WorldWideScience

Sample records for cell facility hcf

  1. Hot Cell Facility (HCF) Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  2. Hot Cell Facility (HCF) Safety Analysis Report

    International Nuclear Information System (INIS)

    MITCHELL, GERRY W.; LONGLEY, SUSAN W.; PHILBIN, JEFFREY S.; MAHN, JEFFREY A.; BERRY, DONALD T.; SCHWERS, NORMAN F.; VANDERBEEK, THOMAS E.; NAEGELI, ROBERT E.

    2000-01-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR

  3. Hot Cell Facility modifications at Sandia National Laboratories to support 99Mo production

    International Nuclear Information System (INIS)

    Vernon, M.; Philbin, J.; Berry, D.

    1997-01-01

    In September, 1996, following the completion of an extensive Environmental Impact Statement (EIS), a record of decision (ROD) was issued by DOE selecting Sandia as the facility to take on the 99 Mo production mission. 99 Mo is the precursor to 99m Tc which is used in 36,000 medical procedures per day in the US. to meet US 99 Mo medical demands, 20 kCi of 99 Mo must be delivered to the pharmaceutical companies each week. This could be accomplished by the processing of twenty-five targets (total fission product of 15 kCi/target) each week within the SNL Hot Cell Facility (HCF). To accomplish this new mission, significant modifications to the HCF will have to be undertaken. This paper presents a brief history of the HCF, and describes modifications necessary to achieve DOE directives

  4. HCF + LCF Interactions at Elevated Temperature

    National Research Council Canada - National Science Library

    Byrne, James; Hall, R. F; Ding, J

    2005-01-01

    ...) crack propagation in Ti- 6Al-4V will be studied under combined HCF/low cycle fatigue (LCF) loading conditions at elevated temperatures up to 350 deg C where creep stress ratcheting and environmental effects may arise...

  5. An Applied Study on the Decontamination and Decommissioning of Hot Cell Facilities in the United States and Comparison with the Studsvik Facility for Solid and Liquid Waste

    International Nuclear Information System (INIS)

    Varley, Geoff; Rusch, Chris

    2006-07-01

    This report presents the plans, processes and results of the decontamination and decommissioning of the Hot Cell Facility in Building 23 at the General Atomics Torrey Pines Mesa Facility (HCF) and compares the program and cost of decommissioning HCF with the Swedish cost estimate for decontamination and decommissioning of the HM hot cell and wastes treatment facility at Studsvik in Sweden. The HCF had three main hot cells and was licensed to: Receive, handle and ship radioactive materials; Remotely handle, examine and store irradiated fuel materials; Extract tritium (engineering scale); Support new reactor production development; Develop, fabricate and inspect UO 2 - BeO fuel materials. The HM facility in Studsvik was constructed to handle and package medium-active solid and liquid wastes, prior to disposal. Central to the facility is a conventional hot cell including three work stations, serviced by master slave manipulators. Other parts of the facility include holding tanks for liquid wastes and slurries, a centrifuge room, as well as an encapsulation station where drummed wastes can be encapsulated in cement, offices, laboratories and workshops and so on, as well as building and cell ventilation systems. Decontamination and decommissioning of the HCF took place during 1993 through 2001. The objective was to obtain regulatory release of the site so that it could be used on an unrestricted basis. Based on data from extensive hazardous and radiological materials characterization, GA evaluated four decommissioning options and selected dismantling as the only option that would satisfy the decommissioning objective. The decontamination and decommissioning scope included the following actions. 1. Remove the legacy waste that consisted of radioactive wastes stored at the HCF consisting of 21,434 kg of irradiated fuel material (IFM) that was owned by the US DoE and store the waste in temporary storage set up at the GA site. 2. Actual Decontamination and Dismantlement

  6. An Applied Study on the Decontamination and Decommissioning of Hot Cell Facilities in the United States and Comparison with the Studsvik Facility for Solid and Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Geoff; Rusch, Chris [NAC International, Atlanta, GA (United States)

    2006-07-15

    This report presents the plans, processes and results of the decontamination and decommissioning of the Hot Cell Facility in Building 23 at the General Atomics Torrey Pines Mesa Facility (HCF) and compares the program and cost of decommissioning HCF with the Swedish cost estimate for decontamination and decommissioning of the HM hot cell and wastes treatment facility at Studsvik in Sweden. The HCF had three main hot cells and was licensed to: Receive, handle and ship radioactive materials; Remotely handle, examine and store irradiated fuel materials; Extract tritium (engineering scale); Support new reactor production development; Develop, fabricate and inspect UO{sub 2} - BeO fuel materials. The HM facility in Studsvik was constructed to handle and package medium-active solid and liquid wastes, prior to disposal. Central to the facility is a conventional hot cell including three work stations, serviced by master slave manipulators. Other parts of the facility include holding tanks for liquid wastes and slurries, a centrifuge room, as well as an encapsulation station where drummed wastes can be encapsulated in cement, offices, laboratories and workshops and so on, as well as building and cell ventilation systems. Decontamination and decommissioning of the HCF took place during 1993 through 2001. The objective was to obtain regulatory release of the site so that it could be used on an unrestricted basis. Based on data from extensive hazardous and radiological materials characterization, GA evaluated four decommissioning options and selected dismantling as the only option that would satisfy the decommissioning objective. The decontamination and decommissioning scope included the following actions. 1. Remove the legacy waste that consisted of radioactive wastes stored at the HCF consisting of 21,434 kg of irradiated fuel material (IFM) that was owned by the US DoE and store the waste in temporary storage set up at the GA site. 2. Actual Decontamination and

  7. Conceptual design of the hot cell facility universal docking station at ITER

    International Nuclear Information System (INIS)

    Dammann, A.; Benchikhoune, M.; Friconneau, J.P.; Ivanov, V.; Lemee, A.; Martins, J.P.; Tamassy, G.

    2011-01-01

    Between main shutdowns of the ITER machine, in-vessel components and Iter Remote Maintenance System (IRMS) are transferred between the Tokamak complex and the Hot Cell Facility using different types of sealed casks. Transfer Casks have different physical interfaces with the Vacuum Vessel, which need to be the same at the docking stations of the HCF. It means that in-vessel components and IRMS are cleaned in the same cells, which is in fact not convenient. Furthermore, logistic studies showed that the use rate of the cells is very inhomogeneous. In order to have dedicated cell for decontamination of Remote Handling tools, in order to increase the operability efficiency and to removes the hot cell docking operation from the critical path, the concept of a universal docking station has been investigated. Based on an existing design, the work was focused on a review of requirements, the re-design and the integration within the HCF layout. The universal docking station has been proposed and is now integrated in HCF design.

  8. Conceptual design of the hot cell facility universal docking station at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Dammann, A., E-mail: alexis.dammann@iter.org [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Benchikhoune, M.; Friconneau, J.P.; Ivanov, V. [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Lemee, A. [SOGETI High Tech, 180 Rue Rene Descartes, 13851 Aix en Provence (France); Martins, J.P. [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Tamassy, G. [SOGETI High Tech, 180 Rue Rene Descartes, 13851 Aix en Provence (France)

    2011-10-15

    Between main shutdowns of the ITER machine, in-vessel components and Iter Remote Maintenance System (IRMS) are transferred between the Tokamak complex and the Hot Cell Facility using different types of sealed casks. Transfer Casks have different physical interfaces with the Vacuum Vessel, which need to be the same at the docking stations of the HCF. It means that in-vessel components and IRMS are cleaned in the same cells, which is in fact not convenient. Furthermore, logistic studies showed that the use rate of the cells is very inhomogeneous. In order to have dedicated cell for decontamination of Remote Handling tools, in order to increase the operability efficiency and to removes the hot cell docking operation from the critical path, the concept of a universal docking station has been investigated. Based on an existing design, the work was focused on a review of requirements, the re-design and the integration within the HCF layout. The universal docking station has been proposed and is now integrated in HCF design.

  9. Canadian Forces Experience with Turbofan HCF - Case Study

    National Research Council Canada - National Science Library

    Kinart, Corey; Theriault, Pierre

    2005-01-01

    High Cycle Fatigue (HCF) cracking of a Canadian Forces (CF) turbofan engine fuel tube resulted in a six year, multinational effort to identify the root cause and to ultimately develop and implement a solution...

  10. Localization of Cladosporium fulvum hydrophobins reveals a role for HCf-6 in adhesion

    DEFF Research Database (Denmark)

    Lacroix, Hélène; Whiteford, James; Spanu, Pietro D

    2008-01-01

    for establishing hydrophobin localization during growth in culture and in plants. In this paper we localize HCf-2, -3, -4 and -5 and compare the data to our previous observations for HCf-1 and -6. In culture, HCf-1, -2, -3 and 4 localize to conidia and also appear on aerial hyphae. HCf-4 is unique...... in that it appears on submerged hyphae. HCf-5 expression is tightly regulated and appears on aerial hyphae early on during growth. Only HCf-1, -3 and -6 were observed during infection; HCf-3 appears on both conidia and emerging germ tubes. We also show that HCf-6 is secreted and coats surfaces under and around...... growing hyphae and demonstrate the effect of deleting HCf-6 on the adhesion of germinating C. fulvum conidia to glass slides....

  11. AECL hot-cell facilities and post-irradiation examination services

    International Nuclear Information System (INIS)

    Schankula, M.H.; Plaice, E.L.; Woodworth, L.G.

    1995-01-01

    This paper presents an overview of the post-irradiation examination (PIE) services available at AECL's hot-cell facilities (HCF). The HCFs are used primarily to provide PIE support for operating CANDU power reactors in Canada and abroad, and for the examination of experimental fuel bundles and core components irradiated in research reactors at the Chalk River Laboratories (CRL) and off-shore. A variety of examinations and analysis are performed ranging from non-destructive visual and dimensional inspections to detailed optical and scanning electron microscopic examinations. Several hot cells are dedicated to mechanical property testing of structural materials and to determine the fitness-for-service of reactor core components. Facility upgrades and the development of innovative examination techniques continue to improve AECL's PIE capabilities. (author)

  12. AECL hot-cell facilities and post-irradiation examination services

    International Nuclear Information System (INIS)

    Schankula, M.H.; Plaice, E.L.; Woodworth, L.G.

    1998-04-01

    This paper presents an overview of the post-irradiation examination (PIE) services available at AECL's hot-cell facilities (HCF). The HCFs are used primarily to provide PIE support for operating CANDU power reactors in Canada and abroad, and for the examination of experimental fuel bundles and core components irradiated in research reactors at the Chalk River Laboratories (CRL) and off-shore. A variety of examinations and analyses are performed ranging from non-destructive visual and dimensional inspections to detailed optical and scanning electron microscopic examinations. Several hot cells are dedicated to mechanical property testing of structural materials and to determine the fitness-for-service of reactor core components. Facility upgrades and the development of innovative examination techniques continue to improve AECL's PIE capabilities. (author)

  13. Facile synthesis of cobalt hexacyanoferrate/graphene nanocomposites for high-performance supercapacitor

    International Nuclear Information System (INIS)

    Wang, Jian-Gan; Zhang, Zhiyong; Liu, Xingrui; Wei, Bingqing

    2017-01-01

    Prussian blue and its analogues are promising for energy storage devices owing to the rigid open framework, yet suffer from poor conductivity and relatively low energy density. Herein, we report a facile preparation of cobalt hexacyanoferrate/reduced graphene oxide nanocomposites (CoHCF/rGO) for supercapacitors with enhanced performance. The CoHCF nanoparticles with a size of around 50 nm are adhered onto the rGO nanosheets, which, in turn, not only prevent the agglomeration of the CoHCF nanoparticles but also provide conductive network for fast electron transport. The CoHCF/rGO nanocomposite delivers a maximum specific capacitance of 361 F g"−"1 in Na_2SO_4 aqueous electrolyte. Asymmetric supercapacitor cells are assembled by pairing up an optimized nanocomposite electrode with an activated carbon negative electrode, which exhibits a wide reversible operating voltage of 2.0 V and a high energy density of 39.6 Wh kg"−"1. The enhanced electrochemical performance of CoHCF/rGO benefits from the strong synergistic utilization of CoHCF nanoparticles and rGO nanosheets, rendering the nanocomposites a great promise for high-performance supercapacitors.

  14. Hot cell verification facility update

    International Nuclear Information System (INIS)

    Titzler, P.A.; Moffett, S.D.; Lerch, R.E.

    1985-01-01

    The Hot Cell Verification Facility (HCVF) provides a prototypic hot cell mockup to check equipment for functional and remote operation, and provides actual hands-on training for operators. The facility arrangement is flexible and assists in solving potential problems in a nonradioactive environment. HCVF has been in operation for six years, and the facility is a part of the Hanford Engineering Development Laboratory

  15. LCF- and LCF/HCF-behaviour of the superalloy MAR-M247LC

    Energy Technology Data Exchange (ETDEWEB)

    Gelmedin, Domnin; Lang, Karl-Heinz [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. fuer Werkstoffkunde I

    2010-07-01

    The fatigue behaviour of the Nickel-base superalloy Mar-M247LC was investigated at 650 C in air environment under total strain control. Pure low cycle fatigue (LCF) loading, pure high cycle fatigue (HCF) loading and superimposed LCF/HCF loading were realised. In LCF tests with a strain ratio of zero and a hold time of 60 seconds the cyclic deformation and the lifetime behaviour was investigated. The dependence of the fatigue limit on the mean strain was estimated in HCF tests at a frequency of 60 Hz using an ultimate number of cycles of ten million. Finally the influence of superimposed HCF and LCF loadings was examined. At high total strain ranges of the HCF loading the lifetime of the superalloy as reduced about more than one magnitude compared to the lifetime under pure LCF loading. With decreasing HCF loadings the reduction of the lifetime decreases. This life time reduction can be explained by the interaction of the LCF and the superimposed HCF loading. Crack initiation and first crack propagation is predominantly induced by the LCF loading. After reaching an adequate long fatigue crack length the superimposed HCF loading contributes considerably to the crack growth. This contribution can be determined evaluating the distance between the LCF marking lines which form on the fracture surface. The higher the superimposed HCF loading was the longer the distance between the LCF marking lines and the lower the crack length were when first LCF marking lines could be recognized. On the basis of this cognition the life time under superimposed LCF/HCF loading was modelled using a model basing on fracture mechanics. (orig.)

  16. Hot-cell verification facility

    International Nuclear Information System (INIS)

    Eschenbaum, R.A.

    1981-01-01

    The Hot Cell Verification Facility (HCVF) was established as the test facility for the Fuels and Materials Examination Facility (FMEF) examination equipment. HCVF provides a prototypic hot cell environment to check the equipment for functional and remote operation. It also provides actual hands-on training for future FMEF Operators. In its two years of operation, HCVF has already provided data to make significant changes in items prior to final fabrication. It will also shorten the startup time in FMEF since the examination equipment will have been debugged and operated in HCVF

  17. Influence of co-electrodeposited Gold particles on the electrocatalytic properties of CoHCF thin films

    International Nuclear Information System (INIS)

    Kumar, Alam Venugopal Narendra; Joseph, James

    2014-01-01

    The electrochemical modification of solid electrodes with metal hexacyanoferrate thin films for enhancing the interfacial properties has created interest for over the past three decades. The preparation of Prussian blue (PB) Au nano composites for the enhancement in the electrocatalytic properties of PB on glassy carbon electrode has been reported by us. The incorporation of Au nano particles in Cobalt hexacyanoferrate (CoHCF) films on Glassy carbon by co-electrodeposition is expected to benefit its interfacial electron transfer properties. The present work describes the effect on the interfacial properties by incorporated Au particles in CoHCF (CoHCF(Au)) modified electrodes. The CoHCF(Au) modified electrodes were characterized by UV-Vis spectrophotometry, Cyclic Voltammetry, AC Impedance, FE-SEM etc., Influence on the electrocatalytic properties of CoHCF(Au) films have been explored by performing two important reactions i) Hydrazine elecrtro-oxidation ii) Oxygen evolution reaction. Our results reveal that CoHCF(Au) modified GC electrode perform better in terms of charge transport in the redox film and also for the electrooxidation of hydrazine in comparision with simple CoHCF modified electrodes. By using the current-transient technique (chrono method i vs t curve) the hydrazine diffusion coefficient (D 0 ) were calculated. Diffusion coefficient of hydrazine was approximately three times higher on CoHCF(Au) electrode, 9.5 × 10 −5 cm 2 s −1 compared with simple CoHCF modified electrode, 3.3× 10 −5 cm 2 s −1 . Similarly, we also discuss results which reveal that CoHCF(Au) electrodes enhances electrocatalytic activity in splitting water to oxygen in 0.1 M NaOH solution compared to simple CoHCF and Au deposited on GC electrodes

  18. The role of high cycle fatigue (HCF) onset in Francis runner reliability

    International Nuclear Information System (INIS)

    Gagnon, M; Tahan, S A; Bocher, P; Thibault, D

    2012-01-01

    High Cycle Fatigue (HCF) plays an important role in Francis runner reliability. This paper presents a model in which reliability is defined as the probability of not exceeding a threshold above which HCF contributes to crack propagation. In the context of combined Low Cycle Fatigue (LCF) and HCF loading, the Kitagawa diagram is used as the limit state threshold for reliability. The reliability problem is solved using First-Order Reliability Methods (FORM). A study case is proposed using in situ measured strains and operational data. All the parameters of the reliability problem are based either on observed data or on typical design specifications. From the results obtained, we observed that the uncertainty around the defect size and the HCF stress range play an important role in reliability. At the same time, we observed that expected values for the LCF stress range and the number of LCF cycles have a significant influence on life assessment, but the uncertainty around these values could be neglected in the reliability assessment.

  19. Decommissioning of the Risoe hot cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1992-02-01

    Concise descriptions of actions taken in relation to the decommissioning of the hot cell facility at Risoe National Laboratory are presented. The removal of fissile material, of large contaminated equipment from the concrete cell line and a separate shielded storage facility, and the removal of large contaminated facilities such as out cell parts of a tube transport system between a concrete cell and a lead shielded steel box and a remotely operated Reichert Telatom microscope housed in a lead shielded glove box is described in addition to the initial mapping of radiation levels related to the decontamination of concrete cells. The dose commitment of 17.7 mSv was ascribed to 12 persons in the 2nd half of 1991. The work resulting in these doses was mainly handling of waste together with the frogman entrances in order to repair the in-cell crane and power manipulator. The overall time schedule for the project still appears to be applicable. (AB)

  20. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1993-02-01

    A concise description of the current status (December 31st, 1992) regarding the decommissioning of the hot cell facility at Risoe National Laboratory is given in this periodic report. During the second half of the year 1992, all remaining fissile material and a large amount of contaminated material were removed, major repair work was carried out on the in-cell crane, the shielded storage facility was decontaminated and sealed, iodine filters in the cell ventilation system were removed, remote cleaning was carried out on three concrete cells to radiation levels acceptable for final cleaning by frogmen, and the remaining work schedule was planned. These processes are briefly described. Some breakdowns of older, but vital equipment (i.e. the in-cell crane and the power manipulator) that was taken into extensive use led to a certain amount of delay. The collective radiation doses during this half-year were no higher than under normal operation of the facility, and amounted to 12 man-mSv ascribed to 14 persons. It was concluded that, when removing old epoxy paint in the cells using paint strippers applied by hand, personnel can wear polythene oversuits, although a technique for remote handling has been developed. Tables illustrate measured radiation levels in cells number 1,4,5 and 6, and a diagram describes the shielded storage facility. (AB)

  1. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1994-06-01

    Nuclear fuels have been handled and examined after irradiation by physical and chemical techniques, and radiotherapy sources, mainly 60 Co, have been produced at Risoe National Laboratory since 1964. The aims of decommissioning (during 1990-94, at IAEA Stage 2 level for reactors) were to obtain safe conditions for the remaining parts of the facility and to produce clean space areas for new projects. The facility comprises 6 concrete cells, several lead-shielded steel cells, glove boxes, shielded storage for waste, a remotely operated optical microscope, a frogman area for personnel access to the concrete cells, a decontamination facility, workshops and safety installations. All steel cells, glove boxes and the microscope were emptied and removed. The concrete cells were emptied of fissile material, scientific equipment, general tools and scrap. Decontamination should facilitate waste packing and reduce amount of waste to be stored temporarily at the Risoe waste treatment facility together with highly active waste. The concrete cells were cleaned remotely by wiping, hot spot removal, by mechanical means and vacuum cleaning. The interiors of 2 cells were decontaminated by high pressure water jetting. All master-slave manipulators and part of the contaminated ventilation system at the cells were removed. The cells are left in a non-ventilated state, connected to the atmosphere by an absolute filter. The main contaminants measured before cell closure were 60 Co, 137 Cs and alpha-emitters. Dismantling, decontamination waste disposal and received doses are described. Simple techniques involving low doses were found to be very effective. (AB)

  2. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1994-02-01

    Concise description of progress in hot cell facility decommissioning at Risoe National Laboratory is presented. Removal of the large contaminated equipment has been completed, all the concrete cells have been finally cleaned. The total contamination left on the concrete walls is of the order of 1850 GBq. Preliminary smear tests proved the stack to be probably clean. The delay in project completion seems to be around 7 months, the remaining work being of rather conventional character. (EG)

  3. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1991-08-01

    Concise descriptions of actions taken in relation to the decommissioning of the hot cell facility at Risoe National Laboratory are presented. The removal of fissile material, removal and decontamination of large cell internals, and of large equipment such as glove boxes and steel boxes, in addition to dose commitments, are explained. Tables illustrating the analysis of smear tests, constants for contamination level examination, contamination and radiation levels after cleaning and total contamination versus measured radiation are included. (AB)

  4. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1991-02-01

    The Hot Cell facility at Risoe has been in active use since 1964. During the years several types of nuclear fuels have been handled and examined: test reactor fuel pins from the Danish reactor DR3, the Norwegian Halden reactor, etc; power reactor fuel pins from several foreign reactors, including plutonium enriched pins; HTGR fuel from the Dragon reactor. All kinds of physical and chemical non-destructive and destructive post irradiation examinations have been performed. Besides, different radiotherapy sources have been produced, mainly cobalt sources. The general object of the decommissioning programme for the Hot Cell facility was to obtain a safe condition for the total building that does not require the special safety provisions. The hot cell building will be usable for other purposes after decommissioning. The facilicy comprised six concrete cells, lead cells, glove boxes, a shielded unit for temporary storage of waste, frogman area, decontamination areas, workshops, various installations of importance for safe operation of the plant, offices, etc. The tasks comprised e.g. removal of all irradiated fuel items, removal of other radioactive items, removal of contaminated equipment, and decontamination of all the cells and rooms. The goal was to decontaminate all the concrete cells to a degree where no loose contamination exists in the cells, and where the radiation level is so low, that total removal of the cell structures can be done at any time in the future without significant dose commitments. (AB)

  5. DWPF remotable television and cell lighting facilities

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1984-01-01

    The Defense Waste Processing Facility (DWPF) for radioactive waste vitrification at the Savannah River Plant (SRP) is now under construction. Development of specialized low cost television (TV) viewing equipment for in-cell and within-melter applications is now complete. High resolution TV cameras not originally designed for high radiation environments have been demonstrated in crane remotable packages to be well suited to the DWPF. High intensity in-cell lighting has also been demonstrated in crane remotable assemblies. These dual 1000 W units (2000 W total) are used to support the multiplicity of TV and cell window viewing requirements. 8 figures

  6. New facilities of the ECN hot cell laboratory

    International Nuclear Information System (INIS)

    Duijves, K.A.; Konings, R.J.M.

    1996-04-01

    A description is given of two recent expansions of the ECN Hot Cell Laboratory in Petten; a production facility for molybdenum-99 and an actinide laboratory, a special facility to investigate unirradiated alpha- and beta-active samples. (orig.)

  7. Upgrades of Hanford Engineering Development Laboratory hot cell facilities

    International Nuclear Information System (INIS)

    Daubert, R.L.; DesChane, D.J.

    1987-01-01

    The Hanford Engineering Development Laboratory operates the 327 Postirradiation Testing Laboratory (PITL) and the 324 Shielded Materials Facility (SMF). These hot cell facilities provide diverse capabilities for the postirradiation examination and testing of irradiated reactor fuels and materials. The primary function of these facilities is to determine failure mechanisms and effects of irradiation on physical and mechanical properties of reactor components. The purpose of this paper is to review major equipment and facility upgrades that enhance customer satisfaction and broaden the engineering capabilities for more diversified programs. These facility and system upgrades are providing higher quality remote nondestructive and destructive examination services with increased productivity, operator comfort, and customer satisfaction

  8. Characterisation study of radionuclides in Hot Cell Facility

    International Nuclear Information System (INIS)

    Ghare, P.T.; Rath, D.P.; Govalkar, Atul; Mukherjee, Govinda; AniIKumar, S.; Yadav, R.K.B.; Mallik, G.K.

    2016-01-01

    Examination of different types of experimental as well as power reactor irradiated fuels and validation of fuel modeling codes is carried out in general Hot cell facility. The Hot cell facility has six concrete shielded hot cells, capable of handling radioactivity varying from 3.7 TBQ to 3700 TBq gamma activity. The facility was augmented with two hot cells having designed capacity to handle radioactivity of 9250 TBQ of equivalent activity of 60 Co. The study of characterization of various radionuclides present inside the hot cell of PIE facility was taken up. This study will help in providing valuable inputs for various radiological safety parameters to keep personnel exposure to ALARA level as per the mandate of radiation safety program

  9. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1993-10-01

    A concise description of the current status of the decommissioning of the hot cell capacity at Risoe National Laboratory is given in this 6th periodic report covering January 1st to June 30th, 1993. All registered and safeguarded fissile material has been removed and the task of cutting and packing scrap material and experimental equipment from the concrete cell line has been completed. Concrete cells 5 and 6 have been finally cleaned and the master slave manipulators removed from them. The major part of the contamination on the shutters and shutter houses were on their horizontal planes and the main contaminant was 137 Cs. Here the surfaces were cleaned by wiping with wet cloths. The method is described. Tables illustrating the resulting contamination levels are included, the density is now low on the shutters. The method of final inn-cell cleaning is explained, and here again tables represent the resulting contamination levels. The work on ''hot spot'' removal and remote cleaning by vacuuming continues on the remaining cells. A collective dose of ca. 16.3 man-mSv was ascribed to 18 persons in the first half of 1993, arising mainly from in-cell work and waste handling. To sum up, the main results from this period are successful removal of last waste from the cells, remote cleaning of cells 2 and 3, final condition for all shutters and shutter housings and final condition for cells 5 and 6. Tables illustrate measured dose rates in detail. (AB)

  10. Refurbishment of an Analytical Laboratory Hot Cell Facility

    International Nuclear Information System (INIS)

    Rosenberg, K.; Henslee, S.P.; Michelbacher, J.A.; Coleman, R.M.

    1997-01-01

    An Analytical Laboratory Hot Cell (ALHC) Facility at Argonne National Laboratory-West (ANL-W) was in service for nearly thirty years. In order to comply with DOE regulations governing such facilities and meet ANL-W programmatic requirements, a major refurbishment effort was undertaken. All penetrations within the facility were sealed; the ventilation system was redesigned, upgraded and replaced; the manipulators were replaced; the hot cell windows were removed, refurbished, and reinstalled; all hot cell utilities were replaced; a lead-shielded glovebox housing an Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES) System was interfaced with the hot cells, and a new CO2 fire suppression system and other ALHC support equipment were installed

  11. 324 Facility B-Cell quality process plan

    International Nuclear Information System (INIS)

    Carlson, J.L.

    1998-01-01

    This report documents the quality process plan for the restart of a hot cell in the B Plant, originally a bismuth phosphate processing facility, but later converted to a waste fractionation plant. B-Cell is currently being cleaned out and deactivated. TPA Milestone M-89-02 dictates that all mixed waste and equipment be removed from B-Cell by 5/31/1999. This report describes the major activities that remain for completion of the TPA milestone

  12. Current status of JAERI Tokai hot cell facilities

    International Nuclear Information System (INIS)

    Itami, Hiroharu; Morozumi, Minoru; Yamahara, Takeshi

    1992-01-01

    JAERI has 4 hot cell facilities in order to examine high radioactive materials. Three of them, the Research Hot Laboratory, the Reactor Fuel Examination Facility and the Waste Safety Testing Facility are located in the JAERI Tokai site, and the rest is the JMTR Hot Laboratory in the Oarai site. The Research Hot Laboratory (RHL) was constructed for post-irradiation examination (PIE), especially nuclear related basic research experiment, such as metallurgical, chemical and mechanical examination on fuels and materials irradiated in research and test reactors. This facility has 10 large dimension concrete and 38 lead cells. At present the RHL is used for various kinds of examinations of high radioactive samples such as fuels of research and test reactors, power reactors and high temperature testing reactor (HTTR), and structural materials. The Reactor Fuel Examination Facility (RFEF) was designed and constructed for carrying out PIE of irradiated full-size fuel assemblies of light water reactors (LWRs). This facility has a storage pool, 8 concrete and 5 lead cells. They are currently used for safety evaluation on high burnup and advanced lWR fuels as part of the national program. The Waste Safety Testing Facility (WASTEF) was designed and constructed for safety research on long-term storage and disposal of high level radioactive wastes, generated by fuel reprocessing. The WASTEF has 5 concrete cells and 1 lead cell. Examinations on the behavior of various long-lived fission products in a glass form and in a canister and, releasing behavior of them out of a canister are carrying out under the condition at storage. (author)

  13. Conceptual layout design of CFETR Hot Cell Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Zheng, E-mail: gongz@mail.ustc.edu.cn [University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Qi, Minzhong, E-mail: qiminzhong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Cheng, Yong, E-mail: chengyong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Song, Yuntao, E-mail: songyt@ipp.ac.cn [University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2015-11-15

    Highlights: • This article proposed a conceptual layout design for CFETR. • The design principles are to support efficient maintenance to ensure the realization of high duty time. • The preliminary maintenance process and logistics are described in detail. • Life cycle management, maneuverability, risk and safety are in the consideration of design. - Abstract: CFETR (China Fusion Engineering Test Reactor) is new generation of Tokomak device beyond EAST in China. An overview of hot cell layout design for CFETR has been proposed by ASIPP&USTC. Hot Cell, as major auxiliary facility, not only plays a pivotal role in supporting maintenance to meet the requirements of high duty time 0.3–0.5 but also supports installation and decommissioning. Almost all of the Tokomak devices are lateral handling internal components like ITER and JET, but CFETR maintain the blanket module from 4 vertical ports, which is quite a big challenge for the hot cell layout design. The activated in-vessel components and several diagnosis instruments will be repaired and refurbished in the Hot Cell Facility, so the appropriate layout is very important to the Hot Cell Facility to ensure the high duty time, it is divided into different parts equipped with a variety of RH equipment and diagnosis devices based on the functional requirements. The layout of the Hot Cell Facility should make maintenance process more efficient and reliable, and easy to service and rescue when a sudden events taking place, that is the capital importance issue considered in design.

  14. Hot cell facilities for post irradiation examination

    International Nuclear Information System (INIS)

    Mishra, Prerna; Bhandekar, Anil; Pandit, K.M.; Dhotre, M.P.; Rath, B.N.; Nagaraju, P.; Dubey, J.S.; Mallik, G.K.; Singh, J.L.

    2017-01-01

    Reliable performance of nuclear fuels and critical core components has a large bearing on the economics of nuclear power and radiation safety of plant operating personnel. In view of this, Post Irradiation Examination (PIE) is periodically carried out on fuels and components to generate feedback information which is used by the designers, fabricators and the reactor operators to bring about changes for improved performance of the fuel and components. Examination of the fuel bundles has to be carried out inside hot cells due to their high radioactivity

  15. Introduction of hot cell facility in research center Rez - Poster

    International Nuclear Information System (INIS)

    Petrickova, A.; Srba, O.; Miklos, M.; Svoboda, P.

    2015-01-01

    This poster presents the hot cell facility which is being constructed as part of the SUSEN project at the Rez research center (Czech Republic). Within this project a new complex of 10 hot cells and one semi-hot cell will be built. There will be 8 gamma hot cells and 2 alpha hot cells. In each hot cell a hermetic, removable box made of stainless steel will home different type of devices. The hot cells and semi hot cell will be equipped with devices for processing samples (cutting, welding, drilling, machining) as well as equipment for testing (sample preparation area, stress testing machine, fatigue machine, electromechanical creep machine, high frequency resonance pulsator...) and equipment for studying material microstructure (nano-indenter with nano-scratch tester and scanning electron microscope). An autoclave with water loop, installed in a cell will allow mechanical testing in control environment of water, pressure and temperature. A scheme shows the equipment of each cell. This hot laboratory will be able to cover all the process to study radioactive materials: receiving the material, the preparation of the samples, mechanical testing and microstructure observation. Our hot cells will be close to the research nuclear reactor LVR-15 and new irradiation facility (high irradiation by cobalt source) is planned to be built within the SUSEN project

  16. Decontamination of an Analytical Laboratory Hot Cell Facility

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Henslee, S.P.; Rosenberg, K.E.; Coleman, R.M.

    1995-11-01

    An Analytical Laboratory Hot Cell Facility at Argonne National Laboratory-West (ANL-W) had been in service for nearly thirty years. In order to comply with current DOE regulations governing such facilities and meet programmatic requirements, a major refurbishment effort was mandated. Due to the high levels of radiation and contamination within the cells, a decontamination effort was necessary to provide an environment that permitted workers to enter the cells to perform refurbishment activities without receiving high doses of radiation and to minimize the potential for the spread of contamination. State-of-the-art decontamination methods, as well as time-proven methods were utilized to minimize personnel exposure as well as maximize results

  17. Modulation of human melanoma cell proliferation and apoptosis by hydatid cyst fluid of Echinococcus granulosus

    Directory of Open Access Journals (Sweden)

    Gao X

    2018-03-01

    Full Text Available Xiang-Yang Gao,1,* Guang-Hui Zhang,2,* Li Huang3 1Department of Laboratory Medicine, Pu’er People’s Hospital, Pu’er, 2Department of Clinical Laboratory, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 3Department of General Surgery, Shanghai General Hospital, Shanghai, China *These authors contributed equally to this work Objective: The objective of this paper was to assess the effects of hydatid cyst fluid (HCF of Echinococcus granulosus on melanoma A375 cell proliferation and apoptosis.Methods: A375 cells were classified into five groups by in vitro culture: normal group, control group, 10% HCF group, 20% HCF group and 30% HCF group. Trypan blue staining method was employed to detect the toxicity of HCF. Effects of different concentrations of HCF on melanoma A375 cell proliferation at different time points were evaluated using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Flow cytometry and propidium iodide (PI staining were used to detect cell cycle, and Annexin-V/PI double staining method was used to determine A375 cell apoptotic rate. Western blotting was applied to detect the expression of phosphorylated extracellular regulated protein kinases, proliferating cell nuclear antigen (PCNA, cell-cycle-related proteins (cyclin A, cyclin B1, cyclin D1 and cyclin E and apoptosis-related proteins (Bcl-2, Bax and caspase-3.Results: HCF with a high concentration was considered as atoxic to A375 cells. HCF promoted A375 cell proliferation, and the effects got stronger with an increase in concentrations but was retarded after reaching a certain range of concentrations. HCF increased phosphorylation level and expression of extracellular regulated protein kinase, as well as PCNA expression. HCF also promoted the transferring progression of A375 cells from the G0/G1 phase to the S phase to increase the cell number in S phase and increased the expression of cyclin A, cyclin D1 and

  18. Scientist, Single Cell Analysis Facility | Center for Cancer Research

    Science.gov (United States)

    The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives.  The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for Cancer Research (CCR).  The dedicated units provide electron microscopy, protein characterization, protein expression, optical microscopy and nextGen sequencing. These research efforts are an integral part of CCR at the Frederick National Laboratory for Cancer Research (FNLCR).  CRTP scientists also work collaboratively with intramural NCI investigators to provide research technologies and expertise. KEY ROLES AND RESPONSIBILITIES We are seeking a highly motivated Scientist II to join the newly established Single Cell Analysis Facility (SCAF) of the Center for Cancer Research (CCR) at NCI. The SCAF will house state of the art single cell sequencing technologies including 10xGenomics Chromium, BD Genomics Rhapsody, DEPPArray, and other emerging single cell technologies. The Scientist: Will interact with close to 200 laboratories within the CCR to design and carry out single cell experiments for cancer research Will work on single cell isolation/preparation from various tissues and cells and related NexGen sequencing library preparation Is expected to author publications in peer reviewed scientific journals

  19. Dose control programme of Hot Cell facility at Isotope Wing

    International Nuclear Information System (INIS)

    Sapkal, Jyotsna A.; Suresh, Manju; Shreenivas, V.; Amruta, C.T.; Yadav, R.K.B.; Gopalkrishanan, R.K.; Patil, B.N.; Sastry, K.V.S.

    2015-01-01

    Hot Cell Facility of Board of Radiation Isotope Technology (BRIT) at Radiological Laboratories (RLG) is involved in fabrication of sealed radioisotopes like Cobalt-60, Cesium-137 and Iridium-192 radioisotopes which are widely used for various medical and industrial applications. In the field of Medicine, above radioactive sources are used for treatment procedures such as Teletherapy and Brachytherapy. 192 Ir radioisotope is widely used for industrial radiography particularly for non-destructive testing of welds in steel in the oil and gas industries. In spite of the increased production of these radioisotopes to meet the requirements from medical and industrial sector, the annual Collective Dose for BRIT facility, during 2011-2013 has shown a downward trend. This paper describes in brief the measures adopted by the facility based on the radiological safety inputs provided by Radiation Hazards Control (RHC) Unit of Isotope Wing, RLG for reducing the collective dose during year 2012 and 2013 by nearly 40% of collective dose consumed for year-2011. Strict implementation of the radiological safety measures during handling of radioactive sources, administrative controls and engineered safety measures resulted in lowering of collective dose during year 2011-2013. (author)

  20. The 'MELUSINE' reactor at Grenoble, France, and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the MELUSINE reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities and specialized irradiation devices (loops and capsules). The information is presented in the form of six information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities

  1. The 'SILOE' reactor at Grenoble, France and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the SILOE reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  2. The DR 3 reactor at Risoe, Denmark and its associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the DR 2 reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of seven information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  3. The DIDO-reactor at Harwell, U.K. and ancillary hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the DIDO reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  4. The 'OSIRIS' reactor at Saclay, France and available hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the OSIRIS reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  5. Surface modification of amine-functionalised graphite for preparation of cobalt hexacyanoferrate (CoHCF)-modified electrode: an amperometric sensor for determination of butylated hydroxyanisole (BHA).

    Science.gov (United States)

    Prabakar, S J Richard; Narayanan, S Sriman

    2006-12-01

    A cobalt hexacyanoferrate (CoHCF)-modified graphite paraffin wax composite electrode was prepared by a new approach. An amine-functionalised graphite powder was used for the fabrication of the electrode. A functionalised graphite paraffin wax composite electrode was prepared and the surface of the electrode was modified with a thin film of CoHCF. Various parameters that influence the electrochemical behaviour of the modified electrode were studied by varying the background electrolytes, scan rates and pH. The modified electrode showed good electrocatalytic activity towards the oxidation of butylated hydroxyanisole (BHA) under optimal conditions and showed a linear response over the range from 7.9 x 10(-7) to 1.9 x 10(-4) M of BHA with a correlation coefficient of 0.9988. The limit of detection was 1.9 x 10(-7) M. Electrocatalytic oxidation of BHA was effective at the modified electrode at a significantly reduced potential and at a broader pH range. The utility of the modified electrode as an amperometric sensor for the determination of BHA in flow systems was evaluated by carrying out hydrodynamic and chronoamperometric experiments. The modified electrode showed very good stability and a longer shelf life. The modified electrode was applied for the determination of BHA in spiked samples of chewing gum and edible sunflower oil. The advantage of this method is the ease of electrode fabrication, good stability, longer shelf life, low cost and its diverse application for BHA determination.

  6. Fatigue behavior of austenitic steels. Subproject. Mechanism oriented investigation of the fatigue behavior of austenitic steel X6CrNiNb1810 in the HCF and VHCF regime. Final report; Ermuedungsverhalten Austenit. Teilprojekt. Mechanismenorientierte Untersuchung des Ermuedungsverhaltens des austenitischen Stahles X6CrNiNb1810 im HCF- und VHCF-Bereich. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Sorich, A.; Smaga, M.; Eifler, D.

    2015-01-23

    In addition to load cycles in the Low Cycle Fatigue (LCF)-regime due to start up and shut down procedures of power plants, in some components additional high-frequency loadings in the High Cycle Fatigue (HCF)- and Very High Cycle Fatigue (VHCF)-regime occur. These loadings are induced e.g. by stresses due to thermal cyclic fluctuations and fluid dynamic processes. Therefore it is necessary to characterize experimentally the cyclic deformation behavior of metastable austenitic steels at operating temperature particularly in the HCF- and VHCF-regime and to develop a nondestructive method to detect fatigue processes. This joint research project was conducted in cooperation between the Institute of Materials Science and Engineering (WKK) of the University of Kaiserslautern and the Fraunhofer-Institute for Non-Destructive Testing (IZFP) in Saarbruecken. WKK was focused on experimental investigations to characterize the cyclic deformation behavior of the metastable austenitic steel in the HCF- and VHCF-range, taking into account cyclic hardening and softening processes and in particular to consider fatigue-induced changes in microstructure. The IZFP has focused on the development and application of a testing concept based on electromagnetic ultrasonic measurements. The isothermal cyclic deformation behavior of the metastable austenitic steel X6CrNiNb1810 (1.4550, AISI 347) at 300 C in the HCF-range is characterized by cyclic softening until specimen failure. At strain amplitudes of 0.10 % ≤ ε{sub a,t} ≤ 0.15 % and the stress amplitude σ{sub a} = 160 MPa cyclic softening is followed by cyclic hardening, which results in a significant increase in life time, up to the limiting number of cycles, which was defined at N{sub I} = 10{sup 7} in HCF-regime. The cyclic hardening is determined by a transformation induced phase formation from face-centered cubic (fcc) austenite to body-centered cubic (bcc) α{sup '}-martensite and/or in hexagonal (hcp) ε-martensite. In

  7. Evaluation of Membrane Ultrafiltration and Residual Chlorination as a Decentralized Water Treatment Strategy for Ten Rural Healthcare Facilities in Rwanda

    Directory of Open Access Journals (Sweden)

    Alexandra Huttinger

    2015-10-01

    Full Text Available There is a critical need for safe water in healthcare facilities (HCF in low-income countries. HCF rely on water supplies that may require additional on-site treatment, and need sustainable technologies that can deliver sufficient quantities of water. Water treatment systems (WTS that utilize ultrafiltration membranes for water treatment can be a useful technology in low-income countries, but studies have not systematically examined the feasibility of this technology in low-income settings. We monitored 22 months of operation of 10 WTS, including pre-filtration, membrane ultrafiltration, and chlorine residual disinfection that were donated to and operated by rural HCF in Rwanda. The systems were fully operational for 74% of the observation period. The most frequent reasons for interruption were water shortage (8% and failure of the chlorination mechanism (7%. When systems were operational, 98% of water samples collected from the HCF taps met World Health Organization (WHO guidelines for microbiological water quality. Water quality deteriorated during treatment interruptions and when water was stored in containers. Sustained performance of the systems depended primarily on organizational factors: the ability of the HCF technician to perform routine servicing and repairs, and environmental factors: water and power availability and procurement of materials, including chlorine and replacement parts in Rwanda.

  8. Characterization report for Building 301 Hot Cell Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    During the period from October, 1997, through March, 1998, ANL-E Health Physics conducted a pre-D and D characterization of Building 301, referred to as the Hot Cell Facility. While primary emphasis was placed on radiological evaluation, the presence of non-nuclear hazardous and toxic material was also included in the scope of the characterization. This is one of the early buildings on the ANL-E site, and was heavily used in the 1950`s and 1960`s for various nuclear reaction and reactor design studies. Some degree of cleanup and contamination fixation was done in the 1970`s, so that the building could be used with a minimum of risk of personnel contamination. Work records are largely nonexistent for the early history of the building, so that any assumptions about extent and type of contamination had to be kept very open in the survey planning process. The primary contaminant was found to be painted-over Cs-137 embedded in the concrete floors, although a variety of other nuclides consistent with the work said to have been performed were found in smaller quantities. Due to leaks and drips through the floor, a relatively modest amount of soil contamination was found in the service trench under the building, not penetrating deeply. Two contaminated, disconnected drain lines leaving the building could not be traced by site records, and remain a problem for remediation. The D and D Characterization Plan was fulfilled.

  9. Characterization report for Building 301 Hot Cell Facility

    International Nuclear Information System (INIS)

    1998-07-01

    During the period from October, 1997, through March, 1998, ANL-E Health Physics conducted a pre-D and D characterization of Building 301, referred to as the Hot Cell Facility. While primary emphasis was placed on radiological evaluation, the presence of non-nuclear hazardous and toxic material was also included in the scope of the characterization. This is one of the early buildings on the ANL-E site, and was heavily used in the 1950's and 1960's for various nuclear reaction and reactor design studies. Some degree of cleanup and contamination fixation was done in the 1970's, so that the building could be used with a minimum of risk of personnel contamination. Work records are largely nonexistent for the early history of the building, so that any assumptions about extent and type of contamination had to be kept very open in the survey planning process. The primary contaminant was found to be painted-over Cs-137 embedded in the concrete floors, although a variety of other nuclides consistent with the work said to have been performed were found in smaller quantities. Due to leaks and drips through the floor, a relatively modest amount of soil contamination was found in the service trench under the building, not penetrating deeply. Two contaminated, disconnected drain lines leaving the building could not be traced by site records, and remain a problem for remediation. The D and D Characterization Plan was fulfilled

  10. Safety evaluation report of hot cell facilities for demonstration of advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    You, Gil Sung; Choung, W. M.; Ku, J. H.; Cho, I. J.; Kook, D. H.; Park, S. W.; Bek, S. Y.; Lee, E. P.

    2004-10-01

    The advanced spent fuel conditioning process(ACP) proposed to reduce the overall volume of the PWR spent fuel and improve safety and economy of the long-term storage of spent fuel. In the next phase(2004∼2006), the hot test will be carried out for verification of the ACP in a laboratory scale. For the hot test, the hot cell facilities of α- type and auxiliary facilities are required essentially for safe handling of high radioactive materials. As the hot cell facilities for demonstration of the ACP, a existing hot cell of β- type will be refurbished to minimize construction expenditures of hot cell facility. Up to now, the detail design of hot cell facilities and process were completed, and the safety analysis was performed to substantiate secure of conservative safety. The design data were submitted for licensing which was necessary for construction and operation of hot cell facilities. The safety investigation of KINS on hot cell facilities was completed, and the license for construction and operation of hot cell facilities was acquired already from MOST. In this report, the safety analysis report submitted to KINS was summarized. And also, the questionnaires issued from KINS and answers of KAERI in process of safety investigation were described in detail

  11. Establishment and operation of a photovoltaic cell test facility

    Energy Technology Data Exchange (ETDEWEB)

    Pearsall, N.M.; Forbes, I.

    1999-07-01

    This report describes the setting up of a test facility at the University of Northumbria. Details of the equipment specification and procurement are given, and the commissioning and initial operation of the facility, and the measurement procedures for I-V characteristics, spectral response measurements, optical scanning and test charges are outlined. The business plan for the test facility is discussed, and operating experience is reviewed in terms of publicity, services provided, and collaboration.

  12. Direct Connect Supersonic Combustion Facility (Research Cell 22)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC22 is a continuous-flow, direct-connect supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  13. Qualification of academic facilities for small-scale automated manufacture of autologous cell-based products.

    Science.gov (United States)

    Hourd, Paul; Chandra, Amit; Alvey, David; Ginty, Patrick; McCall, Mark; Ratcliffe, Elizabeth; Rayment, Erin; Williams, David J

    2014-01-01

    Academic centers, hospitals and small companies, as typical development settings for UK regenerative medicine assets, are significant contributors to the development of autologous cell-based therapies. Often lacking the appropriate funding, quality assurance heritage or specialist regulatory expertise, qualifying aseptic cell processing facilities for GMP compliance is a significant challenge. The qualification of a new Cell Therapy Manufacturing Facility with automated processing capability, the first of its kind in a UK academic setting, provides a unique demonstrator for the qualification of small-scale, automated facilities for GMP-compliant manufacture of autologous cell-based products in these settings. This paper shares our experiences in qualifying the Cell Therapy Manufacturing Facility, focusing on our approach to streamlining the qualification effort, the challenges, project delays and inefficiencies we encountered, and the subsequent lessons learned.

  14. Preliminary Feasibility Study on the Construction of Steel Hot Cell Facility for Precise Manipulated Examinations

    International Nuclear Information System (INIS)

    Ahn, Sangbok; Kwon, Hyungmun; Kim, Heemoon; Kim, Dosik; Min, Duckkee; Hong, Kwonpyo

    2006-01-01

    Hot laboratory is essential facility to research and develop in the nuclear industries to examine radioactive materials. The post irradiation examinations for irradiated fuels and materials should be mainly conducted in the hot cell facility to protect radiations to operators. Hot cells are divided into a concrete hot cell and a steel hot cell according to the wall materials. Usually a concrete hot cell is applied to test for high level radioactive materials like as a fuel assembly, rods, and large structure specimens, and a steel hot cell for comparatively lower level activity materials in fuel fragments, and small structural materials. A steel hot cell has many benefits in a specimen manipulation, construction and maintenance costs. In recent the test for the irradiated materials is more frequently required a small and precise manipulating examination for higher degree tests of research and developments. Unfortunately hot laboratory facilities in domestics have mainly constituted of concrete hot cells, and not ready for techniques in steel hot cells. In this paper the construction feasibility of steel hot cell facility is preliminary reviewed in the points of the status of domestic facilities, the test demand prospect and detailed plans

  15. Alpha-Gamma Hot-Cell Facility at Argonne National Laboratory East

    International Nuclear Information System (INIS)

    Neimark, L.A.; Jackson, W.D.; Donahue, D.A.

    1979-01-01

    The Alpha-Gamma Hot-Cell Facility has been in operation at Argonne National Laboratory East (ANL-E) for 15 years. The facility was designed for plutonium research in support of ANL's LMFBR program. The facility consists of a kilocurie, nitrogen-atmosphere alpha-gamma hot cell and supporting laboratories. Modifications to the facility and its equipment have been made over the years as the workload and nature of the work changed. These modifications included inerting the entire hot cell, adding four work stations, modifying in-loading procedures and examination equipment to handle longer test articles, and changing to a new sodium-vapor lighting system. Future upgrading includes the addition of a decontamination and repair facility, use of radio-controlled transfer carts, refurbishment of the zinc bromide windows, and the installation of an Auger microprobe

  16. Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2009-04-01

    Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and networks. The backup power supply that best meets these objectives is fuel cell technology.

  17. FFTF [Fast Flux Test Facility]/IEM [Interim Examination and Maintenance] Cell Fuel Pin Weighing System

    International Nuclear Information System (INIS)

    Gibbons, P.W.

    1987-09-01

    A Fuel Pin Weighing Machine has been developed for use in the Fast Flux Test Facility (FFTF) Interim Examination and Maintenance (IEM) Cell to assist in identifying an individual breached fuel pin from its fuel assembly pin bundle. A weighing machine, originally purchased for use in the Fuels and Materials Examination Facility (FMEF) at Hanford, was used as the basis for the IEM Cell system. Design modifications to the original equipment were centered around: 1) adapting the FMEF machine for use in the IEM Cell and 2) correcting operational deficiencies discovered during functional testing in the IEM Cell Mockup

  18. Standard practice for cell sorting in a BSL-3 facility.

    Science.gov (United States)

    Perfetto, Stephen P; Ambrozak, David R; Nguyen, Richard; Roederer, Mario; Koup, Richard A; Holmes, Kevin L

    2011-01-01

    Over the past decade, there has been a rapid growth in the number of BSL-3 and BSL-4 laboratories in the USA and an increase in demand for infectious cell sorting in BSL-3 laboratories. In 2007, the International Society for Advancement of Cytometry (ISAC) Biosafety Committee published standards for the sorting of unfixed cells and is an important resource for biosafety procedures when performing infectious cell sorting. Following a careful risk assessment, if it is determined that a cell sorter must be located within a BSL-3 laboratory, there are a variety of factors to be considered prior to the establishment of the laboratory. This chapter outlines procedures for infectious cell sorting in a BSL-3 environment to facilitate the establishment and safe operation of a BSL-3 cell sorting laboratory. Subjects covered include containment verification, remote operation, disinfection, personal protective equipment (PPE), and instrument-specific modifications for enhanced aerosol evacuation.

  19. Non-destructive detection of fatigue in austenitic steel X6CrNiNb1810 in the HCF and VHCF range. Final report; Zerstoerungsfreie Detektion der Ermuedung von austenitischem Stahl X6CrNiNb1810 im HCF- und VHCF-Bereich. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Georg; Boller, Christian [Univ. des Saarlandes, Saarbruecken (Germany). Lehrstuhl fuer Zerstoerungsfreie Pruefung und Qualitaetsmanagement

    2014-12-31

    In addition to load cycles in the Low Cycle Fatigue (LCF)-regime due to start up and shut down procedures of power plants, in some components additional high-frequency loadings in the High Cycle Fatigue (HCF)- and Very High Cycle Fatigue (VHCF)-regime occur. These loadings are induced e.g. by stresses due to thermal cyclic fluctuations and fluid dynamic processes. Therefore it is necessary to characterize experimentally the cyclic deformation behavior of metastable austenitic steels at operating temperature particularly in the HCF- and VHCF-regime and to develop a nondestructive method to detect fatigue processes. This joint research project was conducted in cooperation between the Institute of Materials Science and Engineering (WKK) of the University of Kaiserslautern and the Chair of Non-Destructive Testing and Quality Assurance of Saarland University (LZfPQ). WKK was focused on experimental investigations of the cyclic deformation behavior of metastable austenitic steel in the HCF- and VHCF-range, taking into account cyclic hardening and softening processes and in particular to consider fatigue-induced changes in microstructure. The samples were taken from a real pressurized water reactor component (surgeline). LZfPQ has focused on the development and application of a testing concept based on electromagnetic ultrasonic measurements. Within this subproject, electromagnetic acoustic transducers (EMATs) for in situ Operation in WKK's fatigue testing equipment have been developed and assembled. Single-step fatigue tests at elevated temperature (300 C) were conducted both with total-stress and strain control. During the test, the fatigue specimens were characterized by EMAT ultrasound in transmission mode. Different sensor types and wavemodes were used. The transmission signal was evaluated in terms of time of flight and amplitude. Both measured values are seen to behave in a characteristic manner depending on the test duration and the mechanical measured value

  20. HANARO Neutron Radiography Facility and Fuel Cell Research

    International Nuclear Information System (INIS)

    Kim, Taejoo

    2013-01-01

    Fuel cell which generates electric energy from hydrogen and oxygen is one of noticed renewable energy system because this has high efficiency and free from CO 2 . Especially, PEMFC (Polymer Electrolyte Membrane Fuel Cell) is focused by automotive companies because PEMFC, which has high power rate per volume and low operating temperature (60∼80), is suited due to the compact design and short start-up time. The water management is one of the most critical issues for fuel cell commercialization. In order to make a proper scheme for water management, thein formation of water distribution and behavior is very important. Neutron imaging is the best method to visualize the water at fuel cell and has been applied worldwide with qualitative and quantitative results. Because the NRF has large beam size (350Χ450mm 2 ) and relatively high neutron flux (2Χ107 n/cm 2 sec), it is suitable for large scale fuel cell research. Neutron imaging technique was used to investigate the water distribution and behavior in PEMFC under different operating conditions. The NRF has contributed the improvement of fuel cell performance and is one of the best choices for fuel cell study

  1. 324 Facility B-cell quality process plan

    International Nuclear Information System (INIS)

    Carlson, J.L.

    1998-01-01

    B-Cell is currently being cleaned out (i.e., removal of equipment, fixtures and residual radioactive materials) and deactivated. TPA Milestone M-89-02 dictates that all mixed waste and equipment be removed from B-Cell by 5/31/99. The following sections describe the major activities that remain for completion of the TPA milestone. These include: Size Reduce Tank 119 and Miscellaneous Equipment; Load and Ship Low-Level Waste; Remove and Size Reduce the 1B Rack; Collect Dispersible Material from Cell Floor; Remove and Size Reduce the 2A Rack; Size Reduce the 1A Rack; Load and Ship Mixed Waste to PUREX Tunnels; and Move Spent Fuel to A-Cell;

  2. PSA Solar furnace: A facility for testing PV cells under concentrated solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Reche, J.; Canadas, I.; Sanchez, M.; Ballestrin, J.; Yebra, L.; Monterreal, R.; Rodriguez, J.; Garcia, G. [Concentration Solar Technologies, Plataforma Solar de Almeria-CIEMAT P.O. Box 22, Tabernas, E-04200 (Almeria) (Spain); Alonso, M.; Chenlo, F. [Photovoltaic Components and Systems, Renewable Energies Department-CIEMAT Avda. Complutense, 22, Madrid, E-28040 (Spain)

    2006-09-22

    The Plataforma Solar de Almeria (PSA), the largest centre for research, development and testing of concentration solar thermal technologies in Europe, has started to apply its knowledge, facilities and resources to development of the Concentration PV technology in an EU-funded project HiConPV. A facility for testing PV cells under solar radiation concentrated up to 2000x has recently been completed. The advantages of this facility are that, since it is illuminated by solar radiation, it is possible to obtain the appropriate cell spectral response directly, and the flash tests can be combined with prolonged PV-cell irradiation on large surfaces (up to 150cm{sup 2}), so the thermal response of the PV cell can be evaluated simultaneously. (author)

  3. 324 Facility B-Cell quality process plan

    International Nuclear Information System (INIS)

    Carlson, J.L.

    1998-01-01

    B-Cell is currently being cleaned out (i.e., removal of equipment, fixtures and residual radioactive materials) and deactivated. TPA Milestone M-89-02 dictates that all mixed waste and equipment be removed from B-Cell by 5/31/99. The following sections describe the major activities that remain for completion of the TPA milestone. This includes: (1) Size Reduce Tank 119 and Miscellaneous Equipment. This activity is the restart of hotwork in B-Cell to size reduce the remainder of Tank 119 and other miscellaneous pieces of equipment into sizes that can be loaded into a grout container. This activity also includes the process of preparing the containers for shipment from the cell. The specific activities and procedures used are detailed in a table. (2) Load and Ship Low-Level Waste. This activity covers the process of taking a grouted LLW container from B-Cell and loading it into the cask in the REC airlock and Cask Handling Area (CHA) for shipment to the LLBG. The detailed activities and procedures for this part of cell cleanout are included in second table

  4. Spent Fuel Handling and Packaging Program: a survey of hot cell facilities

    International Nuclear Information System (INIS)

    Menon, M.N.

    1978-07-01

    Hot cell facilities in the United States were surveyed to determine their capabilities for conducting integral fuel assembly and individual fuel rod examinations that are required in support of the Spent Fuel Handling and Packaging Program. The ability to receive, handle, disassemble and reconstitute full-length light water reactor spent fuel assemblies, and the ability to conduct nondestructive and destructive examinations on full-length fuel rods were of particular interest. Three DOE-supported facilities and three commercial facilities were included in the survey. This report provides a summary of the findings

  5. The FRJ 1 reactor (MERLIN) at Juelich, F.R. Germany and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the FRJ 1 reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  6. Facile Hydrothermal Synthesis of Tellurium Nanostructures for Solar Cells

    Directory of Open Access Journals (Sweden)

    M. Panahi-Kalamuei

    2014-10-01

    Full Text Available Tellurium (Te nanostructures have been successfully synthesized via a simple hydrothermal methodfrom the reaction of a TeCl4 aqueous solution with thioglycolic acid (TGA as a reductant. TGA can be easily oxidized to the corresponding disulfide [SCH2CO2H]2, which in turn can reduce TeCl4 to Te. The obtained Te was characterized by XRD, SEM, EDS, and DRS. The effect of reducing agent on morphology and size of the products were also studied. Additionally, Te thin film was deposited on the FTO-TiO2 by Dr- blading then employed to solar cell application and measured open circuit voltage (Voc, short circuit current (Isc, and fill factor (FF were determined as well. The studies showed that particle morphology and sizes play crucial role on solar cell efficiencies.

  7. Fast Flux Test Facility interim examination and maintenance cell: Past, present, and future

    International Nuclear Information System (INIS)

    Vincent, J.R.

    1990-09-01

    The Fast Flux Test Facility Interim Examination and Maintenance Cell was designed to perform interim examination and/or disassembly of experimental core components for final analysis elsewhere, as well as maintenance of sodium-wetted or neutron-activated internal reactor parts and plant support hardware. The Interim Examination and Maintenance Cell equipment developed and used for the first ten years of operation has been primarily devoted to the disassembly and examination of core component test assemblies. While no major reactor equipment has required remote repair or maintenance, the Interim Examina Examination and Maintenance Cell has served as the remote repair facility for its own in-cell equipment, and several innovative remote repairs have been accomplished. The Interim Examination and Maintenance Cell's demonstrated versatility has shown its capability to support a challenging future. 12 refs., 9 figs

  8. New electron beam facility for irradiated plasma facing materials testing in hot cell

    International Nuclear Information System (INIS)

    Sakamoto, N.; Kawamura, H.; Akiba, M.

    1995-01-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility (open-quotes OHBISclose quotes, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10 -4 Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility

  9. New electron beam facility for irradiated plasma facing materials testing in hot cell

    International Nuclear Information System (INIS)

    Shimakawa, S.; Akiba, M.; Kawamura, H.

    1996-01-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop plasma facing components which can resist these. We have established electron beam heat facility ('OHBIS', Oarai hot-cell electron beam irradiating system) at a hot cell in JMTR (Japan materials testing reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50 kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30 kV (constant) and 1.7 A, respectively. The loading time of the electron beam is more than 0.1 ms. The shape of vacuum vessel is cylindrical, and the main dimensions are 500 mm in inside diameter, 1000 mm in height. The ultimate vacuum of this vessel is 1 x 10 -4 Pa. At present, the facility for the thermal shock test has been established in a hot cell. The performance of the electron beam is being evaluated at this time. In the future, the equipment for conducting static heat loadings will be incorporated into the facility. (orig.)

  10. Los Alamos Hot-Cell-Facility modifications for examining FFTF fuel pins

    International Nuclear Information System (INIS)

    Campbell, B.M.; Ledbetter, J.M.

    1982-01-01

    Commissioned in 1960, the Wing 9 Hot Cell Facility at Los Alamos was recently modified to meet the needs of the 1980s. Because fuel pins from the Fast Flux Test Facility (FFTF) at the Hanford Engineering Development Laboratory (HEDL) are too long for examination in the original hot cells, we modified cells to accommodate longer fuel pins and to provide other capabilities as well. For instance, the T-3 shipping cask now can be opened in an inert atmosphere that can be maintained for all nondestructive and destructive examinations of the fuel pins. The full-length pins are visually examined and photographed, the wire wrap is removed, and fission gas is sampled. After the fuel pin is cropped, a cap is seal-welded on the section containing the fuel column. This section is then transferred to other cells for gamma-scanning, radiography, profilometry, sectioning for metallography, and chemical analysis

  11. Facility for gamma irradiations of cultured cells at low dose rates: design, physical characteristics and functioning

    International Nuclear Information System (INIS)

    Esposito, Giuseppe; Anello, Pasquale; Pecchia, Ilaria; Tabocchini, Maria Antonella; Campa, Alessandro

    2016-01-01

    We describe a low dose/dose rate gamma irradiation facility (called LIBIS) for in vitro biological systems, for the exposure, inside a CO_2 cell culture incubator, of cells at a dose rate ranging from few μGy/h to some tens of mGy/h. Three different "1"3"7Cs sources are used, depending on the desired dose rate. The sample is irradiated with a gamma ray beam with a dose rate uniformity of at least 92% and a percentage of primary 662 keV photons greater than 80%. LIBIS complies with high safety standards. - Highlights: • A gamma irradiation facility for chronic exposures of cells was set up at the Istituto Superiore di Sanità. • The dose rate uniformity and the percentage of primary 662 keV photons on the sample are greater than 92% and 80%, respectively. • The GEANT4 code was used to design the facility. • Good agreement between simulation and experimental dose rate measurements has been obtained. • The facility will allow to safely investigate different issues about low dose rate effects on cultured cells.

  12. Process cost and facility considerations in the selection of primary cell culture clarification technology.

    Science.gov (United States)

    Felo, Michael; Christensen, Brandon; Higgins, John

    2013-01-01

    The bioreactor volume delineating the selection of primary clarification technology is not always easily defined. Development of a commercial scale process for the manufacture of therapeutic proteins requires scale-up from a few liters to thousands of liters. While the separation techniques used for protein purification are largely conserved across scales, the separation techniques for primary cell culture clarification vary with scale. Process models were developed to compare monoclonal antibody production costs using two cell culture clarification technologies. One process model was created for cell culture clarification by disc stack centrifugation with depth filtration. A second process model was created for clarification by multi-stage depth filtration. Analyses were performed to examine the influence of bioreactor volume, product titer, depth filter capacity, and facility utilization on overall operating costs. At bioreactor volumes 5,000 L, clarification using centrifugation followed by depth filtration offers significant cost savings. For bioreactor volumes of ∼ 2,000 L, clarification costs are similar between depth filtration and centrifugation. At this scale, factors including facility utilization, available capital, ease of process development, implementation timelines, and process performance characterization play an important role in clarification technology selection. In the case study presented, a multi-product facility selected multi-stage depth filtration for cell culture clarification at the 500 and 2,000 L scales of operation. Facility implementation timelines, process development activities, equipment commissioning and validation, scale-up effects, and process robustness are examined. © 2013 American Institute of Chemical Engineers.

  13. Interference Cancellation for Hollow-Core Fiber Reference Cells

    DEFF Research Database (Denmark)

    Seppä, Jeremias; Merimaa, Mikko; Merimaa, Mikko

    2015-01-01

    Doppler-free saturated absorption spectroscopy of gases in hollow-core fiber (HCF)-based cells can be used for realizing new compact, robust, and portable frequency standards. In this paper, methods for cancelling interferences resulting from the optical connections between standard fiber and HCF...... and other factors such as varying coupling to HCF modes are investigated. Laser power modulation with simultaneous detection of ac and dc signal is used to separate saturated absorption from interferences. In addition, a technique of two piezoelectric stack actuators stretching the fiber at different...... locations is described. The presented experimental results demonstrate that 99% interference attenuation is readily attainable with the techniques. Frequency comb-referenced measurement of saturated acetylene absorption features near 1.54 μm, with fiber length and power modulation, is presented...

  14. The FR 2 reactor at Karlsruhe, F.R. Germany and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the FR 2 reactor and associated hot cell facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  15. Introduction of radiation protection and dosimetry in new hot cell facility in research center Rez

    International Nuclear Information System (INIS)

    Svrcula, P.; Petrickova, A.; Srba, O.; Miklos, M.; Svoboda, P.

    2015-01-01

    The purpose of the poster is to present radiation protection and dosimetry in the new hot cell facility being constructed as part of the SUSEN project. The hot cell facility is composed of 10 hot cells and 1 semi-hot cell. All shielding is made from steel, the outer wall shielding has thickness of 500 mm, internal wall between hot cells 300 mm with the possibility to extension to 500 mm. The ceiling shielding has a thickness of 400 mm and the floor shielding is 300 mm wide. Shielded windows allow direct view into the hot cells. Their shielding effect is equivalent to 500 mm of steel. The dimension of the window in the control room is 800 mm x 600 mm with a thickness of 900 mm. All important operating data are collected in the central system of hot cells. The system monitors under-pressure level and temperature in each chamber. If necessary it can directly control the ventilation system. Each hot cell is equipped with dose rate probes. The system also measures and evaluates airborne radioactivity in the building

  16. Efficient handling of high-level radioactive cell waste in a vitrification facility analytical laboratory

    International Nuclear Information System (INIS)

    Roberts, D.W.; Collins, K.J.

    1998-01-01

    The Savannah River Site''s (SRS) Defense Waste Processing Facility (DWPF) near Aiken, South Carolina, is the world''s largest and the United State''s first high level waste vitrification facility. For the past 1.5 years, DWPF has been vitrifying high level radioactive liquid waste left over from the Cold War. The vitrification process involves the stabilization of high level radioactive liquid waste into borosilicate glass. The glass is contained in stainless steel canisters. DWPF has filled more than 200 canisters 3.05 meters (10 feet) long and 0.61 meters (2 foot) diameter. Since operations began at DWPF in March of 1996, high level radioactive solid waste continues to be generated due to operating the facility''s analytical laboratory. The waste is referred to as cell waste and is routinely removed from the analytical laboratories. Through facility design, engineering controls, and administrative controls, DWPF has established efficient methods of handling the high level waste generated in its laboratory facility. These methods have resulted in the prevention of undue radiation exposure, wasted man-hours, expenses due to waste disposal, and the spread of contamination. This level of efficiency was not reached overnight, but it involved the collaboration of Radiological Control Operations and Laboratory personnel working together to devise methods that best benefited the facility. This paper discusses the methods that have been incorporated at DWPF for the handling of cell waste. The objective of this paper is to provide insight to good radiological and safety practices that were incorporated to handle high level radioactive waste in a laboratory setting

  17. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    OSCAR, DEBBY S.; WALKER, SHARON ANN; HUNTER, REGINA LEE; WALKER, CHERYL A.

    1999-01-01

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2

  18. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

    1999-12-01

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

  19. PLASMA ELECTRODE POCKELS CELL SUBSYSTEM PERFORMANCE IN THE NATIONAL IGNITION FACILITY

    International Nuclear Information System (INIS)

    Barbosa, F; Arnold, P; Hinz, A; Zacharias, R; Ollis, C; Fulkerson, E; Mchale, B; Runtal, A; Bishop, C

    2007-01-01

    The Plasma Electrode Pockels Cell (PEPC) subsystem is a key component of the National Ignition Facility, enabling the laser to employ an efficient four-pass main amplifier architecture. PEPC relies on a pulsed power technology to initiate and maintain plasma within the cells and to provide the necessary high voltage bias to the cells nonlinear crystals. Ultimately, nearly 300 high-voltage, high-current pulse generators will be deployed in the NIF in support of PEPC. Production of solid-state plasma pulse generators and thyratron-switched pulse generators is now complete, with the majority of the hardware deployed in the facility. An entire cluster (one-fourth of a complete NIF) has been commissioned and is operating on a routine basis, supporting laser shot operations. Another cluster has been deployed, awaiting final commissioning. Activation and commissioning of new hardware continues to progress in parallel, driving toward a goal of completing the PEPC subsystem in late 2007

  20. Design of the gas cell for the IGISOL facility at ELI-NP

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, P., E-mail: paul.constantin@eli-np.ro [Extreme Light Infrastructure – Nuclear Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Str. Reactorului 30, 077125 Bucharest Magurele (Romania); Balabanski, D.L. [Extreme Light Infrastructure – Nuclear Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Str. Reactorului 30, 077125 Bucharest Magurele (Romania); Anh, L.T. [Extreme Light Infrastructure – Nuclear Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Str. Reactorului 30, 077125 Bucharest Magurele (Romania); Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Cuong, P.V. [Extreme Light Infrastructure – Nuclear Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Str. Reactorului 30, 077125 Bucharest Magurele (Romania); Centre of Nuclear Physics, Institute of Physics, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Mei, B. [Extreme Light Infrastructure – Nuclear Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Str. Reactorului 30, 077125 Bucharest Magurele (Romania)

    2017-04-15

    One of the experimental programs that will be carried out at the Extreme Light Infrastructure – Nuclear Physics (ELI-NP) facility is the production of exotic neutron-rich ion beams in an IGISOL facility via photofission in a stack of actinide targets placed at the center of a cell filled with He gas. Simulations with the Geant4 toolkit were done for the optimization of the target configuration that maximizes the rate of released photofission fragments. The cell geometry is established based on the stopping properties of these fragments. Studies, based on simulations with Geant4 and SIMION 8.1, of the space charge effect and its induced electric field in the gas cell are presented. Estimates of the extraction time and efficiency of the photofission fragments are derived.

  1. Prospects of using synchrotron radiation facilities with diamond-anvil cells

    International Nuclear Information System (INIS)

    Manghani, M.H.; Ming, L.C.; Jamieson, J.C.

    1980-01-01

    Diamond-anvil pressure cells have proven versatile and useful for conducting high pressure research in the submegabar range. The interfacing of diamond-anvil cell technology with synchrotron facilities seems a logical new step for carrying out in situ X-ray diffraction studies of materials under extreme conditions of combined high pressure and temperature. The conventional film method of X-ray diffraction has definite limitations which call for the energy dispersive analysis techniques. Various potential high pressure-temperature studies in geophysis and related fields involving the use of diamond-anvil cell, synchrotron facilities and energy dispersive techniques are exemplified. For geophysical studies the conditions prevailing in 86% of the Earth's volume are capable of being simulated completely in pressure, and partially in pressure and temperature, simultaneously. (orig.)

  2. Environmental Assessment for decontaminating and decommissioning the General Atomics Hot Cell Facility. Final [report

    International Nuclear Information System (INIS)

    1995-08-01

    This EA evaluates the proposed action to decontaminate and decommission GA's hot cell facility in northern San Diego, CA. This facility has been used for DOE and commercial nuclear R ampersand D for > 30 years. About 30,000 cubic feet of decontamination debris and up to 50,000 cubic feet of contaminated soil are to be removed. Low-level radioactive waste would be shipped for disposal. It was determined that the proposal does not constitute a major federal action significantly affecting the human environment according to NEPA; therefore, a finding of no significant impact is made, and an environmental impact statement is not required

  3. Environmental Assessment for decontaminating and decommissioning the General Atomics Hot Cell Facility. Final [report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This EA evaluates the proposed action to decontaminate and decommission GA`s hot cell facility in northern San Diego, CA. This facility has been used for DOE and commercial nuclear R&D for > 30 years. About 30,000 cubic feet of decontamination debris and up to 50,000 cubic feet of contaminated soil are to be removed. Low-level radioactive waste would be shipped for disposal. It was determined that the proposal does not constitute a major federal action significantly affecting the human environment according to NEPA; therefore, a finding of no significant impact is made, and an environmental impact statement is not required.

  4. Royal Jelly-Mediated Prolongevity and Stress Resistance in Caenorhabditis elegans Is Possibly Modulated by the Interplays of DAF-16, SIR-2.1, HCF-1, and 14-3-3 Proteins.

    Science.gov (United States)

    Wang, Xiaoxia; Cook, Lauren F; Grasso, Lindsay M; Cao, Min; Dong, Yuqing

    2015-07-01

    Recent studies suggest that royal jelly (RJ) and its related substances may have antiaging properties. However, the molecular mechanisms underlying the beneficial effects remain elusive. We report that the effects of RJ and enzyme-treated RJ (eRJ) on life span and health span in Caenorhabditis elegans (C elegans) are modulated by the sophisticated interplays of DAF-16, SIR-2.1, HCF-1, and 14-3-3 proteins. Dietary supplementation with RJ or eRJ increased C. elegans life span in a dose-dependent manner. The RJ and eRJ consumption increased the tolerance of C elegans to oxidative stress, ultraviolet irradiation, and heat shock stress. Our genetic analyses showed that RJ/eRJ-mediated life-span extension requires insulin/IGF-1 signaling and the activities of DAF-16, SIR-2.1, HCF-1, and FTT-2, a 14-3-3 protein. Earlier studies reported that DAF-16/FOXO, SIR-2.1/SIRT1, FTT-2, and HCF-1 have extensive interplays in worms and mammals. Our present findings suggest that RJ/eRJ-mediated promotion of longevity and stress resistance in C elegans is dependent on these conserved interplays. From an evolutionary point of view, this study not only provides new insights into the molecular mechanisms of RJ's action on health span promotion in C elegans, but also has imperative implications in using RJ/eRJ as nutraceuticals to delay aging and age-related disorders. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Performance of the 2 × 4-cell superconducting linac module for the THz-FEL facility

    Science.gov (United States)

    Kui, Zhou; Chenglong, Lao; Dai, Wu; Xing, Luo; Jianxin, Wang; Dexin, Xiao; Lijun, Shan; Tianhui, He; Xuming, Shen; Sifen, Lin; Linde, Yang; Hanbin, Wang; Xingfan, Yang; Ming, Li; Xiangyang, Lu

    2018-07-01

    A high average power THz radiation facility has been developed by the China Academy of Engineering Physics. It is the first CW THz user facility based on superconducting accelerator technology in China. The superconducting linac module, which contains two 4-cell 1.3 GHz TESLA-like superconducting radio frequency cavities, is a major component of this facility. The expected electron energy gain is 6-8 MeV with a field gradient of 8-10 MV/m. The design and fabrication of the linac module is complete. This paper discusses its assembly and results from cyromodule tests and beam commissioning. At 2 K, the cryomodule works smoothly and stably. Both cavities have achieved effective field gradients of 10 MV/m. In beam loading experiments, 8 MeV, 5 mA electron beams with an energy spread less than 0.2% have been produced, which satisfies our requirements.

  6. In-cell facility for performing mechanical-property tests on irradiated cladding

    International Nuclear Information System (INIS)

    Yaggee, F.L.; Haglund, R.C.; Mattas, R.F.

    1978-11-01

    A new facility was developed for testing cladding sections of LWR fuel rods. This facility and the accompanying test procedures have improved the level of in-cell mechanical-testing capabilities, making them comparable to existing capabilities for unirradiated cladding. The new facility is currently being used to study the susceptibility of irradiated Zircaloy cladding from LWR fuel rods to iodine stress-corrosion cracking. Preliminary testing results indicate a systematic effect of temperature, stress and irradiation on the susceptibility of annealed and stress-relieved Zircaloy-2. Experimental data obtained to date are being used to develop a stress-corrosion cracking model for LWR fuel rod failure. SEM examination of the undisturbed fracture surface of specimens that failed by pinhole leakage provides useful information on crack propagation and morphology

  7. Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation.

    Science.gov (United States)

    Hwang, Insung; Jeong, Inyoung; Lee, Jinwoo; Ko, Min Jae; Yong, Kijung

    2015-08-12

    In this study, a novel and facile passivation process for a perovskite solar cell is reported. Poor stability in ambient atmosphere, which is the most critical demerit of a perovskite solar cell, is overcome by a simple passivation process using a hydrophobic polymer layer. Teflon, the hydrophobic polymer, is deposited on the top of a perovskite solar cell by a spin-coating method. With the hydrophobic passivation, the perovskite solar cell shows negligible degradation after a 30 day storage in ambient atmosphere. Suppressed degradation of the perovskite film is proved in various ways: X-ray diffraction, light absorption spectrum, and quartz crystal microbalance. This simple but effective passivation process suggests new kind of approach to enhance stability of perovskite solar cells to moisture.

  8. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    Energy Technology Data Exchange (ETDEWEB)

    Edward F. Kiczek

    2007-08-31

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  9. X-ray microbeam stand-alone facility for cultured cells irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bożek, Sebastian, E-mail: sebastian.bozek@yahoo.com [Jagiellonian University Medical College, Department of Pharmaceutical Biophysics, Krakow (Poland); Bielecki, Jakub; Wiecheć, Anna; Lekki, Janusz; Stachura, Zbigniew; Pogoda, Katarzyna; Lipiec, Ewelina; Tkocz, Konrad; Kwiatek, Wojciech M. [Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow (Poland)

    2017-03-01

    Highlights: • An X-ray microbeam line for irradiation of living cultured cells was constructed. • A step by step explanation of working principles with engineering details, procedures and calculations is presented. • A model of beam and cell interaction is presented. • A method of uniform irradiation of living cells with an exact dose per a cell is presented. • Results of preliminary experiments are presented. - Abstract: The article describes an X-ray microbeam standalone facility dedicated for irradiation of living cultured cells. The article can serve as an advice for such facilities construction, as it begins from engineering details, through mathematical modeling and experimental procedures, ending up with preliminary experimental results and conclusions. The presented system consists of an open type X-ray tube with microfocusing down to about 2 μm, an X-ray focusing system with optical elements arranged in the nested Kirckpatrick-Baez (or Montel) geometry, a sample stand and an optical microscope with a scientific digital CCD camera. For the beam visualisation an X-ray sensitive CCD camera and a spectral detector are used, as well as a scintillator screen combined with the microscope. A method of precise one by one irradiation of previously chosen cells is presented, as well as a fast method of uniform irradiation of a chosen sample area. Mathematical models of beam and cell with calculations of kerma and dose are presented. The experiments on dose-effect relationship, kinetics of DNA double strand breaks repair, as well as micronuclei observation were performed on PC-3 (Prostate Cancer) cultured cells. The cells were seeded and irradiated on Mylar foil, which covered a hole drilled in the Petri dish. DNA lesions were visualised with γ-H2AX marker combined with Alexa Fluor 488 fluorescent dye.

  10. Development of a grow-cell test facility for research into sustainable controlled-environment agriculture

    OpenAIRE

    Tsitsimpelis, Ioannis; Wolfenden, Ian; Taylor, C. James

    2016-01-01

    The grow-cell belongs to a relatively new category of plant factory in the horticultural industry, for which the motivation is the maximization of production and the minimization of energy consumption. This article takes a systems design approach to identify the engineering requirements of a new grow-cell facility, with the prototype based on a 12 m X 2.4 m X 2.5 m shipping container. Research contributions are made in respect to: (i) the design of a novel conveyor-irrigation system for mecha...

  11. Thermal analysis of the unloading cell of the Spanish centralized interim storage facility (CISF)

    International Nuclear Information System (INIS)

    Perez Dominguez, J. R.; Perez Vara, R.; Huelamo Martinez, E.

    2016-01-01

    This article deals with the thermal analysis performed for the Untoading Cell of Spain Centralized Interim Storage Facility, CISF (ATC, in Spanish). The analyses are done using computational fluid dynamics (CFD) simulation, with the aim of obtaining the air flow required to remove the residual heat of the elements stored in the cell. Compliance with the admissible heat limits is checked with the results obtained in the various operation and accident modes. The calculation model is flexible enough to allow carrying out a number of sensitivity analyses with the different parameters involved in the process. (Author)

  12. Replacement of the moderator cell unit of JRR-3's cold neutron source facility

    International Nuclear Information System (INIS)

    Hazawa, Tomoya; Nagahori, Kazuhisa; Kusunoki, Tsuyoshi

    2006-10-01

    The moderator cell of the JRR-3's cold neutron source (CNS) facility, converts thermal neutrons into cold neutrons by passing through liquid cold hydrogen. The cold neutrons are used for material and life science research such as the neutron scattering. The CNS has been operated since the start of JRR-3's in 1990. The moderator cell containing liquid hydrogen is made of stainless steel. The material irradiation lifetime is limited to 7 years due to irradiation brittleness. The first replacement was done by using a spare part made in France. This replacement work of 2006 was carried out by using the domestic moderator cell unit. The following technologies were developed for the moderator cell unit production. 1) Technical development of black treatment on moderator cell surface to increase radiation heat. 2) Development of bending technology of concentric triple tubes consisting from inside tube, Outside tube and Vacuum insulation tube. 3) Development of manufacturing technique of the moderator cell with complicated shapes. According to detail planed work procedures, replacement work was carried out. As results, the working days were reduced to 80% of old ones. The radiation dose was also reduced due to reduction of working days. It was verified by measurement of neutrons characteristics that the replaced moderator cell has the same performance as that of the old moderator cell. The domestic manufacturing of the moderator cell was succeeded. As results, the replacement cost was reduced by development of domestic production technology. (author)

  13. Fast Flux Test Facility interim examination and maintenance cell - past, present, and future

    International Nuclear Information System (INIS)

    Vincent, J.R.

    1990-01-01

    The Fast Flux Test Facility (FFTF) interim examination and maintenance (IEM) cell was designed to perform interim examination and/or disassembly of experimental core components for final analysis elsewhere, as well as maintenance of sodium-wetted or neutron-activated internal reactor parts and plant support hardware. The first 10 yr of operation were mainly devoted to the disassembly and examination of core component test assemblies. While some maintenance was performed on reactor support equipment, such as the closed-loop ex-vessel machine (CLEM) sodium-wetted grapple, 90% of IEM cell availability has been devoted to core component tests. Some test assemblies originally considered for processing in the IEM cell have not been irradiated; others, not originally planned, have been designed, irradiated, and processed. While no major reactor equipment has required remote repair or maintenance, the IEM cell has served as the remote repair facility for its own in-cell equipment, and several innovative remote repairs have been accomplished and are described

  14. Development of the IFJ single ion hit facility for cells irradiation

    International Nuclear Information System (INIS)

    Veselov, O.; Polak, W.; Ugenskiene, R.; Hajduk, R.; Lebed, K.; Lekki, J.; Horwacik, T.; Dutkiewicz, E.M.; Maranda, S.; Pieprzyca, T.; Sarnecki, C.; Stachura, Z.; Szklarz, Z.; Styczen, J.

    2005-12-01

    In recent years a single ion hit facility (SIHF) has been constructed at the IFJ ion microprobe. The setup is used for the precise irradiations of living cells by a controlled number of ions. The facility allows investigations in various aspects of biomedical research, such as adaptive response, bystander effect, inverse dose-rate effect, low-dose hypersensitivity, etc. Those investigations have two very important requirements: (i) cells must be examined in their natural state and environment, i.e. without previously being killed, and preferentially, neither fixed nor stained, and (ii) a possibility of automatic irradiation of large number of cells with a computer recognition of their positions must be provided. This work presents some of the crucial features of the off-line and on-line optical systems, including self-developed software responsible for the automatic cell recognition. We also show several tests carried out to determine the efficiency of the whole setup and some segments. In conclusion, the results of our first irradiation measurements performed with living cells are demonstrated. (author)

  15. Influence of the environment and phototoxicity of the live cell imaging system at IMP microbeam facility

    Science.gov (United States)

    Liu, Wenjing; Du, Guanghua; Guo, Jinlong; Wu, Ruqun; Wei, Junzhe; Chen, Hao; Li, Yaning; Zhao, Jing; Li, Xiaoyue

    2017-08-01

    To investigate the spatiotemporal dynamics of DNA damage and repair after the ion irradiation, an online live cell imaging system has been established based on the microbeam facility at Institute of Modern Physics (IMP). The system could provide a sterile and physiological environment by making use of heating plate and live cell imaging solution. The phototoxicity was investigated through the evaluation of DNA repair protein XRCC1 foci formed in HT1080-RFP cells during the imaging exposure. The intensity of the foci induced by phototoxicity was much lower compared with that of the foci induced by heavy ion hits. The results showed that although spontaneous foci were formed due to RFP exposure during live cell imaging, they had little impact on the analysis of the recruitment kinetics of XRCC1 in the foci induced by the ion irradiation.

  16. Bejing synchrotron radiation TXRF facility and its applications on trace element study of cells

    International Nuclear Information System (INIS)

    Yuying, H.; Yingrong, W.; Limin, Z.; Guangcheng, L.; Wie, H.

    2000-01-01

    In this paper, Beijing synchrotron radiation TXRF facility and experimental method were described. The minimum detection limits of some elements were tested by using several kinds of standard reference materials. The feasibility of using TXRF in biomedical field is discussed. With this technique small intestine cells of both normal and radiated white mice were analyzed, and the elemental average contents of each single cell are also given. The results indicated that the contents of some trace elements for normal and radiated white mice are greatly different, which may be used to provide valuable reference for clinic medicine. On the other hand, the trace elements of cells of lung and cervix cancer before and after apoptosis were determined by SRTXRF and the changes of trace elements in these cells were discussed. (author)

  17. Procuring Stationary Fuel Cells For CHP: A Guide for Federal Facility Decision Makers

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, David P [ORNL; McGervey, Joseph [SRA International, Inc.; Curran, Scott [ORNL

    2011-11-01

    Federal agency leaders are expressing growing interest in using innovative fuel cell combined heat and power (CHP) technology at their sites, motivated by both executive branch sustainability targets and a desire to lead by example in the transition to a clean energy economy. Fuel cell CHP can deliver reliable electricity and heat with 70% to 85% efficiency. Implementing this technology can be a high efficiency, clean energy solution for agencies striving to meet ambitious sustainability requirements with limited budgets. Fuel cell CHP systems can use natural gas or renewable fuels, such as biogas. Procuring Stationary Fuel Cells for CHP: A Guide for Federal Facility Decision Makers presents an overview of the process for planning and implementing a fuel cell CHP project in a concise, step-by-step format. This guide is designed to help agency leaders turn their interest in fuel cell technology into successful installations. This guide concentrates on larger (100 kW and greater) fuel cell CHP systems and does not consider other fuel cell applications such as cars, forklifts, backup power supplies or small generators (<100 kW). Because fuel cell technologies are rapidly evolving and have high up front costs, their deployment poses unique challenges. The electrical and thermal output of the CHP system must be integrated with the building s energy systems. Innovative financing mechanisms allow agencies to make a make versus buy decision to maximize savings. This guide outlines methods that federal agencies may use to procure fuel cell CHP systems with little or no capital investment. Each agency and division, however, has its own set of procurement procedures. This guide was written as a starting point, and it defers to the reader s set of rules if differences exist. The fuel cell industry is maturing, and project developers are gaining experience in working with federal agencies. Technology improvements, cost reductions, and experienced project developers are making

  18. Planning, Management and Organizational Aspects of the Decommissioning of a Hot Cell Facility

    Energy Technology Data Exchange (ETDEWEB)

    Strufe, N. [Danish Decommissioning, Roskilde (Denmark)

    2013-08-15

    This CRP project document ''Planning, Management and Organizational Aspects in Decommissioning of a Hot Cell Facility'' aims to describe the establishment of a management organization that ensures that the DD Hot Cell Project is properly and safely conducted and that staff members, who are seconded to the project, have a strong feeling of ownership and being an integral part of the project. The objectives of the decommissioning project of the hot cell facility is to decontaminate the facility and to remove items that cannot be decontaminated on site, in order for the entire hot cell building to become useable for other purposes without any radiological restrictions. The project requires proper communication and coordination with all stakeholders on-site, comprehensive work plans and strict control of the individual working areas and operations. A project of this type obviously requires a strong and well managed and coordinated project organization. DD has established a management system - KMS. The purposes of the KMS are twofold. The system aims to secure the fulfilment of the conditions and requirements of quality set by the nuclear authorities. The system also aims to provide the basis for a rational and economically feasible operation with a high level of safety. One of the main lessons learned in this project is clear that is to ensure that the necessary resources are available and the required expertise is allocated timely for the performance of the project(s) a strong coordination and great flexibility within the DD organization is required. This document describes the approach and considerations from the project management point of view. The document initially gives an introduction to the hot cell decommissioning project followed by issues of the general considerations and planning of the project within the DD, including aspects on organisation, quality assurance and coordination. (author)

  19. Shield wall evaluation of hot cell facility for advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Cho, I. J.; Kuk, D. H.; Ko, J. H.; Jung, W. M.; Yoo, G. S.; Lee, E. P.; Park, S. W.

    2002-01-01

    The future hot cell is located in the Irradiated Material Experiment Facility (IMEF) at the Korea Atomic Energy Research Institute (KAERI). It is β-γ type hot cell that was constructed on the base floor in IMEF building for irradiated material testing. And this hot cell will be used for carrying out the Advanced spent fuel Conditioning Process (ACP). The radiation shielding capability of hot cell should be sufficient to meet the radiation dose requirements in the related regulations. Because the radioactive sources of ACP are expected to be higher than radioactive sources of IMEF design criteria, the future hot cell in current status is unsatisfactory to hot test of ACP. So the shielding analysis of the future hot cell is performed to evaluate shielding ability of concrete shield wall. The shielding analysis included (a) identification of ACP source term; (b) photon source spectrum; (c) shielding analysis by QADS and MCNP-4C; and (d) enhancement of concrete shield wall. In this research, dose rates are obtained according to ACP source, geometry and hot cell shield wall thickness. And the evaluation and reinforcement thickness of the shield wall about future hot cell are concluded

  20. Operating experience and radiation protection problems in the working of the radio-metallurgy hot cell facilities at BARC

    International Nuclear Information System (INIS)

    Janardhanan, S.; Watamwar, S.B.; Mehta, S.K.; Pillai, P.M.B.; John, Jacob; Kutty, K.N.

    1977-01-01

    The Bhabha Atomic Research Centre at Bombay has six hot cell facilities for radiometallurgical investigations of irradiated/failed fuel elements. The hot cell facilities have been provided with certain built-in safety features, a ventilation system, radiation monitoring instruments for various purposes, a centralised air monitoring system and a central panel for display of various alarms. Procedures adopted for radiation protection and contamination control include : (1) radiation leak test for cells and filter efficiency evaluation before cell activation, (2) practices to be followed by frog suit personnel while working in hot cell areas, (3) receipt and handling of irradiated fuel elements, (4) cell filter change operation, (5) checks on high level drains and (6) effluent discharge and waste shipments. Operating experience in the working of these facilities along with radiation accident incidents is described. Data regarding release of activity during normal cell operations, dose rates during various metallurgical operations and personnel exposures are presented. (M.G.B.)

  1. Use of lasers at the Los Alamos Hot-Cell Facility

    International Nuclear Information System (INIS)

    Lazarus, M.E.

    1983-01-01

    An optical profilometer that uses a Techmet LaserMike scanning, focused, laser-beam, optical micrometer is installed in a remote alpha-gamma containment cell at the Los Alamos Hot-Cell Facility. A hot-cell extension chamber provides the nominal 30-cm (12-in.) working distance required by the LaserMike and, at the same time, keeps the LaserMike components outside the high-radiation-containment environment. This system provides measurement accuracy better than +- 5 μm (0.0002 in.) on diameters between 2 and 13 mm (0.88 and 0.5 in.) at a rate of 33 measurements per second. The Hot-Cell Facility also uses a Korad 20-J-output ruby pulsed laser to drill a hole in reactor-fuel-element cladding to sample fission gas. The laser is then used to reweld the hole so that the fuel element will not be contaminated and may be stored without an alpha-containment barrier. The wall thickness of the fuel elements sampled varies from 0.25 to 0.50 mm (0.010 to 0.020 in.)

  2. The INFN-LNL single-ion horizontal microbeam facility for cell irradiation

    International Nuclear Information System (INIS)

    Gerardi, S.; Galeazzi, G.; Cherubini, R.

    2003-01-01

    Full text: Charged particle microbeams provide a unique method to control precisely the dose and its localisation within the cell. Such a kind of tool allows studying a number of important radiobiological processes in ways that cannot be achieved using conventional broad beam irradiation, which has the inherent experimental limitation imposed by the random Poisson-distributed particle hitting. We have designed and developed an apparatus for the micro-collimation in air of low-energy light ion beams, able to deliver targeted and counted particles to individual cells with an overall spatial resolution of few micrometers. The apparatus has been built up at the 7MV Van de Graaff CN accelerator, delivering protons, deuterons, helium-3 and helium-4 ion beams in an LET range from 7 to 180 keV/μm. The beam section is reduced down to 3-7 μm 2 by means of a tantalum pinhole microcollimator. A semi-automatic cell visualization and an automatic cell positioning and (after irradiation) cell revisiting system, based on an inverted phase contrast optical microscope and on X-Y micro-positioning stages with 0.1μm positioning precision, has been developed. Cell recognition is performed without using fluorescent staining and UV light. Particle detection in air is based on a silicon detector while beam profile and precise hit position measurements are accomplished by a high resolution and high sensibility cooled-CCD camera and Solid State Nuclear Track detectors, respectively. A dedicated software program, CELLView named, has been developed by using the LabView 6.0 package (National Instruments) to control all the irradiation protocol operations of sample holder movement, cell visualization, image acquisition and processing, cell data logging, cell positioning and revisiting. Facility performances and preliminary experimental results will be presented

  3. Design of a Facility for Studying Shock-Cell Noise on Single and Coaxial Jets

    Directory of Open Access Journals (Sweden)

    Daniel Guariglia

    2018-03-01

    Full Text Available Shock-cell noise occurs in aero-engines when the nozzle exhaust is supersonic and shock-cells are present in the jet. In commercial turbofan engines, at cruise, the secondary flow is often supersonic underexpanded, with the formation of annular shock-cells in the jet and consequent onset of shock-cell noise. This paper aims at describing the design process of the new facility FAST (Free jet AeroacouSTic laboratory at the von Karman Institute, aimed at the investigation of the shock-cell noise phenomenon on a dual stream jet. The rig consists of a coaxial open jet, with supersonic capability for both the primary and secondary flow. A coaxial silencer was designed to suppress the spurious noise coming from the feeding lines. Computational fluid dynamics (CFD simulations of the coaxial jet and acoustic simulations of the silencer have been carried out to support the design choices. Finally, the rig has been validated by performing experimental measurements on a supersonic single stream jet and comparing the results with the literature. Fine-scale PIV (Particle Image Velocimetry coupled with a microphone array in the far field have been used in this scope. Preliminary results of the dual stream jet are also shown.

  4. Interaction of MYC with host cell factor-1 is mediated by the evolutionarily conserved Myc box IV motif.

    Science.gov (United States)

    Thomas, L R; Foshage, A M; Weissmiller, A M; Popay, T M; Grieb, B C; Qualls, S J; Ng, V; Carboneau, B; Lorey, S; Eischen, C M; Tansey, W P

    2016-07-07

    The MYC family of oncogenes encodes a set of three related transcription factors that are overexpressed in many human tumors and contribute to the cancer-related deaths of more than 70,000 Americans every year. MYC proteins drive tumorigenesis by interacting with co-factors that enable them to regulate the expression of thousands of genes linked to cell growth, proliferation, metabolism and genome stability. One effective way to identify critical co-factors required for MYC function has been to focus on sequence motifs within MYC that are conserved throughout evolution, on the assumption that their conservation is driven by protein-protein interactions that are vital for MYC activity. In addition to their DNA-binding domains, MYC proteins carry five regions of high sequence conservation known as Myc boxes (Mb). To date, four of the Mb motifs (MbI, MbII, MbIIIa and MbIIIb) have had a molecular function assigned to them, but the precise role of the remaining Mb, MbIV, and the reason for its preservation in vertebrate Myc proteins, is unknown. Here, we show that MbIV is required for the association of MYC with the abundant transcriptional coregulator host cell factor-1 (HCF-1). We show that the invariant core of MbIV resembles the tetrapeptide HCF-binding motif (HBM) found in many HCF-interaction partners, and demonstrate that MYC interacts with HCF-1 in a manner indistinguishable from the prototypical HBM-containing protein VP16. Finally, we show that rationalized point mutations in MYC that disrupt interaction with HCF-1 attenuate the ability of MYC to drive tumorigenesis in mice. Together, these data expose a molecular function for MbIV and indicate that HCF-1 is an important co-factor for MYC.

  5. One-Step Facile Synthesis of a Simple Hole Transport Material for Efficient Perovskite Solar Cells

    KAUST Repository

    Chen, Hu

    2016-04-04

    A hole transporting material was designed for use in perovskite solar cells, with a facile one-step synthesis from inexpensive, com-mercially available reagents. The molecule comprises a central fluorinated phenyl core with pendant aryl amines, namely, 3,6-difluoro-N1,N1,N2,N2,N4,N4,N5,N5-octakis(4-methoxyphenyl)benzene-1,2,4,5-tetraamine (DFTAB). A power conversion efficiency of up to 10.4% was achieved in a mesoporous perovskite device architecture. The merits of a simple and potentially low cost syn-thetic route as well as promising performance in perovskite devices, encourages further development of this materials class as new low-cost hole transporting materials for the scale up of perovskite solar cells.

  6. A recoverable gas-cell diagnostic for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ratkiewicz, A., E-mail: ratkiewicz1@llnl.gov; Berzak Hopkins, L.; Bleuel, D. L.; Cassata, W. S.; Velsko, C. A.; Yeamans, C. B. [Lawrence Livermore National Laboratory, Livermore, California 95440 (United States); Bernstein, L. A.; Bibber, K. van; Goldblum, B. L. [University of California, Berkeley, California 94720 (United States); Siem, S. [University of Oslo, N-0316 Oslo (Norway); Wiedeking, M. [iThemba LABS, Somerset West 7129 (South Africa)

    2016-11-15

    The high-fluence neutron spectrum produced by the National Ignition Facility (NIF) provides an opportunity to measure the activation of materials by fast-spectrum neutrons. A new large-volume gas-cell diagnostic has been designed and qualified to measure the activation of gaseous substances at the NIF. This in-chamber diagnostic is recoverable, reusable and has been successfully fielded. Data from the qualification of the diagnostic have been used to benchmark an Monte Carlo N-Particle Transport Code simulation describing the downscattered neutron spectrum seen by the gas cell. We present early results from the use of this diagnostic to measure the activation of {sup nat}Xe and discuss future work to study the strength of interactions between plasma and nuclei.

  7. A recoverable gas-cell diagnostic for the National Ignition Facility.

    Science.gov (United States)

    Ratkiewicz, A; Berzak Hopkins, L; Bleuel, D L; Bernstein, L A; van Bibber, K; Cassata, W S; Goldblum, B L; Siem, S; Velsko, C A; Wiedeking, M; Yeamans, C B

    2016-11-01

    The high-fluence neutron spectrum produced by the National Ignition Facility (NIF) provides an opportunity to measure the activation of materials by fast-spectrum neutrons. A new large-volume gas-cell diagnostic has been designed and qualified to measure the activation of gaseous substances at the NIF. This in-chamber diagnostic is recoverable, reusable and has been successfully fielded. Data from the qualification of the diagnostic have been used to benchmark an Monte Carlo N-Particle Transport Code simulation describing the downscattered neutron spectrum seen by the gas cell. We present early results from the use of this diagnostic to measure the activation of nat Xe and discuss future work to study the strength of interactions between plasma and nuclei.

  8. One-Step Facile Synthesis of a Simple Hole Transport Material for Efficient Perovskite Solar Cells

    KAUST Repository

    Chen, Hu; Bryant, Daniel; Troughton, Joel; Kirkus, Mindaugas; Neophytou, Marios; Miao, Xiaohe; Durrant, James R.; McCulloch, Iain

    2016-01-01

    A hole transporting material was designed for use in perovskite solar cells, with a facile one-step synthesis from inexpensive, com-mercially available reagents. The molecule comprises a central fluorinated phenyl core with pendant aryl amines, namely, 3,6-difluoro-N1,N1,N2,N2,N4,N4,N5,N5-octakis(4-methoxyphenyl)benzene-1,2,4,5-tetraamine (DFTAB). A power conversion efficiency of up to 10.4% was achieved in a mesoporous perovskite device architecture. The merits of a simple and potentially low cost syn-thetic route as well as promising performance in perovskite devices, encourages further development of this materials class as new low-cost hole transporting materials for the scale up of perovskite solar cells.

  9. Injectable, Biomolecule-Responsive Polypeptide Hydrogels for Cell Encapsulation and Facile Cell Recovery through Triggered Degradation.

    Science.gov (United States)

    Xu, Qinghua; He, Chaoliang; Zhang, Zhen; Ren, Kaixuan; Chen, Xuesi

    2016-11-16

    Injectable hydrogels have been widely investigated in biomedical applications, and increasing demand has been proposed to achieve dynamic regulation of physiological properties of hydrogels. Herein, a new type of injectable and biomolecule-responsive hydrogel based on poly(l-glutamic acid) (PLG) grafted with disulfide bond-modified phloretic acid (denoted as PLG-g-CPA) was developed. The hydrogels formed in situ via enzymatic cross-linking under physiological conditions in the presence of horseradish peroxidase and hydrogen peroxide. The physiochemical properties of the hydrogels, including gelation time and the rheological property, were measured. Particularly, the triggered degradation of the hydrogel in response to a reductive biomolecule, glutathione (GSH), was investigated in detail. The mechanical strength and inner porous structure of the hydrogel were influenced by the addition of GSH. The polypeptide hydrogel was used as a three-dimensional (3D) platform for cell encapsulation, which could release the cells through triggered disruption of the hydrogel in response to the addition of GSH. The cells released from the hydrogel were found to maintain high viability. Moreover, after subcutaneous injection into rats, the PLG-g-CPA hydrogels with disulfide-containing cross-links exhibited a markedly faster degradation behavior in vivo compared to that of the PLG hydrogels without disulfide cross-links, implying an interesting accelerated degradation process of the disulfide-containing polypeptide hydrogels in the physiological environment in vivo. Overall, the injectable and biomolecule-responsive polypeptide hydrogels may serve as a potential platform for 3D cell culture and easy cell collection.

  10. Photovoltaic Engineering Testbed: A Facility for Space Calibration and Measurement of Solar Cells on the International Space Station

    Science.gov (United States)

    Landis, Geoffrey A.; Bailey, Sheila G.; Jenkins, Phillip; Sexton, J. Andrew; Scheiman, David; Christie, Robert; Charpie, James; Gerber, Scott S.; Johnson, D. Bruce

    2001-01-01

    The Photovoltaic Engineering Testbed ("PET") is a facility to be flown on the International Space Station to perform calibration, measurement, and qualification of solar cells in the space environment and then returning the cells to Earth for laboratory use. PET will allow rapid turnaround testing of new photovoltaic technology under AM0 conditions.

  11. Hot cell renovation in the spent fuel conditioning process facility at the Korea Atomic Energy Research Institute

    Directory of Open Access Journals (Sweden)

    Seung Nam Yu

    2015-10-01

    Results and conclusion: Based on the considered refurbishment workflow, previous equipment in the M8 cell, including vessels and pipes, were removed and disposed of successfully after a zoning smear survey and decontamination, and new equipment with advanced functions and specifications were installed in the hot cell. Finally, the operating area and isolation room were also refurbished to meet the requirements of the improved hot cell facility.

  12. REMOTE IN-CELL SAMPLING IMPROVEMENTS PROGRAM AT THESAVANNAH RIVER SITE (SRS) DEFENSE WASTE PROCESSING FACILITY (DWPF)

    International Nuclear Information System (INIS)

    Marzolf, A

    2007-01-01

    Remote Systems Engineering (RSE) of the Savannah River National Lab (SRNL) in combination with the Defense Waste Processing Facility(DWPF) Engineering and Operations has evaluated the existing equipment and processes used in the facility sample cells for 'pulling' samples from the radioactive waste stream and performing equipment in-cell repairs/replacements. RSE has designed and tested equipment for improving remote in-cell sampling evolutions and reducing the time required for in-cell maintenance of existing equipment. The equipment within the present process tank sampling system has been in constant use since the facility start-up over 17 years ago. At present, the method for taking samples within the sample cells produces excessive maintenance and downtime due to frequent failures relative to the sampling station equipment and manipulator. Location and orientation of many sampling stations within the sample cells is not conducive to manipulator operation. The overextension of manipulators required to perform many in-cell operations is a major cause of manipulator failures. To improve sampling operations and reduce downtime due to equipment maintenance, a Portable Sampling Station (PSS), wireless in-cell cameras, and new commercially available sampling technology has been designed, developed and/or adapted and tested. The uniqueness of the design(s), the results of the scoping tests, and the benefits relative to in-cell operation and reduction of waste are presented

  13. Performance of the Fuel Conditioning Facility electronic in-cell mass balances

    International Nuclear Information System (INIS)

    Orechwa, Y.; Bucher, R.G.

    1996-01-01

    An approach to error estimation and measurement control in the analysis of the balance measurements of mass standards on the in-cell electronic mass balances of the Fuel Conditioning Facility is presented. In light of measurement data from one year of operation, the algorithms proposed are evaluated. The need to take into account the effects of facility operations on the estimates of measurement uncertainty is demonstrated. In the case of a newly installed balance, where no historical data exists, an ad hoc procedure of adding a term which takes into account the operational variability is proposed. This procedure allows a sufficiently long operation so as to collect data for the estimate of the contribution of operational effects to the uncertainty estimate. An algorithm for systematically taking into account historical data is developed and demonstrated for two balances over two calibration periods. The algorithm, both asymptotically and in the two samples cases, has the necessary desirable properties for estimating the uncertainty in the measurements of the balances

  14. Decontamination Project for Cell G of the Metal Recovery Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Mandry, G.J.; Grisham, R.W.

    1994-02-01

    The goal of the decontamination effort in Cell G at the Metal Recovery Facility, Building 3505, located at the Oak Ridge National Laboratory, was two-fold: to determine the effectiveness of the dry decontamination technique employed and to provide data required to assess whether additional decontamination using this method would be beneficial in the eventual decommissioning of the facility. Allied Technology Group (ATG) was contracted to remove a portion of the concrete surface in Cell G by a technique known as scabbling. Some metallic cell components were also scabbled to remove paint and other surface debris. Generally, the scabbling operation was a success. Levels of contamination were greatly reduced. The depth of contaminant penetration into the concrete surfaces of certain areas was much greater than had been anticipated, necessitating the removal of additional concrete and extending ATG's period of performance. Scabbling and other related techniques will be extremely useful in the decontamination and decommissioning of other nuclear facilities with similar radiological profiles

  15. 2x1 prototype plasma-electrode pockels cell (PEPC) for the National Ignition Facility

    International Nuclear Information System (INIS)

    Rhodes, M. A.

    1996-10-01

    A large aperture optical switch based on plasma electrode Pockels cell (PEPC) technology is an integral part of the National Ignition Facility (NIP) laser design. This optical switch will trap the input optical pulse in the NIF amplifier cavity for four gain passes and then switch the high-energy output optical pulse out of the cavity. The switch will consist of arrays of plasma electrode Pockels cells working in conjunction with thin-film, Brewster's angle polarizes. The 192 beams in the NIF will be arranged in 4x2 bundles. To meet the required beam-to-beam spacing within each bundle, we have proposed a NIF PEPC design based on a 4x1 mechanical module (column) which is in turn comprised of two electrically independent 2x1 PEPC units. In this paper, we report on the design a single 2x1 prototype module and experimental tests of important design issues using our single, 32 cm aperture PEPC prototype. The purpose the 2x1 prototype is to prove the viability of a 2x1 PEPC and to act, as an engineering test bed for the NIF PEPC design

  16. CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Coleman, R.

    2011-03-31

    RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

  17. Hot cell renovation in the spent fuel conditioning process facility at the Korea Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seung Nam; Lee, Jong Kwang; Park, Byung Suk; Cho, Il Je; Kim, Ki Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The advanced spent fuel conditioning process facility (ACPF) of the irradiated materials examination facility (IMEF) at the Korea Atomic Energy Research Institute (KAERI) has been renovated to implement a lab scale electrolytic reduction process for pyroprocessing. The interior and exterior structures of the ACPF hot cell have been modified under the current renovation project for the experimentation of the electrolytic reduction process using spent nuclear fuel. The most important aspect of this renovation was the installation of the argon compartment within the hot cell. For the design and system implementation of the argon compartment system, a full-scale mock-up test and a three-dimensional (3D) simulation test were conducted in advance. The remodeling and repairing of the process cell (M8a), the maintenance cell (M8b), the isolation room, and their utilities were also planned through this simulation to accommodate the designed argon compartment system. Based on the considered refurbishment workflow, previous equipment in the M8 cell, including vessels and pipes, were removed and disposed of successfully after a zoning smear survey and decontamination, and new equipment with advanced functions and specifications were installed in the hot cell. Finally, the operating area and isolation room were also refurbished to meet the requirements of the improved hot cell facility.

  18. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Huang Sha [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Wang Yijuan [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Deng, Tianzheng [Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Jin Fang [Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi' an, 710032 (China); Liu Shouxin [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Zhang Yongjie [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Feng Feng [Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Jin Yan [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China)], E-mail: yanjin@fmmu.edu.cn

    2008-07-28

    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 {mu}m) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering.

  19. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    International Nuclear Information System (INIS)

    Huang Sha; Wang Yijuan; Deng, Tianzheng; Jin Fang; Liu Shouxin; Zhang Yongjie; Feng Feng; Jin Yan

    2008-01-01

    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 μm) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering

  20. Animal facilities

    International Nuclear Information System (INIS)

    Fritz, T.E.; Angerman, J.M.; Keenan, W.G.; Linsley, J.G.; Poole, C.M.; Sallese, A.; Simkins, R.C.; Tolle, D.

    1981-01-01

    The animal facilities in the Division are described. They consist of kennels, animal rooms, service areas, and technical areas (examining rooms, operating rooms, pathology labs, x-ray rooms, and 60 Co exposure facilities). The computer support facility is also described. The advent of the Conversational Monitor System at Argonne has launched a new effort to set up conversational computing and graphics software for users. The existing LS-11 data acquisition systems have been further enhanced and expanded. The divisional radiation facilities include a number of gamma, neutron, and x-ray radiation sources with accompanying areas for related equipment. There are five 60 Co irradiation facilities; a research reactor, Janus, is a source for fission-spectrum neutrons; two other neutron sources in the Chicago area are also available to the staff for cell biology studies. The electron microscope facilities are also described

  1. Defense Waste Processing Facility Nitric- Glycolic Flowsheet Chemical Process Cell Chemistry: Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-06

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by Savannah River National Laboratory (SRNL) from 2011 to 2016. The goal of this work was to develop empirical correlation models to predict these values from measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge or simulant composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the work on these correlations based on the aforementioned data. Previous work on these correlations was documented in a technical report covering data from 2011-2015. This current report supersedes this previous report. Further refinement of the models as additional data are collected is recommended.

  2. STREAMLINED APPROACH FOR ENVIRONMENTAL RESTORATION PLAN FOR CORRECTIVE ACTION UNIT 116: AREA 25 TEST CELL C FACILITY NEVADA TEST SITE, NEVADA

    International Nuclear Information System (INIS)

    2006-01-01

    This Streamlined Approach for Environmental Restoration Plan identifies the activities required for the closure of Corrective Action Unit 116, Area 25 Test Cell C Facility. The Test Cell C Facility is located in Area 25 of the Nevada Test Site approximately 25 miles northwest of Mercury, Nevada

  3. Functional update of the auxiliary proteins PsbW, PsbY, HCF136, PsbN, TerC and ALB3 in maintenance and assembly of PSII

    Directory of Open Access Journals (Sweden)

    Magdalena ePlöchinger

    2016-04-01

    Full Text Available Assembly of Photosystem (PS II in plants has turned out to be a highly complex process which, at least in part, occurs in a sequential order and requires many more auxiliary proteins than subunits present in the complex. Owing to the high evolutionary conservation of the subunit composition and the three-dimensional structure of the PSII complex, most plant factors involved in the biogenesis of PSII originated from cyanobacteria and only rarely evolved de novo. Furthermore, in chloroplasts the initial assembly steps occur in the non-appressed stroma lamellae, whereas the final assembly including the attachment of the major LHCII antenna proteins takes place in the grana regions. The stroma lamellae are also the place where part of PSII repair occurs, which very likely also involves assembly factors. In cyanobacteria initial PSII assembly also occurs in the thylakoid membrane, in so-called thylakoid centres, which are in contact with the plasma membrane. Here, we provide an update on the structures, localisations, topologies, functions, expression and interactions of the low molecular mass PSII subunits PsbY, PsbW and the auxiliary factors HCF136, PsbN, TerC and ALB3, assisting in PSII complex assembly and protein insertion into the thylakoid membrane.

  4. D and D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms

    International Nuclear Information System (INIS)

    Lagos, L.; Shoffner, P.; Espinosa, E.; Pena, G.; Kirk, P.; Conley, T.

    2009-01-01

    The objective of the US Department of Energy Office of Environmental Management's (DOE-EM's) D and D Toolbox Project is to use an integrated systems approach to develop a suite of decontamination and decommissioning (D and D) technologies, a D and D toolbox, that can be readily used across the DOE complex to improve safety, reduce technical risks, and limit uncertainty within D and D operations. Florida International University's Applied Research Center (FIU-ARC) is supporting this initiative by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting technology demonstrations of selected technologies at FIU-ARC facilities in Miami, Florida. To meet the technology gap challenge for a technology to remotely apply strippable/fixative coatings, FIU-ARC identified and demonstrated of a remote fixative sprayer platform. During this process, FIU-ARC worked closely with the Oak Ridge National Laboratory in the selection of typical fixatives and in the design of a hot cell mockup facility for demonstrations at FIUARC. For this demonstration and for future demonstrations, FIU-ARC built a hot cell mockup facility at the FIU-ARC Technology Demonstration/Evaluation site in Miami, Florida. FIU-ARC selected the International Climbing Machines' (ICM's) Robotic Climber to perform this technology demonstration. The selected technology was demonstrated at the hot cell mockup facility at FIU-ARC during the week of November 10, 2008. Fixative products typically used inside hot cells were investigated and selected for this remote application. The fixatives tested included Sherwin Williams' Promar 200 and DTM paints and Bartlett's Polymeric Barrier System (PBS). The technology evaluation documented the ability of the remote system to spray fixative products on horizontal and vertical concrete surfaces. The technology performance, cost, and health and safety issues were evaluated

  5. Rationalization design on large equipment dismantling facility. The cell fire-extinguishing examination (3)

    International Nuclear Information System (INIS)

    Donomae, Yasushi; Matsumoto, Yoshihiro; Takita, Koji; Kikuchi, Yutaka; Katoh, Noriyoshi; Miyazaki, Hitoshi; Tanimoto, Ken-ichi

    2002-07-01

    In order to rationalize for Large Equipment Dismantling Facility (LEDF), the plan of removing vaporizer belong to Cell-fire-extinguishing-system was investigated. When a vaporizer is cut down, it is necessary to grasp a fire-extinguishing performance. The fire-extinguishing performance check examination by liquefaction carbon dioxide in the cell fire-extinguishing examination (I) was carried out in 1999 fiscal year. As the result, the good performance was obtained to polyethylene. But there was the deep-seated fire about a piece of wood. Then, the check items were carbon dioxide (CO2) concentration and CO2 concentration holding time for the deep-seated fire in the cell fire-extinguishing examination (III). The results were as follows; (1) By use of the combustion model in which a piece of wood and cotton were put is lit, temperature inside model, mass reduction, and combustion situation were examined. The model burned remarkably in 30∼60 min. The peak temperature rise to 680 degC (MAX), and attained smoldering after (ignition) 70 min. Moreover, in order to determine the generating conditions of a deep-seated fire, the situation of CO2 extinguishing after ignition by the time lag of 50∼90 min were examined. The model around ignition 50 minutes was the most difficult to extinguish, and it turned out that they are the conditions which were most suitable for the deep-seated fire examination model of an exam. (2) In order to decide on CO2 concentration and concentration holding time required for fire extinguishing of the deep-seated fire in LEDF, the fire-extinguishing performance was investigated by 40 ∼ 65% of CO2 concentration. Consequently, CO2 concentration required for deep-seated fire extinguishing was understood that 60% or more was required when safety was taken into consideration at 50% or more. Moreover, when it was 50% or more of CO2 concentration and the holding time of CO2 concentration was 180 minutes or more and 60% or more of CO2 concentration, it

  6. Remote Decontamination Facility and Repair Station for hot-cell manipulators

    International Nuclear Information System (INIS)

    Ryz, M.A.

    1977-01-01

    Increasingly high radiation levels on manipulators at the Whiteshell Nuclear Research Establishment, Pinawa, Manitoba, Canada, necessitated design and construction of a Remote Decontamination Facility and Repair Station. This facility reduces radiation levels on manipulators by an order of magnitude over previous hand decontamination techniques. The reduced radiation levels have allowed superior manipulator repair and maintenance, resulting in 50% fewer manipulator breakdowns

  7. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    International Nuclear Information System (INIS)

    Smith, Tara E.; Newell, J. David; Woodham, Wesley H.

    2016-01-01

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  8. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-10

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  9. Closure Report for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2011-09-29

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 [as amended March 2010]). CAU 116 consists of the following two Corrective Action Sites (CASs), located in Area 25 of the Nevada National Security Site: (1) CAS 25-23-20, Nuclear Furnace Piping and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 consisted of Building 3210 and the attached concrete shield wall. CAS 25-23-20 consisted of the nuclear furnace piping and tanks. Closure activities began in January 2007 and were completed in August 2011. Activities were conducted according to Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 116 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2008). This CR provides documentation supporting the completed corrective actions and provides data confirming that closure objectives for CAU 116 were met. Site characterization data and process knowledge indicated that surface areas were radiologically contaminated above release limits and that regulated and/or hazardous wastes were present in the facility.

  10. The development of a mobile hot cell facility for the conditioning of spent high activity radioactive sources

    International Nuclear Information System (INIS)

    Liebenberg, G.R.; Al-Mughrabi, M.

    2010-01-01

    The International Atomic Energy Agency (IAEA) Waste Technology Section with additional support from the U.S. National Nuclear Security Administration (NNSA) through the IAEA Nuclear Security Fund has funded the design, fabrication, evaluation, and testing of a portable hot cell intended to address the problem of disused Spent High Activity Radioactive Sources (SHARS) in obsolete irradiation devices such as teletherapy heads and dry irradiators. The project is initially targeting the African continent but expected soon to expand to Latin America and Asia. This hot cell allows source removal, characterization, consolidation, repackaging in modern storage shields, and secure storage of high risk SHARS at national radioactive waste storage facilities. (authors)

  11. Sub-scale Direct Connect Supersonic Combustion Facility (Research Cell 18)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC18 is a continuous-flow, direct-connect, supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  12. Facile Synthesis and High performance of a New Carbazole-Based Hole Transporting Material for Hybrid Perovskite Solar Cells

    KAUST Repository

    Wang, Hong

    2015-06-26

    Perovskite solar cells are very promising for practical applications owing to their rapidly rising power conversion efficiency and low cost of solution-based processing. 2,2’,7,7’-tetrakis-(N,N-di-p-methoxyphenylamine) 9,9’-spirobifluorene (Spiro-OMeTAD) is most widely used as hole transporting material (HTM) in perovskite solar cells. However, the tedious synthesis and high cost of Spiro-OMeTAD inhibit its commercial-scale application in the photovoltaic industry. In this article, we report a carbazole-based compound (R01) as a new HTM in efficient perovskite solar cells. R01 is synthesized via a facile route consisting of only two steps from inexpensive commercially available materials. Furthermore, R01 exhibits higher hole mobility and conductivity than the state-of-the-art Spiro-OMeTAD. Perovskite solar cells fabricated with R01 produce a power conversion efficiency of 12.03%, comparable to that obtained in devices using Spiro-OMeTAD in this study. Our findings underscore R01 as a highly promising HTM with high performance, and its facile synthesis and low cost may facilitate the large-scale applications of perovskite solar cells.

  13. Facile Synthesis and High performance of a New Carbazole-Based Hole Transporting Material for Hybrid Perovskite Solar Cells

    KAUST Repository

    Wang, Hong; Sheikh, Arif D.; Feng, Quanyou; Li, Feng; Chen, Yin; Yu, Weili; Alarousu, Erkki; Ma, Chun; Haque, Mohammed; Shi, Dong; Wang, Zhong-Sheng; Mohammed, Omar F.; Bakr, Osman; Wu, Tao

    2015-01-01

    Perovskite solar cells are very promising for practical applications owing to their rapidly rising power conversion efficiency and low cost of solution-based processing. 2,2’,7,7’-tetrakis-(N,N-di-p-methoxyphenylamine) 9,9’-spirobifluorene (Spiro-OMeTAD) is most widely used as hole transporting material (HTM) in perovskite solar cells. However, the tedious synthesis and high cost of Spiro-OMeTAD inhibit its commercial-scale application in the photovoltaic industry. In this article, we report a carbazole-based compound (R01) as a new HTM in efficient perovskite solar cells. R01 is synthesized via a facile route consisting of only two steps from inexpensive commercially available materials. Furthermore, R01 exhibits higher hole mobility and conductivity than the state-of-the-art Spiro-OMeTAD. Perovskite solar cells fabricated with R01 produce a power conversion efficiency of 12.03%, comparable to that obtained in devices using Spiro-OMeTAD in this study. Our findings underscore R01 as a highly promising HTM with high performance, and its facile synthesis and low cost may facilitate the large-scale applications of perovskite solar cells.

  14. The Role of Titanium Surface Microtopography on Adhesion, Proliferation, Transformation, and Matrix Deposition of Corneal Cells.

    Science.gov (United States)

    Zhou, Chengxin; Lei, Fengyang; Chodosh, James; Paschalis, Eleftherios I

    2016-04-01

    Titanium (Ti) is an excellent implantable biomaterial that can be further enhanced by surface topography optimization. Despite numerous data from orthopedics and dentistry, the effect of Ti surface topography on ocular cells is still poorly understood. In light of the recent adaptation of Ti in the Boston Keratoprosthesis artificial cornea, we attempted to perform an extended evaluation of the effect of Ti surface topography on corneal cell adhesion, proliferation, cytotoxicity, transformation, and matrix deposition. Different surface topographies were generated on medical grade Ti-6Al-4V-ELI (extra-low interstitial), with linearly increased roughness (polished to grit blasted). Biological response was evaluated in vitro using human corneal limbal epithelial (HCLE) cells, stromal fibroblasts (HCF), and endothelial cells (HCEnC). None of the Ti surface topographies caused cytotoxicity to any of the three corneal cell types. However, rough Ti surface inhibited HCLE and HCF cell adhesion and proliferation, while HCEnC proliferation was unaffected. Long-term experiments with HCF revealed that rough Ti surface with R(a) (the arithmetic average of the profile height from the mean line) ≥ 1.15 μm suppressed HCF focal adhesion kinase phosphorylation, changed fibroblast morphology, and caused less aligned and reduced deposition of collagen matrix as compared to smooth Ti (R(a) ≤ 0.08 μm). In the presence of transforming growth factor β1 (TGFβ1) stimulation, rough Ti inhibited alpha-smooth muscle actin (α-SMA) expression and collagen deposition, leading to decreased myofibroblast transformation and disorganization of the collagen fibrils as compared to smooth Ti. This study suggests that Ti surface topography regulates corneal cell behavior in a tissue-dependent manner that varies across the corneal strata. Contrary to the accepted paradigm, smooth surface topography can enhance cell adhesion and proliferation and increase matrix deposition by corneal cells.

  15. Impact of Salt Waste Processing Facility Streams on the Nitric-Glycolic Flowsheet in the Chemical Processing Cell

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-08

    An evaluation of the previous Chemical Processing Cell (CPC) testing was performed to determine whether the planned concurrent operation, or “coupled” operations, of the Defense Waste Processing Facility (DWPF) with the Salt Waste Processing Facility (SWPF) has been adequately covered. Tests with the nitricglycolic acid flowsheet, which were both coupled and uncoupled with salt waste streams, included several tests that required extended boiling times. This report provides the evaluation of previous testing and the testing recommendation requested by Savannah River Remediation. The focus of the evaluation was impact on flammability in CPC vessels (i.e., hydrogen generation rate, SWPF solvent components, antifoam degradation products) and processing impacts (i.e., acid window, melter feed target, rheological properties, antifoam requirements, and chemical composition).

  16. Incident at university research facility - pressure testing of gas hydrate cell

    DEFF Research Database (Denmark)

    Jensen, Niels; Jørgensen, Sten Bay

    2014-01-01

    A master student designed a cell for observing the development of gas hydrates as conditions in the cell were changed. The supervisor asked for a pressure test of the cell before the experiments started. The student chose-to perform the pressure test using compressed air and this resulted in one...

  17. Design of a facility for studying shock-cell noise on single and coaxial jets

    NARCIS (Netherlands)

    Guariglia, Daniel; Rubio Carpio, A.; Schram, Christophe

    2018-01-01

    Shock-cell noise occurs in aero-engines when the nozzle exhaust is supersonic and shock-cells are present in the jet. In commercial turbofan engines, at cruise, the secondary flow is often supersonic underexpanded, with the formation of annular shock-cells in the jet and consequent onset of

  18. Dismantling of the 904 Cell at the HAO/Sud Facility - 13466

    Energy Technology Data Exchange (ETDEWEB)

    Vaudey, C.E.; Crosnier, S. [AREVA Clean-Up BU, 1 route de la Noue 91196 - Gif-sur-Yvette (France); Renouf, M.; Gaspard, N. [AREVA Clean-Up BU, Site de La Hague - BV 35 - 50444 Beaumont Hague (France); Pinot, L. [AREVA D and D BU, Site de La Hague - 50444 Beaumont Hague (France)

    2013-07-01

    La Hague facility, in France, is the spent fuel recycling plant wherein a part of the fuel coming from some of the French, German, Belgian, Swiss, Dutch and Japanese nuclear reactors is reprocessed before being recycled in order to separate certain radioactive elements. The facility has been successively handled by the CEA (1962-1978), Cogema (1978-2006), and AREVA NC (since 2006). La Hague facility is composed of 3 production units: The UP2-400 production unit started to be operated in 1966 for the reprocessing of UNGG metal fuel. In 1976, following the dropout of the graphite-gas technology by EDF, an HAO workshop to reprocess the fuel from the light water reactors is affiliated and then stopped in 2003. - UP2-400 is partially stopped in 2002 and then definitely the 1 January 2004 and is being dismantled - UP2-800, with the same capacity than UP3, started to be operated in 1994 and is still in operation. And UP3 - UP3 was implemented in 1990 with an annual reprocessing capacity of 800 tons of fuel and is still in operation The combined licensed capacity of UP2-800 and UP3 is 1,700 tons of used fuel. (authors)

  19. A role for topographic cues in the organization of collagenous matrix by corneal fibroblasts and stem cells.

    Directory of Open Access Journals (Sweden)

    Dimitrios Karamichos

    Full Text Available Human corneal fibroblasts (HCF and corneal stromal stem cells (CSSC each secrete and organize a thick stroma-like extracellular matrix in response to different substrata, but neither cell type organizes matrix on tissue-culture polystyrene. This study compared cell differentiation and extracellular matrix secreted by these two cell types when they were cultured on identical substrata, polycarbonate Transwell filters. After 4 weeks in culture, both cell types upregulated expression of genes marking differentiated keratocytes (KERA, CHST6, AQP1, B3GNT7. Absolute expression levels of these genes and secretion of keratan sulfate proteoglycans were significantly greater in CSSC than HCF. Both cultures produced extensive extracellular matrix of aligned collagen fibrils types I and V, exhibiting cornea-like lamellar structure. Unlike HCF, CSSC produced little matrix in the presence of serum. Construct thickness and collagen organization was enhanced by TGF-ß3. Scanning electron microscopic examination of the polycarbonate membrane revealed shallow parallel grooves with spacing of 200-300 nm, similar to the topography of aligned nanofiber substratum which we previously showed to induce matrix organization by CSSC. These results demonstrate that both corneal fibroblasts and stromal stem cells respond to a specific pattern of topographical cues by secreting highly organized extracellular matrix typical of corneal stroma. The data also suggest that the potential for matrix secretion and organization may not be directly related to the expression of molecular markers used to identify differentiated keratocytes.

  20. Microbeam facility extension for single-cell irradiation experiments. Investigations about bystander effect and reactive oxygen species impact

    International Nuclear Information System (INIS)

    Hanot, M.; Khodja, H.; Daudin, L.; Hoarau, J.; Carriere, M.; Gouget, B.

    2006-01-01

    The LPS microbeam facility is based on a KN3750 Van de Graaff accelerator devoted to microbeam analysis [1]. It is equipped with two horizontal microbeam lines used in various fields such as material science, geological science, nuclear material science and biology. Since two years, a single ion hit device is being developed at the LPS. The setup is dedicated to the study of ionizing radiation effects on living cells by performing single ion irradiation at controlled doses and locations. This study will complete current researches conducted on uranium chemical toxicity on renal an d osteoblastic cells. After ingestion, most uranium is excreted from the body within a few days except small fraction that is absorbed into the blood-stream (0.2 to 5%) and then deposit and preferentially in kidneys and bones, where it can remain for many years. Uranium is a heavy metal and a primarily alpha emitter. It can lead to bone cancer as a result of the ionizing radiation associated with the radioactive decay products. The study of the response to an exposure to alpha particles will permit to distinguish radiotoxicity and chemical toxicity of uranium bone cells with a special emphasis or the bystander effect at low dose.All the beam lines at the LPS nuclear microprobe are horizontal and under vacuum. A dedicated deflecting magnet was inserted in one of the two available beam lines of the facility. The ion beam is extracted to air using a 100 nm thick silicon nitride membrane, thin enough to induce negligible effects on the ions in terms of energy loss and spatial resolution. By this way, we believe that we minimize the experimental setup impact on the living cells easing the detection of low irradiation dose impact. The atmosphere around the samples is also important to guaranty low stressed cell culture conditions. A temperature, hygrometry and CO 2 controlled atmosphere device will be implanted in the future. The irradiation microbeam is produced using a fused silica capillary

  1. Engine Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Air Force Arnold Engineering Development Center's Engine Test Facility (ETF) test cells are used for development and evaluation testing of propulsion systems for...

  2. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  3. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin; Lohse, Samuel E.; Lee, Chang-Soo; Torelli, Marco; Hamers, Robert J.; Murphy, Catherine; Orr, Galya; Haynes, Christy L.

    2014-01-01

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.

  4. Hot cell chemistry for isotope production at Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    Barnes, J.W.; Bentley, G.E.; Ott, M.A.; DeBusk, T.P.

    1978-01-01

    A family of standardized glass and plastic ware has been developed for the unit processes of dissolution, volume reduction, ion exchange, extraction, gasification, filtration, centrifugation, and liquid transfer in the hot cells. Computerized data handling and gamma pulse analysis have been applied to quality control and process development in hot cell procedures for production of isotopes for research in physics and medicine. The above has greatly reduced the time needed to set up for and produce a new isotope

  5. Modelling of multiphase flow in concrete cells of the radioactive waste storage facility at El Cabril (Spain)

    International Nuclear Information System (INIS)

    Chaparro, M.C.; Saaltink, M.W.

    2015-01-01

    El Cabril is the low and intermediate level radioactive waste disposal facility for Spain. After sealing the cells that stored the radioactive waste, water was collected from a drainpipe, indicating the flow of water within the cell. A hypothesis had been proposed to explain this phenomenon which consists of capillary rise from groundwater and evaporation and condensation within the cell produced by temperature gradients caused by seasonal temperature fluctuations outside. To corroborate this hypothesis a 2D numerical model was made taking into account all relevant processes such as multiphase flow and heat transport. Data were used measured by sensors in the cells and data from laboratory test. There is a good agreement between the temperature measured by the sensors and the ones calculated by the model. The model shows a drying of the concrete at the hot side (that is the wall during summer and the container during winter). The concrete is saturated with water at the cold side (that is the container during summer and the wall in winter), leading to runoff of water to the drainpipe. The flux at this drainpipe occurred in the two yearly periods, being higher in winter than in summer. (authors)

  6. The development of a mobile hot cell facility for the conditioning of spent high activity radioactive sources (SHARS)

    International Nuclear Information System (INIS)

    Liebenberg, G.R.; Al-Mughrabi, M.

    2008-01-01

    The International Atomic Energy Agency (IAEA) Waste Technology Section with additional support from the U.S. National Nuclear Security Agency (NNSA) through the IAEA Nuclear Security Fund has funded the design, fabrication, evaluation, and testing of a portable hot cell intended to address the problem of disused SHARS in obsolete irradiation devices such as teletherapy heads and dry irradiators. The project is initially targeting the African continent but expected soon to expand to Latin America and Asia. This hot cell would allow source removal, characterization, consolidation, repackaging in modern storage shields, and secure storage of high risk SHARS at single sites in each IAEA Member State. The mobile hot cell and related equipment is transported in two shipping containers to a specific country where the following process takes place: 1-) Assembly of hot cell; 2-) Removal of SHARS from working shields, encapsulation into a stainless steel capsule and placement into a long term storage shield; 3-) Conditioning of any other spent sources the country may require; 4-) Dismantling of the hot cell; 5-) Shipping equipment out of country. The operation in a specific country is planned to be executed over a three week period. This presentation will discuss the development of the mobile hot cell facility as well as the demonstration of the state of readiness of the system for manipulation of SHARS and the planned execution of the conditioning operations. As a result of this project, excess SHARS could be managed safely and securely and possibly be more easily repatriated to their country of origin for appropriate final disposition. (author)

  7. Metal-Carbon Interactions on Reduced Graphene Oxide under Facile Thermal Treatment: Microbiological and Cell Assay

    Directory of Open Access Journals (Sweden)

    N. L. V. Carreño

    2017-01-01

    Full Text Available Silver-functionalized reduced graphene oxide (Ag-rGO nanosheets were prepared by single chemical and thermal processes, with very low concentration of silver. The resulting carbon framework consists of reduced graphene oxide (rGO sheets or 3D networks, decorated with anchored silver nanoparticles. The Ag-rGO nanosheets were dispersed into a polymer matrix and the composites evaluated for use as biological scaffolds. The rGO material in poly(dimethylsiloxane (PDMS has been tested for antimicrobial activity against Gram-positive Staphylococcus aureus (S. Aureus bacteria, after exposure times of 24 and 120 hours, as well as in the determination of cell viability on cultures of fibroblast cells (NIH/3T3. Using 1 mL of Ag-rGO in PDMS the antibacterial effectiveness against Staphylococcus aureus was limited, showing an increased amount of Colony Forming Units (CFU, after 24 hours of contact. In the cell viability assay, after 48 hours of contact, the group of 1 mL of Ag-rGO with PDMS was the only group that increased cell viability when compared to the control group. In this context, it is believed these behaviors are due to the increase in cell adhesion capacity promoted by the rGO. Thus, the Ag-rGO/PDMS hybrid nanocomposite films can be used as scaffolds for tissue engineering, as they limit antimicrobial activity.

  8. Inactivation of stable viruses in cell culture facilities by peracetic acid fogging.

    Science.gov (United States)

    Gregersen, Jens-Peter; Roth, Bernhard

    2012-07-01

    Looking for a robust and simple method to replace formaldehyde fumigation for the disinfection of virus-handling laboratories and facilities, we tested peracetic acid fogging as a method to inactivate stable viruses under practical conditions. Peracetic acid/hydrogen peroxide (5.8%/27.5%, 2.0 mL/m³) was diluted in sufficient water to achieve ≥ 70% relative humidity and was vaporized as peracetic acid fog in various positions in the laboratory. After vaporization, a 60 min exposure time, and venting of the laboratory, no residual virus was detected on any of the carriers (detection limit disinfection runs within 12 months, no damage or functional impairment of electrical and electronic equipment was noted. Copyright © 2012 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  9. Waste to Watts and Water: Enabling Self-Contained Facilities Using Microbial Fuel Cells

    Science.gov (United States)

    2009-03-01

    98; “Project to Turn Beer Wastewater into Power,” ; Yokoyama et al., “Treatment of Cow-Waste Slurry,” 634; Catal et al., “Electricity Production...Fuel Cells Bulletin 2006, no. 7 (2006): 7. “Project to Turn Beer Wastewater into Power.” Fuel Cells Bulletin 2007, no. 7 (2007): 11. Rabaey, K., J...Biomass Fermentation , edited by Piet Lens, Peter Westermann, Marianne Haberbauer, and Angelo Moreno, 377–400. Integrated Environmental Technology Series

  10. Waste reduction efforts through the evaluation and procurement of a digital camera system for the Alpha-Gamma Hot Cell Facility at Argonne National Laboratory-East

    International Nuclear Information System (INIS)

    Bray, T. S.; Cohen, A. B.; Tsai, H.; Kettman, W. C.; Trychta, K.

    1999-01-01

    The Alpha-Gamma Hot Cell Facility (AGHCF) at Argonne National Laboratory-East is a research facility where sample examinations involve traditional photography. The AGHCF documents samples with photographs (both Polaroid self-developing and negative film). Wastes generated include developing chemicals. The AGHCF evaluated, procured, and installed a digital camera system for the Leitz metallograph to significantly reduce labor, supplies, and wastes associated with traditional photography with a return on investment of less than two years

  11. Groundwater Modeling Of Mercury Pollution At A Former Mercury Cell Chlor Alkali Facility In Pavoldar, Kazakhstan

    Science.gov (United States)

    In Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severly contaminated with mercury and mercury compounds as a result of the industrial activity of this chemical pla...

  12. Pore-filled electrolyte membranes for facile fabrication of long-term stable dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Seo, Seok-Jun; Cha, Hyeon-Jung; Kang, Yong Soo; Kang, Moon-Sung

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •Pore-filled film electrolytes (PFEMs) were investigated for facile DSSC fabrication. •Optimal mixed solvent was suggested to enhance the long-term stability of DSSCs. •The PFEMs promised both the excellent thermal stability and energy efficiency. •Thephotovoltaic efficiency was well correlated with porous structure of substrates. -- ABSTRACT: Pore-filled electrolyte membranes (PFEMs) have been prepared by employing an optimized porous substrate and stable electrolyte composition for a facile manufacturing process of dye-sensitized solar cells (DSSCs). The PFEMs could be easily loaded into a photovoltaic device without adding a traditional electrolyte injection through a hole. In order to meet the requirements of both high energy conversion efficiency and proper long-term stability, three different solvents with high boiling point, i.e. valeronitrile, dimethyl sulfoxide, and dimethylacetamide, were appropriately mixed as a volumetric ratio of 7:2:1, respectively. As a result, similar conductivity and viscosity as well as better chemical stability were obtained compared to those of conventional 3-methoxypropionitrile-based electrolyte. In addition, linear relations were observed between the photovoltaic efficiency and porous film properties (i.e. porosity and tortuosity). The DSSC employing the PFEM doped with the mixed solvent based electrolyte exhibited the photon-to-current conversion efficiency of 6.30% at one sun condition. Moreover, the long-term stability test fixed at an elevated temperature of 85 °C exhibited outstanding durability of DSSC for 500 h

  13. Facile Conversion Synthesis of Densely-Formed Branched ZnO-Nanowire Arrays for Quantum-Dot-Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Lee, Woojin; Kang, Suji; Hwang, Taehyun; Kim, Kunsu; Woo, Hyungsub; Lee, Byungho; Kim, Jaewon; Kim, Jinhyun; Park, Byungwoo

    2015-01-01

    Highlights: •3-D hierarchically branched ZnO nanowires by a facile synthesis with seed nucleation. •Nanobranching enhances the efficiency by a factor of two compared with the bare QDSC. •Attributed to the increased sensitizer by ∼80% and decreased transmittance by ∼17%. •Optimized nanostructures correlate with the light-harvesting and carrier-collection efficiencies. -- Abstract: An effective way of synthesizing densely-formed branched ZnO-nanowire arrays was developed by a straightforward conversion reaction of ZnS into ZnO. Hierarchically structured ZnO nanowires are utilized for quantum-dot-sensitized solar cells (QDSCs), having resulted in the conversion-efficiency enhancement by a factor of two compared to the bare ZnO nanowires. This is attributed to the increased CdS-quantum-dot sensitizer by ∼80% and decreased diffused transmittance by ∼17%, induced by the densely-formed branched nanowires. The correlations between the branched nanostructures and photovoltaic performances are systematically investigated in terms of light absorption, charge-transfer resistance, and carrier lifetime. This facile and controllable branched nanowire synthesis is anticipated to be applicable to other semiconductor photoanodes for efficient light harvesting and charge collecting properties

  14. Scope and dissolution studies and characterization of irradiated nuclear fuel in Atalante Hot Cell Facilities (abstract and presentation slides)

    Energy Technology Data Exchange (ETDEWEB)

    Dancausse, Jean-Philippe; Reynier Tronche, Nathalie; Ferlay, Gilles; Herlet, Nathalie; Eysseric, Cathrine; Esbelin, Eric

    2005-01-01

    Since 1999, several studies on nuclear fuels were realised in C11/C12 Atalante Hot Cell. This paper presents firstly an overview of the apparatus used for fuel dissolution and characterisation like reactor design, gas trapping flask and solid/liquid separation. Then, the general methodology is described as a function of fuel, temperature, reagents, showing for each step, the reachable experimental data: Dissolution rate, chemical and radiochemical fuel composition including volatile LLRN, insoluble mass, composition, morphology, cladding chemical, radiochemical and physical characterisation using SIMS (made in Cadarache/LECA facilities), MEB. To conclude, some of the obtained results on 129I and 14C composition of oxide fuels, rate of dissolution and first results on dissolution studies of RERTR UMo fuel will be detailed. (Author)

  15. Facile moldless fabrication of disk-shaped and reed blood cell-like microparticles using photopolymerization of tripropylene glycol diacrylate

    International Nuclear Information System (INIS)

    Choi, Jongchul; Won, June; Song, Simon

    2014-01-01

    A facile method for the moldless fabrication of 2- or 3-dimensional microparticles is proposed by using a photopolymerization technique. Using only a monomer solution of tripropylene glycol diacrylate, a film mask and standard UV lithography equipment, we were able to fabricate microparticles of various shapes, such as disks, dimpled disks similar in shape to red blood cells, and slender gourd shapes, unlike previous moldless fabrication techniques requiring expensive and/or sophisticated equipment. The simple method could produce more than one million particles in a single batch, indicating that it can be applied to the mass production of polymer microparticles. Analyses of scanning electron micrographs and optical micrographs of the microparticles indicated that their size distribution was highly monodisperse. Detailed fabrication processes and statistics on the microparticle sizes are given in this paper. (technical note)

  16. Facile construction of fused benzimidazole-isoquinolinones that induce cell-cycle arrest and apoptosis in colorectal cancer cells.

    Science.gov (United States)

    He, Liu-Jun; Yang, Dong-Lin; Li, Shi-Qiang; Zhang, Ya-Jun; Tang, Yan; Lei, Jie; Frett, Brendan; Lin, Hui-Kuan; Li, Hong-Yu; Chen, Zhong-Zhu; Xu, Zhi-Gang

    2018-06-12

    Colorectal cancer (CRC) is one of the most frequent, malignant gastrointestinal tumors, and strategies and effectiveness of current therapy are limited. A series of benzimidazole-isoquinolinone derivatives (BIDs) was synthesized and screened to identify novel scaffolds for CRC. Of the compounds evaluated, 7g exhibited the most promising anti-cancer properties. Employing two CRC cell lines, SW620 and HT29, 7g was found to suppress growth and proliferation of the cell lines at a concentration of ∼20 µM. Treatment followed an increase in G 2 /M cell cycle arrest, which was attributed to cyclin B1 and cyclin-dependent kinase 1 (CDK1) signaling deficiencies with simultaneous enhancement in p21 and p53 activity. In addition, mitochondrial-mediated apoptosis was induced in CRC cells. Interestingly, 7g decreased phosphorylated AKT, mTOR and 4E-BP1 levels, while promoting the expression/stability of PTEN. Since PTEN controls input into the PI3K/AKT/mTOR pathway, antiproliferative effects can be attributed to PTEN-mediated tumor suppression. Collectively, these results suggest that BIDs exert antitumor activity in CRC by impairing PI3K/AKT/mTOR signaling. Against a small kinase panel, 7g exhibited low affinity at 5 µM suggesting anticancer properties likely stem through a non-kinase mechanism. Because of the novelty of BIDs, the structure can serve as a lead scaffold to design new CRC therapies. Copyright © 2018. Published by Elsevier Ltd.

  17. Development of one body α-γ type manipulator for hot cell facility

    International Nuclear Information System (INIS)

    Jung, S. K.; Lee, S. B.; Lee, E. P.

    2004-01-01

    To handle the high level radioactive materials in a sealed type hot cell, our company has developed the one body alpha-gamma type manipulator and this is an improved model compared with the previously developed beta-gamma and separated alpha-gamma type manipulators. The successful development of one body alpha-gamma type manipulator means our company has a whole capacity to design and fabricate all kinds of manipulators using in hot cells. Until now most of the manipulators in Korea were imported from other countries. The development of Korean manipulators gives us the easier maintenance and lower price compared to the foreign products. It is also possible to export the Korean manipulators to overseas

  18. Analysis and design recommendation on rabbeted capping plate of equipment cell in nuclear chemical facility

    International Nuclear Information System (INIS)

    Zhang Jingyu; Yin Xiaozhan

    2013-01-01

    Rabbeted capping plates are widely used in the roof of equipment cells in order to meet the requirements of nuclear radiation protection. The key considerations in the design include vertical load, seismic load and repair load. This article establishes T shaped and Z-shaped plate model via FEM software (ANSYS), analyzes the bearing capacity and displacement distribution in different load cases, and provides recommendations to the design and construction accordingly. (authors)

  19. Development of radio frequency (RF) and microwave (MW) calibration facility using GTEM cell

    International Nuclear Information System (INIS)

    Rozaimah Abd Rahim; Mohd Yusof Mohd Ali; Mohd Anuar Abd Majid

    2005-01-01

    Recent studies indicate that non ionizing radiation (NIR) can cause health effect on human beings. Usage of equipment/machine/system in industrial sector, medical fields, surveillance, telecommunication, broadcast, weather forecast and some consumer product that can produced NIR attract public concern about the potential hazard cause by this radiation. It increases public demands on the use of suitable equipment/survey meters for measuring NIR radiation from such sources. This equipment/survey meters need to be calibrated to insure that the equipment/survey meters give correct, accurate and precise reading. One of the systems that can be used to do the calibration work is GTEM cell. GTEM cell can also be used to perform tests involving electromagnetic fields such as electromagnetic compatibility test (EMC), electromagnetic immunity or susceptibility test (EMS) and electromagnetic interference test (EMI). This paper highlights some of the work that had been carried out to map out the field strengths within the GTEM cell and test results of some of the calibration work performed on RF measuring instrument. (Author)

  20. Development of a single ion micro-irradiation facility for experimental radiobiology at cell level

    International Nuclear Information System (INIS)

    Barberet, Ph.

    2003-10-01

    A micro-irradiation device has been developed for radiobiology applications at the scale of the cell. This device is based on an upgrade of an existing micro-beam line that was already able to deliver a 1 to 3 MeV proton or alpha beam of low intensity and whose space resolution is lower than 1 micrometer in vacuum. The important part of this work has been the development of an irradiation stage designed to fit on the micro-probe and able to deliver ions in the air with an absolute accuracy of a few micrometers. A program has been set up to monitor the complete irradiation line in testing and in automatic irradiation operating phases. Simulation tools based on Monte-Carlo calculations have been validated through comparisons with experimental data particularly in the field of spatial resolution and of the number of ions delivered. The promising results show the possibility in a near future to use this tool to study the response of cells to very low irradiation doses down to the extreme limit of one ion per cell

  1. Facile in-situ fabrication of graphene/riboflavin electrode for microbial fuel cells

    International Nuclear Information System (INIS)

    Wang, Qian-Qian; Wu, Xia-Yuan; Yu, Yang-Yang; Sun, De-Zhen; Jia, Hong-Hua; Yong, Yang-Chun

    2017-01-01

    A novel graphene/riboflavin (RF) composite electrode was developed and its potential application as microbial fuel cell (MFC) anode was demonstrated. Graphene layers were first grown on the surface of graphite electrode by a one-step in-situ electrochemical exfoliation approach. Then, noncovalent functionalization of the graphene layers with RF was achieved by a simple spontaneous adsorption process. The graphene/RF electrode was extensively characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, Raman analysis, and cyclic voltammetry analysis. Remarkably, when applied as the anode of Shewanella oneidensis MR-1 inoculated MFCs, the graphene/RF electrode significantly decreased charge transfer over-potential and enhanced cell attachment, which in turn delivered about 5.3- and 2.5-fold higher power output, when compared with that produced by the bare graphite paper electrode and graphene electrode, respectively. These results demonstrated that electron shuttle immobilization on the electrode surface could be a promising and practical strategy for improving the performance of microbial electrochemical systems.

  2. Management of hot cell waste in Atalante Facilities (abstract and presentation slides)

    International Nuclear Information System (INIS)

    Dancausse, Jean-Philippe; Ferlay, Gilles; Eysseric, Catherine

    2005-01-01

    In solution R and D experiments on nuclear fuel from dissolution to liquid extraction lead to produce a large set of wastes. This paper present how these highly contaminated solid and liquid wastes is managed in Hot Cells and in Atalante. Firstly, an inventory of several types of generated wastes is made: 1) Solid wastes. 2) Glass reactors and liquid solution containers. 3) Plastic and Teflon materials for sampling, Highly corrosive solutions. 4) Metallic containers for solid storage like fuels, crucibles. 5) Miscellaneous mixed solid materials. 6) Liquid wastes. 7) Rinsing liquids. 8) Highly corrosive waste containing fluorhydric acid. 9) Analytical solution with sulphate ions. 10) Organic solvent coming from liquid-liquid extraction. A focus will be made on optimised treatment of 1) solid wastes: Mechanically and chemically 2) liquid wastes containing sulphate ions and hydrogen fluoride, 3) organic liquid waste: to remove activity before hydrothermal oxidation. (Author)

  3. Standard guide for mechanical drive systems for remote operation in hot cell facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 Intent: 1.1.1 The intent of this standard is to provide general guidelines for the design, selection, quality assurance, installation, operation, and maintenance of mechanical drive systems used in remote hot cell environments. The term mechanical drive systems used herein, encompasses all individual components used for imparting motion to equipment systems, subsystems, assemblies, and other components. It also includes complete positioning systems and individual units that provide motive power and any position indicators necessary to monitor the motion. 1.2 Applicability: 1.2.1 This standard is intended to be applicable to equipment used under one or more of the following conditions: 1.2.1.1 The materials handled or processed constitute a significant radiation hazard to man or to the environment. 1.2.1.2 The equipment will generally be used over a long-term life cycle (for example, in excess of two years), but equipment intended for use over a shorter life cycle is not excluded. 1.2.1.3 The ...

  4. TiO2 nanowires for potential facile integration of solar cells and electrochromic devices

    International Nuclear Information System (INIS)

    Qiang, Pengfei; Chen, Zhongwei; Yang, Peihua; Liu, Pengyi; Mai, Wenjie; Cai, Xiang; Tan, Shaozao

    2013-01-01

    Self-powered systems usually consist of energy-acquisition components, energy-storage components and functional components. The development of nanoscience and nanotechnology has greatly improved the performance of all the components of self-powered systems. However, huge differences in the materials and configurations in the components cause large difficulties for integration and miniaturization of self-powered systems. Design and fabrication of different components in a self-powered system with the same or similar materials/configurations should be able to make the above goal easier. In this work, a proof-of-concept experiment involving an integrated self-powered color-changing system consisting of TiO 2 nanowire based sandwich dye-sensitized solar cells (DSSCs) and electrochromic devices (ECDs) is designed and demonstrated. When sunlight illuminates the entire system, the DSSCs generate electrical power and turn the ECD to a darker color, dimming the light; by switching the connection polarity of the DSSCs, the lighter color can be regained, implying the potential application of this self-powered color-changing system for next generation sun glasses and smart windows. (paper)

  5. Calculation Package for the Analysis of Performance of Cells 1-6, with Underdrain, of the Environmental Management Waste Management Facility Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales D.

    2010-03-30

    This calculation package presents the results of an assessment of the performance of the 6 cell design of the Environmental Management Waste Management Facility (EMWMF). The calculations show that the new cell 6 design at the EMWMF meets the current WAC requirement. QA/QC steps were taken to verify the input/output data for the risk model and data transfer from modeling output files to tables and calculation.

  6. Roll-to-Roll Inkjet Printing and Photonic Sintering of Electrodes for ITO Free Polymer Solar Cell Modules and Facile Product Integration

    DEFF Research Database (Denmark)

    Angmo, Dechan; Larsen-Olsen, Thue Trofod; Jørgensen, Mikkel

    2013-01-01

    Small polymer solar cell modules that are manufactured without indium-tin-oxide using only roll-to-roll printing and coating techniques under ambient conditions enable facile integration into a simple demonstrator (for example a laser pointer). Semitransparent front electrode grid structures prep...

  7. FFTF/IEM [Fast Flux Test Facility/Interim Examination and Maintenance] cell fuel pin weighing system: Remote maintenance design considerations

    International Nuclear Information System (INIS)

    Gibbons, P.W.

    1986-06-01

    A Fuel Pin Weighing Machine has been developed for use in the Fast Flux Test Facility (FFTF) Interim Examination and Maintenance (IEM) Cell to assist in identifying an individual breached fuel pin from its fuel assembly pin bundle. Optimum configuration for remote maintenance was a major consideration in the design of each element of the Pin Weighing System

  8. Analysis and validation center for ITER RH maintenance scenarios in a virtual environment

    NARCIS (Netherlands)

    Elzendoorn, B. S. Q.; M.R. de Baar,; Hamilton, D.; Heemskerk, C. J. M.; Koning, J. F.; Ronden, D. M. S.

    2012-01-01

    A facility for detailed simulation of maintenance processes in the ITER Hot Cell Facility (HCF) has been taken into operation. The facility mimics the Remote Handling (RH) work-cells as are presently foreseen. Novel virtual reality (VR) technology, extended with a physics engine is used to create a

  9. A Facile Droplet-Chip-Time-Resolved Inductively Coupled Plasma Mass Spectrometry Online System for Determination of Zinc in Single Cell.

    Science.gov (United States)

    Wang, Han; Chen, Beibei; He, Man; Hu, Bin

    2017-05-02

    Single cell analysis is a significant research field in recent years reflecting the heterogeneity of cells in a biological system. In this work, a facile droplet chip was fabricated and online combined with time-resolved inductively coupled plasma mass spectrometry (ICPMS) via a microflow nebulizer for the determination of zinc in single HepG2 cells. On the focusing geometric designed PDMS microfluidic chip, the aqueous cell suspension was ejected and divided by hexanol to generate droplets. The droplets encapsulated single cells remain intact during the transportation into ICP for subsequent detection. Under the optimized conditions, the frequency of droplet generation is 3-6 × 10 6 min -1 , and the injected cell number is 2500 min -1 , which can ensure the single cell encapsulation. ZnO nanoparticles (NPs) were used for the quantification of zinc in single cells, and the accuracy was validated by conventional acid digestion-ICPMS method. The ZnO NPs incubated HepG2 cells were analyzed as model samples, and the results exhibit the heterogeneity of HepG2 cells in the uptake/adsorption of ZnO NPs. The developed online droplet-chip-ICPMS analysis system achieves stable single cell encapsulation and has high throughput for single cell analysis. It has the potential in monitoring the content as well as distribution of trace elements/NPs at the single cell level.

  10. A facile inexpensive route for SnS thin film solar cells with SnS{sub 2} buffer

    Energy Technology Data Exchange (ETDEWEB)

    Gedi, Sreedevi [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India); Minna Reddy, Vasudeva Reddy, E-mail: drmvasudr9@gmail.com [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India); Pejjai, Babu [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India); Jeon, Chan-Wook [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Park, Chinho, E-mail: chpark@ynu.ac.kr [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Ramakrishna Reddy, K.T., E-mail: ktrkreddy@gmail.com [Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India)

    2016-05-30

    Graphical abstract: PYS spectra of SnS/SnS{sub 2} interface and the related band diagram. - Highlights: • A low cost SnS solar cell is developed using chemical bath deposition. • We found E{sub I} & χ of SnS (5.3 eV & 4.0 eV) and SnS{sub 2} (6.9 eV & 4.1 eV) films from PYS. • Band offsets of 0.1 eV (E{sub c}) and 1.6 eV (E{sub v}) are estimated for SnS/SnS{sub 2} junction. • SnS based solar cell showed a conversion efficiency of 0.51%. - Abstract: Environment-friendly SnS based thin film solar cells with SnS{sub 2} as buffer layer were successfully fabricated from a facile inexpensive route, chemical bath deposition (CBD). Layer studies revealed that as-grown SnS and SnS{sub 2} films were polycrystalline; (1 1 1)/(0 0 1) peaks as the preferred orientation; 1.3 eV/2.8 eV as optical band gaps; and showed homogeneous microstructure with densely packed grains respectively. Ionization energy and electron affinity values were found by applying photoemission yield spectroscopy (PYS) to the CBD deposited SnS and SnS{sub 2} films for the first time. These values obtained as 5.3 eV and 4.0 eV for SnS films; 6.9 eV and 4.1 eV for SnS{sub 2} films. The band alignment of SnS/SnS{sub 2} junction showed TYPE-II heterostructure. The estimated conduction and valance band offsets were 0.1 eV and 1.6 eV respectively. The current density–voltage (J–V) measurements of the cell showed open circuit voltage (V{sub oc}) of 0.12 V, short circuit current density (J{sub sc}) of 10.87 mA cm{sup −2}, fill factor (FF) of 39% and conversion efficiency of 0.51%.

  11. Results from the CDE phase activity on neutron dosimetry for the international fusion materials irradiation facility test cell

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, B. E-mail: esposito@frascati.enea.it; Bertalot, L.; Maruccia, G.; Petrizzi, L.; Bignan, G.; Blandin, C.; Chauffriat, S.; Lebrun, A.; Recroix, H.; Trapp, J.P.; Kaschuck, Y

    2000-11-01

    The international fusion materials irradiation facility (IFMIF) project deals with the study of an accelerator-based, deuterium-lithium source, producing high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials for fusion energy reactors. IFMIF would also provide calibration and validation of data from fission reactor and other accelerator based irradiation tests. This paper describes the activity on neutron/gamma dosimetry (necessary for the characterization of the specimens' irradiation) performed in the frame of the IFMIF conceptual design evaluation (CDE) neutronics tasks. During the previous phase (conceptual design activity (CDA)) the multifoil activation method was proposed for the measurement of the neutron fluence and spectrum and a set of suitable foils was defined. The cross section variances and covariances of this set of foils have now been used for tests on the sensitivity of the IFMIF neutron spectrum determination to cross section uncertainties. The analysis has been carried out using the LSL-M2 code, which optimizes the neutron spectrum by means of a least-squares technique taking into account the variance and covariance files. In the second part of the activity, the possibility of extending to IFMIF the use of existing on-line in-core neutron/gamma monitors (to be located at several positions inside the IFMIF test cell for beam control, safety and diagnostic purposes) has been studied. A feasibility analysis of the modifications required to adapt sub-miniature fission chambers (recently developed by CEA-Cadarache) to the high flux test module of the test cell has been carried out. The verification of this application pertinence and a gross definition of the in-core detector characteristics are described. The option of using self-powered neutron detectors (SPNDs) is also discussed.

  12. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 115: AREA 25 TEST CELL A FACILITY, NEVADA TEST SITE, NEVADA

    International Nuclear Information System (INIS)

    2006-01-01

    This Closure Report (CR) describes the activities performed to close CAU 115, Area 25 Test Cell A Facility, as presented in the NDEP-approved SAFER Plan (NNSA/NSO, 2004). The SAFER Plan includes a summary of the site history, process knowledge, and closure standards. This CR provides a summary of the completed closure activities, documentation of waste disposal, and analytical and radiological data to confirm that the remediation goals were met and to document final site conditions. The approved closure alternative as presented in the SAFER Plan for CAU 115 (NNSA/NSO, 2004) was clean closure; however, closure in place was implemented under a Record of Technical Change (ROTC) to the SAFER Plan when radiological surveys indicated that the concrete reactor pad was radiologically activated and could not be decontaminated to meet free release levels. The ROTC is included as Appendix G of this report. The objectives of closure were to remove any trapped residual liquids and gases, dispose regulated and hazardous waste, decontaminate removable radiological contamination, demolish and dispose aboveground structures, remove the dewar as a best management practice (BMP), and characterize and restrict access to all remaining radiological contamination. Radiological contaminants of concern (COCs) included cobalt-60, cesium-137, strontium-90, uranium-234/235/236/238, and plutonium-239/240. Additional COCs included Resource Conservation and Recovery Act (RCRA) metals, polychlorinated biphenyls (PCBs), and asbestos

  13. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  14. Biochemistry Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  15. Dance Facilities.

    Science.gov (United States)

    Ashton, Dudley, Ed.; Irey, Charlotte, Ed.

    This booklet represents an effort to assist teachers and administrators in the professional planning of dance facilities and equipment. Three chapters present the history of dance facilities, provide recommended dance facilities and equipment, and offer some adaptations of dance facilities and equipment, for elementary, secondary and college level…

  16. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Lee, H. H.; Kim, K. H. and others

    2000-03-01

    The objectives of this study are (1) the refurbishment for PIEF(Post Irradiation Examination Facility) and M6 hot-cell in IMEF(Irradiated Material Examination Facility), (2) the establishment of the compatible facility for DUPIC fuel fabrication experiments which is licensed by government organization, and (3) the establishment of the transportation system and transportation cask for nuclear material between facilities. The report for this project describes following contents, such as objectives, necessities, scope, contents, results of current step, R and D plan in future and etc.

  17. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J S; Choi, J W; Go, W I; Kim, H D; Song, K C; Jeong, I H; Park, H S; Im, C S; Lee, H M; Moon, K H; Hong, K P; Lee, K S; Suh, K S; Kim, E K; Min, D K; Lee, J C; Chun, Y B; Paik, S Y; Lee, E P; Yoo, G S; Kim, Y S; Park, J C

    1997-09-01

    In the early stage of the project, a comprehensive survey was conducted to identify the feasibility of using available facilities and of interface between those facilities. It was found out that the shielded cell M6 interface between those facilities. It was found out that the shielded cell M6 of IMEF could be used for the main process experiments of DUPIC fuel fabrication in regard to space adequacy, material flow, equipment layout, etc. Based on such examination, a suitable adapter system for material transfer around the M6 cell was engineered. Regarding the PIEF facility, where spent PWR fuel assemblies are stored in an annex pool, disassembly devices in the pool are retrofitted and spent fuel rod cutting and shipping system to the IMEF are designed and built. For acquisition of casks for radioactive material transport between the facilities, some adaptive refurbishment was applied to the available cask (Padirac) based on extensive analysis on safety requirements. A mockup test facility was newly acquired for remote test of DUPIC fuel fabrication process equipment prior to installation in the M6 cell of the IMEF facility. (author). 157 refs., 57 tabs., 65 figs.

  18. DUPIC facility engineering

    International Nuclear Information System (INIS)

    Lee, J. S.; Choi, J. W.; Go, W. I.; Kim, H. D.; Song, K. C.; Jeong, I. H.; Park, H. S.; Im, C. S.; Lee, H. M.; Moon, K. H.; Hong, K. P.; Lee, K. S.; Suh, K. S.; Kim, E. K.; Min, D. K.; Lee, J. C.; Chun, Y. B.; Paik, S. Y.; Lee, E. P.; Yoo, G. S.; Kim, Y. S.; Park, J. C.

    1997-09-01

    In the early stage of the project, a comprehensive survey was conducted to identify the feasibility of using available facilities and of interface between those facilities. It was found out that the shielded cell M6 interface between those facilities. It was found out that the shielded cell M6 of IMEF could be used for the main process experiments of DUPIC fuel fabrication in regard to space adequacy, material flow, equipment layout, etc. Based on such examination, a suitable adapter system for material transfer around the M6 cell was engineered. Regarding the PIEF facility, where spent PWR fuel assemblies are stored in an annex pool, disassembly devices in the pool are retrofitted and spent fuel rod cutting and shipping system to the IMEF are designed and built. For acquisition of casks for radioactive material transport between the facilities, some adaptive refurbishment was applied to the available cask (Padirac) based on extensive analysis on safety requirements. A mockup test facility was newly acquired for remote test of DUPIC fuel fabrication process equipment prior to installation in the M6 cell of the IMEF facility. (author). 157 refs., 57 tabs., 65 figs

  19. 2015 In-Situ Gamma-Ray Assay of the West Cell Line in the 235-F Plutonium Fuel Form Facility

    Energy Technology Data Exchange (ETDEWEB)

    Brand, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Aucott, T. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiPrete, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-01

    In November and December 2015, scientists from SRNL took a series of in-situ gamma-ray measurements through the windows in front of Cells 6-9 on the west line of the PuFF facility using a shielded, 120% high-purity germanium detector. The detector efficiency was estimated using a combination of MCNP simulations and empirical measurements. Where possible, the distribution of the Pu-238 in the cells was determined using the Germanium Gamma-ray Imager (GeGI). This distribution was then fed into the MCNP model to quantify the Pu-238 in each cell. Data analysis was performed using three gamma rays emitted by Pu-238 (99.85 keV, 152.7 keV, and 766.4 keV) providing three independent estimates of the mass of Pu-238 holdup in each of the cells.

  20. Small Water Enterprise in Rural Rwanda: Business Development and Year-One Performance Evaluation of Nine Water Kiosks at Health Care Facilities.

    Science.gov (United States)

    Huttinger, Alexandra; Brunson, Laura; Moe, Christine L; Roha, Kristin; Ngirimpuhwe, Providence; Mfura, Leodomir; Kayigamba, Felix; Ciza, Philbert; Dreibelbis, Robert

    2017-12-16

    Small water enterprises (SWEs) have lower capital expenditures than centralized systems, offering decentralized solutions for rural markets. This study evaluated SWEs in rural Rwanda, where nine health care facilities (HCF) owned and operated water kiosks supplying water from onsite water treatment systems (WTS). SWEs were monitored for 12 months. Spearman's Rank Correlation Coefficient (r s ) was used to evaluate correlations between demand for kiosk water and community characteristics, and between kiosk profit and factors influencing the cost model. On average, SWEs distributed 15,300 L/month. One SWE ran at a loss, four had profit margins of ≤10% and four had profit margins of 45-75%. Factors influencing SWE performance were intermittent water supply (87% of SWE closures were due to water shortage), consumer demand (demand was high where populations already used improved water sources (r s = 0.81, p = 0.02)), price sensitivity (demand was lower where SWEs had high prices (r s = -0.65, p = 0.08)), and production cost (water utility tariffs negatively impacted SWE profits (r s = -0.52, p Future research is needed to assess the extent to which kiosk revenue can support ongoing operational costs of WTS and kiosks both at HCF and in other contexts.

  1. Small Water Enterprise in Rural Rwanda: Business Development and Year-One Performance Evaluation of Nine Water Kiosks at Health Care Facilities

    Directory of Open Access Journals (Sweden)

    Alexandra Huttinger

    2017-12-01

    Full Text Available Small water enterprises (SWEs have lower capital expenditures than centralized systems, offering decentralized solutions for rural markets. This study evaluated SWEs in rural Rwanda, where nine health care facilities (HCF owned and operated water kiosks supplying water from onsite water treatment systems (WTS. SWEs were monitored for 12 months. Spearman’s Rank Correlation Coefficient (rs was used to evaluate correlations between demand for kiosk water and community characteristics, and between kiosk profit and factors influencing the cost model. On average, SWEs distributed 15,300 L/month. One SWE ran at a loss, four had profit margins of ≤10% and four had profit margins of 45–75%. Factors influencing SWE performance were intermittent water supply (87% of SWE closures were due to water shortage, consumer demand (demand was high where populations already used improved water sources (rs = 0.81, p = 0.02, price sensitivity (demand was lower where SWEs had high prices (rs = −0.65, p = 0.08, and production cost (water utility tariffs negatively impacted SWE profits (rs = −0.52, p < 0.01. Sustainability was more favorable in circumstances where recovery of capital expenditures was not expected, and the demand for treated water was sufficient to fund operational expenditures. Future research is needed to assess the extent to which kiosk revenue can support ongoing operational costs of WTS and kiosks both at HCF and in other contexts.

  2. Waste Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset was developed from the Vermont DEC's list of certified solid waste facilities. It includes facility name, contact information, and the materials...

  3. Health Facilities

    Science.gov (United States)

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, ... psychiatric care centers. When you choose a health facility, you might want to consider How close it ...

  4. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  5. Stereotactic body radiotherapy and treatment at a high volume facility is associated with improved survival in patients with inoperable stage I non-small cell lung cancer

    International Nuclear Information System (INIS)

    Koshy, Matthew; Malik, Renuka; Mahmood, Usama; Husain, Zain; Sher, David J.

    2015-01-01

    Background: This study examined the comparative effectiveness of no treatment (NoTx), conventional fractionated radiotherapy (ConvRT), and stereotactic body radiotherapy (SBRT) in patients with inoperable stage I non-small cell lung cancer. This population based cohort also allowed us to examine what facility level characteristics contributed to improved outcomes. Methods: We included patients in the National Cancer Database from 2003 to 2006 with T1-T2N0M0 inoperable lung cancer (n = 13,036). Overall survival (OS) was estimated using Kaplan–Meier methods and Cox proportional hazard regression. Results: The median follow up was 68 months (interquartile range: 35–83 months) in surviving patients. Among the cohort, 52% received NoTx, 41% received ConvRT and 6% received SBRT. The 3-year OS was 28% for NoTx, 36% for ConvRT radiotherapy, and 48% for the SBRT cohort (p < 0.0001). On multivariate analysis, the hazard ratio for SBRT and ConvRT were 0.67 and 0.77, respectively, as compared to NoTx (1.0 ref) (p < 0.0001). Patients treated at a high volume facility vs. low volume facility had a hazard ratio of 0.94 vs. 1.0 (p = 0.01). Conclusions: Patients with early stage inoperable lung cancer treated with SBRT and at a high volume facility had a survival benefit compared to patients treated with ConvRT or NoTx or to those treated at a low volume facility

  6. Patient-driven resource planning of a health care facility evacuation.

    Science.gov (United States)

    Petinaux, Bruno; Yadav, Kabir

    2013-04-01

    The evacuation of a health care facility is a complex undertaking, especially if done in an immediate fashion, ie, within minutes. Patient factors, such as continuous medical care needs, mobility, and comprehension, will affect the efficiency of the evacuation and translate into evacuation resource needs. Prior evacuation resource estimates are 30 years old. Utilizing a cross-sectional survey of charge nurses of the clinical units in an urban, academic, adult trauma health care facility (HCF), the evacuation needs of hospitalized patients were assessed periodically over a two-year period. Survey data were collected on 2,050 patients. Units with patients having low continuous medical care needs during an emergency evacuation were the postpartum, psychiatry, rehabilitation medicine, surgical, and preoperative anesthesia care units, the Emergency Department, and Labor and Delivery Department (with the exception of patients in Stage II labor). Units with patients having high continuous medical care needs during an evacuation included the neonatal and adult intensive care units, special procedures unit, and operating and post-anesthesia care units. With the exception of the neonate group, 908 (47%) of the patients would be able to walk out of the facility, 492 (25.5%) would require a wheelchair, and 530 (27.5%) would require a stretcher to exit the HCF. A total of 1,639 patients (84.9%) were deemed able to comprehend the need to evacuate and to follow directions; the remainder were sedated, blind, or deaf. The charge nurses also determined that 17 (6.9%) of the 248 adult intensive care unit patients were too ill to survive an evacuation, and that in 10 (16.4%) of the 61 ongoing surgery cases, stopping the case was not considered to be safe. Heath care facilities can utilize the results of this study to model their anticipated resource requirements for an emergency evacuation. This will permit the Incident Management Team to mobilize the necessary resources both within

  7. Barriers and challenges in adopting Saudi telemedicine network: The perceptions of decision makers of healthcare facilities in Saudi Arabia.

    Science.gov (United States)

    Alaboudi, Abdulellah; Atkins, Anthony; Sharp, Bernadette; Balkhair, Ahmed; Alzahrani, Mohammed; Sunbul, Tamara

    Despite emerging evidence about the benefits of telemedicine, there are still many barriers and challenges to its adoption. Its adoption is often cited as a failed project because 75% of them are abandoned or 'failed outright' and this percentage increases to 90% in developing countries. The literature has clarified that there is neither one-size-fit-all framework nor best-practice solution for all ICT innovations or for all countries. Barriers and challenges in adopting and implementing one ICT innovation in a given country/organisation may not be similar - not for the same ICT innovation in another country/organisation nor for another ICT innovation in the same country/organisation. To the best of our knowledge, no comprehensive scientific study has investigated these challenges and barriers in all Healthcare Facilities (HCFs) across the Kingdom of Saudi Arabia (KSA). This research, which is undertaken based on the Saudi Telemedicine Network roadmap and in collaboration with the Saudi Ministry of Health (MOH), is aimed at identifying the principle predictive challenges and barriers in the context of the KSA, and understanding the perspective of the decision makers of each HCF type, sector, and location. Three theories are used to underpin this research: the Unified Theory of Acceptance and Use of Technology (UTAUT), the Technology-Organisation-Environment (TOE) theoretical framework, and the Evaluating Telemedicine Systems Success Model (ETSSM). This study applies a three-sequential-phase approach by using three mixed methods (i.e., literature review, interviews, and questionnaires) in order to utilise the source triangulation and the data comparison analysis technique. The findings of this study show that the top three influential barriers to adopt and implement telemedicine by the HCF decision makers are: (i) the availability of adequate sustainable financial support to implement, operate, and maintain the telemedicine system, (ii) ensuring conformity of

  8. Barriers and challenges in adopting Saudi telemedicine network: The perceptions of decision makers of healthcare facilities in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Abdulellah Alaboudi

    2016-11-01

    Full Text Available Summary: Despite emerging evidence about the benefits of telemedicine, there are still many barriers and challenges to its adoption. Its adoption is often cited as a failed project because 75% of them are abandoned or ‘failed outright’ and this percentage increases to 90% in developing countries. The literature has clarified that there is neither one-size-fit-all framework nor best-practice solution for all ICT innovations or for all countries. Barriers and challenges in adopting and implementing one ICT innovation in a given country/organisation may not be similar – not for the same ICT innovation in another country/organisation nor for another ICT innovation in the same country/organisation.To the best of our knowledge, no comprehensive scientific study has investigated these challenges and barriers in all Healthcare Facilities (HCFs across the Kingdom of Saudi Arabia (KSA. This research, which is undertaken based on the Saudi Telemedicine Network roadmap and in collaboration with the Saudi Ministry of Health (MOH, is aimed at identifying the principle predictive challenges and barriers in the context of the KSA, and understanding the perspective of the decision makers of each HCF type, sector, and location. Three theories are used to underpin this research: the Unified Theory of Acceptance and Use of Technology (UTAUT, the Technology–Organisation–Environment (TOE theoretical framework, and the Evaluating Telemedicine Systems Success Model (ETSSM. This study applies a three-sequential-phase approach by using three mixed methods (i.e., literature review, interviews, and questionnaires in order to utilise the source triangulation and the data comparison analysis technique. The findings of this study show that the top three influential barriers to adopt and implement telemedicine by the HCF decision makers are: (i the availability of adequate sustainable financial support to implement, operate, and maintain the telemedicine system, (ii

  9. A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer

    NARCIS (Netherlands)

    Bruyn, P. de; Moet, D.J.D.; Blom, P.W.M.

    2010-01-01

    Inverted polymer:fullerene solar cells with ZnO and MoO3 transport layers are demonstrated. ZnO films are prepared through spin casting of a zinc acetylacetonate hydrate solution, followed by low temperature annealing under ambient conditions. The performance of solar cells with an inverted

  10. Analysis of Cell Biomechanics Response to Gravity:A Fluids for Biology Study Utilizing NASA Glenns Zero Gravity Research Facility

    Science.gov (United States)

    Bomani, Bilal M. M.; Kassemi, Mohammad; Neumann, Eric S.

    2016-01-01

    It remains unclear how biological cells sense and respond to gravitational forces. Leading scientists state that a large gap exists in the understanding of physiological and molecular adaptation that occurs as biology enters the spaceflight realm. We are seeking a method to fully understand how cells sense microgravity/gravity and what triggers their response.

  11. A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer

    NARCIS (Netherlands)

    de Bruyn, P.; Moet, D. J. D.; Blom, P. W. M.

    Inverted polymer: fullerene solar cells with ZnO and MoO(3) transport layers are demonstrated. ZnO films are prepared through spin casting of a zinc acetylacetonate hydrate solution, followed by low temperature annealing under ambient conditions. The performance of solar cells with an inverted

  12. A novel facility for 3D micro-irradiation of living cells in a controlled environment by MeV ions.

    Science.gov (United States)

    Mäckel, V; Meissl, W; Ikeda, T; Clever, M; Meissl, E; Kobayashi, T; Kojima, T M; Imamoto, N; Ogiwara, K; Yamazaki, Y

    2014-01-01

    We present a novel facility for micro-irradiation of living targets with ions from a 1.7 MV tandem accelerator. We show results using 1 MeV protons and 2 MeV He(2+). In contrast to common micro-irradiation facilities, which use electromagnetic or electrostatic focusing and specially designed vacuum windows, we employ a tapered glass capillary with a thin end window, made from polystyrene with a thickness of 1-2 μm, for ion focusing and extraction. The capillary is connected to a beamline tilted vertically by 45°, which allows for easy immersion of the extracted ions into liquid environment within a standard cell culture dish. An inverted microscope is used for simultaneously observing the samples as well as the capillary tip, while a stage-top incubator provides an appropriate environment for the samples. Furthermore, our setup allows to target volumes in cells within a μm(3) resolution, while monitoring the target in real time during and after irradiation.

  13. Detonation cell size measurements in high-temperature hydrogen-air-steam mixtures at the BNL high-temperature combustion facility

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.L.

    1997-11-01

    The High-Temperature Combustion Facility (HTCF) was designed and constructed with the objective of studying detonation phenomena in mixtures of hydrogen-air-steam at initially high temperatures. The central element of the HTCF is a 27-cm inner-diameter, 21.3-m long cylindrical test vessel capable of being heating to 700K ± 14K. A unique feature of the HTCF is the 'diaphragmless' acetylene-oxygen gas driver which is used to initiate the detonation in the test gas. Cell size measurements have shown that for any hydrogen-air-steam mixture, increasing the initial mixture temperature, in the range of 300K to 650K, while maintaining the initial pressure of 0.1 MPa, decreases the cell size and thus makes the mixture more detonable. The effect of steam dilution on cell size was tested in stoichiometric and off-stoichiometric (e.g., equivalence ratio of 0.5) hydrogen-air mixtures. Increasing the steam dilution in hydrogen-air mixtures at 0.1 MPa initial pressure increases the cell size, irrespective of initial temperature. It is also observed that the desensitizing effect of steam diminished with increased initial temperature. A 1-dimensional, steady-state Zel'dovich, von Neumann, Doring (ZND) model, with full chemical kinetics, has been used to predict cell size for hydrogen-air-steam mixtures at different initial conditions. Qualitatively the model predicts the overall trends observed in the measured cell size versus mixture composition and initial temperature and pressure. It was found that the proportionality constant used to predict detonation cell size from the calculated ZND model reaction zone varies between 10 and 100 depending on the mixture composition and initial temperature. 32 refs., 35 figs

  14. Facilities Programming.

    Science.gov (United States)

    Bullis, Robert V.

    1992-01-01

    A procedure for physical facilities management written 17 years ago is still worth following today. Each of the steps outlined for planning, organizing, directing, controlling, and evaluating must be accomplished if school facilities are to be properly planned and constructed. However, lessons have been learned about energy consumption and proper…

  15. Nuclear facilities

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Here is given the decree (2000-1065) of the 25. of October 2000 reporting the publication of the convention between the Government of the French Republic and the CERN concerning the safety of the LHC (Large Hadron Collider) and the SPS (Proton Supersynchrotron) facilities, signed in Geneva on July 11, 2000. By this convention, the CERN undertakes to ensure the safety of the LHC and SPS facilities and those of the operations of the LEP decommissioning. The French legislation and regulations on basic nuclear facilities (concerning more particularly the protection against ionizing radiations, the protection of the environment and the safety of facilities) and those which could be decided later on apply to the LHC, SPS and auxiliary facilities. (O.M.)

  16. Outline of NUCEF facility

    International Nuclear Information System (INIS)

    Takeshita, Isao

    1996-01-01

    NUCEF is a multipurpose research facility in the field of safety and advanced technology of nuclear fuel cycle back-end. Various experiment facilities and its supporting installations, in which nuclear fuel materials, radio isotopes and TRU elements can be handled, are arranged in more than one hundred rooms of two experiment buildings. Its construction was completed in middle of 1994 and hot experiments have been started since then. NUCEF is located on the site (30,000 m 2 ) of southeastern part in the Tokai Research Establishment of JAERI facing to the Pacific Ocean. The base of Experiment Buildings A and B was directly founded on the rock existing at 10-15 m below ground level taking the aseismatic design into consideration. Each building is almost same sized and composed of one basement and three floors of which area is 17,500 m 2 in total. In the basement, there are exhaust facilities of ventilation system, treatment system of solution fuel and radioactive waste solution and storage tanks of them. Major experiment facilities are located on the first or the second floors in each building. An air-inlet facility of ventilation system for each building is equipped on the third floor. Most of experiment facilities for criticality safety research including two critical facilities: Static Experiment Critical Facility (STACY) and Transient Experiment Critical Facility (TRACY) are installed in Experiment Building A. Experiment equipments for research on advanced fuel reprocessing process and on TRU waste management, which are named BECKY (Back End Fuel Cycle Key Elements Research Facility), are installed in laboratories and a-g cells in Experiment Building B. (J.P.N.)

  17. Scalable Fabrication of Efficient NiCo2S4 Counter Electrodes for Dye-sensitized Solar Cells Using a Facile Solution Approach

    International Nuclear Information System (INIS)

    Su, An-Lin; Lu, Man-Ning; Chang, Chin-Yu; Wei, Tzu-Chien; Lin, Jeng-Yu

    2016-01-01

    Exploiting highly electrocatalytic and cost-effectiveness counter electrodes (CEs) in dye-sensitized solar cells (DSCs) has been regarded as a persistent objective. In this work, we proposed a facile low-cost solution approach for scalable fabrication of NiCo 2 S 4 (NCS) CEs in Pt-free DSCs. Firstly, NCS particles were synthesized by means of a solvothermal method. Afterwards, the NCS particles were successfully immobilized on fluorine-doped tin oxide (FTO) glass substrate and indium doped tin oxide polyethylene naphthalate (ITO/PEN) flexible substrate as NCS CE and flexible NCS CE, respectively, by using series of dip-coating processes. On the basis of extensive electrochemical characterizations, the NCS CEs displayed Pt-like electrocatalytic activity for I 3 − reduction. The DSC based on the NCS CE achieved an impressive cell efficiency of 8.94%, which was higher than that of the cell with the conventional Pt CE (8.51%). More interesting, the DSC using the flexible NCS CE still demonstrated an acceptable cell performance of 8.62% (or 8.57% with the bended flexible NCS CE).

  18. DeBeNe Test Facilities for Fast Breeder Development

    International Nuclear Information System (INIS)

    Storz, R.

    1980-10-01

    This report gives an overview and a short description of the test facilities constructed and operated within the collaboration for fast breeder development in Germany, Belgium and the Netherlands. The facilities are grouped into Sodium Loops (Large Facilities and Laboratory Loops), Special Equipment including Hot Cells and Reprocessing, Test Facilities without Sodium, Zero Power Facilities and In-pile Loops including Irradiation Facilities

  19. Results from the CDE phase activity on neutron dosimetry for the international fusion materials irradiation facility test cell

    CERN Document Server

    Esposito, B; Maruccia, G; Petrizzi, L; Bignon, G; Blandin, C; Chauffriat, S; Lebrun, A; Recroix, H; Trapp, J P; Kaschuck, Y

    2000-01-01

    The international fusion materials irradiation facility (IFMIF) project deals with the study of an accelerator-based, deuterium-lithium source, producing high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials for fusion energy reactors. IFMIF would also provide calibration and validation of data from fission reactor and other accelerator based irradiation tests. This paper describes the activity on neutron/gamma dosimetry (necessary for the characterization of the specimens' irradiation) performed in the frame of the IFMIF conceptual design evaluation (CDE) neutronics tasks. During the previous phase (conceptual design activity (CDA)) the multifoil activation method was proposed for the measurement of the neutron fluence and spectrum and a set of suitable foils was defined. The cross section variances and covariances of this set of foils have now been used for tests on the sensitivity of the IFMIF neutron spectrum determination to cross section uncertainties...

  20. Mammography Facilities

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mammography Facility Database is updated periodically based on information received from the four FDA-approved accreditation bodies: the American College of...

  1. Canyon Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — B Plant, T Plant, U Plant, PUREX, and REDOX (see their links) are the five facilities at Hanford where the original objective was plutonium removal from the uranium...

  2. Groundwater Modeling of Mercury Pollution at a Former Mercury Cell Chlor Alkali Facility in Pavlodar City, Kazakhstan

    Science.gov (United States)

    In northern Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severely contaminated with mercury and mercury compounds as a result of the industrial activity of this ch...

  3. Polymer Solar Cells with Efficiency >10% Enabled via a Facile Solution-Processed Al-Doped ZnO Electron Transporting Layer

    KAUST Repository

    Jagadamma, Lethy Krishnan

    2015-04-22

    A facile and low-temperature (125 °C) solution-processed Al-doped ZnO (AZO) buffer layer functioning very effectively as electron accepting/hole blocking layer for a wide range of polymer:fullerene bulk heterojunction systems, yielding power conversion efficiency in excess of 10% (8%) on glass (plastic) substrates is described. The ammonia-treatment of the aqueous AZO nanoparticle solution produces compact, crystalline, and smooth thin films, which retain the aluminum doping, and eliminates/reduces the native defects by nitrogen incorporation, making them good electron transporters and energetically matched with the fullerene acceptor. It is demonstrated that highly efficient solar cells can be achieved without the need for additional surface chemical modifications of the buffer layer, which is a common requirement for many metal oxide buffer layers to yield efficient solar cells. Also highly efficient solar cells are achieved with thick AZO films (>50 nm), highlighting the suitability of this material for roll-to-roll coating. Preliminary results on the applicability of AZO as electron injection layer in F8BT-based polymer light emitting diode are also presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Facile synthesis of Ni-decorated multi-layers graphene sheets as effective anode for direct urea fuel cells

    Directory of Open Access Journals (Sweden)

    Ahmed Yousef

    2017-09-01

    Full Text Available A large amount of urea-containing wastewater is produced as a by-product in the fertilizer industry, requiring costly and complicated treatment strategies. Considering that urea can be exploited as fuel, this wastewater can be treated and simultaneously exploited as a renewable energy source in a direct urea fuel cell. In this study, multi-layers graphene/nickel nanocomposites were prepared by a one-step green method for use as an anode in the direct urea fuel cell. Typically, commercial sugar was mixed with nickel(II acetate tetrahydrate in distilled water and then calcined at 800 °C for 1 h. Raman spectroscopy, X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM and energy dispersive spectroscopy (EDS were employed to characterize the final product. The results confirmed the formation of multi-layers graphene sheets decorated by nickel nanoparticles. To investigate the influence of metal nanoparticles content, samples were prepared using different amounts of the metal precursor; nickel acetate content was changed from 0 to 5 wt.%. Investigation of the electrochemical characterizations indicated that the sample prepared using the original solution with 3 wt.% nickel acetate had the best current density, 81.65 mA/cm2 in a 0.33 M urea solution (in 1 M KOH at an applied voltage 0.9 V vs Ag/AgCl. In a passive direct urea fuel cell based on the optimal composition, the observed maximum power density was 4.06 × 10−3 mW/cm2 with an open circuit voltage of 0.197 V at room temperature in an actual electric circuit. Overall, this study introduces a cheap and beneficial methodology to prepare effective anode materials for direct urea fuel cells.

  5. Power Systems Development Facility

    International Nuclear Information System (INIS)

    1993-06-01

    The objective of the PSDF would be to provide a modular facility which would support the development of advanced, pilot-scale, coal-based power systems and hot gas clean-up components. These pilot-scale components would be designed to be large enough so that the results can be related and projected to commercial systems. The facility would use a modular approach to enhance the flexibility and capability for testing; consequently, overall capital and operating costs when compared with stand-alone facilities would be reduced by sharing resources common to different modules. The facility would identify and resolve technical barrier, as well as-provide a structure for long-term testing and performance assessment. It is also intended that the facility would evaluate the operational and performance characteristics of the advanced power systems with both bituminous and subbituminous coals. Five technology-based experimental modules are proposed for the PSDF: (1) an advanced gasifier module, (2) a fuel cell test module, (3) a PFBC module, (4) a combustion gas turbine module, and (5) a module comprised of five hot gas cleanup particulate control devices. The final module, the PCD, would capture coal-derived ash and particles from both the PFBC and advanced gasifier gas streams to provide for overall particulate emission control, as well as to protect the combustion turbine and the fuel cell

  6. Hot Fuel Examination Facility (HFEF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hot Fuel Examination Facility (HFEF) is one of the largest hot cells dedicated to radioactive materials research at Idaho National Laboratory (INL). The nation's...

  7. Turn on macrocyclic chemosensor for Al3+ ion with facile synthesis and application in live cell imaging

    Science.gov (United States)

    Ezhumalai, Dhineshkumar; Mathivanan, Iyappan; Chinnadurai, Anbuselvan

    2018-06-01

    An effort of a new Schiff base macrocyclic chemosensor, 14‑methyl‑2,6,8,12,14,18‑hexaaza‑1,7,13(1,2),4,10,16(1,4)‑hexabenzenacyclooctadecaphane‑2,5,8,11,14,17‑hexaene (me1) and 14,74‑dimethyl‑2,6,8,12,14,18‑hexaaza‑1,7,13(1,2),4,10,16(1,4)‑hexabenzenacyclooctadecadecaphane‑2,5,8,11,14,17‑hexaene (dm2), which enables selective sensing of Al3+ in aqueous DMF were synthesized by a simplistic one-step condensation reaction of macrocyclic compounds. The probe me1 and dm2 characterized by elemental analysis, FT-IR, 1H and 13C NMR, LC-MS spectral techniques. The compounds as mentioned above subjected to FE-SEM with EDS and elemental color mapping. On addition of Al3+, the fluorescent probe me1 and dm2 induces turn-on responses in both absorption and sensing spectra by a PET mechanism. The receptor me1 and dm2 serve highly selective, sensitive and turn-on detection of Al3+. Further, they did not interfere with other cations present in biological or environmental samples. The detection limit is found to be 3 μM and 5 μM. From the view of cytotoxic activity, the ability of these compounds me1 and dm2 to inhibit the growth of KB cell lines examined. The chelating functionality of compounds me1 and dm2 examined for their inhibitory properties of KB cell, live cell images. The compounds me1 and dm2 subjected to theoretical studies by DFT-B3LYP invoking the 6-31G level of theory. The energy of the HOMO and LUMO has been established.

  8. Facile synthesis of TiO2 hierarchical microspheres assembled by ultrathin nanosheets for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Xu, Fang; Zhang, Xuyan; Wu, Yao; Wu, Dapeng; Gao, Zhiyong; Jiang, Kai

    2013-01-01

    Highlights: •TiO 2 hierarchical spheres were prepared via one-pot solvothermal route. •TiO 2 hierarchical spheres based DSSCs shows a conversion efficiency of 5.56%. •The performance of DSSC is dependence of the thickness of photoanode. -- Abstract: TiO 2 hierarchical microspheres assembled by ultrathin nanosheets were prepared via solvothermal route for dye-sensitized solar cells (DSSCs). The performance of cells was investigated by diffuse and reflectance spectra, photocurrent–voltage measurement, incident-photon-to-current conversion efficiency and electrochemical impedance spectra. Photoanodes with different thickness of TiO 2 hierarchical spheres were studied, which proves that the photoanode with thickness of 15.9 μm exhibits higher performance (short-circuit current density of 12.36 mA cm −2 , open-circuit voltage of 0.73 mV, fill factor of 61.95, and conversion efficiency of 5.56%) than that of P25-based DSSC due to the excellent particle interconnections, low electron recombination and high specific surface area (78 m 2 g −1 )

  9. Proteomic analysis of the herpes simplex virus 1 virion protein 16 transactivator protein in infected cells.

    Science.gov (United States)

    Suk, Hyung; Knipe, David M

    2015-06-01

    The herpes simplex virus 1 virion protein 16 (VP16) tegument protein forms a transactivation complex with the cellular proteins host cell factor 1 (HCF-1) and octamer-binding transcription factor 1 (Oct-1) upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times postinfection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 h postinfection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the infected cell protein 4 (ICP4) immediate-early (IE) transactivator protein. These results raise the potential for a new function for VP16 in associating with the IE ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of IE gene expression. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Facile method for synthesis of TiO{sub 2} film and its application in high efficiency dye sensitized-solar cell (DSSC)

    Energy Technology Data Exchange (ETDEWEB)

    Widiyandari, Hendri, E-mail: h.widiyandari@undip.ac.id; Gunawan, S. K.V.; Suseno, Jatmiko Endro [Department of Physics, Diponegoro University, Jl. Prof. H. Soedarto SH, Semarang, Central Java 50275 (Indonesia); Purwanto, Agus [Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami No. 36 A, Surakarta (Indonesia); Diharjo, Kuncoro [Department of Mechanical Engineering, Sebelas Maret University, Jl. Ir. Sutami No. 36 A, Surakarta (Indonesia)

    2014-02-24

    Dye-sensitized solar cells (DSSC) is a device which converts a solar energy to electrical energy. Different with semiconductor thin film based solar cell, DSSC utilize the sensitized-dye to absorb the photon and semiconductor such as titanium dioxide (TiO{sub 2}) and zinc oxide (ZnO) as a working electrode photoanode. In this report, the preparation of TiO{sub 2} film using a facile method of spray deposition and its application in DSSC have been presented. TiO{sub 2} photoanode was synthesized by growing the droplet of titanium tetraisopropoxide diluted in acid solution on the substrate of conductive glass flourine-doped tin oxide (FTO) with variation of precursor volume. DSSC was assemblied by sandwiching both of photoanode electrode and platinum counter electrode subsequently filling the area between these electrodes with triodine/iodine electrolite solution as redox pairs. The characterization of the as prepared DSSC using solar simulator (AM 1.5G, 100 mW/cm{sup 2}) and I-V source meter Keithley 2400 showed that the performance of DSSC was affected by the precursor volume.. The overall conversion efficiency of DSSC using the optimum TiO{sub 2} film was about 1.97% with the open circuit voltage (V{sub oc}) of 0.73 V, short circuit current density (J{sub sc}) of 4.61 mA and fill factor (FF) of 0.58.

  11. Facile synthesis of mPEG-luteolin-capped silver nanoparticles with antimicrobial activity and cytotoxicity to neuroblastoma SK-N-SH cells.

    Science.gov (United States)

    Qing, Weixia; Wang, Yong; Li, Xiao; Lu, Minghua; Liu, Xiuhua

    2017-12-01

    We firstly report a facile route for the green synthesis of mPEG-luteolin-capped silver nanoparticles (mPEG-luteolin-AgNPs) using mPEG-luteolin as both the reducer and stabilizer. The reaction was carried out in a stirred aqueous solution at 50°C without additional poisonous reagents. The prepared mPEG-luteolin-AgNPs was characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), zeta potential and UV-vis (UV-vis) spectrum, respectively. The proportions of mPEG-luteolin capped silver nanoparticles is about 89.9%, and the content of silver is 6.65%. The mPEG-luteolin-AgNPs was evaluated the antimicrobial effects on Staphlococcus aureus, Extended spectrum β-Lactamases Staphlococcus aureus, Escherichia Coli and Extended spectrum β-Lactamases Escherichia Coli using drilling hole method. The results showed that both gram-positive and gram-negative bacteria were killed by the mPEG-luteolin-AgNPs at low concentration. Meanwhile, the cell viability assay demonstrated that mPEG-luteolin-AgNPs had toxic effects on human neuroblastoma SK-N-SH cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Facile Preparation of TiO2 Nanobranch/Nanoparticle Hybrid Architecture with Enhanced Light Harvesting Properties for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Ju Seong Kim

    2015-01-01

    Full Text Available We report TiO2 nanobranches/nanoparticles (NBN hybrid architectures that can be synthesized by a facile solution phase method. The hybrid architecture simultaneously improves light harvesting and charge collection performances for a dye-sensitized solar cell. First, TiO2 nanorods with a trunk length of 2 μm were grown on a fluorine-doped tin oxide (FTO/glass substrate, and then nanobranches and nanoparticles were deposited on the nanorods’ trunks through a solution method using an aqueous TiCl3 solution at 80°C. The relative amount of nanobranches and nanoparticles can be controlled by multiplying the number of TiCl3 treatments to maximize the amount of surface area. We found that the resultant TiO2 NBN hybrid architecture greatly improves the amount of dye adsorption (five times compared to bare nanorods due to the enhanced surface area, while maintaining a fast charge collection, leading to a three times higher current density and thus tripling the maximum power conversion efficiency for a dye-sensitized solar cell.

  13. Facile and Scalable Fabrication of Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells in Air Using Gas Pump Method.

    Science.gov (United States)

    Ding, Bin; Gao, Lili; Liang, Lusheng; Chu, Qianqian; Song, Xiaoxuan; Li, Yan; Yang, Guanjun; Fan, Bin; Wang, Mingkui; Li, Chengxin; Li, Changjiu

    2016-08-10

    Control of the perovskite film formation process to produce high-quality organic-inorganic metal halide perovskite thin films with uniform morphology, high surface coverage, and minimum pinholes is of great importance to highly efficient solar cells. Herein, we report on large-area light-absorbing perovskite films fabrication with a new facile and scalable gas pump method. By decreasing the total pressure in the evaporation environment, the gas pump method can significantly enhance the solvent evaporation rate by 8 times faster and thereby produce an extremely dense, uniform, and full-coverage perovskite thin film. The resulting planar perovskite solar cells can achieve an impressive power conversion efficiency up to 19.00% with an average efficiency of 17.38 ± 0.70% for 32 devices with an area of 5 × 2 mm, 13.91% for devices with a large area up to 1.13 cm(2). The perovskite films can be easily fabricated in air conditions with a relative humidity of 45-55%, which definitely has a promising prospect in industrial application of large-area perovskite solar panels.

  14. Polymer solar cells with efficiency >10% enabled via a facile solution-processed Al-doped ZnO electron transporting layer

    KAUST Repository

    Jagadamma, Lethy Krishnan

    2015-10-05

    The present work details a facile and low-temperature (125C) solution-processed Al-doped ZnO (AZO) buffer layer functioning very effectively as electron accepting/hole blocking layer for a wide range of polymer:fullerene bulk heterojunction systems, and yielding power conversion efficiency in excess of 10% (8%) on glass (plastic) substrates. We show that ammonia addition to the aqueous AZO nanoparticle solution is a critically important step toward producing compact and smooth thin films which partially retain the aluminum doping and crystalline order of the starting AZO nanocrystals. The ammonia treatment appears to reduce the native defects via nitrogen incorporation, making the AZO film a very good electron transporter and energetically matched with the fullerene acceptor. Importantly, highly efficient solar cells are achieved without the need for additional surface chemical passivation or modification, which has become an increasingly common route to improving the performance of evaporated or solution-processed ZnO ETLs in solar cells.

  15. Facile synthesis of ZnO nanobullets/nanoflakes and their applications to dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mou Jixia [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zhang Weiguang, E-mail: wgzhang@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Fan Jun; Deng Hong [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Chen Wei [Wuhan National Laboratory for Optoelectronics and College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-01-21

    Research highlights: >Although there are many available methods to fabricate ZnO nanostructures, we report here a simple and generalized method to prepare ZnO nanocrystallites from zinc acetates by tuning the volume ratio between water and ethylene glycol. In comparison, this synthetic method is of relatively low cost and is able to readily scaled-up for industrial production. In particular, the ZnO nanostructures were used as active photoanodes after incorporation in sandwich-type dye-sensitized solar cells (DSSCs). The overall solar-to-electric energy conversion efficiencies obtained under air mass (AM) 1.5 conditions, were 1.93% using ZnO nanobullets, while the efficiency was raised up to 3.64% using ZnO nanoflakes. - Abstract: In this paper we reported a successful synthesis of ZnO nanobullets/nanoflakes by a simple hydro/solvothermal method employing a mixture of water/ethylene glycol as the solvent, and zinc acetate as the zinc source. The final products were characterized by powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Raman scattering and photofluorescence spectra of the products were also investigated. ZnO with both nanobullets and nanoflakes nanostructures had been comparably studied as active photoanodes in dye-sensitized solar cell (DSSC) system, and the overall light-to-energy conversion efficiency of 1.93% has been achieved for nanobullets based DSSC, while that for ZnO nanoflakes based DSSC has been raised up to 3.64%.

  16. The Effects of LCF Loadings on HCF Crack Growth

    National Research Council Canada - National Science Library

    Hall, R

    1999-01-01

    .... In this phase, the contractor will begin by collating and reviewing all data relating to threshold values and combined high and low cycle fatigue testing on forged material previously developed...

  17. Facile synthesis of nitrogen-doped reduced graphene oxide as an efficient counter electrode for dye-sensitized solar cells

    Science.gov (United States)

    Wei, Liguo; Wang, Ping; Yang, Yulin; Luo, Ruidong; Li, Jinqi; Gu, Xiaohu; Zhan, Zhaoshun; Dong, Yongli; Song, Weina; Fan, Ruiqing

    2018-04-01

    A nitrogen-doped reduced graphene oxide (N-RGO) nanosheet was synthesized by a simple hydrothermal method and characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electrode microscopy. After being deposited as counter electrode film for dye-sensitized solar cells (DSSCs), it is found that the synthesized N-RGO nanosheet has smaller charge-transfer resistance and better electrocatalytic activity towards reduction of triiodide than the reduced graphene oxide (RGO) nanosheet. Consequently, the DSSCs based on the N-RGO counter electrode achieve an energy conversion efficiency of 4.26%, which is higher than that of the RGO counter electrode (2.85%) prepared under the same conditions, and comparable to the value (5.21%) obtained with the Pt counter electrode as a reference. This N-RGO counter electrode offers the advantages of not only saving the cost of Pt itself but also simplifying the process of counter electrode preparation. Therefore, an inexpensive N-RGO nanosheet is a promising counter electrode material to replace noble metal Pt. [Figure not available: see fulltext.

  18. Water, sanitation and hygiene infrastructure and quality in rural healthcare facilities in Rwanda.

    Science.gov (United States)

    Huttinger, Alexandra; Dreibelbis, Robert; Kayigamba, Felix; Ngabo, Fidel; Mfura, Leodomir; Merryweather, Brittney; Cardon, Amelie; Moe, Christine

    2017-08-03

    WHO and UNICEF have proposed an action plan to achieve universal water, sanitation and hygiene (WASH) coverage in healthcare facilities (HCFs) by 2030. The WASH targets and indicators for HCFs include: an improved water source on the premises accessible to all users, basic sanitation facilities, a hand washing facility with soap and water at all sanitation facilities and patient care areas. To establish viable targets for WASH in HCFs, investigation beyond 'access' is needed to address the state of WASH infrastructure and service provision. Patient and caregiver use of WASH services is largely unaddressed in previous studies despite being critical for infection control. The state of WASH services used by staff, patients and caregivers was assessed in 17 rural HCFs in Rwanda. Site selection was non-random and predicated upon piped water and power supply. Direct observation and semi-structured interviews assessed drinking water treatment, presence and condition of sanitation facilities, provision of soap and water, and WASH-related maintenance and record keeping. Samples were collected from water sources and treated drinking water containers and analyzed for total coliforms, E. coli, and chlorine residual. Drinking water treatment was reported at 15 of 17 sites. Three of 18 drinking water samples collected met the WHO guideline for free chlorine residual of >0.2 mg/l, 6 of 16 drinking water samples analyzed for total coliforms met the WHO guideline of hygienic condition and accessible to patients. Regular maintenance of WASH infrastructure consisted of cleaning; no HCF had on-site capacity for performing repairs. Quarterly evaluations of HCFs for Rwanda's Performance Based Financing system included WASH indicators. All HCFs met national policies for water access, but WHO guidelines for environmental standards including water quality were not fully satisfied. Access to WASH services at the HCFs differed between staff and patients and caregivers.

  19. Facility effluent monitoring plan for the 325 Facility

    International Nuclear Information System (INIS)

    1998-01-01

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  20. Support facilities

    International Nuclear Information System (INIS)

    Williamson, F.S.; Blomquist, J.A.; Fox, C.A.

    1977-01-01

    Computer support is centered on the Remote Access Data Station (RADS), which is equipped with a 1000 lpm printer, 1000 cpm reader, and a 300 cps paper tape reader with 500-foot spools. The RADS is located in a data preparation room with four 029 key punches (two of which interpret), a storage vault for archival magnetic tapes, card files, and a 30 cps interactive terminal principally used for job inquiry and routing. An adjacent room provides work space for users, with a documentation library and a consultant's office, plus file storage for programs and their documentations. The facility has approximately 2,600 square feet of working laboratory space, and includes two fully equipped photographic darkrooms, sectioning and autoradiographic facilities, six microscope cubicles, and five transmission electron microscopes and one Cambridge scanning electron microscope equipped with an x-ray energy dispersive analytical system. Ancillary specimen preparative equipment includes vacuum evaporators, freeze-drying and freeze-etching equipment, ultramicrotomes, and assorted photographic and light microscopic equipment. The extensive physical plant of the animal facilities includes provisions for holding all species of laboratory animals under controlled conditions of temperature, humidity, and lighting. More than forty rooms are available for studies of the smaller species. These have a potential capacity of more than 75,000 mice, or smaller numbers of larger species and those requiring special housing arrangements. There are also six dog kennels to accommodate approximately 750 dogs housed in runs that consist of heated indoor compartments and outdoor exercise areas

  1. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada Test Site, Nevada, Revision 1

    International Nuclear Information System (INIS)

    2008-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. The Test Cell C (TCC) Facility is located in Area 25 of the Nevada Test Site (NTS) approximately 25 miles northwest of Mercury, Nevada (Figure 1). CAU 116 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) of 1996 (as amended February 2008) and consists of two Corrective Action Sites (CASs): (1) CAS 25-23-20, Nuclear Furnace Piping; and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 is described in the FFACO as the TCC Facility but actually includes Building 3210 and attached concrete shield wall only. CAU 116 will be closed by demolishing Building 3210, the attached concrete shield wall, and the nuclear furnace piping. In addition, as a best management practice (BMP), Building 3211 (moveable shed) will be demolished due to its close proximity to Building 3210. This will aid in demolition and disposal operations. Radiological surveys will be performed on the demolition debris to determine the proper disposal pathway. As much of the demolition debris as space allows will be placed into the Building 3210 basement structure. After filling to capacity with demolition debris, the basement structure will be mounded or capped and closed with administrative controls. Prior to beginning demolition activities and according to an approved Sampling and Analysis Plan (SAP), representative sampling of surface areas that are known, suspected, or have the potential to contain hazardous constituents such as lead or polychlorinated biphenyls (PCBs) will be performed throughout all buildings and structures. Sections 2.3.2, 4.2.2.2, 4.2.2.3, 4.3, and 6.2.6.1 address the methodologies employed that assure the solid debris placed in the basement structure will not contain contaminants of concern (COCs) above hazardous waste levels. The anticipated post

  2. Emission Facilities - Erosion & Sediment Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  3. What is the impact of water sanitation and hygiene in healthcare facilities on care seeking behaviour and patient satisfaction? A systematic review of the evidence from low-income and middle-income countries

    Science.gov (United States)

    Cumming, Oliver; Hunter, Paul R

    2018-01-01

    Patient satisfaction with healthcare has clear implications on service use and health outcomes. Barriers to care seeking are complex and multiple and delays in seeking care are associated with significant morbidity and mortality. We sought to assess the relationship between water, sanitation and hygiene (WASH) provision in healthcare facilities (HCF) and patient satisfaction/care seeking behaviour in low-income and middle-income countries. Pubmed and Medline Ovid were searched using a combination of search terms. 984 papers were retrieved and only 21 had a WASH component warranting inclusion. WASH was not identified as a driver of patient satisfaction but poor WASH provision was associated with significant patient dissatisfaction with infrastructure and quality of care. However, this dissatisfaction was not sufficient to stop patients from seeking care in these poorly served facilities. With specific regard to maternal health services, poor WASH provision was the reason for women choosing home delivery, although providers’ attitudes and interpersonal behaviours were the main drivers of patient dissatisfaction with maternal health services. Patient satisfaction was mainly assessed via questionnaires and studies reported a high risk of courtesy bias, potentially leading to an overestimation of patient satisfaction. Patient satisfaction was also found to be significantly affected by expectation, which was strongly influenced by patients’ socioeconomic status and education. This systematic review also highlighted a paucity of research to describe and evaluate interventions to improve WASH conditions in HCF in low-income setting with a high burden of healthcare-associated infections. Our review suggests that improving WASH conditions will decrease patience dissatisfaction, which may increase care seeking behaviour and improve health outcomes but that more rigorous research is needed. PMID:29765776

  4. Hot cell facility in CVR

    International Nuclear Information System (INIS)

    Miklos, M.; Srba, O.

    2014-01-01

    In the Czech Republic irradiated fuel inspection has been carried out at Temelin NPP since 2003. Initial reason was the use of eastern reactor concept with western fuel type, then later confirmation of the new fuel from another manufacturer. Since 2008, Research Centre Rez Ltd. cooperates in inspections, whose team has been working as an independent check of the fuel supplier since 2011. Within post-radiation program the checks of the status of selected fuel assemblies are carried out during downtime on the block, i.e. visual inspection and measurement of torsion, bending and length of the fuel assembly takes place. (authors)

  5. Regional energy facility siting analysis

    International Nuclear Information System (INIS)

    Eberhart, R.C.; Eagles, T.W.

    1976-01-01

    Results of the energy facility siting analysis portion of a regional pilot study performed for the anticipated National Energy Siting and Facility Report are presented. The question of cell analysis versus site-specific analysis is explored, including an evaluation of the difference in depth between the two approaches. A discussion of the possible accomplishments of regional analysis is presented. It is concluded that regional sitting analysis could be of use in a national siting study, if its inherent limits are recognized

  6. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other facilities...

  7. Studsvik thermal neutron facility

    International Nuclear Information System (INIS)

    Pettersson, O.A.; Larsson, B.; Grusell, E.; Svensson, P.

    1992-01-01

    The Studsvik thermal neutron facility at the R2-0 reactor originally designed for neutron capture radiography has been modified to permit irradiation of living cells and animals. A hole was drilled in the concrete shielding to provide a cylindrical channel with diameter of 25.3 cm. A shielding water tank serves as an entry holder for cells and animals. The advantage of this modification is that cells and animals can be irradiated at a constant thermal neutron fluence rate of approximately 10 9 n cm -2 s -1 (at 100 kW) without stopping and restarting the reactor. Topographic analysis of boron done by neutron capture autoradiography (NCR) can be irradiated under the same conditions as previously

  8. Universal Test Facility

    Science.gov (United States)

    Laughery, Mike

    A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.

  9. Transmittal of the Calculation Package that Supports the Analysis of Performance of the Environmental Management Waste Management Facility Oak Ridge, Tennessee (Based 5-Cell Design Issued 8/14/09)

    Energy Technology Data Exchange (ETDEWEB)

    Williams M.J.

    2009-09-14

    This document presents the results of an assessment of the performance of a build-out of the Environmental Management Waste Management Facility (EMWMF). The EMWMF configuration that was assessed includes the as-constructed Cells 1 through 4, with a groundwater underdrain that was installed beneath Cell 3 during the winter of 2003-2004, and Cell 5, whose proposed design is an Addendum to Remedial Design Report for the Disposal of Oak Ridge Reservation Comprehensive Environmental Response, Compensation, and Liability Act of 1980 Waste, Oak Ridge, Tennessee, DOE/OR/01-1873&D2/A5/R1. The total capacity of the EMWMF with 5 cells is about 1.7 million cubic yards. This assessment was conducted to determine the conditions under which the approved Waste Acceptance Criteria (WAC) for the EMWMF found in the Attainment Plan for Risk/Toxicity-Based Waste Acceptance Criteria at the Oak Ridge Reservation, Oak Ridge, Tennessee [U.S. Department of Energy (DOE) 2001a], as revised for constituents added up to October 2008, would remain protective of public health and safety for a five-cell disposal facility. For consistency, the methods of analyses and the exposure scenario used to predict the performance of a five-cell disposal facility were identical to those used in the Remedial Investigation and Feasibility Study (RI/FS) and its addendum (DOE 1998a, DOE 1998b) to develop the approved WAC. To take advantage of new information and design changes departing from the conceptual design, the modeling domain and model calibration were upaded from those used in the RI/FS and its addendum. It should be noted that this analysis is not intended to justify or propose a change in the approved WAC.

  10. Reactor facility

    International Nuclear Information System (INIS)

    Suzuki, Hiroaki; Murase, Michio; Yokomizo, Osamu.

    1997-01-01

    The present invention provides a BWR type reactor facility capable of suppressing the amount of steams generated by the mutual effect of a failed reactor core and coolants upon occurrence of an imaginal accident, and not requiring spacial countermeasures for enhancing the pressure resistance of the container vessel. Namely, a means for supplying cooling water at a temperature not lower by 30degC than the saturated temperature corresponding to the inner pressure of the containing vessel upon occurrence of an accident is disposed to a lower dry well below the pressure vessel. As a result, upon occurrence of such an accident that the reactor core should be melted and flown downward of the pressure vessel, when cooling water at a temperature not lower than the saturated temperature, for example, cooling water at 100degC or higher is supplied to the lower dry well, abrupt generation of steams by the mutual effect of the failed reactor core and cooling water is scarcely caused compared with a case of supplying cooling water at a temperature lower than the saturation temperature by 30degC or more. Accordingly, the amount of steams to be generated can be suppressed, and special countermeasure is no more necessary for enhancing the pressure resistance of the container vessel is no more necessary. (I.S.)

  11. Nuclear facilities

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    During September and October 2001, 15 events were recorded on the first grade and 1 on the second grade of the INES scale. The second grade event is in fact a re-classification of an incident that occurred on the second april 2001 at Dampierre power plant. This event happened during core refueling, a shift in the operation sequence led to the wrong positioning of 113 assemblies. A preliminary study of this event shows that this wrong positioning could have led, in other circumstances, to the ignition of nuclear reactions. Even in that case, the analysis made by EDF shows that the consequences on the staff would have been limited. Nevertheless a further study has shown that the existing measuring instruments could not have detected the power increase announcing the beginning of the chain reaction. The investigation has shown that there were deficiencies in the control of the successive operations involved in refueling. EDF has proposed a series of corrective measures to be implemented in all nuclear power plants. The other 15 events are described in the article. During this period 121 inspections have been made in nuclear facilities. (A.C.)

  12. Irradiation Facilities at CERN

    CERN Document Server

    Gkotse, Blerina; Carbonez, Pierre; Danzeca, Salvatore; Fabich, Adrian; Garcia, Alia, Ruben; Glaser, Maurice; Gorine, Georgi; Jaekel, Martin, Richard; Mateu,Suau, Isidre; Pezzullo, Giuseppe; Pozzi, Fabio; Ravotti, Federico; Silari, Marco; Tali, Maris

    2017-01-01

    CERN provides unique irradiation facilities for applications in many scientific fields. This paper summarizes the facilities currently operating for proton, gamma, mixed-field and electron irradiations, including their main usage, characteristics and information about their operation. The new CERN irradiation facilities database is also presented. This includes not only CERN facilities but also irradiation facilities available worldwide.

  13. Research Facilities | Wind | NREL

    Science.gov (United States)

    Research Facilities Research Facilities NREL's state-of-the-art wind research facilities at the Research Facilities Photo of five men in hard hards observing the end of a turbine blade while it's being tested. Structural Research Facilities A photo of two people silhouetted against a computer simulation of

  14. North Slope, Alaska ESI: FACILITY (Facility Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for oil field facilities for the North Slope of Alaska. Vector points in this data set represent oil field facility locations. This data...

  15. Positive ion irradiation facility

    International Nuclear Information System (INIS)

    Braby, L.A.

    1985-01-01

    Many questions about the mechanisms of the response of cells to ionizing radiation can best be investigated using monoenergetic heavy charged particle beams. Questions of the role of different types of damage in the LET effect, for example, are being answered by comparing repair kinetics for damage induced by electrons with that produced by helium ions. However, as the models become more sophicated, the differences between models can be detected only with more precise measurements, or by combining high- and low-LET irradiations in split-dose experiments. The design of the authors present cell irradiation beam line has limited the authors to irradiating cells in a partial vacuum. A new way to mount the dishes and bring the beam to the cells was required. Several means of irradiating cells in mylar-bottom dishes have been used at other laboratories. For example at the RARAF Facility, the dual ion experiments are done with the dish bottom serving as the beam exit window but the cells are in a partial vacuum to prevent breaking the window. These researchers have chosen instead to use the dish bottom as the beam window and to irradiate the entire dish in a single exposure. A special, very fast pumping system will be installed at the end of the beam line. This system will make it possible to irradiate cells within two minutes of installing them in the irradiation chamber. In this way, the interaction of electron and ion-induced damage in Chlamydomonas can be studied with time between doses as short as 5 minutes

  16. Analysis and validation center for ITER RH maintenance scenarios in a virtual environment

    International Nuclear Information System (INIS)

    Elzendoorn, B.S.Q.; Baar, M. de; Hamilton, D.; Heemskerk, C.J.M.; Koning, J.F.; Ronden, D.M.S.

    2012-01-01

    A facility for detailed simulation of maintenance processes in the ITER Hot Cell Facility (HCF) has been taken into operation. The facility mimics the Remote Handling (RH) work-cells as are presently foreseen. Novel virtual reality (VR) technology, extended with a physics engine is used to create a realistic setting in which a team of Remote Handling (RH) operators can interact with a virtual Hot Cell environment. The physics engine is used to emulate the Hot Cell behavior and to provide tactile feed-back of the (virtual) slave. Multi-operator maintenance scenarios can be developed and tested in virtual reality. Complex interactions between the RH operators and the HCF control system software will be tested. Task performance will be quantified and operational resource consumption will be estimated.

  17. Analysis and validation center for ITER RH maintenance scenarios in a virtual environment

    Energy Technology Data Exchange (ETDEWEB)

    Elzendoorn, B.S.Q., E-mail: B.S.Q.Elzendoorn@rijnhuizen.nl [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster and ITER-NL, PO Box 1207, 3430 BE, Nieuwegein (Netherlands); Baar, M. de [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster and ITER-NL, PO Box 1207, 3430 BE, Nieuwegein (Netherlands); Hamilton, D. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul-lez-Durance Cedex (France); Heemskerk, C.J.M. [Heemskerk Innovative Technology, Sassenheim (Netherlands); Koning, J.F.; Ronden, D.M.S. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster and ITER-NL, PO Box 1207, 3430 BE, Nieuwegein (Netherlands)

    2012-03-15

    A facility for detailed simulation of maintenance processes in the ITER Hot Cell Facility (HCF) has been taken into operation. The facility mimics the Remote Handling (RH) work-cells as are presently foreseen. Novel virtual reality (VR) technology, extended with a physics engine is used to create a realistic setting in which a team of Remote Handling (RH) operators can interact with a virtual Hot Cell environment. The physics engine is used to emulate the Hot Cell behavior and to provide tactile feed-back of the (virtual) slave. Multi-operator maintenance scenarios can be developed and tested in virtual reality. Complex interactions between the RH operators and the HCF control system software will be tested. Task performance will be quantified and operational resource consumption will be estimated.

  18. Jupiter Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at LLNL. The facility is designed to provide a high degree...

  19. Basic Research Firing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Basic Research Firing Facility is an indoor ballistic test facility that has recently transitioned from a customer-based facility to a dedicated basic research...

  20. Facile synthesis of mercaptosuccinic acid-capped CdTe/CdS/ZnS core/double shell quantum dots with improved cell viability on different cancer cells and normal cells

    Energy Technology Data Exchange (ETDEWEB)

    Parani, Sundararajan [University of Madras, Department of Inorganic Chemistry (India); Bupesh, Giridharan [Bharath University, Central Research Laboratory, Sree Balaji Medical College and Hospital (India); Manikandan, Elayaperumal [Thiruvalluvar University, Department of Physics, TUCAS, Thennangur-604408 (India); Pandian, Kannaiyan [University of Madras, Department of Inorganic Chemistry (India); Oluwafemi, Oluwatobi Samuel, E-mail: oluwafemi.oluwatobi@gmail.com [University of Johannesburg, Department of Applied Chemistry (South Africa)

    2016-11-15

    Water-soluble, mercaptosuccinic acid (MSA)-capped CdTe/CdS/ZnS core/double shell quantum dots (QDs) were prepared by successive growth of CdS and ZnS shells on the as-synthesized CdTe/CdS{sub thin} core/shell quantum dots. The formation of core/double shell structured QDs was investigated by ultraviolet-visible (UV–Vis) absorption and photoluminescence (PL) spectroscopy, PL decay studies, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The core/double shell QDs exhibited good photoluminescence quantum yield (PLQY) which is 70% higher than that of the parent core/shell QDs, and they are stable for months. The average particle size of the core/double shell QDs was ∼3 nm as calculated from the transmission electron microscope (TEM) images. The cytotoxicity of the QDs was evaluated on a variety of cancer cells such as HeLa, MCF-7, A549, and normal Vero cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assay. The results showed that core/double shell QDs were less toxic to the cells when compared to the parent core/shell QDs. MCF-7 cells showed proliferation on incubation with QDs, and this is attributed to the metalloestrogenic activity of cadmium ions released from QDs. The core/double shell CdTe/CdS/ZnS (CSS) QDs were conjugated with transferrin and successfully employed for the biolabeling and fluorescent imaging of HeLa cells. These core/double shell QDs are highly promising fluorescent probe for cancer cell labeling and imaging applications.

  1. Aperture area measurement facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has established an absolute aperture area measurement facility for circular and near-circular apertures use in radiometric instruments. The facility consists of...

  2. High Throughput Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s high throughput facility provides highly automated and parallel approaches to material and materials chemistry development. The facility allows scientists...

  3. Licensed Healthcare Facilities

    Data.gov (United States)

    California Natural Resource Agency — The Licensed Healthcare Facilities point layer represents the locations of all healthcare facilities licensed by the State of California, Department of Health...

  4. Facility Registry Service (FRS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Facility Registry Service (FRS) provides an integrated source of comprehensive (air, water, and waste) environmental information about facilities across EPA,...

  5. Polymer solar cells with efficiency >10% enabled via a facile solution-processed Al-doped ZnO electron transporting layer

    KAUST Repository

    Jagadamma, Lethy Krishnan; Al-Senani, Mohammed; Amassian, Aram

    2015-01-01

    The present work details a facile and low-temperature (125C) solution-processed Al-doped ZnO (AZO) buffer layer functioning very effectively as electron accepting/hole blocking layer for a wide range of polymer:fullerene bulk heterojunction systems

  6. Environmental conditions in health care facilities in low- and middle-income countries: Coverage and inequalities.

    Science.gov (United States)

    Cronk, Ryan; Bartram, Jamie

    2018-04-01

    Safe environmental conditions and the availability of standard precaution items are important to prevent and treat infection in health care facilities (HCFs) and to achieve Sustainable Development Goal (SDG) targets for health and water, sanitation, and hygiene. Baseline coverage estimates for HCFs have yet to be formed for the SDGs; and there is little evidence describing inequalities in coverage. To address this, we produced the first coverage estimates of environmental conditions and standard precaution items in HCFs in low- and middle-income countries (LMICs); and explored factors associated with low coverage. Data from monitoring reports and peer-reviewed literature were systematically compiled; and information on conditions, service levels, and inequalities tabulated. We used logistic regression to identify factors associated with low coverage. Data for 21 indicators of environmental conditions and standard precaution items were compiled from 78 LMICs which were representative of 129,557 HCFs. 50% of HCFs lack piped water, 33% lack improved sanitation, 39% lack handwashing soap, 39% lack adequate infectious waste disposal, 73% lack sterilization equipment, and 59% lack reliable energy services. Using nationally representative data from six countries, 2% of HCFs provide all four of water, sanitation, hygiene, and waste management services. Statistically significant inequalities in coverage exist between HCFs by: urban-rural setting, managing authority, facility type, and sub-national administrative unit. We identified important, previously undocumented inequalities and environmental health challenges faced by HCFs in LMICs. The information and analyses provide evidence for those engaged in improving HCF conditions to develop evidence-based policies and efficient programs, enhance service delivery systems, and make better use of available resources. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  7. National Biomedical Tracer Facility: Project definition study

    International Nuclear Information System (INIS)

    Heaton, R.; Peterson, E.; Smith, P.

    1995-01-01

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design

  8. National Biomedical Tracer Facility: Project definition study

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, R.; Peterson, E. [Los Alamos National Lab., NM (United States); Smith, P. [Smith (P.A.) Concepts and Designs (United States)

    1995-05-31

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.

  9. Interim Storage Facility decommissioning. Final report

    International Nuclear Information System (INIS)

    Johnson, R.P.; Speed, D.L.

    1985-01-01

    Decontamination and decommissioning of the Interim Storage Facility were completed. Activities included performing a detailed radiation survey of the facility, removing surface and imbedded contamination, excavating and removing the fuel storage cells, restoring the site to natural conditions, and shipping waste to Hanford, Washington, for burial. The project was accomplished on schedule and 30% under budget with no measurable exposure to decommissioning personnel

  10. Guide to research facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  11. Characterization of the 309 fuel examination facility

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.; Cornwell, B.C.

    1997-01-01

    This document identifies radiological, chemical and physical conditions inside the Fuel Examination Facility. It is located inside the Plutonium Recycle Test Reactor containment structure (309 Building.) The facility was a hot cell used for examination of PRTR fuel and equipment during the 1960's. Located inside the cell is a PRTR shim rod assembly, reported are radiological conditions of the sample. The conditions were assessed as part of overall 309 Building transition

  12. Initiation of a ring approach to infection prevention and control at non-Ebola health care facilities - Liberia, January-February 2015.

    Science.gov (United States)

    Nyenswah, Tolbert; Massaquoi, Moses; Gbanya, Miatta Zenabu; Fallah, Mosoka; Amegashie, Fred; Kenta, Adolphus; Johnson, Kumblytee L; Yahya, Disu; Badini, Mehboob; Soro, Lacina; Pessoa-Silva, Carmem L; Roger, Isabelle; Selvey, Linda; VanderEnde, Kristin; Murphy, Matthew; Cooley, Laura A; Olsen, Sonja J; Christie, Athalia; Vertefeuille, John; Navin, Thomas; McElroy, Peter; Park, Benjamin J; Esswein, Eric; Fagan, Ryan; Mahoney, Frank

    2015-05-15

    From mid-January to mid-February 2015, all confirmed Ebola virus disease (Ebola) cases that occurred in Liberia were epidemiologically linked to a single index patient from the St. Paul Bridge area of Montserrado County. Of the 22 confirmed patients in this cluster, eight (36%) sought and received care from at least one of 10 non-Ebola health care facilities (HCFs), including clinics and hospitals in Montserrado and Margibi counties, before admission to an Ebola treatment unit. After recognition that three patients in this emerging cluster had received care from a non-Ebola treatment unit, and in response to the risk for Ebola transmission in non-Ebola treatment unit health care settings, a focused infection prevention and control (IPC) rapid response effort for the immediate area was developed to target facilities at increased risk for exposure to a person with Ebola (Ring IPC). The Ring IPC approach, which provided rapid, intensive, and short-term IPC support to HCFs in areas of active Ebola transmission, was an addition to Liberia's proposed longer term national IPC strategy, which focused on providing a comprehensive package of IPC training and support to all HCFs in the country. This report describes possible health care worker exposures to the cluster's eight patients who sought care from an HCF and implementation of the Ring IPC approach. On May 9, 2015, the World Health Organization (WHO) declared the end of the Ebola outbreak in Liberia.

  13. Communication grounding facility

    International Nuclear Information System (INIS)

    Lee, Gye Seong

    1998-06-01

    It is about communication grounding facility, which is made up twelve chapters. It includes general grounding with purpose, materials thermal insulating material, construction of grounding, super strength grounding method, grounding facility with grounding way and building of insulating, switched grounding with No. 1A and LCR, grounding facility of transmission line, wireless facility grounding, grounding facility in wireless base station, grounding of power facility, grounding low-tenton interior power wire, communication facility of railroad, install of arrester in apartment and house, install of arrester on introduction and earth conductivity and measurement with introduction and grounding resistance.

  14. Facile fabrication of novel silver-polypyrrole-multiwall carbon nanotubes nanocomposite for replacement of platinum in dye-sensitized solar cell

    OpenAIRE

    Shaista Rafique; Rehana Sharif; Imran Rashid; Sheeba Ghani

    2016-01-01

    This paper demonstrates the facile synthesis of high performance silver-polypyrrole-multiwall carbon nanotubes (Ag-PPy-FMWCNTS) nanocomposites via electrodeposition method on stainless steel substrate and its application as a low cost counter electrode (CE) for the precious platinum (Pt) free DSSC. The nanocomposites were characterized by variety of techniques such as Fourier transforms infrared (FTIR), X-ray diffraction, Scanning electron microscope (SEM), cyclic voltammetry (CV) and Four pr...

  15. TESLA Test Facility. Status

    International Nuclear Information System (INIS)

    Aune, B.

    1996-01-01

    The TESLA Test Facility (TTF), under construction at DESY by an international collaboration, is an R and D test bed for the superconducting option for future linear e+/e-colliders. It consists of an infrastructure to process and test the cavities and of a 500 MeV linac. The infrastructure has been installed and is fully operational. It includes a complex of clean rooms, an ultra-clean water plant, a chemical etching installation and an ultra-high vacuum furnace. The linac will consist of four cryo-modules, each containing eight 1 meter long nine-cell cavities operated at 1.3 GHz. The base accelerating field is 15 MV/m. A first injector will deliver a low charge per bunch beam, with the full average current (8 mA in pulses of 800 μs). A more powerful injector based on RF gun technology will ultimately deliver a beam with high charge and low emittance to allow measurements necessary to qualify the TESLA option and to demonstrate the possibility of operating a free electron laser based on the Self-Amplified-Spontaneous-Emission principle. Overview and status of the facility will be given. Plans for the future use of the linac are presented. (R.P.)

  16. AOV Facility Tool/Facility Safety Specifications -

    Data.gov (United States)

    Department of Transportation — Develop and maintain authorizing documents that are standards that facilities must follow. These standards are references of FAA regulations and are specific to the...

  17. Realizing a facile and environmental-friendly fabrication of high-performance multi-crystalline silicon solar cells by employing ZnO nanostructures and an Al2O3 passivation layer

    Science.gov (United States)

    Chen, Hong-Yan; Lu, Hong-Liang; Sun, Long; Ren, Qing-Hua; Zhang, Hao; Ji, Xin-Ming; Liu, Wen-Jun; Ding, Shi-Jin; Yang, Xiao-Feng; Zhang, David Wei

    2016-01-01

    Nowadays, the multi-crystalline silicon (mc-Si) solar cells dominate the photovoltaic industry. However, the current acid etching method on mc-Si surface used by firms can hardly suppress the average reflectance value below 25% in the visible light spectrum. Meanwhile, the nitric acid and the hydrofluoric contained in the etching solution is both environmental unfriendly and highly toxic to human. Here, a mc-Si solar cell based on ZnO nanostructures and an Al2O3 spacer layer is demonstrated. The eco-friendly fabrication is realized by low temperature atomic layer deposition of Al2O3 layer as well as ZnO seed layer. Moreover, the ZnO nanostructures are prepared by nontoxic and low cost hydro-thermal growth process. Results show that the best passivation quality of the n+ -type mc-Si surface can be achieved by balancing the Si dangling bond saturation level and the negative charge concentration in the Al2O3 film. Moreover, the average reflectance on cell surface can be suppressed to 8.2% in 400–900 nm range by controlling the thickness of ZnO seed layer. With these two combined refinements, a maximum solar cell efficiency of 15.8% is obtained eventually. This work offer a facile way to realize the environmental friendly fabrication of high performance mc-Si solar cells. PMID:27924911

  18. A Bioinformatics Facility for NASA

    Science.gov (United States)

    Schweighofer, Karl; Pohorille, Andrew

    2006-01-01

    Building on an existing prototype, we have fielded a facility with bioinformatics technologies that will help NASA meet its unique requirements for biological research. This facility consists of a cluster of computers capable of performing computationally intensive tasks, software tools, databases and knowledge management systems. Novel computational technologies for analyzing and integrating new biological data and already existing knowledge have been developed. With continued development and support, the facility will fulfill strategic NASA s bioinformatics needs in astrobiology and space exploration. . As a demonstration of these capabilities, we will present a detailed analysis of how spaceflight factors impact gene expression in the liver and kidney for mice flown aboard shuttle flight STS-108. We have found that many genes involved in signal transduction, cell cycle, and development respond to changes in microgravity, but that most metabolic pathways appear unchanged.

  19. Actinide Separation Demonstration Facility, Tarapur

    International Nuclear Information System (INIS)

    Vishwaraj, I.

    2017-01-01

    Partitioning of minor actinide from high level waste could have a substantial impact in lowering the radio toxicity associated with high level waste as well as it will reduce the burden on geological repository. In Indian context, the partitioned minor actinide could be routed into the fast breeder reactor systems scheduled for commissioning in the near period. The technological breakthrough in solvent development has catalyzed the partitioning programme in India, leading to the setting up and hot commissioning of the Actinide Separation Demonstration Facility (ASDF) at BARC, Tarapur. The engineering scale Actinide Separation Demonstration Facility (ASDF) has been retrofitted in an available radiological hot cell situated adjacent to the Advanced Vitrification Facility (AVS). This location advantage ensures an uninterrupted supply of high-level waste and facilitates the vitrification of the high-level waste after separation of minor actinides

  20. Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition – a facile method for encapsulation of diverse cell types in silica matrices

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Robert [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Materials Engineering Dept.; Rogelj, Snezna [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Biology Dept.; Harper, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Bioenergy and Biodefense Technologies Dept.; Tartis, Michaelann [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Materials and Chemical Engineering Dept.

    2014-12-12

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cells are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Thus, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.

  1. Successes and failures of using the cell phone as a main mode of communication between participants and facilitators from a distance: an innovative method of training rural health facility managers in Papua New Guinea.

    Science.gov (United States)

    Au, Lucy

    2012-01-01

    Rural Health Facility Management Training is a training program developed by the National Department of Health in collaboration with AUSAID through the office of the Capacity Building Service Centre. The purpose of the training is to train officers-in-charge who did not acquire knowledge and skills of managing a health facility. As part of this study, it is essential to assess whether the cell phone is a better mode of communication between the participants and the facilitators compared with other modes of communication from a distance. The study used the cross-sectional method to collect 160 samples from 12 provinces and the statistical software Stata (version 8) was used to analyse the data. The results showed that mobile coverage is not very effective in most rural areas, though, it is efficient and accessible. Furthermore, it is expensive to make a call compared with sending text massages. In spite of the high cost involved, most health managers prefer to use the cell phone compared to normal post, email, or fax. This clearly shows that the mobile phone is a better device for distant learning in rural Papua New Guinea compared to other modes of communication.

  2. Hydrogen Infrastructure Testing and Research Facility Video (Text Version)

    Science.gov (United States)

    grid integration, continuous code improvement, fuel cell vehicle operation, and renewable hydrogen Systems Integration Facility or ESIF. Research projects including H2FIRST, component testing, hydrogen

  3. Central Facilities Area Sewage Lagoon Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Giesbrecht, Alan [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The Central Facilities Area (CFA) located in Butte County, Idaho at Idaho National Laboratory (INL) has an existing wastewater system to collect and treat sanitary wastewater and non contact cooling water from the facility. The existing treatment facility consists of three cells: Cell 1 has a surface area of 1.7 acres, Cell 2 has a surface area of 10.3 acres, and Cell 3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5 acre land application site that utilizes a center pivot irrigation sprinkler system. The purpose of this current study is to update the analysis and conclusions of the December 2013 study. In this current study, the new seepage rate and influent flow rate data have been used to update the calculations, model, and analysis.

  4. Mirror fusion test facility

    International Nuclear Information System (INIS)

    Post, R.F.

    1978-01-01

    The MFTF is a large new mirror facility under construction at Livermore for completion in 1981--82. It represents a scaleup, by a factor of 50 in plasma volume, a factor of 5 or more in ion energy, and a factor of 4 in magnetic field intensity over the Livermore 2XIIB experiment. Its magnet, employing superconducting NbTi windings, is of Yin-Yang form and will weigh 200 tons. MFTF will be driven by neutral beams of two levels of current and energy: 1000 amperes of 20 keV (accelerating potential) pulsed beams for plasma startup; 750 amperes of 80 keV beams of 0.5 second duration for temperature buildup and plasma sustainment. Two operating modes for MFTF are envisaged: The first is operation as a conventional mirror cell with n/sup tau/ approximately equal to 10 12 cm -3 sec, W/sub i/ = 50 keV, where the emphasis will be on studying the physics of mirror cells, particularly the issues of improved techniques of stabilization against ion cyclotron modes and of maximization of the electron temperature. The second possible mode is the further study of the Field Reversed Mirror idea, using high current neutral beams to sustain the field-reversed state. Anticipating success in the coming Livermore Tandem Mirror Experiment (TMX) MFTF has been oriented so that it could comprise one end cell of a scaled up TM experiment. Also, if MFTF were to succeed in achieving a FR state it could serve as an essentially full-sized physics prototype of one cell of a FRM fusion power plant

  5. Polymer Solar Cells with Efficiency >10% Enabled via a Facile Solution-Processed Al-Doped ZnO Electron Transporting Layer

    KAUST Repository

    Jagadamma, Lethy Krishnan; Al-Senani, Mohammed; El Labban, Abdulrahman; Gereige, Issam; Ngongang Ndjawa, Guy Olivier; Faria, Jorge C D; Kim, Taesoo; Zhao, Kui; Cruciani, Federico; Anjum, Dalaver H.; McLachlan, Martyn A.; Beaujuge, Pierre; Amassian, Aram

    2015-01-01

    /reduces the native defects by nitrogen incorporation, making them good electron transporters and energetically matched with the fullerene acceptor. It is demonstrated that highly efficient solar cells can be achieved without the need for additional surface chemical

  6. Proceedings of the IEA-technical workshop on the test cell system for an international fusion materials irradiation facility, Karlsruhe, Germany, July 3-6, 1995. IEA-implementing agreement for a programme of research and development on fusion materials

    International Nuclear Information System (INIS)

    Moeslang, A.; Lindau, R.

    1995-09-01

    After a Conceptual Design Activity (CDA) study on an International Fusion Material Irradiation Facility (IFMIF) has been launched under the auspices of the IEA, working groups and relevant tasks have been defined and agreed in an IEA-workshop that was held September 26-29 1994 at Karlsruhe. For the Test Cell System 11 tasks were identified which can be grouped into the three major fields neutronics, test matrix/users and test cell engineering. In order to discuss recently achieved results and to coordinate necessary activities for an effective design integration, a technical workshop on the Test Cell System was initiated. This workshop was organized on July 3-6 1995 by the Institute for Materials Research I at the Forschungszentrum Karlsruhe and attended by 20 specialists working in the fields neutronics, fusion materials R and D and test cell engineering in the European Union, Japan, and the United States of America. The presentations and discussions during this workshop have shown together with the elaborated lists of action items, that has been achieved in all three fields, and that from the future IFMIF experimental program for a number of materials a database covering widerspread loading conditions up to DEMO-reactor relevant end-of-life damage levels can be expected. (orig.)

  7. Argonne to open new facility for advanced vehicle testing

    CERN Multimedia

    2002-01-01

    Argonne National Laboratory will open it's Advanced Powertrain Research Facility on Friday, Nov. 15. The facility is North America's only public testing facility for engines, fuel cells, electric drives and energy storage. State-of-the-art performance and emissions measurement equipment is available to support model development and technology validation (1 page).

  8. Lesotho - Health Facility Survey

    Data.gov (United States)

    Millennium Challenge Corporation — The main objective of the 2011 Health Facility Survey (HFS) was to establish a baseline for informing the Health Project performance indicators on health facilities,...

  9. Armament Technology Facility (ATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Armament Technology Facility is a 52,000 square foot, secure and environmentally-safe, integrated small arms and cannon caliber design and evaluation facility....

  10. Projectile Demilitarization Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Projectile Wash Out Facility is US Army Ammunition Peculiar Equipment (APE 1300). It is a pilot scale wash out facility that uses high pressure water and steam...

  11. Rocketball Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This test facility offers the capability to emulate and measure guided missile radar cross-section without requiring flight tests of tactical missiles. This facility...

  12. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  13. Materiel Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CRREL's Materiel Evaluation Facility (MEF) is a large cold-room facility that can be set up at temperatures ranging from −20°F to 120°F with a temperature change...

  14. Environmental Toxicology Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Fully-equipped facilities for environmental toxicology researchThe Environmental Toxicology Research Facility (ETRF) located in Vicksburg, MS provides over 8,200 ft...

  15. Dialysis Facility Compare

    Data.gov (United States)

    U.S. Department of Health & Human Services — Dialysis Facility Compare helps you find detailed information about Medicare-certified dialysis facilities. You can compare the services and the quality of care that...

  16. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  17. Explosive Components Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  18. Facilities for US Radioastronomy.

    Science.gov (United States)

    Thaddeus, Patrick

    1982-01-01

    Discusses major developments in radioastronomy since 1945. Topics include proposed facilities, very-long-baseline interferometric array, millimeter-wave telescope, submillimeter-wave telescope, and funding for radioastronomy facilities and projects. (JN)

  19. Neighbourhood facilities for sustainability

    CSIR Research Space (South Africa)

    Gibberd, Jeremy T

    2013-01-01

    Full Text Available . In this paper these are referred to as ‘Neighbourhood Facilities for Sustainability’. Neighbourhood Facilities for Sustainability (NFS) are initiatives undertaken by individuals and communities to build local sustainable systems which not only improve...

  20. Cold Vacuum Drying Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  1. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to:Evaluate and characterize the effect of flame and thermal...

  2. Integrated Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the center of the 586-square-mile Hanford Site is the Integrated Disposal Facility, also known as the IDF.This facility is a landfill similar in concept...

  3. Facility design: introduction

    International Nuclear Information System (INIS)

    Unger, W.E.

    1980-01-01

    The design of shielded chemical processing facilities for handling plutonium is discussed. The TRU facility is considered in particular; its features for minimizing the escape of process materials are listed. 20 figures

  4. CLEAR test facility

    CERN Multimedia

    Ordan, Julien Marius

    2017-01-01

    A new user facility for accelerator R&D, the CERN Linear Electron Accelerator for Research (CLEAR), started operation in August 2017. CLEAR evolved from the former CLIC Test Facility 3 (CTF3) used by the Compact Linear Collider (CLIC). The new facility is able to host and test a broad range of ideas in the accelerator field.

  5. Facility or Facilities? That is the Question.

    Science.gov (United States)

    Viso, M.

    2018-04-01

    The management of the martian samples upon arrival on the Earth will require a lot of work to ensure a safe life detection and biohazard testing during the quarantine. This will induce a sharing of the load between several facilities.

  6. Proposal of a neutron transmutation doping facility for n-type spherical silicon solar cell at high-temperature engineering test reactor.

    Science.gov (United States)

    Ho, Hai Quan; Honda, Yuki; Motoyama, Mizuki; Hamamoto, Shimpei; Ishii, Toshiaki; Ishitsuka, Etsuo

    2018-05-01

    The p-type spherical silicon solar cell is a candidate for future solar energy with low fabrication cost, however, its conversion efficiency is only about 10%. The conversion efficiency of a silicon solar cell can be increased by using n-type silicon semiconductor as a substrate. This study proposed a new method of neutron transmutation doping silicon (NTD-Si) for producing the n-type spherical solar cell, in which the Si-particles are irradiated directly instead of the cylinder Si-ingot as in the conventional NTD-Si. By using a 'screw', an identical resistivity could be achieved for the Si-particles without a complicated procedure as in the NTD with Si-ingot. Also, the reactivity and neutron flux swing could be kept to a minimum because of the continuous irradiation of the Si-particles. A high temperature engineering test reactor (HTTR), which is located in Japan, was used as a reference reactor in this study. Neutronic calculations showed that the HTTR has a capability to produce about 40t/EFPY of 10Ωcm resistivity Si-particles for fabrication of the n-type spherical solar cell. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The Radiological Research Accelerator Facility:

    International Nuclear Information System (INIS)

    Hall, E.J.; Goldhagen, P.

    1988-07-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generated a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Radiological Research Laboratory (RRL) of Columbia University, and its operation is supported as a National Facility by the U.S. Department of Energy. As such, RARAF is available to all potential users on an equal basis, and scientists outside the RRL are encouraged to submit proposals for experiments at RARAF. Facilities and services are provided to users, but the research projects themselves must be supported separately. RARAF was located at BNL from 1967 until 1980, when it was dismantled and moved to the Nevis Laboratories of Columbia University, where it was then reassembled and put back into operation. Data obtained from experiment using RARAF have been of pragmatic value to radiation protection and to neutron therapy. At a more fundamental level, the research at RARAF has provided insight into the biological action of radiation and especially its relation to energy distribution in the cell. High-LET radiations are an agent of special importance because they can cause measurable cellular effects by single particles, eliminating some of the complexities of multievent action and more clearly disclosing basic features. This applies particularly to radiation carcinogenesis. Facilities are available at RARAF for exposing objects to different radiations having a wide range of linear energy transfers (LETs)

  8. MRS transfer facility feasibility study

    International Nuclear Information System (INIS)

    Jowdy, A.K.; Smith, R.I.

    1990-12-01

    Under contract to the US Department of Energy, Parsons was requested to evaluate the feasibility of building a simple hot cell (waste handling) transfer facility at the Monitored Retrievable Storage (MRS) site to facilitate acceptance of spent fuel into the Federal Waste Management System starting in early 1998. The Transfer Facility was intended to provide a receiving and transfer to storage capability at a relatively low throughput rate (approximately 500 MTU/yr) and to provide the recovery capability needed on the site in the event of a transport or storage cask seal failure during a period of about two years while the larger Spent Fuel Handling Building (SFHB) was being completed. Although the original study basis postulated an incremental addition to the larger, previously considered MRS configurations, study results show that the Transfer Facility may be capable of receiving and storing spent fuel at annual rates of 3000 MTU/yr or more, making a larger fuel handling structure unnecessary. In addition, the study analyses showed that the Transfer Facility could be constructed and put into service in 15--17 months and would cost less than the previous configurations. 2 figs., 2 tabs

  9. Advanced facilities for radiochemistry at Harwell

    International Nuclear Information System (INIS)

    1985-01-01

    The leaflets in this folder describe the latest addition to Harwell's active handling capability. This is a high level alpha, beta, gamma facility designed specifically for undertaking chemical research and development work. It is based on using high integrity containment boxes which are housed in concrete shielded enclosures. The active boxes can be removed and transferred remotely to a support area where they, and any associated equipment, can be decontaminated and serviced whilst a new fully commissioned box can be readily brought into service. The facility fulfills the principle of ALARA and is sufficiently flexible to accommodate a wide range of active handling requirements. It is supported by a suite of medium active handling cells, radiochemical laboratories and, as necessary, facilities of other scientific and engineering disciplines. The leaflets are: report on conceptual aspects; Techsheet 'Remote handling facility - Salient information'; Techsheet 'Project capabilities'; and 4 sheets of diagrams showing details of the facility. (U.K.)

  10. Facile fabrication of novel silver-polypyrrole-multiwall carbon nanotubes nanocomposite for replacement of platinum in dye-sensitized solar cell

    Science.gov (United States)

    Rafique, Shaista; Sharif, Rehana; Rashid, Imran; Ghani, Sheeba

    2016-08-01

    This paper demonstrates the facile synthesis of high performance silver-polypyrrole-multiwall carbon nanotubes (Ag-PPy-FMWCNTS) nanocomposites via electrodeposition method on stainless steel substrate and its application as a low cost counter electrode (CE) for the precious platinum (Pt) free DSSC. The nanocomposites were characterized by variety of techniques such as Fourier transforms infrared (FTIR), X-ray diffraction, Scanning electron microscope (SEM), cyclic voltammetry (CV) and Four probe technique respectively. The cyclic voltammetry and Tafel polymerization measurements of Ag-PPy-FMWCNTS nanocomposites CE reveal the favorable electrocatalytic activity and low charge transfer resistance Rct(2.50 Ω cm2) for I3-/I- redox solution. The four probe studies showed the large electrical conductivity (226S cm-1) of Ag-PPy-FMWCNTS nanocomposite. The DSSC assembled with Ag-PPy-FMWCNTS nanocomposites CE display the considerable short circuit current density (13.95 mA cm-2) and acceptable solar to electrical conversion efficiency of 7.6%, which is higher to the efficiency of DSSC with thermally decomposed Pt reference electrode 7.1%. The excellent conversion efficiency, rapid charge transfer in combination with low cost and simple fabrication method of Ag-PPy-FMWCNTS nanocomposites can be exploited as an efficient and potential candidate to replace the Pt CE for large scale production of DSSC.

  11. Facile fabrication of novel silver-polypyrrole-multiwall carbon nanotubes nanocomposite for replacement of platinum in dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Shaista; Sharif, Rehana; Ghani, Sheeba [Department of Physics, University of Engineering and Technology, Lahore, 54000 (Pakistan); Rashid, Imran, E-mail: f.imran.rashid@gmail.com [Department of Electrical Engineering, The University of Lahore, Islamabad, 44000 (Pakistan)

    2016-08-15

    This paper demonstrates the facile synthesis of high performance silver-polypyrrole-multiwall carbon nanotubes (Ag-PPy-FMWCNTS) nanocomposites via electrodeposition method on stainless steel substrate and its application as a low cost counter electrode (CE) for the precious platinum (Pt) free DSSC. The nanocomposites were characterized by variety of techniques such as Fourier transforms infrared (FTIR), X-ray diffraction, Scanning electron microscope (SEM), cyclic voltammetry (CV) and Four probe technique respectively. The cyclic voltammetry and Tafel polymerization measurements of Ag-PPy-FMWCNTS nanocomposites CE reveal the favorable electrocatalytic activity and low charge transfer resistance R{sub ct}(2.50 Ω cm{sup 2}) for I{sub 3}{sup −}/I{sup −} redox solution. The four probe studies showed the large electrical conductivity (226S cm{sup −1}) of Ag-PPy-FMWCNTS nanocomposite. The DSSC assembled with Ag-PPy-FMWCNTS nanocomposites CE display the considerable short circuit current density (13.95 mA cm{sup −2}) and acceptable solar to electrical conversion efficiency of 7.6%, which is higher to the efficiency of DSSC with thermally decomposed Pt reference electrode 7.1%. The excellent conversion efficiency, rapid charge transfer in combination with low cost and simple fabrication method of Ag-PPy-FMWCNTS nanocomposites can be exploited as an efficient and potential candidate to replace the Pt CE for large scale production of DSSC.

  12. Facile fabrication of novel silver-polypyrrole-multiwall carbon nanotubes nanocomposite for replacement of platinum in dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Rafique, Shaista; Sharif, Rehana; Ghani, Sheeba; Rashid, Imran

    2016-01-01

    This paper demonstrates the facile synthesis of high performance silver-polypyrrole-multiwall carbon nanotubes (Ag-PPy-FMWCNTS) nanocomposites via electrodeposition method on stainless steel substrate and its application as a low cost counter electrode (CE) for the precious platinum (Pt) free DSSC. The nanocomposites were characterized by variety of techniques such as Fourier transforms infrared (FTIR), X-ray diffraction, Scanning electron microscope (SEM), cyclic voltammetry (CV) and Four probe technique respectively. The cyclic voltammetry and Tafel polymerization measurements of Ag-PPy-FMWCNTS nanocomposites CE reveal the favorable electrocatalytic activity and low charge transfer resistance R_c_t(2.50 Ω cm"2) for I_3"−/I"− redox solution. The four probe studies showed the large electrical conductivity (226S cm"−"1) of Ag-PPy-FMWCNTS nanocomposite. The DSSC assembled with Ag-PPy-FMWCNTS nanocomposites CE display the considerable short circuit current density (13.95 mA cm"−"2) and acceptable solar to electrical conversion efficiency of 7.6%, which is higher to the efficiency of DSSC with thermally decomposed Pt reference electrode 7.1%. The excellent conversion efficiency, rapid charge transfer in combination with low cost and simple fabrication method of Ag-PPy-FMWCNTS nanocomposites can be exploited as an efficient and potential candidate to replace the Pt CE for large scale production of DSSC.

  13. Enhancement of growth and osteogenic differentiation of MC3T3-E1 cells via facile surface functionalization of polylactide membrane with chitooligosaccharide based on polydopamine adhesive coating

    International Nuclear Information System (INIS)

    Li, Huihua; Luo, Chuang; Luo, Binghong; Wen, Wei; Wang, Xiaoying; Ding, Shan; Zhou, Changren

    2016-01-01

    Graphical abstract: - Highlights: • COS was conveniently immobilized on PDLLA membrane based on PDOPA adhesive layer. • The hydrophilicity of PDLLA membrane was improved by modified with PDOPA and COS. • COS-functionalized PDLLA membrane is favorable to cell adhesion and proliferation. • COS-coated PDLLA membrane notably promote osteogenic differentiation of MC3T3-E1. - Abstract: To develop a chitooligosaccharide(COS)-functionalized poly(D,L-lactide) (PDLLA) membrane to enhance growth and osteogenic differentiation of MC3T3-E1 cells, firstly a thin polydopamine (PDOPA) layer was adhered to the PDLLA membrane via the self-polymerization and strong adhesion behavior of dopamine. Subsequently, COS was immobilized covalently on the resultant PDLLA/PDOPA composite membrane by coupling with PDOPA active coating. The successful immobilization of the PDOPA and COS was confirmed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Scanning electronic microscopy (SEM) and atomic force microscopy (AFM) results indicated that the surface topography and roughness of the membranes were changed, and the root mean square increased from 0.613 nm to 6.96 and 7.12 nm, respectively after coating PDOPA and COS. Water contact angle and surface energy measurements revealed that the membrane hydrophilicity was remarkably improved by surface modification. In vitro cells culture results revealed that the PDOPA- and COS-functionalized surfaces showed a significant increase in MC3T3-E1 cells adhesion, proliferation, osteogenic differentiation and alkaline phosphate activity compared to the pristine PDLLA substrate. Furthermore the COS-functionalized PDLLA membrane was more effectively at enhancing osteoblast activity than the PDOPA-functionalized PDLLA membrane.

  14. UTN's gamma irradiation facility: design and concept

    International Nuclear Information System (INIS)

    Mohamad Noor Mohamad Yunus

    1986-01-01

    UTN is building a multipurpose gamma irradiation facility which compromises of research and pilot scale irradiation cells in The Fifth Malaysia Plan. The paper high-lights the basic futures of the facility in terms of its design and selection including layout sketches. Plant performances and limitations are discussed. Plants safety is briefly highlighted in block diagrams. Lastly, a typical specification brief is tabled in appendix for reference purposes. (author)

  15. Operating instructions for LBL radon measurement facilities

    International Nuclear Information System (INIS)

    Ingersoll, J.G.

    1980-06-01

    This manual is intended for users of the radon-measuring facilities of the Radon Project of the Building Ventilation and Indoor Air Quality Program at Lawrence Berkeley Laboratory. The manual comprises three parts. Part 1 sets out the steps involved in collecting, transferring, and counting radon. Part 2 describes the calibration of the transfer system and of the Lucas cells in the counting system. Part 3 outlines the maintenance procedures for the facility

  16. Facility transition instruction

    International Nuclear Information System (INIS)

    Morton, M.R.

    1997-01-01

    The Bechtel Hanford, Inc. facility transition instruction was initiated in response to the need for a common, streamlined process for facility transitions and to capture the knowledge and experience that has accumulated over the last few years. The instruction serves as an educational resource and defines the process for transitioning facilities to long-term surveillance and maintenance (S and M). Generally, these facilities do not have identified operations missions and must be transitioned from operational status to a safe and stable configuration for long-term S and M. The instruction can be applied to a wide range of facilities--from process canyon complexes like the Plutonium Uranium Extraction Facility or B Plant, to stand-alone, lower hazard facilities like the 242B/BL facility. The facility transition process is implemented (under the direction of the US Department of Energy, Richland Operations Office [RL] Assistant Manager-Environmental) by Bechtel Hanford, Inc. management, with input and interaction with the appropriate RL division and Hanford site contractors as noted in the instruction. The application of the steps identified herein and the early participation of all organizations involved are expected to provide a cost-effective, safe, and smooth transition from operational status to deactivation and S and M for a wide range of Hanford Site facilities

  17. Facilities inventory protection for nuclear facilities

    International Nuclear Information System (INIS)

    Schmitt, F.J.

    1989-01-01

    The fact that shut-down applications have been filed for nuclear power plants, suggests to have a scrutinizing look at the scopes of assessment and decision available to administrations and courts for the protection of facilities inventories relative to legal and constitutional requirements. The paper outlines the legal bases which need to be observed if purposeful calculation is to be ensured. Based on the different actual conditions and legal consequences, the author distinguishes between 1) the legal situation of facilities licenced already and 2) the legal situation of facilities under planning during the licencing stage. As indicated by the contents and restrictions of the pertinent provisions of the Atomic Energy Act and by the corresponding compensatory regulation, the object of the protection of facilities inventor in the legal position of the facility owner within the purview of the Atomic Energy Act, and the licensing proper. Art. 17 of the Atomic Energy Act indicates the legislators intent that, once issued, the licence will be the pivotal point for regulations aiming at protection and intervention. (orig./HSCH) [de

  18. The construction of irradiated material examination facility

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Lee, Key Soon; Herr, Young Hoi

    1990-03-01

    A detail design of the examination process, the hot cell facility and the annexed facility of the irradiated material examination facility (IMEF) which will be utilized to examine and evaluate physical and mechanical properties of neutron-irradiated materials, has been performed. Also a start-up work of the underground structure construction has been launched out. The project management and tasks required for the license application were duly carried out. The resultant detail design data will be used for the next step. (author)

  19. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  20. Facilities projects performance measurement system

    International Nuclear Information System (INIS)

    Erben, J.F.

    1979-01-01

    The two DOE-owned facilities at Hanford, the Fuels and Materials Examination Facility (FMEF), and the Fusion Materials Irradiation Test Facility (FMIT), are described. The performance measurement systems used at these two facilities are next described

  1. Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Ilyas, A.M. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Baig, Umair [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence for Scientific Research Collaboration with MIT, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2016-08-15

    Highlights: • SiC–TiO{sub 2} semiconducting nanocomposites synthesized by nanosecond PLAL technique. • Synthesized nanocomposites were morphologically and optically characterized. • Nanocomposites were applied for the photocatalytic degradation of toxic organic dye. • Photovoltaic performance was investigated in dye sensitized solar cell. - Abstract: Separation of photo-generated charge carriers (electron and holes) is a major approach to improve the photovoltaic and photocatalytic performance of metal oxide semiconductors. For harsh environment like high temperature applications, ceramic like silicon carbide is very prominent. In this work, 10%, 20% and 40% by weight of pre-oxidized silicon carbide was coupled with titanium dioxide (TiO{sub 2}) to form nanocomposite semiconductor via elegant pulsed laser ablation in liquid technique using second harmonic 532 nm wavelength of neodymium-doped yttrium aluminium garnet (Nd-YAG) laser. In addition, the effect of silicon carbide concentration on the performance of silicon carbide-titanium dioxide nanocomposite as photo-anode in dye sensitized solar cell and as photocatalyst in photodegradation of methyl orange dye in water was also studied. The result obtained shows that photo-conversion efficiency of the dye sensitized solar cell was improved from 0.6% to 1.65% and the percentage of methyl orange dye removed was enhanced from 22% to 77% at 24 min under ultraviolet–visible solar spectrum in the nanocomposite with 10% weight of silicon carbide. This remarkable performance enhancement could be due to the improvement in electron transfer phenomenon by the presence of silicon carbide on titanium dioxide.

  2. Alternative cask maintenance facility concepts

    International Nuclear Information System (INIS)

    Attaway, C.R.; Pope, R.B.; Wiliamson, A.C.; Medley, L.G.; Shappert, L.B.

    1992-01-01

    In this paper, the results of three trade-off studies of alternative concepts for performing cask maintenance for Civilian Radioactive Waste Management System casks are presented. An earlier study resulted in a recommendation that a submerged pool concept for cask internal component removal be used in the design of a Cask Maintenance Facility. The first trade-off study resulted in confirming the previous recommendation that a submerged pool concept be used rather than an isolation cell; the basis for this continued recommendation is discussed. The second study provides an evaluation of the previously proposed facility for the capability of handling an increased quantity of OCRWM casks. The third study provides a preliminary concept for adding the capability to repaint the exterior cylindrical portions of casks

  3. 340 Facility compliance assessment

    International Nuclear Information System (INIS)

    English, S.L.

    1993-10-01

    This study provides an environmental compliance evaluation of the RLWS and the RPS systems of the 340 Facility. The emphasis of the evaluation centers on compliance with WAC requirements for hazardous and mixed waste facilities, federal regulations, and Westinghouse Hanford Company (WHC) requirements pertinent to the operation of the 340 Facility. The 340 Facility is not covered under either an interim status Part A permit or a RCRA Part B permit. The detailed discussion of compliance deficiencies are summarized in Section 2.0. This includes items of significance that require action to ensure facility compliance with WAC, federal regulations, and WHC requirements. Outstanding issues exist for radioactive airborne effluent sampling and monitoring, radioactive liquid effluent sampling and monitoring, non-radioactive liquid effluent sampling and monitoring, less than 90 day waste storage tanks, and requirements for a permitted facility

  4. Trauma facilities in Denmark

    DEFF Research Database (Denmark)

    Weile, Jesper; Nielsen, Klaus; Primdahl, Stine C

    2018-01-01

    Background: Trauma is a leading cause of death among adults aged challenge. Evidence supports the centralization of trauma facilities and the use multidisciplinary trauma teams. Because knowledge is sparse on the existing distribution of trauma facilities...... and the organisation of trauma care in Denmark, the aim of this study was to identify all Danish facilities that care for traumatized patients and to investigate the diversity in organization of trauma management. Methods: We conducted a systematic observational cross-sectional study. First, all hospitals in Denmark...... were identified via online services and clarifying phone calls to each facility. Second, all trauma care manuals on all facilities that receive traumatized patients were gathered. Third, anesthesiologists and orthopedic surgeons on call at all trauma facilities were contacted via telephone...

  5. Synchrotron radiation facilities

    CERN Multimedia

    1972-01-01

    Particularly in the past few years, interest in using the synchrotron radiation emanating from high energy, circular electron machines has grown considerably. In our February issue we included an article on the synchrotron radiation facility at Frascati. This month we are spreading the net wider — saying something about the properties of the radiation, listing the centres where synchrotron radiation facilities exist, adding a brief description of three of them and mentioning areas of physics in which the facilities are used.

  6. Facility of aerosol filtration

    Energy Technology Data Exchange (ETDEWEB)

    Duverger de Cuy, G; Regnier, J

    1975-04-18

    Said invention relates to a facility of aerosol filtration, particularly of sodium aerosols. Said facility is of special interest for fast reactors where sodium fires involve the possibility of high concentrations of sodium aerosols which soon clog up conventional filters. The facility intended for continuous operation, includes at the pre-filtering stage, means for increasing the size of the aerosol particles and separating clustered particles (cyclone separator).

  7. Facile synthesis of highly branched jacks-like ZnO nanorods and their applications in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sudhagar, P. [Center for Next Generation Dye-sensitized Solar Cells, WCU Program Department of Energy Engineering, Hanyang University, Seongdong-gu, Seoul- 133 791 (Korea, Republic of); Kumar, R. Saravana [R and D Department of Physics, Kongunadu Arts and Science College, Coimbatore 641 029, Tamilnadu (India); Jung, June Hyuk; Cho, Woohyung [Center for Next Generation Dye-sensitized Solar Cells, WCU Program Department of Energy Engineering, Hanyang University, Seongdong-gu, Seoul- 133 791 (Korea, Republic of); Sathyamoorthy, R. [R and D Department of Physics, Kongunadu Arts and Science College, Coimbatore 641 029, Tamilnadu (India); Won, Jongok [Department of Chemistry, Sejong University, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Kang, Yong Soo, E-mail: kangys@hanyang.ac.kr [Center for Next Generation Dye-sensitized Solar Cells, WCU Program Department of Energy Engineering, Hanyang University, Seongdong-gu, Seoul- 133 791 (Korea, Republic of)

    2011-09-15

    Graphical abstract: -- Abstract: Highly branched, jacks-like ZnO nanorods architecture were explored as a photoanode in dye-sensitized solar cells, and their photovoltaic performance was compared with that of branch-free ZnO nanorods photoanodes. The highly branched network and large pores of the jacks-like ZnO nanorods electrodes enhances the charge transport, and electrolyte penetration. Thus, the jacks-like ZnO nanorods DSSCs render a higher conversion efficiency of {eta} = 1.82% (V{sub oc} = 0.59 V, J{sub sc} = 5.52 mA cm{sup -2}) than that of the branch-free ZnO nanorods electrodes ({eta} = 1.08%, V{sub oc} = 0.49 V, J{sub sc} = 4.02 mA cm{sup -2}). The incident photon-to-current conversion efficiency measurements reveal that the jacks-like ZnO nanorods DSSCs exhibit higher internal quantum efficiency ({approx}59.1%) than do the branch-free ZnO nanorods DSSC ({approx}52.5%). The charge transfer resistances at the ZnO/dye/electrolyte interfaces investigated using electrochemical impedance spectroscopy showed that the jacks-like ZnO nanorods DSSC had high charge transfer resistance and a slightly longer electron lifetime, thus improving the solar-cell performance.

  8. Facile synthesis of terminal-alkyne bioorthogonal molecules for live -cell surface-enhanced Raman scattering imaging through Au-core and silver/dopamine-shell nanotags.

    Science.gov (United States)

    Chen, Meng; Zhang, Ling; Yang, Bo; Gao, Mingxia; Zhang, Xiangmin

    2018-03-01

    Alkyne is unique, specific and biocompatible in the Raman-silent region of the cell, but there still remains a challenge to achieve ultrasensitive detection in living systems due to its weak Raman scattering. Herein, a terminal alkyne ((E)-2-[4-(ethynylbenzylidene)amino]ethane-1-thiol (EBAE)) with surface-enhanced Raman scattering is synthesized. The EBAE molecule possesses S- and C-termini, which can be directly bonded to gold nanoparticles and dopamine/silver by forming the Au-S chemical bond and the carbon-metal bond, respectively. The distance between Raman reporter and AuNPs/AgNPs can be reduced, contributing to forming hot-spot-based SERS substrate. The alkyne functionalized nanoparticles are based on Au core and encapsulating polydopamine shell, defined as Au-core and dopamine/Ag-shell (ACDS). The bimetallic ACDS induce strong SERS signals for molecular imaging that arise from the strong electromagnetic field. Furthermore, the EBAE provides a distinct peak in the cellular Raman-silent region with nearly zero background interference. The EBAE Raman signals could be tremendously enhanced when the Raman reporter is located at the middle of the Au-core and dopamine/Ag-shell. Therefore, this work could have huge potential benefits for the highly sensitive detection of intercellular information delivery by connecting the recognition molecules in biomedical diagnostics. Graphical abstract Terminal-alkyne-functionalized Au-core and silver/dopamine-shell nanotags for live-cell surface-enhanced Raman scattering imaging.

  9. Facile synthesis of highly branched jacks-like ZnO nanorods and their applications in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Sudhagar, P.; Kumar, R. Saravana; Jung, June Hyuk; Cho, Woohyung; Sathyamoorthy, R.; Won, Jongok; Kang, Yong Soo

    2011-01-01

    Graphical abstract: -- Abstract: Highly branched, jacks-like ZnO nanorods architecture were explored as a photoanode in dye-sensitized solar cells, and their photovoltaic performance was compared with that of branch-free ZnO nanorods photoanodes. The highly branched network and large pores of the jacks-like ZnO nanorods electrodes enhances the charge transport, and electrolyte penetration. Thus, the jacks-like ZnO nanorods DSSCs render a higher conversion efficiency of η = 1.82% (V oc = 0.59 V, J sc = 5.52 mA cm -2 ) than that of the branch-free ZnO nanorods electrodes (η = 1.08%, V oc = 0.49 V, J sc = 4.02 mA cm -2 ). The incident photon-to-current conversion efficiency measurements reveal that the jacks-like ZnO nanorods DSSCs exhibit higher internal quantum efficiency (∼59.1%) than do the branch-free ZnO nanorods DSSC (∼52.5%). The charge transfer resistances at the ZnO/dye/electrolyte interfaces investigated using electrochemical impedance spectroscopy showed that the jacks-like ZnO nanorods DSSC had high charge transfer resistance and a slightly longer electron lifetime, thus improving the solar-cell performance.

  10. Textiles Performance Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Textiles Performance Testing Facilities has the capabilities to perform all physical wet and dry performance testing, and visual and instrumental color analysis...

  11. Geodynamics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This GSL facility has evolved over the last three decades to support survivability and protective structures research. Experimental devices include three gas-driven...

  12. Materials Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Materials Characterization Facility enables detailed measurements of the properties of ceramics, polymers, glasses, and composites. It features instrumentation...

  13. Mobile Solar Tracker Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST's mobile solar tracking facility is used to characterize the electrical performance of photovoltaic panels. It incorporates meteorological instruments, a solar...

  14. Proximal Probes Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Proximal Probes Facility consists of laboratories for microscopy, spectroscopy, and probing of nanostructured materials and their functional properties. At the...

  15. Geospatial Data Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Geospatial application development, location-based services, spatial modeling, and spatial analysis are examples of the many research applications that this facility...

  16. Facility Environmental Management System

    Data.gov (United States)

    Federal Laboratory Consortium — This is the Web site of the Federal Highway Administration's (FHWA's) Turner-Fairbank Highway Research Center (TFHRC) facility Environmental Management System (EMS)....

  17. Heated Tube Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Heated Tube Facility at NASA GRC investigates cooling issues by simulating conditions characteristic of rocket engine thrust chambers and high speed airbreathing...

  18. Magnetics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Research Facility houses three Helmholtz coils that generate magnetic fields in three perpendicular directions to balance the earth's magnetic field....

  19. Transonic Experimental Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Experimental Research Facility evaluates aerodynamics and fluid dynamics of projectiles, smart munitions systems, and sub-munitions dispensing systems;...

  20. Target Assembly Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Target Assembly Facility integrates new armor concepts into actual armored vehicles. Featuring the capability ofmachining and cutting radioactive materials, it...

  1. Pavement Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Comprehensive Environmental and Structural AnalysesThe ERDC Pavement Testing Facility, located on the ERDC Vicksburg campus, was originally constructed to provide an...

  2. Composite Structures Manufacturing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Composite Structures Manufacturing Facility specializes in the design, analysis, fabrication and testing of advanced composite structures and materials for both...

  3. GPS Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Global Positioning System (GPS) Test Facility Instrumentation Suite (GPSIS) provides great flexibility in testing receivers by providing operational control of...

  4. Manufacturing Demonstration Facility (MDF)

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Department of Energy Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides a collaborative, shared infrastructure to...

  5. Surplus Facilities Management Program

    International Nuclear Information System (INIS)

    Coobs, J.H.

    1983-01-01

    This is the second of two programs that are concerned with the management of surplus facilities. The facilities in this program are those related to commercial activities, which include the three surplus experimental and test reactors [(MSRE, HRE-2, and the Low Intensity Test Reactor (LITR)] and seven experimental loops at the ORR. The program is an integral part of the Surplus Facilities Management Program, which is a national program administered for DOE by the Richland Operations Office. Very briefly reported here are routine surveillance and maintenance of surplus radioactively contaminated DOE facilities awaiting decommissioning

  6. Imagery Data Base Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Imagery Data Base Facility supports AFRL and other government organizations by providing imagery interpretation and analysis to users for data selection, imagery...

  7. Universal Drive Train Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This vehicle drive train research facility is capable of evaluating helicopter and ground vehicle power transmission technologies in a system level environment. The...

  8. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  9. Catalytic Fuel Conversion Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility enables unique catalysis research related to power and energy applications using military jet fuels and alternative fuels. It is equipped with research...

  10. Flexible Electronics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Flexible Electronics Research Facility designs, synthesizes, tests, and fabricates materials and devices compatible with flexible substrates for Army information...

  11. Facility effluent monitoring plan determinations for the 400 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-09-01

    This Facility Effluent Monitoring Plan determination resulted from an evaluation conducted for the Westinghouse Hanford Company 400 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans. Two major Westinghouse Hanford Company facilities in the 400 Area were evaluated: the Fast Flux Test Facility and the Fuels Manufacturing and examination Facility. The determinations were prepared by Westinghouse Hanford Company. Of these two facilities, only the Fast Flux Test Facility will require a Facility Effluent Monitoring Plan. 7 refs., 5 figs., 4 tabs

  12. One-Pot and Facile Fabrication of Hierarchical Branched Pt-Cu Nanoparticles as Excellent Electrocatalysts for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Cao, Yanqin; Yang, Yong; Shan, Yufeng; Huang, Zhengren

    2016-03-09

    Hierarchical branched nanoparticles are one promising nanostructure with three-dimensional open porous structure composed of integrated branches for superior catalysis. We have successfully synthesized Pt-Cu hierarchical branched nanoparticles (HBNDs) with small size of about 30 nm and composed of integrated ultrathin branches by using a modified polyol process with introduction of poly(vinylpyrrolidone) and HCl. This strategy is expected to be a general strategy to prepare various metallic nanostructures for catalysis. Because of the special open porous structure, the as-prepared Pt-Cu HBNDs exhibit greatly enhanced specific activity toward the methanol oxidation reaction as much as 2.5 and 1.7 times compared with that of the commercial Pt-Ru and Pt-Ru/C catalysts, respectively. Therefore, they are potentially applicable as electrocatalysts for direct methanol fuel cells.

  13. The Biochemistry of O-GlcNAc Transferase: Which Functions Make It Essential in Mammalian Cells?

    Science.gov (United States)

    Levine, Zebulon G; Walker, Suzanne

    2016-06-02

    O-linked N-acetylglucosamine transferase (OGT) is found in all metazoans and plays an important role in development but at the single-cell level is only essential in dividing mammalian cells. Postmitotic mammalian cells and cells of invertebrates such as Caenorhabditis elegans and Drosophila can survive without copies of OGT. Why OGT is required in dividing mammalian cells but not in other cells remains unknown. OGT has multiple biochemical activities. Beyond its well-known role in adding β-O-GlcNAc to serine and threonine residues of nuclear and cytoplasmic proteins, OGT also acts as a protease in the maturation of the cell cycle regulator host cell factor 1 (HCF-1) and serves as an integral member of several protein complexes, many of them linked to gene expression. In this review, we summarize current understanding of the mechanisms underlying OGT's biochemical activities and address whether known functions of OGT could be related to its essential role in dividing mammalian cells.

  14. Waste Calcining Facility remote inspection report

    International Nuclear Information System (INIS)

    Patterson, M.W.; Ison, W.M.

    1994-08-01

    The purpose of the Waste Calcining Facility (WCF) remote inspections was to evaluate areas in the facility which are difficult to access due to high radiation fields. The areas inspected were the ventilation exhaust duct, waste hold cell, adsorber manifold cell, off-gas cell, calciner cell and calciner vessel. The WCF solidified acidic, high-level mixed waste generated during nuclear fuel reprocessing. Solidification was accomplished through high temperature oxidation and evaporation. Since its shutdown in 1981, the WCFs vessels, piping systems, pumps, off-gas blowers and process cells have remained contaminated. Access to the below-grade areas is limited due to contamination and high radiation fields. Each inspection technique was tested with a mock-up in a radiologically clean area before the equipment was taken to the WCF for the actual inspection. During the inspections, essential information was obtained regarding the cleanliness, structural integrity, in-leakage of ground water, indications of process leaks, indications of corrosion, radiation levels and the general condition of the cells and equipment. In general, the cells contain a great deal of dust and debris, as well as hand tools, piping and miscellaneous equipment. Although the building appears to be structurally sound, the paint is peeling to some degree in all of the cells. Cracking and spalling of the concrete walls is evident in every cell, although the east wall of the off-gas cell is the worst. The results of the completed inspections and lessons learned will be used to plan future activities for stabilization and deactivation of the facility. Remote clean-up of loose piping, hand tools, and miscellaneous debris can start immediately while information from the inspections is factored into the conceptual design for deactivating the facility

  15. Green facility location

    NARCIS (Netherlands)

    Velázquez Martínez, J.C.; Fransoo, J.C.; Bouchery, Y.; Corbett, C.J.; Fransoo, J.C.; Tan, T.

    2017-01-01

    Transportation is one of the main contributing factors of global carbon emissions, and thus, when dealing with facility location models in a distribution context, transportation emissions may be substantially higher than the emissions due to production or storage. Because facility location models

  16. A Remote WIRELESS Facility

    Directory of Open Access Journals (Sweden)

    Kees Uiterwijk

    2007-10-01

    Full Text Available Continuing need for available distance learning facilities has led to the development of a remote lab facility focusing on wireless technology. In the field of engineering there is a student need of gaining experience in set-up, monitoring and maintenance of 802.11A/B/G based wireless LAN environments.

  17. Medical cyclotron facilities

    International Nuclear Information System (INIS)

    1984-09-01

    This report examines the separate proposals from the Austin Hospital and the Australian Atomic Energy Commission for a medical cyclotron facility. The proponents have argued that a cyclotron facility would benefit Australia in areas of patient care, availability and export of radioisotopes, and medical research. Positron emission tomography (PET) and neutron beam therapy are also examined

  18. Global Environment Facility |

    Science.gov (United States)

    environment Countries pledge US$4.1 billion to the Global Environment Facility Ringtail lemur mom with two of paradise Nations rally to protect global environment Countries pledge US$4.1 billion to the Global Environment Facility Stockholm, Sweden birds-eye view Events GEF-7 Replenishment Trung Truong Son Landscapes

  19. Samarbejdsformer og Facilities Management

    DEFF Research Database (Denmark)

    Storgaard, Kresten

    Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges.......Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges....

  20. DUPIC facility engineering

    International Nuclear Information System (INIS)

    Park, J. J.; Lee, H. H.; Kim, K. H.

    2002-03-01

    With starting DUPIC fuel fabrication experiment by using spent fuels, 1) operation and refurbishment for DFDF (DUPIC fuel development facility), and 2) operation and improvement of transportation equipment for radioactive materials between facilities became the objectives of this study. This report describes objectives of the project, necessities, state of related technology, R and D scope, R and D results, proposal for application etc

  1. Economics of reusable facilities

    International Nuclear Information System (INIS)

    Antia, D.D.J.

    1992-01-01

    In this paper some of the different economic development strategies that can be used for reusable facilities in the UK, Norway, Netherlands and in some production sharing contracts are outlined. These strategies focus on an integrated decision analysis approach which considers development phasing, reservoir management, tax planning and where appropriate facility purchase, leasing, or sale and leaseback decisions

  2. Facile synthesis of high quality multi-walled carbon nanotubes on novel 3D KIT-6: application in high performance dye-sensitized solar cells

    Science.gov (United States)

    Balamurugan, Jayaraman; Pandurangan, Arumugam; Kim, Nam Hoon; Lee, Joong Hee

    2014-12-01

    A novel hard templating strategy for the synthesis of high quality multi-walled carbon nanotubes (MWCNTs) with a uniform diameter was developed. MWCNTs were successfully synthesized through chemical vapour deposition (CVD) using acetylene by employing 3D bicontinuous mesoporous silica (KIT-6) as a hard template and used as the counter electrode in dye-sensitized solar cells (DSSCs). Here, we report that Ni-Cr-KIT-6 and Co-Cr-KIT-6 systems are the most suitable catalysts for the growth of MWCNTs. Raman spectroscopy and TEM analysis revealed that the synthesized MWCNTs were of high quality and well graphitized. Impressively, DSSCs with a MWCNT counter electrode demonstrated high power conversion efficiencies (PCEs) of up to 10.53%, which was significantly higher than that of 9.87% obtained for a DSSC with a conventional Pt counter electrode. Moreover, MWCNTs had a charge transfer resistance (Rct) of only 0.74 Ω cm2 towards the I3-/I- electrolyte commonly applied in DSSCs, which is several orders of magnitude lower than that of a typical Pt electrode (2.78 Ω cm2). These results indicate that the synthesized MWCNT counter electrodes are versatile candidates that can increase the power conversion efficiency (PCE) of DSSCs.A novel hard templating strategy for the synthesis of high quality multi-walled carbon nanotubes (MWCNTs) with a uniform diameter was developed. MWCNTs were successfully synthesized through chemical vapour deposition (CVD) using acetylene by employing 3D bicontinuous mesoporous silica (KIT-6) as a hard template and used as the counter electrode in dye-sensitized solar cells (DSSCs). Here, we report that Ni-Cr-KIT-6 and Co-Cr-KIT-6 systems are the most suitable catalysts for the growth of MWCNTs. Raman spectroscopy and TEM analysis revealed that the synthesized MWCNTs were of high quality and well graphitized. Impressively, DSSCs with a MWCNT counter electrode demonstrated high power conversion efficiencies (PCEs) of up to 10.53%, which was

  3. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1988-12-01

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  4. A facile one-pot self-assembly approach to incorporate SnOx nanoparticles in ordered mesoporous carbon with soft templating for fuel cells

    Science.gov (United States)

    Huang, Yingqiang; Zhai, Zhicheng; Luo, Zhigang; Liu, Yingju; Liang, Zhurong; Fang, Yueping

    2014-04-01

    Unique SnOx (x = 1,2)/ordered mesoporous carbon nanocomposites (denoted as SnOx/OMC) are firstly synthesized through a ‘one-pot’ synthesis together with the soft template self-assembly approach. The obtained SnOx/OMC nanocomposites with various SnOx contents exhibit uniform pore sizes between 3.9 and 4.2 nm, high specific surface areas between 497 and 595 m2 g-1, and high pore volumes between 0.39 and 0.48 cm3 g-1. With loading of Pt, Pt-SnOx/OMC with relatively low SnOx content exhibits superior electrocatalytic performance, long-term durability, and resistance to CO poisoning for methanol oxidation, as compared to Pt/OMC, PtRu/C and Pt-SnOx/C, which may be attributed not only to the synergetic effect of embedded SnOx, but also to the highly ordered mesostructure with high specific surface areas and large pore volumes affording plenty of surface area for support of Pt nanoparticles. This work supplies an efficient way to synthesize novel ordered mesoporous carbon self-supported metallic oxide as catalyst support and its further potential application to reduce the cost of catalysts in direct methanol fuel cells.

  5. A facile one-pot self-assembly approach to incorporate SnOx nanoparticles in ordered mesoporous carbon with soft templating for fuel cells

    International Nuclear Information System (INIS)

    Huang, Yingqiang; Zhai, Zhicheng; Luo, Zhigang; Liu, Yingju; Liang, Zhurong; Fang, Yueping

    2014-01-01

    Unique SnO x  (x = 1,2)/ordered mesoporous carbon nanocomposites (denoted as SnO x /OMC) are firstly synthesized through a ‘one-pot’ synthesis together with the soft template self-assembly approach. The obtained SnO x /OMC nanocomposites with various SnO x contents exhibit uniform pore sizes between 3.9 and 4.2 nm, high specific surface areas between 497 and 595 m 2  g −1 , and high pore volumes between 0.39 and 0.48 cm 3  g −1 . With loading of Pt, Pt–SnO x /OMC with relatively low SnO x content exhibits superior electrocatalytic performance, long-term durability, and resistance to CO poisoning for methanol oxidation, as compared to Pt/OMC, PtRu/C and Pt–SnO x /C, which may be attributed not only to the synergetic effect of embedded SnO x , but also to the highly ordered mesostructure with high specific surface areas and large pore volumes affording plenty of surface area for support of Pt nanoparticles. This work supplies an efficient way to synthesize novel ordered mesoporous carbon self-supported metallic oxide as catalyst support and its further potential application to reduce the cost of catalysts in direct methanol fuel cells. (paper)

  6. Facile solvothermal synthesis of highly active and robust Pd1.87Cu0.11Sn electrocatalyst towards direct ethanol fuel cell applications

    Science.gov (United States)

    Jana, Rajkumar; Dhiman, Shikha; Peter, Sebastian C.

    2016-08-01

    Ordered intermetallic Pd1.87Cu0.11Sn ternary electrocatalyst has been synthesized by sodium borohydride reduction of precursor salts Pd(acac)2, CuCl2.2H2O and SnCl2 using one-pot solvothermal synthesis method at 220 °C with a reaction time of 24 h. To the best of our knowledge, here for the first time we report surfactant free synthesis of a novel ordered intermetallic ternary Pd1.87Cu0.11Sn nanoparticles. The ordered structure of the catalyst has been confirmed by powder x-ray diffraction, transmission electron microscopy (TEM). Composition and morphology of the nanoparticles have been confirmed through field emission scanning electron microscopy, energy-dispersive spectrometry and TEM. The electrocatalytic activity and stability of the ternary electrocatalyst towards ethanol oxidation in alkaline medium was investigated by cyclic voltammetry and chronoamperometry techniques. The catalyst is proved to be highly efficient and stable upto 500th cycle and even better than commercially available Pd/C (20 wt%) electrocatalysts. The specific and mass activity of the as synthesized ternary catalyst are found to be ∼4.76 and ∼2.9 times better than that of commercial Pd/C. The enhanced activity and stability of the ordered ternary Pd1.87Cu0.11Sn catalyst can make it as a promising candidate for the alkaline direct ethanol fuel cell application.

  7. Substrate Temperature Effect on Charge Transport Performance of ZnO Electron Transport Layer Prepared by a Facile Ultrasonic Spray Pyrolysis in Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Jiang Cheng

    2015-01-01

    Full Text Available A novel ultrasonic spray pyrolysis for high-quality ZnO films based on zinc-ammonia solution was achieved in air. To investigate the structural and optical properties as well as the performance of polymer solar cells (PSCs, ZnO films at different substrate temperatures and thicknesses were prepared. The performance of poly(3-hexylthiophene:[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM based PSC was found to be improved due to the ZnO films. The crystal structure and roughness of the ZnO films fabricated at different temperatures were found to affect the performance of PSCs. The optimized power conversion efficiency was found to be maximum for PSCs with ZnO films prepared at 200°C. The growth process of these ZnO films is very simple, cost-effective, and compatible for larger-scale PSC preparation. The precursor used for spray pyrolysis is environmentally friendly and helps to achieve ZnO film preparation at a relative low temperature.

  8. Post irradiation examinations cooperation and worldwide utilization of facilities

    International Nuclear Information System (INIS)

    Karlsson, Mikael

    2009-01-01

    Status of post irradiation examinations in Studsvik's facilities, cooperation and worldwide utilization of facilities, was described. Studsvik cooperate with irradiation facilities, as Halden, CEA and JAEA, as well as other hot cell facilities (examples, PSI, ITU and NFD) universities (example, the Royal Institute of Technology in Sweden) in order to be able to provide everything asked for by the nuclear community. Worldwide cooperation for effective use of expensive and highly specialized facilities is important, and the necessity of cooperation will be more and more recognized in the future. (author)

  9. Outline of the Chemical Processing Facility (CPF)

    International Nuclear Information System (INIS)

    Arita, Katsuhiko

    1978-01-01

    Concerning the Chemical Processing Facility (CPF), a high level radioactive material research facility, to be installed in Tokai Works of Power Reactor and Nuclear Fuel Development Corporation (PNC), the detailed design and the governmental safety inspection were finished. The construction has been already started, and it will be completed in 1980. Under the national policy of establishing a nuclear fuel cycle, PNC is now carrying out the development of its downstream technology. The objects of the Chemical Processing Facility are the researches of the treatment techniques of high level radioactive liquid wastes from fuel reprocessing and of the reprocessing of fast reactor fuel. The following matters are described: purpose of the CPF, i.e. fast reactor fuel reprocessing and high-level liquid waste treatment; construction of the CPF, i.e. buildings, cells and an exhaust stack; test systems, i.e. fuel reprocessing and liquid waste vitrification; and facility safety. (Mori, K.)

  10. STAR facility tritium accountancy

    International Nuclear Information System (INIS)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-01-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  11. Sustainable Facilities Management

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Elle, Morten; Hoffmann, Birgitte

    2004-01-01

    The Danish public housing sector has more than 20 years of experience with sustainable facilities management based on user involvement. The paper outlines this development in a historical perspective and gives an analysis of different approaches to sustainable facilities management. The focus...... is on the housing departments and strateies for the management of the use of resources. The research methods used are case studies based on interviews in addition to literature studies. The paper explores lessons to be learned about sustainable facilities management in general, and points to a need for new...

  12. WORKSHOPS: Hadron facilities

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    'Hadron facilities' – high intensity (typically a hundred microamps), medium energy (30-60 GeV) machines producing intense secondary beams of pions, kaons, etc., are being widely touted as a profitable research avenue to supplement what is learned through the thrust for higher and higher energies. This interest was reflected at an International Workshop on Hadron Facility Technology, held in Santa Fe, New Mexico. As well as invited talks describing the various projects being pushed in the US, Europe and Japan, the meeting included working groups covering linacs, beam dynamics, hardware, radiofrequency, polarized beams and experimental facilities

  13. Radioactive facilities classification criteria

    International Nuclear Information System (INIS)

    Briso C, H.A.; Riesle W, J.

    1992-01-01

    Appropriate classification of radioactive facilities into groups of comparable risk constitutes one of the problems faced by most Regulatory Bodies. Regarding the radiological risk, the main facts to be considered are the radioactive inventory and the processes to which these radionuclides are subjected. Normally, operations are ruled by strict safety procedures. Thus, the total activity of the radionuclides existing in a given facility is the varying feature that defines its risk. In order to rely on a quantitative criterion and, considering that the Annual Limits of Intake are widely accepted references, an index based on these limits, to support decisions related to radioactive facilities, is proposed. (author)

  14. Wind Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laurie, Carol

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  15. Test and User Facilities | NREL

    Science.gov (United States)

    Test and User Facilities Test and User Facilities Our test and user facilities are available to | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z B Battery Thermal and Life Test Facility Biochemical Conversion Pilot Plant C Controllable Grid Interface Test System D Dynamometer Test Facilities

  16. Aviation Flight Support Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility consists of a 75' x 200' hanger with two adjacent helicopter pads located at Felker Army Airfield on Fort Eustis. A staff of Government and contractor...

  17. Airborne & Field Sensors Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC facilities include an 800' x 60' paved UAV operational area, clearapproach/departure zone, concrete pads furnished with 208VAC, 3 phase,200 amp power, 20,000 sq...

  18. Field Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Field Research Facility (FRF) located in Duck, N.C. was established in 1977 to support the U.S. Army Corps of Engineers' coastal engineering mission. The FRF is...

  19. Air Data Calibration Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  20. Robotics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 60 feet x 100 feet structure on the grounds of the Fort Indiantown Gap Pennsylvania National Guard (PNG) Base is a mixed-use facility comprising office space,...

  1. Ballistic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Ballistic Test Facility is comprised of two outdoor and one indoor test ranges, which are all instrumented for data acquisition and analysis. Full-size aircraft...

  2. Concrete Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This is a 20,000-sq ft laboratory that supports research on all aspects of concrete and materials technology. The staff of this facility offer wide-ranging expertise...

  3. Climatic Environmental Test Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has an extensive suite of facilities for supporting MIL-STD-810 testing, toinclude: Temperature/Altitude, Rapid Decompression, Low/High Temperature,Temperature...

  4. HNF - Helmholtz Nano Facility

    Directory of Open Access Journals (Sweden)

    Wolfgang Albrecht

    2017-05-01

    Full Text Available The Helmholtz Nano Facility (HNF is a state-of-the-art cleanroom facility. The cleanroom has ~1100 m2 with cleanroom classes of DIN ISO 1-3. HNF operates according to VDI DIN 2083, Good Manufacturing Practice (GMP and aquivalent to Semiconductor Industry Association (SIA standards. HNF is a user facility of Forschungszentrum Jülich and comprises a network of facilities, processes and systems for research, production and characterization of micro- and nanostructures. HNF meets the basic supply of micro- and nanostructures for nanoelectronics, fluidics. micromechanics, biology, neutron and energy science, etc.. The task of HNF is rapid progress in nanostructures and their technology, offering efficient access to infrastructure and equipment. HNF gives access to expertise and provides resources in production, synthesis, characterization and integration of structures, devices and circuits. HNF covers the range from basic research to application oriented research facilitating a broad variety of different materials and different sample sizes.

  5. Advanced Microscopy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a facility for high-resolution studies of complex biomolecular systems. The goal is an understanding of how to engineer biomolecules for various...

  6. Electra Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The Electra Laser Facility is used to develop the science and technology needed to develop a reliable, efficient, high-energy, repetitively pulsed krypton...

  7. Mark 1 Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Mark I Test Facility is a state-of-the-art space environment simulation test chamber for full-scale space systems testing. A $1.5M dollar upgrade in fiscal year...

  8. Coastal Harbors Modeling Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Harbors Modeling Facility is used to aid in the planning of harbor development and in the design and layout of breakwaters, absorbers, etc.. The goal is...

  9. Corrosion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Corrosion Testing Facility is part of the Army Corrosion Office (ACO). It is a fully functional atmospheric exposure site, called the Corrosion Instrumented Test...

  10. Skilled Nursing Facility PPS

    Data.gov (United States)

    U.S. Department of Health & Human Services — Section 4432(a) of the Balanced Budget Act (BBA) of 1997 modified how payment is made for Medicare skilled nursing facility (SNF) services. Effective with cost...

  11. Frost Effects Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Full-scale study in controlled conditionsThe Frost Effects Research Facility (FERF) is the largest refrigerated warehouse in the United States that can be used for a...

  12. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  13. VT Telecommunication Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The UtilityTelecom_TELEFAC data layer contains points which are intended to represent the location of telecommunications facilities (towers and/or...

  14. Laser Guidance Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility, which provides for real time, closed loop evaluation of semi-active laser guidance hardware, has and continues to be instrumental in the development...

  15. The Birmingham Irradiation Facility

    CERN Document Server

    Dervan, P; Hodgson, P; Marin-Reyes, H; Wilson, J

    2013-01-01

    At the end of 2012 the proton irradiation facility at the CERN PS [1] will shut down for two years. With this in mind, we have been developing a new ATLAS scanning facility at the University of Birmingham Medical Physics cyclotron. With proton beams of energy approximately 30 MeV, fluences corresponding to those of the upgraded Large Hadron Collider (HL-LHC) can be reached conveniently. The facility can be used to irradiate silicon sensors, optical components and mechanical structures (e.g. carbon fibre sandwiches) for the LHC upgrade programme. Irradiations of silicon sensors can be carried out in a temperature controlled cold box that can be scanned through the beam. The facility is described in detail along with the first tests carried out with mini (1 x 1 cm^2 ) silicon sensors.

  16. Advanced Microanalysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Microanalysis Facility fully integrates capabilities for chemical and structural analysis of electronic materials and devices for the U.S. Army and DoD....

  17. The Birmingham Irradiation Facility

    International Nuclear Information System (INIS)

    Dervan, P.; French, R.; Hodgson, P.; Marin-Reyes, H.; Wilson, J.

    2013-01-01

    At the end of 2012 the proton irradiation facility at the CERN PS will shut down for two years. With this in mind, we have been developing a new ATLAS scanning facility at the University of Birmingham Medical Physics cyclotron. With proton beams of energy approximately 30 MeV, fluences corresponding to those of the upgraded Large Hadron Collider (HL-LHC) can be reached conveniently. The facility can be used to irradiate silicon sensors, optical components and mechanical structures (e.g. carbon fibre sandwiches) for the LHC upgrade programme. Irradiations of silicon sensors can be carried out in a temperature controlled cold box that can be scanned through the beam. The facility is described in detail along with the first tests carried out with mini (1×1 cm 2 ) silicon sensors

  18. Decontamination of nuclear facilities

    International Nuclear Information System (INIS)

    1982-01-01

    Thirty-seven papers were presented at this conference in five sessions. Topics covered include regulation, control and consequences of decontamination; decontamination of components and facilities; chemical and non-chemical methods of decontamination; and TMI decontamination experience

  19. Pit Fragment Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility contains two large (20 foot high by 20 foot diameter) double walled steel tubs in which experimental munitions are exploded while covered with sawdust....

  20. Joint Computing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Raised Floor Computer Space for High Performance ComputingThe ERDC Information Technology Laboratory (ITL) provides a robust system of IT facilities to develop and...

  1. Coastal Inlet Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Inlet Model Facility, as part of the Coastal Inlets Research Program (CIRP), is an idealized inlet dedicated to the study of coastal inlets and equipped...

  2. Wind Tunnel Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — NASA Ames Research Center is pleased to offer the services of our premier wind tunnel facilities that have a broad range of proven testing capabilities to customers...

  3. Space Power Facility (SPF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Power Facility (SPF) houses the world's largest space environment simulation chamber, measuring 100 ft. in diameter by 122 ft. high. In this chamber, large...

  4. Airborne Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — AFRL's Airborne Evaluation Facility (AEF) utilizes Air Force Aero Club resources to conduct test and evaluation of a variety of equipment and concepts. Twin engine...

  5. Pittsburgh City Facilities

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Pittsburgh City FacilitiesIncludes: City Administrative Buildings, Police Stations, Fire Stations, EMS Stations, DPW Sites, Senior Centers, Recreation Centers, Pool...

  6. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  7. Treated Effluent Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Treated non-hazardous and non-radioactive liquid wastes are collected and then disposed of through the systems at the Treated Effluent Disposal Facility (TEDF). More...

  8. Plutonium metal burning facility

    International Nuclear Information System (INIS)

    Hausburg, D.E.; Leebl, R.G.

    1977-01-01

    A glove-box facility was designed to convert plutonium skull metal or unburned oxide to an oxide acceptable for plutonium recovery and purification. A discussion of the operation, safety aspects, and electrical schematics are included

  9. Geophysical Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long × 22 ft wide × 7 ft deep concrete basin at CRREL for fresh or saltwater investigations and can be temperature...

  10. Mass Properties Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is used to acquire accurate weight, 3 axis center of gravity and 3 axis moment of inertia measurements for air launched munitions and armament equipment.

  11. Hypersonic Tunnel Facility (HTF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hypersonic Tunnel Facility (HTF) is a blow-down, non-vitiated (clean air) free-jet wind tunnel capable of testing large-scale, propulsion systems at Mach 5, 6,...

  12. Powder Metallurgy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The facility is uniquely equipped as the only laboratory within DA to conduct PM processing of refractory metals and alloys as well as the processing of a wide range...

  13. Environmental Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Test Facility (ETF) provides non-isolated shock testing for stand-alone equipment and full size cabinets under MIL-S-901D specifications. The ETF...

  14. Dialysis Facility Compare Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — These are the official datasets used on the Medicare.gov Dialysis Facility Compare Website provided by the Centers for Medicare and Medicaid Services. These data...

  15. Wind Tunnel Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This ARDEC facility consists of subsonic, transonic, and supersonic wind tunnels to acquire aerodynamic data. Full-scale and sub-scale models of munitions are fitted...

  16. Structural Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides a wide variety of testing equipment, fixtures and facilities to perform both unique aviation component testing as well as common types of materials testing...

  17. Liquid Effluent Retention Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Liquid Effluent Retention Facility (LERF) is located in the central part of the Hanford Site. LERF is permitted by the State of Washington and has three liquid...

  18. Decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Harmon, K.M.; Jenkins, C.E.; Waite, D.A.; Brooksbank, R.E.; Lunis, B.C.; Nemec, J.F.

    1976-01-01

    This paper describes the currently accepted alternatives for decommissioning retired light water reactor fuel cycle facilities and the current state of decommissioning technology. Three alternatives are recognized: Protective Storage; Entombment; and Dismantling. Application of these alternatives to the following types of facilities is briefly described: light water reactors; fuel reprocessing plants, and mixed oxide fuel fabrication plants. Brief descriptions are given of decommissioning operations and results at a number of sites, and recent studies of the future decommissioning of prototype fuel cycle facilities are reviewed. An overview is provided of the types of operations performed and tools used in common decontamination and decommissioning techniques and needs for improved technology are suggested. Planning for decommissioning a nuclear facility is dependent upon the maximum permitted levels of residual radioactive contamination. Proposed guides and recently developed methodology for development of site release criteria are reviewed. 21 fig, 32 references

  19. Water Tunnel Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s High-Pressure Water Tunnel Facility in Pittsburgh, PA, re-creates the conditions found 3,000 meters beneath the ocean’s surface, allowing scientists to study...

  20. Fiscal 2001 achievement report. Development of coal gas production technology for fuel cells - Research using pilot test facility - for public release (Part 1 - Construction and test operation); 2001 nendo seika hokokusho (Kokai you). Nenryo denchi you sekitan gas seizo gijutsu kaihatsu - Pilot shiken setsubi ni yoru kenkyu (Sono 1 - Koji shiken unten hen)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    For the development of a coal gasification furnace optimum for fuel cells, research and development was conducted of a coal gas production technology using the oxygen-blown coal gasification technology, and the fiscal 2001 results are put together. In the construction of the pilot test facility, work involved the road in the site, road illumination system installation in the site, and an unauthorized entry prevention system. In the construction of the coal gasification facility, work involved electrical instrumentation and painting for the coal feeding system, coal gasification furnace, heat recovery boiler, and so forth, and the installation of a series of devices was completed. In July following the completion, power was received and test operations were started, which included the operation of the coal gasification facility alone. Renting was started in August for the coal pretreatment facility, air separation facility, and the slag treatment device. In the study of the operation control technology for the oxygen-blown coal gasification furnace system, test operations were conducted based on the operating procedures prepared in the preceding fiscal year, which included a test operation performed for the pilot test facility alone. Parameters for equipment control obtained through the test operations, and improvements on operating steps carried out as required, were all reflected on the operating procedures. (NEDO)

  1. Hanford Facility contingency plan

    International Nuclear Information System (INIS)

    Sutton, L.N.; Miskho, A.G.; Brunke, R.C.

    1993-10-01

    The Hanford Facility Contingency Plan, together with each TSD unit-specific contingency plan, meets the WAC 173-303 requirements for a contingency plan. This plan includes descriptions of responses to a nonradiological hazardous materials spill or release at Hanford Facility locations not covered by TSD unit-specific contingency plans or building emergency plans. This plan includes descriptions of responses for spills or releases as a result of transportation activities, movement of materials, packaging, and storage of hazardous materials

  2. Auditing radiation sterilization facilities

    Science.gov (United States)

    Beck, Jeffrey A.

    The diversity of radiation sterilization systems available today places renewed emphasis on the need for thorough Quality Assurance audits of these facilities. Evaluating compliance with Good Manufacturing Practices is an obvious requirement, but an effective audit must also evaluate installation and performance qualification programs (validation_, and process control and monitoring procedures in detail. The present paper describes general standards that radiation sterilization operations should meet in each of these key areas, and provides basic guidance for conducting QA audits of these facilities.

  3. JRR-3 neutron radiography facility

    International Nuclear Information System (INIS)

    Matsubayashi, M.; Tsuruno, A.

    1992-01-01

    JRR-3 neutron radiography facility consists of thermal neutron radiography facility (TNRF) and cold neutron radiography facility (CNRF). TNRF is installed in JRR-3 reactor building. CNRF is installed in the experimental beam hall adjacent to the reactor building. (author)

  4. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  5. The CUTLASS database facilities

    International Nuclear Information System (INIS)

    Jervis, P.; Rutter, P.

    1988-09-01

    The enhancement of the CUTLASS database management system to provide improved facilities for data handling is seen as a prerequisite to its effective use for future power station data processing and control applications. This particularly applies to the larger projects such as AGR data processing system refurbishments, and the data processing systems required for the new Coal Fired Reference Design stations. In anticipation of the need for improved data handling facilities in CUTLASS, the CEGB established a User Sub-Group in the early 1980's to define the database facilities required by users. Following the endorsement of the resulting specification and a detailed design study, the database facilities have been implemented as an integral part of the CUTLASS system. This paper provides an introduction to the range of CUTLASS Database facilities, and emphasises the role of Database as the central facility around which future Kit 1 and (particularly) Kit 6 CUTLASS based data processing and control systems will be designed and implemented. (author)

  6. Mound facility physical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tonne, W.R.; Alexander, B.M.; Cage, M.R.; Hase, E.H.; Schmidt, M.J.; Schneider, J.E.; Slusher, W.; Todd, J.E.

    1993-12-01

    The purpose of this report is to provide a baseline physical characterization of Mound`s facilities as of September 1993. The baseline characterizations are to be used in the development of long-term future use strategy development for the Mound site. This document describes the current missions and alternative future use scenarios for each building. Current mission descriptions cover facility capabilities, physical resources required to support operations, current safety envelope and current status of facilities. Future use scenarios identify potential alternative future uses, facility modifications required for likely use, facility modifications of other uses, changes to safety envelope for the likely use, cleanup criteria for each future use scenario, and disposition of surplus equipment. This Introductory Chapter includes an Executive Summary that contains narrative on the Functional Unit Material Condition, Current Facility Status, Listing of Buildings, Space Plans, Summary of Maintenance Program and Repair Backlog, Environmental Restoration, and Decontamination and Decommissioning Programs. Under Section B, Site Description, is a brief listing of the Site PS Development, as well as Current Utility Sources. Section C contains Site Assumptions. A Maintenance Program Overview, as well as Current Deficiencies, is contained within the Maintenance Program Chapter.

  7. Remote Operation and Maintenance Demonstration Facility at ORNL

    International Nuclear Information System (INIS)

    Harvey, H.W.; Floyd, S.D; Kuban, D.P.; Singletary, B.H.; Stradley, J.G.

    1978-01-01

    The Remote Operation and Maintenance Facility is a versatile facility arranged to mock-up various hot-cell configurations. Modular units of simulated shielding and viewing windows were built to provide flexibility in arrangement. The facility is fully equipped with hoists, manipulators, television, and the other basic equipment and services necessary to provide capability for both remote operation and maintenance of several selected functional process equipment groups. 6 figures

  8. Remote operation and maintenance demonstration facility at ORNL

    International Nuclear Information System (INIS)

    Harvey, H.W.; Floyd, S.D.; Kuban, D.P.; Singletary, B.H.; Stradley, J.G.

    1978-01-01

    The Remote Operation and Maintenance Facility is a versatile facility arranged to mock up various hot cell configurations. Modular units of simulated shielding and viewing windows were built to provide flexibility in arrangement. The facility is fully equipped with hoists, manipulators, television, and other basic equipment and services necessary to provide capability for both remote operation and maintenance of several selected functional process equipment groups

  9. SNS Target Test Facility for remote handling design and verification

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Graves, V.B.; Schrock, S.L.

    1998-01-01

    The Target Test Facility will be a full-scale prototype of the Spallation Neutron Source Target Station. It will be used to demonstrate remote handling operations on various components of the mercury flow loop and for thermal/hydraulic testing. This paper describes the remote handling aspects of the Target Test Facility. Since the facility will contain approximately 1 cubic meter of mercury for the thermal/hydraulic tests, an enclosure will also be constructed that matches the actual Target Test Cell

  10. Construction of irradiated material examination facility-basic design

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Kim, Eun Ka; Hong, Gye Won; Herr, Young Hoi; Hong, Kwon Pyo; Lee, Myeong Han; Baik, Sang Youl; Choo, Yong Sun; Baik, Seung Je

    1989-02-01

    The basic design of the hot cell facility which has the main purpose of doing mechanical and physical property tests of irradiated materials, the examination process, and the annexed facility has been made. Also basic and detall designs for the underground excavation work have been performed. The project management and tasks required for the license application have been carried out in due course. The facility is expected to be completed by the end of 1992, if the budgetary support is sufficient. (Author)

  11. Major facility overhauls at LAMPF

    International Nuclear Information System (INIS)

    Grisham, D.L.; Lambert, J.E.; Sommer, W.F. Jr.

    1985-01-01

    The Clinton P. Anderson Meson Physics Facility (LAMPF) is a linear proton accelerator designed to operate at 800 MeV and 1.0 mA. It has been operating at power levels above 200 microamperes since February of 1976 and now routinely operates near the design level. This paper outlines the problems encountered with the original target cell components, the repairs required since 1976, and specifically details the steps involved in the complete replacement of the vital target cell components. These components include target boxes, collimators, main beam line magnets, and the front-end magnets of the secondary beam lines. The A-2 target cell was replaced in the spring of 1983 and the A-1 target cell was replaced in the spring of 1984. Both have operated satisfactorily since their completion, with only minor difficulties. The overhaul and total component replacement in the beam stop area (A-6) was completed in early May 1985 and has just been placed in operation. The upgrade, in addition to the replacement of the beam stop and the vacuum-to-air window with state-of-the-art designs, provides a greatly increased capability of both proton and neutron irradiation of materials

  12. Advanced reactor experimental facilities

    International Nuclear Information System (INIS)

    Amri, A.; Papin, J.; Uhle, J.; Vitanza, C.

    2010-01-01

    For many years, the NEA has been examining advanced reactor issues and disseminating information of use to regulators, designers and researchers on safety issues and research needed. Following the recommendation of participants at an NEA workshop, a Task Group on Advanced Reactor Experimental Facilities (TAREF) was initiated with the aim of providing an overview of facilities suitable for carrying out the safety research considered necessary for gas-cooled reactors (GCRs) and sodium fast reactors (SFRs), with other reactor systems possibly being considered in a subsequent phase. The TAREF was thus created in 2008 with the following participating countries: Canada, the Czech Republic, Finland, France, Germany, Hungary, Italy, Japan, Korea and the United States. In a second stage, India provided valuable information on its experimental facilities related to SFR safety research. The study method adopted entailed first identifying high-priority safety issues that require research and then categorizing the available facilities in terms of their ability to address the safety issues. For each of the technical areas, the task members agreed on a set of safety issues requiring research and established a ranking with regard to safety relevance (high, medium, low) and the status of knowledge based on the following scale relative to full knowledge: high (100%-75%), medium (75 - 25%) and low (25-0%). Only the issues identified as being of high safety relevance and for which the state of knowledge is low or medium were included in the discussion, as these issues would likely warrant further study. For each of the safety issues, the TAREF members identified appropriate facilities, providing relevant information such as operating conditions (in- or out-of reactor), operating range, description of the test section, type of testing, instrumentation, current status and availability, and uniqueness. Based on the information collected, the task members assessed prospects and priorities

  13. Distributed Energy Resources Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility...

  14. A new radioisotope facility for Thailand

    International Nuclear Information System (INIS)

    Horlock, K.

    1997-01-01

    The Thai Office of Atomic Energy for Peace (OAEP) is planning a new Nuclear Research Centre which will be located at Ongkharak, a greenfield site some 100 km North of Bangkok. General Atomics (GA) has submitted a bid for a turnkey contract for the core facilities comprising a Reactor to be supplied by GA, an Isotope Production Facility supplied by ANSTO and a Waste Processing and Storage Facility to be supplied by Hitachi through Marubeni. The buildings for these facilities will be provided by Raytheon, the largest constructor of nuclear facilities in the USA. The proposed Isotope Facility will consist of a 3000 m 2 building adjacent to the reactor with a pneumatic radioisotope transfer system. Hot cells, process equipment and clean rooms will be provided, as well as the usual maintenance and support services required for processing radiopharmaceutical and industrial products. To ensure the highest standards of product purity the processing areas will be supplied with clean air and operated at slightly positive pressure. The radioisotopes to be manufactured include Phosphorus 32 (S-32 [n,p]P-32), I-131(Te-130 [n,g]Te-131[p]I-131) for bulk, diagnostic capsules and therapeutic capsules, Iridium 192 (Ir-191[n,g]Ir-192) wire for radiotherapy and discs for industrial radiography sources and bulk Iodine 125 (Xe-124[n,g]Xe-125[β]I-125 for radioimmunoassay. The bid includes proposals for training OAEP staff during design and development at ANSTO's radioisotope facilities, and during construction and commissioning in Thailand. The entire project is planned to take four years with commencement anticipated in early 1997. The paper will describe the development of the design of the hot-cells, process equipment, building layout and ventilation and other services

  15. Development of Experimental Facilities for Advanced Spent Fuel Management Technology

    Energy Technology Data Exchange (ETDEWEB)

    You, G. S.; Jung, W. M.; Ku, J. H. [and others

    2004-07-01

    The advanced spent fuel management process(ACP), proposed to reduce the overall volume of the PWR spent fuel and improve safety and economy of the long-term storage of spent fuel, is under research and development. This technology convert spent fuels into pure metal-base uranium with removing the highly heat generating materials(Cs, Sr) efficiently and reducing of the decay heat, volume, and radioactivity from spent fuel by 1/4. In the next phase(2004{approx}2006), the demonstration of this technology will be carried out for verification of the ACP in a laboratory scale. For this demonstration, the hot cell facilities of {alpha}-{gamma} type and auxiliary facilities are required essentially for safe handling of high radioactive materials. As the hot cell facilities for demonstration of the ACP, a existing hot cell of {beta}-{gamma} type will be refurbished to minimize construction expenditures of hot cell facility. In this study, the design requirements are established, and the process detail work flow was analysed for the optimum arrangement to ensure effective process operation in hot cell. And also, the basic and detail design of hot cell facility and process, and safety analysis was performed to secure conservative safety of hot cell facility and process.

  16. Comprehensive facilities plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  17. Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Goldhagen, P.; Marino, S.A.; Randers-Pehrson, G.; Hall, E.J.

    1986-01-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which can be used to generate a variety of well-characterized radiation beams for research in radiobiology and radiological physics. It is part of the Radiological Research Laboratory (RRL), and its operation is supported as a National Facility by the US Department of Energy. RARAF is available to all potential users on an equal basis, with priorities based on the recommendations of a Scientific Advisory Committee. Facilities and services are provided to users, but the research projects themselves must be supported separately. This chapter presents a brief description of current experiments being carried out at RARAF and of the operation of the Facility from January through June, 1986. Operation of the Facility for all of 1985 was described in the 1985 Progress Report for RARAF. The experiments described here were supported by various Grants and Contracts from NIH and DOE and by the Statens Stralskyddsinstitut of Sweden

  18. European Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Buras, B.

    1985-01-01

    How a European Synchrotron Radiation Facility has developed into a detailed proposal recently accepted as the basis for construction of the facility at Grenoble is discussed. In November 1977, the General Assembly of the European Science Foundation (ESF) approved the report of the ESF working party on synchrotron radiation entitled Synchrotron Radiation - a Perspective View for Europe. This report contained as one of its principal recommendations that work should commence on a feasibility study for a European synchrotron radiation laboratory having a dedicated hard X-ray storage ring and appropriate advanced instrumentation. In order to prepare a feasibility study the European Science Foundation set up the Ad-hoc Committee on Synchrotron Radiation, which in turn formed two working groups: one for the machine and another for instrumentation. This feasibility study was completed in 1979 with the publication of the Blue Book describing in detail the so called 1979 European Synchrotron Radiation Facility. The heart of the facility was a 5 GeV electron storage ring and it was assumed that mainly the radiation from bending magnets will be used. The facility is described

  19. Berkeley Low Background Facility

    International Nuclear Information System (INIS)

    Thomas, K. J.; Norman, E. B.; Smith, A. R.; Poon, A. W. P.; Chan, Y. D.; Lesko, K. T.

    2015-01-01

    The Berkeley Low Background Facility (BLBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization measurements through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described including an overview of the recently installed counting system at SURF (recently relocated from Oroville, CA in 2014), the installation of a second underground counting station at SURF in 2015, and future plans. The BLBF is open to any users for counting services or collaboration on a wide variety of experiments and projects

  20. Georgetown University Photovoltaic Higher Education National Exemplar Facility (PHENEF)

    Science.gov (United States)

    Marshall, N.

    1984-01-01

    Several photographs of this facility using photovoltaic (PV) cells are shown. An outline is given of the systems requirements, system design and wiring topology, a simplified block design, module electrical characteristics, PV module and PV module matching.

  1. Facile template-free hydrothermal synthesis and microstrain ...

    Indian Academy of Sciences (India)

    Administrator

    2009), solar cells (Yuan et al 2011), transparent elec- trodes (Kim et al ... increasing the peak width, intensity and shifting the 2θ peak position. ... Facile template-free hydrothermal synthesis and microstrain measurement of ZnO nanorods. 399.

  2. Plasma-Materials Interactions Test Facility

    International Nuclear Information System (INIS)

    Uckan, T.

    1986-11-01

    The Plasma-Materials Interactions Test Facility (PMITF), recently designed and constructed at Oak Ridge National Laboratory (ORNL), is an electron cyclotron resonance microwave plasma system with densities around 10 11 cm -3 and electron temperatures of 10-20 eV. The device consists of a mirror cell with high-field-side microwave injection and a heating power of up to 0.8 kW(cw) at 2.45 GHz. The facility will be used for studies of plasma-materials interactions and of particle physics in pump limiters and for development and testing of plasma edge diagnostics

  3. Implementing partnerships in nonreactor facility safety analyses

    International Nuclear Information System (INIS)

    Courtney, J.C.; Perry, W.H.; Phipps, R.D.

    1996-01-01

    Faculty and students from LSU have been participating in nuclear safety analyses and radiation protection projects at ANL-W at INEL since 1973. A mutually beneficial relationship has evolved that has resulted in generation of safety-related studies acceptable to Argonne and DOE, NRC, and state regulatory groups. Most of the safety projects have involved the Hot Fuel Examination Facility or the Fuel Conditioning Facility; both are hot cells that receive spent fuel from EBR-II. A table shows some of the major projects at ANL-W that involved LSU students and faculty

  4. UHV facility at pelletron

    International Nuclear Information System (INIS)

    Gupta, S.K.; Hattangadi, V.A.

    1993-01-01

    One of the important requirements of a heavy ion accelerator is the maintenance of a clean, ultrahigh vacuum (UHV) environment in the accelerating tubes as well as in the beamlines. This becomes necessary in order to minimise transmission losses of the ion beam due to charge exchange or scattering during collisions with the residual gas atoms. In view of these considerations, as an essential ancillary facility, a UHV laboratory with all required facilities has been set up for the pelletron accelerator and the work done in this laboratory is described. First the pelletron accelerator vacuum system is described in brief. The UHV laboratory facilities are described. Our operational experience with the accelerator vacuum system is discussed. The development of accelerator components carried out by the UHV laboratory is also discussed. (author)

  5. FACILITIES MANAGEMENT AT CERN

    CERN Multimedia

    2002-01-01

    Recently we have been confronted with difficulties concerning services which are part of a new contract for facilities management. Please see below for some information about this contract. Following competitive tendering and the Finance Committee decision, the contract was awarded to the Swiss firm 'Facilities Management Network (FMN)'. The owners of FMN are two companies 'M+W Zander' and 'Avireal', both very experienced in this field of facilities management. The contract entered into force on 1st July 2002. CERN has grouped together around 20 different activities into this one contract, which was previously covered by separate contracts. The new contract includes the management and execution of many activities, in particular: Guards and access control; cleaning; operation and maintenance of heating plants, cooling and ventilation equipment for buildings not related to the tunnel or the LHC; plumbing; sanitation; lifts; green areas and roads; waste disposal; and includes a centralised helpdesk for these act...

  6. The ORION Facility

    International Nuclear Information System (INIS)

    Noble, Robert

    2003-01-01

    ORION will be a user-oriented research facility for understanding the physics and developing the technology for future high-energy particle accelerators, as well as for research in related fields. The facility has as its centerpiece the Next Linear Collider Test Accelerator (NLCTA) at the Stanford Linear Accelerator Center (SLAC). The NLCTA will be modified with the addition of a new, high-brightness photoinjector, its drive laser, an S-band rf power system, a user laser room, a low-energy experimental hall supplied with electron beams up to 60 MeV in energy, and a high-energy hall supplied with beams up to 350 MeV. The facility design and parameters are described here along with highlights from the 2nd ORION Workshop held in February 2003

  7. Applications of microtron facility

    International Nuclear Information System (INIS)

    Sanjeev, Ganesh

    2013-01-01

    An 8 MeV Microtron accelerator installed and commissioned in Mangalore University to strengthen research activities in the area of Radiation Physics and allied sciences is also being used extensively for coordinated research programs in basic and applied areas of science and technology involving researchers from national laboratories and sister universities of the region. The electron accelerator with its versatile features extends energetic electrons, intense photons and neutrons of moderate flux to cater to the needs of the users of the facility. A brief view of this 'first of its kind' facility in the country and the R and D programs with some sample results is presented. (author)

  8. Bevalac Radiotherapy Facility

    International Nuclear Information System (INIS)

    Alonso, J.R.; Howard, J.; Criswell, T.

    1979-03-01

    Patient Treatment Room at the Bevalac is now in full operation. In the design of this facility, emphasis has been placed on creating an atmosphere appropriate to a clinical facility; the usual features of an irradiation cave have been hidden behind carpets, curtains and paint. Patient positioning is done with a Philips Ram-style couch, with additional fixtures to accommodate a patient in the seated or standing, as well as the supine, position. Dosimetry apparatus, collimators, ion chambers and the beam flattening system used to produce the highly uniform 20 cm diameter therapy field are described

  9. Line facilities outline

    International Nuclear Information System (INIS)

    1998-08-01

    This book deals with line facilities. The contents of this book are outline line of wire telecommunication ; development of line, classification of section of line and theory of transmission of line, cable line ; structure of line, line of cable in town, line out of town, domestic cable and other lines, Optical communication ; line of optical cable, transmission method, measurement of optical communication and cable of the sea bottom, Equipment of telecommunication line ; telecommunication line facilities and telecommunication of public works, construction of cable line and maintenance and Regulation of line equipment ; regulation on technique, construction and maintenance.

  10. Robotics for nuclear facilities

    International Nuclear Information System (INIS)

    Abe, Akira; Nakayama, Ryoichi; Kubo, Katsumi

    1988-01-01

    It is highly desirable that automatic or remotely controlled machines perform inspection and maintenance tasks in nuclear facilities. Toshiba has been working to develop multi-functional robots, with one typical example being a master-slave manipulator for use in reprocessing facilities. At the same time, the company is also working on the development of multi-purpose intelligent robots. One such device, an automatic inspection robot, to be deployed along a monorail, performs inspection by means of image processing technology, while and advanced intelligent maintenance robot is equipped with a special wheel-locomotion mechanism and manipulator and is designed to perform maintenance tasks. (author)

  11. Next generation storage facility

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1994-01-01

    With diminishing requirements for plutonium, a substantial quantity of this material requires special handling and ultimately, long-term storage. To meet this objective, we at Los Alamos, have been involved in the design of a storage facility with the goal of providing storage capabilities for this and other nuclear materials. This paper presents preliminary basic design data, not for the structure and physical plant, but for the container and arrays which might be configured within the facility, with strong emphasis on criticality safety features

  12. Bevalac Radiotherapy Facility

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, J.R.; Howard, J.; Criswell, T.

    1979-03-01

    Patient Treatment Room at the Bevalac is now in full operation. In the design of this facility, emphasis has been placed on creating an atmosphere appropriate to a clinical facility; the usual features of an irradiation cave have been hidden behind carpets, curtains and paint. Patient positioning is done with a Philips Ram-style couch, with additional fixtures to accommodate a patient in the seated or standing, as well as the supine, position. Dosimetry apparatus, collimators, ion chambers and the beam flattening system used to produce the highly uniform 20 cm diameter therapy field are described.

  13. RCRA facility stabilization initiative

    International Nuclear Information System (INIS)

    1995-02-01

    The RCRA Facility Stabilization Initiative was developed as a means of implementing the Corrective Action Program's management goals recommended by the RIS for stabilizing actual or imminent releases from solid waste management units that threaten human health and the environment. The overall goal of stabilization is to, as situations warrant, control or abate threats to human health and/or the environment from releases at RCRA facilities, and/or to prevent or minimize the further spread of contamination while long-term remedies are pursued. The Stabilization initiative is a management philosophy and should not be confused with stabilization technologies

  14. Exhaust gas processing facility

    International Nuclear Information System (INIS)

    Terada, Shin-ichi.

    1995-01-01

    The facility of the present invention comprises a radioactive liquid storage vessel, an exhaust gas dehumidifying device for dehumidifying gases exhausted from the vessel and an exhaust gas processing device for reducing radioactive materials in the exhaust gases. A purified gas line is disposed to the radioactive liquid storage vessel for purging exhaust gases generated from the radioactive liquid, then dehumidified and condensed liquid is recovered, and exhaust gases are discharged through an exhaust gas pipe disposed downstream of the exhaust gas processing device. With such procedures, the scale of the exhaust gas processing facility can be reduced and exhaust gases can be processed efficiently. (T.M.)

  15. TMX, a new facility

    International Nuclear Information System (INIS)

    Thomas, S.R. Jr.

    1977-01-01

    As a mirror fusion facility, the Tandem Mirror Experiment (TMX) at the Lawrence Livermore Laboratory (LLL) is both new and different. It utilizes over 23,000 ft 2 of work area in three buildings and consumes over 14 kWh of energy with each shot. As a systems design, the facility is broken into discreet functional regions. Among them are a mechanical vacuum pumping system, a liquid-nitrogen system, neutral-beam and magnet power supplies, tiered structures to support these supplies, a neutron-shielded vacuum vessel, a control area, and a diagnostics area. Constraints of space, time, and cost have all affected the design

  16. Facility effluent monitoring plan determinations for the 200 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-11-01

    The following facility effluent monitoring plan determinations document the evaluations conducted for the Westinghouse Hanford Company 200 Area facilities (chemical processing, waste management, 222-S Laboratory, and laundry) on the Hanford Site in south central Washington State. These evaluations determined the need for facility effluent monitoring plans for the 200 Area facilities. The facility effluent monitoring plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438 (WHC 1991). The Plutonium/Uranium Extraction Plant and UO 3 facility effluent monitoring plan determinations were prepared by Los Alamos Technical Associates, Richland, Washington. The Plutonium Finishing Plant, Transuranic Waste Storage and Assay Facility, T Plant, Tank Farms, Low Level Burial Grounds, and 222-S Laboratory determinations were prepared by Science Applications International Corporation of Richland, Washington. The B Plant Facility Effluent Monitoring Plan Determination was prepared by ERCE Environmental Services of Richland, Washington

  17. Mineral facilities of Europe

    Science.gov (United States)

    Almanzar, Francisco; Baker, Michael S.; Elias, Nurudeen; Guzman, Eric

    2010-01-01

    This map displays over 1,700 records of mineral facilities within the countries of Europe and western Eurasia. Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recently published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2.

  18. CERN IRRADIATION FACILITIES.

    Science.gov (United States)

    Pozzi, Fabio; Garcia Alia, Ruben; Brugger, Markus; Carbonez, Pierre; Danzeca, Salvatore; Gkotse, Blerina; Richard Jaekel, Martin; Ravotti, Federico; Silari, Marco; Tali, Maris

    2017-09-28

    CERN provides unique irradiation facilities for applications in dosimetry, metrology, intercomparison of radiation protection devices, benchmark of Monte Carlo codes and radiation damage studies to electronics. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Shared Facilities Canadian Style.

    Science.gov (United States)

    Galonski, Mark A.

    1998-01-01

    Describes two projects arising from an Ontario (Canada) Ministry of Education initiative that combined school and nonschool capital funds to build joint facilities. The Stratford Education and Recreation Centre and the Humberwood Community Centre demonstrate that government agencies can cooperate to benefit the community. Success depends on having…

  20. Facility effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  1. Facility Management Innovation (FMI)

    NARCIS (Netherlands)

    Mobach, Mark P.; Nardelli, Giulia; Kok, Herman; Konkol, Jennifer; Alexander, Keith; Alexander, Keith

    2014-01-01

    This current green paper deals with innovation in facility management (FM), a subject which is at the heart of Working Group 3, in benefit of the EuroFM Research Network. It aims to stimulate discussion and further collaborative work, and to generate new knowledge for the European FM community. We

  2. PFP Wastewater Sampling Facility

    International Nuclear Information System (INIS)

    Hirzel, D.R.

    1995-01-01

    This test report documents the results obtained while conducting operational testing of the sampling equipment in the 225-WC building, the PFP Wastewater Sampling Facility. The Wastewater Sampling Facility houses equipment to sample and monitor the PFP's liquid effluents before discharging the stream to the 200 Area Treated Effluent Disposal Facility (TEDF). The majority of the streams are not radioactive and discharges from the PFP Heating, Ventilation, and Air Conditioning (HVAC). The streams that might be contaminated are processed through the Low Level Waste Treatment Facility (LLWTF) before discharging to TEDF. The sampling equipment consists of two flow-proportional composite samplers, an ultrasonic flowmeter, pH and conductivity monitors, chart recorder, and associated relays and current isolators to interconnect the equipment to allow proper operation. Data signals from the monitors are received in the 234-5Z Shift Office which contains a chart recorder and alarm annunciator panel. The data signals are also duplicated and sent to the TEDF control room through the Local Control Unit (LCU). Performing the OTP has verified the operability of the PFP wastewater sampling system. This Operability Test Report documents the acceptance of the sampling system for use

  3. Toroid magnet test facility

    CERN Multimedia

    2002-01-01

    Because of its exceptional size, it was not feasible to assemble and test the Barrel Toroid - made of eight coils - as an integrated toroid on the surface, prior to its final installation underground in LHC interaction point 1. It was therefore decided to test these eight coils individually in a dedicated test facility.

  4. Facilities of Environmental Distinction

    Science.gov (United States)

    Pascopella, Angela

    2011-01-01

    Three of nine school buildings that have won the latest Educational Facility Design Awards from the American Institute of Architects (AIA) Committee on Architecture for Education stand out from the crowd of other school buildings because they are sustainable and are connected to the nature that surrounds them. They are: (1) Thurston Elementary…

  5. Improved Emission Spectrographic Facility

    International Nuclear Information System (INIS)

    Goergen, C.R.; Lethco, A.J.; Hosken, G.B.; Geckeler, D.R.

    1980-10-01

    The Savannah River Plant's original Emission Spectrographic Laboratory for radioactive samples had been in operation for 25 years. Due to the deteriorated condition and the fire hazard posed by the wooden glove box trains, a project to update the facility was funded. The new laboratory improved efficiency of operation and incorporated numerous safety and contamination control features

  6. Dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Tallec, M.; Kus, J.P.

    2009-01-01

    Nuclear facilities have a long estimable lifetime but necessarily limited in time. At the end of their operation period, basic nuclear installations are the object of cleansing operations and transformations that will lead to their definitive decommissioning and then to their dismantling. Because each facility is somewhere unique, cleansing and dismantling require specific techniques. The dismantlement consists in the disassembly and disposing off of big equipments, in the elimination of radioactivity in all rooms of the facility, in the demolition of buildings and eventually in the reconversion of all or part of the facility. This article describes these different steps: 1 - dismantling strategy: main de-construction guidelines, expected final state; 2 - industries and sites: cleansing and dismantling at the CEA, EDF's sites under de-construction; 3 - de-construction: main steps, definitive shutdown, preparation of dismantling, electromechanical dismantling, cleansing/decommissioning, demolition, dismantling taken into account at the design stage, management of polluted soils; 4 - waste management: dismantlement wastes, national policy of radioactive waste management, management of dismantlement wastes; 5 - mastery of risks: risk analysis, conformability of risk management with reference documents, main risks encountered at de-construction works; 6 - regulatory procedures; 7 - international overview; 8 - conclusion. (J.S.)

  7. Construction of solid waste form test facility

    International Nuclear Information System (INIS)

    Park, Hyun Whee; Lee, Kang Moo; Koo, Jun Mo; Jung, In Ha; Lee, Jong Ryeul; Kim, Sung Whan; Bae, Sang Min; Cho, Kang Whon; Sung, Suk Jong

    1989-02-01

    The Solid Waste Form Test Facility (SWFTF) is now construction at DAEDUCK in Korea. In SWFTF, the characteristics of solidified waste products as radiological homogeneity, mechanical and thermal property, water resistance and lechability will be tested and evaluated to meet conditions for long-term storage or final disposal of wastes. The construction of solid waste form test facility has been started with finishing its design of a building and equipments in Sep. 1984, and now building construction is completed. Radioactive gas treatment system, extinguishers, cooling and heating system for the facility, electrical equipments, Master/Slave manipulator, power manipulator, lead glass and C.C.T.V. has also been installed. SWFTF will be established in the beginning of 1990's. At this report, radiation shielding door, nondestructive test of the wall, instrumentation system for the utility supply system and cell lighting system are described. (Author)

  8. Preliminary design for a maglev development facility

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, H.T.; He, J.L.; Chang, S.L.; Bouillard, J.X.; Chen, S.S.; Cai, Y.; Hoppie, L.O.; Lottes, S.A.; Rote, D.M. (Argonne National Lab., IL (United States)); Zhang, Z.Y. (Polytechnic Univ., Brooklyn, NY (United States)); Myers, G.; Cvercko, A. (Sterling Engineering, Westchester, IL (United States)); Williams, J.R. (Alfred Benesch and Co., Chicago, IL (United States))

    1992-04-01

    A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable of powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.

  9. Omega: A 24-beam UV irradiation facility

    International Nuclear Information System (INIS)

    Richardson, M.C.; Beich, W.; Delettrez, J.

    1985-01-01

    The authors report on the characterization and performance of the 24-beam Omega laser facility under full third harmonic (351-nm) upconversion. This system provides for the first time a multibeam laser facility for the illumination of spherical targets with UV laser light in symmetric irradiation conditions with energies in the kilojoule range. This facility is capable of providing sufficient irradiation uniformity to test concepts of direct drive laser fusion with UV-driven ablation targets. The results of initial studies of ablatively driven DT-fueled glass microballoon targets will be described. The 24-beam Omega Nd:phosphate glass facility is capable of providing at 1054 nm output powers in excess of 10 TW in short ( 10 4 full system shots to date) irradiation facility with beam synchronism of approx. =3 psec, beam placement accuracy on target of 10 μm, and interbeam energy variance of approx. =2%. From measured target plane intensity distributions, overall illumination uniformity with tangentially focused beams is estimated to be approx. =5%. In 1984, a symmetric set of six beams was upconverted to 351-nm radiation using the polarization-mismatch scheme developed by Craxton. Monolithic cells of 20-cm clear aperture containing both frequency and doubler and tripler type II KDP crystals in index-matching propylene carbonate liquid were incorporated to output of six of the Omega beams with a full set of UV beam diagnostics

  10. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in...

  11. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet Download

    Data.gov (United States)

    U.S. Environmental Protection Agency — This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are...

  12. EPA Facility Registry Service (FRS): Facility Interests Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in...

  13. EPA Facility Registry Service (FRS): Facility Interests Dataset Download

    Data.gov (United States)

    U.S. Environmental Protection Agency — This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are...

  14. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet Download

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in...

  15. EPA Facility Registry Service (FRS): AIRS_AFS Sub Facilities

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Air Facility System (AFS) contains compliance and permit data for stationary sources regulated by EPA, state and local air pollution agencies. The sub facility...

  16. Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Munn, W.I.

    1981-01-01

    The Fast Flux Test Facility (FFTF), located on the Hanford site a few miles north of Richland, Washington, is a major link in the chain of development required to sustain and advance Liquid Metal Fast Breeder Reactor (LMFBR) technology in the United States. This 400 MWt sodium cooled reactor is a three loop design, is operated by Westinghouse Hanford Company for the US Department of Energy, and is the largest research reactor of its kind in the world. The purpose of the facility is three-fold: (1) to provide a test bed for components, materials, and breeder reactor fuels which can significantly extend resource reserves; (2) to produce a complete body of base data for the use of liquid sodium in heat transfer systens; and (3) to demonstrate inherent safety characteristics of LMFBR designs

  17. Pumps for nuclear facilities

    International Nuclear Information System (INIS)

    1999-01-01

    The guide describes how the Finnish Radiation and Nuclear Safety Authority (STUK) controls pumps and their motors at nuclear power plants and other nuclear facilities. The scope of the control is determined by the Safety Class of the pump in question. The various phases of the control are: (1) review of construction plan, (2) control of manufacturing, and construction inspection, (3) commissioning inspection, and (4) control during operation. STUK controls Safety Class 1, 2 and 3 pumps at nuclear facilities as described in this guide. STUK inspects Class EYT (non-nuclear) pumps separately or in connection with the commissioning inspections of the systems. This guide gives the control procedure and related requirements primarily for centrifugal pumps. However, it is also applied to the control of piston pumps and other pump types not mentioned in this guide

  18. TIARA electrostatic accelerator facility

    International Nuclear Information System (INIS)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Uno, Sadanori; Ohkoshi, Kiyonori; Nakajima, Yoshinori; Saitoh, Yuichi; Ishii, Yasuyuki; Kamiya, Tomihiro

    1996-07-01

    In order to promote the Advanced Radiation Technology Project, Japan Atomic Energy Research Institute constructed TIARA facility composed of four ion accelerators at Takasaki Radiation Chemistry Research Establishment for the period from 1988 to 1993. A 3MV tandem accelerator and an AVF cycrotron were completed in 1991 as the first phase of the construction, and a 3MV single-ended accelerator and a 400kV ion implanter were completed in 1993 as the second phase. Three electrostatic accelerators, the tandem, the single-ended and the implanter, were installed in the Multiple-beam facility of TIARA and have been operated for various experiments with using single, dual and triple beams without any serious trouble. This report describes the constructive works, machine performances, control systems, safety systems and accessory equipments of the electrostatic accelerators. (author)

  19. World Class Facilities Management

    DEFF Research Database (Denmark)

    Malmstrøm, Ole Emil; Jensen, Per Anker

    2013-01-01

    Alle der med entusiasme arbejder med Facilities Management drømmer om at levere World Class. DFM drømmer om at skabe rammer og baggrund for, at vi i Danmark kan bryste os at være blandt de førende på verdensplan. Her samles op på, hvor tæt vi er på at nå drømmemålet.......Alle der med entusiasme arbejder med Facilities Management drømmer om at levere World Class. DFM drømmer om at skabe rammer og baggrund for, at vi i Danmark kan bryste os at være blandt de førende på verdensplan. Her samles op på, hvor tæt vi er på at nå drømmemålet....

  20. The ISOLDE facility

    Science.gov (United States)

    Catherall, R.; Andreazza, W.; Breitenfeldt, M.; Dorsival, A.; Focker, G. J.; Gharsa, T. P.; J, Giles T.; Grenard, J.-L.; Locci, F.; Martins, P.; Marzari, S.; Schipper, J.; Shornikov, A.; Stora, T.

    2017-09-01

    The ISOLDE facility has undergone numerous changes over the last 17 years driven by both the physics and technical community with a common goal to improve on beam variety, beam quality and safety. Improvements have been made in civil engineering and operational equipment while continuing developments aim to ensure operations following a potential increase in primary beam intensity and energy. This paper outlines the principal technical changes incurred at ISOLDE by building on a similar publication of the facility upgrades by Kugler (2000 Hyperfine Interact. 129 23-42). It also provides an insight into future perspectives through a brief summary issues addressed in the HIE-ISOLDE design study Catherall et al (2013 Nucl. Instrum. Methods Phys. Res. B 317 204-207).

  1. Separations canyon decontamination facilities

    International Nuclear Information System (INIS)

    Hershey, J.H.

    1975-01-01

    Highly radioactive process equipment is decontaminated at the Savannah River Plant in specially equipped areas of the separations canyon building so that direct mechanical repairs or alterations can be made. Using these facilities it is possible to decontaminate and repair equipment such as 10- x 11-ft storage tanks, 8- x 8-ft batch evaporator pots and columns, 40-in. Bird centrifuges, canyon pumps and agitators, and various canyon piping systems or ''jumpers.'' For example, centrifuge or evaporator pots can be decontaminated and rebuilt for about 60 percent of the 1974 replacement cost. The combined facilities can decontaminate and repair 6 to 10 pieces of major equipment per year. Decontamination time varies with type of equipment and radioactivity levels encountered

  2. Separations canyon decontamination facilities

    International Nuclear Information System (INIS)

    Hershey, J.H.

    1975-05-01

    Highly radioactive process equipment is decontaminated at the Savannah River Plant in specially equipped areas of the separations canyon buildings so that direct mechanical repairs or alterations can be made. Using these facilities it is possible to decontaminate and repair equipment such as 10- x 11-ft storage tanks, 8- x 8-ft batch evaporator pots and columns, 40-in. Bird centrifuges, canyon pumps and agitators, and various canyon piping systems or ''jumpers.'' For example, centrifuge or evaporator pots can be decontaminated and rebuilt for about 60 percent of the 1974 replacement cost. The combined facilities can decontaminate and repair 6 to 10 pieces of major equipment per year. Decontamination time varies with type of equipment and radioactivity levels encountered. (U.S.)

  3. Facilities evaluation report

    International Nuclear Information System (INIS)

    Sloan, P.A.; Edinborough, C.R.

    1992-04-01

    The Buried Waste Integrated Demonstration (BWID) is a program of the Department of Energy (DOE) Office of Technology Development whose mission is to evaluate different new and existing technologies and determine how well they address DOE community waste remediation problems. Twenty-three Technical Task Plans (TTPs) have been identified to support this mission during FY-92; 10 of these have identified some support requirements when demonstrations take place. Section 1 of this report describes the tasks supported by BWID, determines if a technical demonstration is proposed, and if so, identifies the support requirements requested by the TTP Principal Investigators. Section 2 of this report is an evaluation identifying facility characteristics of existing Idaho National Engineering Laboratory (INEL) facilities that may be considered for use in BWID technology demonstration activities

  4. The engineering test facility

    International Nuclear Information System (INIS)

    Steiner, D.; Becraft, W.R.; Sager, P.H.

    1981-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This paper describes the design status of the ETF. (orig.)

  5. Engineering test facility

    International Nuclear Information System (INIS)

    Steiner, D.; Becraft, W.R.; Sager, P.H.

    1981-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This paper described the design status of the ETF

  6. Large mass storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, Arnold M.

    1978-08-01

    This is the final report of a study group organized to investigate questions surrounding the acquisition of a large mass storage facility. The programatic justification for such a system at Brookhaven is reviewed. Several candidate commercial products are identified and discussed. A draft of a procurement specification is developed. Some thoughts on possible new directions for computing at Brookhaven are also offered, although this topic was addressed outside of the context of the group's deliberations. 2 figures, 3 tables.

  7. Proton beam therapy facility

    International Nuclear Information System (INIS)

    1984-01-01

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs

  8. Facility decontamination technology workshop

    International Nuclear Information System (INIS)

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted

  9. Proton beam therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  10. SIGMA Experimental Facility

    International Nuclear Information System (INIS)

    Rivarola, Martin; Florido, Pablo; Gonzalez, Jose; Brasnarof, Daniel; Orellano, Pablo; Bergallo, Juan

    2000-01-01

    The SIGMA ( Separacion Isotopica Gaseosa por Metodos Avanzados) concept is outlined.The old gaseous diffusion process to enrich uranium has been updated to be economically competitive for small production volumes.Major innovations have been introduced in the membrane design and in the integrated design of compressors and diffusers.The use of injectors and gas turbines has been also adopted.The paper describes the demonstration facility installed by the Argentine Atomic Energy Commission

  11. Facility decontamination technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)

  12. ORNL calibrations facility

    International Nuclear Information System (INIS)

    Berger, C.D.; Gupton, E.D.; Lane, B.H.; Miller, J.H.; Nichols, S.W.

    1982-08-01

    The ORNL Calibrations Facility is operated by the Instrumentation Group of the Industrial Safety and Applied Health Physics Division. Its primary purpose is to maintain radiation calibration standards for calibration of ORNL health physics instruments and personnel dosimeters. This report includes a discussion of the radioactive sources and ancillary equipment in use and a step-by-step procedure for calibration of those survey instruments and personnel dosimeters in routine use at ORNL

  13. Japan hadron facility

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Tokushi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1998-03-01

    JHF aims at promoting the variety of research fields using various secondary beams produced by high-intensity proton beams. The accelerator of JHF will be an accelerator complex of a 200 MeV LINAC, a 3 GeV booster proton synchrotron, and a 50 GeV proton synchrotron. The four main experimental facilities of K-Arena, M-Arena, N-Arena, and E-Arena are planed. The outline of the project is presented. (author)

  14. Bevalac Minibeam Facility

    International Nuclear Information System (INIS)

    Schimmerling, W.; Alonso, J.; Morgado, R.; Tobias, C.A.; Grunder, H.; Upham, F.T.; Windsor, A.; Armer, R.A.; Yang, T.C.H.; Gunn, J.T.

    1977-03-01

    The Minibeam Facility is a biomedical heavy-ion beam area at the Bevalac designed to satisfy the following requirements: (1) provide a beam incident in a vertical plane for experiments where a horizontal apparatus significantly increases the convenience of performing an experiment or even determines its feasibility; (2) provide an area that is well shielded with respect to electronic interference so that microvolt signals can be detected with acceptable signal-to-noise ratios; (3) provide a beam of small diameter, typically a few millimeters or less, for various studies of cellular function; and (4) provide a facility for experiments that require long setup and preparation times and apparatus that must be left relatively undisturbed between experiments and that need short periods of beam time. The design of such a facility and its main components is described. In addition to the above criteria, the design was constrained by the desire to have inexpensive, simple devices that work reliably and can be easily upgraded for interfacing to the Biomedical PDP 11/45 computer

  15. Description of pelletizing facility

    Energy Technology Data Exchange (ETDEWEB)

    Vojin Cokorilo; Dinko Knezevic; Vladimir Milisavljevic [University of Belgrade, Belgrade (Serbia). Faculty of Mining and Geology

    2006-07-01

    A lot of electrical energy in Serbia was used for heating, mainly for domestics. As it is the most expensive source for heating the government announced a National Program of Energy Efficiency with only one aim, to reduce the consumption of electric energy for the heating. One of the contributions to mentioned reduction is production of coal pellets from the fine coal and its use for domestic heating but also for heating of schools, hospitals, military barracks etc. Annual production of fine coal in Serbia is 300,000 tons. The stacks of fine coal present difficulties at each deep mine because of environmental pollution, spontaneous combustion, low price, smaller market etc. To overcome the difficulties and to give the contribution to National Program of Energy Efficiency researchers from the Department of Mining Engineering, the University of Belgrade designed and realized the project of fine coal pelletizing. This paper describes technical aspect of this project. Using a CPM machine Model 7900, a laboratory facility, then a semi-industrial pelletizing facility followed by an industrial facility was set up and produced good quality pellets. The plant comprised a coal fines hopper, conveyor belt, hopper for screw conveyor, screw conveyor, continuous mixer conditioner, binder reservoir, pump and pipelines, pellet mill, product conveyor belt and product hopper. 4 refs., 3 figs., 1 tab.

  16. ATLAS Facility Description Report

    International Nuclear Information System (INIS)

    Kang, Kyoung Ho; Moon, Sang Ki; Park, Hyun Sik; Cho, Seok; Choi, Ki Yong

    2009-04-01

    A thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), has been constructed at KAERI (Korea Atomic Energy Research Institute). The ATLAS has the same two-loop features as the APR1400 and is designed according to the well-known scaling method suggested by Ishii and Kataoka to simulate the various test scenarios as realistically as possible. It is a half-height and 1/288-volume scaled test facility with respect to the APR1400. The fluid system of the ATLAS consists of a primary system, a secondary system, a safety injection system, a break simulating system, a containment simulating system, and auxiliary systems. The primary system includes a reactor vessel, two hot legs, four cold legs, a pressurizer, four reactor coolant pumps, and two steam generators. The secondary system of the ATLAS is simplified to be of a circulating loop-type. Most of the safety injection features of the APR1400 and the OPR1000 are incorporated into the safety injection system of the ATLAS. In the ATLAS test facility, about 1300 instrumentations are installed to precisely investigate the thermal-hydraulic behavior in simulation of the various test scenarios. This report describes the scaling methodology, the geometric data of the individual component, and the specification and the location of the instrumentations in detail

  17. Hot Hydrogen Test Facility

    International Nuclear Information System (INIS)

    W. David Swank

    2007-01-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500 C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed

  18. Cryogenic Fluid Management Facility

    Science.gov (United States)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  19. Roof Photovoltaic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — In order to accurately predict the annual energy production of photovoltaic systems for any given geographical location, building orientation, and photovoltaic cell...

  20. Distributed Supply Coordination for Power-to-Gas Facilities Embedded in Energy Grids

    NARCIS (Netherlands)

    Alkano, Desti; Scherpen, Jacquelien M. A.

    This paper considers hydrogen and renewable electricity from power-to-gas (PtG) facilities supplied to a gas grid, a mobility sector, and a power grid. The PtG facilities are equipped with hydrogen buffers and fuel cells. The goal is to maximize the expected profit of PtG facilities without

  1. Indoor Lighting Facilities

    Science.gov (United States)

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics by the Ministry of Land, Infrastructure and Transport, the total floor space of all building construction started was 188.87 million m2 (1.5% increase y/y), marking the fourth straight year of increase. Many large-scale buildings under construction in central Tokyo become fully occupied by tenants before completion. As for office buildings, it is required to develop comfortable and functional office spaces as working styles are becoming more and more diversified, and lighting is also an element of such functionalities. The total floor space of construction started for exhibition pavilions, multipurpose halls, conference halls and religious architectures decreased 11.1% against the previous year. This marked a decline for 10 consecutive years and the downward trend continues. In exhibition pavilions, the light radiation is measured and adjusted throughout the year so as not to damage the artworks by lighting. Hospitals, while providing higher quality medical services and enhancing the dwelling environment of patients, are expected to meet various restrictions and requirements, including the respect for privacy. Meanwhile, lighting designs for school classrooms tend to be homogeneous, yet new ideas are being promoted to strike a balance between the economical and functional aspects. The severe economic environment continues to be hampering the growth of theaters and halls in both the private and public sectors. Contrary to the downsizing trend of such facilities, additional installations of lighting equipment were conspicuous, and the adoption of high efficacy lighting appliances and intelligent function control circuits are becoming popular. In the category of stores/commercial facilities, the construction of complex facilities is a continuing trend. Indirect lighting, high luminance discharge lamps with excellent color rendition and LEDs are being effectively used in these facilities, together with the introduction of lighting designs

  2. Remote maintenance system for nuclear facilities

    International Nuclear Information System (INIS)

    Maeda, Masafumi

    1993-01-01

    In the facilities related to atomic energy, from the viewpoint of the reduction of radiation exposure of workers and the heightening of the rate of operation of the facilities, the development of remote maintenance system is regarded as important. Meidensha Electric Manufacturing Co., Ltd. developed the bilateral control type manipulator, BILARM-83, in 1979, and has developed high performance manipulator systems. As the design of the plant that realizes the remote operation maintenance of process machinery and equipment during plant operation, the remote maintenance system by canyon cell techniques, which was adopted in Savannah River plant, USA, and has been operated for nearly 50 years, has been known. The concept of the full remote maintenance system by large scale cell techniques was shown and has been developed by Power Reactor and Nuclear Fuel Development Corp. In order to realize the remote maintenance of such large scale cells, Meidensha is developing the both arm type bilateral servo manipulator, the single arm type power manipulator, the transport system for moving them, the power and signal system and so on. Those systems were adopted for the glass solidification facilities. (K.I.)

  3. Carbon Fiber Technology Facility (CFTF)

    Data.gov (United States)

    Federal Laboratory Consortium — Functionally within the MDF, ORNL operates DOE’s unique Carbon Fiber Technology Facility (CFTF)—a 42,000 ft2 innovative technology facility and works with leading...

  4. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with a...

  5. Emission Facilities - Air Emission Plants

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Represents the Primary Facility type Air Emission Plant (AEP) point features. Air Emissions Plant is a DEP primary facility type related to the Air Quality Program....

  6. Skilled nursing or rehabilitation facilities

    Science.gov (United States)

    ... ency/patientinstructions/000435.htm Skilled nursing or rehabilitation facilities To use the sharing features on this page, ... to go to a Skilled Nursing or Rehabilitation Facility? Your health care provider may determine that you ...

  7. Tier II Chemical Storage Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities that store hazardous chemicals above certain quantities must submit an annual emergency and hazardous chemical inventory on a Tier II form. This is a...

  8. Nitramine Drying & Fine Grinding Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Nitramine Drying and Fine Grinding Facility provides TACOM-ARDEC with a state-of-the-art facility capable of drying and grinding high explosives (e.g., RDX and...

  9. Tandem Van de Graaff facility

    Data.gov (United States)

    Federal Laboratory Consortium — Completed in 1970, the Tandem Van de Graaff facility was for many years the world's largest electrostatic accelerator facility. It can provide researchers with beams...

  10. New Ideas on Facilities Management.

    Science.gov (United States)

    Grimm, James C.

    1986-01-01

    Examines trends in facilities management relating to products and people. Reviews new trends in products, including processes, techniques, and programs that are being expounded by business and industry. Discusses the "people factors" involved in facilities management. (ABB)

  11. Arc Heated Scramjet Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  12. Environmentally Regulated Facilities in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — A unique record for each facility site with an environmental interest by DNR (such as permits). This brings together core environmental information in one place for...

  13. High sensitivity optical fiber liquid level sensor based on a compact MMF-HCF-FBG structure

    Science.gov (United States)

    Zhang, Yunshan; Zhang, Weigang; Chen, Lei; Zhang, Yanxin; Wang, Song; Yan, Tieyi

    2018-05-01

    An ultra-high sensitivity fiber liquid level sensor based on wavelength demodulation is proposed and demonstrated. The sensor is composed of a segment of multimode fiber and a large aperture hollow-core fiber assisted by a fiber Bragg grating (FBG). Interference occurs due to core mismatching and different modes with different effective refractive indices. The experimental results show that the liquid level sensitivity of the sensor is 1.145 nm mm‑1, and the linearity is up to 0.996. The dynamic temperature compensation of the sensor can be achieved by cascading an FBG. Considering the high sensitivity and compact structure of the sensor, it can be used for real-time intelligent monitoring of tiny changes in liquid level.

  14. Facility planning and site development

    International Nuclear Information System (INIS)

    Reisman, R.C.; Handmaker, H.

    1986-01-01

    Planning for a magnetic resonance imaging (MRI) facility should provide for the efficient operation of current and future MRI devices and must also take into consideration a broad range of general planning principles. Control of budgeted facility costs and construction schedules is of increasing importance due to the magnitude of expense of MRI facility development as well as the need to protect institutional or entrepreneurial investment. In a competitive environment facility costs may be the determining factor in a project's success

  15. PUREX facility preclosure work plan

    International Nuclear Information System (INIS)

    Engelmann, R.H.

    1997-01-01

    This preclosure work plan presents a description of the PUREX Facility, the history of the waste managed, and addresses transition phase activities that position the PUREX Facility into a safe and environmentally secure configuration. For purposes of this documentation, the PUREX Facility does not include the PUREX Storage Tunnels (DOE/RL-90/24). Information concerning solid waste management units is discussed in the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, Appendix 2D)

  16. Fiscal 2001 achievement report. Development of coal gas production technology for fuel cells - Research using pilot test facility - for public release (Test result report - 3/3); 2001 nendo seika hokokusho (Kokai you). Nenryo denchi you sekitan gas seizo gijutsu kaihatsu - Pilot shiken setsubi ni yoru kenkyu (Shiken kekka hokokusho 3/3)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    For the development of a coal gasification furnace optimum for fuel cells, a pilot test facility was constructed, and the results of tests and inspections conducted therefor are put together. They include a test operation of the expansion turbine in the air separation facility, test operation of the lubricating oil pump for the expansion turbine in the same, test operation of the oxygen compressor in the same, test operation of the medium pressure nitrogen compressor in the same, test operation of the lubricating oil pump for the medium pressure nitrogen compressor in the same, test operation of the high pressure nitrogen compressor in the same, performance verification test for the air separation facility, sequence test for upper/lower stage normal pressure coal hopper purge master in the gasification facility, sequence test for upper/lower stage initial coal loading master in the same, sequence test for char system rock hopper pressure application master in the same, sequence test for gasification furnace light oil leak check master in the same, sequence test for coal rock hopper pressure application master in the same, sequence test for upper/lower coal rock hopper coal reception master in the same, sequence test for slag hopper quenching operation master in the same, and sequence test for gasification steam drum water filling master in the same. (NEDO)

  17. Fiscal 2000 achievement report. Development of coal gas production technology for fuel cells (Research using pilot test facility - for public release); 2000 nendo seika hokokusho (Kokai you). Nenryo denchi you sekitan gas seizo gijutsu kaihatsu - Pilot shiken setsubi ni yoru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the development of a coal gasification furnace optimum for fuel cells, research and development was conducted of a coal gas production technology using the oxygen-blown coal gasification technology, and the fiscal 2000 results are put together. In the construction of the pilot test facility, part of the road in the site was constructed as continued from the preceding fiscal year. In the construction of the coal gasification facility, some of the devices were built, which were the coal feeding system, coal gasification furnace, heat recovery boiler, and the char recovery device, and some of the thus-built devices and procured devices were installed. In the study of the control of the operation of the oxygen-blown coal gasification system, the pilot test facility was divided into unit devices and, for each of the unit devices, detailed procedures for pre-start preparation, start, stop, and for the stop of accessorise were deliberated, and important operating steps were worked out. Timing charts were prepared for the operation of each of the facilities during plant start/stop operations. In the effort to deal with serious accidents, special operation procedures were studied and prepared on the case-by-case basis. (NEDO)

  18. Eccentric Coil Test Facility (ECTF)

    International Nuclear Information System (INIS)

    Burn, P.B.; Walstrom, P.L.; Anderson, W.C.; Marguerat, E.F.

    1975-01-01

    The conceptual design of a facility for testing superconducting coils under some conditions peculiar to tokamak systems is given. A primary element of the proposed facility is a large 25 MJ background solenoid. Discussions of the mechanical structure, the stress distribution and the thermal stability for this coil are included. The systems for controlling the facility and diagnosing test coil behavior are also described

  19. Capital Ideas for Facilities Management.

    Science.gov (United States)

    Golding, Stephen T.; Gordon, Janet; Gravina, Arthur

    2001-01-01

    Asserting that just like chief financial officers, higher education facilities specialists must maximize the long-term performance of assets under their care, describes strategies for strategic facilities management. Discusses three main approaches to facilities management (insourcing, cosourcing, and outsourcing) and where boards of trustees fit…

  20. Criticality safety training at the Hot Fuel Examination Facility

    International Nuclear Information System (INIS)

    Garcia, A.S.; Courtney, J.C.; Thelen, V.N.

    1983-01-01

    HFEF comprises four hot cells and out-of-cell support facilities for the US breeder program. The HFEF criticality safety program includes training in the basic theory of criticality and in specific criticality hazard control rules that apply to HFEF. A professional staff-member oversees the implementation of the criticality prevention program