WorldWideScience

Sample records for cell foam core

  1. Characterization of compressive and short beam shear strength of bamboo opened cell foam core sandwich composites

    Energy Technology Data Exchange (ETDEWEB)

    Setyawan, Paryanto Dwi, E-mail: paryanto-ds@yahoo.com; Sugiman,; Saputra, Yudhi [Department of Mechanical Engineering, Faculty of Engineering, University of Mataram, Mataram, West Nusa Tenggara (Indonesia)

    2016-03-29

    The paper presents the compressive and the short beam shear strength of a sandwich composite with opened cell foam made of bamboo fiber as the core and plywood as the skins. The core thickness was varied from 10 mm to 40 mm keeping the volume fraction of fiber constant. Several test s were carried out including the core density, flatwise compressive and the short beam shear testing in three point bending. The results show that the density of bamboo opened cell foam is comparable with commercial plastic foam, such as polyurethane foam. The compressive strength tends to increase linearly with increasing the core thickness. The short beam shear failure load of the sandwich composite increases with the increase of core thickness, however on the contrary, the short beam shear strength which tends to sharply decrease from the thickness of 10 mm to 30 mm and then becomes flat.

  2. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    Science.gov (United States)

    Ryan, S.; Ordonez, E.; Christiansen, E. L.; Lear, D. M.

    2010-01-01

    Open cell metallic foam core sandwich panel structures are of interest for application in spacecraft micrometeoroid and orbital debris shields due to their novel form and advantageous structural and thermal performance. Repeated shocking as a result of secondary impacts upon individual foam ligaments during the penetration process acts to raise the thermal state of impacting projectiles ; resulting in fragmentation, melting, and vaporization at lower velocities than with traditional shielding configurations (e.g. Whipple shield). In order to characterize the protective capability of these structures, an extensive experimental campaign was performed by the Johnson Space Center Hypervelocity Impact Technology Facility, the results of which are reported in this paper. Although not capable of competing against the protection levels achievable with leading heavy shields in use on modern high-risk vehicles (i.e. International Space Station modules), metallic foam core sandwich panels are shown to provide a substantial improvement over comparable structural panels and traditional low weight shielding alternatives such as honeycomb sandwich panels and metallic Whipple shields. A ballistic limit equation, generalized in terms of panel geometry, is derived and presented in a form suitable for application in risk assessment codes.

  3. Method Of Bonding A Metal Connection To An Electrode Including A Core Having A Fiber Or Foam Type Structure For An Electrochemical Cell, An

    Science.gov (United States)

    Loustau, Marie-Therese; Verhoog, Roelof; Precigout, Claude

    1996-09-24

    A method of bonding a metal connection to an electrode including a core having a fiber or foam-type structure for an electrochemical cell, in which method at least one metal strip is pressed against one edge of the core and is welded thereto under compression, wherein, at least in line with the region in which said strip is welded to the core, which is referred to as the "main core", a retaining core of a type analogous to that of the main core is disposed prior to the welding.

  4. Failure mechanism of PMI foam core sandwich beam in bending

    Directory of Open Access Journals (Sweden)

    Wang Bo

    2015-01-01

    Full Text Available Polymethacrylimide (PMI foams have been widely applied in aerospace engineering as the core material of sandwich structures. This paper proposes a modified model to predict the constitutive relation of PMI foams and compares it to existing testing data. The study is then applied to the investigation of the failure mechanism of PMI foam core sandwich beams in bending. Corresponding bending tests were carried out where a complex failure process was observed through a high-speed camera. Numerical model of the foregoing sandwich beam is developed, in which the maximum principal stress criteria is used to predict damage propagation in PMI foam core. Both results from tests and numerical simulation validate the reliability of the theoretical prediction of the failure of PMI foam core sandwich beam using the proposed modified model of PMI foams. This study provides a theoretic tool for the design of sandwich structures with PMI foam core.

  5. Open-celled polyurethane foam

    Science.gov (United States)

    Russell, L. W.

    1970-01-01

    Open-celled polyurethane foam has a density of 8.3 pounds per cubic foot and a compressive strength of 295 to 325 psi. It is useful as a porous spacer in layered insulation and as an insulation material in vacuum tight systems.

  6. Performance evaluation of OpenFOAM on many-core architectures

    International Nuclear Information System (INIS)

    Brzobohatý, Tomáš; Říha, Lubomír; Karásek, Tomáš; Kozubek, Tomáš

    2015-01-01

    In this article application of Open Source Field Operation and Manipulation (OpenFOAM) C++ libraries for solving engineering problems on many-core architectures is presented. Objective of this article is to present scalability of OpenFOAM on parallel platforms solving real engineering problems of fluid dynamics. Scalability test of OpenFOAM is performed using various hardware and different implementation of standard PCG and PBiCG Krylov iterative methods. Speed up of various implementations of linear solvers using GPU and MIC accelerators are presented in this paper. Numerical experiments of 3D lid-driven cavity flow for several cases with various number of cells are presented

  7. Hypervelocity Impact Evaluation of Metal Foam Core Sandwich Structures

    Science.gov (United States)

    Yasensky, John; Christiansen, Eric L.

    2007-01-01

    A series of hypervelocity impact (HVI) tests were conducted by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology Facility (HITF) [1], building 267 (Houston, Texas) between January 2003 and December 2005 to test the HVI performance of metal foams, as compared to the metal honeycomb panels currently in service. The HITF testing was conducted at the NASA JSC White Sands Testing Facility (WSTF) at Las Cruces, New Mexico. Eric L. Christiansen, Ph.D., and NASA Lead for Micro-Meteoroid Orbital Debris (MMOD) Protection requested these hypervelocity impact tests as part of shielding research conducted for the JSC Center Director Discretionary Fund (CDDF) project. The structure tested is a metal foam sandwich structure; a metal foam core between two metal facesheets. Aluminum and Titanium metals were tested for foam sandwich and honeycomb sandwich structures. Aluminum honeycomb core material is currently used in Orbiter Vehicle (OV) radiator panels and in other places in space structures. It has many desirable characteristics and performs well by many measures, especially when normalized by density. Aluminum honeycomb does not perform well in Hypervelocity Impact (HVI) Testing. This is a concern, as honeycomb panels are often exposed to space environments, and take on the role of Micrometeoroid / Orbital Debris (MMOD) shielding. Therefore, information on possible replacement core materials which perform adequately in all necessary functions of the material would be useful. In this report, HVI data is gathered for these two core materials in certain configurations and compared to gain understanding of the metal foam HVI performance.

  8. Impact performance of nanophased foam core sandwich composites

    Energy Technology Data Exchange (ETDEWEB)

    Hosur, M.V. [Center for Advanced Materials, Tuskegee University, Tuskegee, AL 36088 (United States)], E-mail: mhosur@gmail.com; Mohammed, A.A.; Zainuddin, S.; Jeelani, S. [Center for Advanced Materials, Tuskegee University, Tuskegee, AL 36088 (United States)

    2008-12-20

    In this study, sandwich panels were fabricated with neat and nanophased foam core and three-layered plain weave carbon fabric/Sc-15 epoxy composite face sheets. Neat and nanophased foam cores with Nanocor I-28E nanoclay at a loading of 0.5% and 1% by weight were prepared. Sandwich panels were then fabricated using co-injection resin transfer molding process. Samples of size 100 mm x 100 mm were then cut from the panels and subjected to low-velocity impact loading using an instrumented impact test setup. Impact response of the panels was recorded and analyzed in terms of peak load, absorbed energy, time and deflection at peak load. The tested samples were then sectioned into two halves and scanned using a scanner, optical and scanning electron microscopes to understand the failure patterns. Samples with nanophased foam sustained higher loads and had lower damage areas as compared with neat counterparts. Nanophased foam cores exhibited relatively more brittle fracture.

  9. Potential Environmental Benefits of Ultralight Particleboards with Biobased Foam Cores

    Directory of Open Access Journals (Sweden)

    Christelle Ganne-Chédeville

    2015-01-01

    Full Text Available A new generation of ultralight particleboards (ULPB with an expanded foam core layer produced in an in-line foaming step is under development. The environmental impacts of three types of ULPB containing foam based on 100% polylactic acid (PLA, 100% expanded polystyrene, and 50% PLA/50% polymethyl methacrylate, as well as a conventional particleboard (PB, have been compared in an LCA. Two approaches were chosen for the assessment: first, the “EPD-approach” in accordance with EN 15804 for EPD of building materials and second, a holistic-approach which allows an expansion of the system boundaries in order to forecast the consequences of a broader replacement of PB with ULPB. The results show that most of the environmental impacts are related to raw materials and end-of-life stages. Both approaches show that the exchange of PB with ULPB with a foam core based on PLA leads to a reduction of greenhouse gas emissions. On the other hand, the PLA is responsible for higher ecotoxicity results in comparison to non-bio-based polymers mainly due to agricultural processes. Both approaches allowed the drafting of complementary advisories for environmental impact reduction addressed to the developers.

  10. Shear Modulus for Nonisotropic, Open-Celled Foams Using a General Elongated Kelvin Foam Model

    Science.gov (United States)

    Sullivan, Roy M.; Ghosn, Louis J.

    2008-01-01

    An equation for the shear modulus for nonisotropic, open-celled foams in the plane transverse to the elongation (rise) direction is derived using an elongated Kelvin foam model with the most general geometric description. The shear modulus was found to be a function of the unit cell dimensions, the solid material properties, and the cell edge cross-section properties. The shear modulus equation reduces to the relation derived by others for isotropic foams when the unit cell is equiaxed.

  11. Residual dent in locally loaded foam core sandwich structures – Analysis and use for NDI

    NARCIS (Netherlands)

    Koysin, V.; Shipsha, Andrey

    2008-01-01

    This paper addresses the residual denting in the face sheet and corresponding core damage in a locally loaded flat sandwich structure with foam core. The problem is analytically considered in the context of elastic bending of the face sheet accompanied by non-linear deformation of the crushed foam

  12. Fatigue Characterization of Fire Resistant Syntactic Foam Core Material

    Science.gov (United States)

    Hossain, Mohammad Mynul

    Eco-Core is a fire resistant material for sandwich structural application; it was developed at NC A&T State University. The Eco-Core is made of very small amount of phenolic resin and large volume of flyash by a syntactic process. The process development, static mechanical and fracture, fire and toxicity safety and water absorption properties and the design of sandwich structural panels with Eco-Core material was established and published in the literature. One of the important properties that is needed for application in transportation vehicles is the fatigue performance under different stress states. Fatigue data are not available even for general syntactic foams. The objective of this research is to investigate the fatigue performance of Eco-Core under three types of stress states, namely, cyclic compression, shear and flexure, then document failure modes, and develop empherical equations for predicting fatigue life of Eco-Core under three stress states. Compression-Compression fatigue was performed directly on Eco-Core cylindrical specimen, whereas shear and flexure fatigue tests were performed using sandwich beam made of E glass-Vinyl Ester face sheet and Eco-Core material. Compression-compression fatigue test study was conducted at two values of stress ratios (R=10 and 5), for the maximum compression stress (sigmamin) range of 60% to 90% of compression strength (sigmac = 19.6 +/- 0.25 MPa) for R=10 and 95% to 80% of compression strength for R=5. The failure modes were characterized by the material compliance change: On-set (2% compliance change), propagation (5%) and ultimate failure (7%). The number of load cycles correspond to each of these three damages were characterized as on-set, propagation and total lives. A similar approach was used in shear and flexure fatigue tests with stress ratio of R=0.1. The fatigue stress-number of load cycles data followed the standard power law equation for all three stress states. The constant of the equation were

  13. Analysis of Stainless Steel Sandwich Panels with a Metal Foam Core for Lightweight Fan Blade Design

    Science.gov (United States)

    Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.

    2004-01-01

    The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. The present study investigates the use of a sandwich foam fan blade mae up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The resulting structures possesses a high stiffness while being lighter than a similar solid construction. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of sandwich structure for a fan blade application. A vibration analysis for natural frequencies and a detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of kin thickness and core volume are presented with a comparison to a solid titanium blade.

  14. Foam Cells and the Pathogenesis of Kidney Disease

    Science.gov (United States)

    Eom, Minseob; Hudkins, Kelly L.; Alpers, Charles E.

    2015-01-01

    Purpose of review Foam cells in human glomeruli can be encountered in various renal diseases including focal segmental glomerulosclerosis and diabetic nephropathy. Although foam cells are a key participant in atherosclerosis, surprisingly little is known about their pathogenicity in the kidney. We review our understanding (or lack thereof) of foam cells in the kidney as well as insights gained in studies of foam cells and macrophages involved in atherosclerosis, to suggest areas of investigation that will allow better characterization of the role of these cells in renal disease. Recent findings There is a general dearth of animal models of disease with renal foam cell accumulation, limiting progress in our understanding of the pathobiology of these cells. Recent genetic modifications of hyperlipidemic mice have resulted in some new disease models with renal foam cell accumulation. Recent studies have challenged older paradigms by findings that indicate many tissue macrophages are derived from cells permanently residing in the tissue from birth rather than circulating monocytes. Summary Renal foam cells remain an enigma. Extrapolating from studies of atherosclerosis suggests that therapeutics targeting mitochondrial ROS production or modulating cholesterol and lipoprotein uptake or egress from these cells may prove beneficial for kidney diseases in which foam cells are present. PMID:25887903

  15. Graphitic Carbon Foam Structural Cores and Multifunctional Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Graphitic carbon foams include a family of material forms and products with mechanical, thermal, and electrical properties that are tailor-able over a wide range....

  16. Radiation effects on polyethylene foam of open cell type

    International Nuclear Information System (INIS)

    Tang Beilin; Kanako Kaji; Iwao Yoshizawa; Choji Kohara; Motoyoshi Hatada

    1991-01-01

    The effects of electron beam irradiation on polyethylene foam of open cell type have been studied. Experiments for determining of gel fraction and physical-mechanical properties of irradiated polyethylene foam of open cell type as a function of dose, respectively, were carried out. The dimensional stability of irradiated specimens at elevated temperatures was measured. It was found that tensile strength did not change and gel fraction increased when the specimen was irradiated in nitrogen atmosphere with increasing dose up to 300 kGy. The result shows that dimensional stability of polyethylene foam of open cell type after being kept in an oven at 70 deg C and 110 deg C for 22 h is improved by irradiation in nitrogen atmosphere. The similar results of irradiated EVA foam of open cell type irradiated foam of open cell type were obtained

  17. Experimental Study of the Effectiveness of Sacrificial Cladding Using Polymeric Foams as Crushable Core with a Simply Supported Steel Beam

    Directory of Open Access Journals (Sweden)

    H. Ousji

    2016-01-01

    Full Text Available The present paper focuses on the study of the effectiveness of the sacrificial cladding using polymeric foam as crushable core to reduce the delivered blast energy using a simplified structure. The latter consists of a simply supported steel beam under a localized blast load. The tested sacrificial cladding has a cross-sectional area of 80 × 80 mm2. The effect of the front plate mass and the crushable core properties (plateau stress and thickness is studied. Three polymeric foams are investigated: (a the expanded polystyrene foam (PS13 with a density of 13 kg/m3, (b the closed-cell polyurethane (PU30 with a density of 30 kg/m3, and (c the open-cell polyurethane (PU50 with a density of 50 kg/m3. Four front plate masses are used: 144, 188, 336, and 495 g. All possible combinations are tested to determine their absorption capacity. The obtained results show that the absorption capability increases by increasing the front plate mass, the plateau stress, and the thickness of the crushable core. The open-cell polyurethane PU50 performs better. Disintegration problems are observed on the expanded polystyrene PS13 after the end of the compression process.

  18. Derivation of temperature dependent material properties of polymer foam core materials using optical extensometry

    OpenAIRE

    Dulieu-Barton, J.M.; Boyenval Langlois, C.; Thomsen, O.T.; Zhang, S.; Fruehmann, R.K.

    2010-01-01

    A methodology for determining the temperature dependence of Young’s modulus and Poisson’s ratio of polymer foams core materials is presented. The design of the test specimen is described in detail, covering the parasitic effects resulting from departures from the uniform strain condition. The measurement approach is based on a non-contact technique so that the behaviour of the complaint foam is not modified by the attachment of strain gauges or extensometers. Firstly experiments are con...

  19. Shear Moduli for Non-Isotropic, Open Cell Foams Using a General Elongated Kelvin Foam Model

    Science.gov (United States)

    Sullivan, Roy M.; Ghosn, Louis J.

    2009-01-01

    Equations for calculating the shear modulus of non-isotropic, open cell foams in the plane perpendicular to the rise direction and in a plane parallel to the rise direction are derived using an elongated Kelvin foam model. This Kelvin foam model is more general than that employed by previous authors as the size and shape of the unit cell are defined by specifying three independent cell dimensions. The equations for the shear compliances are derived as a function of three unit cell dimensions and the section properties of the cell edges. From the compliance equations, the shear modulus equations are obtained and written as a function of the relative density and two unit cell shape parameters. The dependence of the two shear moduli on the relative density and the two shape parameters is demonstrated.

  20. Acoustic absorption behaviour of an open-celled aluminium foam

    International Nuclear Information System (INIS)

    Han Fusheng; Seiffert, Gary; Zhao Yuyuan; Gibbs, Barry

    2003-01-01

    Metal foams, especially close-celled foams, are generally regarded as poor sound absorbers. This paper studies the sound absorption behaviour of the open-celled Al foams manufactured by the infiltration process, and the mechanisms involved. The foams show a significant improvement in sound absorption compared with close-celled Al foams, because of their high flow resistance. The absorption performance can be further enhanced, especially at low frequencies, if the foam panel is backed by an appropriate air gap. Increasing the air-gap depth usually increases both the height and the width of the absorption peak and shifts the peak towards lower frequencies. The foam samples with the smallest pore size exhibit the best absorption capacities when there is no air gap, whereas those with medium pore sizes have the best overall performance when there is an air gap. The typical maximum absorption coefficient, noise reduction coefficient and half-width of the absorption peak are 0.96-0.99, 0.44-0.62 and 1500-3500 Hz, respectively. The sound dissipation mechanisms in the open-celled foams are principally viscous and thermal losses when there is no air-gap backing and predominantly Helmholtz resonant absorption when there is an air-gap backing

  1. Failure analysis of bolted joints in foam-core sandwich composites

    DEFF Research Database (Denmark)

    Zabihpoor, M.; Moslemian, Ramin; Afshin, M.

    2008-01-01

    This study represents an effort to predict the bearing strength, failure modes, and failure load of bolted joints in foam-core sandwich composites. The studied joints have been used in a light full composite airplane. By using solid laminates, a new design for the joint zone is developed. These s......This study represents an effort to predict the bearing strength, failure modes, and failure load of bolted joints in foam-core sandwich composites. The studied joints have been used in a light full composite airplane. By using solid laminates, a new design for the joint zone is developed...

  2. Mixing foams and grains in Hele-Shaw cells

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, A P B; Tufaile, A; Haddad, T A S, E-mail: tufaile@usp.b [Escola de Artes, Ciencias e Humanidades da Universidade de Sao Paulo, R. Arlindo Bettio, 1000, 03828-000, Sao Paulo (Brazil)

    2010-09-01

    We have observed some features of the coexistence of foams and granular materials in Hele-Shaw cells. The most part of the liquid and granular material stays at the bottom of the cell, with only a small quantity of the mixture resting on the froth. The fractal dimensions of the final states of the foams are close to the values obtained from the Random Apollonian Packing model. The disperse structure of the granular material affects the probability distribution of number of sides of the foam bubbles. The nearest neighbor distances between the peaks of the sand piles at the bottom of the cell are close to a lognormal distribution.

  3. Foam Core Particleboards with Intumescent FRT Veneer: Cone Calorimeter Testing With Varying Adhesives, Surface Layer Thicknesses, and Processing Conditions

    Science.gov (United States)

    Mark A. Dietenberger; Johannes Welling; Ali Shalbafan

    2014-01-01

    Intumescent FRT Veneers adhered to the surface of foam core particleboard to provide adequate fire protection were evaluated by means of cone calorimeter tests (ASTM E1354). The foam core particleboards were prepared with variations in surface layer treatment, adhesives, surface layer thicknesses, and processing conditions. Ignitability, heat release rate profile, peak...

  4. A study of tensile test on open-cell aluminum foam sandwich

    Science.gov (United States)

    Ibrahim, N. A.; Hazza, M. H. F. Al; Adesta, E. Y. T.; Abdullah Sidek, Atiah Bt.; Endut, N. A.

    2018-01-01

    Aluminum foam sandwich (AFS) panels are one of the growing materials in the various industries because of its lightweight behavior. AFS also known for having excellent stiffness to weight ratio and high-energy absorption. Due to their advantages, many researchers’ shows an interest in aluminum foam material for expanding the use of foam structure. However, there is still a gap need to be fill in order to develop reliable data on mechanical behavior of AFS with different parameters and analysis method approach. Least of researcher focusing on open-cell aluminum foam and statistical analysis. Thus, this research conducted by using open-cell aluminum foam core grade 6101 with aluminum sheets skin tested under tension. The data is analyzed using full factorial in JMP statistical analysis software (version 11). ANOVA result show a significant value of the model which less than 0.500. While scatter diagram and 3D plot surface profiler found that skins thickness gives a significant impact to stress/strain value compared to core thickness.

  5. Open cell conducting foams for high synchrotron radiation accelerators

    Directory of Open Access Journals (Sweden)

    S. Petracca

    2014-08-01

    Full Text Available The possible use of open cell conductive foams in high synchrotron radiation particle accelerators is considered. Available materials and modeling tools are reviewed, potential pros and cons are discussed, and preliminary conclusions are drawn.

  6. Acoustic absorption behaviour of an open-celled aluminium foam

    CERN Document Server

    Han Fu Sheng; Zhao Yu Yuan; Gibbs, B

    2003-01-01

    Metal foams, especially close-celled foams, are generally regarded as poor sound absorbers. This paper studies the sound absorption behaviour of the open-celled Al foams manufactured by the infiltration process, and the mechanisms involved. The foams show a significant improvement in sound absorption compared with close-celled Al foams, because of their high flow resistance. The absorption performance can be further enhanced, especially at low frequencies, if the foam panel is backed by an appropriate air gap. Increasing the air-gap depth usually increases both the height and the width of the absorption peak and shifts the peak towards lower frequencies. The foam samples with the smallest pore size exhibit the best absorption capacities when there is no air gap, whereas those with medium pore sizes have the best overall performance when there is an air gap. The typical maximum absorption coefficient, noise reduction coefficient and half-width of the absorption peak are 0.96-0.99, 0.44-0.62 and 1500-3500 Hz, r...

  7. Modeled and Measured Dynamics of a Composite Beam with Periodically Varying Foam Core

    Science.gov (United States)

    Cabell, Randolph H.; Cano, Roberto J.; Schiller, Noah H.; Roberts Gary D.

    2012-01-01

    The dynamics of a sandwich beam with carbon fiber composite facesheets and foam core with periodic variations in material properties are studied. The purpose of the study is to compare finite element predictions with experimental measurements on fabricated beam specimens. For the study, three beams were fabricated: one with a compliant foam core, a second with a stiffer core, and a third with the two cores alternating down the length of the beam to create a periodic variation in properties. This periodic variation produces a bandgap in the frequency domain where vibrational energy does not readily propagate down the length of the beam. Mode shapes and natural frequencies are compared, as well as frequency responses from point force input to velocity response at the opposite end of the beam.

  8. Hyperbolic prisms and foams in Hele-Shaw cells

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, A., E-mail: tufaile@usp.br [Soft Matter Laboratory, Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, 03828-000, Sao Paulo (Brazil); Tufaile, A.P.B. [Soft Matter Laboratory, Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, 03828-000, Sao Paulo (Brazil)

    2011-10-03

    The propagation of light in foams creates patterns which are generated due to the reflection and refraction of light. One of these patterns is observed by the formation of multiple mirror images inside liquid bridges in a layer of bubbles in a Hele-Shaw cell. We are presenting the existence of these patterns in foams and their relation with hyperbolic geometry and Sierpinski gaskets using the Poincare disk model. The images obtained from the experiment in foams are compared to the case of hyperbolic optical elements. -- Highlights: → The chaotic scattering of light in foams generating deltoid patterns is based on hyperbolic geometry. → The deltoid patterns are obtained through the Plateau borders in a Hele-Shaw cell. → The Plateau borders act like hyperbolic prism. → Some effects of the refraction and reflection of the light rays were studied using a hyperbolic prism.

  9. The production and characterization of topologically and mechanically gradient open-cell thermoplastic foams

    International Nuclear Information System (INIS)

    Sanami, M; Alderson, K L; Mottershead, B; Alderson, A; McDonald, S A; Withers, P J

    2014-01-01

    The development of longitudinally and radially gradient open-cell polyurethane foams is reported. Local and global mechanical properties and pore structure have been characterized using video extensometry with x−y strain-mapping capability, and x-ray microtomography (CT) and scanning electron microscopy (SEM), respectively. The local axial Poisson’s ratio varies in a smoothly continuous manner along the length of the longitudinally gradient foam from large negative (auxetic), through zero, to positive (conventional) values. The production of radially gradient foams having a coaxial core–sheath structure is reported for the first time. Two radially gradient foams have been produced, each displaying similar global negative axial Poisson’s ratio responses but with markedly different local axial Poisson’s ratio and local axial Young’s modulus behaviours. One of the radially gradient foams displays a positive Poisson’s ratio core and an auxetic sheath resulting from conventional and higher density re-entrant open-cell pore structures, respectively. (paper)

  10. Properties of polyurethane foam/coconut coir fiber as a core material and as a sandwich composites component

    International Nuclear Information System (INIS)

    Azmi, M A; Abdullah, H Z; Idris, M I

    2013-01-01

    This research focuses on the fabrication and characterization of sandwich composite panels using glass fiber composite skin and polyurethane foam reinforced coconut coir fiber core. The main objectives are to characterize the physical and mechanical properties and to elucidate the effect of coconut coir fibers in polyurethane foam cores and sandwich composite panels. Coconut coir fibers were used as reinforcement in polyurethane foams in which later were applied as the core in sandwich composites ranged from 5 wt% to 20 wt%. The physical and mechanical properties found to be significant at 5 wt% coconut coir fiber in polyurethane foam cores as well as in sandwich composites. It was found that composites properties serve better in sandwich composites construction

  11. Properties of polyurethane foam/coconut coir fiber as a core material and as a sandwich composites component

    Science.gov (United States)

    Azmi, M. A.; Abdullah, H. Z.; Idris, M. I.

    2013-12-01

    This research focuses on the fabrication and characterization of sandwich composite panels using glass fiber composite skin and polyurethane foam reinforced coconut coir fiber core. The main objectives are to characterize the physical and mechanical properties and to elucidate the effect of coconut coir fibers in polyurethane foam cores and sandwich composite panels. Coconut coir fibers were used as reinforcement in polyurethane foams in which later were applied as the core in sandwich composites ranged from 5 wt% to 20 wt%. The physical and mechanical properties found to be significant at 5 wt% coconut coir fiber in polyurethane foam cores as well as in sandwich composites. It was found that composites properties serve better in sandwich composites construction.

  12. Nonlinear Thermo-mechanical Finite Element Analysis of Polymer Foam Cored Sandwich Structures including Geometrical and Material Nonlinearity

    DEFF Research Database (Denmark)

    Palleti, Hara Naga Krishna Teja; Thomsen, Ole Thybo; Taher, Siavash Talebi

    In this paper, polymer foam cored sandwich structures with fibre reinforced composite face sheets subjected to combined mechanical and thermal loads will be analysed using the commercial FE code ABAQUS® incorporating both material and geometrical nonlinearity. Large displacements and rotations...

  13. Macrophage Kdm6b controls the pro-fibrotic transcriptome signature of foam cells.

    Science.gov (United States)

    Neele, Annette E; Prange, Koen Hm; Hoeksema, Marten A; van der Velden, Saskia; Lucas, Tina; Dimmeler, Stefanie; Lutgens, Esther; Van den Bossche, Jan; de Winther, Menno Pj

    2017-04-01

    In order to identify regulators of foam cells, we studied the H3K27 demethylase Kdm6b (also known as Jmjd3), a known regulator of macrophages, in controlling the transcriptional profile of foam cells. Foam cells from Kdm6b-deleted or Kdm6b wild-type mice were isolated and used for RNA-sequencing analysis. Pathway analysis revealed that pro-fibrotic pathways were strongly suppressed in Kdm6b-deleted foam cells. Analysis of published datasets showed that foam cell formation induces these pro-fibrotic characteristics. Overlay of both datasets indicated that fibrotic genes which are induced upon foam cell formation, are reduced in the absence of Kdm6b. These data suggest that foam cell formation induces a pro-fibrotic gene signature in a Kdm6b-dependent manner. We identified Kdm6b as a novel regulator of the pro-fibrotic signature of peritoneal foam cells.

  14. Tensile Properties of Open Cell Ceramic Foams

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Řehořek, Lukáš; Chlup, Zdeněk

    2009-01-01

    Roč. 409, - (2009), s. 168-175 ISSN 1013-9826. [Fractography of Advanced Ceramics /3./. Stará Lesná, 07.09.2008-10.09.2008] R&D Projects: GA ČR(CZ) GA106/06/0724; GA ČR GD106/05/H008 Institutional research plan: CEZ:AV0Z20410507 Keywords : tensile test * ceramics foam * open porosity * tensile strength Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  15. Tensile Behaviour of Open Cell Ceramic Foams

    Czech Academy of Sciences Publication Activity Database

    Řehořek, Lukáš; Dlouhý, Ivo; Chlup, Zdeněk

    2009-01-01

    Roč. 53, č. 4 (2009), s. 237-241 ISSN 0862-5468 R&D Projects: GA ČR GA101/09/1821; GA ČR GD106/09/H035 Institutional research plan: CEZ:AV0Z20410507 Keywords : Tensile test * Ceramics foam * Open porosity * Tensile strength Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.649, year: 2009

  16. Macrophage Kdm6b controls the pro-fibrotic transcriptome signature of foam cells

    NARCIS (Netherlands)

    Neele, Annette E.; Prange, Koen Hm; Hoeksema, Marten A.; van der Velden, Saskia; Lucas, Tina; Dimmeler, Stefanie; Lutgens, Esther; van den Bossche, Jan; de Winther, Menno Pj

    2017-01-01

    In order to identify regulators of foam cells, we studied the H3K27 demethylase Kdm6b (also known as Jmjd3), a known regulator of macrophages, in controlling the transcriptional profile of foam cells. Foam cells from Kdm6b-deleted or Kdm6b wild-type mice were isolated and used for RNA-sequencing

  17. Nanocellular polymer foams nucleated by core-shell nanoparticles

    NARCIS (Netherlands)

    Liu, Shanqiu; Zoetebier, Bram; Hulsman, Lars; Zhang, Yuanyuan; Duvigneau, Joost; Vancso, Gyula J.

    2016-01-01

    The synthesis of low surface energy polymer grafted silica nanoparticles is reported for the utilization as highly efficient cell nucleation agents to obtain nanocellular, CO2 blown polystyrene (PS) and poly(methyl methacrylate) (PMMA) films in a batch process. For nanoparticle surface

  18. Preparation of novel magnetic polyurethane foam nanocomposites by using core-shell nanoparticles

    Directory of Open Access Journals (Sweden)

    Mir Mohammad Alavi Nikje

    Full Text Available Abstract Iron oxide magnetic nanoparticles (NP's converted to the core- shell structres by reacting with by n-(2-aminoethyl-3-aminopropyl trimethoxysilane (AEAP incorporated in polyurethane flexible (PUF foam formulations. Fourier transform spectra, thermal gravimetric analysis, scanning electron images, thermo-mechanical analysis and magnetic properties of the prepared nanocomposites were studied. Obtained data shown that by the increasing of the amine modified magnetic iron oxide NP's up to 3% in the polymer matrix, thermal and magnetic properties improved in comparison with pristine foams. In addition, due to the presence of functional groups on the magnetic NP's surface, hard phases formation decrease in the bulk polymer and cause decreasing of glass transition temperature.

  19. Derivation of temperature dependent mechanical properties of polymer foam core materials using optical extensometry

    Directory of Open Access Journals (Sweden)

    Fruehmann R.K.

    2010-06-01

    Full Text Available A methodology for determining the temperature dependence of Young’s modulus and Poisson’s ratio of polymer foams core materials is presented. The design of the test specimen is described in detail, covering the parasitic effects resulting from departures from the uniform strain condition. The measurement approach is based on a non-contact technique so that the behaviour of the complaint foam is not modified by the attachment of strain gauges or extensometers. Firstly experiments are conducted at room temperature and then at elevated temperatures in a thermal chamber. Readings are taken through an optical window using a standard digital camera. Digital image correlation is used to obtain the strains.

  20. Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing

    Science.gov (United States)

    Brown, Jr., Jesse J.; Hirschfeld, Deidre A.; Li, Tingkai

    1993-12-07

    Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.

  1. Lightweight Hybrid Ablator Incorporating Aerogel-Filled Open-Cell Foam Structural Insulator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In previous work for NASA and DoD, Ultramet developed lightweight open-cell foam insulators composed of a carbon or ceramic structural foam skeleton filled with a...

  2. Lightweight Hybrid Ablator Incorporating Aerogel-Filled Open-Cell Foam Structural Insulator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In previous work for NASA and DoD, Ultramet developed lightweight open-cell foam insulators composed of a carbon or ceramic structural foam skeleton filled with a...

  3. Fundamental investigation of foam flow in a liquid-filled Hele-Shaw cell.

    Science.gov (United States)

    Osei-Bonsu, Kofi; Shokri, Nima; Grassia, Paul

    2016-01-15

    The relative immobility of foam in porous media suppresses the formation of fingers during oil displacement leading to a more stable displacement which is desired in various processes such as Enhanced Oil Recovery (EOR) or soil remediation practices. Various parameters may influence the efficiency of foam-assisted oil displacement such as properties of oil, the permeability and heterogeneity of the porous medium and physical and chemical characteristics of foam. In the present work, we have conducted a comprehensive series of experiments using customised Hele-Shaw cells filled with either water or oil to describe the effects of foam quality, permeability of the cell as well as the injection rate on the apparent viscosity of foam which is required to investigate foam displacement. Our results reveal the significant impact of foam texture and bubble size on the foam apparent viscosity. Foams with smaller bubble sizes have a higher apparent viscosity. This statement only applies (strictly speaking) when the foam quality is constant. However, wet foams with smaller bubbles may have lower apparent viscosity compared to dry foams with larger bubbles. Furthermore, our results show the occurrence of more stable foam-water fronts as foam quality decreases. Besides, the complexity of oil displacement by foam as well as its destabilizing effects on foam displacement has been discussed. Our results extend the physical understanding of foam-assisted liquid displacement in Hele-Shaw cell which is a step towards understanding the foam flow behaviour in more complex systems such as porous media. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Synthesis of Nanostructured/Macroscopic Low-Density Copper Foams Based on Metal-Coated Polymer Core-Shell Particles.

    Science.gov (United States)

    Kim, Sung Ho; Bazin, Nick; Shaw, Jessica I; Yoo, Jae-Hyuck; Worsley, Marcus A; Satcher, Joe H; Sain, John D; Kuntz, Joshua D; Kucheyev, Sergei O; Baumann, Theodore F; Hamza, Alex V

    2016-12-21

    A robust, millimeter-sized low-density Cu foam with ∼90% (v/v) porosity, ∼30 nm thick walls, and ∼1 μm diameter spherical pores is prepared by the slip-casting of metal-coated polymer core-shell particles followed by a thermal removal of the polymer. In this paper, we report our key findings that enable the development of the low-density Cu foams. First, we need to synthesize polystyrene (PS) particles coated with a very thin Cu layer (in the range of tens of nanometers). A simple reduction in the amount of Cu deposited onto the PS was not sufficient to form such a low-density Cu foams due to issues related to foam collapse and densification upon the subsequent polymer removal step. Precise control over the morphology of the Cu coating on the particles is essential for the synthesis of a lower density of foams. Second, improving the dispersion of PS-Cu particles in a suspension used for the casting as well as careful optimization of a baking condition minimize the formation of irregular large voids, leading to Cu foams with a more uniform packing and a better connectivity of neighboring Cu hollow shells. Finally, we analyzed mechanical properties of the Cu foams with a depth-sensing indentation test. The uniform Cu foams show a significant improvement in mechanical properties (∼1.5× modulus and ∼3× hardness) compared to those of uncontrolled foam samples with a similar foam density but irregular large voids. Higher surface areas and a good electric conductivity of the Cu foams present a great potential to future applications.

  5. Stability of the face layer of sandwich beams with sub-interface damage in the foam core

    NARCIS (Netherlands)

    Koysin, V.; Skvortsov, Vitaly; Shipsha, Andrey

    2007-01-01

    This paper addresses the effect of local indentation/impact damage on the bearing capacity of foam core sandwich beams subjected to edgewise compression. The considered damage is in a form of through-width zone of crushed core accompanied by a residual dent in the face sheet. It is shown that such

  6. The Response of Clamped Shallow Sandwich Arches with Metallic Foam Cores to Projectile Impact Loading

    Directory of Open Access Journals (Sweden)

    Yanping Fan

    Full Text Available Abstract The dynamic response and energy absorption capabilities of clamped shallow sandwich arches with aluminum foam core were numerically investigated by impacting the arches at mid-span with metallic foam projectiles. The typical deformation modes, deflection response, and core compression of sandwich arches obtained from the tests were used to validate the computation model. The resistance to impact loading was quantified by the permanent transverse deflection at mid-span of the arches as a function of projectile momentum. The sandwich arches have a higher shock resistance than the monolithic arches of equal mass, and shock resistance could be significantly enhanced by optimizing geometrical configurations. Meanwhile, decreasing the face-sheet thickness and curvature radius could enhance the energy absorption capability of the sandwich arches. Finite element calculations indicated that the ratio of loading time to structural response time ranged from 0.1 to 0.4. The projectile momentum, which was solely used to quantify the structural response of sandwich arches, was insufficient. These findings could provide guidance in conducting further theoretical studies and producing the optimal design of metallic sandwich structures subjected to impact loading.

  7. Macrophage Sortilin Promotes LDL Uptake, Foam Cell Formation, and Atherosclerosis

    Science.gov (United States)

    Patel, Kevin M.; Strong, Alanna; Tohyama, Junichiro; Jin, Xueting; Morales, Carlos R.; Billheimer, Jeffery; Millar, John; Kruth, Howard; Rader, Daniel J.

    2015-01-01

    Rationale Non-coding gene variants at the SORT1 locus are strongly associated with LDL-C levels as well as with coronary artery disease (CAD). SORT1 encodes a protein called sortilin, and hepatic sortilin modulates LDL metabolism by targeting apoB-containing lipoproteins to the lysosome. Sortilin is also expressed in macrophages, but its role in macrophage uptake of LDL and in atherosclerosis independent of plasma LDL-C levels is unknown. Objective To determine the effect of macrophage sortilin expression on LDL uptake, foam cell formation, and atherosclerosis. Methods and Results We crossed Sort1−/− mice onto a ‘humanized’ Apobec1−/−; hAPOB Tg background and determined that Sort1 deficiency on this background had no effect on plasma LDL-C levels but dramatically reduced atherosclerosis in the aorta and aortic root. In order to test whether this effect was a result of macrophage sortilin deficiency, we transplanted Sort1−/−;LDLR−/− or Sort1+/+;LDLR−/− bone marrow into Ldlr−/− mice and observed a similar reduction in atherosclerosis in mice lacking hematopoetic sortilin without an effect on plasma LDL-C levels. In an effort to determine the mechanism by which hematopoetic sortilin deficiency reduced atherosclerosis, we found no effect of sortilin deficiency on macrophage recruitment or LPS-induced cytokine release in vivo. In contrast, sortilin deficient macrophages had significantly reduced uptake of native LDL ex vivo and reduced foam cell formation in vivo, whereas sortilin overexpression in macrophages resulted in increased LDL uptake and foam cell formation. Conclusions Macrophage sortilin deficiency protects against atherosclerosis by reducing macrophage uptake of LDL. Sortilin-mediated uptake of native LDL into macrophages may be an important mechanism of foam cell formation and contributor to atherosclerosis development. PMID:25593281

  8. Insert Design and Manufacturing for Foam-Core Composite Sandwich Structures

    Science.gov (United States)

    Lares, Alan

    Sandwich structures have been used in the aerospace industry for many years. The high strength to weight ratios that are possible with sandwich constructions makes them desirable for airframe applications. While sandwich structures are effective at handling distributed loads such as aerodynamic forces, they are prone to damage from concentrated loads at joints or due to impact. This is due to the relatively thin face-sheets and soft core materials typically found in sandwich structures. Carleton University's Uninhabited Aerial Vehicle (UAV) Project Team has designed and manufactured a UAV (GeoSury II Prototype) which features an all composite sandwich structure fuselage structure. The purpose of the aircraft is to conduct geomagnetic surveys. The GeoSury II Prototype serves as the test bed for many areas of research in advancing UAV technologies. Those areas of research include: low cost composite materials manufacturing, geomagnetic data acquisition, obstacle detection, autonomous operations and magnetic signature control. In this thesis work a methodology for designing and manufacturing inserts for foam-core sandwich structures was developed. The results of this research work enables a designer wishing to design a foam-core sandwich airframe structure, a means of quickly manufacturing optimized inserts for the safe introduction of discrete loads into the airframe. The previous GeoSury II Prototype insert designs (v.1 & v.2) were performance tested to establish a benchmark with which to compare future insert designs. Several designs and materials were considered for the new v.3 inserts. A plug and sleeve design was selected, due to its ability to effectively transfer the required loads to the sandwich structure. The insert material was chosen to be epoxy, reinforced with chopped carbon fibre. This material was chosen for its combination of strength, low mass and also compatibility with the face-sheet material. The v.3 insert assembly is 60% lighter than the

  9. Effect of Rigid Polyurethane Foam Core Density on Flexural and Compressive Properties of Sandwich Panels with Glass/Epoxy Faces

    Directory of Open Access Journals (Sweden)

    saeed Nemati

    2013-01-01

    Full Text Available Sandwich panels as composite materials have two external walls of either metallic or polymer type. The space between these walls is filled by hard foam or other materials and the thickness of different layers is based on the final application of the panel. In the present work, the extent of variation in core density of polyether urethane foam and subsequent flexural and compressive changes in sandwich panels with glass or epoxy face sheets are tested and investigated. A number of hard polyether urethane foams with different middle panel layers density 80-295 kg/m3 are designed to study the effect of foam density on mechanical properties including flexural and compressive properties. Flexural and compressive test resultsshow that increased core density leads to improved mechanical properties. The slope of the curve decreases beyond density of 235 kg/m3. The reason may be explained on the limitation of shear intensity in increasing the mechanical properties. In this respect an optimum density of 235 kg/m3 is obtained for the system under examinations and for reaching higher strength panels, foams of different core materials should be selected.

  10. Manufacturing of Cast Metal Foams with Irregular Cell Structure

    Directory of Open Access Journals (Sweden)

    Kroupová I.

    2015-06-01

    Full Text Available Metallic foams are materials of which the research is still on-going, with the broad applicability in many different areas (e.g. automotive industry, building industry, medicine, etc.. These metallic materials have specific properties, such as large rigidity at low density, high thermal conductivity, capability to absorb energy, etc. The work is focused on the preparation of these materials using conventional casting technology (infiltration method, which ensures rapid and economically feasible method for production of shaped components. In the experimental part we studied conditions of casting of metallic foams with open pores and irregular cell structure made of ferrous and nonferrous alloys by use of various types of filler material (precursors.

  11. Production of Polystyrene Open-celled Microcellular Foam in Batch Process by Super Critical CO2

    Directory of Open Access Journals (Sweden)

    M.S. Enayati

    2010-12-01

    Full Text Available Open-celled foams are capable to allow the passage of fluids through their structure, because of interconnections between the open cells or bubbles and therefore these structures can be used as a membrane and filter. In thiswork, we have studied the production of polystyrene open-celled microcellular foam by using CO2 as blowing agent. To achieve such structures, it is necessary to control the stages of growth in such a way that the cells would connect to each other through the pores without any coalescence. The required processing condition to achieve open-celled structures is predictable by a model theory of opened-cell. This model suggests that at least a 130 bar saturation pressure and foaming time between 9 and 58 s are required for this system. The temperature range has been selected for to be both higher than polymer glass transition temperature and facilitating the foaming process. Experimental results in the batch foaming process has verified the model quite well. The SEM and mercury porousimetry tests show the presence of pores between the cells with open-celled structure. Experimental results show that by increasing the saturation pressure and the foaming temperature, there is a drop in the time required for open-celled structure formation. A 130 bar saturation pressure, 150o C foaming temperature and 60 s foaming time, suggest the attainment of open-celled microcellular foam based on polystyrene/CO2 system in the batch process.

  12. Effective Thermal Conductivity of High Porosity Open Cell Nickel Foam

    Science.gov (United States)

    Sullins, Alan D.; Daryabeigi, Kamran

    2001-01-01

    The effective thermal conductivity of high-porosity open cell nickel foam samples was measured over a wide range of temperatures and pressures using a standard steady-state technique. The samples, measuring 23.8 mm, 18.7 mm, and 13.6 mm in thickness, were constructed with layers of 1.7 mm thick foam with a porosity of 0.968. Tests were conducted with the specimens subjected to temperature differences of 100 to 1000 K across the thickness and at environmental pressures of 10(exp -4) to 750 mm Hg. All test were conducted in a gaseous nitrogen environment. A one-dimensional finite volume numerical model was developed to model combined radiation/conduction heat transfer in the foam. The radiation heat transfer was modeled using the two-flux approximation. Solid and gas conduction were modeled using standard techniques for high porosity media. A parameter estimation technique was used in conjunction with the measured and predicted thermal conductivities at pressures of 10(exp -4) and 750 mm Hg to determine the extinction coefficient, albedo of scattering, and weighting factors for modeling the conduction thermal conductivity. The measured and predicted conductivities over the intermediate pressure values differed by 13%.

  13. Forming foam structures with carbon foam substrates

    Science.gov (United States)

    Landingham, Richard L.; Satcher, Jr., Joe H.; Coronado, Paul R.; Baumann, Theodore F.

    2012-11-06

    The invention provides foams of desired cell sizes formed from metal or ceramic materials that coat the surfaces of carbon foams which are subsequently removed. For example, metal is located over a sol-gel foam monolith. The metal is melted to produce a metal/sol-gel composition. The sol-gel foam monolith is removed, leaving a metal foam.

  14. Self-healing of sandwich structures with a grid stiffened shape memory polymer syntactic foam core

    Science.gov (United States)

    John, Manu; Li, Guoqiang

    2010-07-01

    In this paper, a new sandwich with an orthogrid stiffened shape memory polymer (SMP) based syntactic foam core was proposed, fabricated, programmed, impacted, healed (sealed), and compression tested, for the purposes of healing impact damage repeatedly and almost autonomously. Two prestrain levels (3% and 20%), two impact energy levels (30.0 and 53.3 J), and two recovery (healing) conditions (2D confined and 3D confined) were employed in this paper. Up to seven impact-healing cycles were conducted. Macroscopic and microscopic damage-healing observation and analysis were implemented. Residual strength was evaluated using an anti-buckling compression test fixture. It was found that the healing efficiency was over 100% for almost all the impact-healing cycles; programming using 20% prestrain led to higher residual strength than that with 3% prestrain; 3D confined recovery resulted in higher residual strength than 2D confined recovery; and as the impact energy increased, the healing efficiency slightly decreased.

  15. Vibration Characteristics Determined for Stainless Steel Sandwich Panels With a Metal Foam Core for Lightweight Fan Blade Design

    Science.gov (United States)

    Ghosn, Louis J.; Min, James B.; Raj, Sai V.; Lerch, Bradley A.; Holland, Frederic A., Jr.

    2004-01-01

    The goal of this project at the NASA Glenn Research Center is to provide fan materials that are safer, weigh less, and cost less than the currently used titanium alloy or polymer matrix composite fans. The proposed material system is a sandwich fan construction made up of thin solid face sheets and a lightweight metal foam core. The stiffness of the sandwich structure is increased by separating the two face sheets by the foam layer. The resulting structure has a high stiffness and lighter weight in comparison to the solid facesheet material alone. The face sheets carry the applied in-plane and bending loads (ref. 1). The metal foam core must resist the transverse shear and transverse normal loads, as well as keep the facings supported and working as a single unit. Metal foams have ranges of mechanical properties, such as light weight, impact resistance, and vibration suppression (ref. 2), which makes them more suitable for use in lightweight fan structures. Metal foams have been available for decades (refs. 3 and 4), but the difficulties in the original processes and high costs have prevented their widespread use. However, advances in production techniques and cost reduction have created a new interest in this class of materials (ref. 5). The material chosen for the face sheet and the metal foam for this study was the aerospace-grade stainless steel 17-4PH. This steel was chosen because of its attractive mechanical properties and the ease with which it can be made through the powder metallurgy process (ref. 6). The advantages of a metal foam core, in comparison to a typical honeycomb core, are material isotropy and the ease of forming complex geometries, such as fan blades. A section of a 17-4PH sandwich structure is shown in the following photograph. Part of process of designing any blade is to determine the natural frequencies of the particular blade shape. A designer needs to predict the resonance frequencies of a new blade design to properly identify a useful

  16. Foam patterns

    Science.gov (United States)

    Chaudhry, Anil R; Dzugan, Robert; Harrington, Richard M; Neece, Faurice D; Singh, Nipendra P; Westendorf, Travis

    2013-11-26

    A method of creating a foam pattern comprises mixing a polyol component and an isocyanate component to form a liquid mixture. The method further comprises placing a temporary core having a shape corresponding to a desired internal feature in a cavity of a mold and inserting the mixture into the cavity of the mold so that the mixture surrounds a portion of the temporary core. The method optionally further comprises using supporting pins made of foam to support the core in the mold cavity, with such pins becoming integral part of the pattern material simplifying subsequent processing. The method further comprises waiting for a predetermined time sufficient for a reaction from the mixture to form a foam pattern structure corresponding to the cavity of the mold, wherein the foam pattern structure encloses a portion of the temporary core and removing the temporary core from the pattern independent of chemical leaching.

  17. Development of High Performance Composite Foam Insulation with Vacuum Insulation Cores

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kaushik [ORNL; Desjarlais, Andre Omer [ORNL; SmithPhD, Douglas [NanoPore, Inc.; LettsPhD, John [Firestone Building Products; YaoPhD, Jennifer [Firestone Building Products

    2016-01-01

    Development of a high performance thermal insulation (thermal resistance or R-value per inch of R-12 hr-ft2- F/Btu-in or greater), with twice the thermal resistance of state-of-the-art commercial insulation materials ( R6/inch for foam insulation), promises a transformational impact in the area of building insulation. In 2010, in the US, the building envelope-related primary energy consumption was 15.6 quads, of which 5.75 quads were due to opaque wall and roof sections; the total US consumption (building, industrial and transportation) was 98 quads. In other words, the wall and roof contribution was almost 6% of the entire US primary energy consumption. Building energy modeling analyses have shown that adding insulation to increase the R-value of the external walls of residential buildings by R10-20 (hr-ft2- F/Btu) can yield savings of 38-50% in wall-generated heating and cooling loads. Adding R20 will require substantial thicknesses of current commercial insulation materials, often requiring significant (and sometimes cost-prohibitive) alterations to existing buildings. This article describes the development of a next-generation composite insulation with a target thermal resistance of R25 for a 2 inch thick board (R12/inch or higher). The composite insulation will contain vacuum insulation cores, which are nominally R35-40/inch, encapsulated in polyisocyanurate foam. A recently-developed variant of vacuum insulation, called modified atmosphere insulation (MAI), was used in this research. Some background information on the thermal performance and distinguishing features of MAI has been provided. Technical details of the composite insulation development and manufacturing as well as laboratory evaluation of prototype insulation boards are presented.

  18. Microcellular foam injection molding with cellulose nanofibers (CNFs)

    Science.gov (United States)

    Ohshima, Masahiro; Kubota, Masaya; Ishihara, Shota; Hikima, Yuta; Sato, Akihiro; Sekiguchi, Takafumi

    2016-03-01

    Cellulose nanofibers (CNFs) nanocomposites polypropylene foams are prepared by microcellular foam injection molding with core-back operation. The modified CNFs were blended with isotactic-polypropylene (i-PP) at different CNFs weight percentages and foamed to investigate the effect of CNFs on cell morphology. CNFs in i-PP increased the elastic modulus and induced a strain hardening behavior. CNFs also shifted the crystallization temperature of i-PP to higher temperature and enhanced crystallization. With these changes in rheological and thermal properties, CNFs could reduce the cell size and increase the cell density of the foams. By adjusting the core-back timing i.e., foaming temperature, the closed cell and the nano-fibrillated open cellular structure could be produced. The flexural modulus and bending strength of foams were measured by three point flexural tester. The flexural modulus and bending strength were increased as the CNFs content in i-PP was increased at any foam expansion ratio.

  19. Evaluation of Experimental Parameters in the Accelerated Aging of Closed-Cell Foam Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Therese K [ORNL; Vanderlan, Michael [ORNL; Atchley, Jerald Allen [ORNL

    2012-12-01

    The thermal conductivity of many closed-cell foam insulation products changes over time as production gases diffuse out of the cell matrix and atmospheric gases diffuse into the cells. Thin slicing has been shown to be an effective means of accelerating this process in such a way as to produce meaningful results. Efforts to produce a more prescriptive version of the ASTM C1303 standard test method led to the ruggedness test described here. This test program included the aging of full size insulation specimens for time periods of five years for direct comparison to the predicted results. Experimental parameters under investigation include: slice thickness, slice origin (at the surface or from the core of the slab), thin slice stack composition, product facings, original product thickness, product density, and product type. The test protocol has been completed and this report provides a detailed evaluation of the impact of the test parameters on the accuracy of the 5-year thermal conductivity prediction.

  20. Thermo-mechanical interaction effects in foam cored sandwich panels-correlation between High-order models and Finite element analysis results

    DEFF Research Database (Denmark)

    Palleti, Hara Naga Krishna Teja; Santiuste, Carlos; Thomsen, Ole Thybo

    2010-01-01

    Thermo-mechanical interaction effects including thermal material degradation in polymer foam cored sandwich structures is investigated using the commercial Finite Element Analysis (FEA) package ABAQUS/Standard. Sandwich panels with different boundary conditions in the form of simply supported...

  1. Cell openness manipulation of low density polyurethane foam for efficient sound absorption

    Science.gov (United States)

    Hyuk Park, Ju; Suh Minn, Kyung; Rae Lee, Hyeong; Hyun Yang, Sei; Bin Yu, Cheng; Yeol Pak, Seong; Sung Oh, Chi; Seok Song, Young; June Kang, Yeon; Ryoun Youn, Jae

    2017-10-01

    Satisfactory sound absorption using a low mass density foam is an intriguing desire for achieving high fuel efficiency of vehicles. This issue has been dealt with a microcellular geometry manipulation. In this study, we demonstrate the relationship between cell openness of polyurethane (PU) foam and sound absorption behaviors, both theoretically and experimentally. The objective of this work is to mitigate a threshold of mass density by rendering a sound absorber which shows a satisfactory performance. The cell openness, which causes the best sound absorption performance in all cases considered, was estimated as 15% by numerical simulation. Cell openness of PU foam was experimentally manipulated into desired ranges by adjusting rheological properties in a foaming reaction. Microcellular structures of the fabricated PU foams were observed and sound absorption coefficients were measured using a B&K impedance tube. The fabricated PU foam with the best cell openness showed better sound absorption performance than the foam with double mass density. We envisage that this study can help the manufacture of low mass density sound absorbing foams more efficiently and economically.

  2. Simulation in CFD of a Pebble Bed: Advanced high temperature reactor core using OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, Pamela M.; Su, Jian, E-mail: sujian@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    Numerical simulations of a Pebble Bed nuclear reactor core are presented using the multi-physics tool-kit OpenFOAM. The HTR-PM is modeled using the porous media approach, accounting both for viscous and inertial effects through the Darcy and Forchheimer model. Initially, cylindrical 2D and 3D simulations are compared, in order to evaluate their differences and decide if the 2D simulations carry enough of the sought information, considering the savings in computational costs. The porous medium is considered to be isotropic, with the whole length of the packed bed occupied homogeneously with the spherical fuel elements. Steady-state simulations for normal equilibrium operation are performed, using a semi sine function of the power density along the vertical axis as the source term for the energy balance equation.Total pressure drop is calculated and compared with that obtained from literature for a similar case. At a second stage, transient simulations are performed, where relevant parameters are calculated and compared to those of the literature. (author)

  3. Infiltrated carbon foam composites

    Science.gov (United States)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)

    2012-01-01

    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.

  4. Lysophosphatidic acid directly induces macrophage-derived foam cell formation by blocking the expression of SRBI.

    Science.gov (United States)

    Chen, Linmu; Zhang, Jun; Deng, Xiao; Liu, Yan; Yang, Xi; Wu, Qiong; Yu, Chao

    2017-09-23

    The leading cause of morbidity and mortality is the result of cardiovascular disease, mainly atherosclerosis. The formation of macrophage foam cells by ingesting ox-LDL and focal retention in the subendothelial space are the hallmarks of the early atherosclerotic lesion. Lysophosphatidic acid (LPA), which is a low-molecular weight lysophospholipid enriched in oxidized LDL, exerts a range of effects on the cardiovascular system. Previous reports show that LPA increases the uptake of ox-LDL to promote the formation of foam cells. However, as the most active component of ox-LDL, there is no report showing whether LPA directly affects foam cell formation. The aim of this study was to investigate the effects of LPA on foam cell formation, as well as to elucidate the underlying mechanism. Oil red O staining and a Cholesterol/cholesteryl ester quantitation assay were used to evaluate foam cell formation in Raw264.7 macrophage cells. We utilized a Western blot and RT-PCR to investigate the relationship between LPA receptors and lipid transport related proteins. We found that LPA promoted foam cell formation, using 200 μM for 24 h. Meanwhile, the expression of the Scavenger receptor BI (SRBI), which promotes the efflux of free cholesterol, was decreased. Furthermore, the LPA 1/3 receptor antagonist Ki16425 significantly abolished the LPA effects, indicating that LPA 1/3 was involved in the foam cell formation and SRBI expression induced by LPA. Additionally, the LPA-induced foam cell formation was blocked with an AKT inhibitor. Our results suggest that LPA-enhanced foam cell formation is mediated by LPA 1/3 -AKT activation and subsequent SRBI expression. Copyright © 2017. Published by Elsevier Inc.

  5. Estimation of fracture parameters in foam core materials using thermal techniques

    DEFF Research Database (Denmark)

    Dulieu-Barton, J. M.; Berggreen, Christian; Boyenval Langlois, C.

    2010-01-01

    The paper presents some initial work on establishing the stress state at a crack tip in PVC foam material using a non-contact infra-red technique known as thermoelastic stress analysis (TSA). A parametric study of the factors that may affect the thermoelastic response of the foam material...

  6. Bio-based Polymer Foam from Soyoil

    Science.gov (United States)

    Bonnaillie, Laetitia M.; Wool, Richard P.

    2006-03-01

    The growing bio-based polymeric foam industry is presently lead by plant oil-based polyols for polyurethanes and starch foams. We developed a new resilient, thermosetting foam system with a bio-based content higher than 80%. The acrylated epoxidized soybean oil and its fatty acid monomers is foamed with pressurized carbon dioxide and cured with free-radical initiators. The foam structure and pore dynamics are highly dependent on the temperature, viscosity and extent of reaction. Low-temperature cure hinds the destructive pore coalescence and the application of a controlled vacuum results in foams with lower densities ˜ 0.1 g/cc, but larger cells. We analyze the physics of foam formation and stability, as well as the structure and mechanical properties of the cured foam using rigidity percolation theory. The parameters studied include temperature, vacuum applied, and cross-link density. Additives bring additional improvements: nucleating agents and surfactants help produce foams with a high concentration of small cells and low bulk density. Hard and soft thermosetting foams with a bio content superior to 80% are successfully produced and tested. Potential applications include foam-core composites for hurricane-resistant housing, structural reinforcement for windmill blades, and tissue scaffolds.

  7. Cooling capacity of high porosity open-cell metal foams as passive cryogenic radiators

    Science.gov (United States)

    Dixit, Tisha; Ghosh, Indranil

    2017-06-01

    This work presents an innovative avenue for employment of high porosity open-cell metal foams as extended heat transfer surfaces in passive cryogenic radiators. Metal foams are known for being light in weight and possess high surface area density. In contrast to a solid surface, porosity of metal foams makes it feasible for penetration of radiation thereby resulting in higher radiatively interactive surface area. Two 20 PPI metal foams made of copper and aluminum with 94.9% and 90.3% porosity respectively have been chosen for this study. A laboratory-scale test rig measures the radiative cooling capacity of metal foams in vacuum (10-6 mbar) subjected to liquid nitrogen environment. Heat load to the foam has been provided by means of convective fluid loop. Simultaneously, a theoretical model based on radiation-conduction fin analysis has been developed to predict the foam cooling capacity at a specified temperature. The required radiation heat transfer coefficient has been obtained from a previous experiment wherein the foam samples are freely suspended in similar conditions but with no heat load. Lastly, performance of the foams under study has been expressed in terms of a commonly used performance parameter (surface area/cooling capacity) for passive cryogenic radiators.

  8. Preparation of Desirable Porous Cell Structure Polylactide/Wood Flour Composite Foams Assisted by Chain Extender.

    Science.gov (United States)

    Wang, Youyong; Song, Yongming; Du, Jun; Xi, Zhenhao; Wang, Qingwen

    2017-08-26

    Polylactide (PLA)/wood flour composite foam were prepared through a batch foaming process. The effect of the chain extender on the crystallization behavior and dynamic rheological properties of the PLA/wood flour composites were investigated as well as the crystal structure and cell morphology of the composite foams. The incorporation of the chain extender enhanced the complex viscosity and storage modulus of PLA/wood flour composites, indicating the improved melt elasticity. The chain extender also led to a decreased crystallization rate and final crystallinity of PLA/wood flour composites. With an increasing chain extender content, a finer and more uniform cell structure was formed, and the expansion ratio of PLA/wood flour composite foams was much higher than without the chain extender. Compared to the unfoamed composites, the crystallinity of the foamed PLA/wood flour composites was improved and the crystal was loosely packed. However, the new crystalline form was not evident.

  9. Microstructure based model for sound absorption predictions of perforated closed-cell metallic foams.

    Science.gov (United States)

    Chevillotte, Fabien; Perrot, Camille; Panneton, Raymond

    2010-10-01

    Closed-cell metallic foams are known for their rigidity, lightness, thermal conductivity as well as their low production cost compared to open-cell metallic foams. However, they are also poor sound absorbers. Similarly to a rigid solid, a method to enhance their sound absorption is to perforate them. This method has shown good preliminary results but has not yet been analyzed from a microstructure point of view. The objective of this work is to better understand how perforations interact with closed-cell foam microstructure and how it modifies the sound absorption of the foam. A simple two-dimensional microstructural model of the perforated closed-cell metallic foam is presented and numerically solved. A rough three-dimensional conversion of the two-dimensional results is proposed. The results obtained with the calculation method show that the perforated closed-cell foam behaves similarly to a perforated solid; however, its sound absorption is modulated by the foam microstructure, and most particularly by the diameters of both perforation and pore. A comparison with measurements demonstrates that the proposed calculation method yields realistic trends. Some design guides are also proposed.

  10. Effects of everolimus on macrophage-derived foam cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Steven, E-mail: steven.hsu@av.abbott.com [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States); Koren, Eugen; Chan, Yen; Koscec, Mirna; Sheehy, Alexander [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States); Kolodgie, Frank; Virmani, Renu [CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD 20878 (United States); Feder, Debra [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States)

    2014-07-15

    Purpose: The purpose of this study was to investigate the effects of everolimus on foam cell (FC) viability, mRNA levels, and inflammatory cytokine production to better understand its potential inhibitory effects on atheroma progression. Methods and materials: Human THP1 macrophage-derived FC were formed using acetylated LDL (acLDL, 100 μg/mL) for 72 hours, followed by everolimus treatment (10{sup -5}–10{sup -11} M) for 24 hours. FC viability was quantified using fluorescent calcein AM/DAPI staining. FC lysates and media supernatants were analyzed for apoptosis and necrosis using a Cell Death ELISA{sup PLUS} assay. FC lysates and media supernatants were also analyzed for inflammatory cytokine (IL1β, IL8, MCP1, TNFα) mRNA levels and protein expression using quantitative reverse transcription real-time polymerase chain reaction (QPCR) and a Procarta® immunoassay, respectively. mRNA levels of autophagy (MAP1LC3), apoptosis (survivin, clusterin), and matrix degradation (MMP1, MMP9) markers were evaluated by Quantigene® Plex assay and verified with QPCR. Additionally, hypercholesterolemic rabbits received everolimus-eluting stents (EES) for 28 or 60 days. RAM-11 immunohistochemical staining was performed to compare %RAM-11 positive area between stented sections and unstented proximal sections. Statistical significance was calculated using one-way ANOVA (p ≤ 0.05). Results: Calcein AM/DAPI staining showed that FC exposed to everolimus (10{sup -5} M) had significantly decreased viability compared to control. FC apoptosis was significantly increased at a high dose of everolimus (10{sup -5} M), with no necrotic effects at any dose tested. Everolimus did not affect endothelial (HUVEC) and smooth muscle (HCASMC) cell apoptosis or necrosis. Everolimus (10{sup -5} M) significantly increased MAP1LC3, caused an increased trend in clusterin (p = 0.10), and significantly decreased survivin and MMP1 mRNA levels in FC. MCP1 cytokine mRNA levels and secreted protein

  11. Tailoring the rate-sensitivity of low density polyurea foams through cell wall aperture size

    Science.gov (United States)

    Ramirez, B. J.; Kingstedt, O. T.; Crum, R.; Gamez, C.; Gupta, V.

    2017-06-01

    The plateau stress and energy absorption of low density (≤300 kg/m3) polyurea (PU) foams and expanded polystyrene (EPS) were measured at deformation rates ranging from 0.004 s-1 to 5000 s-1. Low (≤10-1 s-1) strain rate testing was performed using an Instron load frame, intermediate (101-102 s-1) strain rates using a drop-weight impact tower, and high (≥103 s-1) strain rate conditions using a modified split-Hopkinson pressure bar. The plateau stress and energy absorption of low density PU foams exhibit a strong rate dependence across all deformation rates. This result has been previously unreported for low density polymer foams under low and intermediate strain rates. The strain rate sensitivity of PU foams was found to be strongly dependent on cell size for low strain rates and cell wall aperture size for intermediate and high strain rates. EPS type foam, however, remained nearly insensitive to strain rate. At low and intermediate strain rates, the plastic crushing in the EPS and the high plateau stress yield a much higher energy absorption capability than the viscoelastic dissipation in the PU foams. However, PU foams were found to display similar energy absorption properties as EPS based foams under high strain rates. Thus, controlling the strain rate sensitivity of PU foams through aperture diameter can lead to an increase in energy absorption properties at high strain rates, while simultaneously maintaining the peak stress below certain injury thresholds. Additionally, unlike EPS, which undergo plastic crushing after first impact, flexible polyurea foams will recover fully after each impact and thus will have multiple hit capabilities. This will allow these materials to have a wide range of applications, in advance body armors and protective headgears to use in low-cost protection systems for a wide range of military platforms, civilian, and space applications.

  12. Xanthine Oxidase Induces Foam Cell Formation through LOX-1 and NLRP3 Activation.

    Science.gov (United States)

    Dai, Yao; Cao, Yongxiang; Zhang, Zhigao; Vallurupalli, Srikanth; Mehta, Jawahar L

    2017-02-01

    Xanthine oxidase catalyzes the oxidation of xanthine to uric acid. This process generates excessive reactive oxygen species (ROS) that play an important role in atherogenesis. Recent studies show that LRR and PYD domains-containing protein 3 (NLRP3), a component of the inflammasome, may be involved in the formation of foam cells, a hallmark of atherosclerosis. This study was designed to study the role of various scavenger receptors and NLRP3 inflammasome in xanthine oxidase and uric acid-induced foam cell formation. Human vascular smooth muscle cells (VSMCs) and THP-1 macrophages were treated with xanthine oxidase or uric acid. Xanthine oxidase treatment (of both VSMCs and THP-1 cells) resulted in foam cell formation in concert with generation of ROS and expression of cluster of differentiation 36 (CD36) and oxidized low density lipoprotein (lectin-like) receptor 1 (LOX-1), but not of scavenger receptor A (SRA). Uric acid treatment resulted in foam cell formation, ROS generation and expression of CD36, but not of LOX-1 or SRA. Further, treatment of cells with xanthine oxidase, but not uric acid, activated NLRP3 and its downstream pro-inflammatory signals- caspase-1, interleukin (IL)-1β and IL-18. Blockade of LOX-1 or NLRP3 inflammasome with specific siRNAs reduced xanthine oxidase-induced foam cell formation, ROS generation and activation of NLRP3 and downstream signals. Xanthine oxidase induces foam cell formation in large part through activation of LOX-1 - NLRP3 pathway in both VSMCs and THP-1 cells, but uric acid-induced foam cell formation is exclusively through CD36 pathway. Further, LOX-1 activation is upstream of NLRP3 activation. Graphical Abstract Steps in the formation of foam cells in response to xanthine oxidase and uric acid. Xanthine oxidase stimulates LOX-1 expression on the cell membrane of macrophages and vascular smooth muscle cells (VSMCs) and increases generation of ROS, which activate NLRP3 inflammasome and downstream pro

  13. CML/CD36 accelerates atherosclerotic progression via inhibiting foam cell migration.

    Science.gov (United States)

    Xu, Suining; Li, Lihua; Yan, Jinchuan; Ye, Fei; Shao, Chen; Sun, Zhen; Bao, Zhengyang; Dai, Zhiyin; Zhu, Jie; Jing, Lele; Wang, Zhongqun

    2018-01-01

    Among the various complications of type 2 diabetes mellitus, atherosclerosis causes the highest disability and morbidity. A multitude of macrophage-derived foam cells are retained in atherosclerotic plaques resulting not only from recruitment of monocytes into lesions but also from a reduced rate of macrophage migration from lesions. Nε-carboxymethyl-Lysine (CML), an advanced glycation end product, is responsible for most complications of diabetes. This study was designed to investigate the mechanism of CML/CD36 accelerating atherosclerotic progression via inhibiting foam cell migration. In vivo study and in vitro study were performed. For the in vivo investigation, CML/CD36 accelerated atherosclerotic progression via promoting the accumulation of macrophage-derived foam cells in aorta and inhibited macrophage-derived foam cells in aorta migrating to the para-aorta lymph node of diabetic apoE -/- mice. For the in vitro investigation, CML/CD36 inhibited RAW264.7-derived foam cell migration through NOX-derived ROS, FAK phosphorylation, Arp2/3 complex activation and F-actin polymerization. Thus, we concluded that CML/CD36 inhibited foam cells of plaque migrating to para-aorta lymph nodes, accelerating atherosclerotic progression. The corresponding mechanism may be via free cholesterol, ROS generation, p-FAK, Arp2/3, F-actin polymerization. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Data characterizing compressive properties of Al/Al2O3 syntactic foam core metal matrix sandwich

    Directory of Open Access Journals (Sweden)

    Mohammed Yaseer Omar

    2015-12-01

    Full Text Available Microstructural observations and compressive property datasets of metal matrix syntactic foam core sandwich composite at quasi-static and high strain rate (HSR conditions (525–845 s−1 are provided. The data supplied in this article includes sample preparation procedure prior to scanning electron and optical microscopy as well as the micrographs. The data used to construct the stress–strain curves and the derived compressive properties of all specimens in both quasi-static and HSR regions are included. Videos of quasi-static compressive failure and that obtained by a high speed image acquisition system during deformation and failure of HSR specimen are also included.

  15. Fatigue characterization of Poly Vinyl Chloride (PVC) foam core sandwich composite using the G-control method

    DEFF Research Database (Denmark)

    Manca, Marcello; Berggreen, Christian; Carlsson, Leif A.

    2016-01-01

    , compression and shear to determine in-plane and out-of-plane mechanical properties, such as Young’s modulus, Poisson’s ratio and shear modulus. These properties were then used in an analytical model of the mixed-mode bending sandwich specimen to calculate compliance and energy release rate. Finite element......This paper presents experimental results from cyclic crack propagation tests performed on sandwich specimens with glass/epoxy face sheets and Poly Vinyl Chloride (PVC) foam cores using the G-controlled cyclic energy release rate (ΔG) test procedure. The face material was tested in tension...

  16. Analytical/Empirical Study on Indentation Behavior of Sandwich Plate with Foam Core and Composite Face Sheets

    Directory of Open Access Journals (Sweden)

    Soheil Dariushi

    2017-07-01

    Full Text Available Sandwich structures are widely used in aerospace, automobile, high speed train and civil applications. Sandwich structures consist of two thin and stiff skins and a thick and light weight core. In this study, the obligatory mandate of a sandwich plate contact constitutes a flexible foam core and composite skins with a hemispherical rigid punch has been studied by an analytical/empirical method. In sandwich structures, calculation of force distribution under the punch nose is complicated, because the core is flexible and the difference between the modulus of elasticity of skin and core is large. In the present study, an exponential correlation between the contact force and indentation is proposed. The coefficient and numerical exponent were calculated using the experimental indentation results. A model based on a high-order sandwich panel theory was used to study the bending behavior of sandwich plate under hemispherical punch load. In the first method, the force distribution under the punch nose was calculated by the proposed method and multiplied to deformation of related point in the loading area to calculate the potential energy of the external loads. In the second method, the punch load was modeled as a point force and multiplied to deformation of maximum indented point. The results obtained from the two methods were compared with the experimental results. Indentation and bending tests were carried out on sandwich plates with glass/epoxy skins and a styrene/acrylonitrile foam core. In the bending test, a simply support condition was set and in the indentation test the sandwich specimens were put on a rigid support. Indeed, in this position the punch movement was equal the indentation. The comparison between the analytical and experimental results showed that the proposed method significantly improved the accuracy of analysis.

  17. Microtomography-based CFD analysis of transport in open-cell aluminum metal foams

    International Nuclear Information System (INIS)

    Ranut, Paola; Nobile, Enrico; Mancini, Lucia

    2014-01-01

    Nowadays, the need for developing more effective heat exchange technologies and innovative materials, capable of increasing performances while keeping power consumption, size and cost at reasonable levels, is well recognized. Under this perspective, metal foams have a great potential for enhancing the thermal efficiency of heat transfer devices, while allowing for the use of smaller and lighter equipments. However, for practical applications, it is necessary to compromise between the augmented heat transfer rate and the increased pressure drop induced by the tortuous flow passages. For design purposes, the estimation of the flow permeability and the thermal conductivity of the foam is fundamental, but far from simple. From this perspective, besides classical transport models and correlations, computational fluid dynamics (CFD) at the pore scale, although challenging, is becoming a promising approach, especially if coupled with a realistic description of the foam structure. For precisely recovering the microstructure of the foams, a 3D X-ray computed microtomography (μ-CT) can be adopted. In this work, the results of μ-CT-based CFD simulations performed on different open-cell aluminum foams samples, for laminar flow regime, will be discussed. The results demonstrate that open-cell aluminum foams are effective means for enhancing heat transfer.

  18. A relative permeability model to derive fractional-flow functions of water-alternating-gas and surfactant-alternating-gas foam core-floods

    International Nuclear Information System (INIS)

    Al-Mossawy, Mohammed Idrees; Demiral, Birol; Raja, D M Anwar

    2013-01-01

    Foam is used in enhanced oil recovery to improve the sweep efficiency by controlling the gas mobility. The surfactant-alternating-gas (SAG) foam process is used as an alternative to the water-alternating-gas (WAG) injection. In the WAG technique, the high mobility and the low density of the gas lead the gas to flow in channels through the high permeability zones of the reservoir and to rise to the top of the reservoir by gravity segregation. As a result, the sweep efficiency decreases and there will be more residual oil in the reservoir. The foam can trap the gas in liquid films and reduces the gas mobility. The fractional-flow method describes the physics of immiscible displacements in porous media. Finding the water fractional flow theoretically or experimentally as a function of the water saturation represents the heart of this method. The relative permeability function is the conventional way to derive the fractional-flow function. This study presents an improved relative permeability model to derive the fractional-flow functions for WAG and SAG foam core-floods. The SAG flow regimes are characterized into weak foam, strong foam without a shock front and strong foam with a shock front. (paper)

  19. A relative permeability model to derive fractional-flow functions of water-alternating-gas and surfactant-alternating-gas foam core-floods

    Science.gov (United States)

    Idrees Al-Mossawy, Mohammed; Demiral, Birol; Raja, D. M. Anwar

    2013-04-01

    Foam is used in enhanced oil recovery to improve the sweep efficiency by controlling the gas mobility. The surfactant-alternating-gas (SAG) foam process is used as an alternative to the water-alternating-gas (WAG) injection. In the WAG technique, the high mobility and the low density of the gas lead the gas to flow in channels through the high permeability zones of the reservoir and to rise to the top of the reservoir by gravity segregation. As a result, the sweep efficiency decreases and there will be more residual oil in the reservoir. The foam can trap the gas in liquid films and reduces the gas mobility. The fractional-flow method describes the physics of immiscible displacements in porous media. Finding the water fractional flow theoretically or experimentally as a function of the water saturation represents the heart of this method. The relative permeability function is the conventional way to derive the fractional-flow function. This study presents an improved relative permeability model to derive the fractional-flow functions for WAG and SAG foam core-floods. The SAG flow regimes are characterized into weak foam, strong foam without a shock front and strong foam with a shock front.

  20. Effect of policosanol on foam-cell formation in carrageenan-induced granulomas in rats.

    Science.gov (United States)

    Noa, M; de la Rosa, M C; Más, R

    1996-03-01

    Policosanol is a new cholesterol-lowering drug isolated and purified from sugar-cane wax, which prevents the development of lipofundin-induced lesions and foam-cell formation in New Zealand rabbits and Wistar rats. This study was conducted to examine the effects of policosanol on foam-cell formation in carrageenan-induced granulomas in rats. Eighteen Wistar rats were randomly distributed in three experimental groups which received orally for 20 days Tween 20 H2O as vehicle (control group) or policosanol at 2.5 or 25 mg kg-1. At the 11th day, lipofundin was injected intraperitoneally for 8 days to induce formation of foam cells in the granuloma. At day 13, carrageenan was injected subcutaneously for granuloma induction and seven days later animals were killed. A significant reduction of the foam-cell formation in granulomas of policosanol-treated rats was observed. It is concluded that policosanol prevents the development of foam cells in carrageenan-induced granulomas (extravascular medium) in rats.

  1. Closed-cell polymeric foam for hydrogen separation and storage

    Czech Academy of Sciences Publication Activity Database

    Pientka, Zbyněk; Pokorný, P.; Bélafi-Bakó, K.

    2007-01-01

    Roč. 304, 1-2 (2007), s. 82-87 ISSN 0376-7388 R&D Projects: GA ČR GA203/06/1207 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymeric foam * gas separation * hydrogen storage Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.432, year: 2007

  2. Heat transport in closed cell aluminum foams: application notes

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, Jaime; Escudero, Javier; Solorzano, Eusebio; Rodriguez-Perez, Miguel A.; Saja, Jose A. de [Cellular Materials Group (CellMat), Condensed Matter Physics Department, University of Valladolid (Spain)

    2009-10-15

    Heat transport equations have been used to solve, by implementing the Finite Element Method (FEM), three different cases representative of the aluminium foams life: the production process (solidification in the molten state), post-production (water quenching heat treatments) and applications (fire barriers). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  3. Supercritical CO2 foaming of thermoplastic materials derived from maize: proof-of-concept use in mammalian cell culture applications.

    Directory of Open Access Journals (Sweden)

    Grissel Trujillo-de Santiago

    Full Text Available Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds.We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively. Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3 and two different prostate cancer cell lines (22RV1, DU145 attached to and proliferated on zein foams.We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves. Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein foams for extended time periods.

  4. Closed-Cell Aluminum Foam of Improved Sound Absorption Ability: Manufacture and Properties

    Directory of Open Access Journals (Sweden)

    Alexandra Byakova

    2014-08-01

    Full Text Available The paper presents a new method for the production of the closed-cell Al foams of improved sound absorbing ability. Final heat treatment procedure including heating below the solidus temperature followed by water quenching is proposed as an alternative method to machining, which is used commonly for improvement of the sound absorption coefficient. Several kinds of foams based on AlZnMg-alloys comprising brittle eutectic domains of interdendritic redundant phase have been produced by the Alporas-like melting process to realize the method above. Opening of the closed cell structure required for ensuring high sound absorption ability has been achieved by cracking the walls between neighboring cells, making them gas permeable. They ultimately looked like Helmholtz micro-perforated resonators. Processing parameters and other variables that are favorable both for foaming regime and for final heat treatment are discussed and specified.

  5. Andrographolide Inhibits Oxidized LDL-Induced Cholesterol Accumulation and Foam Cell Formation in Macrophages.

    Science.gov (United States)

    Lin, Hung-Chih; Lii, Chong-Kuei; Chen, Hui-Chun; Lin, Ai-Hsuan; Yang, Ya-Chen; Chen, Haw-Wen

    2018-01-01

    oxLDL is involved in the pathogenesis of atherosclerotic lesions through cholesterol accumulation in macrophage foam cells. Andrographolide, the bioactive component of Andrographis paniculata, possesses several biological activities such as anti-inflammatory, anti-oxidant, and anticancer functions. Scavenger receptors (SRs), including class A SR (SR-A) and CD36, are responsible for the internalization of oxLDL. In contrast, receptors for reverse cholesterol transport, including ABCA1 and ABCG1, mediate the efflux of cholesterol from macrophage foam cells. Transcription factor liver X receptor [Formula: see text] (LXR[Formula: see text] plays a key role in lipid metabolism and inflammation as well as in the regulation of ABCA1 and ABCG1 expression. Because of the contribution of inflammation to macrophage foam cell formation and the potent anti-inflammatory activity of andrographolide, we hypothesized that andrographolide might inhibit oxLDL-induced macrophage foam cell formation. The results showed that andrographolide reduced oxLDL-induced lipid accumulation in macrophage foam cells. Andrographolide decreased the mRNA and protein expression of CD36 by inducing the degradation of CD36 mRNA; however, andrographolide had no effect on SR-A expression. In contrast, andrographolide increased the mRNA and protein expression of ABCA1 and ABCG1, which were dependent on LXR[Formula: see text]. Andrographolide enhanced LXR[Formula: see text] nuclear translocation and DNA binding activity. Treatment with the LXR[Formula: see text] antagonist GGPP and transfection with LXR[Formula: see text] siRNA reversed the ability of andrographolide to stimulate ABCA1 and ABCG1 protein expression. In conclusion, inhibition of CD36-mediated oxLDL uptake and induction of ABCA1- and ABCG1-dependent cholesterol efflux are two working mechanisms by which andrographolide inhibits macrophage foam cell formation, which suggests that andrographolide could be a potential candidate to prevent

  6. Acyl Chain Preference in Foam Cell Formation from Mouse Peritoneal Macrophages.

    Science.gov (United States)

    Fujiwara, Yuko; Hama, Kotaro; Tsukahara, Makoto; Izumi-Tsuzuki, Ryosuke; Nagai, Toru; Ohe-Yamada, Mihoko; Inoue, Keizo; Yokoyama, Kazuaki

    2018-01-01

    Macrophage foam cells play critical roles in the initiation and development of atherosclerosis by synthesizing and accumulating cholesteryl ester (CE) in lipid droplets. However, in analyzing lipid metabolism in foam cell formation, studies have focused on the sterol group, and little research has been done on the acyl chains. Therefore, we adapted a model system using liposomes containing particular acyl chains and examined the effect of various acyl chains on foam cell formation. Of the phosphatidylserine (PS) liposomes tested containing PS, phosphatidylcholine, and cholesterol, we found that unsaturated (C18:1), but not saturated (C16:0 and C18:0), PS liposomes induced lipid droplet formation, indicating that foam cell formation depends on the nature of the acyl chain of the PS liposomes. Experiments on the uptake and accumulation of cholesterol from liposomes by adding [ 14 C]cholesterol suggested that foam cell formation could be induced only when cholesterol was converted to CE in the case of C18:1 PS liposomes. Both microscopic observations and metabolic analysis suggest that cholesterol incorporated into either C16:0 or C18:0 PS liposomes may stay intact after being taken in by endosomes. The [ 14 C]C18:1 fatty acyl chain in the C18:1 PS liposome was used to synthesize CE and triacylglycerol (TG). Interestingly, the [ 14 C]C16:0 in the C18:1 PS liposome was metabolized to sphingomyelin rather than being incorporated into either CE or TG, which could be because of enzymatic acyl chain selectivity. In conclusion, our results indicate that the acyl chain preference of macrophages could have some impact on their progression to foam cells.

  7. Serum amyloid A stimulates macrophage foam cell formation via lectin-like oxidized low-density lipoprotein receptor 1 upregulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ha Young, E-mail: hayoung@skku.edu [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Kim, Sang Doo [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Baek, Suk-Hwan [Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Joon Hyuk [Department of Pathology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Cho, Kyung-Hyun [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Zabel, Brian A. [Palo Alto Institute for Research and Education, Veterans Affairs Hospital, Palo Alto, CA 94304 (United States); Bae, Yoe-Sik, E-mail: yoesik@skku.edu [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of)

    2013-03-29

    Highlights: ► SAA induced macrophage foam cell formation. ► SAA stimulated upregulation of lectin-like oxidized low-density lipoprotein receptor 1 (LOX1). ► SAA-induced LOX1 expression and foam cell formation is mediated by JNK/NF-κB signaling. ► HDL-conjugated SAA also stimulates foam cell formation via LOX1 upregulation. ► The finding reveals a novel mechanism of action of SAA in the pathogenesis of atherosclerosis. -- Abstract: Elevated levels of serum amyloid A (SAA) is a risk factor for cardiovascular diseases, however, the role of SAA in the pathophysiology of atherosclerosis remains unclear. Here we show that SAA induced macrophage foam cell formation. SAA-stimulated foam cell formation was mediated by c-jun N-terminal kinase (JNK) signaling. Moreover, both SAA and SAA-conjugated high density lipoprotein stimulated the expression of the important scavenger receptor lectin-like oxidized low-density lipoprotein receptor 1 (LOX1) via nuclear factor-κB (NF-κB). A LOX1 antagonist carrageenan significantly blocked SAA-induced foam cell formation, indicating that SAA promotes foam cell formation via LOX1 expression. Our findings therefore suggest that SAA stimulates foam cell formation via LOX1 induction, and thus likely contributes to atherogenesis.

  8. Development of pure Mg open-cell foams as structured CO{sub 2} captor

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, I.A., E-mail: iafiguera@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Cd. Universitaria, C.P. 04510 México, D.F. (Mexico); Suarez, M.A.; Velasco-Castro, M.; Pfeiffer, H.; Alcántar-Vázquez, B.; González, G. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Cd. Universitaria, C.P. 04510 México, D.F. (Mexico); Alfonso, I. [Instituto de Investigaciones en Materiales, Unidad Morelia, Universidad Nacional Autónoma de México, Campus Morelia UNAM, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, C.P. 58190 Morelia, Michoacán (Mexico); Lara-Rodríguez, G.A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Cd. Universitaria, C.P. 04510 México, D.F. (Mexico)

    2015-12-10

    Highlights: • The CO{sub 2} capture capacity of the open-cell Mg foams was studied at low temperatures. • Open-cell Mg foams with pore size of 350 μm were used for the CO{sub 2} capture study. • The highest amount of CO{sub 2} captured was obtained at 60 °C and 80% of relative humidity. • A CO{sub 2} capture capacity of 0.87 mmol/g was obtained for the open-cell Mg foams. • The oxidized open-cell Mg foams can be used as CO{sub 2} captors. - Abstract: The CO{sub 2} capture capacity of the superficial oxide layer formed in pure open-cell Mg foams was studied at low temperatures (40–60 °C) varying the relative humidity from 40 to 80%. Mg foam samples with pore size of 350 μm and surface area of 5.4 m{sup 2}/g were used for these analyses. Optical microscopy and X-ray diffraction techniques were used to characterize the cell structure and the superficial oxide formed in the cell-foams, respectively. The final products formed after the CO{sub 2}–H{sub 2}O capture experiments were identified by scanning electron microscopy and attenuated total reflexion-Fourier transform infrared spectroscopy (ATR-FTIR). The MgCO{sub 3} and other products, formed after CO{sub 2} + H{sub 2}O capture process, were thermally decomposed, to quantify the amount of CO{sub 2} captured by the superficial MgO layer using standard thermogravimetric analysis. The results showed that the highest amount of CO{sub 2} captured was obtained at 60 °C and 80% of relative humidity, with a CO{sub 2} capture capacity of 0.87 mmol/g, which is comparable with others CO{sub 2} MgO-based captors. The considerable CO{sub 2} capture capacity at low temperatures supports the potential of the pure open-cell Mg foams to be used as structured CO{sub 2} captors.

  9. Influence of material non-linearity on the thermo-mechanical response of polymer foam cored sandwich structures - FE modelling and preliminary experiemntal results

    DEFF Research Database (Denmark)

    Palleti, Hara Naga Krishna Teja; Thomsen, Ole Thybo; Fruehmann, Richard.K

    In this paper, the polymer foam cored sandwich structures with fibre reinforced composite face sheets will be analyzed using the commercial FE code ABAQUS/Standard® incorporating the material and geometrical non-linearity. Large deformations are allowed which attributes geometric non linearity...

  10. Experimental Study of Stress-Strain Behaviour of Open-Cell Aluminium Foam Sandwich Panel for Automotive Structural Part

    Directory of Open Access Journals (Sweden)

    Nur Asmawiyah Ibrahim

    2017-07-01

    Full Text Available Because of high stiffness and strength to weight ratio, aluminium foam sandwich (AFS has huge advantage in automotive industries in order to reduce the vehicle’s weight which consequently will reduce the fuel consumption. While reducing the weight, AFS must also maintain high strength and durability compared to other competitive materials used which perform same functionalities. AFS had been proved its suitability for industrial application by previous researchers such as in aerospace, automotive and architecture. However, there is still a gap need to be filled in order to expand the use of the AFS in another application. In this paper, the tensile strength of AFS panel made of from aluminium skin sheets and open-cell aluminium foam core with various thickness is investigated. Design of experiment was developed according to JUMP (JMP statistical software and experimental work was done using universal testing machine. The stress-strain behavior was analysed. The result shows that the effect of skin to core ratio is significant on the stress-strain behavior.

  11. Blocking Wnt5a signaling decreases CD36 expression and foam cell formation in atherosclerosis.

    Science.gov (United States)

    Ackers, Ian; Szymanski, Candice; Duckett, K Jordan; Consitt, Leslie A; Silver, Mitchell J; Malgor, Ramiro

    2018-02-20

    Wnt5a is a highly studied member of the Wnt family and recently has been implicated in the pathogenesis of atherosclerosis, but its precise role is unknown. Foam cell development is a critical process to atherosclerotic plaque formation. In the present study, we investigated the role of noncanonical Wnt5a signaling in the development of foam cells. Human carotid atherosclerotic tissue and THP-1-derived macrophages were used to investigate the contribution of Wnt5a signaling in the formation of foam cells. Immunohistochemistry was used to evaluate protein expression of scavenger receptors and noncanonical Wnt5a receptors [frizzled 5 (Fz5) and receptor tyrosine kinase-like orphan receptor 2 (Ror2)] in human atherosclerotic macrophages/foam cells. Changes in protein expression in response to Wnt5a stimulation/inhibition were determined by Western blot, and lipid accumulation was evaluated by fluorescent lipid droplet staining. Wnt5a (Pfoam cells within the plaque. In vitro studies revealed that Wnt5a significantly increased the expression of the lipid uptake receptor CD36 (P.05). rWnt5a also significantly increased lipid accumulation in THP-1 macrophages (Pfoam cells. Copyright © 2018. Published by Elsevier Inc.

  12. [Effect of ferulic acid on cholesterol efflux in macrophage foam cell formation and potential mechanism].

    Science.gov (United States)

    Chen, Fu-xin; Wang, Lian-kai

    2015-02-01

    The formation of macrophage-derived foam cells is a typical feature of atherosclerosis (AS). Reverse cholesterol efflux (RCT) is one of important factors for the formation of macrophage foam cells. In this study, macrophage form cells were induced by oxidized low density lipoprotein (ox-LDL) and then treated with different concentrations of ferulic acid, so as to observe the effect of ferulic acid on the intracellular lipid metabolism in the ox-LDL-induced macrophage foam cell formation, the cholesterol efflux and the mRNA expression and protein levels of ATP binding cassette transporter A1 (ABCA1) and ATP binding cassette transporter G1 (ABCG1) that mediate cholesterol efflux, and discuss the potential mechanism of ferulic acid in resisting AS. According to the findings, compared with the control group, the ox-LDL-treated group showed significant increase in intracellular lipid content, especially for the cholesterol content; whereas the intracellular lipid accumulation markedly decreased, after the treatment with ferulic acid. The data also demonstrated that the mRNA and protein expressions of ABCA1 and ABCG1 significantly increased after macrophage foam cells were treated with different concentrations of ferulic acid. In summary, ferulic acid may show the anti-atherosclerosis effect by increasing the surface ABCA1 and ABCG1 expressions of macrophage form cells and promoting cholesterol efflux.

  13. Macrophage-specific inhibition of NF-κB activation reduces foam-cell formation

    NARCIS (Netherlands)

    Ferreira, V.; Dijk, K.W. van; Groen, A.K.; Vos, R.M.; Kaa, J. van der; Gijbels, M.J.J.; Havekes, L.M.; Pannekoek, H.

    2007-01-01

    Accumulation of lipid-laden macrophages is a hallmark of atherosclerosis. The relevance of the key transcription factor nuclear factor κB (NF-κB) for macrophage-derived foam-cell formation has not been unequivocally resolved. Transgenic mice lines were generated in which NF-κB activation is

  14. Small cell foams and blends and a process for their preparation

    Science.gov (United States)

    Hedstrand, D.M.; Tomalia, D.A.

    1995-02-07

    Dense star polymers or dendrimers, modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, act as molecular nucleating agents. These modified dense star polymers or dendrimers are particularly effective for the production of small cell foams.

  15. Experimental analysis of compressive notch strengthening in closed-cell aluminum alloy foam

    NARCIS (Netherlands)

    Antoniou, A; Onck, PR; Bastawros, Ashraf F.

    2004-01-01

    The notch strengthening effect is studied experimentally in closed cell aluminum foams. The limit loads, net section strength were found for a set of double-edge-notched (DEN) and single-edge-notched (SEN) specimens loaded in compression. In addition, the evolution of the deformation is monitored

  16. Development of fine-celled bio-fiber composite foams using physical blowing agents and nano-particles

    Science.gov (United States)

    Guo, Gangjian

    As one of eco-friendly bio-fibers, wood-fiber has been incorporated in plastics to make wood-fiber/plastic composites (WPC) with an increased stiffness, durability and lowered cost. However, these improvements are usually accompanied by loss in the ductility and impact strength of the composites. These shortcomings can be significantly improved by incorporating a fine-cell foam structure in the composites. This thesis presents the development of the foaming technology for the manufacture of fine-cell WPC foams with environmentally benign physical blowing agents (PBAs), and focuses on the elucidation of the fundamental foaming mechanisms and the related issues involved. One critical issue comes from the volatiles evolved from the wood-fiber during high temperature processing. The volatiles, as a blowing agent, can contribute to the foaming process. However, they lead to gross deterioration of the cell structure of WPC foams. The presence of volatiles makes foaming of WPC "a poorly understood black art". With the use of PBAs, a strategy of lowering processing temperature becomes feasible, to suppress the generation of volatiles. A series of PBA-based experiments were designed using a statistical design of experiments (DOE) technique, and were performed to establish the relationship of processing and material variables with the structure of WPC foams. Fundamental foaming behaviors for two different PBAs and two different polymer systems were identified. WPC foams with a fine-cell morphology and a desired density were successfully obtained at the optimized conditions. Another limitation for the wider application of WPC is their flammability. Innovative use of a small amount of nano-clay in WPC significantly improved the flame-retarding property of WPC, and the key issue was to achieve a high degree of exfoliation of nano-particles in the polymer matrix, to achieve a desired flammability reduction. The synergistic effects of nano-particles in foaming of WPC were

  17. Nicotinic Acid Receptor GPR109A Is Down-Regulated in Human Macrophage-Derived Foam Cells

    Science.gov (United States)

    Chai, Joshua T.; Digby, Janet E.; Ruparelia, Neil; Jefferson, Andrew; Handa, Ashok; Choudhury, Robin P.

    2013-01-01

    Nicotinic acid (NA) regresses atherosclerosis in human imaging studies and reduces atherosclerosis in mice, mediated by myeloid cells, independent of lipoproteins. Since GPR109A is expressed by human monocytes, we hypothesized that NA may drive cholesterol efflux from foam cells. In THP-1 cells NA suppressed LPS-induced mRNA transcription of MCP-1 by 76.6±12.2% (Pfoam cells by 37.7±3.1% (Pfoam cells on either cholesterol efflux or key RCT genes transcription. Upon foam cell induction, NA lost its effect on PPARγ and cAMP pathways, since its receptor, GPR109A, was down-regulated by foam cell transformation. This observation was confirmed in explanted human carotid plaques. In conclusion, despite NA’s anti-inflammatory effect on human macrophages, it has no effect on foam cells in reverse cholesterol transport; due to GPR109A down-regulation. PMID:23658787

  18. Macrophage Liver Kinase B1 Inhibits Foam Cell Formation and Atherosclerosis.

    Science.gov (United States)

    Liu, Zhaoyu; Zhu, Huaiping; Dai, Xiaoyan; Wang, Cheng; Ding, Ye; Song, Ping; Zou, Ming-Hui

    2017-10-13

    LKB1 (liver kinase B1) is a serine/threonine kinase and tumor suppressor, which regulates the homeostasis of hematopoietic cells and immune responses. Macrophages transform into foam cells upon taking-in lipids. No role for LKB1 in foam cell formation has previously been reported. We sought to establish the role of LKB1 in atherosclerotic foam cell formation. LKB1 expression was examined in human carotid atherosclerotic plaques and in western diet-fed atherosclerosis-prone Ldlr -/- and ApoE -/- mice. LKB1 expression was markedly reduced in human plaques when compared with nonatherosclerotic vessels. Consistently, time-dependent reduction of LKB1 levels occurred in atherosclerotic lesions in western diet-fed Ldlr -/- and ApoE -/- mice. Exposure of macrophages to oxidized low-density lipoprotein downregulated LKB1 in vitro. Furthermore, LKB1 deficiency in macrophages significantly increased the expression of SRA (scavenger receptor A), modified low-density lipoprotein uptake and foam cell formation, all of which were abolished by blocking SRA. Further, we found LKB1 phosphorylates SRA resulting in its lysosome degradation. To further investigate the role of macrophage LKB1 in vivo, ApoE -/- LKB1 fl/fl LysM cre and ApoE -/- LKB1 fl/fl mice were fed with western diet for 16 weeks. Compared with ApoE -/- LKB1 fl/fl wild-type control, ApoE -/- LKB1 fl/fl LysM cre mice developed more atherosclerotic lesions in whole aorta and aortic root area, with markedly increased SRA expression in aortic root lesions. We conclude that macrophage LKB1 reduction caused by oxidized low-density lipoprotein promotes foam cell formation and the progression of atherosclerosis. © 2017 American Heart Association, Inc.

  19. A simplistic analytical unit cell based model for the effective thermal conductivity of high porosity open-cell metal foams

    International Nuclear Information System (INIS)

    Yang, X H; Kuang, J J; Lu, T J; Han, F S; Kim, T

    2013-01-01

    We present a simplistic yet accurate analytical model for the effective thermal conductivity of high porosity open-cell metal foams saturated in a low conducting fluid (air). The model is derived analytically based on a realistic representative unit cell (a tetrakaidecahedron) under the assumption of one-dimensional heat conduction along highly tortuous-conducting ligaments at high porosity ranges (ε ⩾ 0.9). Good agreement with existing experimental data suggests that heat conduction along highly conducting and tortuous ligaments predominantly defines the effective thermal conductivity of open-cell metal foams with negligible conduction in parallel through the fluid phase. (paper)

  20. Silica-Assisted Nucleation of Polymer Foam Cells with Nanoscopic Dimensions : Impact of Particle Size, Line Tension, and Surface Functionality

    NARCIS (Netherlands)

    Liu, Shanqiu; Eijkelenkamp, Rik; Duvigneau, Joost; Vancso, G. Julius

    2017-01-01

    Core-shell nanoparticles consisting of silica as core and surface-grafted poly(dimethylsiloxane) (PDMS) as shell with different diameters were prepared and used as heterogeneous nucleation agents to obtain CO2-blown poly(methyl methacrylate) (PMMA) nanocomposite foams. PDMS was selected as the shell

  1. Fracture Characterization of PVC Foam Core Sandwich Specimen Using the DCB-UBM Test Method

    DEFF Research Database (Denmark)

    Saseendran, Vishnu; Berggreen, Christian; Carlsson, Leif A.

    Face/core debond failure in sandwich composites is a critical failure mode. Lack of cohesion between face and core will lead to loss of structural integrity. The estimation of interface fracture toughness especially at the face/core interface is extremely challenging, provided the dissimilarity...... of material properties across the interface. The crack path and fracture also depend on the loading configuration at the crack tip. Depending on the type of loading applied, a measure of shear deformation at the crack tip is expressed by the mode-mixity phase angle (ψ). A suitable fracture mechanics approach...

  2. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds

    Science.gov (United States)

    Goldstein, A. S.; Juarez, T. M.; Helmke, C. D.; Gustin, M. C.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Culture of seeded osteoblastic cells in three-dimensional osteoconductive scaffolds in vitro is a promising approach to produce an osteoinductive material for repair of bone defects. However, culture of cells in scaffolds sufficiently large to bridge critical-sized defects is a challenge for tissue engineers. Diffusion may not be sufficient to supply nutrients into large scaffolds and consequently cells may grow preferentially at the periphery under static culture conditions. Three alternative culturing schemes that convect media were considered: a spinner flask, a rotary vessel, and a perfusion flow system. Poly(DL-lactic-co-glycolic acid) (PLGA) foam discs (12.7 mm diameter, 6.0 mm thick, 78.8% porous) were seeded with osteoblastic marrow stromal cells and cultured in the presence of dexamethasone and L-ascorbic acid for 7 and 14 days. Cell numbers per foam were found to be similar with all culturing schemes indicating that cell growth could not be enhanced by convection, but histological analysis indicated that the rotary vessel and flow system produced a more uniform distribution of cells throughout the foams. Alkaline phosphatase (ALP) activity per cell was higher with culture in the flow system and spinner flask after 7 days, while no differences in osteocalcin (OC) activity per cell were observed among culturing methods after 14 days in culture. Based on the higher ALP activity and better cell uniformity throughout the cultured foams, the flow system appears to be the superior culturing method, although equally important is the fact that in none of the tests did any of the alternative culturing techniques underperform the static controls. Thus, this study demonstrates that culturing techniques that utilize fluid flow, and in particular the flow perfusion system, improve the properties of the seeded cells over those maintained in static culture.

  3. Thermal and mechanical improvement of aluminum open-cells foams through electrodeposition of copper and graphene

    Directory of Open Access Journals (Sweden)

    Simoncini Alessandro

    2016-01-01

    Full Text Available Thanks to its planar structure, graphene is characterized by unique properties, such as excellent chemical inactivity, high electrical and thermal conductivity, high optical transparency, extraordinary flexibility and high mechanical resistance, which make it suitable in a very wide range of applications. This paper details the state of the art in graphene coating applied to aluminum open-cells foams for the improvement of their mechanical and thermal behavior. Metallic foams are highly porous materials with extremely high convective heat transfer coefficients, thanks to their complex structure of three-dimensional open-cells. Graphene nanoplatelets have been used to improve thermal conductivity of aluminum foams, to make them better suitable during heat transfer in transient state. Also, an improvement of mechanical resistance has been observed. Before electrodeposition, all the samples have been subjected to sandblasting process, to eliminate the oxide layer on the surface, enabling a better adhesion of the coating. Different nanoparticles of graphene have been used. The experimental findings revealed a higher thermal conductivity for aluminum open cells foams electroplated with graphene. Considered the relatively low process costs and the improvements obtainable, these materials are very promising in many technological fields. The topics covered include surface modification, electrochemical plating, thermo-graphic analysis.

  4. Performance analysis of a membrane humidifier containing porous metal foam as flow distributor in a PEM fuel cell system

    International Nuclear Information System (INIS)

    Afshari, Ebrahim; Baharlou Houreh, Nasser

    2014-01-01

    Highlights: • Three metal foam configurations for the membrane humidifier are introduced. • The performances of the humidifiers containing metal foam are investigated. • A 3D CFD model is developed to compare the introduced humidifiers with one another. • Using metal foam at dry side has no positive effect on the humidifier performance. - Abstract: Using metal foam as flow distributor in membrane humidifier for proton exchange membrane (PEM) fuel cell system has some unique characteristics like more water transfer, low manufacturing complexity and low cost compared to the conventional flow channel plate. Metal foam can be applied at wet side or dry side or both sides of a humidifier. The three-dimensional CFD models are developed to investigate the performance of the above mentioned meanwhile compare them with the conventional humidifier. This model consists of a set of coupled equations including conservations of mass, momentum, species and energy for all regions of the humidifier. The results indicate that with the metal foam installed at wet side and both sides, water recovery ratio and dew point at dry side outlet are more than that of the conventional humidifier, indicating a better humidifier performance; while using metal foam at dry side has no positive effect on humidifier performance. At dry side mass flow rates higher than 10 mgr/s pressure drop in humidifier containing metal foam at wet side is lower than that of the conventional humidifier. As the mass flow rate increases from 9 to 15 mgr/s humidifier containing metal foam at wet side has better performance, while at mass flow rates lower than 9 mgr/s, the humidifier containing metal foam at both sides has better performance. At dry side inlet temperatures lower than 303 K, humidifier containing metal foam at wet side has better performance and at temperatures higher than 303 K, humidifier containing metal foam at both sides has better performance

  5. Sodium borohydride hydrogen generator using Co–P/Ni foam catalysts for 200 W proton exchange membrane fuel cell system

    International Nuclear Information System (INIS)

    Oh, Taek Hyun; Gang, Byeong Gyu; Kim, Hyuntak; Kwon, Sejin

    2015-01-01

    The response characteristics of electroless-deposited Co–P/Ni foam catalysts for sodium borohydride hydrolysis were investigated. The effect of nickel foam geometry on the properties of the catalysts was evaluated. As the PPI (pores per inch) of the nickel foam increased, the hydrogen generation rate per gram of the deposited catalyst increased due to an increase in surface area. The response characteristics of various catalysts were compared under real operating conditions. When a thin nickel foam with high PPI was used, the response characteristics of the catalyst improved due to an increase in the amount of the deposited catalyst and surface area. Finally, a 200 W PEMFC (proton exchange membrane fuel cell) system using electroless-deposited Co–P/Ni foam (110 PPI) catalyst was investigated. The response time to reach a hydrogen generation rate sufficient for a 200 W PEMFC was 71 s, and the energy density of a 200 W fuel cell system for producing 600 Wh was 252.1 Wh/kg. A fuel cell system using Co–P/Ni foam catalysts can be widely used as a power source for mobile applications due to fast response characteristics and high energy density. - Highlights: • Response characteristics of Co–P/Ni foam catalysts are investigated. • Catalytic activity is improved with increase in PPI (pores per inch) of Ni foam. • Co–P/Ni foam (110 PPI) catalyst has improved response characteristics. • The energy density of a 200 W PEMFC system for producing 600 Wh is 252.1 Wh/kg. • Co–P/Ni foam (110 PPI) catalyst is suitable for fuel cell system.

  6. Experimental and Numerical Study of Interface Crack Propagation in Foam Cored Sandwich Beams

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian; Simonsen, Bo Cerup; Borum, Kaj Kvisgård

    2007-01-01

    to be geometrically nonlinear while the local fracture mechanics problem is assumed to be linear. The presented numerical procedure for the local fracture mechanics is a further development of the crack surface displacement method, here denoted as the crack surface displacement extrapolation method. The considered...... for structures with three different core densities, material tests are carried out and finally the face tearing tests are simulated with the developed procedure. It is shown that for low core densities, where the crack propagates in the interface immediately below the face sheet, there is fair agreement between...... experiments and theory. For cores with higher density, the crack tends to propagate in the laminate itself with extensive fiber bridging leading to rather conservative numerical predictions. However, for structural configurations where LEFM can be applied, the presented procedure is sufficiently robust...

  7. Experimental and simulation of split semi-torus key in PVC foam core to improve the debonding resistance of composite sandwich panel

    Science.gov (United States)

    Juliyana, M.; Santhana Krishnan, R.

    2018-02-01

    The sandwich composite panels consisting of facesheet and core material are used as a primary structural member for aerospace, civil and marine areas due to its high stiffness to weight ratio. But the debonding nature of facesheet from the foam core under shear loading conditions leads to failure of the composite structure. To inhibit the debonding, an innovative methodology of introducing semi-torus key is used in the present study. The polyvinyl chloride foam core(PVC) is grooved and filled with semi-torus shaped chopped strand prepregs which are sandwiched between alternate layers of woven roven(WR) and chopped strand mat(CSM) skins by vacuum infusion process. The sandwich panel manufactured with semi-torus keys is evaluated regarding experimental and numerical simulations under shear loading conditions. The present innovative concept delays the debonding between face-sheet and foam core with enhancement the shear load carrying capability as the initial stiffness is higher than the conventional model. Also, the shear behaviour of the proposed concept is in good agreement with experimental results. The split semi-torus keys sustain the shear failure resulting in resistance to debonding capability.

  8. microRNA-150 inhibits the formation of macrophage foam cells through targeting adiponectin receptor 2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing [Department of Geratory, Linzi District People’s Hospital of Zibo City, Zibo, Shandong (China); Zhang, Suhua, E-mail: drsuhuangzhang@qq.com [Department of HealthCare, Qilu Hospital of Shandong University (Qingdao), Qingdao City, Qingdao (China)

    2016-08-05

    Transformation of macrophages into foam cells plays a critical role in the pathogenesis of atherosclerosis. The aim of this study was to determine the expression and biological roles of microRNA (miR)-150 in the formation of macrophage foam cells and to identify its functional target(s). Exposure to 50 μg/ml oxidized low-density lipoprotein (oxLDL) led to a significant upregulation of miR-150 in THP-1 macrophages. Overexpression of miR-150 inhibited oxLDL-induced lipid accumulation in THP-1 macrophages, while knockdown of miR-150 enhanced lipid accumulation. apoA-I- and HDL-mediated cholesterol efflux was increased by 66% and 43%, respectively, in miR-150-overexpressing macrophages relative to control cells. In contrast, downregulation of miR-150 significantly reduced cholesterol efflux from oxLDL-laden macrophages. Bioinformatic analysis and luciferase reporter assay revealed adiponectin receptor 2 (AdipoR2) as a direct target of miR-150. Small interfering RNA-mediated downregulation of AdipoR2 phenocopied the effects of miR-150 overexpression, reducing lipid accumulation and facilitating cholesterol efflux in oxLDL-treated THP-1 macrophages. Knockdown of AdipoR2 induced the expression of proliferator-activated receptor gamma (PPARγ), liver X receptor alpha (LXRα), ABCA1, and ABCG1. Moreover, pharmacological inhibition of PPARγ or LXRα impaired AdipoR2 silencing-induced upregulation of ABCA1 and ABCG1. Taken together, our results indicate that miR-150 can attenuate oxLDL-induced lipid accumulation in macrophages via promotion of cholesterol efflux. The suppressive effects of miR-150 on macrophage foam cell formation are mediated through targeting of AdipoR2. Delivery of miR-150 may represent a potential approach to prevent macrophage foam cell formation in atherosclerosis. -- Highlights: •miR-150 inhibits macrophage foam cell formation. •miR-150 accelerates cholesterol efflux from oxLDL-laden macrophages. •miR-150 suppresses macrophage foam cell

  9. SIRT6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox-LDL condition.

    Science.gov (United States)

    He, Jiangping; Zhang, Guangya; Pang, Qi; Yu, Cong; Xiong, Jie; Zhu, Jing; Chen, Fengling

    2017-05-01

    SIRT6 is a pivotal regulator of lipid metabolism. It is also closely connected to cardiovascular diseases, which are the main cause of death in diabetic patients. We observed a decrease in the expression of SIRT6 and key autophagy effectors (ATG5, LC3B, and LAMP1) in ox-LDL-induced foam cells, a special form of lipid-laden macrophages. In these cells, SIRT6 WT but not SIRT6 H133Y overexpression markedly reduced foam cell formation, as shown by Oil Red O staining, while inducing autophagy flux, as determined by both mRFP-GFP-LC3 labeling and transmission electron microscopy. Silencing the key autophagy initiation gene ATG5, reversed the autophagy-promoting effect of SIRT6 in ox-LDL-treated THP1 cells, as evidenced by an increase in foam cells. Cholesterol efflux assays indicated that SIRT6 overexpression in foam cells promoted cholesterol efflux, increased the levels of ABCA1 and ABCG1, and reduced miR-33 levels. By transfecting miR-33 into cells overexpressing SIRT6, we observed that reduced foam cell formation and autophagy flux induction were largely reversed. These data imply that SIRT6 plays an essential role in protecting against atherosclerosis by reducing foam cell formation through an autophagy-dependent pathway. © 2017 Federation of European Biochemical Societies.

  10. Investigation of the influence of the open cell foam models geometry on hydrodynamic calculation

    Science.gov (United States)

    Soloveva, O. V.; Solovev, S. A.; Khusainov, R. R.; Popkova, O. S.; Panenko, D. O.

    2018-01-01

    A geometrical model of the open cell foam was created as an ordered set of intersecting spheres. The proposed model closely describes a real porous cellular structure. The hydrodynamics flow was calculated on the basis of a simple model in the ANSYS Fluent software package. A pressure drop was determined, the value of which was compared with the experimental data of other authors. As a result of the conducted studies, we found that a porous structure with smoothed faces provides the smallest pressure drop with the same porosity of the package. Analysis of the calculated data demonstrated that the approximation of an elementary porous cell substantially distorts the flow field. This is undesirable in detailed modeling of the open cell foam.

  11. The Effect of Shear Rate on Dissolution of Gas and Cell Density in Continuous Foaming Process

    Directory of Open Access Journals (Sweden)

    M.H.N. Famili

    2009-12-01

    Full Text Available The effect of shear rate on dissolution of carbon dioxide in viscoelastic wheat flour matrix and cell density in a glass barrel twin screw extruder is investigated. It is found that by increasing the shear rate there will be a decrease in the required thermodynamic conditions and hence, it improves blowing agent dissolution and increases the cell density. Shear rate breaks up big bubbles and helps to better distribute the blowing agent in the matrix and hence it increases the cell density. Cell density decreases by dropping foam cooling rate. For a given cell density, a higher screw speed is needed, ifthe cooling rate is decreased.

  12. Investigation of microstructural and mechanical properties of cell walls of closed-cell aluminium alloy foams

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.A.; Kader, M.A.; Hazell, P.J.; Brown, A.D. [School of Engineering and Information Technology, UNSW Canberra, ACT 2610 (Australia); Saadatfar, M. [Department of Applied Mathematics, Australian National University, Canberra ACT 0200 (Australia); Quadir, M.Z [Electron Microscope Unit, Mark Wainwright Analytical Centre (MWAC), The University of New South Wales, Sydney, NSW 2052 (Australia); Microscopy and Microanalysis Facility (MMF), John de Laeter Centre (JdLC), Curtin University, WA 6102 (Australia); Escobedo, J.P., E-mail: J.Escobedo-Diaz@adfa.edu.au [School of Engineering and Information Technology, UNSW Canberra, ACT 2610 (Australia)

    2016-06-01

    This study investigates the influence of microstructure on the strength properties of individual cell walls of closed-cell stabilized aluminium foams (SAFs). Optical microscopy (OM), micro-computed X-ray tomography (µ-CT), electron backscattering diffraction (EBSD), and energy dispersive X-ray spectroscopy (EDS) analyses were conducted to examine the microstructural properties of SAF cell walls. Novel micro-tensile tests were performed to investigate the strength properties of individual cell walls. Microstructural analysis of the SAF cell walls revealed that the material consists of eutectic Al-Si and dendritic a-Al with an inhomogeneous distribution of intermetallic particles and micro-pores (void defects). These microstructural features affected the micro-mechanism fracture behaviour and tensile strength of the specimens. Laser-based extensometer and digital image correlation (DIC) analyses were employed to observe the strain fields of individual tensile specimens. The tensile failure mode of these materials has been evaluated using microstructural analysis of post-mortem specimens, revealing a brittle cleavage fracture of the cell wall materials. The micro-porosities and intermetallic particles reduced the strength under tensile loading, limiting the elongation to fracture on average to ~3.2% and an average ultimate tensile strength to ~192 MPa. Finally, interactions between crack propagation and obstructing intermetallic compounds during the tensile deformation have been elucidated.

  13. Supercritical CO2 foaming of radiation crosslinked polypropylene/high-density polyethylene blend: Cell structure and tensile property

    Science.gov (United States)

    Yang, Chenguang; Xing, Zhe; Zhang, Mingxing; Zhao, Quan; Wang, Mouhua; Wu, Guozhong

    2017-12-01

    A blend of isotactic polypropylene (PP) with high-density polyethylene (HDPE) in different PP/HDPE ratios was irradiated by γ-ray to induce cross-linking and then foamed using supercritical carbon dioxide (scCO2) as a blowing agent. Radiation effect on the melting point and crystallinity were analyzed in detail. The average cell diameter and cell density were compared for PP/HDPE foams prepared under different conditions. The optimum absorbed dose for the scCO2 foaming of PP/HDPE in terms of foaming ability and cell structure was 20 kGy. Tensile measurements showed that the elongation at break and tensile strength at break of the crosslinked PP/HDPE foams were higher than the non-crosslinked ones. Of particular interest was the increase in the foaming temperature window from 4 ℃ for pristine PP to 8-12 ℃ for the radiation crosslinked PP/HDPE blends. This implies much easier handling of scCO2 foaming of crosslinked PP with the addition of HDPE.

  14. JNK1 Mediates Lipopolysaccharide-Induced CD14 and SR-AI Expression and Macrophage Foam Cell Formation

    Directory of Open Access Journals (Sweden)

    Dong An

    2018-01-01

    Full Text Available Foam cell formation is the key process in the development of atherosclerosis. The uptake of oxidized low-density lipoprotein (oxLDL converts macrophages into foam cells. We recently reported that lipopolysaccharide (LPS-induced foam cell formation is regulated by CD14 and scavenger receptor AI (SR-AI. In this study, we employed pharmaceutical and gene knockdown approaches to determine the upstream molecular mediators, which control LPS-induced foam cell formation. Our results demonstrated that the specific c-Jun N-terminal kinase (JNK pathway inhibitor, SP600125, but neither the specific inhibitor of extracellular signaling-regulated kinase (ERK kinase MEK1/2, U0126, nor the specific inhibitor of p38 MAPK, SB203580, significantly blocks LPS-induced oxLDL uptake, suggesting that the JNK pathway is the upstream mediator of LPS-induced oxLDL uptake/foam cell formation. To address whether JNK pathway mediates LPS-induced oxLDL uptake is due to JNK pathway-regulated CD14 and SR-AI expression, we assessed whether the pharmaceutical inhibitor of JNK influences LPS-induced expression of CD14 and SR-AI. Our results indicate that JNK pathway mediates LPS-induced CD14 and SR-AI expression. To conclusively address the isoform role of JNK family, we depleted JNK isoforms using the JNK isoform-specific siRNA. Our data showed that the depletion of JNK1, but not JNK2 blocked LPS-induced CD14/SR-AI expression and foam cell formation. Taken together, our results reveal for the first time that JNK1 is the key mediator of LPS-induced CD14 and SR-AI expression in macrophages, leading to LPS-induced oxLDL uptake/foam cell formation. We conclude that the novel JNK1/CD14/SR-AI pathway controls macrophage oxLDL uptake/foam cell formation.

  15. Human macrophage foam cells degrade atherosclerotic plaques through cathepsin K mediated processes

    DEFF Research Database (Denmark)

    Barascuk, Natasha; Skjøt-Arkil, Helene; Register, Thomas C

    2010-01-01

    BACKGROUND: Proteolytic degradation of Type I Collagen by proteases may play an important role in remodeling of atherosclerotic plaques, contributing to increased risk of plaque rupture.The aim of the current study was to investigate whether human macrophage foam cells degrade the extracellular...... matrix (ECM) of atherosclerotic plaques by cathepsin K mediated processes. METHODS: We 1) cultured human macrophages on ECM and measured cathepsin K generated fragments of type I collagen (C-terminal fragments of Type I collagen (CTX-I) 2) investigated the presence of CTX-I in human coronary arteries......-I in areas of intimal hyperplasia and in shoulder regions of advanced plaques. Treatment of human monocytes with M-CSF or M-CSF+LDL generated macrophages and foam cells producing CTX-I when cultured on type I collagen enriched matrix. Circulating levels of CTX-I were not significantly different in women...

  16. Tanshindiol C inhibits oxidized low-density lipoprotein induced macrophage foam cell formation via a peroxiredoxin 1 dependent pathway.

    Science.gov (United States)

    Yang, Yuyu; Li, Xueyan; Peng, Liying; An, Lin; Sun, Ningyuan; Hu, Xuewen; Zhou, Ping; Xu, Yong; Li, Ping; Chen, Jun

    2018-03-01

    NF-E2-related factor 2 (Nrf2) has been shown to be protective in atherosclerosis. The loss of Nrf2 in macrophages enhances foam cell formation and promotes early atherogenesis. Tanshindiol C (Tan C) is isolated from the root of Salvia miltiorrhiza Bge., a traditional Chinese medicine that has been used for the treatment of several cardiovascular diseases for many years. This study was aimed to test the potential role of Tan C against macrophage foam cell formation and to explore the underlying mechanism. Firstly, we observed that Tan C markedly suppressed oxidized low-density lipoprotein (oxLDL) induced macrophage foam cell formation. Then, we found that Tan C was an activator of both Nrf2 and Sirtuin 1 (Sirt1) in macrophages. Nrf2 and Sirt1 synergistically activated the transcription of anti-oxidant peroxiredoxin 1 (Prdx1) after Tan C treatment. More important, we demonstrated that silencing of Prdx1 promoted oxLDL-induced macrophage foam cell formation. Prdx1 upregulated adenosine triphosphate-binding cassette (ABC) transporter A1 (ABCA1) expression and decreased intracellular lipid accumulation. Furthermore, Tan C ameliorated oxLDL induced macrophage foam cell formation in a Prdx1-dependent manner. These observations suggest that Tan C protects macrophages from oxLDL induced foam cell formation via activation of Prdx1/ABCA1 signaling and that Prdx1 may be a novel target for therapeutic intervention of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effective Thermal Conductivity of Open Cell Polyurethane Foam Based on the Fractal Theory

    Directory of Open Access Journals (Sweden)

    Kan Ankang

    2013-01-01

    Full Text Available Based on the fractal theory, the geometric structure inside an open cell polyurethane foam, which is widely used as adiabatic material, is illustrated. A simplified cell fractal model is created. In the model, the method of calculating the equivalent thermal conductivity of the porous foam is described and the fractal dimension is calculated. The mathematical formulas for the fractal equivalent thermal conductivity combined with gas and solid phase, for heat radiation equivalent thermal conductivity and for the total thermal conductivity, are deduced. However, the total effective heat flux is the summation of the heat conduction by the solid phase and the gas in pores, the radiation, and the convection between gas and solid phase. Fractal mathematical equation of effective thermal conductivity is derived with fractal dimension and vacancy porosity in the cell body. The calculated results have good agreement with the experimental data, and the difference is less than 5%. The main influencing factors are summarized. The research work is useful for the enhancement of adiabatic performance of foam materials and development of new materials.

  18. The influence of polyol type on cell geometry and the thermal stability of polyurethane foams

    Directory of Open Access Journals (Sweden)

    Prendžov Slobodan J.

    2006-01-01

    Full Text Available The aim of this study was to examine the influence of substituting defined amounts of polyol Voranol 3322 by polyol Voranol CP 1055 on the cell geometry and thermal stability of the synthesized flexible polyurethane foams. The influence of the amount of antipyrene on the cell geometry and their thermal stability was also investigated. The following components were used in the synthesis of the polyurethanes: a mixture of two polyols (Voranol 3322 with the hydroxyl number 47 mg KOH/g, mean molecular mass 3400 and Voranol CP 1055 with the hydroxyl number 156 mg KOH/g, mean molecular mass 1000, toluene discarnate as the isocyanate component, a combination of an organic-metallic compound and a tertiary amine as catalysts, surfactant and water as the coreactant. The thermal stability was determined by thermogravimetric analysis (in a nitrogen atmosphere. The cell geometry was analyzed by optical microscopy. Examination of the cell geometry revealed different cell shapes. The form factor as an indicator of cell deviation from spherical shape increased (more round forms were observed with increasing amount of Voranol CP 1055. The TG examination showed that specimens with 6 and 8 g of Voranol 3322 substituted by Voranol CP 1055 completely degraded at 350 °C, while foams with 10 and 12 g of Voranol 3322 substituted by Voranol CP 1055 displayed lower mass loss at higher temperatures and had residual masses of 46 % and 43 % at 600°C respectively. The addition of antipyrene in an amount of 1% (based on the amount of polyol contributed to improved thermal stability, no visible color change of the specimen tested at 210°C for 40 minutes, and to rounder cell forms. Considering the obtained results it can be concluded that an increase in the amount of Voranol CP 1055 yielded more spherically shaped cells and better thermal stability of the synthesized flexible polyurethane foams. The addition of antipyrene improves the thermal stability and the cell geometry.

  19. Thermal Expansion of Three Closed Cell Polymeric Foams at Cryogenic Temperatures

    Science.gov (United States)

    Stokes, Eric

    2006-01-01

    The Space Shuttle External Tank (ET) contains the liquid H2 fuel and liquid oxygen oxidizer and supplies them under pressure to the three space shuttle main engines (SSME) in the orbiter during lift-off and ascent. The ET thermal protection system consists of sprayed-on foam insulation and pre-molded ablator materials. The closed-cell foams are the external coating on the ET and are responsible for minimizing the amount of moisture that condenses out and freezes on the tank from the humid air in Florida while it is on the pad with cryogenic propellant awaiting launch. This effort was part of the overall drive to understand the behavior of these materials under use-conditions. There are four specially-engineered closed-cell foams used on the tank. The thermal expansion (contraction) of three of the polyurethane and polyisocyanurate foams were measured from -423 F (the temperature of liquid hydrogen) to 125 F under atmospheric conditions and under vacuum. One of them, NCFI 24-124, is a mechanically-applied material and covers the main acreage of the tank, accounting for 77 percent of the total foam used. Another, BX-265, is also a mechanically-applied and hand-sprayed material used on the tank's "closeout" areas. PDL 1034 is a hand-poured foam used for filling odd-shaped cavities in the tank, Measurements were made in triplicate in the three primary material directions in the case of the first two materials and the two primary material directions in the case of the last. Task 1 was developing the techniques for getting a uniform heating rate and minimizing axial and radial thermal gradients in the specimens. Temperature measurements were made at four locations in the specimens during this initial development phase of testing. Major challenges that were overcome include developing techniques for transferring the coolant, liquid helium (-452 F), from its storage container to the test facility with a minimal transfer of heat to the coolant and control of the heating

  20. Elastic characterization of closed cell foams from impedance tube absorption tests.

    Science.gov (United States)

    Chevillotte, F; Panneton, R

    2007-11-01

    A method is presented to determine the bulk elastic properties of isotropic elastic closed-cell foams from impedance tube sound absorption tests. For such foams, a resonant sound absorption is generally observed, where acoustic energy is transformed into mechanical vibration, which in turn is dissipated into heat due to structural damping. This article shows how the bulk Young's modulus, Poisson's ratio, and damping loss factor can be deduced from the resonant absorption. Also, an optimal damping loss factor yielding 100% of absorption at the first resonance is defined from the developed theory. The method is introduced for a sliding edge condition which is an ideal condition. Then, the method is extended to a bonded edge condition which is more easily achievable and additionally enables the identification of the Poisson's ratio. The method is experimentally tested on expanding closed-cell foams to find their elastic properties in both cases. Using the found properties, sound absorption predictions using an equivalent solid model with and without surface absorption are compared to measurements. Good correlations are obtained when considering surface absorption.

  1. SEMI–AUTOMATED ASSESSMENT OF MICROMECHANICAL PROPERTIES OF THE METAL FOAMS ON THE CELL-WALL LEVEL

    Directory of Open Access Journals (Sweden)

    Nela Krčmářová

    2016-12-01

    Full Text Available Metal foams are innovative porous material used for wide range of application such as deformation energy or sound absorption, filter material, or microbiological incubation carrier. To predict mechanical properties of the metal foam is necessary to precisely describe elasto–plastic properties of the foam on cell–wall level. Indentation with low load is suitable tool for this purpose. In this paper custom designed instrumented microindentation device was used for measurement of cell-wall characteristics of two different aluminium foams (ALPORAS and ALCORAS. To demonstrate the possibility of automated statistical estimation of measured characteristics the device had been enhanced by semi-automatic indent positioning and evaluation procedures based on user-defined grid. Vickers hardness was measured on two samples made from ALPORAS aluminium foam and one sample from ALCORAS aluminium foam. Average Vickers hardness of ALPORAS foam was 24.465HV1.019 and average Vickers hardness of ALCORAS was 36.585HV1.019.

  2. Autophagy involved in lipopolysaccharide-induced foam cell formation is mediated by adipose differentiation-related protein.

    Science.gov (United States)

    Feng, Xuyang; Yuan, Yuan; Wang, Chao; Feng, Jun; Yuan, Zuyi; Zhang, Xiumin; Sui, Wen; Hu, Peizhen; Zheng, Pengfei; Ye, Jing

    2014-01-09

    Autophagy is an essential process for breaking down macromolecules and aged/damaged cellular organelles to maintain cellular energy balance and cellular nutritional status. The idea that autophagy regulates lipid metabolism is an emerging concept with important implications for atherosclerosis. However, the potential role of autophagy and its relationship with lipid metabolism in foam cell formation remains unclear. In this study, we found that autophagy was involved in the lipopolysaccharide (LPS)-induced the formation of foam cells and was at least partially dependent on adipose differentiation-related protein (ADRP). Foam cell formation was evaluated by Oil red O staining. Autophagic activity was determined by immunofluorescence and Western blotting. ADRP gene expression of ADRP was examined by real-time PCR (RT-PCR). The protein expression of ADRP and LC3 was measured using Western blotting analysis. Intracellular cholesterol and triglyceride levels in foam cells were quantitatively measured by enzymatic colorimetric assays. LPS promoted foam cell formation by inducing lipid accumulation in macrophages. The activation of autophagy with rapamycin (Rap) decreased intracellular cholesterol and triglyceride levels, whereas the inhibition of autophagy with 3-methyladenine (3MA) enhanced the accumulation of lipid droplets. Overexpression of ADRP alone increased the formation of foam cells and consequently autophagic activity. In contrast, the inhibitory effects of ADRP activity with siRNA suppressed the activation of autophagy. Taken together, we propose a novel role for ADRP in the regulation of macrophage autophagy during LPS stimulation. We defined a new molecular pathway in which LPS-induced foam cell formation is regulated through autophagy. These findings facilitate the understanding of the role of autophagy in the development of atherosclerosis.

  3. Hierarchical ZnO@MnO2 Core-Shell Pillar Arrays on Ni Foam for Binder-Free Supercapacitor Electrodes

    KAUST Repository

    Huang, Ming

    2015-01-01

    © 2014 Elsevier Ltd. All rights reserved. Hierarchical ZnO@MnO2 core-shell pillar arrays on Ni foam have been fabricated by a facile two-step hydrothermal approach and further investigated as the binder-free electrode for supercapacitors. The core-shell hybrid nanostructure is achieved by decorating ultrathin self-standing MnO2 nanosheets on ZnO pillar arrays grown radically on Nickel foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (423.5 F g-1 at a current density of 0.5 A g-1), and excellent cycling stability (92% capacitance retention after 3000 cycles). The improved electrochemical results show that the ZnO@MnO2 core-shell nanostructure electrode is promising for high-performance supercapacitors. The facile design of the unique core-shell array architectures provides a new and effective approach to fabricate high-performance binder-free electrode for supercapacitors.

  4. Ceramic-like open-celled geopolymer foam as a porous substrate for water treatment catalyst

    Science.gov (United States)

    Kovářík, T.; Křenek, T.; Pola, M.; Rieger, D.; Kadlec, J.; Franče, P.

    2017-02-01

    This paper presents results from experimental study on microstructural and mechanical properties of geopolymer-based foam filters. The process for making porous ceramic-like geopolymer body was experimentally established, consists of (a) geopolymer paste synthesis, (b) ceramic filler incorporation, (c) coating of open-celled polyurethane foam with geopolymer mixture, (d) rapid setting procedure, (e) thermal treatment. Geopolymer paste was based on potassium silicate solution n(SiO2)/n(K2O)=1.6 and powder mixture of calcined kaolin and precipitated silica. Various types of ceramic granular filler (alumina, calcined schistous clay and cordierite) were tested in relation to aggregate gradation design and particle size distribution. The small amplitude oscillatory rheometry in strain controlled regime 0.01% with angular frequency 10 rad/s was applied for determination of rheology behavior of prepared mixtures. Thermal treatment conditions were applied in the temperature range 1100 - 1300 °C. The developed porous ceramic-like foam effectively served as a substrate for highly active nanoparticles of selected Fe+2 spinels. Such new-type of nanocomposite was tested as a heterogeneous catalyst for technological process of advanced oxidative degradation of resistive antibiotics occurring in waste waters.

  5. Geometric modeling of Plateau borders using the orthographic projection method for closed cell rigid polyurethane foam thermal conductivity prediction

    Science.gov (United States)

    Xu, Jie; Wu, Tao; Peng, Chuang; Adegbite, Stephen

    2017-09-01

    The geometric Plateau border model for closed cell polyurethane foam was developed based on volume integrations of approximated 3D four-cusp hypocycloid structure. The tetrahedral structure of convex struts was orthogonally projected into 2D three-cusp deltoid with three central cylinders. The idealized single unit strut was modeled by superposition. The volume of each component was calculated by geometric analyses. The strut solid fraction f s and foam porosity coefficient δ were calculated based on representative elementary volume of Kelvin and Weaire-Phelan structures. The specific surface area Sv derived respectively from packing structures and deltoid approximation model were put into contrast against strut dimensional ratio ɛ. The characteristic foam parameters obtained from this semi-empirical model were further employed to predict foam thermal conductivity.

  6. Foam Based Gas Diffusion Electrodes for Reversible Alkaline Electrolysis Cells

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    to the gas diffusion electrodes. A dispersion with PTFE particles of a particle size of about 1 µm in combination with electro-catalysts, such as silver nanotubes, was used to coat the gas diffusion electrodes. Impedance spectroscopy and cyclic voltammetry measurements were performed to determine...... to increase the cell size from lab scale (1 cm2) to areas like 25 cm2....

  7. Foam Based Gas Diffusion Electrodes for Reversible Alkaline Electrolysis Cells

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    cell. In the present work we demonstrate the application of hydrophobic, porous, and electro-catalytically active gas diffusion electrodes. PTFE particles and silver nanowires as electro-catalysts were used in the gas diffusion electrodes. Impedance spectroscopy and cyclic voltammetry were performed...

  8. Development of a Hopkinson Bar Apparatus for Testing Soft Materials: Application to a Closed-Cell Aluminum Foam

    Directory of Open Access Journals (Sweden)

    Marco Peroni

    2016-01-01

    Full Text Available An increasing interest in lightweight metallic foams for automotive, aerospace, and other applications has been observed in recent years. This is mainly due to the weight reduction that can be achieved using foams and for their mechanical energy absorption and acoustic damping capabilities. An accurate knowledge of the mechanical behavior of these materials, especially under dynamic loadings, is thus necessary. Unfortunately, metal foams and in general “soft” materials exhibit a series of peculiarities that make difficult the adoption of standard testing techniques for their high strain-rate characterization. This paper presents an innovative apparatus, where high strain-rate tests of metal foams or other soft materials can be performed by exploiting the operating principle of the Hopkinson bar methods. Using the pre-stress method to generate directly a long compression pulse (compared with traditional SHPB, a displacement of about 20 mm can be applied to the specimen with a single propagating wave, suitable for evaluating the whole stress-strain curve of medium-sized cell foams (pores of about 1–2 mm. The potential of this testing rig is shown in the characterization of a closed-cell aluminum foam, where all the above features are amply demonstrated.

  9. Foam Dispenser

    Science.gov (United States)

    1985-01-01

    William G. Simpson, a NASA/Marshall employee, invented and patented a foam mixing dispensing device. He is supplying his Simpson mixer to a number of foam applications where it is used to apply foam for insulation purposes.

  10. Foaming Behaviour, Structure, and Properties of Polypropylene Nanocomposites Foams

    Directory of Open Access Journals (Sweden)

    M. Antunes

    2010-01-01

    Full Text Available This work presents the preparation and characterization of compression-moulded montmorillonite and carbon nanofibre-polypropylene foams. The influence of these nanofillers on the foaming behaviour was analyzed in terms of the foaming parameters and final cellular structure and morphology of the foams. Both nanofillers induced the formation of a more isometric-like cellular structure in the foams, mainly observed for the MMT-filled nanocomposite foams. Alongside their crystalline characteristics, the nanocomposite foams were also characterized and compared with the unfilled ones regarding their dynamic-mechanical thermal behaviour. The nanocomposite foams showed higher specific storage moduli due to the reinforcement effect of the nanofillers and higher cell density isometric cellular structure. Particularly, the carbon nanofibre foams showed an increasingly higher electrical conductivity with increasing the amount of nanofibres, thus showing promising results as to produce electrically improved lightweight materials for applications such as electrostatic painting.

  11. A replication-casting device for manufacturing open-cell Mg foams

    OpenAIRE

    Lara-Rodriguez, G.A.; Figueroa, I.A.; Suarez, M.A.; Novelo-Peralta, O.; Alfonso, I.; Goodall, R.

    2016-01-01

    The development of a replication casting device with the capability of manufacturing open-cell pure Mg and Mg alloys foams, with melting points lower than 950 °C is described. The device consists of three basic parts: a cylindrical reaction chamber, a valve system for controlling the vacuum and the gas injection, and a heating system. The purpose of the present design was to improve the existing laboratory-scale devices, making them simpler than those reported in the literature, as well as to...

  12. TRPV4 calcium-permeable channel is a novel regulator of oxidized LDL-induced macrophage foam cell formation.

    Science.gov (United States)

    Goswami, Rishov; Merth, Michael; Sharma, Shweta; Alharbi, Mazen O; Aranda-Espinoza, Helim; Zhu, Xiaoping; Rahaman, Shaik O

    2017-09-01

    Cardiovascular disease is the number one cause of death in United States, and atherosclerosis, a chronic inflammatory arterial disease, is the most dominant underlying pathology. Macrophages are thought to orchestrate atherosclerosis by generating lipid-laden foam cells and by secreting inflammatory mediators. Emerging data support a role for a mechanical factor, e.g., matrix stiffness, in regulation of macrophage function, vascular elasticity, and atherogenesis. However, the identity of the plasma membrane mechanosensor and the mechanisms by which pro-atherogenic signals are transduced/maintained are unknown. We have obtained evidence that TRPV4, an ion channel in the transient receptor potential vanilloid family and a known mechanosensor, is the likely mediator of oxidized low-density lipoprotein (oxLDL)-dependent macrophage foam cell formation, a critical process in atherogenesis. Specifically, we found that: i) genetic ablation of TRPV4 or pharmacologic inhibition of TRPV4 activity by a specific antagonist blocked oxLDL-induced macrophage foam cell formation, and ii) TRPV4 deficiency prevented pathophysiological range matrix stiffness or scratch-induced exacerbation of oxLDL-induced foam cell formation. Mechanistically, we found that: i) plasma membrane localization of TRPV4 was sensitized to the increasing level of matrix stiffness, ii) lack of foam cell formation in TRPV4 null cells was not due to lack of expression of CD36, a major receptor for oxLDL, and iii) TRPV4 channel activity regulated oxLDL uptake but not its binding on macrophages. Altogether, these findings identify a novel role for TRPV4 in regulating macrophage foam cell formation by modulating uptake of oxLDL. These findings suggest that therapeutic targeting of TRPV4 may provide a selective approach to the treatment of atherosclerosis. Copyright © 2017. Published by Elsevier Inc.

  13. Phytosterols Differentially Influence ABC transporter Expression, Cholesterol Efflux and Inflammatory Cytokine Secretion in Macrophage Foam Cells

    Science.gov (United States)

    Sabeva, Nadezhda S; McPhaul, Christopher M; Li, Xiangan; Cory, Theodore J.; Feola, David J.; Graf, Gregory A

    2010-01-01

    Phytosterol supplements lower low density lipoprotein (LDL) cholesterol, but accumulate in vascular lesions of patients and limit the anti-atherosclerotic effects of LDL lowering in apolipoprotein E deficient mice, suggesting that the cholesterol lowering benefit of phytosterol supplementation may not be fully realized. Individual phytosterols have cell-type specific effects that may either be beneficial or deleterious with respect to atherosclerosis, but little is known concerning their effects on macrophage function. The effects of phytosterols on ABCA1 and ABCG1 abundance, cholesterol efflux, and inflammatory cytokine secretion were determined in cultured macrophage foam cells. Among the commonly consumed phytosterols, stigmasterol increased expression of ABCA1 and ABCG1 and increased efflux of cholesterol to apolipoprotein (Apo) AI and high density lipoprotein (HDL). Campesterol and sitosterol had no effect on ABCA1 or ABCG1 levels. Sitosterol had no effect of cholesterol efflux to Apo AI or HDL, whereas campesterol had a modest, but significant reduction in cholesterol efflux to HDL in THP-1 macrophages. Whereas stigmasterol blunted aggregated LDL-induced increases in tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β secretion, sitosterol exacerbated these effects. The presence of campesterol had no effect on agLDL-induced inflammatory cytokine secretion from THP-1 macrophages. In conclusion, the presence of stigmasterol in modified lipoproteins promoted cholesterol efflux and suppressed inflammatory cytokine secretion in response to lipid loading in macrophage foam cells. While campesterol was largely inert, the presence of sitosterol increased the proinflammatory cytokine secretion. PMID:21111593

  14. Polyethylene ionomer-based nano-composite foams prepared by a batch process and MuCell injection molding

    International Nuclear Information System (INIS)

    Hayashi, Hidetomo; Mori, Tomoki; Okamoto, Masami; Yamasaki, Satoshi; Hayami, Hiroshi

    2010-01-01

    To understand the correlation between foamability and melt rheology of polyethylene-based ionomers having different degrees of the neutralization and corresponding nano-composites, we have conducted the foam processing via a batch process in an autoclave and microcellular foam injection molding (FIM) process using the MuCell technology. We have discussed the obtainable morphological properties in both foaming processes. All cellular structures were investigated by using field emission scanning electron microscopy. The competitive phenomenon between the cell nucleation and the cell growth including the coalescence of cell was discussed in light of the interfacial energy and the relaxation rate as revealed by the modified classical nucleation theory and rheological measurement, respectively. The FIM process led to the opposite behavior in the cell growth and coalescence of cell as compared with that of the batch process, where the ionic cross-linked structure has significant contribution to retard the cell growth and coalescence of cell. The mechanical properties of the structural foams obtained by FIM process were discussed.

  15. Mitofusin2 decreases intracellular cholesterol of oxidized LDL-induced foam cells from rat vascular smooth muscle cells.

    Science.gov (United States)

    He, Chao; Chen, Ying; Liu, Chun; Cao, Ming; Fan, Yu-jin; Guo, Xiao-mei

    2013-04-01

    Mitofusin2 (Mfn2) plays a pivotal role in the proliferation and apoptosis of vascular smooth muscle cells (VSMCs). The purpose of this study was to investigate the effects of Mfn2 on the trafficking of intracellular cholesterol in the foam cells derived from rat VSMCs (rVSMCs) and also to investigate the effects of Mfn2 on the expression of adenosine triphosphate-binding cassette subfamily A member 1 (ABCA1), adenosine triphosphate-binding cassette subfamily G member 1 (ABCG1) and peroxisome proliferator-activated receptor gamma (PPARγ). The rVSMCs were co-cultured with oxidized low density lipoprotein (LDL, 80 μg/mL) to produce foam cells and cholesterol accumulation in cells. Before oxidized LDL treatment, different titers (20, 40 and 60 pfu/cell) of recombinant adenovirus containing Mfn2 gene (Adv-Mfn2) were added into the culture medium for 24 h to transfect the Mfn2 gene into the rVSMCs. Then the cells were harvested for analyses. The protein expression of Mfn2 was significantly higher in Adv-Mfn2-transfected group than in untransfected group (PLDL treatment, rVSMCs became irregular and their nuclei became larger, and their plasma abounded with red lipid droplets. However, the number of red lipid droplets was significantly decreased in Adv-Mfn2-transfected group as compared with untransfected group. At 48 h after oxidized LDL treatment, the intracellular cholesterol in rVSMCs was significantly increased (P0.05), the phosporylation levels of PPARγ were significantly decreased in Adv-Mfn2-transfected group as compared with untransfected group (Pcholesterol in oxidized LDL-induced rVSMCs possibly by decreasing PPARγ phosporylation and then increasing protein expression levels of ABCA1 and ABCG1, which may be helpful to suppress the formation of foam cells.

  16. Use of Pd-Pt loaded graphene aerogel on nickel foam in direct ethanol fuel cell

    Science.gov (United States)

    Tsang, Chi Him A.; Leung, D. Y. C.

    2018-01-01

    A size customized binder-free bimetallic Pd-Pt loaded graphene aerogel deposited on nickel foam plate (Pd-Pt/GA/NFP) was prepared and used as an electrode for an alkaline direct ethanol fuel cell (DEFC) under room temperature. The effect of fuel concentration and metal composition on the output power density of the DEFC was systematically investigated. Under the optimum fuel concentration, the cell could achieve a value of 3.6 mW cm-2 at room temperature for the graphene electrode with Pd/Pt ratio approaching 1:1. Such results demonstrated the possibility of producing a size customized metal loaded GA/NFP electrode for fuel cell with high performance.

  17. Insulin and glucose play a role in foam cell formation and function

    Directory of Open Access Journals (Sweden)

    Keller Susanna R

    2006-06-01

    Full Text Available Abstract Background Foam cell formation in diabetic patients often occurs in the presence of high insulin and glucose levels. To test whether hyperinsulinemic hyperglycemic conditions affect foam cell differentiation, we examined gene expression, cytokine production, and Akt phosphorylation in human monocyte-derived macrophages incubated with two types of oxidized low density lipoprotein (LDL, minimally modified LDL (mmLDL and extensively oxidized LDL (OxLDL. Methods and results Using Affymetrix GeneChip® arrays, we found that several genes directly related to insulin signaling were changed. The insulin receptor and glucose-6-phosphate dehydrogenase were upregulated by mmLDL and OxLDL, whereas insulin-induced gene 1 was significantly down-regulated. In hyperinsulinemic hyperglycemic conditions, modified LDL upregulated Akt phosphorylation and expression of the insulin-regulated aminopeptidase. The level of proinflammatory cytokines, IL-lβ, IL-12, and IL-6, and of a 5-lipoxygenase eicosanoid, 5-hydroxyeicosatetraenoic acid (5-HETE, was also increased. Conclusion These results suggest that the exposure of macrophages to modified low density lipoproteins in hyperglycemic hyperinsulinemic conditions affects insulin signaling and promotes the release of proinflammatory stimuli, such as cytokines and eicosanoids. These in turn may contribute to the development of insulin resistance.

  18. Multidimensional Anodized Titanium Foam Photoelectrode for Efficient Utilization of Photons in Mesoscopic Solar Cells.

    Science.gov (United States)

    Kang, Jin Soo; Choi, Hyelim; Kim, Jin; Park, Hyeji; Kim, Jae-Yup; Choi, Jung-Woo; Yu, Seung-Ho; Lee, Kyung Jae; Kang, Yun Sik; Park, Sun Ha; Cho, Yong-Hun; Yum, Jun-Ho; Dunand, David C; Choe, Heeman; Sung, Yung-Eun

    2017-09-01

    Mesoscopic solar cells based on nanostructured oxide semiconductors are considered as a promising candidates to replace conventional photovoltaics employing costly materials. However, their overall performances are below the sufficient level required for practical usages. Herein, this study proposes an anodized Ti foam (ATF) with multidimensional and hierarchical architecture as a highly efficient photoelectrode for the generation of a large photocurrent. ATF photoelectrodes prepared by electrochemical anodization of freeze-cast Ti foams have three favorable characteristics: (i) large surface area for enhanced light harvesting, (ii) 1D semiconductor structure for facilitated charge collection, and (iii) 3D highly conductive metallic current collector that enables exclusion of transparent conducting oxide substrate. Based on these advantages, when ATF is utilized in dye-sensitized solar cells, short-circuit photocurrent density up to 22.0 mA cm -2 is achieved in the conventional N719 dye-I 3 - /I - redox electrolyte system even with an intrinsically inferior quasi-solid electrolyte. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yuka; Tada-Oikawa, Saeko [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan); Ichihara, Gaku [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya (Japan); Yabata, Masayuki; Izuoka, Kiyora [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan); Suzuki, Masako; Sakai, Kiyoshi [Nagoya City Public Health Research Institute, Nagoya (Japan); Ichihara, Sahoko, E-mail: saho@gene.mie-u.ac.jp [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan)

    2014-07-01

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocyte chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.

  20. Novel Crack Stopper Concept for Lightweight Foam Cored Sandwich Structures – Experimental Validation, Fe-Modelling and Potential for Use in Structures

    DEFF Research Database (Denmark)

    Martakos, Georgios; Andreasen, Jens H.; Berggreen, Christian

    A novel crack arresting device has been implemented in foam cored composite sandwich beams panels and tested under both static and fatigue loading conditions. Fatigue crack propagation was induced in the face-core interface of the sandwich panels which met the crack arrester. The effect...... of the embedded crack arresters was evaluated in terms of the achieved enhancement of the damage tolerance of the tested sandwich beams and panels. Finite element (FE) modelling of the experimental setups was used for predicting propagation rates and direction of the crack growth. The FE model predicts the energy...... sandwich beam and panel specimens subjected to fatigue loading conditions. The effect of the crack arresters on the fatigue life is analysed, and the predictive results are subsequently compared with the observations from fatigue tests. Overall it was demonstrated that the proposed crack arrester device...

  1. Compression-compression fatigue of open cell aluminum foams: macro-/micro- mechanisms and the effects of heat treatment

    International Nuclear Information System (INIS)

    Zhou, J.; Soboyejo, W.O.

    2004-01-01

    This paper presents the results of an experimental study of the fatigue mechanisms of Duocel[reg] open cell aluminum foams and the effects of heat treatment on foam fatigue behaviour. The macro-/micro-mechanisms of fatigue were studied for the foams in the as-fabricated (F), annealed (O) and T6-strengthened (T6) conditions. The effects of annealing and T6-strengthening on the stress-strain behavior and plastic collapse strengths of foams were introduced before presenting the results of compression-compression fatigue experiments. The formation of localized deformation bands were investigated using an in-situ digital camera. Scanning electron microscopy (SEM) revealed clear evidence of the surface crack nucleation in the individual struts, prior to the abrupt strain jumps. Fractographic analysis of the failed struts also revealed fatigue striations and surface crack nucleation mechanisms in the struts. Finally, a simple compression-compression fatigue mechanism is proposed to link the observed macro- and micro-scale fatigue mechanisms in open cell aluminum foams

  2. Micromodel foam flow study

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, K.T.; Radke, C.J.

    1990-10-01

    Foams are often utilized as part of enhanced oil recovery techniques. This report presents the results of a micromodel foam flow study. Micromodels are valuable tools in uncovering capillary phenomena responsible for lamellae generation and coalescence during foam flow in porous media. Among the mechanisms observed are snap-off, weeping-flow breakup, and lamella division and leave behind. Coalescence mechanisms include dynamic capillary-pressure-induced lamella drainage and gas diffusion. These phenomena are sensitive to the mode of injection, the local capillary environment, and the geometry of the pore structure. An important consideration in presenting a tractable model of foam flow behavior is the ability to identify the pore-level mechanisms having the greatest impact on foam texture. The predominant mechanisms will vary depending upon the application for foam as an enhanced oil recovery (EOR) fluid. Both simultaneous gas and surfactant injection and surfactant alternating with gas injection (SAG) have been used to create foam for mobility control in EOR projects. The model developed is based on simultaneous gas and surfactant injection during steady-state conditions into a Berea sandstone core. The lamellae generation and coalescence mechanisms included in this model are snap-off, lamella division, and dynamic capillary-pressure-induced lamella drainage. This simplified steady-state model serves as a foundation for developing more complete rate expressions and for extending the population balance to handle transient foam flow behavior. 70 refs., 30 figs.

  3. Solid oxide fuel cell with monolithic core

    Science.gov (United States)

    McPheeters, C.C.; Mrazek, F.C.

    1988-08-02

    A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700 C and 1,100 C. 8 figs.

  4. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi, E-mail: wangyi2004a@126.com [Department of Cardiology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080 (China); Wang, Xiang; Sun, Minghui; Zhang, Zhenyu; Cao, Heng; Chen, Xiaoqing [Department of Cardiology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080 (China)

    2011-08-05

    Highlights: {yields} Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. {yields} Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. {yields} P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. {yields} Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kB (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the

  5. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell

    International Nuclear Information System (INIS)

    Wang, Yi; Wang, Xiang; Sun, Minghui; Zhang, Zhenyu; Cao, Heng; Chen, Xiaoqing

    2011-01-01

    Highlights: → Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. → Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. → P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. → Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kB (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the regulation of foam

  6. Numerical Study of Liquid Sloshing on Anti-sloshing Device Using Open Cell Metal Foams in Oil Tank

    Science.gov (United States)

    Zhang, Y.; Qu, Z. G.; Tao, W. Q.; Lu, T. J.

    2010-03-01

    A new baffle structure design named open-cell metal foams baffle for anti-sloshing device in oil tank is presented in this study. Numerical simulation study on the liquid sloshing with various baffles is carried out using FLUENT with the volume-of-fluid (VOF) model. Four types of baffles were studied, namely non-baffle (type A), conventional parallel-baffle (type B), cross-baffle (type C) and open- cell metal foams baffles (type D). The oil velocity distribution, centroid and oil occupancy in the sloshing process is revealed in the case of vehicle speeding up and turning respectively. It is found that type D reduce velocity of oil, increase the value of oil occupancy in the suction pipe entrance of the oil tank and lower the centroid of oil obviously comparing with the other types. As for the same open-cell metal foam pore density, lower open-cell metal foam porosity has much better effect of inhibition of liquid sloshing, but there is little deviation among different porosity for the absolute value. Moreover, according to the same porosity, the oil centroid can be lowered obviously with the increase of pore density. The results of type D show practical significance and referable guideline for baffles design to improve the safety and stability of vehicle.

  7. Incorporation of the Pore Size Variation to Modeling of the Elastic Behavior of Metallic Open-Cell Foams

    Directory of Open Access Journals (Sweden)

    Ćwieka K.

    2017-03-01

    Full Text Available In the present paper we present the approach for modeling of the elastic behavior of open-cell metallic foams concerning non-uniform pore size distribution. This approach combines design of foam structures and numerical simulations of compression tests using finite element method (FEM. In the design stage, Laguerre-Voronoi tessellations (LVT were performed on several sets of packed spheres with defined variation of radii, bringing about a set of foam structures with porosity ranging from 74 to 98% and different pore size variation quantified by the coefficient of pore volume variation, CV(V, from 0.5 to 2.1. Each structure was numerically subjected to uni-axial compression test along three directions within the elastic region. Basing on the numerical response, the effective Young’s modulus, Eeff, was calculated for each structure. It is shown that the Eeff is not only dependent on the porosity but also on the pore size variation.

  8. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...... with different gas compositions. The foam glasses were characterised concerning densities, open/closed porosity and crystallinity. We find out, through analytical calculations and experiments, how the thermal conductivity of foam glass depends on density, glass composition and gas composition. Certain glass...

  9. TRAIL/DR5 signaling promotes macrophage foam cell formation by modulating scavenger receptor expression.

    Directory of Open Access Journals (Sweden)

    Fang Fang Liu

    Full Text Available Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L has been shown to have protective effects against atherosclerosis. However, whether TRAIL has any effects on expression of macrophage scavenger receptors and lipid uptake has not yet been studied. Macrophage lines RAW264.7 and THP-1, and mouse primary peritoneal macrophages, were cultured in vitro and treated with recombinant human TRAIL. Real-time PCR and western blot were performed to measure mRNA and protein expressions. Foam cell formation was assessed by internalization of acetylated and oxidized low-density lipoproteins (LDL. Apoptosis was measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. We found that TRAIL treatment increased expression of scavenger receptor (SR-AI and SR-BI in a time- and dose-dependent manner, and this effect was accompanied by increased foam cell formation. These effects of TRAIL were abolished by a TRAIL neutralizing antibody or in DR5 receptor-deficient macrophages. The increased LDL uptake by TRAIL was blocked by SR-AI gene silencing or the SR-AI inhibitor poly(I:C, while SR-BI blockade with BLT-1 had no effect. TRAIL-induced SR-AI expression was blocked by the inhibitor of p38 mitogen-activated protein kinase, but not by inhibitors of ERK1/2 or JNK. TRAIL also induced apoptosis in macrophages. In contrast to macrophages, TRAIL showed little effects on SR expression or apoptosis in vascular smooth muscle cells. In conclusion, our results demonstrate that TRAIL promotes macrophage lipid uptake via SR-AI upregulation through activation of the p38 pathway.

  10. CD14 is a key mediator of both lysophosphatidic acid and lipopolysaccharide induction of foam cell formation.

    Science.gov (United States)

    An, Dong; Hao, Feng; Zhang, Fuqiang; Kong, Wei; Chun, Jerold; Xu, Xuemin; Cui, Mei-Zhen

    2017-09-01

    Macrophage uptake of oxidized low-density lipoprotein (oxLDL) plays an important role in foam cell formation and the pathogenesis of atherosclerosis. We report here that lysophosphatidic acid (LPA) enhances lipopolysaccharide (LPS)-induced oxLDL uptake in macrophages. Our data revealed that both LPA and LPS highly induce the CD14 expression at messenger RNA and protein levels in macrophages. The role of CD14, one component of the LPS receptor cluster, in LPA-induced biological functions has been unknown. We took several steps to examine the role of CD14 in LPA signaling pathways. Knockdown of CD14 expression nearly completely blocked LPA/LPS-induced oxLDL uptake in macrophages, demonstrating for the first time that CD14 is a key mediator responsible for both LPA- and LPS-induced oxLDL uptake/foam cell formation. To determine the molecular mechanism mediating CD14 function, we demonstrated that both LPA and LPS significantly induce the expression of scavenger receptor class A type I (SR-AI), which has been implicated in lipid uptake process, and depletion of CD14 levels blocked LPA/LPS-induced SR-AI expression. We further showed that the SR-AI-specific antibody, which quenches SR-AI function, blocked LPA- and LPS-induced foam cell formation. Thus, SR-AI is the downstream mediator of CD14 in regulating LPA-, LPS-, and LPA/LPS-induced foam cell formation. Taken together, our results provide the first experimental evidence that CD14 is a novel connecting molecule linking both LPA and LPS pathways and is a key mediator responsible for LPA/LPS-induced foam cell formation. The LPA/LPS-CD14-SR-AI nexus might be the new convergent pathway, contributing to the worsening of atherosclerosis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Effects of Ammonium Phosphate on Structure of Cell and Carb on Layer after Burned of Polyurethane-imide Foams

    Directory of Open Access Journals (Sweden)

    ZHANG Qi

    2017-06-01

    Full Text Available Using ammonium phosphate as flame retardant,polyurethane-imide foams were synthesized via PI pre-polymer method. The effect of APP on the cell structure, thermal stability and carbon layer morphology were analyzed by polarizing microscope,SEM and TGA. The effect of cell structure change on carbon layer morphology was focused and discussed and the formation process of carbon layer was simulated. The results show that cell diameter drops sharply from 690.25μm to 277.83μm, the foam density increases with the increasing addition of APP;the addition of APP makes char yield increased by 30%; the cell wall and peak respectively expand into rod-like and spherical carbon layer, but the cell films burn into holes. Furthermore, the sizes of rod-like and spherical carbon layer increase, but the holes decrease with the increasing addition of APP.

  12. Zirconium oxide ceramic foam: a promising supporting biomaterial for massive production of glial cell line-derived neurotrophic factor.

    Science.gov (United States)

    Liu, Zhong-wei; Li, Wen-qiang; Wang, Jun-kui; Ma, Xian-cang; Liang, Chen; Liu, Peng; Chu, Zheng; Dang, Yong-hui

    2014-12-01

    This study investigated the potential application of a zirconium oxide (ZrO2) ceramic foam culturing system to the production of glial cell line-derived neurotrophic factor (GDNF). Three sets of ZrO2 ceramic foams with different pore densities of 10, 20, and 30 pores per linear inch (PPI) were prepared to support a 3D culturing system. After primary astrocytes were cultured in these systems, production yields of GDNF were evaluated. The biomaterial biocompatibility, cell proliferation and activation of cellular signaling pathways in GDNF synthesis and secretion in the culturing systems were also assessed and compared with a conventional culturing system. In this study, we found that the ZrO2 ceramic foam culturing system was biocompatible, using which the GDNF yields were elevated and sustained by stimulated cell proliferation and activation of signaling pathways in astrocytes cultured in the system. In conclusion, the ZrO2 ceramic foam is promising for the development of a GDNF mass production device for Parkinson's disease treatment.

  13. Manufacturing of Open-Cell Zn-22Al-2Cu Alloy Foams by a Centrifugal-Replication Process

    Science.gov (United States)

    Sánchez, A.; Cruz, A.; Rivera, J. E.; Romero, J. A.; Suárez, M. A.; Gutiérrez, V. H.

    2018-01-01

    Centrifugal force was used to produce open-cell Zn-22Al-2Cu alloy foams by the replication method. Three different sizes (0.50, 0.69, and 0.95 mm) of NaCl spherical particles were used as space holders. A relatively low infiltration pressure was required to infiltrate completely the liquid metal into the three pore sizes, and it was determined based on the centrifugation system parameters. The infiltration pressure required was decreased when the diameter of the particle was increased. The porosity of the foam was increased from 58 to 63 pct, when the pore size was increased from 0.50 to 0.95 mm, while the relative density was decreased from 0.42 to 0.36. The NaCl preform was preheated to avoid the freezing and to keep the rheological properties of the melt. The centrifugal-replication method is a suitable technique for the fabrication of open-cell Zn-Al-Cu alloy foams with small pore size. The compressive mechanical properties of the open-cell Zn-22Al-2Cu foams increased when the pore size decreased.

  14. Fiber-reinforced syntactic foams

    Science.gov (United States)

    Huang, Yi-Jen

    to produce ultralight sandwich core materials was explored in which towpreg (fiber bundles impregnated with resin) were configured to produce 3D pyramidal truss structures. The composite truss structures were subsequently filled with foam to improve resistance to buckling. Mechanical properties of the foam-filled truss structures were measured and contrasted with analytical predictions based on simple truss theory. Results indicated that combination of foams and carbon fiber truss structures had synergistic effects that enhanced the capacity to carry compressive and shear loads.

  15. Differential regulation of macropinocytosis in macrophages by cytokines: implications for foam cell formation and atherosclerosis.

    Science.gov (United States)

    Michael, Daryn R; Ashlin, Tim G; Davies, Charlotte S; Gallagher, Hayley; Stoneman, Thomas W; Buckley, Melanie L; Ramji, Dipak P

    2013-10-01

    A key event during the formation of lipid-rich foam cells during the progression of atherosclerosis is the uptake of modified low-density lipoproteins (LDL) by macrophages in response to atherogenic mediators in the arterial intima. In addition to scavenger receptor-dependent uptake of LDL, macropinocytosis is known to facilitate the uptake of LDL through the constitutive and passive internalization of large quantities of extracellular solute. In this study we confirm the ability of macropinocytosis to facilitate the uptake of modified LDL by human macrophages and show its modulation by TGF-β, IFN-γ, IL-17A and IL-33. Furthermore we show that the TGF-β-mediated inhibition of macropinocytosis is a Smad-2/-3-independent process. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Carbonate-Foaming Agents in Aluminum Foams: Advantages and Perspectives

    Science.gov (United States)

    Soloki, Ali; Esmailian, Mohammad

    2015-04-01

    Aluminum foams are commonly produced using hydride foaming agents. Carbonates are inexpensive and more convenient to handle than hydrides. In this review article, the replacement of titanium hydride by carbonate foaming agents in aluminum and aluminum alloys was studied. Carbonate-foaming agents including calcium carbonate, magnesium carbonate, and dolomite were investigated for the production of aluminum and aluminum alloys. The thermal decomposition behavior of the foaming agents was evaluated in conjunction with the cell structure of the aluminum foams produced. From the results, magnesium carbonate and dolomite were selected as suitable foaming agents for aluminum alloys because of lower decomposition temperature than calcium carbonate. It was clarified that dolomite resulted in a fine and homogenous cell structures.

  17. Anti-atherosclerotic potential of gossypetin via inhibiting LDL oxidation and foam cell formation

    International Nuclear Information System (INIS)

    Chen, Jing-Hsien; Tsai, Chia-Wen; Wang, Chi-Ping; Lin, Hui-Hsuan

    2013-01-01

    Gossypetin, a flavone originally isolated from Hibiscus species, has been shown to possess antioxidant, antimicrobial, and antimutagenic activities. Here, we investigated the mechanism(s) underlying the anti-atherosclerotic potential of gossypetin. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging activity assay showed that the addition of > 50 μM of gossypetin could scavenge over 50% of DPPH radicals. The inhibitory effects of gossypetin on the lipid and protein oxidation of LDL were defined by thiobarbituric acid reactive substance (TBARS) assay, the relative electrophoretic mobility (REM) of oxidized LDL (ox-LDL), and fragmentation of apoB in the Cu 2+ -induced oxidation of LDL. Gossypetin showed potential in reducing ox-LDL-induced foam cell formation and intracellular lipid accumulation, and uptake ability of macrophages under non-cytotoxic concentrations. Molecular data showed that these influences of gossypetin might be mediated via peroxisome proliferator-activated receptor α (PPARα)/liver-X receptor α (LXRα)/ATP-binding cassette transporter A1 (ABCA1) and PPARγ/scavenger receptor CD36 pathways, as demonstrated by the transfection of PPARα siRNA or PPARγ expression vector. Our data implied that gossypetin regulated the PPAR signals, which in turn led to stimulation of cholesterol removal from macrophages and delay atherosclerosis. These results suggested that gossypetin potentially could be developed as an anti-atherosclerotic agent. - Highlights: • The anti-atherosclerotic effect of gossypetin in vitro was examined. • Gossypetin inhibited LDL oxidation. • Gossypetin showed potential in reducing on the formation of foam cells. • Gossypetin functions against ox-LDL through PPARa activation and PPARγ depression

  18. Anti-atherosclerotic potential of gossypetin via inhibiting LDL oxidation and foam cell formation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing-Hsien [School of Nutrition, Chung Shan Medical University, Taichung, Taiwan (China); Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Tsai, Chia-Wen [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Wang, Chi-Ping [Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Lin, Hui-Hsuan, E-mail: linhh@csmu.edu.tw [Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China)

    2013-10-15

    Gossypetin, a flavone originally isolated from Hibiscus species, has been shown to possess antioxidant, antimicrobial, and antimutagenic activities. Here, we investigated the mechanism(s) underlying the anti-atherosclerotic potential of gossypetin. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging activity assay showed that the addition of > 50 μM of gossypetin could scavenge over 50% of DPPH radicals. The inhibitory effects of gossypetin on the lipid and protein oxidation of LDL were defined by thiobarbituric acid reactive substance (TBARS) assay, the relative electrophoretic mobility (REM) of oxidized LDL (ox-LDL), and fragmentation of apoB in the Cu{sup 2+}-induced oxidation of LDL. Gossypetin showed potential in reducing ox-LDL-induced foam cell formation and intracellular lipid accumulation, and uptake ability of macrophages under non-cytotoxic concentrations. Molecular data showed that these influences of gossypetin might be mediated via peroxisome proliferator-activated receptor α (PPARα)/liver-X receptor α (LXRα)/ATP-binding cassette transporter A1 (ABCA1) and PPARγ/scavenger receptor CD36 pathways, as demonstrated by the transfection of PPARα siRNA or PPARγ expression vector. Our data implied that gossypetin regulated the PPAR signals, which in turn led to stimulation of cholesterol removal from macrophages and delay atherosclerosis. These results suggested that gossypetin potentially could be developed as an anti-atherosclerotic agent. - Highlights: • The anti-atherosclerotic effect of gossypetin in vitro was examined. • Gossypetin inhibited LDL oxidation. • Gossypetin showed potential in reducing on the formation of foam cells. • Gossypetin functions against ox-LDL through PPARa activation and PPARγ depression.

  19. Foam injection molding of thermoplastic elastomers: Blowing agents, foaming process and characterization of structural foams

    Science.gov (United States)

    Ries, S.; Spoerrer, A.; Altstaedt, V.

    2014-05-01

    Polymer foams play an important role caused by the steadily increasing demand to light weight design. In case of soft polymers, like thermoplastic elastomers (TPE), the haptic feeling of the surface is affected by the inner foam structure. Foam injection molding of TPEs leads to so called structural foam, consisting of two compact skin layers and a cellular core. The properties of soft structural foams like soft-touch, elastic and plastic behavior are affected by the resulting foam structure, e.g. thickness of the compact skins and the foam core or density. This inner structure can considerably be influenced by different processing parameters and the chosen blowing agent. This paper is focused on the selection and characterization of suitable blowing agents for foam injection molding of a TPE-blend. The aim was a high density reduction and a decent inner structure. Therefore DSC and TGA measurements were performed on different blowing agents to find out which one is appropriate for the used TPE. Moreover a new analyzing method for the description of processing characteristics by temperature dependent expansion measurements was developed. After choosing suitable blowing agents structural foams were molded with different types of blowing agents and combinations and with the breathing mold technology in order to get lower densities. The foam structure was analyzed to show the influence of the different blowing agents and combinations. Finally compression tests were performed to estimate the influence of the used blowing agent and the density reduction on the compression modulus.

  20. Petroleum oil removal by immobilized bacterial cells on polyurethane foam under different temperature conditions.

    Science.gov (United States)

    Alessandrello, Mauricio J; Juárez Tomás, María S; Raimondo, Enzo E; Vullo, Diana L; Ferrero, Marcela A

    2017-09-15

    In this work, a mixed biofilm composed by Pseudomonas monteilii P26 and Gordonia sp. H19 was formed using polyurethane foam (PUF) as immobilization support, for crude oil removal from artificial sea water. Fresh immobilized cells and immobilized cells that were stored at 4°C for two months before use were assessed. The oil removal assays were carried out at microcosm scale at 4, 15 and 30°C. A viability loss of P. monteilii P26 was observed after the storage. The highest removal value (75%) was obtained at 30°C after 7days using fresh immobilized cells on PUF. Enhanced oil bioremoval was obtained at 4°C and 15°C with the previously stored immobilized cells compared to the fresh immobilized cells. Crude oil sorption on the different systems was responsible for the removal of 22-33% oil at the different temperatures. In conclusion, an economic tool for petroleum bioremediation is proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Aerogels and opened-cell structures: two examples of carbon foams; Les aerogels et les structures alveolaires. Deux exemples de mousses de carbone

    Energy Technology Data Exchange (ETDEWEB)

    Kocon, L.; Piquero, Th. [CEA Centre d' Etudes du Ripault, Dept. des Materiaux, Service Recherche Ceramiques et Composites, 37 - Tours (France)

    2006-03-15

    Two examples of carbon foams are exposed herein. They are very lightweight materials with an exceptionally open porosity high volume. Cells size varies from nanometer to micrometer for aerogels, and from micrometer to millimeter for opened cell carbon foams. Elaboration process conditions allow to adjust pore sizes as well as micro-textural characteristics and macroscopical mechanical properties. Carbon aerogels are synthesized by organic aerogels pyrolysis leading to a large variety of micro-textures. Opened cell carbon foams present an original mechanical behavior, brittle type, which can be enhanced by CVD or calefaction pyrocarbon reinforcement. (authors)

  2. Contrasting effects of stanniocalcin-related polypeptides on macrophage foam cell formation and vascular smooth muscle cell migration.

    Science.gov (United States)

    Yamamoto, Keigo; Tajima, Yukie; Hasegawa, Akinori; Takahashi, Yui; Kojima, Miho; Watanabe, Rena; Sato, Kengo; Shichiri, Masayoshi; Watanabe, Takuya

    2016-08-01

    Stanniocalcin (STC) is a calcium- and phosphate-regulating hormone secreted by the corpuscles of Stannius, an endocrine gland of bony fish. Its human homologues, STC1 and STC2 showing 34% amino acid identity each other, are expressed in a variety of human tissues. To clarify their roles in atherosclerosis, we investigated the effects of their full-length proteins, STC1(18-247) and STC2(25-302), and STC2-derived fragment peptides, STC2(80-100) and STC2(85-99), on inflammatory responses in human umbilical vein endothelial cells (HUVECs), human macrophage foam cell formation, the migration and proliferation of human aortic smooth muscle cells (HASMCs) and the extracellular matrix expression. All these polypeptides suppressed lipopolysaccharide-induced expressions of interleukin-6, monocyte chemotactic protein-1, and intercellular adhesion molecule-1 in HUVECs. Oxidized low-density lipoprotein-induced foam cell formation was significantly decreased by STC1(18-247) and increased by STC2(80-100) and STC2(85-99), but not STC2(25-302), in human macrophages. Expression of acyl-CoA:cholesterol acyltransferase-1 (ACAT1) was significantly suppressed by STC1(18-247) but stimulated by STC2(80-100) and STC2(85-99). Expression of ATP-binding cassette transporter A1 was significantly stimulated by STC1(18-247). Neither STC1(18-247) nor STC2-derived peptides significantly affected CD36 expression in human macrophages or HASMC proliferation. STC2(80-100) and STC2(85-99) significantly increased HASMC migration, whereas STC1(18-247) significantly suppressed the angiotensin II-induced HASMC migration. Expressions of collagen-1, fibronectin, matrix metalloproteinase-2, and elastin were mostly unchanged with the exception of fibronectin up-regulation by STC2(80-100). Our results demonstrated the contrasting effects of STC1 and STC2-derived peptides on human macrophage foam cell formation associated with ACAT1 expression and on HASMC migration. Thus, STC-related polypeptides could serve as

  3. An experimental study of natural convection in open-cell aluminum foam

    International Nuclear Information System (INIS)

    De Jaeger, P; Reynders, R; De Schampheleire, S; Joen, C T'; Huisseune, H; Amee, B; De Paepe, M

    2012-01-01

    Natural convecton n air-saturated alumnum foam has been measured. A carefully designed experimental setup is built for his ask. The calibraton is done by comparing he results of a flat plate wh literature data, revealing excellent agreement. The nvestigated foams have a pore densiy of 10 and 20 PPI. The bondng of the foam is performed via brazing, or by applying a single epoxy which is enriched wh highly conductve alumna particles. The Rayleigh number is varied between 2500 and 6000, wh he rato of he surface area o he perimeter of he substrate as characteristc length. The foam height is varied between 12 and 25.4 mm. A major difference between both he bondng methods is observed. The brazed samples showed a beter heat ransfer n all cases. Furthermore, when ncreasing he foam height, a clear augmentaton of he heat ransfer is observed. Based on hese results, a correlaton is presented.

  4. Development of a biaxial compression device for biological samples: preliminary experimental results for a closed cell foam.

    Science.gov (United States)

    Little, J P; Tevelen, G; Adam, C J; Evans, J H; Pearcy, M J

    2009-07-01

    Biological tissues are subjected to complex loading states in vivo and in order to define constitutive equations that effectively simulate their mechanical behaviour under these loads, it is necessary to obtain data on the tissue's response to multiaxial loading. Single axis and shear testing of biological tissues is often carried out, but biaxial testing is less common. We sought to design and commission a biaxial compression testing device, capable of obtaining repeatable data for biological samples. The apparatus comprised a sealed stainless steel pressure vessel specifically designed such that a state of hydrostatic compression could be created on the test specimen while simultaneously unloading the sample along one axis with an equilibrating tensile pressure. Thus a state of equibiaxial compression was created perpendicular to the long axis of a rectangular sample. For the purpose of calibration and commissioning of the vessel, rectangular samples of closed cell ethylene vinyl acetate (EVA) foam were tested. Each sample was subjected to repeated loading, and nine separate biaxial experiments were carried out to a maximum pressure of 204 kPa (30 psi), with a relaxation time of two hours between them. Calibration testing demonstrated the force applied to the samples had a maximum error of 0.026 N (0.423% of maximum applied force). Under repeated loading, the foam sample demonstrated lower stiffness during the first load cycle. Following this cycle, an increased stiffness, repeatable response was observed with successive loading. While the experimental protocol was developed for EVA foam, preliminary results on this material suggest that this device may be capable of providing test data for biological tissue samples. The load response of the foam was characteristic of closed cell foams, with consolidation during the early loading cycles, then a repeatable load-displacement response upon repeated loading. The repeatability of the test results demonstrated the

  5. Low-density lipoprotein apheresis for proteinuria in lupus nephritis with intraglomerular foam cells containing cholesterol crystals.

    Science.gov (United States)

    Shiraishi, Naoki; Kitamura, Kenichiro; Hayata, Manabu; Ogata, Tomohiro; Tajiri-Okamura, Keiko; Nakayama, Yushi; Kohda, Yukimasa; Tomita, Kimio; Mukoyama, Masashi

    2015-03-01

    A 28-year-old woman with systemic lupus erythematosus was referred to our hospital due to nephrotic-level proteinuria despite approximately 1 year of treatment with 50 to 60 mg/d of prednisolone and 100 to 150 mg/d of cyclosporine with methylprednisolone pulse therapy. Kidney biopsy showed diffuse global lupus nephritis (World Health Organization class 4-G A/C) with many intraglomerular foam cells containing cholesterol crystals. Surprisingly, proteinuria diminished after only 5 low-density lipoprotein (LDL) cholesterol apheresis sessions. This case demonstrated the potential of LDL apheresis to exhibit a remarkable effect on not only focal segmental glomerulosclerosis, but also other types of nephritis, particularly nephritis with intraglomerular foam cells. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  6. Ni3S2@CoS core-shell nano-triangular pyramid arrays on Ni foam for high-performance supercapacitors.

    Science.gov (United States)

    Li, Rui; Wang, Senlin; Wang, Jianpeng; Huang, Zongchuan

    2015-07-07

    In this study, we demonstrate a facile method to fabricate novel Ni3S2 nano-triangular pyramid (NTP) arrays on Ni foam through a hydrothermal process and build unique Ni3S2@CoS core-shell NTP arrays by electro-deposition. The obtained Ni3S2@CoS material displays twice the specific capacitance of the pure Ni3S2 material in both a three-electrode system (4.89 F cm(-2) at 4 mA cm(-2)) and asymmetric supercapacitor device (0.69 F cm(-2) at 1.43 mA cm(-2)). In addition, the asymmetric supercapacitor demonstrates the outstanding energy density of 28.24 W h kg(-1) at a power density of 134.46 W kg(-1), with a stable cycle life (98.83% retained after 2000 cycles). The unique structure of the Ni3S2@CoS core-shell NTP arrays, which provides an ultra-thin CoS shell to enlarge efficient areas, introduces good conductivity, and short transportation lengths for both ions and electrons, contributes most to its excellent performance. Moreover, the bare Ni3S2 NTP arrays can be used as a new template to build other potential electrode materials.

  7. Prediction of the Stress-Strain Behavior of Open-Cell Aluminum Foam under Compressive Loading and the Effects of Various RVE Boundary Conditions

    Science.gov (United States)

    Hamidi Ghaleh Jigh, Behrang; Farsi, Mohammad Ali; Hosseini Toudeshky, Hossein

    2018-04-01

    The prediction of the mechanical behavior of metallic foams with realistic microstructure and the effects of various boundary conditions on the mechanical behavior is an important and challenging issue in modeling representative volume elements (RVEs). A numerical investigation is conducted to determine the effects of various boundary conditions and cell wall cross sections on the compressive mechanical properties of aluminum foam, including the stiffness, plateau stress and onset strain of densification. The open-cell AA6101-T6 aluminum foam Duocel is used in the analyses in this study. Geometrical characteristics including the cell size, foam relative density, and cross-sectional shape and thickness of the cell walls are extracted from images of the foam. Then, the obtained foam microstructure is analyzed as a 2D model. The ligaments are modeled as shear deformable beams with elastic-plastic material behavior. To prevent interpenetration of the nodes and walls inside the cells with large deformations, self-contact-type frictionless interaction is stipulated between the internal surfaces. Sensitivity analyses are performed using several boundary conditions and cells wall cross-sectional shapes. The predicted results from the finite element analyses are compared with the experimental results. Finally, the most appropriate boundary conditions, leading to more consistent results with the experimental data, are introduced.

  8. SORPTION OF Ga (III ON FLEXIBLE OPEN CELL POLYURETHANE FOAM OF POLYETHER TYPE IMPREGNATED WITH TRI-N-BUTHYL PHOSPATE

    Directory of Open Access Journals (Sweden)

    Lavinia Tofan

    2007-06-01

    Full Text Available The obtained results concerning the Ga (III ion retention on flexible open cell polyurethane foam of polyether type pretreated with tri-n-butyl phosphate are presented. The influence of solution acidity, phases contact time, Ga (III concentration and solution temperature have been investigated. The parameters of Ga (III batch sorption have been optimized. On the basis of Langmuir isotherms, the sorption constants and the thermodynamic parameters, ∆G, ∆Η and ∆S have been calculated.

  9. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate

    International Nuclear Information System (INIS)

    Huang, Zhao; Nooeaid, Patcharakamon; Kohl, Benjamin; Roether, Judith A.; Schubert, Dirk W.; Meier, Carola; Boccaccini, Aldo R.; Godkin, Owen; Ertel, Wolfgang; Arens, Stephan; Schulze-Tanzil, Gundula

    2015-01-01

    To overcome the limited intrinsic cartilage repair, autologous chondrocyte or bone-marrow-derived mesenchymal stromal cell (BM-MSC) was implanted into cartilage defects. For this purpose suitable biocompatible scaffolds are needed to provide cell retention, chondrogenesis and initial mechanical stability. The present study should indicate whether a recently developed highly porous alginate (Alg) foam scaffold supplemented with chondroitin sulfate (CS) allows the attachment, survival and chondrogenesis of BM-MSCs and articular chondrocytes. The foams were prepared using a freeze-drying method; some of them were supplemented with CS and subsequently characterized for porosity, biodegradation and mechanical profile. BM-MSCs were cultured for 1–2 weeks on the scaffold either under chondrogenic or maintenance conditions. Cell vitality assays, histology, glycosaminoglycan (sGAG) assay, and type II and I collagen immunolabelings were performed to monitor cell growth and extracellular matrix (ECM) synthesis in the scaffolds. Scaffolds had a high porosity ~ 93–95% with a mean pore sizes of 237 ± 48 μm (Alg) and 197 ± 61 μm (Alg/CS). Incorporation of CS increased mechanical strength of the foams providing gradually CS release over 7 days. Most of the cells survived in the scaffolds. BM-MSCs and articular chondrocytes formed rounded clusters within the scaffold pores. The BM-MSCs, irrespective of whether cultured under non/chondrogenic conditions and chondrocytes produced an ECM containing sGAGs, and types II and I collagen. Total collagen and sGAG contents were higher in differentiated BM-MSC cultures supplemented with CS than in CS-free foams after 14 days. The cell cluster formation induced by the scaffolds might stimulate chondrogenesis via initial intense cell–cell contacts. - Highlights: • Alginate foam scaffolds revealed a high porosity and mean pore size of 197–237 μm. • Chondroitin sulfate was released over 14 days by the scaffolds. • Chondrocytes

  10. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhao [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Nooeaid, Patcharakamon [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Kohl, Benjamin [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Roether, Judith A.; Schubert, Dirk W. [Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Meier, Carola [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Boccaccini, Aldo R. [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Godkin, Owen; Ertel, Wolfgang; Arens, Stephan [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Schulze-Tanzil, Gundula, E-mail: gundula.schulze@pmu.ac.at [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Institute of Anatomy, Paracelsus Medical University, Nuremberg (Germany)

    2015-05-01

    To overcome the limited intrinsic cartilage repair, autologous chondrocyte or bone-marrow-derived mesenchymal stromal cell (BM-MSC) was implanted into cartilage defects. For this purpose suitable biocompatible scaffolds are needed to provide cell retention, chondrogenesis and initial mechanical stability. The present study should indicate whether a recently developed highly porous alginate (Alg) foam scaffold supplemented with chondroitin sulfate (CS) allows the attachment, survival and chondrogenesis of BM-MSCs and articular chondrocytes. The foams were prepared using a freeze-drying method; some of them were supplemented with CS and subsequently characterized for porosity, biodegradation and mechanical profile. BM-MSCs were cultured for 1–2 weeks on the scaffold either under chondrogenic or maintenance conditions. Cell vitality assays, histology, glycosaminoglycan (sGAG) assay, and type II and I collagen immunolabelings were performed to monitor cell growth and extracellular matrix (ECM) synthesis in the scaffolds. Scaffolds had a high porosity ~ 93–95% with a mean pore sizes of 237 ± 48 μm (Alg) and 197 ± 61 μm (Alg/CS). Incorporation of CS increased mechanical strength of the foams providing gradually CS release over 7 days. Most of the cells survived in the scaffolds. BM-MSCs and articular chondrocytes formed rounded clusters within the scaffold pores. The BM-MSCs, irrespective of whether cultured under non/chondrogenic conditions and chondrocytes produced an ECM containing sGAGs, and types II and I collagen. Total collagen and sGAG contents were higher in differentiated BM-MSC cultures supplemented with CS than in CS-free foams after 14 days. The cell cluster formation induced by the scaffolds might stimulate chondrogenesis via initial intense cell–cell contacts. - Highlights: • Alginate foam scaffolds revealed a high porosity and mean pore size of 197–237 μm. • Chondroitin sulfate was released over 14 days by the scaffolds. • Chondrocytes

  11. Interfacial behavior and mechanical properties of aluminum foam joint fabricated by surface self-abrasion fluxless soldering

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Long, E-mail: wanlong178@163.com; Huang, Yongxian; Huang, Tifang; Lv, Zongliang; Feng, Jicai

    2016-06-25

    Fluxless soldering with surface self-abrasion has been developed for joining aluminum foams with metallic bonding. The effect of the self-abrasion on the wettability of molten solder alloy and mechanical properties is determined by microstructural observation, tension and compression tests. No apparent macroscopic deformation and collapse of foam structure are observed adjacent to the joint interface. The average tensile strength of the joints is about 14% higher than that of aluminum foam, and the compressive strength can reach 200% of that of aluminum foam. The deformation mechanisms and energy absorbing characteristics of aluminum foam and the joint are investigated. The aluminum foam joint fails primarily by bending, crushing, and compaction of cell walls and cracking of the solder seam. The interdiffusion process is explained based on thermodynamic equations. - Highlights: • Fluxless soldering with surface self-abrasion is developed for joining aluminum foam. • Excellent metallic bonding has been informed between foam cores. • The aluminum foam joint has excellent mechanical properties. • The joining mechanism of solder alloy and aluminum foam is explained.

  12. Functional Performances of CuZnAl Shape Memory Alloy Open-Cell Foams

    Science.gov (United States)

    Biffi, C. A.; Casati, R.; Bassani, P.; Tuissi, A.

    2018-01-01

    Shape memory alloys (SMAs) with cellular structure offer a unique mixture of thermo-physical-mechanical properties. These characteristics can be tuned by changing the pore size and make the shape memory metallic foams very attractive for developing new devices for structural and functional applications. In this work, CuZnAl SMA foams were produced through the liquid infiltration of space holder method. In comparison, a conventional CuZn brass alloy was foamed trough the same method. Functional performances were studied on both bulk and foamed SMA specimens. Calorimetric response shows similar martensitic transformation (MT) below 0 °C. Compressive response of CuZnAl revealed that mechanical behavior is strongly affected by sample morphology and that damping capacity of metallic foam is increased above the MT temperatures. The shape memory effect was detected in the CuZnAl foams. The conventional brass shows a compressive response similar to that of the martensitic CuZnAl, in which plastic deformation accumulation occurs up to the cellular structure densification after few thermal cycles.

  13. Reduced material model for closed cell metal foam infiltrated with phase change material based on high resolution numerical studies

    International Nuclear Information System (INIS)

    Ohsenbrügge, Christoph; Marth, Wieland; Navarro y de Sosa, Iñaki; Drossel, Welf-Guntram; Voigt, Axel

    2016-01-01

    Highlights: • Closed cell metal foam sandwich structures were investigated. • High resolution numerical studies were conducted using CT scan data. • A reduced model for use in commercial FE software reduces needed degrees of freedom. • Thermal inertia is increased about 4 to 5 times in PCM filled structures. • The reduced material model was verified using experimental data. - Abstract: The thermal behaviour of closed cell metal foam infiltrated with paraffin wax as latent heat storage for application in high precision tool machines was examined. Aluminium foam sandwiches with metallically bound cover layers were prepared in a powder metallurgical process and cross-sectional images of the structures were generated with X-ray computed tomography. Based on the image data a three dimensional highly detailed model was derived and prepared for simulation with the adaptive FE-library AMDiS. The pores were assumed to be filled with paraffin wax. The thermal conductivity and the transient thermal behaviour in the phase-change region were investigated. Based on the results from the highly detailed simulations a reduced model for use in commercial FE-software (ANSYS) was derived. It incorporates the properties of the matrix and the phase change material into a homogenized material. A sandwich-structure with and without paraffin was investigated experimentally under constant thermal load. The results were used to verify the reduced material model in ANSYS.

  14. Thermal Transport in Porous Media with Application to Fuel Cell Diffusion Media and Metal Foams

    Science.gov (United States)

    Sadeghi, Ehsan

    Transport phenomena in high porosity open-cell fibrous structures have been the focus of many recent industrial and academic investigations. Unique features of these structures such as relatively low cost, ultra-low density, high surface area to volume ratio, and the ability to mix the passing fluid make them excellent candidates for a variety of thermofluid applications including fuel cells, compact heat exchangers and cooling of microelectronics. This thesis contributes to improved understanding of thermal transport phenomena in fuel cell gas diffusion layers (GDLs) and metal foams and describes new experimental techniques and analytic models to characterize and predict effective transport properties. Heat transfer through the GDL is a key process in the design and operation of a proton exchange membrane (PEM) fuel cell. The analysis of this process requires determination of the effective thermal conductivity as well as the thermal contact resistance (TCR) associated with the interface between the GDL and adjacent surfaces/ layers. The effective thermal conductivity significantly differs in through-plane and in-plane directions due to anisotropy of the GDL micro-structure. Also, the high porosity of GDLs makes the contribution of TCR against the heat flow through the medium more pronounced. A test bed was designed and built to measure the thermal contact resistance and effective thermal conductivity in both through-plane and in-plane directions under vacuum and ambient conditions. The developed experimental program allows the separation of effective thermal conductivity and thermal contact resistance. For GDLs, measurements are performed under a wide range of compressive loads using Toray carbon paper samples. To study the effect of cyclic compression, which may happen during the operation of a fuel cell stack, measurements are performed on the thermal and structural properties of GDL at different loading-unloading cycles. The static compression measurements are

  15. Tuning the spectral emittance of α-SiC open-cell foams up to 1300 K with their macro porosity

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, B., E-mail: benoit.rousseau@univ-nantes.fr; Guevelou, S.; Mekeze-Monthe, A. [LTN, UMR CNRS 6607, Université de Nantes, 44306 Nantes (France); Vicente, J. [IUSTI, UMR CNRS 7607, Université AMU, Marseille (France); Del Campo, L.; De Sousa Meneses, D.; Echegut, P. [CEMHTI, UPR CNRS 3079, Université Orléans, Orléans (France); Caliot, C.; Flamant, G. [PROMES, UPR CNRS 8521, Université Perpignan Via Domitia, Font-Romeu Odeillo (France)

    2016-06-15

    A simple and robust analytical model is used to finely predict the spectral emittance under air up to 1300 K of α-SiC open-cell foams constituted of optically thick struts. The model integrates both the chemical composition and the macro-porosity and is valid only if foams have volumes higher than their Representative Elementary Volumes required for determining their emittance. Infrared emission spectroscopy carried out on a doped silicon carbide single crystal associated to homemade numerical tools based on 3D meshed images (Monte Carlo Ray Tracing code, foam generator) make possible to understand the exact role of the cell network in emittance. Finally, one can tune the spectral emittance of α-SiC foams up to 1300 K by simply changing their porosity.

  16. Tuning the spectral emittance of α-SiC open-cell foams up to 1300 K with their macro porosity

    Directory of Open Access Journals (Sweden)

    B. Rousseau

    2016-06-01

    Full Text Available A simple and robust analytical model is used to finely predict the spectral emittance under air up to 1300 K of α-SiC open-cell foams constituted of optically thick struts. The model integrates both the chemical composition and the macro-porosity and is valid only if foams have volumes higher than their Representative Elementary Volumes required for determining their emittance. Infrared emission spectroscopy carried out on a doped silicon carbide single crystal associated to homemade numerical tools based on 3D meshed images (Monte Carlo Ray Tracing code, foam generator make possible to understand the exact role of the cell network in emittance. Finally, one can tune the spectral emittance of α-SiC foams up to 1300 K by simply changing their porosity.

  17. Core-shell fuel cell electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Adzic, Radoslav; Bliznakov, Stoyan; Vukmirovic, Miomir

    2017-12-26

    Embodiments of the disclosure relate to membrane electrode assemblies. The membrane electrode assembly may include at least one gas-diffusion layer having a first side and a second side, and particle cores adhered to at least one of the first and second sides of the at least one gas-diffusion layer. The particle cores includes surfaces adhered to the at least one of the first and second sides of the at least one gas-diffusion layer and surfaces not in contact with the at least one gas-diffusion layer. Furthermore, a thin layer of catalytically atoms may be adhered to the surfaces of the particle cores not in contact with the at least one gas-diffusion layer.

  18. Core-shell fuel cell electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Adzic, Radoslav; Bliznakov, Stoyan; Vukmirovic, Miomir

    2017-07-25

    Embodiments of the disclosure relate to electrocatalysts. The electrocatalyst may include at least one gas-diffusion layer having a first side and a second side, and particle cores adhered to at least one of the first and second sides of the at least one gas-diffusion layer. The particle cores includes surfaces adhered to the at least one of the first and second sides of the at least one gas-diffusion layer and surfaces not in contact with the at least one gas-diffusion layer. Furthermore, a thin layer of catalytically atoms may be adhered to the surfaces of the particle cores not in contact with the at least one gas-diffusion layer.

  19. Hydrogen combustion in aqueous foams

    International Nuclear Information System (INIS)

    Baer, M.R.; Griffiths, S.K.; Shepherd, J.E.

    1982-01-01

    Water fogs are recognized as an effective means to mitigate the effects of large-scale hydrogen combustion that might accompany some reactor loss-of-coolant reactor accidents. Fogs of sufficiently high density to produce large beneficial effects may, however, be difficult to generate and maintain. An alternate method of suspending the desired mass of water is via high expansion-ratio aqueous foams. Because the foam would be generated using the combustible gaseous contents of the containment vessel, combustion occurs inside the foam cells. Although foams generated with inert gas have been well studied for use in fire fighting, little is known about combustion in foams generated with flammable mixtures. To help assess the usefulness of aqueous foams in a mitigation plan, the authors have conducted open tube tests and closed vessel tests of hydrogen/air combustion with and without foam. At low and intermediate hydrogen concentrations, the foam has little effect on the ultimate isochoric pressure rise. Above 15% hydrogen concentration, the foam causes a significant reduction in the pressure rise. The maximum effect occurs at about 28% hydrogen where the peak overpressure is reduced by two and one-half. Despite this overall pressure reduction, the flame speed is increased by up to an order of magnitude for combustion in the foam and strong pressure fluctuations are observed near a hydrogen concentration of 23%

  20. Hydrogen combustion in aqueous foams

    International Nuclear Information System (INIS)

    Baer, M.R.; Griffiths, S.K.; Shepherd, J.E.

    1984-01-01

    Water fogs are recognized as an effective means to mitigate the effects of large-scale hydrogen combustion that might accompany some loss of coolant nuclear reactor accidents. Fogs of sufficiently high density to produce large beneficial effects may, however, be difficult to generate and maintain. An alternate method of suspending the desired mass of water is via high expansion-ratio aqueous foams. Because, in practice, the foam would be generated using the combustible gaseous contents of the containment vessel, combustion occurs inside the foam cells. Although foams generated with inert gas have been well studied for use in fire fighting, little is known about combustion in foams generated with flammable mixtures. To help assess the usefulness of aqueous foams in a mitigation plan, several open-tube tests and more than 100 closed-vessel tests of hydrogen/air combustion, with and without foam were conducted. At low and intermediate hydrogen concentrations, the foam has little effect on the ultimate isochoric pressure rise. Above 15% hydrogen concentration, the foam causes a significant reduction in the pressure rise. The maximum effect occurs at about 28% hydrogen (the stoichiometric limit is 29.6% hydrogen) where the peak overpressure is reduced by 2 1/2. Despite this overall pressure reduction, the flame speed is increased by up to an order of magnitude for combustion in the foam, and strong pressure fluctuations are observed near a hydrogen concentration of 23%

  1. Hydrogen combustion in aqueous foams

    International Nuclear Information System (INIS)

    Baer, M.; Griffiths, S.; Shepherd, J.

    1983-01-01

    Water fogs are recognized as an effective means to mitigate the effects of large-scale hydrogen combustion that might accompany some loss-of-coolant nuclear reactor accidents. Fogs of sufficiently high density to produce large beneficial effects may, however, be difficult to generate and maintain. An alternate method of suspending the desired mass of water is via high expansion-ratio aqueous foams. Because, in practice, the foam would be generated using the combustible gaseous contents of the containment vessel, combustion occurs inside the foam cells. Although foams generated with inert gas have been well studied for use in fire fighting, little is known about combustion in foams generated with flammable mixtures. To help assess the usefulness of aqueous foams in a mitigation plan, we have conducted several open tube tests and over one hundred closed vessel tests of hydrogen/air combustion with and without foam. At low and intermediate hydrogen concentrations, the foam has little effect on the ultimate isochoric pressure rise. Above 15% hydrogen concentration, the foam causes a significant reduction in the pressure rise. The maximum effect occurs at about 28% hydrogen (the stoichiometric limit is 29.6% hydrogen) where the peak overpressure is reduced by a factor of two and one-half. Despite this overall pressure reduction, the flame speed is increase by up to an order of magnitude for combustion in the foam and strong pressure fluctuations are observed near a hydrogen concentration of 23%

  2. Inhibition of the NLRP3 inflammasome attenuates foam cell formation of THP-1 macrophages by suppressing ox-LDL uptake and promoting cholesterol efflux.

    Science.gov (United States)

    Chen, Liang; Yao, Qiying; Xu, Siwei; Wang, Hongyan; Qu, Peng

    2018-01-01

    The NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome plays an important role in the development of atherosclerosis. The activated NLRP3 inflammasome has been reported to promote macrophage foam cell formation, but not all studies have obtained the same result, and how NLRP3 inflammasome is involved in the formation of foam cells remains elusive. We used selective NLRP3 inflammasome inhibitors and NLRP3-deficient THP-1 cells to assess the effect of NLRP3 inflammasome inhibition on macrophage foam cell formation, oxidized low-density lipoprotein (ox-LDL) uptake, esterification, and cholesterol efflux, as well as the expression of associated proteins. Inhibition of the NLRP3 inflammasome attenuated foam cell formation, diminished ox-LDL uptake, and promoted cholesterol efflux from THP-1 macrophages. Moreover, it downregulated CD36, acyl coenzyme A: cholesterol acyltransferase-1 and neutral cholesterol ester hydrolase expression; upregulated ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI) expression; but had no effect on the expression of scavenger receptor class A and ATP-binding cassette transporter G1. Collectively, our findings show that inhibition of the NLRP3 inflammasome decreases foam cell formation of THP-1 macrophages via suppression of ox-LDL uptake and enhancement of cholesterol efflux, which may be due to downregulation of CD36 expression and upregulation of ABCA1 and SR-BI expression, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Human apoA-I increases macrophage foam cell derived PLTP activity without affecting the PLTP mass

    Directory of Open Access Journals (Sweden)

    Ehnholm Christian

    2010-06-01

    Full Text Available Abstract Background phospholipid transfer protein (PLTP plays important roles in lipoprotein metabolism and atherosclerosis and is expressed by macrophages and macrophage foam cells (MFCs. The aim of the present study was to determine whether the major protein from HDL, apoA-I, affects PLTP derived from MFCs. Results as cell model we used human THP-1 monocytes incubated with acetylated LDL, to generate MFC. The addition of apoA-I to the cell media increased apoE secretion from the cells, in a concentration dependent fashion, without affecting cellular apoE levels. In contrast, apoA-I had no effect on PLTP synthesis and secretion, but strongly induced the PLTP activity in the media. ApoA-I also increased phospholipid transfer activity of PLTP isolated from human plasma. This effect was dependent on apoA-I concentration but independent on apoA-I lipidation status. ApoE, ApoA-II and apoA-IV, but not immunoglobulins or bovine serum albumin, also increased PLTP activity. We also report that apoA-I protects PLTP from heat inactivation. Conclusion apoA-I enhances the phospholipid transfer activity of PLTP secreted from macrophage foam cells without affecting the PLTP mass.

  4. Low-density carbonized resorcinol-formaldehyde foams

    International Nuclear Information System (INIS)

    Kong, F.M.; Buckley, S.R.; Giles, C.L. Jr.; Haendler, B.L.; Hair, L.M.; Letts, S.A.; Overturf, G.E. III; Price, C.W.; Cook, R.C.

    1991-01-01

    This report documents research and development on resorcinol- formaldehyde-based foam materials conducted between 1986 and June 1990, when the effort was discontinued. The foams discussed are resorcinol-formaldehyde (RF) foam, carbonized RF (CRF) foam, and two composite foams, a polystyrene/RF (PS/RF) foam and its carbonized derivative (CPR). The RF foams are synthesized by the polycondensation of resorcinol with formaldehyde in a slightly basic solution. Their structure and density depend strongly on the concentration of the sodium carbonate catalyst. The have an interconnected bead structure similar to that of silica aerogels; bead sizes range from 30 to 130 Angstrom, and cell sizes are less than 0.1 μm. We have achieved densities of 16 to 200 mg/cm 3 . The RF foams can be pyrolyzed in an inert atmosphere to form a vitreous carbon foam (CRF), which has a similar microstructure but much higher mechanical strength. The PS/RF foams are obtained by filling the 2- to 3-μm cells of PS foam (a low-density hydrocarbon foam we have developed) with RF. The resultant foams have the outstanding handling and machinability of the PS foam matrix and the small cell size of RF. Pyrolyzing PS/RF foams causes depolymerization and loss of the PS; the resulting CPR foams have a structure similar to the PS foams in which CRF both replicates and fills the PS cells

  5. Effective Elastic Moduli of Closed-cell Aluminium Foams - Homogenization Method

    Czech Academy of Sciences Publication Activity Database

    Koudelka, P.; Doktor, T.; Valach, J.; Kytýř, Daniel; Jiroušek, Ondřej

    2013-01-01

    Roč. 75, č. 1 (2013), s. 161-170 ISSN 1454-2358 R&D Projects: GA ČR(CZ) GAP105/12/0824 Institutional support: RVO:68378297 Keywords : homogenization * metal foam * micromechanical properties Subject RIV: JJ - Other Materials http://www.scientificbulletin.upb.ro/rev_docs_arhiva/full61d_730795.pdf

  6. Foam injection moulding of a TPO/TPC-blend and the effect of different nucleating agents on the resulting foam structure

    Science.gov (United States)

    Mueller, J.; Spoerrer, A.; Altstaedt, V.

    2014-05-01

    The manufacturing of car interior parts with a soft touch surface is possible in a one-step injection moulding process, in which an injection moulded carrier is overmoulded with a compatible foamed thermoplastic elastomer (TPE). In contrast to the complex conventional process the structural foaming of the TPE component allows a saving of one material component as it combines a compact skin and a foamed core. Furthermore the manufacturing process can be achieved on a two component injection moulding machine which offers a much higher economic efficiency. One approach to reach an adhesion between a reinforced PP carrier and the foamed TPE component including good surface resistance is the use of an olefinic-/polyester-based TPE blend (TPO/TPC-blend). This paper is going to show the possibility to process a TPO/TPC-blend system by foam injection moulding with MuCell® and how the resulting foam structure can be influenced by various nucleating agents. For this purpose particles which differ in type, form and size were added in various concentrations to the TPE-blend. Before the structure elucidation of the foamed samples the particle dispersion and their effects on the polymers rheological properties were investigated. Finally abrasion tests were performed to investigate the influence of the particles on the performance characteristics of the foamed blend system. The results showed that the foam structure as well as the surface quality of the foamed TPO/TPC-blend can be improved with the use of suitable nucleating agents. Furthermore the abrasion properties can be advanced with appropriate additives in the right dosage.

  7. Enzymatically Modified Low-Density Lipoprotein Promotes Foam Cell Formation in Smooth Muscle Cells via Macropinocytosis and Enhances Receptor-Mediated Uptake of Oxidized Low-Density Lipoprotein.

    Science.gov (United States)

    Chellan, Bijoy; Reardon, Catherine A; Getz, Godfrey S; Hofmann Bowman, Marion A

    2016-06-01

    Enzyme-modified nonoxidized low-density lipoprotein (ELDL) is present in human atherosclerotic lesions. Our objective is to understand the mechanisms of ELDL uptake and its effects on vascular smooth muscle cells (SMC). Transformation of murine aortic SMCs into foam cells in response to ELDL was analyzed. ELDL, but not acetylated or oxidized LDL, was potent in inducing SMC foam cell formation. Inhibitors of macropinocytosis (LY294002, wortmannin, amiloride) attenuated ELDL uptake. In contrast, inhibitors of receptor-mediated endocytosis (dynasore, sucrose) and inhibitor of caveolae-/lipid raft-mediated endocytosis (filipin) had no effect on ELDL uptake in SMC, suggesting that macropinocytosis is the main mechanism of ELDL uptake by SMC. Receptor for advanced glycation end products (RAGE) is not obligatory for ELDL-induced SMC foam cell formation, but primes SMC for the uptake of oxidized LDL in a RAGE-dependent manner. ELDL increased intracellular reactive oxygen species, cytosolic calcium, and expression of lectin-like oxidized LDL receptor-1 in wild-type SMC but not in RAGE(-/-) SMC. The macropinocytotic uptake of ELDL is regulated predominantly by intracellular calcium because ELDL uptake was completely inhibited by pretreatment with the calcium channel inhibitor lacidipine in wild-type and RAGE(-/-) SMC. This is in contrast to pretreatment with PI3 kinase inhibitors which completely prevented ELDL uptake in RAGE(-/-) SMC, but only partially in wild-type SMC. ELDL is highly potent in inducing foam cells in murine SMC. ELDL endocytosis is mediated by calcium-dependent macropinocytosis. Priming SMC with ELDL enhances the uptake of oxidized LDL. © 2016 American Heart Association, Inc.

  8. Tailored Core Shell Cathode Powders for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, Scott [NexTech Materials, Ltd.,Lewis Center, OH (United States)

    2015-03-23

    In this Phase I SBIR project, a “core-shell” composite cathode approach was evaluated for improving SOFC performance and reducing degradation of lanthanum strontium cobalt ferrite (LSCF) cathode materials, following previous successful demonstrations of infiltration approaches for achieving the same goals. The intent was to establish core-shell cathode powders that enabled high performance to be obtained with “drop-in” process capability for SOFC manufacturing (i.e., rather than adding an infiltration step to the SOFC manufacturing process). Milling, precipitation and hetero-coagulation methods were evaluated for making core-shell composite cathode powders comprised of coarse LSCF “core” particles and nanoscale “shell” particles of lanthanum strontium manganite (LSM) or praseodymium strontium manganite (PSM). Precipitation and hetero-coagulation methods were successful for obtaining the targeted core-shell morphology, although perfect coverage of the LSCF core particles by the LSM and PSM particles was not obtained. Electrochemical characterization of core-shell cathode powders and conventional (baseline) cathode powders was performed via electrochemical impedance spectroscopy (EIS) half-cell measurements and single-cell SOFC testing. Reliable EIS testing methods were established, which enabled comparative area-specific resistance measurements to be obtained. A single-cell SOFC testing approach also was established that enabled cathode resistance to be separated from overall cell resistance, and for cathode degradation to be separated from overall cell degradation. The results of these EIS and SOFC tests conclusively determined that the core-shell cathode powders resulted in significant lowering of performance, compared to the baseline cathodes. Based on the results of this project, it was concluded that the core-shell cathode approach did not warrant further investigation.

  9. Zirconia / Alumina Composite Foams with Calcium Phosphate Coating

    Directory of Open Access Journals (Sweden)

    Lenka Novotná

    2016-06-01

    Full Text Available In this study, mechanical properties of calcium phosphate foams were enhanced by zirconia/alumina porous cores prepared by polymer replica technique. This technique was chosen to ensure interconnected pores of optimal size for cell migration and attachment. The porosity of ZA cores (50 – 99% was controlled by multistep impregnation process, the size of pore windows was 300 – 500 μm. Sintered ZA cores were impregnated by hydroxyapatite or β-tricalcium phosphate slurry to improve bioactivity. The bone like apatite layer was formed on coatings when immersed in a simulated body fluid. Neither of tested materials was cytotoxic. Thus, the composite foam can be potentially used as a permanent substitute of cancellous bone.

  10. Athero-inflammatory nanotherapeutics: Ferulic acid-based poly(anhydride-ester) nanoparticles attenuate foam cell formation by regulating macrophage lipogenesis and reactive oxygen species generation.

    Science.gov (United States)

    Chmielowski, Rebecca A; Abdelhamid, Dalia S; Faig, Jonathan J; Petersen, Latrisha K; Gardner, Carol R; Uhrich, Kathryn E; Joseph, Laurie B; Moghe, Prabhas V

    2017-07-15

    Enhanced bioactive anti-oxidant formulations are critical for treatment of inflammatory diseases, such as atherosclerosis. A hallmark of early atherosclerosis is the uptake of oxidized low density lipoprotein (oxLDL) by macrophages, which results in foam cell and plaque formation in the arterial wall. The hypolipidemic, anti-inflammatory, and antioxidative properties of polyphenol compounds make them attractive targets for treatment of atherosclerosis. However, high concentrations of antioxidants can reverse their anti-atheroprotective properties and cause oxidative stress within the artery. Here, we designed a new class of nanoparticles with anti-oxidant polymer cores and shells comprised of scavenger receptor targeting amphiphilic macromolecules (AMs). Specifically, we designed ferulic acid-based poly(anhydride-ester) nanoparticles to counteract the uptake of high levels of oxLDL and regulate reactive oxygen species generation (ROS) in human monocyte derived macrophages (HMDMs). Compared to all compositions examined, nanoparticles with core ferulic acid-based polymers linked by diglycolic acid (PFAG) showed the greatest inhibition of oxLDL uptake. At high oxLDL concentrations, the ferulic acid diacids and polymer nanoparticles displayed similar oxLDL uptake. Treatment with the PFAG nanoparticles downregulated the expression of macrophage scavenger receptors, CD-36, MSR-1, and LOX-1 by about 20-50%, one of the causal factors for the decrease in oxLDL uptake. The PFAG nanoparticle lowered ROS production by HMDMs, which is important for maintaining macrophage growth and prevention of apoptosis. Based on these results, we propose that ferulic acid-based poly(anhydride ester) nanoparticles may offer an integrative strategy for the localized passivation of the early stages of the atheroinflammatory cascade in cardiovascular disease. Future development of anti-oxidant formulations for atherosclerosis applications is essential to deliver an efficacious dose while

  11. Oxidative Stress in Cardiovascular Diseases: Involvement of Nrf2 Antioxidant Redox Signaling in Macrophage Foam Cells Formation

    Directory of Open Access Journals (Sweden)

    Bee Kee Ooi

    2017-11-01

    Full Text Available Oxidative stress is an important risk factor contributing to the pathogenesis of cardiovascular diseases. Oxidative stress that results from excessive reactive oxygen species (ROS production accounts for impaired endothelial function, a process which promotes atherosclerotic lesion or fatty streaks formation (foam cells. Nuclear factor erythroid 2-related factor 2 (Nrf2 is a transcription factor involved in cellular redox homeostasis. Upon exposure to oxidative stress, Nrf2 is dissociated from its inhibitor Keap-1 and translocated into the nucleus, where it results in the transcriptional activation of cell defense genes. Nrf2 has been demonstrated to be involved in the protection against foam cells formation by regulating the expression of antioxidant proteins (HO-1, Prxs, and GPx1, ATP-binding cassette (ABC efflux transporters (ABCA1 and ABCG1 and scavenger receptors (scavenger receptor class B (CD36, scavenger receptor class A (SR-A and lectin-type oxidized LDL receptor (LOX-1. However, Nrf2 has also been reported to exhibit pro-atherogenic effects. A better understanding on the mechanism of Nrf2 in oxidative stress-induced cardiac injury, as well as the regulation of cholesterol uptake and efflux, are required before it can serve as a novel therapeutic target for cardiovascular diseases prevention and treatment.

  12. Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu–Ni alloy integrated with CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Keju; Zhao, Huihui; Zhang, Jun; Chen, Jia; Dai, Zhendong, E-mail: zddai@nuaa.edu.cn

    2014-08-30

    Highlights: • Cu–Ni alloy open-cell foam integrated with CNTs was used for EMI shielding. • The composite was prepared by electroless, electro-, and electrophoretic deposition. • The main shielding mechanism was multiple reflections and absorptions of microwaves. • The composite had a porous structure, large surface area, and inherent permeability. - Abstract: A lightweight multi-layered electromagnetic interference (EMI) shielding material made of open-cell foam of a Cu–Ni alloy integrated with carbon nanotubes (CNTs) was prepared by electroless copper plating, then nickel electroplating, and finally electrophoretic deposition of CNTs. The foamed Cu–Ni–CNT composite comprises, from inside to outside, Cu, Ni, and CNT layers. Scanning electron microscopy, energy dispersive spectroscopy, and EMI tests were employed to characterize the morphology, composition, and EMI performance of the composite, respectively. The results indicated that the shielding effectiveness (SE) of the composite increased with increasing pore density (indicated as pores per inch (PPI)) and increasing thickness. A specimen with a PPI of 110 and a 1.5-mm thickness had a maximum SE of up to 54.6 dB, and a SE as high as 47.5 dB on average in the 8–12 GHz range. Integrating the inherent superiority of Cu, Ni, and CNTs, the porous structure of the composite can attenuate the incident electromagnetic microwaves by reflecting, scattering, and absorbing them between the metallic skeleton and the CNT layer. The multiple reflections and absorptions make it difficult for the microwaves to escape from the composite before being absorbed, thereby making the composite a potential shielding material.

  13. Cobalt and molybdenum activated electrodes in foam based alkaline electrolysis cells at 150-250 °C and 40 bar

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    A new type of alkaline electrolysis cells with nickel foam based gas diffusion electrodes and KOH (aq) immobilized in mesoporous SrTiO3 has been developed and tested at temperatures of 150 C, 200 C and 250 C at a pressure of 40 bar. Two cells have been characterized during the 270 h long test...

  14. Graded porous polyurethane foam: A potential scaffold for oro-maxillary bone regeneration

    International Nuclear Information System (INIS)

    Giannitelli, S.M.; Basoli, F.; Mozetic, P.; Piva, P.; Bartuli, F.N.; Luciani, F.; Arcuri, C.; Trombetta, M.; Rainer, A.; Licoccia, S.

    2015-01-01

    Bone tissue engineering applications demand for biomaterials offering a substrate for cell adhesion, migration, and proliferation, while inferring suitable mechanical properties to the construct. In the present study, polyurethane (PU) foams were synthesized to develop a graded porous material—characterized by a dense shell and a porous core—for the treatment of oro-maxillary bone defects. Foam was synthesized via a one-pot reaction starting from a polyisocyanate and a biocompatible polyester diol, using water as a foaming agent. Different foaming conditions were examined, with the aim of creating a dense/porous functional graded material that would perform at the same time as an osteoconductive scaffold for bone defect regeneration and as a membrane-barrier to gingival tissue ingrowth. The obtained PU was characterized in terms of morphological and mechanical properties. Biocompatibility assessment was performed in combination with bone-marrow-derived human mesenchymal stromal cells (hBMSCs). Our findings confirm that the material is potentially suitable for guided bone regeneration applications. - Highlights: • Graded porous polyurethane foams were synthesized via a one-pot foaming reaction. • The inner porous core might act as a scaffold for guided bone regeneration. • A dense outer shell was introduced to act as a barrier to gingival tissue ingrowth. • The synthesized foams were non-toxic and supportive of hBMSC adhesion

  15. Graded porous polyurethane foam: A potential scaffold for oro-maxillary bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Giannitelli, S.M. [Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome (Italy); Basoli, F. [Department of Chemical Science and Technology, University of Rome “Tor Vergata”, Rome (Italy); Mozetic, P. [Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome (Italy); Piva, P.; Bartuli, F.N.; Luciani, F. [University of Rome “Tor Vergata”, Rome (Italy); Arcuri, C. [Department of Periodontics, University of Rome “Tor Vergata”, Rome (Italy); U.O.C.C. Odontostomatology, “S. Giovanni Calibita, Fatebenefratelli” Hospital, Rome (Italy); Trombetta, M. [Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome (Italy); Rainer, A., E-mail: a.rainer@unicampus.it [Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome (Italy); Licoccia, S. [Department of Chemical Science and Technology, University of Rome “Tor Vergata”, Rome (Italy)

    2015-06-01

    Bone tissue engineering applications demand for biomaterials offering a substrate for cell adhesion, migration, and proliferation, while inferring suitable mechanical properties to the construct. In the present study, polyurethane (PU) foams were synthesized to develop a graded porous material—characterized by a dense shell and a porous core—for the treatment of oro-maxillary bone defects. Foam was synthesized via a one-pot reaction starting from a polyisocyanate and a biocompatible polyester diol, using water as a foaming agent. Different foaming conditions were examined, with the aim of creating a dense/porous functional graded material that would perform at the same time as an osteoconductive scaffold for bone defect regeneration and as a membrane-barrier to gingival tissue ingrowth. The obtained PU was characterized in terms of morphological and mechanical properties. Biocompatibility assessment was performed in combination with bone-marrow-derived human mesenchymal stromal cells (hBMSCs). Our findings confirm that the material is potentially suitable for guided bone regeneration applications. - Highlights: • Graded porous polyurethane foams were synthesized via a one-pot foaming reaction. • The inner porous core might act as a scaffold for guided bone regeneration. • A dense outer shell was introduced to act as a barrier to gingival tissue ingrowth. • The synthesized foams were non-toxic and supportive of hBMSC adhesion.

  16. Endothelial cell death and intimal foam cell accumulation in the coronary artery of infected hypercholesterolemic minipigs

    DEFF Research Database (Denmark)

    Birck, Malene Muusfeldt; Saraste, Antti; Hyttel, Poul

    2013-01-01

    Apoptosis of endothelial cells (ECs) has been suggested to play a role in atherosclerosis. We studied the synergism of hypercholesterolemia with Chlamydia pneumoniae and influenza virus infections on EC morphology and intimal changes in a minipig model. The coronary artery was excised at euthanasia...

  17. Dynamic Property of Aluminum Foam

    Directory of Open Access Journals (Sweden)

    S Irie

    2016-09-01

    Full Text Available Aluminum in the foam of metallic foam is in the early stage of industrialization. It has various beneficial characteristics such as being lightweight, heat resistance, and an electromagnetic radiation shield. Therefore, the use of aluminum foam is expected to reduce the weight of equipment for transportation such as the car, trains, and aircraft. The use as energy absorption material is examined. Moreover aluminum foam can absorb the shock wave, and decrease the shock of the blast. Many researchers have reported about aluminum foam, but only a little information is available for high strain rates (103 s-1 or more. Therefore, the aluminum foam at high strain rates hasn't been not characterized yet. The purpose in this research is to evaluate the behavior of the aluminum form in the high-strain rate. In this paper, the collision test on high strain rate of the aluminum foam is investigated. After experiment, the numerical analysis model will be made. In this experiment, a powder gun was used to generate the high strain rate in aluminum foam. In-situ PVDF gauges were used for measuring pressure and the length of effectiveness that acts on the aluminum foam. The aluminum foam was accelerated to about 400 m/s from deflagration of single component powder and the foam were made to collide with the PVDF gauge. The high strain rate deformation of the aluminum form was measured at two collision speeds. As for the result, pressure was observed to go up rapidly when about 70% was compressed. From this result, it is understood that complete crush of the cell is caused when the relative volume is about 70%. In the next stage, this data will be compared with the numerical analysis.

  18. Reactor core with rod-shaped fuel cells

    International Nuclear Information System (INIS)

    Dworak, A.

    1976-01-01

    The proposal refers to the optimization of the power distribution in a reactor core which is provided with several successive rod-shaped fuel cells. A uniform power output - especially in radial direction - is aimed at. This is achieved by variation of the dwelling periods of the fuel cells, which have, for this purpose, a fuel mixture changing from layer to layer. The fuel cells with the shortest dwelling period are arranged near the coolant inlet side of the reactor core. The dwelling periods of the fuel cells are adapted to the given power distribution. As neighboring cells have equal dwelling periods, the exchange can be performed much easier then with the composition currently known. (UWI) [de

  19. Skeleton-and-bubble model of polyether-polyurethane elastic open-cell foams for finite element analysis at large deformations

    Science.gov (United States)

    Sabuwala, Tapan; Gioia, Gustavo

    2013-03-01

    We formulate a new micromechanical model of elastic open-cell (EOC) foams. In this model, the usual skeleton of open-cell foams is supplemented by fitting a thin-walled bubble within each cavity of the skeleton, as a substitute for the membranes that occlude the "windows" of the foam cells in polyether-polyurethane EOC foams. The model has nine parameters; each parameter has a clear geometrical or mechanical significance, and its value may be readily estimated for any given foam. To calibrate the model, we carry out fully nonlinear, three-dimensional finite-element simulations of the experiments of Dai et al. (2011a), in which a set of five polyether-polyurethane EOC foams covering a range of commercially available relative densities was tested under compression along the rise direction, compression along a transverse direction, tension along the rise direction, simple shear combined with compression along the rise direction, and hydrostatic pressure combined with compression along the rise direction. We show that, with a suitable choice of the values of the parameters of the model, the model is capable of reproducing the most salient trends evinced in the experimental stress-stretch curves. Yet the model can no longer reproduce all of these trends if the bubbles be excluded from the model, and we conclude that the bubbles play a crucial role at large deformations. We also show that the stretch fields that obtain in our computational simulations are in good accord with the digital-image-correlation (DIC) measurements of Dai et al. For simple shear combined with compression along the rise direction, the DIC measurements of Dai et al. prove insufficient to our purposes, and we carry out DIC measurements of our own. To demonstrate the performance of the model in a typical application of polyether-polyurethane EOC foams, we carry out experiments and simulations of foam specimens loaded through a cylindrical punch and a spherical punch. We conclude the paper with a

  20. Temper Foam

    Science.gov (United States)

    1981-01-01

    Fabricated by Expanded Rubber & Plastics Corporation, Temper Foam provides better impact protection for airplane passengers and enhances passenger comfort on long flights because it distributes body weight and pressure evenly over the entire contact area. Called a "memory foam" it matches the contour of the body pressing against it and returns to its original shape once the pressure is removed. As a shock absorber, a three-inch foam pad has the ability to absorb the impact of a 10-foot fall by an adult. Applications include seat cushioning for transportation vehicles, padding for furniture and a variety of athletic equipment medical applications including wheelchair padding, artificial limb socket lining, finger splint and hand padding for burn patients, special mattresses for the bedridden and dental stools. Production and sales rights are owned by Temper Foam, Inc. Material is manufactured under license by the Dewey and Almy Division of Grace Chemical Corporation. Distributors of the product are Kees Goebel Medical Specialties, Inc. and Alimed, Inc. They sell Temper Foam in bulk to the fabricators who trim it to shapes required by their customers.

  1. Gly[14]-humanin inhibits ox-LDL uptake and stimulates cholesterol efflux in macrophage-derived foam cells.

    Science.gov (United States)

    Zhu, Wa-Wa; Wang, Shu-Rong; Liu, Zhi-Hua; Cao, Yong-Jun; Wang, Fen; Wang, Jing; Liu, Chun-Feng; Xie, Ying; Xie, Ying; Zhang, Yan-Lin

    2017-01-01

    Foam cell formation, which is caused by imbalanced cholesterol influx and efflux by macrophages, plays a vital role in the occurrence and development of atherosclerosis. Humanin (HN), a mitochondria-derived peptide, can prevent the production of reactive oxygen species and death of human aortic endothelial cells exposed to oxidized low-density lipoprotein (ox-LDL) and has a protective effect on patients with in early atherosclerosis. However, the effects of HN on the regulation of cholesterol metabolism in RAW 264.7 macrophages are still unknown. This study was designed to investigate the role of [Gly14]-humanin (HNG) in lipid uptake and cholesterol efflux in RAW 264.7 macrophages. Flow cytometry and live cell imaging results showed that HNG reduced Dil-ox-LDL accumulation in the RAW 264.7 macrophages. A similar result was obtained for lipid accumulation by measuring cellular cholesterol content. Western blot analysis showed that ox-LDL treatment upregulated not only the protein expression of CD36 and LOX-1, which mediate ox-LDL endocytosis, but also ATP-binding cassette (ABC) transporter A1 and ABCG1, which mediate ox-LDL exflux. HNG pretreatment inhibited the upregulation of CD36 and LOX-1 levels, prompting the upregulation of ABCA1 and ABCG1 levels induced by ox-LDL. Therefore we concluded that HNG could inhibit ox-LDL-induced macrophage-derived foam cell formation, which occurs because of a decrease in lipid uptake and an increase in cholesterol efflux from macrophage cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Perturbed microRNA Expression by Mycobacterium tuberculosis Promotes Macrophage Polarization Leading to Pro-survival Foam Cell.

    Science.gov (United States)

    Ahluwalia, Pankaj Kumar; Pandey, Rajan Kumar; Sehajpal, Prabodh Kumar; Prajapati, Vijay Kumar

    2017-01-01

    Tuberculosis (TB) is one of the prevalent causes of death worldwide, with 95% of these deaths occurring in developing countries, like India. The causative agent, Mycobacterium tuberculosis (MTb) has the tenacious ability to circumvent the host's immune system for its own advantage. Macrophages are one of the phagocytic cells that are central to immunity against MTb. These are highly plastic cells dependent on the milieu and can showcase M1/M2 polarization. M1 macrophages are bactericidal in action, but M2 macrophages are anti-inflammatory in their immune response. This computational study is an effort to elucidate the role of miRNAs that influences the survival of MTb in the macrophage. To identify the miRNAs against critical transcription factors, we selected only conserved hits from TargetScan database. Further, validation of these miRNAs was achieved using four databases viz . DIANA-microT, miRDB, miRanda-mirSVR, and miRNAMap. All miRNAs were identified through a conserved seed sequence against the 3'-UTR of transcription factors. This bioinformatics study found that miR-27a and miR-27b has a putative binding site at 3'-UTR of IRF4, and miR-302c against IRF5. miR-155, miR-132, and miR-455-5p are predicted microRNAs against suppressor of cytokine signaling transcription factors. Several other microRNAs, which have an affinity for critical transcription factors, are also predicted in this study. This MTb-associated modulation of microRNAs to modify the expression of the target gene(s) plays a critical role in TB pathogenesis. Other than M1/M2 plasticity, MTb has the ability to convert macrophage into foam cells that are rich in lipids and cholesterol. We have highlighted few microRNAs which overlap between M2/foam cell continuums. miR-155, miR-33, miR-27a, and miR-27b plays a dual role in deciding macrophage polarity and its conversion to foam cells. This study shows a glimpse of microRNAs which can be modulated by MTb not only to prevent its elimination but also

  3. Stretching and folding mechanism in foams

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, Alberto [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)], E-mail: tufaile@usp.br; Pedrosa Biscaia Tufaile, Adriana [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)

    2008-10-13

    We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the fractal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board.

  4. New Approaches to Aluminum Integral Foam Production with Casting Methods

    Directory of Open Access Journals (Sweden)

    Ahmet Güner

    2015-08-01

    Full Text Available Integral foam has been used in the production of polymer materials for a long time. Metal integral foam casting systems are obtained by transferring and adapting polymer injection technology. Metal integral foam produced by casting has a solid skin at the surface and a foam core. Producing near-net shape reduces production expenses. Insurance companies nowadays want the automotive industry to use metallic foam parts because of their higher impact energy absorption properties. In this paper, manufacturing processes of aluminum integral foam with casting methods will be discussed.

  5. A facile strategy for the synthesis of NiSe@CoOOH core-shell nanowires on nickel foam with high surface area as efficient electrocatalyst for oxygen evolution reaction

    Science.gov (United States)

    Xu, Yuan-Zi; Yuan, Cheng-Zong; Chen, Xue-Ping

    2017-12-01

    In this article, we describe a NiSe@CoOOH core-shell nanostructure nanowires supported on nickel foam(NiSe@CoOOH NWs/NF) have been successfully synthesized by a facile approach for the first time. The NiSe@CoOOH NWs/NF has been confirmed by XRD, SEM images, TEM images, XPS, EDX and HRTEM. The NiSe@CoOOH NWs/NF, as a 3D oxygen-evolving and nonprecious-metal catalyst, shows high catalytic performance for oxygen evolution reaction.

  6. Myosin VI and Associated Proteins Are Expressed in Human Macrophages but Do Not Play a Role in Foam Cell Formation in THP-1 Cells

    Directory of Open Access Journals (Sweden)

    Hayley J. Dawson

    2013-01-01

    Full Text Available Myosin VI (Myo6 functions in endocytosis in conjunction with binding partners including adaptor protein (AP-2, disabled 2 (Dab2, and GAIP interacting protein C terminus 1 (GIPC1. This study aimed to investigate the expression and function of Myo6 in macrophages and its possible role in the endocytosis of lipoproteins during the induction of foam cell formation. Expression of Myo6, AP-2 (α2 subunit, and Dab2 in THP-1 macrophages and primary human monocyte-derived macrophages was demonstrated at the mRNA and protein level, but GIPC1 was only detected at the mRNA level. Immunofluorescence showed that Myo6 was distributed similarly to F-actin in both macrophage types. AP-2α2 was found to have a similar subcellular distribution to Myo6 and Dab2 in THP-1 cells. Myo6 was located within membrane ruffles and protrusions of the plasma membrane. These results suggest that in macrophages Myo6 is required for several functions including cell adhesion, cell progression, and macropinocytosis. Low-density lipoprotein (LDL and oxidised LDL (oxLDL decreased Myo6 and GIPC1 mRNA expression in THP-1 cells, but uptake of the fluorescence-labelled lipoproteins was unaffected by knockdown of the expression of Myo6 or associated proteins with siRNA. Our findings, therefore, do not support the idea that Myo6 plays a major role in foam cell formation.

  7. Fabrication of Gold Nanoparticles Doped DVB Foams

    International Nuclear Information System (INIS)

    Fang Yu; Luo Xuan; Fan Yongheng; Zhang Qingjun; Ren Hongbo; Xiao Lei

    2009-01-01

    The fabrication of gold nanoparticles doped low density DVB foams was researched, which can be used as ICF target materials. By high internal phase emulsion (HIPE) method, gold nanoparticles doped low density DVB foams were prepared, with gold nanoparticles dissolved in inner phase. The results show that the content of Au in the gold nanoparticles doped DVB foam is 3. 19%, the axial direction density of the foam is uniform which indicates none evident settlement of gold nanoparticles. SEM tests show that the gold doped DVB polymer foams have open-celled structure and very uniform aperture, and the average pore size is about 1 μm, which is much smaller than that of pure DVB foams. EDX test shows that Au disperses uniformly in the foams. (authors)

  8. Core Fucosylation of the T Cell Receptor Is Required for T Cell Activation.

    Science.gov (United States)

    Liang, Wei; Mao, Shanshan; Sun, Shijie; Li, Ming; Li, Zhi; Yu, Rui; Ma, Tonghui; Gu, Jianguo; Zhang, Jianing; Taniguchi, Naoyuki; Li, Wenzhe

    2018-01-01

    CD4 + T cell activation promotes the pathogenic process of systemic lupus erythematosus (SLE). T cell receptor (TCR) complex are highly core fucosylated glycoproteins, which play important roles in T cell activation. In this study, we found that the core fucosylation of CD4 + T cells was significantly increased in SLE patients. Loss of core fucosyltransferase (Fut8), the sole enzyme for catalyzing the core fucosylation of N-glycan, significantly reduced CD4 + T cell activation and ameliorated the experimental autoimmune encephalomyelitis-induced syndrome in Fut8 -/- mice. T cell activation with OVA 323-339 loaded major histocompatibility complex II (pMHC-II) on B cell was dramatically attenuated in Fut8 -/- OT-II CD4 + T cells compared with Fut8 +/+ OT-II CD4 + T cells. Moreover, the phosphorylation of ZAP-70 was significantly reduced in Fut8 +/+ OT-II CD4 + T cells by the treatment of fucosidase. Our results suggest that core fucosylation is required for efficient TCR-pMHC-II contacts in CD4 + T cell activation, and hyper core fucosylation may serve as a potential novel biomarker in the sera from SLE patients.

  9. The Natural Compound Dansameum Reduces foam Cell Formation by Downregulating CD36 and Peroxisome Proliferator-activated Receptor-gamma; Expression.

    Science.gov (United States)

    Park, Kang-Seo; Ahn, Sang Hyun; Lee, Kang Pa; Park, Sun-Young; Cheon, Jin Hong; Choi, Jun-Yong; Kim, Kibong

    2018-01-01

    Atherosclerosis-induced vascular disorders are major causes of death in most western countries. During the development of atherosclerotic lesions, foam cell formation is essential and formed through the expression of CD36 and the peroxisome proliferator-activated receptor gamma (PPAR-γ). To investigate whether dansameum extract (DSE) could show anti-atherosclerotic effect through down-regulating cellular redox state including CD36 and PARP-γ expression in oxidative low-density lipoprotein (oxLDL)-treated RAW264.7 cells and on differentiated foam cells in ApoE Knockout (ApoE-/-) mice. The Korean polyherbal medicine DSE was prepared from three plants in the following proportions: 40 g of Salvia miltiorrhiza root, 4 g of Amomumxanthioides fruit, and 4 g of Santalum album lignum. The immunohistochemistry and reverse transcription-polymerase chain reaction was used for analysis of protein and mRNA involved in foam cell formation. We first showed that effects of DSE on foam cell formation in both oxLDL-induced RAW264.7 cells and in blood vessels from apolipoprotein E deficientApoE-/- mice with high fat diet-fed. DSE treatment significantly reduced the expression of CD36 and PPAR-γ in oxLDL-stimulated RAW264.7 cells and ApoE-/-mice, in the latter case by regulating heme oxygenase-1. Furthermore, DSE treatment also reduced cellular lipid content in vitro and in vivo experiments. Our data suggest that DSE may have anti-atherosclerotic properties through regulating foam cell formation. Dansameum extract (DSE) Regulates the expression of CD36 and peroxisome proliferator-activated receptor gamma in oxidative low-density lipoprotein-stimulated RAW264.7 Cells and ApoE Knockout (ApoE Knockout [ApoE-/-]) miceDSE Regulates Cholesterol Levels in the Serum of ApoE-deficient (ApoE-/-) miceDSE Reduced the Formation of Foam Cells by Regulating heme oxygenase-1 in ApoE-/- mice with high fat diet-fed. Abbreviations used: DSE: Dansameum extract, PPAR-γ: Peroxisome proliferator

  10. Ni foam supported quasi-core-shell structure of ultrathin Ti3C2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors

    Science.gov (United States)

    Tian, Yapeng; Yang, Chenhui; Que, Wenxiu; He, Yucheng; Liu, Xiaobin; Luo, Yangyang; Yin, Xingtian; Kong, Ling Bing

    2017-11-01

    Supercapacitor, as an important energy storage device, is a critical component for next generation electric power system, due to its high power density and long cycle life. In this study, a novel electrode material with quasi-core-shell structure, consisting of negatively charged few layer Ti3C2 nanosheets (FL-Ti3C2) and positively charged polyethyleneimine as building blocks, has been prepared by using an electrostatic layer-by-layer self-assembly method, with highly conductive Ni foam to be used as the skeleton. The unique quasi-core-shell structured ultrathin Ti3C2 nanosheets provide an excellent electron channel, ion transport channel and large effective contact area, thus leading to a great improvement in electrochemical performance of the material. The specific capacitance of the binder-free FL-Ti3C2@Ni foam electrodes reaches 370 F g-1 at the scan rate of 2 mV s-1 and a specific capacitance of 117 F g-1 is obtained even at the scan rate of 1000 mV s-1 in the electrolyte of Li2SO4, indicating a high rate performance. In addition, this electrode shows a long-term cyclic stability with a loss of only 13.7% after 10,000 circles. Furthermore, quantitative analysis has been conducted to ensure the relationship between the capacitive contribution and the rate performance of the as-fabricated electrode.

  11. Foam Transport in Porous Media - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Freedman, Vicky L.; Zhong, Lirong

    2009-11-11

    Amendment solutions with or without surfactants have been used to remove contaminants from soil. However, it has drawbacks such that the amendment solution often mobilizes the plume, and its movement is controlled by gravity and preferential flow paths. Foam is an emulsion-like, two-phase system in which gas cells are dispersed in a liquid and separated by thin liquid films called lamellae. Potential advantages of using foams in sub-surface remediation include providing better control on the volume of fluids injected, uniformity of contact, and the ability to contain the migration of contaminant laden liquids. It is expected that foam can serve as a carrier of amendments for vadose zone remediation, e.g., at the Hanford Site. As part of the U.S. Department of Energy’s EM-20 program, a numerical simulation capability will be added to the Subsurface Transport Over Multiple Phases (STOMP) flow simulator. The primary purpose of this document is to review the modeling approaches of foam transport in porous media. However, as an aid to understanding the simulation approaches, some experiments under unsaturated conditions and the processes of foam transport are also reviewed. Foam may be formed when the surfactant concentration is above the critical micelle concentration. There are two main types of foams – the ball foam (microfoam) and the polyhedral foam. The characteristics of bulk foam are described by the properties such as foam quality, texture, stability, density, surface tension, disjoining pressure, etc. Foam has been used to flush contaminants such as metals, organics, and nonaqueous phase liquids from unsaturated soil. Ball foam, or colloidal gas aphrons, reportedly have been used for soil flushing in contaminated site remediation and was found to be more efficient than surfactant solutions on the basis of weight of contaminant removed per gram of surfactant. Experiments also indicate that the polyhedral foam can be used to enhance soil remediation. The

  12. Polymer foam comprising a polymer and nanoparticles, and nanoparticles for the manufacture of such foam.

    NARCIS (Netherlands)

    Vancso, Gyula J.; Duvigneau, Joost; Nederkoorn, P.H.J.; Wassing, T.

    2014-01-01

    A polymer foam is produced comprising a polymer and nanoparticles having a maximum dimensionof 750 nm, which foam has cells with an average cell size of at most 1 µm and a cell density of at least 1012 cells/ml, wherein polymeric grafts have been attached to the nanoparticles. The nanoparticles may

  13. A foam ablation model for lost foam casting of aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Barone, M.R.; Caulk, D.A. [General Motors Research and Development Center, Warren, MI (United States)

    2005-09-01

    A model is developed for heat transfer, polymer vaporization, and gas diffusion at the interface between the advancing liquid metal and the receding foam pattern during mold filling in lost foam casting of aluminum. Most of the pattern interior decomposes by ablation, but the boundary cells decompose by a collapse mechanism, which creates an undercut in the pattern next to the coating. By regulating how much of the pattern coating is exposed to gas diffusion, the undercut controls the overall filling speed of the metal through the mold. Computed values for the foam decomposition energy from this model compare very well with experimental data on foam pyrolysis, and predicted filling speeds are consistent with observations in published experiments. In addition, the model explains several unusual observations about mold filling that until now have not been understood. (author)

  14. Effect of crystals and fibrous network polymer additives on cellular morphology of microcellular foams

    Science.gov (United States)

    Miyamoto, Ryoma; Utano, Tatsumi; Yasuhara, Shunya; Ishihara, Shota; Ohshima, Masahiro

    2015-05-01

    In this study, the core-back foam injection molding was used for preparing microcelluar polypropylene (PP) foam with either a 1,3:2,4 bis-O-(4-methylbenzylidene)-D-sorbitol gelling agent (Gel-all MD) or a fibros network polymer additive (Metablen 3000). Both agent and addiive could effectively control the celluar morphology in foams but somehow different ways. In course of cooling the polymer with Gel-all MD in the mold caity, the agent enhanced the crystal nucleation and resulted in the large number of small crystals. The crystals acted as effective bubble nucleation agent in foaming process. Thus, the agent reduced the cell size and increased the cell density, drastically. Furthermore, the small crystals provided an inhomogenuity to the expanding cell wall and produced the high open cell content with nano-scale fibril structure. Gell-all as well as Metablene 3000 formed a gel-like fibrous network in melt. The network increased the elongational viscosity and tended to prevent the cell wall from breaking up. The foaming temperature window was widened by the presence of the network. Especially, the temperature window where the macro-fibrous structure was formed was expanded to the higher temperature. The effects of crystal nucleating agent and PTFE on crystals' size and number, viscoelsticity, rheological propreties of PP and cellular morphology were compared and thorougly investigated.

  15. Influence of Rubber Powders on Foaming Behavior and Mechanical Properties of Foamed Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    HE Yue

    2017-02-01

    Full Text Available Polypropylene/rubber powders composites with different kinds of rubber powders were foamed by injection molding machine equipped with volume-adjustable cavity. The effect of dispersity of rubber powders and crystallization behavior of composites on the foaming behavior and mechanical properties was investigated. The results show that the addition of rubber powders can improve the cell structure of foamed PP with fine and uniform cell distribution. And cell density and size of PP/PP-MAH/NBR foams are 7.64×106cell/cm3 and 29.78μm respectively, which are the best among these foams. Combining cell structures with mechanical properties, notch impact strength of PP/PP-MAH/CNBR composites increases approximately by 2.2 times while tensile strength is reduced just by 26% compared with those of the pure PP. This indicates that PP/PP-MAH/CNBR composites are ideal foamed materials.

  16. Interplay between cellular activity and three-dimensional scaffold-cell constructs with different foam structure processed by electron beam melting.

    Science.gov (United States)

    Nune, Krishna C; Misra, R Devesh K; Gaytan, Sara M; Murr, Lawrence E

    2015-05-01

    The cellular activity, biological response, and consequent integration of scaffold-cell construct in the physiological system are governed by the ability of cells to adhere, proliferate, and biomineralize. In this regard, we combine cellular biology and materials science and engineering to fundamentally elucidate the interplay between cellular activity and interconnected three-dimensional foamed architecture obtained by a novel process of electron beam melting and computational tools. Furthermore, the organization of key proteins, notably, actin, vinclulin, and fibronectin, involved in cellular activity and biological functions and relationship with the structure was explored. The interconnected foamed structure with ligaments was favorable to cellular activity that includes cell attachment, proliferation, and differentiation. The primary rationale for favorable modulation of cellular functions is that the foamed structure provided a channel for migration and communication between cells leading to highly mineralized extracellular matrix (ECM) by the differentiating osteoblasts. The filopodial interaction amongst cells on the ligaments was a governing factor in the secretion of ECM, with consequent influence on maturation and mineralization. © 2014 Wiley Periodicals, Inc.

  17. Fluid-phase pinocytosis of native low density lipoprotein promotes murine M-CSF differentiated macrophage foam cell formation.

    Directory of Open Access Journals (Sweden)

    Manoj K Barthwal

    Full Text Available During atherosclerosis, low-density lipoprotein (LDL-derived cholesterol accumulates in macrophages to form foam cells. Macrophage uptake of LDL promotes foam cell formation but the mechanism mediating this process is not clear. The present study investigates the mechanism of LDL uptake for macrophage colony-stimulating factor (M-CSF-differentiated murine bone marrow-derived macrophages. LDL receptor-null (LDLR-/- macrophages incubated with LDL showed non-saturable accumulation of cholesterol that did not down-regulate for the 24 h examined. Incubation of LDLR-/- macrophages with increasing concentrations of (125I-LDL showed non-saturable macrophage LDL uptake. A 20-fold excess of unlabeled LDL had no effect on (125I-LDL uptake by wild-type macrophages and genetic deletion of the macrophage scavenger receptors CD36 and SRA did not affect (125I-LDL uptake, showing that LDL uptake occurred by fluid-phase pinocytosis independently of receptors. Cholesterol accumulation was inhibited approximately 50% in wild-type and LDLR-/- mice treated with LY294002 or wortmannin, inhibitors of all classes of phosphoinositide 3-kinases (PI3K. Time-lapse, phase-contrast microscopy showed that macropinocytosis, an important fluid-phase uptake pathway in macrophages, was blocked almost completely by PI3K inhibition with wortmannin. Pharmacological inhibition of the class I PI3K isoforms alpha, beta, gamma or delta did not affect macrophage LDL-derived cholesterol accumulation or macropinocytosis. Furthermore, macrophages from mice expressing kinase-dead class I PI3K beta, gamma or delta isoforms showed no decrease in cholesterol accumulation or macropinocytosis when compared with wild-type macrophages. Thus, non-class I PI3K isoforms mediated macropinocytosis in these macrophages. Further characterization of the components necessary for LDL uptake, cholesterol accumulation, and macropinocytosis identified dynamin, microtubules, actin, and vacuolar type H(+-ATPase as

  18. Fluid-Phase Pinocytosis of Native Low Density Lipoprotein Promotes Murine M-CSF Differentiated Macrophage Foam Cell Formation

    Science.gov (United States)

    Xu, Qing; Bohnacker, Thomas; Wymann, Matthias P.; Kruth, Howard S.

    2013-01-01

    During atherosclerosis, low-density lipoprotein (LDL)-derived cholesterol accumulates in macrophages to form foam cells. Macrophage uptake of LDL promotes foam cell formation but the mechanism mediating this process is not clear. The present study investigates the mechanism of LDL uptake for macrophage colony-stimulating factor (M-CSF)-differentiated murine bone marrow-derived macrophages. LDL receptor-null (LDLR−/−) macrophages incubated with LDL showed non-saturable accumulation of cholesterol that did not down-regulate for the 24 h examined. Incubation of LDLR−/− macrophages with increasing concentrations of 125I-LDL showed non-saturable macrophage LDL uptake. A 20-fold excess of unlabeled LDL had no effect on 125I-LDL uptake by wild-type macrophages and genetic deletion of the macrophage scavenger receptors CD36 and SRA did not affect 125I-LDL uptake, showing that LDL uptake occurred by fluid-phase pinocytosis independently of receptors. Cholesterol accumulation was inhibited approximately 50% in wild-type and LDLR−/− mice treated with LY294002 or wortmannin, inhibitors of all classes of phosphoinositide 3-kinases (PI3K). Time-lapse, phase-contrast microscopy showed that macropinocytosis, an important fluid-phase uptake pathway in macrophages, was blocked almost completely by PI3K inhibition with wortmannin. Pharmacological inhibition of the class I PI3K isoforms alpha, beta, gamma or delta did not affect macrophage LDL-derived cholesterol accumulation or macropinocytosis. Furthermore, macrophages from mice expressing kinase-dead class I PI3K beta, gamma or delta isoforms showed no decrease in cholesterol accumulation or macropinocytosis when compared with wild-type macrophages. Thus, non-class I PI3K isoforms mediated macropinocytosis in these macrophages. Further characterization of the components necessary for LDL uptake, cholesterol accumulation, and macropinocytosis identified dynamin, microtubules, actin, and vacuolar type H(+)-ATPase as

  19. Hyperbolic kaleidoscopes and Chaos in foams and Hele-Shaw cell

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, A P B; Tufaile, A [Escola de Artes, Ciencias e Humanidades da Universidade de Sao Paulo, R. Arlindo Bettio, 1000, 03828-000, Sao Paulo (Brazil); Liger-Belair, G, E-mail: atufaile@usp.br [Laboratoire d' OEnologie et Chimie Appliquee, UPRES EA 2069, URVVC, Faculte de Sciences de Reims, Moulin de la Housse, B. P. 1039, 51687 Reims, Cedex 2 (France)

    2011-03-01

    Liquid foams have fascinating optical properties, which are caused by the large number of light refractions and reflections by liquid films and Plateau borders. Due to refraction and reflection at the interfaces, the direction of the rays leaving a Plateau border can vary greatly for the same incident angle and a small positional offset. A close look in some configurations of the Plateau borders or liquid bridges reveals the existence of some triangular patterns surrounded by a complex structure, and these patterns bear a resemblance to those observed in some systems involving chaotic scattering and multiple light reflections between spheres. Provided the optical properties of the sphere surfaces are chosen appropriately, fractals are natural consequences of multiple scattering of light rays in these cavities. The cavity acts as a hyperbolic kaleidoscope multiplying the scattering of light rays generating patterns related to Poincare disks and Sierpinski gaskets in comparison to linear kaleidoscopes. We present some experimental results and simulations of these patterns explained by the light of the chaotic scattering.

  20. NiCo2S4@NiMoO4 Core-Shell Heterostructure Nanotube Arrays Grown on Ni Foam as a Binder-Free Electrode Displayed High Electrochemical Performance with High Capacity

    Science.gov (United States)

    Zhang, Yan; Xu, Jie; Zheng, Yayun; Zhang, Yingjiu; Hu, Xing; Xu, Tingting

    2017-06-01

    Core-shell-structured system has been proved as one of the best architecture for clean energy products owing to its inherited superiorities from both the core and the shell part, which can provide better conductivity and high surface area. Herein, a hierarchical core-shell NiCo2S4@NiMoO4 heterostructure nanotube array on Ni foam (NF) (NiCo2S4@NiMoO4/NF) has been successfully fabricated. Because of its novel heterostructure, the capacitive performance has been enhanced. A specific capacitance up to 2006 F g-1 was obtained at a current density of 5 mA cm-2, which was far higher than that of pristine NiCo2S4 nanotube arrays (about 1264 F g-1). More importantly, NiCo2S4@NiMoO4/NF and active carbon (AC) were congregated as positive electrode and negative electrode in an asymmetric supercapacitor. As-fabricated NiCo2S4@NiMoO4/NF//AC device has a good cyclic behavior with 78% capacitance retention over 2000 cycles, and exhibits a high energy density of 21.4 Wh kg-1 and power density of 58 W kg-1 at 2 mA cm-2. As displayed, the NiCo2S4@NiMoO4/NF core-shell herterostructure holds great promise for supercapacitors in energy storage.

  1. Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts.

    Science.gov (United States)

    Karthikeyan, Rengasamy; Krishnaraj, Navanietha; Selvam, Ammaiyappan; Wong, Jonathan Woon-Chung; Lee, Patrick K H; Leung, Michael K H; Berchmans, Sheela

    2016-10-01

    This study explores the use of materials such as chitosan (chit), polyaniline (PANI) and titanium carbide (TC) as anode materials for microbial fuel cells. Nickel foam (NF) was used as the base anode substrate. Four different types of anodes (NF, NF/PANI, NF/PANI/TC, NF/PANI/TC/Chit) are thus prepared and used in batch type microbial fuel cells operated with a mixed consortium of Acetobacter aceti and Gluconobacter roseus as the biocatalysts and bad wine as a feedstock. A maximum power density of 18.8Wm(-3) (≈2.3 times higher than NF) was obtained in the case of the anode modified with a composite of PANI/TC/Chit. The MFCs running under a constant external resistance of (50Ω) yielded 14.7% coulombic efficiency with a maximum chemical oxygen demand (COD) removal of 87-93%. The overall results suggest that the catalytic materials embedded in the chitosan matrix show the best performance and have potentials for further development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Washcoat Deposition of Ni- and Co-ZrO2 Low Surface Area Powders onto Ceramic Open-Cell Foams: Influence of Slurry Formulation and Rheology

    Directory of Open Access Journals (Sweden)

    Riccardo Balzarotti

    2015-12-01

    Full Text Available The effect of formulations and procedures to deposit thin active layers based on low surface area powders on complex geometry substrates (open-cell foams was experimentally assessed. An acid-free liquid medium based on water, glycerol, and polyvinyl alcohol was used for powder dispersion, while a dip-coating technique was chosen for washcoat deposition on 30 PPI ceramic open-cell foams. The rheological behavior was explained on the bases of both porosity and actual powder density. It was proved that the use of multiple dippings fulfills flexibility requirements for washcoat load management. Multiple depositions with intermediate flash drying steps at 350 °C were carried out. Washcoat loads in the 2.5 to 22 wt. % range were obtained. Pore clogging was seldom observed in a limited extent in samples with high loading (>20 wt. %. Adhesion, evaluated by means of accelerated stress test in ultrasound bath, pointed out good results of all the deposited layers.

  3. Genome-wide profiling to analyze the effects of Ox-LDL induced THP-1 macrophage-derived foam cells on gene expression

    Directory of Open Access Journals (Sweden)

    Yan-Wei Hu

    2014-12-01

    Full Text Available Atherosclerosis has a high incidence and is harmful to human health. An elevated level of oxidized low-density lipoprotein (Ox-LDL is one of the major risk factors for atherosclerosis. During atherogenesis progression, circulating monocytes adhere to the intima and differentiate into macrophages. After differentiation, intimal macrophages intake Ox-LDL via scavenger receptors, thereby transforming into foam cells. Foam cell formation due to excessive accumulation of cholesterol by macrophages is a pathological hallmark of atherosclerosis. To gain a molecular understanding of the effect of Ox-LDL in atherosclerosis development, we conducted a genome-wide analysis of the Ox-LDL-induced macrophage transformation by microarray gene expression profiling. Here we describe in details the contents and quality controls for the gene expression and related results associated with the data uploaded to Gene Expression Omnibus (accession number GSE54039.

  4. The dynamic properties of sandwich structures based on metal-ceramic foams.

    Science.gov (United States)

    2014-01-01

    The present research program has studied the fracture properties of closed pore metal-ceramic foams for their potential applications as core systems in sandwich structures. The composite foams were created at Fireline, Inc. (Youngstown, OH) using the...

  5. Crosslinked polyethylene foams, via eb radiation

    International Nuclear Information System (INIS)

    Cardoso, E.C.L.; Lugao, A. B.; Andrade e Silva, L. G.

    1998-01-01

    Polyethylene foams, produced by radio-induced crosslinking, show a smooth and homogeneous surface, when compared to chemical crosslinking method using peroxide as crosslinking agent. This process fosters excellent adhesive and printability properties. Besides that, closed cells, intrinsic to these foams, imparts optimum mechanical, shocks and insulation resistance, indicating these foams to some markets segments as: automotive and transport; buoyancy, flotation and marine; building and insulation; packaging; domestic sports and leisure goods. We were in search of an ideal foam, by adding 5 to 15% of blowing agent in LDPE. A series of preliminary trials defined 203 degree sign C as the right blowing agent decomposition temperature. At a 22.7 kGys/dose ratio, the lowest dose for providing an efficient foam was 30 kGy, for a formulation comprising 10% of azodicarbonamide in LDPE, within a 10 minutes foaming time

  6. ALUHAB — The Superior Aluminium Foam

    Science.gov (United States)

    Babcsan, N.; Beke, S.; Makk, P.; Soki, P.; Számel, Gy; Degischer, H. P.; Mokso, R.

    A new metal foaming technology has been developed to produce aluminum foams with controlled cell sizes, a wide range of alloy compositions, and attractive mechanical properties. ALUHAB aluminium foams are manufactured from a special foamable aluminium alloy containing ultrafine particles (80-3000 nm). The technology uses high temperature ultrasonication to homogeneously disperse the particles and thus create a stable, foamable aluminum melt. Oscillating gas injector (loud-nozzle) technology permits the injection of optimally sized bubbles into the melt that are independent of the injector orifice diameter. Using this direct gas injection method, bubble size is regulated by the frequency and the power of the ultrasound, producing uniform bubble sizes in the sub-millimeter range. The technology results in extremely stable metal foams which can be cast into complex forms and re-melted without loss of foam integrity. Processing methods and properties of the ALUHAB foams will be discussed.

  7. Application of an Elongated Kelvin Model to Space Shuttle Foams

    Science.gov (United States)

    Sullivan, Roy M.; Ghosn, Louis J.; Lerch, Bradley A.

    2009-01-01

    The space shuttle foams are rigid closed-cell polyurethane foams. The two foams used most-extensively oil space shuttle external tank are BX-265 and NCFL4-124. Because of the foaming and rising process, the foam microstructures are elongated in the rise direction. As a result, these two foams exhibit a nonisotropic mechanical behavior. A detailed microstructural characterization of the two foams is presented. Key features of the foam cells are described and the average cell dimensions in the two foams are summarized. Experimental studies are also conducted to measure the room temperature mechanical response of the two foams in the two principal material directions (parallel to the rise and perpendicular to the rise). The measured elastic modulus, proportional limit stress, ultimate tensile strength, and Poisson's ratios are reported. The generalized elongated Kelvin foam model previously developed by the authors is reviewed and the equations which result from this model are summarized. Using the measured microstructural dimensions and the measured stiffness ratio, the foam tensile strength ratio and Poisson's ratios are predicted for both foams and are compared with the experimental data. The predicted tensile strength ratio is in close agreement with the measured strength ratio for both BX-265 and NCFI24-124. The comparison between the predicted Poisson's ratios and the measured values is not as favorable.

  8. Faraday instability at foam-water interface.

    Science.gov (United States)

    Bronfort, A; Caps, H

    2012-12-01

    A nearly two-dimensional foam is generated inside a Hele-shaw cell and left at rest on its liquid bath. The system is then vertically shaken and, above a well-defined acceleration threshold, surface waves appear at the foam-liquid interface. Those waves are shown to be subharmonic. The acceleration threshold is studied and compared to the common liquid-gas case, emphasizing the energy dissipation inside the foam. An empirical model is proposed for this energy loss, accounting for the foam characteristics such as the bubble size but also the excitation parameter, namely the linear velocity.

  9. Molecular mechanism of a new Laminaria japonica polysaccharide on the suppression of macrophage foam cell formation via regulating cellular lipid metabolism and suppressing cellular inflammation.

    Science.gov (United States)

    Zha, Xue-Qiang; Xue, Lei; Zhang, Hai-Lin; Asghar, Muhammad-Naeem; Pan, Li-Hua; Liu, Jian; Luo, Jian-Ping

    2015-10-01

    Laminaria japonica is an important marine vegetable with great health benefits for preventing atherosclerosis. Since the foam cell formation is an important hallmark for the initiation of atherosclerosis, we examined the effect and underlying mechanism of a purified L. japonica polysaccharide (LJP61A) on the suppression of macrophage foam cell formation in this study. The chemical structure was further characterized. Using oxidized low-density lipoprotein (ox-LDL)-induced foam cell model, we found that the cellular lipid accumulation was significantly attenuated by 25 μg/mL LJP61A. Meanwhile, LJP61A caused a remarkable decrease in mRNA expression of peroxisome proliferator-activated receptor γ that was accompanied by the reduction of CD36 and Acyl coenzyme A: cholesterol acyltransferase-1 mRNA levels, and the enhancement of ATP-binding cassette transporters A1 and scavenger receptor B1 mRNA levels. Besides these, the ox-LDL-induced cellular inflammation was also restricted by LJP61A treatment via mammalian target of rapamycin-mediated Toll-like receptor 2/4-Mitogen-activated protein kinases/nuclear factor kappa-B pathways. The structure of LJP61A was characterized as a repeating unit consisting of →3,6)-α-d-Manp-(1→, →4)-α-d-Manp-(1→, →4)-2-O-acetyl-β-d-Glcp-(1→, →4)-β-d-Glcp-(1→, →6)-4-O-SO3 -β-d-Galp-(1→, →6)-β-d-Galp-(1→, →3)-β-d-Galp-(1→, and a terminal residue of α-d-Glcp-(1→. Our findings suggest that LJP61A inhibits the conversion of macrophage into foam cell via regulating cellular lipid metabolism and suppressing cellular inflammation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Combination Therapy with a Sodium-Glucose Cotransporter 2 Inhibitor and a Dipeptidyl Peptidase-4 Inhibitor Additively Suppresses Macrophage Foam Cell Formation and Atherosclerosis in Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Michishige Terasaki

    2017-01-01

    Full Text Available Dipeptidyl peptidase-4 inhibitors (DPP-4is, in addition to their antihyperglycemic roles, have antiatherosclerotic effects. We reported that sodium-glucose cotransporter 2 inhibitors (SGLT2is suppress atherosclerosis in a glucose-dependent manner in diabetic mice. Here, we investigated the effects of combination therapy with SGLT2i and DPP-4i on atherosclerosis in diabetic mice. SGLT2i (ipragliflozin, 1.0 mg/kg/day and DPP-4i (alogliptin, 8.0 mg/kg/day, either alone or in combination, were administered to db/db mice or streptozotocin-induced diabetic apolipoprotein E-null (Apoe−/− mice. Ipragliflozin and alogliptin monotherapies improved glucose intolerance; however, combination therapy did not show further improvement. The foam cell formation of peritoneal macrophages was suppressed by both the ipragliflozin and alogliptin monotherapies and was further enhanced by combination therapy. Although foam cell formation was closely associated with HbA1c levels in all groups, DPP-4i alone or the combination group showed further suppression of foam cell formation compared with the control or SGLT2i group at corresponding HbA1c levels. Both ipragliflozin and alogliptin monotherapies decreased scavenger receptors and increased cholesterol efflux regulatory genes in peritoneal macrophages, and combination therapy showed additive changes. In diabetic Apoe−/− mice, combination therapy showed the greatest suppression of plaque volume in the aortic root. In conclusion, combination therapy with SGLT2i and DPP4i synergistically suppresses macrophage foam cell formation and atherosclerosis in diabetic mice.

  11. Low density lipoprotein labelling characterizes experimentally induced atherosclerotic lesions in rabbits in vivo as to presence of foam cells and endothelial coverage

    International Nuclear Information System (INIS)

    Virgolini, I.; Sinzinger, H.; Angelberger, P.; O'Grady, J.

    1991-01-01

    The entry of autologous iodine 125 low density lipoprotein ( 125 I-LDL) into the aortic wall in rabbits was measured. After abdominal endothelium abrasion with a Fogarthy catheter the animals were fed at 1% cholesterol-supplemented diet for 4 weeks. The animals were killed 1-48 h after administration of 25 μCi 125 I-LDL. Local entry of radiolabelled LDL was estimated and correlated to endothelial surface lining and foam cell content, both controlled morphologically. Endothelialized segments showed the lowest entry of 125 I-LDL, the maximum uptake was reached at around 8 h. In de-endothelialized segments the entry was higher and the peak later (12 h), while in re-endothelialized segments a continuous increase in 125 I-LDL entry up to 48 h was measured. Number and extent of foam cells correlated with the entry of LDL. The data indicate the usefulnes of LDL radiolabelling for qualitative in vivo information on surface lining and foam cell content. (orig.)

  12. Thermal Expansion of Polyurethane Foam

    Science.gov (United States)

    Lerch, Bradley A.; Sullivan, Roy M.

    2006-01-01

    Closed cell foams are often used for thermal insulation. In the case of the Space Shuttle, the External Tank uses several thermal protection systems to maintain the temperature of the cryogenic fuels. A few of these systems are polyurethane, closed cell foams. In an attempt to better understand the foam behavior on the tank, we are in the process of developing and improving thermal-mechanical models for the foams. These models will start at the microstructural level and progress to the overall structural behavior of the foams on the tank. One of the key properties for model characterization and verification is thermal expansion. Since the foam is not a material, but a structure, the modeling of the expansion is complex. It is also exacerbated by the anisoptropy of the material. During the spraying and foaming process, the cells become elongated in the rise direction and this imparts different properties in the rise direction than in the transverse directions. Our approach is to treat the foam as a two part structure consisting of the polymeric cell structure and the gas inside the cells. The polymeric skeleton has a thermal expansion of its own which is derived from the basic polymer chemistry. However, a major contributor to the thermal expansion is the volume change associated with the gas inside of the closed cells. As this gas expands it exerts pressure on the cell walls and changes the shape and size of the cells. The amount that this occurs depends on the elastic and viscoplastic properties of the polymer skeleton. The more compliant the polymeric skeleton, the more influence the gas pressure has on the expansion. An additional influence on the expansion process is that the polymeric skeleton begins to breakdown at elevated temperatures and releases additional gas species into the cell interiors, adding to the gas pressure. The fact that this is such a complex process makes thermal expansion ideal for testing the models. This report focuses on the thermal

  13. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    Science.gov (United States)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-05-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength).

  14. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, F., E-mail: florian.rapp@ict.fraunhofer.de, E-mail: anja.schneider@ict.fraunhofer.de; Schneider, A., E-mail: florian.rapp@ict.fraunhofer.de, E-mail: anja.schneider@ict.fraunhofer.de [Fraunhofer Institute for Chemical Technology ICT (Germany); Elsner, P., E-mail: peter.elsner@ict.fraunhofer.de [Fraunhofer Institute for Chemical Technology ICT, Germany and Karlsruhe Institute of Technology KIT (Germany)

    2014-05-15

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO{sub 2} balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength)

  15. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    International Nuclear Information System (INIS)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-01-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO 2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength)

  16. Overexpression of Cholesteryl Ester Transfer Protein Increases Macrophage-Derived Foam Cell Accumulation in Atherosclerotic Lesions of Transgenic Rabbits

    Directory of Open Access Journals (Sweden)

    Shoucui Gao

    2017-01-01

    Full Text Available High levels of plasma high-density lipoprotein-cholesterol (HDL-C are inversely associated with the risk of atherosclerosis and other cardiovascular diseases; thus, pharmacological inhibition of cholesteryl ester transfer protein (CETP is considered to be a therapeutic method of raising HDL-C levels. However, many CETP inhibitors have failed to achieve a clinical benefit despite raising HDL-C. In the study, we generated transgenic (Tg rabbits that overexpressed the human CETP gene to examine the influence of CETP on the development of atherosclerosis. Both Tg rabbits and their non-Tg littermates were fed a high cholesterol diet for 16 weeks. Plasma lipids and body weight were measured every 4 weeks. Gross lesion areas of the aortic atherosclerosis along with lesional cellular components were quantitatively analyzed. Overexpression of human CETP did not significantly alter the gross atherosclerotic lesion area, but the number of macrophages in lesions was significantly increased. Overexpression of human CETP did not change the plasma levels of total cholesterol or low-density lipoprotein cholesterol but lowered plasma HDL-C and increased triglycerides. These data revealed that human CETP may play an important role in the development of atherosclerosis mainly by decreasing HDL-C levels and increasing the accumulation of macrophage-derived foam cells.

  17. GABA and Topiramate Inhibit the Formation of Human Macrophage-Derived Foam Cells by Modulating Cholesterol-Metabolism-Associated Molecules

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2014-04-01

    Full Text Available Aims: γ-aminobutyric acid (GABA, the principal inhibitory neurotransmitter, acts on GABA receptors to play an important role in the modulation of macrophage functions. The present study examined the effects of GABA and a GABA receptor agonist on modulating cholesterol-metabolism-associated molecules in human monocyte-derived macrophages (HMDMs. Methods: ORO stain, HPLC, qRT-PCR, Western blot and EMSA were carried out using HMDMs exposed to ox-LDL with or without GABAergic agents as the experimental model. Results: GABA and topiramate reduced the percentage of cholesterol ester in lipid-laden HMDMs by down-regulating SR-A, CD36 and LOX-1 expression and up-regulating ABCA1, ABCG1 and SR-BI expression in lipid-laden HMDMs. The production of TNF-a was decreased in GABA-and topiramate-treated lipid-laden HMDMs, and levels of interleukin (IL-6 did not change. The activation of two signaling pathways, p38MAPK and NF-γB, was repressed by GABA and topiramate in lipid-laden HMDMs. Conclusion: GABA and topiramate inhibit the formation of human macrophage-derived foam cells and may be a possibility for macrophage targeted therapy of atherosclerotic lesions.

  18. Macroporous graphitic carbon foam decorated with polydopamine as a high-performance anode for microbial fuel cell

    Science.gov (United States)

    Jiang, Hongmei; Yang, Lu; Deng, Wenfang; Tan, Yueming; Xie, Qingji

    2017-09-01

    Herein, a macroporous graphitic carbon foam (MGCF) electrode decorated with polydopamine (PDA) is used as a high-performance anode for microbial fuel cell (MFC) applications. The MGCF is facilely prepared by pyrolysis of a powder mixture comprising maltose, nickel nitrate, and ammonia chloride, without using solid porous template. The MGCF is coated with PDA by self-polymerization of dopamine in a basic solution. The MGCF can provide a large surface area for bacterial attachment, and PDA coated on the MGCF electrode can further promote bacterial adhesion resulting from the improved hydrophility, so the MGCF-PDA electrode as an anode in a MFC can show ultrahigh bacterial loading capacity. Moreover, the electrochemical oxidation of flavins at the MGCF-PDA electrode is greatly accelerated, so the extracellular electron transfer mediated by flavins is improved. As a result, the MFC equipped with a MGCF-PDA anode can show a maximum power density of 1735 mW cm-2, which is 6.7 times that of a MFC equipped with a commercial carbon felt anode, indicating a promising anode for MFC applications.

  19. Co-doped titanium oxide foam and water disinfection device

    Science.gov (United States)

    Shang, Jian-Ku; Wu, Pinggui; Xie, Rong-Cai

    2016-01-26

    A quaternary oxide foam, comprises an open-cell foam containing (a) a dopant metal, (b) a dopant nonmetal, (c) titanium, and (d) oxygen. The foam has the advantages of a high surface area and a low back pressure during dynamic flow applications. The inactivation of Escherichia coli (E. coli) was demonstrated in a simple photoreactor.

  20. Validating a Conceptual Framework for the Core Concept of "Cell-Cell Communication"

    Science.gov (United States)

    Michael, Joel; Martinkova, Patricia; McFarland, Jenny; Wright, Ann; Cliff, William; Modell, Harold; Wenderoth, Mary Pat

    2017-01-01

    We have created and validated a conceptual framework for the core physiology concept of "cell-cell communication." The conceptual framework is composed of 51 items arranged in a hierarchy that is, in some instances, four levels deep. We have validated it with input from faculty who teach at a wide variety of institutional types. All…

  1. Validating a Conceptual Framework for the Core Concept of ”Cell-cell Communication”

    Czech Academy of Sciences Publication Activity Database

    Michael, J.; Martinková, Patrícia; McFarland, J.L.; Wright, A.; Cliff, W.; Modell, H.; Wenderoth, M.P.

    2017-01-01

    Roč. 41, č. 2 (2017), s. 260-265 ISSN 1043-4046 R&D Projects: GA ČR GJ15-15856Y Institutional support: RVO:67985807 Keywords : conceptual framework * core concept * cell-cell communication * physiology Subject RIV: AM - Education OBOR OECD: Education, general; including training, pedagogy, didactics [and education systems] Impact factor: 1.755, year: 2016

  2. CORE

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Hundebøll, Martin

    2013-01-01

    State-of-the-art in network coding for wireless, meshed networks typically considers two problems separately. First, the problem of providing reliability for a single session. Second, the problem of opportunistic combination of flows by using minimalistic coding, i.e., by XORing packets from...... different flows. Instead of maintaining these approaches separate, we propose a protocol (CORE) that brings together these coding mechanisms. Our protocol uses random linear network coding (RLNC) for intra- session coding but allows nodes in the network to setup inter- session coding regions where flows...

  3. A general methodology for inverse estimation of the elastic and anelastic properties of anisotropic open-cell porous materials—with application to a melamine foam

    Energy Technology Data Exchange (ETDEWEB)

    Cuenca, Jacques, E-mail: jcuenca@kth.se; Van der Kelen, Christophe; Göransson, Peter [Marcus Wallenberg Laboratory for Sound and Vibration Research, Royal Institute of Technology (KTH), Teknikringen 8, SE-10044 Stockholm (Sweden)

    2014-02-28

    This paper proposes an inverse estimation method for the characterisation of the elastic and anelastic properties of the frame of anisotropic open-cell foams used for sound absorption. A model of viscoelasticity based on a fractional differential constitutive equation is used, leading to an augmented Hooke's law in the frequency domain, where the elastic and anelastic phenomena appear as distinctive terms in the stiffness matrix. The parameters of the model are nine orthotropic elastic moduli, three angles of orientation of the material principal directions and three parameters governing the anelastic frequency dependence. The inverse estimation consists in numerically fitting the model on a set of transfer functions extracted from a sample of material. The setup uses a seismic-mass measurement repeated in the three directions of space and is placed in a vacuum chamber in order to remove the air from the pores of the sample. The method allows to reconstruct the full frequency-dependent complex stiffness matrix of the frame of an anisotropic open-cell foam and in particular it provides the frequency of maximum energy dissipation by viscoelastic effects. The characterisation of a melamine foam sample is performed and the relation between the fractional-derivative model and other types of parameterisations of the augmented Hooke's law is discussed.

  4. The Effect of Shear Rate on Dissolution of Gas and Cell Density in Continuous Foaming Process

    OpenAIRE

    M.H.N. Famili; M. Ako

    2009-01-01

    The effect of shear rate on dissolution of carbon dioxide in viscoelastic wheat flour matrix and cell density in a glass barrel twin screw extruder is investigated. It is found that by increasing the shear rate there will be a decrease in the required thermodynamic conditions and hence, it improves blowing agent dissolution and increases the cell density. Shear rate breaks up big bubbles and helps to better distribute the blowing agent in the matrix and hence it increases the cell density. Ce...

  5. Expanded polylactide bead foaming - A new technology

    Science.gov (United States)

    Nofar, M.; Ameli, A.; Park, C. B.

    2015-05-01

    Bead foaming technology with double crystal melting peak structure has been recognized as a promising method to produce low-density foams with complex geometries. During the molding stage of the bead foams, the double peak structure generates a strong bead-to-bead sintering and maintains the overall foam structure. During recent years, polylactide (PLA) bead foaming has been of the great interest of researchers due to its origin from renewable resources and biodegradability. However, due to the PLA's low melt strength and slow crystallization kinetics, the attempts have been limited to the manufacturing methods used for expanded polystyrene. In this study, for the first time, we developed microcellular PLA bead foams with double crystal melting peak structure. Microcellular PLA bead foams were produced with expansion ratios and average cell sizes ranging from 3 to 30-times and 350 nm to 15 µm, respectively. The generated high melting temperature crystals during the saturation significantly affected the expansion ratio and cell density of the PLA bead foams by enhancing the PLA's poor melt strength and promoting heterogeneous cell nucleation around the crystals.

  6. Application of Auxetic Foam in Sports Helmets

    Directory of Open Access Journals (Sweden)

    Leon Foster

    2018-03-01

    Full Text Available This investigation explored the viability of using open cell polyurethane auxetic foams to augment the conformable layer in a sports helmet and improve its linear impact acceleration attenuation. Foam types were compared by examining the impact severity on an instrumented anthropomorphic headform within a helmet consisting of three layers: a rigid shell, a stiff closed cell foam, and an open cell foam as a conformable layer. Auxetic and conventional foams were interchanged to act as the helmet’s conformable component. Attenuation of linear acceleration was examined by dropping the combined helmet and headform on the front and the side. The helmet with auxetic foam reduced peak linear accelerations (p < 0.05 relative to its conventional counterpart at the highest impact energy in both orientations. Gadd Severity Index reduced by 11% for frontal impacts (38.9 J and 44% for side impacts (24.3 J. The conformable layer within a helmet can influence the overall impact attenuating properties. The helmet fitted with auxetic foam can attenuate impact severity more than when fitted with conventional foam, and warrants further investigation for its potential to reduce the risk of traumatic brain injuries in sport specific impacts.

  7. Method of Preventing Shrinkage of Aluminum Foam Using Carbonates

    Directory of Open Access Journals (Sweden)

    Takashi Nakamura

    2011-12-01

    Full Text Available Metallic foams are commonly produced using titanium hydride as a foaming agent. Carbonates produce aluminum foam with a fine and homogenous cell structure. However, foams produced using carbonates show marked shrinkage, which is clearly different from those produced using titanium hydride. It is essential for practical applications to clarify foam shrinkage and establish a method of preventing it. In this research, cell structures were observed to study the shrinkage of aluminum foam produced using carbonates. The cells of foam produced using dolomite as a foaming agent connected to each other with maximum expansion. It was estimated that foaming gas was released through connected cells to the outside. It was assumed that cell formation at different sites is effective in preventing shrinkage induced by cell connection. The multiple additions of dolomite and magnesium carbonate, which have different decomposition temperatures, were applied. The foam in the case with multiple additions maintained a density of 0.66 up to 973 K, at which the foam produced using dolomite shrank. It was verified that the multiple additions of carbonates are effective in preventing shrinkage.

  8. Bi-liquid foams

    International Nuclear Information System (INIS)

    Sonneville, Odile

    1997-01-01

    Concentrated emulsions have structures similar to foams; for this reason they are also called 'bi-liquid foams'. For oil in water emulsions, they are made of polyhedral oil cells separated by aqueous surfactant films. The limited stability of these Systems is a major nuisance in their applications. In this work, we tried to understand and to control the mechanisms through which bi-liquid foams can loose their stability. In a first stage, we characterized the states of surfactant films in bi-liquid foams submitted to different pressures. We determined their hydration, the surfactant density at interfaces as well as their thicknesses. The bi-liquid foams were made by concentrating hexadecane-in-water emulsions through centrifugation. The initial emulsions contained submicron oil droplets that were completely covered with surfactant. We measured the resistance of the films to dehydration, and we represented it by pressure-film thickness curves or pressure-film hydration curves. We also obtained evidence that the interfacial surfactant density increases when the film thickness is decreased (SDS case). The Newton Black Film state is the most dehydrated metastable state that can be reached. In this state, the films can be described as surfactant bilayers that only contain the hydration water of the surfactant polar heads. Two different processes are involved the destabilization of bi-liquid foams: Ostwald ripening (oil transfer from small cells to large cells) and coalescence (films rupture). The first mechanism can be controlled by choosing oils that are very insoluble in water, avoiding ethoxylated nonionic surfactants of low molecular weight, and making emulsions that are not too fine. The second mechanism is responsible for the catastrophic destabilization of bi-liquid foams made of droplets above one micron or with a low coverage in surfactant. In these cases, destabilization occurs in the early stages of concentration, when the films are still thick. It

  9. 7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 mu m

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian; Mangan, B.J.; Jakobsen, C.

    2009-01-01

    Several 7 cell core hollow-core photonic crystal fibers with bandgaps in the spectral range of 1.4 μm to 2.3 μm have been fabricated. The transmission loss follows the ≈ λ−3 dependency previously reported, with a minimum measured loss of 9.5 dB/km at 1.99 μm. One fiber with a transmission loss...

  10. Bubble and foam chemistry

    CERN Document Server

    Pugh, Robert J

    2016-01-01

    This indispensable guide will equip the reader with a thorough understanding of the field of foaming chemistry. Assuming only basic theoretical background knowledge, the book provides a straightforward introduction to the principles and properties of foams and foaming surfactants. It discusses the key ideas that underpin why foaming occurs, how it can be avoided and how different degrees of antifoaming can be achieved, and covers the latest test methods, including laboratory and industrial developed techniques. Detailing a variety of different kinds of foams, from wet detergents and food foams, to polymeric, material and metal foams, it connects theory to real-world applications and recent developments in foam research. Combining academic and industrial viewpoints, this book is the definitive stand-alone resource for researchers, students and industrialists working on foam technology, colloidal systems in the field of chemical engineering, fluid mechanics, physical chemistry, and applied physics.

  11. The Influence of Titanium Hydride Pretreatment on the Compressive Properties of Aluminum Foam

    OpenAIRE

    Zan ZHANG; Xingchuan XIA; Weimin ZHAO; Xiaowei CHEN; Xu CHEN

    2014-01-01

    Macrostructure has an important effect on the compressive properties of closed-cell aluminum foams. Meanwhile, the decomposition behavior of a foaming agent has a significant influence on the macrostructure of closed-cell aluminum foams. In order to get optimal compressive properties on aluminum foams, it is important to obtain the optimal decomposition behavior of a foaming agent. In this paper, different heat treatment temperatures and fixed heat treatment were employed to investigate the d...

  12. Investigation of the Minimum Deployment Time of a Foam/Fabric Composite Material.

    Science.gov (United States)

    1980-09-01

    t 1 .yi lded foam ( at9 room temperdatur0e) rha foam mixture and had to be enlarged to 0.375 in. (9.5 cent or greater closed-cell content. Foam...Weapons Laboratory, September 1968). Marsden, J. N., Quick-Setting Foam Research Support Salyer, 1. 0., J. L. Schwendeman, A. Wojtowicz, R. T. and Spray

  13. Nanoparticle-stabilized CO₂ foam for CO₂ EOR application

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ning [New Mexico Petroleum Recovery Research Center, Socorro, NM (United States); Lee, Robert [New Mexico Petroleum Recovery Research Center, Socorro, NM (United States); Yu, Jianjia [New Mexico Petroleum Recovery Research Center, Socorro, NM (United States); Li, Liangxiong [New Mexico Petroleum Recovery Research Center, Socorro, NM (United States); Bustamante, Elizabeth [New Mexico Petroleum Recovery Research Center, Socorro, NM (United States); Khalil, Munawar [New Mexico Petroleum Recovery Research Center, Socorro, NM (United States); Mo, Di [New Mexico Petroleum Recovery Research Center, Socorro, NM (United States); Jia, Bao [New Mexico Petroleum Recovery Research Center, Socorro, NM (United States); Wang, Sai [New Mexico Petroleum Recovery Research Center, Socorro, NM (United States); San, Jingshan [New Mexico Petroleum Recovery Research Center, Socorro, NM (United States); An, Cheng [New Mexico Petroleum Recovery Research Center, Socorro, NM (United States)

    2015-01-31

    The purpose of this project was to develop nanoparticle-stabilized CO₂ foam for CO₂ -EOR application, in which nanoparticles instead of surfactants are used for stabilizing CO₂ foam to improve the CO₂ sweep efficiency and increase oil recovery. The studies included: (1) investigation of CO₂ foam generation nanoparticles, such as silica nanoparticles, and the effects of particle concentration and surface properties, CO₂/brine ratio, brine salinity, pressure, and temperature on foam generation and foam stability; (2) coreflooding tests to understand the nanoparticle-stabilized CO₂ foam for waterflooded residual oil recovery, which include: oil-free coreflooding experiments with nanoparticle-stabilized CO₂ foam to understand the transportation of nanoparticles through the core; measurements of foam stability and CO₂ sweep efficiency under reservoir conditions to investigate temperature and pressure effects on the foam performance and oil recovery as well as the sweep efficiency in different core samples with different rock properties; and (3) long-term coreflooding experiments with the nanoparticle- stabilized CO₂ foam for residual oil recovery. Finally, the technical and economical feasibility of this technology was evaluated.

  14. Structural Foams of Biobased Isosorbide-Containing Copolycarbonate

    Directory of Open Access Journals (Sweden)

    Stefan Zepnik

    2017-01-01

    Full Text Available Isosorbide-containing copolycarbonate (Bio-PC is a partly biobased alternative to conventional bisphenol A (BPA based polycarbonate (PC. Conventional PC is widely used in polymer processing technologies including thermoplastic foaming such as foam injection molding. At present, no detailed data is available concerning the foam injection molding behavior and foam properties of Bio-PC. This contribution provides first results on injection-molded foams based on isosorbide-containing PC. The structural foams were produced by using an endothermic chemical blowing agent (CBA masterbatch and the low pressure foam injection molding method. The influence of weight reduction and blowing agent concentration on general foam properties such as density, morphology, and mechanical properties was studied. The test specimens consist of a foam core in the center and compact symmetrical shell layers on the sides. The thickness of the foam core increases with increasing weight reduction irrespective of the CBA concentration. The specific (mechanical bending properties are significantly improved and the specific tensile properties can almost be maintained while reducing the density of the injection-molded parts.

  15. Space Shuttle Stiffener Ring Foam Failure Analysis, a Non-Conventional Approach

    Science.gov (United States)

    Howard, Philip M.

    2015-01-01

    The Space Shuttle Program made use of the excellent properties of rigid polyurethane foam for cryogenic tank insulation and as structural protection on the solid rocket boosters. When foam applications de-bond, classical methods of failure analysis did not provide root cause of the failure of the foam. Realizing that foam is the ideal media to document and preserve its own mode of failure, thin sectioning was seen as a logical approach for foam failure analysis to observe the three dimensional morphology of the foam cells. The cell foam morphology provided a much greater understanding of the failure modes than previously achieved.

  16. Foams theory, measurements, and applications

    CERN Document Server

    Khan, Saad A

    1996-01-01

    This volume discusses the physics and physical processes of foam and foaming. It delineates various measurement techniques for characterizing foams and foam properties as well as the chemistry and application of foams. The use of foams in the textile industry, personal care products, enhanced oil recovery, firefighting and mineral floatation are highlighted, and the connection between the microstructure and physical properties of foam are detailed. Coverage includes nonaqueous foams and silicone antifoams, and more.

  17. Numerical modeling of foam flows

    International Nuclear Information System (INIS)

    Cheddadi, Ibrahim

    2010-01-01

    Liquid foam flows are involved in numerous applications, e.g. food and cosmetics industries, oil extraction, nuclear decontamination. Moreover, their study leads to fundamental knowledge: as it is easier to manipulate and analyse, foam is used as a model material to understand the flow of emulsions, polymers, pastes, or cell aggregates, all of which display both solid and liquid behaviour. Systematic experiments performed by Francois Graner et al. provide precise data that emphasize the non Newtonian properties of the foam. Meanwhile, Pierre Saramito proposed a visco-elasto-plastic continuous tensorial model, akin to predict the behaviour of the foam. The goal of this thesis is to understand this complex behaviour, using these two elements. We have built and validated a resolution algorithm based on a bidimensional finite elements methods. The numerical solutions are in excellent agreement with the spatial distribution of all measured quantities, and confirm the predictive capabilities of the model. The dominant parameters have been identified and we evidenced the fact that the viscous, elastic, and plastic contributions to the flow have to be treated simultaneously in a tensorial formalism. We provide a substantial contribution to the understanding of foams and open the path to realistic simulations of complex VEP flows for industrial applications. (author)

  18. High Temperature Alkaline Electrolysis Cells with Metal Foam Based Gas Diffusion Electrodes

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2016-01-01

    Alkaline electrolysis cells operating at 250°C and 40 bar are able to convert electrical energy into hydrogen at very high efficiencies and power densities. In the present work we demonstrate the application of a PTFE hydrophobic network and Ag nanowires as oxygen evolution electrocatalyst...

  19. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhonghua [Department of Burn and Plastic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Department of Burn and Plastic Surgery, The Fourth People' s Hospital Of Jinan, Jinan 250031 (China); Wang, Haiqin [Department of Obstetrics and Gynecology, The Fifth People' s Hospital Of Jinan, Jinan 250022 (China); Yang, Bo; Sun, Yukai [Department of Burn and Plastic Surgery, The Fourth People' s Hospital Of Jinan, Jinan 250031 (China); Huo, Ran, E-mail: rhuo12@163.com [Department of Burn and Plastic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China)

    2015-12-01

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing. - Highlights: • The GFs promoted the growth and proliferation of MSCs. • The GFs loaded with MSCs obviously facilitated wound closure in the animal model. • An anti-scarring effect was observed in the presence of 3D-GF scaffold and MSCs. • The GF scaffold loaded with MSCs has great effect on skin wound healing.

  20. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring

    International Nuclear Information System (INIS)

    Li, Zhonghua; Wang, Haiqin; Yang, Bo; Sun, Yukai; Huo, Ran

    2015-01-01

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing. - Highlights: • The GFs promoted the growth and proliferation of MSCs. • The GFs loaded with MSCs obviously facilitated wound closure in the animal model. • An anti-scarring effect was observed in the presence of 3D-GF scaffold and MSCs. • The GF scaffold loaded with MSCs has great effect on skin wound healing

  1. Polyurethane-Foam Maskant

    Science.gov (United States)

    Bodemeijer, R.

    1985-01-01

    Brown wax previously used to mask hardware replaced with polyurethane foam in electroplating and electroforming operations. Foam easier to apply and remove than wax and does not contaminate electrolytes.

  2. The foamed structures in numerical testing

    Science.gov (United States)

    John, Antoni; John, Małgorzata

    2018-01-01

    In the paper numerical simulation of the foamed metal structures using numerical homogenization algorithm is prescribed. From the beginning, numerical model of heterogeneous porous simplified structures of typical foamed metal, based on the FEM was built and material parameters (coefficients of elasticity matrix of the considered structure) were determined with use of numerical homogenization algorithm. During the work the different RVE models of structure were created and their properties were compared at different relative density, different numbers and the size and structure of the arrangement of voids. Finally, obtained results were used in modeling of typical elements made from foam metals structures - sandwich structure and profile filled with metal foam. Simulation were performed for different dimensions of cladding and core. Additionally, the test of influence material orientation (arrangement of voids in RVE element) on the maximum stresses and displacement during bending test was performed.

  3. Processing, Characterization, and Modeling of Polymer/Clay Nanocomposite Foams

    Science.gov (United States)

    Jo, Choonghee; Naguib, Hani E.

    2007-04-01

    The effects of the material parameters and processing conditions on the foam morphologies, and mechanical properties of polymer/clay nanocomposite foams were studied. Microcellular closed-cell nanocomposite foams were manufactured with poly(methylmethacrylate) (PMMA) and high density polyethylene (HDPE), where the nanoclay loadings of 0.5, 1.0, and 2.0 wt% were used. The effect of clay contents and foaming conditions on the volume expansion ratio, cell size, elastic modulus, tensile strength, and elongation at break were investigated and compared between amorphous and semicrystalline polymers. An elastic modulus model for tensile behavior of foams was proposed by using the micromechanics theory. The model was expressed in terms of microstructural properties of polymer and physical properties of the foams. The tensile experimental data of the foams were compared with those predicted by the theoretical model.

  4. The 3D structure of real polymer foams.

    Science.gov (United States)

    Montminy, Matthew D; Tannenbaum, Allen R; Macosko, Christopher W

    2004-12-01

    The intricate structure of polymeric foams may be examined using 3D imaging techniques such as MRI or X-ray tomography followed by image processing. Using a new 3D image processing technique, six images of polyurethane foams were analyzed to create computerized 3D models of the samples. Measurements on these models yielded distributions of many microstructural features, including strut length and window and cell shape distributions. Nearly 8000 struts, 4000 windows, and 376 cells were detected and measured in six polyurethane foam samples. When compared against previous theories and studies, these measurements showed that the structure of real polymeric foams differs significantly from both equilibrium models and aqueous foams. For example, previous studies of aqueous foams showed that about 70% of foam windows were pentagons. In the polymeric sample studied here, only 55% of windows were pentagonal.

  5. Study of Thermal Properties of Cast Metal- Ceramic Composite Foams

    Directory of Open Access Journals (Sweden)

    Gawdzińska K.

    2017-12-01

    Full Text Available Owing to its properties, metallic foams can be used as insulation material. Thermal properties of cast metal-ceramic composite foams have applications in transport vehicles and can act as fire resistant and acoustic insulators of bulkheads. This paper presents basic thermal properties of cast and foamed aluminum, the values of thermal conductivity coefficient of selected gases used in foaming composites and thermal capabilities of composite foams (AlSi11/SiC. A certificate of non-combustibility test of cast aluminum-ceramic foam for marine applications was included inside the paper. The composite foam was prepared by the gas injection method, consisting in direct injection of gas into liquid metal. Foams with closed and open cells were examined. The foams were foaming with foaming gas consisting of nitrogen or air. This work is one of elements of researches connected with description of properties of composite foams. In author's other works acoustic properties of these materials will be presented.

  6. Electrochemical Energy Storage Application and Degradation Analysis of Carbon-Coated Hierarchical NiCo2S4 Core-Shell Nanowire Arrays Grown Directly on Graphene/Nickel Foam.

    Science.gov (United States)

    Zou, Rujia; Yuen, Muk Fung; Yu, Li; Hu, Junqing; Lee, Chun-Sing; Zhang, Wenjun

    2016-02-01

    We developed a new electrode comprising thin carbon layer coated hierarchical NiCo2S4 core-shell nanowire arrays (NiCo2S4@C CSNAs) on graphene/Ni foam (Ni@G) substrates. The electrode showed outstanding electrochemical characteristics including a high specific capacitance of 253 mAh g(-1) at 3 A g(-1), high rate capability of 163 mAh g(-1) at 50 A g(-1) (~64.4% of that at 3 A g(-1)), and long-term cycling stability with a capacity retention of 93.9% after 5000 cycles. Comparative studies on the degradation of hierarchical NiCo2S4 CSNA electrodes with and without carbon coatings revealed that the morphology pulverization, structural separation at core/shell interface, and irretrievably chemical composition change of NiCo2S4 CSNAs electrode are major factors that deteriorate the electrochemical performance of the electrodes without carbon coating. The favorable roles of carbon coatings on hierarchical NiCo2S4 CSNAs were further clarified: (1) serving as a physical buffering layer that suppresses the structural breakdown; (2) retarding the chemical composition conversion of the NiCo2S4 CSNAs; and (3) providing extra path for charge transition in addition to the NiCo2S4 core nanowires. Understanding of the degradation mechanisms and the significance of the surface carbon coatings would provide useful guidelines for the design of new electrode materials for high-performance electrochemical devices.

  7. Foam Glass for Construction Materials

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund

    2016-01-01

    in a solid foam glass. The foam glass industry employs a range of different melt precursors and foaming agents. Recycle glass is key melt precursors. Many parameters influence the foaming process and optimising the foaming conditions is very time consuming. The most challenging and attractive goal is to make...... the foaming process for foam glass with closed pores. In addition, it is shown that melt foaming should preferably be performed in a viscosity limited regime. Finally, it is suggested that the foaming agent contributes significantly to the solid conductivity of foam glass....

  8. Foam engineering fundamentals and applications

    CERN Document Server

    2012-01-01

    Containing contributions from leading academic and industrial researchers, this book provides a much needed update of foam science research. The first section of the book presents an accessible summary of the theory and fundamentals of foams. This includes chapters on morphology, drainage, Ostwald ripening, coalescence, rheology, and pneumatic foams. The second section demonstrates how this theory is used in a wide range of industrial applications, including foam fractionation, froth flotation and foam mitigation. It includes chapters on suprafroths, flotation of oil sands, foams in enhancing petroleum recovery, Gas-liquid Mass Transfer in foam, foams in glass manufacturing, fire-fighting foam technology and consumer product foams.

  9. Gamma-irradiated cross-linked LDPE foams: Characteristics and properties

    Science.gov (United States)

    Cardoso, E. C. L.; Scagliusi, S. R.; Parra, D. F.; Lugão, A. B.

    2013-03-01

    Foamed polymers are future materials, as they are increasingly considered "green materials" due to their interesting properties at very low consumption of raw materials. They can be used to improve appearance of insulation structures, thermal and acoustic insulation, core materials for sandwich panels, fabrication of furniture and flotation materials or to reduce costs involving materials. Low-density polyethylene is widely used because of its excellent properties, such as softness, elasticity, processibility and insulation. In general, cross-linking is often applied to improve the thermal and mechanical properties of polyethylene products, due to the formation of a three-dimensional network. In particular for the production of PE foams, cross-linking is applied prior the expansion to control bubble formation, cell characteristics and final properties of the foam. However, the usual production process of PE foams is a process in which a gaseous blowing agent is injected into a melted thermoplastic polymer, under pressure, to form a solution between blowing agent and melted polymer. An extrusion system is provided for foaming the polymer, supplied to an extruder and moving through a rotating screw. The pressure must be high enough to keep the gas blowing agent (or foaming agent) in the solution with the melt. The foaming agent is then diffused and dissolved in the molten material to form a single-phase solution. In the present work carbon dioxide was used as the bowing agent, a chemically stable and non-toxic gas, with good diffusion coefficient; gas pressure used varied within a 20-40 bar range. Some requirements for physical foaming are required, as low friction heat generation, homogeneous melt temperature distribution, melt temperature at die exit just above crystallization temperature (die) and high melt strength during expansion. This work studied foams properties gamma-irradiated within 0, 10, 15, 20, 25, and 30 kGy, from a LDPE exhibiting 2.6 g/10 min Melt

  10. Different cell fates from cell-cell interactions: core architectures of two-cell bistable networks.

    Science.gov (United States)

    Rouault, Hervé; Hakim, Vincent

    2012-02-08

    The acquisition of different fates by cells that are initially in the same state is central to development. Here, we investigate the possible structures of bistable genetic networks that can allow two identical cells to acquire different fates through cell-cell interactions. Cell-autonomous bistable networks have been previously sampled using an evolutionary algorithm. We extend this evolutionary procedure to take into account interactions between cells. We obtain a variety of simple bistable networks that we classify into major subtypes. Some have long been proposed in the context of lateral inhibition through the Notch-Delta pathway, some have been more recently considered and others appear to be new and based on mechanisms not previously considered. The results highlight the role of posttranscriptional interactions and particularly of protein complexation and sequestration, which can replace cooperativity in transcriptional interactions. Some bistable networks are entirely based on posttranscriptional interactions and the simplest of these is found to lead, upon a single parameter change, to oscillations in the two cells with opposite phases. We provide qualitative explanations as well as mathematical analyses of the dynamical behaviors of various created networks. The results should help to identify and understand genetic structures implicated in cell-cell interactions and differentiation. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Structure and mechanics of solid foam

    Science.gov (United States)

    Miller, Erin Ashley

    Solid foams appear in a variety of settings, including impact absorption, sound damping, and structural components. However, the cellular structure of a solid foam allows it to deform in a much more complicated manner than a typical continuum solid material, leading to both interesting physics questions and also unique engineering challenges. There has been considerable work in the physics community in recent years with regards to non-traditional theories of elasticity, particularly in the context of disordered materials with some kind of "mesoscale" structure such as sandpiles, cytoskeletal networks in cells, and weakly interacting glasses. Here, we seek to address several issues. First, what is the structure of a solid foam and how it is similar or different from the structure of liquid froths? Second, how does the structure of solid foam affects its mechanical properties? Third, under what conditions can a continuum model be used to describe a solid foam? We address these questions using a combination of experiment and simulation. We have developed an x-ray microtomography apparatus to image foams in 3-D, and assembled a series of computational tools to enable machine vision recognition of foam structures. We present here a case study of the structure of an open-cell carbon foam sample, and compare its structure to that of a liquid froth. We have also carried out a series of solid mechanics simulations in order to observe how model disordered foam structures deform, both on the microscale and in an ensemble average. Based on this, we find that 2-D disordered model foams spontaneously form fluctuations in response to a constant strain perturbation. The fluctuation in the displacement field has a characteristic length scale of around 10 edge lengths; above this length scale, or averaged over many realizations of disorder, solid foams are well-described by continuum elasticity theory. The combination of experiment, analysis, and simulation described here can

  12. Hibiscus sabdariffa leaf polyphenolic extract inhibits LDL oxidation and foam cell formation involving up-regulation of LXRα/ABCA1 pathway.

    Science.gov (United States)

    Chen, Jing-Hsien; Wang, Chau-Jong; Wang, Chi-Ping; Sheu, Jenn-Yuan; Lin, Chia-Liang; Lin, Hui-Hsuan

    2013-11-01

    The oxidative modification of low-density lipoprotein (LDL) is involved in the pathogenesis of atherosclerotic lesions through the formation of macrophage-derived foam cells. In the present study, we aimed to investigate the anti-atherosclerotic effect of Hibiscus sabdariffa leaf polyphenolic extract (HLP), which is rich in flavonoid. The inhibitory effect of HLP on oxidation and lipid peroxidation of LDL was defined in vitro. HLP showed potential in reducing foam cell formation and intracellular lipid accumulation in oxidised-LDL (ox-LDL)-induced macrophage J774A.1 cells under non-cytotoxic concentrations. Molecular data showed these influences of HLP might be mediated via liver-X receptor α (LXRα)/ATP-binding cassette transporter A1 (ABCA1) pathway, as demonstrated by the transfection of LXRα siRNA. Our data implied that HLP up-regulated the LXRα/ABCA1 pathway, which in turn led to stimulation of cholesterol removal from macrophages and delay atherosclerosis. These results suggested that HLP potentially could be developed as an anti-atherosclerotic agent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The pro-fibrotic and anti-inflammatory foam cell macrophage paradox

    Directory of Open Access Journals (Sweden)

    Anita C. Thomas

    2015-12-01

    Full Text Available The formation of foamy macrophages by sequestering extracellular modified lipids is a key event in atherosclerosis. However, there is controversy about the effects of lipid loading on macrophage phenotype, with in vitro evidence suggesting either pro- or anti-inflammatory consequences. To investigate this in vivo we compared the transcriptomes of foamy and non-foamy macrophages that accumulate in experimental subcutaneous granulomas in fat-fed ApoE null mice or normal chow-fed wild-type mice, respectively. Consistent with previous studies in peritoneal macrophages from LDL receptor null mice (Spann et al., 2012 [1], we found that anti-inflammatory LXR/RXR pathway genes were over-represented in the foamy macrophages, but there was no change in M1 or M2 phenotypic markers. Quite unexpectedly, however, we found that genes related to the induction of fibrosis had also been up-regulated (Thomas et al., 2015 [2]. The progression of the foamy macrophages along anti-inflammatory and pro-fibrotic pathways was confirmed using immunohistochemistry (described fully in our primary research article (Thomas et al., 2015 [2]. Here we provide additional details on production of the macrophages and their transcriptomic comparison, with the raw and processed microarray data deposited in GEO (accession number GSE70126. Our observations on these cells are indeed paradoxical, because foamy macrophages have long been implicated in promoting inflammation, extracellular matrix degradation and atherosclerotic plaque rupture, which must be provoked by additional local mediators. Our findings probably explain how very early macrophage-rich lesions maintain their structural integrity.

  14. Compact and Robust Refilling and Connectorization of Hollow Core Photonic Crystal Fiber Gas Reference Cells

    Science.gov (United States)

    Poberezhskiy, Ilya Y.; Meras, Patrick; Chang, Daniel H.; Spiers, Gary D.

    2007-01-01

    This slide presentation reviews a method for refilling and connectorization of hollow core photonic crystal fiber gas reference cells. Thees hollow-core photonic crystal fiber allow optical propagation in air or vacuum and are for use as gas reference cell is proposed and demonstrated. It relies on torch-sealing a quartz filling tube connected to a mechanical splice between regular and hollow-core fibers.

  15. Foam process models.

    Energy Technology Data Exchange (ETDEWEB)

    Moffat, Harry K.; Noble, David R.; Baer, Thomas A. (Procter & Gamble Co., West Chester, OH); Adolf, Douglas Brian; Rao, Rekha Ranjana; Mondy, Lisa Ann

    2008-09-01

    In this report, we summarize our work on developing a production level foam processing computational model suitable for predicting the self-expansion of foam in complex geometries. The model is based on a finite element representation of the equations of motion, with the movement of the free surface represented using the level set method, and has been implemented in SIERRA/ARIA. An empirically based time- and temperature-dependent density model is used to encapsulate the complex physics of foam nucleation and growth in a numerically tractable model. The change in density with time is at the heart of the foam self-expansion as it creates the motion of the foam. This continuum-level model uses an homogenized description of foam, which does not include the gas explicitly. Results from the model are compared to temperature-instrumented flow visualization experiments giving the location of the foam front as a function of time for our EFAR model system.

  16. Experimental Investigations of Space Shuttle BX-265 Foam

    Science.gov (United States)

    Lerch, Bradley A.; Sullivan, Roy M.

    2009-01-01

    This report presents a variety of experimental studies on the polyurethane foam, BX-265. This foam is used as a close-out foam insulation on the space shuttle external tank. The purpose of this work is to provide a better understanding of the foam s behavior and to support advanced modeling efforts. The following experiments were performed: Thermal expansion was measured for various heating rates. The in situ expansion of foam cells was documented by heating the foam in a scanning electron microscope. Expansion mechanisms are described. Thermogravimetric analysis was performed at various heating rates and for various environments. The glass transition temperature was also measured. The effects of moisture on the foam were studied. Time-dependent effects were measured to give preliminary data on viscoelastoplastic properties.

  17. Mitochondrion-Targeted Peptide SS-31 Inhibited Oxidized Low-Density Lipoproteins-Induced Foam Cell Formation through both ROS Scavenging and Inhibition of Cholesterol Influx in RAW264.7 Cells

    Directory of Open Access Journals (Sweden)

    Shuangying Hao

    2015-12-01

    Full Text Available Foam cell formation as a result of imbalance of modified cholesterol influx and efflux by macrophages is a key to the occurrence and development of atherosclerosis. Oxidative stress is thought to be involved in the pathogenesis of atherosclerosis. SS-31 is a member of the Szeto-Schiller (SS peptides shown to specifically target the inner mitochondrial membrane to scavenge reactive oxygen species. In this study, we investigated whether SS-31 may provide protective effect on macrophage from foam cell formation in RAW264.7 cells. The results showed that SS-31 inhibited oxidized low-density lipoproteins (ox-LDL-induced foam cell formation and cholesterol accumulation, demonstrated by intracellular oil red O staining and measurement of cholesterol content. The mechanism was revealed that SS-31 did not only significantly attenuated ox-LDL-induced generation of reactive oxygen species (ROS and increased the activities of superoxide dismutases, but also dose-dependently inhibited the expression of CD36 and LOX-1, two scavenger receptors of ox-LDL, while the expression of ATP-binding cassette A1 and G1, playing a pivotal role in cholesterol efflux, was not affected. As a result, SS-31 decreased pro-inflammatory cytokines such as interleukin 6 and tumor necrosis factor alpha, suggesting the prevention of inflammatory responses. In conclusion, our results demonstrate that SS-31 provides a beneficial effect on macrophages from foam cell formation, likely, through both ROS scavenging and inhibition of cholesterol influx. Therefore, SS-31 may potentially be of therapeutic relevance in prevention of human atherogenesis.

  18. Hepatitis C virus core protein potentiates proangiogenic activity of hepatocellular carcinoma cells.

    Science.gov (United States)

    Shao, Yu-Yun; Hsieh, Min-Shu; Wang, Han-Yu; Li, Yong-Shi; Lin, Hang; Hsu, Hung-Wei; Huang, Chung-Yi; Hsu, Chih-Hung; Cheng, Ann-Lii

    2017-10-17

    Increased angiogenic activity has been demonstrated in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), but the mechanism was unclear. To study the role of HCV core protein, we used tube formation and Matrigel plug assays to assess the proangiogenic activity of an HCC cell line, HuH7, and 2 of its stable clones-HuH7-core-high and HuH7-core-low, with high and low HCV core protein expression, respectively. In both assays, HuH7-core-high and HuH7-core-low cells dose-dependently induced stronger angiogenesis than control cells. HuH7 cells with HCV core protein expression showed increased mRNA and protein expression of vascular endothelial growth factor (VEGF). VEGF inhibition by bevacizumab reduced the proangiogenic activity of HuH7-core-high cells. The promotor region of VEGF contains the binding site of activator protein-1 (AP-1). Compared with controls, HuH7-core-high cells had an increased AP-1 activity and nuclear localization of phospho-c-jun. AP-1 inhibition using either RNA knockdown or AP-1 inhibitors reduced the VEGF mRNA expression and the proangiogenic activity of HuH7-core-high cells. Among 131 tissue samples from HCC patients, HCV-related HCC revealed stronger VEGF expression than did hepatitis B virus-related HCC. In conclusion, increased VEGF expression through AP-1 activation is a crucial mechanism underlying the proangiogenic activity of the HCV core protein in HCC cells.

  19. Urotensin II increases foam cell formation by repressing ABCA1 expression through the ERK/NF-κB pathway in THP-1 macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan [Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan (China); Wu, Jian-Feng [Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan (China); Tang, Yan-Yan; Zhang, Min; Li, Yuan [Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan (China); Chen, Kong; Zeng, Meng-Ya [Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan (China); Yao, Feng; Xie, Wei [Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan (China); Zheng, Xi-Long [Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1 (Canada); Zeng, Gao-Feng, E-mail: qichingnudou@tom.com [Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan (China); Tang, Chao-Ke, E-mail: tangchaoke@qq.com [Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan (China)

    2014-10-03

    Highlights: • U II reduces cholesterol efflux in THP-1 macrophages. • U II decreases the expression of ABCA1. • Inhibition of the ERK/NF-κB pathway reduces U II effects on ABCA1 expression and cholesterol efflux. - Abstract: Objective: Foam cell formation in the arterial wall plays a key role in the development of atherosclerosis. Recent studies showed that Urotensin II (U II) is involved in the pathogenesis of atherosclerosis. Here we examined the effects of human U II on ATP-binding cassette transporter A1 (ABCA1) expression and the underlying mechanism in THP-1 macrophages. Methods and results: Cultured THP-1 macrophages were treated with U II, followed by measuring the intracellular lipid contents, cholesterol efflux and ABCA1 levels. The results showed that U II dramatically decreased ABCA1 levels and impaired cholesterol efflux. However, the effects of U II on ABCA1 protein expression and cellular cholesterol efflux were partially reversed by inhibition of extracellular signal regulated kinase 1/2 (ERK1/2) and nuclear factor kappa B (NF-κB) activity, suggesting the potential roles of ERK1/2 and NF-κB in ABCA1 expression, respectively. Conclusion: Our current data indicate that U II may have promoting effects on the progression of atherosclerosis, likely through suppressing ABCA1 expression via activation of the ERK/NF-κB pathway and reducing cholesterol efflux to promote macrophage foam cell formation.

  20. Processing highly porous calcium phosphate ceramics for use in bioreactor cores for culturing human liver cells in-vitro

    Science.gov (United States)

    Finoli, Anthony

    Chronic liver disease is the 11th highest cause of death in the United States claiming over 30,000 lives in 2009. The current treatment for chronic liver failure is liver transplantation but the availability of tissue is far less than the number of patients in need. To develop human liver tissue in the lab a 3D culturing environment must be created to support the growth of a complex tissue. Hydroxyapatite (HAp) has been chosen as a scaffold material because of its biocompatibility in the body and the ability to create a bioresorbable scaffold. By using a ceramic material, it is possible to create a three dimensional, protective environment in which tissue can grow. The first part of this study is to examine the behavior of adult human liver cells grown on composites of HAp and different biocompatible hydrogels. Porous HAp has been created using an emulsion foaming technique and cells are injected into the structure after being suspended in a hydrogel and are kept in culture for up to 28 days. Functional assays, gene expression and fluorescent microscopy will be used to examine these cultures. The second part of this study will be to develop a processing technique to create a resorbable scaffold that incorporates a vascular system template. Previous experiments have shown the high temperature decomposition of HAp into resorbable calcium phosphates will be used to create a multiphase material. By controlling the amount of transformation product formed, it is proposed that the resorption of the scaffold can be tailored. To introduce a pore network to guide the growth of a vascular system, a positive-negative casting technique has also been developed. A positive polymer copy can be made of a natural vascular system and ceramic is foamed around the copy. During sintering, the polymer is pyrolyzed leaving a multiscale pore network in the ceramic. By combining these techniques, it is proposed that a calcium phosphate bioreactor core can be processed that is suitable for

  1. Coated foams, preparation, uses and articles

    Science.gov (United States)

    Duchane, D.V.; Barthell, B.L.

    1982-10-21

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tension of the polymer solution used to coat are all very important to the coating.

  2. Drainage and Stratification Kinetics of Foam Films

    Science.gov (United States)

    Zhang, Yiran; Sharma, Vivek

    2014-03-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Foam lifetime, drainage kinetics and stability are strongly influenced by surfactant type (ionic vs non-ionic), and added proteins, particles or polymers modify typical responses. The rate at which fluid drains out from a foam film, i.e. drainage kinetics, is determined in the last stages primarily by molecular interactions and capillarity. Interestingly, for certain low molecular weight surfactants, colloids and polyelectrolyte-surfactant mixtures, a layered ordering of molecules, micelles or particles inside the foam films leads to a stepwise thinning phenomena called stratification. Though stratification is observed in many confined systems including foam films containing particles or polyelectrolytes, films containing globular proteins seem not to show this behavior. Using a Scheludko-type cell, we experimentally study the drainage and stratification kinetics of horizontal foam films formed by protein-surfactant mixtures, and carefully determine how the presence of proteins influences the hydrodynamics and thermodynamics of foam films.

  3. Investigation of Chemical-Foam Design as a Novel Approach toward Immiscible Foam Flooding for Enhanced Oil Recovery.

    Science.gov (United States)

    Hosseini-Nasab, S M; Zitha, P L J

    2017-10-19

    Strong foam can be generated in porous media containing oil, resulting in incremental oil recovery; however, oil recovery factor is restricted. A large fraction of oil recovered by foam flooding forms an oil-in-water emulsion, so that costly methods may need to be used to separate the oil. Moreover, strong foam could create a large pressure gradient, which may cause fractures in the reservoir. This study presents a novel chemical-foam flooding process for enhanced oil recovery (EOR) from water-flooded reservoirs. The presented method involved the use of chemically designed foam to mobilize the remaining oil after water flooding and then to displace the mobilized oil to the production well. A blend of two anionic surfactant formulations was formulated for this method: (a) IOS, for achieving ultralow interfacial tension (IFT), and (b) AOS, for generating a strong foam. Experiments were performed using Bentheimer sandstone cores, where X-ray CT images were taken during foam generation to find the stability of the advancing front of foam propagation and to map the gas saturation for both the transient and the steady-state flow regimes. Then the proposed chemical-foam strategy for incremental oil recovery was tested through the coinjection of immiscible nitrogen gas and surfactant solutions with three different formulation properties in terms of IFT reduction and foaming strength capability. The discovered optimal formulation contains a foaming agent surfactant, a low IFT surfactant, and a cosolvent, which has a high foam stability and a considerably low IFT (1.6 × 10 -2 mN/m). Coinjection resulted in higher oil recovery and much less MRF than the same process with only using a foaming agent. The oil displacement experiment revealed that coinjection of gas with a blend of surfactants, containing a cosolvent, can recover a significant amount of oil (33% OIIP) over water flooding with a larger amount of clean oil and less emulsion.

  4. Foam flow in a model porous medium: I. The effect of foam coarsening.

    Science.gov (United States)

    Jones, S A; Getrouw, N; Vincent-Bonnieu, S

    2018-02-02

    Foam structure evolves with time due to gas diffusion between bubbles (coarsening). In a bulk foam, coarsening behaviour is well defined, but there is less understanding of coarsening in confined geometries such as porous media. Previous predictions suggest that coarsening will cause foam lamellae to move to low energy configurations in the pore throats, resulting in greater capillary resistance when restarting flow. Foam coarsening experiments were conducted in both a model-porous-media micromodel and in a sandstone core. In both cases, foam was generated by coinjecting surfactant solution and nitrogen. Once steady state flow had been achieved, the injection was stopped and the system sealed off. In the micromodel, the foam coarsening was recorded using time-lapse photography. In the core flood, the additional driving pressure required to reinitiate flow after coarsening was measured. In the micromodel the bubbles coarsened rapidly to the pore size. At the completion of coarsening the lamellae were located in minimum energy configurations in the pore throats. The wall effect meant that the coarsening did not conform to the unconstricted growth laws. The coreflood tests also showed coarsening to be a rapid process. The additional driving pressure to restart flow reached a maximum after just 2 minutes.

  5. Graded porous polyurethane foam: a potential scaffold for oro-maxillary bone regeneration.

    Science.gov (United States)

    Giannitelli, S M; Basoli, F; Mozetic, P; Piva, P; Bartuli, F N; Luciani, F; Arcuri, C; Trombetta, M; Rainer, A; Licoccia, S

    2015-06-01

    Bone tissue engineering applications demand for biomaterials offering a substrate for cell adhesion, migration, and proliferation, while inferring suitable mechanical properties to the construct. In the present study, polyurethane (PU) foams were synthesized to develop a graded porous material-characterized by a dense shell and a porous core-for the treatment of oro-maxillary bone defects. Foam was synthesized via a one-pot reaction starting from a polyisocyanate and a biocompatible polyester diol, using water as a foaming agent. Different foaming conditions were examined, with the aim of creating a dense/porous functional graded material that would perform at the same time as an osteoconductive scaffold for bone defect regeneration and as a membrane-barrier to gingival tissue ingrowth. The obtained PU was characterized in terms of morphological and mechanical properties. Biocompatibility assessment was performed in combination with bone-marrow-derived human mesenchymal stromal cells (hBMSCs). Our findings confirm that the material is potentially suitable for guided bone regeneration applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Composite carbon foam electrode

    Science.gov (United States)

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  7. Foam Flows in Analog Porous Media

    Science.gov (United States)

    Meheust, Y.; Géraud, B.; Jones, S. A.; Cantat, I.; Dollet, B.

    2015-12-01

    Foams have been used for decades as displacing fluids for EOR and aquifer remediation, and more recently as carriers of chemical amendments for the remediation of the vadose zone. Apart from various interesting physico-chemical and biochemical properties, foams are better injection fluids due to their low sensitivity to gravity and their peculiar rheology: for foams with bubbles on the order of at least the typical pore size, viscous dissipation arises mostly from the contact zones between the soap films and the walls. In most experimental studies no local information of the foam structure is possible, and only global quantities such as the effective viscosity can be measured. We investigate foam flow through a two-dimensional porous medium consisting of circular obstacles positioned randomly in a horizontal transparent Hele-Shaw cell. The local foam structure is recorded in situ, which provides a measure of the spatial distribution of bubble velocities and sizes at regular time intervals. The flow exhibits a rich phenomenology including preferential flow paths and local flow intermittency/non-stationarity despite the imposed permanent global flow rate. Moreover, the medium selects the bubble size distribution through lamella division-triggered bubble fragmentation. Varying the mean bubble size of the injected foam, its water content, and mean velocity, we characterize those processes systematically and show that the distributions of bubble sizes and velocities are to some extent correlated. We furthermore measure the evolution, along the flow direction, of the distribution of bubble sizes, and measure the efficiency of bubble fragmentation as a function of the control parameters. The bubble fragmentation can be modeled numerically and to some extent analytically, based on statistical measures inferred from the experimental data. This study sheds new light on the local rheology of foams in porous media and opens the way towards quantitative characterization of the

  8. High performance polymeric foams

    International Nuclear Information System (INIS)

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-01-01

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy

  9. Anaerobic Digestion Foaming Causes

    OpenAIRE

    Ganidi, Nafsika

    2008-01-01

    Anaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water utilities due to significant impacts on process efficiency and operational costs. Several foaming causes have been suggested over the past few years by researchers. However, the supporting experimental information is limited and in some cases site specific. The present report aimed to provide a better understanding of the anaerobic di...

  10. Tough graphene-polymer microcellular foams for electromagnetic interference shielding.

    Science.gov (United States)

    Zhang, Hao-Bin; Yan, Qing; Zheng, Wen-Ge; He, Zhixian; Yu, Zhong-Zhen

    2011-03-01

    Functional polymethylmethacrylate (PMMA)/graphene nanocomposite microcellular foams were prepared by blending of PMMA with graphene sheets followed by foaming with subcritical CO(2) as an environmentally benign foaming agent. The addition of graphene sheets endows the insulating PMMA foams with high electrical conductivity and improved electromagnetic interference (EMI) shielding efficiency with microwave absorption as the dominant EMI shielding mechanism. Interestingly, because of the presence of the numerous microcellular cells, the graphene-PMMA foam exhibits greatly improved ductility and tensile toughness compared to its bulk counterpart. This work provides a promising methodology to fabricate tough and lightweight graphene-PMMA nanocomposite microcellular foams with superior electrical and EMI shielding properties by simultaneously combining the functionality and reinforcement of the graphene sheets and the toughening effect of the microcellular cells.

  11. Flexible Foam Model.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K.; Lu, Wei-Yang; Werner, Brian T.; Scherzinger, William M.; Lo, Chi S.

    2018-03-01

    Experiments were performed to characterize the mechanical response of a 15 pcf flexible polyurethane foam to large deformation at different strain rates and temperatures. Results from these experiments indicated that at room temperature, flexible polyurethane foams exhibit significant nonlinear elastic deformation and nearly return to their original undeformed shape when unloaded. However, when these foams are cooled to temperatures below their glass transition temperature of approximately -35 o C, they behave like rigid polyurethane foams and exhibit significant permanent deformation when compressed. Thus, a new model which captures this dramatic change in behavior with temperature was developed and implemented into SIERRA with the name Flex_Foam to describe the mechanical response of both flexible and rigid foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments. Next, development of the Flex Foam model for flexible polyurethane and other flexible foams is described. Selection of material parameters are discussed and finite element simulations with the new Flex Foam model are compared with experimental results to show behavior that can be captured with this new model.

  12. Metal Foam Analysis: Improving Sandwich Structure Technology for Engine Fan and Propeller Blades

    Science.gov (United States)

    Fedor, Jessica L.

    2004-01-01

    The Life Prediction Branch of the NASA Glenn Research Center is searching for ways to construct aircraft and rotorcraft engine fan and propeller blades that are lighter and less costly. One possible design is to create a sandwich structure composed of two metal faces sheets and a metal foam core. The face sheets would carry the bending loads and the foam core would have to resist the transverse shear loads. Metal foam is ideal because of its low density and energy absorption capabilities, making the structure lighter, yet still stiff. The material chosen for the face sheets and core was 17-4PH stainless steel, which is easy to make and has appealing mechanical properties. This material can be made inexpensively compared to titanium and polymer matrix composites, the two current fan blade alternatives. Initial tests were performed on design models, including vibration and stress analysis. These tests revealed that the design is competitive with existing designs; however, some problems were apparent that must be addressed before it can be implemented in new technology. The foam did not hold up as well as expected under stress. This could be due to a number of issues, but was most likely a result of a large number of pores within the steel that weakened the structure. The brazing between the face sheets and the foam was also identified as a concern. The braze did not hold up well under shear stress causing the foam to break away from the face sheets. My role in this project was to analyze different options for improving the design. I primarily spent my time examining various foam samples, created with different sintering conditions, to see which exhibited the most favorable characteristics for our purpose. Methods of analysis that I employed included examining strut integrity under a microscope, counting the number of cells per inch, measuring the density, testing the microhardness, and testing the strength under compression. Shear testing will also be done to examine

  13. Macrophage specific overexpression of the human macrophage scavenger receptor in transgenic mice, using a 180-kb yeast artificial chromosome, leads to enhanced foam cell formation of isolated peritoneal macrophages

    NARCIS (Netherlands)

    de Winther, M. P.; van Dijk, K. W.; van Vlijmen, B. J.; Gijbels, M. J.; Heus, J. J.; Wijers, E. R.; van den Bos, A. C.; Breuer, M.; Frants, R. R.; Havekes, L. M.; Hofker, M. H.

    1999-01-01

    Macrophage scavenger receptors class A (MSR) are thought to play an important role in atherogenesis by mediating the unrestricted uptake of modified lipoproteins by macrophages in the vessel wall leading to foam cell formation. To investigate the in vivo role of the MSR in this process, a transgenic

  14. Optimisation of Sintering Factors of Titanium Foams Using Taguchi Method

    OpenAIRE

    S. Ahmad; N. Muhamad; J. Sahari; K. R. Jamaludin

    2010-01-01

    Metal foams have the potential to be used in the production of bipolar plates in Polymer Electron Membrane Fuel Cells (PEMFC). In this paper, pure titanium was used to prepare titanium foam using the slurry method. The electrical conductivity is the most important parameter to be considered in the production of good bipolar plates. To achieve a high conductivity of the titanium foam, the effects of various parameters including temperature, time profile and composition have to be characterised...

  15. Al-TiH2 Composite Foams Magnesium Alloy

    Science.gov (United States)

    Prasada Rao, A. K.; Oh, Y. S.; Ain, W. Q.; A, Azhari; Basri, S. N.; Kim, N. J.

    2016-02-01

    The work presented here in describes the synthesis of aluminum based titanium-hydride particulate composite by casting method and its foaming behavior of magnesium alloy. Results obtained indicate that the Al-10TiH2 composite can be synthesized successfully by casting method. Further, results also reveal that closed-cell magnesium alloy foam can be synthesized by using Al-10TiH2 composite as a foaming agent.

  16. Compressive properties of aluminum foams by gas injection method

    OpenAIRE

    Zhang Huiming; Chen Xiang; Fan Xueliu

    2012-01-01

    The compressive properties of aluminum foams by gas injection method are investigated under both quasi-static and dynamic compressive loads in this paper. The experimental results indicate that the deformation of the aluminum foams goes through three stages: elastic deforming, plastic deforming and densification stage, during both the quasi-static and dynamic compressions. The aluminum foams with small average cell size or low porosity have high yield strength. An increase in strain rate can ...

  17. Expression of core clock genes in colorectal tumour cells compared with normal mucosa

    DEFF Research Database (Denmark)

    Fonnes, S; Donatsky, A M; Gögenur, I

    2015-01-01

    AIM: Experimental studies have shown that some circadian core clock genes may act as tumour suppressors and have an important role in the response to oncological treatment. This study investigated the evidence regarding modified expression of core clock genes in colorectal cancer and its...... expression of colorectal cancer cells compared with healthy mucosa cells from specimens analysed by real-time or quantitative real-time polymer chain reaction. The expression of the core clock genes Period, Cryptochrome, Bmal1 and Clock in colorectal tumours were compared with healthy mucosa and correlated...... with clinicopathological features and survival. RESULTS: Seventy-four articles were identified and 11 studies were included. Overall, gene expression of Period was significantly decreased in colorectal cancer cells compared with healthy mucosa cells. This tendency was also seen in the gene expression of Clock. Other core...

  18. Production and Compressive Characterization of Aluminium MMC Foam Manufactured Using Dual Foaming Agent

    Science.gov (United States)

    Haidar, S.; Ansary, S.; Rahman, A.

    2016-02-01

    Aluminium foams, produced by melting Aluminium alloy (LM6) containing blowing agent(s) and vigorous stirring. TiH2 is a known agent for this. As TiH2 begins to decompose into Ti and gaseous H2 when heated above about 465°C, large volumes of hydrogen gas are rapidly produced, creating bubbles that leads to a closed cell foam. A novel Strategy to enhance the mechanical properties of Al-MMC foams is discussed here, and it is demonstrated that titanium hydride (TiH2) in the form of 10-15 μm diameter particles can be pre-treated by selective oxidation to produce more uniform foams having better compressive properties (yield strength and energy absorption). It is found that the mechanical properties of the foams and the uniformity of cell size distribution is improved when the foam is blown with an optimized mixture of CaCO3 and pretreated TiH2. In order to define the relationship of mechanical properties with relative density of this material, correlations which uniquely defines the compressive behaviour of this modified Al- MMC foam has been developed.

  19. Tumor necrosis factor-α and receptor activator of nuclear factor-κB ligand augment human macrophage foam-cell destruction of extracellular matrix through protease-mediated processes.

    Science.gov (United States)

    Skjøt-Arkil, Helene; Barascuk, Natasha; Larsen, Lise; Dziegiel, Morten; Henriksen, Kim; Karsdal, Morten A

    2012-02-01

    By secreting proteases such as cathepsins and matrix metalloproteinases (MMPs), macrophage foam cells may be a major cause of ruptured atherosclerotic plaques. The aims of the present study were to investigate in vitro role of human macrophage foam cells in degrading type I collagen, a major component of extracellular matrix (ECM) in plaques, and to establish whether the pro-inflammatory molecules, tumor necrosis factor (TNF)-alpha, and receptor activator of nuclear factor-κB ligand (RANK-L) increase this degradation. CD14+ monocytes isolated from peripheral blood were differentiated into macrophage foam cells and cultured on a type I collagen matrix in the presence of TNF-alpha and RANK-L. Matrix degradation was measured by the cathepsin K-generated C-terminal cross-linked telopeptide of type I collagen (CTX-I) and the MMP-generated carboxyterminal telopeptide of type I collagen (ICTP) in supernatants showing that macrophage foam cells secrete MMPs and cathepsin K, resulting in release of ICTP and CTX-I. Stimulation with TNF-alpha increased CTX-I and ICTP dose dependently, with ICTP levels increasing by 59% and CTX-I levels increasing by 43%. RANK-L enhanced the release of CTX-I and ICTP by 56% and 72%, respectively. This is, to our knowledge, the first data describing a simple in vitro system in which macrophage foam cells degradation of matrix proteins can be monitored. This degradation can be enhanced by cytokines since TNF-alpha and RANK-L significantly increased the matrix degradation. This in vitro system in part is a model system for the macrophage-mediated proteolytic degradation of the ECM, which is found in many diseases with an inflammatory component.

  20. Beer foam physics

    NARCIS (Netherlands)

    Ronteltap, A.D.

    1989-01-01

    The physical aspects of beer foam behavior were studied in terms of the four physical processes, mainly involved in the formation and breakdown of foam. These processes are, bubble formation, drainage, disproportionation and coalescence. In detail, the processes disproportionation and

  1. On the crush behavior of an ultra light multi-cell foam-filled composite structures for energy absorption: Part 2-Numerical simulation

    International Nuclear Information System (INIS)

    Taher, Siavash T.; Rizal Zahari; Faizal Mustapha; Ataollahi, Simin

    2010-01-01

    The present paper is dealing with the implementation of the finite element explicit dynamic analysis code module incorporated ANSYS/ LS-DYNA computer software to the simulation of the crash behavior and energy adsorption characteristics of a novel multi-cell cost-effective crash worthy composite sandwich structure. In a previous paper, the authors developed the concept of the triple-layered foam-filled block and submitted experimental results of the crash behaviour and crash worthiness characteristics of such structure. The obtained numerical results of axial compression model of composite blocks are compared with actual experimental data of crash energy adsorption, load-displacement history and crush zone characteristics, showing very good agreement. Theoretical and experimental results showed good similarities in peak load, average load and energy absorption with and without use of two types of collapse trigger mechanism. (author)

  2. Vegetable-origin foam employed in dye extraction in tanning and leather processing facilities

    Directory of Open Access Journals (Sweden)

    José M. Cangemi

    2009-01-01

    Full Text Available This study addressed the use of conventional and vegetable origin polyurethane foams to extract C. I. Acid Orange 61 dye. The quantitative determination of the residual dye was carried out with an UV/Vis absorption spectrophotometer. The extraction of the dye was found to depend on various factors such as pH of the solution, foam cell structure, contact time and dye and foam interactions. After 45 days, better results were obtained for conventional foam when compared to vegetable foam. Despite presenting a lower percentage of extraction, vegetable foam is advantageous as it is considered a polymer with biodegradable characteristics.

  3. Investigation of a Spinel-forming Cu-Mn Foam as an Oxygen Electrode Contact Material in a Solid Oxide Cell Single Repeating Unit

    DEFF Research Database (Denmark)

    Zielke, Philipp; Wulff, Anders Christian; Sun, Xiufu

    2017-01-01

    and steels. The consequence is a low layer and interface strength. A metallic copper manganese foam, which is oxidized under operation conditions into a conductive Cu1+xMn2–xO4 spinel, is presented in this work as a viable contact solution. The foam has been electrochemically tested in a single repeating...... and moderate degradation rates, the CuMn foam presented itself as an interesting cathode contact solution....

  4. Formation fracturing with foam

    Energy Technology Data Exchange (ETDEWEB)

    Blauer, R.E.; Kohlhaas, C.A.

    1974-01-01

    Over 60 wells have been treated with hydraulic fracturing techniques, with foam as the fracturing fluid. These foams contained as much as 95% gaseous phase; most treatments used foams with gas contents in the 65% to 85% range. Foam has several desirable properties for use as a fracturing fluid: high sand-carrying and sand-suspending capability, low fluid loss, low hydrostatic head, low pressure drops due to friction, quick fluid recovery, low formation damage, and no reduction of fracture conductivity due to fluid ingredients. Most applications of foam as a fracturing fluid have been in low permeability gas reservoirs. However, several oil reservoirs also have been successfully treated. Cost of the treatment is approx. the same or slightly less than a treatment with conventional fluids of comparable volume and rate. (25 refs.)

  5. α-Lipoic acid ameliorates foam cell formation via liver X receptor α-dependent upregulation of ATP-binding cassette transporters A1 and G1.

    Science.gov (United States)

    Cheng, Li-Ching; Su, Kuo-Hui; Kou, Yu Ru; Shyue, Song-Kun; Ching, Li-Chieh; Yu, Yuan-Bin; Wu, Yuh-Lin; Pan, Ching-Chian; Lee, Tzong-Shyuan

    2011-01-01

    α-Lipoic acid (α-LA), a key cofactor in cellular energy metabolism, has protective activities in atherosclerosis, yet the detailed mechanisms are not fully understood. In this study, we examined whether α-LA affects foam cell formation and its underlying molecular mechanisms in murine macrophages. Treatment with α-LA markedly attenuated oxidized low-density lipoprotein (oxLDL)-mediated cholesterol accumulation in macrophages, which was due to increased cholesterol efflux. Additionally, α-LA treatment dose-dependently increased protein levels of ATP-binding cassette transporter A1 (ABCA1) and ABCG1 but had no effect on the protein expression of SR-A, CD36, or SR-BI involved in cholesterol homeostasis. Furthermore, α-LA increased the mRNA expression of ABCA1 and ABCG1. The upregulation of ABCA1 and ABCG1 by α-LA depended on liver X receptor α (LXRα), as evidenced by an increase in the nuclear levels of LXRα and LXRE-mediated luciferase activity and its prevention of the expression of ABCA1 and ABCG1 after inhibition of LXRα activity by the pharmacological inhibitor geranylgeranyl pyrophosphate (GGPP) or knockdown of LXRα expression with small interfering RNA (siRNA). Consistently, α-LA-mediated suppression of oxLDL-induced lipid accumulation was abolished by GGPP or LXRα siRNA treatment. In conclusion, LXRα-dependent upregulation of ABCA1 and ABCG1 may mediate the beneficial effect of α-LA on foam cell formation. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Radiation-induced surge of macrophage foam cell formation, oxidative damage, and cytokine release is attenuated by a nanoformulation of curcumin.

    Science.gov (United States)

    Soltani, Behrooz; Bodaghabadi, Narges; Ghaemi, Nasser; Sadeghizadeh, Majid

    2017-03-01

    We examined the potential of a dendrosomal nanoformulation of curcumin (DNC) for intervention of ionizing radiation (IR)-induced damage (particularly leading to atherosclerosis), employing an irradiated THP-1 macrophage model. Differentiated THP-1 macrophages were irradiated and treated with curcumin or DNC nanoformulation (and oxidized low density lipoprotein, ox-LDL, to promote foam cells). Chemical, biochemical, and genetics tools including viability and apoptosis, multiple ELISA, real-time PCR, Western blotting, enzyme activity, and fluorimetry assays were employed to illustrate IR damage as well as the DNC intervention potential. DNC per se at 10 μM exerted no cytotoxic effects on macrophages. However, it caused apoptosis in 2 Gy-irradiated macrophages which were treated with ox-LDL, chiefly through a caspase-dependent pathway involving caspase-3. Concurrently, 10 μM DNC prevented the IR-induced rise in lipid accumulation (72% decrease compared to IR control, p DNC facilitated the uptake of curcumin in irradiated macrophages, increased glutathione peroxidase expression and activity, restored glutathione (GSH) level, and upregulated the expression of a cholesterol efflux gene, ABCA1. Two other antioxidants, resveratrol and N-acetyl cycteine (NAC), could simulate some of the beneficial effects of DNC against IR-induced CD36 expression and lipid accumulation, which were obviated by buthionine sulfoximine (BSO) pre-treatment of macrophages. However, some modulatory effects of DNC, particularly on lipid accumulation and the expression of SR-A and ABCA1 genes, seemed to be independent of its antioxidant effect, since they were still observed in BSO-pretreated macrophages, depleted of GSH. DNC treatment suppresses IR-induced oxidative damage, inflammation, and foam cell formation in macrophages through multiple mechanisms.

  7. Supplementation with linoleic acid-rich soybean oil stimulates macrophage foam cell formation via increased oxidative stress and diacylglycerol acyltransferase1-mediated triglyceride biosynthesis.

    Science.gov (United States)

    Rom, Oren; Jeries, Helana; Hayek, Tony; Aviram, Michael

    2017-01-02

    During the last decades there has been a staggering rise in human consumption of soybean oil (SO) and its major polyunsaturated fatty acid linoleic acid (LA). The role of SO or LA in cardiovascular diseases is highly controversial, and their impact on macrophage foam cell formation, the hallmark of early atherogenesis, is unclear. To investigate the effects of high SO or LA intake on macrophage lipid metabolism and the related mechanisms of action, C57BL/6 mice were orally supplemented with increasing levels of SO-based emulsion or equivalent levels of purified LA for 1 month, followed by analyses of lipid accumulation and peroxidation in aortas, serum and in peritoneal macrophages (MPM) of the mice. Lipid peroxidation and triglyceride mass in aortas from SO or LA supplemented mice were dose-dependently and significantly increased. In MPM from SO or LA supplemented mice, lipid peroxides were significantly increased and a marked accumulation of cellular triglycerides was found in accordance with enhanced triglyceride biosynthesis rate and overexpression of diacylglycerol acyltransferase1 (DGAT1), the key enzyme in triglyceride biosynthesis. In cultured J774A.1 macrophages treated with SO or LA, triglyceride accumulated via increased oxidative stress and a p38 mitogen-activated protein kinase (MAPK)-mediated overexpression of DGAT1. Accordingly, anti-oxidants (pomegranate polyphenols), inhibition of p38 MAPK (by SB202190) or DGAT1 (by oleanolic acid), all significantly attenuated SO or LA-induced macrophage triglyceride accumulation. These findings reveal novel mechanisms by which supplementation with SO or LA stimulate macrophage foam cell formation, suggesting a pro-atherogenic role for overconsumption of SO or LA. © 2016 BioFactors, 43(1):100-116, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  8. Endurance of Damping Properties of Foam-Filled Tubes

    Directory of Open Access Journals (Sweden)

    Matteo Strano

    2015-07-01

    Full Text Available The favorable energy-absorption properties of metal foams have been frequently proposed for damping or anti-crash applications. The aim of this paper is to investigate the endurance of these properties for composite structures, made by a metal or a hybrid metal-polymeric foam used as the core filling of a tubular metal case. The results of experimental tests are shown, run with two types of structures: 1 square steel tubes filled with aluminum or with hybrid aluminum-polymer foams; 2 round titanium tubes filled with aluminum foams. The paper shows that the damping properties of a foam-filled tube change (improve with the number of cycles, while all other dynamic properties are nearly constant. This result is very important for several potential applications where damping is crucial, e.g., for machine tools.

  9. Endurance of Damping Properties of Foam-Filled Tubes.

    Science.gov (United States)

    Strano, Matteo; Marra, Alessandro; Mussi, Valerio; Goletti, Massimo; Bocher, Philippe

    2015-07-07

    The favorable energy-absorption properties of metal foams have been frequently proposed for damping or anti-crash applications. The aim of this paper is to investigate the endurance of these properties for composite structures, made by a metal or a hybrid metal-polymeric foam used as the core filling of a tubular metal case. The results of experimental tests are shown, run with two types of structures: 1) square steel tubes filled with aluminum or with hybrid aluminum-polymer foams; 2) round titanium tubes filled with aluminum foams. The paper shows that the damping properties of a foam-filled tube change (improve) with the number of cycles, while all other dynamic properties are nearly constant. This result is very important for several potential applications where damping is crucial, e.g., for machine tools.

  10. Electrical properties of foamed polypropylene/carbon black composites

    Science.gov (United States)

    Iliev, M.; Kotzev, G.; Vulchev, V.

    2016-02-01

    Polypropylene composites containing carbon black fillers were produced by vibration assisted extrusion process. Solid (unfoamed) composite samples were molded by conventional injection molding method, while structural foams were molded by a low pressure process. The foamed samples were evidenced to have a solid skin-foamed core structure which main parameters were found to depend on the quantity of material injected in the mold. The average bubbles' sizes and their distribution were investigated by scanning electron microscopy. It is established that the conductivity of the foamed samples gradually decreases when reducing the sample density. Nevertheless, the conductivity is found to be lower than the conductivity of the unfoamed samples both being of the same order. The flexural properties of the composites were studied and the results were discussed in the context of the structure parameters of the foamed samples.

  11. High Uric Acid Activates the ROS-AMPK Pathway, Impairs CD68 Expression and Inhibits OxLDL-Induced Foam-Cell Formation in a Human Monocytic Cell Line, THP-1

    Directory of Open Access Journals (Sweden)

    Chaohuan Luo

    2016-11-01

    Full Text Available Background/Aims: Hyperuricemia is part of the metabolic-syndrome cluster of abdominal obesity, impaired glucose tolerance, insulin resistance, dyslipidemia, and hypertension. Monocytes/macrophages are critical in the development of metabolic syndrome, including gout, obesity and atherosclerosis. However, how high uric acid (HUA exposure affects monocyte/macrophage function remains unclear. In this study, we investigated the molecular mechanism of HUA exposure in monocytes/macrophages and its impact on oxidized low-density lipoprotein (oxLDL-induced foam-cell formation in a human monocytic cell line, THP-1. Methods: We primed THP-1 cells with phorbol-12-myristate-13-acetate (PMA for differentiation, then exposed cells to HUA and detected the production of reactive oxygen species (ROS and analyzed the level of phospho-AMPKα. THP-1 cells were pre-incubated with Compound C, an AMPK inhibitor, or N-acetyl-L-cysteine (NAC, a ROS scavenger, or HUA before PMA, to assess CD68 expression and phospho-AMPKα level. PMA-primed THP-1 cells were pre-treated with oxLDL before Compound C and HUA treatment. Western blot analysis was used to examine the levels of phospho-AMPKα, CD68, ABCG1, ABCA1, cyclooxygenase-2 (COX-2 and NF-κB (p65. Flow cytometry was used to assess ROS production and CD68 expression in live cells. Oil-red O staining was used to observe oxLDL uptake in cells. Results: HUA treatment increased ROS production in PMA-primed THP-1 cells; NAC blocked HUA-induced oxidative stress. HUA treatment time-dependently increased phospho-AMPKα level in PMA-primed THP-1 cells. The HUA-induced oxidative stress increased phospho-AMPKα levels, which was blocked by NAC. HUA treatment impaired CD68 expression during cell differentiation by activating the AMPK pathway, which was reversed by Compound C treatment. Finally, HUA treatment inhibited oxLDL uptake in the formation of foam cells in THP-1 cells, which was blocked by Compound C treatment. HUA treatment

  12. Investigation into stress wave propagation in metal foams

    Directory of Open Access Journals (Sweden)

    Li Lang

    2015-01-01

    Full Text Available The aim of this study is to investigate stress wave propagation in metal foams under high-speed impact loading. Three-dimensional Voronoi model is established to represent real closed-cell foam. Based on the one-dimensional stress wave theory and Voronoi model, a numerical model is developed to calculate the velocity of elastic wave and shock wave in metal foam. The effects of impact velocity and relative density of metal foam on the stress wave propagation in metal foams are explored respectively. The results show that both elastic wave and shock wave propagate faster in metal foams with larger relative density; with increasing the impact velocity, the shock wave propagation velocity increase, but the elastic wave propagation is not sensitive to the impact velocity.

  13. Shock Wave Attenuation Using Foam Obstacles: Does Geometry Matter?

    Directory of Open Access Journals (Sweden)

    Hongjoo Jeon

    2015-06-01

    Full Text Available A shock wave impact study on open and closed cell foam obstacles was completed to assess attenuation effects with respect to different front face geometries of the foam obstacles. Five different types of geometries were investigated, while keeping the mass of the foam obstacle constant. The front face, i.e., the side where the incident shock wave impacts, were cut in geometries with one, two, three or four convergent shapes, and the results were compared to a foam block with a flat front face. Results were obtained by pressure sensors located upstream and downstream of the foam obstacle, in addition to high-speed schlieren photography. Results from the experiments show no significant difference between the five geometries, nor the two types of foam.

  14. Injectable silk foams for soft tissue regeneration.

    Science.gov (United States)

    Bellas, Evangelia; Lo, Tim J; Fournier, Eric P; Brown, Joseph E; Abbott, Rosalyn D; Gil, Eun S; Marra, Kacey G; Rubin, J Peter; Leisk, Gary G; Kaplan, David L

    2015-02-18

    Soft tissue fillers are needed for restoration of a defect or augmentation of existing tissues. Autografts and lipotransfer have been under study for soft tissue reconstruction but yield inconsistent results, often with considerable resorption of the grafted tissue. A minimally invasive procedure would reduce scarring and recovery time as well as allow the implant and/or grafted tissue to be placed closer to existing vasculature. Here, the feasibility of an injectable silk foam for soft tissue regeneration is demonstrated. Adipose-derived stem cells survive and migrate through the foam over a 10-d period in vitro. The silk foams are also successfully injected into the subcutaneous space in a rat and over a 3-month period integrating with the surrounding native tissue. The injected foams are palpable and soft to the touch through the skin and returning to their original dimensions after pressure is applied and then released. The foams readily absorb lipoaspirate making the foams useful as a scaffold or template for existing soft tissue filler technologies, useful either as a biomaterial alone or in combination with the lipoaspirate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

    International Nuclear Information System (INIS)

    Hu, Wen-Ta; Li, Hui-Chun; Lee, Shen-Kao; Ma, Hsin-Chieh; Yang, Chee-Hing; Chen, Hung-Ling; Lo, Shih-Yen

    2013-01-01

    Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway

  16. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wen-Ta [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Li, Hui-Chun [Department of Biochemistry, Tzu Chi University, Hualien, Taiwan (China); Lee, Shen-Kao; Ma, Hsin-Chieh; Yang, Chee-Hing; Chen, Hung-Ling [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Lo, Shih-Yen, E-mail: losylo@mail.tcu.edu.tw [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (China)

    2013-05-24

    Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.

  17. Core proteome of the minimal cell: comparative proteomics of three mollicute species.

    Directory of Open Access Journals (Sweden)

    Gleb Y Fisunov

    Full Text Available Mollicutes (mycoplasmas have been recognized as highly evolved prokaryotes with an extremely small genome size and very limited coding capacity. Thus, they may serve as a model of a 'minimal cell': a cell with the lowest possible number of genes yet capable of autonomous self-replication. We present the results of a comparative analysis of proteomes of three mycoplasma species: A. laidlawii, M. gallisepticum, and M. mobile. The core proteome components found in the three mycoplasma species are involved in fundamental cellular processes which are necessary for the free living of cells. They include replication, transcription, translation, and minimal metabolism. The members of the proteome core seem to be tightly interconnected with a number of interactions forming core interactome whether or not additional species-specific proteins are located on the periphery. We also obtained a genome core of the respective organisms and compared it with the proteome core. It was found that the genome core encodes 73 more proteins than the proteome core. Apart of proteins which may not be identified due to technical limitations, there are 24 proteins that seem to not be expressed under the optimal conditions.

  18. Method and apparatus for producing a carbon based foam article having a desired thermal-conductivity gradient

    Science.gov (United States)

    Klett, James W [Knoxville, TN; Cameron, Christopher Stan [Sanford, NC

    2010-03-02

    A carbon based foam article is made by heating the surface of a carbon foam block to a temperature above its graphitizing temperature, which is the temperature sufficient to graphitize the carbon foam. In one embodiment, the surface is heated with infrared pulses until heat is transferred from the surface into the core of the foam article such that the graphitizing temperature penetrates into the core to a desired depth below the surface. The graphitizing temperature is maintained for a time sufficient to substantially entirely graphitize the portion of the foam article from the surface to the desired depth below the surface. Thus, the foam article is an integral monolithic material that has a desired conductivity gradient with a relatively high thermal conductivity in the portion of the core that was graphitized and a relatively low thermal conductivity in the remaining portion of the foam article.

  19. Modeling of Sandwich Sheets with Metallic Foam

    International Nuclear Information System (INIS)

    Mata, H.; Jorge, R. Natal; Fernandes, A. A.; Parente, M. P. L.; Santos, A.; Valente, R. A. F.

    2011-01-01

    World-wide vehicles safety experts agree that significant further reductions in fatalities and injuries can be achieved as a result of the use of new lightweight and energy absorbing materials. On this work, the authors present the development and evaluation of an innovative system able to perform reliable panels of sandwich sheets with metallic foam cores for industrial applications. The mathematical model used to describe the behavior of sandwich shells with metal cores foam is presented and some numerical examples are presented. In order to validate those results mechanical experiments are carried out. Using the crushable foam constitutive model, available on ABAQUS, a set of different mechanical tests were simulated. There are two variants of this model available on ABAQUS: the volumetric hardening model and the isotropic hardening model. As a first approximation we chose the isotropic hardening variant. The isotropic hardening model available uses a yield surface that is an ellipse centered at the origin in the p-q stress plane. Based on this constitutive model for the foam, numerical simulations of the tensile and bulge test will be conducted. The numerical results will be validated using the data obtained from the experimental results.

  20. Application and Analysis of the New Functional Materials of Foam Aluminum

    Directory of Open Access Journals (Sweden)

    Liu Guifang

    2016-01-01

    Full Text Available As a typical metal foams materials, aluminum foam which is a new type of functional materials has excellent properties of sound absorption and damping. In view of its complex internal micro-structure, on the basis of microcosmic cell theory, the paper set a BCC model of sound absorption of aluminum foam that can control its structure and size parameters such as porosity and aperture in micro-structural. The paper gets parameter factors of aluminum foam structure and size and studies its effect to sound absorption of aluminum foam though micro-modeling and proceeds experiment verification. Its turn out that this BCC model can apply to the research of aluminum foam sound absorption, and it can control the sound absorption of aluminum foam through controlling the microcosmic size of aluminum foam cell.

  1. Microbial analysis in biogas reactors suffering by foaming incidents

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; De Francisci, Davide; Treu, Laura

    2014-01-01

    , lipids and carbohydrates before and after foaming incidents was characterized using 16S rRNA gene sequencing. Moreover, the microbial diversity between the liquid and foaming layer was assessed. A number of genera that are known to produce biosurfactants, contain mycolic acid in their cell wall...

  2. Compressive Behaviour and Energy Absorption of Aluminium Foam Sandwich

    Science.gov (United States)

    Endut, N. A.; Hazza, M. H. F. Al; Sidek, A. A.; Adesta, E. T. Y.; Ibrahim, N. A.

    2018-01-01

    Development of materials in automotive industries plays an important role in order to retain the safety, performance and cost. Metal foams are one of the idea to evolve new material in automotive industries since it can absorb energy when it deformed and good for crash management. Recently, new technology had been introduced to replace metallic foam by using aluminium foam sandwich (AFS) due to lightweight and high energy absorption behaviour. Therefore, this paper provides reliable data that can be used to analyze the energy absorption behaviour of aluminium foam sandwich by conducting experimental work which is compression test. Six experiments of the compression test were carried out to analyze the stress-strain relationship in terms of energy absorption behavior. The effects of input variables include varying the thickness of aluminium foam core and aluminium sheets on energy absorption behavior were evaluated comprehensively. Stress-strain relationship curves was used for energy absorption of aluminium foam sandwich calculation. The result highlights that the energy absorption of aluminium foam sandwich increases from 12.74 J to 64.42 J respectively with increasing the foam and skin thickness.

  3. Unprecedented Development of Ultrahigh Expansion Injection-Molded Polypropylene Foams by Introducing Hydrophobic-Modified Cellulose Nanofibers.

    Science.gov (United States)

    Wang, Long; Ishihara, Shota; Hikima, Yuta; Ohshima, Masahiro; Sekiguchi, Takafumi; Sato, Akihiro; Yano, Hiroyuki

    2017-03-22

    Herein, an ultrahigh 18-fold expansion of isotactic polypropylene (iPP)/cellulose nanofiber (CNF) nanocomposite foams was achieved for the first time using a core-back foam injection molding technique. It was found that CNFs were well dispersed and aligned along the cell wall in the core-back direction. Interestingly, the formations of a hybrid shish-kebab of CNFs and classic shish-kebab of PP were simultaneously achieved in the PP/CNF composites. Finally, we proposed that the combination of local strong melt strength, probably resulting from the strong alignment of CNFs and subsequent formation of hybrid shish-kebab structures, and weak melt strength in the unreinforced PP melt might be the driving force for remarkably enhancing the PP foamability.

  4. An air-cell-based cushion for pressure ulcer protection remarkably reduces tissue stresses in the seated buttocks with respect to foams: finite element studies.

    Science.gov (United States)

    Levy, Ayelet; Kopplin, Kara; Gefen, Amit

    2014-02-01

    A sitting-acquired pressure ulcer (PU) is a common injury in wheelchair-bound patients. Preventative measures for the post spinal cord injury (SCI) population include prescription of a supportive thick cushion on the wheelchair, in order to better distribute loads between the buttocks and support surface (which are quantifiable using interface pressure measurements), and potentially, to minimize internal soft tissue loads (which are typically unknown). Information about the biomechanical efficacy of commercially-available structured cushion designs such as air-cell-based (ACB) cushions, gel, and honeycomb-like cushions is sparse. Considering the importance of such evaluations to patient safety and quality of life, we studied the biomechanical performances of an ACB cushion in comparison to standard, flat foam cushions with different stiffness properties. Using a set of finite element (FE) model variants, we determined the mechanical stresses in muscle, fat, and skin tissues under the ischial tuberosities during sitting. Tissue stress analyses were conducted in a reference SCI anatomy, incorporating pathoanatomical and pathophysiological changes associated with chronic SCI, including bone shape adaptation, muscle atrophy, and spasms. We found up to 57% greater immersion and 4 orders-of-magnitude lower muscle, fat, and skin tissue stresses for the ACB cushion. We also found the ACB cushion provides better protection against the aforementioned bone shape adaptation, muscle atrophy, and spasms. Hence, theoretically, the use of a suitable ACB cushion should provide longer safe sitting times for SCI patients with respect to standard foam cushions. Copyright © 2013 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  5. Deep tissue loads in the seated buttocks on an off-loading wheelchair cushion versus air-cell-based and foam cushions: finite element studies.

    Science.gov (United States)

    Peko Cohen, Lea; Gefen, Amit

    2017-12-01

    For wheelchair users, a common injury is a sitting-acquired pressure ulcer (PU) which typically onsets near the interface between the ischial tuberosity (IT) and the overlying soft tissues. The risk of developing PUs can be reduced considerably if an adequate cushion is placed on the wheelchair in order to protect tissues from PUs by minimising interface mechanical loads between the body and cushion and also, exposure to internal soft tissue loads. In this work, we studied the biomechanical performances of an off-loading (OL) cushion with limited adjustability, in comparison to a standard foam cushion and a fully adjustable air-cell-based (ACB) cushion. These different cushion design approaches were methodologically and quantitatively analysed and compared here using a finite element (FE) modelling framework. We determined the internal mechanical deformations, strains and stresses in soft tissues of the seated buttocks during symmetric sitting, in a specific anatomy of a person with a spinal cord injury that was acquired during sitting in an open, magnetic resonance imaging configuration. Our results have shown that strains and stresses in muscle, fat and skin tissues are orders of magnitude lower for the ACB cushion with respect to the standard foam and OL cushions. The OL cushion design has taken the approach of protecting at-risk sites of the buttocks by transferring local internal tissue loads away from the ITs and towards the greater trochanters, at the price of increasing exposure to internal tissue loads at sites other than the ITs. The ACB cushion design, however, has taken a different approach, that is, immersion and envelopment of the entire buttocks structure, which is useful for minimising the exposure to internal tissue loads throughout the whole buttocks. Quantifying performances of wheelchair cushions using FE modelling provides insights into deep tissue loads, which is essential for informed decision-making in developing sitting solutions for

  6. Properties of Starch Based Foams Made by Thermal Pressure Forming

    Directory of Open Access Journals (Sweden)

    J. Štancl

    2008-01-01

    Full Text Available Packaging materials based on expanded polystyrene can be substituted by biodegradable foam, manufactured by direct or indirect electrical heating of a potato starch suspension in a closed mold. This paper deals with an experimental evaluation of selected properties of potato starch and starch foam related to this technology: density, specific heat capacity and specific electrical conductivity of a water suspension of potato starch within the temperature range up to 100 °C, and mass fraction from 5 to 65 %. The electric conductivity and heat capacity changes were observed during direct ohmic heating of a starch suspension between electrodes in a closed cell (feeding voltage 100 V, frequency 50 Hz. Specific electric conductivity increases with temperature, with the exception of the gelatinization region at 60 to 70 °C, and decreases with increasing concentration of starch (the temperature and concentration dependencies were approximated using the Lorentz equation. Direct ohmic heating is restricted by a significant decrease in effective electrical conductivity above a temperature of 100 °C, when evaporated steam worsens the contact with the electrodes. Experiments show that when direct ohmic heating is not combined with indirect contact heating, only 20 % of the water can be evaporated from manufactured samples and the starch foam is not fully formed. This is manifested by only a slight expansion of the heated sample. Only the indirect contact heating from the walls of the mold, with the wall temperature above 180 °C, forms a fixed porous structure (expansion of about 300 % and a crust, ensuring suitable mechanical and thermal insulation properties of the manufactured product. The effective thermal conductivity of the foamed product (sandwich plates with a porous core and a compact crust was determined by the heated wire method, while the porosity of the foam and the thickness of the crust were evaluated by image analysis of colored cross

  7. Effect of Foam on Liquid Phase Mobility in Porous Media

    DEFF Research Database (Denmark)

    Eftekhari, Ali Akbar; Farajzadeh, R.

    2017-01-01

    We investigate the validity of the assumption that foam in porous media reduces the mobility of gas phase only and does not impact the liquid-phase mobility. The foam is generated by simultaneous injection of nitrogen gas and a surfactant solution into sandstone cores and its strength is varied...... by changing surfactant type and concentration. We find, indeed, that the effect of foam on liquid-phase mobility is not pronounced and can be ignored. Our new experimental results and analyses resolve apparent discrepancies in the literature. Previously, some researchers erroneously applied relative...

  8. Rheology of liquid foam

    International Nuclear Information System (INIS)

    Hoehler, R; Cohen-Addad, S

    2005-01-01

    Liquid foams can behave like solids or liquids, depending on the applied stress and on the experimental timescale. Understanding the origin of this complex rheology which gives rise to many applications and which resembles that of many other forms of soft condensed matter made of closely packed soft units requires challenging theoretical questions to be solved. We briefly recall the basic physics and physicochemistry of foams and review the experiments, numerical simulations and theoretical models concerning foam rheology published in recent years. (topical review)

  9. Kelvin's ideal foam structure

    International Nuclear Information System (INIS)

    Weaire, Denis

    2009-01-01

    Among his many extraordinary accomplishments, Kelvin was a pioneer of crystallography, elasticity and materials science. These interests came together to inspire his speculation on the nature of the ether in 1887. He conceived it to be an ordered liquid foam, of minimal surface area. Kelvin's ideal structure of foam has been realised in the laboratory only recently. In the meantime it was surpassed (in terms of surface area minimisation) by the Weaire-Phelan foam, which is the basis for one of the main buildings of the Beijing Olympics.

  10. Cell Growth and Survival in Ovarian Epithelial Cancer Core A

    Science.gov (United States)

    2003-08-01

    the marine invertebrate Sipunculus nudus (Linnaeus). Science 206:698-700, 1979. 128. Chilton BS, Nicosia SV. Separation of rabbit endocervical cells...urn cell complexes of Sipunculus nudus (Linnaeus): Influence of physiologic and pathologic mammalian seraon mucus secretion. 1979 General Scientific...complexes of Sipunculus nudus (Linnaeus) before and after serum-induced mucus release. 1979 General Scientific Meetings of the Marine Biological Laboratory

  11. First-Principles Modeling of Core/Shell Quantum Dot Sensitized Solar Cells

    NARCIS (Netherlands)

    Azpiroz, Jon Mikel; Infante, Ivan; De Angelis, Filippo

    2015-01-01

    We report on the density functional theory (DFT) modeling of core/shell quantum dot (QD) sensitized solar cells (QDSSCs), a device architecture that holds great potential in photovoltaics but has not been fully exploited so far. To understand the working mechanisms of this kind of solar cells, we

  12. An approach for characterising cellular polymeric foam structures using computed tomography

    Science.gov (United States)

    Chen, Youming; Das, Raj; Battley, Mark

    2018-02-01

    Global properties of foams depend on foam base materials and microstructures. Characterisation of foam microstructures is important for developing numerical foam models. In this study, the microstructures of four polymeric structural foams were imaged using a micro-CT scanner. Image processing and analysis methods were proposed to quantify the relative density, cell wall thickness and cell size of these foams from the captured CT images. Overall, the cells in these foams are fairly isotropic, and cell walls are rather straight. The measured average relative densities are in good agreement with the actual values. Relative density, cell size and cell wall thickness in these foams are found to vary along the thickness of foam panel direction. Cell walls in two of these foams are found to be filled with secondary pores. In addition, it is found that the average cell wall thickness measured from 2D images is around 1.4 times of that measured from 3D images, and the average cell size measured from 3D images is 1.16 times of that measured from 2D images. The distributions of cell wall thickness and cell size measured from 2D images exhibit lager dispersion in comparison to those measured from 3D images.

  13. Sound Absorption Characteristics of Aluminum Foams Treated by Plasma Electrolytic Oxidation

    OpenAIRE

    Jin, Wei; Liu, Jiaan; Wang, Zhili; Wang, Yonghua; Cao, Zheng; Liu, Yaohui; Zhu, Xianyong

    2015-01-01

    Open-celled aluminum foams with different pore sizes were fabricated. A plasma electrolytic oxidation (PEO) treatment was applied on the aluminum foams to create a layer of ceramic coating. The sound absorption coefficients of the foams were measured by an impedance tube and they were calculated by a transfer function method. The experimental results show that the sound absorption coefficient of the foam increases gradually with the decrease of pore size. Additionally, when the porosity of th...

  14. Dynamics of poroelastic foams

    Science.gov (United States)

    Forterre, Yoel; Sobac, Benjamin

    2010-11-01

    Soft poroelastic structures are widespread in biological tissues such as cartilaginous joints in bones, blood-filled placentae or plant organs. Here we investigate the dynamics of open elastic foams immersed in viscous fluids, as model soft poroelastic materials. The experiment consists in slowly compacting blocs of polyurethane solid foam embedded in silicon oil-tanks and studying their relaxation to equilibrium when the confining stress is suddenly released. Measurements of the local fluid pressure and foam velocity field are compared with a simple two-phase flow approach. For small initial compactions, the results show quantitative agreement with the classical diffusion theory of soil consolidation (Terzaghi, Biot). On the other hand, for large initial compactions, the dynamics exhibits long relaxation times and decompaction fronts, which are mainly controlled by the highly non-linear mechanical response of the foam. The analogy between this process and the evaporation of a polymer melt close to the glass transition will be briefly discussed.

  15. Inhibition of LDL oxidation and oxidized LDL-induced foam cell formation in RAW 264.7 cells show anti-atherogenic properties of a foliar methanol extract of Scoparia dulcis.

    Science.gov (United States)

    Nambiar, Sinjitha S; Shetty, Nandini Prasad; Bhatt, Praveena; Neelwarne, Bhagyalakshmi

    2014-04-01

    Oxidation of low density lipoproteins and their further uptake by macrophages is known to result in the formation of foam cells, which are critical in the initiation of atherosclerosis through activation of inflammatory signalling cascades. Thus, powerful dietary antioxidants are receiving attention for the reversal of such pathological states. Extracts of Scoparia dulcis have been used as tea and health drinks with various health promoting effects. In the present study, we examined the reactive oxygen scavenging potential as well as anti-inflammatory and anti-atherogenic efficacies, using leaf extracts obtained after successive extraction with various solvents. A methanol extract showed potent antioxidant activity with an IC50 value of 570 μg/ml, caused hydrogen peroxide scavenging (28.9 µg/ml) and anti-inflammatory effects by improving human erythrocyte membrane stabilisation (about 86%). The methanol extract also efficiently inhibited lipid peroxidation and oxidation of low density lipoproteins, thus preventing foam cell formation in cultured RAW 264.7 cells. Furthermore, phytochemical screening of the extracts showed high accumulation of flavonoids. The foliar methanol extract of Scoparia dulcis has a strong anti-atherogenic potential and this property could be attributed maybe due to presence of flavonoids since HPLC analysis showed high concentrations of myricetin and rutin in the methanol extract.

  16. The Effect of Foaming Process on the Radar Absorbing Properties of PMMA/MWCNT Composites

    Directory of Open Access Journals (Sweden)

    Maziar Soltani Alkuh

    2015-07-01

    Full Text Available Alightweight polymer composite with a broad bandwidth, tunable absorption frequency and multi-functionality is an ideal material for making a radar absorber. In general, composite microcellular foams have many potential applications due to their lightweight, high mechanical properties and monotonous cell structure. In this research, the effect of foaming method on the radar absorbing properties of composite radar absorbers was investigated. In the first step, a controllable, repeatable and high pressure/temperature operation foaming system by supercritical CO2 gas as foaming agent was designed and built. The composites based on poly(methyl methacrylate (PMMA and multiwall carbon nanotube (MWCNT at different weight percentages were prepared by solvent-anti solvent coagulation method. The sample sheets with 3 mm thickness were molded using hot compression molding method. Then, the foaming process was performed and the cell morphology of the prepared foams was studied using scanning electron microscopy. Monotonous cell structure of the composite foams revealed a good dispersion of nanoparticles in the polymer matrix. The data of the reflected radar waves (before and after foaming showed that the foaming reduced the reflection of the radar waves to less than 10 percent in all the samples. It is important to note that the absorption of radar waveswas increased with the foaming of neat PMMA. It was observed that the foaming of composites increased the threshold of absorption of radar waves from less than 1 wt% nanotube for the unfoamed samples to 1-3 wt% nanotube for the foamed samples.

  17. Convective heat transfer for fluids passing through aluminum foams

    Directory of Open Access Journals (Sweden)

    Dyga Roman

    2015-03-01

    Full Text Available This paper analyses the experimental findings within heat transfer when heating up air, water and oil streams which are passed through a duct with internal structural packing elements in the form of metal foams. Three types of aluminum foams with different cell sizes, porosity specifications and thermal conductivities were used in the study. The test data were collected and they made it possible to establish the effect of the foam geometry, properties of fluids and flow hydrodynamic conditions on the convective heat transfer process from the heating surface to the fluid flowing by (wetting that surface. The foam was found to be involved in heat transfer to a limited extent only. Heat is predominantly transferred directly from the duct wall to a fluid, and intensity of convective heat transfer is controlled by the wall effects. The influence of foam structural parameters, like cell size and/or porosity, becomes more clearly apparent under laminar flow conditions.

  18. Ultralight metal foams.

    Science.gov (United States)

    Jiang, Bin; He, Chunnian; Zhao, Naiqin; Nash, Philip; Shi, Chunsheng; Wang, Zejun

    2015-09-08

    Ultralight (battery electrodes; catalyst supports; and acoustic, vibration, or shock energy damping. However, most of these ultralight materials, especially ultralight metal foams, are fabricated using either expensive materials or complicated procedures, which greatly limit their large-scale production and practical applications. Here we report a simple and versatile method to obtain ultralight monolithic metal foams. These materials are fabricated with a low-cost polymeric template and the method is based on the traditional silver mirror reaction and electroless plating. We have produced ultralight monolithic metal foams, such as silver, nickel, cobalt, and copper via this method. The resultant ultralight monolithic metal foams have remarkably low densities down to 7.4 mg/cm3 or 99.9% porosity. The metal foams have a long flat stress-train curve in compression tests and the densification strain εD of the Ni/Ag foam with a porosity of 99.8% can reach 82%. The plateau stress σpl was measured and found to be in agreement with the value predicted by the cellular solids theory.

  19. mdFoam+: Advanced molecular dynamics in OpenFOAM

    Science.gov (United States)

    Longshaw, S. M.; Borg, M. K.; Ramisetti, S. B.; Zhang, J.; Lockerby, D. A.; Emerson, D. R.; Reese, J. M.

    2018-03-01

    This paper introduces mdFoam+, which is an MPI parallelised molecular dynamics (MD) solver implemented entirely within the OpenFOAM software framework. It is open-source and released under the same GNU General Public License (GPL) as OpenFOAM. The source code is released as a publicly open software repository that includes detailed documentation and tutorial cases. Since mdFoam+ is designed entirely within the OpenFOAM C++ object-oriented framework, it inherits a number of key features. The code is designed for extensibility and flexibility, so it is aimed first and foremost as an MD research tool, in which new models and test cases can be developed and tested rapidly. Implementing mdFoam+ in OpenFOAM also enables easier development of hybrid methods that couple MD with continuum-based solvers. Setting up MD cases follows the standard OpenFOAM format, as mdFoam+ also relies upon the OpenFOAM dictionary-based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of an MD simulation is not typical of most OpenFOAM applications. Results show that mdFoam+ compares well to another well-known MD code (e.g. LAMMPS) in terms of benchmark problems, although it also has additional functionality that does not exist in other open-source MD codes.

  20. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2015-10-01

    Full Text Available Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  1. Application of microcapsulation technology to the preparation of carbon foam

    Directory of Open Access Journals (Sweden)

    Ke-zhi Li, Zhen-hai Shi, He-jun Li, Zhuo Tian and Chuang Wang

    2008-01-01

    Full Text Available Microcapsules were prepared by in situ polymerization and microcapsulation. Tetraethyl orthosilicate was used as the core material and phenolic resin was used as the wall material in an emulsion system of polyacrylic and tetraethyl orthosilicate. The obtained microcapsules were slowly heated such that the core material was released by evaporation, leaving hollow-core spheres. The spheres were mixed with a phenolic resin-derived binder and molded to obtain a carbon foam precursor, which was carbonized at 1100 °C under the protection of N2 gas and graphitized at 2300 °C under the protection of Ar gas. Thus, the carbon foam of hollow closed-shelled microspheres with a graphitic structure was prepared. The properties and structure of this foam were discussed.

  2. Application of microcapsulation technology to the preparation of carbon foam.

    Science.gov (United States)

    Li, Ke-Zhi; Shi, Zhen-Hai; Li, He-Jun; Tian, Zhuo; Wang, Chuang

    2008-04-01

    Microcapsules were prepared by in situ polymerization and microcapsulation. Tetraethyl orthosilicate was used as the core material and phenolic resin was used as the wall material in an emulsion system of polyacrylic and tetraethyl orthosilicate. The obtained microcapsules were slowly heated such that the core material was released by evaporation, leaving hollow-core spheres. The spheres were mixed with a phenolic resin-derived binder and molded to obtain a carbon foam precursor, which was carbonized at 1100 °C under the protection of N 2 gas and graphitized at 2300 °C under the protection of Ar gas. Thus, the carbon foam of hollow closed-shelled microspheres with a graphitic structure was prepared. The properties and structure of this foam were discussed.

  3. Application of microcapsulation technology to the preparation of carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Li Kezhi; Shi Zhenhai; Li Hejun; Tian Zhuo; Wang Chuang [C/C Composites Technology Research Center, Northwestern Polytechnical University, Xi' an 710072 (China)], E-mail: likezhi@nwpu.edu.cn

    2008-04-15

    Microcapsules were prepared by in situ polymerization and microcapsulation. Tetraethyl orthosilicate was used as the core material and phenolic resin was used as the wall material in an emulsion system of polyacrylic and tetraethyl orthosilicate. The obtained microcapsules were slowly heated such that the core material was released by evaporation, leaving hollow-core spheres. The spheres were mixed with a phenolic resin-derived binder and molded to obtain a carbon foam precursor, which was carbonized at 1100 deg. C under the protection of N{sub 2} gas and graphitized at 2300 deg. C under the protection of Ar gas. Thus, the carbon foam of hollow closed-shelled microspheres with a graphitic structure was prepared. The properties and structure of this foam were discussed.

  4. Dynamic fluid loss characteristics of foam fracturing fluids

    Energy Technology Data Exchange (ETDEWEB)

    Harris, P.C.

    1982-09-01

    Dynamic fluid loss measurements were conducted on core samples ranging in permeability between 0.02 to 140 md. These tests were run to measure the effect of several parameters on the foam fluid loss coefficients. The parameters tested were: core permeability, gel concentration in the liquid phase, foam quality, temperature, core length and differential test pressure. The type of foam that is used in most conventional fracturing treatments is a wall building fluid. Although this foam has excellent inherent fluid loss properties, the fluid loss values reported in this paper more closely resemble those of conventional fracturing fluids than reported earlier. These values have been used in the successful design of field fracturing treatments. These data support the mechanism of two phase flow in porous media suggested by Holm. The fluid passing through the cores was rich in liquid phase with composition proportional to the viscosity of the liquid phase. The broad range of fluid loss coefficients for foam calculated in these tests are intermediate in value to those reported in similar tests by Blauer and Kohlhaas, who obtained lower values, and King, who obtained higher values.

  5. The Influence of Titanium Hydride Pretreatment on the Compressive Properties of Aluminum Foam

    Directory of Open Access Journals (Sweden)

    Zan ZHANG

    2014-12-01

    Full Text Available Macrostructure has an important effect on the compressive properties of closed-cell aluminum foams. Meanwhile, the decomposition behavior of a foaming agent has a significant influence on the macrostructure of closed-cell aluminum foams. In order to get optimal compressive properties on aluminum foams, it is important to obtain the optimal decomposition behavior of a foaming agent. In this paper, different heat treatment temperatures and fixed heat treatment were employed to investigate the decomposition behavior of titanium hydride. For a more intuitive understanding of their decomposition characteristics of the pretreated titanium hydrides, closed-cell commercially pure Al foams were prepared by melt foaming method using different types of pretreated titanium hydrides as foaming agent. In addition, the macrostructures and quasi-static compressive properties were used to evaluate the pretreatment effect. The results showed that pretreatments have a significant influence on the macrostructure and compressive properties of aluminum foams. The decomposition characteristics of titanium hydride pretreated at 753 K for 30 min are most suitable for the preparation of closed-cell aluminum foams under present conditions, as the foams possess good combination of pore size distribution, yield strength and energy absorption capacity. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6082

  6. Sound absorption property of openpore aluminum foams

    Directory of Open Access Journals (Sweden)

    WANG Fang

    2007-02-01

    Full Text Available This paper presents a study on sound absorption property of aluminum foam by evaluating its sound absorption coefficients using standing wave tube method. Experimental results showed that the average values of sound absorption coefficients (over the test frequency range are all above 0.4, which indicate very good sound absorption property of the aluminum foams. The sound absorption coefficient is affected by frequency and pore structure, and reaches its maximum value at around 1 000 Hz. With the increase of porosity and decrease of cell diameter, the sound absorption coefficient values increase.

  7. Nano-Aramid Fiber Reinforced Polyurethane Foam

    Science.gov (United States)

    Semmes, Edmund B.; Frances, Arnold

    2008-01-01

    Closed cell polyurethane and, particularly, polyisocyanurate foams are a large family of flexible and rigid products the result of a reactive two part process wherein a urethane based polyol is combined with a foaming or "blowing" agent to create a cellular solid at room temperature. The ratio of reactive components, the constituency of the base materials, temperature, humidity, molding, pouring, spraying and many other processing techniques vary greatly. However, there is no known process for incorporating reinforcing fibers small enough to be integrally dispersed within the cell walls resulting in superior final products. The key differentiating aspect from the current state of art resides in the many processing technologies to be fully developed from the novel concept of milled nano pulp aramid fibers and their enabling entanglement capability fully enclosed within the cell walls of these closed cell urethane foams. The authors present the results of research and development of reinforced foam processing, equipment development, strength characteristics and the evolution of its many applications.

  8. Application of microcapsulation technology to the preparation of carbon foam

    OpenAIRE

    Li, Ke-zhi; Shi, Zhen-hai; Li, He-jun; Tian, Zhuo; Wang, Chuang

    2008-01-01

    Microcapsules were prepared by in situ polymerization and microcapsulation. Tetraethyl orthosilicate was used as the core material and phenolic resin was used as the wall material in an emulsion system of polyacrylic and tetraethyl orthosilicate. The obtained microcapsules were slowly heated such that the core material was released by evaporation, leaving hollow-core spheres. The spheres were mixed with a phenolic resin-derived binder and molded to obtain a carbon foam precursor, which was ca...

  9. Development of rubidium and niobium containing plastic foams. Final report

    International Nuclear Information System (INIS)

    Botham, R.A.; McClung, C.E.; Schwendeman, J.I.

    1978-01-01

    Rubidium fluoride and niobium metal-containing foam samples (rods and sheets) were prepared using two foam sytems: (1) hydrophilic polyurethanes prepared from W.R. Grace Co.'s Hypol prepolymers and (2) polyimides prepared from Monsanto Company's Skybond polyimide resin. The first system was used only for preparation of rubidium fluoride-containing foams while the second was used for both rubidium fluoride and niobium-containing foams. The niobium metal could readily be incorporated into the polyimide foam during molding, to produce foam sheets of the required dimensions and density. The rubidium fluoride-containing polyimide foams were preferably prepared by first rendering the molded polyimide foam hydrophilic with a postcuring treatment, then absorbing the rubidium fluoride from water solution. Similarly, rubidium fluoride was absorbed into the hydrophilic polyurethanes from water solution. Since the high reactive rubidium metal could not be employed, rubidium fluoride, which is very hygroscopic, was used instead, primarily because of its high rubidium content (approximately 82 weight percent). This was important in view of the low total densities and the high weight percentage rubidium required in the foam samples. In addition, at the later request of LLL, a block of rigid Hypol hydrophilic polyurethane foam (with a density of approximately 0.04 g/cm 3 and cell sizes = or <0.2 mm) was prepared without any metal or metal compounds in it. Two shipments of foam samples, which met or closely approximated the project specifications, were submitted to LLL during the course of this project. Information on these samples is contained in Table 1. A complete description of their preparation is given in the Experimental Results and Discussion Section

  10. Compressive properties of aluminum foams by gas injection method

    Directory of Open Access Journals (Sweden)

    Zhang Huiming

    2012-08-01

    Full Text Available The compressive properties of aluminum foams by gas injection method are investigated under both quasi-static and dynamic compressive loads in this paper. The experimental results indicate that the deformation of the aluminum foams goes through three stages: elastic deforming, plastic deforming and densification stage, during both the quasi-static and dynamic compressions. The aluminum foams with small average cell size or low porosity have high yield strength. An increase in strain rate can lead to an increase of yield strength. The yield strength of the aluminum foams under the dynamic loading condition is much greater than that under the quasi-static loading condition. Dynamic compressive tests show that a higher strain rate can give rise to a higher energy absorption capacity, which demonstrates that the aluminum foams have remarkable strain rate sensitivity on the loading rate.

  11. Development and optimization of open cell foam-based platelet milli-reactor for the intensification and the valorisation of CO2 methanation

    International Nuclear Information System (INIS)

    Frey, Myriam

    2016-01-01

    In response to the different international agreements to reduce the emission of greenhouse gases and limit their impact on global warming, an energy transition is in progress to increase the share of renewable energies. The Power-to-Gas concept is one of many solutions proposed to answer the need to charge and discharge this intermittent energy source. However, the methanation reaction, highly exothermal, needs a process able to efficiently evacuate the heat produced by the reaction. During this thesis, a structure milli-reactor, filled with an open cell foam coated with a catalyst (Ni/Ceria-Zirconia), was developed as an answer to this issue. The reactor was hydrodynamically and thermally characterized. The second one allowed us to evidence hot spots formation. The presence of nano-fibres allowed better control of the heat generated, limiting the deactivation of the catalyst (sintering). Catalytic tests, performed on a small scale pilot, clearly showed the advantage of structured beds compared to fixed bed, classically used in processes, with a moderate heat elevation around 25 C. (author)

  12. Pd-Pt loaded graphene aerogel on nickel foam composite as binder-free anode for a direct glucose fuel cell unit

    Science.gov (United States)

    Tsang, Chi Him A.; Leung, D. Y. C.

    2017-09-01

    Fabrication of electrocatalyst for direct glucose fuel cell (DGFC) operation involves destructive preparation methods with the use of stabilizer like binder, which may cause activity depreciation. Binder-free electrocatalytic electrode becomes a possible solution to the above problem. Binder-free bimetallic Pd-Pt loaded graphene aerogel on nickel foam plates with different Pd/Pt ratios (1:2.32, 1:1.62, and 1:0.98) are successfully fabricated through a green one-step mild reduction process producing a Pd-Pt/GO/nickel form plate (NFP) composite. Anode with the binder-free electrocatalysts exhibit a strong activity in a batch type DGFC unit under room temperature. The effects of glucose and KOH concentrations, and the Pd/Pt ratios of the electrocatalyst on the DGFC performance are also studied. Maximum power density output of 1.25 mW cm-2 is recorded with 0.5 M glucose/3 M KOH as the anodic fuel, and Pd1Pt0.98/GA/NFP as catalyst, which is the highest obtained so far among other types of electrocatalyst.

  13. Foamed Antenna Support for Very Large Apertures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase I program will demonstrate the feasibility of the in-space production of large aperture antenna structures. The use of a novel open cell foam,...

  14. Foam injection molding of elastomers with iron microparticles

    Science.gov (United States)

    Volpe, Valentina; D'Auria, Marco; Sorrentino, Luigi; Davino, Daniele; Pantani, Roberto

    2015-12-01

    In this work, a preliminary study of foam injection molding of a thermoplastic elastomer, Engage 8445, and its microcomposite loaded with iron particles was carried out, in order to evaluate the effect of the iron microparticles on the foaming process. In particular, reinforced samples have been prepared by using nanoparticles at 2% by volume. Nitrogen has been used as physical blowing agent. Foamed specimens consisting of neat and filled elastomer were characterized by density measurements and morphological analysis. While neat Engage has shown a well developed cellular morphology far from the injection point, the addition of iron microparticles considerably increased the homogeneity of the cellular morphology. Engage/iron foamed samples exhibited a reduction in density greater than 32%, with a good and homogeneous cellular morphology, both in the transition and in the core zones, starting from small distances from the injection point.

  15. Applications of Foamed Lightweight Concrete

    Directory of Open Access Journals (Sweden)

    Mohd Sari Kamarul Aini

    2017-01-01

    Full Text Available Application of foamed concrete is increasing at present due to high demand on foamed concrete structures with good mechanical and physical properties. This paper discusses on the use of basic raw materials, their characteristics, production process, and their application in foamed lightweight concrete with densities between 300 kg/m3 and 1800 kg/m3. It also discusses the factors that influence the strengths and weaknesses of foamed concrete based on studies that were conducted previously.

  16. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity

    OpenAIRE

    Peter W. Gaiser; Magdalena D. Anguelova

    2012-01-01

    Foam fraction can be retrieved from space-based microwave radiometric data at frequencies from 1 to 37 GHz. The retrievals require modeling of ocean surface emissivity fully covered with sea foam. To model foam emissivity well, knowledge of foam properties, both mechanical and dielectric, is necessary because these control the radiative processes in foam. We present a physical description of foam dielectric properties obtained from the foam dielectric constant including foam skin depth; foam ...

  17. Integral manifolding structure for fuel cell core having parallel gas flow

    Science.gov (United States)

    Herceg, Joseph E.

    1984-01-01

    Disclosed herein are manifolding means for directing the fuel and oxidant gases to parallel flow passageways in a fuel cell core. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte and interconnect wall consists respectively of anode and cathode materials layered on the opposite sides of electrolyte material, or on the opposite sides of interconnect material. A core wall projects beyond the open ends of the defined core passageways and is disposed approximately midway between and parallel to the adjacent overlaying and underlying interconnect walls to define manifold chambers therebetween on opposite sides of the wall. Each electrolyte wall defining the flow passageways is shaped to blend into and be connected to this wall in order to redirect the corresponding fuel and oxidant passageways to the respective manifold chambers either above or below this intermediate wall. Inlet and outlet connections are made to these separate manifold chambers respectively, for carrying the fuel and oxidant gases to the core, and for carrying their reaction products away from the core.

  18. HCV Core Protein Uses Multiple Mechanisms to Induce Oxidative Stress in Human Hepatoma Huh7 Cells

    Science.gov (United States)

    Ivanov, Alexander V.; Smirnova, Olga A.; Petrushanko, Irina Y.; Ivanova, Olga N.; Karpenko, Inna L.; Alekseeva, Ekaterina; Sominskaya, Irina; Makarov, Alexander A.; Bartosch, Birke; Kochetkov, Sergey N.; Isaguliants, Maria G.

    2015-01-01

    Hepatitis C virus (HCV) infection is accompanied by the induction of oxidative stress, mediated by several virus proteins, the most prominent being the nucleocapsid protein (HCV core). Here, using the truncated forms of HCV core, we have delineated several mechanisms by which it induces the oxidative stress. The N-terminal 36 amino acids of HCV core induced TGFβ1-dependent expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases 1 and 4, both of which independently contributed to the production of reactive oxygen species (ROS). The same fragment also induced the expression of cyclo-oxygenase 2, which, however, made no input into ROS production. Amino acids 37–191 of HCV core up-regulated the transcription of a ROS generating enzyme cytochrome P450 2E1. Furthermore, the same fragment induced the expression of endoplasmic reticulum oxidoreductin 1α. The latter triggered efflux of Ca2+ from ER to mitochondria via mitochondrial Ca2+ uniporter, leading to generation of superoxide anions, and possibly also H2O2. Suppression of any of these pathways in cells expressing the full-length core protein led to a partial inhibition of ROS production. Thus, HCV core causes oxidative stress via several independent pathways, each mediated by a distinct region of the protein. PMID:26035647

  19. HCV Core Protein Uses Multiple Mechanisms to Induce Oxidative Stress in Human Hepatoma Huh7 Cells

    Directory of Open Access Journals (Sweden)

    Alexander V. Ivanov

    2015-05-01

    Full Text Available Hepatitis C virus (HCV infection is accompanied by the induction of oxidative stress, mediated by several virus proteins, the most prominent being the nucleocapsid protein (HCV core. Here, using the truncated forms of HCV core, we have delineated several mechanisms by which it induces the oxidative stress. The N-terminal 36 amino acids of HCV core induced TGF\\(\\upbeta\\1-dependent expression of nicotinamide adenine dinucleotide phosphate (NADPH oxidases 1 and 4, both of which independently contributed to the production of reactive oxygen species (ROS. The same fragment also induced the expression of cyclo-oxygenase 2, which, however, made no input into ROS production. Amino acids 37–191 of HCV core up-regulated the transcription of a ROS generating enzyme cytochrome P450 2E1. Furthermore, the same fragment induced the expression of endoplasmic reticulum oxidoreductin 1\\(\\upalpha\\. The latter triggered efflux of Ca2+ from ER to mitochondria via mitochondrial Ca2+ uniporter, leading to generation of superoxide anions, and possibly also H2O2. Suppression of any of these pathways in cells expressing the full-length core protein led to a partial inhibition of ROS production. Thus, HCV core causes oxidative stress via several independent pathways, each mediated by a distinct region of the protein.

  20. Foaming in stout beers

    Science.gov (United States)

    Lee, W. T.; Devereux, M. G.

    2011-10-01

    We review the differences between bubble formation in champagne and other carbonated drinks, and stout beers which contain a mixture of dissolved nitrogen and carbon dioxide. The presence of dissolved nitrogen in stout beers gives them several properties of interest to connoisseurs and physicists. These remarkable properties come at a price: stout beers do not foam spontaneously and special technology, such as the widgets used in cans, is needed to promote foaming. Nevertheless, the same mechanism, nucleation by gas pockets trapped in cellulose fibers, responsible for foaming in carbonated drinks is active in stout beers, but at an impractically slow rate. This gentle rate of bubble nucleation makes stout beers an excellent model system for investigating the nucleation of gas bubbles. The equipment needed is modest, putting such experiments within reach of undergraduate laboratories. We also consider the suggestion that a widget could be constructed by coating the inside of a beer can with cellulose fibers.

  1. Foams in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Marsden, S.S.

    1986-07-01

    In 1978 a literature search on selective blocking of fluid flow in porous media was done by Professor S.S. Marsden and two of his graduate students, Tom Elson and Kern Huppy. This was presented as SUPRI Report No. TR-3 entitled ''Literature Preview of the Selected Blockage of Fluids in Thermal Recovery Projects.'' Since then a lot of research on foam in porous media has been done on the SUPRI project and a great deal of new information has appeared in the literature. Therefore we believed that a new, up-to-date search should be done on foam alone, one which would be helpful to our students and perhaps of interest to others. This is a chronological survey showing the development of foam flow, blockage and use in porous media, starting with laboratory studies and eventually getting into field tests and demonstrations. It is arbitrarily divided into five-year time periods. 81 refs.

  2. Surfactant monitoring by foam generation

    Science.gov (United States)

    Mullen, Ken I.

    1997-01-01

    A device for monitoring the presence or absence of active surfactant or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active surfactant present.

  3. LFT foam - Lightweight potential for semi-structural components through the use of long-glass-fiber-reinforced thermoplastic foams

    Science.gov (United States)

    Roch, A.; Huber, T.; Henning, F.; Elsner, P.

    2014-05-01

    Investigations on PP-LGF30 foam sandwiches have been carried out using different manufacturing processes: standard injection molding, MuCell® and LFT-D foam. Both chemical and physical blowing agents were applied. Precision mold opening (breathing mold technology) was selected for the foaming process. The integral foam design, which can be conceived as a sandwich structure, helps to save material in the neutral axis area and maintains a distance between load-bearing, unfoamed skin layers. The experiments showed that, at a constant mass per unit area, integral foams have a significantly higher flexural rigidity than compact components, due to their greater area moment of inertia after foaming: with an increase of the wall thickness from 3.6 mm to 4.4 mm compared to compact construction, the flexural rigidity increased by 75 %. With a final wall thickness of 5.8 mm an increase of 300 % was measured. Compared to non-reinforced components that show significant embrittlement during foaming, the energy absorption capacity (impact strength) of LFT foam components remains almost constant.

  4. Long lasting decontamination foam

    Science.gov (United States)

    Demmer, Ricky L.; Peterman, Dean R.; Tripp, Julia L.; Cooper, David C.; Wright, Karen E.

    2010-12-07

    Compositions and methods for decontaminating surfaces are disclosed. More specifically, compositions and methods for decontamination using a composition capable of generating a long lasting foam are disclosed. Compositions may include a surfactant and gelatin and have a pH of less than about 6. Such compositions may further include affinity-shifting chemicals. Methods may include decontaminating a contaminated surface with a composition or a foam that may include a surfactant and gelatin and have a pH of less than about 6.

  5. Enhanced bifunctional fuel cell catalysis via Pd/PtCu core/shell nanoplates.

    Science.gov (United States)

    Lin, Fei; Wang, Kai; Tang, Yonghua; Lai, Jianping; Lou, Mingchuan; Huang, Minghua; Guo, Shaojun

    2018-02-01

    Depositing Pt atoms on nanoscale two-dimensional (2D) substrates resulting in the exposure of specific crystal facets is an effective strategy for reducing the Pt content without compromising the catalytic property. Herein, the Pd/PtCu core/shell nanoplates exhibit substantially improved ORR and MOR mass activities, 8.3 and 3.3 times higher than those of commercial Pt. The present work highlights the important role of designing a 2D core/shell nanostructure in enhancing fuel cell electrocatalysis.

  6. Dengue virus capsid protein binds core histones and inhibits nucleosome formation in human liver cells.

    Directory of Open Access Journals (Sweden)

    Tonya M Colpitts

    Full Text Available Dengue virus (DENV is a member of the Flaviviridae and a globally (reemerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection.

  7. Dengue virus capsid protein binds core histones and inhibits nucleosome formation in human liver cells.

    Science.gov (United States)

    Colpitts, Tonya M; Barthel, Sebastian; Wang, Penghua; Fikrig, Erol

    2011-01-01

    Dengue virus (DENV) is a member of the Flaviviridae and a globally (re)emerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C) is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection.

  8. Dengue Virus Capsid Protein Binds Core Histones and Inhibits Nucleosome Formation in Human Liver Cells

    Science.gov (United States)

    Colpitts, Tonya M.; Barthel, Sebastian; Wang, Penghua; Fikrig, Erol

    2011-01-01

    Dengue virus (DENV) is a member of the Flaviviridae and a globally (re)emerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C) is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection. PMID:21909430

  9. Foam-injected sandwich panels with continuous-reinforced facings

    Science.gov (United States)

    Menrath, A.; Henning, F.; Huber, T.; Roch, A.; Riess, C.

    2014-05-01

    Thermoplastic foam injection molding (FIM) in combination with insert molding (IM) offers a possibility to generate sandwich panels in a one-step process. The prepared face sheets are first positioned inside the mold. A preheating process is carried out using quartz infrared emitters, which are mounted on a linear robot, before the mold is closed. The injection of the gas/melt mixture is combined with an embossing of the mold to further improve the face-core-adhesion. Finally, to initiate the foaming process, adjust the extent of foaming of the core and achieve the desired component dimensions, a mold opening stroke is carried out. The process described was performed with different facing materials, layer dimensions and overall wall thicknesses. Drawn PP fabrics (Curv®) as well as PP/GF70 tapes and consolidated sheets (unidirectional) were used to generate sandwich panels in a range of 5 to 6.4 mm thickness. PP was also chosen to form the foamed core which, in combination with the Curv® face sheets, produces a fully recyclable self-reinforced polymer (SRP) composite. Detailed process descriptions and the results of bending tests demonstrate the high potential. Other focuses are the preheating process and the foam structure.

  10. Materials Applications for Non-Lethal: Aqueous Foams

    International Nuclear Information System (INIS)

    GOOLSBY, TOMMY D.; SCOTT, STEVEN H.

    1999-01-01

    High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might be

  11. Materials Applications for Non-Lethal: Aqueous Foams

    Energy Technology Data Exchange (ETDEWEB)

    GOOLSBY,TOMMY D.; SCOTT,STEVEN H.

    1999-09-15

    High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might

  12. Molded ultra-low density microcellular foams

    International Nuclear Information System (INIS)

    Rand, P.B.; Montoya, O.J.

    1986-07-01

    Ultra-low density (< 0.01 g/cc) microcellular foams were required for the NARYA pulsed-power-driven x-ray laser development program. Because of their extreme fragility, molded pieces would be necessary to successfully field these foams in the pulsed power accelerator. All of the foams evaluated were made by the thermally induced phase separation technique from solutions of water soluble polymers. The process involved rapidly freezing the solution to induce the phase separation, and then freeze drying to remove the water without destroying the foam's structure. More than sixty water soluble polymers were evaluated by attempting to make their solutions into foams. The foams were evaluated for shrinkage, density, and microstructure to determine their suitability for molding and meeting the required density and cell size requirements of 5.0 mg/cc and less than twenty μmeters. Several promising water soluble polymers were identified including the polyactylic acids, guar gums, polyactylamide, and polyethylene oxide. Because of thier purity, structure, and low shrinkage, the polyacrylic acids were chosen to develop molding processes. The initial requirements were for 2.0 cm. long molded rods with diameters of 1.0, 2.0. and 3.0 mm. These rods were made by freezing the solution in thin walled silicon rubber molds, extracting the frozen preform from the mold, and then freeze drying. Requirements for half rods and half annuli necessitated using aluminum molds. Again we successfully molded these shapes. Our best efforts to date involve molding annuli with 3.0 mm outside diameters and 2.0 mm inside diameters

  13. Production of lightweight foam glass (invited talk)

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    result in viscous sintering and subsequent foaming of the glass melt. The porous glass melt is cooled down to room temperature to freeze-in the foam structure. The resulting foam glass is applied in constructions as a light weight material to reduce load bearing capacity and as heat insulating material......The foam glass production allows low cost recycling of postconsumer glass and industrial waste materials as foaming agent or as melt resource. Foam glass is commonly produced by utilising milled glass mixed with a foaming agent. The powder mixture is heat-treated to around 10^3.7 – 10^6 Pa s, which...... in buildings and industry. We foam panel glass from old televisions with different foaming agents. We discuss the foaming ability and the foaming mechanism of different foaming systems. We compare several studies to define a viscous window for preparing low density foam glass. However, preparing foam glass...

  14. Daintain/AIF-1 Plays Roles in Coronary Heart Disease via Affecting the Blood Composition and Promoting Macrophage Uptake and Foam Cell Formation

    Directory of Open Access Journals (Sweden)

    Junhan Wang

    2013-07-01

    Full Text Available Background: Daintain/AIF-1 is an inflammatory polypeptide factor/allograft inflammatory factor 1 derived from macrophages. It is characterized in APOE-/- mice as a novel inflammatory factor associated with atherosclerosis. The purpose of this study was to characterize its function in human atherosclerosis. Methods: Immunohistochemistry was used to identify the expression of daintain/AIF-1 in vessel segments within and far from atherosclerotic plaques; High-performance liquid chromatography (HPLC was used to display the effects of daintain/AIF-1 on C-reactive protein (CRP, oxidative capacity and superoxide dismutase (SOD in vivo; Oil Red O Staining was used to show the effects of daintain/AIF-1 on uptake of oxidized low density lipoprotein (ox-LDL into U937 cells, a macrophage line; Western Blot was used to test scavenger receptor A (SRA expression. Results: A high density of daintain/AIF-1 was observed in the tunica intima and media of coronary artery with atherosclerotic plaque, and fewer daintain/AIF-1 in the vessels without atherosclerotic plaque; Daintain/AIF-1 injected intravenously into BALB/c mice boosted oxidative capacity, significantly impaired SOD activities and augmented the CRP level in blood. According to the oil red O test, daintain/AIF-1 profoundly facilitated the uptake of ox-LDL in U937 macrophages and formation of foam cells in the endothelium. We also found that the molecular mechanisms are effective by promoting overexpression of SRA on macrophages. Conclusion: These findings implicate that the inflammatory factor daintain/AIF-1 is closely associated with atherogenesis, and could be further characterized as a novel risk factor for atherosclerosis

  15. Preparation And Characterization Of Silicon Carbide Foam By Using In-Situ Generated Polyurethane Foam

    Directory of Open Access Journals (Sweden)

    Shalini Saxena

    2015-08-01

    Full Text Available Abstract The open cell silicon carbide SiC foam was prepared using highly crosslinked hybrid organic- inorganic polymer resin matrix. As inorganic polymer polycarbosilane was taken and organic resin was taken as a mixture of epoxy resin and diisocyanates. The resultant highly crosslinked hybrid resin matrix on heating and subsequently on pyrolysis yielded open cell silicon carbide foam. The hybrid resin matrix was characterized by Fourier transform Infrared Spectroscopy FT-IR and thermal properties i.e. Thermogravimetric analysis TGA amp Differential Scanning Calorimetry DSC were also studied. The morphological studies of silicon carbide ceramic foam were carried out using X-ray Spectroscopy XRD amp Scanning Electron Microscopy SEM.

  16. Morphological Study of Directionally Freeze-Cast Nickel Foams

    Science.gov (United States)

    Jo, Hyungyung; Kim, Min Jeong; Choi, Hyelim; Sung, Yung-Eun; Choe, Heeman; Dunand, David C.

    2016-03-01

    Nickel foams, consisting of 51 to 62 pct aligned, elongated pores surrounded by a network of Ni walls, were fabricated by reduction and sintering of directionally cast suspensions of nanometric NiO powders in water. Use of dispersant in the slurry considerably affected the foam morphology and microstructure at both the micro- and macro-scale, most likely by modifying ice solidification into dendrites (creating the aligned, elongated macro-pores) and NiO powder accumulation in the inter-dendritic space (creating the Ni walls with micro-pores). The mean width of the Ni walls, in foams solidified with and without dispersant, was 21 ± 5 and 75 ± 13 µm, respectively. Additionally, the foams with the dispersant showed less dense walls and rougher surfaces than those without the dispersant. Moreover, the fraction of closed pores present in the foam walls with the dispersant was higher than that of the samples without dispersant. We finally verified the potential energy application of the Ni foam produced in this study by carrying out a preliminary single-cell performance test with the Ni foam sample as the gas diffusion layer on the anode side of a polymer electrolyte membrane fuel cell.

  17. Foaming in manure based digesters

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Boe, Kanokwan; Angelidaki, Irini

    2012-01-01

    Anaerobic digestion foaming is one of the major problems that occasionally occurred in the Danish full-scale biogas plants, affecting negatively the overall digestion process. The foam is typically formatted in the main biogas reactor or in the pre-storage tank and the entrapped solids in the foam....... Moreover, foaming presents adverse environmental impacts owing to the overflowing of the pre-storage or digester tanks. So far, there has never been thoroughly investigation of foaming problem in manure-based digester, which is the main anaerobic digestion applied in Denmark. The purpose of the present...... study was to identify potential causes of foaming in manure based digesters. Moreover, it was also an aim to investigate possible solutions to counteract foam formation with the use of antifoam agents. Thus, the impact of organic loading rate and content of feeding substrate on anaerobic digestion...

  18. Synchrotron tomography on metallic foams

    International Nuclear Information System (INIS)

    Haibel, A.; Banhart, J.

    2003-01-01

    Metallic foams are a class of materials with unique properties. In contrast to most aqueous foams which are stable due to surface active agents, the liquid state of metallic foams can be stabilized by admixing small non-soluble particles. We present the results of our investigations on such materials consisting three different components: an aluminium alloy, silicon carbide particles for foam stabilization, and titanium hydride acting as blowing agent. By means of synchrotron-tomography we visualized the three dimensional distribution of the silicon carbide and the titanium hydride particles in the unfoamed cast solid precursor, in the fully foamed liquid state, and in the solidified final state of the foam. We analyzed the silicon carbide formation in these three foaming stages and its influence of the pore stability

  19. Solution-processed core-shell nanowires for efficient photovoltaic cells.

    Science.gov (United States)

    Tang, Jinyao; Huo, Ziyang; Brittman, Sarah; Gao, Hanwei; Yang, Peidong

    2011-08-21

    Semiconductor nanowires are promising for photovoltaic applications, but, so far, nanowire-based solar cells have had lower efficiencies than planar cells made from the same materials, even allowing for the generally lower light absorption of nanowires. It is not clear, therefore, if the benefits of the nanowire structure, including better charge collection and transport and the possibility of enhanced absorption through light trapping, can outweigh the reductions in performance caused by recombination at the surface of the nanowires and at p-n junctions. Here, we fabricate core-shell nanowire solar cells with open-circuit voltage and fill factor values superior to those reported for equivalent planar cells, and an energy conversion efficiency of ∼5.4%, which is comparable to that of equivalent planar cells despite low light absorption levels. The device is made using a low-temperature solution-based cation exchange reaction that creates a heteroepitaxial junction between a single-crystalline CdS core and single-crystalline Cu2S shell. We integrate multiple cells on single nanowires in both series and parallel configurations for high output voltages and currents, respectively. The ability to produce efficient nanowire-based solar cells with a solution-based process and Earth-abundant elements could significantly reduce fabrication costs relative to existing high-temperature bulk material approaches.

  20. Process Development of Gallium Nitride Phosphide Core-Shell Nanowire Array Solar Cell

    Science.gov (United States)

    Chuang, Chen

    Dilute Nitride GaNP is a promising materials for opto-electronic applications due to its band gap tunability. The efficiency of GaNxP1-x /GaNyP1-y core-shell nanowire solar cell (NWSC) is expected to reach as high as 44% by 1% N and 9% N in the core and shell, respectively. By developing such high efficiency NWSCs on silicon substrate, a further reduction of the cost of solar photovoltaic can be further reduced to 61$/MWh, which is competitive to levelized cost of electricity (LCOE) of fossil fuels. Therefore, a suitable NWSC structure and fabrication process need to be developed to achieve this promising NWSC. This thesis is devoted to the study on the development of fabrication process of GaNxP 1-x/GaNyP1-y core-shell Nanowire solar cell. The thesis is divided into two major parts. In the first parts, previously grown GaP/GaNyP1-y core-shell nanowire samples are used to develop the fabrication process of Gallium Nitride Phosphide nanowire solar cell. The design for nanowire arrays, passivation layer, polymeric filler spacer, transparent col- lecting layer and metal contact are discussed and fabricated. The property of these NWSCs are also characterized to point out the future development of Gal- lium Nitride Phosphide NWSC. In the second part, a nano-hole template made by nanosphere lithography is studied for selective area growth of nanowires to improve the structure of core-shell NWSC. The fabrication process of nano-hole templates and the results are presented. To have a consistent features of nano-hole tem- plate, the Taguchi Method is used to optimize the fabrication process of nano-hole templates.

  1. Design and optimization of Ag-dielectric core-shell nanostructures for silicon solar cells

    Directory of Open Access Journals (Sweden)

    Feng-Xiang Chen

    2015-09-01

    Full Text Available Metal-dielectric core-shell nanostructures have been proposed as a light trapping scheme for enhancing the optical absorption of silicon solar cells. As a potential application of such enhanced effects, the scattering efficiencies of three core-shell structures (Ag@SiO2, Ag@TiO2, and Ag@ZrO2 are discussed using the Mie Scattering theory. For compatibility with experiment results, the core diameter and shell thickness are limited to 100 and 30 nm, respectively, and a weighted scattering efficiency is introduced to evaluate the scattering abilities of different nanoparticles under the solar spectrum AM 1.5. The simulated results indicate that the shell material and thickness are two key parameters affecting the weighted scattering efficiency. The SiO2 is found to be an unsuitable shell medium because of its low refractive index. However, using the high refractive index mediumTiO2 in Ag@TiO2 nanoparticles, only the thicker shell (30 nm is more beneficial for light scattering. The ZrO2 is an intermediate refractive index material, so Ag@ZrO2 nanoparticles are the most effective core-shell nanostructures in these silicon solar cells applications.

  2. Foam, Foam-resin composite and method of making a foam-resin composite

    Science.gov (United States)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  3. Behavior of Metallic Foam under Shock Wave Loading

    Directory of Open Access Journals (Sweden)

    Zoran Ren

    2012-08-01

    Full Text Available In this manuscript, the behavior of metallic foam under impact loading and shock wave propagation has been observed. The goal of this research was to investigate the material and structural properties of submerged open-cell aluminum foam under impact loading conditions with particular interest in shock wave propagation and its effects on cellular material deformation. For this purpose experimental tests and dynamic computational simulations of aluminum foam specimens inside a water tank subjected to explosive charge have been performed. Comparison of the results shows a good correlation between the experimental and simulation results.

  4. Edible foam based on Pickering effect of probiotic bacteria and milk proteins

    DEFF Research Database (Denmark)

    Yücel, Cigdem; Geng, Xiaolu; Cárdenas, Marité

    2017-01-01

    We report the preparation and characterization of aqueous Pickering foams using bio-particles constituted by lactic acid bacteria surface modified by oppositely charged milk proteins. Cell surface modification was shown by zeta potential measurements. Foams stabilized by bacterial Pickering bio...... and fluorescence microscopy revealed organized cell structures around and in between the air bubbles providing for an internal network that effectively stabilizes the foam. Therefore, entirely food grade stable foams can be produced by using modified health promoting bacterial cells and surface active milk...

  5. Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS).

    Science.gov (United States)

    Khetani, Altaf; Momenpour, Ali; Alarcon, Emilio I; Anis, Hanan

    2015-11-01

    The present paper demonstrates an antibody-free, robust, fast, and portable platform for detection of leukemia cells using Raman spectroscopy with a 785-nm laser diode coupled to a hollow core photonic crystal (HC-PCF) containing silver nanoparticles. Acute myeloid leukemia is one of the most common bone marrow cancers in children and youths. Clinical studies suggest that early diagnosis and remission evaluation of myoblasts in the bone marrow are pivotal for improving patient survival. However, the current protocols for leukemic cells detection involve the use of expensive antibodies and flow cytometers. Thus, we have developed a new technology for detection of leukemia cells up to 300 cells/ml using a compact fiber HC-PCF, which offers a novel alternative to existing clinical standards. Furthermore, we were also able to accurately distinguish live, apoptotic and necrotic leukemic cells.

  6. Prothymosin alpha interacts with free core histones in the nucleus of dividing cells.

    Science.gov (United States)

    Covelo, Guillermo; Sarandeses, Concepción S; Díaz-Jullien, Cristina; Freire, Manuel

    2006-11-01

    The acidic protein prothymosin alpha (ProTalpha), with a broad presence in mammalian cells, has been widely considered to have a role in cell division, through an unrevealed mechanism in which histones may be involved in view of their ability to interact with ProTalpha in vitro. Results of co-immunoprecipitation experiments presented here demonstrate that ProTalpha interacts in vivo with core histones in proliferating B-lymphocytes (NC-37 cells). This interaction occurs with histones H3, H2A, H2B and H4 located free in the nucleoplasm, whereas no interaction was detected with histone H1, mono-nucleosome particles or chromatin. Moreover, the core histones form part of a nuclear multiprotein complex of about 700 kDa separated by ProTalpha-Sepharose affinity, with components including H3 and H4 acetyltranferases, H3 methyltransferases, hnRNP isotypes A3, A2/B1 and R, ATP-dependent and independent DNA helicases II, beta-actin and vimentin, all co-purifying by gel filtration. This indicates that the interaction of ProTalpha with core histones in the nucleus may be related to the structural modification of histones H3 and H4, and hence to chromatin activity, raising the possibility that the other proteins in the nuclear complex may play a role in this process.

  7. Foam rheology: a model of viscous phenomena

    International Nuclear Information System (INIS)

    Kraynik, A.M.; Hansen, M.G.

    1987-01-01

    A theoretical model for foam rheology that includes viscous forces is developed by considering the deformation of two-dimensional, spatially periodic cells in simple shearing and planar extensional flow. The undeformed hexagonal cells are separated by thin liquid films. Plateau border curvature and liquid drainage between films is neglected. Interfacial tension and viscous tractions due to stretching lamellar liquid determine the individual film tensions. The network motion is described by a system of nonlinear ordinary differential equations for which numerical solutions are obtained. Coalescense and disproportionation of Plateau borders results in the relative separation of cells and provides a mechanism for yielding and flow. This process is assumed to occur when a film's length reduces to its thickness. The time and position dependence of the cell-scale dynamics are computed explicitly. The effective continuum stress of the foam is described by instantaneous and time-averaged quantities. The capillary number, a dimensionless deformation rate, represents the relative importance of viscous and surface tension effects. The small-capillary-number or quasistatic response determines a yield stress. The dependence of the shear and normal stress material functions upon deformation rate, foam structure and physical properties is determined. A plausible mechanism for shear-induced material failure, which would determine a shear strength, is revealed for large capillary numbers. The mechanism involves large cell distortion and film thinning, which provide favorable conditions for film rupture

  8. Langerhans Cell Histiocytosis Arising from the Mandible as Diagnosed by US-guided Core Biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soo Jin [Center of Thyroid Cancer, National Cancer Center, Goyang (Korea, Republic of); Kim, Eun Kyung [Research Institute of Radiological Science, Yonsei University Heath System, Seoul (Korea, Republic of); Lee, Min Kyung [Eulji University College of Medicine, Eulji University Hospital, Daejeon (Korea, Republic of)

    2010-09-15

    Langerhans cell histiocytosis (LCH) is a clonal proliferative disorder of Langerhans cells. Although LCH is not considered a malignant disease, its appearance on radiographs may be similar to that of a malignant tumor. The diagnosis of LCH is usually made by a soft tissue biopsy, or by bone marrow aspiration or curettage. We present a patient with a mandibular mass confirmed to be LCH by US-guided core needle biopsy, and present a strategy for diagnosing localized LCH of the bone based on the usefulness and reliability of the percutaneous biopsy

  9. Classical and alternative activation and metalloproteinase expression occurs in foam cell macrophages in male and female ApoE null mice in the absence of T- and B-lymphocytes

    Directory of Open Access Journals (Sweden)

    Elaine Mo Hayes

    2014-10-01

    Full Text Available Background: Rupture of advanced atherosclerotic plaques accounts for most life-threatening myocardial infarctions. Classical (M1 and alternative (M2 macrophage activation could promote atherosclerotic plaque progression and rupture by increasing production of proteases, including matrix metalloproteinases (MMPs. Lymphocyte-derived cytokines may be essential for generating M1 and M2 phenotypes in plaques, although this has not been rigorously tested until now.Methods and Results: We validated the expression of M1 markers (iNOS and COX-2 and M2 markers (arginase-1, Ym-1 and CD206 and then measured MMP mRNA levels in mouse macrophages during classical and alternative activation in vitro. We then compared mRNA expression of these genes ex vivo in foam cells from subcutaneous granulomas in fat-fed immune-competent ApoE knockout and immune-compromised ApoE/Rag-1 double knockout mice, which lack all T and B cells. Furthermore, we performed immunohistochemistry in subcutaneous granulomas and in aortic root and brachiocephalic artery atherosclerotic plaques to measure the extent of M1/M2 marker and MMP protein expression in vivo. Classical activation of mouse macrophages with bacterial lipopolysaccharide in vitro increased MMPs-13, -14 and -25 but decreased MMP-19 and TIMP-2 mRNA expressions. Alternative activation with IL-4 increased MMP-19 expression. Foam cells in subcutaneous granulomas expressed all M1/M2 markers and MMPs at ex vivo mRNA and in vivo protein levels, irrespective of Rag-1 genotype. There were also similar percentages of foam cell macrophages carrying M1/M2 markers and MMPs in atherosclerotic plaques from ApoE knockout and ApoE/Rag-1 double knockout mice. Conclusions: Classical and alternative activation leads to distinct MMP expression patterns in mouse macrophages in vitro. M1 and M2 polarization in vivo occurs in the absence of T and B lymphocytes in either granuloma or plaque foam cell macrophages.

  10. An overview of polyurethane foams in higher specification foam mattresses.

    Science.gov (United States)

    Soppi, Esa; Lehtiö, Juha; Saarinen, Hannu

    2015-02-01

    Soft polyurethane foams exist in thousands of grades and constitute essential components of hospital mattresses. For pressure ulcer prevention, the ability of foams to control the immersion and envelopment of patients is essential. Higher specification foam mattresses (i.e., foam mattresses that relieve pressure via optimum patient immersion and envelopment while enabling patient position changes) are claimed to be more effective for preventing pressure ulcers than standard mattresses. Foam grade evaluations should include resiliency, density, hardness, indentation force/load deflection, progressive hardness, tensile strength, and elongation along with essential criteria for higher specification foam mattresses. Patient-specific requirements may include optimal control of patient immersion and envelopment. Mattress cover characteristics should include breathability, impermeability to fluids, and fire safety and not affect mattress function. Additional determinations such as hardness are assessed according to the guidelines of the American Society for Testing and Materials and the International Organization for Standardization. At this time, no single foam grade provides an optimal combination of the above key requirements, but the literature suggests a combination of at least 2 foams may create an optimal higher specification foam mattress for pressure ulcer prevention. Future research and the development of product specification accuracy standards are needed to help clinicians make evidence-based decisions about mattress use.

  11. Plasmonic Nanodiamonds – Targeted Core-shell Type Nanoparticles for Cancer Cell Thermoablation

    Science.gov (United States)

    Rehor, Ivan; Lee, Karin L.; Chen, Kevin; Hajek, Miroslav; Havlik, Jan; Lokajova, Jana; Masat, Milan; Slegerova, Jitka; Shukla, Sourabh; Heidari, Hamed; Bals, Sara

    2015-01-01

    Targeted biocompatible nanostructures with controlled plasmonic and morphological parameters are promising materials for cancer treatment based on selective thermal ablation of cells. Here, core-shell plasmonic nanodiamonds consisting of a silica-encapsulated diamond nanocrystal coated in a gold shell is designed and synthesized. The architecture of particles is analyzed and confirmed in detail using 3-dimensional transmission electron microscope tomography. The particles are biocompatibilized using a PEG polymer terminated with bioorthogonally reactive alkyne groups. Azide-modified transferrin is attached to these particles, and their high colloidal stability and successful targeting to cancer cells overexpressing the transferrin receptor is demonstrated. The particles are nontoxic to the cells and they are readily internalized upon binding to the transferrin receptor. The high plasmonic cross section of the particles in the near-infrared region is utilized to quantitatively ablate the cancer cells with a short, one-minute irradiation by a pulse 750-nm laser. PMID:25336437

  12. Production of low-density poly (4-methyl-1-pentene) foam via phase inversion from binary solvent/nonsovent systems

    Energy Technology Data Exchange (ETDEWEB)

    Simandl, R.F.; Robinson, D.N.; Bolinger, W.L.; Davis, W.E.

    1991-11-01

    Phase inversion from durene/naphthalene, durene/tmpdo, and durene/hexadecanol binary solvent/nonsolvent systems produced well interconnected, radiographically homogeneous, open-celled poly (4- methyl-1-pentene) or pmp foams. These foams ranged in density from 5 to 50 mg/cm{sup 2}. Foam homogeneity and casting efficiency were dependent on casting scheme, durene quality, solvent-to-nonsolvent ratio, and quench temperature. Foam density tracked linearly with dissolved-polymer content. Homogeneous, ultralow-density (5 to 6 mg/cm{sup 3}) foams were produced by using a 49/51 durene/naphthalene solvent eutectic. Foam hardness or firmness tracked somewhat linearly with foam density. Foams with densities above 20 mg/cm{sup 3} were too fragile to handle without damage.

  13. Development of nonflammable cellulosic foams

    Science.gov (United States)

    Luttinger, M.

    1972-01-01

    The development of a moldable cellulosic foam for use in Skylab instrument storage cushions is considered. Requirements include density of 10 lb cu ft or less, minimal friability with normal handling, and nonflammability in an atmosphere of 70 percent oxygen and 30 percent nitrogen at 6.2 psia. A study of halogenated foam components was made, including more highly chlorinated binders, halogen-containing additives, and halogenation of the cellulose. The immediate objective was to reduce the density of the foam through reduction in inorganic phosphate without sacrificing flame-retarding properties of the foams. The use of frothing techniques was investigated, with particular emphasis on a urea-formaldehyde foam. Halogen-containing flame retardants were deemphasized in favor of inorganic salts and the preparation of phosphate and sulphate esters of cellulose. Utilization of foam products for civilian applications was also considered.

  14. Foams structure and dynamics

    CERN Document Server

    Cantat, Isabelle; Graner, François; Pitois, Olivier; Höhler, Reinard; Elias, Florence; Saint-Jalmes, Arnaud; Rouyer, Florence

    2013-01-01

    This book is the first to provide a thorough description of all aspects of the physico-chemical properties of foams. It sets out what is known about their structure, their stability, and their rheology. Engineers, researchers and students will find descriptions of all the key concepts, illustrated by numerous applications, as well as experiments and exercises for the reader. A solutions manual for lecturers is available via the publisher's web site.

  15. Modeling of Macro-deformation Behavior of Thin-Walled Aluminum Foam by Gas Injection Method

    Science.gov (United States)

    Xiang, Chen; Ningzhen, Wang; Jianyu, Yuan; Yanxiang, Li; Huawei, Zhang; Yuan, Liu

    2017-07-01

    The favorable energy absorption characteristics of foam structures originate from their layer-by-layer deformation behavior. In this paper, the effects of cell morphology on the compressive performance of thin-walled aluminum foams were studied by a finite element method using a three-dimensional, thin-shell Kelvin tetrakaidecahedron model. Models with varying cell structure parameters were established so that the effects of relative density, cell size, cell wall thickness, and cell anisotropy on the plateau stress and energy absorption capacity of the foams could be investigated. Both the numerical deformation behavior and stress-strain curves of aluminum foams are found to have good agreement with the experimental results under quasi-static compressive loading. Moreover, the deformation behaviors of those foams with a certain anisotropy ratio are compared for different loading directions. The cell shape is a key factor affecting the plateau stress as well as the relative density.

  16. Relação entre macrófagos espumosos ("foam cells") no fígado de bovinos e ingestão de Brachiaria spp no Brasil

    OpenAIRE

    Driemeier,David; Döbereiner,Jürgen; Peixoto,Paulo Vargas; Brito,Marilene F.

    1999-01-01

    Com o objetivo de estabelecer uma relação etiológica e caracterizar, cronologicamente, o aparecimento de macrófagos espumosos (foam cells), comuns em fígados de bovinos oriundos das regiões de clima tropical do Brasil, foram reexaminados cortes histológicos de fígado de bovinos dos arquivos do Setor de Anatomia Patológica da Embrapa-Projeto Sanidade Animal, RJ. O material utilizado provinha de investigações sobre causas de mortandades em bovinos nas regiões Norte, Centro-Oeste e Sudeste do Br...

  17. Spin Foam Models

    CERN Document Server

    Krasnov, K V

    1999-01-01

    The term ‘spin foam models’ was invented only a couple years ago by Baez to refer to a new approach to quantization of general relativity that appeared as an offsping of loop quantum gravity. Although this new approach was motivated, both logically and historically, by loop quantum gravity, it became clear by now that the two approaches are rather independent. While loop quantum gravity attempts to give a canonical quantization of general relativity, spin foam model approach is set to make sense of the path integral for gravity. Eventually, the two approaches will probably be shown to be equivalent, but no rigorous result to this effect exists as for now. In this thesis I develop the spin foam quantization of gravity from scratch, referring to results from loop quantum gravity only for comparison. I start from a review of 2 + 1 gravity and discuss different roots to quantize it. While some of them, as, for example, using Chern-Simons theory, only exist in 2 + 1, others can be generalized t...

  18. Polyimide Foams Offer Superior Insulation

    Science.gov (United States)

    2012-01-01

    At Langley Research Center, Erik Weiser and his colleagues in the Advanced Materials and Processing Branch were working with a new substance for fabricating composites for use in supersonic aircraft. The team, however, was experiencing some frustration. Every time they tried to create a solid composite from the polyimide (an advanced polymer) material, it bubbled and foamed. It seemed like the team had reached a dead end in their research - until they had another idea. "We said, This isn t going to work for composites, but maybe we could make a foam out of it," Weiser says. "That was kind of our eureka moment, to see if we could go in a whole other direction. And it worked." Weiser and his colleagues invented a new kind of polyimide foam insulation they named TEEK. The innovation displayed a host of advantages over existing insulation options. Compared to other commercial foams, Weiser explains, polyimide foams perform well across a broad range of temperatures, noting that the NASA TEEK foams provide effective structural insulation up to 600 F and down to cryogenic temperatures. The foam does not burn or off-gas toxic fumes, and even at -423 F - the temperature of liquid hydrogen - the material stays flexible. The inventors could produce the TEEK foam at a range of densities, from 0.5 pounds per cubic foot up to 20 pounds per cubic foot, making the foam ideal for a range of applications, including as insulation for reusable launch vehicles and for cryogenic tanks and lines. They also developed a unique, friable balloon format for manufacturing the foam, producing it as hollow microspheres that allowed the foam to be molded and then cured into any desired shape - perfect for insulating pipes of different sizes and configurations. The team s originally unplanned invention won an "R&D 100" award, and a later form of the foam, called LaRC FPF-44 (Spinoff 2009), was named "NASA Invention of the Year" in 2007.

  19. Blending Novatein¯ thermoplastic protein with PLA for carbon dioxide assisted batch foaming

    Science.gov (United States)

    Walallavita, Anuradha; Verbeek, Casparus J. R.; Lay, Mark

    2016-03-01

    The convenience of polymeric foams has led to their widespread utilisation in everyday life. However, disposal of synthetic petroleum-derived foams has had a detrimental effect on the environment which needs to be addressed. This study uses a clean and sustainable approach to investigate the foaming capability of a blend of two biodegradable polymers, polylactic acid (PLA) and Novatein® Thermoplastic Protein (NTP). PLA, derived from corn starch, can successfully be foamed using a batch technique developed by the Biopolymer Network Ltd. NTP is a patented formulation of bloodmeal and chemical additives which can be extruded and injection moulded similar to other thermoplastics. However, foaming NTP is a new area of study and its interaction with blowing agents in the batch process is entirely unknown. Subcritical and supercritical carbon dioxide have been examined individually in two uniquely designed pressure vessels to foam various compositions of NTP-PLA blends. Foamed material were characterised in terms of expansion ratio, cell size, and cellular morphology in order to study how the composition of NTP-PLA affects foaming with carbon dioxide. It was found that blends with 5 wt. % NTP foamed using subcritical CO2 expanded up to 11 times due to heterogeneous nucleation. Morphology analysis using scanning electron microscopy showed that foams blown with supercritical CO2 had a finer cell structure with consistent cell size, whereas, foams blown with subcritical CO2 ranged in cell size and showed cell wall rupture. Ultimately, this research would contribute to the production of a biodegradable foam material to be used in packaging applications, thereby adding to the application potential of NTP.

  20. Blending Novatein{sup ®} thermoplastic protein with PLA for carbon dioxide assisted batch foaming

    Energy Technology Data Exchange (ETDEWEB)

    Walallavita, Anuradha, E-mail: asw15@students.waikato.ac.nz; Verbeek, Casparus J. R., E-mail: jverbeek@waikato.ac.nz; Lay, Mark, E-mail: mclay@waikato.ac.nz [University of Waikato, Hamilton 3240 (New Zealand)

    2016-03-09

    The convenience of polymeric foams has led to their widespread utilisation in everyday life. However, disposal of synthetic petroleum-derived foams has had a detrimental effect on the environment which needs to be addressed. This study uses a clean and sustainable approach to investigate the foaming capability of a blend of two biodegradable polymers, polylactic acid (PLA) and Novatein® Thermoplastic Protein (NTP). PLA, derived from corn starch, can successfully be foamed using a batch technique developed by the Biopolymer Network Ltd. NTP is a patented formulation of bloodmeal and chemical additives which can be extruded and injection moulded similar to other thermoplastics. However, foaming NTP is a new area of study and its interaction with blowing agents in the batch process is entirely unknown. Subcritical and supercritical carbon dioxide have been examined individually in two uniquely designed pressure vessels to foam various compositions of NTP-PLA blends. Foamed material were characterised in terms of expansion ratio, cell size, and cellular morphology in order to study how the composition of NTP-PLA affects foaming with carbon dioxide. It was found that blends with 5 wt. % NTP foamed using subcritical CO{sub 2} expanded up to 11 times due to heterogeneous nucleation. Morphology analysis using scanning electron microscopy showed that foams blown with supercritical CO{sub 2} had a finer cell structure with consistent cell size, whereas, foams blown with subcritical CO{sub 2} ranged in cell size and showed cell wall rupture. Ultimately, this research would contribute to the production of a biodegradable foam material to be used in packaging applications, thereby adding to the application potential of NTP.

  1. Fluorescence and confocal imaging of mammalian cells using conjugated oligoelectrolytes with phenylenevinylene core

    Energy Technology Data Exchange (ETDEWEB)

    Milczarek, Justyna; Pawlowska, Roza; Zurawinski, Remigiusz; Lukasik, Beata; Garner, Logan E.; Chworos, Arkadiusz

    2017-05-01

    Over the last few years, considerable efforts are taken, in order to find a molecular fluorescent probe fulfilling their applicability requirements. Due to a good optical properties and affinity to biological structures conjugated oligoelectrolytes (COEs) can be considered as a promising dyes for application in fluorescence-based bioimaging. In this work, we synthetized COEs with phenylenevinylene core (PV-COEs) and applied as fluorescent membranous-specific probes. Cytotoxicity effects of each COE were probed on cancerous and non-cancerous cell types and little to no toxicity effects were observed at the high range of concentrations. The intensity of cell fluorescence following the COE staining was determined by the photoluminescence analysis and fluorescence activated cell sorting method (FACS). Intercalation of tested COEs into mammalian cell membranes was revealed by fluorescent and confocal microscopy colocalization with commercial dyes specific for cellular structures including mitochondria, Golgi apparatus and endoplasmic reticulum. The phenylenevinylene conjugated oligoelectrolytes have been found to be suitable for fluorescent bioimaging of mammalian cells and membrane-rich organelles. Due to their water solubility coupled with spontaneous intercalation into cells, favorable photophysical features, ease of cell staining, low cytotoxicity and selectivity for membranous structures, PV-COEs can be applied as markers for fluorescence imaging of a variety of cell types.

  2. Aluminium Foam and Magnesium Compound Casting Produced by High-Pressure Die Casting

    Directory of Open Access Journals (Sweden)

    Iban Vicario

    2016-01-01

    Full Text Available Nowadays, fuel consumption and carbon dioxide emissions are two of the main focal points in vehicle design, promoting the reduction in the weight of vehicles by using lighter materials. The aim of the work is to evaluate the influence of different aluminium foams and injection parameters in order to obtain compound castings with a compromise between the obtained properties and weight by high-pressure die cast (HPDC using aluminium foams as cores into a magnesium cast part. To evaluate the influence of the different aluminium foams and injection parameters on the final casting products quality, the type and density of the aluminium foam, metal temperature, plunger speed, and multiplication pressure have been varied within a range of suitable values. The obtained compound HPDC castings have been studied by performing visual and RX inspections, obtaining sound composite castings with aluminium foam cores. The presence of an external continuous layer on the foam surface and the correct placement of the foam to support injection conditions permit obtaining good quality parts. A HPDC processed magnesium-aluminium foam composite has been developed for a bicycle application obtaining a suitable combination of mechanical properties and, especially, a reduced weight in the demonstration part.

  3. Fracture Toughness Evaluation of Space Shuttle External Tank Thermal Protection System Polyurethane Foam Insulation Materials

    Science.gov (United States)

    McGill, Preston; Wells, Doug; Morgan, Kristin

    2006-01-01

    Experimental evaluation of the basic fracture properties of Thermal Protection System (TPS) polyurethane foam insulation materials was conducted to validate the methodology used in estimating critical defect sizes in TPS applications on the Space Shuttle External Fuel Tank. The polyurethane foam found on the External Tank (ET) is manufactured by mixing liquid constituents and allowing them to react and expand upwards - a process which creates component cells that are generally elongated in the foam rise direction and gives rise to mechanical anisotropy. Similarly, the application of successive foam layers to the ET produces cohesive foam interfaces (knitlines) which may lead to local variations in mechanical properties. This study reports the fracture toughness of BX-265, NCFI 24-124, and PDL-1034 closed-cell polyurethane foam as a function of ambient and cryogenic temperatures and knitline/cellular orientation at ambient pressure.

  4. Effect of Grinding Fineness of Fly Ash on the Properties of Geopolymer Foam

    Directory of Open Access Journals (Sweden)

    Szabó R.

    2017-06-01

    Full Text Available Present paper deals with the development of geopolymer foam prepared from ground F class power station fly ash. The effect of the fly ash fineness on the rheology of the geopolymer paste and the foam properties have been investigated. The raw fly ash was ground in a ball mill for various duration, 5, 10, 20, 30, 60 and 120 min. Geopolymer paste was prepared from the raw and ground fly ash with NaOH – sodium silicate mixture as alkaline activator. Geopolymer foam production was made using H2O2 as foaming agent. Additionally, the geopolymer material structure was investigated by Fourier transform infrared spectrometer, the foam cell structure was monitored using optical microscopy. The rheological behaviour of the geopolymer paste changed due to the grinding of fly ash (from Bingham plastic to Newtonian liquid. Grinding of fly ash has a significant effect on the physical properties as well as on the cell structure of the geopolymer foam.

  5. Polyurethane Foams with Pyrimidine Rings

    Directory of Open Access Journals (Sweden)

    Kania Ewelina

    2014-09-01

    Full Text Available Oligoetherols based on pyrimidine ring were obtained upon reaction of barbituric acid with glycidol and alkylene carbonates. These oligoetherols were then used to obtain polyurethane foams in the reaction of oligoetherols with isocyanates and water. The protocol of foam synthesis was optimized by the choice of proper kind of oligoetherol and synthetic composition. The thermal resistance was studied by dynamic and static methods with concomitant monitoring of compressive strength. The polyurethane foams have similar physical properties as the classic ones except their enhanced thermal resistance. They stand long-time heating even at 200°C. Moreover thermal exposition of foams results generally in increase of their compressive strength.

  6. Core-shell nanophosphor architecture: toward efficient energy transport in inorganic/organic hybrid solar cells.

    Science.gov (United States)

    Li, Qinghua; Yuan, Yongbiao; Chen, Zihan; Jin, Xiao; Wei, Tai-huei; Li, Yue; Qin, Yuancheng; Sun, Weifu

    2014-08-13

    In this work, a core-shell nanostructure of samarium phosphates encapsulated into a Eu(3+)-doped silica shell has been successfully fabricated, which has been confirmed by X-ray diffraction, transmission electron microscopy (TEM), and high-resolution TEM. Moreover, we report the energy transfer process from the Sm(3+) to emitters Eu(3+) that widens the light absorption range of the hybrid solar cells (HSCs) and the strong enhancement of the electron-transport of TiO2/poly(3-hexylthiophene) (P3HT) bulk heterojunction (BHJ) HSCs by introducing the unique core-shell nanoarchitecture. Furthermore, by applying femtosecond transient absorption spectroscopy, we successfully obtain the electron transport lifetimes of BHJ systems with or without incorporating the core-shell nanophosphors (NPs). Concrete evidence has been provided that the doping of core-shell NPs improves the efficiency of electron transfers from donor to acceptor, but the hole transport almost remains unchanged. In particular, the hot electron transfer lifetime was shortened from 30.2 to 16.7 ps, i.e., more than 44% faster than pure TiO2 acceptor. Consequently, a notable power conversion efficiency of 3.30% for SmPO4@Eu(3+):SiO2 blended TiO2/P3HT HSCs is achieved at 5 wt % as compared to 1.98% of pure TiO2/P3HT HSCs. This work indicates that the core-shell NPs can efficiently broaden the absorption region, facilitate electron-transport of BHJ, and enhance photovoltaic performance of inorganic/organic HSCs.

  7. Microwave Synthesis of Nearly Monodisperse Core/Multishell Quantum Dots with Cell Imaging Applications

    Directory of Open Access Journals (Sweden)

    Xu Hengyi

    2010-01-01

    Full Text Available Abstract We report in this article the microwave synthesis of relatively monodisperse, highly crystalline CdSe quantum dots (QDs overcoated with Cd0.5Zn0.5S/ZnS multishells. The as-prepared QDs exhibited narrow photoluminescence bandwidth as the consequence of homogeneous size distribution and uniform crystallinity, which was confirmed by transmission electron microscopy. A high photoluminescence quantum yield up to 80% was measured for the core/multishell nanocrystals. Finally, the resulting CdSe/Cd0.5Zn0.5S/ZnS core/multishell QDs have been successfully applied to the labeling and imaging of breast cancer cells (SK-BR3.

  8. Supercritical CO2 Foaming of Radiation Cross-Linked Isotactic Polypropylene in the Presence of TAIC

    Directory of Open Access Journals (Sweden)

    Chen-Guang Yang

    2016-12-01

    Full Text Available Since the maximum foaming temperature window is only about 4 °C for supercritical CO2 (scCO2 foaming of pristine polypropylene, it is important to raise the melt strength of polypropylene in order to more easily achieve scCO2 foaming. In this work, radiation cross-linked isotactic polypropylene, assisted by the addition of a polyfunctional monomer (triallylisocyanurate, TAIC, was employed in the scCO2 foaming process in order to understand the benefits of radiation cross-linking. Due to significantly enhanced melt strength and the decreased degree of crystallinity caused by cross-linking, the scCO2 foaming behavior of polypropylene was dramatically changed. The cell size distribution, cell diameter, cell density, volume expansion ratio, and foaming rate of radiation-cross-linked polypropylene under different foaming conditions were analyzed and compared. It was found that radiation cross-linking favors the foamability and formation of well-defined cell structures. The optimal absorbed dose with the addition of 2 wt % TAIC was 30 kGy. Additionally, the foaming temperature window was expanded to about 8 °C, making the handling of scCO2 foaming of isotactic polypropylene much easier.

  9. EXTRUDED POLYSTYRENE FOAM IN FLAT ROOFS

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2014-09-01

    Full Text Available In our article we prove the necessity of applying thermal insulation with low water absorption and resistance and preserving mechanical and thermophysical properties in corrosive environment in flat roofs, where there is always a danger of penetrating condensed moisture into the structure. As such material we offered extruded polystyrene foam - heat-insulating polymer material with uniformly distributed closed cells. The products are used in the form of slab insulation and special items - for forming slopes and venting.

  10. Kinetic parameters evaluation of PWRs using static cell and core calculation codes

    International Nuclear Information System (INIS)

    Jahanbin, Ali; Malmir, Hessam

    2012-01-01

    Highlights: ► In this study, we have calculated effective delayed neutron fraction and prompt neutron lifetime in PWRs. ► New software has been developed to link the WIMS, BORGES and CITATION codes in Visual C computer programming language. ► This software is used for calculation of the kinetic parameters in a typical VVER-1000 and NOK Beznau reactor. ► The ratios ((β eff ) i )/((β eff ) core ) , which are the important input data for the reactivity accident analysis, are also calculated. - Abstract: In this paper, evaluation of the kinetic parameters (effective delayed neutron fraction and prompt neutron lifetime) in PWRs, using static cell and core calculation codes, is reported. A new software has been developed to link the WIMS, BORGES and CITATION codes in Visual C computer programming language. Using the WIMS cell calculation code, multigroup microscopic cross-sections and number densities of different materials can be generated in a binary file. By the use of BORGES code, these binary-form cross-sections and number densities are converted to a format readable by the CITATION core calculation code, by which the kinetic parameters can be finally obtained. This software is used for calculation of the kinetic parameters in a typical VVER-1000 and NOK Beznau reactor. The ratios ((β eff ) i )/((β eff ) core ) , which are the important input data for the reactivity accident analysis, are also calculated. Benchmarking of the results against the final safety analysis report (FSAR) of the aforementioned reactors shows very good agreements with these published documents.

  11. Design and characterization of core-shell mPEG-PLGA composite microparticles for development of cell-scaffold constructs

    DEFF Research Database (Denmark)

    Wen, Yanhong; Gallego, Monica Ramos; Nielsen, Lene Feldskov

    2013-01-01

    /DS or Alg/CS/DS particles in the mPEG-PLGA microparticles were significantly dependent on the operating conditions, including the flow rate ratio (Qout/Qin) and the viscosity of the polymer solutions (Vout, Vin) between the outer and the inner feeding channels. The core-shell composite microparticles.......e. more sustainable cell growth was induced by the DS released from the core-shell composite microparticles comprising Alg/CS/DS particles. After seeding fibroblasts onto the composite microparticles, excellent cell adhesion was observed, and a successful assembly of the cell-scaffold constructs...... was induced within 7 days. Therefore, the present study demonstrates a novel strategy for fabrication of core-shell composite microparticles comprising additional particulate drug carriers in the core, which provides controlled delivery of DS and favorable cell biocompatibility; an approach to potentially...

  12. Forming and Bending of Metal Foams

    Science.gov (United States)

    Nebosky, Paul; Tyszka, Daniel; Niebur, Glen; Schmid, Steven

    2004-06-01

    This study examines the formability of a porous tantalum foam, known as trabecular metal (TM). Used as a bone ingrowth surface on orthopedic implants, TM is desirable due to its combination of high strength, low relative density, and excellent osteoconductive properties. This research aims to develop bend and stretch forming as a cost-effective alternative to net machining and EDM for manufacturing thin parts made of TM. Experimentally, bending about a single axis using a wiping die was studied by observing cracking and measuring springback. It was found that die radius and clearance strongly affect the springback properties of TM, while punch speed, embossings, die radius and clearance all influence cracking. Depending on the various combinations of die radius and clearance, springback factor ranged from .70-.91. To examine the affect of the foam microstructure, bending also was examined numerically using a horizontal hexagonal mesh. As the hexagonal cells were elongated along the sheet length, elastic springback decreased. This can be explained by the earlier onset of plastic hinging occurring at the vertices of the cells. While the numerical results matched the experimental results for the case of zero clearance, differences at higher clearances arose due to an imprecise characterization of the post-yield properties of tantalum. By changing the material properties of the struts, the models can be modified for use with other open-cell metallic foams.

  13. Low density, microcellular, dopable, agar/gelatin foams for pulsed power experiments

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, W.F. [Orion International Technologies, Inc., Albuquerque, NM (United States); Aubert, J.H. [Sandia National Lab., Albuquerque, NM (United States)

    1997-04-01

    Low-density, microcellular foams prepared from the natural polymers agar and gelatin have been developed for pulsed-power physics experiments. Numerous experiments were supported with foams having densities at or below 10 mg/cm{sup 3}. For some of the experiments, the agar/gelatin foam was uniformly doped with metallic elements using soluble salts. Depending on the method of preparation, cell sizes were typically below 10 microns and for one process were below 1.0 micron.

  14. Use of the supercritical fluid technology to prepare efficient nanocomposite foams for environmental protection purpose

    OpenAIRE

    Urbanczyk, Laetitia; Thomassin, Jean-Michel; Huynen, Isabelle; Alexandre, Michaël; Jérôme, Christine

    2009-01-01

    This work reports on the preparation of novel nanocomposite foams that are efficient broadband microwave absorbers. Carbon nanotubes are first successfully dispersed into PCL and PMMA by melt blending. Then, foaming is promoted by supercritical CO2 by depressurization. Regular cellular structures are obtained in both cases with cells size around 10-50µm. The electromagnetic interference (EMI) shielding efficiency of these materials are then evaluated and compared to the non-foamed nanocomposi...

  15. Size-dependent properties of silica nanoparticles for Pickering stabilization of emulsions and foams

    Science.gov (United States)

    Kim, Ijung; Worthen, Andrew J.; Johnston, Keith P.; DiCarlo, David A.; Huh, Chun

    2016-04-01

    Nanoparticles are a promising alternative to surfactants to stabilize emulsions or foams in enhanced oil recovery (EOR) processes due to their effectiveness in very harsh environments found in many of the oilfields around the world. While the size-dependent properties of nanoparticles have been extensively studied in the area of optics or cellular uptake, little is known on the effects of nanoparticle size on emulsion/foam generation, especially for EOR applications. In this study, silica nanoparticles with four different sizes (5, 12, 25, and 80 nm nominal diameter) but with the same surface treatment were employed to test their emulsion or foam generation behavior in high-salinity conditions. The decane-in-brine emulsion generated by sonication or flowing through sandpack showed smaller droplet size and higher apparent viscosity as the nanoparticle size decreased. Similarly, the CO2-in-brine foam generation in sandstone or sandpacks was also significantly affected by the nanoparticle size, exhibiting higher apparent foam viscosity as the nanoparticle size decreased. In case of foam generation in sandstone cores with 5 nm nanoparticles, a noticeable hysteresis occurred when the flow velocity was initially increased and then decreased, implying a strong foam generation initially; and then the trapping of the generated foam in the rock pores, as the flow velocity decreased. On the other hand, weak foams stabilized with larger nanoparticles indicated a rapid coalescence of bubbles which prevented foam generation. Overall, stable emulsions/foams were achievable by the smaller particles as a result of greater diffusivity and/or higher number concentration, thus allowing more nanoparticles with higher surface area to volume ratio to be adsorbed at the fluid/fluid interfaces of the emulsion/foam dispersion.

  16. Functional T lymphocytes infiltrate implanted polyvinyl alcohol foams during surgical wound closure therapy.

    Science.gov (United States)

    Gouttefangeas, C; Eberle, M; Ruck, P; Stark, M; Müller, J E; Becker, H D; Rammensee, H G; Pinocy, J

    2001-06-01

    Vacuum-assisted closure involving the implantation of polyvinyl alcohol foam is a technique recently developed for the treatment of patients suffering from either wound infection or chronic wounds. This method has been shown to improve and accelerate wound healing. However, little is known about the cell populations that infiltrate the foam, and their potential role in resolving the infection and promoting granulation tissue formation. Our study demonstrates that wound-implanted foams are mainly infiltrated with granulocytes, but that mononuclear cells, including macrophages and minor populations of T, B and natural killer lymphocytes, are also present. We show that foam-infiltrating T cells, especially CD4(+) T cells, constitute a phenotypically and functionally heterogeneous population influenced by wound-infecting bacteria. Thus, T lymphocytes could play a role in wound cleansing. In addition, our data indicate that implanted polyvinyl alcohol foams might be suitable microenvironments for manipulating T cell-mediated immune responses in patients.

  17. Mechanical behaviour of cyclic olefin copolymer/exfoliated graphite nanoplatelets nanocomposites foamed through supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    A. Biani

    2016-12-01

    Full Text Available A cycloolefin copolymer matrix was melt mixed with exfoliated graphite nanoplatelets (xGnP and the resulting nanocomposites were foamed by supercritical carbon dioxide. The density of the obtained foams decreased with the foaming pressure. Moreover, xGnP limited the cell growth during the expansion process thus reducing the cell diameter (from 1.08 to 0.22 mm with an XGnP amount of 10 wt% at 150 bar and increasing the cell density (from 12 to 45 cells/mm2 with a nanofiller content of 10 wt% at 150 bar. Electron microscopy observations of foams evidenced exfoliation and orientation of the nanoplatelets along the cell walls. Quasi-static compressive tests and tensile creep tests on foams clearly indicated that xGnP improved the modulus (up to a factor of 10 for a xGnP content of 10 wt% and the creep stability.

  18. Curcuma oil attenuates accelerated atherosclerosis and macrophage foam-cell formation by modulating genes involved in plaque stability, lipid homeostasis and inflammation.

    Science.gov (United States)

    Singh, Vishal; Rana, Minakshi; Jain, Manish; Singh, Niharika; Naqvi, Arshi; Malasoni, Richa; Dwivedi, Anil Kumar; Dikshit, Madhu; Barthwal, Manoj Kumar

    2015-01-14

    In the present study, the anti-atherosclerotic effect and the underlying mechanism of curcuma oil (C. oil), a lipophilic fraction from turmeric (Curcuma longa L.), was evaluated in a hamster model of accelerated atherosclerosis and in THP-1 macrophages. Male golden Syrian hamsters were subjected to partial carotid ligation (PCL) or FeCl3-induced arterial oxidative injury (Ox-injury) after 1 week of treatment with a high-cholesterol (HC) diet or HC diet plus C. oil (100 and 300 mg/kg, orally). Hamsters fed with the HC diet were analysed at 1, 3 and 5 weeks following carotid injury. The HC diet plus C. oil-fed group was analysed at 5 weeks. In hyperlipidaemic hamsters with PCL or Ox-injury, C. oil (300 mg/kg) reduced elevated plasma and aortic lipid levels, arterial macrophage accumulation, and stenosis when compared with those subjected to arterial injury alone. Similarly, elevated mRNA transcripts of matrix metalloproteinase-2 (MMP-2), MMP-9, cluster of differentiation 45 (CD45), TNF-α, interferon-γ (IFN-γ), IL-1β and IL-6 were reduced in atherosclerotic arteries, while those of transforming growth factor-β (TGF-β) and IL-10 were increased after the C. oil treatment (300 mg/kg). The treatment with C. oil prevented HC diet- and oxidised LDL (OxLDL)-induced lipid accumulation, decreased the mRNA expression of CD68 and CD36, and increased the mRNA expression of PPARα, LXRα, ABCA1 and ABCG1 in both hyperlipidaemic hamster-derived peritoneal and THP-1 macrophages. The administration of C. oil suppressed the mRNA expression of TNF-α, IL-1β, IL-6 and IFN-γ and increased the expression of TGF-β in peritoneal macrophages. In THP-1 macrophages, C. oil supplementation prevented OxLDL-induced production of TNF-α and IL-1β and increased the levels of TGF-β. The present study shows that C. oil attenuates arterial injury-induced accelerated atherosclerosis, inflammation and macrophage foam-cell formation.

  19. Simulated Tip Rub Testing of Low-Density Metal Foam

    Science.gov (United States)

    Bowman, Cheryl L.; Jones, Michael G.

    2009-01-01

    Preliminary acoustic studies have indicated that low-density, open-cell, metal foams may be suitable acoustic liner material for noise suppression in high by-pass engines. Metal foam response under simulated tip rub conditions was studied to assess whether its durability would be sufficient for the foam to serve both as a rub strip above the rotor as well as an acoustic treatment. Samples represented four metal alloys, nominal cell dimensions ranging from 60 to 120 cells per inch (cpi), and relative densities ranging from 3.4 to 10 percent. The resulting rubbed surfaces were relatively smooth and the open cell structure of the foam was not adversely affected. Sample relative density appeared to have significant influence on the forces induced by the rub event. Acoustic responses of various surface preparations were measured using a normal incidence tube. The results of this study indicate that the foam s open-cell structure was retained after rubbing and that the acoustic absorption spectra variation was minimal.

  20. A linear peristaltic MRF/foam actuator

    Science.gov (United States)

    Larsen, J. J.; Jenkins, C. H.; Korde, U. A.

    2007-04-01

    Magneto-rheological fluid (MRF) was first developed in the late 1940s. MRF consists of iron or other ferrous particles, typically on the order of 1 - 10 μm characteristic dimension, dispersed in a host carrier fluid, usually oil or water. In the presence of a magnetic field, the alignment of the iron particles along field lines results in the effective rheological properties of the composite fluid to be modified. In the "off" state (no field applied), the fluid has similar viscous properties to the host fluid. In the "on" state (field applied), the viscosity and yield stress can be significantly modified. Recently, MRF has been of interest in a number of novel devices, for example, for variable damping such as in automotive shock absorbers. In the present work, we briefly describe our initial investigations into variable damping MRF/foam devices. Open-cell polymer foam blocks were infused with commercial MRF and subjected to magnetic fields of various strengths. Drop tests were conducted by dropping a small indenter from a fixed platform and observing the rebound height as a function of applied field strength. The difference in rebound height can be directly related to loss of energy through damping. In the tests conducted, the energy absorbed by the MRF/foam increased from about 60% in the off-state device to over 90% in the on-state device. One of the difficulties encountered in performing the drop tests and providing credible data interpretation was that the MRF/foam itself changed dimensions under applied field. The iron particles in the fluid were attracted to the magnet and thus caused constriction of the foam block. Peristalsis is the process of involuntary and successive wave-like muscular contractions by which food is moved through the digestive tract. The esophagus, stomach, and intestines all move and/or mix food and liquid by peristalsis. Peristalsis is also used to move lymph through the lymphatic system. Inspired by biological peristalsis

  1. Engineered core-shell nanofibers for electron transport study in dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Y. Shabdan

    2017-06-01

    Full Text Available In this study, a unique approach was developed to synthesize 1-D core-shell nanofibers of carbon nanotubes (CNTs and TiO2 using combination of coaxial electrospinning and sol-gel technique. Diameters of the fabricated core-shell single wall carbon nanotube-TiO2 (SWCNT-TiO2 and multi wall carbon nanotube-TiO2 (MWCNT-TiO2 nano-composite fibers were between 50-100nm. Energy dispersive spectroscopy (EDS and X-ray photon spectroscopy (XPS were applied to confirm encapsulation of carbon nanotube (CNT in the core-shell structure. Electron transport properties of both SWCNT-TiO2 and MWCNT-TiO2 in the Dye-sensitized solar cells (DSSCs were studied for the first time. It was found that SWCNT-TiO2 based DSSC provided higher short circuit current relative to MWCNT-TiO2, which was explained by I-V and bode plots. These findings were further illustrated by semi-conductive properties of SWCNT.

  2. Direct Correlation of Excitonics with Efficiency in a Core-Shell Quantum Dot Solar Cell.

    Science.gov (United States)

    Dana, Jayanta; Maiti, Sourav; Tripathi, Vaidehi S; Ghosh, Hirendra N

    2018-02-16

    Shell thickness dependent band-gap engineering of quasi type II core-shell material with higher carrier cooling time, lower interfacial defect states, and longer charge carrier recombination time can be a promising candidate for both photocatalysis and solar cell. In the present investigation, colloidal CdSe@CdS core-shells with different shell thickness (2, 4 and 6 monolayer CdS) were synthesized through hot injection method and have been characterized by high resolution transmission electron microscope (HRTEM) followed by steady state absorption and luminescence techniques. Ultrafast transient absorption (TA) studies suggest longer carrier cooling, lower interfacial surface states, and slower carrier recombination time in CdSe@CdS core-shell with increasing shell thickness. By TA spectroscopy, the role of CdS shell in power conversion efficiency (PCE) has been explained in detail. The measured PCE was found to initially increase and then decrease with increasing shell thickness. Shell thickness has been optimized to maximize the efficiency after correlating the shell controlled carrier cooling and recombination with PCE values and a maximum PCE of 3.88 % was obtained with 4 monolayers of CdS shell, which is found to be 57 % higher than compared to bare CdSe QDs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Foam films as thin liquid gas separation membranes.

    Science.gov (United States)

    Ramanathan, Muruganathan; Müller, Hans Joachim; Möhwald, Helmuth; Krastev, Rumen

    2011-03-01

    In this letter, we testify the feasibility of using freestanding foam films as a thin liquid gas separation membrane. Diminishing bubble method was used as a tool to measure the permeability of pure gases like argon, nitrogen, and oxygen in addition to atmospheric air. All components of the foam film including the nature of the tail (fluorocarbon vs hydrocarbon), charge on the headgroup (anionic, cationic, and nonionic) and the thickness of the water core (Newton black film vs Common black film) were systematically varied to understand the permeation phenomena of pure gases. Overall results indicate that the permeability values for different gases are in accordance with magnitude of their molecular diameter. A smaller gaseous molecule permeates faster than the larger ones, indicating a new realm of application for foam films as size selective separation membranes.

  4. The efficacy of magnetic field on the thermal behavior of MnFe{sub 2}O{sub 4} nanofluid as a functional fluid through an open-cell metal foam tube

    Energy Technology Data Exchange (ETDEWEB)

    Amani, Mohammad [Mechanical and Energy Engineering Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Ameri, Mohammad, E-mail: ameri_m@yahoo.com [Mechanical and Energy Engineering Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Kasaeian, Alibakhsh [Department of Renewable Energies Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran (Iran, Islamic Republic of)

    2017-06-15

    Highlights: • Experiments are performed with MnFe{sub 2}O{sub 4} nanofluid through an open-cell metal foam tube. • Effects of concentration, Reynolds number and magnetic field on the nanofluid thermal behavior are examined. • Heat transfer is enhanced in attendance of constant and alternating magnetic fields. - Abstract: In the present experimental study, the influence of permanent and alternating magnetic fields on the flow and thermal behavior of MnFe{sub 2}O{sub 4} magnetic nanofluid flowing through a circular open-cell metal foam tube is investigated under homogeneous heat flux conditions. The experiments are performed at various nanoparticle concentrations, Reynolds numbers and magnetic fields with different strengths and frequencies. According to the observations, the heat transfer rate enhances directly relative to nanoparticle concentration and Reynolds number in attendance of magnetic field, whereas its maximum value of 16.4% is found for 2 wt% nanoparticles at Re = 200 under alternating field with 400 G strength and 20 Hz frequency. Moreover, it is observed that the influence of strength and frequency of magnetic field is insignificant for the pressure drop. Hydrothermal efficiency as the ratio of the Nusselt number to the ratio of the pressure drop is defined in order to evaluate the privilege of using MnFe{sub 2}O{sub 4} nanofluids in practical applications. The maximum efficiency of 1.25 is observed at 2 wt% under magnetic field with 400 G and 20 Hz at Re = 1000.

  5. Determination of elastic-plastic properties of Alporas foam at the cell-wall level using microscale-cantilever bending tests

    Czech Academy of Sciences Publication Activity Database

    Doktor, Tomáš; Kytýř, Daniel; Koudelka_ml., Petr; Zlámal, Petr; Fíla, Tomáš; Jiroušek, Ondřej

    2015-01-01

    Roč. 49, č. 2 (2015), s. 203-206 ISSN 1580-2949 R&D Projects: GA ČR(CZ) GAP105/12/0824 Institutional support: RVO:68378297 Keywords : aluminium foam * cantilever bending * micromechanics * optical strain measurement Subject RIV: JI - Composite Materials Impact factor: 0.439, year: 2015 http://mit.imt.si/Revija/izvodi/mit152/doktor.pdf

  6. Compressive Deformation Behavior of Open-Cell Cu-Zn-Al Alloy Foam Made Through P/M Route Using Mechanically Alloyed Powder

    Science.gov (United States)

    Barnwal, Ajay Kumar; Mondal, D. P.; Kumar, Rajeev; Prasanth, N.; Dasgupta, R.

    2018-02-01

    Cu-Zn-Al foams of varying porosity fractions using mechanical alloyed powder have been made through powder metallurgy route. Here, NH4 (HCO3) was used as a space holder. Mechanically alloyed Cu-Zn-Al is made using a planetary ball mill taking the ratio of Cu/Zn/Al = 70:25:5 (by weight ratio). The ball/powder ratios were varied in the four ranges 10:1, 15:1, 20:1, and 25:1. Green compacts of milled powder and space holder samples were sintered at three stages at three different temperatures 350, 550, and 850 °C for 1 h at each stage. The crystalline size and particle size as a function of ball/powder ratios were examined. The compressive deformation responses of foams are varied with relative density and the ball/powder ratio. The plateau stress and energy absorption of these foams increase with an increase in relative density but decreases with increase in ball/powder ratio, even though crystalline size decreases. This has further been explained on the basis of particle morphology as a function of ball/powder ratio.

  7. Foam rheology at large deformation

    Science.gov (United States)

    Géminard, J.-C.; Pastenes, J. C.; Melo, F.

    2018-04-01

    Large deformations are prone to cause irreversible changes in materials structure, generally leading to either material hardening or softening. Aqueous foam is a metastable disordered structure of densely packed gas bubbles. We report on the mechanical response of a foam layer subjected to quasistatic periodic shear at large amplitude. We observe that, upon increasing shear, the shear stress follows a universal curve that is nearly exponential and tends to an asymptotic stress value interpreted as the critical yield stress at which the foam structure is completely remodeled. Relevant trends of the foam mechanical response to cycling are mathematically reproduced through a simple law accounting for the amount of plastic deformation upon increasing stress. This view provides a natural interpretation to stress hardening in foams, demonstrating that plastic effects are present in this material even for minute deformation.

  8. Advanced Signal Processing Techniques Applied to Terahertz Inspections on Aerospace Foams

    Science.gov (United States)

    Trinh, Long Buu

    2009-01-01

    The space shuttle's external fuel tank is thermally insulated by the closed cell foams. However, natural voids composed of air and trapped gas are found as by-products when the foams are cured. Detection of foam voids and foam de-bonding is a formidable task owing to the small index of refraction contrast between foam and air (1.04:1). In the presence of a denser binding matrix agent that bonds two different foam materials, time-differentiation of filtered terahertz signals can be employed to magnify information prior to the main substrate reflections. In the absence of a matrix binder, de-convolution of the filtered time differential terahertz signals is performed to reduce the masking effects of antenna ringing. The goal is simply to increase probability of void detection through image enhancement and to determine the depth of the void.

  9. Polystyrene Foam EOS as a Function of Porosity and Fill Gas

    Science.gov (United States)

    Mulford, Roberta; Swift, Damian

    2009-06-01

    An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam, Differences between air-filled, nitrogen-blown, and CO2-blown foams are investigated, to estimate the importance of allowing air to react with plastic products during decomposition. Results differ somewhat from the conventional EOS, which are generated from values for plastic extrapolated to low densities.

  10. Sound Absorption Characteristics of Aluminum Foams Treated by Plasma Electrolytic Oxidation.

    Science.gov (United States)

    Jin, Wei; Liu, Jiaan; Wang, Zhili; Wang, Yonghua; Cao, Zheng; Liu, Yaohui; Zhu, Xianyong

    2015-11-09

    Open-celled aluminum foams with different pore sizes were fabricated. A plasma electrolytic oxidation (PEO) treatment was applied on the aluminum foams to create a layer of ceramic coating. The sound absorption coefficients of the foams were measured by an impedance tube and they were calculated by a transfer function method. The experimental results show that the sound absorption coefficient of the foam increases gradually with the decrease of pore size. Additionally, when the porosity of the foam increases, the sound absorption coefficient also increases. The PEO coating surface is rough and porous, which is beneficial for improvement in sound absorption. After PEO treatment, the maximum sound absorption of the foam is improved to some extent.

  11. Sound Absorption Characteristics of Aluminum Foams Treated by Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2015-11-01

    Full Text Available Open-celled aluminum foams with different pore sizes were fabricated. A plasma electrolytic oxidation (PEO treatment was applied on the aluminum foams to create a layer of ceramic coating. The sound absorption coefficients of the foams were measured by an impedance tube and they were calculated by a transfer function method. The experimental results show that the sound absorption coefficient of the foam increases gradually with the decrease of pore size. Additionally, when the porosity of the foam increases, the sound absorption coefficient also increases. The PEO coating surface is rough and porous, which is beneficial for improvement in sound absorption. After PEO treatment, the maximum sound absorption of the foam is improved to some extent.

  12. Decontamination by foams: a promising treatment for the removal of radioactive dust from gas streams

    International Nuclear Information System (INIS)

    Mitchell, J.P.

    1989-06-01

    Foams provide a promising method for the treatment of gas streams containing radioactive aerosol particles. They contain a very large surface area of liquid-gas interface in small cells; thus it is possible to achieve rapid capture of airborne particles in the liquid phase, particularly if the aerosol can be incorporated in the foam structure. The foam can be collapsed into a small volume of liquid, immobilising any trapped aerosol in a form that may be treated as liquid waste. A review of the literature has been undertaken to define and assess the mechanics of aerosol behaviour in contact with foams. Applications are also examined in which foams have been used to treat aerosols. Key issues are identified which require further study. In particular, the efficiency of sub-micron particle removal can be determined using recently developed analysers and the use of the process gas to generate the foam could have a major impact on the design of commercial units. (author)

  13. Treatment of sickle cell disease's hip necrosis by core decompression: a prospective case-control study.

    Science.gov (United States)

    Mukisi-Mukaza, M; Manicom, O; Alexis, C; Bashoun, K; Donkerwolcke, M; Burny, F

    2009-11-01

    The young age of patients, total arthroplasties complications risks, and implant costs justify evaluation of the results of core decompression in the treatment of sickle-cell disease avascular necrosis of the femoral head (ONFH). In sickle-cell disease necrosis, core decompression offers good relief from pain and delays the use of total arthroplasty in comparison to a conservatively treated control group by a simple non-weight bearing protocol. From 1994 to 2008, among 215 drepanocytic adults, 42 patients (22 genotype SS, 20 genotype SC; 15 men, 27 women) presented symptomatic ONFH. We report the data from a prospective study of two patients' groups: a non-operated group (16 patients aged 36.5+/-6.5 years, 23 hips) and an operated group (26 patients aged 30.3+/-2.8 years, 42 hips). The results were considered on the basis of change in clinical status according to the numeric evaluation of pain scale, the functional score of Merle d'Aubigné-Postel (MAP), the radiological progression of lesions, and the time delay to total arthroplasty. Twenty-three hips were conservatively treated by discharge (a pair of canes). After a follow-up period of 13.4+/-0.5 years, no pain improvement was noted (p=0.76), and MAP score was unchanged (p=0.27). Out of 23 hips managed by discharge, 9 stage IV hips (degenerative arthritis, 39.1%) underwent arthroplasty after an average delay of 2.6+/-2.4 years. Forty-two hips were treated by core decompression. The duration of follow-up was 11.3+/-1.8 years. Postoperatively, pain reduction and MAP score improvement were significant in 39 out of 42 hips (93%, ptechnique of core decompression remains a valid option place in the treatment sickle-cell disease avascular necrosis of the femoral head (ONFH). It may be especially recommended in under-equipped regions where drepanocytosis and its osteo-articular complications are frequent. Level III case-control therapeutic study. 2009 Published by Elsevier Masson SAS.

  14. Analysis of Stainless Steel Sandwich Panels with a Metal Foam Care for Lightweight Fan Blade Design

    Science.gov (United States)

    Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.

    2004-01-01

    The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. Traditionally, these components have been fabricated using expensive materials such as light weight titanium alloys, polymeric composite materials and carbon-carbon composites. The present study investigates the use of P sandwich foam fan blade made up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The stiffness of the sandwich structure is increased by separating the two face sheets by a foam core. The resulting structure possesses a high stiffness while being lighter than a similar solid construction. Since the face sheets carry the applied bending loads, the sandwich architecture is a viable engineering concept. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of the sandwich structure for a fan blade application. A vibration analysis for natural frequencies and P detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of skin thickness and core volume %re presented with a comparison to a solid titanium blade.

  15. Lattice-Strain Control of the Activity in Dealloyed Core-Shell Fuel Cell Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Strasser, P. [Berlin Institute of Technology (Technische Universitat Berlin); Koh, Shirlaine [University of Houston, Houston; Anniyev, Toyli [SLAC National Accelerator Laboratory; Greeley, Jeff [Argonne National Laboratory (ANL); More, Karren Leslie [ORNL; Yu, Chengfei [University of Houston, Houston; Liu, Zengcai [University of Houston, Houston; Kaya, Sarpa [SLAC National Accelerator Laboratory; Nordlund, Dennis [SLAC National Accelerator Laboratory; Ogasawara, Hirohito [SLAC National Accelerator Laboratory; Toney, Michael F. [SLAC National Accelerator Laboratory; Anders, Nilsson [SLAC National Accelerator Laboratory

    2010-01-01

    Electrocatalysis will play a key role in future energy conversion and storage technologies, such as water electrolysers, fuel cells and metal-air batteries. Molecular interactions between chemical reactants and the catalytic surface control the activity and efficiency, and hence need to be optimized; however, generalized experimental strategies to do so are scarce. Here we show how lattice strain can be used experimentally to tune the catalytic activity of dealloyed bimetallic nanoparticles for the oxygen-reduction reaction, a key barrier to the application of fuel cells and metal-air batteries. We demonstrate the core-shell structure of the catalyst and clarify the mechanistic origin of its activity. The platinum-rich shell exhibits compressive strain, which results in a shift of the electronic band structure of platinum and weakening chemisorption of oxygenated species. We combine synthesis, measurements and an understanding of strain from theory to generate a reactivity-strain relationship that provides guidelines for tuning electrocatalytic activity.

  16. Quantitative Analyses of Core Promoters Enable Precise Engineering of Regulated Gene Expression in Mammalian Cells

    Science.gov (United States)

    Ede, Christopher; Chen, Ximin; Lin, Meng-Yin; Chen, Yvonne Y.

    2016-01-01

    Inducible transcription systems play a crucial role in a wide array of synthetic biology circuits. However, the majority of inducible promoters are constructed from a limited set of tried-and-true promoter parts, which are susceptible to common shortcomings such as high basal expression levels (i.e., leakiness). To expand the toolbox for regulated mammalian gene expression and facilitate the construction of mammalian genetic circuits with precise functionality, we quantitatively characterized a panel of eight core promoters, including sequences with mammalian, viral, and synthetic origins. We demonstrate that this selection of core promoters can provide a wide range of basal gene expression levels and achieve a gradient of fold-inductions spanning two orders of magnitude. Furthermore, commonly used parts such as minimal CMV and minimal SV40 promoters were shown to achieve robust gene expression upon induction, but also suffer from high levels of leakiness. In contrast, a synthetic promoter, YB_TATA, was shown to combine low basal expression with high transcription rate in the induced state to achieve significantly higher fold-induction ratios compared to all other promoters tested. These behaviors remain consistent when the promoters are coupled to different genetic outputs and different response elements, as well as across different host-cell types and DNA copy numbers. We apply this quantitative understanding of core promoter properties to the successful engineering of human T cells that respond to antigen stimulation via chimeric antigen receptor signaling specifically under hypoxic environments. Results presented in this study can facilitate the design and calibration of future mammalian synthetic biology systems capable of precisely programmed functionality. PMID:26883397

  17. Development and Mechanical Behavior of FML/Aluminium Foam Sandwiches

    Science.gov (United States)

    Baştürk, S. B.; Tanoğlu, M.

    2013-10-01

    In this study, the Fiber-Metal Laminates (FMLs) containing glass fiber reinforced polypropylene (GFPP) and aluminum (Al) sheet were consolidated with Al foam cores for preparing the sandwich panels. The aim of this article is the comparison of the flexural properties of FML/Al foam sandwich panels bonded with various surface modification approaches (silane treatment and combination of silane treatment with polypropylene (PP) based film addition). The FML/foam sandwich systems were fabricated by laminating the components in a mould at 200 °C under 1.5 MPa pressure. The energy absorbtion capacities and flexural mechanical properties of the prepared sandwich systems were evaluated by mechanical tests. Experiments were performed on samples of varying foam thicknesses (8, 20 and 30 mm). The bonding among the sandwich components were achieved by various surface modification techniques. The Al sheet/Al foam sandwiches were also consolidated by bonding the components with an epoxy adhesive to reveal the effect of GFPP on the flexural performance of the sandwich structures.

  18. Iridium-decorated palladium-platinum core-shell catalysts for oxygen reduction reaction in proton exchange membrane fuel cell.

    Science.gov (United States)

    Wang, Chen-Hao; Hsu, Hsin-Cheng; Wang, Kai-Ching

    2014-08-01

    Carbon-supported Pt, Pd, Pd-Pt core-shell (Pt(shell)-Pd(core)/C) and Ir-decorated Pd-Pt core-shell (Ir-decorated Pt(shell)-Pd(core)/C) catalysts were synthesized, and their physical properties, electrochemical behaviors, oxygen reduction reaction (ORR) characteristics and proton exchange membrane fuel cell (PEMFC) performances were investigated herein. From the XRD patterns and TEM images, Ir-decorated Pt(shell)-Pd(core)/C has been confirmed that Pt was deposited on the Pd nanoparticle which had the core-shell structure. Ir-decorated Pt(shell)-Pd(core)/C has more positive OH reduction peak than Pt/C, which is beneficial to weaken the binding energy of Pt-OH during the ORR. Thus, Ir-decorated Pt(shell)-Pd(core)/C has higher ORR activity than Pt/C. The maximum power density of H2-O2 PEMFC using Ir-decorated Pt(shell)-Pd(core)/C is 792.2 mW cm(-2) at 70°C, which is 24% higher than that using Pt/C. The single-cell accelerated degradation test of PEMFC using Ir-decorated Pt(shell)-Pd(core)/C shows good durability by the potential cycling of 40,000 cycles. This study concludes that Ir-decorated Pt(shell)-Pd(core)/C has the low Pt content, but it can facilitate the low-cost and high-efficient PEMFC. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity

    Directory of Open Access Journals (Sweden)

    Peter W. Gaiser

    2012-04-01

    Full Text Available Foam fraction can be retrieved from space-based microwave radiometric data at frequencies from 1 to 37 GHz. The retrievals require modeling of ocean surface emissivity fully covered with sea foam. To model foam emissivity well, knowledge of foam properties, both mechanical and dielectric, is necessary because these control the radiative processes in foam. We present a physical description of foam dielectric properties obtained from the foam dielectric constant including foam skin depth; foam impedance; wavelength variations in foam thickness, roughness of foam layer interfaces with air and seawater; and foam scattering parameters such as size parameter, and refraction index. Using these, we analyze the scattering, absorption, reflection and transmission in foam and gain insights into why volume scattering in foam is weak; why the main absorption losses are confined to the wet portion of the foam; how the foam impedance matching provides the transmission of electromagnetic radiation in foam and maximizes the absorption; and what is the potential for surface scattering at the foam layers boundaries. We put all these elements together and offer a conceptual understanding for the high, black-body-like emissivity of foam floating on the sea surface. We also consider possible scattering regimes in foam.

  20. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    International Nuclear Information System (INIS)

    Kim, Nohyu; Yang, Seung Yong

    2016-01-01

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method

  1. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nohyu; Yang, Seung Yong [School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2016-02-15

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

  2. The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams

    Science.gov (United States)

    Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing

    2016-11-01

    Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams.

  3. Phyllotaxis: a framework for foam topological evolution.

    Science.gov (United States)

    Rivier, Nicolas; Sadoc, Jean-François; Charvolin, Jean

    2016-01-01

    Phyllotaxis describes the arrangement of florets, scales or leaves in composite flowers or plants (daisy, aster, sunflower, pinecone, pineapple). As a structure, it is a geometrical foam, the most homogeneous and densest covering of a large disk by Voronoi cells (the florets), constructed by a simple algorithm: Points placed regularly on a generative spiral constitute a spiral lattice, and phyllotaxis is the tiling by the Voronoi cells of the spiral lattice. Locally, neighboring cells are organized as three whorls or parastichies, labelled with successive Fibonacci numbers. The structure is encoded as the sequence of the shapes (number of sides) of the successive Voronoi cells on the generative spiral. We show that sequence and organization are independent of the position of the initial point on the generative spiral, that is invariant under disappearance (T2 of the first Voronoi cell or, conversely, under creation of a first cell, that is under growth. This independence shows how a foam is able to respond to a shear stress, notably through grain boundaries that are layers of square cells slightly truncated into heptagons, pentagons and hexagons, meeting at four-corner vertices, critical points of T1 elementary topological transformations.

  4. The Usability of Boric Acid as an Alternative Foaming Agent on the Fabrication of Al/Al2O3 Composite Foams

    Science.gov (United States)

    Yaman, Bilge; Onuklu, Eren; Korpe, Nese O.

    2017-09-01

    Pure Al and alumina (2, 5, 10 wt.% Al2O3)-added Al composite foams were fabricated through powder metallurgy technique, where boric acid (H3BO3) is employed as a new alternative foaming agent. It is aimed to determine the effects of boric acid on the foaming behavior and cellular structure and also purposed to develop the mechanical properties of Al foams by addition of Al2O3. Al and Al composite foams with porosity fraction in the range of 46-53% were achieved by sintering at 620 °C for 2 h. Cell morphology was characterized using a combination of stereomicroscope equipped with image analyzer and scanning electron microscopy. Microhardness values were measured via using Vickers indentation technique. Quasi-static compression tests were performed at strain rate of 10-3 s-1. Compressive strength and energy absorption of the composite foams enhanced not only by the increasing weight fraction of alumina, but also by the usage of boric acid which leads to formation of boron oxide (B2O3) acting as a binder in obtaining dense cell walls. The results revealed that the boric acid has outstanding potential as foaming agent in the fabrication of Al and Al composite foams by providing improved mechanical properties.

  5. Development of foams from linear polypropylene (PP) and high melt strength polypropylene (HMSPP) polymeric blends

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth Carvalho Leite

    2009-01-01

    Scanning Electron Microscope (SEM). Micrographs obtained pointed to closed cells foams, in which the pressure is kept during all cell formation stage, informing that closed cells foams are used in thermal insulation in Civil Construction and in thermal vials. Density analyses accomplished in foams produced in our work showed typical results for high density foams (320 to 800 kg/m3 range), around 500 kg/m3, used for wire and cables and for structural purposes (structural foams), by replacing wood, metals or solid plastics. Structural foams have high density (above 320 kg/m3) and cellular structures are specially composed by holes. (author)

  6. Mechanical Characterization of Rigid Polyurethane Foams

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Mechanics of Materials

    2014-12-01

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  7. Characterisation of natural fibre reinforced PLA foams prepared by supercritical CO2 assisted extrusion

    Directory of Open Access Journals (Sweden)

    K. Bocz

    2016-09-01

    Full Text Available Natural fibre reinforced polylactic acid (PLA foams, as potential green replacements for petroleum-based polymer foams, were investigated. Highly porous (ε > 95% microcellular PLA foams were manufactured by supercritical CO2 assisted extrusion process. To overcome the inherently low melt strength of PLA, epoxy-functionalized chain extender was applied, while talc was added to improve its crystallization kinetics. The combined application of chain extender and talc effectively promoted the formation of uniform cell structures. The effect of cellulose and basalt fibre reinforcement on the foamability, morphology, structure and mechanical properties of the PLA foams were investigated as well. The addition of 5 wt% natural fibres promoted the cell nucleation, but caused non-uniform distribution of cell size due to the microholes induced by local fibre-matrix debonding. The compression strength of the manufactured basalt fibre reinforced PLA foams reached 40 kPa.

  8. Injectable foams for regenerative medicine.

    Science.gov (United States)

    Prieto, Edna M; Page, Jonathan M; Harmata, Andrew J; Guelcher, Scott A

    2014-01-01

    The design of injectable biomaterials has attracted considerable attention in recent years. Many injectable biomaterials, such as hydrogels and calcium phosphate cements (CPCs), have nanoscale pores that limit the rate of cellular migration and proliferation. While introduction of macroporosity has been suggested to increase cellular infiltration and tissue healing, many conventional methods for generating macropores often require harsh processing conditions that preclude their use in injectable foams. In recent years, processes such as porogen leaching, gas foaming, and emulsion-templating have been adapted to generate macroporosity in injectable CPCs, hydrogels, and hydrophobic polymers. While some of the more mature injectable foam technologies have been evaluated in clinical trials, there are challenges remaining to be addressed, such as the biocompatibility and ultimate fate of the sacrificial phase used to generate pores within the foam after it sets in situ. Furthermore, while implantable scaffolds can be washed extensively to remove undesirable impurities, all of the components required to synthesize injectable foams must be injected into the defect. Thus, every compound in the foam must be biocompatible and noncytotoxic at the concentrations utilized. As future research addresses these critical challenges, injectable macroporous foams are anticipated to have an increasingly significant impact on improving patient outcomes for a number of clinical procedures. © 2013 Wiley Periodicals, Inc.

  9. Synthesis of Foam-Shaped Nanoporous Zeolite Material: A Simple Template-Based Method

    Science.gov (United States)

    Saini, Vipin K.; Pires, Joao

    2012-01-01

    Nanoporous zeolite foam is an interesting crystalline material with an open-cell microcellular structure, similar to polyurethane foam (PUF). The aluminosilicate structure of this material has a large surface area, extended porosity, and mechanical strength. Owing to these properties, this material is suitable for industrial applications such as…

  10. Mechanical properties of palm oil based bio-polyurethane foam of free rise and various densities

    Science.gov (United States)

    Hilmi, Hazmi; Zainuddin, Firuz; Cheng, Teoh Siew; Lan, Du Ngoc Uy

    2017-12-01

    Bio-foam was produced from palm oil-based polyol (POBP) and methylene diphenyl diisocyanate (MDI) with weight ratio of 1:1. The effect of opened mould (as free rise) and closed mould (control expansion) was investigated. Different densities of bio-polyurethane foam (0.3, 0.4 and 0.5 g.cm-3) were prepared using the closed mould system. The effect of density on morphology and compressive properties of bio-foam was studied. Results showed that bio-foam prepared by closed mould method possessed homogeneous cell structure and cell size compared to bio-foam prepared by opened mould. In addition, bio-foam using closed mould system had higher compression strength (0.47 MPa) than that of bio-foam using opened mould system (0.13 MPa). With higher density and lesser porosity, the compressive modulus and compressive strength of bio foams will be higher. The increase in compressive properties is due to the decrease in the cells size, more homogeneous cell structure and reduction in porosity content.

  11. Study of a flowing aqueous decontamination foam drainage mechanisms and hydrodynamic behaviour

    International Nuclear Information System (INIS)

    Boissonnet, G.

    1998-01-01

    For the decontamination of nuclear facilities, the use of foams has a great potentiality. This work deals with the study of a flowing aqueous foam regarding two aspects: the structure and the drainage on one hand, the hydrodynamic behaviour on the other hand. The foam has been studied from a photograph of a plexiglass column wall, in which the foam flows vertically. Image processing and analysis have been used to measure the foam structure parameters and demonstrate that the smaller the average diameter of the bubbles is, the more stable the foam is. The competition between the gravity and the interfacial forces has been showed by two types of fluid flow in the inter-bubble channels: one where the gravity is preponderant, the other where the two forces exist. Two drainage models based on the Darcy law and the Weaire model have been elaborated. From an hydrodynamic behaviour point of view, the sliding of a shear core in the liquid film on wall, has been demonstrated. A Ostwald De Weale type behaviour appears concerning the whole flow; a Herschel Bulkley type behaviour of the foam core appears when the shearing and the sliding are dissociated. The sliding speed is 5 to 95% of the global speed according to the experiment conditions. A method to forecast the pressure losses, based on the Moody diagram has been established. (A.L.B.)

  12. Plasmonic nanodiamonds: targeted core-shell type nanoparticles for cancer cell thermoablation.

    Science.gov (United States)

    Rehor, Ivan; Lee, Karin L; Chen, Kevin; Hajek, Miroslav; Havlik, Jan; Lokajova, Jana; Masat, Milan; Slegerova, Jitka; Shukla, Sourabh; Heidari, Hamed; Bals, Sara; Steinmetz, Nicole F; Cigler, Petr

    2015-02-18

    Targeted biocompatible nanostructures with controlled plasmonic and morphological parameters are promising materials for cancer treatment based on selective thermal ablation of cells. Here, core-shell plasmonic nanodiamonds consisting of a silica-encapsulated diamond nanocrystal coated in a gold shell are designed and synthesized. The architecture of particles is analyzed and confirmed in detail using electron tomography. The particles are biocompatibilized using a PEG polymer terminated with bioorthogonally reactive alkyne groups. Azide-modified transferrin is attached to these particles, and their high colloidal stability and successful targeting to cancer cells overexpressing the transferrin receptor are demonstrated. The particles are nontoxic to the cells and they are readily internalized upon binding to the transferrin receptor. The high plasmonic cross section of the particles in the near-infrared region is utilized to quantitatively ablate the cancer cells with a short, one-minute irradiation by a pulse 750-nm laser. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Filler functionality in edible solid foams.

    Science.gov (United States)

    van der Sman, R G M

    2016-05-01

    We review the functionality of particulate ingredients in edible brittle foams, such as expanded starchy snacks. In food science and industry there is not a complete awareness of the full functionality of these filler ingredients, which can be fibers, proteins, starch granules and whole grains. But, we show that much can be learned about that from the field of synthetic polymeric foams with (nano)fillers. For edible brittle foams the enhancement of mechanical strength by filler ingredients is less relevant compared to the additional functionalities such as 1) the promotion of bubble nucleation and 2) cell opening-which are much more relevant for the snack texture. The survey of particulate ingredients added to snack formulations shows that they cannot be viewed as inert fillers, because of their strong hygroscopic properties. Hence, these fillers will compete with starch for water, and that will modify the glass transition and boiling point, which are important factors for snack expansion. Filler properties can be modified via extrusion, but it is better if that processing step is decoupled from the subsequent processing steps as mixing and expansion. Several filler ingredients are also added because of their nutritional value, but can have adverse effect on snack expansion. These adverse effects can be reduced if the increase of nutritional value is decoupled from other filler functionality via compartmentalization using micropellets. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. High Strength Wood-based Sandwich Panels reinforced with fiberglass and foam

    Science.gov (United States)

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2014-01-01

    Mechanical analysis is presented for new high-strengthsandwich panels made from wood-based phenolic impregnated laminated paper assembled with an interlocking tri-axial ribbed core. Four different panel configurations were tested, including panels with fiberglass fabric bonded to both outside faces with self-expanding urethane foam used to fill the ribbed core. The...

  15. Hydrogel Encapsulation Facilitates Rapid-Cooling Cryopreservation of Stem Cell-Laden Core-Shell Microcapsules as Cell-Biomaterial Constructs.

    Science.gov (United States)

    Zhao, Gang; Liu, Xiaoli; Zhu, Kaixuan; He, Xiaoming

    2017-12-01

    Core-shell structured stem cell microencapsulation in hydrogel has wide applications in tissue engineering, regenerative medicine, and cell-based therapies because it offers an ideal immunoisolative microenvironment for cell delivery and 3D culture. Long-term storage of such microcapsules as cell-biomaterial constructs by cryopreservation is an enabling technology for their wide distribution and ready availability for clinical transplantation. However, most of the existing studies focus on cryopreservation of single cells or cells in microcapsules without a core-shell structure (i.e., hydrogel beads). The goal of this study is to achieve cryopreservation of stem cells encapsulated in core-shell microcapsules as cell-biomaterial constructs or biocomposites. To this end, a capillary microfluidics-based core-shell alginate hydrogel encapsulation technology is developed to produce porcine adipose-derived stem cell-laden microcapsules for vitreous cryopreservation with very low concentration (2 mol L -1 ) of cell membrane penetrating cryoprotective agents (CPAs) by suppressing ice formation. This may provide a low-CPA and cost-effective approach for vitreous cryopreservation of "ready-to-use" stem cell-biomaterial constructs, facilitating their off-the-shelf availability and widespread applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Core-shell rhodium sulfide catalyst for hydrogen evolution reaction / hydrogen oxidation reaction in hydrogen-bromine reversible fuel cell

    Science.gov (United States)

    Li, Yuanchao; Nguyen, Trung Van

    2018-04-01

    Synthesis and characterization of high electrochemical active surface area (ECSA) core-shell RhxSy catalysts for hydrogen evolution oxidation (HER)/hydrogen oxidation reaction (HOR) in H2-Br2 fuel cell are discussed. Catalysts with RhxSy as shell and different percentages (5%, 10%, and 20%) of platinum on carbon as core materials are synthesized. Cyclic voltammetry is used to evaluate the Pt-equivalent mass specific ECSA and durability of these catalysts. Transmission electron microscopy (TEM), X-ray Photoelectron spectroscopy (XPS) and Energy-dispersive X-ray spectroscopy (EDX) techniques are utilized to characterize the bulk and surface compositions and to confirm the core-shell structure of the catalysts, respectively. Cycling test and polarization curve measurements in the H2-Br2 fuel cell are used to assess the catalyst stability and performance in a fuel cell. The results show that the catalysts with core-shell structure have higher mass specific ECSA (50 m2 gm-Rh-1) compared to a commercial catalyst (RhxSy/C catalyst from BASF, 6.9 m2 gm-Rh-1). It also shows better HOR/HER performance in the fuel cell. Compared to the platinum catalyst, the core-shell catalysts show more stable performance in the fuel cell cycling test.

  17. A foam melting model for lost foam casting of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Caulk, D.A. [Manufacturing Systems Research Laboratory, General Motors Research and Development Center, 30500 Mound Road, Warren, MI 48090-9055 (United States)

    2006-07-15

    In lost foam casting of aluminum the liquid metal normally decomposes the foam pattern by ablation. But sometimes polymer vapor bubbling through the liquid metal accumulates along an upward-facing flow front until it opens a finite gap between the liquid metal and the decomposing foam. This changes the foam decomposition mechanism along that front from direct ablation to melting. A mathematical model is formulated for heat conduction, convection, and radiation across the gap, coupled with the vaporization of the excess polymer liquid behind the metal front and the resulting buoyant movement of polymer vapor bubbles through the liquid metal. Both models are combined to obtain an analytical solution for one-dimensional bottom filling of a pattern with uniform thickness. The results from this solution not only compare well with available experimental data, but they also explain how part thickness, metal temperature, and pressure affect filling speeds in bottom-fill situations. (author)

  18. Rigid polyurethane/oil palm fibre biocomposite foam

    Science.gov (United States)

    Alis, Adilah; Majid, Rohah A.; Nasir, Izzah Athirah Ahmad; Mustaffa, Nor Syatika; Hassan, Wan Hasamuddin Wan

    2017-07-01

    Rigid polyurethane (PU) biocomposite foam had been successfully prepared by reacting palm oil-derived polyol (PO-p) with polymeric 4, 4-diphenylmethane diisocynate (p-MDI). Two types of alkali-treated oil palm fibres namely, empty fruit bunch (EFB) and palm pressed fibre (PPF) were used as fillers to be incorporated into PU foam at 2.5 wt%, 5 wt% and 7.5 wt% fibre loadings. The effects of these fibres on surface morphology, compressive strength and thermal transition behaviours of biocomposite foams were investigated. Fourier transform infra-red (FTIR) analysis confirmed the formation of urethane linkages (-NHCOO) in all samples at 1530-1540 cm-1. Differential scanning calorimetry (DSC) analysis showed the average melting peak temperature (Tm) of biocomposite foams (132°C) were lower Tm than that of pure PU foam (161.67°C) and the increase amount of fibres did not give significant effect on the Tm of both biocomposite systems. Meanwhile, the microscopic images of PU-PPF foams exhibited smaller and uniform cell size morphologies compared with the PU-EFB foams that had coarse and irregular cell sizes, especially at 7.5wt% EFB. These findings were manifested with the gradually increase of compressive strength of PU-PPF at all PPF ratios while for PU-EFB system, the compressive strength increased up to 5 wt% before reduced at 7.5 wt% loading. It was thought due to the residual oil in PPF fibre had plasticized the PU matrix to a little extent, thus helping the dispersion of PPF fibre across the matrix.

  19. Morphologies, Processing and Properties of Ceramic Foams and Their Potential as TPS Materials

    Science.gov (United States)

    Stackpoole, Mairead; Simoes, Conan R.; Johnson, Sylvia M.

    2002-01-01

    The current research is focused on processing ceramic foams with compositions that have potential as a thermal protection material. The use of pre-ceramic polymers with the addition of sacrificial blowing agents or sacrificial fillers offers a viable approach to form either open or closed cell insulation. Our work demonstrates that this is a feasible method to form refractory ceramic foams at relatively low processing temperatures. It is possible to foam complex shapes then pyrolize the system to form a ceramic while retaining the shape of the unfired foam. Initial work focused on identifying suitable pre-ceramic polymers with desired properties such as ceramic yield and chemical make up of the pyrolysis product after firing. We focused on making foams in the Si system (Sic, Si02, Si-0-C), which is in use in current acreage TPS systems. Ceramic foams with different architectures were formed from the pyrolysis of pre-ceramic polymers at 1200 C in different atmospheres. In some systems a sacrificial polyurethane was used as the blowing agent. We have also processed foams using sacrificial fillers to introduce controlled cell sizes. Each sacrificial filler or blowing agent leads to a unique morphology. The effect of different fillers on foam morphologies and the characterization of these foams in terms of mechanical and thermal properties are presented. We have conducted preliminary arc jet testing on selected foams with the materials being exposed to typical re-entry conditions for acreage TPS and these results will be discussed. Foams processed using these approaches have bulk densities ranging from 0.15 to 0.9 g/cm3 and cell sizes ranging from 5 to 500 pm. Compression strengths ranged from 2 to 7 MPa for these systems. Finally, preliminary oxidation studies have been conducted on selected systems and will be discussed.

  20. In Situ Foaming of Porous (La 0.6 Sr 0.4 ) 0.98 (Co 0.2 Fe 0.8 ) O 3-δ (LSCF) Cathodes for Solid Oxide Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gandavarapu, Sodith [US DOE-National Energy Technology Laboratory, 3610 Collins Ferry Road P.O.Box.880 Morgantown West Virginia 26507; Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown West Virginia 26506; Sabolsky, Edward [US DOE-National Energy Technology Laboratory, 3610 Collins Ferry Road P.O.Box.880 Morgantown West Virginia 26507; Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown West Virginia 26506; Sabolsky, Katarzyna [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown West Virginia 26506; Gerdes, Kirk [US DOE-National Energy Technology Laboratory, 3610 Collins Ferry Road P.O.Box.880 Morgantown West Virginia 26507

    2013-07-18

    A binder system containing polyurethane precursors was used to in situ foam (direct foam) a (La{sub 0.6}Sr{sub 0.4}){sub 0.98} (Co{sub 0.2} Fe{sub 0.8}) O{sub 3-{ delta}} (LSCF) composition for solid oxide fuel cell (SOFC) cathode applications. The relation between in situ foaming parameters on the final microstructure and electrochemical properties was characterized by microscopy and electrochemical impedance spectroscopy (EIS), respectively. The optimal porous cathode architecture was formed with a 70 vol% solids loading within a polymer precursor composition with a volume ratio of 8:4:1 (isocyanate: PEG: surfactant) in a terpineol-based ink vehicle. The resultant microstructure displayed a broad pore size distribution with highly elongated pore structure.

  1. Coupled cell-free synthesis, segregation, and core glycosylation of a secretory protein.

    Science.gov (United States)

    Lingappa, V R; Lingappa, J R; Prasad, R; Ebner, K E; Blobel, G

    1978-05-01

    mRNA from rat mammary glands 13-15 days post partum was translated in a wheat germ cell-free system either in the absence or in the presence of ribosome-denuded membranes prepared from isolated rough microsomes of dog pancreas. Newly synthesized alpha-lactalbumin was identified by immunoprecipitation with a monospecific rabbit antiserum against rat alpha-lactalbumin and was characterized by partial amino-terminal sequence determination and by lectin affinity chromatography. In the absence of membranes a presumably unglycosylated form of alpha-lactalbumin was synthesized that bound neither to concanavalin A-Sepharose nor to Ricinus communis lectin-agarose and that contained an amino-terminal signal peptide region comprising 19 amino acid residues. In the presence of membranes a processed form was synthesized that lacked the signal peptide portion and that had an amino-terminal sequence identical to that of mature alpha-lactalbumin. Furthermore, this processed form was found to be segregated, presumably within the microsomal vesicles, because it was resistant to post-translational proteolysis. It was also found to be glycosylated, and because it bound to concanavalin A-Sepharose, from which it could be eluted specifically by alpha-methyl mannoside, but not to R. communis lectin-agarose, it was presumably core-glycosylated. Processing, segregation, and core glycosylation were observed to proceed only when membranes were present during translation and not when they were added after translation.

  2. Foam-assisted delivery of nanoscale zero valent iron in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yuanzhao; Liu, Bo; Shen, Xin; Zhong, Lirong; Li, Xiqing

    2013-09-01

    Foam is potentially a promising vehicle to deliver nanoparticles for vadose zone remediation as foam can overcome the intrinsic problems associated with solution-based delivery, such as preferential flow and contaminant mobilization. In this work, the feasibility of using foam to deliver nanoscale zero valent iron (nZVI) in unsaturated porous media was investigated. Foams generated using surfactant sodium lauryl ether sulfate (SLES) showed excellent ability to carry nZVI. SLES and nZVI concentrations in the foaming solutions did not affect the percentages of nZVI concentrations in foams relative to nZVI concentrations in the solutions. When foams carrying nZVI were injected through the unsaturated columns, the fractions of nZVI exiting the column were much higher than those when nZVI was injected in liquid. The enhanced nZVI transport implies that foam delivery could significantly increase the radius of influence of injected nZVI. The type and concentrations of surfactants and the influent nZVI concentrations did not noticeably affect nZVI transport during foam delivery. In contrast, nZVI retention increased considerably as the grain size of porous media decreased. Oxidation of foam-delivered nZVI due to oxygen diffusion into unsaturated porous media was visually examined using a flow cell. It was demonstrated that if foams are injected to cover a deep vadose zone layer, oxidation would only cause a small fraction of foam-delivered nZVI to be oxidized before it reacts with contaminants.

  3. A Conserved Core of Programmed Cell Death Indicator Genes Discriminates Developmentally and Environmentally Induced Programmed Cell Death in Plants.

    Science.gov (United States)

    Olvera-Carrillo, Yadira; Van Bel, Michiel; Van Hautegem, Tom; Fendrych, Matyáš; Huysmans, Marlies; Simaskova, Maria; van Durme, Matthias; Buscaill, Pierre; Rivas, Susana; Coll, Nuria S.; Coppens, Frederik; Maere, Steven; Nowack, Moritz K.

    2015-12-01

    A plethora of diverse programmed cell death (PCD) processes has been described in living organisms. In animals and plants, different forms of PCD play crucial roles in development, immunity, and responses to the environment. While the molecular control of some animal PCD forms such as apoptosis is known in great detail, we still know comparatively little about the regulation of the diverse types of plant PCD. In part, this deficiency in molecular understanding is caused by the lack of reliable reporters to detect PCD processes. Here, we addressed this issue by using a combination of bioinformatics approaches to identify commonly regulated genes during diverse plant PCD processes in Arabidopsis (Arabidopsis thaliana). Our results indicate that the transcriptional signatures of developmentally controlled cell death are largely distinct from the ones associated with environmentally induced cell death. Moreover, different cases of developmental PCD share a set of cell death-associated genes. Most of these genes are evolutionary conserved within the green plant lineage, arguing for an evolutionary conserved core machinery of developmental PCD. Based on this information, we established an array of specific promoter-reporter lines for developmental PCD in Arabidopsis. These PCD indicators represent a powerful resource that can be used in addition to established morphological and biochemical methods to detect and analyze PCD processes in vivo and in planta. © 2015 American Society of Plant Biologists. All Rights Reserved.

  4. pH stability and comparative evaluation of ranaspumin-2 foam for application in biochemical reactors

    International Nuclear Information System (INIS)

    Choi, Hyo-Jick; Ebersbacher, Charles F; Quan, Fu-Shi; Montemagno, Carlo D

    2013-01-01

    Aqueous channels of foam represent a simplified, natural bioreactor on the micro-/nano-scale. Previous studies have demonstrated the feasibility and potential application of foams in replicating cellular process in vitro, but no research has been performed to establish a basis for designing stable and biocompatible foam formulations. Our research has been directed specifically to the evaluation of ranaspumin-2 (RSN-2), a frog foam nest protein. The strong surfactant activity of RSN-2 enabled us to produce foams using low protein concentration (1 mg ml −1 ) over a wide pH range (pH ≥ 3). Importantly, the RSN-2 formulation exhibited the best foam stability at a near neutral pH condition, which shows a potential for application to various biosynthesis applications. Model cellular systems such as liposomes and inactivated A/PR/8/34 influenza virus maintained their physicochemical stability and full hemagglutination activity, indicating biocompatibility of RSN-2 with both cellular membranes and proteins both in bulk solution and in foam. Moreover, the addition of RSN-2 did not exert any deteriorative effects on bacterial cell growth kinetics. In contrast, Tween 20, Triton X-100, and BSA did not show satisfactory performance in terms of foamability, foam stability, physicochemcial stability, and biochemical stability. Although our study has been limited to representative formulations composed of only surfactant molecules, a number of unique advantages make RSN-2 a promising candidate for in vitro foam biosynthesis. (paper)

  5. Deformation and energy absorption properties of powder-metallurgy produced Al foams

    International Nuclear Information System (INIS)

    Michailidis, N.; Stergioudi, F.; Tsouknidas, A.

    2011-01-01

    Highlights: → Porous Al fabricated via a dissolution and sintering method using raw cane sugar. → Different deformation mode depending on the relative density of the foams. → Enhanced energy absorption by reducing pore size and relative density of the foam. → Pore size uniformity and sintering temperature affect energy absorption. - Abstract: Al-foams with relative densities ranging from 0.30 to 0.60 and mean pore sizes of 0.35, 0.70 and 1.35 mm were manufactured by a powder metallurgy technology, based on raw cane sugar as a space-holder material. Compressive tests were carried out to investigate the deformation and energy absorbing characteristics and mechanisms of the produced Al-foams. The deformation mode of low density Al-foams is dominated by the bending and buckling of cell walls and the formation of macroscopic deformation bands whereas that of high density Al-foams is predominantly attributed to plastic yielding. The energy absorbing capacity of Al-foams rises for increased relative density and compressive strength. The sintering temperature of Al-foams having similar relative densities has a marked influence on both, energy absorbing efficiency and capacity. Pore size has a marginal effect on energy efficiency aside from Al-foams with mean pore size of 0.35 which exhibit enhanced energy absorption as a result of increased friction during deformation at lower strain levels.

  6. Less is More: unveiling the functional core of hematopoietic stem cells through knockout mice

    Science.gov (United States)

    Rossi, Lara; Lin, Kuanyin K.; Boles, Nathan C.; Yang, Liubin; King, Katherine Y.; Jeong, Mira; Mayle, Allison; Goodell, Margaret A.

    2012-01-01

    Summary Hematopoietic stem cells (HSCs) represent one of the first recognized somatic stem cells. As such, nearly 200 genes have been examined for roles in HSC function in knockout mice. In this review, we compile the majority of these reports to provide a broad overview of the functional modules revealed by these genetic analyses and highlight some key regulatory pathways involved, including cell cycle control, TGF-β signaling, Pten/AKT signaling, Wnt signaling, and cytokine signaling. Finally, we propose recommendations for characterization of HSC function in knockout mice to facilitate cross-study comparisons that would generate a more cohesive picture of HSC biology. In the field of design, the minimalist movement stripped down buildings and objects to their most basic features, a sentiment that architect Ludwig Mies van der Rohe summarized in his motto “less is more”. By depleting HSCs of specific genes, knockout studies transpose the minimalist approach into research biology, providing insights into the essential core of genetic features that is indispensable for a well-functioning hematopoietic system. PMID:22958929

  7. Fluoride Rinses, Gels and Foams

    DEFF Research Database (Denmark)

    Twetman, Svante; Keller, Mette K

    2016-01-01

    AIM: The aim of this conference paper was to systematically review the quality of evidence and summarize the findings of clinical trials published after 2002 using fluoride mouth rinses, fluoride gels or foams for the prevention of dental caries. METHODS: Relevant papers were selected after...... (6 on fluoride mouth rinse, 10 on fluoride gel and 3 on fluoride foam); 6 had a low risk of bias while 2 had a moderate risk. All fluoride measures appeared to be beneficial in preventing crown caries and reversing root caries, but the quality of evidence was graded as low for fluoride mouth rinse......, moderate for fluoride gel and very low for acidulated fluoride foam. No conclusions could be drawn on the cost-effectiveness. CONCLUSIONS: This review, covering the recent decade, has further substantiated the evidence for a caries-preventive effect of fluoride mouth rinse, fluoride gel and foam...

  8. Amorphous microcellular polytetrafluoroethylene foam film

    Science.gov (United States)

    Tang, Chongzheng

    1991-11-01

    We report herein the preparation of novel low-density ultramicrocellular fluorocarbon foams and their application. These fluorocarbon foams are of interest for the biochemistry arena in numerous applications including foodstuff, pharmacy, wine making, beer brewery, fermentation medical laboratory, and other processing factories. All of those require good quality processing programs in which, after eliminating bacterium and virus, compressed air is needed. Ordinarily, compressed air contains bacterium and virus, its size is 0.01 - 2 micrometers fluorocarbon foam films. Having average porous diameter 0.04 - 0.1 micrometers , these are stable to high temperature (280 degree(s)C) and chemical environments, and generally have good engineering and mechanical properties (e.g., low coefficient of thermal expansion, high modulus, and good dimensional stability). Our new process for preparing low density fluorocarbon foams provides materials with unique properties. As such, they offer the possibility for being superior to earlier materials for a number of the filter applications mentioned.

  9. Three-dimensional opal-like silica foams.

    Science.gov (United States)

    Carn, Florent; Saadaoui, Hassan; Massé, Pascal; Ravaine, Serge; Julian-Lopez, Beatriz; Sanchez, Clément; Deleuze, Hervé; Talham, Daniel R; Backov, Rénal

    2006-06-06

    The synthesis of novel meso-/macroporous SiO2 monoliths by combining a nano-building-blocks-based approach with the confined geometry of a tailored air-liquid foam structure is described. The resulting macrostructure in which ordered close-packed colloidal silica nanoparticles constitute the monolith's scaffolds very closely resembles the tailored periodic air-liquid foam template. The void spaces between adjacent particles create textural mesoporosity; therefore, the as-prepared silica networks are characterized by hierarchical porosity at the macroscopic and mesoscopic length scales. The fine-tuning of both the liquid foam's fraction and the bubble size allows a rational design over the macroscopic cell morphologies (shape, Plateau border's length, and width). Striking results of this approach are the weak shrinkage of the as-synthesized opal-like scaffolds during the thermally induced sintering process and, in contrast with previous studies, the formation of closed-cell structures. Particle organization and the foam film surface roughness are investigated by atomic force microscopy (AFM), showing the influence of the liquid flow, within the foams' Plateau borders and films, on the final assemblies.

  10. Strain-rate dependence for Ni/Al hybrid foams

    Directory of Open Access Journals (Sweden)

    Jung Anne

    2015-01-01

    Full Text Available Shock absorption often needs stiff but lightweight materials that exhibit a large kinetic energy absorption capability. Open-cell metal foams are artificial structures, which due to their plateau stress, including a strong hysteresis, can in principle absorb large amounts of energy. However, their plateau stress is too low for many applications. In this study, we use highly novel and promising Ni/Al hybrid foams which consist of standard, open-cell aluminium foams, where nanocrystalline nickel is deposited by electrodeposition as coating on the strut surface. The mechanical behaviour of cellular materials, including their behaviour under higher strain-rates, is governed by their microstructure due to the properties of the strut material, pore/strut geometry and mass distribution over the struts. Micro-inertia effects are strongly related to the microstructure. For a conclusive model, the exact real microstructure is needed. In this study a micro-focus computer tomography (μCT system has been used for the analysis of the microstructure of the foam samples and for the development of a microstructural Finite Element (micro-FE mesh. The microstructural FE models have been used to model the mechanical behaviour of the Ni/Al hybrid foams under dynamic loading conditions. The simulations are validated by quasi-static compression tests and dynamic split Hopkinson pressure bar tests.

  11. Foam shell project: Progress report

    International Nuclear Information System (INIS)

    Overturf, G.; Reibold, B.; Cook, B.; Schroen-Carey, D.

    1994-01-01

    The authors report on their work to produce a foam shell target for two possible applications: (1) as liquid-layered cryogenic target on Omega Upgrade, and (2) as a back-up design for the NIF. This target consists of a roughly 1 mm diameter and 100 μm thick spherical low-density foam shell surrounding a central void. The foam will be slightly overfilled with liquid D 2 or DT, the overfilled excess being symmetrically distributed on the inside of the shell and supported by thermal gradient techniques. The outside of the foam is overcoated with full density polymer which must be topologically smooth. The technology for manufacturing this style of foam shell involves microencapsulation techniques and has been developed by the Japanese at ILE. Their goal is to determine whether this technology can be successfully adapted to meet US ICF objectives. To this end a program of foam shell development has been initiated at LLNL in collaboration with both the General Atomics DOE Target Fabrication Contract Corporation and the Target Fabrication Group at LLE

  12. Morphological observation and microbial population dynamics in anaerobic polyurethane foam biofilm degrading gelatin

    Directory of Open Access Journals (Sweden)

    Tommaso G.

    2002-01-01

    Full Text Available This work reports on a preliminary study of anaerobic degradation of gelatin with emphasis on the development of the proteolytic biofilm in polyurethane foam matrices in differential reactors. The evolution of the biofilm was observed during 22 days by optical and scanning electron microscopy (SEM analyses. Three distinct immobilization patterns could be observed in the polyurethane foam: cell aggregates entrapped in matrix pores, thin biofilms attached to inner polyurethane foam surfaces and individual cells that have adhered to the support. Rods, cocci and vibrios were observed as the predominant morphologies of bacterial cells. Methane was produced mainly by hydrogenothrophic reactions during the operation of the reactors.

  13. Impact Testing and Simulation of a Sinusoid Foam Sandwich Energy Absorber

    Science.gov (United States)

    Jackson, Karen E.; Fasanella, Edwin L; Littell, Justin D.

    2015-01-01

    A sinusoidal-shaped foam sandwich energy absorber was developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research project. The energy absorber, designated the "sinusoid," consisted of hybrid carbon- Kevlar® plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical or crush direction, and a closed-cell ELFOAM(TradeMark) P200 polyisocyanurate (2.0-lb/ft3) foam core. The design goal for the energy absorber was to achieve an average floor-level acceleration of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in the design were assessed through quasi-static and dynamic crush testing of component specimens. Once the design was finalized, a 5-ft-long subfloor beam was fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorber prior to retrofit into TRACT 2. Finite element models were developed of all test articles and simulations were performed using LSDYNA ®, a commercial nonlinear explicit transient dynamic finite element code. Test analysis results are presented for the sinusoid foam sandwich energy absorber as comparisons of load-displacement and acceleration-time-history responses, as well as predicted and experimental structural deformations and progressive damage for each evaluation level (component testing through barrel section drop testing).

  14. Graphene nanoplatelets-reinforced polyetherimide foams prepared by water vapor-induced phase separation

    Directory of Open Access Journals (Sweden)

    H. Abbasi

    2015-05-01

    Full Text Available The present work considers the preparation of medium-density polyetherimide foams reinforced with variable amounts of graphene nanoplatelets (1–10 wt% by means of water vapor-induced phase separation (WVIPS and their characterization . A homogeneous closed-cell structure with cell sizes around 10 µm was obtained, with foams exhibiting zero crystallinity according to X-ray diffraction (XRD. Thermogravimetric analysis under nitrogen showed a two-step thermal decomposition behaviour for both unfilled and graphene-reinforced foams, with foams containing graphene presenting thermal stability improvements, related to a physical barrier effect promoted by the nanoplatelets. Thermo-mechanical analysis indicated that the specific storage modulus of the nanocomposite foams significantly increased owing to the high stiffness of graphene and finer cellular morphology of the foams. Although foamed nanocomposites displayed no further sign of graphene nanoplatelets exfoliation, the electrical conductivity of these foams was significant even for low graphene contents, with a tunnel-like model fitting well to the evolution of the electrical conductivity with the amount of graphene.

  15. Characterization of Biobased Polyurethane Foams Employing Lignin Fractionated from Microwave Liquefied Switchgrass

    Directory of Open Access Journals (Sweden)

    Xingyan Huang

    2017-01-01

    Full Text Available Lignin samples fractionated from microwave liquefied switchgrass were applied in the preparation of semirigid polyurethane (PU foams without purification. The objective of this study was to elucidate the influence of lignin in the PU matrix on the morphological, chemical, mechanical, and thermal properties of the PU foams. The scanning electron microscopy (SEM images revealed that lignin with 5 and 10% content in the PU foams did not influence the cell shape and size. The foam cell size became larger by increasing the lignin content to 15%. Fourier transform infrared spectroscopy (FTIR indicated that chemical interactions occurred between the lignin hydroxyl and isocyanate revealing that lignin was well dispersed in the matrix materials. The apparent density of the foam with 10% lignin increased by 14.2% compared to the control, while the foam with 15% lignin had a decreased apparent density. The effect of lignin content on the mechanical properties was similar to that on apparent density. The lignin containing foams were much more thermally stable than the control foam as evidenced by having higher initial decomposition temperature and maximum decomposition rate temperature from the thermogravimetric analysis (TGA profiles.

  16. Impact of Nonfullerene Acceptor Core Structure on the Photophysics and Efficiency of Polymer Solar Cells

    KAUST Repository

    Alamoudi, Maha

    2018-03-02

    Small-molecule “nonfullerene” acceptors are promising alternatives to fullerene (PC61/71BM) derivatives often used in bulk heterojunction (BHJ) organic solar cells; yet, the efficiency-limiting processes and their dependence on the acceptor structure are not clearly understood. Here, we investigate the impact of the acceptor core structure (cyclopenta-[2,1-b:3,4-b′]dithiophene (CDT) versus indacenodithiophene (IDTT)) of malononitrile (BM)-terminated acceptors, namely CDTBM and IDTTBM, on the photophysical characteristics of BHJ solar cells. Using PCE10 as donor polymer, the IDTT-based acceptor achieves power conversion efficiencies (8.4%) that are higher than those of the CDT-based acceptor (5.6%) because of a concurrent increase in short-circuit current and open-circuit voltage. Using (ultra)fast transient spectroscopy we demonstrate that reduced geminate recombination in PCE10:IDTTBM blends is the reason for the difference in short-circuit currents. External quantum efficiency measurements indicate that the higher energy of interfacial charge-transfer states observed for the IDTT-based acceptor blends is the origin of the higher open-circuit voltage.

  17. MECHANISTIC STUDIES OF IMPROVED FOAM EOR PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    William R. Rossen

    2005-03-16

    The objective of this research is to widen the application of foam to enhanced oil recovery (EOR) by investigating fundamental mechanisms of foams in porous media. This research is to lay the groundwork for more-applied research on foams for improved sweep efficiency in miscible gas, steam and surfactant-based EOR. Task 1 investigates the pore-scale interactions between foam bubbles and polymer molecules. Task 2 examines the mechanisms of gas trapping, and interaction between gas trapping and foam effectiveness. Task 3 investigates mechanisms of foam generation in porous media.

  18. Epoxy Foam Encapsulants: Processing and Dielectric Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Linda Domeier; Marion Hunter

    1999-01-01

    The dielectric performance of epoxy foams was investigated to determine if such materials might provide advantages over more standard polyurethane foams in the encapsulation of electronic assemblies. Comparisons of the dielectric characteristics of epoxy and urethane encapsulant foams found no significant differences between the two resin types and no significant difference between as-molded and machined foams. This study specifically evaluated the formulation and processing of epoxy foams using simple methylhydrosiloxanes as the flowing agent and compared the dielectric performance of those to urethane foams of similar density.

  19. Separation of uranium by extraction with foamed plastics

    International Nuclear Information System (INIS)

    Korkisch, J.

    1983-07-01

    Polyurethane foams are frequently used for the extraction and separation of inorganic and organic species. The attraction of the materials lies in their favourable hydrodynamic properties obviating the need for the forced-flow conditions associated with conventional chromatographic-type column packing of small particles. The research work described has been directed to providing information on the extraction and separation of uranium (and thorium) by an open-cell polyurethane foam from media containing nitrates and from hydrochloric acid systems. The influence of many different experimental parameters (concentrations, acidity, impregnation of the foam with organic extractants) on the extraction was investigated. Based on the results of these investigations two methods were developed to separate uranium from nitric acid solution and from hydrochloric acid solution, respectively. The first uses calcium or aluminium nitrate salting and foam impregnated with Aliquat 336, the second ascorbic acid addition and TOPO-impregnated foam. The methods separate uranium and thorium from each other and from most other elements and can be used analytically or in the purification of uranium from impure plant products such as yellow cake

  20. Behaviour of Metal Foam Sandwich Panels

    DEFF Research Database (Denmark)

    Alkhudery, Hayder; Virdi, Kuldeep

    2011-01-01

    Sandwich panels as used in structures comprise of a foam core enclosed by thin high strength steel faces. This paper discusses currently design formulae of local buckling behaviour of such panels using the finite element method. Multiple wave finite element models were adopted to investigate...... and examine the adequacy of currently used approach for the design of sandwich panels. The paper presents brief details of the finite element model used including geometry, load pattern and boundary conditions. The selected model gives good agreement with experimental results from Pokharel and Mahendran (2003......). The study shows that currently available design formulae are conservative for stocky sandwich plate elements while being over-conservative for high slenderness. A unified design formula of local buckling behaviour applicable to the full range of slenderness is developed....

  1. Method for providing a low density high strength polyurethane foam

    Science.gov (United States)

    Whinnery, Jr., Leroy L.; Goods, Steven H.; Skala, Dawn M.; Henderson, Craig C.; Keifer, Patrick N.

    2013-06-18

    Disclosed is a method for making a polyurethane closed-cell foam material exhibiting a bulk density below 4 lbs/ft.sup.3 and high strength. The present embodiment uses the reaction product of a modified MDI and a sucrose/glycerine based polyether polyol resin wherein a small measured quantity of the polyol resin is "pre-reacted" with a larger quantity of the isocyanate in a defined ratio such that when the necessary remaining quantity of the polyol resin is added to the "pre-reacted" resin together with a tertiary amine catalyst and water as a blowing agent, the polymerization proceeds slowly enough to provide a stable foam body.

  2. Liquid versus foam sclerotherapy.

    Science.gov (United States)

    Hamel-Desnos, C; Allaert, F-A

    2009-12-01

    A systematic review to compare efficacy and safety of foam (F) sclerotherapy versus liquid (L) sclerotherapy for primary varicose veins of the lower limbs. Systematic searches of electronic databases were conducted in April 2009 to identify relevant published studies. Database searches were augmented with abstracts from conference proceedings and electronic and hand searching of journals not consistently indexed in the major databases. For treatment of saphenous veins, six trials (four randomized controlled trials) were considered. Despite containing much less sclerosing agent, F was markedly more effective compared with L, the difference being put at between 20% and 50%. Four studies were included in a meta-analysis showing efficacy of F at 76.8% (95% confidence interval [CI] 71-82) versus L at 39.5% (95% CI 33-46), chi(2) = 60.9740; P reticular veins and telangiectases, only two comparative trials were found and do not at present provide any conclusive evidence to support the superiority of efficacy of one form over the other. Statistically, the side-effects reported in all the available comparative trials do not differ between F and L forms, even if visual disturbances seem to be more common with F. In the treatment of varices of the lower limbs, F shows much greater efficacy compared to L. Concerning the side effects, no statistical significant differences were found between L and F.

  3. Foam-mat drying technology: A review.

    Science.gov (United States)

    Hardy, Z; Jideani, V A

    2017-08-13

    This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods, and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method that allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40-90°C) at atmospheric pressure. Methyl cellulose (0.25-2%), egg white (3-20%), maltodextrin (0.5-05%), and gum Arabic (2-9%) are the commonly utilized additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous, and sticky products that cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying, and improved product quality it provides.

  4. The small GTPase Cdc42 modulates the number of exocytosis-competent dense-core vesicles in PC12 cells

    International Nuclear Information System (INIS)

    Sato, Mai; Kitaguchi, Tetsuya; Numano, Rika; Ikematsu, Kazuya; Kakeyama, Masaki; Murata, Masayuki; Sato, Ken; Tsuboi, Takashi

    2012-01-01

    Highlights: ► Regulation of exocytosis by Rho GTPase Cdc42. ► Cdc42 increases the number of fusion events from newly recruited vesicles. ► Cdc42 increases the number of exocytosis-competent dense-core vesicles. -- Abstract: Although the small GTPase Rho family Cdc42 has been shown to facilitate exocytosis through increasing the amount of hormones released, the precise mechanisms regulating the quantity of hormones released on exocytosis are not well understood. Here we show by live cell imaging analysis under TIRF microscope and immunocytochemical analysis under confocal microscope that Cdc42 modulated the number of fusion events and the number of dense-core vesicles produced in the cells. Overexpression of a wild-type or constitutively-active form of Cdc42 strongly facilitated high-KCl-induced exocytosis from the newly recruited plasma membrane vesicles in PC12 cells. By contrast, a dominant-negative form of Cdc42 inhibited exocytosis from both the newly recruited and previously docked plasma membrane vesicles. The number of intracellular dense-core vesicles was increased by the overexpression of both a wild-type and constitutively-active form of Cdc42. Consistently, activation of Cdc42 by overexpression of Tuba, a Golgi-associated guanine nucleotide exchange factor for Cdc42 increased the number of intracellular dense-core vesicles, whereas inhibition of Cdc42 by overexpression of the Cdc42/Rac interactive binding domain of neuronal Wiskott–Aldrich syndrome protein decreased the number of them. These findings suggest that Cdc42 facilitates exocytosis by modulating both the number of exocytosis-competent dense-core vesicles and the production of dense-core vesicles in PC12 cells.

  5. The small GTPase Cdc42 modulates the number of exocytosis-competent dense-core vesicles in PC12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Mai [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan); Kitaguchi, Tetsuya [Cell Signaling Group, Waseda Bioscience Research Institute in Singapore (WABOIS), Waseda University, 11 Biopolis Way, 05-01/02 Helios, Singapore 138667 (Singapore); Numano, Rika [The Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tennpaku-cho, Toyohashi, Aichi 441-8580 (Japan); Ikematsu, Kazuya [Forensic Pathology and Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523 (Japan); Kakeyama, Masaki [Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Murata, Masayuki; Sato, Ken [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan); Tsuboi, Takashi, E-mail: takatsuboi@bio.c.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Regulation of exocytosis by Rho GTPase Cdc42. Black-Right-Pointing-Pointer Cdc42 increases the number of fusion events from newly recruited vesicles. Black-Right-Pointing-Pointer Cdc42 increases the number of exocytosis-competent dense-core vesicles. -- Abstract: Although the small GTPase Rho family Cdc42 has been shown to facilitate exocytosis through increasing the amount of hormones released, the precise mechanisms regulating the quantity of hormones released on exocytosis are not well understood. Here we show by live cell imaging analysis under TIRF microscope and immunocytochemical analysis under confocal microscope that Cdc42 modulated the number of fusion events and the number of dense-core vesicles produced in the cells. Overexpression of a wild-type or constitutively-active form of Cdc42 strongly facilitated high-KCl-induced exocytosis from the newly recruited plasma membrane vesicles in PC12 cells. By contrast, a dominant-negative form of Cdc42 inhibited exocytosis from both the newly recruited and previously docked plasma membrane vesicles. The number of intracellular dense-core vesicles was increased by the overexpression of both a wild-type and constitutively-active form of Cdc42. Consistently, activation of Cdc42 by overexpression of Tuba, a Golgi-associated guanine nucleotide exchange factor for Cdc42 increased the number of intracellular dense-core vesicles, whereas inhibition of Cdc42 by overexpression of the Cdc42/Rac interactive binding domain of neuronal Wiskott-Aldrich syndrome protein decreased the number of them. These findings suggest that Cdc42 facilitates exocytosis by modulating both the number of exocytosis-competent dense-core vesicles and the production of dense-core vesicles in PC12 cells.

  6. Stability analysis of uniform equilibrium foam states for EOR processes

    NARCIS (Netherlands)

    Ashoori, E.; Marchesin, D.; Rossen, W.R.

    2011-01-01

    The use of foam for mobility control is a promising mean to improve sweep efficiency in EOR. Experimental studies discovered that foam exhibits three different states (weak foam, intermediate foam, and strong foam). The intermediate-foam state is found to be unstable in the lab whereas the weak- and

  7. Thermal Transport in High-Strength Polymethacrylimide (PMI) Foam Insulations

    Science.gov (United States)

    Qiu, L.; Zheng, X. H.; Zhu, J.; Tang, D. W.; Yang, S. Y.; Hu, A. J.; Wang, L. L.; Li, S. S.

    2015-11-01

    Thermal transport in high-strength polymethacrylimide (PMI) foam insulations is described, with special emphasis on the density and temperature effects on the thermal transport performance. Measurements of the effective thermal conductivity are performed by a freestanding sensor-based 3ω method. A linear relationship between the density and the effective thermal conductivity is observed. Based on the analysis of the foam insulation morphological structures and the corresponding geometrical cell model, the quantitative contribution of the solid conductivity and the gas conductivity as well as the radiative conductivity to the total effective thermal conductivity as a function of the density and temperature is calculated. The agreement between the curves of the results from the developed model and experimental data indicate the model can be used for PMI foam insulating performance optimization.

  8. A Raman cell based on hollow core photonic crystal fiber for human breath analysis

    International Nuclear Information System (INIS)

    Chow, Kam Kong; Zeng, Haishan; Short, Michael; Lam, Stephen; McWilliams, Annette

    2014-01-01

    Purpose: Breath analysis has a potential prospect to benefit the medical field based on its perceived advantages to become a point-of-care, easy to use, and cost-effective technology. Early studies done by mass spectrometry show that volatile organic compounds from human breath can represent certain disease states of our bodies, such as lung cancer, and revealed the potential of breath analysis. But mass spectrometry is costly and has slow-turnaround time. The authors’ goal is to develop a more portable and cost effective device based on Raman spectroscopy and hollow core-photonic crystal fiber (HC-PCF) for breath analysis. Methods: Raman scattering is a photon-molecular interaction based on the kinetic modes of an analyte which offers unique fingerprint type signals that allow molecular identification. HC-PCF is a novel light guide which allows light to be confined in a hollow core and it can be filled with a gaseous sample. Raman signals generated by the gaseous sample (i.e., human breath) can be guided and collected effectively for spectral analysis. Results: A Raman-cell based on HC-PCF in the near infrared wavelength range was developed and tested in a single pass forward-scattering mode for different gaseous samples. Raman spectra were obtained successfully from reference gases (hydrogen, oxygen, carbon dioxide gases), ambient air, and a human breath sample. The calculated minimum detectable concentration of this system was ∼15 parts per million by volume, determined by measuring the carbon dioxide concentration in ambient air via the characteristic Raman peaks at 1286 and 1388 cm −1 . Conclusions: The results of this study were compared to a previous study using HC-PCF to trap industrial gases and backward-scatter 514.5 nm light from them. The authors found that the method presented in this paper has an advantage to enhance the signal-to-noise ratio (SNR). This SNR advantage, coupled with the better transmission of HC-PCF in the near-IR than in the

  9. Foam Assisted WAG, Snorre Revisit with New Foam Screening Model

    DEFF Research Database (Denmark)

    Spirov, Pavel; Rudyk, Svetlana Nikolayevna; Khan, Arif

    2012-01-01

    of the simulation contributes to more precise planning of the schedule of water and gas injection, prediction of the injection results and evaluation of the method efficiency. The testing of the surfactant properties allows making grounded choice of surfactant to use. The analysis of the history match gives insight...... foam model was tested with sensitivity analysis on foam properties to provide a guideline for the history matching process (GOR alteration) of FAWAG Pilot of Snorre Field (Statoil). The aim was to check the authenticity of presented new foam model in commercial software whether it is implementable...... of the fluid flows control inside reservoir. The way; how specific properties control the time of gas arrival and values of GOR are described. The analyses of the improvements in the injection schedule are shown. With increasing number of CO2 and FAWAG methods in preparation worldwide, the use...

  10. Studies on a Foam System of Ultralow Interfacial Tension Applied in Daqing Oilfield after Polymer Flooding

    Directory of Open Access Journals (Sweden)

    Hong-sheng Liu

    2013-01-01

    Full Text Available In order to study the effects of oil displacement by a foam system of ultralow interfacial tension, the interfacial activities and foam properties of a nonionic gemini surfactant (DWS were investigated under Daqing Oilfield reservoir conditions. Injection methods and alternate cycle of the foam system were discussed here on the basis of results from core flow experiments. It was obtained that the surface tension of DWS was approximately 25 mN/m, and ultralow interfacial tension was reached between oil and DWS with a surfactant concentration between 0.05wt% and 0.4wt%. The binary system showed splendid foam performances, and the preferential surfactant concentration was 0.3wt% with a polymer concentration of 0.2wt%. When gas and liquid were injected simultaneously, flow control capability of the foam reached its peak at the gas-liquid ratio of 3 : 1. Enhanced oil recovery factor of the binary foam system exceeded 10% in a parallel natural cores displacement after polymer flooding.

  11. Effect of total proteose-peptone content on the variability of bovine milk foaming property

    Directory of Open Access Journals (Sweden)

    Arianna Buccioni

    2013-02-01

    Full Text Available Several authors demonstrated a strong linkage between proteose-peptones content and foaming properties of cow milk; this is of great interest for Italian dairy industries to create a new line of fresh milk characterized by a particular foaming property and, hence, particularly appreciate in catering industry. The aim of this trial was to quantify the relation between total concentration of proteose-peptones and the entity of foaming attitude in cow fresh milk. Ninety samples of raw bulk milk were analysed for proteose-peptones content, plasmin activity, fatty acid profile and foaming attitude. A negative relation was found among proteose-peptones percentage and foaming attitude which decreased with the increase of plasmin activity and somatic cell content in milk.

  12. Hydrogen combustion in aqueous foams

    International Nuclear Information System (INIS)

    Baer, M.R.; Griffiths, S.K.; Shepherd, J.E.

    1982-09-01

    Water fogs are recognized as an effective means to mitigate the effects of large-scale hydrogen combustion that might accompany some loss-of-coolant nuclear reactor accidents. Fogs of sufficiently high density to produce large beneficial effects may, however, be difficult to generate and maintain. An alternate method of suspending the desired mass of water is via high expansion-ratio aqueous foams. To help assess the usefulness of aqueous foams in a mitigation plan, several open tube tests and over one hundred closed vessel tests of hydrogen/air combustion with and without foam have been conducted. Above 15% hydrogen concentration, the foam causes a significant reduction in the pressure rise. The maximum effect occurs at about 28% hydrogen (the stoichiometric limit is 29.6% hydrogen) where the peak overpressure is reduced by two and one-half. Despite this overall pressure reduction, the flame speed is increased by up to an order of magnitude for combustion in the foam and strong pressure fluctuations are observed near a hydrogen concentration of 23%

  13. Some aspects of image processing using foams

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, A., E-mail: tufaile@usp.br; Freire, M.V.; Tufaile, A.P.B.

    2014-08-28

    We have explored some concepts of chaotic dynamics and wave light transport in foams. Using some experiments, we have obtained the main features of light intensity distribution through foams. We are proposing a model for this phenomenon, based on the combination of two processes: a diffusive process and another one derived from chaotic dynamics. We have presented a short outline of the chaotic dynamics involving light scattering in foams. We also have studied the existence of caustics from scattering of light from foams, with typical patterns observed in the light diffraction in transparent films. The nonlinear geometry of the foam structure was explored in order to create optical elements, such as hyperbolic prisms and filters. - Highlights: • We have obtained the light scattering in foams using experiments. • We model the light transport in foams using a chaotic dynamics and a diffusive process. • An optical filter based on foam is proposed.

  14. Investigation of plasmonic gold-silica core-shell nanoparticle stability in dye-sensitized solar cell applications.

    Science.gov (United States)

    Törngren, Björn; Akitsu, Kenta; Ylinen, Anne; Sandén, Simon; Jiang, Hua; Ruokolainen, Janne; Komatsu, Makoto; Hamamura, Tomofumi; Nakazaki, Jotaro; Kubo, Takaya; Segawa, Hiroshi; Österbacka, Ronald; Smått, Jan-Henrik

    2014-08-01

    Plasmonic core-shell Au@SiO2 nanoparticles have previously been shown to enhance the performance of dye-sensitized solar cells (DSSCs). A thin silica coating can provide a better stability during thermal processing and chemical stability to survive the corrosive electrolyte used in DSSCs. However, the thickness and completeness of the silica shell has proven crucial for the performance of the plasmonic particles and is largely controlled by the linking chemistry between the gold core and silica shell. We have evaluated four different silica coating procedures of ∼15 nm gold nanoparticles for usage in DSSCs. The chemical stability of these core-shell nanoparticles was assessed by dispersing the particles in iodide/triiodide electrolyte solution and the thermal stability by heating the particles up to 500°C. In order to maintain stable gold cores a complete silica coating was required, which was best obtained by using a mercaptosilane as a linker. In situ TEM characterization indicated that the heating process only had minor effects on the core-shell particles. The final step was to evaluate how the stable Au@SiO2 nanoparticles were influencing a real DSSC device when mixed into the TiO2 photoanode. The plasmon-incorporated DSSCs showed a ∼10% increase in efficiency compared to devices without core-shell nanoparticles. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Influence of the glass particle size on the foaming process and physical characteristics of foam glasses

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2016-01-01

    We have prepared low-density foam glasses from cathode-ray-tube panel glass using carbon and MnO2 as the foaming agents. The effect of the glass particle size on the foaming process, the apparent density and the pore morphology is revealed. The results show that the foaming is mainly caused......–3 mm due to a faster coalescence process. However, by quenching the sample from the foaming to the annealing temperature the pore size is reduced by a factor of 5–10. The foams with an apparent density of porous. The foams exhibit a thermal conductivity as lowas 38.1m...