and oral cancer cells by up to 3-fold in vitro. Additionally, human oral squamous cell carcinoma cell lines and 35 out of 50 (70%) oral squamous carcinoma specimens express VLA-4, an integrin, previously implicated in fusions between human peripheral blood CD34-positive cells and murine cardiomyocytes. Expression of VCAM-1, a ligand for VLA-4, was evident on vascular endothelium of oral squamous cell carcinoma. Moreover, immunocytochemistry and flow cytometry analysis revealed that expression of VCAM-1 increased obviously in TNF-α-stimulated endothelial cells. Anti-VLA-4 or anti-VCAM-1 treatment can decrease significantly cancer–endothelial adhesion and block such fusion. Collectively, our results suggested that TNF-α could enhance cancer–endothelial cell adhesion and fusion through VCAM-1/VLA-4 pathway. This study provides insights into regulatory mechanism of cancer–endothelial cell fusion, and has important implications for the development of novel therapeutic strategies for prevention of metastasis. -- Highlights: ► Spontaneous oral cancer–endothelial cell fusion. ► TNF-α enhanced cell fusions. ► VCAM-1/VLA-4 expressed in oral cancer. ► TNF-α increased expression of VCAM-1 on endothelial cells. ► VCAM-1/VLA-4 mediated TNF-α-enhanced cell fusions.

  16. Tumor necrosis factor-{alpha} enhanced fusions between oral squamous cell carcinoma cells and endothelial cells via VCAM-1/VLA-4 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kai; Zhu, Fei; Zhang, Han-zhong [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Shang, Zheng-jun, E-mail: shangzhengjun@hotmail.com [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); First Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan (China)

    2012-08-15

    Fusion between cancer cells and host cells, including endothelial cells, may strongly modulate the biological behavior of tumors. However, no one is sure about the driving factors and underlying mechanism involved in such fusion. We hypothesized in this study that inflammation, one of the main characteristics in tumor microenvironment, serves as a prominent catalyst for fusion events. Our results showed that oral cancer cells can fuse spontaneously with endothelial cells in co-culture and inflammatory cytokine tumor necrosis factor-{alpha} (TNF-{alpha}) increased fusion of human umbilical vein endothelium cells and oral cancer cells by up to 3-fold in vitro. Additionally, human oral squamous cell carcinoma cell lines and 35 out of 50 (70%) oral squamous carcinoma specimens express VLA-4, an integrin, previously implicated in fusions between human peripheral blood CD34-positive cells and murine cardiomyocytes. Expression of VCAM-1, a ligand for VLA-4, was evident on vascular endothelium of oral squamous cell carcinoma. Moreover, immunocytochemistry and flow cytometry analysis revealed that expression of VCAM-1 increased obviously in TNF-{alpha}-stimulated endothelial cells. Anti-VLA-4 or anti-VCAM-1 treatment can decrease significantly cancer-endothelial adhesion and block such fusion. Collectively, our results suggested that TNF-{alpha} could enhance cancer-endothelial cell adhesion and fusion through VCAM-1/VLA-4 pathway. This study provides insights into regulatory mechanism of cancer-endothelial cell fusion, and has important implications for the development of novel therapeutic strategies for prevention of metastasis. -- Highlights: Black-Right-Pointing-Pointer Spontaneous oral cancer-endothelial cell fusion. Black-Right-Pointing-Pointer TNF-{alpha} enhanced cell fusions. Black-Right-Pointing-Pointer VCAM-1/VLA-4 expressed in oral cancer. Black-Right-Pointing-Pointer TNF-{alpha} increased expression of VCAM-1 on endothelial cells. Black

  17. Fisetin antagonizes cell fusion, cytoskeletal organization and bone resorption in RANKL-differentiated murine macrophages.

    Science.gov (United States)

    Kim, Yun-Ho; Kim, Jung-Lye; Lee, Eun-Jung; Park, Sin-Hye; Han, Seon-Young; Kang, Soon Ah; Kang, Young-Hee

    2014-03-01

    Osteoclastogenesis is comprised of several stage s including progenitor survival, differentiation to mononuclear preosteoclasts, cell fusion to multinuclear mature osteoclasts, and activation to osteoclasts with bone resorbing activity. Botanical antioxidants are now being increasingly investigated for their health-promoting effects on bone. This study investigated that fisetin, a flavonol found naturally in many fruits and vegetables, suppressed osteoclastogenesis by disturbing receptor activator of nuclear factor (NF)-κB ligand (RANKL)-mediated signaling pathway and demoting osteoclastogenic protein induction. Nontoxic fisetin at ≤10 μM inhibited the induction of RANK, tumor necrosis factor receptor associated factor 6 (TRAF6) and the activation of NF-κB in RANKL-stimulated RAW 264.7 macrophages. In RANKL-differentiated osteoclasts cell fusion protein of E-cadherin was induced, which was dampened by fisetin. The formation of tartrate-resistance acid phosphatase-positive multinucleated osteoclasts was suppressed by adding fisetin to RANKL-exposed macrophages. It was also found that fisetin reduced actin ring formation and gelsolin induction of osteclasts enhanced by RANKL through disturbing c-Src-proline-rich tyrosine kinase 2 signaling. Fisetin deterred preosteoclasts from the cell-cell fusion and the organization of the cytoskeleton to seal the resorbing area and to secret protons for bone resorption. Consistently, the 5 day-treatment of fisetin diminished RANKL-induced cellular expression of carbonic anhydrase II and integrin β3 concurrently with a reduction of osteoclast bone-resorbing activity. Therefore, fisetin was a natural therapeutic agent retarding osteoclast fusion and cytoskeletal organization such as actin rings and ruffled boarder, which is a property of mature osteoclasts and is required for osteoclasts to resorb bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Enhanced human somatic cell reprogramming efficiency by fusion of the MYC transactivation domain and OCT4

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2017-12-01

    Full Text Available The development of human induced pluripotent stem cells (iPSCs holds great promise for regenerative medicine. However the iPSC induction efficiency is still very low and with lengthy reprogramming process. We utilized the highly potent transactivation domain (TAD of MYC protein to engineer the human OCT4 fusion proteins. Applying the MYC-TAD-OCT4 fusion proteins in mouse iPSC generation leads to shorter reprogramming dynamics, with earlier activation of pluripotent markers in reprogrammed cells than wild type OCT4 (wt-OCT4. Dramatic enhancement of iPSC colony induction efficiency and shortened reprogramming dynamics were observed when these MYC-TAD-OCT4 fusion proteins were used to reprogram primary human cells. The OCT4 fusion proteins induced human iPSCs are pluripotent. We further show that the MYC Box I (MBI is dispensable while both MBII and the linking region between MBI/II are essential for the enhanced reprogramming activity of MYC-TAD-OCT4 fusion protein. Consistent with an enhanced transcription activity, the engineered OCT4 significantly stimulated the expression of genes specifically targeted by OCT4-alone, OCT4/SOX2, and OCT4/SOX2/KLF4 during human iPSC induction, compared with the wt-OCT4. The MYC-TAD-OCT4 fusion proteins we generated will be valuable tools for studying the reprogramming mechanisms and for efficient iPSC generation for humans as well as for other species.

  19. Tracking fusion of human mesenchymal stem cells after transplantation to the heart.

    Science.gov (United States)

    Freeman, Brian T; Kouris, Nicholas A; Ogle, Brenda M

    2015-06-01

    Evidence suggests that transplanted mesenchymal stem cells (MSCs) can aid recovery of damaged myocardium caused by myocardial infarction. One possible mechanism for MSC-mediated recovery is reprogramming after cell fusion between transplanted MSCs and recipient cardiac cells. We used a Cre/LoxP-based luciferase reporter system coupled to biophotonic imaging to detect fusion of transplanted human pluripotent stem cell-derived MSCs to cells of organs of living mice. Human MSCs, with transient expression of a viral fusogen, were delivered to the murine heart via a collagen patch. At 2 days and 1 week later, living mice were probed for bioluminescence indicative of cell fusion. Cell fusion was detected at the site of delivery (heart) and in distal tissues (i.e., stomach, small intestine, liver). Fusion was confirmed at the cellular scale via fluorescence in situ hybridization for human-specific and mouse-specific centromeres. Human cells in organs distal to the heart were typically located near the vasculature, suggesting MSCs and perhaps MSC fusion products have the ability to migrate via the circulatory system to distal organs and engraft with local cells. The present study reveals previously unknown migratory patterns of delivered human MSCs and associated fusion products in the healthy murine heart. The study also sets the stage for follow-on studies to determine the functional effects of cell fusion in a model of myocardial damage or disease. Mesenchymal stem cells (MSCs) are transplanted to the heart, cartilage, and other tissues to recover lost function or at least limit overactive immune responses. Analysis of tissues after MSC transplantation shows evidence of fusion between MSCs and the cells of the recipient. To date, the biologic implications of cell fusion remain unclear. A newly developed in vivo tracking system was used to identify MSC fusion products in living mice. The migratory patterns of fusion products were determined both in the target organ (i

  20. An unusual dependence of human herpesvirus-8 glycoproteins-induced cell-to-cell fusion on heparan sulfate

    International Nuclear Information System (INIS)

    Tiwari, Vaibhav; Darmani, Nissar A.; Thrush, Gerald R.; Shukla, Deepak

    2009-01-01

    Human herpesvirus-8 (HHV-8) is known to interact with cell surface heparan sulfate (HS) for entry into a target cell. Here we investigated the role of HS during HHV-8 glycoproteins-induced cell fusion. Interestingly, the observed fusion demonstrated an unusual dependence on HS as evident from following lines of evidence: (1) a significant reduction in cell-to-cell fusion occurred when target cells were treated with heparinase; (2) in a competition assay, when the effector cells expressing HHV-8 glycoproteins were challenged with soluble HS, cell-to-cell fusion was reduced; and, (3) co-expression of HHV-8 glycoproteins gH-gL on target cells resulted in inhibition of cell surface HS expression. Taken together, our results indicate that cell surface HS can play an additional role during HHV-8 pathogenesis.

  1. An unusual dependence of human herpesvirus-8 glycoproteins-induced cell-to-cell fusion on heparan sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Vaibhav [Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific and College of Optometry, Western University of Health Sciences, Pomona, CA 91766 (United States); Darmani, Nissar A.; Thrush, Gerald R. [Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific and College of Optometry, Western University of Health Sciences, Pomona, CA 91766 (United States); Shukla, Deepak, E-mail: dshukla@uic.edu [Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612 (United States)

    2009-12-18

    Human herpesvirus-8 (HHV-8) is known to interact with cell surface heparan sulfate (HS) for entry into a target cell. Here we investigated the role of HS during HHV-8 glycoproteins-induced cell fusion. Interestingly, the observed fusion demonstrated an unusual dependence on HS as evident from following lines of evidence: (1) a significant reduction in cell-to-cell fusion occurred when target cells were treated with heparinase; (2) in a competition assay, when the effector cells expressing HHV-8 glycoproteins were challenged with soluble HS, cell-to-cell fusion was reduced; and, (3) co-expression of HHV-8 glycoproteins gH-gL on target cells resulted in inhibition of cell surface HS expression. Taken together, our results indicate that cell surface HS can play an additional role during HHV-8 pathogenesis.

  2. A new NFIA:RAF1 fusion activating the MAPK pathway in pilocytic astrocytoma

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Sehested, Astrid; Regué, Àngels Mateu

    2016-01-01

    of a comprehensive genomic tumor profiling. We show that the NFIA:RAF1 fusion results in constitutive Raf1 kinase activity, leading to activation of downstream MEK1/2 cascade and increased proliferation of cancer cells. The NFIA:RAF1 fusion displayed distinct subcellular localization towards the plasma membrane...... in order to refine diagnostics of PA and to unravel potential treatment options, e.g. with MEK inhibitors....

  3. Remotely controlled fusion of selected vesicles and living cells: a key issue review

    Science.gov (United States)

    Bahadori, Azra; Moreno-Pescador, Guillermo; Oddershede, Lene B.; Bendix, Poul M.

    2018-03-01

    Remote control over fusion of single cells and vesicles has a great potential in biological and chemical research allowing both transfer of genetic material between cells and transfer of molecular content between vesicles. Membrane fusion is a critical process in biology that facilitates molecular transport and mixing of cellular cytoplasms with potential formation of hybrid cells. Cells precisely regulate internal membrane fusions with the aid of specialized fusion complexes that physically provide the energy necessary for mediating fusion. Physical factors like membrane curvature, tension and temperature, affect biological membrane fusion by lowering the associated energy barrier. This has inspired the development of physical approaches to harness the fusion process at a single cell level by using remotely controlled electromagnetic fields to trigger membrane fusion. Here, we critically review various approaches, based on lasers or electric pulses, to control fusion between individual cells or between individual lipid vesicles and discuss their potential and limitations for present and future applications within biochemistry, biology and soft matter.

  4. Induction of cell-cell fusion from without by human herpesvirus 6B

    DEFF Research Database (Denmark)

    Pedersen, Simon Metz; Øster, Bodil; Bundgaard, Bettina

    2006-01-01

    Human herpesvirus (HHV) 6A induce fusion from without (FFWO), whereas HHV-6B is believed to be ineffective in this process. Here, we demonstrate that HHV-6B induces rapid fusion in both epithelial cells and lymphocytes. The fusion was identified 1 h postinfection, could be inhibited by antibodies...

  5. An unusual dependence of human herpesvirus-8 Glycoproteins-induced cell-to-cell fusion on heparan sulfate

    Science.gov (United States)

    Tiwari, Vaibhav; Darmani, Nissar A.; Thrush, Gerald R.; Shukla, Deepak

    2009-01-01

    Human herpes virus 8 (HHV-8) is known to interact with cell surface heparan sulfate (HS) for entry into a target cell. Here we investigated the role of HS during HHV-8 glycoproteins induced cell fusion. Interestingly, the observed fusion demonstrated an unusual dependence on HS as evident from following lines of evidence: 1) a significant reduction in cell-to-cell fusion occurred when target cells were treated with heparinase; 2) in a competition assay, when the effector cells expressing HHV-8 glycoproteins were challenged with soluble HS, cell-to-cell fusion was reduced; and, 3) coexpression of HHV-8 glycoproteins gH-gL on target cells resulted in inhibition of cell surface HS expression. Taken together, our results indicate that cell surface HS can play an additional role during HHV-8 pathogenesis. PMID:19747451

  6. Exceptionally potent anti-tumor bystander activity of an scFv : sTRAIL fusion protein with specificity for EGP2 toward target antigen-negative tumor cells

    NARCIS (Netherlands)

    Bremer, E; Samplonius, D; Kroesen, BJ; van Genne, L; de Leij, L; Helfrich, W

    2004-01-01

    Previously, we reported on the target cell-restricted fratricide apoptotic activity of scFvC54:sTRAIL, a fusion protein comprising human-soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) genetically linked to the antibody fragment scFvC54 specific for the cell surface target

  7. Cell Fusion in the War on Cancer: A Perspective on the Inception of Malignancy

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Platt

    2016-07-01

    Full Text Available Cell fusion occurs in development and in physiology and rarely in those settings is it associated with malignancy. However, deliberate fusion of cells and possibly untoward fusion of cells not suitably poised can eventuate in aneuploidy, DNA damage and malignant transformation. How often cell fusion may initiate malignancy is unknown. However, cell fusion could explain the high frequency of cancers in tissues with low underlying rates of cell proliferation and mutation. On the other hand, cell fusion might also engage innate and adaptive immune surveillance, thus helping to eliminate or retard malignancies. Here we consider whether and how cell fusion might weigh on the overall burden of cancer in modern societies.

  8. Genetic analysis of the SARS-coronavirus spike glycoprotein functional domains involved in cell-surface expression and cell-to-cell fusion

    International Nuclear Information System (INIS)

    Petit, Chad M.; Melancon, Jeffrey M.; Chouljenko, Vladimir N.; Colgrove, Robin; Farzan, Michael; Knipe, David M.; Kousoulas, K.G.

    2005-01-01

    The SARS-coronavirus (SARS-CoV) is the etiological agent of severe acute respiratory syndrome (SARS). The SARS-CoV spike (S) glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. To delineate functional domains of the SARS-CoV S glycoprotein, single point mutations, cluster-to-lysine and cluster-to-alanine mutations, as well as carboxyl-terminal truncations were investigated in transient expression experiments. Mutagenesis of either the coiled-coil domain of the S glycoprotein amino terminal heptad repeat, the predicted fusion peptide, or an adjacent but distinct region, severely compromised S-mediated cell-to-cell fusion, while intracellular transport and cell-surface expression were not adversely affected. Surprisingly, a carboxyl-terminal truncation of 17 amino acids substantially increased S glycoprotein-mediated cell-to-cell fusion suggesting that the terminal 17 amino acids regulated the S fusogenic properties. In contrast, truncation of 26 or 39 amino acids eliminating either one or both of the two endodomain cysteine-rich motifs, respectively, inhibited cell fusion in comparison to the wild-type S. The 17 and 26 amino-acid deletions did not adversely affect S cell-surface expression, while the 39 amino-acid truncation inhibited S cell-surface expression suggesting that the membrane proximal cysteine-rich motif plays an essential role in S cell-surface expression. Mutagenesis of the acidic amino-acid cluster in the carboxyl terminus of the S glycoprotein as well as modification of a predicted phosphorylation site within the acidic cluster revealed that this amino-acid motif may play a functional role in the retention of S at cell surfaces. This genetic analysis reveals that the SARS-CoV S glycoprotein contains extracellular domains that regulate cell fusion as well as distinct endodomains that function in intracellular transport, cell-surface expression, and cell fusion

  9. Hemi-fused structure mediates and controls fusion and fission in live cells.

    Science.gov (United States)

    Zhao, Wei-Dong; Hamid, Edaeni; Shin, Wonchul; Wen, Peter J; Krystofiak, Evan S; Villarreal, Seth A; Chiang, Hsueh-Cheng; Kachar, Bechara; Wu, Ling-Gang

    2016-06-23

    Membrane fusion and fission are vital for eukaryotic life. For three decades, it has been proposed that fusion is mediated by fusion between the proximal leaflets of two bilayers (hemi-fusion) to produce a hemi-fused structure, followed by fusion between the distal leaflets, whereas fission is via hemi-fission, which also produces a hemi-fused structure, followed by full fission. This hypothesis remained unsupported owing to the lack of observation of hemi-fusion or hemi-fission in live cells. A competing fusion hypothesis involving protein-lined pore formation has also been proposed. Here we report the observation of a hemi-fused Ω-shaped structure in live neuroendocrine chromaffin cells and pancreatic β-cells, visualized using confocal and super-resolution stimulated emission depletion microscopy. This structure is generated from fusion pore opening or closure (fission) at the plasma membrane. Unexpectedly, the transition to full fusion or fission is determined by competition between fusion and calcium/dynamin-dependent fission mechanisms, and is notably slow (seconds to tens of seconds) in a substantial fraction of the events. These results provide key missing evidence in support of the hemi-fusion and hemi-fission hypothesis in live cells, and reveal the hemi-fused intermediate as a key structure controlling fusion and fission, as fusion and fission mechanisms compete to determine the transition to fusion or fission.

  10. The nectin-1α transmembrane domain, but not the cytoplasmic tail, influences cell fusion induced by HSV-1 glycoproteins

    International Nuclear Information System (INIS)

    Subramanian, Ravi P.; Dunn, Jennifer E.; Geraghty, Robert J.

    2005-01-01

    Nectin-1 is a receptor for herpes simplex virus (HSV), a member of the immunoglobulin superfamily, and a cellular adhesion molecule. To study domains of nectin-1α involved in cell fusion, we measured the ability of nectin-1α/nectin-2α chimeras, nectin-1α/CD4 chimeras, and transmembrane domain and cytoplasmic tail mutants of nectin-1α to promote cell fusion induced by HSV-1 glycoproteins. Our results demonstrate that only chimeras and mutants containing the entire V-like domain and a link to the plasma membrane conferred cell-fusion activity. The transmembrane domain and cytoplasmic tail of nectin-1 were not required for any viral receptor or cell adhesion function tested. Cellular cytoplasmic factors that bind to the nectin-1α cytoplasmic tail, therefore, did not influence virus entry or cell fusion. Interestingly, the efficiency of cell fusion was reduced when membrane-spanning domains of nectin-1α and gD were replaced by glycosylphosphatidylinositol tethers, indicating that transmembrane domains may play a modulatory role in the gD/nectin-1α interaction in fusion

  11. Cell fusion through a microslit between adhered cells and observation of their nuclear behavior.

    Science.gov (United States)

    Wada, Ken-Ichi; Hosokawa, Kazuo; Kondo, Eitaro; Ito, Yoshihiro; Maeda, Mizuo

    2014-07-01

    This paper describes a novel cell fusion method which induces cell fusion between adhered cells through a microslit for preventing nuclear mixing. For this purpose, a microfluidic device which had ∼ 100 cell pairing structures (CPSs) making cell pairs through microslits with 2.1 ± 0.3 µm width was fabricated. After trapping NIH3T3 cells with hydrodynamic forces at the CPSs, the cells were fused through the microslit by the Sendai virus envelope method. With following timelapse observation, we discovered that the spread cells were much less susceptible to nuclear migration passing through the microslit compared with round cells, and that cytoplasmic fraction containing mitochondria was transferred through the microslit without nuclear mixing. These findings will provide an effective method for cell fusion without nuclear mixing, and will lead to an efficient method for reprograming and transdifferentiation of target cells toward regenerative medicine. © 2014 Wiley Periodicals, Inc.

  12. Flavivirus cell entry and membrane fusion

    NARCIS (Netherlands)

    Smit, Jolanda M.; Moesker, Bastiaan; Rodenhuis-Zybert, Izabela; Wilschut, Jan

    2011-01-01

    Flaviviruses, such as dengue virus and West Nile virus, are enveloped viruses that infect cells through receptor-mediated endocytosis and fusion from within acidic endosomes. The cell entry process of flaviviruses is mediated by the viral E glycoprotein. This short review will address recent

  13. Efficient sensor selection for active information fusion.

    Science.gov (United States)

    Zhang, Yongmian; Ji, Qiang

    2010-06-01

    In our previous paper, we formalized an active information fusion framework based on dynamic Bayesian networks to provide active information fusion. This paper focuses on a central issue of active information fusion, i.e., the efficient identification of a subset of sensors that are most decision relevant and cost effective. Determining the most informative and cost-effective sensors requires an evaluation of all the possible subsets of sensors, which is computationally intractable, particularly when information-theoretic criterion such as mutual information is used. To overcome this challenge, we propose a new quantitative measure for sensor synergy based on which a sensor synergy graph is constructed. Using the sensor synergy graph, we first introduce an alternative measure to multisensor mutual information for characterizing the sensor information gain. We then propose an approximated nonmyopic sensor selection method that can efficiently and near-optimally select a subset of sensors for active fusion. The simulation study demonstrates both the performance and the efficiency of the proposed sensor selection method.

  14. Inhibition of Nipah virus infection in vivo: targeting an early stage of paramyxovirus fusion activation during viral entry.

    Directory of Open Access Journals (Sweden)

    Matteo Porotto

    2010-10-01

    Full Text Available In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viral and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.

  15. Genomic instability and telomere fusion of canine osteosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Junko Maeda

    Full Text Available Canine osteosarcoma (OSA is known to present with highly variable and chaotic karyotypes, including hypodiploidy, hyperdiploidy, and increased numbers of metacentric chromosomes. The spectrum of genomic instabilities in canine OSA has significantly augmented the difficulty in clearly defining the biological and clinical significance of the observed cytogenetic abnormalities. In this study, eight canine OSA cell lines were used to investigate telomere fusions by fluorescence in situ hybridization (FISH using a peptide nucleotide acid probe. We characterized each cell line by classical cytogenetic studies and cellular phenotypes including telomere associated factors and then evaluated correlations from this data. All eight canine OSA cell lines displayed increased abnormal metacentric chromosomes and exhibited numerous telomere fusions and interstitial telomeric signals. Also, as evidence of unstable telomeres, colocalization of γ-H2AX and telomere signals in interphase cells was observed. Each cell line was characterized by a combination of data representing cellular doubling time, DNA content, chromosome number, metacentric chromosome frequency, telomere signal level, cellular radiosensitivity, and DNA-PKcs protein expression level. We have also studied primary cultures from 10 spontaneous canine OSAs. Based on the observation of telomere aberrations in those primary cell cultures, we are reasonably certain that our observations in cell lines are not an artifact of prolonged culture. A correlation between telomere fusions and the other characteristics analyzed in our study could not be identified. However, it is important to note that all of the canine OSA samples exhibiting telomere fusion utilized in our study were telomerase positive. Pending further research regarding telomerase negative canine OSA cell lines, our findings may suggest telomere fusions can potentially serve as a novel marker for canine OSA.

  16. Three Cell Fusions during Double Fertilization.

    Science.gov (United States)

    Sprunck, Stefanie; Dresselhaus, Thomas

    2015-05-07

    Fertilization of both egg and central cell is a major distinguishing feature of flowering plants. Now, Maruyama et al. report a third cell fusion event between the persistent synergid and the fertilized central cell shortly after double fertilization in Arabidopsis. This causes rapid dilution of pollen tube attractant(s), preventing polytubey. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. β-MSCs: successful fusion of MSCs with β-cells results in a β-cell like phenotype.

    Science.gov (United States)

    Azizi, Zahra; Lange, Claudia; Paroni, Federico; Ardestani, Amin; Meyer, Anke; Wu, Yonghua; Zander, Axel R; Westenfelder, Christof; Maedler, Kathrin

    2016-08-02

    Bone marrow mesenchymal stromal cells (MSC) have anti-inflammatory, anti-apoptotic and immunosuppressive properties and are a potent source for cell therapy. Cell fusion has been proposed for rapid generation of functional new reprogrammed cells. In this study, we aimed to establish a fusion protocol of bone marrow-derived human MSCs with the rat beta-cell line (INS-1E) as well as human isolated pancreatic islets in order to generate insulin producing beta-MSCs as a cell-based treatment for diabetes.Human eGFP+ puromycin+ MSCs were co-cultured with either stably mCherry-expressing rat INS-1E cells or human dispersed islet cells and treated with phytohemagglutinin (PHA-P) and polyethylene glycol (PEG) to induce fusion. MSCs and fused cells were selected by puromycin treatment.With an improved fusion protocol, 29.8 ± 2.9% of all MSCs were β-MSC heterokaryons based on double positivity for mCherry and eGFP.After fusion and puromycin selection, human NKX6.1 and insulin as well as rat Neurod1, Nkx2.2, MafA, Pdx1 and Ins1 mRNA were highly elevated in fused human MSC/INS-1E cells, compared to the mixed control population. Such induction of beta-cell markers was confirmed in fused human MSC/human dispersed islet cells, which showed elevated NEUROD1, NKX2.2, MAFA, PDX1 and insulin mRNA compared to the mixed control. Fused cells had higher insulin content and improved insulin secretion compared to the mixed control and insulin positive beta-MSCs also expressed nuclear PDX1. We established a protocol for fusion of human MSCs and beta cells, which resulted in a beta cell like phenotype. This could be a novel tool for cell-based therapies of diabetes.

  18. Design activities of a fusion experimental breeder

    International Nuclear Information System (INIS)

    Huang, J.; Feng, K.; Sheng, G.

    1999-01-01

    The fusion reactor design studies in China are under the support of a fusion-fission hybrid reactor research Program. The purpose of this program is to explore the potential near-term application of fusion energy to support the long-term fusion energy on the one hand and the fission energy development on the other. During 1992-1996 a detailed consistent and integral conceptual design of a Fusion Experimental Breeder, FEB was completed. Beginning from 1996, a further design study towards an Engineering Outline Design of the FEB, FEB-E, has started. The design activities are briefly given. (author)

  19. Design activities of a fusion experimental breeder

    International Nuclear Information System (INIS)

    Huang, J.; Feng, K.; Sheng, G.

    2001-01-01

    The fusion reactor design studies in China are under the support of a fusion-fission hybrid reactor research Program. The purpose of this program is to explore the potential near-term application of fusion energy to support the long-term fusion energy on the one hand and the fission energy development on the other. During 1992-1996 a detailed consistent and integral conceptual design of a Fusion Experimental Breeder, FEB was completed. Beginning from 1996, a further design study towards an Engineering Outline Design of the FEB, FEB-E, has started. The design activities are briefly given. (author)

  20. L-Type Voltage-Gated Ca2+ Channels Regulate Synaptic-Activity-Triggered Recycling Endosome Fusion in Neuronal Dendrites

    Directory of Open Access Journals (Sweden)

    Brian G. Hiester

    2017-11-01

    Full Text Available The repertoire and abundance of proteins displayed on the surface of neuronal dendrites are tuned by regulated fusion of recycling endosomes (REs with the dendritic plasma membrane. While this process is critical for neuronal function and plasticity, how synaptic activity drives RE fusion remains unexplored. We demonstrate a multistep fusion mechanism that requires Ca2+ from distinct sources. NMDA receptor Ca2+ initiates RE fusion with the plasma membrane, while L-type voltage-gated Ca2+ channels (L-VGCCs regulate whether fused REs collapse into the membrane or reform without transferring their cargo to the cell surface. Accordingly, NMDA receptor activation triggered AMPA-type glutamate receptor trafficking to the dendritic surface in an L-VGCC-dependent manner. Conversely, potentiating L-VGCCs enhanced AMPA receptor surface expression only when NMDA receptors were also active. Thus L-VGCCs play a role in tuning activity-triggered surface expression of key synaptic proteins by gating the mode of RE fusion.

  1. FUSION OF SENDAI VIRUS WITH HUMAN HL-60 AND CEM CELLS - DIFFERENT KINETICS OF FUSION FOR 2 ISOLATES

    NARCIS (Netherlands)

    DELIMA, MCP; NIR, S; FLASHER, D; KLAPPE, K; HOEKSTRA, D; DUZGUNES, N

    1991-01-01

    The kinetics of fusion of Sendai virus (Z strain) with the human promyelocytic leukemia cell line HL-60, and the human T lymphocytic leukemia cell line CEM was investigated. Fusion was monitored by fluorescence dequenching of octadecylrhodamine (R-18) incorporated in the viral membrane. For one

  2. Results from the CDE phase activity on neutron dosimetry for the international fusion materials irradiation facility test cell

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, B. E-mail: esposito@frascati.enea.it; Bertalot, L.; Maruccia, G.; Petrizzi, L.; Bignan, G.; Blandin, C.; Chauffriat, S.; Lebrun, A.; Recroix, H.; Trapp, J.P.; Kaschuck, Y

    2000-11-01

    The international fusion materials irradiation facility (IFMIF) project deals with the study of an accelerator-based, deuterium-lithium source, producing high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials for fusion energy reactors. IFMIF would also provide calibration and validation of data from fission reactor and other accelerator based irradiation tests. This paper describes the activity on neutron/gamma dosimetry (necessary for the characterization of the specimens' irradiation) performed in the frame of the IFMIF conceptual design evaluation (CDE) neutronics tasks. During the previous phase (conceptual design activity (CDA)) the multifoil activation method was proposed for the measurement of the neutron fluence and spectrum and a set of suitable foils was defined. The cross section variances and covariances of this set of foils have now been used for tests on the sensitivity of the IFMIF neutron spectrum determination to cross section uncertainties. The analysis has been carried out using the LSL-M2 code, which optimizes the neutron spectrum by means of a least-squares technique taking into account the variance and covariance files. In the second part of the activity, the possibility of extending to IFMIF the use of existing on-line in-core neutron/gamma monitors (to be located at several positions inside the IFMIF test cell for beam control, safety and diagnostic purposes) has been studied. A feasibility analysis of the modifications required to adapt sub-miniature fission chambers (recently developed by CEA-Cadarache) to the high flux test module of the test cell has been carried out. The verification of this application pertinence and a gross definition of the in-core detector characteristics are described. The option of using self-powered neutron detectors (SPNDs) is also discussed.

  3. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Atsushi [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Kurisaki, Tomohiro [Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Sato, Satoshi B. [Research Center for Low Temperature and Material Sciences, Kyoto University, Yoshida-honmachi, Kyoto 606-8501 (Japan); Kobayashi, Toshihide [Lipid Biology Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Kondoh, Gen [Laboratory of Animal Experiments for Regeneration, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Hashimoto, Naohiro, E-mail: nao@nils.go.jp [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan)

    2009-10-15

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, {beta}-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  4. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    International Nuclear Information System (INIS)

    Mukai, Atsushi; Kurisaki, Tomohiro; Sato, Satoshi B.; Kobayashi, Toshihide; Kondoh, Gen; Hashimoto, Naohiro

    2009-01-01

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, β-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  5. Cell fusion as a tool for rice improvement

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Y; Kyozuka, J; Terada, R; Nishibayashi, S; Shimamoto, K [Plantech Research Institute, Kamoshida, Midori-ku, Yokohama (Japan)

    1990-01-01

    Full text: Cell fusion offers a unique opportunity to hybridize sexually incompatible species and to mix cytoplasmic genomes in higher plants. Recent progress in plant regeneration from rice protoplasts facilitates an evaluation of the cell fusion method for rice improvement. By using electrofusion of protoplasts, we obtained hybrid/cybrid plants of the following combinations: Hybrids of rice x barnyard grass (E. oryzicola); Hybrids of rice x wild Oryza species; Cybrids of rice with transferred cms cytoplasm. For the latter, protoplasts irradiated with 70 krad x-rays were used. (author)

  6. The B isozyme creatine kinase is active as a fusion protein in Escherichia coli

    International Nuclear Information System (INIS)

    Koretsky, A.P.; Traxler, B.A.

    1989-01-01

    A cDNA encoding the B isozyme of creatine kinase CK B has been expressed in Escherichia coli from a fusion with lacZ carried by λgtll. Western blots indicate that a stable polypeptide with the appropriate mobility for the Β-galactosidase-creatine kinase Β-gal-CK B ) fusion protein cross-reacts with both Β-gal and CK B antiserum. No significant CK activity is detected in control E. coli; however, extracts from cells containing the λgtll-CK B construct have a CK activity of 1.54j0.07 μmol/min per mg protein. The fusion protein appears to provide this activity bacause immunoprecipitation of protein with Β-gal antiserum leads to a loss of CK activity from extracts. That the enzyme is active in vivo was demonstrated by detection of a phosphocreatine (PCr) peak in the 31 P NMR spectrum from E. coli grown on medium supplemented with creatine. As in mammalian brain and muscle, the PCr peak detected was sensitive to the energy status of the E. coli. (author). 17 refs.; 3 figs.; 1 tab

  7. Melanoma Cells Can Adopt the Phenotype of Stromal Fibroblasts and Macrophages by Spontaneous Cell Fusion in Vitro.

    Science.gov (United States)

    Kemény, Lajos V; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B

    2016-06-02

    After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells' nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma-stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments.

  8. `Full fusion' is not ineluctable during vesicular exocytosis of neurotransmitters by endocrine cells

    Science.gov (United States)

    Oleinick, Alexander; Svir, Irina; Amatore, Christian

    2017-01-01

    Vesicular exocytosis is an essential and ubiquitous process in neurons and endocrine cells by which neurotransmitters are released in synaptic clefts or extracellular fluids. It involves the fusion of a vesicle loaded with chemical messengers with the cell membrane through a nanometric fusion pore. In endocrine cells, unless it closes after some flickering (`Kiss-and-Run' events), this initial pore is supposed to expand exponentially, leading to a full integration of the vesicle membrane into the cell membrane-a stage called `full fusion'. We report here a compact analytical formulation that allows precise measurements of the fusion pore expansion extent and rate to be extracted from individual amperometric spike time courses. These data definitively establish that, during release of catecholamines, fusion pores enlarge at most to approximately one-fifth of the radius of their parent vesicle, hence ruling out the ineluctability of `full fusion'.

  9. Studies on virus-induced cell fusion. Progress report, August 1, 1975--April 30, 1976. [Herpes simplex

    Energy Technology Data Exchange (ETDEWEB)

    Person, S.

    1976-01-01

    Progress is reported on the following research projects: mechanism of cell fusion induced by fusion-causing mutants of herpes simplex virus type I; quantitative assays for kinetics of cell fusion; neutral sphingoglycolipids in wild type and mutant infected cells; effects of alteration in oligosaccharide metabolism on cell fusion; and blocking of fusion by ..beta..-galactosidase and NH/sub 4/Cl. (HLW)

  10. Long-Term Endurance Exercise in Humans Stimulates Cell Fusion of Myoblasts along with Fusogenic Endogenous Retroviral Genes In Vivo.

    Directory of Open Access Journals (Sweden)

    Sebastian Frese

    Full Text Available Myogenesis is defined as growth, differentiation and repair of muscles where cell fusion of myoblasts to multinucleated myofibers is one major characteristic. Other cell fusion events in humans are found with bone resorbing osteoclasts and placental syncytiotrophoblasts. No unifying gene regulation for natural cell fusions has been found. We analyzed skeletal muscle biopsies of competitive cyclists for muscle-specific attributes and expression of human endogenous retrovirus (ERV envelope genes due to their involvement in cell fusion of osteoclasts and syncytiotrophoblasts. Comparing muscle biopsies from post- with the pre-competitive seasons a significant 2.25-fold increase of myonuclei/mm fiber, a 2.38-fold decrease of fiber area/nucleus and a 3.1-fold decrease of satellite cells (SCs occurred. We propose that during the pre-competitive season SC proliferation occurred following with increased cell fusion during the competitive season. Expression of twenty-two envelope genes of muscle biopsies demonstrated a significant increase of putative muscle-cell fusogenic genes Syncytin-1 and Syncytin-3, but also for the non-fusogenic erv3. Immunohistochemistry analyses showed that Syncytin-1 mainly localized to the sarcolemma of myofibers positive for myosin heavy-chain isotypes. Cellular receptors SLC1A4 and SLC1A5 of Syncytin-1 showed significant decrease of expression in post-competitive muscles compared with the pre-competitive season, but only SLC1A4 protein expression localized throughout the myofiber. Erv3 protein was strongly expressed throughout the myofiber, whereas envK1-7 localized to SC nuclei and myonuclei. Syncytin-1 transcription factors, PPARγ and RXRα, showed no protein expression in the myofiber, whereas the pCREB-Ser133 activator of Syncytin-1 was enriched to SC nuclei and myonuclei. Syncytin-1, Syncytin-3, SLC1A4 and PAX7 gene regulations along with MyoD1 and myogenin were verified during proliferating or actively-fusing human

  11. A high throughput Cre–lox activated viral membrane fusion assay identifies pharmacological inhibitors of HIV entry

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, Anthony M. [Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY (United States); Cheung, Pamela [Integrated Screening Core, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Swartz, Talia H.; Li, Hongru [Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY (United States); Tsibane, Tshidi [Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Durham, Natasha D. [Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY (United States); Basler, Christopher F. [Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Felsenfeld, Dan P. [Integrated Screening Core, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Chen, Benjamin K., E-mail: benjamin.chen@mssm.edu [Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY (United States)

    2016-03-15

    Enveloped virus entry occurs when viral and cellular membranes fuse releasing particle contents into the target cell. Human immunodeficiency virus (HIV) entry occurs by cell-free virus or virus transferred between infected and uninfected cells through structures called virological synapses. We developed a high-throughput cell-based assay to identify small molecule inhibitors of cell-free or virological synapse-mediated entry. An HIV clone carrying Cre recombinase as a Gag-internal gene fusion releases active Cre into cells upon viral entry activating a recombinatorial gene switch changing dsRed to GFP-expression. A screen of a 1998 known-biological profile small molecule library identified pharmacological HIV entry inhibitors that block both cell-free and cell-to-cell infection. Many top hits were noted as HIV inhibitors in prior studies, but not previously recognized as entry antagonists. Modest therapeutic indices for simvastatin and nigericin were observed in confirmatory HIV infection assays. This robust assay is adaptable to study HIV and heterologous viral pseudotypes. - Highlights: • Cre recombinase viral fusion assay screens cell-free or cell–cell entry inhibitors. • This Gag-iCre based assay is specific for the entry step of HIV replication. • Screened a library of known pharmacologic compounds for HIV fusion antagonists. • Many top hits were previously noted as HIV inhibitors, but here are classified as entry antagonists. Many top hits were previously noted as HIV inhibitors, but not as entry antagonists. • The assay is compatible with pseudotyping with HIV and heterologous viruses.

  12. A high throughput Cre–lox activated viral membrane fusion assay identifies pharmacological inhibitors of HIV entry

    International Nuclear Information System (INIS)

    Esposito, Anthony M.; Cheung, Pamela; Swartz, Talia H.; Li, Hongru; Tsibane, Tshidi; Durham, Natasha D.; Basler, Christopher F.; Felsenfeld, Dan P.; Chen, Benjamin K.

    2016-01-01

    Enveloped virus entry occurs when viral and cellular membranes fuse releasing particle contents into the target cell. Human immunodeficiency virus (HIV) entry occurs by cell-free virus or virus transferred between infected and uninfected cells through structures called virological synapses. We developed a high-throughput cell-based assay to identify small molecule inhibitors of cell-free or virological synapse-mediated entry. An HIV clone carrying Cre recombinase as a Gag-internal gene fusion releases active Cre into cells upon viral entry activating a recombinatorial gene switch changing dsRed to GFP-expression. A screen of a 1998 known-biological profile small molecule library identified pharmacological HIV entry inhibitors that block both cell-free and cell-to-cell infection. Many top hits were noted as HIV inhibitors in prior studies, but not previously recognized as entry antagonists. Modest therapeutic indices for simvastatin and nigericin were observed in confirmatory HIV infection assays. This robust assay is adaptable to study HIV and heterologous viral pseudotypes. - Highlights: • Cre recombinase viral fusion assay screens cell-free or cell–cell entry inhibitors. • This Gag-iCre based assay is specific for the entry step of HIV replication. • Screened a library of known pharmacologic compounds for HIV fusion antagonists. • Many top hits were previously noted as HIV inhibitors, but here are classified as entry antagonists. Many top hits were previously noted as HIV inhibitors, but not as entry antagonists. • The assay is compatible with pseudotyping with HIV and heterologous viruses.

  13. Susceptibility to virus-cell fusion at the plasma membrane is reduced through expression of HIV gp41 cytoplasmic domains

    International Nuclear Information System (INIS)

    Malinowsky, Katharina; Luksza, Julia; Dittmar, Matthias T.

    2008-01-01

    The cytoplasmic tail of the HIV transmembrane protein plays an important role in viral infection. In this study we analyzed the role of retroviral cytoplasmic tails in modulating the cytoskeleton and interfering with virus-cell fusion. HeLaP4 cells expressing different HIV cytoplasmic tail constructs showed reduced acetylated tubulin levels whereas the cytoplasmic tail of MLV did not alter microtubule stability indicating a unique function for the lentiviral cytoplasmic tail. The effect on tubulin is mediated through the membrane proximal region of the HIV cytoplasmic tail and was independent of membrane localization. Site-directed mutagenesis identified three motifs in the HIV-2 cytoplasmic tail required to effect the reduction in acetylated tubulin. Both the YxxΦ domain and amino acids 21 to 45 of the HIV-2 cytoplasmic tail need to be present to change the level of acetylated tubulin in transfected cells. T-cells stably expressing one HIV-2 cytoplasmic tail derived construct showed also a reduction in acetylated tubulin thus confirming the importance of this effect not only for HeLaP4 and 293T cells. Challenge experiments using transiently transfected HeLaP4 cells and T cells stably expressing an HIV cytoplasmic tail construct revealed both reduced virus-cell fusion and replication of HIV-1 NL4.3 compared to control cells. In the virus-cell fusion assay only virions pseudotyped with either HIV or MLV envelopes showed reduced fusion efficiency, whereas VSV-G pseudotyped virions where not affected by the expression of HIV derived cytoplasmic tail constructs, indicating that fusion at the plasma but not endosomal membrane is affected. Overexpression of human histone-deacetylase 6 (HDAC6) and constitutively active RhoA resulted in a reduction of acetylated tubulin and reduced virus-cell fusion as significant as that observed following expression of HIV cytoplasmic tail constructs. Inhibition of HDAC6 showed a strong increase in acetylated tubulin and increase of

  14. Exo-endo cellulase fusion protein

    Science.gov (United States)

    Bower, Benjamin S [Palo Alto, CA; Larenas, Edmund A [Palo Alto, CA; Mitchinson, Colin [Palo Alto, CA

    2012-01-17

    The present invention relates to a heterologous exo-endo cellulase fusion construct, which encodes a fusion protein having cellulolytic activity comprising a catalytic domain derived from a fungal exo-cellobiohydrolase and a catalytic domain derived from an endoglucanase. The invention also relates to vectors and fungal host cells comprising the heterologous exo-endo cellulase fusion construct as well as methods for producing a cellulase fusion protein and enzymatic cellulase compositions.

  15. Activation product transport in fusion reactors

    International Nuclear Information System (INIS)

    Klein, A.C.; Vogelsang, W.F.

    1984-01-01

    Activated corrosion and neutron sputtering products will enter the coolant and/or tritium breeding material of fusion reactor power plants and experiments and cause personnel access problems. Radiation levels around plant components due to these products will cause difficulties with maintenance and repair operations throughout the plant. A computer code, RAPTOR, has been developed to determine the transport of these products in fusion reactor coolant/tritium breeding materials. Without special treatment, it is likely that fusion reactor power plant operators could experience dose rates as high as 8 rem per hour around a number of plant components after only a few years of operation. (orig.)

  16. Color-coded Live Imaging of Heterokaryon Formation and Nuclear Fusion of Hybridizing Cancer Cells.

    Science.gov (United States)

    Suetsugu, Atsushi; Matsumoto, Takuro; Hasegawa, Kosuke; Nakamura, Miki; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Bouvet, Michael; Hoffman, Robert M

    2016-08-01

    Fusion of cancer cells has been studied for over half a century. However, the steps involved after initial fusion between cells, such as heterokaryon formation and nuclear fusion, have been difficult to observe in real time. In order to be able to visualize these steps, we have established cancer-cell sublines from the human HT-1080 fibrosarcoma, one expressing green fluorescent protein (GFP) linked to histone H2B in the nucleus and a red fluorescent protein (RFP) in the cytoplasm and the other subline expressing RFP in the nucleus (mCherry) linked to histone H2B and GFP in the cytoplasm. The two reciprocal color-coded sublines of HT-1080 cells were fused using the Sendai virus. The fused cells were cultured on plastic and observed using an Olympus FV1000 confocal microscope. Multi-nucleate (heterokaryotic) cancer cells, in addition to hybrid cancer cells with single-or multiple-fused nuclei, including fused mitotic nuclei, were observed among the fused cells. Heterokaryons with red, green, orange and yellow nuclei were observed by confocal imaging, even in single hybrid cells. The orange and yellow nuclei indicate nuclear fusion. Red and green nuclei remained unfused. Cell fusion with heterokaryon formation and subsequent nuclear fusion resulting in hybridization may be an important natural phenomenon between cancer cells that may make them more malignant. The ability to image the complex processes following cell fusion using reciprocal color-coded cancer cells will allow greater understanding of the genetic basis of malignancy. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. The TEL-AML1 fusion protein of acute lymphoblastic leukemia modulates IRF3 activity during early B-cell differentiation.

    Science.gov (United States)

    de Laurentiis, A; Hiscott, J; Alcalay, M

    2015-12-03

    The t(12;21) translocation is the most common genetic rearrangement in childhood acute lymphoblastic leukemia (ALL) and gives rise to the TEL-AML1 fusion gene. Many studies on TEL-AML1 describe specific properties of the fusion protein, but a thorough understanding of its function is lacking. We exploited a pluripotent hematopoietic stem/progenitor cell line, EML1, and generated a cell line (EML-TA) stably expressing the TEL-AML1 fusion protein. EML1 cells differentiate to mature B-cells following treatment with IL7; whereas EML-TA display an impaired differentiation capacity and remain blocked at an early stage of maturation. Global gene expression profiling of EML1 cells at different stages of B-lymphoid differentiation, compared with EML-TA, identified the interferon (IFN)α/β pathway as a primary target of repression by TEL-AML1. In particular, expression and phosphorylation of interferon-regulatory factor 3 (IRF3) was decreased in EML-TA cells; strikingly, stable expression of IRF3 restored the capacity of EML-TA cells to differentiate into mature B-cells. Similarly, IRF3 silencing in EML1 cells by siRNA was sufficient to block B-lymphoid differentiation. The ability of TEL-AML1 to block B-cell differentiation and downregulate the IRF3-IFNα/β pathway was confirmed in mouse and human primary hematopoietic precursor cells (Lin- and CD34+ cells, respectively), and in a patient-derived cell line expressing TEL-AML1 (REH). Furthermore, treatment of TEL-AML1 expressing cells with IFNα/β was sufficient to overcome the maturation block. Our data provide new insight on TEL-AML1 function and may offer a new therapeutic opportunity for B-ALL.

  18. Effect of Bcl-xL overexpression on sialylation of Fc-fusion protein in recombinant Chinese hamster ovary cell cultures.

    Science.gov (United States)

    Lee, Jong Hyun; Kim, Yeon-Gu; Lee, Gyun Min

    2015-01-01

    The sialic acid of glycoproteins secreted by recombinant Chinese hamster ovary (rCHO) cells can be impaired by sialidase under culture conditions which promote the extracellular accumulation of this enzyme. To investigate the effect of Bcl-xL overexpression on the sialylation of glycoproteins produced in rCHO cell culture, two rCHO cell lines producing the same Fc-fusion protein, which were derived from DUKX-B11 and DG44, respectively, were engineered to have regulated Bcl-xL overexpression using the Tet-off system. For both cell lines, Bcl-xL overexpression improved cell viability and extended culture longevity in batch cultures. As a result, a maximum Fc-fusion protein titer increased by Bcl-xL overexpression though the extent of titer enhancement differed between the two cell lines. With Bcl-xL overexpression, the sialylation of Fc-fusion protein, which was assessed by isoelectric focusing gel and sialic acid content analyses, decreased more slowly toward the end of batch cultures. This was because Bcl-xL overexpression delayed the extracellular accumulation of sialidase activity by reducing cell lysis during batch cultures. Taken together, Bcl-xL overexpression in rCHO cell culture increased Fc-fusion protein production and also reduced the impairment of sialylation of Fc-fusion protein by maintaining high viability during batch cultures. © 2015 American Institute of Chemical Engineers.

  19. Cell-fusion method to visualize interphase nuclear pore formation.

    Science.gov (United States)

    Maeshima, Kazuhiro; Funakoshi, Tomoko; Imamoto, Naoko

    2014-01-01

    In eukaryotic cells, the nucleus is a complex and sophisticated organelle that organizes genomic DNA to support essential cellular functions. The nuclear surface contains many nuclear pore complexes (NPCs), channels for macromolecular transport between the cytoplasm and nucleus. It is well known that the number of NPCs almost doubles during interphase in cycling cells. However, the mechanism of NPC formation is poorly understood, presumably because a practical system for analysis does not exist. The most difficult obstacle in the visualization of interphase NPC formation is that NPCs already exist after nuclear envelope formation, and these existing NPCs interfere with the observation of nascent NPCs. To overcome this obstacle, we developed a novel system using the cell-fusion technique (heterokaryon method), previously also used to analyze the shuttling of macromolecules between the cytoplasm and the nucleus, to visualize the newly synthesized interphase NPCs. In addition, we used a photobleaching approach that validated the cell-fusion method. We recently used these methods to demonstrate the role of cyclin-dependent protein kinases and of Pom121 in interphase NPC formation in cycling human cells. Here, we describe the details of the cell-fusion approach and compare the system with other NPC formation visualization methods. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Fusion of protegrin-1 and plectasin to MAP30 shows significant inhibition activity against dengue virus replication.

    Directory of Open Access Journals (Sweden)

    Hussin A Rothan

    Full Text Available Dengue virus (DENV broadly disseminates in tropical and sub-tropical countries and there are no vaccine or anti-dengue drugs available. DENV outbreaks cause serious economic burden due to infection complications that requires special medical care and hospitalization. This study presents a new strategy for inexpensive production of anti-DENV peptide-fusion protein to prevent and/or treat DENV infection. Antiviral cationic peptides protegrin-1 (PG1 and plectasin (PLSN were fused with MAP30 protein to produce recombinant antiviral peptide-fusion protein (PG1-MAP30-PLSN as inclusion bodies in E. coli. High yield production of PG1-MAP30-PLSN protein was achieved by solubilization of inclusion bodies in alkaline buffer followed by the application of appropriate refolding techniques. Antiviral PG1-MAP30-PLSN protein considerably inhibited DENV protease (NS2B-NS3pro with half-maximal inhibitory concentration (IC50 0.5±0.1 μM. The real-time proliferation assay (RTCA and the end-point proliferation assay (MTT assay showed that the maximal-nontoxic dose of the peptide-fusion protein against Vero cells is approximately 0.67±0.2 μM. The cell-based assays showed considerable inhibition of the peptide-fusion protein against binding and proliferating stages of DENV2 into the target cells. The peptide-fusion protein protected DENV2-challeged mice with 100% of survival at the dose of 50 mg/kg. In conclusion, producing recombinant antiviral peptide-fusion protein by combining short antiviral peptide with a central protein owning similar activity could be useful to minimize the overall cost of short peptide production and take advantage of its synergistic antiviral activities.

  1. R-spondin1 Controls Muscle Cell Fusion through Dual Regulation of Antagonistic Wnt Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Floriane Lacour

    2017-03-01

    Full Text Available Wnt-mediated signals are involved in many important steps in mammalian regeneration. In multiple cell types, the R-spondin (Rspo family of secreted proteins potently activates the canonical Wnt/β-catenin pathway. Here, we identify Rspo1 as a mediator of skeletal muscle tissue repair. First, we show that deletion of Rspo1 results in global alteration of muscle regeneration kinetics following acute injury. We find that muscle progenitor cells lacking Rspo1 show delayed differentiation due to reduced activation of Wnt/β-catenin target genes. Furthermore, muscle cells lacking Rspo1 have a fusion phenotype leading to larger myotubes containing supernumerary nuclei both in vitro and in vivo. The increase in muscle fusion was dependent on downregulation of Wnt/β-catenin and upregulation of non-canonical Wnt7a/Fzd7/Rac1 signaling. We conclude that reciprocal control of antagonistic Wnt signaling pathways by Rspo1 in muscle stem cell progeny is a key step ensuring normal tissue architecture restoration following acute damage.

  2. Osteoclast Fusion

    DEFF Research Database (Denmark)

    Marie Julie Møller, Anaïs; Delaissé, Jean-Marie; Søe, Kent

    2017-01-01

    on the nuclearity of fusion partners. While CD47 promotes cell fusions involving mono-nucleated pre-osteoclasts, syncytin-1 promotes fusion of two multi-nucleated osteoclasts, but also reduces the number of fusions between mono-nucleated pre-osteoclasts. Furthermore, CD47 seems to mediate fusion mostly through...... individual fusion events using time-lapse and antagonists of CD47 and syncytin-1. All time-lapse recordings have been studied by two independent observers. A total of 1808 fusion events were analyzed. The present study shows that CD47 and syncytin-1 have different roles in osteoclast fusion depending...... broad contact surfaces between the partners' cell membrane while syncytin-1 mediate fusion through phagocytic-cup like structure. J. Cell. Physiol. 9999: 1-8, 2016. © 2016 Wiley Periodicals, Inc....

  3. Fusion between Intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming.

    Science.gov (United States)

    Powell, Anne E; Anderson, Eric C; Davies, Paige S; Silk, Alain D; Pelz, Carl; Impey, Soren; Wong, Melissa H

    2011-02-15

    The most deadly phase in cancer progression is attributed to the inappropriate acquisition of molecular machinery leading to metastatic transformation and spread of disease to distant organs. Although it is appreciated that metastasis involves epithelial-mesenchymal interplay, the underlying mechanism defining this process is poorly understood. Specifically, how cancer cells evade immune surveillance and gain the ability to navigate the circulatory system remains a focus. One possible mechanism underlying metastatic conversion is fusion between blood-derived immune cells and cancer cells. While this notion is a century old, in vivo evidence that cell fusion occurs within tumors and imparts genetic or physiologic changes remains controversial. We have previously demonstrated in vivo cell fusion between blood cells and intestinal epithelial cells in an injury setting. Here, we hypothesize that immune cells, such as macrophages, fuse with tumor cells imparting metastatic capabilities by transferring their cellular identity. We used parabiosis to introduce fluorescent-labeled bone marrow-derived cells to mice with intestinal tumors, finding that fusion between circulating blood-derived cells and tumor epithelium occurs during the natural course of tumorigenesis. Moreover, we identify the macrophage as a key cellular partner for this process. Interestingly, cell fusion hybrids retain a transcriptome identity characteristic of both parental derivatives, while also expressing a unique subset of transcripts. Our data supports the novel possibility that tumorigenic cell fusion may impart physical behavior attributed to migratory macrophages, including navigation of circulation and immune evasion. As such, cell fusion may represent a promising novel mechanism underlying the metastatic conversion of cancer cells. ©2011 AACR.

  4. SET-NUP214 fusion in acute myeloid leukemia- and T-cell acute lymphoblastic leukemia-derived cell lines

    Directory of Open Access Journals (Sweden)

    Zaborski Margarete

    2009-01-01

    Full Text Available Abstract Background SET-NUP214 fusion resulting from a recurrent cryptic deletion, del(9(q34.11q34.13 has recently been described in T-cell acute lymphoblastic leukemia (T-ALL and in one case of acute myeloid leukemia (AML. The fusion protein appears to promote elevated expression of HOXA cluster genes in T-ALL and may contribute to the pathogenesis of the disease. We screened a panel of ALL and AML cell lines for SET-NUP214 expression to find model systems that might help to elucidate the cellular function of this fusion gene. Results Of 141 human leukemia/lymphoma cell lines tested, only the T-ALL cell line LOUCY and the AML cell line MEGAL expressed the SET(TAF-Iβ-NUP214 fusion gene transcript. RT-PCR analysis specifically recognizing the alternative first exons of the two TAF-I isoforms revealed that the cell lines also expressed TAF-Iα-NUP214 mRNA. Results of fluorescence in situ hybridization (FISH and array-based copy number analysis were both consistent with del(9(q34.11q34.13 as described. Quantitative genomic PCR also confirmed loss of genomic material between SET and NUP214 in both cell lines. Genomic sequencing localized the breakpoints of the SET gene to regions downstream of the stop codon and to NUP214 intron 17/18 in both LOUCY and MEGAL cells. Both cell lines expressed the 140 kDa SET-NUP214 fusion protein. Conclusion Cell lines LOUCY and MEGAL express the recently described SET-NUP214 fusion gene. Of special note is that the formation of the SET exon 7/NUP214 exon 18 gene transcript requires alternative splicing as the SET breakpoint is located downstream of the stop codon in exon 8. The cell lines are promising model systems for SET-NUP214 studies and should facilitate investigating cellular functions of the the SET-NUP214 protein.

  5. Antigen-Specific Polyclonal Cytotoxic T Lymphocytes Induced by Fusions of Dendritic Cells and Tumor Cells

    Directory of Open Access Journals (Sweden)

    Shigeo Koido

    2010-01-01

    Full Text Available The aim of cancer vaccines is induction of tumor-specific cytotoxic T lymphocytes (CTLs that can reduce the tumor mass. Dendritic cells (DCs are potent antigen-presenting cells and play a central role in the initiation and regulation of primary immune responses. Thus, DCs-based vaccination represents a potentially powerful strategy for induction of antigen-specific CTLs. Fusions of DCs and whole tumor cells represent an alternative approach to deliver, process, and subsequently present a broad spectrum of antigens, including those known and unidentified, in the context of costimulatory molecules. Once DCs/tumor fusions have been infused back into patient, they migrate to secondary lymphoid organs, where the generation of antigen-specific polyclonal CTL responses occurs. We will discuss perspectives for future development of DCs/tumor fusions for CTL induction.

  6. Fusion-activated Ca(2+ entry: an "active zone" of elevated Ca(2+ during the postfusion stage of lamellar body exocytosis in rat type II pneumocytes.

    Directory of Open Access Journals (Sweden)

    Pika Miklavc

    2010-06-01

    Full Text Available Ca(2+ is essential for vesicle fusion with the plasma membrane in virtually all types of regulated exocytoses. However, in contrast to the well-known effects of a high cytoplasmic Ca(2+ concentration ([Ca(2+](c in the prefusion phase, the occurrence and significance of Ca(2+ signals in the postfusion phase have not been described before.We studied isolated rat alveolar type II cells using previously developed imaging techniques. These cells release pulmonary surfactant, a complex of lipids and proteins, from secretory vesicles (lamellar bodies in an exceptionally slow, Ca(2+- and actin-dependent process. Measurements of fusion pore formation by darkfield scattered light intensity decrease or FM 1-43 fluorescence intensity increase were combined with analysis of [Ca(2+](c by ratiometric Fura-2 or Fluo-4 fluorescence measurements. We found that the majority of single lamellar body fusion events were followed by a transient (t(1/2 of decay = 3.2 s rise of localized [Ca(2+](c originating at the site of lamellar body fusion. [Ca(2+](c increase followed with a delay of approximately 0.2-0.5 s (method-dependent and in the majority of cases this signal propagated throughout the cell (at approximately 10 microm/s. Removal of Ca(2+ from, or addition of Ni(2+ to the extracellular solution, strongly inhibited these [Ca(2+](c transients, whereas Ca(2+ store depletion with thapsigargin had no effect. Actin-GFP fluorescence around fused LBs increased several seconds after the rise of [Ca(2+](c. Both effects were reduced by the non-specific Ca(2+ channel blocker SKF96365.Fusion-activated Ca(2+entry (FACE is a new mechanism that leads to [Ca(2+](c transients at the site of vesicle fusion. Substantial evidence from this and previous studies indicates that fusion-activated Ca(2+ entry enhances localized surfactant release from type II cells, but it may also play a role for compensatory endocytosis and other cellular functions.

  7. Rigid amphipathic fusion inhibitors demonstrate antiviral activity against African swine fever virus.

    Science.gov (United States)

    Hakobyan, Astghik; Galindo, Inmaculada; Nañez, Almudena; Arabyan, Erik; Karalyan, Zaven; Chistov, Alexey A; Streshnev, Philipp P; Korshun, Vladimir A; Alonso, Covadonga; Zakaryan, Hovakim

    2018-01-01

    Rigid amphipathic fusion inhibitors (RAFIs) are a family of nucleoside derivatives that inhibit the infectivity of several enveloped viruses by interacting with virion envelope lipids and inhibiting fusion between viral and cellular membranes. Here we tested the antiviral activity of two RAFIs, 5-(Perylen-3-ylethynyl)-arabino-uridine (aUY11) and 5-(Perylen-3-ylethynyl)uracil-1-acetic acid (cm1UY11) against African swine fever virus (ASFV), for which no effective vaccine is available. Both compounds displayed a potent, dose-dependent inhibitory effect on ASFV infection in Vero cells. The major antiviral effect was observed when aUY11 and cm1UY11 were added at early stages of infection and maintained during the complete viral cycle. Furthermore, virucidal assay revealed a significant extracellular anti-ASFV activity for both compounds. We also found decrease in the synthesis of early and late viral proteins in Vero cells treated with cm1UY11. Finally, the inhibitory effect of aUY11 and cm1UY11 on ASFV infection in porcine alveolar macrophages was confirmed. Overall, our study has identified novel anti-ASFV compounds with potential for future therapeutic developments.

  8. Goals, challenges, and successes of managing fusion activated materials

    International Nuclear Information System (INIS)

    El-Guebaly, L.; Massaut, V.; Tobita, K.; Cadwallader, L.

    2008-01-01

    After decades of designing magnetic and inertial fusion power plants, it is timely to develop a new framework for managing the activated (and contaminated) materials that will be generated during plant operation and after decommissioning-a framework that takes into account the lessons learned from numerous international fusion and fission studies and the environmental, political, and present reality in the U.S., Europe, and Japan. This will clearly demonstrate that designers developing fusion facilities will be dealing with the back end of this type of energy production from the beginning of the conceptual design of power plants. It is becoming evident that future regulations for geological burial will be upgraded to assure tighter environmental controls. Along with the political difficulty of constructing new repositories worldwide, the current reality suggests reshaping all aspects of handling the continual stream of fusion active materials. Beginning in the mid 1980s and continuing to the present, numerous fusion designs examined replacing the disposal option with more environmentally attractive approaches, redirecting their attention to recycling and clearance while continuing the development of materials with low activation potential. There is a growing international effort in support of this new trend. In this paper, recent history is analyzed, a new fusion waste management scheme is covered, and possibilities for how its prospects can be improved are examined

  9. Maturation of the viral core enhances the fusion of HIV-1 particles with primary human T cells and monocyte-derived macrophages

    International Nuclear Information System (INIS)

    Jiang Jiyang; Aiken, Christopher

    2006-01-01

    HIV-1 infection requires fusion of viral and cellular membranes in a reaction catalyzed by the viral envelope proteins gp120 and gp41. We recently reported that efficient HIV-1 particle fusion with target cells is linked to maturation of the viral core by an activity of the gp41 cytoplasmic domain. Here, we show that maturation enhances the fusion of a variety of recombinant viruses bearing primary and laboratory-adapted Env proteins with primary human CD4 + T cells. Overall, HIV-1 fusion was more dependent on maturation for viruses bearing X4-tropic envelope proteins than for R5-tropic viruses. Fusion of HIV-1 with monocyte-derived macrophages was also dependent on particle maturation. We conclude that the ability to couple fusion to particle maturation is a common feature of HIV-1 Env proteins and may play an important role during HIV-1 replication in vivo

  10. Laser fusion of mouse embryonic cells and intra-embryonic fusion of blastomeres without affecting the embryo integrity.

    Science.gov (United States)

    Krivokharchenko, Alexander; Karmenyan, Artashes; Sarkisov, Oleg; Bader, Michael; Chiou, Arthur; Shakhbazyan, Avetik

    2012-01-01

    Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo's integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development.

  11. Different receptors binding to distinct interfaces on herpes simplex virus gD can trigger events leading to cell fusion and viral entry

    International Nuclear Information System (INIS)

    Spear, Patricia G.; Manoj, Sharmila; Yoon, Miri; Jogger, Cheryl R.; Zago, Anna; Myscofski, Dawn

    2006-01-01

    One of the herpes simplex virus envelope glycoproteins, designated gD, is the principal determinant of cell recognition for viral entry. Other viral glycoproteins, gB, gH and gL, cooperate with gD to mediate the membrane fusion that is required for viral entry and cell fusion. Membrane fusion is triggered by the binding of gD to one of its receptors. These receptors belong to three different classes of cell surface molecules. This review summarizes recent findings on the structure and function of gD. The results presented indicate that gD may assume more than one conformation, one in the absence of receptor, another when gD is bound to the herpesvirus entry mediator, a member of the TNF receptor family, and a third when gD is bound to nectin-1, a cell adhesion molecule in the immunoglobulin superfamily. Finally, information and ideas are presented about a membrane-proximal region of gD that is required for membrane fusion, but not for receptor binding, and that may have a role in activating the fusogenic activity of gB, gH and gL

  12. Characterization of BIV Env core: Implication for mechanism of BIV-mediated cell fusion

    International Nuclear Information System (INIS)

    Li Shu; Zhu Jieqing; Peng Yu; Cui Shanshan; Wang Chunping; Gao, George F.; Tien Po

    2005-01-01

    Entry of lentiviruses, such as human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV), requires folding of two heptad repeat regions (HR1 and HR2) of gp41 into a trimer-of-hairpins, which subsequently brings virus and cell membrane into fusion. This motif is a generalized feature of viral fusion proteins and has been exploited in generating antiviral fusion agents. In the present paper, we report structural characters of Env protein from another lentivirus, bovine immunodeficiency virus (BIV), which contributes to a good animal model of HIV. BIV HR1 and HR2 regions are predicted by two different programs and expressed separately or conjointly in Escherichia coli. Biochemical and biophysical analyses show that the predicted HRs of BIV Env can form a stable trimer-of-hairpins or six-helix bundle just like that formed by feline immunodeficiency virus Env. Cell fusion assay demonstrates that the HR2 peptide of BIV can efficiently inhibit the virus-mediated cell fusion

  13. Accelerator and Fusion Research Division: Summary of activities, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This report contains a summary of activities at the Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division for the year 1986. Topics and facilities investigated in individual papers are: 1-2 GeV Synchrotron Radiation Source, the Center for X-Ray Optics, Accelerator Operations, High-Energy Physics Technology, Heavy-Ion Fusion Accelerator Research and Magnetic Fusion Energy. Six individual papers have been indexed separately

  14. Intracellular delivery of cell-penetrating peptide-transcriptional factor fusion protein and its role in selective osteogenesis

    Science.gov (United States)

    Suh, Jin Sook; Lee, Jue Yeon; Choi, Yoon Jung; You, Hyung Keun; Hong, Seong-Doo; Chung, Chong Pyoung; Park, Yoon Jeong

    2014-01-01

    Protein-transduction technology has been attempted to deliver macromolecular materials, including protein, nucleic acids, and polymeric drugs, for either diagnosis or therapeutic purposes. Herein, fusion protein composed of an arginine-rich cell-penetrating peptide, termed low-molecular-weight protamine (LMWP), and a transcriptional coactivator with a PDZ-binding motif (TAZ) protein was prepared and applied in combination with biomaterials to increase bone-forming capacity. TAZ has been recently identified as a specific osteogenic stimulating transcriptional coactivator in human mesenchymal stem cell (hMSC) differentiation, while simultaneously blocking adipogenic differentiation. However, TAZ by itself cannot penetrate the cells, and thus needs a transfection tool for translocalization. The LMWP-TAZ fusion proteins were efficiently translocalized into the cytosol of hMSCs. The hMSCs treated with cell-penetrating LMWP-TAZ exhibited increased expression of osteoblastic genes and protein, producing significantly higher quantities of mineralized matrix compared to free TAZ. In contrast, adipogenic differentiation of the hMSCs was blocked by treatment of LMWP-TAZ fusion protein, as reflected by reduced marker-protein expression, adipocyte fatty acid-binding protein 2, and peroxisome proliferator-activated receptor-γ messenger ribonucleic acid levels. LMWP-TAZ was applied in alginate gel for the purpose of localization and controlled release. The LMWP-TAZ fusion protein-loaded alginate gel matrix significantly increased bone formation in rabbit calvarial defects compared with alginate gel matrix mixed with free TAZ protein. The protein transduction of TAZ fused with cell-penetrating LMWP peptide was able selectively to stimulate osteogenesis in vitro and in vivo. Taken together, this fusion protein-transduction technology for osteogenic protein can thus be applied in combination with biomaterials for tissue regeneration and controlled release for tissue

  15. Biologic activities of recombinant human-beta-defensin-4 toward cultured human cancer cells.

    Science.gov (United States)

    Gerashchenko, O L; Zhuravel, E V; Skachkova, O V; Khranovska, N N; Filonenko, V V; Pogrebnoy, P V; Soldatkina, M A

    2013-06-01

    The aim of the study was in vitro analysis of biological activity of recombinant human beta-defensin-4 (rec-hBD-4). hBD-4 cDNA was cloned into pGEX-2T vector, and recombinant plasmid was transformed into E. coli BL21(DE3) cells. To purify soluble fusion GST-hBD-4 protein, affinity chromatography was applied. Rec-hBD-4 was cleaved from the fusion protein with thrombin, and purified by reverse phase chromatography on Sep-Pack C18. Effects of rec-hBD-4 on proliferation, viability, cell cycle distribution, substrate-independent growth, and mobility of cultured human cancer cells of A431, A549, and TPC-1 lines were analyzed by direct cell counting technique, MTT assay, flow cytofluorometry, colony forming assay in semi-soft medium, and wound healing assay. Rec-hBD-4 was expressed in bacterial cells as GST-hBD-4 fusion protein, and purified by routine 3-step procedure (affine chromatography on glutathione-agarose, cleavage of fusion protein by thrombin, and reverse phase chromatography). Analysis of in vitro activity of rec-hBD-4 toward three human cancer cell lines has demonstrated that the defensin is capable to affect cell behaviour in concentration-dependent manner. In 1-100 nM concentrations rec-hBD-4 significantly stimulates cancer cell proliferation and viability, and promotes cell cycle progression through G2/M checkpoint, greatly enhances colony-forming activity and mobility of the cells. Treatment of the cells with 500 nM of rec-hBD-4 resulted in opposite effects: significant suppression of cell proliferation and viability, blockage of cell cycle in G1/S checkpoint, significant inhibition of cell migration and colony forming activity. Recombinant human beta-defensin-4 is biologically active peptide capable to cause oppositely directed effects toward biologic features of cancer cells in vitro dependent on its concentration.

  16. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    Science.gov (United States)

    Prada, Ilaria; Meldolesi, Jacopo

    2016-08-09

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.

  17. Lower activation materials and magnetic fusion reactors

    International Nuclear Information System (INIS)

    Conn, R.W.; Bloom, E.E.; Davis, J.W.; Gold, R.E.; Little, R.; Schultz, K.R.; Smith, D.L.; Wiffen, F.W.

    1984-01-01

    Radioactivity in fusion reactors can be effectively controlled by materials selection. The detailed relationship between the use of a material for construction of a magnetic fusion reactor and the material's characteristics important to waste disposal, safety, and system maintainability has been studied. The quantitative levels of radioactivation are presented for many materials and alloys, including the role of impurities, and for various design alternatives. A major outcome has been the development of quantitative definitions to characterize materials based on their radioactivation properties. Another key result is a four-level classification scheme to categorize fusion reactors based on quantitative criteria for waste management, system maintenance, and safety. A recommended minimum goal for fusion reactor development is a reference reactor that (a) meets the requirements for Class C shallow land burial of waste materials, (b) permits limited hands-on maintenance outside the magnet's shield within 2 days of a shutdown, and (c) meets all requirements for engineered safety. The achievement of a fusion reactor with at least the characteristics of the reference reactor is a realistic goal. Therefore, in making design choices or in developing particular materials or alloys for fusion reactor applications, consideration must be given to both the activation characteristics of a material and its engineering practicality for a given application

  18. Biochemistry and biophysics of HIV-1 gp41 - membrane interactions and implications for HIV-1 envelope protein mediated viral-cell fusion and fusion inhibitor design.

    Science.gov (United States)

    Cai, Lifeng; Gochin, Miriam; Liu, Keliang

    2011-12-01

    Human immunodeficiency virus type 1 (HIV-1), the pathogen of acquired immunodeficiency syndrome (AIDS), causes ~2 millions death every year and still defies an effective vaccine. HIV-1 infects host cells through envelope protein - mediated virus-cell fusion. The transmembrane subunit of envelope protein, gp41, is the molecular machinery which facilitates fusion. Its ectodomain contains several distinguishing functional domains, fusion peptide (FP), Nterminal heptad repeat (NHR), C-terminal heptad repeat (CHR) and membrane proximal extracellular region (MPER). During the fusion process, FP inserts into the host cell membrane, and an extended gp41 prehairpin conformation bridges the viral and cell membranes through MPER and FP respectively. Subsequent conformational change of the unstable prehairpin results in a coiled-coil 6-helix bundle (6HB) structure formed between NHR and CHR. The energetics of 6HB formation drives membrane apposition and fusion. Drugs targeting gp41 functional domains to prevent 6HB formation inhibit HIV-1 infection. T20 (enfuvirtide, Fuzeon) was approved by the US FDA in 2003 as the first fusion inhibitor. It is a 36-residue peptide from the gp41 CHR, and it inhibits 6HB formation by targeting NHR and lipids. Development of new fusion inhibitors, especially small molecule drugs, is encouraged to overcome the shortcomings of T20 as a peptide drug. Hydrophobic characteristics and membrane association are critical for gp41 function and mechanism of action. Research in gp41-membrane interactions, using peptides corresponding to specific functional domains, or constructs including several interactive domains, are reviewed here to get a better understanding of gp41 mediated virus-cell fusion that can inform or guide the design of new HIV-1 fusion inhibitors.

  19. Evaluation of a UCMK/dCK fusion enzyme for gemcitabine-mediated cytotoxicity

    International Nuclear Information System (INIS)

    Johnson, Adam J.; Brown, Melissa N.; Black, Margaret E.

    2011-01-01

    Highlights: ► Goal was to enhance dFdC cytotoxicity by the creation of a UCMK/dCK fusion enzyme. ► The UCMK/dCK fusion enzyme possesses both native activities. ► The fusion renders cells equally sensitive to dFdC relative to dCK expression alone. ► Dual activities of fusion not sufficient to augment cell dFdC sensitivity in vitro. ► Data may warrant the implementation of UCMK mutagenesis studies. -- Abstract: While gemcitabine (2′-2′-difluoro-2′-deoxycytidine, dFdC) displays wide-ranging antineoplastic activity as a single agent, variable response rates and poor intracellular metabolism often limit its clinical efficacy. In an effort to enhance dFdC cytotoxicity and help normalize response rates, we created a bifunctional fusion enzyme that combines the enzymatic activities of deoxycytidine kinase (dCK) and uridine/cytidine monophosphate kinase (UCMK) in a single polypeptide. Our goal was to evaluate whether the created fusion could induce beneficial, functional changes toward dFdC, expedite dFdC conversion to its active antimetabolites and consequently amplify cell dFdC sensitivity. While kinetic analyses revealed the UCMK/dCK fusion enzyme to possess both native activities, the fusion rendered cells sensitive to the cytotoxic effects of dFdC at the same level as dCK expression alone. These results suggest that increased wild-type UCMK expression does not provide a significant enhancement in dFdC-mediated cytotoxicity and may warrant the implementation of studies aimed at engineering UCMK variants with improved activity toward gemcitabine monophosphate.

  20. Assessing cell fusion and cytokinesis failure as mechanisms of clone 9 hepatocyte multinucleation in vitro.

    Science.gov (United States)

    Simic, Damir; Euler, Catherine; Thurby, Christina; Peden, Mike; Tannehill-Gregg, Sarah; Bunch, Todd; Sanderson, Thomas; Van Vleet, Terry

    2012-08-01

    In this in vitro model of hepatocyte multinucleation, separate cultures of rat Clone 9 cells are labeled with either red or green cell tracker dyes (Red Cell Tracker CMPTX or Vybrant CFDA SE Cell Tracer), plated together in mixed-color colonies, and treated with positive or negative control agents for 4 days. The fluorescent dyes become cell-impermeant after entering cells and are not transferred to adjacent cells in a population, but are inherited by daughter cells after fusion. The mixed-color cultures are then evaluated microscopically for multinucleation and analysis of the underlying mechanism (cell fusion/cytokinesis). Multinucleated cells containing only one dye have undergone cytokinesis failure, whereas dual-labeled multinucleated cells have resulted from fusion. © 2012 by John Wiley & Sons, Inc.

  1. Viral membrane fusion

    International Nuclear Information System (INIS)

    Harrison, Stephen C.

    2015-01-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism

  2. Viral membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Stephen C., E-mail: harrison@crystal.harvard.edu

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  3. Fusion Nuclear Data activities at FNL, IPR

    OpenAIRE

    P. M. Prajapati; B. Pandey; S. Jakhar; C.V. S. Rao; T. K. Basu; B. K. Nayak; S. V. Suryanarayana; A. Saxena

    2015-01-01

    This paper briefly describes the current fusion nuclear data activities at Fusion Neutronics Laboratory, Institute for Plasma Research. It consist of infrastructure development for the cross-section measurements of structural materials with an accelerator based 14 MeV neutron generator and theoretical study of the cross-section using advanced nuclear reaction modular codes EMPIRE and TALYS. It will also cover the proposed surrogate experiment to measure 55Fe (n, p) 55Mn using BARC-TIFR Pel...

  4. FOXO1 is a direct target of EWS-Fli1 oncogenic fusion protein in Ewing's sarcoma cells

    International Nuclear Information System (INIS)

    Yang, Liu; Hu, Hsien-Ming; Zielinska-Kwiatkowska, Anna; Chansky, Howard A.

    2010-01-01

    Research highlights: → Inducible and reversible siRNA knockdown of an oncogenic fusion protein such as EWS-Fli1 is feasible and more advantageous than other siRNA methods. → The tumor suppressor gene FOXO1 is a new EWS-Fli1 target. → While trans-activators are known for the FOXO1 gene, there has been no report on negative regulators of FOXO1 transcription. → This study provides first evidence that the EWS-Fli1 oncogenic fusion protein can function as a transcriptional repressor of the FOXO1 gene. -- Abstract: Ewing's family tumors are characterized by a specific t(11;22) chromosomal translocation that results in the formation of EWS-Fli1 oncogenic fusion protein. To investigate the effects of EWS-Fli1 on gene expression, we carried out DNA microarray analysis after specific knockdown of EWS-Fli1 through transfection of synthetic siRNAs. EWS-Fli1 knockdown increased expression of genes such as DKK1 and p57 that are known to be repressed by EWS-Fli1 fusion protein. Among other potential EWS-Fli1 targets identified by our microarray analysis, we have focused on the FOXO1 gene since it encodes a potential tumor suppressor and has not been previously reported in Ewing's cells. To better understand how EWS-Fli1 affects FOXO1 expression, we have established a doxycycline-inducible siRNA system to achieve stable and reversible knockdown of EWS-Fli1 in Ewing's sarcoma cells. Here we show that FOXO1 expression in Ewing's cells has an inverse relationship with EWS-Fli1 protein level, and FOXO1 promoter activity is increased after doxycycline-induced EWS-Fli1 knockdown. In addition, we have found that direct binding of EWS-Fli1 to FOXO1 promoter is attenuated after doxycycline-induced siRNA knockdown of the fusion protein. Together, these results suggest that suppression of FOXO1 function by EWS-Fli1 fusion protein may contribute to cellular transformation in Ewing's family tumors.

  5. Studies to Prevent Degradation of Recombinant Fc-Fusion Protein Expressed in Mammalian Cell Line and Protein Characterization

    Directory of Open Access Journals (Sweden)

    Sanjukta Chakrabarti

    2016-06-01

    Full Text Available Clipping of recombinant proteins is a major issue in animal cell cultures. A recombinant Fc-fusion protein, VEGFR1(D1–D3-Fc expressed in CHOK1SV GS-KO cells was observed to be undergoing clippings in lab scale cultures. Partial cleaving of expressed protein initiated early on in cell culture and was observed to increase over time in culture and also on storage. In this study, a few parameters were explored in a bid to inhibit clipping in the fusion protein The effects of culture temperature, duration of culture, the addition of an anti-clumping agent, ferric citrate and use of protease inhibitor cocktail on inhibition of proteolysis of the Fc fusion were studied. Lowering of culture temperature from 37 to 30 °C alone appears to be the best solution for reducing protein degradation from the quality, cost and regulatory points of view. The obtained Fc protein was characterized and found to be in its stable folded state, exhibiting a high affinity for its ligand and also biological and functional activities.

  6. Revised graphs of activation data for fusion reactor applications

    International Nuclear Information System (INIS)

    Seki, Yasushi; Kawasaki, Hiromitsu; Yamamuro, Nobuhiro; Iijima, Shungo.

    1991-06-01

    Activation data are required for calculation of induced activity in a fusion reactor. This report gives in graphical form, the activation data which have been evaluated based on recent measurements and calculations, for use in the activation calculation code system THIDA-2. It shows transmutation and decay chain data, activation cross sections and decay gamma-ray emission data for 152 nuclides of interest in terms of fusion reactor design. This report is an updated and enlarged version of a similar report compiled in 1982 for the activation data of 116 nuclides, which had been shown to be extremely effective in referring the activation data and in locating and correcting inappropriate data. (author)

  7. International program activities in magnetic fusion energy

    International Nuclear Information System (INIS)

    1986-03-01

    The following areas of our international activities in magnetic fusion are briefly described: (1) policy; (2) background; (3) strategy; (4) strategic considerations and concerns; (5) domestic program inplications, and (6) implementation. The current US activities are reviewed. Some of our present program needs are outlined

  8. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK

    Science.gov (United States)

    Katayama, Ryohei; Khan, Tahsin M.; Benes, Cyril; Lifshits, Eugene; Ebi, Hiromichi; Rivera, Victor M.; Shakespeare, William C.; Iafrate, A. John; Engelman, Jeffrey A.; Shaw, Alice T.

    2011-01-01

    The echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion oncogene represents a molecular target in a small subset of non-small cell lung cancers (NSCLCs). This fusion leads to constitutive ALK activation with potent transforming activity. In a pivotal phase 1 clinical trial, the ALK tyrosine kinase inhibitor (TKI) crizotinib (PF-02341066) demonstrated impressive antitumor activity in the majority of patients with NSCLC harboring ALK fusions. However, despite these remarkable initial responses, cancers eventually develop resistance to crizotinib, usually within 1 y, thereby limiting the potential clinical benefit. To determine how cancers acquire resistance to ALK inhibitors, we established a model of acquired resistance to crizotinib by exposing a highly sensitive EML4-ALK–positive NSCLC cell line to increasing doses of crizotinib until resistance emerged. We found that cells resistant to intermediate doses of crizotinib developed amplification of the EML4-ALK gene. Cells resistant to higher doses (1 μM) also developed a gatekeeper mutation, L1196M, within the kinase domain, rendering EML4-ALK insensitive to crizotinib. This gatekeeper mutation was readily detected using a unique and highly sensitive allele-specific PCR assay. Although crizotinib was ineffectual against EML4-ALK harboring the gatekeeper mutation, we observed that two structurally different ALK inhibitors, NVP-TAE684 and AP26113, were highly active against the resistant cancer cells in vitro and in vivo. Furthermore, these resistant cells remained highly sensitive to the Hsp90 inhibitor 17-AAG. Thus, we have developed a model of acquired resistance to ALK inhibitors and have shown that second-generation ALK TKIs or Hsp90 inhibitors are effective in treating crizotinib-resistant tumors harboring secondary gatekeeper mutations. PMID:21502504

  9. The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein

    International Nuclear Information System (INIS)

    Semaan, Sheila J; Nickells, Robert W

    2010-01-01

    Many chemotherapeutic agents promote tumor cell death by activating the intrinsic pathway of apoptosis. Intrinsic apoptosis involves permeabilization of the mitochondrial outer membrane and the release of cytochrome c, a process that is controlled by proteins of the BCL2 gene family. Chemoresistance is often associated with abnormalities in concentrations of BCL2 family proteins. Although stoichiometirc interactions between anti-apoptotic and BH3-only BCL2 family proteins have been well documented as affecting cell death, the association between changes in BAX concentration and intrinsic apoptosis are poorly understood. Exogenous GFP-murine Bax fusion constructs were transfected into BAX-deficient HCT116 cells. To titrate the expression of the fusion protein, GFP-BAX was cloned into a tetracycline sensitive expression cassette and cotransfected with a plasmid expressing the rtTA transcription factor into HCT116 BAX-/- cells. Linear expression of the fusion gene was induced with doxycycline and monitored by quantitative PCR and immunoblotting. Cell death was assayed by DAPI staining cells after exposure to indomethacin, and scoring nuclei for condensed chromatin and fragmented nuclei. HCT116 BAX-/- cells were resistant to indomethacin, but susceptibility could be recovered in cells expressing a GFP-BAX fusion protein. Titration of GFP-BAX expression revealed that the concentration of BAX required to induce a saturating apoptosis response from baseline, was rapidly achieved. Increased levels of GFP-BAX were unable to stimulate higher levels of cell death. Examination of GFP-BAX distribution before and after indomethacin treatment indicated that BAX protein did not form aggregates when present at sub-lethal concentrations. Within the limitations of this experimental system, BAX-dependent apoptosis in HCT116 cells exhibits an all-or-none response depending on the level of BAX protein present. The lack of BAX aggregation at sub-saturation levels suggests that the

  10. Effective donor cell fusion conditions for production of cloned dogs by somatic cell nuclear transfer.

    Science.gov (United States)

    Park, JungEun; Oh, HyunJu; Hong, SoGun; Kim, MinJung; Kim, GeonA; Koo, OkJae; Kang, SungKeun; Jang, Goo; Lee, ByeongChun

    2011-03-01

    As shown by the birth of the first cloned dog 'Snuppy', a protocol to produce viable cloned dogs has been reported. In order to evaluate optimum fusion conditions for improving dog cloning efficiency, in vivo matured oocytes were reconstructed with adult somatic cells from a female Pekingese using different fusion conditions. Fusion with needle vs chamber methods, and with low vs high pulse strength was compared by evaluating fusion rate and in vivo development of canine cloned embryos. The fusion rates in the high voltage groups were significantly higher than in the low voltage groups regardless of fusion method (83.5 vs 66.1% for the needle fusion method, 67.4 vs 37.9% for the fusion chamber method). After embryo transfer, one each pregnancy was detected after using the needle fusion method with high and low voltage and in the chamber fusion method with high voltage, whereas no pregnancy was detected using the chamber method with low voltage. However, only the pregnancy from the needle fusion method with high voltage was maintained to term and one healthy puppy was delivered. The results of the present study demonstrated that two DC pulses of 3.8 to 4.0 kV/cm for 15 μsec using the needle fusion method were the most effective method for the production of cloned dogs under the conditions of this experiment. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Unraveling a three-step spatiotemporal mechanism of triggering of receptor-induced Nipah virus fusion and cell entry.

    Directory of Open Access Journals (Sweden)

    Qian Liu

    Full Text Available Membrane fusion is essential for entry of the biomedically-important paramyxoviruses into their host cells (viral-cell fusion, and for syncytia formation (cell-cell fusion, often induced by paramyxoviral infections [e.g. those of the deadly Nipah virus (NiV]. For most paramyxoviruses, membrane fusion requires two viral glycoproteins. Upon receptor binding, the attachment glycoprotein (HN/H/G triggers the fusion glycoprotein (F to undergo conformational changes that merge viral and/or cell membranes. However, a significant knowledge gap remains on how HN/H/G couples cell receptor binding to F-triggering. Via interdisciplinary approaches we report the first comprehensive mechanism of NiV membrane fusion triggering, involving three spatiotemporally sequential cell receptor-induced conformational steps in NiV-G: two in the head and one in the stalk. Interestingly, a headless NiV-G mutant was able to trigger NiV-F, and the two head conformational steps were required for the exposure of the stalk domain. Moreover, the headless NiV-G prematurely triggered NiV-F on virions, indicating that the NiV-G head prevents premature triggering of NiV-F on virions by concealing a F-triggering stalk domain until the correct time and place: receptor-binding. Based on these and recent paramyxovirus findings, we present a comprehensive and fundamentally conserved mechanistic model of paramyxovirus membrane fusion triggering and cell entry.

  12. Live-cell imaging of conidial anastomosis tube fusion during colony initiation in Fusarium oxysporum.

    Directory of Open Access Journals (Sweden)

    Smija M Kurian

    Full Text Available Fusarium oxysporum exhibits conidial anastomosis tube (CAT fusion during colony initiation to form networks of conidial germlings. Here we determined the optimal culture conditions for this fungus to undergo CAT fusion between microconidia in liquid medium. Extensive high resolution, confocal live-cell imaging was performed to characterise the different stages of CAT fusion, using genetically encoded fluorescent labelling and vital fluorescent organelle stains. CAT homing and fusion were found to be dependent on adhesion to the surface, in contrast to germ tube development which occurs in the absence of adhesion. Staining with fluorescently labelled concanavalin A indicated that the cell wall composition of CATs differs from that of microconidia and germ tubes. The movement of nuclei, mitochondria, vacuoles and lipid droplets through fused germlings was observed by live-cell imaging.

  13. Nuclear design of a very-low-activation fusion reactor

    International Nuclear Information System (INIS)

    Cheng, E.T.; Hopkins, G.R.

    1983-06-01

    An investigation was conducted to study the nuclear design aspects of using very-low-activation materials, such as SiC, MgO, and aluminum for fusion-reactor first wall, blanket, and shield applications. In addition to the advantage of very-low radioactive inventory, it was found that the very-low-activation fusion reactor can also offer an adequate tritium-breeding ratio and substantial amount of blanket nuclear heating as a conventional-material-structured reactor does. The most-stringent design constraint found in a very-low-activation fusion reactor is the limited space available in the inboard region of a tokamak concept for shielding to protect the superconducting toroidal field coil. A reference design was developed which mitigates the constraint by adopting a removable tungsten shield design that retains the inboard dimensions and gives the same shield performance as the reference STARFIRE tokamak reactor design

  14. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    International Nuclear Information System (INIS)

    Martone, M.

    1997-01-01

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member

  15. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Martone, M [ENEA, Centro Ricerche Frascati, Rome (Italy)

    1997-01-01

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member.

  16. Present status of low activation materials R and D for fusion

    International Nuclear Information System (INIS)

    Kohyama, Akira

    1999-01-01

    Low activation materials development is one of the key technologies for fusion engineering. Starting with a brief introduction about design concepts of low activation materials for fusion, current activities on the major three low activation material categories, such as low activation ferritic steels, vanadium alloys and SiC/SiC composite materials, are provided. Material database improvement in low-activation ferritic steel R and D and material property improvements in SiC/SiC are emphasized. (author)

  17. Engineering of a Potent Recombinant Lectin-Toxin Fusion Protein to Eliminate Human Pluripotent Stem Cells.

    Science.gov (United States)

    Tateno, Hiroaki; Saito, Sayoko

    2017-07-10

    The use of human pluripotent stem cells (hPSCs) such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) in regenerative medicine is hindered by their tumorigenic potential. Previously, we developed a recombinant lectin-toxin fusion protein of the hPSC-specific lectin rBC2LCN, which has a 23 kDa catalytic domain (domain III) of Pseudomonas aeruginosa exotoxin A (rBC2LCN-PE23). This fusion protein could selectively eliminate hPSCs following its addition to the cell culture medium. Here we conjugated rBC2LCN lectin with a 38 kDa domain of exotoxin A containing domains Ib and II in addition to domain III (PE38). The developed rBC2LCN-PE38 fusion protein could eliminate 50% of 201B7 hPSCs at a concentration of 0.003 μg/mL (24 h incubation), representing an approximately 556-fold higher activity than rBC2LCN-PE23. Little or no effect on human fibroblasts, human mesenchymal stem cells, and hiPSC-derived hepatocytes was observed at concentrations lower than 1 μg/mL. Finally, we demonstrate that rBC2LCN-PE38 selectively eliminates hiPSCs from a mixed culture of hiPSCs and hiPSC-derived hepatocytes. Since rBC2LCN-PE38 can be prepared from soluble fractions of E. coli culture at a yield of 9 mg/L, rBC2LCN-PE38 represents a practical reagent to remove human pluripotent stem cells residing in cultured cells destined for transplantation.

  18. Atomic force microscopy: Unraveling the fundamental principles governing secretion and membrane fusion in cells

    International Nuclear Information System (INIS)

    Jena, Bhanu P.

    2009-01-01

    The story of cell secretion and membrane fusion is as old as life itself. Without these fundamental cellular processes known to occur in yeast to humans, life would cease to exist. In the last 15 years, primarily using the atomic force microscope, a detailed understanding of the molecular process and of the molecular machinery and mechanism of secretion and membrane fusion in cells has come to light. This has led to a paradigm shift in our understanding of the underlying mechanism of cell secretion. The journey leading to the discovery of a new cellular structure the 'porosome',-the universal secretory machinery in cells, and the contributions of the AFM in our understanding of the general molecular machinery and mechanism of cell secretion and membrane fusion, is briefly discussed in this article.

  19. A compensatory mutation provides resistance to disparate HIV fusion inhibitor peptides and enhances membrane fusion.

    Directory of Open Access Journals (Sweden)

    Matthew P Wood

    Full Text Available Fusion inhibitors are a class of antiretroviral drugs used to prevent entry of HIV into host cells. Many of the fusion inhibitors being developed, including the drug enfuvirtide, are peptides designed to competitively inhibit the viral fusion protein gp41. With the emergence of drug resistance, there is an increased need for effective and unique alternatives within this class of antivirals. One such alternative is a class of cyclic, cationic, antimicrobial peptides known as θ-defensins, which are produced by many non-human primates and exhibit broad-spectrum antiviral and antibacterial activity. Currently, the θ-defensin analog RC-101 is being developed as a microbicide due to its specific antiviral activity, lack of toxicity to cells and tissues, and safety in animals. Understanding potential RC-101 resistance, and how resistance to other fusion inhibitors affects RC-101 susceptibility, is critical for future development. In previous studies, we identified a mutant, R5-tropic virus that had evolved partial resistance to RC-101 during in vitro selection. Here, we report that a secondary mutation in gp41 was found to restore replicative fitness, membrane fusion, and the rate of viral entry, which were compromised by an initial mutation providing partial RC-101 resistance. Interestingly, we show that RC-101 is effective against two enfuvirtide-resistant mutants, demonstrating the clinical importance of RC-101 as a unique fusion inhibitor. These findings both expand our understanding of HIV drug-resistance to diverse peptide fusion inhibitors and emphasize the significance of compensatory gp41 mutations.

  20. Membrane fusion and exocytosis.

    Science.gov (United States)

    Jahn, R; Südhof, T C

    1999-01-01

    Membrane fusion involves the merger of two phospholipid bilayers in an aqueous environment. In artificial lipid bilayers, fusion proceeds by means of defined transition states, including hourglass-shaped intermediates in which the proximal leaflets of the fusing membranes are merged whereas the distal leaflets are separate (fusion stalk), followed by the reversible opening of small aqueous fusion pores. Fusion of biological membranes requires the action of specific fusion proteins. Best understood are the viral fusion proteins that are responsible for merging the viral with the host cell membrane during infection. These proteins undergo spontaneous and dramatic conformational changes upon activation. In the case of the paradigmatic fusion proteins of the influenza virus and of the human immunodeficiency virus, an amphiphilic fusion peptide is inserted into the target membrane. The protein then reorients itself, thus forcing the fusing membranes together and inducing lipid mixing. Fusion of intracellular membranes in eukaryotic cells involves several protein families including SNAREs, Rab proteins, and Sec1/Munc-18 related proteins (SM-proteins). SNAREs form a novel superfamily of small and mostly membrane-anchored proteins that share a common motif of about 60 amino acids (SNARE motif). SNAREs reversibly assemble into tightly packed helical bundles, the core complexes. Assembly is thought to pull the fusing membranes closely together, thus inducing fusion. SM-proteins comprise a family of soluble proteins that bind to certain types of SNAREs and prevent the formation of core complexes. Rab proteins are GTPases that undergo highly regulated GTP-GDP cycles. In their GTP form, they interact with specific proteins, the effector proteins. Recent evidence suggests that Rab proteins function in the initial membrane contact connecting the fusing membranes but are not involved in the fusion reaction itself.

  1. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Executive summary

    International Nuclear Information System (INIS)

    1997-01-01

    This report is a summary of the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member

  2. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This report is a summary of the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member.

  3. A camel-derived MERS-CoV with a variant spike protein cleavage site and distinct fusion activation properties

    Science.gov (United States)

    Millet, Jean Kaoru; Goldstein, Monty E; Labitt, Rachael N; Hsu, Hung-Lun; Daniel, Susan; Whittaker, Gary R

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) continues to circulate in both humans and camels, and the origin and evolution of the virus remain unclear. Here we characterize the spike protein of a camel-derived MERS-CoV (NRCE-HKU205) identified in 2013, early in the MERS outbreak. NRCE-HKU205 spike protein has a variant cleavage motif with regard to the S2′ fusion activation site—notably, a novel substitution of isoleucine for the otherwise invariant serine at the critical P1′ cleavage site position. The substitutions resulted in a loss of furin-mediated cleavage, as shown by fluorogenic peptide cleavage and western blot assays. Cell–cell fusion and pseudotyped virus infectivity assays demonstrated that the S2′ substitutions decreased spike-mediated fusion and viral entry. However, cathepsin and trypsin-like protease activation were retained, albeit with much reduced efficiency compared with the prototypical EMC/2012 human strain. We show that NRCE-HKU205 has more limited fusion activation properties possibly resulting in more restricted viral tropism and may represent an intermediate in the complex pattern of MERS-CoV ecology and evolution. PMID:27999426

  4. Augmentation of antitumor immunity by fusions of ethanol-treated tumor cells and dendritic cells stimulated via dual TLRs through TGF-β1 blockade and IL-12p70 production.

    Science.gov (United States)

    Koido, Shigeo; Homma, Sadamu; Okamoto, Masato; Namiki, Yoshihisa; Takakura, Kazuki; Takahara, Akitaka; Odahara, Shunichi; Tsukinaga, Shintaro; Yukawa, Toyokazu; Mitobe, Jimi; Matsudaira, Hiroshi; Nagatsuma, Keisuke; Kajihara, Mikio; Uchiyama, Kan; Arihiro, Seiji; Imazu, Hiroo; Arakawa, Hiroshi; Kan, Shin; Hayashi, Kazumi; Komita, Hideo; Kamata, Yuko; Ito, Masaki; Hara, Eiichi; Ohkusa, Toshifumi; Gong, Jianlin; Tajiri, Hisao

    2013-01-01

    The therapeutic efficacy of fusion cell (FC)-based cancer vaccine generated with whole tumor cells and dendritic cells (DCs) requires the improved immunogenicity of both cells. Treatment of whole tumor cells with ethanol resulted in blockade of immune-suppressive soluble factors such as transforming growth factor (TGF)-β1, vascular endothelial growth factor, and IL-10 without decreased expression of major histocompatibility complex (MHC) class I and the MUC1 tumor-associated antigen. Moreover, the ethanol-treated tumor cells expressed "eat-me" signals such as calreticulin (CRT) on the cell surface and released immunostimulatory factors such as heat shock protein (HSP)90α and high-mobility group box 1 (HMGB1). A dual stimulation of protein-bound polysaccharides isolated from Coriolus versicolor (TLR2 agonist) and penicillin-inactivated Streptococcus pyogenes (TLR4 agonist) led human monocyte-derived DCs to produce HSP90α and multiple cytokines such as IL-12p70 and IL-10. Interestingly, incorporating ethanol-treated tumor cells and TLRs-stimulated DCs during the fusion process promoted fusion efficiency and up-regulated MHC class II molecules on a per fusion basis. Moreover, fusions of ethanol-treated tumor cells and dual TLRs-stimulated DCs (E-tumor/FCs) inhibited the production of multiple immune-suppressive soluble factors including TGF-β1 and up-regulated the production of IL-12p70 and HSP90α. Most importantly, E-tumor/FCs activated T cells capable of producing high levels of IFN-γ, resulting in augmented MUC1-specific CTL induction. Collectively, our results illustrate the synergy between ethanol-treated whole tumor cells and dual TLRs-stimulated DCs in inducing augmented CTL responses in vitro by FC preparations. The alternative system is simple and may provide a platform for adoptive immunotherapy.

  5. Augmentation of antitumor immunity by fusions of ethanol-treated tumor cells and dendritic cells stimulated via dual TLRs through TGF-β1 blockade and IL-12p70 production.

    Directory of Open Access Journals (Sweden)

    Shigeo Koido

    Full Text Available The therapeutic efficacy of fusion cell (FC-based cancer vaccine generated with whole tumor cells and dendritic cells (DCs requires the improved immunogenicity of both cells. Treatment of whole tumor cells with ethanol resulted in blockade of immune-suppressive soluble factors such as transforming growth factor (TGF-β1, vascular endothelial growth factor, and IL-10 without decreased expression of major histocompatibility complex (MHC class I and the MUC1 tumor-associated antigen. Moreover, the ethanol-treated tumor cells expressed "eat-me" signals such as calreticulin (CRT on the cell surface and released immunostimulatory factors such as heat shock protein (HSP90α and high-mobility group box 1 (HMGB1. A dual stimulation of protein-bound polysaccharides isolated from Coriolus versicolor (TLR2 agonist and penicillin-inactivated Streptococcus pyogenes (TLR4 agonist led human monocyte-derived DCs to produce HSP90α and multiple cytokines such as IL-12p70 and IL-10. Interestingly, incorporating ethanol-treated tumor cells and TLRs-stimulated DCs during the fusion process promoted fusion efficiency and up-regulated MHC class II molecules on a per fusion basis. Moreover, fusions of ethanol-treated tumor cells and dual TLRs-stimulated DCs (E-tumor/FCs inhibited the production of multiple immune-suppressive soluble factors including TGF-β1 and up-regulated the production of IL-12p70 and HSP90α. Most importantly, E-tumor/FCs activated T cells capable of producing high levels of IFN-γ, resulting in augmented MUC1-specific CTL induction. Collectively, our results illustrate the synergy between ethanol-treated whole tumor cells and dual TLRs-stimulated DCs in inducing augmented CTL responses in vitro by FC preparations. The alternative system is simple and may provide a platform for adoptive immunotherapy.

  6. Polyploidization of rat hepatocytes due to cell fusion under the effect of radiation of different let

    International Nuclear Information System (INIS)

    Gil'yano, N.Ya.; Malinovskij, O.V.; Khair, M.B.; Baldychev, A.S.; Smolin, V.A.

    1988-01-01

    The method of flow cytometry was used to study polyploidization of hepatocytes following X-, γ-, and neutron-irradiation. Ionizing radiation was shown to induce cell polyploidization by two different ways: (1) cells and nuclei fusion, and (2) restriction of mitosis after DNA replication. RBE of 14 MeV neutrons with respect to fusion was about 5x10 3 . With neutron irradiation, the densitivity of cells by fusion was not lower than that by chromosome mutations

  7. Organotypic three-dimensional culture model of mesenchymal and epithelial cells to examine tissue fusion events.

    Science.gov (United States)

    Tissue fusion during early mammalian development requires coordination of multiple cell types, the extracellular matrix, and complex signaling pathways. Fusion events during processes including heart development, neural tube closure, and palatal fusion are dependent on signaling ...

  8. IGF1 is a common target gene of Ewing's sarcoma fusion proteins in mesenchymal progenitor cells.

    Directory of Open Access Journals (Sweden)

    Luisa Cironi

    Full Text Available BACKGROUND: The EWS-FLI-1 fusion protein is associated with 85-90% of Ewing's sarcoma family tumors (ESFT, the remaining 10-15% of cases expressing chimeric genes encoding EWS or FUS fused to one of several ets transcription factor family members, including ERG-1, FEV, ETV1 and ETV6. ESFT are dependent on insulin-like growth factor-1 (IGF-1 for growth and survival and recent evidence suggests that mesenchymal progenitor/stem cells constitute a candidate ESFT origin. METHODOLOGY/PRINCIPAL FINDINGS: To address the functional relatedness between ESFT-associated fusion proteins, we compared mouse progenitor cell (MPC permissiveness for EWS-FLI-1, EWS-ERG and FUS-ERG expression and assessed the corresponding expression profile changes. Whereas all MPC isolates tested could stably express EWS-FLI-1, only some sustained stable EWS-ERG expression and none could express FUS-ERG for more than 3-5 days. Only 14% and 4% of the total number of genes that were respectively induced and repressed in MPCs by the three fusion proteins were shared. However, all three fusion proteins, but neither FLI-1 nor ERG-1 alone, activated the IGF1 promoter and induced IGF1 expression. CONCLUSION/SIGNIFICANCE: Whereas expression of different ESFT-associated fusion proteins may require distinct cellular microenvironments and induce transcriptome changes of limited similarity, IGF1 induction may provide one common mechanism for their implication in ESFT pathogenesis.

  9. Activation analyses for different fusion structural alloys

    International Nuclear Information System (INIS)

    Attaya, H.; Smith, D.

    1991-01-01

    The leading candidate structural materials, viz., the vanadium alloys, the nickel or the manganese stabilized austenitic steels, and the ferritic steels, are analysed in terms of their induced activation in the TPSS fusion power reactor. The TPSS reactor has 1950 MW fusion power and inboard and outboard average neutron wall loading of 3.75 and 5.35 MW/m 2 respectively. The results shows that, after one year of continuous operation, the vanadium alloys have the least radioactivity at reactor shutdown. The maximum difference between the induced radioactivity in the vanadium alloys and in the other iron-based alloys occurs at about 10 years after reactor shutdown. At this time, the total reactor radioactivity, using the vanadium alloys, is about two orders of magnitude less than the total reactor radioactivity utilizing any other alloy. The difference is even larger in the first wall, the FW-vanadium activation is 3 orders of magnitude less than other alloys' FW activation. 2 refs., 7 figs

  10. Superconducting magnet and conductor research activities in the US fusion program

    International Nuclear Information System (INIS)

    Michael, P.C.; Schultz, J.H.; Antaya, T.A.; Ballinger, R.; Chiesa, L.; Feng, J.; Gung, C.-Y.; Harris, D.; Kim, J.-H.; Lee, P.; Martovetsky, N.; Minervini, J.V.; Radovinsky, A.; Salvetti, M.; Takayasu, M.; Titus, P.

    2006-01-01

    Fusion research in the United States is sponsored by the Department of Energy's Office of Fusion Energy Sciences (OFES). The OFES sponsors a wide range of programs to advance fusion science, fusion technology, and basic plasma science. Most experimental devices in the US fusion program are constructed using conventional technologies; however, a small portion of the fusion research program is directed towards large scale commercial power generation, which typically relies on superconductor technology to facilitate steady-state operation with high fusion power gain, Q. The superconductor portion of the US fusion research program is limited to a small number of laboratories including the Plasma Science and Fusion Center at MIT, Lawrence Livermore National Laboratory (LLNL), and the Applied Superconductivity Center at University of Wisconsin, Madison. Although Brookhaven National Laboratory (BNL) and Lawrence Berkeley National Laboratory (LBNL) are primarily sponsored by the US's High Energy Physics program, both have made significant contributions to advance the superconductor technology needed for the US fusion program. This paper summarizes recent superconductor activities in the US fusion program

  11. Polyploidization of rat hepatocytes due to cell fusion under the effect of radiation of different LET

    International Nuclear Information System (INIS)

    Khair, M.; Gil'yano, N.Ya.; Malinovskij, O.V.; Smolin, V.A.

    1991-01-01

    The method of flow cytometry was used to study polyploidization of hepatocytes following X-, γ-, and neutron-irradiation. Ionizing radiation was shown to induce cell polyploidization by two different ways: (1) cells and nuclei fusion, and (2) restriction of mitosis after DNA replication. RBE of 14 MeV neutrons with respect to fusion was about 5x10 3 . With neutron irradiation, the sensitivity of cells by fusion was not lower than that by chromosome mutations. (author). 6 refs., 6 figs

  12. Novel β-lactamase-random peptide fusion libraries for phage display selection of cancer cell-targeting agents suitable for enzyme prodrug therapy

    Science.gov (United States)

    Shukla, Girja S.; Krag, David N.

    2010-01-01

    Novel phage-displayed random linear dodecapeptide (X12) and cysteine-constrained decapeptide (CX10C) libraries constructed in fusion to the amino-terminus of P99 β-lactamase molecules were used for identifying β-lactamase-linked cancer cell-specific ligands. The size and quality of both libraries were comparable to the standards of other reported phage display systems. Using the single-round panning method based on phage DNA recovery, we identified severalβ-lactamase fusion peptides that specifically bind to live human breast cancer MDA-MB-361 cells. The β-lactamase fusion to the peptides helped in conducting the enzyme activity-based clone normalization and cell-binding screening in a very time- and cost-efficient manner. The methods were suitable for 96-well readout as well as microscopic imaging. The success of the biopanning was indicated by the presence of ~40% cancer cell-specific clones among recovered phages. One of the binding clones appeared multiple times. The cancer cell-binding fusion peptides also shared several significant motifs. This opens a new way of preparing and selecting phage display libraries. The cancer cell-specific β-lactamase-linked affinity reagents selected from these libraries can be used for any application that requires a reporter for tracking the ligand molecules. Furthermore, these affinity reagents have also a potential for their direct use in the targeted enzyme prodrug therapy of cancer. PMID:19751096

  13. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming.

    Science.gov (United States)

    Mitani, Yasuyuki; Vagnozzi, Ronald J; Millay, Douglas P

    2017-01-01

    Knowledge regarding cellular fusion and nuclear reprogramming may aid in cell therapy strategies for skeletal muscle diseases. An issue with cell therapy approaches to restore dystrophin expression in muscular dystrophy is obtaining a sufficient quantity of cells that normally fuse with muscle. Here we conferred fusogenic activity without transdifferentiation to multiple non-muscle cell types and tested dystrophin restoration in mouse models of muscular dystrophy. We previously demonstrated that myomaker, a skeletal muscle-specific transmembrane protein necessary for myoblast fusion, is sufficient to fuse 10T 1/2 fibroblasts to myoblasts in vitro. Whether myomaker-mediated heterologous fusion is functional in vivo and whether the newly introduced nonmuscle nuclei undergoes nuclear reprogramming has not been investigated. We showed that mesenchymal stromal cells, cortical bone stem cells, and tail-tip fibroblasts fuse to skeletal muscle when they express myomaker. These cells restored dystrophin expression in a fraction of dystrophin-deficient myotubes after fusion in vitro. However, dystrophin restoration was not detected in vivo although nuclear reprogramming of the muscle-specific myosin light chain promoter did occur. Despite the lack of detectable dystrophin reprogramming by immunostaining, this study indicated that myomaker could be used in nonmuscle cells to induce fusion with muscle in vivo, thereby providing a platform to deliver therapeutic material.-Mitani, Y., Vagnozzi, R. J., Millay, D. P. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming. © FASEB.

  14. Results from the CDE phase activity on neutron dosimetry for the international fusion materials irradiation facility test cell

    CERN Document Server

    Esposito, B; Maruccia, G; Petrizzi, L; Bignon, G; Blandin, C; Chauffriat, S; Lebrun, A; Recroix, H; Trapp, J P; Kaschuck, Y

    2000-01-01

    The international fusion materials irradiation facility (IFMIF) project deals with the study of an accelerator-based, deuterium-lithium source, producing high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials for fusion energy reactors. IFMIF would also provide calibration and validation of data from fission reactor and other accelerator based irradiation tests. This paper describes the activity on neutron/gamma dosimetry (necessary for the characterization of the specimens' irradiation) performed in the frame of the IFMIF conceptual design evaluation (CDE) neutronics tasks. During the previous phase (conceptual design activity (CDA)) the multifoil activation method was proposed for the measurement of the neutron fluence and spectrum and a set of suitable foils was defined. The cross section variances and covariances of this set of foils have now been used for tests on the sensitivity of the IFMIF neutron spectrum determination to cross section uncertainties...

  15. Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 fusion protein.

    Science.gov (United States)

    Welch, Brett D; Liu, Yuanyuan; Kors, Christopher A; Leser, George P; Jardetzky, Theodore S; Lamb, Robert A

    2012-10-09

    The paramyxovirus parainfluenza virus 5 (PIV5) enters cells by fusion of the viral envelope with the plasma membrane through the concerted action of the fusion (F) protein and the receptor binding protein hemagglutinin-neuraminidase. The F protein folds initially to form a trimeric metastable prefusion form that is triggered to undergo large-scale irreversible conformational changes to form the trimeric postfusion conformation. It is thought that F refolding couples the energy released with membrane fusion. The F protein is synthesized as a precursor (F0) that must be cleaved by a host protease to form a biologically active molecule, F1,F2. Cleavage of F protein is a prerequisite for fusion and virus infectivity. Cleavage creates a new N terminus on F1 that contains a hydrophobic region, known as the FP, which intercalates target membranes during F protein refolding. The crystal structure of the soluble ectodomain of the uncleaved form of PIV5 F is known; here we report the crystal structure of the cleavage-activated prefusion form of PIV5 F. The structure shows minimal movement of the residues adjacent to the protease cleavage site. Most of the hydrophobic FP residues are buried in the uncleaved F protein, and only F103 at the newly created N terminus becomes more solvent-accessible after cleavage. The conformational freedom of the charged arginine residues that compose the protease recognition site increases on cleavage of F protein.

  16. Gene trapping in differentiating cell lines: regulation of the lysosomal protease cathepsin B in skeletal myoblast growth and fusion.

    Science.gov (United States)

    Gogos, J A; Thompson, R; Lowry, W; Sloane, B F; Weintraub, H; Horwitz, M

    1996-08-01

    To identify genes regulated during skeletal muscle differentiation, we have infected mouse C2C12 myoblasts with retroviral gene trap vectors, containing a promoterless marker gene with a 5' splice acceptor signal. Integration of the vector adjacent to an actively transcribed gene places the marker under the transcriptional control of the endogenous gene, while the adjacent vector sequences facilitate cloning. The vector insertionally mutates the trapped locus and may also form fusion proteins with the endogenous gene product. We have screened several hundred clones, each containing a trapping vector integrated into a different endogenous gene. In agreement with previous estimates based on hybridization kinetics, we find that a large proportion of all genes expressed in myoblasts are regulated during differentiation. Many of these genes undergo unique temporal patterns of activation or repression during cell growth and myotube formation, and some show specific patterns of subcellular localization. The first gene we have identified with this strategy is the lysosomal cysteine protease cathepsin B. Expression from the trapped allele is upregulated during early myoblast fusion and downregulated in myotubes. A direct role for cathepsin B in myoblast growth and fusion is suggested by the observation that the trapped cells deficient in cathepsin B activity have an unusual morphology and reduced survival in low-serum media and undergo differentiation with impaired cellular fusion. The phenotype is reproduced by antisense cathepsin B expression in parental C2C12 myoblasts. The cellular phenotype is similar to that observed in cultured myoblasts from patients with I cell disease, in which there is diminished accumulation of lysosomal enzymes. This suggests that a specific deficiency of cathepsin B could contribute to the myopathic component of this illness.

  17. The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein

    Directory of Open Access Journals (Sweden)

    Semaan Sheila J

    2010-10-01

    Full Text Available Abstract Background Many chemotherapeutic agents promote tumor cell death by activating the intrinsic pathway of apoptosis. Intrinsic apoptosis involves permeabilization of the mitochondrial outer membrane and the release of cytochrome c, a process that is controlled by proteins of the BCL2 gene family. Chemoresistance is often associated with abnormalities in concentrations of BCL2 family proteins. Although stoichiometirc interactions between anti-apoptotic and BH3-only BCL2 family proteins have been well documented as affecting cell death, the association between changes in BAX concentration and intrinsic apoptosis are poorly understood. Methods Exogenous GFP-murine Bax fusion constructs were transfected into BAX-deficient HCT116 cells. To titrate the expression of the fusion protein, GFP-BAX was cloned into a tetracycline sensitive expression cassette and cotransfected with a plasmid expressing the rtTA transcription factor into HCT116BAX-/- cells. Linear expression of the fusion gene was induced with doxycycline and monitored by quantitative PCR and immunoblotting. Cell death was assayed by DAPI staining cells after exposure to indomethacin, and scoring nuclei for condensed chromatin and fragmented nuclei. Results HCT116BAX-/- cells were resistant to indomethacin, but susceptibility could be recovered in cells expressing a GFP-BAX fusion protein. Titration of GFP-BAX expression revealed that the concentration of BAX required to induce a saturating apoptosis response from baseline, was rapidly achieved. Increased levels of GFP-BAX were unable to stimulate higher levels of cell death. Examination of GFP-BAX distribution before and after indomethacin treatment indicated that BAX protein did not form aggregates when present at sub-lethal concentrations. Conclusion Within the limitations of this experimental system, BAX-dependent apoptosis in HCT116 cells exhibits an all-or-none response depending on the level of BAX protein present. The lack of

  18. Site-specific modification of genome with cell-permeable Cre fusion protein in preimplantation mouse embryo

    International Nuclear Information System (INIS)

    Kim, Kyoungmi; Kim, Hwain; Lee, Daekee

    2009-01-01

    Site-specific recombination (SSR) by Cre recombinase and its target sequence, loxP, is a valuable tool in genetic analysis of gene function. Recently, several studies reported successful application of Cre fusion protein containing protein transduction peptide for inducing gene modification in various mammalian cells including ES cell as well as in the whole animal. In this study, we show that a short incubation of preimplantation mouse embryos with purified cell-permeable Cre fusion protein results in efficient SSR. X-Gal staining of preimplantation embryos, heterozygous for Gtrosa26 tm1Sor , revealed that treatment of 1-cell or 2-cell embryos with 3 μM of Cre fusion protein for 2 h leads to Cre-mediated excision in 70-85% of embryos. We have examined the effect of the concentration of the Cre fusion protein and the duration of the treatment on embryonic development, established a condition for full term development and survival to adulthood, and demonstrated the germ line transmission of excised Gtrosa26 allele. Potential applications and advantages of the highly efficient technique described here are discussed.

  19. TFG-MET fusion in an infantile spindle cell sarcoma with neural features

    NARCIS (Netherlands)

    Flucke, U.E.; Noesel, M.M. van; Wijnen, M.; Zhang, L.; Chen, C.L.; Sung, Y.S.; Antonescu, C.R.

    2017-01-01

    An increasing number of congenital and infantile sarcomas displaying a primitive, monomorphic spindle cell phenotype have been characterized to harbor recurrent gene fusions, including infantile fibrosarcoma and congenital spindle cell rhabdomyosarcoma. Here, we report an unusual spindle cell

  20. Effect of the time interval between fusion and activation on epigenetic reprogramming and development of bovine somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Liu, Jun; Wang, Yongsheng; Su, Jianmin; Wang, Lijun; Li, Ruizhe; Li, Qian; Wu, Yongyan; Hua, Song; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2013-04-01

    Previous studies have shown that the time interval between fusion and activation (FA interval) play an important role in nuclear remodeling and in vitro development of somatic cell nuclear transfer (SCNT) embryos. However, the effects of FA interval on the epigenetic reprogramming and in vivo developmental competence of SCNT embryos remain unknown. In the present study, the effects of different FA intervals (0 h, 2 h, and 4 h) on the epigenetic reprogramming and developmental competence of bovine SCNT embryos were assessed. The results demonstrated that H3 lysine 9 (H3K9ac) levels decreased rapidly after fusion in all three groups. H3K9ac was practically undetectable 2 h after fusion in the 2-h and 4-h FA interval groups. However, H3K9ac was still evidently detectable in the 0-h FA interval group. The H3K9ac levels increased 10 h after fusion in all three groups, but were higher in the 2-h and 4-h FA interval groups than that in the 0-h FA interval group. The methylation levels of the satellite I region in day-7 blastocysts derived from the 2-h or 4-h FA interval groups was similar to that of in vitro fertilization blastocysts and is significantly lower than that of the 0-h FA interval group. SCNT embryos derived from 2-h FA interval group showed higher developmental competence than those from the 0-h and 4-h FA interval groups in terms of cleavage rate, blastocyst formation rate, apoptosis index, and pregnancy and calving rates. Hence, the FA interval is an important factor influencing the epigenetic reprogramming and developmental competence of bovine SCNT embryos.

  1. Non-fusion and fusion expression of beta-galactosidase from Lactobacillus bulgaricus in Lactococcus lactis.

    Science.gov (United States)

    Wang, Chuan; Zhang, Chao-Wu; Liu, Heng-Chuan; Yu, Qian; Pei, Xiao-Fang

    2008-10-01

    To construct four recombinant Lactococcus lactis strains exhibiting high beta-galactosidase activity in fusion or non-fusion ways, and to study the influence factors for their protein expression and secretion. The gene fragments encoding beta-galactosidase from two strains of Lactobacillus bulgaricus, wch9901 isolated from yogurt and 1.1480 purchased from the Chinese Academy of Sciences, were amplified and inserted into lactococcal expression vector pMG36e. For fusion expression, the open reading frame of the beta-galactosidase gene was amplified, while for non-fusion expression, the open reading frame of the beta-galactosidase gene was amplified with its native Shine-Dalgarno sequence upstream. The start codon of the beta-galactosidase gene partially overlapped with the stop codon of vector origin open reading frame. Then, the recombinant plasmids were transformed into Escherichia coli DH5 alpha and Lactococcus lactis subsp. lactis MG1363 and confirmed by determining beta-galactosidase activities. The non-fusion expression plasmids showed a significantly higher beta-galactosidase activity in transformed strains than the fusion expression plasmids. The highest enzyme activity was observed in Lactococcus lactis transformed with the non-fusion expression plasmids which were inserted into the beta-galactosidase gene from Lactobacillus bulgaricus wch9901. The beta-galactosidase activity was 2.75 times as high as that of the native counterpart. In addition, beta-galactosidase expressed by recombinant plasmids in Lactococcus lactis could be secreted into the culture medium. The highest secretion rate (27.1%) was observed when the culture medium contained 20 g/L of lactose. Different properties of the native bacteria may have some effects on the protein expression of recombinant plasmids. Non-fusion expression shows a higher enzyme activity in host bacteria. There may be a host-related weak secretion signal peptide gene within the structure gene of Lb. bulgaricus beta

  2. High-level production of human interleukin-10 fusions in tobacco cell suspension cultures

    Science.gov (United States)

    Kaldis, Angelo; Ahmad, Adil; Reid, Alexandra; McGarvey, Brian; Brandle, Jim; Ma, Shengwu; Jevnikar, Anthony; Kohalmi, Susanne E; Menassa, Rima

    2013-01-01

    The production of pharmaceutical proteins in plants has made much progress in recent years with the development of transient expression systems, transplastomic technology and humanizing glycosylation patterns in plants. However, the first therapeutic proteins approved for administration to humans and animals were made in plant cell suspensions for reasons of containment, rapid scale-up and lack of toxic contaminants. In this study, we have investigated the production of human interleukin-10 (IL-10) in tobacco BY-2 cell suspension and evaluated the effect of an elastin-like polypeptide tag (ELP) and a green fluorescent protein (GFP) tag on IL-10 accumulation. We report the highest accumulation levels of hIL-10 obtained with any stable plant expression system using the ELP fusion strategy. Although IL-10-ELP has cytokine activity, its activity is reduced compared to unfused IL-10, likely caused by interference of ELP with folding of IL-10. Green fluorescent protein has no effect on IL-10 accumulation, but examining the trafficking of IL-10-GFP over the cell culture cycle revealed fluorescence in the vacuole during the stationary phase of the culture growth cycle. Analysis of isolated vacuoles indicated that GFP alone is found in vacuoles, while the full-size fusion remains in the whole-cell extract. This indicates that GFP is cleaved off prior to its trafficking to the vacuole. On the other hand, IL-10-GFP-ELP remains mostly in the ER and accumulates to high levels. Protein bodies were observed at the end of the culture cycle and are thought to arise as a consequence of high levels of accumulation in the ER. PMID:23297698

  3. Effect of TheraCyte-encapsulated parathyroid cells on lumbar fusion in a rat model.

    Science.gov (United States)

    Chen, Sung-Hsiung; Huang, Shun-Chen; Lui, Chun-Chung; Lin, Tzu-Ping; Chou, Fong-Fu; Ko, Jih-Yang

    2012-09-01

    Implantation of TheraCyte 4 × 10(6) live parathyroid cells can increase the bone marrow density of the spine of ovariectomized rats. There has been no published study examining the effect of such implantation on spinal fusion outcomes. The purpose of this study was to examine the effect of TheraCyte-encapsulated parathyroid cells on posterolateral lumbar fusions in a rat model. Forty Sprague-Dawley rats underwent single-level, intertransverse process spinal fusions using iliac crest autograft. The rats were randomly assigned to two groups: Group 1 rats received sham operations on their necks (control; N = 20); Group 2 rats were implanted with TheraCyte-encapsulated 4 × 10(6) live parathyroid cells into the subcutis of their necks (TheraCyte; N = 20). Six weeks after surgery the rats were killed. Fusion was assessed by inspection, manual palpation, radiography, and histology. Blood was drawn to measure the serum levels of calcium, phosphorus, and intact parathyroid hormone (iPTH). Based on manual palpation, the control group had a fusion rate of 33 % (6/18) and the TheraCyte group had a fusion rate of 72 % (13/18) (P = 0.044). Histology confirmed the manual palpation results. Serum iPTH levels were significantly higher in the TheraCyte group compared with the control group (P TheraCyte-encapsulated 4 × 10(6) live parathyroid cells than in control rats without significant change in serum calcium or phosphorus concentrations. As with any animal study, the results may not extrapolate to a higher species. Further studies are needed to determine if these effects are clinically significant.

  4. SARS-coronavirus spike S2 domain flanked by cysteine residues C822 and C833 is important for activation of membrane fusion

    International Nuclear Information System (INIS)

    Madu, Ikenna G.; Belouzard, Sandrine; Whittaker, Gary R.

    2009-01-01

    The S2 domain of the coronavirus spike (S) protein is known to be responsible for mediating membrane fusion. In addition to a well-recognized cleavage site at the S1-S2 boundary, a second proteolytic cleavage site has been identified in the severe acute respiratory syndrome coronavirus (SARS-CoV) S2 domain (R797). C-terminal to this S2 cleavage site is a conserved region flanked by cysteine residues C822 and C833. Here, we investigated the importance of this well conserved region for SARS-CoV S-mediated fusion activation. We show that the residues between C822-C833 are well conserved across all coronaviruses. Mutagenic analysis of SARS-CoV S, combined with cell-cell fusion and pseudotyped virion infectivity assays, showed a critical role for the core-conserved residues C822, D830, L831, and C833. Based on available predictive models, we propose that the conserved domain flanked by cysteines 822 and 833 forms a loop structure that interacts with components of the SARS-CoV S trimer to control the activation of membrane fusion.

  5. Conformational changes in Sindbis virions resulting from exposure to low pH and interactions with cells suggest that cell penetration may occur at the cell surface in the absence of membrane fusion

    International Nuclear Information System (INIS)

    Paredes, Angel M.; Ferreira, Davis; Horton, Michelle; Saad, Ali; Tsuruta, Hiro; Johnston, Robert; Klimstra, William; Ryman, Kate; Hernandez, Raquel; Chiu Wah; Brown, Dennis T.

    2004-01-01

    Alphaviruses have the ability to induce cell-cell fusion after exposure to acid pH. This observation has served as an article of proof that these membrane-containing viruses infect cells by fusion of the virus membrane with a host cell membrane upon exposure to acid pH after incorporation into a cell endosome. We have investigated the requirements for the induction of virus-mediated, low pH-induced cell-cell fusion and cell-virus fusion. We have correlated the pH requirements for this process to structural changes they produce in the virus by electron cryo-microscopy. We found that exposure to acid pH was required to establish conditions for membrane fusion but that membrane fusion did not occur until return to neutral pH. Electron cryo-microscopy revealed dramatic changes in the structure of the virion as it was moved to acid pH and then returned to neutral pH. None of these treatments resulted in the disassembly of the virus protein icosahedral shell that is a requisite for the process of virus membrane-cell membrane fusion. The appearance of a prominent protruding structure upon exposure to acid pH and its disappearance upon return to neutral pH suggested that the production of a 'pore'-like structure at the fivefold axis may facilitate cell penetration as has been proposed for polio (J. Virol. 74 (2000) 1342) and human rhino virus (Mol. Cell 10 (2002) 317). This transient structural change also provided an explanation for how membrane fusion occurs after return to neutral pH. Examination of virus-cell complexes at neutral pH supported the contention that infection occurs at the cell surface at neutral pH by the production of a virus structure that breaches the plasma membrane bilayer. These data suggest an alternative route of infection for Sindbis virus that occurs by a process that does not involve membrane fusion and does not require disassembly of the virus protein shell

  6. Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12.

    Science.gov (United States)

    Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean; Veillette, André

    2013-06-01

    Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading.

  7. A faster, high resolution, mtPA-GFP-based mitochondrial fusion assay acquiring kinetic data of multiple cells in parallel using confocal microscopy.

    Science.gov (United States)

    Lovy, Alenka; Molina, Anthony J A; Cerqueira, Fernanda M; Trudeau, Kyle; Shirihai, Orian S

    2012-07-20

    Mitochondrial fusion plays an essential role in mitochondrial calcium homeostasis, bioenergetics, autophagy and quality control. Fusion is quantified in living cells by photo-conversion of matrix targeted photoactivatable GFP (mtPAGFP) in a subset of mitochondria. The rate at which the photoconverted molecules equilibrate across the entire mitochondrial population is used as a measure of fusion activity. Thus far measurements were performed using a single cell time lapse approach, quantifying the equilibration in one cell over an hour. Here, we scale up and automate a previously published live cell method based on using mtPAGFP and a low concentration of TMRE (15 nm). This method involves photoactivating a small portion of the mitochondrial network, collecting highly resolved stacks of confocal sections every 15 min for 1 hour, and quantifying the change in signal intensity. Depending on several factors such as ease of finding PAGFP expressing cells, and the signal of the photoactivated regions, it is possible to collect around 10 cells within the 15 min intervals. This provides a significant improvement in the time efficiency of this assay while maintaining the highly resolved subcellular quantification as well as the kinetic parameters necessary to capture the detail of mitochondrial behavior in its native cytoarchitectural environment. Mitochondrial dynamics play a role in many cellular processes including respiration, calcium regulation, and apoptosis. The structure of the mitochondrial network affects the function of mitochondria, and the way they interact with the rest of the cell. Undergoing constant division and fusion, mitochondrial networks attain various shapes ranging from highly fused networks, to being more fragmented. Interestingly, Alzheimer's disease, Parkinson's disease, Charcot Marie Tooth 2A, and dominant optic atrophy have been correlated with altered mitochondrial morphology, namely fragmented networks. Often times, upon fragmentation

  8. Inhibitory effect of mTOR activator MHY1485 on autophagy: suppression of lysosomal fusion.

    Directory of Open Access Journals (Sweden)

    Yeon Ja Choi

    Full Text Available Autophagy is a major degradative process responsible for the disposal of cytoplasmic proteins and dysfunctional organelles via the lysosomal pathway. During the autophagic process, cells form double-membraned vesicles called autophagosomes that sequester disposable materials in the cytoplasm and finally fuse with lysosomes. In the present study, we investigated the inhibition of autophagy by a synthesized compound, MHY1485, in a culture system by using Ac2F rat hepatocytes. Autophagic flux was measured to evaluate the autophagic activity. Autophagosomes were visualized in Ac2F cells transfected with AdGFP-LC3 by live-cell confocal microscopy. In addition, activity of mTOR, a major regulatory protein of autophagy, was assessed by western blot and docking simulation using AutoDock 4.2. In the result, treatment with MHY1485 suppressed the basal autophagic flux, and this inhibitory effect was clearly confirmed in cells under starvation, a strong physiological inducer of autophagy. The levels of p62 and beclin-1 did not show significant change after treatment with MHY1485. Decreased co-localization of autophagosomes and lysosomes in confocal microscopic images revealed the inhibitory effect of MHY1485 on lysosomal fusion during starvation-induced autophagy. These effects of MHY1485 led to the accumulation of LC3II and enlargement of the autophagosomes in a dose- and time-dependent manner. Furthermore, MHY1485 induced mTOR activation and correspondingly showed a higher docking score than PP242, a well-known ATP-competitive mTOR inhibitor, in docking simulation. In conclusion, MHY1485 has an inhibitory effect on the autophagic process by inhibition of fusion between autophagosomes and lysosomes leading to the accumulation of LC3II protein and enlarged autophagosomes. MHY1485 also induces mTOR activity, providing a possibility for another regulatory mechanism of autophagy by the MHY compound. The significance of this study is the finding of a novel

  9. Accelerator and Fusion Research Division: summary of activities, 1983

    International Nuclear Information System (INIS)

    1984-08-01

    The activities described in this summary of the Accelerator and Fusion Research Division are diverse, yet united by a common theme: it is our purpose to explore technologically advanced techniques for the production, acceleration, or transport of high-energy beams. These beams may be the heavy ions of interest in nuclear science, medical research, and heavy-ion inertial-confinement fusion; they may be beams of deuterium and hydrogen atoms, used to heat and confine plasmas in magnetic fusion experiments; they may be ultrahigh-energy protons for the next high-energy hadron collider; or they may be high-brilliance, highly coherent, picosecond pulses of synchrotron radiation

  10. Activation and Radiation Damage Behaviour of Russian Structural Materials for Fusion Reactors in the Fission and Fusion Reactors

    International Nuclear Information System (INIS)

    Blokhin, A.; Demin, N.; Chernov, V.; Leonteva-Smirnova, M.; Potapenko, M.

    2006-01-01

    Various structural low (reduced) activated materials have been proposed as a candidate for the first walls-blankets of fusion reactors. One of the main problems connected with using these materials - to minimise the production of long-lived radionuclides from nuclear transmutations and to provide with good technological and functional properties. The selection of materials and their metallurgical and fabrication technologies for fusion reactor components is influenced by this factor. Accurate prediction of induced radioactivity is necessary for the development of the fusion reactor materials. Low activated V-Ti-Cr alloys and reduced activated ferritic-martensitic steels are a leading candidate material for fusion first wall and blanket applications. At the present time a range of compositions and an impurity level are still being investigated to better understand the sensitive of various functional and activation properties to small compositional variations and impurity level. For the two types of materials mentioned above (V-Ti-Cr alloys and 9-12 % Cr f/m steels) and manufactured in Russia (Russia technologies) the analysis of induced activity, hydrogen and helium-production as well as the accumulation of such elements as C, N, O, P, S, Zn and Sn as a function of irradiation time was performed. Materials '' were irradiated '' by fission (BN-600, BOR-60) and fusion (Russian DEMO-C Reactor Project) typical neutron spectra with neutron fluency up to 10 22 n/cm 2 and the cooling time up to 1000 years. The calculations of the transmutation of elements and the induced radioactivity were carried out using the FISPACT inventory code, and the different activation cross-section libraries like the ACDAM, FENDL-2/A and the decay data library FENDL-2/D. It was shown that the level of impurities controls a long-term behaviour of induced activity and contact dose rate for materials. From this analysis the concentration limits of impurities were obtained. The generation of gas

  11. Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice

    Directory of Open Access Journals (Sweden)

    Papaioannou Virginia E

    2004-12-01

    Full Text Available Abstract Background Advances in optical imaging modalities and the continued evolution of genetically-encoded fluorescent proteins are coming together to facilitate the study of cell behavior at high resolution in living organisms. As a result, imaging using autofluorescent protein reporters is gaining popularity in mouse transgenic and targeted mutagenesis applications. Results We have used embryonic stem cell-mediated transgenesis to label cells at sub-cellular resolution in vivo, and to evaluate fusion of a human histone protein to green fluorescent protein for ubiquitous fluorescent labeling of nucleosomes in mice. To this end we have generated embryonic stem cells and a corresponding strain of mice that is viable and fertile and exhibits widespread chromatin-localized reporter expression. High levels of transgene expression are maintained in a constitutive manner. Viability and fertility of homozygous transgenic animals demonstrates that this reporter is developmentally neutral and does not interfere with mitosis or meiosis. Conclusions Using various optical imaging modalities including wide-field, spinning disc confocal, and laser scanning confocal and multiphoton excitation microscopy, we can identify cells in various stages of the cell cycle. We can identify cells in interphase, cells undergoing mitosis or cell death. We demonstrate that this histone fusion reporter allows the direct visualization of active chromatin in situ. Since this reporter segments three-dimensional space, it permits the visualization of individual cells within a population, and so facilitates tracking cell position over time. It is therefore attractive for use in multidimensional studies of in vivo cell behavior and cell fate.

  12. Fusion of the BCL9 HD2 domain to E1A increases the cytopathic effect of an oncolytic adenovirus that targets colon cancer cells

    Directory of Open Access Journals (Sweden)

    Pittet Anne-Laure

    2006-10-01

    Full Text Available Abstract Background The Wnt signaling pathway is activated by mutations in the APC and β-catenin genes in many types of human cancer. β-catenin is stabilized by these mutations and activates transcription in part by acting as a bridge between Tcf/LEF proteins and the HD2 domain of the BCL9 coactivator. We have previously described oncolytic adenoviruses with binding sites for Tcf/LEF transcription factors inserted into the early viral promoters. These viruses replicate selectively in cells with activation of the Wnt pathway. To increase the activity of these viruses we have fused the viral transactivator E1A to the BCL9 HD2 domain. Methods Luciferase assays, co-immunoprecipitation and Western blotting, immunofluorescent cell staining and cytopathic effect assays were used to characterize the E1A-HD2 fusion protein and virus in vitro. Growth curves of subcutaneous SW620 colon cancer xenografts were used to characterize the virus in vivo. Results The E1A-HD2 fusion protein binds to β-catenin in vivo and activates a Tcf-regulated luciferase reporter better than wild-type E1A in cells with activated Wnt signaling. Expression of the E1A-HD2 protein promotes nuclear import of β-catenin, mediated by the strong nuclear localization signal in E1A. Tcf-regulated viruses expressing the fusion protein show increased expression of viral proteins and a five-fold increase in cytopathic effect (CPE in colorectal cancer cell lines. There was no change in viral protein expression or CPE in HeLa cells, indicating that E1A-HD2 viruses retain selectivity for cells with activation of the Wnt signaling pathway. Despite increasing the cytopathic effect of the virus in vitro, fusion of the HD2 domain to E1A did not increase the burst size of the virus in vitro or the anti-tumor effect of the virus in an SW620 xenograft model in vivo. Conclusion Despite an increase in the nuclear pool of β-catenin, the effects on viral activity in colon cancer cells were small

  13. Fusion alpha loss diagnostic for ITER using activation technique

    Czech Academy of Sciences Publication Activity Database

    Bonheure, G.; Hult, M.; González de Orduña, R.; Vermaercke, P.; Murari, A.; Popovichev, S.; Mlynář, Jan

    2011-01-01

    Roč. 86, 6-8 (2011), s. 1298-1301 ISSN 0920-3796. [Symposium on Fusion Technology (SOFT) /26th./. Port o, 27.09.2010-01.10.2010] Institutional research plan: CEZ:AV0Z20430508 Keywords : ITER * fusion product * burning plasma diagnostics * alpha losses * activation technique Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.490, year: 2011 http://www.sciencedirect.com/science/article/pii/S0920379611002778

  14. Potential low-level waste disposal limits for activation products from fusion

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Peloquin, R.A.

    1983-09-01

    Hanford Engineering Development Laboratory (HEDL) scientists are involved in studies considering alternative construction materials for the first wall of commercial fusion reactors. To permit a comparison of radioactivity levels, both the level of activation and an acceptable limit for the radionuclides present must be known. Generic material composition guidelines can be developed using the US Nuclear Regulatory Commission (NRC) regulations governing the near-surface disposal of low-level radioactive wastes. These regulations consider wastes defined as containing source, special nuclear, or by-product materials arising from research, industrial, medical, and nuclear fuel-cycle activities. However, not all of the activation products produced in low-level wastes from fusion reactors are considered by the NRC in their regulations. The purpose of this report is to present potential low-level waste-disposal limits for ten radionuclides resulting from fusion reactor operations that are not considered in the NRC low-level waste regulations. These potential limits will be used by HEDL scientists to complete their generic material composition guidelines for the first wall of commercial fusion reactors

  15. Goals, challenges, and successes of managing fusion activated materials

    International Nuclear Information System (INIS)

    El-Guebaly, L.; Massaut, V.; Zucchetti, M.; Tobita, K.; Cadwallader, L.

    2007-01-01

    After decades of designing magnetic and inertial fusion power plants, it is timely to develop a new framework for managing the activated materials generated during plant operation and after decommissioning - a framework that takes into account the lessons learned from numerous international fusion and fission studies and the environmental, political, and present reality in the U.S., EU, and Japan. Since the inception of the fusion projects in the early 1970s, the majority of power plant designs have focused on the disposal of active materials in geological repositories as the main option for handling the replaceable and life-of-plant components, adopting the preferred fission waste management approach. It is becoming evident that future regulations for geological burial will be upgraded to assure tighter environmental controls. Along with the political difficulty of constructing new repositories worldwide, the current reality suggests reshaping all aspects of handling the continual stream of fusion active materials. There is a growing international effort in support of this new trend. Beginning in the mid 1990s and continuing to the present, fusion designs developed in Europe, U.S., and Japan have examined replacing the disposal option with more environmentally attractive approaches, redirecting their attention to recycling and clearance while continuing the development of materials with low activation potential. These options became more technically feasible in recent years with the development of radiation-hardened remote handling (RH) tools and the introduction of the clearance category for slightly radioactive materials by national and international nuclear agencies. We applied all scenarios to selected fusion studies. While recycling and clearance appeared technically attractive and judged, in some cases, a must requirement to control the radwaste stream, the disposal scheme emerged as the preferred option for specific components for several reasons, including

  16. Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion

    International Nuclear Information System (INIS)

    Petit, Chad M.; Chouljenko, Vladimir N.; Iyer, Arun; Colgrove, Robin; Farzan, Michael; Knipe, David M.; Kousoulas, K.G.

    2007-01-01

    The SARS-coronavirus (SARS-CoV) is the etiological agent of the severe acute respiratory syndrome (SARS). The SARS-CoV spike (S) glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. The cytoplasmic portion of the S glycoprotein contains four cysteine-rich amino acid clusters. Individual cysteine clusters were altered via cysteine-to-alanine amino acid replacement and the modified S glycoproteins were tested for their transport to cell-surfaces and ability to cause cell fusion in transient transfection assays. Mutagenesis of the cysteine cluster I, located immediately proximal to the predicted transmembrane, domain did not appreciably reduce cell-surface expression, although S-mediated cell fusion was reduced by more than 50% in comparison to the wild-type S. Similarly, mutagenesis of the cysteine cluster II located adjacent to cluster I reduced S-mediated cell fusion by more than 60% compared to the wild-type S, while cell-surface expression was reduced by less than 20%. Mutagenesis of cysteine clusters III and IV did not appreciably affect S cell-surface expression or S-mediated cell fusion. The wild-type S was palmitoylated as evidenced by the efficient incorporation of 3 H-palmitic acid in wild-type S molecules. S glycoprotein palmitoylation was significantly reduced for mutant glycoproteins having cluster I and II cysteine changes, but was largely unaffected for cysteine cluster III and IV mutants. These results show that the S cytoplasmic domain is palmitoylated and that palmitoylation of the membrane proximal cysteine clusters I and II may be important for S-mediated cell fusion

  17. Coating Nanoparticles with Plant-Produced Transferrin-Hydrophobin Fusion Protein Enhances Their Uptake in Cancer Cells

    DEFF Research Database (Denmark)

    Reuter, Lauri J.; Shahbazi, Mohammad-Ali; Makila, Ermei M.

    2017-01-01

    can be expressed in Nicotiana benthamiana plants as a fusion with Trichoderma reesei hydrophobins HFBI, HFBII, or HFBIV. Transferrin-HFBIV was further expressed in tobacco BY-2 suspension cells. Both partners of the fusion protein retained their functionality; the hydrophobin moiety enabled migration...... to a surfactant phase in an aqueous two-phase system, and the transferrin moiety was able to reversibly bind iron. Coating porous silicon nanoparticles with the fusion protein resulted in uptake of the nanoparticles in human cancer cells. This study provides a proof-of concept for the functionalization...

  18. The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion

    International Nuclear Information System (INIS)

    Huang, Claire Y.-H.; Butrapet, Siritorn; Moss, Kelly J.; Childers, Thomas; Erb, Steven M.; Calvert, Amanda E.; Silengo, Shawn J.; Kinney, Richard M.; Blair, Carol D.; Roehrig, John T.

    2010-01-01

    The flaviviral envelope (E) protein directs virus-mediated membrane fusion. To investigate membrane fusion as a requirement for virus growth, we introduced 27 unique mutations into the fusion peptide of an infectious cDNA clone of dengue 2 virus and recovered seven stable mutant viruses. The fusion efficiency of the mutants was impaired, demonstrating for the first time the requirement for specific FP AAs in optimal fusion. Mutant viruses exhibited different growth kinetics and/or genetic stabilities in different cell types and adult mosquitoes. Virus particles could be recovered following RNA transfection of cells with four lethal mutants; however, recovered viruses could not re-infect cells. These viruses could enter cells, but internalized virus appeared to be retained in endosomal compartments of infected cells, thus suggesting a fusion blockade. Mutations of the FP also resulted in reduced virus reactivity with flavivirus group-reactive antibodies, confirming earlier reports using virus-like particles.

  19. Effect of amino acid sequence variations at position 149 on the fusogenic activity of the subtype B avian metapneumovirus fusion protein.

    Science.gov (United States)

    Yun, Bingling; Gao, Yanni; Liu, Yongzhen; Guan, Xiaolu; Wang, Yongqiang; Qi, Xiaole; Gao, Honglei; Liu, Changjun; Cui, Hongyu; Zhang, Yanping; Gao, Yulong; Wang, Xiaomei

    2015-10-01

    The entry of enveloped viruses into host cells requires the fusion of viral and cell membranes. These membrane fusion reactions are mediated by virus-encoded glycoproteins. In the case of avian metapneumovirus (aMPV), the fusion (F) protein alone can mediate virus entry and induce syncytium formation in vitro. To investigate the fusogenic activity of the aMPV F protein, we compared the fusogenic activities of three subtypes of aMPV F proteins using a TCSD50 assay developed in this study. Interestingly, we found that the F protein of aMPV subtype B (aMPV/B) strain VCO3/60616 (aMPV/vB) was hyperfusogenic when compared with F proteins of aMPV/B strain aMPV/f (aMPV/fB), aMPV subtype A (aMPV/A), and aMPV subtype C (aMPV/C). We then further demonstrated that the amino acid (aa) residue 149F contributed to the hyperfusogenic activity of the aMPV/vB F protein. Moreover, we revealed that residue 149F had no effect on the fusogenic activities of aMPV/A, aMPV/C, and human metapneumovirus (hMPV) F proteins. Collectively, we provide the first evidence that the amino acid at position 149 affects the fusogenic activity of the aMPV/B F protein, and our findings will provide new insights into the fusogenic mechanism of this protein.

  20. Fusion of Selected Cells and Vesicles Mediated by Optically Trapped Plasmonic Nanoparticles

    DEFF Research Database (Denmark)

    Bahadori, Azra

    . In this work, we introduce a novel and extremely flexible physical method which can trigger membrane fusion in a highly selective manner not only between synthetic GUVs of different compositions, but also between live cells which remain viable after fusion. Optical tweezers’ laser (1064 nm) is used to position....... The concept of cellular delivery is also known as targeted drug delivery and is quite a hot research topic internationally. Therefore, there have been efforts to develop various chemical molecules, proteins/peptides and physical approaches to trigger membrane fusion between synthetic giant unilamellar...... and merging of the two membranes results in merging the two membranes thereby completes the fusion. Complete fusion is associated with lipid mixing and lumen mixing which are both imaged by a high resolution confocal microscope. The confocal imaging enables quantification of the associated lipid mixing...

  1. Introduction of transformed chloroplasts from tobacco into petunia by asymmetric cell fusion.

    Science.gov (United States)

    Sigeno, Asako; Hayashi, Sugane; Terachi, Toru; Yamagishi, Hiroshi

    2009-11-01

    Plastid engineering technique has been established only in Nicotiana tabacum, and the widespread application is severely limited so far. In order to exploit a method to transfer the genetically transformed plastomes already obtained in tobacco into other plant species, somatic cell fusion was conducted between a plastome transformant of tobacco and a cultivar of petunia (Petunia hybrida). A tobacco strain whose plastids had been transformed with aadA (a streptomycin/spectinomycin adenylyltransferase gene) and mdar [a gene for monodehydroascorbate reductase (MDAR)] and a petunia variety, 'Telstar', were used as cell fusion partners. An efficient regeneration system from the protoplasts of both the parents, and effectiveness of selection for the aadA gene with spectinomycin were established before the cell fusion. In addition, the influence of UV irradiation on the callus development from the protoplasts and shoot regeneration of tobacco was investigated. Protoplasts were cultured after cell fusion treatment with polyethylene glycol, and asymmetric somatic cybrids were selected using the aadA gene as a marker. Although many shoots of tobacco that had escaped the UV irradiation regenerated, several shoots possessing the morphology of petunia and the resistance to spectinomycin were obtained. Molecular analyses of the petunia type regenerants demonstrated that they had the nuclear and mitochondrial genomes derived from petunia besides the chloroplasts of tobacco transformed with aadA and mdar. Furthermore, it was ascertained that mdar was transcribed in the somatic cybrids. The results indicate the success in intergeneric transfer of transformed plastids of tobacco into petunia.

  2. Regulation of membrane fusion and secretory events in the sea urchin embryo

    International Nuclear Information System (INIS)

    Roe, J.L.

    1990-01-01

    Membrane fusion and secretory events play a key role in fertilization and early development in the sea urchin embryo. To investigate the mechanism of membrane fusion, the effect of inhibitors of metalloendoprotease activity was studied on two model systems of cell fusion; fertilization and spiculogenesis by primary mesenchyme cells in the embryo. Both the zinc chelator, 1,10-phenanthroline, and peptide metalloprotease substrates were found to inhibit both fertilization and gamete fusion, while peptides that are not substrates of metalloproteases did not affect either process. Primary mesenchyme cells form the larval skeleton in the embryo by deposition of mineral and an organic matrix into a syncytial cavity formed by fusion of filopodia of these cells. Metalloprotease inhibitors were found to inhibit spiculogenesis both in vivo and in cultures of isolated primary mesenchyme cells, and the activity of a metalloprotease of the appropriate specificity was found in the primary mesenchyme cells. These two studies implicate the activity of a metalloprotease in a necessary step in membrane fusion. Following fertilization, exocytosis of the cortical granules results in the formation of the fertilization envelope and the hyaline layer, that surround the developing embryo. The hatching enzyme is secreted by the blastula stage sea urchin embryo, which proteolyzes the fertilization envelope surrounding the embryo, allowing the embryo to hatch. Using an assay that measures 125 I-fertilization envelope degradation, the hatching enzyme was identified as a 33 kDa metalloprotease, and was purified by ion-exchange and affinity chromatography from the hatching media of Strongylocentrotus purpuratus embryos. The hatching enzyme showed a substrate preference for only a minor subset of fertilization envelope proteins

  3. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication? [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Simon Imhof

    2016-04-01

    Full Text Available Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes.  Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer.  Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature.

  4. Fusion of Epstein-Barr virus nuclear antigen-1-derived glycine-alanine repeat to trans-dominant HIV-1 Gag increases inhibitory activities and survival of transduced cells in vivo.

    Science.gov (United States)

    Hammer, Diana; Wild, Jens; Ludwig, Christine; Asbach, Benedikt; Notka, Frank; Wagner, Ralf

    2008-06-01

    Trans-dominant human immunodeficiency virus type 1 (HIV-1) Gag derivatives have been shown to efficiently inhibit late steps of HIV-1 replication in vitro by interfering with Gag precursor assembly, thus ranking among the interesting candidates for gene therapy approaches. However, efficient antiviral activities of corresponding transgenes are likely to be counteracted in particular by cell-mediated host immune responses toward the transgene-expressing cells. To decrease this potential immunogenicity, a 24-amino acid Gly-Ala (GA) stretch derived from Epstein-Barr virus nuclear antigen-1 (EBNA1) and known to overcome proteasomal degradation was fused to a trans-dominant Gag variant (sgD1). To determine the capacity of this fusion polypeptide to repress viral replication, PM-1 cells were transduced with sgD1 and GAsgD1 transgenes, using retroviral gene transfer. Challenge of stably transfected permissive cell lines with various viral strains indicated that N-terminal GA fusion even enhanced the inhibitory properties of sgD1. Further studies revealed that the GA stretch increased protein stability by blocking proteasomal degradation of Gag proteins. Immunization of BALB/c mice with a DNA vaccine vector expressing sgD1 induced substantial Gag-specific immune responses that were, however, clearly diminished in the presence of GA. Furthermore, recognition of cells expressing the GA-fused transgene by CD8(+) T cells was drastically reduced, both in vitro and in vivo, resulting in prolonged survival of the transduced cells in recipient mice.

  5. Characterization of the functional requirements of West Nile virus membrane fusion.

    Science.gov (United States)

    Moesker, Bastiaan; Rodenhuis-Zybert, Izabela A; Meijerhof, Tjarko; Wilschut, Jan; Smit, Jolanda M

    2010-02-01

    Flaviviruses infect their host cells by a membrane fusion reaction. In this study, we performed a functional analysis of the membrane fusion properties of West Nile virus (WNV) with liposomal target membranes. Membrane fusion was monitored continuously using a lipid mixing assay involving the fluorophore, pyrene. Fusion of WNV with liposomes occurred on the timescale of seconds and was strictly dependent on mildly acidic pH. Optimal fusion kinetics were observed at pH 6.3, the threshold for fusion being pH 6.9. Preincubation of the virus alone at pH 6.3 resulted in a rapid loss of fusion capacity. WNV fusion activity is strongly promoted by the presence of cholesterol in the target membrane. Furthermore, we provide direct evidence that cleavage of prM to M is a requirement for fusion activity of WNV.

  6. Glucose activates prenyltransferases in pancreatic islet {beta}-cells

    Energy Technology Data Exchange (ETDEWEB)

    Goalstone, Marc [Department of Medicine, University of Colorado, VA Medical Center, Denver, CO 80220 (United States); Kamath, Vasudeva [Department of Pharmaceutical Sciences, Wayne State University, VA Medical Center, Detroit, MI 48201 (United States); Kowluru, Anjaneyulu, E-mail: akowluru@med.wayne.edu [Department of Pharmaceutical Sciences, Wayne State University, VA Medical Center, Detroit, MI 48201 (United States)

    2010-01-01

    A growing body of evidence implicates small G-proteins [e.g., Cdc42 and Rac1] in glucose-stimulated insulin secretion [GSIS] in the islet {beta}-cell. These signaling proteins undergo post-translational modifications [e.g., prenylation] at their C-terminal cysteine residue and appear to be essential for the transport and fusion of insulin-containing secretory granules with the plasma membrane and the exocytotic secretion of insulin. However, potential regulation of the prenylating enzymes by physiological insulin secretogues [e.g., glucose] has not been investigated thus far. Herein, we report immunological localization, sub-cellular distribution and regulation of farnesyltransferases [FTases] and geranylgeranyltransferase [GGTase] by glucose in insulin-secreting INS 832/13 {beta}-cells and normal rat islets. Our findings suggest that an insulinotropic concentration of glucose [20 mM] markedly stimulated the expression of the {alpha}-subunits of FTase/GGTase-1, but not the {beta}-subunits of FTase or GGTase-1 without significantly affecting the predominantly cytosolic distribution of these holoenzymes in INS 832/13 cells and rodent islets. Under these conditions, glucose significantly stimulated [2.5- to 4.0-fold over basal] the activities of both FTase and GGTase-1 in both cell types. Together, these findings provide the first evidence to suggest that GSIS involves activation of the endogenous islet prenyltransferases by glucose, culminating in the activation of their respective G-protein substrates, which is necessary for cytoskeletal rearrangement, vesicular transport, fusion and secretion of insulin.

  7. Glucose activates prenyltransferases in pancreatic islet β-cells

    International Nuclear Information System (INIS)

    Goalstone, Marc; Kamath, Vasudeva; Kowluru, Anjaneyulu

    2010-01-01

    A growing body of evidence implicates small G-proteins [e.g., Cdc42 and Rac1] in glucose-stimulated insulin secretion [GSIS] in the islet β-cell. These signaling proteins undergo post-translational modifications [e.g., prenylation] at their C-terminal cysteine residue and appear to be essential for the transport and fusion of insulin-containing secretory granules with the plasma membrane and the exocytotic secretion of insulin. However, potential regulation of the prenylating enzymes by physiological insulin secretogues [e.g., glucose] has not been investigated thus far. Herein, we report immunological localization, sub-cellular distribution and regulation of farnesyltransferases [FTases] and geranylgeranyltransferase [GGTase] by glucose in insulin-secreting INS 832/13 β-cells and normal rat islets. Our findings suggest that an insulinotropic concentration of glucose [20 mM] markedly stimulated the expression of the α-subunits of FTase/GGTase-1, but not the β-subunits of FTase or GGTase-1 without significantly affecting the predominantly cytosolic distribution of these holoenzymes in INS 832/13 cells and rodent islets. Under these conditions, glucose significantly stimulated [2.5- to 4.0-fold over basal] the activities of both FTase and GGTase-1 in both cell types. Together, these findings provide the first evidence to suggest that GSIS involves activation of the endogenous islet prenyltransferases by glucose, culminating in the activation of their respective G-protein substrates, which is necessary for cytoskeletal rearrangement, vesicular transport, fusion and secretion of insulin.

  8. Canine Distemper Virus Fusion Activation: Critical Role of Residue E123 of CD150/SLAM.

    Science.gov (United States)

    Khosravi, Mojtaba; Bringolf, Fanny; Röthlisberger, Silvan; Bieringer, Maria; Schneider-Schaulies, Jürgen; Zurbriggen, Andreas; Origgi, Francesco; Plattet, Philippe

    2016-02-01

    Measles virus (MeV) and canine distemper virus (CDV) possess tetrameric attachment proteins (H) and trimeric fusion proteins, which cooperate with either SLAM or nectin 4 receptors to trigger membrane fusion for cell entry. While the MeV H-SLAM cocrystal structure revealed the binding interface, two distinct oligomeric H assemblies were also determined. In one of the conformations, two SLAM units were sandwiched between two discrete H head domains, thus spotlighting two binding interfaces ("front" and "back"). Here, we investigated the functional relevance of both interfaces in activating the CDV membrane fusion machinery. While alanine-scanning mutagenesis identified five critical regulatory residues in the front H-binding site of SLAM, the replacement of a conserved glutamate residue (E at position 123, replaced with A [E123A]) led to the most pronounced impact on fusion promotion. Intriguingly, while determination of the interaction of H with the receptor using soluble constructs revealed reduced binding for the identified SLAM mutants, no effect was recorded when physical interaction was investigated with the full-length counterparts of both molecules. Conversely, although mutagenesis of three strategically selected residues within the back H-binding site of SLAM did not substantially affect fusion triggering, nevertheless, the mutants weakened the H-SLAM interaction recorded with the membrane-anchored protein constructs. Collectively, our findings support a mode of binding between the attachment protein and the V domain of SLAM that is common to all morbilliviruses and suggest a major role of the SLAM residue E123, located at the front H-binding site, in triggering the fusion machinery. However, our data additionally support the hypothesis that other microdomain(s) of both glycoproteins (including the back H-binding site) might be required to achieve fully productive H-SLAM interactions. A complete understanding of the measles virus and canine distemper virus

  9. Horizontal gene transfers with or without cell fusions in all categories of the living matter.

    Science.gov (United States)

    Sinkovics, Joseph G

    2011-01-01

    This article reviews the history of widespread exchanges of genetic segments initiated over 3 billion years ago, to be part of their life style, by sphero-protoplastic cells, the ancestors of archaea, prokaryota, and eukaryota. These primordial cells shared a hostile anaerobic and overheated environment and competed for survival. "Coexist with, or subdue and conquer, expropriate its most useful possessions, or symbiose with it, your competitor" remain cellular life's basic rules. This author emphasizes the role of viruses, both in mediating cell fusions, such as the formation of the first eukaryotic cell(s) from a united crenarchaeon and prokaryota, and the transfer of host cell genes integrated into viral (phages) genomes. After rising above the Darwinian threshold, rigid rules of speciation and vertical inheritance in the three domains of life were established, but horizontal gene transfers with or without cell fusions were never abolished. The author proves with extensive, yet highly selective documentation, that not only unicellular microorganisms, but the most complex multicellular entities of the highest ranks resort to, and practice, cell fusions, and donate and accept horizontally (laterally) transferred genes. Cell fusions and horizontally exchanged genetic materials remain the fundamental attributes and inherent characteristics of the living matter, whether occurring accidentally or sought after intentionally. These events occur to cells stagnating for some 3 milliard years at a lower yet amazingly sophisticated level of evolution, and to cells achieving the highest degree of differentiation, and thus functioning in dependence on the support of a most advanced multicellular host, like those of the human brain. No living cell is completely exempt from gene drains or gene insertions.

  10. Two active molecular phenotypes of the tachykinin NK1 receptor revealed by G-protein fusions and mutagenesis.

    Science.gov (United States)

    Holst, B; Hastrup, H; Raffetseder, U; Martini, L; Schwartz, T W

    2001-06-08

    The NK1 neurokinin receptor presents two non-ideal binding phenomena, two-component binding curves for all agonists and significant differences between agonist affinity determined by homologous versus heterologous competition binding. Whole cell binding with fusion proteins constructed between either Galpha(s) or Galpha(q) and the NK1 receptor with a truncated tail, which secured non-promiscuous G-protein interaction, demonstrated monocomponent agonist binding closely corresponding to either of the two affinity states found in the wild-type receptor. High affinity binding of both substance P and neurokinin A was observed in the tail-truncated Galpha(s) fusion construct, whereas the lower affinity component was displayed by the tail-truncated Galpha(q) fusion. The elusive difference between the affinity determined in heterologous versus homologous binding assays for substance P and especially for neurokinin A was eliminated in the G-protein fusions. An NK1 receptor mutant with a single substitution at the extracellular end of TM-III-(F111S), which totally uncoupled the receptor from Galpha(s) signaling, showed binding properties that were monocomponent and otherwise very similar to those observed in the tail-truncated Galpha(q) fusion construct. Thus, the heterogenous pharmacological phenotype displayed by the NK1 receptor is a reflection of the occurrence of two active conformations or molecular phenotypes representing complexes with the Galpha(s) and Galpha(q) species, respectively. We propose that these molecular forms do not interchange readily, conceivably because of the occurrence of microdomains or "signal-transductosomes" within the cell membrane.

  11. Development of materials of low activation for nuclear fusion

    International Nuclear Information System (INIS)

    Kamata, Koji

    1986-01-01

    Unlike nuclear fission, in nuclear fusion, it is a feature that activated products are not formed, but this merit is to be lost if the structural materials of the equipment are activated by generated neutrons. Accordingly, the elements which are activated by neutrons must be excluded from the structural materials in nuclear fusion reactors and fusion experiment apparatuses. As the result of evaluating the materials for low induced activation, aluminum alloys are the most promising. Aluminum alloys have also excellent properties in gas release, the thermal stress of first walls due to the temperature distribution, vaporizing quantity at the time of disruption and so on. However, in the existing aluminum alloys, the lowering of strength above 150 deg C is remarkable, and when the aluminum walls of vacuum vessels are too thick, the rate of tritium breeding may lower. The Institute of Plasma Physics, Nagoya University, carried out the total design of a tokamak made of an aluminum alloy for the first time in the world. In this paper, the properties of the aluminum alloy and the feasibility of its industrial manufacture are described, and the course of improving this alloy is pointed out. Improved 5083 alloy and Al-4 % Mg-1 % Li alloy were investigated. The industrial manufacture of large plates with this Al-Mg-Li alloy is possible now. (Kako, I.)

  12. International Fusion Materials Irradiation Facility conceptual design activity. Present status and perspective

    International Nuclear Information System (INIS)

    Kondo, Tatsuo; Noda, Kenji; Oyama, Yukio

    1998-01-01

    For developing the materials for nuclear fusion reactors, it is indispensable to study on the neutron irradiation behavior under fusion reactor conditions, but there is not any high energy neutron irradiation facility that can simulate fusion reactor conditions at present. Therefore, the investigation of the IFMIF was begun jointly by Japan, USA, Europe and Russia following the initiative of IEA. The conceptual design activities were completed in 1997. As to the background and the course, the present status of the research on heavy irradiation and the testing means for fusion materials, the requirement and the technical basis of high energy neutron irradiation, and the international joint design activities are reported. The materials for fusion reactors are exposed to the neutron irradiation with the energy spectra up to 14 MeV. The requirements from the users that the IFMIF should satisfy, the demand of the tests for the materials of prototype and demonstration fusion reactors and the evaluation of the neutron field characteristics of the IFMIF are discussed. As to the conceptual design of the IFMIF, the whole constitution, the operational mode, accelerator system and target system are described. (K.I.)

  13. Repair-deficient xeroderma pigmentosum cells made UV light resistant by fusion with X-ray-inactivated Chinese hamster cells

    International Nuclear Information System (INIS)

    Karentz, D.; Cleaver, J.E.

    1986-01-01

    Xeroderma pigmentosum (XP) is an autosomal recessive human disease, characterized by an extreme sensitivity to sunlight, caused by the inability of cells to repair UV light-induced damage to DNA. Cell fusion was used to transfer fragments of Chinese hamster ovary (CHO) chromosomes into XP cells. The hybrid cells exhibited UV resistance and DNA repair characteristics comparable to those expressed by CHO cells, and their DNA had greater homology with CHO DNA than did the DNA from XP cells. Control experiments consisted of fusion of irradiated and unirradiated XP cells and repeated exposure of unfused XP cells to UV doses used for hybrid selection. These treatments did not result in an increase in UV resistance, repair capability, or homology with CHO DNA. The hybrid cell lines do not, therefore, appear to be XP revertants. The establishment of these stable hybrid cell lines is an initial step toward identifying and cloning CHO DNA repair genes that complement the XP defect in human cells. The method should also be applicable to cloning genes for other diseases, such as ataxia-telangiectasia and Fanconi's anemia

  14. Membrane fusion-competent virus-like proteoliposomes and proteinaceous supported bilayers made directly from cell plasma membranes.

    Science.gov (United States)

    Costello, Deirdre A; Hsia, Chih-Yun; Millet, Jean K; Porri, Teresa; Daniel, Susan

    2013-05-28

    Virus-like particles are useful materials for studying virus-host interactions in a safe manner. However, the standard production of pseudovirus based on the vesicular stomatitis virus (VSV) backbone is an intricate procedure that requires trained laboratory personnel. In this work, a new strategy for creating virus-like proteoliposomes (VLPLs) and virus-like supported bilayers (VLSBs) is presented. This strategy uses a cell blebbing technique to induce the formation of nanoscale vesicles from the plasma membrane of BHK cells expressing the hemagglutinin (HA) fusion protein of influenza X-31. These vesicles and supported bilayers contain HA and are used to carry out single particle membrane fusion events, monitored using total internal reflection fluorescence microscopy. The results of these studies show that the VLPLs and VLSBs contain HA proteins that are fully competent to carry out membrane fusion, including the formation of a fusion pore and the release of fluorophores loaded into vesicles. This new strategy for creating spherical and planar geometry virus-like membranes has many potential applications. VLPLs could be used to study fusion proteins of virulent viruses in a safe manner, or they could be used as therapeutic delivery particles to transport beneficial proteins coexpressed in the cells to a target cell. VLSBs could facilitate high throughput screening of antiviral drugs or pathogen-host cell interactions.

  15. Activation analysis of tritium breeder lithium lead irradiated by fusion neutrons in FDS-II

    International Nuclear Information System (INIS)

    Mingliang Chen

    2006-01-01

    R-and-D of fusion materials, especially their activation characteristics, is one of the key issues for fusion research in the world. Research on activation characteristics for low activation materials, such as reduced activation ferritic/martensitic steels, vanadium alloys and SiCf/SiC composites, is being done throughout the world to ensure the attractiveness of fusion power regarding safety and environmental aspects. However, there is less research on the activation characteristics of the other important fusion materials, such as tritium breeder etc.. Lithium lead (Li 17 Pb 83 ) is presently considered as a primary candidate tritium breeder for fusion power reactors because of its attractive characteristics. It can serve as a tritium breeder, neutron multiplier and coolant in the blanket at the same time. The radioactivity of Li 17 Pb 83 by D-T fusion neutrons in FDS-II has been calculated and analyzed. FDS-II is a concept design of fusion power reactor, which consists of fusion core with advanced plasma parameters extrapolated from the ITER (International Thermonuclear Experimental Reactor) and two candidates of liquid lithium breeder blankets (named SLL and DLL blankets). The neutron transport and activation calculation are carried out based on the one-dimensional model for FDS-II with the home-developed multi-functional code system VisualBUS and the multi-group data library HENDL1.0/MG and European Activation File EAF-99. The effects of irradiation time on the activation characteristics of Li 17 Pb 83 were analyzed and it concludes that the irradiation time has an important effect on the activation level of Li 17 Pb 83 . Furthermore, the results were compared with the activation levels of other tritium breeders, such as Li 4 SiO 4 , Li 2 TiO 3 , Li 2 O and Li etc., under the same irradiation conditions. The dominant nuclides to dose rate and activity of Li 17 Pb 83 were analyzed as well. Tritium generated by Li has a great contribution to the afterheat and

  16. Evaluation of EML4-ALK Fusion Proteins in Non–Small Cell Lung Cancer Using Small Molecule Inhibitors

    Directory of Open Access Journals (Sweden)

    Yongjun Li

    2011-01-01

    Full Text Available The echinoderm microtubule–associated protein-like 4–anaplastic lymphoma kinase (EML4-ALK fusion gene resulting from an inversion within chromosome 2p occurs in approximately 5% of non–small cell lung cancer and is mu-tually exclusive with Ras and EGFR mutations. In this study, we have used a potent and selective ALK small molecule inhibitor, NPV-TAE684, to assess the oncogenic role of EML4-ALK in non–small cell lung cancer (NSCLC. We show here that TAE684 inhibits proliferation and induces cell cycle arrest, apoptosis, and tumor regression in two NSCLC models that harbor EML4-ALK fusions. TAE684 inhibits EML4-ALK activation and its downstream signaling including ERK, AKT, and STAT3. We used microarray analysis to carry out targeted pathway studies of gene expression changes in H2228 NSCLC xenograft model after TAE684 treatment and identified a gene signature of EML4-ALK inhibition. The gene signature represents 1210 known human genes, and the top biologic processes represented by these genes are cell cycle, DNA synthesis, cell proliferation, and cell death. We also compared the effect of TAE684 with PF2341066, a c-Met and ALK small molecule inhibitor currently in clinical trial in cancers harboring ALK fusions, and demonstrated that TAE684 is a much more potent inhibitor of EML4-ALK. Our data demonstrate that EML4-ALK plays an important role in the pathogenesis of a subset of NSCLC and provides insight into the mech-anism of EML4-ALK inhibition by a small molecule inhibitor.

  17. Analysis of mammary specific gene locus regulation in differentiated cells derived by somatic cell fusion

    International Nuclear Information System (INIS)

    Robinson, Claire; Kolb, Andreas F.

    2009-01-01

    The transcriptional regulation of a gene is best analysed in the context of its normal chromatin surroundings. However, most somatic cells, in contrast to embryonic stem cells, are refractory to accurate modification by homologous recombination. We show here that it is possible to introduce precise genomic modifications in ES cells and to analyse the phenotypic consequences in differentiated cells by using a combination of gene targeting, site-specific recombination and somatic cell fusion. To provide a proof of principle, we have analysed the regulation of the casein gene locus in mammary gland cells derived from modified murine ES cells by somatic cell fusion. A β-galactosidase reporter gene was inserted in place of the β-casein gene and the modified ES cells, which do not express the reporter gene, were fused with the mouse mammary gland cell line HC11. The resulting cell clones expressed the β-galactosidase gene to a similar extent and with similar hormone responsiveness as the endogenous gene. However, a reporter gene under the control of a minimal β-casein promoter (encompassing the two consensus STAT5 binding sites which mediate the hormone response of the casein genes) was unable to replicate expression levels or hormone responsiveness of the endogenous gene when inserted into the same site of the casein locus. As expected, these results implicate sequences other than the STAT5 sites in the regulation of the β-casein gene

  18. Expression and purification of chimeric peptide comprising EGFR B-cell epitope and measles virus fusion protein T-cell epitope in Escherichia coli.

    Science.gov (United States)

    Wu, Meizhi; Zhao, Lin; Zhu, Lei; Chen, Zhange; Li, Huangjin

    2013-03-01

    Chimeric peptide MVF-EGFR(237-267), comprising a B-cell epitope from the dimerization interface of human epidermal growth factor receptor (EGFR) and a promiscuous T-cell epitope from measles virus fusion protein (MVF), is a promising candidate antigen peptide for therapeutic vaccine. To establish a high-efficiency preparation process of this small peptide, the coding sequence was cloned into pET-21b and pET-32a respectively, to be expressed alone or in the form of fusion protein with thioredoxin (Trx) and His(6)-tag in Escherichia coli BL21 (DE3). The chimeric peptide failed to be expressed alone, but over-expressed in the fusion form, which presented as soluble protein and took up more than 30% of total proteins of host cells. The fusion protein was seriously degraded during the cell disruption, in which endogenous metalloproteinase played a key role. Degradation of target peptide was inhibited by combined application of EDTA in the cell disruption buffer and a step of Source 30Q anion exchange chromatography (AEC) before metal-chelating chromatography (MCAC) for purifying His(6)-tagged fusion protein. The chimeric peptide was recovered from the purified fusion protein by enterokinase digestion at a yield of 3.0 mg/L bacteria culture with a purity of more than 95%. Immunogenicity analysis showed that the recombinant chimeric peptide was able to arouse more than 1×10(4) titers of specific antibody in BALB/c mice. Present work laid a solid foundation for the development of therapeutic peptide vaccine targeting EGFR dimerization and provided a convenient and low-cost preparation method for small peptides. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Construction and Characterization of Insect Cell-Derived Influenza VLP: Cell Binding, Fusion, and EGFP Incorporation

    Directory of Open Access Journals (Sweden)

    Yi-Shin Pan

    2010-01-01

    Full Text Available We have constructed virus-like particles (VLPs harboring hemagglutinin (HA, neuraminidase (NA, matrix protein 1 (M1 ,and proton channel protein (M2 using baculovirus as a vector in the SF9 insect cell. The size of the expressed VLP was estimated to be ~100 nm by light scattering experiment and transmission electron microscopy. Recognition of HA on the VLP surface by the HA2-specific monoclonal antibody IIF4 at acidic pH, as probed by surface plasmon resonance, indicated the pH-induced structural rearrangement of HA. Uptake of the particle by A549 mediated by HA-sialylose receptor interaction was visualized by the fluorescent-labeled VLP. The HA-promoted cell-virus fusion activity was illustrated by fluorescence imaging on the Jurkat cells incubated with rhodamine-loaded VLP performed at fusogenic pH. Furthermore, the green fluorescence protein (GFP was fused to NA to produce VLP with a pH-sensitive probe, expanding the use of VLP as an antigen carrier and a tool for viral tracking.

  20. Intracellular delivery of cell-penetrating peptide-transcriptional factor fusion protein and its role in selective osteogenesis

    Directory of Open Access Journals (Sweden)

    Suh JS

    2014-03-01

    Full Text Available Jin Sook Suh,1,* Jue Yeon Lee,2,* Yoon Jung Choi,1 Hyung Keun You,3 Seong-Doo Hong,4 Chong Pyoung Chung,2 Yoon Jeong Park1,2 1Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 2Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC, Seoul, 3Department of Periodontology, College of Dentistry, Wonkwang University, Iksan, 4Department of Oral Pathology, School of Dentistry, Seoul National University, Seoul, Republic of Korea *These authors contributed equally to this work Abstract: Protein-transduction technology has been attempted to deliver macromolecular materials, including protein, nucleic acids, and polymeric drugs, for either diagnosis or therapeutic purposes. Herein, fusion protein composed of an arginine-rich cell-penetrating peptide, termed low-molecular-weight protamine (LMWP, and a transcriptional coactivator with a PDZ-binding motif (TAZ protein was prepared and applied in combination with biomaterials to increase bone-forming capacity. TAZ has been recently identified as a specific osteogenic stimulating transcriptional coactivator in human mesenchymal stem cell (hMSC differentiation, while simultaneously blocking adipogenic differentiation. However, TAZ by itself cannot penetrate the cells, and thus needs a transfection tool for translocalization. The LMWP-TAZ fusion proteins were efficiently translocalized into the cytosol of hMSCs. The hMSCs treated with cell-penetrating LMWP-TAZ exhibited increased expression of osteoblastic genes and protein, producing significantly higher quantities of mineralized matrix compared to free TAZ. In contrast, adipogenic differentiation of the hMSCs was blocked by treatment of LMWP-TAZ fusion protein, as reflected by reduced marker-protein expression, adipocyte fatty acid-binding protein 2, and peroxisome proliferator-activated receptor-γ messenger ribonucleic acid levels. LMWP-TAZ was applied in

  1. Effect of TheraCyte-encapsulated parathyroid cells on lumbar fusion in a rat model

    OpenAIRE

    Chen, Sung-Hsiung; Huang, Shun-Chen; Lui, Chun-Chung; Lin, Tzu-Ping; Chou, Fong-Fu; Ko, Jih-Yang

    2012-01-01

    Introduction Implantation of TheraCyte 4 × 106 live parathyroid cells can increase the bone marrow density of the spine of ovariectomized rats. There has been no published study examining the effect of such implantation on spinal fusion outcomes. The purpose of this study was to examine the effect of TheraCyte-encapsulated parathyroid cells on posterolateral lumbar fusions in a rat model. Materials and methods Forty Sprague-Dawley rats underwent single-level, intertransverse process spinal fu...

  2. Activation product transport in fusion reactors

    International Nuclear Information System (INIS)

    Klein, A.C.

    1983-01-01

    Activated corrosion and neutron sputtering products will enter the coolant and/or tritium breeding material of fusion reactor power plants and experiments and cause personnel access problems. Radiation levels around plant components due to these products will cause difficulties with maintenance and repair operations throughout the plant. Similar problems are experienced around fission reactor systems. The determination of the transport of radioactive corrosion and neutron sputtering products through the system is achieved using the computer code RAPTOR. This code calculates the mass transfer of a number of activation products based on the corrosion and sputtering rates through the system, the deposition and release characteristics of various plant components, the neturon flux spectrum, as well as other plant parameters. RAPTOR assembles a system of first order linear differential equations into a matrix equation based upon the reactor system parameters. Included in the transfer matrix are the deposition and erosion coefficients, and the decay and activation data for the various plant nodes and radioactive isotopes. A source vector supplies the corrosion and neutron sputtering source rates. This matrix equation is then solved using a matrix operator technique to give the specific activity distribution of each radioactive species throughout the plant. Once the amount of mass transfer is determined, the photon transport due to the radioactive corrosion and sputtering product sources can be evaluated, and dose rates around the plant components of interest as a function of time can be determined. This method has been used to estimate the radiation hazards around a number of fusion reactor system designs

  3. Disposal of activated fusion wall materials

    International Nuclear Information System (INIS)

    Blink, J.A.; Dorn, D.W.; Maninger, R.C.

    1983-08-01

    We have used NRC's low-level waste disposal regulation (10CFR61) to classify activated fusion reactor structural materials. The limits set by the NRC in 10CFR61 will require extremely expensive steels with degraded properties, even when the limits are adjusted to give credit for use of an expensive hot waste disposal facility. Both the expense and the poorer properties could have a negative impact on reactor safety, thus subverting the overall goals of the NRC family of regulations. Following this initial study, we have examined the methodology used by the NRC to set waste concentration limits. For a long-lived gamma emitter like 94 Nb, direct gamma dose to an intruding home builder dominates the limit setting process. Of all the tests applied to the waste, the controlling test which sets the lowest limit ignores all the engineered intrusion barriers which are themselves required by the same regulation. If even a small fraction of the barriers remain intact (an extremely likely event), the 94 Nb limit could be increased from the 0.2 Ci/m 3 in 10CFR61 to 1100 Ci/m 3 without exceeding the limits set for personnel exposure. Similarly, cautious application of the 10CFR61 methodology to other radioisotopes of interest to fusion designers will result in limits which are more in line with the unique nature of fusion energy

  4. [The Influence of New Medium with RGD on Cell Growth,Cell Fusion and Expression of Exogenous Gene].

    Science.gov (United States)

    Wang, Pei-Pei; Wei, Da-Peng; Zhu, Tong-Bo

    2018-03-01

    To investigate the influence of a new culture medium added with RGD on cell growth,cell fusion and expression of exogenous gene. A new medium was prepared by adding different concentrations of RGD to ordinary culture medium. The optimum concentration of RGD was determined by observation of the growth of human pancreatic epithelial cell line HPDE6-C7. After determining the optimum concentration of RGD,different concentrations of cells HPDE6-C7 (5×10 4 ,10 5 ,5×10 5 mL -1 ) were inoculated in the two mediums. The morphology,adherence,growth and density of the cells were observed by inverted microscope; The ratio of clone formation and the positive rate of cloning were compared between the two cultures after fusion; The fluorescence intensity after the transfection of plasmid with green fluorescent protein ( GFP ) and the protein expression after transfection of plasmid with KRAS were observed to campare the expression of exogenous genes between the new medium with ordinary medium. Firstly,the optimal concentration of RGD was 10 ng/mL. Compared with the normal medium,the cultured cells with RGD had better morphology,adhesion and faster proliferation. In addition,both of the number and positive rate of clones formed in the new medium were significantly higher than that in the ordinary medium ( P exogenous gene GFP in the new medium was significantly higher than that in normal medium ( P exogenous gene KRAS of the new medium was also significantly higher than that in normal medium. The new culture medium has highlighted advantages in cell growth,cell fusion and expression of exogenous genes. RGD peptide has widely prospect and potential value in the cell culture. Copyright© by Editorial Board of Journal of Sichuan University (Medical Science Edition).

  5. Multimerized CHR-derived peptides as HIV-1 fusion inhibitors.

    Science.gov (United States)

    Nomura, Wataru; Hashimoto, Chie; Suzuki, Takaharu; Ohashi, Nami; Fujino, Masayuki; Murakami, Tsutomu; Yamamoto, Naoki; Tamamura, Hirokazu

    2013-08-01

    To date, several HIV-1 fusion inhibitors based on the carboxy-terminal leucine/isoleucine heptad repeat (CHR) region of an HIV-1 envelope protein gp41 have been discovered. We have shown that a synthetic peptide mimetic of a trimer form of the CHR-derived peptide C34 has potent inhibitory activity against the HIV-1 fusion mechanism, compared to a monomer C34 peptide. The present study revealed that a dimeric form of C34 is evidently structurally critical for fusion inhibitors, and that the activity of multimerized CHR-derived peptides in fusion inhibition is affected by the properties of the unit peptides C34, SC34EK, and T20. The fluorescence-based study suggested that the N36-interactive sites of the C34 trimer, including hydrophobic residues, are exposed outside the trimer and that trimerization of C34 caused a remarkable increase in fusion inhibitory activity. The present results could be useful in the design of fusion inhibitors against viral infections which proceed via membrane fusion with host cells. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Evaluation of Cytochalasin B-Induced Membrane Vesicles Fusion Specificity with Target Cells

    Directory of Open Access Journals (Sweden)

    Marina Gomzikova

    2018-01-01

    Full Text Available Extracellular vesicles (EV represent a promising vector system for biomolecules and drug delivery due to their natural origin and participation in intercellular communication. As the quantity of EVs is limited, it was proposed to induce the release of membrane vesicles from the surface of human cells by treatment with cytochalasin B. Cytochalasin B-induced membrane vesicles (CIMVs were successfully tested as a vector for delivery of dye, nanoparticles, and a chemotherapeutic. However, it remained unclear whether CIMVs possess fusion specificity with target cells and thus might be used for more targeted delivery of therapeutics. To answer this question, CIMVs were obtained from human prostate cancer PC3 cells. The diameter of obtained CIMVs was 962,13 ± 140,6 nm. We found that there is no statistically significant preference in PC3 CIMVs fusion with target cells of the same type. According to our observations, the greatest impact on CIMVs entry into target cells is by the heterophilic interaction of CIMV membrane receptors with the surface proteins of target cells.

  7. Does the SBCT Intelligence Structure Need a Dedicated ACE/Fusion Cell?

    National Research Council Canada - National Science Library

    Sisemore, James

    2004-01-01

    ... a dedicated division level fusion cell. This question is considered because of the doctrinal lack of a Stryker Division headquarters to serve as the link between a SBCT and a corps headquarters...

  8. Development of 'low activation superconducting wire' for an advanced fusion reactor

    International Nuclear Information System (INIS)

    Hishinuma, Y.; Yamada, S.; Sagara, A.; Kikuchi, A.; Takeuchi, T.; Matsuda, K.; Taniguchi, H.

    2011-01-01

    In the D-T burning plasma reactor beyond ITER such as DEMO and fusion power plants assuming the steady-state and long time operation, it will be necessary to consider carefully induced radioactivity and neutron irradiation properties on the all components for fusion reactors. The decay time of the induced radioactivity can control the schedule and scenarios of the maintenance and shutdown on the fusion reactor. V 3 Ga and MgB 2 compound have shorter decay time within 1 years and they will be desirable as a candidate material to realize 'low activation and high magnetic field superconducting magnet' for advanced fusion reactor. However, it is well known that J c -B properties of V 3 Ga and MgB 2 wires are lower than that of the Nb-based A15 compound wires, so the J c -B enhancements on the V 3 Ga and MgB 2 wires are required in order to apply for an advanced fusion reactor. We approached and succeeded to developing the new process in order to improve J c properties of V 3 Ga and MgB 2 wires. In this paper, the recent activities for the J c improvements and detailed new process in V 3 Ga and MgB 2 wires are investigated. (author)

  9. Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ying Su

    2015-06-01

    Full Text Available Basal-like and luminal breast tumors have distinct clinical behavior and molecular profiles, yet the underlying mechanisms are poorly defined. To interrogate processes that determine these distinct phenotypes and their inheritance pattern, we generated somatic cell fusions and performed integrated genetic and epigenetic (DNA methylation and chromatin profiling. We found that the basal-like trait is generally dominant and is largely defined by epigenetic repression of luminal transcription factors. Definition of super-enhancers highlighted a core program common in luminal cells but a high degree of heterogeneity in basal-like breast cancers that correlates with clinical outcome. We also found that protein extracts of basal-like cells are sufficient to induce a luminal-to-basal phenotypic switch, implying a trigger of basal-like autoregulatory circuits. We determined that KDM6A might be required for luminal-basal fusions, and we identified EN1, TBX18, and TCF4 as candidate transcriptional regulators of the luminal-to-basal switch. Our findings highlight the remarkable epigenetic plasticity of breast cancer cells.

  10. Role of cytoskeleton in regulating fusion of nucleoli: a study using the activated mouse oocyte model.

    Science.gov (United States)

    Lian, Hua-Yu; Jiao, Guang-Zhong; Wang, Hui-Li; Tan, Xiu-Wen; Wang, Tian-Yang; Zheng, Liang-Liang; Kong, Qiao-Qiao; Tan, Jing-He

    2014-09-01

    Although fusion of nucleoli was observed during pronuclear development of zygotes and the behavior of nucleoli in pronuclei has been suggested as an indicator of embryonic developmental potential, the mechanism for nucleolar fusion is unclear. Although both cytoskeleton and the nucleolus are important cellular entities, there are no special reports on the relationship between the two. Role of cytoskeleton in regulating fusion of nucleoli was studied using the activated mouse oocyte model. Mouse oocytes were cultured for 6 h in activating medium (Ca²⁺-free CZB medium containing 10 mM SrCl₂) supplemented with or without inhibitors for cytoskeleton or protein synthesis before pronuclear formation, nucleolar fusion, and the activity of maturation-promoting factor (MPF) were examined. Whereas treatment with microfilament inhibitor cytochalasin D or B or intermediate filament inhibitor acrylamide suppressed nucleolar fusion efficiently, treatment with microtubule inhibitor demecolcine or nocodazole or protein synthesis inhibitor cycloheximide had no effect. The cytochalasin D- or acrylamide-sensitive temporal window coincided well with the reported temporal window for nucleolar fusion in activated oocytes. Whereas a continuous incubation with demecolcine prevented pronuclear formation, pronuclei formed normally when demecolcine was excluded during the first hour of activation treatment when the MPF activity dropped dramatically. The results suggest that 1) microfilaments and intermediate filaments but not microtubules support nucleolar fusion, 2) proteins required for nucleolar fusion including microfilaments and intermediate filaments are not de novo synthesized, and 3) microtubule disruption prevents pronuclear formation by activating MPF. © 2014 by the Society for the Study of Reproduction, Inc.

  11. Human mesenchymal stem cells and biomaterials interaction: a promising synergy to improve spine fusion.

    Science.gov (United States)

    Barbanti Brodano, G; Mazzoni, E; Tognon, M; Griffoni, C; Manfrini, M

    2012-05-01

    Spine fusion is the gold standard treatment in degenerative and traumatic spine diseases. The bone regenerative medicine needs (i) in vitro functionally active osteoblasts, and/or (ii) the in vivo induction of the tissue. The bone tissue engineering seems to be a very promising approach for the effectiveness of orthopedic surgical procedures, clinical applications are often hampered by the limited availability of bone allograft or substitutes. New biomaterials have been recently developed for the orthopedic applications. The main characteristics of these scaffolds are the ability to induce the bone tissue formation by generating an appropriate environment for (i) the cell growth and (ii) recruiting precursor bone cells for the proliferation and differentiation. A new prototype of biomaterials known as "bioceramics" may own these features. Bioceramics are bone substitutes mainly composed of calcium and phosphate complex salt derivatives. In this study, the characteristics bioceramics bone substitutes have been tested with human mesenchymal stem cells obtained from the bone marrow of adult orthopedic patients. These cellular models can be employed to characterize in vitro the behavior of different biomaterials, which are used as bone void fillers or three-dimensional scaffolds. Human mesenchymal stem cells in combination with biomaterials seem to be good alternative to the autologous or allogenic bone fusion in spine surgery. The cellular model used in our study is a useful tool for investigating cytocompatibility and biological features of HA-derived scaffolds.

  12. Genetic variability available through cell fusion

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.H.; Mastrangelo-Hough, I.A.

    1977-01-01

    Results are reported for the following studies: plant hybridization through protoplast fusion using species of Nicotiana and Petunia; chromosome instability studies on culture-induced chromosome changes and chromosome elimination; chloroplast distribution in parasexual hybrids; chromosomal introgression following fusion; plant-animal fusion; and microcell-mediated chromosome transfer and chromosome-mediated gene transfer. (HLW)

  13. Evaluation of Anterior Vertebral Interbody Fusion Using Osteogenic Mesenchymal Stem Cells Transplanted in Collagen Sponge.

    Science.gov (United States)

    Yang, Wencheng; Dong, Youhai; Hong, Yang; Guang, Qian; Chen, Xujun

    2016-05-01

    The study used a rabbit model to achieve anterior vertebral interbody fusion using osteogenic mesenchymal stem cells (OMSCs) transplanted in collagen sponge. We investigated the effectiveness of graft material for anterior vertebral interbody fusion using a rabbit model by examining the OMSCs transplanted in collagen sponge. Anterior vertebral interbody fusion is commonly performed. Although autogenous bone graft remains the gold-standard fusion material, it requires a separate surgical procedure and is associated with significant short-term and long-term morbidity. Recently, mesenchymal stem cells from bone marrow have been studied in various fields, including posterolateral spinal fusion. Thus, we hypothesized that cultured OMSCs transplanted in porous collagen sponge could be used successfully even in anterior vertebral interbody fusion. Forty mature male White Zealand rabbits (weight, 3.5-4.5 kg) were randomly allocated to receive one of the following graft materials: porous collagen sponge plus cultured OMSCs (group I); porous collagen sponge alone (group II); autogenous bone graft (group III); and nothing (group IV). All animals underwent anterior vertebral interbody fusion at the L4/L5 level. The lumbar spine was harvested en bloc, and the new bone formation and spinal fusion was evaluated using radiographic analysis, microcomputed tomography, manual palpation test, and histologic examination at 8 and 12 weeks after surgery. New bone formation and bony fusion was evident as early as 8 weeks in groups I and III. And there was no statistically significant difference between 8 and 12 weeks. At both time points, by microcomputed tomography and histologic analysis, new bone formation was observed in both groups I and III, fibrous tissue was observed and there was no new bone in both groups II and IV; by manual palpation test, bony fusion was observed in 40% (4/10) of rabbits in group I, 70% (7/10) of rabbits in group III, and 0% (0/10) of rabbits in both groups

  14. Fusion proteins useful for producing pinene

    Energy Technology Data Exchange (ETDEWEB)

    Peralta-Yahya, Pamela P.; Keasling, Jay D

    2016-06-28

    The present invention provides for a modified host cell comprising a heterologous pinene synthase (PS), or enzymatically active fragment or variant thereof, and optionally a geranyl pyrophosphate synthase (GPPS), or enzymatically active fragment or variant thereof, or a fusion protein comprising: (a) a PS and (b) a GPPS linked by a linker.

  15. Design aspects of low activation fusion ignition experiments

    International Nuclear Information System (INIS)

    Cheng, E.T.; Creedon, R.L.; Hopkins, G.R.; Trester, P.W.; Wong, C.P.C.; Schultz, K.R.

    1986-01-01

    Preliminary design studies have been done exploring (1) materials selection, (2) shutdown biological dose rates, (3) mechanical design and (4) thermal design of a fusion ignition experiment made of low activation materials. From the results of these preliminary design studies it appears that an ignition experiment could be built of low activation materials, and that this design would allow hands-on access for maintenance

  16. Detection of trans-acting factors for hemoglobin switching by cell fusions

    International Nuclear Information System (INIS)

    Broyles, R.H.; Palmer, J.C.; Smith, D.J.; Ramseyer, T.H.

    1986-01-01

    The authors have devised protocols for chemically fusing erythroid cells from amphibians of different developmental stages, so that we may study the short-term effects of trans-acting factors on globin gene expression. The authors are performing both homospecifc (Rana x Rana) and heterospecific (Rana x Xenopus) fusions; and they are detecting the expression of specific globin genes with selective radioactive labeling ( 35 S-methionine is incorporated only into adult globins), polyacrylamide gel electrophoresis, monospecific antisera, and cDNA probes that are species-and developmental stage-specific. Their results indicate that: (1) there are factors in tadpole erythroblasts that can reactivate adult Hb synthesis in mature, synthetically-inactive adult RBCs; (2) there are factors in tadpole erythroblasts that can reactivate tadpole globin genes in adult RBCs; and (3) there are factors in adult erythroid cells that apparently activate adult globin genes in tadpole RBCs. These results suggests that erythroid cells from animals of different developmental stages possess different sets of globin gene-specific trans-acting factors which can be studied with a system that exhibits normal developmental Hb switching

  17. Evaluation of the activity levels in fusion reactor blankets

    International Nuclear Information System (INIS)

    Gruber, J.

    1977-05-01

    The activation of a fusion reactor blanket (316 SS or V-10Cr-10Ti as structure) with a minimum lithium inventory has been calculated for 0.83 MW/m 2 wall load. The resulting radiation levels and waste problems are discussed. The dose rate near the steel structure will always be higher than 0.1 rem/h due to its niobium content. After 200 to 100,000 years of decay the potential biological hazard originating from this high level fusion reactor waste (with plutonium recyclation). (orig.) [de

  18. IFMIF - International Fusion Materials Irradiation Facility Conceptual Design Activity/Interim Report

    International Nuclear Information System (INIS)

    Rennich, M.J.

    1995-12-01

    Environmental acceptability, safety, and economic viability win ultimately be the keys to the widespread introduction of fusion power. This will entail the development of radiation- resistant and low- activation materials. These low-activation materials must also survive exposure to damage from neutrons having an energy spectrum peaked near 14 MeV with annual radiation doses in the range of 20 displacements per atom (dpa). Testing of candidate materials, therefore, requires a high-flux source of high energy neutrons. The problem is that there is currently no high-flux source of neutrons in the energy range above a few MeV. The goal, is therefore, to provide an irradiation facility for use by fusion material scientists in the search for low-activation and damage-resistant materials. An accellerator-based neutron source has been established through a number of international studies and workshops' as an essential step for materials development and testing. The mission of the International Fusion Materials Irradiation Facility (IFMIF) is to provide an accelerator-based, deuterium-lithium (D-Li) neutron source to produce high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials up to about a full lifetime of anticipated use in fusion energy reactors. would also provide calibration and validation of data from fission reactor and other accelerator-based irradiation tests. It would generate material- specific activation and radiological properties data, and support the analysis of materials for use in safety, maintenance, recycling, decommissioning, and waste disposal systems

  19. Fluorescent protein-tagged Vpr dissociates from HIV-1 core after viral fusion and rapidly enters the cell nucleus.

    Science.gov (United States)

    Desai, Tanay M; Marin, Mariana; Sood, Chetan; Shi, Jiong; Nawaz, Fatima; Aiken, Christopher; Melikyan, Gregory B

    2015-10-29

    HIV-1 Vpr is recruited into virions during assembly and appears to remain associated with the viral core after the reverse transcription and uncoating steps of entry. This feature has prompted the use of fluorescently labeled Vpr to visualize viral particles and to follow trafficking of post-fusion HIV-1 cores in the cytoplasm. Here, we tracked single pseudovirus entry and fusion and observed that fluorescently tagged Vpr gradually dissociates from post-fusion viral cores over the course of several minutes and accumulates in the nucleus. Kinetics measurements showed that fluorescent Vpr released from the cores very rapidly entered the cell nucleus. More than 10,000 Vpr molecules can be delivered into the cell nucleus within 45 min of infection by HIV-1 particles pseudotyped with the avian sarcoma and leukosis virus envelope glycoprotein. The fraction of Vpr from cell-bound viruses that accumulated in the nucleus was proportional to the extent of virus-cell fusion and was fully blocked by viral fusion inhibitors. Entry of virus-derived Vpr into the nucleus occurred independently of envelope glycoproteins or target cells. Fluorescence correlation spectroscopy revealed two forms of nuclear Vpr-monomers and very large complexes, likely involving host factors. The kinetics of viral Vpr entering the nucleus after fusion was not affected by point mutations in the capsid protein that alter the stability of the viral core. The independence of Vpr shedding of capsid stability and its relatively rapid dissociation from post-fusion cores suggest that this process may precede capsid uncoating, which appears to occur on a slower time scale. Our results thus demonstrate that a bulk of fluorescently labeled Vpr incorporated into HIV-1 particles is released shortly after fusion. Future studies will address the question whether the quick and efficient nuclear delivery of Vpr derived from incoming viruses can regulate subsequent steps of HIV-1 infection.

  20. Health physics aspects of activation products from fusion reactors

    International Nuclear Information System (INIS)

    Shoup, R.L.; Poston, J.W.; Easterly, C.E.; Jacobs, D.G.

    1975-01-01

    A review of the activation products from fusion reactors and their attendant impacts is discussed. This includes a discussion on their production, expected inventories, and the status of metabolic data on these products

  1. Production of Hev b5 as a fluorescent biotin-binding tripartite fusion protein in insect cells

    International Nuclear Information System (INIS)

    Nordlund, Henri R.; Laitinen, Olli H.; Uotila, Sanna T.H.; Kulmala, Minna; Kalkkinen, Nisse; Kulomaa, Markku S.

    2005-01-01

    The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which formed large aggregates and gave small yields in purification. The aggregates were detected at early steps by microscopical inspection of the infected insect cells producing this protein. Therefore, this fusion system can also be utilized as a fast indicator of the solubility of the expressed fusion proteins and may therefore be extremely useful in high-throughput expression approaches

  2. Production of Hev b5 as a fluorescent biotin-binding tripartite fusion protein in insect cells.

    Science.gov (United States)

    Nordlund, Henri R; Laitinen, Olli H; Uotila, Sanna T H; Kulmala, Minna; Kalkkinen, Nisse; Kulomaa, Markku S

    2005-10-14

    The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which formed large aggregates and gave small yields in purification. The aggregates were detected at early steps by microscopical inspection of the infected insect cells producing this protein. Therefore, this fusion system can also be utilized as a fast indicator of the solubility of the expressed fusion proteins and may therefore be extremely useful in high-throughput expression approaches.

  3. PRM1 and KAR5 function in cell-cell fusion and karyogamy to drive distinct bisexual and unisexual cycles in the Cryptococcus pathogenic species complex.

    Directory of Open Access Journals (Sweden)

    Ci Fu

    2017-11-01

    Full Text Available Sexual reproduction is critical for successful evolution of eukaryotic organisms in adaptation to changing environments. In the opportunistic human fungal pathogens, the Cryptococcus pathogenic species complex, C. neoformans primarily undergoes bisexual reproduction, while C. deneoformans undergoes both unisexual and bisexual reproduction. During both unisexual and bisexual cycles, a common set of genetic circuits regulates a yeast-to-hyphal morphological transition, that produces either monokaryotic or dikaryotic hyphae. As such, both the unisexual and bisexual cycles can generate genotypic and phenotypic diversity de novo. Despite the similarities between these two cycles, genetic and morphological differences exist, such as the absence of an opposite mating-type partner and monokaryotic instead of dikaryotic hyphae during C. deneoformans unisexual cycle. To better understand the similarities and differences between these modes of sexual reproduction, we focused on two cellular processes involved in sexual reproduction: cell-cell fusion and karyogamy. We identified orthologs of the plasma membrane fusion protein Prm1 and the nuclear membrane fusion protein Kar5 in both Cryptococcus species, and demonstrated their conserved roles in cell fusion and karyogamy during C. deneoformans α-α unisexual reproduction and C. deneoformans and C. neoformans a-α bisexual reproduction. Notably, karyogamy occurs inside the basidum during bisexual reproduction in C. neoformans, but often occurs earlier following cell fusion during bisexual reproduction in C. deneoformans. Characterization of these two genes also showed that cell fusion is dispensable for solo unisexual reproduction in C. deneoformans. The blastospores produced along hyphae during C. deneoformans unisexual reproduction are diploid, suggesting that diploidization occurs early during hyphal development, possibly through either an endoreplication pathway or cell fusion-independent karyogamy

  4. Fusion material development program in the broader approach activities

    Energy Technology Data Exchange (ETDEWEB)

    Nishitani, T. [Directorates of Fusion Energy Research: Naka, Ibaraki, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Tanigawa, H.; Jitsukawa, S. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Hayashi, K.; Takatsu, H. [Fusion Research and Development Directorate, Japan Momie Energy Agency, Ibaraki-ken (Japan); Yamanishi, T. [Tritium Process Laboratory, Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki-ken (Japan); Tsuchiya, K. [Directorates of Fusion Energy Research, JAEA, Higashi-ibaraki-gun, Ibaraki-ken (Japan); MoIslang, A. [Forschungszentrum Karlsruhe GmbH, FZK, Karlsruhe (Germany); Baluc, N. [EPFL-Ecole Polytechnique Federale de Lausanne, Association Euratom-Confederation Suisse, UHD - CRPP, PPB, Lausanne (Switzerland); Pizzuto, A. [ENEA CR Frascat, Frascati (Italy); Hodgson, E.R. [CIEMAT-Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Association Euratom-CIEMAT, Madrid (Spain); Lasser, R.; Gasparotto, M. [EFDA CSU Garching (Germany)

    2007-07-01

    Full text of publication follows: The world fusion community is now launching construction of ITER, the first nuclear-grade fusion machine in the world. In parallel to the ITER program, Broader Approach (BA) activities are initiated by EU and Japan, mainly at Rokkasho BA site in Japan. The BA activities include the International Fusion Materials Irradiation Facility-Engineering Validation and Engineering Design Activities (IFMIF-EVEDA), the International Fusion Energy Research Center (IFERC), and the Satellite Tokamak. IFERC consists of three sub project; a DEMO Design and R and D coordination Center, a Computational Simulation Center, and an ITER Remote Experimentation Center. Technical R and Ds mainly on fusion materials will be implemented as a part of the DEMO Design and R and D coordination Center. Based on the common interest of each party toward DEMO, R and Ds on a) reduced activation ferritic martensitic (RAFM) steels as a DEMO blanket structural material, SiCf/SiC composites, advanced tritium breeders and neutron multiplier for DEMO blankets, and Tritium Technology were selected and assessed by European and Japanese experts. In the R and D on the RAFM steels, the fabrication technology, techniques to incorporate the fracture/rupture properties of the irradiated materials, and methods to predict the deformation and fracture behaviors of structures under irradiation will be investigated. For SiCf/SiC composites, standard methods to evaluate high-temperature and life-time properties will be developed. Not only for SiCf/SiC but also related ceramics, physical and chemical properties such as He and H permeability and absorption will be investigated under irradiation. As the advanced tritium breeder R and D, Japan and EU plan to establish the production technique for advanced breeder pebbles of Li{sub 2}TiO{sub 3} and Li{sub 4}SiO{sub 4}, respectively. Also physical, chemical, and mechanical properties will be investigated for produced breeder pebbles. For the

  5. Hyper-activation of Notch3 amplifies the proliferative potential of rhabdomyosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Maria De Salvo

    Full Text Available Rhabdomyosarcoma (RMS is a pediatric myogenic-derived soft tissue sarcoma that includes two major histopathological subtypes: embryonal and alveolar. The majority of alveolar RMS expresses PAX3-FOXO1 fusion oncoprotein, associated with the worst prognosis. RMS cells show myogenic markers expression but are unable to terminally differentiate. The Notch signaling pathway is a master player during myogenesis, with Notch1 activation sustaining myoblast expansion and Notch3 activation inhibiting myoblast fusion and differentiation. Accordingly, Notch1 signaling is up-regulated and activated in embryonal RMS samples and supports the proliferation of tumor cells. However, it is unable to control their differentiation properties. We previously reported that Notch3 is activated in RMS cell lines, of both alveolar and embryonal subtype, and acts by inhibiting differentiation. Moreover, Notch3 depletion reduces PAX3-FOXO1 alveolar RMS tumor growth in vivo. However, whether Notch3 activation also sustains the proliferation of RMS cells remained unclear. To address this question, we forced the expression of the activated form of Notch3, Notch3IC, in the RH30 and RH41 PAX3-FOXO1-positive alveolar and in the RD embryonal RMS cell lines and studied the proliferation of these cells. We show that, in all three cell lines tested, Notch3IC over-expression stimulates in vitro cell proliferation and prevents the effects of pharmacological Notch inhibition. Furthermore, Notch3IC further increases RH30 cell growth in vivo. Interestingly, knockdown of Notch canonical ligands JAG1 or DLL1 in RMS cell lines decreases Notch3 activity and reduces cell proliferation. Finally, the expression of Notch3IC and its target gene HES1 correlates with that of the proliferative marker Ki67 in a small cohort of primary PAX-FOXO1 alveolar RMS samples. These results strongly suggest that high levels of Notch3 activation increase the proliferative potential of RMS cells.

  6. Bacteroides fragilis Enterotoxin Induces Formation of Autophagosomes in Endothelial Cells but Interferes with Fusion with Lysosomes for Complete Autophagic Flux through a Mitogen-Activated Protein Kinase-, AP-1-, and C/EBP Homologous Protein-Dependent Pathway.

    Science.gov (United States)

    Ko, Su Hyuk; Jeon, Jong Ik; Myung, Hyun Soo; Kim, Young-Jeon; Kim, Jung Mogg

    2017-10-01

    Bacteroides fragilis enterotoxin (BFT), a virulence factor of enterotoxigenic B. fragilis (ETBF), plays an essential role in mucosal inflammation. Although autophagy contributes to the pathogenesis of diverse infectious diseases, little is known about autophagy in ETBF infection. This study was conducted to investigate the role of BFT in the autophagic process in endothelial cells (ECs). Stimulation of human umbilical vein ECs (HUVECs) with BFT increased light chain 3 protein II (LC3-II) conversion from LC3-I and protein expression of p62, Atg5, and Atg12. In addition, BFT-exposed ECs showed increased indices of autophagosomal fusion with lysosomes such as LC3-lysosome-associated protein 2 (LAMP2) colocalization and the percentage of red vesicles monitored by the expression of dual-tagged LC3B. BFT also upregulated expression of C/EBP homologous protein (CHOP), and inhibition of CHOP significantly increased indices of autophagosomal fusion with lysosomes. BFT activated an AP-1 transcription factor, in which suppression of AP-1 activity significantly downregulated CHOP and augmented autophagosomal fusion with lysosomes. Furthermore, suppression of Jun N-terminal protein kinase (JNK) mitogen-activated protein kinase (MAPK) significantly inhibited the AP-1 and CHOP signals, leading to an increase in autophagosomal fusion with lysosomes in BFT-stimulated ECs. These results suggest that BFT induced accumulation of autophagosomes in ECs, but activation of a signaling pathway involving JNK, AP-1, and CHOP may interfere with complete autophagy. Copyright © 2017 American Society for Microbiology.

  7. Human papillomavirus 16 E5 induces bi-nucleated cell formation by cell-cell fusion

    International Nuclear Information System (INIS)

    Hu Lulin; Plafker, Kendra; Vorozhko, Valeriya; Zuna, Rosemary E.; Hanigan, Marie H.; Gorbsky, Gary J.; Plafker, Scott M.; Angeletti, Peter C.; Ceresa, Brian P.

    2009-01-01

    Human papillomaviruses (HPV) 16 is a DNA virus encoding three oncogenes - E5, E6, and E7. The E6 and E7 proteins have well-established roles as inhibitors of tumor suppression, but the contribution of E5 to malignant transformation is controversial. Using spontaneously immortalized human keratinocytes (HaCaT cells), we demonstrate that expression of HPV16 E5 is necessary and sufficient for the formation of bi-nucleated cells, a common characteristic of precancerous cervical lesions. Expression of E5 from non-carcinogenic HPV6b does not produce bi-nucleate cells. Video microscopy and biochemical analyses reveal that bi-nucleates arise through cell-cell fusion. Although most E5-induced bi-nucleates fail to propagate, co-expression of HPV16 E6/E7 enhances the proliferation of these cells. Expression of HPV16 E6/E7 also increases bi-nucleated cell colony formation. These findings identify a new role for HPV16 E5 and support a model in which complementary roles of the HPV16 oncogenes lead to the induction of carcinogenesis

  8. The elementary fusion modalities of osteoclasts

    DEFF Research Database (Denmark)

    Søe, Kent; Hobolt-Pedersen, Anne Sofie; Delaisse, Jean Marie

    2015-01-01

    , are not known for the osteoclast. Here we show that osteoclast fusion partners are characterized by differences in mobility, nuclearity, and differentiation level. Our demonstration was based on time-laps videos of human osteoclast preparations from three donors where 656 fusion events were analyzed. Fusions......The last step of the osteoclast differentiation process is cell fusion. Most efforts to understand the fusion mechanism have focused on the identification of molecules involved in the fusion process. Surprisingly, the basic fusion modalities, which are well known for fusion of other cell types...... between a mobile and an immobile partner were most frequent (62%), while fusion between two mobile (26%) or two immobile partners (12%) was less frequent (p fusion partner contained more nuclei than the mobile one (p

  9. Measurements of fusion neutron yields by neutron activation technique: Uncertainty due to the uncertainty on activation cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Stankunas, Gediminas, E-mail: gediminas.stankunas@lei.lt [Lithuanian Energy Institute, Laboratory of Nuclear Installation Safety, Breslaujos str. 3, LT-44403 Kaunas (Lithuania); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Batistoni, Paola [ENEA, Via E. Fermi, 45, 00044 Frascati, Rome (Italy); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Sjöstrand, Henrik; Conroy, Sean [Department of Physics and Astronomy, Uppsala University, PO Box 516, SE-75120 Uppsala (Sweden); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2015-07-11

    The neutron activation technique is routinely used in fusion experiments to measure the neutron yields. This paper investigates the uncertainty on these measurements as due to the uncertainties on dosimetry and activation reactions. For this purpose, activation cross-sections were taken from the International Reactor Dosimetry and Fusion File (IRDFF-v1.05) in 640 groups ENDF-6 format for several reactions of interest for both 2.5 and 14 MeV neutrons. Activation coefficients (reaction rates) have been calculated using the neutron flux spectra at JET vacuum vessel, both for DD and DT plasmas, calculated by MCNP in the required 640-energy group format. The related uncertainties for the JET neutron spectra are evaluated as well using the covariance data available in the library. These uncertainties are in general small, but not negligible when high accuracy is required in the determination of the fusion neutron yields.

  10. Post-fusion treatment with MG132 increases transcription factor expression in somatic cell nuclear transfer embryos in pigs.

    Science.gov (United States)

    You, Jinyoung; Lee, Joohyeong; Kim, Jinyoung; Park, Junhong; Lee, Eunsong

    2010-02-01

    The objective of this study was to examine the effect of post-fusion treatment of somatic cell nuclear transfer (SCNT) oocytes with the proteasomal inhibitor MG132 on maturation promoting factor (MPF) activity, nuclear remodeling, embryonic development, and gene expression of cloned pig embryos. Immediately after electrofusion, SCNT oocytes were treated with MG132 and/or caffeine for 2 hr, vanadate for 0.5 hr, or vanadate for 0.5 hr followed by MG132 for 1.5 hr. Of the MG132 concentrations tested (0-5 microM), the 1 microM concentration showed a higher rate of blastocyst formation (25.9%) than 0 (14.2%), 0.5 (16.9%), and 5 microM (16.9%). Post-fusion treatment with MG132, caffeine, and both MG132 and caffeine improved blastocyst formation (22.1%, 21.4%, and 24.4%, respectively), whereas vanadate treatment inhibited blastocyst formation (6.5%) compared to the control (11.1%). When examined 2 hr after fusion and 1 hr after activation, MPF activity remained at a higher (P fusion with caffeine and/or MG132, but it was decreased by vanadate. The rate of oocytes showing premature chromosome condensation was not altered by MG132 but was decreased by vanadate treatment. In addition, formation of single pronuclei was increased by MG132 compared to control and vanadate treatment. MG132-treated embryos showed increased expression of POU5F1, DPPA2, DPPA3, DPPA5, and NDP52l1 genes compared to control embryos. Our results demonstrate that post-fusion treatment of SCNT oocytes with MG132 prevents MPF degradation and increases expression of transcription factors in SCNT embryos, which are necessary for normal development of SCNT embryos. (c) 2009 Wiley-Liss, Inc.

  11. Biologically active and C-amidated hinnavinII-38-Asn produced from a Trx fusion construct in Escherichia coli.

    Science.gov (United States)

    Kang, Chang Soo; Son, Seung-Yeol; Bang, In Seok

    2008-12-01

    The cabbage butterfly (Artogeia rapae) antimicrobial peptide hinnavinII as a member of cecropin family is synthesized as 37 residues in size with an amidated lysine at C-terminus and shows the humoral immune response to a bacterial invasion. In this work, a synthetic gene for hinnavinII-38-Asn (HIN) with an additional amino acid asparagine residue containing amide group at C-terminus was cloned into pET-32a(+) vector to allow expression of HIN as a Trx fusion protein in Escherichia coli strain BL21 (DE3) pLysS. The resulting expression level of the fusion protein Trx-HIN could reach 15-20% of the total cell proteins and more than 70% of the target proteins were in soluble form. The fusion protein could be purified successfully by HiTrap Chelating HP column and a high yield of 15 mg purified fusion protein was obtained from 80 ml E. coli culture. Recombinant HIN was readily obtained by enterokinase cleavage of the fusion protein followed by FPLC chromatography, and 3.18 mg pure active recombinant HIN was obtained from 80 ml culture. The molecular mass of recombinant HIN determined by MALDI-TOF mass spectrometer is 4252.084 Da which matches the theoretical mass (4252.0 Da) of HIN. Comparing the antimicrobial activities of the recombinant hinnavinII with C-amidated terminus to that without an amidated C-terminus, we found that the amide of asparagine at C-terminus of hinnavinII improved its potency on certain microorganism such as E. coli, Enterobacter cloacae, Bacillus megaterium, and Staphylococcus aureus.

  12. Glioma stem cells targeted by oncolytic virus carrying endostatin-angiostatin fusion gene and the expression of its exogenous gene in vitro.

    Science.gov (United States)

    Zhu, Guidong; Su, Wei; Jin, Guishan; Xu, Fujian; Hao, Shuyu; Guan, Fangxia; Jia, William; Liu, Fusheng

    2011-05-16

    The development of the cancer stem cell (CSCs) niche theory has provided a new target for the treatment of gliomas. Gene therapy using oncolytic viral vectors has shown great potential for the therapeutic targeting of CSCs. To explore whether a viral vector carrying an exogenous Endo-Angio fusion gene (VAE) can infect and kill glioma stem cells (GSCs), as well as inhibit their vascular niche in vitro, we have collected surgical specimens of human high-grade glioma (world health organization, WHO Classes III-VI) from which we isolated and cultured GSCs under conditions originally designed for the selective expansion of neural stem cells. Our results demonstrate the following: (1) Four lines of GSCs (isolated from 20 surgical specimens) could grow in suspension, were multipotent, had the ability to self-renew and expressed the neural stem cell markers, CD133 and nestin. (2) VAE could infect GSCs and significantly inhibit their viability. (3) The Endo-Angio fusion gene was expressed in GSCs 48 h after VAE infection and could inhibit the proliferation of human brain microvascular endothelial cells (HBMEC). (4) Residual viable cells lose the ability of self-renewal and adherent differentiation. In conclusion, VAE can significantly inhibit the activity of GSCs in vitro and the expression of exogenous Endo-Angio fusion gene can inhibit HBMEC proliferation. VAE can be used as a novel virus-gene therapy strategy for glioma. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast Cancer

    DEFF Research Database (Denmark)

    Su, Ying; Subedee, Ashim; Bloushtain-Qimron, Noga

    2015-01-01

    Basal-like and luminal breast tumors have distinct clinical behavior and molecular profiles, yet the underlying mechanisms are poorly defined. To interrogate processes that determine these distinct phenotypes and their inheritance pattern, we generated somatic cell fusions and performed integrate...

  14. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    Science.gov (United States)

    Gambhir, Sanjiv [Portola Valley, CA; Pritha, Ray [Mountain View, CA

    2011-06-07

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  15. G-protein coupled receptor 56 promotes myoblast fusion through serum response factor- and nuclear factor of activated T-cell-mediated signalling but is not essential for muscle development in vivo.

    Science.gov (United States)

    Wu, Melissa P; Doyle, Jamie R; Barry, Brenda; Beauvais, Ariane; Rozkalne, Anete; Piao, Xianhua; Lawlor, Michael W; Kopin, Alan S; Walsh, Christopher A; Gussoni, Emanuela

    2013-12-01

    Mammalian muscle cell differentiation is a complex process of multiple steps for which many of the factors involved have not yet been defined. In a screen to identify the regulators of myogenic cell fusion, we found that the gene for G-protein coupled receptor 56 (GPR56) was transiently up-regulated during the early fusion of human myoblasts. Human mutations in the gene for GPR56 cause the disease bilateral frontoparietal polymicrogyria; however, the consequences of receptor dysfunction on muscle development have not been explored. Using knockout mice, we defined the role of GPR56 in skeletal muscle. GPR56(-/-) myoblasts have decreased fusion and smaller myotube sizes in culture. In addition, a loss of GPR56 expression in muscle cells results in decreases or delays in the expression of myogenic differentiation 1, myogenin and nuclear factor of activated T-cell (NFAT)c2. Our data suggest that these abnormalities result from decreased GPR56-mediated serum response element and NFAT signalling. Despite these changes, no overt differences in phenotype were identified in the muscle of GPR56 knockout mice, which presented only a mild but statistically significant elevation of serum creatine kinase compared to wild-type. In agreement with these findings, clinical data from 13 bilateral frontoparietal polymicrogyria patients revealed mild serum creatine kinase increase in only two patients. In summary, targeted disruption of GPR56 in mice results in myoblast abnormalities. The absence of a severe muscle phenotype in GPR56 knockout mice and human patients suggests that other factors may compensate for the lack of this G-protein coupled receptor during muscle development and that the motor delay observed in these patients is likely not a result of primary muscle abnormalities. © 2013 FEBS.

  16. Egg cell-secreted EC1 triggers sperm cell activation during double fertilization.

    Science.gov (United States)

    Sprunck, Stefanie; Rademacher, Svenja; Vogler, Frank; Gheyselinck, Jacqueline; Grossniklaus, Ueli; Dresselhaus, Thomas

    2012-11-23

    Double fertilization is the defining characteristic of flowering plants. However, the molecular mechanisms regulating the fusion of one sperm with the egg and the second sperm with the central cell are largely unknown. We show that gamete interactions in Arabidopsis depend on small cysteine-rich EC1 (EGG CELL 1) proteins accumulating in storage vesicles of the egg cell. Upon sperm arrival, EC1-containing vesicles are exocytosed. The sperm endomembrane system responds to exogenously applied EC1 peptides by redistributing the potential gamete fusogen HAP2/GCS1 (HAPLESS 2/GENERATIVE CELL SPECIFIC 1) to the cell surface. Furthermore, fertilization studies with ec1 quintuple mutants show that successful male-female gamete interactions are necessary to prevent multiple-sperm cell delivery. Our findings provide evidence that mutual gamete activation, regulated exocytosis, and sperm plasma membrane modifications govern flowering plant gamete interactions.

  17. The rGel/BLyS Fusion Toxin Inhibits Diffuse Large B-cell Lymphoma Growth In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Mi-Ae Lyu

    2010-05-01

    Full Text Available Diffuse large B-cell lymphoma (DLBCL is an aggressive subtype of B-cell non-Hodgkin lymphoma (NHL and accounts for 30%to 40%of NHL. Molecules targeting nuclear factor-κB (NF-κB are expected to be of therapeutic value in those tumors where NF-κB seems to play a unique survival role such as activated B-cell (ABC-subtype DLBCL. We previously generated a rGel/BLyS fusion toxin for receptor-mediated delivery of the rGel toxin specifically to malignant B cells. In this study, we examined this fusion toxin for its ability to suppress DLBCL growth in vitro and in vivo. rGel/BLyS was specifically cytotoxic to DLBCL lines expressing all three BLyS receptors and constitutively active NF-κB. Treatment with rGel/BLyS induced down-regulation of the phosphorylation of inhibitory subunit of NF-κB (IκB-α, inhibition of NF-κB DNA-binding activity, and accumulation of IκB-α. In agreement with these results, we additionally found that rGel/BLyS downregulated levels of several NF-κB targets including Bcl-xL, Mcl-1, survivin, and x-chromosome linked inhibitor-of-apoptosis. Treatment also induced up-regulation of Bax and apoptosis through caspase-3 activation and poly ADP-ribose polymerase cleavage. Importantly, rGel/BLyS significantly inhibited tumor growth (P < .05 in a DLBCL xenograft model. Thus, our results indicate that rGel/BLyS is an excellent candidate for the treatment of aggressive NHLs that are both dependent on NF-κB and are resistant to conventional chemotherapeutic regimens.

  18. Magnetic Fusion Energy Technology Fellowship Program: Summary of program activities for calendar year 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This report summarizes the activities of the US Department of Energy (DOE) Magnetic Fusion Energy Technology Fellowship program (MFETF) for the 1985 calendar year. The MFETF program has continued to support the mission of the Office of Fusion Energy (OFE) and its Division of Development and Technology (DDT) by ensuring the availability of appropriately trained engineering manpower needed to implement the OFE/DDT magnetic fusion energy agenda. This program provides training and research opportunities to highly qualified students at DOE-designated academic, private sector, and government magnetic fusion energy institutions. The objectives of the Magnetic Fusion Energy Technology Fellowship program are: (1) to provide support for graduate study, training, and research in magnetic fusion energy technology; (2) to ensure an adequate supply of appropriately trained manpower to implement the nation's magnetic fusion energy agenda; (3) to raise the visibility of careers in magnetic fusion energy technology and to encourage students to pursue such careers; and (4) to make national magnetic fusion energy facilities available for manpower training

  19. Matrix metalloproteinase-9 (MMP9) is involved in the TNF-α-induced fusion of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells.

    Science.gov (United States)

    Weiler, Julian; Mohr, Marieke; Zänker, Kurt S; Dittmar, Thomas

    2018-04-10

    In addition to physiological events such as fertilisation, placentation, osteoclastogenesis, or tissue regeneration/wound healing, cell fusion is involved in pathophysiological conditions such as cancer. Cell fusion, which applies to both the proteins and conditions that induce the merging of two or more cells, is not a fully understood process. Inflammation/pro-inflammatory cytokines might be a positive trigger for cell fusion. Using a Cre-LoxP-based cell fusion assay we demonstrated that the fusion between human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells was induced by the pro-inflammatory cytokine tumour necrosis factor-α (TNF-α). The gene expression profile of the cells in the presence of TNF-α and under normoxic and hypoxic conditions was analysed by cDNA microarray analysis. cDNA microarray data were verified by qPCR, PCR, Western blot and zymography. Quantification of cell fusion events was determined by flow cytometry. Proteins of interest were either blocked or knocked-down using a specific inhibitor, siRNA or a blocking antibody. The data showed an up-regulation of various genes, including claudin-1 (CLDN1), ICAM1, CCL2 and MMP9 in M13SV1-Cre and/or MDA-MB-435-pFDR1 cells. Inhibition of these proteins using a blocking ICAM1 antibody, CLDN1 siRNA or an MMP9 inhibitor showed that only the blockage of MMP9 was correlated with a decreased fusion rate of the cells. Likewise, the tetracycline-based antibiotic minocycline, which exhibits anti-inflammatory properties, was also effective in both inhibiting the TNF-α-induced MMP9 expression in M13SV1-Cre cells and blocking the TNF-α-induced fusion frequency of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells. The matrix metalloproteinase-9 (MMP9) is most likely involved in the TNF-α-mediated fusion of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells. Likewise, our data indicate that the tetracycline

  20. NUTM2A-CIC fusion small round cell sarcoma: a genetically distinct variant of CIC-rearranged sarcoma.

    Science.gov (United States)

    Sugita, Shintaro; Arai, Yasuhito; Aoyama, Tomoyuki; Asanuma, Hiroko; Mukai, Wakako; Hama, Natsuko; Emori, Makoto; Shibata, Tatsuhiro; Hasegawa, Tadashi

    2017-07-01

    CIC-rearranged sarcoma is a new entity of undifferentiated small round cell sarcoma characterized by chimeric fusions with CIC rearrangement. We report a NUTM2A-CIC fusion sarcoma in a 43-year-old woman who died of rapidly progressive disease. Histologic analysis revealed multinodular proliferation of small round tumor cells with mild nuclear pleomorphism. The sclerotic fibrous septa separated the tumor into multiple nodules. Immunohistochemistry showed that the tumor cells were diffusely positive for vimentin, focally positive for cytokeratin, and negative for CD99 and NKX2.2. Tumor cells were also negative for ETV4, which was recently identified as a specific marker for CIC-rearranged sarcoma. High-throughput RNA sequencing of a formalin-fixed, paraffin-embedded clinical sample unveiled a novel NUTM2A-CIC fusion between NUTM2A exon 7 and CIC exon 12, and fluorescence in situ hybridization identified CIC and NUTM2A split signals. This case shared several clinicopathological findings with previously reported CIC-rearranged cases. We recognized the tumor as a genetically distinct variant of CIC-rearranged sarcomas with a novel NUTM2A-CIC fusion. Copyright © 2017. Published by Elsevier Inc.

  1. Analysis of cathepsin and furin proteolytic enzymes involved in viral fusion protein activation in cells of the bat reservoir host.

    Directory of Open Access Journals (Sweden)

    Farah El Najjar

    Full Text Available Bats of different species play a major role in the emergence and transmission of highly pathogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. These viruses require proteolytic activation of surface envelope glycoproteins needed for entry, and cellular cathepsins have been shown to be involved in proteolysis of glycoproteins from these distinct virus families. Very little is currently known about the available proteases in bats. To determine whether the utilization of cathepsins by bat-borne viruses is related to the nature of proteases in their natural hosts, we examined proteolytic processing of several viral fusion proteins in cells derived from two fruit bat species, Pteropus alecto and Rousettus aegyptiacus. Our work shows that fruit bat cells have homologs of cathepsin and furin proteases capable of cleaving and activating both the cathepsin-dependent Hendra virus F and the furin-dependent parainfluenza virus 5 F proteins. Sequence analysis comparing Pteropus alecto furin and cathepsin L to proteases from other mammalian species showed a high degree of conservation; however significant amino acid variation occurs at the C-terminus of Pteropus alecto furin. Further analysis of furin-like proteases from fruit bats revealed that these proteases are catalytically active and resemble other mammalian furins in their response to a potent furin inhibitor. However, kinetic analysis suggests that differences may exist in the cellular localization of furin between different species. Collectively, these results indicate that the unusual role of cathepsin proteases in the life cycle of bat-borne viruses is not due to the lack of active furin-like proteases in these natural reservoir species; however, differences may exist between furin proteases present in fruit bats compared to furins in other mammalian species, and these differences may impact protease usage for viral glycoprotein processing.

  2. Essential Role of DAP12 Signaling in Macrophage Programming into a Fusion-Competent State

    Science.gov (United States)

    Helming, Laura; Tomasello, Elena; Kyriakides, Themis R.; Martinez, Fernando O.; Takai, Toshiyuki; Gordon, Siamon; Vivier, Eric

    2009-01-01

    Multinucleated giant cells, formed by fusion of macrophages, are a hallmark of granulomatous inflammation. With a genetic approach, we show that signaling through the adaptor protein DAP12 (DNAX activating protein of 12 kD), its associated receptor triggering receptor expressed by myeloid cells 2 (TREM-2), and the downstream protein tyrosine kinase Syk is required for the cytokine-induced formation of giant cells and that overexpression of DAP12 potentiates macrophage fusion. We also present evidence that DAP12 is a general macrophage fusion regulator and is involved in modulating the expression of several macrophage-associated genes, including those encoding known mediators of macrophage fusion, such as DC-STAMP and Cadherin 1. Thus, DAP12 is involved in programming of macrophages through the regulation of gene and protein expression to induce a fusion-competent state. PMID:18957693

  3. Linker for activation of T cells is displaced from lipid rafts and decreases in lupus T cells after activation via the TCR/CD3 pathway.

    Science.gov (United States)

    Abdoel, Nursamaa; Brun, Susana; Bracho, Carmen; Rodríguez, Martín A; Blasini, Ana M

    2012-03-01

    Systemic lupus erythematosus (SLE) is characterized by abnormal signal transduction mechanisms in T lymphocytes. Linker for activation of T cells (LAT) couples TCR/CD3 activation with downstream signaling pathways. We reported diminished ERK 1/2 kinase activity in TCR/CD3 stimulated lupus T cells. In this study we evaluated the expression, phosphorylation, lipid raft and immunological synapse (IS) localization and colocalization of LAT with key signalosome molecules. We observed a diminished expression and an abnormal localization of LAT in lipid rafts and at the IS in activated lupus T cells. LAT phosphorylation, capture by GST-Grb2 fusion protein, and coupling to Grb2 and PLCγ1, was similar in healthy control and lupus T cells. Our results suggest that an abnormal localization of LAT within lipid rafts and its accelerated degradation after TCR/CD3 activation may compromise the assembly of the LAT signalosome and downstream signaling pathways required for full MAPK activation in lupus T cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. A comparison of commercially available demineralized bone matrices with and without human mesenchymal stem cells in a rodent spinal fusion model.

    Science.gov (United States)

    Hayashi, Tetsuo; Lord, Elizabeth L; Suzuki, Akinobu; Takahashi, Shinji; Scott, Trevor P; Phan, Kevin; Tian, Haijun; Daubs, Michael D; Shiba, Keiichiro; Wang, Jeffrey C

    2016-07-01

    OBJECTIVE The efficacy of some demineralized bone matrix (DBM) substances has been demonstrated in the spinal fusion of rats; however, no previous comparative study has reported the efficacy of DBM with human mesenchymal stem cells (hMSCs). There is an added cost to the products with stem cells, which should be justified by improved osteogenic potential. The purpose of this study is to prospectively compare the fusion rates of 3 different commercially available DBM substances, both with and without hMSCs. METHODS Posterolateral fusion was performed in 32 mature athymic nude rats. Three groups of 8 rats were implanted with 1 of 3 DBMs: Trinity Evolution (DBM with stem cells), Grafton (DBM without stem cells), or DBX (DBM without stem cells). A fourth group with no implanted material was used as a control group. Radiographs were obtained at 2, 4, and 8 weeks. The rats were euthanized at 8 weeks. Overall fusion was determined by manual palpation and micro-CT. RESULTS The fusion rates at 8 weeks on the radiographs for Trinity Evolution, Grafton, and DBX were 8 of 8 rats, 3 of 8 rats, and 5 of 8 rats, respectively. A significant difference was found between Trinity Evolution and Grafton (p = 0.01). The overall fusion rates as determined by micro-CT and manual palpation for Trinity Evolution, Grafton, and DBX were 4 of 8 rats, 3 of 8 rats, and 3 of 8 rats, respectively. The Trinity Evolution substance had the highest overall fusion rate, however no significant difference was found between groups. CONCLUSIONS The efficacies of these DBM substances are demonstrated; however, the advantage of DBM with hMSCs could not be found in terms of posterolateral fusion. When evaluating spinal fusion using DBM substances, CT analysis is necessary in order to not overestimate fusion.

  5. Stem cells regenerative properties on new rat spinal fusion model

    Czech Academy of Sciences Publication Activity Database

    Klíma, K.; Vaněček, Václav; Kohout, A.; Jiroušek, Ondřej; Foltán, R.; Štulík, J.; Machoň, V.; Pavlíková, G.; Jendelová, Pavla; Syková, Eva; Šedý, Jiří

    2015-01-01

    Roč. 64, č. 1 (2015), s. 119-128 ISSN 0862-8408 R&D Projects: GA MZd(CZ) NT13477; GA ČR(CZ) GAP304/10/0320 Institutional support: RVO:67985823 ; RVO:68378297 ; RVO:68378041 Keywords : mesenchymal stem cells * bone graft substitute * spinal fusion Subject RIV: FH - Neurology Impact factor: 1.643, year: 2015

  6. The HSV-1 mechanisms of cell-to-cell spread and fusion are critically dependent on host PTP1B.

    Directory of Open Access Journals (Sweden)

    Jillian C Carmichael

    2018-05-01

    Full Text Available All herpesviruses have mechanisms for passing through cell junctions, which exclude neutralizing antibodies and offer a clear path to neighboring, uninfected cells. In the case of herpes simplex virus type 1 (HSV-1, direct cell-to-cell transmission takes place between epithelial cells and sensory neurons, where latency is established. The spreading mechanism is poorly understood, but mutations in four different HSV-1 genes can dysregulate it, causing neighboring cells to fuse to produce syncytia. Because the host proteins involved are largely unknown (other than the virus entry receptor, we were intrigued by an earlier discovery that cells infected with wild-type HSV-1 will form syncytia when treated with salubrinal. A biotinylated derivative of this drug was used to pull down cellular complexes, which were analyzed by mass spectrometry. One candidate was a protein tyrosine phosphatase (PTP1B, and although it ultimately proved not to be the target of salubrinal, it was found to be critical for the mechanism of cell-to-cell spread. In particular, a highly specific inhibitor of PTP1B (CAS 765317-72-4 blocked salubrinal-induced fusion, and by itself resulted in a dramatic reduction in the ability of HSV-1 to spread in the presence of neutralizing antibodies. The importance of this phosphatase was confirmed in the absence of drugs by using PTP1B-/- cells. Importantly, replication assays showed that virus titers were unaffected when PTP1B was inhibited or absent. Only cell-to-cell spread was altered. We also examined the effects of salubrinal and the PTP1B inhibitor on the four Syn mutants of HSV-1, and strikingly different responses were found. That is, both drugs individually enhanced fusion for some mutants and reduced fusion for others. PTP1B is the first host factor identified to be specifically required for cell-to-cell spread, and it may be a therapeutic target for preventing HSV-1 reactivation disease.

  7. The HSV-1 mechanisms of cell-to-cell spread and fusion are critically dependent on host PTP1B.

    Science.gov (United States)

    Carmichael, Jillian C; Yokota, Hiroki; Craven, Rebecca C; Schmitt, Anthony; Wills, John W

    2018-05-01

    All herpesviruses have mechanisms for passing through cell junctions, which exclude neutralizing antibodies and offer a clear path to neighboring, uninfected cells. In the case of herpes simplex virus type 1 (HSV-1), direct cell-to-cell transmission takes place between epithelial cells and sensory neurons, where latency is established. The spreading mechanism is poorly understood, but mutations in four different HSV-1 genes can dysregulate it, causing neighboring cells to fuse to produce syncytia. Because the host proteins involved are largely unknown (other than the virus entry receptor), we were intrigued by an earlier discovery that cells infected with wild-type HSV-1 will form syncytia when treated with salubrinal. A biotinylated derivative of this drug was used to pull down cellular complexes, which were analyzed by mass spectrometry. One candidate was a protein tyrosine phosphatase (PTP1B), and although it ultimately proved not to be the target of salubrinal, it was found to be critical for the mechanism of cell-to-cell spread. In particular, a highly specific inhibitor of PTP1B (CAS 765317-72-4) blocked salubrinal-induced fusion, and by itself resulted in a dramatic reduction in the ability of HSV-1 to spread in the presence of neutralizing antibodies. The importance of this phosphatase was confirmed in the absence of drugs by using PTP1B-/- cells. Importantly, replication assays showed that virus titers were unaffected when PTP1B was inhibited or absent. Only cell-to-cell spread was altered. We also examined the effects of salubrinal and the PTP1B inhibitor on the four Syn mutants of HSV-1, and strikingly different responses were found. That is, both drugs individually enhanced fusion for some mutants and reduced fusion for others. PTP1B is the first host factor identified to be specifically required for cell-to-cell spread, and it may be a therapeutic target for preventing HSV-1 reactivation disease.

  8. Sensor fusion for active vibration isolation in precision equipment

    NARCIS (Netherlands)

    Tjepkema, D.; van Dijk, Johannes; Soemers, Herman

    2012-01-01

    Sensor fusion is a promising control strategy to improve the performance of active vibration isolation systems that are used in precision equipment. Normally, those vibration isolation systems are only capable of realizing a low transmissibility. Additional objectives are to increase the damping

  9. Transforming and tumorigenic activity of JAK2 by fusion to BCR: molecular mechanisms of action of a novel BCR-JAK2 tyrosine-kinase.

    Directory of Open Access Journals (Sweden)

    Álvaro Cuesta-Domínguez

    Full Text Available Chromosomal translocations in tumors frequently produce fusion genes coding for chimeric proteins with a key role in oncogenesis. Recent reports described a BCR-JAK2 fusion gene in fatal chronic and acute myeloid leukemia, but the functional behavior of the chimeric protein remains uncharacterized. We used fluorescence in situ hybridization and reverse transcription polymerase chain reaction (RT-PCR assays to describe a BCR-JAK2 fusion gene from a patient with acute lymphoblastic leukemia. The patient has been in complete remission for six years following treatment and autologous transplantation, and minimal residual disease was monitored by real-time RT-PCR. BCR-JAK2 codes for a protein containing the BCR oligomerization domain fused to the JAK2 tyrosine-kinase domain. In vitro analysis of transfected cells showed that BCR-JAK2 is located in the cytoplasm. Transduction of hematopoietic Ba/F3 cells with retroviral vectors carrying BCR-JAK2 induced IL-3-independent cell growth, constitutive activation of the chimeric protein as well as STAT5 phosphorylation and translocation to the nuclei, where Bcl-xL gene expression was elicited. Primary mouse progenitor cells transduced with BCR-JAK2 also showed increased proliferation and survival. Treatment with the JAK2 inhibitor TG101209 abrogated BCR-JAK2 and STAT5 phosphorylation, decreased Bcl-xL expression and triggered apoptosis of transformed Ba/F3 cells. Therefore, BCR-JAK2 is a novel tyrosine-kinase with transforming activity. It deregulates growth factor-dependent proliferation and cell survival, which can be abrogated by the TG101209 inhibitor. Moreover, transformed Ba/F3 cells developed tumors when injected subcutaneously into nude mice, thus proving the tumorigenic capacity of BCR-JAK2 in vivo. Together these findings suggest that adult and pediatric patients with BCR-ABL-negative leukemia and JAK2 overexpression may benefit from targeted therapies.

  10. Detection of a rare BCR-ABL tyrosine kinase fusion protein in H929 multiple myeloma cells using immunoprecipitation (IP)-tandem mass spectrometry (MS/MS).

    Science.gov (United States)

    Breitkopf, Susanne B; Yuan, Min; Pihan, German A; Asara, John M

    2012-10-02

    Hypothesis directed proteomics offers higher throughput over global analyses. We show that immunoprecipitation (IP)-tandem mass spectrometry (LC-MS/MS) in H929 multiple myeloma (MM) cancer cells led to the discovery of a rare and unexpected BCR-ABL fusion, informing a therapeutic intervention using imatinib (Gleevec). BCR-ABL is the driving mutation in chronic myeloid leukemia (CML) and is uncommon to other cancers. Three different IP-MS experiments central to cell signaling pathways were sufficient to discover a BCR-ABL fusion in H929 cells: phosphotyrosine (pY) peptide IP, p85 regulatory subunit of phosphoinositide-3-kinase (PI3K) IP, and the GRB2 adaptor IP. The pY peptides inform tyrosine kinase activity, p85 IP informs the activating adaptors and receptor tyrosine kinases (RTKs) involved in AKT activation and GRB2 IP identifies RTKs and adaptors leading to ERK activation. Integration of the bait-prey data from the three separate experiments identified the BCR-ABL protein complex, which was confirmed by biochemistry, cytogenetic methods, and DNA sequencing revealed the e14a2 fusion transcript. The tyrosine phosphatase SHP2 and the GAB2 adaptor protein, important for MAPK signaling, were common to all three IP-MS experiments. The comparative treatment of tyrosine kinase inhibitor (TKI) drugs revealed only imatinib, the standard of care in CML, was inhibitory to BCR-ABL leading to down-regulation of pERK and pS6K and inhibiting cell proliferation. These data suggest a model for directed proteomics from patient tumor samples for selecting the appropriate TKI drug(s) based on IP and LC-MS/MS. The data also suggest that MM patients, in addition to CML patients, may benefit from BCR-ABL diagnostic screening.

  11. Fusion: introduction

    International Nuclear Information System (INIS)

    Decreton, M.

    2006-01-01

    The article gives an overview and introduction to the activities of SCK-CEN's research programme on fusion. The decision to construct the ITER international nuclear fusion experiment in Cadarache is highlighted. A summary of the Belgian contributions to fusion research is given with particular emphasis on studies of radiation effects on diagnostics systems, radiation effects on remote handling sensing systems, fusion waste management and socio-economic studies

  12. Viral membrane fusion: is glycoprotein G of rhabdoviruses a representative of a new class of viral fusion proteins?

    Directory of Open Access Journals (Sweden)

    A.T. Da Poian

    2005-06-01

    Full Text Available Enveloped viruses always gain entry into the cytoplasm by fusion of their lipid envelope with a cell membrane. Some enveloped viruses fuse directly with the host cell plasma membrane after virus binding to the cell receptor. Other enveloped viruses enter the cells by the endocytic pathway, and fusion depends on the acidification of the endosomal compartment. In both cases, virus-induced membrane fusion is triggered by conformational changes in viral envelope glycoproteins. Two different classes of viral fusion proteins have been described on the basis of their molecular architecture. Several structural data permitted the elucidation of the mechanisms of membrane fusion mediated by class I and class II fusion proteins. In this article, we review a number of results obtained by our laboratory and by others that suggest that the mechanisms involved in rhabdovirus fusion are different from those used by the two well-studied classes of viral glycoproteins. We focus our discussion on the electrostatic nature of virus binding and interaction with membranes, especially through phosphatidylserine, and on the reversibility of the conformational changes of the rhabdovirus glycoprotein involved in fusion. Taken together, these data suggest the existence of a third class of fusion proteins and support the idea that new insights should emerge from studies of membrane fusion mediated by the G protein of rhabdoviruses. In particular, the elucidation of the three-dimensional structure of the G protein or even of the fusion peptide at different pH's might provide valuable information for understanding the fusion mechanism of this new class of fusion proteins.

  13. Evaluation of Posterolateral Lumbar Fusion in Sheep Using Mineral Scaffolds Seeded with Cultured Bone Marrow Cells

    Directory of Open Access Journals (Sweden)

    María D. Cuenca-López

    2014-12-01

    Full Text Available The objective of this study is to investigate the efficacy of hybrid constructs in comparison to bone grafts (autograft and allograft for posterolateral lumbar fusion (PLF in sheep, instrumented with transpedicular screws and bars. Hybrid constructs using cultured bone marrow (BM mesenchymal stem cells (MSCs have shown promising results in several bone healing models. In particular, hybrid constructs made by calcium phosphate-enriched cells have had similar fusion rates to bone autografts in posterolateral lumbar fusion in sheep. In our study, four experimental spinal fusions in two animal groups were compared in sheep: autograft and allograft (reference group, hydroxyapatite scaffold, and hydroxyapatite scaffold seeded with cultured and osteoinduced bone marrow MSCs (hybrid construct. During the last three days of culture, dexamethasone (dex and beta-glycerophosphate (β-GP were added to potentiate osteoinduction. The two experimental situations of each group were tested in the same spinal segment (L4–L5. Spinal fusion and bone formation were studied by clinical observation, X-ray, computed tomography (CT, histology, and histomorphometry. Lumbar fusion rates assessed by CT scan and histology were higher for autograft and allograft (70% than for mineral scaffold alone (22% and hybrid constructs (35%. The quantity of new bone formation was also higher for the reference group, quite similar in both (autograft and allograft. Although the hybrid scaffold group had a better fusion rate than the non-hybrid scaffold group, the histological analysis revealed no significant differences between them in terms of quantity of bone formation. The histology results suggested that mineral scaffolds were partly resorbed in an early phase, and included in callus tissues. Far from the callus area the hydroxyapatite alone did not generate bone around it, but the hybrid scaffold did. In nude mice, labeled cells were induced to differentiate in vivo and monitored

  14. p-Glycoprotein ABCB5 and YB-1 expression plays a role in increased heterogeneity of breast cancer cells: correlations with cell fusion and doxorubicin resistance

    International Nuclear Information System (INIS)

    Yang, Ji Yeon; Ha, Seon-Ah; Yang, Yun-Sik; Kim, Jin Woo

    2010-01-01

    Cancer cells recurrently develop into acquired resistance to the administered drugs. The iatrogenic mechanisms of induced chemotherapy-resistance remain elusive and the degree of drug resistance did not exclusively correlate with reductions of drug accumulation, suggesting that drug resistance may involve additional mechanisms. Our aim is to define the potential targets, that makes drug-sensitive MCF-7 breast cancer cells turn to drug-resistant, for the anti-cancer drug development against drug resistant breast cancer cells. Doxorubicin resistant human breast MCF-7 clones were generated. The doxorubicin-induced cell fusion events were examined. Heterokaryons were identified and sorted by FACS. In the development of doxorubicin resistance, cell-fusion associated genes, from the previous results of microarray, were verified using dot blot array and quantitative RT-PCR. The doxorubicin-induced expression patterns of pro-survival and pro-apoptotic genes were validated. YB-1 and ABCB5 were up regulated in the doxorubicin treated MCF-7 cells that resulted in certain degree of genomic instability that accompanied by the drug resistance phenotype. Cell fusion increased diversity within the cell population and doxorubicin resistant MCF-7 cells emerged probably through clonal selection. Most of the drug resistant hybrid cells were anchorage independent. But some of the anchorage dependent MCF-7 cells exhibited several unique morphological appearances suggesting minor population of the fused cells maybe de-differentiated and have progenitor cell like characteristics. Our work provides valuable insight into the drug induced cell fusion event and outcome, and suggests YB-1, GST, ABCB5 and ERK3 could be potential targets for the anti-cancer drug development against drug resistant breast cancer cells. Especially, the ERK-3 serine/threonine kinase is specifically up-regulated in the resistant cells and known to be susceptible to synthetic antagonists

  15. Prevention and Treatment of Spontaneous Mammary Carcinoma with Dendritic Tumor Fusion Cell Vaccine

    National Research Council Canada - National Science Library

    Gong, Jianlin

    2002-01-01

    In the present study, the prevention of cancer development by vaccination with fusion cells was evaluated In a genetically engineered murine model which develops spontaneous mammary carcinomas. The mice (MMT...

  16. Method of oocyte activation affects cloning efficiency in pigs.

    Science.gov (United States)

    Whitworth, Kristin M; Li, Rongfeng; Spate, Lee D; Wax, David M; Rieke, August; Whyte, Jeffrey J; Manandhar, Gaurishankar; Sutovsky, Miriam; Green, Jonathan A; Sutovsky, Peter; Prather, Randall S

    2009-05-01

    The following experiments compared the efficiency of three fusion/activation protocols following somatic cell nuclear transfer (SCNT) with porcine somatic cells transfected with enhanced green fluorescent protein driven by the chicken beta-actin/rabbit beta-globin hybrid promoter (pCAGG-EGFP). The three protocols included electrical fusion/activation (NT1), electrical fusion/activation followed by treatment with a reversible proteasomal inhibitor MG132 (NT2) and electrical fusion in low Ca(2+) followed by chemical activation with thimerosal/dithiothreitol (NT3). Data were collected at Days 6, 12, 14, 30, and 114 of gestation. Fusion rates, blastocyst-stage mean cell numbers, recovery rates, and pregnancy rates were calculated and compared between protocols. Fusion rates were significantly higher for NT1 and NT2 compared to NT3 (P NT1 (71.4%, n = 28; P 0.05). All fusion/activation treatments produced live, pCAGG-EGFP positive piglets from SCNT. Treatment with MG132 after fusion/activation of reconstructed porcine embryos was the most effective method when comparing the overall pregnancy rates. The beneficial effect of NT2 protocol may be due to the stimulation of proteasomes that infiltrate donor cell nucleus shortly after nuclear transfer. (c) 2008 Wiley-Liss, Inc.

  17. High quality actively cooled plasma-facing components for fusion

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1995-01-01

    This paper interweaves some suggestions for developing actively cooled plasma-facing components (PFCs) for future fusion devices, with supporting examples taken from the design, fabrication and operation of Tore Supra's Phase III outboard pump limiter (OPL). This actively cooled midplane limiter, designed for heat and particle removal during long-pulse operation, has been operated under essentially thermally steady state conditions. Testing to identify braze flaws, analysis of the impact of joining flaws on the thermal-hydraulic performance of the OPL, and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed. This experience suggests that, for PFCs in future fusion devices, flaw-tolerant designs are possible; analyses of the impacts of flaws on performance can provide criteria for quality assurance; and validating appropriate methods of inspection for such flaws early in the design development of PFCs is prudent. The need for in-service monitoring is also discussed. (orig.)

  18. Fusion technology: The Iter fusion experiment

    International Nuclear Information System (INIS)

    Dietz, K.J.

    1994-01-01

    Plans for the Iter international fusion experiment, in which the European Union, Japan, Canada, Russia, Sweden, Switzerland, and the USA cooperate, were begun in 1985, and construction work started in early 1994. These activities serve for the preparation of the design and construction documents for a research reactor in which a stable fusion plasma is to be generated. This is to be the basis for the construction of a fusion reactor for electricity generation. Preparatory work was performed in the Tokamak experiments with JET and TFTR. The fusion power of 1.5 GW will be attained, thus enabling Iter to keep a deuterium-tritium plasma burning. (orig.) [de

  19. Proceedings of the IEA-technical workshop on the test cell system for an international fusion materials irradiation facility, Karlsruhe, Germany, July 3-6, 1995. IEA-implementing agreement for a programme of research and development on fusion materials

    International Nuclear Information System (INIS)

    Moeslang, A.; Lindau, R.

    1995-09-01

    After a Conceptual Design Activity (CDA) study on an International Fusion Material Irradiation Facility (IFMIF) has been launched under the auspices of the IEA, working groups and relevant tasks have been defined and agreed in an IEA-workshop that was held September 26-29 1994 at Karlsruhe. For the Test Cell System 11 tasks were identified which can be grouped into the three major fields neutronics, test matrix/users and test cell engineering. In order to discuss recently achieved results and to coordinate necessary activities for an effective design integration, a technical workshop on the Test Cell System was initiated. This workshop was organized on July 3-6 1995 by the Institute for Materials Research I at the Forschungszentrum Karlsruhe and attended by 20 specialists working in the fields neutronics, fusion materials R and D and test cell engineering in the European Union, Japan, and the United States of America. The presentations and discussions during this workshop have shown together with the elaborated lists of action items, that has been achieved in all three fields, and that from the future IFMIF experimental program for a number of materials a database covering widerspread loading conditions up to DEMO-reactor relevant end-of-life damage levels can be expected. (orig.)

  20. Mitochondrial fusion is increased by the nuclear coactivator PGC-1beta.

    Directory of Open Access Journals (Sweden)

    Marc Liesa

    Full Text Available There is no evidence to date on whether transcriptional regulators are able to shift the balance between mitochondrial fusion and fission events through selective control of gene expression.Here, we demonstrate that reduced mitochondrial size observed in knock-out mice for the transcriptional regulator PGC-1beta is associated with a selective reduction in Mitofusin 2 (Mfn2 expression, a mitochondrial fusion protein. This decrease in Mfn2 is specific since expression of the remaining components of mitochondrial fusion and fission machinery were not affected. Furthermore, PGC-1beta increases mitochondrial fusion and elongates mitochondrial tubules. This PGC-1beta-induced elongation specifically requires Mfn2 as this process is absent in Mfn2-ablated cells. Finally, we show that PGC-1beta increases Mfn2 promoter activity and transcription by coactivating the nuclear receptor Estrogen Related Receptor alpha (ERRalpha.Taken together, our data reveal a novel mechanism by which mammalian cells control mitochondrial fusion. In addition, we describe a novel role of PGC-1beta in mitochondrial physiology, namely the control of mitochondrial fusion mainly through Mfn2.

  1. A fusion-inhibiting peptide against Rift Valley fever virus inhibits multiple, diverse viruses.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    Full Text Available For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III based on the protein sequence and structure. For Rift Valley fever virus (RVFV, the glycoprotein Gc (Class II fusion protein mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus, Class II (Andes virus, or Class III (vesicular stomatitis virus fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors.

  2. Genetically engineered endostatin-lidamycin fusion proteins effectively inhibit tumor growth and metastasis

    International Nuclear Information System (INIS)

    Jiang, Wen-guo; Zhen, Yong-su; Lu, Xin-an; Shang, Bo-yang; Fu, Yan; Zhang, Sheng-hua; Zhou, Daifu; Li, Liang; Li, Yi; Luo, Yongzhang

    2013-01-01

    Endostatin (ES) inhibits endothelial cell proliferation, migration, invasion, and tube formation. It also shows antiangiogenesis and antitumor activities in several animal models. Endostatin specifically targets tumor vasculature to block tumor growth. Lidamycin (LDM), which consists of an active enediyne chromophore (AE) and a non-covalently bound apo-protein (LDP), is a member of chromoprotein family of antitumor antibiotics with extremely potent cytotoxicity to cancer cells. Therefore, we reasoned that endostatin-lidamycin (ES-LDM) fusion proteins upon energizing with enediyne chromophore may obtain the combined capability targeting tumor vasculature and tumor cell by respective ES and LDM moiety. In this study, we designed and obtained two new endostatin-based fusion proteins, endostatin-LDP (ES-LDP) and LDP-endostatin (LDP-ES). In vitro, the antiangiogenic effect of fusion proteins was determined by the wound healing assay and tube formation assay and the cytotoxicity of their enediyne-energized analogs was evaluated by CCK-8 assay. Tissue microarray was used to analyze the binding affinity of LDP, ES or ES-LDP with specimens of human lung tissue and lung tumor. The in vivo efficacy of the fusion proteins was evaluated with human lung carcinoma PG-BE1 xenograft and the experimental metastasis model of 4T1-luc breast cancer. ES-LDP and LDP-ES disrupted the formation of endothelial tube structures and inhibited endothelial cell migration. Evidently, ES-LDP accumulated in the tumor and suppressed tumor growth and metastasis. ES-LDP and ES show higher binding capability than LDP to lung carcinoma; in addition, ES-LDP and ES share similar binding capability. Furthermore, the enediyne-energized fusion protein ES-LDP-AE demonstrated significant efficacy against lung carcinoma xenograft in athymic mice. The ES-based fusion protein therapy provides some fundamental information for further drug development. Targeting both tumor vasculature and tumor cells by endostatin

  3. Effect of producer cell line on functional activity of anti-D monoclonal antibodies destined for prevention of rhesus sensitization.

    Science.gov (United States)

    Olovnikova, N I; Ershler, M A; Belkina, E V; Nikolaeva, T L; Miterev, G Yu

    2009-04-01

    The ability of anti-D antibodies to cause antigen-specific immunosuppression depends on their interaction with low-affinity Fcgamma-receptors. Human monoclonal antibodies to D antigen of the rhesus system were investigated by antibody-dependent cytotoxicity assay in order to estimate their ability to induce hemolysis mediated by low-affinity Fcgamma receptors. We demonstrate that affinity of monoclonal antibodies to receptors of this type does not depend on primary structure of Fc-fragment, but depends on the producer cell line which expresses the antibodies. Monoclonal IgG1 antibodies interacting with FcgammaRIIa and FcgammaRIII lost this property, if they were secreted by human-mouse heterohybridoma, but not by human B-cell line. On the opposite, monoclonal antibodies that could not activate low-affinity Fcgamma receptors were highly active after human cells fusion with rat myeloma YB2/0. Hemolytic activity of IgG3 remained unchanged after fusion of human cells with rodent cells.

  4. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L

    International Nuclear Information System (INIS)

    Pager, Cara Theresia; Craft, Willie Warren; Patch, Jared; Dutch, Rebecca Ellis

    2006-01-01

    The Nipah virus fusion (F) protein is proteolytically processed to F 1 + F 2 subunits. We demonstrate here that cathepsin L is involved in this important maturation event. Cathepsin inhibitors ablated cleavage of Nipah F. Proteolytic processing of Nipah F and fusion activity was dramatically reduced in cathepsin L shRNA-expressing Vero cells. Additionally, Nipah virus F-mediated fusion was inhibited in cathepsin L-deficient cells, but coexpression of cathepsin L restored fusion activity. Both purified cathepsin L and B could cleave immunopurified Nipah F protein, but only cathepsin L produced products of the correct size. Our results suggest that endosomal cathepsins can cleave Nipah F, but that cathepsin L specifically converts Nipah F to a mature and fusogenic form

  5. Studies with GFP-Vpr fusion proteins: induction of apoptosis but ablation of cell-cycle arrest despite nuclear membrane or nuclear localization

    International Nuclear Information System (INIS)

    Waldhuber, Megan G.; Bateson, Michael; Tan, Judith; Greenway, Alison L.; McPhee, Dale A.

    2003-01-01

    The human immunodeficiency virus type 1 (HIV-1) Vpr protein is known to arrest the cell cycle in G 2 /M and induce apoptosis following arrest. The functions of Vpr relative to its location in the cell remain unresolved. We now demonstrate that the location and function of Vpr are dependent on the makeup of fusion proteins and that the functions of G 2 /M arrest and apoptosis are separable. Using green fluorescence protein mutants (EGFP or EYFP), we found that fusion at either the N- or C-terminus compromised the ability of Vpr to arrest cell cycling, relative to that of His-Vpr or wild-type protein. Additionally, utilizing the ability to specifically identify cells expressing the fusion proteins, we confirm that Vpr can induce apoptosis, but appears to be independent of cell-cycle arrest in G 2 /M. Both N- and C-terminal Vpr/EYFP fusion proteins induced apoptosis but caused minimal G 2 /M arrest. These studies with Vpr fusion proteins indicate that the functions of Vpr leading to G 2 /M arrest and apoptosis are separable and that fusion of Vpr to EGFP or EYFP affected the localization of the protein. Our findings suggest that nuclear membrane localization and nuclear import and export are strongly governed by modification of the N-terminus of Vpr

  6. Engineering spinal fusion: evaluating ceramic materials for cell based tissue engineered approaches

    NARCIS (Netherlands)

    Wilson, C.E.

    2011-01-01

    The principal aim of this thesis was to advance the development of tissue engineered posterolateral spinal fusion by investigating the potential of calcium phosphate ceramic materials to support cell based tissue engineered bone formation. This was accomplished by developing several novel model

  7. Low activation materials for fusion

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Bloom, E.E.; Doran, D.G.; Smith, D.L.; Reuther, T.C.

    1988-01-01

    The viability of fusion as a future energy source may eventually be determined by safety and environmental factors. Control of the induced radioactivity characteristics of the materials used in the first wall and blanket could have a major favorable impact on these issues. In the United States, materials program efforts are focused on developing new structural alloys with radioactive decay characteristics which would greatly simplify long-term waste disposal of reactor components. A range of alloy systems is being explored in order to maintain the maximum number of design options. Significant progress has been made, and it now appears probable that reduced-activation engineering alloys with properties at least equivalent to conventional alloys can be successfully developed and commercialized. 10 refs., 1 fig

  8. A light water excess heat reaction suggests that cold fusion may be alkali-hydrogen fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1992-01-01

    This paper reports that Mills and Kneizys presented data in support of a light water excess heat reaction obtained with an electrolytic cell highly reminiscent of the Fleischmann-Pons cold fusion cell. The claim of Mills and Kneizys that their excess heat reaction can be explained on the basis of a novel chemistry, which supposedly also explains cold fusion, is rejected in favor of their reaction being, instead, a light water cold fusion reaction. It is the first known light water cold fusion reaction to exhibit excess heat, it may serve as a prototype to expand our understanding of cold fusion. From this new reactions are deduced, including those common to past cold fusion studies. This broader pattern of nuclear reactions is typically seen to involve a fusion of the nuclides of the alkali atoms with the simplest of the alkali-type nuclides, namely, protons, deuterons, and tritons. Thus, the term alkali-hydrogen fusion seems appropriate for this new type of reaction with three subclasses: alkali-hydrogen fusion, alkali-deuterium fusion, and alkali-tritium fusion. A new three-dimensional transmission resonance model (TRM) is sketched. Finally, preliminary experimental evidence in support of the hypothesis of a light water nuclear reaction and alkali-hydrogen fusion is reported. Evidence is presented that appears to strongly implicate the transmission resonance phenomenon of the new TRM

  9. Chaperone activity of human small heat shock protein-GST fusion proteins.

    Science.gov (United States)

    Arbach, Hannah; Butler, Caley; McMenimen, Kathryn A

    2017-07-01

    Small heat shock proteins (sHsps) are a ubiquitous part of the machinery that maintains cellular protein homeostasis by acting as molecular chaperones. sHsps bind to and prevent the aggregation of partially folded substrate proteins in an ATP-independent manner. sHsps are dynamic, forming an ensemble of structures from dimers to large oligomers through concentration-dependent equilibrium dissociation. Based on structural studies and mutagenesis experiments, it is proposed that the dimer is the smallest active chaperone unit, while larger oligomers may act as storage depots for sHsps or play additional roles in chaperone function. The complexity and dynamic nature of their structural organization has made elucidation of their chaperone function challenging. HspB1 and HspB5 are two canonical human sHsps that vary in sequence and are expressed in a wide variety of tissues. In order to determine the role of the dimer in chaperone activity, glutathione-S-transferase (GST) was genetically linked as a fusion protein to the N-terminus regions of both HspB1 and HspB5 (also known as Hsp27 and αB-crystallin, respectively) proteins in order to constrain oligomer formation of HspB1 and HspB5, by using GST, since it readily forms a dimeric structure. We monitored the chaperone activity of these fusion proteins, which suggest they primarily form dimers and monomers and function as active molecular chaperones. Furthermore, the two different fusion proteins exhibit different chaperone activity for two model substrate proteins, citrate synthase (CS) and malate dehydrogenase (MDH). GST-HspB1 prevents more aggregation of MDH compared to GST-HspB5 and wild type HspB1. However, when CS is the substrate, both GST-HspB1 and GST-HspB5 are equally effective chaperones. Furthermore, wild type proteins do not display equal activity toward the substrates, suggesting that each sHsp exhibits different substrate specificity. Thus, substrate specificity, as described here for full-length GST

  10. Nuclear dynamics during germination, conidiation, and hyphal fusion of Fusarium oxysporum.

    Science.gov (United States)

    Ruiz-Roldán, M Carmen; Köhli, Michael; Roncero, M Isabel G; Philippsen, Peter; Di Pietro, Antonio; Espeso, Eduardo A

    2010-08-01

    In many fungal pathogens, infection is initiated by conidial germination. Subsequent stages involve germ tube elongation, conidiation, and vegetative hyphal fusion (anastomosis). Here, we used live-cell fluorescence to study the dynamics of green fluorescent protein (GFP)- and cherry fluorescent protein (ChFP)-labeled nuclei in the plant pathogen Fusarium oxysporum. Hyphae of F. oxysporum have uninucleated cells and exhibit an acropetal nuclear pedigree, where only the nucleus in the apical compartment is mitotically active. In contrast, conidiation follows a basopetal pattern, whereby mononucleated microconidia are generated by repeated mitotic cycles of the subapical nucleus in the phialide, followed by septation and cell abscission. Vegetative hyphal fusion is preceded by directed growth of the fusion hypha toward the receptor hypha and followed by a series of postfusion nuclear events, including mitosis of the apical nucleus of the fusion hypha, migration of a daughter nucleus into the receptor hypha, and degradation of the resident nucleus. These previously unreported patterns of nuclear dynamics in F. oxysporum could be intimately related to its pathogenic lifestyle.

  11. Sphingolipids activate membrane fusion of Semliki Forest virus in a stereospecific manner

    DEFF Research Database (Denmark)

    Moesby, Lise; Corver, J; Erukulla, R K

    1995-01-01

    The alphavirus Semliki Forest virus (SFV) enters cells through receptor-mediated endocytosis. Subsequently, triggered by the acid pH in endosomes, the viral envelope fuses with the endosomal membrane. Membrane fusion of SFV has been shown previously to be dependent on the presence of cholesterol ...

  12. A TLR4/MD2 fusion protein inhibits LPS-induced pro-inflammatory signaling in hepatic stellate cells

    International Nuclear Information System (INIS)

    Schnabl, Bernd; Brandl, Katharina; Fink, Marina; Gross, Philipp; Taura, Kojiro; Gaebele, Erwin; Hellerbrand, Claus; Falk, Werner

    2008-01-01

    Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis. In injured liver they are the main extracellular matrix protein producing cell type and further perpetuate hepatic injury by secretion of pro-inflammatory mediators. Since LPS-mediated signaling through toll-like receptor 4 (TLR4) has been identified as key fibrogenic signal in HSCs we aimed to test TLR4 as potential target of therapy via ligand-binding soluble receptors. Incubation of human HSCs with a fusion protein between the extracellular domain of TLR4 and MD2 which binds LPS inhibited LPS-induced NFκB and JNK activation. TLR4/MD2 abolished LPS-induced secretion of IL-6, IL-8, MCP1, and RANTES in HSCs. In addition, TLR4/MD2 fused to human IgG-Fc neutralized LPS activity. Since TLR4 mutant mice are resistant to liver fibrosis, the TLR4/MD2 soluble receptor might represent a new therapeutic molecule for liver fibrogenesis in vivo

  13. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    Science.gov (United States)

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion. Copyright © 2011 AlphaMed Press.

  14. HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Wilfried Jonkers

    2014-11-01

    Full Text Available Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC-1, MEK-2 and MAK-2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT tips every ∼8 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a recently identified scaffold for the MAK-1 MAP kinase pathway in Sordaria macrospora. How the MAK-2 oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G that can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK-2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM-5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM-5-GFP co-localized with NRC-1, MEK-2 and MAK-2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM-5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK-2 activity influences HAM-5 function/localization. However, MAK-2-GFP showed cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta. Via co-immunoprecipitation experiments, HAM-5 was shown to physically interact with NRC-1, MEK-2 and MAK-2, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members for oscillation and chemotropic interactions during germling and hyphal fusion in N. crassa. The identification of HAM-5 as a scaffold-like protein will help to link the activation of MAK-2 cascade to upstream factors and proteins involved in this

  15. A Unique Opportunity to Test Whether Cell Fusion is a Mechanism of Breast Cancer Metastasis

    Science.gov (United States)

    2013-07-01

    Gilgoff I, Stein J, Chan Y, Lidov HG, Bonnemann CG. Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow...myoblasts of muscle fibers and osteoclasts of bone.13 However, it was not appreciated until recently that fusion products may form between...fusion products such as osteoclasts and muscle fibers.13 Additional proof was provided by Duelli et al. in the context of viral-induced cell

  16. Novel fusion protein approach for efficient high-throughput screening of small molecule-mediating protein-protein interactions in cells and living animals.

    Science.gov (United States)

    Paulmurugan, Ramasamy; Gambhir, Sanjiv S

    2005-08-15

    Networks of protein interactions execute many different intracellular pathways. Small molecules either synthesized within the cell or obtained from the external environment mediate many of these protein-protein interactions. The study of these small molecule-mediated protein-protein interactions is important in understanding abnormal signal transduction pathways in a variety of disorders, as well as in optimizing the process of drug development and validation. In this study, we evaluated the rapamycin-mediated interaction of the human proteins FK506-binding protein (FKBP12) rapamycin-binding domain (FRB) and FKBP12 by constructing a fusion of these proteins with a split-Renilla luciferase or a split enhanced green fluorescent protein (split-EGFP) such that complementation of the reporter fragments occurs in the presence of rapamycin. Different linker peptides in the fusion protein were evaluated for the efficient maintenance of complemented reporter activity. This system was studied in both cell culture and xenografts in living animals. We found that peptide linkers with two or four EAAAR repeat showed higher protein-protein interaction-mediated signal with lower background signal compared with having no linker or linkers with amino acid sequences GGGGSGGGGS, ACGSLSCGSF, and ACGSLSCGSFACGSLSCGSF. A 9 +/- 2-fold increase in signal intensity both in cell culture and in living mice was seen compared with a system that expresses both reporter fragments and the interacting proteins separately. In this fusion system, rapamycin induced heterodimerization of the FRB and FKBP12 moieties occurred rapidly even at very lower concentrations (0.00001 nmol/L) of rapamycin. For a similar fusion system employing split-EGFP, flow cytometry analysis showed significant level of rapamycin-induced complementation.

  17. A novel uPAg-KPI fusion protein inhibits the growth and invasion of human ovarian cancer cells in vitro.

    Science.gov (United States)

    Zhao, Li-Ping; Xu, Tian-Min; Kan, Mu-Jie; Xiao, Ye-Chen; Cui, Man-Hua

    2016-05-01

    Urokinase-type plasminogen activator (uPA) acts by breaking down the basement membrane and is involved in cell proliferation, migration and invasion. These actions are mediated by binding to the uPA receptor (uPAR) via its growth factor domain (GFD). The present study evaluated the effects of uPAg-KPI, a fusion protein of uPA-GFD and a kunitz protease inhibitor (KPI) domain that is present in the amyloid β-protein precursor. Using SKOV-3 cells, an ovarian cancer cell line, we examined cell viability, migration, invasion and also protein expression. Furthermore, we examined wound healing, and migration and invasion using a Transwell assay. Our data showed that uPAg-KPI treatment reduced the viability of ovarian cancer SKOV-3 cells in both a concentration and time-dependent manner by arresting tumor cells at G1/G0 phase of the cell cycle. The IC50 of uPAg-KPI was 0.5 µg/µl after 48 h treatment. At this concentration, uPAg-KPI also inhibited tumor cell colony formation, wound closure, as well as cell migration and invasion capacity. At the protein level, western blot analysis demonstrated that uPAg-KPI exerted no significant effect on the expression of total extracellular signal-regulated kinase (ERK)1/ERK2 and AKT, whereas it suppressed levels of phosphorylated ERK1/ERK2 and AKT. Thus, we suggest that this novel uPAg-KPI fusion protein reduced cell viability, colony formation, wound healing and the invasive ability of human ovarian cancer SKOV-3 cells in vitro by regulating ERK and AKT signaling. Further studies using other cell lines will confirm these findings.

  18. Fusion between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of herpes simplex virus gB.

    Science.gov (United States)

    Wright, Catherine C; Wisner, Todd W; Hannah, Brian P; Eisenberg, Roselyn J; Cohen, Gary H; Johnson, David C

    2009-11-01

    Herpesviruses cross nuclear membranes (NMs) in two steps, as follows: (i) capsids assemble and bud through the inner NM into the perinuclear space, producing enveloped virus particles, and (ii) the envelopes of these virus particles fuse with the outer NM. Two herpes simplex virus (HSV) glycoproteins, gB and gH (the latter, likely complexed as a heterodimer with gL), are necessary for the second step of this process. Mutants lacking both gB and gH accumulate in the perinuclear space or in herniations (membrane vesicles derived from the inner NM). Both gB and gH/gL are also known to act directly in fusing the virion envelope with host cell membranes during HSV entry into cells, i.e., both glycoproteins appear to function directly in different aspects of the membrane fusion process. We hypothesized that HSV gB and gH/gL also act directly in the membrane fusion that occurs during virus egress from the nucleus. Previous studies of the role of gB and gH/gL in nuclear egress involved HSV gB and gH null mutants that could potentially also possess gross defects in the virion envelope. Here, we produced recombinant HSV-expressing mutant forms of gB with single amino acid substitutions in the hydrophobic "fusion loops." These fusion loops are thought to play a direct role in membrane fusion by insertion into cellular membranes. HSV recombinants expressing gB with any one of four fusion loop mutations (W174R, W174Y, Y179K, and A261D) were unable to enter cells. Moreover, two of the mutants, W174Y and Y179K, displayed reduced abilities to mediate HSV cell-to-cell spread, and W174R and A261D exhibited no spread. All mutant viruses exhibited defects in nuclear egress, enveloped virions accumulated in herniations and in the perinuclear space, and fewer enveloped virions were detected on cell surfaces. These results support the hypothesis that gB functions directly to mediate the fusion between perinuclear virus particles and the outer NM.

  19. Sulphated Polysaccharides from Ulva clathrata and Cladosiphon okamuranus Seaweeds both Inhibit Viral Attachment/Entry and Cell-Cell Fusion, in NDV Infection

    Directory of Open Access Journals (Sweden)

    José Alberto Aguilar-Briseño

    2015-01-01

    Full Text Available Sulphated polysaccharides (SP extracted from seaweeds have antiviral properties and are much less cytotoxic than conventional drugs, but little is known about their mode of action. Combination antiviral chemotherapy may offer advantages over single agent therapy, increasing efficiency, potency and delaying the emergence of resistant virus. The paramyxoviridae family includes pathogens causing morbidity and mortality worldwide in humans and animals, such as the Newcastle Disease Virus (NDV in poultry. This study aims at determining the antiviral activity and mechanism of action in vitro of an ulvan (SP from the green seaweed Ulva clathrata, and of its mixture with a fucoidan (SP from Cladosiphon okamuranus, against La Sota NDV strain. The ulvan antiviral activity was tested using syncytia formation, exhibiting an IC50 of 0.1 μg/mL; ulvan had a better anti cell-cell spread effect than that previously shown for fucoidan, and inhibited cell-cell fusion via a direct effect on the F0 protein, but did not show any virucidal effect. The mixture of ulvan and fucoidan showed a greater anti-spread effect than SPs alone, but ulvan antagonizes the effect of fucoidan on the viral attachment/entry. Both SPs may be promising antivirals against paramyxovirus infection but their mixture has no clear synergistic advantage.

  20. Sulphated polysaccharides from Ulva clathrata and Cladosiphon okamuranus seaweeds both inhibit viral attachment/entry and cell-cell fusion, in NDV infection.

    Science.gov (United States)

    Aguilar-Briseño, José Alberto; Cruz-Suarez, Lucia Elizabeth; Sassi, Jean-François; Ricque-Marie, Denis; Zapata-Benavides, Pablo; Mendoza-Gamboa, Edgar; Rodríguez-Padilla, Cristina; Trejo-Avila, Laura María

    2015-01-26

    Sulphated polysaccharides (SP) extracted from seaweeds have antiviral properties and are much less cytotoxic than conventional drugs, but little is known about their mode of action. Combination antiviral chemotherapy may offer advantages over single agent therapy, increasing efficiency, potency and delaying the emergence of resistant virus. The paramyxoviridae family includes pathogens causing morbidity and mortality worldwide in humans and animals, such as the Newcastle Disease Virus (NDV) in poultry. This study aims at determining the antiviral activity and mechanism of action in vitro of an ulvan (SP from the green seaweed Ulva clathrata), and of its mixture with a fucoidan (SP from Cladosiphon okamuranus), against La Sota NDV strain. The ulvan antiviral activity was tested using syncytia formation, exhibiting an IC50 of 0.1 μg/mL; ulvan had a better anti cell-cell spread effect than that previously shown for fucoidan, and inhibited cell-cell fusion via a direct effect on the F0 protein, but did not show any virucidal effect. The mixture of ulvan and fucoidan showed a greater anti-spread effect than SPs alone, but ulvan antagonizes the effect of fucoidan on the viral attachment/entry. Both SPs may be promising antivirals against paramyxovirus infection but their mixture has no clear synergistic advantage.

  1. Measurement and Analysis of Activation Induced in Lanthanum, Erbium and Tantalum by Fusion Peak Neutrons

    International Nuclear Information System (INIS)

    Klix, A.; Eichin, R.; Freiesleben, H.; Schomburg, K.; Seidel, K.; Unholzer, S.; Forrest, R.A.

    2006-01-01

    The large fluxes of neutrons in the materials of a fusion device during operation produce activation that is relevant to operational safety and decommissioning. Nuclides with a broad range of half-lives have to be included in the corresponding analyses. The activity with decay times ranging from the order of magnitude of minutes to weeks is of interest with respect to heat production and shut-down dose rates, whereas the long-term activity determines the waste management. The activity is mainly produced by two components of the neutron flux spectrum, by thermal neutrons and by the 14-MeV D-T fusion neutrons. Analyses of the material activation rely on calculations with inventory codes and libraries containing activation and decay data. To gain trust in the results of such calculations data and codes have to be validated experimentally. In the present work, the European Activation System (EASY, inventory code FISPACT and data library EAF) was tested in benchmark experiments on Lanthanum, Erbium and Tantalum. They are constituents of fusion reactor structural materials such as EUROFER and insulating coatings for liquid breeder systems. Small samples of the materials were irradiated in a D-T neutron field. The gamma-radioactivity following irradiation was measured several times during decay and nuclide activities were derived. For each of the measured activities the corresponding value was calculated with EASY, and the calculated-to-experimental ratios (C/E) were determined. The nuclear reactions producing the activities were also analysed. The C/E ratios obtained for the individual activities will be used for discussing the activation performance and the contact dose rate of the materials at fusion power plant conditions. (author)

  2. Rational design of an EGF-IL18 fusion protein: Implication for developing tumor therapeutics

    International Nuclear Information System (INIS)

    Lu Jianxin; Peng Ying; Meng Zhefeng; Jin Liqin; Lu Yongsui; Guan Minxin

    2005-01-01

    Interleukin-18 (IL-18) is a proinflammatory cytokine. This protein has a role in regulating immune responses and exhibits significant anti-tumor activities. Epidermal growth factor (EGF) is an important growth factor that plays a central role in the regulation of cell cycle and differentiation. It was proposed that a targeted delivery of IL-18 by generation of IL-18-EGF fusion protein might decrease adverse effects and result in enhancing cytotoxic and antitumor activities. In the present study, a fusion protein, consisting of EGFR binding domain fused to human IL-18 mature peptide via a linker peptide of (Gly 4 Ser) 3, was constructed and expressed in the insect cell line Sf9 using Bac-to-Bac baculovirus expression system. We showed that the purified recombinant fusion protein induced similar levels of IFN-γ to that of native IL-18 protein in human PBMC in the presence of ConA. Furthermore, EGF receptor competitive test in human epithelial cancer A431 cell line showed that EGF-IL18 fusion protein can specifically bind with EGFR by competing with native EGF protein. These suggest that this rationally designed protein can be further developed as novel tumor therapeutics

  3. Copper deficiency alters cell bioenergetics and induces mitochondrial fusion through up-regulation of MFN2 and OPA1 in erythropoietic cells

    International Nuclear Information System (INIS)

    Bustos, Rodrigo I.; Jensen, Erik L.; Ruiz, Lina M.; Rivera, Salvador; Ruiz, Sebastián; Simon, Felipe; Riedel, Claudia; Ferrick, David; Elorza, Alvaro A.

    2013-01-01

    Highlights: •In copper deficiency, cell proliferation is not affected. In turn, cell differentiation is impaired. •Enlarged mitochondria are due to up-regulation of MNF2 and OPA1. •Mitochondria turn off respiratory chain and ROS production. •Energy metabolism switch from mitochondria to glycolysis. -- Abstract: Copper is essential in cell physiology, participating in numerous enzyme reactions. In mitochondria, copper is a cofactor for respiratory complex IV, the cytochrome c oxidase. Low copper content is associated with anemia and the appearance of enlarged mitochondria in erythropoietic cells. These findings suggest a connection between copper metabolism and bioenergetics, mitochondrial dynamics and erythropoiesis, which has not been explored so far. Here, we describe that bathocuproine disulfonate-induced copper deficiency does not alter erythropoietic cell proliferation nor induce apoptosis. However it does impair erythroid differentiation, which is associated with a metabolic switch between the two main energy-generating pathways. That is, from mitochondrial function to glycolysis. Switching off mitochondria implies a reduction in oxygen consumption and ROS generation along with an increase in mitochondrial membrane potential. Mitochondrial fusion proteins MFN2 and OPA1 were up-regulated along with the ability of mitochondria to fuse. Morphometric analysis of mitochondria did not show changes in total mitochondrial biomass but rather bigger mitochondria because of increased fusion. Similar results were also obtained with human CD34+, which were induced to differentiate into red blood cells. In all, we have shown that adequate copper levels are important for maintaining proper mitochondrial function and for erythroid differentiation where the energy metabolic switch plus the up-regulation of fusion proteins define an adaptive response to copper deprivation to keep cells alive

  4. Copper deficiency alters cell bioenergetics and induces mitochondrial fusion through up-regulation of MFN2 and OPA1 in erythropoietic cells

    Energy Technology Data Exchange (ETDEWEB)

    Bustos, Rodrigo I.; Jensen, Erik L.; Ruiz, Lina M.; Rivera, Salvador; Ruiz, Sebastián [Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago (Chile); Simon, Felipe; Riedel, Claudia [Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago (Chile); Millennium Institute of Immunology and Immunotherapy, Santiago (Chile); Ferrick, David [Seahorse Bioscience, Billerica, MA (United States); Elorza, Alvaro A., E-mail: aelorza@unab.cl [Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago (Chile); Millennium Institute of Immunology and Immunotherapy, Santiago (Chile)

    2013-08-02

    Highlights: •In copper deficiency, cell proliferation is not affected. In turn, cell differentiation is impaired. •Enlarged mitochondria are due to up-regulation of MNF2 and OPA1. •Mitochondria turn off respiratory chain and ROS production. •Energy metabolism switch from mitochondria to glycolysis. -- Abstract: Copper is essential in cell physiology, participating in numerous enzyme reactions. In mitochondria, copper is a cofactor for respiratory complex IV, the cytochrome c oxidase. Low copper content is associated with anemia and the appearance of enlarged mitochondria in erythropoietic cells. These findings suggest a connection between copper metabolism and bioenergetics, mitochondrial dynamics and erythropoiesis, which has not been explored so far. Here, we describe that bathocuproine disulfonate-induced copper deficiency does not alter erythropoietic cell proliferation nor induce apoptosis. However it does impair erythroid differentiation, which is associated with a metabolic switch between the two main energy-generating pathways. That is, from mitochondrial function to glycolysis. Switching off mitochondria implies a reduction in oxygen consumption and ROS generation along with an increase in mitochondrial membrane potential. Mitochondrial fusion proteins MFN2 and OPA1 were up-regulated along with the ability of mitochondria to fuse. Morphometric analysis of mitochondria did not show changes in total mitochondrial biomass but rather bigger mitochondria because of increased fusion. Similar results were also obtained with human CD34+, which were induced to differentiate into red blood cells. In all, we have shown that adequate copper levels are important for maintaining proper mitochondrial function and for erythroid differentiation where the energy metabolic switch plus the up-regulation of fusion proteins define an adaptive response to copper deprivation to keep cells alive.

  5. IAEA specialists' meeting on the fusion evaluated nuclear data library related to the ITER activity

    International Nuclear Information System (INIS)

    Goulo, V.; Lorenz, A.

    1988-01-01

    This is the summary report of an IAEA Specialists' Meeting on the Fusion Evaluated Nuclear Data Library Related to the ITER Activity, convened by the IAEA Nuclear Data Section in Vienna from 16 to 18 November 1987. The objective of the meeting was to formulate a detailed programme and time schedule for the development of the Fusion Evaluated Nuclear Data Library (FENDL) to meet the future needs of the ITER activity

  6. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device.

    Science.gov (United States)

    Schoeman, Rogier M; Kemna, Evelien W M; Wolbers, Floor; van den Berg, Albert

    2014-02-01

    In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped curved microchannel using a double T-junction, with a frequency over 2000 Hz, followed by controlled droplet pairing with a 100% success rate. Subsequently, droplet fusion is realized using electrical actuation resulting in electro-coalescence of two droplets, each containing a single HL60 cell, with 95% efficiency. Finally, volume reduction of the fused droplet up to 75% is achieved by a triple pitchfork structure. This droplet volume reduction is necessary to obtain close cell-cell membrane contact necessary for final cell electrofusion, leading to hybridoma formation, which is the ultimate aim of this research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Productive infection of human immunodeficiency virus type 1 in dendritic cells requires fusion-mediated viral entry

    International Nuclear Information System (INIS)

    Janas, Alicia M.; Dong, Chunsheng; Wang Jianhua; Wu Li

    2008-01-01

    Human immunodeficiency virus type 1 (HIV-1) enters dendritic cells (DCs) through endocytosis and viral receptor-mediated fusion. Although endocytosis-mediated HIV-1 entry can generate productive infection in certain cell types, including human monocyte-derived macrophages, productive HIV-1 infection in DCs appears to be dependent on fusion-mediated viral entry. It remains to be defined whether endocytosed HIV-1 in DCs can initiate productive infection. Using HIV-1 infection and cellular fractionation assays to measure productive viral infection and entry, here we show that HIV-1 enters monocyte-derived DCs predominately through endocytosis; however, endocytosed HIV-1 cannot initiate productive HIV-1 infection in DCs. In contrast, productive HIV-1 infection in DCs requires fusion-mediated viral entry. Together, these results provide functional evidence in understanding HIV-1 cis-infection of DCs, suggesting that different pathways of HIV-1 entry into DCs determine the outcome of viral infection

  8. Fusion energy 2000. Fusion energy 1998 (2001 Edition). Proceedings

    International Nuclear Information System (INIS)

    2001-01-01

    This CD-ROM contains the Proceedings of 18th International Conference on Fusion Energy. It also contains an updated version of the Fusion Energy Conference 1998 Proceedings (38 additional papers included) as well as information on how to use this CD-ROM. The 18th International Atomic Energy Agency Fusion Energy Conference (FEC-2000) was held in Sorrento, Italy, 4-10 October 2000. 573 participants from over thirty countries and three international organizations took part in this Conference. The Conference was organized by the IAEA in co-operation with the Italian National Agency for New Technology, Energy and Environment (ENEA). Around 400 papers were presented in 22 oral and 8 poster sessions on magnetic confinement experiments, inertial fusion energy, plasma heating and current drive, ITER engineering design activities, magnetic confinement theory, innovative concepts, fusion technology, and safety and environment aspects. The 17th International Atomic Energy Agency (IAEA) Fusion Energy Conference was held in Yokohama, Japan, 19-24 October 1999. This 6-day conference, which was attended by 835 participants from over 30 countries and two international organizations, was organized by the IAEA in co-operation with the Japan Atomic Energy Research Institute (JAERI). More than 360 papers plus 5 summary talks were presented in 23 oral and 8 poster sessions on magnetic confinement and experiments, inertial fusion energy, plasma heating and current drive, ITER engineering design activities, magnetic confinement theory, innovative concepts and fusion technology

  9. Cell-cycle dependent expression of a translocation-mediated fusion oncogene mediates checkpoint adaptation in rhabdomyosarcoma.

    Directory of Open Access Journals (Sweden)

    Ken Kikuchi

    2014-01-01

    Full Text Available Rhabdomyosarcoma is the most commonly occurring soft-tissue sarcoma in childhood. Most rhabdomyosarcoma falls into one of two biologically distinct subgroups represented by alveolar or embryonal histology. The alveolar subtype harbors a translocation-mediated PAX3:FOXO1A fusion gene and has an extremely poor prognosis. However, tumor cells have heterogeneous expression for the fusion gene. Using a conditional genetic mouse model as well as human tumor cell lines, we show that that Pax3:Foxo1a expression is enriched in G2 and triggers a transcriptional program conducive to checkpoint adaptation under stress conditions such as irradiation in vitro and in vivo. Pax3:Foxo1a also tolerizes tumor cells to clinically-established chemotherapy agents and emerging molecularly-targeted agents. Thus, the surprisingly dynamic regulation of the Pax3:Foxo1a locus is a paradigm that has important implications for the way in which oncogenes are modeled in cancer cells.

  10. Eradication of Human Hepatic and Pulmonary Melanoma Metastases in SCID Mice by Antibody--Interleukin 2 Fusion Proteins

    Science.gov (United States)

    Becker, Jurgen C.; Pancook, James D.; Gillies, Stephen D.; Mendelsohn, John; Reisfeld, Ralph A.

    1996-04-01

    Antibody--cytokine fusion proteins combine the unique targeting ability of antibodies with the multifunctional activity of cytokines. Here, we demonstrate the therapeutic efficacy of such constructs for the treatment of hepatic and pulmonary metastases of different melanoma cell lines. Two antibody--interleukin 2 (IL-2) fusion proteins, ch225-IL2 and ch14.18-IL2, constructed by fusion of a synthetic sequence coding for human IL-2 to the carboxyl end of the Cγ 1 gene of the corresponding antibodies, were tested for their therapeutic efficacy against xenografted human melanoma in vivo. Tumorspecific fusion proteins completely inhibited the growth of hepatic and pulmonary metastases in C.B-17 scid/scid mice previously reconstituted with human lymphokine-activated killer cells, whereas treatment with combinations of the corresponding antibodies plus recombinant IL-2 only reduced the tumor load. Even when treatment with fusion proteins was delayed up to 8 days after inoculation of tumor cells, it still resulted in complete eradication of micrometastases that were established at that time point. Selection of tumor cell lines expressing or lacking the targeted antigen of the administered fusion protein proved the specificity of the observed antitumor effect. Biodistribution analysis demonstrated that the tumorspecific fusion protein accumulated not only in subcutaneous tumors but also in lungs and livers affected with micrometastases. Survival times of animals treated with the fusion protein were more than doubled as compared to those treated with the combination of the corresponding antibody plus IL-2. Our data demonstrate that an immunotherapeutic approach using cytokines targeted by antibodies to tumor sites has potent effects against disseminated human melanoma.

  11. SymB and SymC, two membrane associated proteins, are required for Epichloë festucae hyphal cell-cell fusion and maintenance of a mutualistic interaction with Lolium perenne.

    Science.gov (United States)

    Green, Kimberly A; Becker, Yvonne; Tanaka, Aiko; Takemoto, Daigo; Fitzsimons, Helen L; Seiler, Stephan; Lalucque, Hervé; Silar, Philippe; Scott, Barry

    2017-02-01

    Cell-cell fusion in fungi is required for colony formation, nutrient transfer and signal transduction. Disruption of genes required for hyphal fusion in Epichloë festucae, a mutualistic symbiont of Lolium grasses, severely disrupts the host interaction phenotype. They examined whether symB and symC, the E. festucae homologs of Podospora anserina self-signaling genes IDC2 and IDC3, are required for E. festucae hyphal fusion and host symbiosis. Deletion mutants of these genes were defective in hyphal cell fusion, formed intra-hyphal hyphae, and had enhanced conidiation. SymB-GFP and SymC-mRFP1 localize to plasma membrane, septa and points of hyphal cell fusion. Plants infected with ΔsymB and ΔsymC strains were severely stunted. Hyphae of the mutants colonized vascular bundles, were more abundant than wild type in the intercellular spaces and formed intra-hyphal hyphae. Although these phenotypes are identical to those previously observed for cell wall integrity MAP kinase mutants no difference was observed in the basal level of MpkA phosphorylation or its cellular localization in the mutant backgrounds. Both genes contain binding sites for the transcription factor ProA. Collectively these results show that SymB and SymC are key components of a conserved signaling network for E. festucae to maintain a mutualistic symbiotic interaction within L. perenne. © 2016 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  12. Translocation of cell penetrating peptides and calcium-induced membrane fusion share same mechanism

    Czech Academy of Sciences Publication Activity Database

    Magarkar, Aniket; Allolio, Christoph; Jurkiewicz, Piotr; Baxová, Katarína; Šachl, Radek; Horinek, D.; Heinz, V.; Rachel, R.; Ziegler, C.; Jungwirth, Pavel

    2017-01-01

    Roč. 46, Suppl 1 (2017), S386 ISSN 0175-7571. [IUPAB congress /19./ and EBSA congress /11./. 16.07.2017-20.07.2017, Edinburgh] Institutional support: RVO:61388963 ; RVO:61388955 Keywords : membrane interactions * membrane fusion * cell penetration Subject RIV: BO - Biophysics

  13. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device

    NARCIS (Netherlands)

    Schoeman, R.M.; Kemna, Evelien; Wolbers, F.; van den Berg, Albert

    In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped

  14. Use of green fluorescent fusion protein to track activation of the transcription factor osterix during early osteoblast differentiation

    International Nuclear Information System (INIS)

    Tai Guangping; Christodoulou, Ioannis; Bishop, Anne E.; Polak, Julia M.

    2005-01-01

    Osterix (Osx) is a transcription factor required for the differentiation of preosteoblasts into fully functioning osteoblasts. However, the pattern of Osx activation during preosteoblast differentiation and maturation has not been clearly defined. Our aim was to study Osx activation during these processes in osteoblasts differentiating from murine and human embryonic stem cells (ESC). To do this, we constructed an Osx-GFP fusion protein reporter system to track Osx translocation within the cells. The distribution of Osx-GFP at representative stages of differentiation was also investigated by screening primary osteoblasts, mesenchymal stem cells, synoviocytes, and pre-adipocytes. Our experiments revealed that Osx-GFP protein was detectable in the cytoplasm of cultured, differentiated ESC 4 days after plating of enzymatically dispersed embryoid bodies. Osterix-GFP protein became translocated into the nucleus on day 7 following transfer of differentiated ESC to osteogenic medium. After 14 days of differentiation, cells showing nuclear translocation of Osx-GFP formed rudimentary bone nodules that continued to increase in number over the following weeks (through day 21). We also found that Osx translocated into the nuclei of mesenchymal stem cells (C3H10T1/2) and pre-osteoblasts (MC3T3-E1) and showed partial activation in pre-adipocytes (MC3T3-L1). These data suggest that Osx activation occurs at a very early point in the differentiation of the mesenchymal-osteoblastic lineage

  15. Septin 7 reduces nonmuscle myosin IIA activity in the SNAP23 complex and hinders GLUT4 storage vesicle docking and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wasik, Anita A.; Dumont, Vincent [Department of Pathology, University of Helsinki, 00014 Helsinki (Finland); Tienari, Jukka [Department of Pathology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, 05850 Hyvinkää (Finland); Nyman, Tuula A. [Institute of Biotechnology, University of Helsinki, 00014 Helsinki (Finland); Fogarty, Christopher L.; Forsblom, Carol; Lehto, Markku [Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki (Finland); Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, 000290 Helsinki (Finland); Diabetes& Obesity Research Program, Research Program´s Unit, 00014 University of Helsinki (Finland); Lehtonen, Eero [Department of Pathology, University of Helsinki, 00014 Helsinki (Finland); Laboratory Animal Centre, University of Helsinki, 00014 Helsinki (Finland); Groop, Per-Henrik [Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki (Finland); Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, 000290 Helsinki (Finland); Diabetes& Obesity Research Program, Research Program´s Unit, 00014 University of Helsinki (Finland); Baker IDI Heart & Diabetes Institute, 3004 Melbourne (Australia); Lehtonen, Sanna, E-mail: sanna.h.lehtonen@helsinki.fi [Department of Pathology, University of Helsinki, 00014 Helsinki (Finland)

    2017-01-15

    Glomerular epithelial cells, podocytes, are insulin responsive and can develop insulin resistance. Here, we demonstrate that the small GTPase septin 7 forms a complex with nonmuscle myosin heavy chain IIA (NMHC-IIA; encoded by MYH9), a component of the nonmuscle myosin IIA (NM-IIA) hexameric complex. We observed that knockdown of NMHC-IIA decreases insulin-stimulated glucose uptake into podocytes. Both septin 7 and NM-IIA associate with SNAP23, a SNARE protein involved in GLUT4 storage vesicle (GSV) docking and fusion with the plasma membrane. We observed that insulin decreases the level of septin 7 and increases the activity of NM-IIA in the SNAP23 complex, as visualized by increased phosphorylation of myosin regulatory light chain. Also knockdown of septin 7 increases the activity of NM-IIA in the complex. The activity of NM-IIA is increased in diabetic rat glomeruli and cultured human podocytes exposed to macroalbuminuric sera from patients with type 1 diabetes. Collectively, the data suggest that the activity of NM-IIA in the SNAP23 complex plays a key role in insulin-stimulated glucose uptake into podocytes. Furthermore, we observed that septin 7 reduces the activity of NM-IIA in the SNAP23 complex and thereby hinders GSV docking and fusion with the plasma membrane. - Highlights: • Septin 7, nonmuscle myosin heavy chain IIA (NMHC-IIA) and SNAP23 form a complex. • Knockdown of septin 7 increases NM-IIA activity in the SNAP23 complex. • Insulin decreases septin 7 level and increases NM-IIA activity in the SNAP23 complex. • Septin 7 hinders GSV docking/fusion by reducing NM-IIA activity in the SNAP23 complex.

  16. Septin 7 reduces nonmuscle myosin IIA activity in the SNAP23 complex and hinders GLUT4 storage vesicle docking and fusion

    International Nuclear Information System (INIS)

    Wasik, Anita A.; Dumont, Vincent; Tienari, Jukka; Nyman, Tuula A.; Fogarty, Christopher L.; Forsblom, Carol; Lehto, Markku; Lehtonen, Eero; Groop, Per-Henrik; Lehtonen, Sanna

    2017-01-01

    Glomerular epithelial cells, podocytes, are insulin responsive and can develop insulin resistance. Here, we demonstrate that the small GTPase septin 7 forms a complex with nonmuscle myosin heavy chain IIA (NMHC-IIA; encoded by MYH9), a component of the nonmuscle myosin IIA (NM-IIA) hexameric complex. We observed that knockdown of NMHC-IIA decreases insulin-stimulated glucose uptake into podocytes. Both septin 7 and NM-IIA associate with SNAP23, a SNARE protein involved in GLUT4 storage vesicle (GSV) docking and fusion with the plasma membrane. We observed that insulin decreases the level of septin 7 and increases the activity of NM-IIA in the SNAP23 complex, as visualized by increased phosphorylation of myosin regulatory light chain. Also knockdown of septin 7 increases the activity of NM-IIA in the complex. The activity of NM-IIA is increased in diabetic rat glomeruli and cultured human podocytes exposed to macroalbuminuric sera from patients with type 1 diabetes. Collectively, the data suggest that the activity of NM-IIA in the SNAP23 complex plays a key role in insulin-stimulated glucose uptake into podocytes. Furthermore, we observed that septin 7 reduces the activity of NM-IIA in the SNAP23 complex and thereby hinders GSV docking and fusion with the plasma membrane. - Highlights: • Septin 7, nonmuscle myosin heavy chain IIA (NMHC-IIA) and SNAP23 form a complex. • Knockdown of septin 7 increases NM-IIA activity in the SNAP23 complex. • Insulin decreases septin 7 level and increases NM-IIA activity in the SNAP23 complex. • Septin 7 hinders GSV docking/fusion by reducing NM-IIA activity in the SNAP23 complex.

  17. Intercellular adhesion molecule-1 augments myoblast adhesion and fusion through homophilic trans-interactions.

    Science.gov (United States)

    Pizza, Francis X; Martin, Ryan A; Springer, Evan M; Leffler, Maxwell S; Woelmer, Bryce R; Recker, Isaac J; Leaman, Douglas W

    2017-07-11

    The overall objective of the study was to identify mechanisms through which intercellular adhesion molecule-1 (ICAM-1) augments the adhesive and fusogenic properties of myogenic cells. Hypotheses were tested using cultured myoblasts and fibroblasts, which do not constitutively express ICAM-1, and myoblasts and fibroblasts forced to express full length ICAM-1 or a truncated form lacking the cytoplasmic domain of ICAM-1. ICAM-1 mediated myoblast adhesion and fusion were quantified using novel assays and cell mixing experiments. We report that ICAM-1 augments myoblast adhesion to myoblasts and myotubes through homophilic trans-interactions. Such adhesive interactions enhanced levels of active Rac in adherent and fusing myoblasts, as well as triggered lamellipodia, spreading, and fusion of myoblasts through the signaling function of the cytoplasmic domain of ICAM-1. Rac inhibition negated ICAM-1 mediated lamellipodia, spreading, and fusion of myoblasts. The fusogenic property of ICAM-1-ICAM-1 interactions was restricted to myogenic cells, as forced expression of ICAM-1 by fibroblasts did not augment their fusion to ICAM-1+ myoblasts/myotubes. We conclude that ICAM-1 augments myoblast adhesion and fusion through its ability to self-associate and initiate Rac-mediated remodeling of the actin cytoskeleton.

  18. 'Low-activation' fusion materials development and related nuclear data needs

    International Nuclear Information System (INIS)

    Cierjacks, S.

    1990-01-01

    So-called ''low-activation'' materials are presently considered as an important means of improving the safety characteristics of future DT fusion reactors. Essential benefits are expected in various problem areas ranging from operation considerations to aspects of decommissioning and waste disposal. Present programs on ''low-activation'' materials development depend strongly on reliable activity calculations for a wide range of technologically important materials. The related nuclear data requirements and important needs for more and improved nuclear data are discussed. (author). 32 refs, 4 figs, 4 tabs

  19. Increased Cell Fusion in Cerebral Cortex May Contribute to Poststroke Regeneration

    Directory of Open Access Journals (Sweden)

    Alexander Paltsyn

    2013-01-01

    Full Text Available In this study, we used a model of a hemorrhagic stroke in a motor zone of the cortex in rats at the age of 3 months The report shows that cortical neurons can fuse with oligodendrocytes. In formed binuclear cells, the nucleus of an oligodendrocyte undergoes neuron specific reprogramming. It can be confirmed by changes in chromatin structure and in size of the second nucleus, by expression of specific neuronal markers and increasing total transcription rate. The nucleus of an oligodendrocyte likely transforms into a second neuronal nucleus. The number of binuclear neurons was validated with quantitative analysis. Fusion of neurons with oligodendrocytes might be a regenerative process in general and specifically following a stroke. The appearance of additional neuronal nuclei increases the functional outcome of the population of neurons. Participation of a certain number of binuclear cells in neuronal function might compensate for a functional deficit that arises from the death of a subset of neurons. After a stroke, the number of binuclear neurons increased in cortex around the lesion zone. In this case, the rate of recovery of stroke-damaged locomotor behavior also increased, which indicates the regenerative role of fusion.

  20. Myomaker mediates fusion of fast myocytes in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Landemaine, Aurélie; Rescan, Pierre-Yves; Gabillard, Jean-Charles, E-mail: Jean-charles.gabillard@rennes.inra.fr

    2014-09-05

    Highlights: • Myomaker is transiently expressed in fast myocytes during embryonic myogenesis. • Myomaker is essential for fast myocyte fusion in zebrafish. • The function of myomaker is conserved among Teleostomi. - Abstract: Myomaker (also called Tmem8c), a new membrane activator of myocyte fusion was recently discovered in mice. Using whole mount in situ hybridization on zebrafish embryos at different stages of embryonic development, we show that myomaker is transiently expressed in fast myocytes forming the bulk of zebrafish myotome. Zebrafish embryos injected with morpholino targeted against myomaker were alive after yolk resorption and appeared morphologically normal, but they were unable to swim, even under effect of a tactile stimulation. Confocal observations showed a marked phenotype characterized by the persistence of mononucleated muscle cells in the fast myotome at developmental stages where these cells normally fuse to form multinucleated myotubes. This indicates that myomaker is essential for myocyte fusion in zebrafish. Thus, there is an evolutionary conservation of myomaker expression and function among Teleostomi.

  1. Muon nuclear fusion and low temperature nuclear fusion

    International Nuclear Information System (INIS)

    Nagamine, Kanetada

    1990-01-01

    Low temperature (or normal temperature) nuclear fusion is one of the phenomena causing nuclear fusion without requiring high temperature. In thermal nuclear fusion, the Coulomb barrier is overcome with the help of thermal energy, but in the low temperature nuclear fusion, the Coulomb barrier is neutralized by the introduction of the particles having larger mass than electrons and negative charges, at this time, if two nuclei can approach to the distance of 10 -13 cm in the neutral state, the occurrence of nuclear fusion reaction is expected. As the mass of the particles is heavier, the neutral region is smaller, and nuclear fusion is easy to occur. The particles to meet this purpose are the electrons within substances and muons. The research on muon nuclear fusion became suddenly active in the latter half of 1970s, the cause of which was the discovery of the fact that the formation of muons occurs resonantly rapidly in D-T and D-D systems. Muons are the unstable elementary particles having the life of 2.2 μs, and they can have positive and negative charges. In the muon catalyzed fusion, the muons with negative charge take part. The principle of the muon catalyzed fusion, its present status and future perspective, and the present status of low temperature nuclear fusion are reported. (K.I.)

  2. MEMBRANE-FUSION OF SEMLIKI FOREST VIRUS INVOLVES HOMOTRIMERS OF THE FUSION PROTEIN

    NARCIS (Netherlands)

    WAHLBERG, JM; WILSCHUT, J; GAROFF, H

    1992-01-01

    Infection of cells with enveloped viruses is accomplished through membrane fusion. The binding and fusion Processes are mediated by the spike proteins in the envelope of the virus particle and usually involve a series of conformational changes in these proteins. We have studied the low-pH-mediated

  3. Inhibition of EBV-mediated membrane fusion by anti-gHgL antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Sathiyamoorthy, Karthik; Jiang, Jiansen; Möhl, Britta S.; Chen, Jia; Zhou, Z. Hong; Longnecker, Richard; Jardetzky, Theodore S. (UCLA); (Stanford-MED); (NWU)

    2017-09-22

    Herpesvirus entry into cells requires the coordinated action of multiple virus envelope glycoproteins, including gH, gL, and gB. For EBV, the gp42 protein assembles into complexes with gHgL heterodimers and binds HLA class II to activate gB-mediated membrane fusion with B cells. EBV tropism is dictated by gp42 levels in the virion, as it inhibits entry into epithelial cells while promoting entry into B cells. The gHgL and gB proteins are targets of neutralizing antibodies and potential candidates for subunit vaccine development, but our understanding of their neutralizing epitopes and the mechanisms of inhibition remain relatively unexplored. Here we studied the structures and mechanisms of two anti-gHgL antibodies, CL40 and CL59, that block membrane fusion with both B cells and epithelial cells. We determined the structures of the CL40 and CL59 complexes with gHgL using X-ray crystallography and EM to identify their epitope locations. CL59 binds to the C-terminal domain IV of gH, while CL40 binds to a site occupied by the gp42 receptor binding domain. CL40 binding to gHgL/gp42 complexes is not blocked by gp42 and does not interfere with gp42 binding to HLA class II, indicating that its ability to block membrane fusion with B cells represents a defect in gB activation. These data indicate that anti-gHgL neutralizing antibodies can block gHgL-mediated activation of gB through different surface epitopes and mechanisms.

  4. Enhanced vaccine-induced CD8+ T cell responses to malaria antigen ME-TRAP by fusion to MHC class ii invariant chain.

    Directory of Open Access Journals (Sweden)

    Alexandra J Spencer

    Full Text Available The orthodox role of the invariant chain (CD74; Ii is in antigen presentation to CD4+ T cells, but enhanced CD8+ T cells responses have been reported after vaccination with vectored viral vaccines encoding a fusion of Ii to the antigen of interest. In this study we assessed whether fusion of the malarial antigen, ME-TRAP, to Ii could increase the vaccine-induced CD8+ T cell response. Following single or heterologous prime-boost vaccination of mice with a recombinant chimpanzee adenovirus vector, ChAd63, or recombinant modified vaccinia virus Ankara (MVA, higher frequencies of antigen-specific CD4+ and CD8+ T cells were observed, with the largest increases observed following a ChAd63-MVA heterologous prime-boost regimen. Studies in non-human primates confirmed the ability of Ii-fusion to augment the T cell response, where a 4-fold increase was maintained up to 11 weeks after the MVA boost. Of the numerous different approaches explored to increase vectored vaccine induced immunogenicity over the years, fusion to the invariant chain showed a consistent enhancement in CD8+ T cell responses across different animal species and may therefore find application in the development of vaccines against human malaria and other diseases where high levels of cell-mediated immunity are required.

  5. AMPK Activation Prevents and Reverses Drug-Induced Mitochondrial and Hepatocyte Injury by Promoting Mitochondrial Fusion and Function.

    Directory of Open Access Journals (Sweden)

    Sun Woo Sophie Kang

    Full Text Available Mitochondrial damage is the major factor underlying drug-induced liver disease but whether conditions that thwart mitochondrial injury can prevent or reverse drug-induced liver damage is unclear. A key molecule regulating mitochondria quality control is AMP activated kinase (AMPK. When activated, AMPK causes mitochondria to elongate/fuse and proliferate, with mitochondria now producing more ATP and less reactive oxygen species. Autophagy is also triggered, a process capable of removing damaged/defective mitochondria. To explore whether AMPK activation could potentially prevent or reverse the effects of drug-induced mitochondrial and hepatocellular damage, we added an AMPK activator to collagen sandwich cultures of rat and human hepatocytes exposed to the hepatotoxic drugs, acetaminophen or diclofenac. In the absence of AMPK activation, the drugs caused hepatocytes to lose polarized morphology and have significantly decreased ATP levels and viability. At the subcellular level, mitochondria underwent fragmentation and had decreased membrane potential due to decreased expression of the mitochondrial fusion proteins Mfn1, 2 and/or Opa1. Adding AICAR, a specific AMPK activator, at the time of drug exposure prevented and reversed these effects. The mitochondria became highly fused and ATP production increased, and hepatocytes maintained polarized morphology. In exploring the mechanism responsible for this preventive and reversal effect, we found that AMPK activation prevented drug-mediated decreases in Mfn1, 2 and Opa1. AMPK activation also stimulated autophagy/mitophagy, most significantly in acetaminophen-treated cells. These results suggest that activation of AMPK prevents/reverses drug-induced mitochondrial and hepatocellular damage through regulation of mitochondrial fusion and autophagy, making it a potentially valuable approach for treatment of drug-induced liver injury.

  6. AMPK Activation Prevents and Reverses Drug-Induced Mitochondrial and Hepatocyte Injury by Promoting Mitochondrial Fusion and Function

    Science.gov (United States)

    Taniane, Caitlin; Farrell, Geoffrey; Arias, Irwin M.; Lippincott-Schwartz, Jennifer; Fu, Dong

    2016-01-01

    Mitochondrial damage is the major factor underlying drug-induced liver disease but whether conditions that thwart mitochondrial injury can prevent or reverse drug-induced liver damage is unclear. A key molecule regulating mitochondria quality control is AMP activated kinase (AMPK). When activated, AMPK causes mitochondria to elongate/fuse and proliferate, with mitochondria now producing more ATP and less reactive oxygen species. Autophagy is also triggered, a process capable of removing damaged/defective mitochondria. To explore whether AMPK activation could potentially prevent or reverse the effects of drug-induced mitochondrial and hepatocellular damage, we added an AMPK activator to collagen sandwich cultures of rat and human hepatocytes exposed to the hepatotoxic drugs, acetaminophen or diclofenac. In the absence of AMPK activation, the drugs caused hepatocytes to lose polarized morphology and have significantly decreased ATP levels and viability. At the subcellular level, mitochondria underwent fragmentation and had decreased membrane potential due to decreased expression of the mitochondrial fusion proteins Mfn1, 2 and/or Opa1. Adding AICAR, a specific AMPK activator, at the time of drug exposure prevented and reversed these effects. The mitochondria became highly fused and ATP production increased, and hepatocytes maintained polarized morphology. In exploring the mechanism responsible for this preventive and reversal effect, we found that AMPK activation prevented drug-mediated decreases in Mfn1, 2 and Opa1. AMPK activation also stimulated autophagy/mitophagy, most significantly in acetaminophen-treated cells. These results suggest that activation of AMPK prevents/reverses drug-induced mitochondrial and hepatocellular damage through regulation of mitochondrial fusion and autophagy, making it a potentially valuable approach for treatment of drug-induced liver injury. PMID:27792760

  7. Single-flux-quantum logic circuits exploiting collision-based fusion gates

    International Nuclear Information System (INIS)

    Asai, T.; Yamada, K.; Amemiya, Y.

    2008-01-01

    We propose a single-flux-quantum (SFQ) logic circuit based on the fusion computing systems--collision-based and reaction-diffusion fusion computers. A fusion computing system consists of regularly arrayed unit cells (fusion gates), where each unit has two input arms and two output arms and is connected to its neighboring cells with the arms. We designed functional SFQ circuits that implemented the fusion computation. The unit cell was able to be made with ten Josephson junctions. Circuit simulation with standard Nb/Al-AlOx/Nb 2.5-kA/cm 2 process parameters showed that the SFQ fusion computing systems could operate at 10 GHz clock

  8. Phosphatidylinositol-3-kinase-dependent phosphorylation of SLP-76 by the lymphoma-associated ITK-SYK fusion-protein

    International Nuclear Information System (INIS)

    Hussain, Alamdar; Faryal, Rani; Nore, Beston F.; Mohamed, Abdalla J.; Smith, C.I. Edvard

    2009-01-01

    Recurrent chromosomal translocations have long been implicated in various types of lymphomas and other malignancies. Novel recurrent t(5;9)(q33;q22) has been recently discovered in un-specified peripheral T-cell lymphoma. To elucidate the role of this translocation, the corresponding fusion construct encoding the N-terminal portion of the ITK kinase and the C-terminal catalytic region of the SYK kinase was generated. We herein show that the ITK-SYK fusion-protein is constitutively active. Moreover, we demonstrate that ITK-SYK is phosphorylated on key tyrosine residues and is capable of potently phosphorylating the related adapter proteins BLNK and SLP-76. In transiently transfected cells, SYK was phosphorylated at Y352 but not detectably at the activation-loop tyrosines Y525/Y526. In contrast, ITK-SYK was phosphorylated both at Y212 and the activation-loop tyrosines Y385/Y386, corresponding to Y352 and Y525/Y526 in SYK, respectively. In resting primary lymphocytes, ITK-SYK predominantly localizes to the cell surface. In addition, we demonstrate that following stimulation, the ITK-SYK fusion-protein in cell lines translocates to the cell membrane and, moreover, that this phenomenon as well as SLP-76 phosphorylation are blocked upon phosphatidylinositol-3-kinase (PI3-kinase) inhibition.

  9. Thioredoxin-albumin fusion protein prevents copper enhanced zinc-induced neurotoxicity via its antioxidative activity.

    Science.gov (United States)

    Tanaka, Ken-Ichiro; Shimoda, Mikako; Chuang, Victor T G; Nishida, Kento; Kawahara, Masahiro; Ishida, Tatsuhiro; Otagiri, Masaki; Maruyama, Toru; Ishima, Yu

    2018-01-15

    Zinc (Zn) is a co-factor for a vast number of enzymes, and functions as a regulator for immune mechanism and protein synthesis. However, excessive Zn release induced in pathological situations such as stroke or transient global ischemia is toxic. Previously, we demonstrated that the interaction of Zn and copper (Cu) is involved in the pathogenesis of Alzheimer's disease and vascular dementia. Furthermore, oxidative stress has been shown to play a significant role in the pathogenesis of various metal ions induced neuronal death. Thioredoxin-Albumin fusion (HSA-Trx) is a derivative of thioredoxin (Trx), an antioxidative protein, with improved plasma retention and stability of Trx. In this study, we examined the effect of HSA-Trx on Cu 2+ /Zn 2+ -induced neurotoxicity. Firstly, HSA-Trx was found to clearly suppress Cu 2+ /Zn 2+ -induced neuronal cell death in mouse hypothalamic neuronal cells (GT1-7 cells). Moreover, HSA-Trx markedly suppressed Cu 2+ /Zn 2+ -induced ROS production and the expression of oxidative stress related genes, such as heme oxygenase-1. In contrast, HSA-Trx did not affect the intracellular levels of both Cu 2+ and Zn 2+ after Cu 2+ /Zn 2+ treatment. Finally, HSA-Trx was found to significantly suppress endoplasmic reticulum (ER) stress response induced by Cu 2+ /Zn 2+ treatment in a dose dependent manner. These results suggest that HSA-Trx counteracted Cu 2+ /Zn 2+ -induced neurotoxicity by suppressing the production of ROS via interfering the related gene expressions, in addition to the highly possible radical scavenging activity of the fusion protein. Based on these findings, HSA-Trx has great potential as a promising therapeutic agent for the treatment of refractory neurological diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Expression of an IRF-3 fusion protein and mouse estrogen receptor, inhibits hepatitis C viral replication in RIG-I-deficient Huh 7.5 cells

    Directory of Open Access Journals (Sweden)

    Liu Chen

    2011-09-01

    Full Text Available Abstract Interferon Regulatory Factor-3 (IRF-3 plays a central role in the induction of interferon (IFN production and succeeding interferon-stimulated genes (ISG expression en route for restraining hepatitis C virus (HCV infection. Here, we established a stable Huh7.5-IRF3ER cell line expressing a fusion protein of IRF-3 and mouse estrogen receptor (ER to examine IFN production and anti-HCV effects of IRF-3 in retinoic acid inducible-gene-I (RIG-I deficient Huh 7.5 cells. Homodimerization of the IRF-3ER fusion protein was detected by Western blotting after treatment with the estrogen receptor agonist 4-hydrotamoxifen (4-HT in Huh7.5-IRF3ER cells. Expression of IFN-α, IFN-β, and their inhibitory effects on HCV replication were demonstrated by real-time polymerase chain reaction (PCR. Peak expression of IFN-α and IFN-β was achieved 24-hours post 4-HT treatment, coinciding with the appearance of phosphorylated signal transducer and activator of transcription (STAT proteins. Additionally, HCV viral replication declined in time-dependent fashion. In previous studies, a novel IFN-mediated pathway regulating expression of 1-8U and heterogeneous nuclear ribonucleoprotein M (hnRNP M inhibited HCV internal ribosomal entry site (IRES-dependent translation. When expression of ISGs such as 1-8U and hnRNP M were measured in 4-HT-treated Huh7.5-IRF3ER cells, both genes were positively regulated by activation of the IRF-3ER fusion protein. In conclusion, the anti-HCV effects of IRF-3ER homodimerization inhibited HCV RNA replication as well as HCV IRES-dependent translation in Huh7.5-IRF3ER cells. The results of this study indicate that IRF-3ER homodimerization is a key step to restore IFN expression in Huh7.5-IRF3ER cells and in achieving its anti-HCV effects.

  11. Recent fusion research in the National Institute for Fusion Science

    International Nuclear Information System (INIS)

    Komori, Akio; Sakakibara, Satoru; Sagara, Akio; Horiuchi, Ritoku; Yamada, Hiroshi; Takeiri, Yasuhiko

    2011-01-01

    The National Institute for Fusion Science (NIFS), which was established in 1989, promotes academic approaches toward the exploration of fusion science for steady-state helical reactor and realizes the establishment of a comprehensive understanding of toroidal plasmas as an inter-university research organization and a key center of worldwide fusion research. The Large Helical Device (LHD) Project, the Numerical Simulation Science Project, and the Fusion Engineering Project are organized for early realization of net current free fusion reactor, and their recent activities are described in this paper. The LHD has been producing high-performance plasmas comparable to those of large tokamaks, and several new findings with regard to plasma physics have been obtained. The numerical simulation science project contributes understanding and systemization of the physical mechanisms of plasma confinement in fusion plasmas and explores complexity science of a plasma for realization of the numerical test reactor. In the fusion engineering project, the design of the helical fusion reactor has progressed based on the development of superconducting coils, the blanket, fusion materials and tritium handling. (author)

  12. TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice.

    Science.gov (United States)

    Li, Xiang; Han, Wei-Qing; Boini, Krishna M; Xia, Min; Zhang, Yang; Li, Pin-Lan

    2013-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 4 (DR4), have been implicated in the development of endothelial dysfunction and atherosclerosis. However, the signaling mechanism mediating DR4 activation leading to endothelial injury remains unclear. We recently demonstrated that ceramide production via hydrolysis of membrane sphingomyelin by acid sphingomyelinase (ASM) results in membrane raft (MR) clustering and the formation of important redox signaling platforms, which play a crucial role in amplifying redox signaling in endothelial cells leading to endothelial dysfunction. The present study aims to investigate whether TRAIL triggers MR clustering via lysosome fusion and ASM activation, thereby conducting transmembrane redox signaling and changing endothelial function. Using confocal microscopy, we found that TRAIL induced MR clustering and co-localized with DR4 in coronary arterial endothelial cells (CAECs) isolated from wild-type (Smpd1 (+/+)) mice. Furthermore, TRAIL triggered ASM translocation, ceramide production, and NADPH oxidase aggregation in MR clusters in Smpd1 ( +/+ ) CAECs, whereas these observations were not found in Smpd1 (-/-) CAECs. Moreover, ASM deficiency reduced TRAIL-induced O(2) (-[Symbol: see text]) production in CAECs and abolished TRAIL-induced impairment on endothelium-dependent vasodilation in small resistance arteries. By measuring fluorescence resonance energy transfer, we found that Lamp-1 (lysosome membrane marker protein) and ganglioside G(M1) (MR marker) were trafficking together in Smpd1 (+/+) CAECs, which was absent in Smpd1 (-/-) CAECs. Consistently, fluorescence imaging of living cells with specific lysosome probes demonstrated that TRAIL-induced lysosome fusion with membrane was also absent in Smpd1 (-/-) CAECs. Taken together, these results suggest that ASM is essential for TRAIL-induced lysosomal trafficking, membrane fusion and formation of MR redox signaling platforms

  13. A shallow land buriable low-activation austenitic stainless steel for fusion applications

    International Nuclear Information System (INIS)

    Zucchetti, M.

    1990-01-01

    First-wall components are the most activated materials in fusion reactors, but their activity can be reduced by material selection. The development of new alloys with good mechanical and physical properties and with low activation characteristics is needed. The PCA is one of the reference austenitic stainless steels for fusion structural applications in the United States. In this paper, the authors analyze the induced radioactivity in the PCA in connection with the shallow land burial (SLB) waste disposal concept. The most proper elemental substitutions is suggested for reducing the activity in the PCA. A low-activity version of the PCA is proposed. Since recycling is not possible, shallow land burial is the best achievable goal for a low-activation steel for the first wall. The PCA cannot be accepted for SLB, mainly due to the presence of molybdenum, niobium, and certain impurities. With limited elemental substitutions and impurity limitations, a new alloy (PCA-la) can be obtained. The PCA-la meets requirements for SLB. The properties of PCA-la should be comparable to those of the PCA. Fabrication and testing of specimens to check its main properties will be the next step of this work

  14. Henipavirus Mediated Membrane Fusion, Virus Entry and Targeted Therapeutics

    Directory of Open Access Journals (Sweden)

    Dimitar B. Nikolov

    2012-02-01

    Full Text Available The Paramyxoviridae genus Henipavirus is presently represented by the type species Hendra and Nipah viruses which are both recently emerged zoonotic viral pathogens responsible for repeated outbreaks associated with high morbidity and mortality in Australia, Southeast Asia, India and Bangladesh. These enveloped viruses bind and enter host target cells through the coordinated activities of their attachment (G and class I fusion (F envelope glycoproteins. The henipavirus G glycoprotein interacts with host cellular B class ephrins, triggering conformational alterations in G that lead to the activation of the F glycoprotein, which facilitates the membrane fusion process. Using the recently published structures of HeV-G and NiV-G and other paramyxovirus glycoproteins, we review the features of the henipavirus envelope glycoproteins that appear essential for mediating the viral fusion process, including receptor binding, G-F interaction, F activation, with an emphasis on G and the mutations that disrupt viral infectivity. Finally, recent candidate therapeutics for henipavirus-mediated disease are summarized in light of their ability to inhibit HeV and NiV entry by targeting their G and F glycoproteins.

  15. Nuclear localization and transactivating capacities of the papillary renal cell carcinoma-associated TFE3 and PRCC (fusion) proteins

    NARCIS (Netherlands)

    Weterman, M. A. J.; van Groningen, J. J.; Jansen, A.; van Kessel, A. G.

    2000-01-01

    The papillary renal cell carcinoma-associated t(X;1)(p11;q21) leads to fusion of the transcription factor TFE3 gene on the X-chromosome to a novel gene, PRCC, on chromosome 1. As a result, two putative fusion proteins are formed: PRCCTFE3, which contains all known domains for DNA binding,

  16. A general strategy to endow natural fusion-protein-derived peptides with potent antiviral activity.

    Directory of Open Access Journals (Sweden)

    Antonello Pessi

    Full Text Available Fusion between the viral and target cell membranes is an obligatory step for the infectivity of all enveloped virus, and blocking this process is a clinically validated therapeutic strategy.Viral fusion is driven by specialized proteins which, although specific to each virus, act through a common mechanism, the formation of a complex between two heptad repeat (HR regions. The HR regions are initially separated in an intermediate termed "prehairpin", which bridges the viral and cell membranes, and then fold onto each other to form a 6-helical bundle (6HB, driving the two membranes to fuse. HR-derived peptides can inhibit viral infectivity by binding to the prehairpin intermediate and preventing its transition to the 6HB.The antiviral activity of HR-derived peptides differs considerably among enveloped viruses. For weak inhibitors, potency can be increased by peptide engineering strategies, but sequence-specific optimization is time-consuming. In seeking ways to increase potency without changing the native sequence, we previously reported that attachment to the HR peptide of a cholesterol group ("cholesterol-tagging" dramatically increases its antiviral potency, and simultaneously increases its half-life in vivo. We show here that antiviral potency may be increased by combining cholesterol-tagging with dimerization of the HR-derived sequence, using as examples human parainfluenza virus, Nipah virus, and HIV-1. Together, cholesterol-tagging and dimerization may represent strategies to boost HR peptide potency to levels that in some cases may be compatible with in vivo use, possibly contributing to emergency responses to outbreaks of existing or novel viruses.

  17. Expression of the A56 and K2 proteins is sufficient to inhibit vaccinia virus entry and cell fusion.

    Science.gov (United States)

    Wagenaar, Timothy R; Moss, Bernard

    2009-02-01

    Many animal viruses induce cells to fuse and form syncytia. For vaccinia virus, this phenomenon is associated with mutations affecting the A56 and K2 proteins, which form a multimer (A56/K2) on the surface of infected cells. Recent evidence that A56/K2 interacts with the entry/fusion complex (EFC) and that the EFC is necessary for syncytium formation furnishes a strong connection between virus entry and cell fusion. Among the important remaining questions are whether A56/K2 can prevent virus entry as well as cell-cell fusion and whether these two viral proteins are sufficient as well as necessary for this. To answer these questions, we transiently and stably expressed A56 and K2 in uninfected cells. Uninfected cells expressing A56 and K2 exhibited resistance to fusing with A56 mutant virus-infected cells, whereas expression of A56 or K2 alone induced little or no resistance, which fits with the need for both proteins to bind the EFC. Furthermore, transient or stable expression of A56/K2 interfered with virus entry and replication as determined by inhibition of early expression of a luciferase reporter gene, virus production, and plaque formation. The specificity of this effect was demonstrated by restoring entry after enzymatically removing a chimeric glycophosphatidylinositol-anchored A56/K2 or by binding a monoclonal antibody to A56. Importantly, the antibody disrupted the interaction between A56/K2 and the EFC without disrupting the A56-K2 interaction itself. Thus, we have shown that A56/K2 is sufficient to prevent virus entry and fusion as well as formation of syncytia through interaction with the EFC.

  18. A practical approach for active camera coordination based on a fusion-driven multi-agent system

    Science.gov (United States)

    Bustamante, Alvaro Luis; Molina, José M.; Patricio, Miguel A.

    2014-04-01

    In this paper, we propose a multi-agent system architecture to manage spatially distributed active (or pan-tilt-zoom) cameras. Traditional video surveillance algorithms are of no use for active cameras, and we have to look at different approaches. Such multi-sensor surveillance systems have to be designed to solve two related problems: data fusion and coordinated sensor-task management. Generally, architectures proposed for the coordinated operation of multiple cameras are based on the centralisation of management decisions at the fusion centre. However, the existence of intelligent sensors capable of decision making brings with it the possibility of conceiving alternative decentralised architectures. This problem is approached by means of a MAS, integrating data fusion as an integral part of the architecture for distributed coordination purposes. This paper presents the MAS architecture and system agents.

  19. Human serum activates CIDEB-mediated lipid droplet enlargement in hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Singaravelu, Ragunath [Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Lyn, Rodney K. [Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Srinivasan, Prashanth [National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Delcorde, Julie [Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Steenbergen, Rineke H.; Tyrrell, D. Lorne [Department of Medical Microbiology and Immunology, University of Alberta (Canada); Li Ka Shing Institute of Virology, Katz Centre for Pharmacy and Health Research, Edmonton, Alberta T6G 2S2 (Canada); Pezacki, John P., E-mail: John.Pezacki@nrc-cnrc.gc.ca [Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada)

    2013-11-15

    Highlights: •Human serum induced differentiation of hepatoma cells increases cellular lipid droplet (LD) size. •The observed increase in LD size correlates with increased PGC-1α and CIDEB expression. •Induction of CIDEB expression correlates with rescue of VLDL secretion and loss of ADRP. •siRNA knockdown of CIDEB impairs the human serum mediated increase in LD size. •This system represents a cost-efficient model to study CIDEB’s role in lipid biology. -- Abstract: Human hepatocytes constitutively express the lipid droplet (LD) associated protein cell death-inducing DFFA-like effector B (CIDEB). CIDEB mediates LD fusion, as well as very-low-density lipoprotein (VLDL) maturation. However, there are limited cell culture models readily available to study CIDEB’s role in these biological processes, as hepatoma cell lines express negligible levels of CIDEB. Recent work has highlighted the ability of human serum to differentiate hepatoma cells. Herein, we demonstrate that culturing Huh7.5 cells in media supplemented with human serum activates CIDEB expression. This activation occurs through the induced expression of PGC-1α, a positive transcriptional regulator of CIDEB. Coherent anti-Stokes Raman scattering (CARS) microscopy revealed a correlation between CIDEB levels and LD size in human serum treated Huh7.5 cells. Human serum treatment also resulted in a rapid decrease in the levels of adipose differentiation-related protein (ADRP). Furthermore, individual overexpression of CIDEB was sufficient to down-regulate ADRP protein levels. siRNA knockdown of CIDEB revealed that the human serum mediated increase in LD size was CIDEB-dependent. Overall, our work highlights CIDEB’s role in LD fusion, and presents a new model system to study the PGC-1α/CIDEB pathway’s role in LD dynamics and the VLDL pathway.

  20. Human serum activates CIDEB-mediated lipid droplet enlargement in hepatoma cells

    International Nuclear Information System (INIS)

    Singaravelu, Ragunath; Lyn, Rodney K.; Srinivasan, Prashanth; Delcorde, Julie; Steenbergen, Rineke H.; Tyrrell, D. Lorne; Pezacki, John P.

    2013-01-01

    Highlights: •Human serum induced differentiation of hepatoma cells increases cellular lipid droplet (LD) size. •The observed increase in LD size correlates with increased PGC-1α and CIDEB expression. •Induction of CIDEB expression correlates with rescue of VLDL secretion and loss of ADRP. •siRNA knockdown of CIDEB impairs the human serum mediated increase in LD size. •This system represents a cost-efficient model to study CIDEB’s role in lipid biology. -- Abstract: Human hepatocytes constitutively express the lipid droplet (LD) associated protein cell death-inducing DFFA-like effector B (CIDEB). CIDEB mediates LD fusion, as well as very-low-density lipoprotein (VLDL) maturation. However, there are limited cell culture models readily available to study CIDEB’s role in these biological processes, as hepatoma cell lines express negligible levels of CIDEB. Recent work has highlighted the ability of human serum to differentiate hepatoma cells. Herein, we demonstrate that culturing Huh7.5 cells in media supplemented with human serum activates CIDEB expression. This activation occurs through the induced expression of PGC-1α, a positive transcriptional regulator of CIDEB. Coherent anti-Stokes Raman scattering (CARS) microscopy revealed a correlation between CIDEB levels and LD size in human serum treated Huh7.5 cells. Human serum treatment also resulted in a rapid decrease in the levels of adipose differentiation-related protein (ADRP). Furthermore, individual overexpression of CIDEB was sufficient to down-regulate ADRP protein levels. siRNA knockdown of CIDEB revealed that the human serum mediated increase in LD size was CIDEB-dependent. Overall, our work highlights CIDEB’s role in LD fusion, and presents a new model system to study the PGC-1α/CIDEB pathway’s role in LD dynamics and the VLDL pathway

  1. Impurity concentration limits and activation in fusion reactor structural materials

    International Nuclear Information System (INIS)

    Zucchetti, M.

    1991-01-01

    This paper examines waste management problems related to impurity activation in first-wall, shield, and magnet materials for fusion reactors. Definitions of low activity based on hands-on recycling, remote recycling, and shallow land burial waste management criteria are discussed. Estimates of the impurity concentration in low-activation materials (elementally substituted stainless steels and vanadium alloys) are reported. Impurity activation in first-wall materials turns out to be critical after a comparison of impurity concentration limits and estimated levels. Activation of magnet materials is then considered: Long-term activity is not a concern, while short-term activity is. In both cases, impurity activation is negligible. Magnet materials, and all other less flux-exposed materials, have no practical limitation on impurities in terms of induced radioactivity

  2. Safety aspects of activation products in a compact Tokamak Fusion Power Plant

    International Nuclear Information System (INIS)

    Willenberg, H.J.; Bickford, W.E.

    1978-10-01

    Neutron activation of materials in a compact tokamak fusion reactor has been investigated. Results of activation product inventory, dose rate, and decay heat calculations in the blanket and injectors are presented for a reactor design with stainless steel structures. Routine transport of activated materials into the plasma and vacuum systems is discussed. Accidental release of radioactive materials as a result of liquid lithium spills is also considered

  3. Circumferential fusion improves outcome in comparison with instrumented posterolateral fusion

    DEFF Research Database (Denmark)

    Videbaek, Tina S; Christensen, Finn B; Soegaard, Rikke

    2006-01-01

    with respect to all four DPQ categories: daily activities, work/leisure, anxiety/depression, and social interest. The Oswestry Disability Index supported these results (P ...STUDY DESIGN: Prospective randomized clinical study with a 5- to 9-year follow-up period. OBJECTIVE: The aim of the present study was to analyze the long-term outcome with respect to functional disability, pain, and general health of patients treated by means of circumferential lumbar fusion...... in comparison with those treated by means of instrumented posterolateral lumbar fusion. SUMMARY OF BACKGROUND DATA: Circumferential fusion has become a common procedure in lumbar spinal fusion both as a primary and salvage procedure. However, the claimed advantages of circumferential fusion over conventional...

  4. Transfer of herpes simplex virus thymidine kinase synthesized in bacteria by a high-expression plasmid to tissue culture cells by protoplast fusion

    International Nuclear Information System (INIS)

    Waldman, A.S.; Milman, G.

    1984-01-01

    The introduction of a protein into living tissue culture cells may permit the in vivo study of functions of the protein. The authors have previously described a high-efficiency-expression plasmid, pHETK2, containing the herpes simplex virus type 1 thymidine kinase (TK) gene which, upon temperature induction, causes TK to be synthesized as greater than 4% of the bacterial protein. In this report it is shown that enzymatically active TK was transferred to mouse Ltk- cells by polyethylene glycol-mediated fusion with protoplasts prepared from bacteria containing induced levels of TK. The presence of TK in the Ltk- cells was detected by the incorporation of [ 3 H]thymidine into cell nuclei as measured by autoradiography

  5. Case Study: Organotypic human in vitro models of embryonic morphogenetic fusion

    Science.gov (United States)

    Morphogenetic fusion of tissues is a common event in embryonic development and disruption of fusion is associated with birth defects of the eye, heart, neural tube, phallus, palate, and other organ systems. Embryonic tissue fusion requires precise regulation of cell-cell and cell...

  6. Self-Assembly of Spider Silk-Fusion Proteins Comprising Enzymatic and Fluorescence Activity.

    Science.gov (United States)

    Humenik, Martin; Mohrand, Madeleine; Scheibel, Thomas

    2018-04-18

    The recombinant spider silk protein eADF4(C16) was genetically fused either with esterase 2 (EST2) or green fluorescent protein (GFP). The fusions EST-eADF4(C16) and GFP-eADF4(C16) were spectroscopically investigated and showed native structures of EST and GFP. The structural integrity was confirmed by the enzymatic activity of EST and the fluorescence of GFP. The spider silk moiety retained its intrinsically unstructured conformation in solution and the self-assembly into either nanofibrils or nanoparticles could be controlled by the concentration of phosphate. Particles, however, showed significantly lower activity of the EST and GFP domains likely caused by a steric hindrance. However, upon self-assembly of EST-eADF4(C16) and GFP-eADF4(C16) into fibrils the protein activities were retained. In general, the fusion of globular enzymes with the spider silk domain allows the generation of fibrous biomaterials with catalytic or light emitting properties.

  7. Overview of Australian activities of fusion neutronics

    International Nuclear Information System (INIS)

    Zimin, S.; Dewar, R.L.

    1999-01-01

    The new status of the H-1NF heliac stellarator as a national facility and the signed international implementing agreement on collaboration in the development of the stellarator concept should together be a significant encouragement for further fusion research in Australia. In this report the future of fusion research in Australia is discussed with special attention being paid to the importance of stellarator power plant studies and in particular stellarator fusion neutronics. The main differences between tokamak and stellarator neutronics analyses are identified, namely the neutron wall loading, geometrical modelling and total heating in in-vessel reactor components including toroidal field (TF) coils. An approach to stellarator (TF) coils heating calculations is discussed. This approach is a modification of a previously reported method of total heating calculations in tokamak TF coils. Due to the more complicated nature of stellarator neutronics analyses, simplified approaches to fusion neutronics already developed for tokamaks are expected to be even more important and widely used for designing a conceptual stellarator power plant. (orig.)

  8. Activation calculation and radiation analysis for China Fusion Engineering Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi, E-mail: zchen@ustc.edu.cn; Qiao, Shiji; Jiang, Shuai; Xu, X. George

    2016-11-01

    Highlights: • Activation calculation was performed using FLUKA for the main components of CFETR. • Radionuclides and radioactive wastes were assessed for CFETR. • The Waste Disposal Ratings (WDR) were assessed for CFETR. - Abstract: The activation calculation and analysis for the China Fusion Engineering Test Reactor (CFETR) will play an important role in its system design, maintenance, inspection and assessment of nuclear waste. Using the multi-particle transport code FLUKA and its associated data library, we calculated the radioactivity, specific activity, waste disposal rating from activation products, nuclides in the tritium breeding blanket, shielding layer, vacuum vessel and toroidal field coil (TFC) of CFETR. This paper presents the calculation results including neutron flux, activation products and waste disposal rating after one-year full operation of the CFETR. The findings show that, under the assumption of one-year operation at the 200 MW fusion power, the total radioactivity inventory will be 1.05 × 10{sup 19} Bq at shutdown and 1.03 × 10{sup 17} Bq after ten years. The primary residual nuclide is found to be {sup 55}Fe in ten years after the shutdown. The waste disposal rating (WDR) values are very low (<<1), according to Class C limits, CFETR materials are qualified for shallow land burial. It is shown that CFETR has no serious activation safety issue.

  9. Activation of human natural killer cells by the soluble form of cellular prion protein

    International Nuclear Information System (INIS)

    Seong, Yeon-Jae; Sung, Pil Soo; Jang, Young-Soon; Choi, Young Joon; Park, Bum-Chan; Park, Su-Hyung; Park, Young Woo; Shin, Eui-Cheol

    2015-01-01

    Cellular prion protein (PrP C ) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP C in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP C protein on human natural killer (NK) cells. Recombinant soluble PrP C protein was generated by fusion of human PrP C with the Fc portion of human IgG 1 (PrP C -Fc). PrP C -Fc binds to the surface of human NK cells, particularly to CD56 dim NK cells. PrP C -Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP C -Fc facilitated the IL-15-induced proliferation of NK cells. PrP C -Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP C -Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP C -Fc protein activates human NK cells via the ERK and JNK signaling pathways. - Highlights: • Recombinant soluble PrP C (PrP C -Fc) was generated by fusion of human PrP C with IgG1 Fc portion. • PrP C -Fc protein induces the production of cytokines and degranulation from human NK cells. • PrP C -Fc protein enhances the IL-15-induced proliferation of human NK cells. • PrP C -Fc protein activates human NK cells via the ERK and JNK signaling pathways

  10. Reversible conformational change in herpes simplex virus glycoprotein B with fusion-from-without activity is triggered by mildly acidic pH

    Directory of Open Access Journals (Sweden)

    Nicola Anthony V

    2010-12-01

    Full Text Available Abstract Background The pre-fusion form of the herpes simplex virus (HSV fusion protein gB undergoes pH-triggered conformational change in vitro and during viral entry (Dollery et al., J. Virol. 84:3759-3766, 2010. The antigenic structure of gB from the fusion-from-without (FFWO strain of HSV-1, ANG path, resembles wild type gB that has undergone pH-triggered changes. Together, changes in the antigenic and oligomeric conformation of gB correlate with fusion activity. We tested whether the pre-fusion form of FFWO gB undergoes altered conformational change in response to low pH. Results A pH of 5.5 - 6.0 altered the conformation of Domains I and V of FFWO gB, which together comprise the functional region containing the hydrophobic fusion loops. The ANG path gB oligomer was altered at a similar pH. All changes were reversible. In wild type HSV lacking the UL45 protein, which has been implicated in gB-mediated fusion, gB still underwent pH-triggered changes. ANG path entry was inactivated by pretreatment of virions with low pH. Conclusion The pre-fusion conformation of gB with enhanced fusion activity undergoes alteration in antigenic structure and oligomeric conformation in response to acidic pH. We propose that endosomal pH triggers conformational change in mutant gB with FFWO activity in a manner similar to wild type. Differences apart from this trigger may account for the increased fusion activity of FFWO gB.

  11. Integral activation experiment of fusion reactor materials with d-Li neutrons up to 55 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Moellendorff, Ulrich von [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Wada, Masayuki [Business Automation Co., Ltd., Tokyo (Japan)

    2000-03-01

    An integral activation experiment of fusion reactor materials with a deuteron-lithium neutron source was performed. Since the maximum energy of neutrons produced was 55 MeV, the experiment with associated analysis was one of the first attempts for extending the energy range beyond 20 MeV. The following keywords represent the present study: d-Li neutrons, 55 MeV, dosimetry, SAND-II, spectrum adjustment, LA-150, MCNP, McDeLi, IFMIF, fusion reactor materials, integral activation experiment, low-activation, F82H, vanadium-alloy, IEAF, ALARA, and sequential charged particle reaction. (author)

  12. Why and how of fusion

    International Nuclear Information System (INIS)

    Miley, G.H.

    1977-01-01

    The potential advantages of fusion power are listed. The approaches to plasma containment are mentioned and the status of the fusion program is described. The ERDA and EPRI programs are discussed. The Fusion Energy Foundation's activities are mentioned. Fusion research at the U. of Ill. is described briefly

  13. [Comparison of two types of cell cultures for preparation of sTNFRII-gAD fusion protein].

    Science.gov (United States)

    Huang, Shigao; Yin, Yuting; Xiong, Chunhui; Wang, Caihong; Lü, Jianxin; Gao, Jimin

    2013-01-01

    In this study we used two types of cell cultures, i.e., anchorage-dependent basket and full suspension batch cultures of sTNFRII-gAD-expressing CHO cells in the CelliGen 310 bioreactor (7.5 L) to compare their yields in order to optimize the culturing conditions for efficient expression of sTNFRII-gAD fusion protein consisting of soluble tumor necrosis factor receptor II and globular domain of adiponectin. The anchorage-dependent basket culture was performed in 4L 10% serum-containing medium with the final inoculating concentration of 3 x 10(5) to 4 x 10(5) cells/mL of sTNFRII-gAD-expressing CHO cells for 3 days, and then switched to 4 L serum-free LK021 medium to continue the culture for 4 days. The full suspension batch culture was carried out in the 4 L serum-free LK021 medium with the final inoculating concentration of 3 x 10(5) to 4 x 10(5) cells/mL of sTNFRII-gAD-expressing CHO cells for 7 days. The culturing conditions were monitored in real-time to maintain pH and dissolved oxygen stability through the whole process. The supernatants were collected by centrifuge, and the protein was concentrated through Pellicon flow ultrafiltration system and then purified by DEAE anion exchange. The results showed that the yields of sTNFRII-gAD fusion protein were 8.0 mg/L with 95% purity and 7.5 mg/L with 98% purity in the anchorage-dependent basket and the full suspension batch cultures, respectively. The study provided the framework for the pilot production of sTNFRII-gAD fusion protein.

  14. Jamb and jamc are essential for vertebrate myocyte fusion.

    Directory of Open Access Journals (Sweden)

    Gareth T Powell

    2011-12-01

    Full Text Available Cellular fusion is required in the development of several tissues, including skeletal muscle. In vertebrates, this process is poorly understood and lacks an in vivo-validated cell surface heterophilic receptor pair that is necessary for fusion. Identification of essential cell surface interactions between fusing cells is an important step in elucidating the molecular mechanism of cellular fusion. We show here that the zebrafish orthologues of JAM-B and JAM-C receptors are essential for fusion of myocyte precursors to form syncytial muscle fibres. Both jamb and jamc are dynamically co-expressed in developing muscles and encode receptors that physically interact. Heritable mutations in either gene prevent myocyte fusion in vivo, resulting in an overabundance of mononuclear, but otherwise overtly normal, functional fast-twitch muscle fibres. Transplantation experiments show that the Jamb and Jamc receptors must interact between neighbouring cells (in trans for fusion to occur. We also show that jamc is ectopically expressed in prdm1a mutant slow muscle precursors, which inappropriately fuse with other myocytes, suggesting that control of myocyte fusion through regulation of jamc expression has important implications for the growth and patterning of muscles. Our discovery of a receptor-ligand pair critical for fusion in vivo has important implications for understanding the molecular mechanisms responsible for myocyte fusion and its regulation in vertebrate myogenesis.

  15. Accelerator Fusion Research Division 1991 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    Berkner, Klaus H.

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  16. Accelerator & Fusion Research Division 1991 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  17. Renal epithelial cells can release ATP by vesicular fusion

    Directory of Open Access Journals (Sweden)

    Randi G Bjaelde

    2013-09-01

    Full Text Available Renal epithelial cells have the ability to release nucleotides as paracrine factors. In the intercalated cells of the collecting duct, ATP is released by connexin30 (cx30, which is selectively expressed in this cell type. However, ATP is released by virtually all renal epithelia and the aim of the present study was to identify possible alternative nucleotide release pathways in a renal epithelial cell model. We used MDCK (type1 cells to screen for various potential ATP release pathways. In these cells, inhibition of the vesicular H+-ATPases (bafilomycin reduced both the spontaneous and hypotonically (80%-induced nucleotide release. Interference with vesicular fusion using N-ethylamide markedly reduced the spontaneous nucleotide release, as did interference with trafficking from the endoplasmic reticulum to the Golgi apparatus (brefeldin A1 and vesicular transport (nocodazole. These findings were substantiated using a siRNA directed against SNAP-23, which significantly reduced spontaneous ATP release. Inhibition of pannexin and connexins did not affect the spontaneous ATP release in this cell type, which consists of ∼90% principal cells. TIRF-microscopy of either fluorescently-labeled ATP (MANT-ATP or quinacrine-loaded vesicles, revealed that spontaneous release of single vesicles could be promoted by either hypoosmolality (50% or ionomycin. This vesicular release decreased the overall cellular fluorescence by 5.8% and 7.6% respectively. In summary, this study supports the notion that spontaneous and induced ATP release can occur via exocytosis in renal epithelial cells.

  18. Accelerator and Fusion Research Division 1989 summary of activities

    International Nuclear Information System (INIS)

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations

  19. Ubiquitin-fusion degradation pathway: A new strategy for inducing CD8 cells specific for mycobacterial HSP65

    International Nuclear Information System (INIS)

    Shen Jianying; Hisaeda, Hajime; Chou Bin; Yu Qingsheng; Tu Liping; Himeno, Kunisuke

    2008-01-01

    The ubiquitin-proteasome system (UPS) plays an indispensable role in inducing MHC class I-restricted CD8 + T cells. In this study, we exploited UPS to induce CD8 + T cells specific for mycobacterial HSP65 (mHSP65), one of the leading vaccine candidates against infection with Mycobacterium tuberculosis. A chimeric DNA termed pU-HSP65 encoding a fusion protein between murine ubiquitin and mHSP65 was constructed, and C57BL/6 (B6) mice were immunized with the DNA using gene gun bombardment. Mice immunized with the chimeric DNA acquired potent resistance against challenge with the syngeneic B16F1 melanoma cells transfected with the mHSP65 gene (HSP65/B16F1), compared with those immunized with DNA encoding only mHSP65. Splenocytes from the former group of mice showed a higher grade of cytotoxic activity against HSP65/B16F1 cells and contained a larger number of granzyme B- or IFN-γ-producing CD8 + T cells compared with those from the latter group of mice

  20. Transmutation and activation of fusion reactor wall and structural materials

    International Nuclear Information System (INIS)

    Jarvis, O.N.

    1979-01-01

    This report details the extent of the nuclear data needed for inclusion in a data library to be used for general assessments of fusion reactor structure activation and transmutation, describes the sources of data available, reviews the literature and explores the reliability of current calculations by providing an independent assessment of the activity inventory to be expected from five structural materials in a simple blanket design for comparison with the results of other workers. An indication of the nuclear reactions which make important contributions to the activity, transmutation and gas production rates for these structural materials is also presented. (author)

  1. Accelerator and Fusion Research Division 1989 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

  2. Amino acid changes within the E protein hinge region that affect dengue virus type 2 infectivity and fusion

    International Nuclear Information System (INIS)

    Butrapet, Siritorn; Childers, Thomas; Moss, Kelley J.; Erb, Steven M.; Luy, Betty E.; Calvert, Amanda E.; Blair, Carol D.; Roehrig, John T.; Huang, Claire Y.-H.

    2011-01-01

    Fifteen mutant dengue viruses were engineered and used to identify AAs in the molecular hinge of the envelope protein that are critical to viral infection. Substitutions at Q52, A54, or E133 reduced infectivity in mammalian cells and altered the pH threshold of fusion. Mutations at F193, G266, I270, or G281 affected viral replication in mammalian and mosquito cells, but only I270W had reduced fusion activity. T280Y affected the pH threshold for fusion and reduced replication in C6/36 cells. Three different mutations at L135 were lethal in mammalian cells. Among them, L135G abrogated fusion and reduced replication in C6/36 cells, but only slightly reduced the mosquito infection rate. Conversely, L135W replicated well in C6/36 cells, but had the lowest mosquito infection rate. Possible interactions between hinge residues 52 and 277, or among 53, 135, 170, 186, 265, and 276 required for hinge function were discovered by sequence analysis to identify compensatory mutations.

  3. A novel fusion protein of IP10-scFv retains antibody specificity and chemokine function

    International Nuclear Information System (INIS)

    Guo Junqing; Chen Liu; Ai Hongwu; Jing Jiannian; Zhou Jiyong; Zhang Chuyu; You Shangyou

    2004-01-01

    We combined the specificity of tumor-specific antibody with the chemokine function of interferon-γ inducible protein 10 (IP-10) to recruit immune effector cells in the vicinity of tumor cells. A novel fusion protein of IP10-scFv was constructed by fusing mouse IP-10 to V H region of single-chain Fv fragment (scFv) against acidic isoferritin (AIF), and expressed in NS0 murine myeloma cells. The IP10-scFv fusion protein was shown to maintain the specificity of the antiAIF scFv with similar affinity constant, and bind to the human hepatocarcinoma SMMC 7721 cells secreting AIF as well as the activated mouse T lymphocytes expressing CXCR3 receptor. Furthermore, the IP10-scFv protein either in solution or bound on the surface of SMMC 7721 cells induced significant chemotaxis of mouse T cells in vitro. The results indicate that the IP10-scFv fusion protein possesses both bioactivities of the tumor-specific antibody and IP-10 chemokine, suggesting its possibility to induce an enhanced immune response against the residual tumor cells in vivo

  4. Neutronics analysis of International Fusion Material Irradiation Facility (IFMIF). Japanese contributions

    International Nuclear Information System (INIS)

    Oyama, Yukio; Noda, Kenji; Kosako, Kazuaki.

    1997-10-01

    In fusion reactor development for demonstration reactor, i.e., DEMO, materials tolerable for D-T neutron irradiation are absolutely required for both mechanical and safety point of views. For this requirement, several kinds of low activation materials were proposed. However, experimental data by actual D-T fusion neutron irradiation have not existed so far because of lack of fusion neutron irradiation facility, except fundamental radiation damage studies at very low neutron fluence. Therefore such a facility has been strongly requested. According to agreement of need for such a facility among the international parties, a conceptual design activity (CDA) of International Fusion Material Irradiation Facility (IFMIF) has been carried out under the frame work of the IEA-Implementing Agreement. In the activity, a neutronics analysis on irradiation field optimization in the IFMIF test cell was performed in three parties, Japan, US and EU. As the Japanese contribution, the present paper describes a neutron source term as well as incident deuteron beam angle optimization of two beam geometry, beam shape (foot print) optimization, and dpa, gas production and heating estimation inside various material loading Module, including a sensitivity analysis of source term uncertainty to the estimated irradiation parameters. (author)

  5. Material science and manufacturing of heat-resistant reduced-activation ferritic-martensitic steels for fusion

    International Nuclear Information System (INIS)

    Ioltukhovskiy, A.G.; Blokhin, A.I.; Budylkin, N.I.; Chernov, V.M.; Leont'eva-Smirnova, M.V.; Mironova, E.G.; Medvedeva, E.A.; Solonin, M.I.; Porollo, S.I.; Zavyalsky, L.P.

    2000-01-01

    A number of issues regarding the development and use of 10-12% Cr reduced-activation ferritic-martensitic steels (RAFMS) for fusion are considered. These include: (1) problems of manufacturing and modifying their composition and metallurgical condition; (2) the influence on properties of their composition, purity, δ-ferrite concentration and cooling rates in the final stages of manufacturing; and (3) the effects of neutron irradiation at 320-650 deg. C up to 108 dpa on their mechanical properties. In addition, neutron activation and nuclear accumulation of elements in RAFMS with different initial concentrations of alloying and impurity elements for typical fusion reactor (DEMO) irradiation regimes have been calculated

  6. of Hypoxia-Inducible Factor-1α Activity by the Fusion of High-Resolution SPECT and Morphological Imaging Tests

    Directory of Open Access Journals (Sweden)

    Hirofumi Fujii

    2012-01-01

    Full Text Available Purpose. We aimed to clearly visualize heterogeneous distribution of hypoxia-inducible factor 1α (HIF activity in tumor tissues in vivo. Methods. We synthesized of 125I-IPOS, a 125I labeled chimeric protein probe, that would visualize HIF activity. The biodistribution of 125I-IPOS in FM3A tumor-bearing mice was evaluated. Then, the intratumoral localization of this probe was observed by autoradiography, and it was compared with histopathological findings. The distribution of 125I-IPOS in tumors was imaged by a small animal SPECT/CT scanner. The obtained in vivo SPECT-CT fusion images were compared with ex vivo images of excised tumors. Fusion imaging with MRI was also examined. Results. 125I-IPOS well accumulated in FM3A tumors. The intratumoral distribution of 125I-IPOS by autoradiography was quite heterogeneous, and it partially overlapped with that of pimonidazole. High-resolution SPECT-CT fusion images successfully demonstrated the heterogeneity of 125I-IPOS distribution inside tumors. SPECT-MRI fusion images could give more detailed information about the intratumoral distribution of 125I-IPOS. Conclusion. High-resolution SPECT images successfully demonstrated heterogeneous intratumoral distribution of 125I-IPOS. SPECT-CT fusion images, more favorably SPECT-MRI fusion images, would be useful to understand the features of heterogeneous intratumoral expression of HIF activity in vivo.

  7. Activation Inventories after Exposure to DD/DT Neutrons in Safety Analysis of Nuclear Fusion Installations.

    Science.gov (United States)

    Stankunas, Gediminas; Cufar, Aljaz; Tidikas, Andrius; Batistoni, Paola

    2017-11-23

    Irradiations with 14 MeV fusion neutrons are planned at Joint European Torus (JET) in DT operations with the objective to validate the calculation of the activation of structural materials in functional materials expected in ITER and fusion plants. This study describes the activation and dose rate calculations performed for materials irradiated throughout the DT plasma operation during which the samples of real fusion materials are exposed to 14 MeV neutrons inside the JET vacuum vessel. Preparatory activities are in progress during the current DD operations with dosimetry foils to measure the local neutron fluence and spectrum at the sample irradiation position. The materials included those used in the manufacturing of the main in-vessel components, such as ITER-grade W, Be, CuCrZr, 316 L(N) and the functional materials used in diagnostics and heating systems. The neutron-induced activities and dose rates at shutdown were calculated by the FISPACT code, using the neutron fluxes and spectra that were provided by the preceding MCNP neutron transport calculations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. “Stealth dissemination” of macrophage-tumor cell fusions cultured from blood of patients with pancreatic ductal adenocarcinoma

    Science.gov (United States)

    Circulating tumor cells (CTCs) appear to be involved in early dissemination of many cancers, although which characteristics are important in metastatic spread are not clear. Here we describe isolation and characterization of macrophage-tumor cell fusions (MTFs) from the blood of pancreatic ductal a...

  9. Application of optical tweezers and excimer laser to study protoplast fusion

    Science.gov (United States)

    Kantawang, Titirat; Samipak, Sompid; Limtrakul, Jumras; Chattham, Nattaporn

    2015-07-01

    Protoplast fusion is a physical phenomenon that two protoplasts come in contact and fuse together. Doing so, it is possible to combine specific genes from one protoplast to another during fusion such as drought resistance and disease resistance. There are a few possible methods to induce protoplast fusion, for example, electrofusion and chemical fusion. In this study, chemical fusion was performed with laser applied as an external force to enhance rate of fusion and observed under a microscope. Optical tweezers (1064 nm with 100X objective N.A. 1.3) and excimer laser (308 nm LMU-40X-UVB objective) were set with a Nikon Ti-U inverted microscope. Samples were prepared by soaking in hypertonic solution in order to induce cell plasmolysis. Elodea Canadensis and Allium cepa plasmolysed leaves were cut and observed under microscope. Concentration of solution was varied to induce difference turgor pressures on protoplasts pushing at cell wall. Free protoplasts in solution were trapped by optical tweezers to study the effect of Polyethylene glycol (PEG) solution. PEG was diluted by Ca+ solution during the process to induced protoplast cell contact and fusion. Possibility of protoplast fusion by excimer laser was investigated and found possible. Here we report a novel tool for plant cell fusion using excimer laser. Plant growth after cell fusion is currently conducted.

  10. A soluble form of Epstein-Barr virus gH/gL inhibits EBV-induced membrane fusion and does not function in fusion

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Cynthia L. [Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 (United States); Connolly, Sarah A. [Department of Health Sciences, DePaul University, Chicago, IL 60614 (United States); Chen, Jia [Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 (United States); Jardetzky, Theodore S. [Department of Structural Biology, Stanford University School of Medicine, 371 Serra Mall, Stanford, CA 94305 (United States); Longnecker, Richard, E-mail: r-longnecker@northwestern.edu [Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 (United States)

    2013-02-05

    We investigated whether soluble EBV gH/gL (sgH/gL) functions in fusion and made a series of truncations of gH/gL domains based on the gH/gL crystal structure. We found sgH/gL failed to mediate cell-cell fusion both when co-expressed with the other entry glycoproteins and when added exogenously to fusion assays. Interestingly, sgH/gL inhibited cell-cell fusion in a dose dependent manner when co-expressed. sgH/gL from HSV was unable to inhibit EBV fusion, suggesting the inhibition was specific to EBV gH/gL. sgH/gL stably binds gp42, but not gB nor gH/gL. The domain mutants, DI/gL, DI-II/gL and DI-II-III/gL were unable to bind gp42. Instead, DI-II/gL, DI-II-III/gL and sgH/gL but not DI/gL decreased the expression of gp42, resulting in decreased overall fusion. Overall, our results suggest that domain IV may be required for proper folding and the transmembrane domain and cytoplasmic tail of EBV gH/gL are required for the most efficient fusion.

  11. California serogroup GC (G1) glycoprotein is the principal determinant of pH-dependent cell fusion and entry

    International Nuclear Information System (INIS)

    Plassmeyer, Matthew L.; Soldan, Samantha S.; Stachelek, Karen M.; Martin-Garcia, Julio; Gonzalez-Scarano, Francisco

    2005-01-01

    Members of the California serogroup of orthobunyaviruses, particularly La Crosse (LAC) and Tahyna (TAH) viruses, are significant human pathogens in areas where their mosquito vectors are endemic. Previous studies using wild-type LAC and TAH181/57, a highly neurovirulent strain with low neuroinvasiveness (Janssen, R., Gonzalez-Scarano, F., Nathanson, N., 1984. Mechanisms of bunyavirus virulence. Comparative pathogenesis of a virulent strain of La Crosse and an avirulent strain of Tahyna virus. Lab. Invest. 50 (4), 447-455), have demonstrated that the neuroinvasive phenotype maps to the M segment, the segment that encodes the two viral glycoproteins GN (G2) and GC (G1), as well as a non-structural protein NSm. To further define the role of GN and GC in fusion and entry, we prepared a panel of recombinant M segment constructs using LAC, TAH181/57, and V22F, a monoclonal-resistant variant of LAC with deficient fusion function. These M segment constructs were then tested in two surrogate assays for virus entry: a cell-to-cell fusion assay based on T7-luciferase expression, and a pseudotype transduction assay based on the incorporation of the bunyavirus glycoproteins on an MLV backbone. Both assays demonstrated that GC is the principal determinant of virus fusion and cell entry, and furthermore that the region delineated by amino acids 860-1442, corresponding to the membrane proximal two-thirds of GC, is key to these processes. These results, coupled with structural modeling suggesting homologies between the carboxy region of GC and Sindbis virus E1, suggest that the LAC GC functions as a type II fusion protein

  12. Decoupling internalization, acidification and phagosomal-endosomal/lysosomal fusion during phagocytosis of InlA coated beads in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Craig D Blanchette

    Full Text Available BACKGROUND: Phagocytosis has been extensively examined in 'professional' phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established. In addition, very little work has been done to systematically examine phagosomal maturation in 'non-professional' phagocytic cells. Therefore, in this study, we developed a simple method to measure and decouple particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK and Caco-2 epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS: Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA, a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated phagocytosis. We were able to independently measure the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads with antibody quenching, a pH sensitive dye and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we exploited the phagosomal acidification process to demonstrate an additional, real-time method for tracking bead binding, internalization and phagosomal acidification. CONCLUSIONS/SIGNIFICANCE: Using this method, we found that the time scales for internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion ranged from 23-32 min, 3-4 min and 74-120 min, respectively, for MDCK and Caco-2 epithelial cells. Both the static and real-time methods developed here are expected to be readily and broadly applicable, as they simply

  13. Expression, purification and characterization of a phyAm-phyCs fusion phytase*

    Science.gov (United States)

    Zou, Li-kou; Wang, Hong-ning; Pan, Xin; Tian, Guo-bao; Xie, Zi-wen; Wu, Qi; Chen, Hui; Xie, Tao; Yang, Zhi-rong

    2008-01-01

    The phyAm gene encoding acid phytase and optimized neutral phytase phyCs gene were inserted into expression vector pPIC9K in correct orientation and transformed into Pichia pastoris in order to expand the pH profile of phytase and decrease the cost of production. The fusion phytase phyAm-phyCs gene was successfully overexpressed in P. pastoris as an active and extracellular phytase. The yield of total extracellular fusion phytase activity is (25.4±0.53) U/ml at the flask scale and (159.1±2.92) U/ml for high cell-density fermentation, respectively. Purified fusion phytase exhibits an optimal temperature at 55 °C and an optimal pH at 5.5~6.0 and its relative activity remains at a relatively high level of above 70% in the range of pH 2.0 to 7.0. About 51% to 63% of its original activity remains after incubation at 75 °C to 95 °C for 10 min. Due to heavy glycosylation, the expressed fusion phytase shows a broad and diffuse band in SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). After deglycosylation by endoglycosidase H (EndoHf), the enzyme has an apparent molecular size of 95 kDa. The characterization of the fusion phytase was compared with those of phyCs and phyAm. PMID:18600783

  14. Recycling of copper used in fusion power plants

    International Nuclear Information System (INIS)

    Forty, C.B.A.; Butterworth, G.J.; Turner, A.D.; Junkison, A.J.

    1997-04-01

    One of the major safety and environmental advantages of fusion power is a limited waste management burden on future generations. In this connection, the ability to recycle end-of-service materials from fusion power plant is beneficial both in terms of the conservation of natural resources and the minimisation of the volumes of activated wastes. After 100 years, the residual activity of near-plasma copper components exceeds that permitted for free release or contact handling. The presence of silver as a common impurity in copper may exacerbate this problem, through generation of 108m Ag. Removal of the silver impurity in a separate refining step prior to use of the copper in a fusion plant obviates the problems associated with formation of 108m Ag. Two alternative desilveration processes have been demonstrated; one involving the segregation of silver as AgBr and the other the absorption of Ag + by ion exchange. The present study demonstrates that conventional electrorefining techniques can be adapted to recover used copper in a single refining stage, with sufficient decontamination to permit its reuse in fusion power plants or, with a second stage, unrestricted release. Shielding requirements for the processing of scrap copper in conventional hot cells indicate a decay storage period of 50-100 years. To maximise the cost of savings of reclamation over direct geological disposal, the activation products may be separated out and disposed of in a metallic form. A substantial reduction in the overall volume of active waste should thus be achievable, especially if supercompaction can be applied to the product. (Author)

  15. Recycling of copper used in fusion power plants

    International Nuclear Information System (INIS)

    Butterworth, G.J.; Forty, C.B.A.

    1998-01-01

    One of the major safety and environmental advantages of fusion power is a limited waste management burden on future generations. In this connection, the ability to recycle end-of-service materials from fusion power plants is beneficial both in terms of the conservation of natural resources and the minimisation of the volume of activated wastes. After 100 years, the residual activity of near-plasma copper components exceeds that permitted for free release or contact handling. The presence of silver as a common impurity in copper may exacerbate this problem, through generation of 108m Ag. Removal of the silver impurity in a separate refining step prior to use of the copper in a fusion plant obviates the problems associated with formation of 108m Ag. Two alternative desilverisation processes have been demonstrated; one involving the segregation of silver as AgBr and the other the absorption of Ag + by ion exchange. The present study demonstrates that conventional electrorefining techniques can be adapted to recover used copper in a single refining stage, with sufficient decontamination to permit its reuse in fusion power plants or, with a second stage, unrestricted release. Shielding requirements for the processing of scrap copper in conventional hot cells indicate a decay storage period of 50-100 years. To maximise the cost savings of reclamation over direct geological disposal, the activation products may be separated out and disposed of in a metallic form. A substantial reduction in the overall volume of active waste should thus be achievable, especially if supercompaction can be applied to the product. (orig.)

  16. The MARVEL domain protein, Singles Bar, is required for progression past the pre-fusion complex stage of myoblast fusion.

    Science.gov (United States)

    Estrada, Beatriz; Maeland, Anne D; Gisselbrecht, Stephen S; Bloor, James W; Brown, Nicholas H; Michelson, Alan M

    2007-07-15

    Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where--as in myoblast fusion--membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells are unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane.

  17. Hybrid clone cells derived from human breast epithelial cells and human breast cancer cells exhibit properties of cancer stem/initiating cells.

    Science.gov (United States)

    Gauck, Daria; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas

    2017-08-02

    The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS

  18. Assessment of fusion reactor development. Proceedings

    International Nuclear Information System (INIS)

    Inoue, N.; Tazima, T.

    1994-04-01

    Symposium on assessment of fusion reactor development was held to make clear critical issues, which should be resolved for the commercial fusion reactor as a major energy source in the next century. Discussing items were as follows. (1) The motive force of fusion power development from viewpoints of future energy demand, energy resources and earth environment for 'Sustainable Development'. (2) Comparison of characteristics with other alternative energy sources, i.e. fission power and solar cell power. (3) Future planning of fusion research and advanced fuel fusion (D 3 He). (4) Critical issues of fusion reactor development such as Li extraction from the sea water, structural material and safety. (author)

  19. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1978-01-01

    We have carried out conceptual design studies of fusion reactors based on the three current mirror confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fission fuel for fission reactors. We have designed a large commercial hybrid based on standard mirror confinement, and also a small pilot plant hybrid. Tandem mirror designs include a commercial 1000 MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single cell pilot plant

  20. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Conceptual design studies were made of fusion reactors based on the three current mirror-confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fuel for fission reactors. We have designed a large commercial hybrid and a small pilot-plant hybrid based on standard mirror confinement. Tandem mirror designs include a commercial 1000-MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single-cell pilot plant

  1. Fusion research in Hungary

    International Nuclear Information System (INIS)

    Zoletnik, S.

    2004-01-01

    Hungarian fusion research started in the 1970s, when the idea of installing a small tokamak experiment emerged. In return to computer equipment a soviet tokamak was indeed sent to Hungary and started to operate as MT-1 at the Central Research Institute for Physics (KFKI) in 1979. Major research topics included diagnostic development, edge plasma studies and investigation of disruptions. Following a major upgrade in 1992 (new vacuum vessel, active position control and PC network based data acquisition system) the MT-1M tokamak was used for the study of transport processes with trace impurity injection, micropellet ablation studies, X-ray tomography and laser blow-off diagnostic development. Although funding ceased in the middle of the 90's the group was held alive by collaborations with EU fusion labs: FZ -Juelich, IPP-Garching and CRPP-EPFL Lausanne. In 1998 the machine was dismantled due to reorganization of the Hungarian Academy of Sciences. New horizons opened to fusion research from 1999, when Hungary joined EURATOM and a fusion Association was formed. Since then fusion physics studies are done in collaboration with major EU fusion laboratories, Hungarian researchers also play an active role in JET diagnostics upgrade and ITER design. Major topics are pellet ablation studies, plasma turbulence diagnosis using Beam Emission Spectroscopy and other techniques, tomography and plasma diagnostics using various neutral beams. In fusion relevant technology R and D Hungary has less records. Before joining EURATOM some materials irradiation studies were done at the Budapest Research Reactor at KFKI-AEKI. The present day fusion technology programme focuses still on irradiation studies, nuclear material database and electromagnetic testing techniques. Increasing the fusion technology research activities is a difficult task, as the competition in Hungarian industry is very strong and the interest of organizations in long-term investments into R and D is rather weak and

  2. Functional human antibody CDR fusions as long-acting therapeutic endocrine agonists.

    Science.gov (United States)

    Liu, Tao; Zhang, Yong; Liu, Yan; Wang, Ying; Jia, Haiqun; Kang, Mingchao; Luo, Xiaozhou; Caballero, Dawna; Gonzalez, Jose; Sherwood, Lance; Nunez, Vanessa; Wang, Danling; Woods, Ashley; Schultz, Peter G; Wang, Feng

    2015-02-03

    On the basis of the 3D structure of a bovine antibody with a well-folded, ultralong complementarity-determining region (CDR), we have developed a versatile approach for generating human or humanized antibody agonists with excellent pharmacological properties. Using human growth hormone (hGH) and human leptin (hLeptin) as model proteins, we have demonstrated that functional human antibody CDR fusions can be efficiently engineered by grafting the native hormones into different CDRs of the humanized antibody Herceptin. The resulting Herceptin CDR fusion proteins were expressed in good yields in mammalian cells and retain comparable in vitro biological activity to the native hormones. Pharmacological studies in rodents indicated a 20- to 100-fold increase in plasma circulating half-life for these antibody agonists and significantly extended in vivo activities in the GH-deficient rat model and leptin-deficient obese mouse model for the hGH and hLeptin antibody fusions, respectively. These results illustrate the utility of antibody CDR fusions as a general and versatile strategy for generating long-acting protein therapeutics.

  3. Activation of human natural killer cells by the soluble form of cellular prion protein

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Yeon-Jae [Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of); Hafis Clinic, Seoul (Korea, Republic of); Sung, Pil Soo; Jang, Young-Soon; Choi, Young Joon [Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of); Park, Bum-Chan [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Park, Su-Hyung [Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of); Park, Young Woo [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Shin, Eui-Cheol, E-mail: ecshin@kaist.ac.kr [Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of)

    2015-08-21

    Cellular prion protein (PrP{sup C}) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP{sup C} in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP{sup C} protein on human natural killer (NK) cells. Recombinant soluble PrP{sup C} protein was generated by fusion of human PrP{sup C} with the Fc portion of human IgG{sub 1} (PrP{sup C}-Fc). PrP{sup C}-Fc binds to the surface of human NK cells, particularly to CD56{sup dim} NK cells. PrP{sup C}-Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP{sup C}-Fc facilitated the IL-15-induced proliferation of NK cells. PrP{sup C}-Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP{sup C}-Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways. - Highlights: • Recombinant soluble PrP{sup C} (PrP{sup C}-Fc) was generated by fusion of human PrP{sup C} with IgG1 Fc portion. • PrP{sup C}-Fc protein induces the production of cytokines and degranulation from human NK cells. • PrP{sup C}-Fc protein enhances the IL-15-induced proliferation of human NK cells. • PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways.

  4. Engineering of a parainfluenza virus type 5 fusion protein (PIV-5 F): development of an autonomous and hyperfusogenic protein by a combinational mutagenesis approach.

    Science.gov (United States)

    Terrier, O; Durupt, F; Cartet, G; Thomas, L; Lina, B; Rosa-Calatrava, M

    2009-12-01

    The entry of enveloped viruses into host cells is accomplished by fusion of the viral envelope with the target cell membrane. For the paramyxovirus parainfluenza virus type 5 (PIV-5), this fusion involves an attachment protein (HN) and a class I viral fusion protein (F). We investigated the effect of 20 different combinations of 12 amino-acid substitutions within functional domains of the PIV-5 F glycoprotein, by performing cell surface expression measurements, quantitative fusion and syncytia assays. We found that combinations of mutations conferring an autonomous phenotype with mutations leading to an increased fusion activity were compatible and generated functional PIV-5 F proteins. The addition of mutations in the heptad-repeat domains led to both autonomous and hyperfusogenic phenotypes, despite the low cell surface expression of the corresponding mutants. Such engineering approach may prove useful not only for deciphering the fundamental mechanism behind viral-mediated membrane fusion but also in the development of potential therapeutic applications.

  5. The ORNL Controlled Fusion Atomic Data Center: Overview of Activities 2011

    International Nuclear Information System (INIS)

    Schultz, D.R.

    2011-01-01

    The Controlled Fusion Atomic Data Center (CFADC) of the Oak Ridge National Laboratory continued operation aimed at collecting, evaluating, and disseminating atomic, molecular, and particle-surface interaction (AM and PSI) data needed by both the U.S. and international plasma science communities. This work has been carried out within an overarching atomic physics research group which produces much of the required data through an active experimental and theoretical science program. The production of an annotated bibliography of AM and PSI literature relevant to plasma science continues to be among the most important activities of the data center, forming the basis for the CFADC on-line bibliographic search engine and a significant part of the IAEA A+M Data Unit's 'International Bulletin on Atomic and Molecular Data for Fusion.' Also chief among the data center's activities are responses to specific data requests from the plasma science community, leading to either rapid feedback using existing data resources or long term data production projects, as well as participation in IAEA Coordinated Research Programs including recently 'Data for Surface Composition Dynamics Relevant to Erosion Processes' and 'Atomic and Molecular Data for Plasma Modeling.' Highlights of recent data production projects include the following: Experimental and theoretical data for inelastic electron-hydrocarbon reactions, large scale computational results for particle reflection from surfaces, measurements of chemical sputtering from carbon, inaugural experiments considering molecular ion collisions with neutral hydrogen, and expansion of the database of elastic and related transport cross sections calculated for intrinsic and extrinsic impurities in hydrogen plasmas. Progress is being hampered owing to news from the US Department of Energy that it plans to close out the program after a ramp down of funding in 2012, following a distinguished 52 year history of contributions to the US and

  6. Early and late HIV-1 membrane fusion events are impaired by sphinganine lipidated peptides that target the fusion site.

    Science.gov (United States)

    Klug, Yoel A; Ashkenazi, Avraham; Viard, Mathias; Porat, Ziv; Blumenthal, Robert; Shai, Yechiel

    2014-07-15

    Lipid-conjugated peptides have advanced the understanding of membrane protein functions and the roles of lipids in the membrane milieu. These lipopeptides modulate various biological systems such as viral fusion. A single function has been suggested for the lipid, binding to the membrane and thus elevating the local concentration of the peptide at the target site. In the present paper, we challenged this argument by exploring in-depth the antiviral mechanism of lipopeptides, which comprise sphinganine, the lipid backbone of DHSM (dihydrosphingomyelin), and an HIV-1 envelope-derived peptide. Surprisingly, we discovered a partnership between the lipid and the peptide that impaired early membrane fusion events by reducing CD4 receptor lateral diffusion and HIV-1 fusion peptide-mediated lipid mixing. Moreover, only the joint function of sphinganine and its conjugate peptide disrupted HIV-1 fusion protein assembly and folding at the later fusion steps. Via imaging techniques we revealed for the first time the direct localization of these lipopeptides to the virus-cell and cell-cell contact sites. Overall, the findings of the present study may suggest lipid-protein interactions in various biological systems and may help uncover a role for elevated DHSM in HIV-1 and its target cell membranes.

  7. Involvement of PKCα in PMA-induced facilitation of exocytosis and vesicle fusion in PC12 cells

    International Nuclear Information System (INIS)

    Xue Renhao; Zhao Yanying; Chen Peng

    2009-01-01

    Phorbol-12-myristate-13-acetate, a stable analog of the important signaling membrane lipid diacylglycerol (DAG), is known to potentiate exocytosis and modulate vesicle fusion kinetics in neurons and endocrine cells. The exact mechanisms underlying the actions of PMA, however, is often not clear, largely because of the diversity of the DAG/PMA receptors involved in the exocytotic process, which include, most notably, various isoforms of protein kinase C (PKC). In this study, the roles of PKCα in PMA-mediated regulation of exocytosis were investigated by over-expressing wild-type PKCα (wt-PKCα) or dominant negative PKCα (dn-PKCα). Amperometric measurements based on carbon fiber microelectrodes demonstrated that PKCα has a key role in the PMA-mediated facilitation of exocytosis and vesicle fusion in neuroendocrine PC12 cells.

  8. Plan for decommissioning the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Walton, G.R.

    1993-01-01

    The Tokamak Fusion Test Reactor (TFTR) Project is in the planning phase of developing a decommissioning project. A Preliminary Decontamination and Decommissioning (D ampersand D) Plan has been developed which provides a framework for the baseline approach, and the cost and schedule estimates. TFTR will become activated and contaminated with tritium after completion of the deuterium-tritium (D-T) experiments. Hence some of the D ampersand D operations will require remote handling. It is expected that all of the waste generated will be low level radioactive waste (LLW). The objective of the D ampersand D Project is to make TFTR Test Cell available for use by a new fusion experiment. This paper discusses the D ampersand D objectives, the facility to be decommissioned, estimates of activation, the technical (baseline) approach, and the assumptions used to develop cost and schedule estimates

  9. Activation calculation and environmental safety analysis for fusion experimental breeder (FEB)

    Energy Technology Data Exchange (ETDEWEB)

    Kaiming, Feng [Southwest Inst. of Physics, Leshan, SC (China)

    1996-04-01

    An activation calculation code FDKR and decay chain data library AFDCDLIB are used to calculate the radioactivity, decay heat, dose rate and biological hazard potential (BHP) form activation products, actinides and fission products in a Fusion Experiment Breeder (FEB). The code and library are introduced briefly, and calculation results and decay curves of related hazards after one year operation with 150 MW fusion power are given. The total radioactivity inventory, decay heat and BHP are 5.74 x 10{sup 20} Bq, 8.34 MW and 4.08 x 10{sup 8} km{sup 3} of air, respectively, at shutdown. Results obtained show that the first wall of FEB can meet the nuclear waste disposal criteria for the NRC 10 CFR61 Class C after a few weeks from shutdown. The inventory of important actinides for the fuel reprocessing, such as {sup 232}U and {sup 237}Np were also calculated. It was shown that their concentrations do not excess the limit value of environmental safety required. (9 refs., 4 figs., 9 tabs.).

  10. Fusion reactor materials

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Burn, G.L.; Knee', S.S.; Dowker, C.L.

    1994-02-01

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  11. Recombinant ESAT-6-CFP10 Fusion Protein Induction of Th1/Th2 Cytokines and FoxP3 Expressing Treg Cells in Pulmonary TB.

    Directory of Open Access Journals (Sweden)

    Dolly Jackson-Sillah

    Full Text Available Early secretory antigenic target 6 (ESAT-6 and culture filtrate protein 10 (CFP-10 are Mycobacterium tuberculosis (Mtb-specific antigens that are secreted by actively metabolising bacteria and contribute to the virulence of the bacteria. Their ability to induce Treg and Th2 responses, particularly during the first two weeks of treatment, has not been comprehensively examined to date. The purpose of this work was to characterise Th1, Th2 and Treg responses to rESAT-6-CFP10 fusion protein in TB patients before and during the intensive phase of treatment and in healthy M.bovis BCG vaccinated donors.Forty-six newly diagnosed, HIV-negative, smear-positive pulmonary TB patients and 20 healthy donors were recruited in the UK and Ghana. Their peripheral blood mononuclear cells (PBMC were used in ex vivo ELISPOT and in vitro cultures to identify immunological parameters of interest.The study confirmed that protective immune responses to rESAT-6-CFP10 are impaired in active TB but improved during treatment: circulating antigen-specific IL-4-producing T-cells were increased in untreated TB but declined by two weeks of treatment while the circulating antigen-specific IFN-γ producing T cells which showed a transient rise at one week of treatment, persisted at baseline levels at two months of treatment. In vitro T cell proliferation and IFN-γ production were reduced, while IL-4 and CD4(+FoxP3(+CD25(hi cell expression were increased in response to rESAT-6-CFP10 fusion protein in untreated TB. These responses were reversed during early treatment of TB.These observations support further investigations into the possible utility of these parameters as markers of active disease and favourable treatment outcomes.

  12. Recombinant ESAT-6-CFP10 Fusion Protein Induction of Th1/Th2 Cytokines and FoxP3 Expressing Treg Cells in Pulmonary TB.

    Science.gov (United States)

    Jackson-Sillah, Dolly; Cliff, Jacqueline M; Mensah, Gloria Ivy; Dickson, Emmanuel; Sowah, Sandra; Tetteh, John K A; Addo, Kwasi K; Ottenhoff, Tom H M; Bothamley, Graham; Dockrell, Hazel M

    2013-01-01

    Early secretory antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) are Mycobacterium tuberculosis (Mtb)-specific antigens that are secreted by actively metabolising bacteria and contribute to the virulence of the bacteria. Their ability to induce Treg and Th2 responses, particularly during the first two weeks of treatment, has not been comprehensively examined to date. The purpose of this work was to characterise Th1, Th2 and Treg responses to rESAT-6-CFP10 fusion protein in TB patients before and during the intensive phase of treatment and in healthy M.bovis BCG vaccinated donors. Forty-six newly diagnosed, HIV-negative, smear-positive pulmonary TB patients and 20 healthy donors were recruited in the UK and Ghana. Their peripheral blood mononuclear cells (PBMC) were used in ex vivo ELISPOT and in vitro cultures to identify immunological parameters of interest. The study confirmed that protective immune responses to rESAT-6-CFP10 are impaired in active TB but improved during treatment: circulating antigen-specific IL-4-producing T-cells were increased in untreated TB but declined by two weeks of treatment while the circulating antigen-specific IFN-γ producing T cells which showed a transient rise at one week of treatment, persisted at baseline levels at two months of treatment. In vitro T cell proliferation and IFN-γ production were reduced, while IL-4 and CD4(+)FoxP3(+)CD25(hi) cell expression were increased in response to rESAT-6-CFP10 fusion protein in untreated TB. These responses were reversed during early treatment of TB. These observations support further investigations into the possible utility of these parameters as markers of active disease and favourable treatment outcomes.

  13. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    International Nuclear Information System (INIS)

    None

    2000-01-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects

  14. Building the US National Fusion Grid: results from the National Fusion Collaboratory Project

    International Nuclear Information System (INIS)

    Schissel, D.P.; Burruss, J.R.; Finkelstein, A.; Flanagan, S.M.; Foster, I.T.; Fredian, T.W.; Greenwald, M.J.; Johnson, C.R.; Keahey, K.; Klasky, S.A.; Li, K.; McCune, D.C.; Papka, M.; Peng, Q.; Randerson, L.; Sanderson, A.; Stillerman, J.; Stevens, R.; Thompson, M.R.; Wallace, G.

    2004-01-01

    The US National Fusion Collaboratory Project is developing a persistent infrastructure to enable scientific collaboration for all aspects of magnetic fusion research. The project is creating a robust, user-friendly collaborative software environment and making it available to more than 1000 fusion scientists in 40 institutions who perform magnetic fusion research in the United States. In particular, the project is developing and deploying a national Fusion Energy Sciences Grid (FusionGrid) that is a system for secure sharing of computation, visualization, and data resources over the Internet. The FusionGrid goal is to allow scientists at remote sites to fully participate in experimental and computational activities as if they were working at a common site thereby creating a virtual organization of the US fusion community. The project is funded by the USDOE Office of Science, Scientific Discovery through Advanced Computing (SciDAC) Program and unites fusion and computer science researchers to directly address these challenges

  15. Spatial and functional restriction of regulatory molecules during mammalian myoblast fusion

    International Nuclear Information System (INIS)

    Pavlath, Grace K.

    2010-01-01

    Myoblast fusion is a highly regulated process that is key for forming skeletal muscle during development and regeneration in mammals. Much remains to be understood about the molecular regulation of myoblast fusion. Some molecules that influence mammalian muscle fusion display specific cellular localization during myogenesis. Such molecules can be localized to the contact region between two fusing cells either in both cells or only in one of the cells. How distinct localization of molecules contributes to fusion is not clear. Further complexity exists as other molecules are functionally restricted to myoblasts at later stages of myogenesis to regulate their fusion with multinucleated myotubes. This review examines these three categories of molecules and discusses how spatial and functional restriction may contribute to the formation of a multinucleated cell. Understanding how and why molecules become restricted in location or function is likely to provide further insights into the mechanisms regulating mammalian muscle fusion.

  16. Myoblast fusion in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Haralalka, Shruti [Stowers Institute for Medical Research, Kansas City, MO 64110 (United States); Abmayr, Susan M., E-mail: sma@stowers.org [Stowers Institute for Medical Research, Kansas City, MO 64110 (United States); Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO 66160 (United States)

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  17. Myoblast fusion in Drosophila

    International Nuclear Information System (INIS)

    Haralalka, Shruti; Abmayr, Susan M.

    2010-01-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  18. A Short-Term Advantage for Syngamy in the Origin of Eukaryotic Sex: Effects of Cell Fusion on Cell Cycle Duration and Other Effects Related to the Duration of the Cell Cycle-Relationship between Cell Growth Curve and the Optimal Size of the Species, and Circadian Cell Cycle in Photosynthetic Unicellular Organisms.

    Science.gov (United States)

    Mancebo Quintana, J M; Mancebo Quintana, S

    2012-01-01

    The origin of sex is becoming a vexatious issue for Evolutionary Biology. Numerous hypotheses have been proposed, based on the genetic effects of sex, on trophic effects or on the formation of cysts and syncytia. Our approach addresses the change in cell cycle duration which would cause cell fusion. Several results are obtained through graphical and mathematical analysis and computer simulations. (1) In poor environments, cell fusion would be an advantageous strategy, as fusion between cells of different size shortens the cycle of the smaller cell (relative to the asexual cycle), and the majority of mergers would occur between cells of different sizes. (2) The easiest-to-evolve regulation of cell proliferation (sexual/asexual) would be by modifying the checkpoints of the cell cycle. (3) A regulation of this kind would have required the existence of the G2 phase, and sex could thus be the cause of the appearance of this phase. Regarding cell cycle, (4) the exponential curve is the only cell growth curve that has no effect on the optimal cell size in unicellular species; (5) the existence of a plateau with no growth at the end of the cell cycle explains the circadian cell cycle observed in unicellular algae.

  19. A Short-Term Advantage for Syngamy in the Origin of Eukaryotic Sex: Effects of Cell Fusion on Cell Cycle Duration and Other Effects Related to the Duration of the Cell Cycle—Relationship between Cell Growth Curve and the Optimal Size of the Species, and Circadian Cell Cycle in Photosynthetic Unicellular Organisms

    Science.gov (United States)

    Mancebo Quintana, J. M.; Mancebo Quintana, S.

    2012-01-01

    The origin of sex is becoming a vexatious issue for Evolutionary Biology. Numerous hypotheses have been proposed, based on the genetic effects of sex, on trophic effects or on the formation of cysts and syncytia. Our approach addresses the change in cell cycle duration which would cause cell fusion. Several results are obtained through graphical and mathematical analysis and computer simulations. (1) In poor environments, cell fusion would be an advantageous strategy, as fusion between cells of different size shortens the cycle of the smaller cell (relative to the asexual cycle), and the majority of mergers would occur between cells of different sizes. (2) The easiest-to-evolve regulation of cell proliferation (sexual/asexual) would be by modifying the checkpoints of the cell cycle. (3) A regulation of this kind would have required the existence of the G2 phase, and sex could thus be the cause of the appearance of this phase. Regarding cell cycle, (4) the exponential curve is the only cell growth curve that has no effect on the optimal cell size in unicellular species; (5) the existence of a plateau with no growth at the end of the cell cycle explains the circadian cell cycle observed in unicellular algae. PMID:22666626

  20. Blob-level active-passive data fusion for Benthic classification

    Science.gov (United States)

    Park, Joong Yong; Kalluri, Hemanth; Mathur, Abhinav; Ramnath, Vinod; Kim, Minsu; Aitken, Jennifer; Tuell, Grady

    2012-06-01

    We extend the data fusion pixel level to the more semantically meaningful blob level, using the mean-shift algorithm to form labeled blobs having high similarity in the feature domain, and connectivity in the spatial domain. We have also developed Bhattacharyya Distance (BD) and rule-based classifiers, and have implemented these higher-level data fusion algorithms into the CZMIL Data Processing System. Applying these new algorithms to recent SHOALS and CASI data at Plymouth Harbor, Massachusetts, we achieved improved benthic classification accuracies over those produced with either single sensor, or pixel-level fusion strategies. These results appear to validate the hypothesis that classification accuracy may be generally improved by adopting higher spatial and semantic levels of fusion.

  1. Combined use of different Gfp reporters for monitoring single-cell activities of a genetically modified PCB degrader in the rhizosphere of alfalfa

    DEFF Research Database (Denmark)

    Boldt, T.S.; Sørensen, J.; Karlsson, U.

    2004-01-01

    Single-cell localization and activity of Pseudomonas,fluorescens F113, colonizing alfalfa roots, were monitored using fusions of the Escherichia coli rrnBP1 ribosomal promoter and gfp genes encoding green fluorescent protein (Gfp) of different stability. The monitoring systems permitted non...... of chlorinated biphenyl was constructed, using another gfp fusion with the meta-pathway Pin promoter from Pseudomonas putida (TOL plasmid). Expression of this promoter, which is strongly induced by the PCB-2 degradation product, 3-chlorobenzoate, was tested in vitro and subsequently monitored in vivo on alfalfa...... roots using the P. fluorescens F113rifpcb reporter. A small but distinct fraction of the introduced bacteria activated the Pm promoter and thus appeared to sense a PCB-2 degradation product in the alfalfa rhizosphere. The degrading cells, which by design were identical to the sensing cells, were located...

  2. Fusion protein based on Grb2-SH2 domain for cancer therapy

    International Nuclear Information System (INIS)

    Saito, Yuriko; Furukawa, Takako; Arano, Yasushi; Fujibayashi, Yasuhisa; Saga, Tsuneo

    2010-01-01

    Research highlights: → Grb2 mediates EGFR signaling through binding to phosphorylate EGFR with SH2 domain. → We generated fusion proteins containing 1 or 2 SH2 domains of Grb2 added with TAT. → The one with 2 SH2 domains (TSSF) interfered ERK phosphorylation. → TSSF significantly delayed the growth of EGFR overexpressing tumor in a mouse model. -- Abstract: Epidermal growth factor receptor (EGFR) is one of the very attractive targets for cancer therapy. In this study, we generated fusion proteins containing one or two Src-homology 2 (SH2) domains of growth factor receptor bound protein 2 (Grb2), which bind to phosphorylated EGFR, added with HIV-1 transactivating transcription for cell membrane penetration (termed TSF and TSSF, respectively). We examined if they can interfere Grb2-mediated signaling pathway and suppress tumor growth as expected from the lack of SH3 domain, which is necessary to intermediate EGFR-Grb2 cell signaling, in the fusion proteins. The transduction efficiency of TSSF was similar to that of TSF, but the binding activity of TSSF to EGFR was higher than that of TSF. Treatment of EGFR-overexpressing cells showed that TSSF decreased p42-ERK phosphorylation, while TSF did not. Both the proteins delayed cell growth but did not induce cell death in culture. TSSF also significantly suppressed tumor growth in vivo under consecutive administration. In conclusion, TSSF showed an ability to inhibit EGFR-Grb2 signaling and could have a potential to treat EGFR-activated cancer.

  3. Magnetic fusion energy. Part VI

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The first chapter of this part describes briefly the DOE policy for fusion energy. Subsequent chapters include: FY 1980 overview - activities of the Office of Fusion Energy; subactivity descriptions (confinement systems, development and technology, applied plasma physics, and reactor projects); field activities (DOE laboratories, educational institutions, nonprofit organizations, and commercial firms); commercialization; environmental implications; regional activities; and international programs

  4. Cells with dysfunctional telomeres are susceptible to reactive oxygen species hydrogen peroxide via generation of multichromosomal fusions and chromosomal fragments bearing telomeres

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Seon Rang [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Park, Jeong-Eun; Juhn, Kyoung-Mi; Ju, Yeun-Jin; Jeong, Jaemin [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Kang, Chang-Mo; Yun, Hyun Jin [Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Yun, Mi Yong; Shin, Hyun-Jin; Joo, Hyun-Yoo; Park, Eun-Ran; Park, In-Chul; Hong, Sung Hee; Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Kim, Haekwon [Department of Biotechnology, Seoul Woman' s University, Seoul 139-774 (Korea, Republic of); Cho, Myung-Haing [Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Sang Hoon [Department of Biology, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Park, Gil Hong [Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Lee, Kee-Ho, E-mail: khlee@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Under conditions of telomere erosion, cells become extremely sensitive to H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer Chromosomal regions adjacent to telomeres are cleaved by H{sub 2}O{sub 2} under such conditions. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} thus causes multichromosomal fusions and generation of small chromosomal fragments. Black-Right-Pointing-Pointer N-acetylcysteine prevents H{sub 2}O{sub 2}-induced chromosomal aberrations. -- Abstract: During genotoxic stress, reactive oxygen species hydrogen peroxide (H{sub 2}O{sub 2}) is a prime mediator of the DNA damage response. Telomeres function both to assist in DNA damage repair and to inhibit chromosomal end-to-end fusion. Here, we show that telomere dysfunction renders cells susceptible to H{sub 2}O{sub 2}, via generation of multichromosomal fusion and chromosomal fragments. H{sub 2}O{sub 2} caused formation of multichromosomal end-to-end fusions involving more than three chromosomes, preferentially when telomeres were erosive. Interestingly, extensive chromosomal fragmentation (yielding small-sized fragments) occurred only in cells exhibiting such multichromosomal fusions. Telomeres were absent from fusion points, being rather present in the small fragments, indicating that H{sub 2}O{sub 2} cleaves chromosomal regions adjacent to telomeres. Restoration of telomere function or addition of the antioxidant N-acetylcysteine prevented development of chromosomal aberrations and rescued the observed hypersensitivity to H{sub 2}O{sub 2}. Thus, chromosomal regions adjacent to telomeres become sensitive to reactive oxygen species hydrogen peroxide when telomeres are dysfunctional, and are cleaved to produce multichromosomal fusions and small chromosomal fragments bearing the telomeres.

  5. A novel fusion protein of IP10-scFv retains antibody specificity and chemokine function

    Energy Technology Data Exchange (ETDEWEB)

    Junqing, Guo; Liu, Chen; Hongwu, Ai; Jiannian, Jing; Jiyong, Zhou; Chuyu, Zhang; Shangyou, You

    2004-07-23

    We combined the specificity of tumor-specific antibody with the chemokine function of interferon-{gamma} inducible protein 10 (IP-10) to recruit immune effector cells in the vicinity of tumor cells. A novel fusion protein of IP10-scFv was constructed by fusing mouse IP-10 to V{sub H} region of single-chain Fv fragment (scFv) against acidic isoferritin (AIF), and expressed in NS0 murine myeloma cells. The IP10-scFv fusion protein was shown to maintain the specificity of the antiAIF scFv with similar affinity constant, and bind to the human hepatocarcinoma SMMC 7721 cells secreting AIF as well as the activated mouse T lymphocytes expressing CXCR3 receptor. Furthermore, the IP10-scFv protein either in solution or bound on the surface of SMMC 7721 cells induced significant chemotaxis of mouse T cells in vitro. The results indicate that the IP10-scFv fusion protein possesses both bioactivities of the tumor-specific antibody and IP-10 chemokine, suggesting its possibility to induce an enhanced immune response against the residual tumor cells in vivo.

  6. Phospholipase A2 activity-dependent and -independent fusogenic activity of Naja nigricollis CMS-9 on zwitterionic and anionic phospholipid vesicles.

    Science.gov (United States)

    Chiou, Yi-Ling; Chen, Ying-Jung; Lin, Shinne-Ren; Chang, Long-Sen

    2011-11-01

    CMS-9, a phospholipase A(2) (PLA(2)) from Naja nigricollis venom, induced the death of human breast cancer MCF-7 cells accompanied with the formation of cell clumps without clear boundaries between cells. Annexin V-FITC staining indicated that abundant phosphatidylserine appeared on the outer membrane of MCF-7 cell clumps, implying the possibility that CMS-9 may promote membrane fusion via anionic phospholipids. To validate this proposition, fusogenic activity of CMS-9 on vesicles composed of zwitterionic phospholipid alone or a combination of zwitterionic and anionic phospholipids was examined. Although CMS-9-induced fusion of zwitterionic phospholipid vesicles depended on PLA(2) activity, CMS-9-induced fusion of vesicles containing anionic phospholipids could occur without the involvement of PLA(2) activity. Membrane-damaging activity of CMS-9 was associated with its fusogenicity. Moreover, CMS-9 induced differently membrane leakage and membrane fusion of vesicles with different compositions. Membrane fluidity and binding capability with phospholipid vesicles were not related to the fusogenicity of CMS-9. However, membrane-bound conformation and mode of CMS-9 depended on phospholipid compositions. Collectively, our data suggest that PLA(2) activity-dependent and -independent fusogenicity of CMS-9 are closely related to its membrane-bound modes and targeted membrane compositions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications

    Science.gov (United States)

    Zinkle, S. J.; Boutard, J. L.; Hoelzer, D. T.; Kimura, A.; Lindau, R.; Odette, G. R.; Rieth, M.; Tan, L.; Tanigawa, H.

    2017-09-01

    Reduced activation ferritic/martensitic steels are currently the most technologically mature option for the structural material of proposed fusion energy reactors. Advanced next-generation higher performance steels offer the opportunity for improvements in fusion reactor operational lifetime and reliability, superior neutron radiation damage resistance, higher thermodynamic efficiency, and reduced construction costs. The two main strategies for developing improved steels for fusion energy applications are based on (1) an evolutionary pathway using computational thermodynamics modelling and modified thermomechanical treatments (TMT) to produce higher performance reduced activation ferritic/martensitic (RAFM) steels and (2) a higher risk, potentially higher payoff approach based on powder metallurgy techniques to produce very high strength oxide dispersion strengthened (ODS) steels capable of operation to very high temperatures and with potentially very high resistance to fusion neutron-induced property degradation. The current development status of these next-generation high performance steels is summarized, and research and development challenges for the successful development of these materials are outlined. Material properties including temperature-dependent uniaxial yield strengths, tensile elongations, high-temperature thermal creep, Charpy impact ductile to brittle transient temperature (DBTT) and fracture toughness behaviour, and neutron irradiation-induced low-temperature hardening and embrittlement and intermediate-temperature volumetric void swelling (including effects associated with fusion-relevant helium and hydrogen generation) are described for research heats of the new steels.

  8. The Putative PAX8/PPARγ Fusion Oncoprotein Exhibits Partial Tumor Suppressor Activity through Up-Regulation of Micro-RNA-122 and Dominant-Negative PPARγ Activity.

    Science.gov (United States)

    Reddi, Honey V; Madde, Pranathi; Milosevic, Dragana; Hackbarth, Jennifer S; Algeciras-Schimnich, Alicia; McIver, Bryan; Grebe, Stefan K G; Eberhardt, Norman L

    2011-01-01

    In vitro studies have demonstrated that the PAX8/PPARγ fusion protein (PPFP), which occurs frequently in follicular thyroid carcinomas (FTC), exhibits oncogenic activity. However, paradoxically, a meta-analysis of extant tumor outcome studies indicates that 68% of FTC-expressing PPFP are minimally invasive compared to only 32% of those lacking PPFP (χ(2) = 6.86, P = 0.008), suggesting that PPFP favorably impacts FTC outcomes. In studies designed to distinguish benign thyroid neoplasms from thyroid carcinomas, the previously identified tumor suppressor miR-122, a major liver micro-RNA (miR) that is decreased in hepatocellular carcinoma, was increased 8.9-fold (P negative PPARγ mutant in WRO cells was less effective than PPFP at inhibiting xenograft tumor progression (1.8-fold [P negative PPARγ activity. Up-regulation of miR-122 negatively regulates ADAM-17, a known downstream target, in thyroid cells, suggesting an antiangiogenic mechanism in thyroid carcinoma. This latter inference is directly supported by reduced CD-31 expression in WRO xenografts expressing PPFP, miR-122, and DN-PPARγ. We conclude that, in addition to its apparent oncogenic potential in vitro, PPFP exhibits paradoxical tumor suppressor activity in vivo, mediated by multiple mechanisms including up-regulation of miR-122 and dominant-negative inhibition of PPARγ activity.

  9. Recycling fusion materials

    International Nuclear Information System (INIS)

    Ooms, L.

    2005-01-01

    The inherent safety and environmental advantages of fusion power in comparison with other energy sources play an important role in the public acceptance. No waste burden for future generations is therefore one of the main arguments to decide for fusion power. The waste issue has thus been studied in several documents and the final conclusion of which it is stated that there is no permanent disposal waste needed if recycling is applied. But recycling of fusion reactor materials is far to be obvious regarding mostly the very high specific activity of the materials to be handled, the types of materials and the presence of tritium. The main objective of research performed by SCK-CEN is to study the possible ways of recycling fusion materials and analyse the challenges of the materials management from fusion reactors, based on current practices used in fission reactors and the requirements for the manufacture of fusion equipment

  10. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions.

    Science.gov (United States)

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul; Melikyan, Gregory B

    2015-09-01

    HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1 receptor antagonist, NF

  11. Fusion safety program Annual report, Fiscal year 1995

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Cadwallader, L.C.; Carmack, W.J.

    1995-12-01

    This report summarizes the major activities of the Fusion Safety Program in FY-95. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and the technical support for commercial fusion facility conceptual design studies. A final activity described is work to develop DOE Technical Standards for Safety of Fusion Test Facilities

  12. InFusion: Advancing Discovery of Fusion Genes and Chimeric Transcripts from Deep RNA-Sequencing Data.

    Directory of Open Access Journals (Sweden)

    Konstantin Okonechnikov

    Full Text Available Analysis of fusion transcripts has become increasingly important due to their link with cancer development. Since high-throughput sequencing approaches survey fusion events exhaustively, several computational methods for the detection of gene fusions from RNA-seq data have been developed. This kind of analysis, however, is complicated by native trans-splicing events, the splicing-induced complexity of the transcriptome and biases and artefacts introduced in experiments and data analysis. There are a number of tools available for the detection of fusions from RNA-seq data; however, certain differences in specificity and sensitivity between commonly used approaches have been found. The ability to detect gene fusions of different types, including isoform fusions and fusions involving non-coding regions, has not been thoroughly studied yet. Here, we propose a novel computational toolkit called InFusion for fusion gene detection from RNA-seq data. InFusion introduces several unique features, such as discovery of fusions involving intergenic regions, and detection of anti-sense transcription in chimeric RNAs based on strand-specificity. Our approach demonstrates superior detection accuracy on simulated data and several public RNA-seq datasets. This improved performance was also evident when evaluating data from RNA deep-sequencing of two well-established prostate cancer cell lines. InFusion identified 26 novel fusion events that were validated in vitro, including alternatively spliced gene fusion isoforms and chimeric transcripts that include intergenic regions. The toolkit is freely available to download from http:/bitbucket.org/kokonech/infusion.

  13. Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia

    Science.gov (United States)

    Boer, Judith M.; Steeghs, Elisabeth M.P.; Marchante, João R.M.; Boeree, Aurélie; Beaudoin, James J.; Berna Beverloo, H.; Kuiper, Roland P.; Escherich, Gabriele; van der Velden, Vincent H.J.; van der Schoot, C. Ellen; de Groot-Kruseman, Hester A.; Pieters, Rob; den Boer, Monique L.

    2017-01-01

    Approximately 15% of pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL) is characterized by gene expression similar to that of BCR-ABL1-positive disease and unfavorable prognosis. This BCR-ABL1-like subtype shows a high frequency of B-cell development gene aberrations and tyrosine kinase-activating lesions. To evaluate the clinical significance of tyrosine kinase gene fusions in children with BCP-ALL, we studied the frequency of recently identified tyrosine kinase fusions, associated genetic features, and prognosis in a representative Dutch/German cohort. We identified 14 tyrosine kinase fusions among 77 BCR-ABL1-like cases (18%) and none among 76 non-BCR-ABL1-like B-other cases. Novel exon fusions were identified for RCSD1-ABL2 and TERF2-JAK2. JAK2 mutation was mutually exclusive with tyrosine kinase fusions and only occurred in cases with high CRLF2 expression. The non/late response rate and levels of minimal residual disease in the fusion-positive BCR-ABL1-like group were higher than in the non-BCR-ABL1-like B-others (p<0.01), and also higher, albeit not statistically significant, compared with the fusion-negative BCR-ABL1-like group. The 8-year cumulative incidence of relapse in the fusion-positive BCR-ABL1-like group (35%) was comparable with that in the fusion-negative BCR-ABL1-like group (35%), and worse than in the non-BCR-ABL1-like B-other group (17%, p=0.07). IKZF1 deletions, predominantly other than the dominant-negative isoform and full deletion, co-occurred with tyrosine kinase fusions. This study shows that tyrosine kinase fusion-positive cases are a high-risk subtype of BCP-ALL, which warrants further studies with specific kinase inhibitors to improve outcome. PMID:27894077

  14. Regulation of Exocytotic Fusion Pores by SNARE Protein Transmembrane Domains

    Directory of Open Access Journals (Sweden)

    Zhenyong Wu

    2017-10-01

    Full Text Available Calcium-triggered exocytotic release of neurotransmitters and hormones from neurons and neuroendocrine cells underlies neuronal communication, motor activity and endocrine functions. The core of the neuronal exocytotic machinery is composed of soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs. Formation of complexes between vesicle-attached v- and plasma-membrane anchored t-SNAREs in a highly regulated fashion brings the membranes into close apposition. Small, soluble proteins called Complexins (Cpx and calcium-sensing Synaptotagmins cooperate to block fusion at low resting calcium concentrations, but trigger release upon calcium increase. A growing body of evidence suggests that the transmembrane domains (TMDs of SNARE proteins play important roles in regulating the processes of fusion and release, but the mechanisms involved are only starting to be uncovered. Here we review recent evidence that SNARE TMDs exert influence by regulating the dynamics of the fusion pore, the initial aqueous connection between the vesicular lumen and the extracellular space. Even after the fusion pore is established, hormone release by neuroendocrine cells is tightly controlled, and the same may be true of neurotransmitter release by neurons. The dynamics of the fusion pore can regulate the kinetics of cargo release and the net amount released, and can determine the mode of vesicle recycling. Manipulations of SNARE TMDs were found to affect fusion pore properties profoundly, both during exocytosis and in biochemical reconstitutions. To explain these effects, TMD flexibility, and interactions among TMDs or between TMDs and lipids have been invoked. Exocytosis has provided the best setting in which to unravel the underlying mechanisms, being unique among membrane fusion reactions in that single fusion pores can be probed using high-resolution methods. An important role will likely be played by methods that can probe single fusion pores

  15. A Systematic Review of Mesenchymal Stem Cells in Spinal Cord Injury, Intervertebral Disc Repair and Spinal Fusion.

    Science.gov (United States)

    Khan, Shujhat; Mafi, Pouya; Mafi, Reza; Khan, Wasim

    2018-01-01

    Spinal surgery presents a challenge for both neurosurgery and orthopaedic surgery. Due to the heterogeneous differentiation potential of mesenchymal stem cells, there is much interest in the treatment of spine surgery. Animal and human trials focussing on the efficacy of mesenchymal stem cells in spinal cord injury, spine fusion and disc degeneration were included in this systematic review. Published articles up to January 2016 from MEDLINE, PubMed and Ovid were used by searching for specific terms. Of the 2595 articles found, 53 met the selection criteria and were included for analysis (16 on spinal cord injury, 28 on intervertebral disc repair and 9 on spinal fusion). Numerous studies reported better results when the mesenchymal stem cells were used in co-culture with other cells or used in scaffolds. Mesenchymal stem cells were also found to have an immune-modulatory role, which can improve surgical outcome. This systematic review suggests that mesenchymal stem cells can be used safely and effectively for these spinal surgery treatments. Whilst, in certain studies, mesenchymal stem cells did not necessarily show improved results from existing treatments, they provide an alternative option. This can reduce morbidity that arises from current surgical treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Role for the disulfide-bonded region of human immunodeficiency virus type 1 gp41 in receptor-triggered activation of membrane fusion function

    International Nuclear Information System (INIS)

    Bellamy-McIntyre, Anna K.; Baer, Severine; Ludlow, Louise; Drummer, Heidi E.; Poumbourios, Pantelis

    2010-01-01

    The conserved disulfide-bonded region (DSR) of the human immunodeficiency virus type 1 (HIV-1) fusion glycoprotein, gp41, mediates association with the receptor-binding glycoprotein, gp120. Interactions between gp120, CD4 and chemokine receptors activate the fusion activity of gp41. The introduction of W596L and W610F mutations to the DSR of HIV-1 QH1549.13 blocked viral entry and hemifusion without affecting gp120-gp41 association. The fusion defect correlated with inhibition of CD4-triggered gp41 pre-hairpin formation, consistent with the DSR mutations having decoupled receptor-induced conformational changes in gp120 from gp41 activation. Our data implicate the DSR in sensing conformational changes in the gp120-gp41 complex that lead to fusion activation.

  17. Accelerator ampersand Fusion Research Division 1991 summary of activities

    International Nuclear Information System (INIS)

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations

  18. Accelerator and fusion research division. 1992 Summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations.

  19. Expression and Purification of Neurotrophin-Elastin-Like Peptide Fusion Proteins for Neural Regeneration.

    Science.gov (United States)

    Johnson, Tamina; Koria, Piyush

    2016-04-01

    Neural injuries such as spinal cord injuries, traumatic brain injuries, or nerve transection injuries pose a major health problem. Neurotrophins such as nerve growth factor (NGF) or brain-derived neurotrophic factor (BDNF) have been shown to improve the outcome of neural injuries in several pre-clinical models, but their use in clinics is limited by the lack of a robust delivery system that enhances their bioavailability and half-life. We describe two fusion proteins comprising NGF or BDNF fused with elastin-like peptides (ELPs). The aim of this study was to investigate the biological activity of neurotrophin-ELP (N-ELP) fusion proteins via in vitro culture models. NGF and BDNF were cloned in front of an elastin-like polypeptide sequence V40C2. These proteins were expressed in bacteria as inclusion bodies. These fusion proteins underwent solubilization via 8 M urea and purification via inverse transition cycling (ITC). We measured the particle size and the effect of temperature on precipitated particles using dynamic light scattering (DLS). We used western blot analysis to confirm the specificity of NGF-ELP to tropomyosin receptor kinase A (TrkA) antibody and to confirm the specificity of BDNF-ELP to TrkB antibody. PC12 cells were used to perform a neurite outgrowth assay to determine the biological activity of NGF-ELP. Bioactivity of BDNF-ELP was ascertained via transfecting human epithelial kidney (HEK 293-T) cells to express the TrkB receptor. The proteins were successfully purified to high homogeneity by exploiting the phase transition property of ELPs and urea, which solubilize inclusion bodies. Using PC12 neurite outgrowth assay, we further demonstrated that the biological activity of NGF was retained in the fusion. Similarly, BDNF-ELP phosphorylated the TrkB receptor, suggesting the biological activity of BDNF was also retained in the fusion. We further show that owing to the phase transition property of ELPs in the fusion, these proteins self-assembled into

  20. Chloroquine Increases Glucose Uptake via Enhancing GLUT4 Translocation and Fusion with the Plasma Membrane in L6 Cells

    Directory of Open Access Journals (Sweden)

    Qi Zhou

    2016-05-01

    Full Text Available Background/Aims: Chloroquine can induce an increase in the cellular uptake of glucose; however, the underlying mechanism is unclear. Methods: In this study, translocation of GLUT4 and intracellular Ca2+ changes were simultaneously observed by confocal microscope in L6 cells stably over-expressing IRAP-mOrange. The GLUT4 fusion with the plasma membrane (PM was traced using HA-GLUT4-GFP. Glucose uptake was measured using a cell-based glucose uptake assay. GLUT4 protein was detected by Western blotting and mRNA level was detected by RT-PCR. Results: We found that chloroquine induced significant increases in glucose uptake, glucose transporter GLUT4 translocation to the plasma membrane (GTPM, GLUT4 fusion with the PM, and intracellular Ca2+ in L6 muscle cells. Chloroquine-induced increases of GTPM and intracellular Ca2+ were inhibited by Gallein (Gβγ inhibitor and U73122 (PLC inhibitor. However, 2-APB (IP3R blocker only blocked the increase in intracellular Ca2+ but did not inhibit GTPM increase. These results indicate that chloroquine, via the Gβγ-PLC-IP3-IP3R pathway, induces elevation of Ca2+, and this Ca2+ increase does not play a role in chloroqui-ne-evoked GTPM increase. However, GLUT4 fusion with the PM and glucose uptake were significantly inhibited with BAPTA-AM. This suggests that Ca2+ enhances GLUT4 fusion with the PM resulting in glucose uptake increase. Conclusion: Our data indicate that chloroquine via Gβγ-PLC-IP3-IP3R induces Ca2+ elevation, which in turn promotes GLUT4 fusion with the PM. Moreover, chloroquine can enhance GLUT4 trafficking to the PM. These mechanisms eventually result in glucose uptake increase in control and insulin-resistant L6 cells. These findings suggest that chloroquine might be a potential drug for improving insulin tolerance in diabetic patients.

  1. Contribution of N-linked glycans on HSV-2 gB to cell–cell fusion and viral entry

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Sukun [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Kai [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); He, Siyi; Wang, Ping; Zhang, Mudan; Huang, Xin [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Du, Tao [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Zheng, Chunfu [Soochow University, Institutes of Biology and Medical Sciences, Suzhou 215123 (China); Liu, Yalan [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Hu, Qinxue, E-mail: qhu@wh.iov.cn [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Institute for Infection and Immunity, St George' s University of London, London SW17 0RE (United Kingdom)

    2015-09-15

    HSV-2 is the major cause of genital herpes and its infection increases the risk of HIV-1 acquisition and transmission. HSV-2 glycoprotein B together with glycoproteins D, H and L are indispensable for viral entry, of which gB, as a class III fusogen, plays an essential role. HSV-2 gB has seven potential N-linked glycosylation (N-CHO) sites, but their significance has yet to be determined. For the first time, we systematically analyzed the contributions of N-linked glycans on gB to cell–cell fusion and viral entry. Our results demonstrated that, of the seven potential N-CHO sites on gB, mutation at N390, N483 or N668 decreased cell–cell fusion and viral entry, while mutation at N133 mainly affected protein expression and the production of infectious virus particles by blocking the transport of gB from the endoplasmic reticulum to Golgi. Our findings highlight the significance of N-linked glycans on HSV-2 gB expression and function. - Highlights: • N-linked glycan at N133 is important for gB intracellular trafficking and maturation. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal cell–cell fusion. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal viral entry.

  2. Contribution of N-linked glycans on HSV-2 gB to cell–cell fusion and viral entry

    International Nuclear Information System (INIS)

    Luo, Sukun; Hu, Kai; He, Siyi; Wang, Ping; Zhang, Mudan; Huang, Xin; Du, Tao; Zheng, Chunfu; Liu, Yalan; Hu, Qinxue

    2015-01-01

    HSV-2 is the major cause of genital herpes and its infection increases the risk of HIV-1 acquisition and transmission. HSV-2 glycoprotein B together with glycoproteins D, H and L are indispensable for viral entry, of which gB, as a class III fusogen, plays an essential role. HSV-2 gB has seven potential N-linked glycosylation (N-CHO) sites, but their significance has yet to be determined. For the first time, we systematically analyzed the contributions of N-linked glycans on gB to cell–cell fusion and viral entry. Our results demonstrated that, of the seven potential N-CHO sites on gB, mutation at N390, N483 or N668 decreased cell–cell fusion and viral entry, while mutation at N133 mainly affected protein expression and the production of infectious virus particles by blocking the transport of gB from the endoplasmic reticulum to Golgi. Our findings highlight the significance of N-linked glycans on HSV-2 gB expression and function. - Highlights: • N-linked glycan at N133 is important for gB intracellular trafficking and maturation. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal cell–cell fusion. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal viral entry

  3. Accelerator and Fusion Research Division: 1984 summary of activities

    International Nuclear Information System (INIS)

    1985-05-01

    During fiscal 1984, major programmatic activities in AFRD continued in each of five areas: accelerator operations, highlighted by the work of nuclear science users, who produced clear evidence for the formation of compressed nuclear matter during heavy-ion collisions; high-energy physics, increasingly dominated by our participation in the design of the Superconducting Super Collider; heavy-ion fusion accelerator research, which focused on the design of a four-beam experiment as a first step toward assessing the promise of heavy-ion inertial-confinement fusion; and research at the Center for X-Ray Optics, which completed its first year of broadly based activities aimed at the exploitation of x-ray and ultraviolet radiation. At the same time, exploratory studies were under way, aimed at investigating major new programs for the division. During the past year, for example, we took a preliminary look at how we could use the Bevatron as an injector for a pair of colliding-beam rings that might provide the first glimpse of a hitherto unobserved state of matter called the quark-gluon plasma. Together with Livermore scientists, we also conducted pioneering high-gain free-electron laser (FEL) experiments and proposed a new FEL-based scheme (called the two-beam accelerator) for accelerating electrons to very high energies. And we began work on the design of the Coherent XUV Facility (CXF), an advanced electron storage ring for the production of intense coherent radiation from either undulators or free-electron lasers

  4. Dual microRNA Screens Reveal That the Immune-Responsive miR-181 Promotes Henipavirus Entry and Cell-Cell Fusion.

    Directory of Open Access Journals (Sweden)

    Chwan Hong Foo

    2016-10-01

    Full Text Available Hendra and Nipah viruses (family Paramyxoviridae, genus Henipavirus are bat-borne viruses that cause fatal disease in humans and a range of other mammalian species. Gaining a deeper understanding of host pathways exploited by henipaviruses for infection may identify targets for new anti-viral therapies. Here we have performed genome-wide high-throughput agonist and antagonist screens at biosafety level 4 to identify host-encoded microRNAs (miRNAs impacting henipavirus infection in human cells. Members of the miR-181 and miR-17~93 families strongly promoted Hendra virus infection. miR-181 also promoted Nipah virus infection, but did not affect infection by paramyxoviruses from other genera, indicating specificity in the virus-host interaction. Infection promotion was primarily mediated via the ability of miR-181 to significantly enhance henipavirus-induced membrane fusion. Cell signalling receptors of ephrins, namely EphA5 and EphA7, were identified as novel negative regulators of henipavirus fusion. The expression of these receptors, as well as EphB4, were suppressed by miR-181 overexpression, suggesting that simultaneous inhibition of several Ephs by the miRNA contributes to enhanced infection and fusion. Immune-responsive miR-181 levels was also up-regulated in the biofluids of ferrets and horses infected with Hendra virus, suggesting that the host innate immune response may promote henipavirus spread and exacerbate disease severity. This study is the first genome-wide screen of miRNAs influencing infection by a clinically significant mononegavirus and nominates select miRNAs as targets for future anti-viral therapy development.

  5. Fusion Simulation Project Workshop Report

    Science.gov (United States)

    Kritz, Arnold; Keyes, David

    2009-03-01

    The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved 46 physicists, applied mathematicians and computer scientists, from 21 institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a 3-day workshop in May 2007.

  6. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    International Nuclear Information System (INIS)

    Krauss, Robert S.

    2010-01-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  7. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Robert S., E-mail: Robert.Krauss@mssm.edu [Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029 (United States)

    2010-11-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  8. What have fusion reactor studies done for you today?

    International Nuclear Information System (INIS)

    Kulchinski, G.L.

    1985-01-01

    The University of Wisconsin examines the fusion program and puts into perspective what return is being made on investments in fusion reactor studies. Illustations show financial support for fusion research from the four major programs, FY'82 expenditures on fusion research, and the total expenditures on fusion research since 1951. Topics discussed include the estimated number of scientists conducting fusion research, the conceptual design study of a fusion reactor, scoping study of a reactor, the chronology of fusion reactor design studies, published fusion reactor studies 1967-1983, conceptual fusion reactor design studies, STARFIRE reference design, MARS central cell, HYLIFE reaction chamber, and selected contributions of reactor design studies to base programs

  9. Clearance, recycling and disposal of fusion activated material

    International Nuclear Information System (INIS)

    Zucchetti, M.; Forrest, R.; Forty, C.; Gulden, W.; Rocco, P.; Rosanvallon, S.

    2001-01-01

    The SEAFP-99 waste management studies include further explorations in the direction of activated materials management, adopting a more realistic approach in order to consolidate and refine the previous encouraging findings of SEAFP waste management studies performed till 1998. The main results were obtained in the following topics, impact of materials/components optimisation on waste management issues; integrated approach to recycling and clearance; analysis of the potential for fusion specific repositories and hazard-relevant nuclides/processes; materials detritiation. The overall conclusion is that the adoption of a more realistic approach for the analysis has been beneficial. The results further confirmed the potential for waste minimisation and hazard reduction

  10. Reduced activation structural materials for fusion power plants - The European Union program

    International Nuclear Information System (INIS)

    Schaaf, B. van der; Le Marois, G.; Moeslang, A.; Victoria, M.

    2003-01-01

    The competition of fusion power plants with the renewable energy sources in the second half of the 21st century requires structural materials operating at high temperatures, and sufficient radiation resistance to ensure high plant efficiency and availability. The reduced activation materials development in the EU counts several steps regarding the radiation damage resistance: 75 dpa for DEMO and 150 dpa and beyond for power plants. The maximum operating temperature development line ranges from the present day from the present day feasible 600 K up to 1300- K in advanced power plants. The reduced activation steel, RAS, forms the reference for the development efforts. EUROFER has been manufactured in the EU on industrial scale with specified purity and mechanical properties up to 825 K. The oxide dispersion strengthened , ODS, variety of RAS should reach the 925 K operation limit. The EU has selected silicon carbide ceramic composite as the primary high temperature, 1300 K, goal. On a small scale the potential of tungsten alloys for higher temperatures is investigated. The present test environments for radiation resistance are insufficient to provide data for DEMO. Hence the support of the EU for the International Fusion Materials Irradiation facility. The computational modelling is expected to guide the materials development and the design of near plasma components. The EU co-operates closely with Japan, the RF and US in IEA and IAEA co-ordinated agreements, which are highly beneficial for the fusion structural materials development. (author)

  11. MLL-ENL cooperates with SCF to transform primary avian multipotent cells.

    Science.gov (United States)

    Schulte, Cathleen E; von Lindern, Marieke; Steinlein, Peter; Beug, Hartmut; Wiedemann, Leanne M

    2002-08-15

    The MLL gene is targeted by chromosomal translocations, which give rise to heterologous MLL fusion proteins and are associated with distinct types of acute lymphoid and myeloid leukaemia. To determine how MLL fusion proteins alter the proliferation and/or differentiation of primary haematopoietic progenitors, we introduced the MLL-AF9 and MLL-ENL fusion proteins into primary chicken bone marrow cells. Both fusion proteins caused the sustained outgrowth of immature haematopoietic cells, which was strictly dependent on stem cell factor (SCF). The renewing cells have a long in vitro lifespan exceeding the Hayflick limit of avian cells. Analysis of clonal cultures identified the renewing cells as immature, multipotent progenitors, expressing erythroid, myeloid, lymphoid and stem cell surface markers. Employing a two-step commitment/differentiation protocol involving the controlled withdrawal of SCF, the MLL-ENL-transformed progenitors could be induced to terminal erythroid or myeloid differentiation. Finally, in cooperation with the weakly leukaemogenic receptor tyrosine kinase v-Sea, the MLL-ENL fusion protein gave rise to multilineage leukaemia in chicks, suggesting that other activated, receptor tyrosine kinases can substitute for ligand-activated c-Kit in vivo.

  12. FUSION technology programme 2003-2006

    International Nuclear Information System (INIS)

    Karttunen, S.; Rantamaeki, K.

    2007-01-01

    This report summarises the results of the FUSION technology programme during the period between 2003-2006. FUSION is a continuation of the previous FFusion and FFusion2 technology programmes that took place from 1993 to 2002. The FUSION technology programme was fully integrated into the European Fusion Programme in the sixth Framework Programme (Euratom), through the bilateral Contract of Association between Euratom and Tekes and the multilateral European Fusion Development Agreement (EFDA). The Association Euratom-Tekes was established in 1995. At the moment, there are 26 Euratom Fusion associations working together as an European Research Area. There are four research areas in the FUSION technology programme: (1) fusion physics and plasma engineering, (2) vessel/in-vessel materials, joints and components, (3) in-vessel remote handling systems, and (4) system studies. The FUSION team consists of research groups from the Technical Research Centre of Finland (VTT), the Helsinki, Tampere and Lappeenranta Universities of Technology and the University of Helsinki. The co-ordinating unit is VTT. A key element of the FUSION programme is the close collaboration between VTT, the universities and the industry, which has resulted in dynamic and sufficiently large research teams to tackle challenging research and development projects. The distribution of work between research institutes and industry has also been clear. Industrial activities related to the FUSION programme are co-ordinated through the 'Big Science' Project by Finpro and Prizztech. The total expenditure of the FUSION technology programme for 2003-2006 amounted to euro 14,9 million in research work at VTT and the universities with an additional euro 3,5 million for projects by the Finnish companies including the industry co-ordination. The funding of the FUSION programme and related industrial projects was mainly provided by Tekes (37%), Euratom (38%) and the participating institutes and industry (24%). The

  13. CD36 is required for myoblast fusion during myogenic differentiation

    International Nuclear Information System (INIS)

    Park, Seung-Yoon; Yun, Youngeun; Kim, In-San

    2012-01-01

    Highlights: ► CD36 expression was induced during myogenic differentiation. ► CD36 expression was localized in multinucleated myotubes. ► The expression of myogenic markers is attenuated in CD36 knockdown C2C12 cells. ► Knockdown of CD36 significantly inhibited myotube formation during differentiation. -- Abstract: Recently, CD36 has been found to be involved in the cytokine-induced fusion of macrophage. Myoblast fusion to form multinucleated myotubes is required for myogenesis and muscle regeneration. Because a search of gene expression database revealed the attenuation of CD36 expression in the muscles of muscular dystrophy patients, the possibility that CD36 could be required for myoblast fusion was investigated. CD36 expression was markedly up-regulated during myoblast differentiation and localized in multinucleated myotubes. Knockdown of endogenous CD36 significantly decreased the expression of myogenic markers as well as myotube formation. These results support the notion that CD36 plays an important role in cell fusion during myogenic differentiation. Our finding will aid the elucidation of the common mechanism governing cell-to-cell fusion in various fusion models.

  14. CD36 is required for myoblast fusion during myogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung-Yoon [Department of Biochemistry, College of Medicine, Dongguk University and Medical Institute of Dongguk University, Gyeongju 780-714 (Korea, Republic of); Yun, Youngeun [Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Kim, In-San, E-mail: iskim@knu.ac.kr [Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Biomedical Research Institute, Korea Institute Science and Technology, Seoul (Korea, Republic of)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer CD36 expression was induced during myogenic differentiation. Black-Right-Pointing-Pointer CD36 expression was localized in multinucleated myotubes. Black-Right-Pointing-Pointer The expression of myogenic markers is attenuated in CD36 knockdown C2C12 cells. Black-Right-Pointing-Pointer Knockdown of CD36 significantly inhibited myotube formation during differentiation. -- Abstract: Recently, CD36 has been found to be involved in the cytokine-induced fusion of macrophage. Myoblast fusion to form multinucleated myotubes is required for myogenesis and muscle regeneration. Because a search of gene expression database revealed the attenuation of CD36 expression in the muscles of muscular dystrophy patients, the possibility that CD36 could be required for myoblast fusion was investigated. CD36 expression was markedly up-regulated during myoblast differentiation and localized in multinucleated myotubes. Knockdown of endogenous CD36 significantly decreased the expression of myogenic markers as well as myotube formation. These results support the notion that CD36 plays an important role in cell fusion during myogenic differentiation. Our finding will aid the elucidation of the common mechanism governing cell-to-cell fusion in various fusion models.

  15. Fusion Safety Program annual report, fiscal year 1994

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Cadwallader, L.C.; Dolan, T.J.; Herring, J.S.; McCarthy, K.A.; Merrill, B.J.; Motloch, C.G.; Petti, D.A.

    1995-03-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities

  16. Progress in fusion technology in the U.S. magnetic fusion program

    International Nuclear Information System (INIS)

    Dowling, R.J.; Beard, D.S.; Haas, G.M.; Stone, P.M.; George, T.V.

    1987-01-01

    In this paper the authors discuss the major technological achievements that have taken place during the past few years in the U.S. magnetic fusion program which have contributed to the global efforts. The goal has been to establish the scientific and technological base required for fusion energy. To reach this goal the fusion RandD program is focused on four key technical issues: determine the optimum configuration of magnetic confinement systems; determine the properties of burning plasmas; develop materials for fusion systems; and establish the nuclear technology of fusion systems. The objective of the fusion technology efforts has been to develop advanced technologies and provide the necessary support for research of these four issues. This support is provided in a variety of areas such as: high vacuum technology, large magnetic field generation by superconducting and copper coils, high voltage and high current power supplies, electromagnetic wave and particle beam heating systems, plasma fueling, tritium breeding and handling, remote maintenance, energy recovery. The U.S. Fusion Technology Program provides major support or has the primary responsibility in each of the four key technical issues of fusion, as described in the Magnetic Fusion Program Plan of February 1985. This paper has summarized the Technology Program in terms of its activities and progress since the Proceedings of the SOFT Conference in 1984

  17. The Multifaceted Role of SNARE Proteins in Membrane Fusion.

    Science.gov (United States)

    Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A

    2017-01-01

    Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined.

  18. Genetic analysis of heptad-repeat regions in the G2 fusion subunit of the Junin arenavirus envelope glycoprotein

    International Nuclear Information System (INIS)

    York, Joanne; Agnihothram, Sudhakar S.; Romanowski, Victor; Nunberg, Jack H.

    2005-01-01

    The G2 fusion subunit of the Junin virus envelope glycoprotein GP-C contains two hydrophobic heptad-repeat regions that are postulated to form a six-helix bundle structure required for the membrane fusion activity of Class I viral fusion proteins. We have investigated the role of these heptad-repeat regions and, specifically, the importance of the putative interhelical a and d position sidechains by using alanine-scanning mutagenesis. All the mutant glycoproteins were expressed and transported to the cell surface. Proteolytic maturation at the subtilisin kexin isozyme-1/site-1-protease (SKI-1/S1P) cleavage site was observed in all but two of the mutants. Among the adequately cleaved mutant glycoproteins, four positions in the N-terminal region (I333, L336, L347 and L350) and two positions in the C-terminal region (R392 and W395) were shown to be important determinants of cell-cell fusion. Taken together, our results indicate that α-helical coiled-coil structures are likely critical in promoting arenavirus membrane fusion. These findings support the inclusion of the arenavirus GP-C among the Class I viral fusion proteins and suggest pharmacologic and immunologic strategies for targeting arenavirus infection and hemorrhagic fever

  19. Overview of Indian activities on fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Srikumar, E-mail: sbanerjee@barc.gov.in

    2014-12-15

    This paper on overview of Indian activities on fusion reactor materials describes in brief the efforts India has made to develop materials for the first wall of a tokamak, its blanket and superconducting magnet coils. Through a systematic and scientific approach, India has developed and commercially produced reduced activation ferritic/martensitic (RAFM) steel that is comparable to Eurofer 97. Powder of low activation ferritic/martensitic oxide dispersion strengthened steel with characteristics desired for its application in the first wall of a tokamak has been produced on the laboratory scale. V–4Cr–4Ti alloy was also prepared in the laboratory, and kinetics of hydrogen absorption in this was investigated. Cu–1 wt%Cr–0.1 wt%Zr – an alloy meant for use as heat transfer elements for hypervapotrons and heat sink for the first wall – was developed and characterized in detail for its aging behavior. The role of addition of a small quantity of Zr in its improved fatigue performance was delineated, and its diffusion bonding with both W and stainless steel was achieved using Ni as an interlayer. The alloy was produced in large quantities and used for manufacturing both the heat transfer elements and components for the International Thermonuclear Experimental Reactor (ITER). India has proposed to install and test a lead–lithium cooled ceramic breeder test blanket module (LLCB-TBM) at ITER. To meet this objective, efforts have been made to produce and characterize Li{sub 2}TiO{sub 3} pebbles, and also improve the thermal conductivity of packed beds of these pebbles. Liquid metal loops have been set up and corrosion behavior of RAFM steel in flowing Pb–Li eutectic has been studied in the presence as well as absence of magnetic fields. To prevent permeation of tritium and reduce the magneto-hydro-dynamic drag, processes have been developed for coating alumina on RAFM steel. Apart from these activities, different approaches being attempted to make the U

  20. Independence of protein kinase C-delta activity from activation loop phosphorylation: structural basis and altered functions in cells.

    Science.gov (United States)

    Liu, Yin; Belkina, Natalya V; Graham, Caroline; Shaw, Stephen

    2006-04-28

    Activation loop phosphorylation plays critical regulatory roles for many kinases. Unlike other protein kinase Cs (PKC), PKC-delta does not require phosphorylation of its activation loop (Thr-507) for in vitro activity. We investigated the structural basis for this unusual capacity and its relevance to PKC-delta function in intact cells. Mutational analysis demonstrated that activity without Thr-507 phosphorylation depends on 20 residues N-terminal to the kinase domain and a pair of phenylalanines (Phe-500/Phe-527) unique to PKC-delta in/near the activation loop. Molecular modeling demonstrated that these elements stabilize the activation loop by forming a hydrophobic chain of interactions from the C-lobe to activation loop to N-terminal (helical) extension. In cells PKC-delta mediates both apoptosis and transcription regulation. We found that the T507A mutant of the PKC-delta kinase domain resembled the corresponding wild type in mediating apoptosis in transfected HEK293T cells. But the T507A mutant was completely defective in AP-1 and NF-kappaB reporter assays. A novel assay in which the kinase domain of PKC-delta and its substrate (a fusion protein of PKC substrate peptide with green fluorescent protein) were co-targeted to lipid rafts revealed a major substrate-selective defect of the T507A mutant in phosphorylating the substrate in cells. In vitro analysis showed strong product inhibition on the T507A mutant with particular substrates whose characteristics suggest it contributes to the substrate selective defect of the PKC-delta T507A mutant in cells. Thus, activation loop phosphorylation of PKC-delta may regulate its function in cells in a novel way.

  1. Lipid droplets fusion in adipocyte differentiated 3T3-L1 cells: A Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Boschi, Federico, E-mail: federico.boschi@univr.it [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy); Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Rizzatti, Vanni; Zamboni, Mauro [Department of Medicine, Geriatric Section, University of Verona, Piazzale Stefani 1, 37126 Verona (Italy); Sbarbati, Andrea [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2014-02-15

    Several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis, atherosclerosis and other metabolic pathologies are related to the excessive accumulation of lipids in cells. Lipids accumulate in spherical cellular inclusions called lipid droplets (LDs) whose sizes range from fraction to one hundred of micrometers in adipocytes. It has been suggested that LDs can grow in size due to a fusion process by which a larger LD is obtained with spherical shape and volume equal to the sum of the progenitors’ ones. In this study, the size distribution of two populations of LDs was analyzed in immature and mature (5-days differentiated) 3T3-L1 adipocytes (first and second populations, respectively) after Oil Red O staining. A Monte Carlo simulation of interaction between LDs has been developed in order to quantify the size distribution and the number of fusion events needed to obtain the distribution of the second population size starting from the first one. Four models are presented here based on different kinds of interaction: a surface weighted interaction (R2 Model), a volume weighted interaction (R3 Model), a random interaction (Random model) and an interaction related to the place where the LDs are born (Nearest Model). The last two models mimic quite well the behavior found in the experimental data. This work represents a first step in developing numerical simulations of the LDs growth process. Due to the complex phenomena involving LDs (absorption, growth through additional neutral lipid deposition in existing droplets, de novo formation and catabolism) the study focuses on the fusion process. The results suggest that, to obtain the observed size distribution, a number of fusion events comparable with the number of LDs themselves is needed. Moreover the MC approach results a powerful tool for investigating the LDs growth process. Highlights: • We evaluated the role of the fusion process in the synthesis of the lipid droplets. • We compared the

  2. Lipid droplets fusion in adipocyte differentiated 3T3-L1 cells: A Monte Carlo simulation

    International Nuclear Information System (INIS)

    Boschi, Federico; Rizzatti, Vanni; Zamboni, Mauro; Sbarbati, Andrea

    2014-01-01

    Several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis, atherosclerosis and other metabolic pathologies are related to the excessive accumulation of lipids in cells. Lipids accumulate in spherical cellular inclusions called lipid droplets (LDs) whose sizes range from fraction to one hundred of micrometers in adipocytes. It has been suggested that LDs can grow in size due to a fusion process by which a larger LD is obtained with spherical shape and volume equal to the sum of the progenitors’ ones. In this study, the size distribution of two populations of LDs was analyzed in immature and mature (5-days differentiated) 3T3-L1 adipocytes (first and second populations, respectively) after Oil Red O staining. A Monte Carlo simulation of interaction between LDs has been developed in order to quantify the size distribution and the number of fusion events needed to obtain the distribution of the second population size starting from the first one. Four models are presented here based on different kinds of interaction: a surface weighted interaction (R2 Model), a volume weighted interaction (R3 Model), a random interaction (Random model) and an interaction related to the place where the LDs are born (Nearest Model). The last two models mimic quite well the behavior found in the experimental data. This work represents a first step in developing numerical simulations of the LDs growth process. Due to the complex phenomena involving LDs (absorption, growth through additional neutral lipid deposition in existing droplets, de novo formation and catabolism) the study focuses on the fusion process. The results suggest that, to obtain the observed size distribution, a number of fusion events comparable with the number of LDs themselves is needed. Moreover the MC approach results a powerful tool for investigating the LDs growth process. Highlights: • We evaluated the role of the fusion process in the synthesis of the lipid droplets. • We compared the

  3. Biological effects of activation products and other chemicals released from fusion power plants

    International Nuclear Information System (INIS)

    Strand, J.A.; Poston, T.M.

    1976-09-01

    Literature reviews indicate that existing information is incomplete, often contradictory, and of questionable value for the prediction and assessment of ultimate impact from fusion-associated activation products and other chemical releases. It is still uncertain which structural materials will be used in the blanket and first wall of fusion power plants. However, niobium, vanadium, vanadium-chromium alloy, vanadium-titanium alloy, sintered aluminum product, and stainless steel have been suggested. The activation products of principal concern will be the longer-lived isotopes of 26 Al, 49 V, 51 Cr, 54 Mn, 55 Fe, 58 Co, 60 Co, 93 Nb, and 94 Nb. Lithium released to the environment either during the mining cycle, from power plant operation or accident, may be in the form of a number of compound types varying in solubility and affinity for biological organisms. The effects of a severe liquid metal fire or explosion involving Na or K will vary according to inherent abiotic and biotic features of the affected site. Saline, saline-alkaline, and sodic soils of arid lands would be particularly susceptible to alkaline stress. Beryllium released to the environment during the mining cycle or reactor accident situation could be in the form of a number of compound types. Adverse effects to aquatic species from routine chemical releases (biocides, corrosion inhibitors, dissolution products) may occur in the discharge of both fission and fusion power plant designs

  4. Fusion environment sensitive flow and fracture processes

    International Nuclear Information System (INIS)

    1980-01-01

    As a planning activity, the objectives of the workshop were to list, prioritize and milestone the activities necessary to understand, interpret and control the mechanical behavior of candidate fusion reactor alloys. Emphasis was placed on flow and fracture processes which are unique to the fusion environment since the national fusion materials program must evaluate these effects without assistance from other reactor programs

  5. Magnetic fusion program summary document

    International Nuclear Information System (INIS)

    1979-04-01

    This document outlines the current and planned research, development, and commercialization (RD and C) activities of the Offic of Fusion Energy under the Assistant Secretary for Energy Technology, US Department of Energy (DOE). The purpose of this document is to explain the Office of Fusion Energy's activities to Congress and its committees and to interested members of the public

  6. Laser fusion

    International Nuclear Information System (INIS)

    Key, M.H.; Oxford Univ.

    1990-04-01

    The use of lasers to drive implosions for the purpose of inertially confined fusion is an area of intense activity where progress compares favourably with that made in magnetic fusion and there are significant prospects for future development. In this brief review the basic concept is summarised and the current status is outlined both in the area of laser technology and in the most recent results from implosion experiments. Prospects for the future are also considered. (author)

  7. A recombined fusion protein PTD-Grb2-SH2 inhibits the proliferation of breast cancer cells in vitro.

    Science.gov (United States)

    Yin, Jikai; Cai, Zhongliang; Zhang, Li; Zhang, Jian; He, Xianli; Du, Xilin; Wang, Qing; Lu, Jianguo

    2013-03-01

    The growth factor receptor bound protein 2 (Grb2) is one of the affirmative targets for cancer therapy, especially for breast cancer. In this study, we hypothesized the Src-homology 2 (SH2) domain in Grb2 may serve as a competitive protein-binding agent to interfere with the proliferation of breast cancer cells in vitro. We designed, constructed, expressed and purified a novel fusion protein containing the protein transduction domain (PTD) and Grb2-SH2 domain (we named it after PTD-Grb2-SH2). An immunofluorescence assay was used to investigate the location of PTD-Grb2-SH2 in cells. MTT assay and EdU experiments were applied to detect the proliferation of breast cancer cells. The ultra-structure was observed using transmission electron microscopy. Flow cytometry was used to determine the cytotoxicity of PTD-Grb2-SH2 on cell proliferation. We successfully obtained the PTD-Grb2-SH2 fusion protein in soluble form using a prokaryotic expression system. The new fusion protein successfully passed through both the cellular and nuclear membranes of breast cancer cells. The MTT assay showed that PTD-Grb2-SH2 exhibited significant toxicity to breast cancer cells in a dose- and time-dependent manner in vitro. EdU identified the decreased proliferation rates in treated MDA-MB-231 and SK-BR-3 cells. Observation by transmission electron microscopy and flow cytometry further confirmed the cytotoxicity as apoptosis. Our results show that the HIV1-TAT domain is a useful tool for transporting a low molecular weight protein across the cell membrane in vitro. The PTD-Grb2-SH2 may be a novel agent for breast cancer therapy.

  8. Phosphomimetic mutation of cysteine string protein-α increases the rate of regulated exocytosis by modulating fusion pore dynamics in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Ning Chiang

    Full Text Available BACKGROUND: Cysteine string protein-α (CSPα is a chaperone to ensure protein folding. Loss of CSPα function associates with many neurological diseases. However, its function in modulating regulated exocytosis remains elusive. Although cspα-knockouts exhibit impaired synaptic transmission, overexpression of CSPα in neuroendocrine cells inhibits secretion. These seemingly conflicting results lead to a hypothesis that CSPα may undergo a modification that switches its function in regulating neurotransmitter and hormone secretion. Previous studies implied that CSPα undergoes phosphorylation at Ser10 that may influence exocytosis by altering fusion pore dynamics. However, direct evidence is missing up to date. METHODOLOGY/PRINCIPAL FINDINGS: Using amperometry, we investigated how phosphorylation at Ser10 of CSPα (CSPα-Ser10 modulates regulated exocytosis and if this modulation involves regulating a specific kinetic step of fusion pore dynamics. The real-time exocytosis of single vesicles was detected in PC12 cells overexpressing control vector, wild-type CSPα (WT, the CSPα phosphodeficient mutant (S10A, or the CSPα phosphomimetic mutants (S10D and S10E. The shapes of amperometric signals were used to distinguish the full-fusion events (i.e., prespike feet followed by spikes and the kiss-and-run events (i.e., square-shaped flickers. We found that the secretion rate was significantly increased in cells overexpressing S10D or S10E compared to WT or S10A. Further analysis showed that overexpression of S10D or S10E prolonged fusion pore lifetime compared to WT or S10A. The fraction of kiss-and-run events was significantly lower but the frequency of full-fusion events was higher in cells overexpressing S10D or S10E compared to WT or S10A. Advanced kinetic analysis suggests that overexpression of S10D or S10E may stabilize open fusion pores mainly by inhibiting them from closing. CONCLUSIONS/SIGNIFICANCE: CSPα may modulate fusion pore dynamics

  9. Identification of two Th1 cell epitopes on the Babesia bovis-encoded 77-kilodalton merozoite protein (Bb-1) by use of truncated recombinant fusion proteins.

    Science.gov (United States)

    Brown, W C; Zhao, S; Woods, V M; Tripp, C A; Tetzlaff, C L; Heussler, V T; Dobbelaere, D A; Rice-Ficht, A C

    1993-01-01

    Previous studies have demonstrated the serologic and T-cell immunogenicity for cattle of a recombinant form of the apical complex-associated 77-kDa merozite protein of Babesia bovis, designated Bb-1. The present study characterizes the immunogenic epitopes of the Bb-1 protein. A series of recombinant truncated fusion proteins spanning the majority of the Bb-1 protein were expressed in Escherichia coli, and their reactivities with bovine peripheral blood mononuclear cells and T-cell clones derived from B. bovis-immune cattle and with rabbit antibodies were determined. Lymphocytes from two immune cattle were preferentially stimulated by the N-terminal half of the Bb-1 protein (amino acids 23 to 266, termed Bb-1A), localizing the T-cell epitopes to the Bb-1A portion of the molecule. CD4+ T-cell clones derived by stimulation with the intact Bb-1 fusion protein were used to identify two T-cell epitopes in the Bb-1A protein, consisting of amino acids SVVLLSAFSGN VWANEAEVSQVVK and FSDVDKTKSTEKT (residues 23 to 46 and 82 to 94). In contrast, rabbit antiserum raised against the intact fusion protein reacted only with the C-terminal half of the protein (amino acids 267 to 499, termed Bb-1B), which contained 28 tandem repeats of the tetrapeptide PAEK or PAET. Biological assays and Northern (RNA) blot analyses for cytokines revealed that following activation with concanavalin A, T-cell clones reactive against the two Bb-1A epitopes produced interleukin-2, gamma interferon, and tumor necrosis factors beta and alpha, but not interleukin-4, suggesting that the Bb-1 antigen preferentially stimulates the Th1 subset of CD4+ T cells in cattle. The studies described here report for the first time the characterization, by cytokine production, of the Th1 subset of bovine T cells and show that, as in mice, protozoal antigens can induce Th1 cells in ruminants. This first demonstration of B. bovis-encoded Th1 cell epitopes provides a rationale for incorporation of all or part of the Bb-1

  10. Annual progress report 1993. Work in controlled thermonuclear fusion research performed in the fusion research unit under the contract of association between Euratom and Risoe National Laboratory

    International Nuclear Information System (INIS)

    1994-09-01

    The programme of the Research Unit of the Fusion Association Euratom-Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within (a) studies of nonlinear dynamical processes in magnetized plasmas, (b) development of pellet injectors for fusion experiments, and (c) development of diagnostics for fusion plasmas. The activities in technology cover radiation damage of fusion reactor materials. A summary of the activities in 1993 is presented. (au) (4 tabs., 21 ills., 64 refs.)

  11. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion.

    Science.gov (United States)

    Zhou, Jing; Tan, Shi-Hao; Nicolas, Valérie; Bauvy, Chantal; Yang, Nai-Di; Zhang, Jianbin; Xue, Yuan; Codogno, Patrice; Shen, Han-Ming

    2013-04-01

    Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy. In this study, we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torin1), but not by an allosteric inhibitor (rapamycin), leads to activation of lysosomal function. Second, we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1), but not mTORC2, and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function. Third, we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation. Finally, Atg5 or Atg7 deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation, suggesting that lysosomal activation occurring in the course of autophagy is dependent on autophagosome-lysosome fusion. Taken together, this study demonstrates that in the course of autophagy, lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.

  12. Mutations that promote furin-independent growth of Semliki Forest virus affect p62-E1 interactions and membrane fusion

    International Nuclear Information System (INIS)

    Zhang Xinyong; Kielian, Margaret

    2004-01-01

    The enveloped alphavirus Semliki Forest virus (SFV) infects cells via a low pH-triggered membrane fusion reaction mediated by the E1 protein. E1's fusion activity is regulated by its heterodimeric interaction with a companion membrane protein E2. Mature E2 protein is generated by furin processing of the precursor p62. Processing destabilizes the heterodimer, allowing dissociation at acidic pH, E1 conformational changes, and membrane fusion. We used a furin-deficient cell line, FD11, to select for SFV mutants that show increased growth in the absence of p62 processing. We isolated and characterized 7 such pci mutants (p62 cleavage independent), which retained the parental furin cleavage site but showed significant increases in their ability to carry out membrane fusion in the p62 form. Sequence analysis of the pci mutants identified mutations primarily on the E2 protein, and suggested sites important in the interaction of p62 with E1 and the regulation of fusion

  13. Cold fusion catalyzed by muons and electrons

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1990-10-01

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as ''Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed

  14. Nuclear reprogramming of somatic nucleus hybridized with embryonic stem cells by electrofusion.

    Science.gov (United States)

    Tada, Masako; Tada, Takashi

    2006-01-01

    Cell fusion is a powerful tool for understanding the molecular mechanisms of epigenetic reprogramming. In hybrid cells of somatic cells and pluripotential stem cells, including embryonic stem (ES) and embryonic germ cells, somatic nuclei acquire pluripotential competence. ES and embryonic germ cells retain intrinsic trans activity to induce epigenetic reprogramming. For generating hybrid cells, we have used the technique of electrofusion. Electrofusion is a highly effective, reproducible, and biomedically safe in vitro system. For successful cell fusion, two sequential steps of electric pulse stimulation are required for the alignment (pearl chain formation) of two different types of cells between electrodes in response to alternating current stimulation and for the fusion of cytoplasmic membranes by direct current stimulation. Optimal conditions for electrofusion with a pulse generator are introduced for ES and somatic cell fusion. Topics in the field of stem cell research include the successful production of cloned animals via the epigenetic reprogramming of somatic cells and contribution of spontaneous cell fusion to generating intrinsic plasticity of tissue stem cells. Cell fusion technology may make important contributions to the fields of epigenetic reprogramming and regenerative medicine.

  15. Decontamination and decommissioning the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Walton, G.R.; Perry, E.D.; Commander, J.C.; Spampinato, P.T.

    1994-01-01

    The Tokamak Fusion Test Reactor (TFTR) is scheduled to complete its end-of-life deuterium-tritium (D-T) experiments in September 1994. The D-T operation will result in the TFTR machine structure becoming activated, and plasma facing and vacuum components will be contaminated with tritium. The resulting machine activation levels after a two year cooldown period will allow hands on dismantling for external structures, but require remote dismantling for the vacuum vessel. The primary objective of the Decontamination and Decommissioning (D ampersand D) Project is to provide a facility for construction of a new Department of Energy (DOE) experimental fusion reactor by March 1998. The project schedule calls for a two year shutdown period when tritium decontamination of the vacuum vessel, neutral beam injectors and other components will occur. Shutdown will be followed by an 18 month period of D ampersand D operations. The technical objectives of the project are to: safely dismantle and remove components from the test cell complex; package disassembled components in accordance with applicable regulations; ship packages to a DOE approved disposal or material recycling site; and develop expertise using remote disassembly techniques on a large scale fusion facility. This paper discusses the D ampersand D objectives, the facility to be decommissioned, and the technical plan that will be implemented

  16. Nanoscale organization of {beta}{sub 2}-adrenergic receptor-Venus fusion protein domains on the surface of mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Vobornik, Dusan; Rouleau, Yanouchka; Haley, Jennifer [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Bani-Yaghoub, Mahmud [Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Taylor, Rod [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Johnston, Linda J., E-mail: Linda.Johnston@nrc-cnrc.gc.ca [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Pezacki, John Paul, E-mail: John.Pezacki@nrc-cnrc.gc.ca [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada)

    2009-04-24

    Adrenergic receptors are a key component of nanoscale multiprotein complexes that are responsible for controlling the beat rate in a mammalian heart. We demonstrate the ability of near-field scanning optical microscopy (NSOM) to visualize {beta}{sub 2}-adrenergic receptors ({beta}{sub 2}AR) fused to the GFP analogue Venus at the nanoscale on HEK293 cells. The expression of the {beta}{sub 2}AR-Venus fusion protein was tightly controlled using a tetracycline-induced promoter. Both the size and density of the observed nanoscale domains are dependent on the level of induction and thus the level of protein expression. At concentrations between 100 and 700 ng/ml of inducer doxycycline, the size of domains containing the {beta}{sub 2}AR-Venus fusion protein appears to remain roughly constant, but the number of domains per cell increase. At 700 ng/ml doxycycline the functional receptors are organized into domains with an average diameter of 150 nm with a density similar to that observed for the native protein on primary murine cells. By contrast, larger micron-sized domains of {beta}{sub 2}AR are observed in the membrane of the HEK293 cells that stably overexpress {beta}{sub 2}AR-GFP and {beta}{sub 2}AR-eYFP. We conclude that precise chemical control of gene expression is highly advantageous for the use {beta}{sub 2}AR-Venus fusion proteins as models for {beta}{sub 2}AR function. These observations are critical for designing future cell models and assays based on {beta}{sub 2}AR, since the receptor biology is consistent with a relatively low density of nanoscale receptor domains.

  17. Fusion-power demonstration

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Carlson, G.A.; Neef, W.S.; Moir, R.W.; Campbell, R.B.; Botwin, R.; Clarkson, I.R.; Carpenter, T.J.

    1983-01-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment

  18. Fusion power demonstration

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.

    1983-01-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment

  19. [Rapid expression and preparation of the recombinant fusion protein sTNFRII-gAD by adenovirus vector system].

    Science.gov (United States)

    Lu, Yue; Liu, Dan; Zhang, Xiaoren; Liu, Xuerong; Shen, Wei; Zheng, Gang; Liu, Yunfan; Dong, Xiaoyan; Wu, Xiaobing; Gao, Jimin

    2011-08-01

    We expressed and prepared the recombinant fusion protein sTNFRII-gAD consisted of soluble TNF receptor II and the globular domain of adiponectin by Adenovirus Vector System in mammalian BHK21c022 cells. First we used the adenovirus vector containing EGFP gene (rAd5-EGFP) to infect BHK21c022 cells at different MOI (from 0 to 1 000), and then evaluated their transduction efficiency and cytotoxicity. Similarly, we constructed the replication-deficient adenovirus type 5-sTNFRII-gAD (rAd5-sTNFRII-gAD). We collected the supernatants for Western blotting to determine the optimal MOI by comparing the expression levels of sTNFRII-gAD fusion protein, 48 h after the BHK21c022 cells were infected by rAd5-sTNFRII-gAD at different MOIs (from 0 to 1 000). Then, we chose rAd5-sTNFRII-gAD at MOI 100 to infect five bottles of BHK21c022 cells in 100 mL of serum-free chemically defined media 100 mL, harvested the supernatant every 48 h for 6 times, and condense and purify sTNFRII-gAD fusion protein by ammonium sulfate salt-out and size-exclusion chromatography, respectively. Finally, we analyzed anti-TNFalpha activity of sTNFRII-gAD fusion protein on L929 cells in vitro. The results showed that the number of BHK21c022 cells expressing EGFP protein was increased significantly with the increase of MOI. However, some cells died at MOI of 1 000 while there was no significant cytotoxicity at MOI from 0 to 100. Western blotting analysis showed that the more adenoviruses, the higher expression of sTNFRII-gAD fusion protein in the supernatant with the highest expression at MOI 1 000. We successfully obtained about 11 mg bioactive and purified sTNFRII-gAD fusion protein at last. The in vitro assay demonstrated that the sTNFRII-gAD fusion protein was potent to antagonize TNFalpha's cytotoxicity to L929 cells. Put together, we established a recombinant adenovirus vector/BHK21 cell expression system, characteristic of the efficient serum-free culture and easy scaling-up.

  20. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma.

    Directory of Open Access Journals (Sweden)

    Ting-Lei Gu

    Full Text Available Cholangiocarcinoma, also known as bile duct cancer, is the second most common primary hepatic carcinoma with a median survival of less than 2 years. The molecular mechanisms underlying the development of this disease are not clear. To survey activated tyrosine kinases signaling in cholangiocarcinoma, we employed immunoaffinity profiling coupled to mass spectrometry and identified DDR1, EPHA2, EGFR, and ROS tyrosine kinases, along with over 1,000 tyrosine phosphorylation sites from about 750 different proteins in primary cholangiocarcinoma patients. Furthermore, we confirmed the presence of ROS kinase fusions in 8.7% (2 out of 23 of cholangiocarcinoma patients. Expression of the ROS fusions in 3T3 cells confers transforming ability both in vitro and in vivo, and is responsive to its kinase inhibitor. Our data demonstrate that ROS kinase is a promising candidate for a therapeutic target and for a diagnostic molecular marker in cholangiocarcinoma. The identification of ROS tyrosine kinase fusions in cholangiocarcinoma, along with the presence of other ROS kinase fusions in lung cancer and glioblastoma, suggests that a more broadly based screen for activated ROS kinase in cancer is warranted.

  1. The international magnetic fusion energy program

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1988-01-01

    In May of 1988, the long tradition of international cooperation in magnetic fusion energy research culminated in the initiation of design work on the International Thermonuclear Experimental Reactor (ITER). If eventually constructed in the 1990s, ITER would be the world's first magnetic fusion reactor. This paper discusses the background events that led to ITER and the present status of the ITER activity. This paper presents a brief summary of the technical, political, and organizational activities that have led to the creation of the ITER design activity. The ITER activity is now the main focus of international cooperation in magnetic fusion research and one of the largest international cooperative efforts in all of science. 2 refs., 12 figs

  2. Optimization of proximity ligation assay (PLA) for detection of protein interactions and fusion proteins in non-adherent cells: application to pre-B lymphocytes.

    Science.gov (United States)

    Debaize, Lydie; Jakobczyk, Hélène; Rio, Anne-Gaëlle; Gandemer, Virginie; Troadec, Marie-Bérengère

    2017-01-01

    Genetic abnormalities, including chromosomal translocations, are described for many hematological malignancies. From the clinical perspective, detection of chromosomal abnormalities is relevant not only for diagnostic and treatment purposes but also for prognostic risk assessment. From the translational research perspective, the identification of fusion proteins and protein interactions has allowed crucial breakthroughs in understanding the pathogenesis of malignancies and consequently major achievements in targeted therapy. We describe the optimization of the Proximity Ligation Assay (PLA) to ascertain the presence of fusion proteins, and protein interactions in non-adherent pre-B cells. PLA is an innovative method of protein-protein colocalization detection by molecular biology that combines the advantages of microscopy with the advantages of molecular biology precision, enabling detection of protein proximity theoretically ranging from 0 to 40 nm. We propose an optimized PLA procedure. We overcome the issue of maintaining non-adherent hematological cells by traditional cytocentrifugation and optimized buffers, by changing incubation times, and modifying washing steps. Further, we provide convincing negative and positive controls, and demonstrate that optimized PLA procedure is sensitive to total protein level. The optimized PLA procedure allows the detection of fusion proteins and protein interactions on non-adherent cells. The optimized PLA procedure described here can be readily applied to various non-adherent hematological cells, from cell lines to patients' cells. The optimized PLA protocol enables detection of fusion proteins and their subcellular expression, and protein interactions in non-adherent cells. Therefore, the optimized PLA protocol provides a new tool that can be adopted in a wide range of applications in the biological field.

  3. A novel antibody-drug conjugate anti-CD19(Fab)-LDM in the treatment of B-cell non-Hodgkin lymphoma xenografts with enhanced anticancer activity.

    Science.gov (United States)

    Jiang, Linlin; Yang, Ming; Zhang, Xiaoyun; Bao, Shiqi; Ma, Li; Fan, Dongmei; Zhou, Yuan; Xiong, Dongsheng; Zhen, Yongsu

    2016-01-01

    Rituximab is widely used in clinical setting for the treatment of B malignant lymphoma and has achieved remarkable success. However, in most patients, the disease ultimately relapses and become resistant to rituximab. To overcome the limitation, there is still a need to find novel strategy for improving therapeutic efficacy. To construct genetically engineered antibody anti-CD19(Fab)-LDM, and verify the anticancer activity targeted toward B-lymphoma. The anticancer activity of anti-CD19(Fab)-LDM in vitro and in vivo was examined. In vitro, the binding activity and internalization of anti-CD19(Fab)-LDP were measured. Using comet assay and apoptosis, the cytotoxicity of energized fusion proteins was observed. From in vivo experiments, targeting of therapeutic effect and anticancer efficacy bythe fusion protein was verified. Data showed that anti-CD19(Fab)-LDM does not only binding the cell surface but is also internalized into the cell. The energized fusion proteins anti-CD19(Fab)-LDM can induce DNA damage. Furthermore, significant in vivo therapeutic efficacy was observed. The present study demonstrated that the genetically engineered antibody anti-CD19(Fab)-LDM exhibited enhanced cytotoxicity compared to LDM alone. One of the most powerful advantages of anti-CD19(Fab)-LDM, however, is that it can be internalized within the cells and carry out cytotoxic effects. Therefore, anti-CD19(Fab)-LDM may be as a useful targeted therapy for B-cell lymphoma.

  4. Japanese perspective of fusion nuclear technology from ITER to DEMO

    International Nuclear Information System (INIS)

    Tanaka, Satoru; Takatsu, Hideyuki

    2007-01-01

    The world fusion community is now launching construction of ITER, the first nuclear-grade fusion machine in the world. In parallel to the ITER program, Broader Approach (BA) activities are to be initiated in this year by EU and Japan, mainly at Rokkasho BA site in Japan, as complementary activities to ITER toward DEMO. The BA activities include IFMIFEVEDA (International Fusion Materials Irradiation Facility-Engineering Validation and Engineering Design Activities) and DEMO design activities with generic technology R and Ds, both of which are critical to the rapid development of DEMO and commercial fusion power plants. The Atomic Energy Commission of Japan reviewed on-going third phase fusion program and issued the results of the review, 'On the policy of Nuclear Fusion Research and Development' in November 2005. In this report, it is anticipated that the ITER will be made operational in a decade and the programmatic objective can be met in the succeeding seven or eight years. Under this condition, the report presents a roadmap toward the DEMO and beyond and R and D items on fusion nuclear technology, indispensable for fusion energy utilization, are re-aligned. In the present paper, Japanese view and policy on ITER and beyond is summarized mainly from the viewpoints of nuclear fusion technology, and a minimum set of R and D elements on fusion nuclear technology, essential for fusion energy utilization, is presented. (orig.)

  5. Anti-Diabetic Effects of CTB-APSL Fusion Protein in Type 2 Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Yunlong Liu

    2014-03-01

    Full Text Available To determine whether cholera toxin B subunit and active peptide from shark liver (CTB-APSL fusion protein plays a role in treatment of type 2 diabetic mice, the CTB-APSL gene was cloned and expressed in silkworm (Bombyx mori baculovirus expression vector system (BEVS, then the fusion protein was orally administrated at a dose of 100 mg/kg for five weeks in diabetic mice. The results demonstrated that the oral administration of CTB-APSL fusion protein can effectively reduce the levels of both fasting blood glucose (FBG and glycosylated hemoglobin (GHb, promote insulin secretion and improve insulin resistance, significantly improve lipid metabolism, reduce triglycerides (TG, total cholesterol (TC and low density lipoprotein (LDL levels and increase high density lipoprotein (HDL levels, as well as effectively improve the inflammatory response of type 2 diabetic mice through the reduction of the levels of inflammatory cytokines tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6. Histopathology shows that the fusion protein can significantly repair damaged pancreatic tissue in type 2 diabetic mice, significantly improve hepatic steatosis and hepatic cell cloudy swelling, reduce the content of lipid droplets in type 2 diabetic mice, effectively inhibit renal interstitial inflammatory cells invasion and improve renal tubular epithelial cell nucleus pyknosis, thus providing an experimental basis for the development of a new type of oral therapy for type 2 diabetes.

  6. Chemotropism and Cell Fusion in Neurospora crassa Relies on the Formation of Distinct Protein Complexes by HAM-5 and a Novel Protein HAM-14.

    Science.gov (United States)

    Jonkers, Wilfried; Fischer, Monika S; Do, Hung P; Starr, Trevor L; Glass, N Louise

    2016-05-01

    In filamentous fungi, communication is essential for the formation of an interconnected, multinucleate, syncytial network, which is constructed via hyphal fusion or fusion of germinated asexual spores (germlings). Anastomosis in filamentous fungi is comparable to other somatic cell fusion events resulting in syncytia, including myoblast fusion during muscle differentiation, macrophage fusion, and fusion of trophoblasts during placental development. In Neurospora crassa, fusion of genetically identical germlings is a highly dynamic and regulated process that requires components of a MAP kinase signal transduction pathway. The kinase pathway components (NRC-1, MEK-2 and MAK-2) and the scaffold protein HAM-5 are recruited to hyphae and germling tips undergoing chemotropic interactions. The MAK-2/HAM-5 protein complex shows dynamic oscillation to hyphae/germling tips during chemotropic interactions, and which is out-of-phase to the dynamic localization of SOFT, which is a scaffold protein for components of the cell wall integrity MAP kinase pathway. In this study, we functionally characterize HAM-5 by generating ham-5 truncation constructs and show that the N-terminal half of HAM-5 was essential for function. This region is required for MAK-2 and MEK-2 interaction and for correct cellular localization of HAM-5 to "fusion puncta." The localization of HAM-5 to puncta was not perturbed in 21 different fusion mutants, nor did these puncta colocalize with components of the secretory pathway. We also identified HAM-14 as a novel member of the HAM-5/MAK-2 pathway by mining MAK-2 phosphoproteomics data. HAM-14 was essential for germling fusion, but not for hyphal fusion. Colocalization and coimmunoprecipitation data indicate that HAM-14 interacts with MAK-2 and MEK-2 and may be involved in recruiting MAK-2 (and MEK-2) to complexes containing HAM-5. Copyright © 2016 by the Genetics Society of America.

  7. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc.

    Science.gov (United States)

    Barriga, Gonzalo P; Villalón-Letelier, Fernando; Márquez, Chantal L; Bignon, Eduardo A; Acuña, Rodrigo; Ross, Breyan H; Monasterio, Octavio; Mardones, Gonzalo A; Vidal, Simon E; Tischler, Nicole D

    2016-07-01

    Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses.

  8. Palmitoylation of SARS-CoV S protein is necessary for partitioning into detergent-resistant membranes and cell-cell fusion but not interaction with M protein

    International Nuclear Information System (INIS)

    McBride, Corrin E.; Machamer, Carolyn E.

    2010-01-01

    Coronaviruses are enveloped RNA viruses that generally cause mild disease in humans. However, the recently emerged coronavirus that caused severe acute respiratory syndrome (SARS-CoV) is the most pathogenic human coronavirus discovered to date. The SARS-CoV spike (S) protein mediates virus entry by binding cellular receptors and inducing fusion between the viral envelope and the host cell membrane. Coronavirus S proteins are palmitoylated, which may affect function. Here, we created a non-palmitoylated SARS-CoV S protein by mutating all nine cytoplasmic cysteine residues. Palmitoylation of SARS-CoV S was required for partitioning into detergent-resistant membranes and for cell-cell fusion. Surprisingly, however, palmitoylation of S was not required for interaction with SARS-CoV M protein. This contrasts with the requirement for palmitoylation of mouse hepatitis virus S protein for interaction with M protein and may point to important differences in assembly and infectivity of these two coronaviruses.

  9. Review of recent japanese activities on tritium accountability in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fukada, Satoshi, E-mail: sfukada@nucl.kyushu-u.ac.jp [Dept. Advanced Energy Engineering Science, Kyushu University, 6-1 Kasuga-Koen, Kasuga, 816-8580 (Japan); Oya, Yasuhisa [College of Science, Academic Institute, Shizuoka University, 836 Otani, Suruga-ku, Shizuoka 422-8529 (Japan); Hatano, Yuji [Hydrogen Isotope Research Center, Organization for Promotion Research, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan)

    2016-12-15

    Highlights: • Review of Japanese tritium-safety research is given from several viewpoints. • The keywords are tritium accountability and self sufficiency. • Tritium-relating history, tritium facilities and legal regulation are introduced. - Abstract: After introduction of Japanese history or recent topics on tritium (T)-relating research and T-handling capacity in facilities or universities, present activities on T engineering research in Japan are summarized in short in terms of T accountability on safety. The term of safety includes wide processes from T production, assay, storing, confinement, transfer through safety handling finally to shipment of its waste. In order to achieve reliable operation of fusion reactors, several unit processes included in the T cycle of fusion reactors are investigated. Especially, the following recent advances are focused: T retention in plasma facing materials, emergency detritiation system including fire case, T leak through metal tube walls, oxide coating and water detritiation. Strict control, storing and accurate measurement are especially demanded for T accountability depending on various molecular species. Since kg-order T of vaporable radioisotope (RI) will be handled in a fuel cycle or breeding system of a fusion reactor, the accuracy of <0.1% is demanded far over the conventional technology status. Necessity to control T balance within legal restrictions is always kept in mind for operation of the future reactor.

  10. Review of recent japanese activities on tritium accountability in fusion reactors

    International Nuclear Information System (INIS)

    Fukada, Satoshi; Oya, Yasuhisa; Hatano, Yuji

    2016-01-01

    Highlights: • Review of Japanese tritium-safety research is given from several viewpoints. • The keywords are tritium accountability and self sufficiency. • Tritium-relating history, tritium facilities and legal regulation are introduced. - Abstract: After introduction of Japanese history or recent topics on tritium (T)-relating research and T-handling capacity in facilities or universities, present activities on T engineering research in Japan are summarized in short in terms of T accountability on safety. The term of safety includes wide processes from T production, assay, storing, confinement, transfer through safety handling finally to shipment of its waste. In order to achieve reliable operation of fusion reactors, several unit processes included in the T cycle of fusion reactors are investigated. Especially, the following recent advances are focused: T retention in plasma facing materials, emergency detritiation system including fire case, T leak through metal tube walls, oxide coating and water detritiation. Strict control, storing and accurate measurement are especially demanded for T accountability depending on various molecular species. Since kg-order T of vaporable radioisotope (RI) will be handled in a fuel cycle or breeding system of a fusion reactor, the accuracy of <0.1% is demanded far over the conventional technology status. Necessity to control T balance within legal restrictions is always kept in mind for operation of the future reactor.

  11. DNA Amplification by Breakage/Fusion/Bridge Cycles Initiated by Spontaneous Telomere Loss in a Human Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Anthony W.l. Lo

    2002-01-01

    Full Text Available The development of genomic instability is an important step in generatingthe multiple genetic changes required for cancer. One consequence of genomic instability is the overexpression of oncogenes due to gene amplification. One mechanism for gene amplification is the breakagelfusionlbridge (B/F/Bcyclethatinvolvesthe repeated fusion and breakage of chromosomes following the loss of a telomere. B/F/B cycles have been associated with low-copy gene amplification in human cancer cells, and have been proposed to be an initiating event in high-copy gene amplification. We have found that spontaneous telomere loss on a marker chromosome 16 in a human tumor cell line results in sister chromatid fusion and prolonged periods of chromosome instability. The high rate of anaphase bridges involving chromosome 16 demonstrates that this instability results from B/F/B cycles. The amplification of subtelomeric DNA on the marker chromosome provides conclusive evidence that B/F/B cycles initiated by spontaneous telomere loss are a mechanism for gene amplification in human cancer cells.

  12. Analysis of Induced Gamma Activation by D-T Neutrons in Selected Fusion Reactor Relevant Materials with EAF-2010

    Directory of Open Access Journals (Sweden)

    Klix Axel

    2016-01-01

    Full Text Available Samples of lanthanum, erbium and titanium which are constituents of structural materials, insulating coatings and tritium breeder for blankets of fusion reactor designs have been irradiated in a fusion peak neutron field. The induced gamma activities were measured and the results were used to check calculations with the European activation system EASY-2010. Good agreement for the prediction of major contributors to the contact dose rate of the materials was found, but for minor contributors the calculation deviated up to 50%.

  13. Induction of human immunodeficiency virus neutralizing antibodies using fusion complexes.

    Science.gov (United States)

    Zipeto, Donato; Matucci, Andrea; Ripamonti, Chiara; Scarlatti, Gabriella; Rossolillo, Paola; Turci, Marco; Sartoris, Silvia; Tridente, Giuseppe; Bertazzoni, Umberto

    2006-05-01

    Human immunodeficiency virus-1 (HIV-1) infects cells by membrane fusion that is mediated by the envelope proteins gp120/gp41 and the cellular receptors CD4 and CCR5. During this process, some conserved viral epitopes are temporarily exposed and may induce a neutralizing antibody response when fixed in the fusogenic conformation. These transient structures are conserved and may be effective antigens for use in an anti-HIV-1 vaccine. In this study we tested different conditions of preparation of fusion complexes inducing neutralizing antibodies against both R5 and X4 tropic HIV-1 strains. Cell lines expressing HIV-1 gp120/gp41 and CD4-CCR5 were prepared and conditions for producing fusion complexes were tested. Complexes produced at different temperature and fixative combinations were used to immunize mice. Results indicated that (a) fusion complexes prepared at either 21 degrees C, 30 degrees C or 37 degrees C were immunogenic and induced neutralizing antibodies against both R5 and X4 HIV-1 heterologous isolates; (b) after extensive purification of antibodies there was no cytotoxic effect; (c) complexes prepared at 37 degrees C were more immunogenic and induced higher titers of neutralizing antibodies than complexes prepared at either 21 degrees C or 30 degrees C; (d) the fixative used did not affect the titer of neutralizing antibodies except for glutaraldehyde which was ineffective; (e) the neutralizing activity was retained after CD4-CCR5 antibody removal. The production of higher titers of neutralizing antibody with fusion complexes prepared at 37 degrees C, as compared to lower temperatures, may be related to the induction of antibodies against many different conformation intermediates that subsequently act synergistically at different steps in the fusion process.

  14. Fusion reactor materials

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The following topics are briefly discussed: (1) surface blistering studies on fusion reactor materials, (2) TFTR design support activities, (3) analysis of samples bombarded in-situ in PLT, (4) chemical sputtering effects, (5) modeling of surface behavior, (6) ion migration in glow discharge tube cathodes, (7) alloy development for irradiation performance, (8) dosimetry and damage analysis, and (9) development of tritium migration in fusion devices and reactors

  15. Pandemic H1N1 influenza A directly induces a robust and acute inflammatory gene signature in primary human bronchial epithelial cells downstream of membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Paquette, Stéphane G. [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada); Banner, David [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Chi, Le Thi Bao [Department of Microbiology, Hue University of Medicine and Pharmacy, Thua Thien Hue (Viet Nam); Carlo Urbani Centre, Hue University of Medicine and Pharmacy, Thua Thien Hue (Viet Nam); Leon, Alberto J. [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong (China); Xu, Luoling; Ran, Longsi [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Huang, Stephen S.H. [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada); Farooqui, Amber [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong (China); and others

    2014-01-05

    Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus–epithelial cell interaction. - Highlights: • We investigated H1N1pdm/sH1N1 infection in primary epithelial cells. • H1N1pdm directly initiated a robust inflammatory gene signature, sH1N1 did not. • H1N1pdm viral RNA triggered a stronger response than sH1N1. • H1N1pdm induces greater response due to direct virus–cell interaction. • These results have potential to impact vaccine and therapeutic development.

  16. Pandemic H1N1 influenza A directly induces a robust and acute inflammatory gene signature in primary human bronchial epithelial cells downstream of membrane fusion

    International Nuclear Information System (INIS)

    Paquette, Stéphane G.; Banner, David; Chi, Le Thi Bao; Leon, Alberto J.; Xu, Luoling; Ran, Longsi; Huang, Stephen S.H.; Farooqui, Amber

    2014-01-01

    Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus–epithelial cell interaction. - Highlights: • We investigated H1N1pdm/sH1N1 infection in primary epithelial cells. • H1N1pdm directly initiated a robust inflammatory gene signature, sH1N1 did not. • H1N1pdm viral RNA triggered a stronger response than sH1N1. • H1N1pdm induces greater response due to direct virus–cell interaction. • These results have potential to impact vaccine and therapeutic development

  17. Two active molecular phenotypes of the tachykinin NK1 receptor revealed by G-protein fusions and mutagenesis

    DEFF Research Database (Denmark)

    Holst, B; Hastrup, H; Raffetseder, U

    2001-01-01

    The NK1 neurokinin receptor presents two non-ideal binding phenomena, two-component binding curves for all agonists and significant differences between agonist affinity determined by homologous versus heterologous competition binding. Whole cell binding with fusion proteins constructed between ei...

  18. A small molecule fusion inhibitor of dengue virus.

    Science.gov (United States)

    Poh, Mee Kian; Yip, Andy; Zhang, Summer; Priestle, John P; Ma, Ngai Ling; Smit, Jolanda M; Wilschut, Jan; Shi, Pei-Yong; Wenk, Markus R; Schul, Wouter

    2009-12-01

    The dengue virus envelope protein plays an essential role in viral entry by mediating fusion between the viral and host membranes. The crystal structure of the envelope protein shows a pocket (located at a "hinge" between Domains I and II) that can be occupied by ligand n-octyl-beta-D-glucoside (betaOG). Compounds blocking the betaOG pocket are thought to interfere with conformational changes in the envelope protein that are essential for fusion. Two fusion assays were developed to examine the anti-fusion activities of compounds. The first assay measures the cellular internalization of propidium iodide upon membrane fusion. The second assay measures the protease activity of trypsin upon fusion between dengue virions and trypsin-containing liposomes. We performed an in silico virtual screening for small molecules that can potentially bind to the betaOG pocket and tested these candidate molecules in the two fusion assays. We identified one compound that inhibits dengue fusion in both assays with an IC(50) of 6.8 microM and reduces viral titers with an EC(50) of 9.8 microM. Time-of-addition experiments showed that the compound was only active when present during viral infection but not when added 1h later, in agreement with a mechanism of action through fusion inhibition.

  19. [Construction of eukaryotic recombinant vector and expression in COS7 cell of LipL32-HlyX fusion gene from Leptospira serovar Lai].

    Science.gov (United States)

    Huang, Bi; Bao, Lang; Zhong, Qi; Zhang, Huidong; Zhang, Ying

    2009-04-01

    This study was conducted to construct eukaryotic recombinant vector of LipL32-HlyX fusion gene from Leptospira serovar Lai and express it in mammalian cell. Both of LipL32 gene and HlyX gene were amplified from Leptospira strain O17 genomic DNA by PCR. Then with the two genes as template, LipL32-HlyX fusion gene was obtained by SOE PCR (gene splicing by overlap extension PCR). The fusion gene was then cloned into pcDNA3.1 by restriction nuclease digestion. Having been transformed into E. coli DH5alpha, the recombiant plasmid was identified by restriction nuclease digestion, PCR analysis and sequencing. The recombinant plasmid was then transfected into COS7 cell whose expression was detected by RT-PCR and Western blotting analysis. RT-PCR amplified a fragment about 2000 bp and Western blotting analysis found a specific band about 75 KD which was consistent with the expected fusion protein size. In conclusion, the successful construction of eukaryotic recombinant vector containing LipL32-HlyX fusion gene and the effective expression in mammalian have laid a foundation for the application of Leptospira DNA vaccine.

  20. Neutrons and fusion

    International Nuclear Information System (INIS)

    Maynard, C.W.

    1976-01-01

    The production of energy from fusion reactions does not require neutrons in the fundamental sense that they are required in a fission reactor. Nevertheless, the dominant fusion reaction, that between deuterium and tritium, yields a 14 MeV neutron. To contrast a fusion reactor based on this reaction with the fission case, 3 x 10 20 such neutrons produced per gigawatt of power. This is four times as many neutrons as in an equivalent fission reactor and they carry seven times the energy of the fission neutrons. Thus, they dominate the energy recovery problem and create technological problems comparable to the original plasma confinement problem as far as a practical power producing device is concerned. Further contrasts of the fusion and fission cases are presented to establish the general role of neutrons in fusion devices. Details of the energy deposition processes are discussed and those reactions necessary for producing additional tritium are outlined. The relatively high energy flux with its large intensity will activate almost any materials of which the reactor may be composed. This activation is examined from the point of view of decay heat, radiological safety, and long-term storage. In addition, a discussion of the deleterious effects of neutron interactions on materials is given in some detail; this includes the helium and hydrogen producing reactions and displacement rate of the lattice atoms. The various materials that have been proposed for structural purposes, for breeding, reflecting, and moderating neutrons, and for radiation shielding are reviewed from the nuclear standpoint. The specific reactions of interest are taken up for various materials and finally a report is given on the status and prospects of data for fusion studies

  1. Inhibition of HIV-1 endocytosis allows lipid mixing at the plasma membrane, but not complete fusion

    Directory of Open Access Journals (Sweden)

    de la Vega Michelle

    2011-12-01

    Full Text Available Abstract Background We recently provided evidence that HIV-1 enters HeLa-derived TZM-bl and lymphoid CEMss cells by fusing with endosomes, whereas its fusion with the plasma membrane does not proceed beyond the lipid mixing step. The mechanism of restriction of HIV-1 fusion at the cell surface and/or the factors that aid the virus entry from endosomes remain unclear. Results We examined HIV-1 fusion with a panel of target cells lines and with primary CD4+ T cells. Kinetic measurements of fusion combined with time-resolved imaging of single viruses further reinforced the notion that HIV-1 enters the cells via endocytosis and fusion with endosomes. Furthermore, we attempted to deliberately redirect virus fusion to the plasma membrane, using two experimental strategies. First, the fusion reaction was synchronized by pre-incubating the viruses with cells at reduced temperature to allow CD4 and coreceptors engagement, but not the virus uptake or fusion. Subsequent shift to a physiological temperature triggered accelerated virus uptake followed by entry from endosomes, but did not permit fusion at the cell surface. Second, blocking HIV-1 endocytosis by a small-molecule dynamin inhibitor, dynasore, resulted in transfer of viral lipids to the plasma membrane without any detectable release of the viral content into the cytosol. We also found that a higher concentration of dynasore is required to block the HIV-endosome fusion compared to virus internalization. Conclusions Our results further support the notion that HIV-1 enters disparate cell types through fusion with endosomes. The block of HIV-1 fusion with the plasma membrane at a post-lipid mixing stage shows that this membrane is not conducive to fusion pore formation and/or enlargement. The ability of dynasore to interfere with the virus-endosome fusion suggests that dynamin could be involved in two distinct steps of HIV-1 entry - endocytosis and fusion within intracellular compartments.

  2. Fusion research at Imperial College

    International Nuclear Information System (INIS)

    Haines, M.G.

    1990-01-01

    The historical roots of fusion research at Imperial College can be traced back to 1946 with the pioneering work of G.P. Thomson. At present research in fusion is carried out in several research groups with interdisciplinary work managed by the Centre for Fusion Studies. The principal research activity will be centred on a newly funded 5 TW pulsed power facility allowing an experimental and theoretical study of radiation collapse and fusion conditions in the dense Z-pinch. Laser-plasma studies relevant to inertial confinement are carried out using the Rutherford-Appleton Laboratory's Central Laser Facility and the new ultra-short pulse (300 fs) laser facility at Imperial College. There is a significant collaboration on the Joint European Torus and the Next European Torus together with a continuation of a long association with Culham Laboratory. Several European collaborations funded by the Comission of the European Communities and other world-wide collaborations form an integral part of this university programme, which is by far the largest in the UK. After a sketch of the historical development of fusion activities, the current and future programme of fusion research at Imperial College is presented in each of the three broad areas: the Z-pinch, laser-driven inertial confinement fusion and tokamak and other conventional magnetic confinement schemes. A summary of the funding and collaborations is outlined. (author)

  3. Canadian fusion fuels technology project

    International Nuclear Information System (INIS)

    1986-01-01

    The Canadian Fusion Fuels Technology Project was launched in 1982 to coordinate Canada's provision of fusion fuels technology to international fusion power development programs. The project has a mandate to extend and adapt existing Canadian tritium technologies for use in international fusion power development programs. 1985-86 represents the fourth year of the first five-year term of the Canadian Fusion Fuels Technology Project (CFFTP). This reporting period coincides with an increasing trend in global fusion R and D to direct more effort towards the management of tritium. This has resulted in an increased linking of CFFTP activities and objectives with those of facilities abroad. In this way there has been a continuing achievement resulting from CFFTP efforts to have cooperative R and D and service activities with organizations abroad. All of this is aided by the cooperative international atmosphere within the fusion community. This report summarizes our past year and provides some highlights of the upcoming year 1986/87, which is the final year of the first five-year phase of the program. AECL (representing the Federal Government), the Ministry of Energy (representing Ontario) and Ontario Hydro, have given formal indication of their intent to continue with a second five-year program. Plans for the second phase will continue to emphasize tritium technology and remote handling

  4. Herpes simplex virus internalization into epithelial cells requires Na+/H+ exchangers and p21-activated kinases but neither clathrin- nor caveolin-mediated endocytosis.

    Science.gov (United States)

    Devadas, Deepika; Koithan, Thalea; Diestel, Randi; Prank, Ute; Sodeik, Beate; Döhner, Katinka

    2014-11-01

    Herpes simplex virus 1 (HSV-1) is an alphaherpesvirus that has been reported to infect some epithelial cell types by fusion at the plasma membrane but others by endocytosis. To determine the molecular mechanisms of productive HSV-1 cell entry, we perturbed key endocytosis host factors using specific inhibitors, RNA interference (RNAi), or overexpression of dominant negative proteins and investigated their effects on HSV-1 infection in the permissive epithelial cell lines Vero, HeLa, HEp-2, and PtK2. HSV-1 internalization required neither endosomal acidification nor clathrin- or caveolin-mediated endocytosis. In contrast, HSV-1 gene expression and internalization were significantly reduced after treatment with 5-(N-ethyl-N-isopropyl)amiloride (EIPA). EIPA blocks the activity of Na(+)/H(+) exchangers, which are plasma membrane proteins implicated in all forms of macropinocytosis. HSV-1 internalization furthermore required the function of p21-activated kinases that contribute to macropinosome formation. However, in contrast to some forms of macropinocytosis, HSV-1 did not enlist the activities of protein kinase C (PKC), tyrosine kinases, C-terminal binding protein 1, or dynamin to activate its internalization. These data suggest that HSV-1 depends on Na(+)/H(+) exchangers and p21-activated kinases either for macropinocytosis or for local actin rearrangements required for fusion at the plasma membrane or subsequent passage through the actin cortex underneath the plasma membrane. After initial replication in epithelial cells, herpes simplex viruses (HSVs) establish latent infections in neurons innervating these regions. Upon primary infection and reactivation from latency, HSVs cause many human skin and neurological diseases, particularly in immunocompromised hosts, despite the availability of effective antiviral drugs. Many viruses use macropinocytosis for virus internalization, and many host factors mediating this entry route have been identified, although the

  5. Small mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Schultz, K.R.; Smith, A.C. Jr.

    1978-01-01

    Basic requirements for the pilot plants are that they produce a net product and that they have a potential for commercial upgrade. We have investigated a small standard mirror fusion-fission hybrid, a two-component tandem mirror hybrid, and two versions of a field-reversed mirror fusion reactor--one a steady state, single cell reactor with a neutral beam-sustained plasma, the other a moving ring field-reversed mirror where the plasma passes through a reaction chamber with no energy addition

  6. Observation of stars produced during cold fusion

    International Nuclear Information System (INIS)

    Matsumoto, T.

    1992-01-01

    It has been indicated tht multiple-neutron nuclei such as quad-neutrons can be emitted during cold fusion. These multiple-neutrons might bombard the nuclei of materials outside a cold fusion cell to cause nuclear reactions. In this paper, observations of nuclear emulsions that were irradiated during a cold fusion experiment with heavy water and palladium foil are described. Various traces, like stars, showing nuclear reactions caused by the multiple-neutrons have been clearly observed

  7. Combinatorial synthesis and screening of cancer cell-specific nanomedicines targeted via phage fusion proteins

    Directory of Open Access Journals (Sweden)

    James W. Gillespie

    2015-06-01

    Full Text Available Active tumor targeting of nanomedicines has recently shown significant improvements in the therapeutic activity of currently existing drug delivery systems, such as liposomal doxorubicin (Doxil/Caelyx/Lipodox. Previously, we have shown that isolated pVIII major coat proteins of the fd tet filamentous phage vector, containing cancer cell-specific peptide fusions at their N terminus, can be used as active targeting ligands in a liposomal doxorubicin delivery system in vitro and in vivo. Here, we show a novel major coat protein isolation procedure in 2-propanol that allows spontaneous incorporation of the hydrophobic protein core into preformed liposomal doxorubicin with minimal damage or drug loss while still retaining the targeting ligand exposed for cell-specific targeting. Using a panel of 12 structurally unique ligands with specificity towards breast, lung, and/or pancreatic cancer, we showed the feasibility of pVIII major coat proteins to significantly increase the throughput of targeting ligand screening in a common nanomedicine core. Phage protein-modified Lipodox samples showed an average doxorubicin recovery of 82.8% across all samples with 100% of protein incorporation in the correct orientation (N-terminus exposed. Following cytotoxicity screening in a doxorubicin-sensitive breast cancer line (MCF-7, three major groups of ligands were identified. Ligands showing the most improved cytotoxicity included: DMPGTVLP, ANGRPSMT, VNGRAEAP, and ANDVYLD showing a 25-fold improvement (p < 0.05 in toxicity. Similarly DGQYLGSQ, ETYNQPYL, and GSSEQLYL ligands with specificity towards a doxorubicin-insensitive pancreatic cancer line (PANC-1 showed significant increases in toxicity (2-fold; p < 0.05. Thus, we demonstrated proof-of-concept that pVIII major coat proteins can be screened in significantly higher throughput to identify novel ligands displaying improved therapeutic activity in a desired cancer phenotype.

  8. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  9. HIV-1 gp41 Fusion Intermediate: A Target for HIV Therapeutics

    Directory of Open Access Journals (Sweden)

    Chungen Pan

    2010-02-01

    Full Text Available Human immunodeficiency virus (HIV-1 infection is initiated by the binding of gp120 envelope glyco-protein to its cell receptor (CD4 and a coreceptor (CXCR4 or CCR5, followed by a series of conformational changes in the gp41 transmembrane subunit. These changes include insertion of fusion peptide into the target cell membrane and association of C-heptad repeat (CHR peptide with the N-heptad repeat (NHR trimer, a pre-hairpin fusion intermediate. A stable six-helix bundle core is then formed, bringing the viral envelope and target cell membrane into close proximity for fusion. Peptides derived from the CHR region, such as T20 and C34, inhibit HIV-1 fusion by interacting with the gp41 fusion intermediate. A number of anti-HIV-1 peptides and small molecule compounds targeting the gp41 NHR-trimer have been identified. By combining HIV fusion/entry inhibitors targeting different sites in the gp41 fusion intermediate, a potent synergistic effect takes place, resulting in a potential new therapeutic strategy for the HIV infection/AIDS. Here, we present an overview of the current development of anti-HIV drugs, particularly those targeting the gp41 fusion intermediate.

  10. The international magnetic fusion energy program

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T.K.

    1988-10-06

    In May of 1988, the long tradition of international cooperation in magnetic fusion energy research culminated in the initiation of design work on the International Thermonuclear Experimental Reactor (ITER). If eventually constructed in the 1990s, ITER would be the world's first magnetic fusion reactor. This paper discusses the background events that led to ITER and the present status of the ITER activity. This paper presents a brief summary of the technical, political, and organizational activities that have led to the creation of the ITER design activity. The ITER activity is now the main focus of international cooperation in magnetic fusion research and one of the largest international cooperative efforts in all of science. 2 refs., 12 figs.

  11. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum......This dissertation investigates fusion rings, which are Grothendieck groups of rigid, monoidal, semisimple, abelian categories. Special interest is in rational fusion rings, i.e., fusion rings which admit a finite basis, for as commutative rings they may be presented as quotients of polynomial rings...

  12. Experimentally-induced immune activation in natural hosts of SIV induces significant increases in viral replication and CD4+ T cell depletion

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Ruy M [Los Alamos National Laboratory

    2008-01-01

    Chronically SIVagm-infected African green monkeys (AGMs) have a remarkably stable non-pathogenic disease course, with levels of immune activation in chronic SIVagm infection similar to those observed in uninfected monkeys and stable viral loads (VLs) for long periods of time. In vivo administration of lipopolysaccharide (LPS) or an IL-2/diphtheria toxin fusion protein (Ontak) to chronically SIVagm-infected AGMs triggered increases in immune activation and subsequently of viral replication and depletion of intestinal CD4{sup +} T cells. Our study indicates that circulating microbial products can increase viral replication by inducing immune activation and increasing the number of viral target cells, thus demonstrating that immune activation and T cell prolifeation are key factors in AIDS pathogenesis.

  13. High quality actively cooled plasma facing components for fusion

    International Nuclear Information System (INIS)

    Nygren, R.

    1993-01-01

    This paper interweaves some suggestions for developing actively-cooled PFCs (plasma facing components) for future fusion devices with supporting examples taken from the design, fabrication and operation of Tore Supra's Phase III Outboard Pump Limiter (OPL). This actively-cooled midplane limiter, designed for heat and particle removal during long pulse operation, has been operated in essentially thermally steady state conditions. From experience with testing to identify braze flaws in the OPL, recommendations are made to analyze the impact of joining flaws on thermal-hydraulic performance of PFCs and to validate a method of inspection for such flaws early in the design development. Capability for extensive in-service monitoring of future PFCs is also recommended and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed

  14. Low-activation structural ceramic composites for fusion power reactors: materials development and main design issues

    International Nuclear Information System (INIS)

    Perez, A.S.; Le Bars, N.; Giancarli, L.; Proust, E.; Salavy, J.F.

    1994-01-01

    Development of advanced Low-Activation Materials (LAMs) with favourable short-term activation characteristics is discussed, for the use as structural materials in a fusion power reactor (in order to reduce the risk associated with a major accident, in particular those related with radio-isotopes release in the environment), and to try to approach the concept of an inherently safe reactor. LA Ceramics Composites (LACCs) are the most promising LAMs because of their relatively good thermo-mechanical properties. At present, SiC/SiC composite is the only LACC considered by the fusion community, and therefore is the one having the most complete data base. The preliminary design of a breeding blanket using SiC/SiC as structural material indicated that significant improvement of its thermal conductivity is required. (author) 11 refs.; 3 figs

  15. Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Perry, E.; Chrzanowski, J.; Rule, K.; Viola, M.; Williams, M.; Strykowsky, R.

    1999-01-01

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. The Decontamination and Decommissioning (D and D) of the TFTR is scheduled to occur over a period of three years beginning in October 1999. This is not a typical Department of Energy D and D Project where a facility is isolated and cleaned up by ''bulldozing'' all facility and hardware systems to a greenfield condition. The mission of TFTR D and D is to: (a) surgically remove items which can be re-used within the DOE complex, (b) remove tritium contaminated and activated systems for disposal, (c) clear the test cell of hardware for future reuse, (d) reclassify the D-site complex as a non-nuclear facility as defined in DOE Order 420.1 (Facility Safety) and (e) provide data on the D and D of a large magnetic fusion facility. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The record-breaking deuterium-tritium experiments performed on TFTR resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 75 mRem/hr. These radiological hazards along with the size and shape of the Tokamak present a unique and challenging task for dismantling

  16. Tim-4 inhibition of T-cell activation and T helper type 17 differentiation requires both the immunoglobulin V and mucin domains and occurs via the mitogen-activated protein kinase pathway.

    LENUS (Irish Health Repository)

    Cao, Wei

    2011-06-01

    Emerging experimental data suggest an important role for the T-cell immunoglobulin mucin 1 (Tim-1):Tim-4 pathway in autoimmune and alloimmune responses in vivo. Using a Tim-4 ectodomain human IgG Fc fusion protein we studied the role of Tim-4 in T-cell activation, signalling and differentiation responses in vitro. We demonstrate that Tim-4Fc can inhibit naive and pre-activated T-cell activation, proliferation and cytokine secretion via a Tim-1-independent pathway. Tim-4 contains immunoglobulin variable (IgV) and mucin domains; to identify which domain accounts for the inhibitory effect novel Tim-4 fusion proteins containing either the IgV or mucin domain were generated. We demonstrate that both IgV and mucin domains are required for the inhibitory effects and that they are mediated at least in part by inhibition of extracellular signal-regulated kinase pathway activity. Given the emerging interest in the role of the Tim family in T helper type 17 (Th17) cells, which play an important role in autoimmune disease and transplantation tolerance, our data show that Tim-4Fc can prevent polarization of CD4(+) T cells to the Th17 phenotype. Collectively, our results highlight an inhibitory role for Tim-4Fc in vitro, which we propose is mediated by a receptor other than Tim-1. In addition, this study provides new insights into the role of Tim-4Fc in regulating Th17 immune responses and may open a new avenue for autoimmune therapy.

  17. Tim-4 inhibition of T-cell activation and T helper type 17 differentiation requires both the immunoglobulin V and mucin domains and occurs via the mitogen-activated protein kinase pathway

    Science.gov (United States)

    Cao, Wei; Ryan, Michelle; Buckley, Deirdre; O'Connor, Rosemary; Clarkson, Michael R

    2011-01-01

    Emerging experimental data suggest an important role for the T-cell immunoglobulin mucin 1 (Tim-1):Tim-4 pathway in autoimmune and alloimmune responses in vivo. Using a Tim-4 ectodomain human IgG Fc fusion protein we studied the role of Tim-4 in T-cell activation, signalling and differentiation responses in vitro. We demonstrate that Tim-4Fc can inhibit naive and pre-activated T-cell activation, proliferation and cytokine secretion via a Tim-1-independent pathway. Tim-4 contains immunoglobulin variable (IgV) and mucin domains; to identify which domain accounts for the inhibitory effect novel Tim-4 fusion proteins containing either the IgV or mucin domain were generated. We demonstrate that both IgV and mucin domains are required for the inhibitory effects and that they are mediated at least in part by inhibition of extracellular signal-regulated kinase pathway activity. Given the emerging interest in the role of the Tim family in T helper type 17 (Th17) cells, which play an important role in autoimmune disease and transplantation tolerance, our data show that Tim-4Fc can prevent polarization of CD4+ T cells to the Th17 phenotype. Collectively, our results highlight an inhibitory role for Tim-4Fc in vitro, which we propose is mediated by a receptor other than Tim-1. In addition, this study provides new insights into the role of Tim-4Fc in regulating Th17 immune responses and may open a new avenue for autoimmune therapy. PMID:21463297

  18. Open-ended fusion devices and reactors

    International Nuclear Information System (INIS)

    Kawabe, T.; Nariai, H.

    1983-01-01

    Conceptual design studies on fusion reactors based upon open-ended confinement schemes, such as the tandem mirror and rf plugged cusp, have been carried out in Japan. These studies may be classified into two categories: near-term devices (Fusion Engineering Test Facility), and long-term fusion power recators. In the first category, a two-component cusp neutron source was proposed. In the second category, the GAMMA-R, a tandem-mirror power reactor, and the RFC-R, an axisymetric mirror and cusp, reactor studies are being conducted at the University of Tsukuba and the Institute of Plasma Physics. Mirror Fusion Engineering Facility parameters and a schematic are shown. The GAMMA-R central-cell design schematic is also shown

  19. Protein-induced fusion can be modulated by target membrane lipids through a structural switch at the level of the fusion peptide

    NARCIS (Netherlands)

    Pecheur, EI; Martin, [No Value; Bienvenue, A; Ruysschaert, JM; Hoekstra, D

    2000-01-01

    Regulatory features of protein-induced membrane fusion are largely unclear, particularly at the level of the fusion peptide. Fusion peptides being part of larger protein complexes, such investigations are met with technical limitations. Here, we show that the fusion activity of influenza virus or

  20. NFATC3-PLA2G15 Fusion Transcript Identified by RNA Sequencing Promotes Tumor Invasion and Proliferation in Colorectal Cancer Cell Lines.

    Science.gov (United States)

    Jang, Jee-Eun; Kim, Hwang-Phill; Han, Sae-Won; Jang, Hoon; Lee, Si-Hyun; Song, Sang-Hyun; Bang, Duhee; Kim, Tae-You

    2018-06-14

    This study was designed to identify novel fusion transcripts (FTs) and their functional significance in colorectal cancer lines. We performed paired-end RNA sequencing of 28 colorectal cancer (CRC) cell lines. FT candidates were identified using TopHat-fusion, ChimeraScan, and FusionMap tools and further experimental validation was conducted through reverse transcription-polymerase chain reaction and Sanger sequencing. FT was depleted in human CRC line and the effects on cell proliferation, cell migration, and cell invasion were analyzed. 1,380 FT candidates were detected through bioinformatics filtering. We selected 6 candidate FTs, including 4 inter-chromosomal and 2 intra-chromosomal FTs and each FT was found in at least 1 of the 28 cell lines. Moreover, when we tested 19 pairs of CRC tumor and adjacent normal tissue samples, NFATC3-PLA2G15 FT was found in 2. Knockdown of NFATC3-PLA2G15 using siRNA reduced mRNA expression of epithelial-mesenchymal transition (EMT) markers such as vimentin, twist, and fibronectin and increased mesenchymal-epithelial transition markers of E-cadherin, claudin-1, and FOXC2 in colo-320 cell line harboring NFATC3-PLA2G15 FT. The NFATC3-PLA2G15 knockdown also inhibited invasion, colony formation capacity, and cell proliferation. These results suggest that that NFATC3-PLA2G15 FTs may contribute to tumor progression by enhancing invasion by EMT and proliferation.